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Preface

This volume contains the papers selected for presentation at the 10th Inter-
national Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing, RSFDGrC 2005, organized at the University of Regina, August
31st–September 3rd, 2005. This conference followed in the footsteps of interna-
tional events devoted to the subject of rough sets, held so far in Canada, China,
Japan, Poland, Sweden, and the USA. RSFDGrC achieved the status of biennial
international conference, starting from 2003 in Chongqing, China.

The theory of rough sets, proposed by Zdzis�law Pawlak in 1982, is a model
of approximate reasoning. The main idea is based on indiscernibility relations
that describe indistinguishability of objects. Concepts are represented by ap-
proximations. In applications, rough set methodology focuses on approximate
representation of knowledge derivable from data. It leads to significant results
in many areas such as finance, industry, multimedia, and medicine.

The RSFDGrC conferences put an emphasis on connections between rough
sets and fuzzy sets, granular computing, and knowledge discovery and data min-
ing, both at the level of theoretical foundations and real-life applications. In
the case of this event, additional effort was made to establish a linkage towards
a broader range of applications. We achieved it by including in the conference
program the workshops on bioinformatics, security engineering, and embedded
systems, as well as tutorials and sessions related to other application areas.

Revision Process

There were 277 submissions, excluding the invited, workshop, and special session
papers. Every paper was examined by at least three reviewers. Out of the papers
initially selected, some were approved subject to major revision and then addi-
tionally evaluated by the Advisory Board and Program Committee members;
119 papers were finally accepted, this gives an acceptance ratio equal to 43.0%.

In the case of workshops, 22 out of 130 submissions were finally approved to
be published in the proceedings; this gives an acceptance ratio equal to 16.9%.

The reviewing process for the special session included in the proceedings was
conducted independently by its organizers; 5 papers were finally accepted.

Final versions of all invited, regular, workshop, and special session papers were
thoroughly revised by the editors, often with several iterations of corrections.

Layout of Proceedings

The regular, invited, workshop, and special session papers are published within
30 chapters, grouped with respect to their topics. The conference materials are
split into two volumes (LNAI 3641 and 3642), both consisting of 15 chapters.

This volume contains 75 papers. Three invited papers are gathered in Chap.
1. The remaining 72 regular papers are gathered in Chaps. 2–15, related to rough
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set approximations, rough-algebraic foundations, feature selection and reduction,
reasoning in information tables, rough-probabilistic approaches, rough-fuzzy hy-
bridization, fuzzy methods in data analysis, evolutionary computing, machine
learning, approximate and uncertain reasoning, probabilistic network models,
spatial and temporal reasoning, non-standard logics, and granular computing.
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eé



RSFDGrC 2005 Conference Committee

Honorary Chairs Zdzis�law Pawlak, Lotfi A. Zadeh
Conference Chairs Wojciech Ziarko, Yiyu Yao, Xiaohua Hu
Program Chair Dominik Ślȩzak
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Abstract. This paper concerns the relationship between rough sets and
flow graphs. It is shown that flow graph can be used both as formal
language for computing approximations of sets in the sense of rough
set theory, and as description tool for data structure. This description is
employed next for finding patterns in data. To this end decision algorithm
induced by the flow graph is defined and studied.

Keywords: rough sets; flow graphs; decision algorithms.

1 Introduction

We study in this paper the relationship between rough sets and flow graphs.
It is revealed that flow graph can be used as a formal language for rough set
theory and can be also used for decision algorithm simplification. Flow graphs
introduced in this paper are different from those proposed by Ford and Fulkerson
for optimal flow analysis [1].

Flow graphs can be used for approximate reasoning modeling based on the
flow principle. In particular, it is shown in this paper that if we interpret nodes
of flow graphs as subsets of a finite universe, such that for any branch (x,y) of
the flow graph (x is an input of y) we have x ∩ y �= ∅, then the union of all inputs
x of y is the upper approximation of y. Similarly, the union of all inputs x of y,
such that x ⊆ y, is the lower approximation of y, provided that all inputs of y
are mutually disjoint.

Besides, independency and dependency (statistical) of conditions and deci-
sions of decision rules are defined and discussed.

This paper is a continuation of the author’s ideas presented in [7,8] (see also
[2,3]).

2 Rough Sets

In this section we recall briefly after [6] basic concept of rough set theory.
A starting point of rough set based data analysis is a data set, called an

information system.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 1–11, 2005.
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2 Z. Pawlak

Formally, by an information system we will understand a pair S = (U,A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va of its
values, called the domain of a. Any subset B of A determines a binary relation
I(B) on U, called an indiscernibility relation, and defined as follows: (x, y) ∈ I(B)
if and only if a(x) = a(y) for every a ∈ A, where a(x) denotes the value of at-
tribute a for element x.

Obviously I(B) is an equivalence relation. The family of all equivalence classes
of I(B), i.e., a partition determined by B, will be denoted by U/I(B), or simply
by U/B. An equivalence class of I(B), i.e., block of the partition U/B, containing
x will be denoted by B(x).

If (x, y) belongs to I(B), we will say that x and y are B-indiscernible (indis-
cernible with respect to B). Equivalence classes of the relation I(B) (or blocks of
the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two disjoint classes of attributes,
called condition and decision attributes, respectively, then the system will be
called a decision system, denoted by S = (U,C,D), where C and D are disjoint
sets of condition and decision attributes, respectively.

Suppose we are given an information system S = (U,A), X ⊆ U, and B ⊆ A.
Our task is to describe the set X in terms of attribute values from B. To this end
we define two operations assigning to every X ⊆ U two sets B∗(X) and B∗(X)
called the B-lower and the B-upper approximation of X, respectively, and defined
as follows:

B∗(X) =
⋃
x∈U

{B(x) : B(x) ⊆ X} (1)

B∗(X) =
⋃
x∈U

{B(x) : B(x) ∩ X �= ∅} (2)

Hence, the B-lower approximation of a set X is the union of all B-granules that
are included in X, whereas its B-upper approximation is the union of all B-
granules that have a nonempty intersection with X. The set

BNB(X) = B∗(X) − B∗(X) (3)

will be referred to as to the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is

crisp (exact) with respect to B. In the opposite case, i.e., if BNB(X) �= ∅, then
X is referred to as to rough (inexact) with respect to B.

3 Flow Graphs

In this section we recall after [7] basic definitions and properties of flow graphs.
Flow graphs can be considered as a special kind of databases, where instead of

data about individual objects some statistical features of objects are presented in
terms of information flow distribution. It turns out that such data representation
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gives a new insight into data structures and leads to new methods of intelligent
data analysis.

A flow graph is a directed acyclic finite graph G = (N,B, ϕ), where N is a set
of nodes, B ⊆ N × N is a set of directed branches, ϕ : B → R+ is a flow function,
and R+ is the set of non-negative reals. We list basic concepts of flow graphs:

– If (x, y) ∈ B then x is an input of y and y is an output of x.
– If x ∈ N then I(x) and O(x) denote the sets of all x’s inputs and outputs.
– Input and output of a graph G are defined, respectively, as

I(G) = {x ∈ N : I(x) = ∅} and O(G) = {x ∈ N : O(x) = ∅}

– Inputs and outputs of G are its external nodes; other nodes are internal.
– If (x, y) ∈ B then ϕ(x, y) is a throughflow from x to y;

We will assume in what follows that ϕ(x, y) �= 0 for every (x, y) ∈ B.

With every node x of a flow graph G we associate its inflow

ϕ+(x) =
∑

y∈I(x)

ϕ(y, x) (4)

and outflow

ϕ−(x) =
∑

y∈O(x)

ϕ(x, y) (5)

Similarly, we define an inflow and an outflow for the whole flow graph G:

ϕ+(G) =
∑

x∈I(G)

ϕ−(x) (6)

ϕ−(G) =
∑

x∈O(G)

ϕ+(x) (7)

We assume that for any internal node x, ϕ+(x) = ϕ−(x) = ϕ(x), where ϕ(x) is
the throughflow of node x.

Obviously, ϕ+(G) = ϕ−(G) = ϕ(G), where ϕ(G) is the throughflow of G.
The above formulas can be considered as flow conservation equations [2].

Example: Assume that there are 100 play blocks in the collection; 60 are tri-
angular, 40 are square, 70 are blue, 10 are red, 20 are green, 10 are small and
90 are large. Flow graph for the set of play blocks is presented in Fig. 1. We see
that there are 45 triangular and blue play blocks, etc. Thus the flow gives clear
picture of the relationship between different features of play blocks. 	

If we replace flow by relative flow with respect to total flow, we obtain a normal-
ized flow graph – a directed acyclic finite graph G = (N,B, σ), where, as before,



4 Z. Pawlak

Fig. 1. Flow graph

N is a set of nodes, B ⊆ N × N is a set of directed branches, but instead of
ϕ : B → R+ we have a normalized flow defined by

σ(x, y) =
ϕ(x, y)
ϕ(G)

(8)

for any (x, y) ∈ B.
The value of σ(x, y) is called the strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1.

The strength of the branch expresses simply the ratio of throughflow of the
branch to the total flow.

Normalized graphs have interesting properties which are discussed next. In
what follows we will use normalized flow graphs only, therefore by flow graphs
we will understand normalized flow graphs, unless stated otherwise.

For the sake of further study, if we invert all arrows in a flow graph the new
resulting flow graph will be called inverse.

With every node x of a flow graph G we associate its normalized inflow

σ+(x) =
ϕ+(x)
ϕ(G)

=
∑

y∈I(x)

σ(y, x) (9)

and normalized outflow

σ−(x) =
ϕ−(x)
ϕ(G)

=
∑

y∈O(x)

σ(x, y) (10)
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Fig. 2. Normalized flow graph

Obviously, for any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x)
is a normalized throughflow of x. Moreover, let

σ+(G) =
ϕ+(G)
ϕ(G)

=
∑

x∈I(G)

σ−(x) (11)

σ−(G) =
ϕ−(G)
ϕ(G)

=
∑

x∈O(G)

σ+(x) (12)

Obviously, σ+(G) = σ−(G) = σ(G) = 1.
A (directed) path from x to y, x �= y, in G is a sequence of nodes x1, . . . , xn

such that x1 = x, xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path
from x to y is denoted by [x . . .y] and n − 1 is called length of the path.

A flow graph is linear if all paths from node x to node y have the same length,
for every pair of nodes x, y.

A set of nodes of a linear flow graph is called a k-layer if it consists of all
nodes of this graph linked by a path of the length k with some input node.

The set of all inputs will be called the input layer of the flow graph, whereas
the set of all outputs is the output layer of the flow graph. For any input node x
and output node y of a linear graph, the length of [x . . . y] is the same. The layers
different than input and output layers will be referred to as to hidden layers.

Example (cont.): Fig. 2 shows normalized flow graph for the play blocks. We
have three layers {x1, x2}, {y1, y2, y3} and {z1, z2}, where {x1, x2} is the input
layer, {z1, z2} is the output layer and {y1, y2, y3} is the hidden layer. 	
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4 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty factor

cer(x, y) =
σ(x, y)
σ(x)

(13)

and the coverage factor

cov(x, y) =
σ(x, y)
σ(y)

(14)

where σ(x) �= 0 and σ(y) �= 0.
These coefficients are widely used in data mining (see, e.g., [5,11,12]) but

they can be traced back to �Lukasiewicz [4], who used them first in connection
with his research on logic and probability.

If we interpret nodes of a flow graph as subsets of a fixed set U (the universe),
then cer(x, y) can be understood as the degree of inclusion of x in y [9], while
cov(x, y) – as the degree of inclusion of y in x, for any sets x, y, where:

cer (X,Y) =

{
|X∩Y |
|X| if X �= ∅
1 if X = ∅

cov(X,Y ) = cer(Y,X), and |x| denotes the cardinality of set x.
Observe that by x, y we denote both nodes of the flow graph and subsets of

the universe U . However, it does not lead to confusion, because it is always clear
from the context when we speak about nodes or sets.

Assume that if {x1, . . . , xn} is a layer then xi ∩ xj = ∅ for any xi �= xj, and∑n
i=1 xi = U, i.e., every layer is a partition of the universe.
Consequently, the union of all inputs x of y can be understood as the upper

approximation of y and the union of all inputs x of y such that cer(x, y) = 1 as
the lower approximation of y.

In what follows, we will interpret layers as attributes in information systems,
input and hidden layers are interpreted as condition attributes, whereas output
layer is interpreted as the decision attribute.

Example (cont.): Fig. 3 illustrates certainty and coverage factors for previously
considered example. Here, the input layer represents condition attribute shape,
the hidden layer – the condition attribute color, whereas the output layer – the
decision attribute size. We can see from the graph that the lower approximation
of z1 is the empty set, whereas the upper approximation of z1 is y1 ∪ y2. The
lower approximation of z2 is y3, whereas the upper approximation is y1 ∪ y2 ∪ y3.
The lower approximation of y1 is the empty set, and the upper approximation
is x1 ∪ x2. For the set y2 both approximations are equal x1, etc.

From the inverse flow graph we get, e.g., that the lower approximation of x2

is the empty set, the upper approximation is the set y1 ∪ y3, and the lower and
upper approximations of y3 are both equal to z2. 	
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Fig. 3. Certainty and coverage factors

The following properties are immediate consequences of definitions given above:∑
y∈O(x)

cer(x, y) = 1 (15)

∑
x∈I(y)

cov(x, y) = 1 (16)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y) (17)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y) (18)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
(19)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
(20)

The above properties have a probabilistic flavor, e.g., equations (17) and (18)
have a form of total probability theorem, whereas formulas (19) and (20) are
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Bayes’ rules [10]. However, in our approach, these properties are interpreted in
a deterministic way and they describe flow distribution among branches in the
network.

The certainty, coverage, and strength of the path [x1 . . . xn] are defined as

cer[x1 . . .xn] =
n−1∏
i=1

cer(xi, xi+1) (21)

cov[x1 . . .xn] =
n−1∏
i=1

cov(xi, xi+1) (22)

σ[x . . . y] = σ(x)cer[x . . .y] = σ(y)cov[x . . .y] (23)

respectively.

5 Flow Graph and Decision Algorithms

Flow graphs can be interpreted as decision algorithms [7].
Let us assume that the set of nodes of a flow graph is interpreted as a set of

logical formulas. The formulas are understood as propositional functions and if
x is a formula, then σ(x) is to be interpreted as a truth value of the formula. Let
us observe that the truth values are numbers from the closed interval < 0, 1 >,
i.e., 0 ≤ σ(x) ≤ 1.

According to [4] these truth values can be also interpreted as probabilities.
Thus σ(x) can be understood as flow distribution ratio (percentage), truth value
or probability. We will stick to the first interpretation.

With every branch (x, y) we associate a decision rule x → y, read if x then
y; x will be referred to as to condition, whereas y – decision of the rule. Such a
rule is characterized by three numbers: σ(x, y), cer(x, y), and cov(x, y).

Table 1. Decision algorithm

certainty coverage strength
x1, y1 → z1 0.10 0.45 0.05
x1, y1 → z2 0.90 0.45 0.41
x1, y2 → z1 0.30 0.30 0.03
x1, y2 → z2 0.70 0.08 0.07
x1, y3 → z2 1.00 0.06 0.05
x2, y1 → z1 0.10 0.25 0.02
x2, y1 → z2 0.90 0.25 0.23
x2, y3 → z2 1.00 0.17 0.15
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Fig. 4. Flow graph of the decision algorithm

Thus every path [x1 . . . xn] determines a sequence of decision rules x1 → x2,
x2 → x3, . . . , xn−1 → xn. From previous considerations it follows that such se-
quence can be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short
x∗ → xn, where x∗ = x1x2 . . .xn−1, characterized by

cer(x∗, xn) =
σ(x∗, xn)
σ(x∗)

(24)

cov(x∗, xn) =
σ(x∗, xn)
σ(xn)

(25)

where

σ(x∗, xn) = σ[x1, . . . , xn−1, xn] and σ(x∗) = σ[x1, . . . , xn−1] (26)

The set of all decision rules xi1xi2 . . . xin−1 → xin associated with paths [xi1 . . .xin ],
such that xi1 and xin are input and output of the flow graph, respectively, will
be called a decision algorithm induced by the flow graph.

Example (cont.): Decision algorithm induced by the flow graph given in Fig. 3
is shown in Table 1. With the decision algorithm we can associate a flow graph as
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shown in Fig. 4. Observe that the values of coefficients in Fig. 4 may not satisfy
exactly formulas (15)-(18) due to the round off errors in the computations.

One can see that the lower approximation of set z1 is the empty set and
the upper approximation of z1 is (x1 ∩ y1) ∪ (x1 ∩ y2) ∪ (x2 ∩ y1). The lower ap-
proximation of z2 is (x1 ∩ y3) ∪ (x2 ∩ y3) and its upper approximation is equal
to (x1 ∩ y1) ∪ (x1 ∩ y2) ∪ (x1 ∩ y3) ∪ (x2 ∩ y1) ∪ (x2 ∩ y3). 	


6 Conclusion

We have shown in this paper that approximations, basic operations in rough set
theory, which are in fact topological interior and closure operations defined in
algebraic terms, can be also defined in terms of flow intensity in a flow graph. If
we associate with every node of a flow graph a subset of a fixed universe then
the flow graph induces a relational structure such that two nodes connected by
a branch may be interpreted as partial inclusion of the corresponding subsets.

In particular, if X is included in Y then X belongs to the lower approxi-
mation of Y and if X is partially included in Y then X belongs to the upper
approximation of Y . Thus, the flow graph can be interpreted as family of lower
and upper approximations of subsets associated its nodes. This leads to a very
simple method of computing approximations without involving set theoretical
operations but employing only certainty and coverage coefficients.

This can be specially useful when data are given in a form of a decision table,
and the associated flow graph can be easily used to compute approximations and
consequently – decision rules (sure and possible).

This idea can be also formulated simpler by defining approximation of nodes
in a flow graph – instead of approximation of sets associated with nodes of the
flow graph. However, we have not consider this idea in this paper.

Finally, we would like to present some research topics related to flow graphs:

1. Extracting relevant flow graphs from data. Flow graphs derived from data
tables can be treated as a form of knowledge representation encoded in these
tables. Reasoning based on flow graphs can be much more efficient than
reasoning performed directly from data tables. However, one should develop
algorithms for extracting from data flow graphs that make it possible to
perform such reasoning with the satisfactory quality.

2. Developing case-based reasoning methods for cases with decisions represented
by flow graphs. In particular, this includes developing methods for incremen-
tal learning with flow graphs as compound decisions.

3. Reasoning about changes of flow graphs. Flow graphs can also be used in
reasoning about changes. This will require developing algorithms for inducing
rules predicting changes of flow graphs from properties of changing data.
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5. E. Kloesgen, J. Żytkow (eds.): Handbook of Knowledge Discovery and Data Mining.
Oxford University Press, Oxford, UK (2002)

6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System
Theory, Knowledge Engineering and Problem Solving 9, Kluwer Academic Pub-
lishers, Dordrecht (1991)

7. Pawlak, Z.: Rough sets, decision algorithms and Bayes’ theorem. European Journal
of Operational Research, 136 (2002) 181-189

8. Pawlak, Z.: Flow graphs and decision algorithms. In: G. Wang, Y. Yao, A. Skowron
(eds.), Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC
2003). Lecture Notes in Artificial Intelligence, 2639, Springer Verlag, Berlin (2003)
1-10

9. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximation
reasoning. International Journal of Approximate Reasoning, 15(4) (1996) 333-365

10. Swinburne, R. (ed.): Bayes’s Theorem. In: Proceedings of the British Academy,
113, Oxford University Press (2002)

11. Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. In: L.
Polkowski, A. Skowron (eds.), Rough Sets and Current Trends in Computing
(RSCTC’98). Lecture Notes in Artificial Intelligence 1424, Springer Verlag, Berlin
(1998) 475-482

12. Wong, S.K.M., Ziarko, W.: Algorithm for inductive learning. Bull. Polish Academy
of Sciences 34(5-6) (1986) 271-276



A Modal Characterization of Indiscernibility and
Similarity Relations in Pawlak’s

Information Systems�

Dimiter Vakarelov

Department of Mathematical Logic with Laboratory for Applied Logic,
Faculty of Mathematics and Computer Science,

Sofia University blvd James Bouchier 5,
1126 Sofia, Bulgaria

dvak@fmi.uni-sofia.bg

Abstract. In this paper we present a modal logic IND for Pawlak’s
information systems giving a modal characterization of 9 informational
relations: strong indiscernibility, as well as weak and strong versions of
forward and backward informational inclusion, as well as positive and
negative similarities. IND extends the logic INF introduced in [4] by
adding a modality corresponding to strong indiscernibility relation. The
main problem in the modal treating of strong indiscernibility is that its
definition is not modally definable. This requires special copying tech-
niques, which in the presence of many interacting modalities presents
complications. One of the main aims of the paper is to demonstrate such
techniques and to present an information logic complete in the intended
semantics and containing almost all natural information relations. It is
proved that IND possesses finite model property and hence is decidable.

1 Introduction

This paper is in the field of information logics, initiated by Orlowska and Pawlak
[3]. For more information, motivation and references for this area of research
the reader is invited to consult the book by Demri and Orlowska [2] and also
[5]. The present paper extends some results from [4] where modal logic INF for
Pawlak’s information systems was introduced and studied. INF is one of the first
systems based on a large list of modal operations corresponding to various kinds
of informational relations considered in their weak and strong versions: forward
and backward informational inclusion, as well as positive and negative similarity
relations. We add to the above list one more relation – strong indiscernibility,
which leads to a new modal logic IND. If we denote the strong forward inclusion
by ≤ then the strong indiscernibility ≡ has the following definition:
(≡) x ≡ y iff x ≤ y and y ≤ x.
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It is well known in modal logic that the condition (≡) is not modally definable,
which presents serious difficulties in its modal axiomatization. Normally in such
situations we proceed as follows. We find “sufficiently enough”modally definable
consequences from (≡) and the characteristic axioms for the other informational
relations which can be characterized by modal axioms. In this way we obtain a
logic which is complete in a class of models which are not desirable, that is why
they are called nonstandard. Then it is proved that the logic based on the class
of nonstandard models coincides with the logic based on the standard models
– this is done by special copying techniques. This technique, however, is not
universal and depends on a specific case. The main difficulty is to see how much
modally definable consequences from (≡) are “sufficiently enough” in order the
copying construction to work. In the present case the difficulty arises by great
number of other informational relations, interacting in many different ways.

The second important problem is decidability of the obtained system. We
apply for that purpose filtration – a known modal logic technique. As copying,
filtration construction is not a universal one and is also quite case sensitive. So
the second aim of the paper is to present a filtration construction for IND.

The paper is organized as follows. In Section 1 we give the relevant definitions
for the Pawlak’s information system and information relations included in IND.
Section 2 is devoted to the syntax and semantics for IND. Here we introduce
abstract, standard and non-standard models for IND. In Section 3 we introduce
the copying construction for IND and prove that different semantics define one
and the same logic. In Section 4 we propose a Hilbert type axiomatization of
IND and prove a completeness theorem. In Section 5 we give the filtration
construction for IND and prove that IND possesses finite model property and
is decidable. Section 6 is for some open problems and concluding remarks.

2 Information Systems and Informational Relations

We adopt the Pawlak’s information systems, named attribute systems in [4]:

Definition 1. A-systems. By an attribute system, A-system for short, we
mean any system of the form S = (Ob,At, {V al(a) : a ∈ At}, f), where:

– Ob �= ∅ is a set whose elements are called objects,
– At is a set whose elements are called attributes,
– For each a ∈ At, V al(a) is a set with elements called values of attribute a,
– f is a two-argument total function, called information function, which as-

signs to each object x ∈ Ob and attribute a ∈ At a subset f(x, a) ⊆ V al(a),
called information of x according to a. The components of an A-system will
be written with subscript S: ObS, AtS , V alS(a) and fS.

Definition 2. Some informational relations in A-systems. Let S be an A-
system, and let x, y ∈ ObS. We introduce the following informational relations
in S (we use abbreviation inf. inc. for informational inclusion):
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strong indiscernibility x ≡ y iff (∀a ∈ At)(f(x, a) = f(y, a))
strong forward inf. inc. x ≤ y iff (∀a ∈ At)(f(x, a) ⊆ f(y, a))
weak forward inf. inc. x � y iff (∃a ∈ At)(f(x, a) ⊆ f(y, a))
strong backward inf. inc. x ≥ y iff (∀a ∈ At)(f(x, a) ⊇ f(y, a))
weak backward inf. inc. x ≥ y iff (∃a ∈ At)(f(x, a) ⊇ f(y, a))
strong positive similarity xσ y iff (∀a ∈ At)(f(x, a) ∩ f(y, a) �= ∅)
weak positive similarity xΣ y iff (∃a ∈ At)(f(x, a) ∩ f(y, a) �= ∅)
strong negative similarity x ν y iff (∀a ∈ At)(f(x, a) ∩ f(y, a) �= ∅)
weak negative similarity xN y iff (∃a ∈ At)(f(x, a) ∩ f(y, a) �= ∅)

Lemma 1. ([4]) The following first-order conditions are true for any x, y, z ∈
ObS (the script S is omitted):

S1 x ≤ x
S2 x ≤ y and y ≤ z → x ≤ z
S3 xΣy → yΣx
S4 xΣy → xΣx
S5 xΣy and y ≤ z → xΣz
S6 xΣx or x ≤ y
S7 xNy → yNx
S8 xNy → xNx
S9 x ≤ y and yNz → xNz
S10 yNy or x ≤ y
S11 xNz or yΣz or x ≤ y
S12 x � x
S13 x ≤ y and y � z → x � z
S14 x � y and y ≤ z → x � z
S15 xσy → yσx

S16 xσy → xσx
S17 xσy and y ≤ z → xσz
S18 xσx or x � y
S19 xσy and y � z → xΣz
S20 xσz or yNz or x � y
S21 xνy → yνx
S22 xνy → xνx
S23 x ≤ y and yνz → xνz
S24 yνy or x � y
S25 x � y and yνz → xNz
S26 xΣz or yνz or x � y
(≥) x ≥ y iff y ≤ x
(�) x � y iff y � x
(≡) x ≡ y iff x ≤ y and y ≤ x

Lemma 1 suggests the following definition.

Definition 3. Let W = (W,≤,�,≥,�, σ,Σ, ν,N) be a relational system.

– W is called a bi-similarity structure if it satisfies the conditions S1-S26, (≥)
and (�) from Lemma 1.

– The system W = (W,≤,�,≥,�, σ,Σ, ν,N,≡) is called an Ind-structure if it
satisfies the conditions S1-S26, (≥), (�) and (≡) from Lemma 1.

– If S is an A-system then W (S) = (ObS ,≤S,�S ,≥S,�S , σS , ΣS , νS , NS ,≡S)
is called standard Ind-structure over S.

Note that each Ind-structure is a bi-similarity structure; Each bi-similarity struc-
ture can be considered as an Ind-structure defining x ≡ y iff x ≤ y and y ≤ x.

Theorem 1. Each Ind-structure is a standard Ind-structure.

Proof. Let W = (W,≤,�, σ,Σ, ν,N,≡) be an Ind-structure. Then W is a bi-
similarity structure. By lemma 2.5 from [4] each bi-similarity structure is a stan-
dard one, and by axiom (≡) this implies that W is a standard Ind-structure. �
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3 The Information Logic IND

Now we introduce a modal logic IND based on the informational relations ≤,�
,≥,�, σ,Σ, ν,N,≡. It extends the logic INF introduced in [4] by the modality
[≡] corresponding to the indiscernibility relation ≡.

Syntax of IND. Language of IND contains the following primitive symbols:

– V AR - a denumerable set of propositional variables,
– ¬,∧,∨ – the classical Boolean connectives,
– Modal operators: [U ] – the universal modality, and [R] – the informational

modality, for each R ∈ {≤,�,≥,�, σ,Σ, ν,N,≡},
– (, ) – parentheses.

The notion of a formula is standard. We will use also standard definitions for
implication ⇒, equivalence ⇔, 1 and diamond modality < R > A = ¬[R]¬A.

Semantics of IND. We interpret the language of IND in relational structures
of the form W = (W,≤,�,≥,�, σ,Σ, ν,N,≡). A function v : V AR → 2W is
called a valuation, it assigns to each variable p ∈ V AR a subset v(p) ⊆ W .
The pair M = (W, v) is called a model. The satisfiability relation x �v A (the
formula A is true in a point x ∈ W at the valuation v) is defined inductively
according to the standard Kripke semantics:

– x �v p iff x ∈ v(p), p ∈ V AR.
– x �v ¬A iff x �v A,
– x �v A ∧B iff x �v A and x �v B,
– x �v A ∨B iff x �v A or x �v B,
– x � [R]A iff (∀y ∈ W )(xRy → y �v A), R ∈ {≤,�,≥,�, σ,Σ, ν,N,≡},
– x � [U ]A iff (∀y ∈ W )(y �v A).

We say that the formula A is true in the model M if for any x ∈ W we have
x �v A; A is true in the structure W if it is true in all models over W ; A is true
in a class Σ of structures if it is true in any member of Σ.

Because of modal undefinability of the condition (≡) we introduce the notion
of a non-standard Ind-structure.

Definition 4. Non-standard Ind-structures. By a non-standard Ind-struc-
ture we mean any structure of the type W = (W,≤,�,≥,�, σ,Σ, ν,N,≡) satis-
fying S1-S26, (≥), (�) and the following seven conditions instead of (≡):

(≡1) xΣx and y ≤ x → x ≡ y,
(≡2) xNx and x ≤ y → x ≤ y,
(≡3) xΣz and xNz and y ≤ x → x ≡ y,
(≡4) x ≡ x,
(≡5) x ≡ y → y ≡ x,
(≡6) x ≡ y and y ≡ z → x ≡ z,
(≡7) x ≡ y → x ≤ y.
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Note that all of the conditions (≡i), i = 1 − 7 are true in any Ind-structure.
Any non-standard Ind-structure is an Ind-structure, if it satisfies condition
(∗) x ≤ y and y ≤ x → x ≡ y

Let W be a non-standard Ind-structure. Define the equivalence relation:
(∼=) x ∼= y iff x ≤ y and y ≤ x.
Equivalence classes with respect to ≡ and ∼= will be called ≡-clusters and ∼=-
clusters, denoted by ≡(x) and ∼=(x) respectively. By axiom (≡7) we obtain that
x ≡ y → x ∼= y, so each ≡-cluster is contained in some ∼=-cluster. In other words,
each ∼=-cluster is an union of ≡-clusters.

Definition 5. Normal ∼=-clusters. A ∼=-cluster α is called normal if α is itself
an ≡-cluster.

Lemma 2. The following properties hold:

(i) If xΣx then ∼=(x) is a normal ∼=-cluster. If xΣx and yΣy, then ∼=(x) =∼=(y).
(ii) If xNx then ∼=(x) is normal ∼=-cluster. If xNx and yNy then ∼=(x) =∼=(y).
(iii) Let xΣz and yNz. Let an ∼=-cluster α contain x and y. Then α is normal.

Proof. (i) Suppose xΣx. To show that ∼=(x) is a normal ∼=-cluster we will prove
that ∼=(x) = ≡ (x). Obviously ≡ (x) ⊆ ∼=(x). For the converse inclusion suppose
that z ∈ ∼= (x). Then z ∼= x, z ≤ x and by axiom (≡1) we obtain x ≡ z and
consequently z ∈ ≡ (x). For the second claim in (i) suppose that xΣx and yΣy
hold. By axiom S6 we obtain y ≤ x and by axiom (≡1) we get x ≡ y. This
implies x ∼= y and consequently ∼=(x) =∼=(y). (ii), (iii) can be shown similarly.�

We will use three classes of structures for the language of IND: Σ(Ind) – the
class of all Ind-structures; Σ(standard.Ind) – the class of all standard Ind-
structures; Σ(nonstandard.Ind) – the class of non-standard structures. Σ(Ind)
forms the abstract semantics of IND; Σ(standard.Ind) forms the standard
semantics of IND; Σ(nonstandard.Ind) forms the non-standard semantics of
IND. In the next section we prove that three kinds of semantics of IND are
equivalent. Standard semantics is the intended one for IND. Taking some anal-
ogy from programming languages containing abstract data types: Abstract se-
mantics considers the information relations as abstract data types, while standard
semantics can be considered as their procedural semantics. Non-standard seman-
tics is a generalization of the abstract one and extracts from the latter the modal
definability part. It is suitable for axiomatization and for the decidability proof.

4 Equivalence of the Abstract, Standard and
Non-standard Semantics of IND

Let Σ be a class of structures of the type W = (W,≤,�,≥,�, σ,Σ, ν,N,≡)
and let L(Σ) = {A : A is true in Σ}. The set L(Σ) is called the logic of Σ.
This is a semantic definition of a logic. We will consider three logics based on
the three kinds of semantic structures for IND. Proving that the corresponding
logics coincide means the equivalence of the three semantics.
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Proposition 1. L(Σ(Ind)) = L(Σ(standard.Ind))

Proof. – By Theorem 1. �

Our next aim is to prove that the logics L(Σ(Ind)) and L(Σ(nonstandard.Ind))
coincide. For that purpose we need the notion of copying (see e.g. [5]).

Definition 6. Copying construction. Let W = (W, {Rk : k ∈ K}), and
W ′ = (W ′, {R′

k : k ∈ K}) , be two relational systems of the same type and
M = (W, v) and M ′ = (W ′, v′) be models over W and W ′ respectively. Let
I be a non-empty set of mappings from W into W ′ and let for any i ∈ I the
application of i to x ∈ W be denoted by xi. We say that I is a copying from W
to W ′ if the following conditions are satisfied:
(CoI1) W ′ =

⋃
i∈I Wi, where Wi = {xi : x ∈ W and i ∈ I}.

(CoI2) For any x, y ∈ W and i, j ∈ I: if xi = yj then x = y.
(CoR1) For any R ∈ {Rk : k ∈ K} and i ∈ I: if xRy then (∃j ∈ I)(xiR

′yj).
(CoR2) For any x ∈ W , y′ ∈ W ′ and i ∈ I we have:

if xiR
′y′ then (∃y ∈ W )(∃j ∈ I)(yj = y′ and xRy).

(CoV ) We say that I is a copying from the model M to the model M ′ if
for any p ∈ V AR, x ∈ W and i ∈ I we have: x ∈ v(p) iff xi ∈ v′(p).

Lemma 3. Copying lemma.

(i) Let W and W ′ be two structures, v be a valuation in W and I be a copying
from W to W ′. Then there exist a valuation v′ in W ′ such that I is a copying
from the model M = (W, v) to the model M ′ = (W ′, v′).

(ii) The following is true for any formula A, x ∈ W , i ∈ I: x �v A iff xi �v′ A.

Proof. (i) Define v′(p) = {x′ ∈ W ′ : (∃x ∈ W )(∃i ∈ I)(x′ = xi)}.
(ii) The proof goes by induction on the complexity of the formula A. �

Proposition 2. Let W be a non-standard Ind-structure. Then there exists an
Ind-structure W ′ and a copying I from W to W ′.

Proof. Let W = (W,≤,�,≥,�, σ,Σ, ν,N,≡) be a non-standard Ind-structure
and I = Z = {0,±1,±2, . . .} be the set of integers. We will consider the elements
of I as mappings over W as follows: for x ∈ W and i ∈ I define:

xi =
{
x if ∼= (x) is a normal ∼=-cluster
(x, i) otherwise.

Denote by W ′ = {xi : x ∈ W, i ∈ I}. Then the mappings from I are mappings
from W into W ′. It remains to define relations in W ′. For the relations R′ ∈ {�′

,�′, σ′, Σ′, ν′, N ′} we put xiR
′yj iff xRy. For the relation ≤′ let � be a well

ordering of the set of all clusters ≡(x) of W (guaranteed by the axiom of choice).
We consider two cases:
Case 1: At least one of the following three conditions holds: (1) ∼= (x) is a
normal ∼=-cluster; (2) ∼=(y) is a normal cluster; (3) the relation x ∼= y does not
hold. In this case we put xi ≤′ yj iff x ≤ y.
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Case 2: The opposite, i.e. neither of the conditions (1), (2), (3) hold. Then
xi = (x, i), yj = (y, j), ∼= (x) =∼= (y) and the ∼=-cluster α = ∼=(x) = ∼=(y) is not
normal and contains the ≡-clusters ≡(x) and ≡(y). In this case we define:

xi ≤′ yj iff x ≤ y and (i < j or (i = j and ≡(x) � ≡(y)))
Now the relations ≥′ and ≡′ we define by means of ≤′ as follows:

xi ≥′ yj iff yj ≤′ xi, xi ≡′ yj iff xi ≤′ yj and xi ≥′ yj

First we will show that the conditions of copying are satisfied. For (CoI1) and
(CoI2) this follows from the definition of I as a set of mappings and from the
definition of W ′. Condition (CoR2) (except for the case (Co ≡ 2)) follows di-
rectly from the definition of the corresponding relation R′. Conditions (CoR1)
for the cases R ∈ {�,�, σ,Σ, ν,N} are also straightforward.

For the condition (Co ≤ 1) suppose x ≤ y and i ∈ I and proceed to prove
that (∃j ∈ I)(xi ≤′ yj). For the case 1 of the definition of ≤′ j is arbitrary. For
the case 2 take j = i, if ≡ (x) � ≡ (y), and j > i, if not ≡ (x) � ≡ (y). In a
similar way one can verify the condition (Co ≥).

For (Co ≡ 1) suppose x ≡ y and i ∈ I. We have to find j ∈ I such that xi ≤′

yj and xi ≥′ yj. From x ≡ y by axiom (≡7) we get x ∼= y, so ∼=(x) = ∼=(y) = α.
Case 1: α is normal. Then any j ∈ I will do the job.
Case 2: α is not normal. From x ≡ y we obtain ≡(x) = ≡(y), so ≡(x) � ≡(y)
and ≡(y) � ≡(x). In this case j = i will do the job.

For the condition (Co ≡ 2) suppose xi ≡′ yj (i.e. xi ≤′ yj and yj ≤′ xi) and
proceed to show x ≡ y. By (Co ≤ 2) we have x ≤ y and y ≤ x, consequently
x ∼= y. This implies ∼=(x) = ∼=(y) = α and x, y ∈ α.
Case 1: α is normal. Then x ≡ y.
Case 2: α is not normal. Then we obtain:
(∗) (i < j or (i = j and (≡(x) � ≡(y))) and
(∗∗) (j < i or (j = i and (≡(y) � ≡(x))).
From (∗) and (∗∗) we obtain ≡ (x) � ≡ (y) and ≡ (y) � ≡ (x). Since � is an
antisymmetric relation we obtain ≡(x) = ≡(y) and consequently x ≡ y.

Now it remains to show that W ′ is an Ind-structure. Special attention need
the conditions S2, S6, S10 and S11, the other conditions are straightforward.
We shall give proofs for S2 and S6, the proofs for S10 and S11 are similar.
Axiom S2. Suppose xi ≤′ yj and yj ≤′ zk and proceed to show xi ≤′ zk. By
Co ≤ 2 we obtain x ≤ y, y ≤ z and consequently x ≤ z. If the case 1 of the
definition of ≤′ is fulfilled for the pair x, z then we have xi ≤′ zk. For the case 2 of
the definition of ≤′ we have: ∼=(x) is not normal, ∼=(z) is not normal and x ∼= z,
consequently x ≤ z, z ≤ x and ∼=(x) =∼=(z). From here and x ≤ y and y ≤ z we
obtain z ≤ y and y ≤ z, which yields z ∼= y. So we have ∼=(x) =∼=(y) =∼=(z) = α
and α is not a normal ∼=-cluster. Then from xi ≤′ yj and yj ≤′ zk we obtain:

(#) i < j or (i = j and ≡(x) � ≡(y)), and
(##) j < k or (j = k and ≡(y) � ≡(z)).

From (#) and (##) we obtain i < k or (i = k and ≡(x) �≡(z)). This together
with x ≤ z implies xi ≤′ zk, which completes the proof of S2.
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Axiom S6. Suppose xiΣxi and proceed to show xi ≤′ yj . From xiΣxi we
obtain xΣx then by axiom S6 for W we obtain x ≤ y. By lemma 2 we obtain
that ∼=(x) is a normal ∼=-cluster. Then by the case 2 of the definition of ≤′ we
obtain xi ≤′ yj . �

Proposition 3. L(Σ(Ind)) = L(Σ(nonstandard.Ind)).

Proof. Obviously L(Σ(nonstandard.Ind)) ⊆ L(Σ(Ind)). Suppose that the con-
verse inclusion does not hold. Then there exists a formula A ∈ L(Σ(Ind)) and
A �∈ L(Σ(nonstandard.Ind)). This implies that there is a nonstandard Ind-
structure W , valuation v and a point x ∈ W such that x ��v A. By proposition 2
there exists an Ind-structure W ′ and a copying I from W to W ′. By the copying
lemma there exists a valuation v′ in W ′ such that for any i ∈ I xi ��v′ A, so A
is not true in W ′ and consequently A �∈ L(Σ(Ind)) – a contradiction. �

5 A Complete Axiomatization of IND

We propose the following axiomatization of IND. In the following A,B,C are
arbitrary formulas and R ∈ {≤,�,≥,�, σ,Σ, ν,N,≡, U}.

Axiom schemes:
(Bool) All or enough Boolean tautologies (K) [R](A⇒B) ⇒ ([R]A⇒[R]B)
(A ≥) <≤> [≥]A⇒A, <≥> [≤]A⇒A (A �) <�> [�]A⇒A, <�> [�]A⇒A

(AU) [U ]A ⇒ A, [U ]A ⇒ [U ][U ]A, < U > [U ]A ⇒ A, [U ]A ⇒ [R]A
(Ax1) [≤]A ⇒ A (Ax2) [≤]A ⇒ [≤][≤]A
(Ax3) < Σ > [Σ]A ⇒ A (Ax4) < Σ > 1 ⇒ ([Σ]A ⇒ A)
(Ax5) [Σ]A ⇒ [Σ][≤]A (Ax6) [≤]A ⇒ ([U ]A ∨ ([Σ]B ⇒ B))
(Ax7) < N > [N ]A ⇒ A (Ax8) < N > 1 ⇒ ([N ]A → A)
(Ax9) [N ]A ⇒ [N ][≤]A (Ax10) [≥]A ⇒ ([U ]A ∨ ([N ]B ⇒ B))
(Ax11) [≥]A ∧ [Σ]B ⇒ ([U ]B ∨ [U ]([N ]B ⇒ A)) (Ax12) [�]A ⇒ A

(Ax13) [�]A ⇒ [≤][�]A (Ax14) [�]A ⇒ [�][≤]A
(Ax15) < σ > [σ]A ⇒ A (Ax16) < σ > 1 ⇒ ([σ]A ⇒ A)
(Ax17) [σ][≤]A (Ax18) [�]A ⇒ ([U ]A ∨ ([σ]B ⇒ B))
(Ax19) [σ]A ⇒ [σ][�]A (Ax20) [�]A ∧ [σ]B ⇒ ([U ]B ∨ ([N ]B ⇒ A))
(Ax21) < ν > [ν]A ⇒ A (Ax22) < ν > 1 ⇒ ([ν]A ⇒ A)
(Ax23) [ν]A ⇒ [ν][≥]A (Ax24) [ν]A ⇒ ([U ]A ∨ ([ν]B ⇒ B))
(Ax25) [N ]A⇒([U ]A∨([ν]B⇒B)) (Ax26) [�]A∧[Σ]B⇒([U ]B∨[U ]([ν]B⇒A))
(Ax ≡1) [≤]([≡]B⇒([Σ]A⇒A)) ∨B (Ax ≡2) [≥]([≡]B⇒([N ]A⇒A)) ∨B

(Ax ≡3) [U ]A ∨ ([≡]B ∧ [Σ]A ⇒ [≥]([N ]A ⇒ B)) (Ax ≡4) [≡]A ⇒ A

(Ax ≡5) A⇒[≡] <≡> A (Ax ≡6) [≡]A⇒[≡][≡]A (Ax ≡7) [≤]A⇒[≡]A

Inference rules: (MP) Modus Ponens A, A⇒B
B (N) Necessitation A

[R]A
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Theorem 2. Completeness Theorem for IND. The following conditions
are equivalent for any formula A of IND:

(i) A is a theorem of IND,
(ii) A is true in all non-standard Ind-structures,
(iii) A is true in all Ind-structures,
(iv) A is true in all standard Ind-structures.

Proof. Equivalence of (ii), (iii) and (iv) follows from Propositions 1 and 3. Impli-
cation (i) → (ii) is by a routine verification that all axioms are true in nonstan-
dard structures and that inference rules preserve validity. Since we have in our
language the universal modality [U ], implication (ii) → (i) is proved by using
generated canonical model construction. Namely, let W be the set of all maxi-
mal consistent sets of the logic IND. For any R ∈ {≤,�,≥,�, σ,Σ, ν,N,≡, U}
define [R]x = {A : [R]A ∈ x}. It is easy to show that U is an equivalence relation
in W containing all other relations R. For any a ∈ W let Wa = {x ∈ W : xUa}
and let Ra be the restrictions of relations R to the set Wa. Using the fact that U
is an equivalence relation in U , Ua is the universal relation in Wa. Then applying
the axioms of the logic one can prove that W a = (Wa, {Ra}) is a nonstandard
Ind-structure, called the canonical structure generated by a. Define the canon-
ical valuation v(p) = {x ∈ Wa : p ∈ x}. Then one can prove by induction that
for any formula A, x �v A iff A ∈ x. Now, to prove (ii) → (i) suppose that A is
not a theorem of IND. Then there exists a maximal consistent set a such that
A /∈ a. Consider canonical model (W a, v) generated by a. Then a ��v A. �

6 Decidability of IND

We shall show that IND is decidable proving that the logic possesses the finite
model property by means of the method of filtration.

Definition 7. Filtration. Let W = (W,≤,�,≥,�, σ,Σ, ν,N,≡) be a non-
standard Ind-structure and M = (W, v) be a model over W and let Γ be a finite
set of formulas closed under subformulas. Define an equivalence relation � in W
as follows: x � y iff (∀A ∈ Γ )(x �v A ↔ y �v A). Let for x ∈ W and p ∈ V AR,
|x| = {y ∈ W : x � y} and W ′ = {|x| : x ∈ W}, v′(p) = {|x| : x ∈ v(p)} and let
W ′ = (W ′,≤′,�′,≥′,�′, σ′, Σ′, ν′, N ′,≡′) be a nonstandard Ind-structure. We
say that the model M ′ = (W ′, v′) is a filtration of M through Γ if the following
conditions are satisfied for any relation R ∈ {≤,�,≥,�, σ,Σ, ν,N,≡, U}:

(R1) If xRy then |x|R′|y|,
(R2) If |x|R′|y| then (∀[R]A ∈ Γ )(x �v [R]A →� y �v A).

Lemma 4. Filtration lemma. The following two conditions are true:

(i) The set W ′ has at most 2n elements where n is a number of elements of Γ .
(ii) For any formula A ∈ Γ and x ∈ W : x �v A iff |x| � v′A.

The proof of this lemma is standard and can be find for instance in [1,2].



A Modal Characterization of Indiscernibility and Similarity Relations 21

Proposition 4. Filtration for IND. Let W = (W,≤,�,≥,�, σ,Σ, ν,N,≡, v)
be a model over a non-standard structure and B be a modal formula. Then there
exist a finite set of formulas Γ closed under subformulas with a cardinality ≤
9.n+4, where n is the number of subformulas of B and a filtration W ′ = (W ′,≤′

,�′,≥′,�′, σ′, Σ′, ν′, N ′,≡′) of W through Γ .

Proof. Let Γ be the smallest set of formulas closed under subformulas and sat-
isfying the following two conditions:

(Γ1) < R > 1 ∈ Γ for R ∈ {Σ, σ,N, ν},
(Γ2) For any formula A and R ∈ {≤,�,≥,�, σ,Σ, ν,N,≡, U}:

If for some R, [R]A ∈ Γ , then for all R, [R]A ∈ Γ .

Obviously Γ is a finite set of formulas containing no more than 9.n+4 elements,
where n is the number of the subformulas of B. Define W ′ and v′ as in the
definition of filtration. For |x|, |y| ∈ W ′ define:

(1) |x| ≤′ |y| iff (∀[≤]A ∈ Γ )...
(x �v [≤]A → y �v [≤]A) & (y �v [≥]A → x �v [≥]A) &
(y �v [Σ]A → x �v [Σ]A) & (x �v [N ]A → y �v [N ]A) &
(x �v [�]A → y �v [�]A) & (y �v [�]A → x �v [�]A) &
(y �v [σ]A → x �v [σ]A) & (x �v [ν]A → y �v [ν]A) &

(x �v< Σ > 1 → y �v< Σ > 1) & (y �v< N > 1 → x �v< N > 1) &
(x �v< σ > 1 → y �v< σ > 1) & (y �v< ν > 1 → x �v< ν > 1)

(2) |x| ≥′ |y| iff |y| ≤′ |x|
(3) |x|Σ′ |y| iff (∀[Σ]A ∈ Γ )...

(x �v [Σ]A → y �v [≤]A) & (y �v [Σ]A → x �v [≤]A) &
(x �v< Σ > 1 & y �v< Σ > 1)

(4) |x|N ′ |y| iff (∀[Σ]A ∈ Γ )...
(x �v [N ]A → y �v [≥]A) & (y �v [N ]A → x �v [≥]A) &

(x �v< N > 1 & y �v< N > 1)
(5) |x| ≺′ |y| iff (∀[�]A ∈ Γ )...

(x �v [�]A → y �v [≤]A) & (y �v [�]A → x �v [≥]A) &
(y �v [Σ]A → x �v [σ]A) & (x �v [N ]A → y �v [ν]A) &

(x �v< σ > 1 → y �v< Σ > 1) & (y �v< ν > 1 → x �v< N > 1)

(6) |x| �′ |y| iff |y| �′ |x|
(7) |x|σ′ |y| iff (∀[σ]A ∈ Γ )...

(x �v [σ]A → y �v [≤]A) & (y �v [σ]A → x �v [≤]A) &
(x �v [Σ]A → y �v [�]A) & (y �v [Σ]A → x �v [�]A) &

(x �v< σ > 1 & y �v< σ > 1)
(8) |x| ν′ |y| iff (∀[ν]A ∈ Γ )...

(x �v [ν]A → y �v [≥]A) & (y �v [ν]A → x �v [≥]A) &
(x �v [N ]A → y �v [�]A) & (y �v [N ]A → x �v [�]A) &

(x �v< ν > 1 & y �v< ν > 1)
(9) |x| ≡′ |y| iff |x| ≤′ |y| & |x| ≥′ |y|
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The required model is M ′ = (W ′, v′). The proof that the conditions of filtration
are satisfied and that W is a nonstandard Ind-structure is long but easy and
routine and is left to the reader. �

As a corollary from Proposition 4 we obtain the following theorem.

Theorem 3. Finite model property and decidability of IND.

(i) For any formula A which is not theorem of IND, there exists a nonstandard
model M = (W, v) such that Card(W ) ≤ 29.n+4 in which A is not true.

(ii) IND is decidable.

7 Open Problems and Concluding Remarks

One open problem is to estimate the exact complexity of IND. It is proved in [2]
that the satisfiability problem for the logic NIL, which is a quite small sublogic
of IND, based only on the information relations ≤,≥, σ, is PSPACE complete.
The proof is quite long and complicated and it will be interesting to see if it can
be extended for such a complex system like IND.

Another problem is to find the minimal basis for the two-place informational
relations in A-systems and to characterize them by first-order axioms. Note that
this problem is solved for the simpler notion of P-systems in [5]. If we adopt
the definition of information relation in A-systems given in [5], the following
11 informational relations form a basis for all two-place informational relations:
the 6 relations ≤,�, Σ, σ,N, ν from section 1 and the following 5 additional
informational relations (we use abbreviation w. m. ext. emp. and uni. for weak
mixed extreme emptiness and universality):

weak indiscernibility x ∼= y iff (∃a∈At)(f(x, a)=f(y, a))
weak complementarity xC y iff (∃a∈At)(f(x, a)=−f(y, a))
weak extreme emptiness xE y iff (∃a∈At)(f(x, a)=∅ & f(y, a)=∅)
weak extreme universality xU y iff (∃a∈At)(f(x, a)=V ala & f(y, a)=V ala)
w. m. ext. emp. and uni. xEU y iff (∃a∈At)(f(x, a)=∅ & f(y, a)=V ala)
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Abstract. In this study, we discuss a concept of shadowed sets and elaborate on 
their applications. To establish some sound compromise between the qualitative 
Boolean (two-valued) description of data and quantitative membership grades, 
we introduce an interpretation framework of shadowed sets. Shadowed sets are 
discussed as three-valued constructs induced by fuzzy sets assuming three 
values (that could be interpreted as full membership, full exclusion, and 
uncertain). The algorithm of converting membership functions into this 
quantification is a result of a certain optimization problem guided by the 
principle of uncertainty localization. With the shadowed sets of clusters in 
place, discussed are various ideas of relational calculus on such constructs. We 
demonstrate how shadowed sets help in problems in data interpretation in fuzzy 
clustering by leading to the three-valued quantification of data structure that 
consists of core, shadowed, and uncertain structure.  

Keywords: shadowed sets, three-valued logic, fuzzy sets, principle of 
uncertainty localization, relational equations, data interpretation, fuzzy 
clustering, outliers, cores of clusters. 

1   Introductory Comments 

Fuzzy sets offer a wealth of detailed numeric information conveyed by their detailed 
numeric membership grades (membership functions). This very detailed 
conceptualization of information granules may act as a two-edge sword. On one hand 
we may enjoy a very detailed quantification of elements to a given concept (fuzzy 
set). On the other hand, those membership grades could be somewhat overwhelming 
and introduce some burden when it comes to a general interpretation. It is also worth 
noting that numeric processing of membership grades comes with some computing 
overhead. In order to get a better insight into the matter, let us refer to data analysis 
and data interpretation. Here, clustering is regarded as a fundamental conceptual and 
computational framework of data analysis [1] [7]. The discovered structure emerging 
in the form of clusters is essential to numerous tasks of understanding and reasoning 
about the nature of data. The description of the structure of patterns may involve 
various activities such as assigning meaning to the groups, identifying possible 
outliers or highlighting groups of patterns that require special attention, revealing 
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dependencies between the groups, etc.  With the advent of fuzzy clustering and its 
various applications, cf. [2][3][5][8][9][10][13][14], we arrived at the important and 
qualitatively different view at data analysis. Instead of generating a binary (yes-no) 
allocation of patterns to clusters, which could be quite restrictive in many cases, the 
notion of partial membership helps quantify the aspect of belongingness in a far 
greater detail. The degree of membership is quite a tangible and intuitively convincing 
structural indicator, which one could use to gauge a level of typicality of a given 
pattern to the cluster. The lower the membership degree, the less likely the pattern 
could be treated as belonging to the cluster. No doubt that the departure from the yes-
no (1-0) binary quantification is a useful enhancement of the clustering techniques. 
By the same token, the continuity of the gradation of membership in some 
applications could be too detailed in cases we are interested in capturing the essence 
of the clusters. For instance, some practical questions might arise under different 
circumstances. Is pattern typical to the cluster? Is it of borderline character? Should it 
be excluded from the cluster? Does it need more attention and should be flagged to 
the user for detailed considerations? To handle these problems, we argue that the 
membership functions describing the patterns could be subject to some threshold 
operation associated with a simple decision rule: accept the pattern to be typical if its 
membership grade is not lower than some predefined threshold α, α ∈  [0,1]. The 
result of this thresholding is a so-called α-cut of the fuzzy set leading to the obvious 
binary rule as shown above. While this rule (referred to as a “hardening” mechanism 
of fuzzy sets) seems to be sound and quite acceptable, it comes with a major obstacle. 
We are not clear as to the choice of the critical value of α.  

Given these issues, we discuss the concept of shadowed sets [11][12]. Shadowed 
sets are information granules induced by fuzzy sets so that they capture the essence of 
fuzzy sets at the same time reducing the numeric burden because of their limited 
three-valued characterization of shadowed sets. This non-numeric character of 
shadowed sets is also of particular interest when dealing with their interpretation 
abilities.  

The study is organized into 5 sections. We start with a closer look at shadowed sets 
introducing the idea in great detail (Section 2) and in Section 3 discuss their ensuing 
design that is inherently induced by fuzzy sets. Further extensions into the realm of 
relational calculus and relational equations are covered in Section 4.The three-valued 
interpretation abilities offered by shadowed sets are discussed in fuzzy clusters. To 
facilitate interpretation of fuzzy clusters we introduce the notions of core, shadowed 
and uncertain structure of data. Concluding comments are offered in Section 6.  

2   Shadowed Sets as a Symbolic Manifestation of Fuzzy Sets 

In this section, we briefly recall the concept of shadowed sets [12] (see also [4][6]) 
and elaborate on the main motivation behind their inception and highlight further 
developments and applications. Formally speaking, a shadowed set A is a set-valued 
mapping coming in the following form 

 
A : X   { 0, [0,1], 1}      (1) 
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where X is a given universe of discourse (space).The co-domain of A consists of three 
components that is 0, 1, and the unit interval [0,1]. They can be treated as degrees of 
membership of elements to A. These three quantification levels come with an 
apparent interpretation. All elements for which A(x) assume 1 are called a core of the 
shadowed set -- they embrace all elements that are fully compatible with the concept 
conveyed by A. The elements of X for which A(x) attains zero are excluded from A. 
The elements of X for which we have assigned the unit interval are completely 
uncertain – we are not at position to allocate any numeric membership grade. 
Therefore we allow the usage of the unit interval, which reflects uncertainty meaning 
that any numeric value could be permitted here. In essence, such element could be 
excluded (we pick up the lowest possible value from the unit interval), exhibit partial 
membership (any number within the range from 0 and 1) or could be fully allocated to 
A. Given this extreme level of uncertainty (nothing is known and all values are 
allowed), we call these elements shadows and hence the name of the shadowed set. 
An illustration of a shadowed set is included in Figure 1.  

 

 
Fig. 1. An example of a shadowed set A; note shadows formed around the cores of the 
construct 

One can view this mapping (shadowed set) as an example of a three-valued logic 
as encountered in the classic model introduced by Lukasiewicz.  Having this in mind, 
we can think of shadowed sets as a symbolic representation of numeric fuzzy sets. 
Obviously, the elements of co-domain of A could be labeled using symbols (say, 
certain, shadow, excluded; or a, b, c and alike) endowed with some well-defined 
semantics. 

The operations on shadowed Table 1, sets are isomorphic with those encountered 
in the three-valued logic.  

Table 1. Logic operations (and, or, and complement) on shadowed sets; here a shadow is 
denoted by S (= [0,1]) 

A ∩ B 0 S 1  A ∪ B 0 S 1  A   
0 0 0 0  0 0 S 1  0 1 
S 0 S S  S S S 1  S S 
1 0 S 1  1 1 1 1  1 0 

These logic operations are conceptually convincing; we observe an effect of 
preservation of uncertainty.  In the case of the or operation, we note that combining a 
single numeric value of exclusion (0) with the shadow, we arrive at the shadow (as 
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nothing specific could be stated about the result of this logic aggregation). Similar 
effect occurs for the and operator when being applied to the shadow and the logic 
value of 1. 

The simplicity of shadowed sets becomes their obvious advantage. Dealing with 
three logic values simplifies not only the interpretation but it is advantageous in all 
computing, especially when such calculations are contrasted with the calculations 
completed for fuzzy sets involving detailed numeric membership grades. Let us note 
that logic operators that are typically realized by means of some t- and s-norms 
require computing of the numeric values of the membership grades. In contrast those 
realized on shadowed sets are based on comparison operations and therefore are far 
less demanding.    

While shadowed sets could be sought as new and standalone constructs, our 
objective is to treat them as information granules induced by some fuzzy sets. The 
bottom line of our approach is straightforward – considering fuzzy sets (or fuzzy 
relations) as the point of departure and acknowledging computing overhead 
associated with them, we regard shadowed sets as constructs that capture the essence 
of fuzzy sets while help reducing the overall computing effort and simplifying 
ensuing interpretation. In the next section, we concentrate on the development of 
shadowed sets for given fuzzy sets.   

3   The Development of Shadowed Sets 

Accepting the point of view that shadowed sets are algorithmically implied (induced) 
by some fuzzy sets, we are interested in the transformation mechanisms translating 
fuzzy sets into the corresponding shadowed sets. The underlying concept is the one of 
uncertainty condensation or “localization”. While in fuzzy sets we encounter 
intermediate membership grades located in-between 0 and 1 and distributed 
practically across the entire space, in shadowed sets we “localize” the uncertainty 
effect by building constrained and fairly compact shadows. By doing so we could 
remove (or better to say, re-distribute) uncertainty from the rest of the universe of 
discourse by bringing the corresponding low and high membership grades to zero and 
one and then compensating these changes by allowing for the emergence of 
uncertainty regions. This transformation could lead to a certain optimization process 
in which we complete a total balance of uncertainty. 

 

α 

1-α 

 

Fig. 2. The concept of a shadowed set induced by some fuzzy set; note the range of 
membership grades (located between α and 1-α) generating a shadow 
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To illustrate this optimization, let us start with a continuous, symmetric, unimodal, 
and normal membership function A. In this case we can split the problem into two 
tasks by considering separately the increasing and decreasing portion of the 
membership function, Figure 2. 

For the increasing portion of the membership function, we reduce low membership 
grades to zero, elevate high membership grades to one and compensate these changes 
(which in essence lead to an elimination of partial membership grades) by allowing 
for a region of the shadow where there are no specific membership values assigned 
but we admit the entire unit interval as feasible membership grades. Computationally, 
we form the following balance of uncertainty preservation that could be symbolically 
expressed as 

Reduction of membership + Elevation of membership = shadow         (2) 

Again referring to Figure 2 and given the membership grades below α and above 
1-α, α ∈ (0, ½), we express the components of the above relationship in the form (we 
assume that all integrals do exist). 

Reduction of membership (low membership grades are reduced to zero) 

≤:A(x)x

A(x)dx  

Elevation of membership (high membership grades elevated to 1) 

≥ α-1:A(x)x

A(x))dx-(1  

Shadow          
<< -1A(x):x

dx  

The minimization of the absolute difference 

V( ) = |
≤:A(x)x

A(x)dx +
≥ α-1:A(x)x

A(x))dx-(1 -
<< -1A(x):x

dx |  (3) 

completed with respect to α is given in the form of the following optimization 
problem 

αopt = arg min α V(α)    (4) 

where α ∈  (0, ½). For instance, when dealing with triangular membership function 
(and it appears that the result does not require the symmetry requirement), the optimal 

value of α is equal to 4142.012 ≈−  [11]. For the parabolic membership 
functions, the optimization leads to the value of α equal to 0.405. 

Let us move on to the most general case in which we do not impose any 
assumptions as to the form of the membership function. We consider discrete 
membership values u1, u2, … uN. Denote the minimal and maximal value in this set by 
umin and umax, respectively. The overall reduction of lower membership grades is 
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expressed in the form of the following sum 
Ω∈k ku  where  = {k| uk ≤  }. The 

elevation of higher membership grades to one leads to the 

expression
Φ∈k k )u-(1 with  = {k| uk ≥  umax -  }. For the shadows we consider 

the cardinality of the set  = {k| uk ∈ ( , umax- )}. Then the above conditions 
translate into the following optimization problem 

V( ) =|
Ω∈k

ku + )u-(1
k

k
Φ∈

 - card( )|  minimize with respect to  (5) 

where the range of feasible values of α is given as [umin, 
2

uu maxmin +
]. 

Once optimized, the resulting shadowed set can be treated as a concise descriptor of 
the fuzzy cluster. For the original fuzzy set A (fuzzy cluster), we denote by core(A), 
shadow(A), respectively the core and shadow of the shadowed set induced by A. 

The above design process could be generalized in such a way that we introduce a 
continuous and increasing functional (u): [0,1]  [0,1] that helps quantify the 

original values of the membership grades when taken into consideration in the 
balance captured by (2). When reducing membership grades we use the expression 

≤A(x):x

(A(x))dx  (6) 

while the elevation of membership is guided by the form 

≥ α-1:A(x)x

(A(x)))dx-(1  (7) 

The typical form of the functional would be a polynomial (u) = up, p >0.  

4   Relational Calculus with Shadowed Sets and Relational 
Equations 

So far we have introduced basic logic operations on shadowed sets. These in turn can 
be combined together in building transformations between shadowed sets defined in 
different spaces (universes of discourse) X and Y. 

In analogy with shadowed sets, we can introduce a concept of a shadowed relation. 
For instance, given a Cartesian product of two spaces X and Y, a shadowed relation R 
is regarded as a mapping  

R : X ×Y  { 0, 1, [0,1]}   (8) 

where the individual elements of R denote a degree of strength of relationships 
between the individual pairs of elements of this Cartesian product.  

Shadowed sets and shadowed relations give rise to a concept of shadowed relational 
calculus and shadowed relational equations. The fundamental transformations come 
in the form of max-min and min-max compositions. Given a shadow set X and some 
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shadowed relation R defined in finite spaces X and X × Y, respectively, the max-min 
composition of X and  R, denoted as X  R, yields a shadowed set Y in Y whose 
characterization is provided in the following form 

Y(yj) = maxi=1,2,…,n [ min(X(xi), R(xi, yj))]  (9) 

j=1,2…,m. Card(X) = n, Card(Y) =m. Here the max and min operations are defined 
by the union and intersection operators discussed in Section 2. In the min-max 
composition we reverse the order the operators in comparison with the arrangements 
shown above. 

These two composition operators are used in the description of shadowed relational 
systems where X is treated as an inputs, R captures the input-output relationships and 
Y is the resulting output. Various analysis and synthesis problems in such systems can 
be represented and solved in the framework of shadowed relational equations. The 
two main categories of problems can be distinguished: (a) synthesis (estimation) in 
which we are provided with X and Y and R has to be determined (the more general 
statement involves a collection of input-output shadowed sets (Xk, Yk), k=1, 2, …,N) 
and (b) inverse problem in which Y and R are given while X has to be determined.  

The solutions to these problems dwell on the use of an implication operator whose 
definition in given in the tabular form shown below 

Table 2. Logic operation of implication on shadowed sets 

A B 0 S 1 
0 1 1 1 
S 0 S 1 
1 0 S 1 

Furthermore we require to introduce an order relation (greater than, ) in the 
family of shadowed sets by admitting the following 0  S  1. Not going into 
details, we recall the fundamental result concerning the synthesis problem. 

Theorem. If the solution set to X  R = Y for X and Y given is nonempty, then its 
greatest solution (in the sense of the above stated order) is provided in the form 

YXR̂ →=     (10) 

with the implication operator applied pointwise to the pairs of the elements of X and 
Y.  

5   Taxonomy of Data in Structure Description  

It is well known that fuzzy clusters being the result of fuzzy clustering are described 
by membership functions A1, A2,…, Ac. Given objective function-based fuzzy 
clustering (such as e.g., Fuzzy C-Means; FCM for short), we note that they constitute 
the rows of the resulting partition matrix. Each of them gives rise to the corresponding 
shadowed set. Given this collection of shadowed sets, each pattern could be 
interpreted on a basis of its categorization to the induced shadowed sets. The three-
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valued evaluation is useful with this regard and its interpretability is worth 
emphasizing. In what follows, we will be referring to Ai as a shadowed set (which in 
essence does not lead to any misunderstanding as it has been induced by the 
corresponding fuzzy sets). We introduce the following sets of patterns based on their 
allocation to the components of the shadowed sets of the clusters. 

Core data structure – Those are the patterns that belong to a core of at least one or 
more shadowed sets 

Core data structure = { x | )(A core     ii ∈∃ x }   (11) 

The core is composed are the data points that form the backbone of the structure 
revealed through the clustering mechanisms. They clearly belong to a single cluster or 
could be shared between several clusters (in the case they overlap). 

Shadowed data structure – This structure is formed by patterns that do not belong to 
core of any of the shadowed sets but fall within the shadow of one or more shadowed 
sets. Formally, we write this down in the form 

Shadowed data structure = {x | )core(A and   )(A shadow     iiii ∉∀∈∃ xx }  (12) 

Noticeably, this structure embraces patterns that raise some hesitation as to their 
possible interpretation. The pattern falling within this region requires more attention 
as to its possible membership and final quantification   

Uncertain data structure – The patterns belonging to this structure are those that are 
left out from all shadows meaning that  

Uncertain data structure = { x | )core(A and   )(A shadow     iiii ∉∀∉∀ xx }   (13) 

This structure consists of patterns that could be practically regarded as peripheral to 
the clusters revealed in the data set. It is likely that most of them could be the outliers 
or highly atypical data points quite distinct from the primary structure (that is the core 
and shadowed structure) that require more attention. In this sense we have formed a 
mechanism attracting attention to those patterns that may trigger some action.  

 

core 
structure 

shadowed
structure 

uncertain 
structure 

core 
structure

shadowed
structure

uncertain
structure

 

Fig. 4. Interpretation of data structure revealed in the clustering process along with the 
hierarchy of concepts describing the data 
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The illustration of these three concepts describing the data structure is included in 
Figure 4. It is worth noting that such data categorization forms an obvious hierarchy 
of structures revealed by the clustering procedure. We start with the core data 
structure (which is the most central to the structure description), move down to the 
shadowed structure and finally flag the uncertain structure. 

6   Conclusions 

We have introduced and discuss a role of shadowed sets regarded as one of possible 
vehicles of granular computing. Given the three valued logic character of the 
underlying construct, it can be regarded as a concise and operationally appealing 
vehicle of processing fuzzy sets where the detailed membership grades inherent to 
any fuzzy set are transformed into the regions of inclusion, exclusion and uncertainty. 
We have indicated that the shadowed sets lead to a full-fledged calculus of such 
information granules including relational calculus on shadowed sets.  

It is beneficial to point out that while fuzzy sets deliver very detailed information 
about structure (which is regarded to be superior to any Boolean character of structure 
description with set-based formalism of cluster characterization), the approach based 
on shadowed sets are positioned somewhere in-between. In this sense, it could be 
regarded as a standalone interpretation mechanism or we can use it in conjunction 
with the detailed membership information. The use of it to data clustering and 
interpretation is another convincing example of the use of shadowed sets.  
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Abstract. We present a rough set approach to vague concept approxi-
mation within the adaptive learning framework. In particular, the role of
extensions of approximation spaces in searching for concept approxima-
tion is emphasized. Boundary regions of approximated concepts within
the adaptive learning framework are satisfying the higher order vague-
ness condition, i.e., the boundary regions of vague concepts are not crisp.
There are important consequences of the presented framework for re-
search on adaptive approximation of vague concepts and reasoning about
approximated concepts. An illustrative example is included showing the
application of Boolean reasoning in adaptive learning.

Keywords: vagueness, rough sets, higher order vagueness, adaptive
learning.

1 Introduction

There is a long debate in philosophy on vague concepts [2]. Nowadays, computer
scientists are also interested in vague (imprecise) concepts. Lotfi Zadeh [20] in-
troduced a very successful approach to vagueness. In this approach, sets are
defined by partial membership in contrast to crisp membership used in the clas-
sical definition of a set. Rough set theory [4] expresses vagueness not by means
of membership but by employing the boundary region of a set. If the boundary
region of a set is empty it means that a particular set is crisp, otherwise the set
is rough (inexact). The non-empty boundary region of the set means that our
knowledge about the set is not sufficient to define the set precisely. A discussion
on vagueness in the context of fuzzy sets and rough sets can be found in [8].
In this paper some consequences on understanding of vague concepts caused by
inductive extensions of approximation spaces and adaptive concept learning are
outlined. This paper is an extension of [10]. In particular, we discuss a problem
of adaptive learning of concept approximation assuming that learning is per-
formed in a dynamic environment with many concepts that are linked by vague
dependencies.
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2 Approximation Spaces and Their Inductive Extensions

In [4] any approximation space is defined as a pair (U, R), where U is a universe
of objects and R ⊆ U × U is an indiscernibility relation defined by an attribute
set.

The lower approximation, the upper approximation and the boundary region
are defined as crisp sets. It means that the higher order vagueness condition is
not satisfied [2]. We will return to this issue in Section 3.

We use the definition of approximation space introduced in [11]. Any approx-
imation space is a tuple AS = (U, I, ν), where U is the universe of objects, I
is an uncertainty function, and ν is a measure of inclusion called the inclusion
function, generalized in rough mereology to the rough inclusion [11,13].

In this section, we consider the problem of approximation of concepts over a
universe U∗, i.e., subsets of U∗. We assume that the concepts are perceived only
through some subsets of U∗, called samples. This is a typical situation in machine
learning, pattern recognition, or data mining [1]. In this section we explain the
rough set approach to induction of concept approximations. The approach is
based on inductive extension of approximation spaces.

Let U ⊆ U∗ be a finite sample and let CU = C ∩ U for any concept C ⊆
U∗. Let AS = (U, I, ν) be an approximation space over the sample U . The
problem we consider is how to extend the approximations of CU defined by AS
to approximation of C over U∗. We show that the problem can be described as
searching for an extension AS∗ = (U∗, I∗, ν∗) of the approximation space AS
relevant for approximation of C. This requires showing how to induce values of
the extended inclusion function to relevant subsets of U∗ that are suitable for
the approximation of C. Observe that for the approximation of C, it is enough
to induce the necessary values of the inclusion function ν∗ without knowing the
exact value of I∗(x) ⊆ U∗ for x ∈ U∗.

We consider an example for rule-based classifiers. However, the analogous
considerations for k-NN classifiers, feed-forward neural networks, and hierarchi-
cal classifiers [1]) show that their construction is based on the inductive inclusion
extension [13,10].

Let AS be a given approximation space for CU and let us consider a language
L in which the neighborhood I(x) ⊆ U is expressible by a formula pat(x), for
any x ∈ U . It means that I(x) = ‖pat(x)‖U ⊆ U , where ‖pat(x)‖U denotes the
meaning of pat(x) restricted to the sample U . In the case of rule-based classifiers,
patterns of the form pat(x) are defined by feature value vectors.

We assume that for any new object x ∈ U∗\U , we can obtain (e.g., as a result
of a sensor measurement) a pattern pat(x) ∈ L with semantics ‖pat(x)‖U∗ ⊆ U∗.
However, the relationships between information granules over U∗, e.g., ‖pat(x)‖U∗

and ‖pat(y)‖U∗ , for different x, y ∈ U∗, are known only to a degree estimated by
using relationships between the restrictions of these sets to the sample U , i.e.,
between sets ‖pat(x)‖U∗ ∩ U and ‖pat(y)‖U∗ ∩ U .

The set of patterns {pat(x) : x ∈ U} is usually not relevant for approxima-
tion of the concept C ⊆ U∗. Such patterns can be too specific or not general
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enough, and can directly be applied only to a very limited number of new sam-
ple elements. However, by using some generalization strategies, one can search
in a family of patterns definable from {pat(x) : x ∈ U} in L, for such new pat-
terns that are relevant for approximation of concepts over U∗. Let us consider
a subset PATTERNS(AS,L, C) ⊆ L chosen as a set of pattern candidates
for relevant approximation of a given concept C. For rule based classifiers one
can search for such candidate patterns among sets definable by subsequences
of feature value vectors corresponding to objects from the sample U . The set
PATTERNS(AS,L, C) can be selected using some quality measures evaluated
on meanings (semantics) of patterns from this set restricted to the sample U
(like the numbers of examples from the concept CU and its complement that
support a given pattern). Then, on the basis of properties of sets definable by
these patterns over U , we induce approximate values of the inclusion function
ν∗(X, C) on subsets of X ⊆ U∗ definable by any such pattern and the concept
C. Next, we induce the value of ν∗ on pairs (X, Y ) where X ⊆ U∗ is definable
by a pattern from {pat(x) : x ∈ U∗} and Y ⊆ U∗ is definable by a pattern from
PATTERNS(AS,L, C).

Finally, for any object x ∈ U∗ \ U we induce the degree ν∗(‖pat(x)‖U∗ , C)
applying a conflict resolution strategy Conflict res (e.g, a voting strategy) to
two families of degrees:

{ν∗(‖pat(x)‖U∗ , ‖pat‖U∗) : pat ∈ PATTERNS(AS,L, C)}, (1)

{ν∗(‖pat‖U∗ , C) : pat ∈ PATTERNS(AS,L, C)}. (2)

Values of the inclusion function for the remaining subsets of U∗ can be chosen in
any way – they do not have any impact on the approximations of C. Moreover,
observe that for the approximation of C we do not need to know the exact values
of uncertainty function I∗ – it is enough to induce the values of the inclusion
function ν∗. The defined extension ν∗ of ν to some subsets of U∗ makes it possible
to define an approximation of the concept C in a new approximation space AS∗.

Observe, that the value ν∗(I∗(x), C) of the induced inclusion function for any
object x ∈ U∗ − U is based on collected arguments for and against belonging of
x to C. In this way, the approximation of concepts over U∗ can be explained as
a process of searching for relevant approximation spaces, in particular inducing
relevant approximation spaces.

3 Approximate Reasoning About Vague Concepts Based
on Adaptive Learning and Reasoning

We have recognized that for a given concept C ⊆ U∗ and any object x ∈ U∗,
instead of crisp decision about the relationship of I∗(x) and C, we can gather
some arguments for and against it only. Next, it is necessary to induce from
such arguments the value ν∗(I(x), C) using some strategies making it possible
to resolve conflicts between those arguments [1,12]. Usually some general princi-
ples are used such as the minimal length principle [1] in searching for algorithms
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computing an extension ν∗(I(x), C). However, often the approximated concept
over U∗ −U is too compound to be induced directly from ν(I(x), C). This is the
reason that the existing learning methods can be not satisfactory for inducing
high quality concept approximations in case of complex concepts [17]. There have
been several attempts trying to omit this drawback. One of them is the incremen-
tal learning used in machine learning and also by the rough set community (see,
e.g., [18]). In this case, an increasing sequence of samples U1 ⊆ . . . ⊆ Uk ⊆ . . . is
considered and the task is to induce the extensions ν(1), . . . , ν(k), . . . of inclusion
functions. Still we know rather very little about relevant strategies for induc-
ing such extensions. Some other approaches are based on hierarchical (layered)
learning [14] or reinforcement learning [16]. However, there are several issues,
important for learning that are not within the scope of these approaches. For
example, the target concept can gradually change over time and this concept
drift is a natural extension for incremental learning systems toward adaptive
systems. In adaptive learning it is important not only what we learn but also
how we learn, how we measure changes in a distributed environment and induce
from them adaptive changes of constructed concept approximations. The adap-
tive learning for autonomous systems became a challenge for machine learning,
robotics, complex systems, and multiagent systems. It is becoming also a very
attractive research area for the rough set approach.

In general, from given information about the approximated concept C, the
approximation space AS related to this information is constructed and next an
extension AS∗ of AS is induced. The induced approximations are only tempo-
rary, usually not matching exactly the approximated concept (even if we assume
that the concept can be defined but its definition is unknown during learning).
This means that the approximations will be necessary to change if some new
arguments for and against will be gathered and an information or knowledge
about the approximated concept will be updated. Hence, we should express a
risk in prediction of decisions on the basis of the induced classification algorithms
(classifiers) based on AS∗ rather than exact decisions only. Such risk depends on
negotiation strategies between arguments for and against, searching strategies
for relevant patterns used for concept approximation, etc. This aspect is related
to the higher order of vagueness [2]. Its consequence is that lower approxima-
tions, upper approximations, and boundary regions for vague concepts are not
crisp.
Let us consider now some examples of adaptive concept approximation schemes.

Example 1. In Figure 1 we present an example of adaptive concept approxi-
mation scheme Sch. By Inf(C) and Inf ′(C) we denote information about the
approximated concept (e.g., decision table for C or training sample) in different
(relevant) moments of time1. ENV denotes an environment, DS is an operation
constructing an approximation space ASInf(C) from a given sample Inf(C). IN
is an extension operation transforming the approximation space ASInf(C) to an
approximation space AS∗ for the concept C; Q denotes a quality measure for the

1 For simplicity, in Figure 1 we do not present time constraints.
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Fig. 1. An example of adaptive concept approximation scheme

induced approximation space AS∗ on a new sample Inf ′(C). STR is a strategy
that adaptively changes the approximation of C by modifying Q, IN , and DS.

The scheme Sch describes an adaptive strategy ST modifying the induced
approximation space AS∗ with respect to the changing information about the
concept C. To explain this in more detail, let us first assume that a proce-
dure newC(ENV,u) is given returning from the environment ENV and cur-
rent information u about the concept C a new piece of information about this
concept (e.g., an extension of a sample u of C). In particular, Inf (0)(C) =
newC(ENV, ∅) and Inf (k+1)(C) = newC(ENV, Inf (k)(C)) for k = 0, . . .. In
Figure 1 Inf ′(C) = Inf (1)(C). Next, assuming that operations Q(0) = Q,
DS(0) = DS, IN (0) = IN are given, we define Q(k+1), DS(k+1), IN (k+1),
DS(k+1)(Inf (k+1)(C)), and AS∗(k+1) for k = 0, . . . , by

(Q(k+1),DS(k+1), IN (k+1)) = (3)

= STR(Q(k)(AS∗(k), Inf (k+1)(C)),Q(k), IN (k),DS(k), AS∗(k), AS
(k)

Inf(k)(C)
)

AS
(k+1)

Inf(k+1)(C)
= DS(k+1)(Inf (k+1)(C)); AS∗(k+1) = IN (k+1)(AS

(k+1)

Inf(k+1)(C)
).

One can see that the concept of approximation space considered so far should
be substituted by a more complex one represented by the scheme Sch making
it possible to generate a sequence of approximation spaces AS∗(k) for k = 1, . . .
derived in an adaptive process of approximation of the concept C. One can also
treat the scheme Sch as a complex information granule [12].

One can easily derive more complex adaptive schemes with metastrategies that
make it possible to modify also strategies.

Example 2. In Figure 2 there is presented an idea of a scheme where a metas-
trategy MS can change adaptively also strategies STRi in schemes Schi for
i = 1, . . . , n where n is the number of schemes. The metastrategy MS can be,
e.g., a fusion strategy for classifiers corresponding to different regions of the con-
cept C. Even more compound scheme can be obtained by considering strategies
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Fig. 2. An example of metastrategy in adaptive concept approximation
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Fig. 3. An example of adaptive plan scheme

based on cooperation among the schemes for obtaining concept approximations
of high quality. In Figure 3 an adaptive scheme for plan modification is presented.
PLAN is modified by a metastrategy MS that adaptively changes strategies in
schemes Schi where i = 1, . . . , n. This is performed on the basis of the derived
approximation spaces AS∗

i induced for concepts that are guards of plan instruc-
tions and on the basis of information Inf(x) about the state x of the environment
ENV . The generated approximation spaces together with the plan structure are
adaptively adjusted to make it possible to achieve plan goals.

The above examples are showing that the context in which sequences of
approximation spaces are generated can have complex structure represented by
relevant adaptive schemes.

There are some important consequences of our considerations for research
on approximate reasoning about vague concepts. It is not possible to base such
reasoning only on static models of the concepts (i.e., approximations of given con-
cepts [4] or membership functions [20] induced from a sample available at a given
moment) and on multi-valued logics widely used for reasoning about rough sets
or fuzzy sets (see, e.g., [6,20,3,21]). Instead of this we need evolving systems of
logics that in open and changing environments will make it possible to gradually
acquire knowledge about approximated concepts and reason about them. Along
this line an important research perspective arises. Among interesting topics are
strategies for modeling of networks supporting such approximate reasoning (e.g.,
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AR schemes and networks [12] can be considered as a step toward developing
such strategies), strategies for adaptive revision of such networks, foundations
for autonomous systems based on vague concepts.

Some recently reported results on rough sets seem to be important for devel-
oping foundations for adaptive systems. In particular, we would like to mention
approximate reasoning in distributed environments based on rough mereological
and granular approaches (see, e.g., [7,12]) and investigations on reasoning about
changes based on rough sets and granular computing.

4 An Example: Inducing Concept Descriptions Consistent
with Constraints Specified by Experts

From our considerations it follows that adaptive learning should be performed
in a dynamic environment in which different vague concepts are approximated
and it is necessary to preserve constraints among them. In this section we con-
sider an illustrative example that can be treated as a starting point to further
investigations on adaptive learning.

We consider together with facts, which can be represented using decision
tables, some dependencies between concept approximations. These dependencies
are specified by experts and represent their domain knowledge. An example of
such dependency is “if road is slippery and the speed of the car is high then
there is a high chance that the accident will appear”. A question arises how to
induce the concept approximations using together the facts represented in data
tables and such dependencies. One can develop strategies for inducing decision
rules preserving the dependencies between approximated concepts or for tuning
the generated decision rules to preserve such dependencies. We apply another
approach based on some ideas of non-monotonic reasoning. We assume that
together with data tables there is given expert knowledge specified by constraints
or dependencies between approximated concepts. For example, let us consider
for three decisions d1, d2, d3 the following constraint:

– if d1 =high and d2 =medium then d3 = 1; or
– if with certainty d1 =high and one can not exclude d2 =medium then with

certainty d3 = 1.

We propose a method based on Boolean reasoning for tuning the induced
from data table sets of rules (received by rough set and Boolean reasoning meth-
ods, e.g., in the form of so called minimal rules) so that the new induced concept
approximations will satisfy the additional constraints specified by experts. These
constraints are in the form of dependencies between approximated concepts (e.g.,
decision classes) or their (lower, upper) approximations or boundary regions. Let
us observe that the phrase with certainty can be expressed by the lower approx-
imation; and the phrase it can not be excluded that the upper approximation of
concepts. Here, we would like to explain the main idea by example.

Example 3. Let us consider a decision table presented in Table 1. We have the
following minimal decision rules of the decision table:
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Table 1. Decision Table DT

a b c d

x1 0 1 2 0
x2 0 2 1 0
x3 0 1 1 0
x4 1 2 0 1
x5 2 1 0 1
x6 1 1 0 1

r1 : a = 0 → d = 0; r2 : c = 2 → d = 0; r3 : c = 1 → d = 0;
r4 : c = 0 → d = 1; r5 : a = 1 → d = 1; r6 : a = 2 → d = 1;

Let us consider the following constraint: non(d = 0∧d = 1). One can see that it is
necessary to resolve conflict between left hand sides of the following pairs of rules:
r1, r4; r2, r5; r2, r6; r3, r5 and r3, r6. These conflicts arise because conjunctions
of left hand sides of listed pairs of rules are consistent (i.e., they do not include
subformulas of the form a = v ∧ a �= v). Hence, a new object can be matched
by such rules and they will vote for different decisions 0 and 1, respectively. Let
us consider the following propositional variables: [i : a �= v], [i : a = v] with
the intended meaning left hand side of the rule ri must be extended by a �= v,
a = v, respectively. The conflicts can be encoded by the following propositional
formula:

([1 : c �= 0] ∨ [4 : a �= 0]) ∧ ([2 : a �= 1] ∨ [5 : c �= 2]) ∧ ([2 : a �= 2] ∨ [6 : c �= 2])∧
([3 : a �= 1] ∨ [5 : c �= 1]) ∧ ([3 : a �= 2] ∨ [6 : c �= 1])

For example, the first part of the above formula describes a fact that the conflict
between rules r1, r4 can be resolved by extending the left hand side of the rule r1

by c �= 0 or by extending the left hand side of the rule r4 by a �= 0. By computing
(prime) implicants of this formula one can obtain all possible solutions, i.e., pairs
of rule sets (approximating decision classes corresponding to d = 0 and d = 1)
with resolved conflicts. In particular, let us consider the following implicant of
the formula: [1 : c �= 0] ∧ [2 : a �= 1] ∧ [2 : a �= 2] ∧ [3 : a �= 1] ∧ [3 : a �= 2]. Hence,
after a simplification, we obtain the following solution, i.e., a pair of rule sets:

r1′ : a = 0 ∧ c = 1 → d = 0; r2′ : a = 0 ∧ c = 2 → d = 0; and
r4 : c = 0 → d = 1; r5 : a = 1 → d = 1; r6 : a = 2 → d = 1.

From example it follows that we can obtain different sets of rules resolving
conflicts. One can look for pruning some solutions for conflict resolution using
some criteria such as the rule support or descriptor occurrence frequencies on
the left hand sides of the rules. Next, one can construct classifiers over such sets
of rules and use them for classifying new objects using some fusion strategy.
Another solution can start from generation of a sample of possible solutions
(a family of sets of rules with eliminated conflicts) and next use strategies for
conflict resolving between the sets of rules from the family.
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A more advanced case of adaptive learning of a family of concepts is when
the concepts are learned in a distributed environment consisting of distributed
data tables and an additional data table with examples of “global” states, i.e.,
condition attribute value vectors over all data tables (see, e.g. [15]). Such vectors
represent constraints for coexistence of condition attribute value vectors of data
tables for different concepts. From the data table for global states one can induce
rules representing constraints for local coexistence of attribute vector values from
different data tables. These dependencies can be used as constraints for adaptive
tuning of decision rules induced for different concepts.

For real-life data the formulas for conflict resolving can be large and efficient
heuristics are necessary for solution construction. One can apply some strategies
that have been developed using Boolean reasoning and rough sets [9]. Another
approach can be based on decomposition of formulas using domain knowledge.

5 Conclusions

There are several conclusions from our discussion. Among them are:

1. Recognition of the importance of the inclusion function, generalized in rough
mereology to rough inclusion (see, e.g., [7]). This has been used in investi-
gations of information granule calculi, in particular those based on rough
mereology (see, e.g., [12,7]) and approximation spaces based on information
granules (see, e.g., [13]).

2. Observation that vague concepts cannot be approximated with satisfactory
quality by static constructs such as induced membership inclusion functions,
approximations or models derived, e.g., from a sample. Understanding of
vague concepts can be only realized in a process in which the induced mod-
els are adaptively matching the concepts in a dynamically changing envi-
ronment. This conclusion seems to have important consequences for further
development of rough set theory in combination with fuzzy sets and other
soft computing paradigms for adaptive approximate reasoning.
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Abstract. We introduce a pair of rough set approximations in for-
mal concept analysis. The proposed approximation operators are defined
based on both lattice-theoretic and set-theoretic operators. The prop-
erties of the approximation operators are examined. Algorithms for at-
tribute reduction and object reduction in concept lattices are presented.

1 Introduction

The theory of rough sets, proposed by Pawlak [1], provides a method of set ap-
proximation and a tool for data mining and data analysis. The basic operators
in rough set theory are approximations. Using the concepts of lower and upper
approximations, knowledge hidden in information tables may be unravelled and
expressed in the form of decision rules [2,3,4,5]. In the classical rough set model,
the lower and upper approximation operators are defined based on an equiva-
lence relation on a universe of objects. The equivalence relation, however, seems
to be a very stringent condition that may limit the application domain of the
rough set model. In recent years, the notion of approximation operators has been
generalized by using non-equivalence binary relations [3,4,6,7,8,9,10].

Formal concept analysis has been proposed and used for conceptual data
analysis and knowledge processing [11,12]. A formal concept is defined by an
(objects, attributes) pair. The set of objects is referred to as the extension,
and the set of attributes as the intension, of the formal concept. They uniquely
determine each other [11,12]. Generalizations of formal concept analysis can also
be found in the literatures [13,14,15,16,17].

The combination of formal concept analysis and rough set theory provides
new approaches for data analysis. The notions of formal concept and formal
concept lattice can be introduced into rough set theory by constructing differ-
ent types of formal concepts [15,16,17]. For example, the object oriented con-
cepts [15] and the attribute oriented concepts [16] have been introduced. Rough
set approximation operators can be introduced into formal concept analysis by
considering different types of definability [24]. Many efforts have been made to
compare and combine the two theories [15,16,17,18,19,20,21].

Based on the notions of the object oriented concepts [15] and the attribute
oriented concepts [16], we define a pair of rough set approximation operators

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 43–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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within formal contexts and discuss their properties. We give the sufficient and
necessary conditions for classifying an attribute and an object as dispensable
or indispensable, and present algorithms for attribute reduction and object re-
duction for concept lattices. By adopting the notions of discernibility matrix
and discernibility function [3,23], we study all attribute reducts and all object
reducts.

2 Formal Contexts and Rough Approximation Operators

A formal context is a triplet (U,A,R), where U is a non-empty finite set of
objects and A is a non-empty finite set of attributes, and R is a relation between
U and A, which is a subset of the Cartesian product U ×A. A formal context is
in fact a binary information table in rough set theory.

In a formal context (U,A,R), for a pair of elements x ∈ U and y ∈ A, if
(x, y) ∈ R, we write xRy and read it as “the object x has the attribute y”, or
“the attribute y is possessed by object x”. We can associate a set of attributes
with an object x ∈ U and a set of objects with an attribute y ∈ A, respectively,
as follows [15,17]:

xR = {y ∈ A | xRy} ⊆ A, Ry = {x ∈ U | xRy} ⊆ U.

They can be extended to subsets of objects and attributes, respectively, as [15]:

XR =
⋃

x∈ X

xR, RB =
⋃

y∈ B

Ry.

Example 2.1. Table 1 is an example of a formal context with U = {1, 2, 3, 4, 5, 6}
and A = {a, b, c, d, e, f}. In Table 1, object 1 has attributes a, d and f ; attribute
a is possessed by objects 1, 2 and 5.

Let (U,A,R) be a formal context, a pair of approximation operators, �,♦ :
2U → 2A are defined by (see [15,17]):

X� = {y ∈ A | Ry ⊆ X}, X♦ = {y ∈ A | Ry ∩X �= ∅} =
⋃

x∈ X

xR = XR.

Table 1. A formal context (U,A, R)

a b c d e f
1 1 0 0 1 0 1
2 1 1 0 1 1 1
3 0 0 0 1 0 0
4 0 0 1 0 1 0
5 1 1 0 1 1 1
6 0 0 1 0 1 0
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Similarly, a pair of approximation operators, �,♦ : 2A → 2U are defined by (see
[15,17]):

B� = {x ∈ U | xR ⊆ B}, B♦ = {x ∈ U | xR ∩B �= ∅} =
⋃

y∈ B

Ry = RB.

They are in fact dual operators related by:

∼ (∼ X)� = X♦, ∼ (∼ X)♦ = X�, ∼ (∼ B)� = B♦, ∼ (∼ B)♦ = B�,

where ∼ denotes the complement of a set.
Let (U,A,R) be a formal context, X,X1, X2 ⊆ U and B,B1, B2 ⊆ A, the

pair of approximation operators satisfy the followings properties (see [15,16,17]):

(i) X1 ⊆ X2 =⇒ X�
1 ⊆ X�

2 , X
♦
1 ⊆ X♦

2 ,

B1 ⊆ B2 =⇒ B�
1 ⊆ B�

2 , B
♦
1 ⊆ B♦

2 ;
(ii) X�♦ ⊆ X ⊆ X♦�, B�♦ ⊆ B ⊆ B♦�;
(iii) X♦�♦ = X♦, X�♦� = X�, B♦�♦ = B♦, B�♦� = B�;
(iv) (X1 ∩X2)� = X�

1 ∩X�
2 , (X1 ∪X2)♦ = X♦

1 ∪X♦
2 ,

(B1 ∩B2)� = B�
1 ∩B�

2 , (B1 ∪B2)♦ = B♦
1 ∪B♦

2 .

Definition 2.1. Let (U,A,R) be a formal context. For any set X ⊆ U , a pair
of lower and upper approximations, apr(X) and apr(X), is defined by

apr(X) = X�♦, apr(X) = X♦�.

Operators, �♦, ♦� : 2U −→ 2U , are referred to as the lower and upper approxi-
mation operators, and the pair (apr(X), apr(X)) is referred to as a generalized
rough set.

Theorem 2.1. Let (U,A,R) be a formal context. The lower and upper approx-
imation satisfy the following properties: for any X,Y ⊆ U ,

(L1) apr(X) =∼ (apr(∼ X)),
(U1) apr(X) =∼ (apr(∼ X));
(L2) apr(∅) = apr(∅) = ∅,
(U2) apr(U) = apr(U) = U ;
(L3) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),
(U3) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y );
(L4) X ⊆ Y =⇒ apr(X) ⊆ apr(Y ),
(U4) X ⊆ Y =⇒ apr(X) ⊆ apr(Y );
(L5) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),
(U5) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y );
(L6) apr(apr(X)) = apr(X),
(U6) apr(apr(X)) = apr(X).

Proof: Properties (L1) and (U1) show that approximation operators apr and
apr are dual to each other. Properties with the same number may be regarded
as dual properties. Thus, we only need to prove one of them.
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For any X ⊆ U , we have

∼ (apr(∼ X)) =∼ (∼ X)♦� =∼ ((∼ (X)♦)�)
=∼ (∼ (∼ (∼ X)♦)♦) = (∼ (∼ X)♦)♦

= X�♦ = apr(X),

from which (L1) follows. (U1) can be directly induced by (L1). (L2) follows
immediately from the definition of lower approximation. For any X,Y ⊆ U ,

apr(X ∩ Y ) = (X ∩ Y )�♦ = (X� ∩ Y �)♦

= R(X� ∩ Y �) ⊆ R(X�) ∩R(Y �) = (X)�♦ ∩ (Y )�♦

= apr(X) ∩ apr(Y ),

which implies (L3). Properties (L4) follows directly from Property (i). Since
apr(X)∪apr(Y ) = X�♦∪Y �♦ = (X�∪Y �)♦ ⊆ (X∪Y )�♦ = apr(X∪Y ), Prop-
erty (L5) holds. Since apr(apr(X)) = (X�♦)�♦ = X�♦�♦, by Property (iii) we
conclude that (L6) holds. �

Definition 2.2. Let (U,A,R) be a formal context. For any set B ⊆ A, a pair of
lower and upper approximations, apr(B) and apr(B), is defined by

apr(B) = B�♦, apr(B) = B♦�.

Operators, �♦, ♦� : 2A −→ 2A, are referred to as the lower and upper approx-
imation operators, and the pair (apr(B), apr(B)) is referred to as a generalized
rough set.

Theorem 2.2. Let (U,A,R) be a formal context. The lower and upper approx-
imation satisfy the following properties: for all B,C ⊆ A,

(L
′
1) apr(B) =∼ (apr(∼ B)),

(U
′
1) apr(B) =∼ (apr(∼ B));

(L
′
2) apr(∅) = apr(∅) = ∅),

(U
′
2) apr(A) = apr(A) = A;

(L
′
3) apr(B ∩ C) ⊆ apr(B) ∩ apr(C),

(U
′
3) apr(B ∪ C) ⊇ apr(B) ∪ apr(C);

(L
′
4) B ⊆ C =⇒ apr(B) ⊆ apr(C),

(U
′
4) B ⊆ C =⇒ apr(B) ⊆ apr(C);

(L
′
5) apr(B ∪ C) ⊇ apr(B) ∪ apr(C),

(U
′
5) apr(B ∩ C) ⊆ apr(B) ∩ apr(C);

(L
′
6) apr(apr(B)) = apr(B),

(U
′
6) apr(apr(B)) = apr(B).

These properties can be proved in a way similar to Theorem 2.1.
Based on a formal context, different types of concept lattices can be defined.

For example, Yao introduced the object oriented concept lattice [15,17], Duntsch
and Gediga introduced the attribute oriented concept lattice [16].
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Let (U,A,R) be a formal context. A pair (X,Y ), X ⊆ U, Y ⊆ A, is called
an object oriented concept if X = Y ♦ and Y = X� [15,17]. A pair (X,Y ), X ⊆
U, Y ⊆ A, is called an attribute oriented concept if X = Y � and Y = X♦ [16,17].
The set of objects X is referred to as the extension of the concept, and the set
of attributes Y is referred to as the intension of the concept. For two formal
concepts (X1, Y1) and (X2, Y2), (X1, Y1) is a sub-concept of (X2, Y2) provided
that X1 ⊆ X2 (which is equivalent to Y1 ⊆ Y2), and write as (X1, Y1) ≤ (X2, Y2).
The relation ≤ is the hierarchical order of the concepts.

The set of all object oriented concepts forms a complete lattice which is
denoted by L1(U,A,R). The meet and join of the concepts are given by:

(X1, Y1) ∨ (X2, Y2) = (X1 ∪X2, (X1 ∪X2)�) = (X1 ∪X2, (Y1 ∪ Y2)♦�),
(X1, Y1) ∧ (X2, Y2) = ((Y1 ∩ Y2)♦, Y1 ∩ Y2) = ((X1 ∩X2)�♦, Y1 ∩ Y2).

The set of all attribute oriented concepts forms a complete lattice which is de-
noted by L2(U,A,R) with meet and join defined by:

(X1, Y1) ∨ (X2, Y2) = ((Y1 ∪ Y2)�, Y1 ∪ Y2) = ((X1 ∪X2)♦�, Y1 ∪ Y2),
(X1, Y1) ∧ (X2, Y2) = (X1 ∩X2, (X1 ∩X2)♦) = (X1 ∩X2, (Y1 ∩ Y2)�♦).

Fig. 1 Fig. 2

Fig. 1 gives the object oriented concept lattice, and Fig. 2 gives the attribute
oriented concept lattice defined by the formal context of Example 2.1.

Let (U,A,R) be a formal context, X ⊆ U,B ⊆ A, since (X�♦)� = X�,
(B♦�)♦ = B♦, (X�♦, X�) and (B♦, B♦�) are object oriented concepts; on the
other hand, since (X♦�)♦ = X♦, (B�♦)� = B�, (X♦�, X♦) and (B�, B�♦)
are attribute oriented concepts. By the definition of apr(X) and apr(X), apr(X)
is the extent of the object oriented concept derived from X , and apr(X) is the
extent of the attribute oriented concept derived from X . Similarity, apr(B) is
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the intent of the attribute oriented concept derived from B, and apr(B) is the
intent of the object oriented concept derived from B.

Example 2.2. In Example 2.1, let X = {1, 4, 6} and B = {a, d}. From the
Figure 1 and Figure 2, we have that

apr(X) = X�♦ = {4, 6}, apr(X) = X♦� = {1, 3, 4, 6},
apr(B) = B�♦ = {d}, apr(B) = B♦� = {a, b, d, f}.

Theorem 2.3. Let (U,A,R) be a formal context and X ⊆ U , then
(1) apr(X) = X iff X is the extent of an object oriented concept;
(2) apr(X) = X iff X is the extent of an attribute oriented concept.

Proof : Straightforward. �

Theorem 2.4. Let (U,A,R) be a formal context and B ⊆ A, then
(1) apr(B) = B iff A is the extent of an attribute oriented concept;
(2) apr(B) = B iff A is the extent of an object oriented concept.

Proof : Straightforward. �

3 Attribute Reduction in Concept Lattices

In this section, we discuss the attribute reduction for concept lattices.

Definition 3.1. Let Li(U,A1, R1) and Li(U,A2, R2) (i = 1, 2) be two object
oriented concept lattices (i = 1) and attribute oriented concept lattices (i = 2).
We say that Li(U,A2, R2) is extension coarser than Li(U,A1, R1), if for any
(X,B) ∈ Li(U,A2, R2), there exist (X,B

′
) ∈ Li(U,A1, R1), and denoted by

Li(U,A1, R1) ≤ Li(U,A2, R2), (i = 1, 2).

If Li(U,A1, R1) ≤ Li(U,A2, R2) and Li(U,A2, R2) ≤ Li(U,A1, R1), we say that
Li(U,A1, R1) and Li(U,A2, R2) are isomorphic, and denoted by

Li(U,A1, R1) ∼= Li(U,A2, R2), (i = 1, 2).

Theorem 3.1. Let (U,A,R) be a formal context, A1, A2 ⊆ A, then

L1(U,A1, R1) ∼= L1(U,A2, R2) ⇐⇒ L2(U,A1, R1) ∼= L2(U,A2, R2).

Proof : For any (X,B) ∈ L1(U,A1, R1), we have (X∼, B∼) ∈ L2(U,A1, R1) (see
[15,17]). Thus,

L1(U,A1, R1) ≤ L1(U,A2, R2) ⇐⇒
∀ (X,B) ∈ L1(U,A2, R2), ∃(X,B

′
) ∈ L1(U,A1, R1) ⇐⇒

∀ (X∼, B∼) ∈ L2(U,A2, R2), ∃(X∼, (B
′
)∼) ∈ L2(U,A1, R1) ⇐⇒

L2(U,A1, R1) ≤ L2(U,A2, R2).
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By the similar proof, we have

L1(U,A2, R2) ≤ L1(U,A1, R1) ⇐⇒ L2(U,A2, R2) ≤ L2(U,A1, R1). �

Let (U,A,R) be a formal context and D ⊆ A. We denote RD = R∩ (U ×D).

Theorem 3.2. Let (U,A,R) be a formal context, then ∀ D ⊆ A (D �= ∅),
Li(U,A,R) ≤ Li(U,D, RD) (i = 1, 2).

Proof : For any (X,B) ∈ L1(U,D, RD), we have (X�♦, X�) ∈ L1(U,A,R). We
need to prove X�♦ = X . By property (ii), we have X�♦ ⊆ X . On the other
hand, since B = X� ∩ D ⊆ X�, X = B♦ ⊆ X�♦, i.e., X�♦ = X . Thus,
L1(U,A,R) ≤ L1(U,D, RD). L2(U,A,R) ≤ L2(U,D, RD) follows immediately
from Theorem 3.1. �

Definition 3.2. Let (U,A,R) be a formal context and a ∈ A. We say that a is
dispensable in Li(U,A,R), if Li(U,A,R) ∼= Li(U,A\{a}, RA\{a}); otherwise, a
is indispensable (i = 1, 2).

Theorem 3.3. Let (U,A,R) be a formal context and a ∈ A, then a is dispensable
in Li(U,A,R) iff ∃ C ⊆ A\{a}, such that a♦ = C♦ (i = 1, 2).

Proof : We prove for the case of i = 1.
(⇐) We need to prove L1(U,A,R) ∼= L1(U,A\{a}, RA\{a}). From Theorem 3.2
we have L1(U,A,R) ≤ L1(U,A\{a}, RA\{a}). Then, we only need to prove
L1(U,A\{a}, RA\{a}) ≤ L1(U,A,R), i.e., ∀ (X,B) ∈ L1(U,A,R). In turn, we
need to prove (X,B\{a}) ∈ L1(U,A\{a}, RA\{a}). If a �∈ B, it is clear that
(X,B) ∈ L1(U,A\{a}, RA\{a}). Assume that a ∈ B. Since X = B♦ and a♦ =
C♦, we have C ⊆ X� = B. Thus, (B\{a})♦ = X . Therefore, (X,B\{a}) =
((B\{a})♦, X�) ∈ L1(U,A\{a}, RA\{a}).
(⇒) It is easy to see that (a♦, a♦�) ∈ L1(U,A,R). Since a is dispensable,
(a♦, a♦�\{a}) ∈ L1(U,A\{a}, RA\{a}). Therefore, (a♦�\{a})♦ = a♦, denoted
by C = a♦�\{a}. It follows that C♦ = a♦. �

Proposition 3.1. Let (U,A,R) be a formal context and a ∈ A, then a is indis-
pensable in Li(U,A,R) iff a♦ �= C♦ for any C ⊆ A\{a} (i = 1, 2).

Proof : It immediately follows from Theorem 3.3. �

Definition 3.3. Let (U,A,R) be a formal context, D ⊆ A. We say that D is a
consistent set of Li(U,A,R), if Li(U,A,R) ∼= Li(U,D, RD) (i = 1, 2). If D is a
consistent set, and for any b ∈ D,Li(U,A,R) � Li(U,D\{b}, RD\{b}), then D is
referred to as an attribute reduct of Li(U,A,R) (i = 1, 2).

Proposition 3.2. Let (U,A,R) be a formal context, D ⊆ A (D �= ∅), D is a
consistent set of Li(U,A,R) ⇐⇒ Li(U,D, RD) ≤ Li(U,A,R) (i = 1, 2).

Proof : It immediately follows from Theorem 3.2. �
From the Theorem 3.1, we have:

D is an attribute reduct of L1(U, A, R) ⇐⇒ D is an attribute educt of L2(U, A, R).
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Theorem 3.4. Let (U,A,R) be a formal context, and D ⊆ A, then D is an
attribute reduct of Li(U,A,R) (i = 1, 2) iff ∃ C ⊆ D, such that a♦ = C♦ for all
a ∈ A\D and � E ⊆ D\{b}, such that b♦ = E♦ for all b ∈ D.

Proof : It immediately follows from Theorem 3.3 and Proposition 3.1. �

Definition 3.4. Let (U,A,R) be a formal context. Given (Xl, Bl)i, (Xj , Bj)i ∈
Li(U,A, I), we define:

DAi((Xl, Bl)i, (Xj , Bj)i) = Bl ∪Bj −Bl ∩Bj , (i = 1, 2).

DAi((Xl, Bl)i, (Xj , Bj)i(i = 1, 2) are called object oriented concept lattices and
attribute oriented concept lattices discernibility attribute set, respectively. More-
over,

DAi = (DAi((Xl, Bl)i, (Xj , Bj)i), (Xl, Bl)i, (Xj , Bj)i ∈ Li(U,A, I)), (i = 1, 2)

are called object oriented concept lattices and attribute oriented concept lattices
discernibility attribute matrix, respectively.

Let DAi be the discernibility attribute matrices of Li(U,A, I) (i = 1, 2). We
define:

MAi = ∧{∨{a : a ∈ DAi((Xl, Bl)i, (Xj , Bj)i)} : (Xl, Bl)i, (Xj , Bj)i ∈ Li(U, A, I)}.

MAi (i = 1, 2) are referred to, respectively, as the discernibility attribute func-
tion of L1(U,A, I), and the discernibility attribute function of L2(U,A, I). The
minimal disjunctive normal form of each discernibility attribute function deter-
mine all attribute reducts uniquely [22].

Theorem 3.5. Let (U,A,R) be a formal context and X ⊆ U . Suppose D ⊆ A
is an attribute reduct of Li(U,A,R) (i = 1, 2), and apr

D
(X) and aprD(X) are

the lower and upper approximation of X in formal context (U,D, RD). Then

apr
D

(X) = apr(X), aprD(X) = apr(X).

Proof : For any X ⊆ U , we that (X�♦, X�) ∈ L1(U,A,R). Since D is a reduct
of L1(U,A,R), (X�♦, X� ∩ D) ∈ L1(U,D, RD). Thus, apr

D
(X) = apr(X).

Similarly we can prove aprD(X) = apr(X). �

4 Object Reduction in Concept Lattices

Object reduction for concept lattices is similar to the attribute reduction. We
therefore only present the main results without giving any details.

Definition 4.1. Let Li(U1, A,R1) and Li(U2, A,R2) be two object oriented
concept lattices (i = 1) and attribute oriented concept lattices (i = 2). We say
that Li(U2, A,R2) is intension coarser than Li(U1, A,R1), if for any (X,B) ∈
Li(U2, A,R2), there exist (X

′
, B) ∈ Li(U1, A,R1), and denoted by

Li(U1, A,R1) ≤ Li(U2, A,R2), (i = 1, 2).
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If Li(U1, A,R1) ≤ Li(U2, A,R2) and Li(U2, A,R2) ≤ Li(U1, A,R1), we say that
Li(U1, A,R1) and Li(U2, A,R2) are isomorphic, and denoted by

Li(U1, A,R1) ∼= Li(U2, A,R2), (i = 1, 2).

Theorem 4.1. Let (U,A,R) be a formal context, U1, U2 ⊆ U , then

L1(U1, A,R1) ∼= L1(U2, A,R2) ⇐⇒ L2(U1, A,R1) ∼= L2(U2, A,R2).

Let (U,A,R) be a formal context and V ⊆ U . For V ⊆ U , we denote RV =
R ∩ (V ×A).

Theorem 4.2. Let (U,A,R) be a formal context, then ∀ V ⊆ U (V �= ∅),
Li(U,A,R) ≤ Li(V,A,RV ), (i = 1, 2).

Definition 4.2. Let (U,A,R) be a formal context and u ∈ U . We say u is
dispensable in Li(U,A,R), if Li(U,A,R) ∼= Li(U\{u}, A,RU\{u}); otherwise, u
is indispensable, (i = 1, 2).

Theorem 4.3. Let (U,A,R) be a formal context and x ∈ U , then x is dispensable
in Li(U,A,R) iff ∃ V ⊆ U\{x}, such that x♦ = V ♦ (i = 1, 2).

Proposition 4.1. Let (U,A,R) be a formal context and u ∈ U , then U is
indispensable in Li(U,A,R) iff u♦ �= V ♦ for any V ⊆ U\{u}, (i = 1, 2).

Definition 4.3. Let (U,A,R) be a formal context, V ⊆ U . A subset of objects
V is a consistent set of Li(U,A,R), if Li(U,A,R) ∼= Li(V,A,RV ). If V is a
consistent set, and for any v ∈ V,Li(U,A,R) � Li(V \{v}, A,RV \{v}), then V is
referred to as an object reduct of Li(U,A,R), (i = 1, 2).

Proposition 4.2. Let (U,A,R) be a formal context, V ⊆ U (V �= ∅), then
V is a consistent set of Li(U,A,R) ⇐⇒ Li(V,A,RV ) ≤ Li(U,A,R), (i = 1, 2).

From Theorem 4.1, it is easy to see that

V is an object reduct of L1(U,A,R) ⇐⇒ V is an object reduct of L2(U,A,R).

Theorem 4.4. Let (U,A,R) be a formal context, and V ⊆ U , then V is an
object reduct of Li(U,A,R) iff ∃ V1 ⊆ V , such that x♦ = V ♦

1 for all x ∈ U\V
and � V2 ⊆ V \{v}, such that v♦ = V ♦

2 for all v ∈ V .

Definition 4.4. Let (U,A,R) be a formal context. For (Xl, Bl)i, (Xj , Bj)i ∈
Li(U,A,R), we define:

DOi((Xl, Bl)i, (Xj , Bj)i) = Xl ∪Xj −Xl ∩Xj .

They are called object oriented concept lattices and attribute oriented concept
lattices discernibility object set, respectively. Moreover,

DOi = (DOi((Xi, Bi)i, (Xj , Bj)i), (Xi, Bi)i, (Xj , Bj)i ∈ Li(U,A,R)), (i = 1, 2)

are called object oriented concept lattices and attribute oriented concept lattices
discernibility object matrix, respectively.



52 M.-W. Shao and W.-X. Zhang

Let DOi be the discernibility object matrices of Li(U,A,R) (i = 1, 2). Then

MOi = ∧{∨{x : x ∈ DOi((Xi, Bi)i, (Xj , Bj)i)} : (Xl, Bl)i, (Xj , Bj)i ∈ Li(U, A, R)},

are referred to as the discernibility object function of Li(U,A,R). The minimal
disjunctive normal form of each discernibility object function determine all object
reducts uniquely [22].

Theorem 4.5. Let (U,A,R) be a formal context and B ⊆ A. V ⊆ U , is an
object reduct of Li(U,A,R), apr

V
(B) and aprV (B) denote the lower and upper

approximation of B in formal context (V,A,RV ). Then

apr
V

(B) = apr(B), aprV (B) = apr(B).

5 Conclusions

The approximation of sets and knowledge reduction are two important issues
in rough set theory. Based on the notions of the attribute oriented concepts
and the object oriented concepts, we defined a pair of rough set approximations
using formal contexts. Similar to rough set reduction, we give approaches for
attribute reduction and object reduction in concept lattices. By the proposed
method, we can remove the attributes and objects that are not essential to
the proposed approximation operators. The relationships between the attribute
reduction of concept lattices and the attribute reduction of rough set need to
further attention.
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Abstract. The rough approximations are considered in the context of
multi-criteria classification problem where evaluations of objects on par-
ticular criteria and their assignments to decision classes are imprecise
and given in the form of intervals of possible values. Within Dominance-
based Rough Set Approach (DRSA), the lower and upper approxima-
tions reflect the inconsistencies with respect to dominance principle. In
the considered case, also the interval assignments have to be taken into
account. This requires a new formulation of the dominance principle. A
possible solution to the problem consists in introducing the second-order
rough approximations. The methodology based on these approximations
preserves well-known properties of rough approximations, such as rough
inclusion, complementarity, identity of boundaries and monotonicity.

1 Introduction

In this paper, we consider an instance of the multi-criteria classification problem,
in which objects are described and assigned imprecisely. We assume that the
assignments and the evaluations on criteria are represented by intervals. The
non-univocal (interval) assignment of an object is defined through the lowest
and the highest class to which an object could belong. The interval evaluation is
defined similarly, through the highest and the lowest value that an object may
obtain on a given criterion.

In the multi-criteria classification problems, assignment of objects to decision
classes may be inconsistent with respect to the dominance principle. It requires
that any object x, having not worse evaluations than some object y on the
considered set of criteria, cannot be assigned to a worse class than y. Greco,
Matarazzo and S�lowiński [4,5,6,7,9] have introduced Dominance-based Rough
Set Approach (DRSA) that is able to handle these inconsistencies. According to
the DRSA methodology, some selected reference objects are assigned by the De-
cision Maker (DM) to pre-defined decision classes, which are completely ordered
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by preference. The assignment of reference objects to decision classes consti-
tutes preference information from which the preference model is induced. The
DRSA allows to get lower and upper (rough) approximations of unions of decision
classes that reflect the inconsistencies with the dominance principle. The rough
approximations are then used in induction of decision rules representing, respec-
tively, certain and possible patterns of DM’s preferences. The preference model
in the form of decision rules explains a decision policy of the DM and permits
to classify new objects in line with the DM’s preferences. Taking into account
the interval evaluations and assignments requires, however, the dominance prin-
ciple to be revised and the DRSA methodology to be adapted adequately. A
possible solution to the problem consists in introducing the second-order rough
approximations that result from both, the imprecision of interval assignments
and the inconsistencies with respect to the dominance principle. These approxi-
mations satisfy the usual properties considered in rough set theory such as rough
inclusion, complementarity, identity of boundaries and monotonicity.

Let us remark that the classification problem with interval evaluations and
assignments is a generalization of the classification problem with missing values
considered within DRSA [5]. Indeed, an interval evaluation on a criterion could
be seen as a“partially missing value”because a non-univocal evaluation, spanned
over an interval is like a value partially unknown. In the extreme case, an interval
equal to the whole domain of a criterion is a completely missing value. A similar,
but less general problem of approximating univocal assignments with interval
orders has been already considered by the authors in the context of hierarchical
multi-attribute and multi-criteria classification [1]. Some elements of the present
generalization have been also already reported in [2].

The article is organized in the following way. Section 2 contains problem
statement and basic definitions. Section 3 describes several types of dominance
relations used further in definitions of rough approximations. In Section 4, the
dominance principle is extended for the considered case. Sections 5 presents
definitions of decision and condition granules. The main results, i.e. the gen-
eralization of DRSA into second-order rough approximations, are described in
Section 6. The last section presents conclusions.

2 Problem Statement

Multi-criteria classification consists in an assignment of objects from a set A
to pre-defined decision classes Clt, t ∈ T = {1, . . . , n}. It is assumed that the
classes are preference-ordered according to an increasing order of class indices,
i.e. for all r, s ∈ T , such that r > s, the objects from Clr are strictly preferred
to the objects from Cls. The objects are described by condition criteria, i.e.
attributes with preference-ordered domains.

In order to support multi-criteria classification, one must construct a prefer-
ence model. One possible way is to induce this model from a set of exemplary
decisions (assignments of objects to decision classes) made on a set of selected
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objects called reference objects U ⊆ A. The reference objects are relatively well-
known to the DM, who can easily assign them to pre-defined classes.

The reference objects and their descriptions are often presented in a decision
table S = 〈U, C,D〉, where U ⊆ A is a finite, non-empty set of reference objects.
C represents a set of condition criteria, and D represents a set of decision criteria
that describe assignments of objects to decision classes. D is often a singleton
(D = {d}), where d is shortly called decision. C and D are disjoint, finite and
non-empty sets that jointly constitute a set of all criteria Q. It is assumed,
without loss of generality, that the domain of each criterion q ∈ Q, denoted by
Vq, is numerically coded with an increasing order of preference. The domains of
criteria may correspond to cardinal or ordinal scales, however, we are exploiting
the ordinal information (the weakest) only, whatever is the scale. The domain
of decision d is a finite set (T = {1, . . . , n}) due to a finite number of decision
classes.

The imprecise (interval) evaluations and assignments of objects on any cri-
terion (q ∈ Q) are defined by an information function f̂(x, q) = 〈l(x, q),u(x, q)〉,
where l,u : U × Q → Vq and u(x, q) ≥ l(x, q). 〈l(x, q),u(x, q)〉 is a subset of Vq

referred to as an interval evaluation (or assignment, if q refers to d) of x on cri-
terion q; l(x, q) and u(x, q) are the lower and the upper boundary of the interval,
respectively. Observe that if these two values are equal, then the interval boils
down to a single, precise value (it will be denoted by f(x, q) = l(x, q) = u(x, q)).
Let us notice, that a missing evaluation could be also presented as an interval,
such that l(x, q) is the smallest value and u(x, q) is the highest value from a
domain of criterion q. It will be denoted by f̂(x, q) = 〈min(Vq),max(Vq)〉.

An interval 〈l(x, q),u(x, q)〉 has the following interpretation. The precise eval-
uation (or assignment) of x on criterion q, denoted by f(x, q), is presently un-
known, but a range of this value is known and restricted by lower and upper
boundary, i.e. l(x, q) and u(x, q), respectively. In the following, we assume that
f(x, q) is any value from 〈l(x, q),u(x, q)〉 with the same possibility. In other
words, any interval evaluation defines the highest and the lowest value which
an object could obtain on criterion q ∈ C. The non-univocal assignment of an
object defines the lowest and the highest decision class to which an object could
belong.

An example of decision table containing interval evaluations and assignments
is presented in Table 1. It contains two condition criteria q1 and q2, decision
criterion d and ten reference objects U = {x1, . . . , x10}. Objects are assigned,
not necessarily univocally, to four decision classes (Cl1, Cl2, Cl3, Cl4).

3 Dominance Relations

Within the basic DRSA, the notions of weak preference (or outranking) rela-
tion �q and P -dominance relation DP are defined as follows. For any x, y ∈ U
and q ∈ Q, x �q y means that x is at least as good as (is weakly preferred to) y
with respect to criterion q. Moreover, taking into account more than one crite-
rion, we say that x dominates y with respect to P ⊆ Q (shortly x P -dominates
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Table 1. Decision table containing interval evaluations and assignments

U q1 q2 d U q1 q2 d

x1 〈46, 50〉 〈48, 52〉 4 x6 24 10 〈2, 3〉
x2 〈44, 48〉 〈48, 50〉 4 x7 〈6, 8〉 〈14, 20〉 〈1, 2〉
x3 〈49, 52〉 44 3 x8 〈9, 10〉 〈16, 20〉 〈1, 2〉
x4 26 〈28, 35〉 3 x9 8 11 1
x5 30 〈26, 32〉 2 x10 〈15, 27〉 11 1

y), if x �q y for all q ∈ P . The weak preference relation �q is supposed to be
a complete pre-order and, therefore, the P -dominance relation DP , being the
intersection of complete pre-orders �q, q ∈ P , is a partial pre-order in the set of
reference objects.

When generalizing DRSA to the case of imprecise evaluations and assign-
ments, the following weak preference relations with respect to q ∈ Q can be
considered:

– possible weak preference relation: x�qy ⇔ u(x, q) ≥ l(y, q),
– lower-end weak preference relation: x �l

q y ⇔ l(x, q) ≥ l(y, q),
– upper-end weak preference relation: x �u

q y ⇔ u(x, q) ≥ u(y, q).

For the above defined weak preference relations one can easily get the corre-
sponding P -dominance relations, where P ⊆ Q:

– possible P -dominance relation: xDP y ⇔ x�qy, for all q ∈ P ,
– P -lower-end dominance relation: xDl

P y ⇔ x �l
q y, for all q ∈ P ,

– P -upper-end dominance relation: xDu
P y ⇔ x �u

q y, for all q ∈ P .

Let us notice that the possible weak preference relation �q is an interval
order [3] which is strongly complete and Ferrers transitive. It is easy to see [2],
however, that the possible P -dominance relation DP based on interval orders is
only reflexive - it is neither Ferrers transitive nor partial interval order in the
sense of Roubens and Vincke [8]. The P -lower-end relation Dl

P and the P -upper-
end relation Du

P are reflexive and transitive.
Let us show, for example, that the following relations hold in Table 1, for

P = {q1, q2}:
– x1DP x2, because u(x1, q1) = 50 ≥ l(x2, q1) = 44 and u(x1, q2) = 52 ≥

l(x2, q2) = 48,
– x1D

l
P x2, because l(x1, q1) = 46 ≥ l(x2, q1) = 44 and l(x1, q2) = 48 ≥

l(x2, q2) = 48,
– x1D

u
P x2, because u(x1, q1) = 50 ≥ u(x2, q1) = 48 and u(x1, q2) = 52 ≥

u(x2, q2) = 50,
– and, x5DP x4, because u(x5, q1) = l(x5, q1) = 30 ≥ u(x4, q1) = l(x4, q1) = 26

and u(x5, q2) = 32 ≥ l(x4, q2) = 28 (it may be remarked that, in spite of this
dominance, x5 is assigned to a worse class than x4).

The dominance relations are not complete. For example, any dominance relation
does not hold between x2 and x3.
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4 Dominance Principle

In decision analysis, the dominance principle requires that an object having not
worse evaluations on condition criteria than another object is assigned to a class
not worse than the other object. More formally, the dominance principle can be
expressed as follows:

xDP y ⇒ xD{d}y, for any P ⊆ C.

In other words, it could be said that if x P -dominates y (x is not worse than y
with respect to all criteria from P ), then the assignment of x to a decision class
should be not worse than the assignment of y. It could also be said that the
assignment of y should be not better than the assignment of x. Any violation of
the above principle is called inconsistency.

Taking into account imprecise evaluations and assignments, the above has to
be revised. Let us express the dominance principle in the following way:

xDP y ⇒ xDl
{d}y ∧ xDu

{d}y, for any P ⊆ C.

Its interpretation is the following: if x possibly dominates y, then the assignment
of x should be not worse than the worst assignment of y and the assignment of
y should be not better than the best assignment of x. This formulation is an
extension of the former dominance principle, so that for univocal evaluations
and assignments, it boils down to the former one. In the following, we refer to
the latter formulation only.

The main reason for such a formulation is that an additional information
that makes finer evaluations of reference objects should not increase the number
of inconsistencies among these objects. Let us consider two objects that are
inconsistent after getting finer evaluations (the interval assignments are just
smaller, not displaced, i.e. they are subintervals of the original intervals). These
two objects had have to be inconsistent also before the new information comes.
This is concordant with the rough set philosophy which requires that if we knew
more about objects, then we would obtain more consistent knowledge.

Let us illustrate the inconsistencies using the example introduced in Section
2. Objects x4 and x5 are inconsistent, because x5DP x4, but x5 is assigned to a
worse class than x4. It may be remarked that the new (finer) information about
intervals describing these objects may eliminate this inconsistency (for example,
if u(x5, q2) = 30 and l(x4, q2) = 31). Objects x2 and x3 are consistent, in turn,
and any new (finer) information describing these objects will not cause any new
inconsistency. Observe, finally, that according to the extended formulation of
the dominance principle, objects x7 and x8 are not inconsistent because of the
interval assignments.

Let us also notice that a finer interval assignment of an object may introduce
a new inconsistency with respect to the dominance principle. For example, if
assignment of x7 changed from 〈1, 2〉 to 2, then x7 and x8 would be inconsistent.
In this case, however, the interval assignment is equivalent to inconsistency with
the dominance principle. As we will see in the next sections, due to introduction
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of the second-order rough approximations, this situation does not introduce any
new inconsistency into final results of analysis (see discussion following defini-
tions of rough approximations in Section 6).

5 Decision and Condition Granules

The rough approximations concern granules resulting from information carried
out by the decision criterion. The approximation is made using granules result-
ing from information carried out by condition criteria. The granules are called
decision and condition granules, respectively.

The decision granules are defined using P -lower-end and P -upper-end dom-
inance relations:

Dl+
{d}(x) = {y ∈ U : yDl

{d}x}, Du−
{d}(x) = {y ∈ U : xDu

{d}y},
D

+

{d}(x) = {y ∈ U : yD{d}x}, D
−
{d}(x) = {y ∈ U : xD{d}y},

and are referred to as d-dominating sets, d-dominated sets, d-dominating sets
and d-dominated sets, respectively.

If in the definition of the above granules one would use a class index t ∈ T
(value t on decision criterion d) instead of an object x, then they would boil
down to the specific approximations of upward and downward unions of decision
classes:

Cl≥t = {y ∈ U : l(y, d) ≥ t}, Cl≤t = {y ∈ U : u(y, d) ≤ t},
Cl

≥
t = {y ∈ U : u(y, d) ≥ t}, Cl

≤
t = {y ∈ U : l(y, d) ≤ t}.

The statement x ∈ Cl≥t (x ∈ Cl≤t ) means “x belongs to at least (at most)
class Clt”, while the statement x ∈ Cl

≥
t (x ∈ Cl

≤
t ) means “x could belong to at

least (at most) class Clt”. Let us remark that in comparison with original DRSA,
the upward union of decision classes Cl≥t is replaced here by two upward unions
Cl≥t and Cl

≥
t representing sets of objects with sure and unsure assignment,

respectively. Similarly, the downward union of decision classes Cl≤t is replaced
by two downward unions Cl≤t and Cl

≤
t . In fact, the upward and downward unions

of decision classes (Cl≥t and Cl≤t ) become rough sets in the considered case. The
lower and upper approximations of Cl≥t (Cl≤t ) are Cl≥t and Cl

≥
t (Cl≤t and Cl

≤
t ),

respectively. Let us explain this correspondence in the case of Cl≥t .
Let us remind, that Cl≥t is defined as Cl≥t = {x ∈ U : f(x, d) ≥ t}, where

f(x, d) is a precise value representing an univocal assignment. Let us define
S≥

t = {s ∈ T : s ≥ t} and rewrite the above definition to: Cl≥t = {x ∈ U :
f(x, d) ∈ S≥

t } (or in equivalent way: Cl≥t = {x ∈ U : {f(x, d)} ⊆ S≥
t }). In the

case of interval assignments, f(x, d) has to be replaced by f̂(x, d), that is a subset
of T , which may be completely included in or overlap with S≥

t . Therefore, it is
not possible to represent Cl≥t exactly in terms of interval assignments f̂(x, d), so
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Cl≥t may be expressed as a rough set through its lower and upper approximation
defined as:

Cl≥t = {x ∈ U : f̂(x, d) ⊆ S≥
t }, Cl

≥
t = {x ∈ U : f̂(x, d) ∩ S≥

t �= ∅}.

Note that f̂(x, d) ⊆ S≥
t is equivalent to l(x, d) ≥ t and f̂(x, d) ∩ S≥

t �= ∅ is
equivalent to u(x, d) ≥ t.

Let us consider objects x6, x7 and x8 from Table 1. The corresponding
information functions f̂(x, d) returns the following subsets: f̂(x6, d) = {2, 3},
f̂(x7, d) = f̂(x8, d) = {1, 2}. It is obvious that Cl≥2 cannot be expressed using
these objects and the lower and the upper approximation of this set has to be
computed. They are: Cl≥2 = {x6}, because f̂(x6, d) ⊆ S≥

2 (i.e. l(x6, d) ≥ 2) and,
Cl

≥
2 = {x6, x7, x8}, because additionally f̂(x7, d) ∩ S≥

2 �= ∅ (i.e. u(x7, d) ≥ 2)
and f̂(x8, d) ∩ S≥

2 �= ∅ (i.e. u(x8, d) ≥ 2).
There are two types of condition granules that are useful in the following

considerations. They are P -dominating sets and P -dominated sets defined, re-
spectively, as:

D
+

P (x) = {y ∈ U : yDP x}, D
−
P (x) = {y ∈ U : xDP y}.

Let us illustrate these definitions by computing these sets for object x4:
D

+

P (x4) = {x1, x2, x3, x4, x5}, D
−
P (x4) = {x4, x6, x7, x8, x9, x10}.

Let us remark that both decision and condition granules are cones in decision
and condition spaces, respectively. The origin of a decision cone is a class index
t ∈ T , while the origin of a condition cone is an object x ∈ U . The dominating
cones are open towards increasing preferences, and the dominated cones are open
towards decreasing preferences.

6 Dominance-Based Rough Approximations

Before we define the rough approximations taking into account imprecise evalua-
tions and assignments, consider the following definition of P -generalized decision
for an object x ∈ U :

δP (x) = 〈lP (x),uP (x)〉,
where

lP (x) = min{l(y, d) : yDP x, y ∈ U}, uP (x) = max{u(y, d) : xDP y, y ∈ U}.

In other words, the P -generalized decision reflects an imprecision of interval
assignment of object x and inconsistencies with the dominance principle caused
by this object. lP (x) is the lowest decision class, to which objects P -dominating
x may belong; uP (x) is the highest decision class, to which objects P -dominated
by x may belong. If lP (x) = uP (x), then it means that object x is univocally
assigned and P -consistent with respect to the dominance principle.

Let us compute the P -generalized decision for x1 and x6. Remark that x1

does not cause any inconsistency and, therefore, δP (x1) = 〈4, 4〉. Object x6



Second-Order Rough Approximations in Multi-criteria Classification 61

is assigned imprecisely to classes 2 and 3 and, moreover, it is dominated by
x10 that is assigned to worse class than the worst assignment of x6. Therefore,
δP (x6) = 〈1, 3〉.

We will use the concept of rough approximation to express the interval as-
signment of objects to decision classes and inconsistencies with respect to the
dominance principle, taking into account criteria from subset P ⊆ C. The lower
approximation should correspond to a certain assignment, while the upper ap-
proximation to a possible assignment. Consequently, it will be reasonable to con-
sider P -lower approximation of a sure assignment (Cl≥t or Cl≤t ) and P -upper
approximation of an unsure assignment (Cl

≥
t or Cl

≤
t ) - they will just correspond

to certain and possible assignments expressed in terms of criteria from P ⊆ C.
In this way, we obtain the following second-order rough approximations:

P (Cl≥t ) = {x ∈ U : D
+

P (x) ⊆ Cl≥t }, P (Cl
≥
t ) = {x ∈ U : D

−
P (x) ∩ Cl

≥
t �= ∅},

P (Cl≤t ) = {x ∈ U : D
−
P (x) ⊆ Cl≤t }, P (Cl

≥
t ) = {x ∈ U : D

+

P (x) ∩ Cl
≤
t �= ∅},

where t ∈ T . They are referred to as P -lower approximation of Cl≥t , P -upper ap-
proximation of Cl

≥
t , P -lower approximation of Cl≤t and P -upper approximation

of Cl
≥
t , respectively.

Let us remark that these approximations may be expressed using P -
generalized decision. For example, for t ∈ T , we have:

P (Cl≥t ) = {x ∈ U : D
+

P (x) ⊆ Cl≥t } =
= {x ∈ U : ∀y ∈ U, yDP x ⇒ l(y, d) ≥ t} =
= {x ∈ U : min{l(y, d) : yDP x, y ∈ U} ≥ t} = {x ∈ U : lP (x) ≥ t},

and similarly, for t ∈ T :

P (Cl
≥
t ) = {x ∈ U : D

−
P (x) ∩ Cl

≥
t �= ∅} =

= {x ∈ U : ∃y ∈ U such that xDP y ∧ u(y, d) ≥ t} =
= {x ∈ U : max{u(y, d) : xDP y, y ∈ U} ≥ t} = {x ∈ U : uP (x) ≥ t}.

The remaining definitions may be formulated in the same way, i.e.:

P (Cl≤t ) = {x ∈ U : uP (x) ≤ t} and P (Cl
≤
t ) = {x ∈ U : lP (x) ≤ t}, for t ∈ T .

Let us compute these approximations for our example:

P (Cl≥4 ) = {x1, x2}, P (Cl
≥
4 ) = {x1, x2},

P (Cl≥3 ) = {x1, x2, x3}, P (Cl
≥
3 ) = {x1, . . . , x6, x10},

P (Cl≥2 ) = {x1, . . . , x5}, P (Cl
≥
2 ) = {x1, . . . , x8, x10},

P (Cl≤3 ) = {x3, . . . , x10}, P (Cl
≤
3 ) = {x3, . . . , x10},

P (Cl≤2 ) = {x7, x8, x9}, P (Cl
≤
2 ) = {x4, . . . , x10},

P (Cl≤1 ) = {x9}, P (Cl
≤
1 ) = {x6, x7, x8, x9, x10},

P (Cl≥1 ) = P (Cl
≥
1 ) = P (Cl≤4 ) = P (Cl

≤
4 ) = U ,
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where “. . .” denotes consecutive objects. It is easy to see that the inconsistencies
with respect to the dominance principle and the imprecise assignments are taken
into account in the above computations. It may be remarked, for example, that:

– x4 and x5 belong to P (Cl≤3 ) and to P (Cl≥2 ),
– x6 and x10 belong to P (Cl≤3 ) and to P (Cl≥1 ),
– x7 and x8 belong to P (Cl≤2 ) and to P (Cl≥1 ),

where the presented approximations are the extreme ones, i.e. a lower approxi-
mation of the lowest Cl≤t and a lower approximation of the highest Cl≥t , to which
an object belongs. In other words, these approximations reflect the P -generalized
decisions (see, for example, results for x6). Let us come back for a while to the
discussion from the last paragraph of section 4 concerning objects x7 and x8.
Note that the computed rough approximations are the same, independently of
the fact whether x7 has been assigned to 〈1, 2〉 or to 2.

The following theorems ensure that the above definitions maintain the main
properties of rough approximations. These are: rough inclusion, complementarity,
identity of boundaries and monotonicity.

Theorem 1 (Rough Inclusion). For any t ∈ T and for any P ⊆ C, there
hold:

P (Cl≥t ) ⊆ Cl≥t ⊆ Cl
≥
t ⊆ P (Cl

≥
t ), P (Cl≤t ) ⊆ Cl≤t ⊆ Cl

≤
t ⊆ P (Cl

≤
t ).

Theorem 2 (Complementarity). For any P ∈ C, there hold:

P (Cl≥t ) = U − P (Cl
≤
t−1), t = 2, . . . , n,

P (Cl≤t ) = U − P (Cl
≥
t+1), t = 1, . . . , n − 1.

Let us define the boundary regions as differences between the P -upper and
the P -lower approximations, i.e. as sets including all inconsistent objects with
respect to sure and unsure assignments:

Bn≥t
P = P (Cl

≥
t ) − P (Cl≥t ), Bn≤t

P = P (Cl
≤
t ) − P (Cl≤t ).

Theorem 3 (Identity of Boundaries). For any t = 2, . . . , n and for any
P ⊆ C, it holds:

Bn≥t
P = Bn≤t−1

P

Theorem 4 (Monotonicity). For any t ∈ T and for any P ⊆ R ⊆ C, there
hold:

P (Cl≥t ) ⊆ R(Cl≥t ), P (Cl≤t ) ⊆ R(Cl≤t )

P (Cl
≥
t ) ⊇ R(Cl

≥
t ), P (Cl

≤
t ) ⊇ R(Cl

≤
t )

Bn≥t
P ⊇ Bn≥t

R , Bn≤t
P ⊇ Bn≤t

R .

The proofs of theorems are straightforward and are not included because of
the lack of space.
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7 Conclusions

The presented results extend the original DRSA and allow analyzing decision ta-
bles with interval evaluations on particular criteria as well as interval assignments
to decision classes. To solve this problem, we introduced specific definitions of
dominance relations and we revised adequately the dominance principle. This led
us to a definition of new decision and condition granules used for second-order
rough approximations. It is worth underlining that the definitions of second-order
rough approximations satisfy all the usual properties of rough approximations:
inclusion, complementarity, identity of boundaries and monotonicity. In a fur-
ther paper, some other elements of the theory will be presented, together with
decision rule induction and classification procedures.
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5. Greco S., Matarazzo, B., S�lowiński, R.: Dealing with missing data in rough set
analysis of multi-attribute and multi-criteria decision problems. [In]: Zanakis, S. H.,
Doukidis, G., Zopounidis, C. (eds.): Decision Making: Recent Developments and
Worldwide Applications. Kluwer Academic Publishers, Dordrecht (2000) 295–316
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Assiut University, 71516 Assiut, Egypt

Abstract. The standard rough set theory has been introduced in 1982
[5]. In this paper we use a topological concepts to investigate a new defi-
nitions for the lower and upper approximation operators. This approach
is a generalization for Pawlak approach and the generalizations in [2,
7, 10, 12, 13, 14, 15, 16]. Properties of the suggested concepts are ob-
tained. Also comparison between our approach and previous approaches
are given. In this case, we show that the generalized approximation space
is a topological space for any reflexive relation.

Keywords: Approximation operators, similarity relations, rough sets,
topological space.

1 Introduction

Rough set theory [5] is a recent approach for reasoning about data. It has
achieved a large amount of applications in various real-life fields, like medicine,
pharmacology, banking, market research, engineering, speech recognition, ma-
terial science, information analysis, data analysis, data mining, control and lin-
guistics (see the bibliography of [6] and [17, 18]).

The main idea of rough sets corresponds to the lower and upper set ap-
proximations. These two approximations are exactly the interior and the closure
of the set with respect to a certain topology τ on a collection U of imprecise
data acquired from any real-life field. The base of the topology τ is formed by
equivalence classes of an equivalence relation E defined on U using the available
information about data.

Following the connection between rough set concepts and topological notions,
we investigate new definitions of the lower and upper approximation operators
for similarity relation R. The equivalence class may be replaced by an element
of the base {< p > R|p ∈ U} of the topology τ . It generalizes Pawlak’s approach
and other extensions [2, 7, 10, 12, 13, 14, 15, 16]. It can be also compared with
other similarity-based generalizations of rough sets, like e.g. that reported by
Slowinski and Vanderpooten in [9].

The paper is organized as follows: In Section 2, we include the foundations of
rough sets, together with some generalizations known from literature. In Section
3, we present our approach and show a number of its mathematical properties.
In particular, the proposed generalized approximation space (U,R) is a topolog-
ical space for any reflexive relation R. Comparison between our approach and

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 64–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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previous models is given as well. The paper is concluded with final remarks in
Section 4.

2 Standard and Generalized Rough Sets

The notion of approximation spaces is one of the fundamental concepts in the
theory of rough sets. This section presents a review of the Pawlak approximation
space constructed from an equivalence relation and its generalization using any
binary relations.

Suppose U is a finite and nonempty set called the universe. Let E ⊂ U×U be
an equivalence relation on U . The pair (U,E) is called an approximation space
[5, 6]. Let [x]E denote the class of x such that [x]E = {y ∈ U : xEy}. Then the
lower and upper approximation of a subset X of U are defined as

E(X) = {x ∈ U : [x]E ⊂ X}

E(X) = {x ∈ U : [x]E ∩X �= φ}

A rough set is the pair (E(X), E(X)). Obviously, we have E(X) ⊂ X ⊂ E(X).
The lower approximation of X contains the elements x such that all the elements
that are indistinguishable from x are in X . The upper approximation of X
contains the elements x such that at least one element that is indistinguishable
from x belongs to X .

This definition can be extended to any relation R, leading to the notion of
generalized approximate space [11]. let xR be the right neighborhoods defined
as

xR = {y ∈ U : xRy}

The lower and upper approximations of X according to R are then defined as

R(X) = {x ∈ U : xR ⊂ X}

R(X) = {x ∈ U : xR ∩X �= φ}

Obviously, if R is an equivalence relation, xR = [x]R and these definitions are
equivalent to the original Pawlak’s definitions.

We list the properties that are of interest in the theory of rough sets.
L1. R(X) = [R(Xc)]c, where Xc denotes the complementation of X in U .
L2. R(U) = U .
L3. R(X ∩ Y ) = R(X) ∩R(Y ).
L4. R(X ∪ Y ) ⊃ R(X) ∪R(Y ).
L5. X ⊂ Y ⇒ R(X) ⊂ R(Y ).
L6. R(φ) = φ.
L7. R(X) ⊂ X .
L8. X ⊂ R(R(X)).
L9. R(X) ⊂ R(R(X)).
L10. R(X) ⊂ R(R(X)).
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U1. R(X) = [R(Xc)]c.
U2. R(φ) = φ.
U3. R(X ∪ Y ) = R(X) ∪R(Y ).
U4. R(X ∩ Y ) ⊂ R(X) ∩R(Y ).
U5. X ⊂ Y ⇒ R(X) ⊂ R(Y ).
U6. R(U) = U .
U7. X ⊂ R(X).
U8. R(R(X)) ⊂ X .
U9. R(R(X)) ⊂ R(X).
U10. R(R(X)) ⊂ R(X).
K. R(Xc ∪ Y ) ⊂ R(X)c ∪R(Y ).
LU. R(X) ⊂ R(X).
Properties L1 and U1 state that two approximations are dual to each other.
Hence, Properties with the same numbers may be regarded as dual properties.
Properties L9, L10, U9 and U10 are expressed in terms of set inclusion. The
standard version using set equality can be derived from L1L10 and U1U10. For
example, it follows from L7 and L9 that R(X) ⊂ R(R(X)). It should also be
noted that these properties are not independent.

With respect to any subset X ⊆ U , the universe can be divided into three
disjoint regions using the lower and upper approximations:

BN(X) = R(X) −R(X),

POS(X) = R(X),

NEG(X) = U −R(X).

An element of the negative region NEG(X) definitely does not belong to X , an
element of the positive region POS(X) definitely belongs to X , and an element
of the boundary region BND(X) only possibly belongs to X .

In Table 1 [3] we follow the properties that are satisfied by the different
definitions above of rough sets.

A topological space can be described by using a pair of interior and closure
operators [7]. There may exist some relationships between a topological space
and rough set. In fact, the lower and upper approximation operators in a Pawlak
approximation space can be interpreted as a pair of interior and closure operators
in a topological space(U, τ).

Definition 1. [8] Let (U, τ) be a topological space, a closure (resp. interior)
operator cl : U → 2U (resp. int : U → τ) satisfy the Kuratowski axioms iff for
every X,Y ∈ U the following hold:

(1) cl(φ) = φ (resp. int(U) = U ,
(2) cl(X ∪ Y ) = cl(X) ∪ cl(Y ) (resp. int(X ∩ Y ) = int(X) ∩ int(Y )),
(3) X ⊆ cl(X) (resp. int(X) ⊆ X),
(4) cl(cl(X)) = cl(X) (resp. int(X) = int(int(X))).

In general, a pair of interior and closure operators characterized by Kuratowski
axioms may not satisfy all properties of the Pawlak rough set. The following
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Table 1. Comparison between the properties of rough sets depending the properties
of R. A cross (×) indicates that property is satisfied. The first column contains the
list of properties of rough sets. The next five columns are for rough sets, defined for
any relation, reflexive relation, tolerance (reflexive and symmetric) relation, dominance
(reflexive and transitive) relation and equivalence relation respectively.

Property Any relation Reflexive Tolerance Dominance Equivalence
L1 × × × × ×
L2 × × × × ×
L3 × × × × ×
L4 × × × × ×
L5 × × × × ×
L6 × × × ×
L7 × × × ×
L8 × ×
L9 × ×
L10 ×
U1 × × × × ×
U2 × × × × ×
U3 × × × × ×
U4 × × × × ×
U5 × × × × ×
U6 × × × ×
U7 × × × ×
U8 × ×
U9 × ×
U10 ×
K × × × × ×
LU × × × ×

theorem states that a reflexive and transitive relation is sufficient for the ap-
proximation operators to be interior and closure operators [4].

Theorem 1. Suppose R is a reflexive and transitive relation on U . The pair
of lower and upper approximations is a pair of interior and closure operators
satisfying Kuratowski axioms.

3 New Approach for Rough Sets

If we consider the finite intersections of right neighborhoods as granule, the set
of granules form a classical topology (in other words, right neighborhood is a
sub-base). But we will take ”complete intersections” as a granule and study its
approximation. This section presents a study about a new definitions of lower and
upper approximation operators for similarity relation R (reflexive or tolerance
or dominance) and a comparison between this definitions and the definitions of
generalized approximation operators in [11].
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Definition 2. [1] Let R be any binary relation on U , a set < p > R is the
intersection of all right neighborhoods containing p, i.e., < p > R =

⋂
p∈xR(xR).

Definition 3. Let R be any binary relation on U , The lower and upper approx-
imations of X according to R are then defined as

R(X) = {x ∈ U :< x > R ⊂ X}
R(X) = {x ∈ U :< x > R ∩X �= φ}

Proposition 1. For any binary relation R on a nonempty set U the following
conditions hold for every X ⊂ U .
(i) R(X) = [R(Xc)]c.
(ii) R(U) = U .
(iii) R(X ∩ Y ) = R(X) ∩R(Y ).
(iv) X ⊂ Y ⇒ R(X) ⊂ R(Y ).
(v) R(X ∪ Y ) ⊃ R(X) ∪R(Y ).
(vi) R(X) ⊂ R(R(X)).

Proof. (i)
[R(Xc)]c = {x ∈ U :< x > R ∩Xc �= φ}c

= {x ∈ U :< x > R ∩Xc = φ}
= {x ∈ U :< x > R ⊂ X}
= R(X).

(ii) Since for every x ∈ U , < x > R ⊂ U hence, x ∈ R(U). Then U ⊂ R(U).
Also since R(U) ⊂ U . Thus, R(U) = U .
(iii)

R(X ∩ Y ) = {x ∈ U :< x > R ⊂ X ∩ Y }
= {x ∈ U :< x > R ⊂ X∧ < x > R ⊂ Y }
= {x ∈ U :< x > R ⊂ X} ∩ {x ∈ U :< x > R ⊂ Y }
= R(X) ∩R(Y ).

(iv) Let X ⊂ Y and x ∈ R(X), then < x > R ⊂ X and so < x > R ⊂ Y , hence
x ∈ R(Y ). Thus R(X) ⊂ R(Y ).
(v) Since X ⊂ X ∪ Y then R(X) ⊂ R(X ∪ Y ) also, Y ⊂ X ∪ Y then R(Y ) ⊂
R(X ∪ Y ), hence R(X ∪ Y ) ⊃ R(X) ∪R(Y ).
(vi) Let x ∈ R(X), we want to show that x ∈ (R(X)), i.e., < x > R ⊂ R(X) or
for all y ∈< x > R ⇒< y > R ⊂ X . Since x ∈ R(X), then < x > R ⊂ X . Let
y ∈< x > R then < y > R ⊂< x > R for all y ∈< x > R, hence < y > R ⊂ X
for all y ∈< x > R. Thus y ∈ R(X) for all y ∈< x > R and so < x > R ⊂ R(X),
i.e., x ∈ R(R(X)). Hence, R(X) ⊂ R(R(X)).
We can introduce an example to prove that the inverse in (v) in proposition 1.
is not true in general.

Example 1. Let R = {(a, a), (a, b), (b, c), (c, a), (b, d), (d, e), (e, e), (e, b)} be any
binary relation on a nonempty set U = {a, b, c, d, e}. Then, < a > R = {a},
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< b > R = {b}, < c > R =< d > R = {c, d} and < e > R = {e}. If X = {a, c}
and Y = {b, d}, then R(X) = {a} and R(Y ) = {b} hence, R(X)∪R(Y ) = {a, b}
but R(X ∪ Y ) = {a, b, c, d}, i.e., R(X ∪ Y ) �= R(X) ∪R(Y ).

Proposition 2. If a binary relation R on U is a reflexive relation, then the
following conditions hold.

(i) R(φ) = φ.
(ii) R(X) ⊂ X .

Proof. (i) Since R is a reflexive relation on U , then x ∈< x > R for all x ∈ U ,
also there is no x ∈ U such that < x > R ⊂ φ hence R(φ) = φ.

(ii) Assume that x ∈ R(X), then < x > R ⊂ X . Since R is a reflexive relation
on U , then x ∈< x > R for all x ∈ U and there is no y ∈ U − X such that
< y > R ⊂ X . Thus x ∈ X and so R(X) ⊂ X .

We can give an example to show that the inverse in (ii) in proposition 2. is not
true in general.

Example 2. Let R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (c, a), (d, a)} be any
binary reflexive relation on a nonempty set U = {a, b, c, d}. Then, < a > R =
{a}, < b > R = {b}, < c > R = {c} and < d > R = {a, d}. If X = {b, c, d}, then
R(X) = {b, c}, thus R(X) �= X .

Proposition 3. Let R be an equivalence relation on a nonempty set U , then
the following conditions hold.

(i) X ⊂ R(R(X)).
(ii) R(X) ⊂ R(R(X)).

Proof. (i) Let x ∈ X , we want to show that x ∈ R(R(X)), i.e., < x > R ⊂ R(X)
or < y > R∩X �= φ for all y ∈< x > R. Since R is an equivalence relation, then
< x > R =< Y > R or< x > R∩ < y > R = φ for all x, y ∈ U , then for all
x ∈ X and y ∈< x > R, < y > R ∩X �= φ, i.e., y ∈ R(X) for all y ∈< x > R,
then < x > R ⊂ R(X), thus x ∈ R(R(X)) and so X ⊂ R(R(X)).

(ii) Let x ∈ R(X), we want to show that x ∈ R(R(X)), since x ∈ R(X), then
< x > R ∩X �= φ, also R is an equivalence relation hence, < y > R ∩X �= φ for
all y ∈< x > R, then y ∈ R(X) for all y ∈< x > R, i.e., < x > R ⊂ R(X) thus,
x ∈ R(R(X)). Hence, R(X) ⊂ R(R(X)).

The following example show that the inverse in (i) in proposition 3. is not true
in general.

Example 3. LetR = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (a, c), (c, a)}
be an equivalence relation on a nonempty set U = {a, b, c, d}. Then < a >
R =< b > R =< c > R = {a, b, c} and < d > R = {d}. If X = {c, d}, then
R(X) = {a, b, c, d} and R(R(X)) = {a, b, c, d}, hence X �= R(R(X)).

The following example prove that the first condition in proposition 3. is not hold
if the relation R is tolerance relation.
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Example 4. Let R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b)} be a tol-
erance relation on a nonempty set U = {a, b, c, d}. Then < a > R = {a, b},
< b > R = {b}, < c > R = {b, c} and < d > R = {d}. If X = {a, c}, then
R(X) = {a, c} and R(R(X)) = φ, hence X � R(R(X)).

We can prove that the following lemma from proposition 2. and proposition 3.

Lemma 1. If R is an equivalence relation on a nonempty set U , then R(X) =
R(R(X)).

Lemma 2. If R is a binary irreflexive, symmetric and transitive relation on a
nonempty set U , then X ⊂ R(R(X)) for all X ⊂ U .

Proof. Let R be an irreflexive, symmetric and transitive relation on a nonempty
set U , i.e., < x > R = {x} or φ for all x ∈ U and let x ∈ X , then there are two
cases: the first is < x > R = φ and hence < x > R ⊂ R(X), then x ∈ R(R(X)).
The second is < x > R = {x} and so < x > R ∩ X �= φ, then x ∈ R(X), i.e.,
< x > R ⊂ R(X), hence x ∈ R(R(X)). Thus X ⊂ R(R(X)).

The following example prove that the inverse in lemma 2. is not true in general.

Example 5. Let R = {(a, b), (b, a), (b, c), (c, b), (a, c), (c, a)} be an irreflexive,
symmetric and transitive relation on a nonempty set U = {a, b, c, d}. Then
< a > R = {a}, < b > R = {b}, < c > R = {c} and < d > R = φ. If
X = {a, b}, then R(X) = {a, b} and R(R(X)) = {a, b, d}, hence X �= R(R(X)).

Proposition 4. For any binary relation R on a nonempty set U the following
conditions hold for every X ⊂ U .

(i) R(X) = [R(Xc)]c.
(ii) R(φ) = φ.
(iii) R(X ∪ Y ) = R(X) ∩R(Y ).
(iv) X ⊂ Y ⇒ R(X) ⊂ R(Y ).
(v) R(X ∩ Y ) ⊂ R(X) ∩R(Y ).
(vi) R(R(X)) ⊂ R(X).

Proof. The proof is the same as for proposition 1.

Proposition 5. If a binary relation R on U is a reflexive relation, then the
following conditions hold.

(i) R(U) = U .
(ii) X ⊂ R(X).

Proof. The proof is the same as for proposition 2.

Proposition 6. Let R be an equivalence relation on a nonempty set U , then
the following conditions hold.

(i) R(R(X)) ⊂ X .
(ii) R(R(X)) ⊂ R(X).

Proof. The proof is the same as for proposition 3.
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Table 2. Comparison between the properties of rough sets depending the properties
of R. A cross (×) indicates that property is satisfied. The first column contains the list
of properties of rough sets. The next five columns are for rough sets, defined for any
relation, reflexive relation, tolerance, dominance and equivalence relation respectively.

Property Any relation Reflexive Tolerance dominance Equivalence
L1 × × × × ×
L2 × × × × ×
L3 × × × × ×
L4 × × × × ×
L5 × × × × ×
L6 × × × ×
L7 × × × ×
L8 ×
L9 × × × × ×
L10 ×
U1 × × × × ×
U2 × × × × ×
U3 × × × × ×
U4 × × × × ×
U5 × × × × ×
U6 × × × ×
U7 × × × ×
U8 ×
U9 × × × × ×
U10 ×
K × × × × ×
LU × × × ×

From proposition 5. and proposition 6. we have:

Lemma 3. If R is an equivalence relation on a nonempty set U , then R(R(X)) =
R(X).

Lemma 4. If R is a binary irreflexive, symmetric and transitive relation on a
nonempty set U , then R(R(X)) ⊂ X for all X ⊂ U .

Proof. The proof is the same as for lemma 2.

From proposition 2. and proposition 5. we can prove the following lemma.

Lemma 5. If a binary relation R on a nonempty set U is a reflexive relation,
then R(X) ⊂ X ⊂ R(X).

Lemma 6. If R is any binary relation on a nonempty set U , then R(Xc ∪ Y ) ⊂
R(X)c ∪R(Y ) for all X,Y ⊂ U .

Proof. Let x /∈ R(X)c ∪R(Y ), then x /∈ R(X)c and x /∈ R(Y ) hence, x ∈ R(X)
and x /∈ R(Y ), i.e., < x > R ⊂ X and < x > R /∈ Y , then < x > R � Xc
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and < x > R � Y , hence < x > R � Xc ∪ Y , thus x /∈ R(Xc ∪ Y ), i.e.,
R(Xc ∪ Y ) ⊂ R(X)c ∪R(Y ).

The following example prove that the inverse in lemma 6. is not true in general.

Example 6. In Example 1., if X = {a, c} and Y = {b, d}, then R(Xc ∪ Y ) =
{b, e}, R(Y ) = {b}, R(X) = {a} and R(X)c = {b, c, d, e}, then R(X)c ∪R(Y ) =
{b, c, d, e}. Thus R(Xc ∪ Y ) �= R(X)c ∪R(Y ).

In Table 2 we summarize the previous results with the properties of R, derived
using new definitions of the lower and upper approximation operators.

The following theorem states that a reflexive relation is sufficient for the
approximation operators in definition 3. to be interior and closure operators.

Theorem 2. Suppose R is a reflexive relation on U . The pair of lower and
upper approximations in definition 3. is a pair of interior and closure operators
satisfying Kuratowski axioms.

Proof. The proof follows from definition 1. and propositions 1., 2., 4. and 5.

4 Conclusion

In this paper, we used the base {< p > R|p ∈ U} of a topology τ on U generated
by any binary relation R, to investigate new definitions for the lower and upper
approximation operators. In this case the generalized approximation space (U,R)
is a topological space for any reflexive relation R. Topology τ , constructed from
a relation on a real-life data U , may help in formalizing many applications.
For example, if U is a collection of symptoms and diseases and R is a binary
expert-driven relation on U , topology τ generated by R is not only an abstract
mathematical structure but also a knowledge base for U . In particular, if X ⊆ U ,
then X is a strong indication for any disease p ∈ int(X).
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Abstract. Formal concept analysis and rough set theory are two differ-
ent methods for knowledge representation and knowledge discovery, and
both have been successfully applied to various fields. The basis of rough
set theory is an equivalence relation on a universe of objects, and that of
formal concept analysis is an ordered hierarchical structure — concept
lattice. This paper discusses the basic connection between formal concept
analysis and rough set theory, and also analyzes the relationship between
a concept lattice and the power set of a partition. Finally, it is proved
that a concept lattice can be transformed into a partition and vice versa,
and transformation algorithms and examples are given.

1 Introduction

Formal concept analysis (FCA) is proposed by Wille R. in 1982 [1,2], and rough
set theory (RST) is proposed by Pawlak Z. [3,4] in the same year. FCA and RST
are two different approaches to analyze data, they study and represent implicit
knowledge in data from different aspects. The basis of RST is an equivalence
relation induced by attributes over a set of objects. This relation divides the
object set into equivalence classes, which form a partition of the set. The basis
of FCA are formal concepts which are induced by a binary relation between a
set of objects and a set of attributes, and concept lattices which are ordered
hierarchical structures of formal concepts. Although RST and FCA are different
theories, they have much in common, in terms of both goals and methodologies
[5]. There is a need for systematically studying the relationships and intercon-
nections between FCA and RST. This paper presents our results on the topic.

Most of the researches on the relationships between FCA and RST
[5,6,7,8,9,10] focus on introducing the notion of approximation operators into
FCA. Literature [11] explains that the intension of each concept defines an equiv-
alence relation, which partitions the object set into two equivalence classes: one
consists of the extension of the concept, and the other consists of all of the other
objects. Our paper emphasizes the transformation between a concept lattice and
a partition. In our paper, the“partition” is determined by the relation defined by
all attributes. Literature [2] gives a mapping, which establishes the correspon-
dence from each object to a concept (object concept). Our paper analyzes the
relationship between a concept lattice and the power set of a partition, gives the
transformation methods between a partition and a concept lattice.
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The paper is organized as follows. Section 2 recalls basic definitions both in
FCA and in RST, and discusses the basic connections between FCA and RST.
Section 3 analyzes the relationship between a concept lattice and the power set
of a partition. Section 4 proves that a concept lattice can be transformed into
a partition and vice versa. Section 5 gives transformation examples. Finally,
Section 6 concludes the paper.

2 Preliminaries

First, to make this paper self-contained, the involved notions both in FCA and
in RST are introduced [2,12]. At the same time, the basic connections between
FCA and RST are discussed.

2.1 Basic Definitions in Formal Concept Analysis

Definition 1. A triple (U,A, I) is called a formal context, if U and A are sets
and I ⊆ U × A is a binary relation between U and A. U = {x1, . . . , xn}, each
xi(i ≤ n) is called an object. A = {a1, . . . , am}, each aj(j ≤ m) is called an
attribute.

In a formal context (U,A, I), if (x, a) ∈ I, also written as xIa, we say that the
object x has the attribute a, or that a is fulfilled by x. In this paper, (x, a) ∈ I
is denoted by 1, and (x, a) /∈ I is denoted by 0. Thus, a formal context can be
represented by a table only with 0 and 1.

With respect to a formal context (U,A, I), we define a pair of dual operators
for X ⊆ U and B ⊆ A by:

X∗ = {a ∈ A|(x, a) ∈ I for all x ∈ X} , (1)
B∗ = {x ∈ U |(x, a) ∈ I for all a ∈ B} . (2)

X∗ is the set of all the attributes shared by all the objects in X , and B∗ is
the set of all the objects that fulfill all the attributes in B. The two operators
have the following properties: for all X1, X2, X ⊆ U and all B1, B2, B ⊆ A,

1. X1 ⊆ X2 ⇒ X∗
2 ⊆ X∗

1 , B1 ⊆ B2 ⇒ B∗
2 ⊆ B∗

1 .
2. X ⊆ X∗∗, B ⊆ B∗∗.
3. X∗ = X∗∗∗, B∗ = B∗∗∗.
4. X ⊆ B∗ ⇔ B ⊆ X∗.
5. (X1 ∪X2)∗ = X∗

1 ∩X∗
2 , (B1 ∪B2)∗ = B∗

1 ∩B∗
2 .

6. (X1 ∩X2)∗ ⊇ X∗
1 ∪X∗

2 , (B1 ∩B2)∗ ⊇ B∗
1 ∪B∗

2 .

We write {x}∗ as x∗ for x ∈ U , and write {a}∗ as a∗ for a ∈ A. A formal
context (U,A, I) is canonical if ∀x ∈ U , x∗ �= ∅, x∗ �= A, and ∀a ∈ A, a∗ �= ∅,
a∗ �= U . In general, the formal contexts in this paper are canonical.

Definition 2. Let (U,A, I) be a formal context. A pair (X,B) is called a formal
concept, for short, a concept, of (U,A, I), if and only if X ⊆ U , B ⊆ A, X∗ = B
and X = B∗. X is called the extension and B is called the intension of (X,B).
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The concepts of a formal context (U,A, I) are ordered by

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(⇔ B1 ⊇ B2) . (3)

Where (X1, B1) and (X2, B2) are concepts. (X1, B1) is called a sub-concept
of (X2, B2), and (X2, B2) is called a super-concept of (X1, B1). The notation
(X1, B1) < (X2, B2) denotes the fact that (X1, B1) ≤ (X2, B2) and (X1, B1) �=
(X2, B2). If (X1, B1) < (X2, B2) and there does not exist a concept (Y,C) such
that (X1, B1) < (Y,C) < (X2, B2), then (X1, B1) is called a child-concept (im-
mediate sub-concept) of (X2, B2) and (X2, B2) is called a parent-concept (im-
mediate super-concept) of (X1, B1), this is denoted by (X1, B1) ≺ (X2, B2).

All the concepts form a complete lattice that is called the concept lattice of
(U,A, I) and denoted by L(U,A, I). The infimum and supremum are given by:

(X1, B1) ∧ (X2, B2) = (X1 ∩X2, (B1 ∪B2)∗∗) , (4)
(X1, B1) ∨ (X2, B2) = ((X1 ∪X2)∗∗, B1 ∩B2) . (5)

2.2 Basic Definitions in Rough Set Theory

Definition 3. A triple (U,A, F ) is called an information system, if U and A
are sets and F is a set of relation between U and A. U = {x1, . . . , xn}, each
xi(i ≤ n) is called an object. A = {a1, . . . , am}, each aj(j ≤ m) is called an
attribute. F = {fj|j ≤ m}, where fj = faj : U → Vj(j ≤ m) and Vj is the
domain of the attribute aj.

Let (U,A, F ) be an information system. For B ⊆ A, we define a binary
relation RB = {(xi, xj)|fl(xi) = fl(xj) for all al ∈ B}. RB is an equivalence
relation on U , and it determines a partition U/RB = {[xi]RB |xi ∈ U}, where
[xi]RB = {xj |(xi, xj) ∈ RB} = {xj |fl(xj) = fl(xi) for all al ∈ B}. For simplic-
ity, we write [xi]B instead of [xi]RB , [xi]b instead of [xi]R{b} .

2.3 Basic Connection Between FCA and RST

A data set is represented by an information system (U,A, F ) in RST, and by
a formal context (U,A, I) in FCA. We describe (U,A, I) as a table only with 1
and 0. Such representation implies: ∀x ∈ U, ∀a ∈ A, if (x, a) ∈ I, then the value
of the attribute a with respect to the object x is 1; otherwise, the value is 0.
Namely, (x, a) ∈ I ⇔ fa(x) = 1, (x, a) /∈ I ⇔ fa(x) = 0. Thus, a formal context
can be taken as a special information system, in which every attribute value of
every object is either 0 or 1. In addition, an information system in RST is a
multi-valued context in FCA, it can be transformed into a formal context [2].

Based on the above representations, we can analyze a formal context not only
by RST but also by FCA. From the point of view of RST, both equivalence class
and partition are used to describe objects (and to describe attributes implicitly).
Similarly, from the point of view of FCA, both formal concept and concept lattice
are used to describe objects and attributes. Hence, in a formal context, we can
study the relationship between formal concept and equivalence class, and the
relationship between concept lattice and partition to understand the connection
between RST and FCA, and to further combine them.
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3 Relationship Between Concept Lattice and the Power
Set of Partition

In a formal context (U,A, I), each equivalence class [xi]A corresponds to a pair
([xi]A, Bi), where Bi = [xi]∗A, and ∀x ∈ [xi]A, x∗ = Bi; ∀x /∈ [xi]A, x∗ �= Bi. The
set of all such pairs is denoted by Δ = {([xi]A, Bi)|[xi]A ∈ U/RA, Bi = [xi]∗A}.
Theorem 1. Let (U,A, I) be a formal context, U/RA be the partition on it. Put

σ(U/RA) = {
⋃

Y ∈P

Y |P ⊆ U/RA} . (6)

Then, for all (X,B) ∈ L(U,A, I), X ∈ σ(U/RA).

Proof. Let (X,B) ∈ L(U,A, I), P = {[xi]A|[xi]A ∈ U/RA, [xi]A ∩X �= ∅}. Then
we have P ⊆ U/RA,

⋃
Y ∈P

Y ∈ σ(U/RA), and
⋃

Y ∈P

Y ⊇ X . On the other hand,

∀x ∈ [xi]A, it is clear that x∗ = [xi]∗A. So, if [xi]A ∩X �= ∅, then [xi]A ⊆ X . It
follows that

⋃
Y ∈P

Y ⊆ X . Thus we have X =
⋃

Y ∈P

Y ∈ σ(U/RA).

Theorem 2. Let (U,A, I) be a formal context. Put

L(U/RA) = {(Y,C)|Y ∈ σ(U/RA), C = Y ∗} . (7)

Then, for all (X,B) ∈ L(U,A, I), the following 2 conclusions hold:

1. (X,B) ∈ L(U/RA) .
2. For all (Xi, B) ∈ L(U/RA), Xi ⊆ X.

Proof. 1. This is a direct consequence of Theorem 1 and B = X∗.
2. ∀(Xi, B) ∈ L(U/RA), X∗

i = B. So, Xi ⊆ X∗∗
i = B∗ = X .

Corollary 1. Let (U,A, I) be a formal context. Then,

L(U,A, I) = {(X,B)|(X,B) ∈ L(U/RA), and X =
⋃

(Xi,B)∈L(U/RA)

Xi} . (8)

Theorem 1, 2 and Corollary 1 give the relationship between a concept lattice
and the power set of a partition. On the one hand, we know that the power set of
U/RA is a lattice. On the other hand, according to the definitions, the set of all
Y for (Y,C) in L(U/RA) is equal to σ(U/RA), there is a one-to-one correspon-
dence between the elements in σ(U/RA) and the ones in the power set of U/RA.
Therefore, L(U/RA) is also a lattice (ordered by inclusion relation between Y ),
these two lattices are isomorphic. Theorem 1 shows that the extension of each
concept of (U,A, I) is an element in σ(U/RA), i.e., the union of all the elements
that belong to an element in the power set of U/RA. Theorem 2 and Corollary 1
further show that each concept (X,B) of (U,A, I) is the maximum one among
the pairs (Y,C) satisfying C = B in L(U/RA), and vice versa.

From the above analysis, we can get a method for constructing a concept
lattice from a partition. At first, L(U/RA) is formed based on U/RA. Then, we
gather together all the pairs (Y,C) in L(U/RA) with the same C. Finally, all
the maximum pairs of each class in L(U/RA) constitute L(U,A, I).
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Corollary 2. Let (U,A, I) be a formal context. Then for all ([xi]A, Bi) ∈ Δ,
(
⋃

k∈τ

[xk]A, Bi) ∈ L(U,A, I), where ([xk]A, Bk) ∈ Δ, Bk ⊇ Bi, k ∈ τ(τ is an

index set).

Proof. Clearly, ([xi]A, Bi) is some ([xk]A, Bk), from which, we have [xi]A ⊆⋃
k∈τ

[xk]A, and then (
⋃

k∈τ

[xk]A)∗ = Bi. So, (
⋃

k∈τ

[xk]A, Bi) ∈ L(U/RA), and⋃
k∈τ

[xk]A ⊇ Y for any (Y,Bi) ∈ L(U/RA). Thus (
⋃

k∈τ

[xk]A, Bi) ∈ L(U,A, I).

4 Transformation Between Concept Lattice and Partition

Theorem 3 (Transformation theorem from a concept lattice to a par-
tition). Let (U,A, I) be a formal context. For any (X,B) ∈ L(U,A, I), the set
{(Xt, Bt)|(Xt, Bt) ∈ L(U,A, I), (Xt, Bt) ≺ (X,B), t ∈ τ} includes all of the
child-concepts of (X,B). Then,

U/RA = {X −
⋃
t∈τ

Xt} − {∅} . (9)

Proof. By proving the following three assertions, we can conclude this theorem.

1. (X1−
⋃

i∈τ1

X1i)∩(X2−
⋃

j∈τ2

X2j) = ∅, where (X1, B1) �= (X2, B2) ∈ L(U,A, I),

(X1i, B1i) ∈ L(U,A, I) such that (X1i, B1i) ≺ (X1, B1) for all i ∈ τ1,
(X2j , B2j) ∈ L(U,A, I) such that (X2j , B2j) ≺ (X2, B2) for all j ∈ τ2 .

2.
⋃

(X,B)∈L(U,A,I)

(X −
⋃
t∈τ

Xt) = U .

3. If X −
⋃
t∈τ

Xt �= ∅, then (x, y) ∈ RA for all x, y ∈ X −
⋃
t∈τ

Xt .

Suppose (X1 −
⋃

i∈τ1

X1i)∩ (X2 −
⋃

j∈τ2

X2j) �= ∅. Then there exists an object x

which satisfies x ∈ X1∩X2, x /∈
⋃

i∈τ1

X1i, x /∈
⋃

j∈τ2

X2j. However, because X1∩X2

is the extension of (Y,C) = (X1, B1)∧(X2, B2) and (X1, B1) �= (X2, B2), we have
(Y,C) < (X1, B1) or (Y,C) < (X2, B2). Suppose (Y,C) < (X1, B1), then there
exists (X1l, B1l) ≺ (X1, B1)(l ∈ τ1) such that X1 ∩ X2 = Y ⊆ X1l ⊆

⋃
i∈τ1

X1i.

Thus, x ∈
⋃

i∈τ1

X1i, which is contradictory to the previous result. So 1) follows.

It is easy to see that
⋃

(X,B)∈L(U,A,I)

(X −
⋃
t∈τ

Xt) ⊆ U . On the other hand,

∀x ∈ U , there exists a concept (X,B) such that x ∈ X . Let (Xt, Bt) ≺ (X,B),
t ∈ τ . Then, either x ∈ X −

⋃
t∈τ

Xt or x ∈
⋃
t∈τ

Xt. If x ∈
⋃
t∈τ

Xt, there exists

(Xl, Bl) ≺ (X,B) (l ∈ τ) such that x ∈ Xl. Taking (Xl, Bl) as (X,B) and repeat-
ing the above reasoning, we obtain either that x ∈ X−

⋃
t∈τ

Xt holds, or that (∅, A)

is finally the only one child-concept of (X,B) (the formal context is canonical),
which implies x ∈ X = X − ∅ = X −

⋃
t∈τ

Xt. So, ∀x ∈ U , there exists a concept
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(X,B) such that x ∈ (X −
⋃
t∈τ

Xt). Therefore
⋃

(X,B)∈L(U,A,I)

(X −
⋃
t∈τ

Xt) ⊇ U .

Thus, 2) holds.
Suppose X −

⋃
t∈τ

Xt �= ∅. For any x, y ∈ X −
⋃
t∈τ

Xt, we have x, y ∈ X

and x, y /∈
⋃
t∈τ

Xt. Since x, y ∈ X , it follows that fb(x) = fb(y) = 1(∀b ∈ B).

Meanwhile, x, y /∈
⋃
t∈τ

Xt implies that fc(x) = fc(y) = 0(∀c ∈ A − B). So,

fa(x) = fa(y)(∀a ∈ A), i.e., (x, y) ∈ RA. Such result means that the partition
given by (9) is certainly the one defined by RA.

Theorem 3 shows that the partition defined by RA can be obtained from the
concept lattice of (U,A, I). For a concept (X,B), X−

⋃
t∈τ

Xt �= ∅ is an equivalence

class. For each object in this class, the attributes in B have value 1 and the ones
in A−B have value 0. In addition, we can easily see that any equivalence class
cannot be obtained from (∅, A), but that the extension of every parent-concept
of (∅, A) is an equivalence class. Thus, we can deduce the following algorithm.

Algorithm 1 (Transformation algorithm from a concept lattice to a
partition). Let L(U,A, I) be a concept lattice, and P be a set.

1. Mark (∅, A), and set P = ∅.
2. For each parent-concept of (∅, A), mark it and put its extension into P .
3. For each unmarked concept (X,B), mark it and find out all its child-concepts

(Xt, Bt)(t ∈ τ) to compute Y = X −
⋃
t∈τ

Xt. If Y �= ∅, put Y into P .

4. P is the partition defined by RA after all the concepts are marked.

Lemma 1. Let (U,A, I) be a formal context, (X,B), (Y,C) ∈ L(U,A, I) and
(X,B) ≺ (Y,C). For any ([xi]A, Bi) ∈ Δ such that [xi]A ⊆ Y −X, Bi ∩B = C.

Proof. Suppose ([xj ]A, Bj) ∈ Δ such that [xj ]A ⊆ Y −X but Bj ∩B �= C. Since
(X,B) ≺ (Y,C), we have B ⊃ C. And we obtain that Bj ⊃ C and Bj ∩B �= B
from [xj ]A ⊆ Y − X . So, B ⊃ Bj ∩ B ⊃ C. In addition, it is easy to see that
X, [xj ]A ⊆ (Bj∩B)∗. Let X ′ = (Bj∩B)∗−(X∪[xj ]A), then X ′∗ ⊇ Bj∩B. Hence,
(Bj ∩B)∗∗ = (X ′∪X ∪ [xj ]A)∗ = X ′∗∩B∩Bj = Bj ∩B. So, ((Bj ∩B)∗, Bj ∩B)
is a concept. Therefore, (X,B) < ((Bj ∩ B)∗, Bj ∩ B) < (Y,C). This result is
contrary to that (X,B) ≺ (Y,C). Thus, the assertion of this lemma holds.

Theorem 4 (Transformation theorem from a partition to a concept
lattice). Let (U,A, I) be a formal context. Then for any (X,B) ∈ L(U,A, I)
satisfying X �= U , the set of all its parent-concepts is

{(
⋃

k∈τi

[xk]A ∪X,Bi ∩B)|i ∈ τ} , (10)

where ([xi]A, Bi) ∈ Δ satisfies [xi]A ∩ X = ∅ and Bi ∩ B �⊂ Bj ∩ B for each
([xj ]A, Bj) ∈ Δ such that [xj ]A ∩ X = ∅, ([xk]A, Bk) ∈ Δ(k ∈ τi) satisfies
[xk]A ∩X = ∅ and Bk ⊇ Bi ∩B.
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Proof. We need to prove the following two aspects.

1. All the elements in the set described as (10) are concepts, furthermore, they
are parent-concepts of (X,B).

2. Any parent-concept of (X,B) can be described in the form of the element
in the set shown as (10).

1). Clearly, (Bi ∩B)∗ =
⋃

k∈τi

[xk]A ∪X. In addition, since ([xi]A, Bi) is some

([xk]A, Bk), we have (
⋃

k∈τi

[xk]A ∪X)∗ =
⋂

k∈τi

Bk ∩B =
⋂

k∈τi

Bk ∩Bi ∩B = Bi ∩B.

So (Y,C) = (
⋃

k∈τi

[xk]A ∪X,Bi ∩B) is a concept, and (X,B) < (Y,C).

On the other hand, suppose (X,B) �≺ (Y,C). Then there exists a concept
(X ′, B′) such that (X,B) < (X ′, B′) < (Y,C). So X ⊂ X ′ ⊂ Y , B ⊃ B′ ⊃ C.
By Lemma 1, there exists ([xj ]A, Bj) ∈ Δ satisfying [xj ]A ⊆ X ′ − X ⊂ Y −X
and Bj ∩ B = B′ ⊃ C = Bi ∩ B. This is contradictory to Bi ∩ B �⊂ Bj ∩ B.
Therefore, (Y,C) is a parent-concept of (X,B).

2). Suppose (Xt, Bt) is a parent-concept of (X,B). Then Xt ⊃ X , Bt ⊂ B.
Let X ′ =

⋃
k∈τt

[xk]A, where ([xk]A, Bk) ∈ Δ(k ∈ τt) satisfying [xk]A ∩X = ∅ and

Bk ⊇ Bt. Thus, Xt = B∗
t = X ′ ∪X =

⋃
k∈τt

[xk]A ∪X .

On the other hand, for any ([xj ]A, Bj) ∈ Δ such that [xj ]A ∩ X = ∅, there
are two cases as follows:

If [xj ]A ∩Xt �= ∅, then [xj ]A ⊆ Xt −X , Bj ∩ B = Bt. Because Xt −X �= ∅,
there exists ([xi]A, Bi) ∈ Δ such that [xi]A ∩ X = ∅ and Bt = Bi ∩ B. So,
Bj ∩B = Bt = Bi ∩B. From which, Bi ∩B �⊂ Bj ∩B follows.

If [xj ]A ∩Xt = ∅, then Bj ∩B �⊇ Bt. Therefore, Bi ∩B = Bt �⊂ Bj ∩B.
Thus, there exists ([xi]A, Bi) ∈ Δ such that [xi]A ∩X = ∅, Bt = Bi ∩B, and

Bi ∩B �⊂ Bj ∩B for each ([xj ]A, Bj) ∈ Δ which satisfies [xj ]A ∩X = ∅.
As a result, we obtain that any parent-concept of (X,B) can be described in

the form of the element shown in (10).

Theorem 4 shows that the whole concept lattice can be constructed from
bottom to top based on the partition. The algorithm is as follows.

Algorithm 2 (Transformation algorithm from a partition to a concept
lattice). Let (U,A, I) be a formal context, C and P be sets, L be a lattice.

1. Put (∅, A) into L, (∅, A) is the minimum concept. Set C = {(∅, A)}, P = ∅.
2. For each concept (X,B) in C, find out all the pairs ([xi]A, Bi) in Δ which

satisfy the conditions of Theorem 4. Every such pair in Δ determines a
parent-concept of (X,B), put this parent-concept into L and P , and connect
it with (X,B) in L.

3. Set C = P , P = ∅. Repeat the step 2 until C has only one concept whose
extension is U .
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Table 1. A formal context (U, A, I)

a b c d e

1 1 1 0 1 1
2 1 1 1 0 0
3 0 0 0 1 0
4 1 1 1 0 0

(1, )abde

( , )A

(24, )abc

(124, )ab

( , )U

(13, )d

Fig. 1. The concept lattice of (U,A, I)

5 Example

Example 1 (Transformation from a concept lattice to a partition). We consider a
formal context (U,A, I) shown as Table 1, its concept lattice is shown as Figure 1.

We can get the partition by Algorithm 1.
Since the parent-concepts of (∅, A) are ({1}, {a, b, d, e}) and ({2, 4}, {a, b, c}),

{1} and {2, 4} are equivalence classes. Then we consider the other concepts.
The child-concepts of (U, ∅) are ({1, 3}, {d}) and ({1, 2, 4}, {a, b}). So Y = ∅.
The child-concept of ({1, 3}, {d}) is ({1}, {a, b, d, e}). So Y = {3}. Thus, {3}

is an equivalence class.
The child-concepts of ({1, 2, 4}, {a, b}) are ({1}, {a, b, d, e}), ({2, 4}, {a, b, c}).

So Y = ∅.
The mapping between each concept and its corresponding Y is shown as

Table 2.
Finally, we get the partition of Table 1: U/RA = {{1}, {2, 4}, {3}}.

Table 2. Mapping from concept to equivalence class

Concept (∅, A) (1, abde) (24, abc) (13, d) (124, ab) (U, ∅)

Y ∅ 1 24 3 ∅ ∅
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Example 2 (Transformation from a partition to a concept lattice). We still con-
sider the formal context (U,A, I) shown in Table 1. It is known that

U/RA = {{1}, {2, 4}, {3}} ,

Δ = {({1}, {a, b, d, e}), ({2, 4}, {a, b, c}), ({3}, {d})} .

Now, we construct the concept lattice by Algorithm 2.

1. (∅, A) is the minimum concept. Set C = {(∅, A)}.
2. For the concept (∅, A), the pairs ([xi]A, Bi) in Δ which satisfy the conditions

of Theorem 4 are ({1}, {a, b, d, e}) and ({2, 4}, {a, b, c}). The parent-concept
of (∅, A) decided by ({1}, {a, b, d, e}) is ({1}, {a, b, d, e}), and the one decided
by ({2, 4}, {a, b, c}) is ({2, 4}, {a, b, c}). Connect these parent-concepts with
(∅, A).
Now, C = {({1}, {a, b, d, e}), ({2, 4}, {a, b, c})}.

3. For the concept ({1}, {a, b, d, e}), the pairs ([xi]A, Bi) in Δ which satisfy the
conditions of Theorem 4 are ({2, 4}, {a, b, c}) and ({3}, {d}). The parent-
concept of ({1}, {a, b, d, e}) decided by ({2, 4}, {a, b, c}) is ({1, 2, 4}, {a, b}),
and the one decided by ({3}, {d}) is ({1, 3}, {d}). Connect these parent-
concepts with ({1}, {a, b, d, e}).
For the concept ({2, 4}, {a, b, c}), in Δ, there is only ({1}, {a, b, d, e}) satis-
fying the conditions of Theorem 4. The parent-concept of ({2, 4}, {a, b, c})
decided by ({1}, {a, b, d, e}) is ({1, 2, 4}, {a, b}). Connect this parent-concept
with ({2, 4}, {a, b, c}).
Now, C = {({1, 3}, {d}), ({1, 2, 4}, {a, b})}.

4. For the concept ({1, 3}, {d}), there is only one pair in Δ satisfying the re-
quests, it is ({2, 4}, {a, b, c}). The parent-concept of ({1, 3}, {d}) decided by
({2, 4}, {a, b, c}) is (U, ∅). Connect (U, ∅) with ({1, 3}, {d}).
For the concept ({1, 2, 4}, {a, b}), there also is only one pair in Δ satisfying
the requests, it is ({3}, {d}). The parent-concept of ({1, 2, 4}, {a, b}) decided
by ({3}, {d}) also is (U, ∅). Connect (U, ∅) with ({1, 2, 4}, {a, b}).
Now, C = {(U, ∅)}.

The final concept lattice obtained is shown as Figure 1.

6 Conclusions

FCA and RST are two different approaches to analyze data, and they study and
represent implicit knowledge in data from different aspects. Both of them have
been successfully applied to various fields. By studying the relationship between
these two theories and combining them, we can further analyze and understand
data. The relationship between FCA and RST can be studied from different
viewpoint, and this paper focuses on the concept lattice and the partition that
are the basis of FCA and RST respectively. In this paper, we discussed the basic
connection between the two theories, and emphatically analyzed the relationship
between formal concept and equivalence class, and the relationship between con-
cept lattice and partition. We proved that a concept lattice can be transformed
into a partition and vice versa, and also gave the transformation examples.
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Abstract. We discuss characterizations of three important types of at-
tribute sets in generalized approximation representation spaces, in which
binary relations on the universe are reflexive. Many information tables,
such as consistent or inconsistent decision tables, variable precision rough
set models, consistent decision tables with ordered valued domains and
with continuous valued domains, and decision tables with fuzzy deci-
sions, can be unified to generalized approximation representation spaces.
A general approach to knowledge reduction based on rough set theory is
proposed.

1 Introduction

Rough set theory, proposed by Pawlak [8] in 1980s, deals problems with inex-
act, uncertain or vague information. The theory has been applied in the fields,
such as machine learning, pattern recognition, decision analysis, process control,
knowledge discovery in databases, and expert systems.

One fundamental aspect of rough set theory involves a search for particular
subsets of condition attributes that provide the same information for classifica-
tion purposes as the entire set of attributes. Such subsets are called attribute
reducts. Reduct and core are two important concepts in the study of rough set
theory. Many types of knowledge reducts have been proposed in the area of rough
sets, each of the reducts aimed at some basic requirements [1, 4-7, 9, 10, 13, 14,
16, 17]. In [12], Skowron and Rauszer introduced the notion of discernibility ma-
trix which became a major tool for searching reducts and core in information
systems. Using the similar idea, Mi et al. [6] and Zhang et al. [16] discussed
approaches to knowledge reduction in inconsistent and incomplete information
systems, respectively. In [17], Zhang and Wu presented theorems that charac-
terize consistent sets, and approaches for knowledge reduction in information
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systems with fuzzy decisions. Yao and Greco [2, 15] studied a generalized deci-
sion logic language to treat dominance relations and discovered ordering rules
for a particular types of binary relations.

In this paper, we first introduce the concept of generalized approximation
representation space in Section 2. In Section 3, we demonstrate that many spe-
cial information systems such as consistent or inconsistent decision tables [9, 16],
variable precision rough set models [6, 18], consistent decision tables with ordered
valued domains and with continuous valued domains [2, 3, 11, 15], and decision
tables with fuzzy decisions [17] can be unified under the framework of approx-
imation representation space theory. By analyzing the consistent attribute set
and the reduction set of a consistent generalized approximation representation
space, we give characterizations of three important types of attribute sets, and
provide the conditions for determining the necessary and unnecessary attribute
sets. We then present concluding remarks in Section 4.

2 Consistent Generalized Approximation Representation
Spaces

Definition 1. Let (U,A) be an approximation space, where U = {x1, x2, . . . , xn}
is a finite set of objects called the universe of discourse, A = {a1, a2, . . . , am} is
a finite set of attributes,

R = {Ra ⊆ U × U : a ∈ A} (1)

is a family of reflexive binary relations on U , and R
′

is a reflexive binary re-
lation on U . The quadruple (U,A,R, R

′
) is called a generalized approximation

representation space.

Definition 2. Let S = (U,A,R, R
′
) be a generalized approximation representa-

tion space. With a subset of attributes B ⊆ A, a binary relation on U is given
by:

RB =
⋂

a∈B

Ra. (2)

The system S is called a consistent generalized approximation representation
space if RA ⊆ R

′
. If RB ⊆ R

′
(B ⊆ A), then B is called a consistent attribute

set of S. If B is a consistent attribute set of S and no proper subset of B is a
consistent attribute set of S, then B is a reduct set of S.

Consider an information table (U,A, F ), where F = {fl : U → Vl (l ≤ m)},
Vl is the domain of the attribute al. Based on the equality relation on attribute
values, we can define equivalence relations as follows [9]:

Ra = {(xi, xj) : fa(xi) = fa(xj)} (a ∈ A), (3)
R = {Ra ⊆ U × U : a ∈ A}, (4)
RA = {(xi, xj) : fl(xi) = fl(xj) (al ∈ A)} (l ≤ m). (5)
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We obtain a consistent generalized approximation representation space S =
(U,A,R, RA). In general, Yao and Wong [15] suggested that arbitrary binary
relations on the attribute values can be used. The binary relations in turn in-
duce binary relations on U . This can be easily done by replacing the equality
relation “=” with an arbitrary binary relation in the above equations.

For a consistent decision table (U,A, F, d), where d is a decision attribute,
S = (U,A,R, Rd) is a consistent generalized approximation representation space,
where

Rd = {(xi, xj) : d(xi) = d(xj)}. (6)

The reason is that we have RA ⊆ Rd from a consistent decision table.
By definition, if we can choose a proper reflexive relation R′, any information

table may be expressed a generalized approximation representation space.
If (U,A, F, d) is an inconsistent decision table, we define

U/Rd = {Dj : j ≤ r},

D(Dj/[xi]B) = |Dj∩[xi]B|
|[xi]B| ,

μB(xi) = (D(D1/[xi]B),D(D2/[xi]B), . . . ,D(Dr/[xi]B)),

ηB(xi) = {Dj : D(Dj/[xi]B) = max
k≤r

D(Dk/[xi]B)},

where U/Rd is a classification of the universe U with respect to Rd, D(./.) is an
inclusion degree [16], [xi]B is an equivalence class containing xi with respect to
the attribute set B, |X | is the cardinality of the set X .

Theorem 1. Let (U,A, F, d) be an inconsistent decision table, then S = (U,A,
R, Rμ) is a consistent generalized approximation representation space, and B ⊆
A is a consistent attribute set of S if and only if (iff)

μB(xi) = μA(xi) (xi ∈ U), (7)

where
Rμ = {(xi, xj) : μA(xi) = μA(xj)}. (8)

Proof. Since Rμ is an equivalence relation on U , (xi, xj) ∈ RA implies [xi]A
= [xj ]A, that is, μA(xi) = μA(xj), thus (xi, xj) ∈ Rμ, i.e. RA ⊆ Rμ. Hence
(U,A,R, Rμ) is a consistent generalized approximation representation space.

If B is a consistent set of S, then RB ⊆ Rμ, that is (xi, xj) ∈ RB implies
(xi, xj) ∈ Rμ, i.e. xj ∈ [xi]B implies μA(xj) = μA(xi). It follows:

D(Dk/[xj ]A) = D(Dk/[xi]A) (k ≤ r, xj ∈ [xi]B).

Thus we have

D(Dk/[xi]B) = |Dk∩[xi]B |
|[xi]B |

=
∑

{D(Dk/[xj ]A) |[xj ]A|
|[xi]B | : [xj ]A ⊆ [xi]B}

= D(Dk/[xi]A) (k ≤ r, xi ∈ U),

from which we have μB(xi) = μA(xi) (xi ∈ U).
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Conversely, suppose μB(xi) = μA(xi)(xi ∈ U). If (xi, xj) ∈ RB, i.e., [xi]B =
[xj ]B , then μB(xi) = μB(xj), hence μA(xi) = μA(xj), that is, (xi, xj) ∈ Rμ.
Thus, we conclude that RB ⊆ Rμ.

Similarly, S = (U,A,R, Rη) is a consistent generalized approximation repre-
sentation space, where

Rη = {(xi, xj) : ηA(xi) = ηA(xj)}. (9)

The set B is a consistent attribute set of S iff

ηB(xi) = ηA(xi) (xi ∈ U). (10)

Now we consider a variable precision rough set model [19]. Let (U,A, F, d)
be a decision table, for any β > 0.5, B ⊆ A, we define:

Rβ
B(Dk) = {xi ∈ U : D(Dk/[xi]B) ≥ β)} (k ≤ r),

R
β

B(Dk) = {xi ∈ U : D(Dk/[xi]B) > 1 − β} (k ≤ r),

Rβ
B = (Rβ

B(D1), R
β
B(D2), . . . , R

β
B(Dr)),

R
β

B = (R
β

B(D1), R
β

B(D2), . . . , R
β

B(Dr)).

Theorem 2. Let (U,A, F, d) be a decision table, for any β > 0.5, B ⊆ A, we
have:

(1) S1 = (U,A,R, Rβ) is a consistent generalized approximation representa-
tion space, and B ⊆ A is a consistent attribute set of S1 iff Rβ

B = Rβ
A, where

Rβ = {(xi, xj) : xi ∈ Rβ
A(Dk) ⇐⇒ xj ∈ Rβ

A(Dk) (k ≤ r)}. (11)

(2) S2 = (U,A,R, R
β
) is a consistent generalized approximation representa-

tion space, and B ⊆ A is a consistent attribute set of S2 iff R
β

B = R
β

A, where

R
β

= {(xi, xj) : xi ∈ R
β

A(Dk) ⇐⇒ xj ∈ R
β

A(Dk) (k ≤ r)}. (12)

Proof. (1) Since Rβ is an equivalence relation on U , and RA ⊆ Rβ, we con-
clude that (U,A,R, Rβ) is a consistent generalized approximation representation
space. We only need to prove that

RB ⊆ Rβ ⇐⇒ Rβ
B = Rβ

A.

If Rβ
B = Rβ

A, then Rβ
B(Dk) = Rβ

A(Dk) (k ≤ r). If (xi, xj) ∈ RB, that is, [xi]B =
[xj ]B , then

xi ∈ Rβ
B(Dk) ⇐⇒ xj ∈ Rβ

B(Dk) (k ≤ r).

Hence,
xi ∈ Rβ

A(Dk) ⇐⇒ xj ∈ Rβ
A(Dk) (k ≤ r).
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Thus (xi, xj) ∈ Rβ , from which we have RB ⊆ Rβ .
Conversely, if RB ⊆ Rβ , i.e., [xi]B = [xj ]B, then

xi ∈ Rβ
A(Dk) ⇐⇒ xj ∈ Rβ

A(Dk) (k ≤ r).

Similar to Theorem 1, we can prove that

xi ∈ Rβ
A(Dk) ⇐⇒ xi ∈ Rβ

B(Dk) (k ≤ r).

Thus, Rβ
B(Dk) = Rβ

A(Dk)(k ≤ r), i.e., Rβ
B = Rβ

A.
(2) It is similar to the proof of (1).

We have shown that an information table, a consistent or an inconsistent
decision table and a variable precision rough set model can be expressed as a
consistent generalized approximation representation space by defining a suitable
R′, respectively. In what follows we will show that a decision table with ordered or
continuous valued domains can also be changed into a generalized approximation
space.

Theorem 3. Let (U,A, F, d) be a decision table with ordered valued domains,
then S = (U,A,R, R≤

d ) is a generalized approximation representation space,
where

R≤
a = {(xi, xj) : fa(xi) ≤ fa(xj)}, (13)
R = {R≤

a : a ∈ A}, (14)

R≤
d = {(xi, xj) : d(xi) ≤ d(xj)}. (15)

Proof. Since (xi, xj) ∈ R≤
a iff fa(xi) ≤ fa(xj), and d(xi) ≤ d(xj) iff (xi, xj) ∈

R≤
d , R≤

a and R≤
d are reflexive relations. Therefore S = (U,A,R, R≤

d ) is a gener-
alized approximation representation space.

Similarly, S = (U,A,R, R≥
d ) is a generalized approximation representation

space, where

R≥
a = {(xi, xj) : fa(xi) ≥ fa(xj)}, (16)

R′ = {R≥
a : a ∈ A}, (17)

R≥
d = {(xi, xj) : d(xi) ≥ d(xj)}. (18)

If R≤
A ⊆ R≤

d , then S = (U,A,R, R≤
d ) is a consistent generalized approxima-

tion representation space. Similarly, R≥
A ⊆ R≥

d implies that S = (U,A,R′, R≥
d )

is a consistent generalized approximation representation space.

Theorem 4. Let (U,A, F, d) be a decision table with continuous valued domains,
then S = (U,A,R, Rε

d) is a generalized approximation representation space,
where

Rε
a = {(xi, xj) : |fa(xi) − fa(xj)| ≤ ε}, (19)
R = {Rε

a : a ∈ A}, (20)
Rε

d = {(xi, xj) : |d(xi) − d(xj)| ≤ ε}. (21)
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Proof. It is similar to the proof of Theorem 3.

If Rε
A ⊆ Rε

d, then S = (U,A,R, Rε
d) is a consistent generalized approximation

representation space.

Theorem 5. Let (U,A, F,D) be a decision table with fuzzy decisions, where
D = {Dp : U → [0, 1] (p ≤ v)},

Ra = {(xi, xj) : fa(xi) = fa(xj)},
RB(Dj)(xi) = min{Dj(x) : x ∈ [xi]B} (B ⊆ A),
MB(xi) = {Dk : RB(Dk)(xi) = max

j≤r
RB(Dj)(xi)} (B ⊆ A),

MA = {(xi, xj) : MA(xi) = MA(xj)}.

Then (U,A,R,MA) is a consistent generalized approximation representation
space, and B is a consistent attribute set of S iff

MB(xi) = MA(xi) (xi ∈ U). (22)

Proof. It is similar to the proof of Theorem 1.

Similarly, S = (U,A,R,MA) is a consistent generalized approximation rep-
resentation space, where

RB(Dj)(xi) = max{Dj(x) : x ∈ [xi]B} (B ⊆ A),
MB(xi) = {Dk : RB(Dk)(xi) = min

j≤r
RB(Dj)(xi)} (B ⊆ A),

MA = {(xi, xj) : MA(xi) = MA(xj)}.

The set B is a consistent attribute set of S iff

MB(xi) = MA(xi) (xi ∈ U). (23)

3 Characterizations of Attributes in Consistent
Generalized Approximation Representation Spaces

From Section 2, we can see that an information table in which binary relations are
reflexive can be unified into a generalized approximation representation space.
Many special information tables can also be changed into consistent generalized
approximation representation spaces. Thus we only discuss the characterization
of attributes in an approximation representation space, from which characteri-
zations of attributes in the above mentioned information tables easily follow.

Definition 3. Let S = (U,A,R, R
′
) be a generalized approximation representa-

tion space and

DR′ (xi, xj) =
{

{a ∈ A : (xi, xj) /∈ Ra}, (xi, xj) /∈ R
′
,

∅, (xi, xj) ∈ R
′
.

Then DR′ (xi, xj) is called the discernibility set of objects xi and xj , and DR′ =
{DR′ (xi, xj) �= ∅ : xi, xj ∈ U} is all nonempty discernibility sets of the general-
ized approximation representation space S.
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If S = (U,A,R, R
′
) is a consistent generalized approximation representation

space, then we have DR′ (xi, xj) �= ∅ for all (xi, xj) /∈ R
′
. In fact, since RA ⊆ R

′
,

that is, (xi, xj) /∈ R
′

implies (xi, xj) /∈ RA =
⋂

a∈A

Ra, there exists a ∈ A such

that (xi, xj) /∈ Ra, i.e. (xi, xj) /∈ R
′
implies DR′ (xi, xj) �= ∅.

Theorem 6. Let S = (U,A,R, R
′
) be a consistent generalized approximation

representation space, then B ⊆ A is a consistent attribute set of S iff

DR′ (xi, xj) �= ∅ =⇒ B ∩ DR′ (xi, xj) �= ∅. (24)

Proof. B is a consistent attribute set of S, or equivalently RB ⊆ R
′
iff

(xi, xj) /∈ R
′
=⇒ (xi, xj) /∈ RB.

Then B ⊆ A is a consistent attribute set of S iff D′
R(xi, xj) �= ∅ implies that

there exists a ∈ B such that (xi, xj) /∈ Ra. Hence B ∩ D′
R(xi, xj) �= ∅.

Definition 4. Let S = (U,A,R, R
′
) be a consistent generalized approximation

representation space and {Bk : k ≤ l} be the set of all reducts of S. The sets of
attributes defined by

C =
⋂
k≤l

Bk, K =
⋃
k≤l

Bk − C, I = A− (K ∪C).

are called the core, the relative necessary attribute, and the unnecessary attribute
set of S, respectively.

Theorem 7. Let S = (U,A,R, R
′
) be a consistent generalized approximation

representation space, then the following assertions are equivalent:
(1) a is an element of the core of S,
(2) There exists xi, xj ∈ U such that DR′ (xi, xj) = {a},
(3) RA−{a} �⊆ R

′
.

Proof. (1) ⇒ (2). Suppose that there are at least two attributes in any discerni-
bility set including a, let

B =
⋃
i,j

(DR′ (xi, xj) − {a}).

Then
B ∩ DR′ (xi, xj) �= ∅ (xi, xj /∈ R

′
).

By Theorem 6, we know that B is a consistent attribute set of S, and a /∈ B,
thus there exists a reduct B′ such that a /∈ B′, which contradicts that a is an
element of the core of S.

(2) ⇒ (3). Let DR′ (xi, xj) = {a}, that is, (xi, xj) /∈ R
′
, (xi, xj) /∈ Ra,

and (xi, xj) ∈ Rb(b �= a), that is, (xi, xj) /∈ R
′

and (xi, xj) ∈ RA−{a}, hence
RA−{a} �⊆ R

′
.

(3) ⇒ (1). If a is not an element of the core of S, then there exists a reduct
B such that a /∈ B, in turn, B ⊆ A − {a}, thus RA−{a} ⊆ RB ⊆ R

′
, which

contradicts RA−{a} �⊆ R
′
.
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Theorem 8. Let S = (U,A,R, R
′
) be a consistent generalized approximation

representation space, then a ∈ A is an unnecessary attribute of S iff

R(a) ⊆ R′ ∪Ra, (25)

where
R(a) = ∪{RB−{a} : RB ⊆ R′, B ⊆ A}. (26)

Proof. Necessity. If a is an element of the unnecessary attribute set of S, then a
doesn’t exist in any attribute reduction set, thus for any RB ⊆ R′(B ⊆ A), we
have RB−{a} ⊆ R′, consequently R(a) ⊆ R′ ∪Ra.

Sufficiency. If R(a) ⊆ R′ ∪ Ra, then for any B ⊆ A,RB ⊆ R′, we have
RB−{a} ⊆ R′∪Ra, i.e. RB−{a}∩Rc

a ⊆ R′, thus RB−{a} = RB ∪(RB−{a}∩Rc
a) ⊆

R′. Consequently, a doesn’t exist any attribute reduction set, i.e. a is an element
of the unnecessary attribute set.

Let C be a core of S, if RC ⊆ R′ ∪ Ra, we have R(a) ⊆ R′ ∪ Ra. Thus
RC ⊆ R′ ∪Ra is the sufficient condition when a is an element of the unnecessary
attribute set of S. However, this is a simple method for applications.

Theorem 9. Let S = (U,A,R, R
′
) be a consistent generalized approximation

representation space, then
(1) a is an element of the core of S iff RA−{a} �⊆ R

′
.

(2) a is an unnecessary attribute of S iff R(a) ⊆ R
′ ∪Ra.

(3) a is a relative necessary attribute of S iff RA−{a} ⊆ R
′

and R(a) �⊆
R

′ ∪Ra.

Example 1. Given an information table (U,A, F ) (Table 1 ), where

U = {x1, x2, x3, x4, x5, x6, x7, x8},
A = {a1, a2, a3, a4}.

For any a ∈ A, denote R = {Ra : a ∈ A}, where

Ra = {(xi, xj) ∈ U × U : fa(xi) = fa(xj)}.

It can be calculated that

U/Ra1 = {{x2}, {x1, x3, x4, x5, x6, x7, x8}},
U/Ra2 = {{x1, x2, x3}, {x4, x5, x6, x7, x8}},
U/Ra3 = {{x1, x3}, {x2, x4, x5, x7}, {x6, x8}},
U/Ra4 = {{x1, x3}, {x2, x4, x5, x6, x7, x8}}.

S = (U,A,R, RA) is a consistent generalized approximation representation space,
where RA =

⋂
a∈A

Ra. We can obtain:

DRA = {{a3}, {a1, a2}, {a1, a2, a3}, {a1, a3, a4}, {a2, a3, a4}, A}.
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Table 1. An Information Table

U a1 a2 a3 a4

x1 1 1 3 2
x2 2 1 2 1
x3 1 1 3 2
x4 1 2 2 1
x5 1 2 2 1
x6 1 2 1 1
x7 1 2 2 1
x8 1 2 1 1

Thus there are two reducts of S: B1 = {a1, a3}, B2 = {a2, a3}. Therefore

C = {a3}, K = {a1, a2}, I = {a4}.

Obviously, {a3} is the core of S.
We can see that Ra3 ⊆ Ra4 , Ra3 �⊆ Ra1 , Ra3 �⊆ Ra2 , and RA−{ak} ⊆ RA(k �=

3). Thus a4 is an unnecessary attribute and {a1, a2} is the relative necessary
attribute set of S.

4 Conclusions

We have introduced the concept of generalized approximation representation
space and established knowledge reduction theorems. We have also examined
characterizations of three important types of attribute sets on this space. Since
many information tables, such as consistent and inconsistent decision tables,
variable precision rough set models, consistent decision tables with ordered val-
ued domains and consistent decision tables with continuous valued domains, and
decision tables with fuzzy decisions, can be unified under the framework of gen-
eralized approximation representation space theory, their knowledge discovery
theory can be unified.
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Proximity Spaces of Exact Sets
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Abstract. [4] placed an approximation space (U,≡) in a type-lowering
retraction with its power set 2U such that the ≡-exact subsets of U com-
prise the kernel of the retraction, where ≡ is the equivalence relation of
set-theoretic indiscernibility within the resulting universe of exact sets.
Since a concept thus forms a set just in case it is ≡-exact, set-theoretic
comprehension in (U,≡) is governed by the method of upper and lower
approximations of Rough Set Theory. Some central features of this uni-
verse were informally axiomatized in [3] in terms of the notion of a Prox-
imal Frege Structure and its associated modal Boolean algebra of exact
sets. The present essay generalizes the axiomatic notion of a PFS to
tolerance (reflexive, symmetric) relations, where the universe of exact
sets forms a modal ortho-lattice. An example of this general notion is
provided by the tolerance relation of “matching” over U .

1 Introduction

Kripkean semantics [21] for modal logic extends the theory of points sets with
modal operators induced by a binary “accessibility” relation on a universe of
points. Abstract set theory also extends the theory of point sets, with the ad-
dition of a type-lowering corresepondence between a universe and its power set.
Ever since the rapid development of modal logic [12] in the 1960’s, philosophers
have sought a unification of the concepts of modal logic with those of abstract
set theory. Typically, e.g., [14,24,25], this is attempted by basing axiomatic set
theory upon modal quantifier logic instead of standard first order logic. These
approaches regard axiomatic set theory to be an unproblematic starting point
for the investigation of modal set theory, and the extension of the language of
set theory by modal operators as analogous to the extension of quantifier logic
by modal operators.

However, one limitation of this approach stems from the thorny fact that
the consistency of axiomatic set theory is still an open mathematical question.
What if modal notions underlie set theoretic comprehension? In that case, the
difficulty in finding a model for Zermelo and Fraenkel’s axioms is naturally to
be expected. [4] explored this question and proposed an alternative marriage of
modal logic and abstract set theory based upon Rough Set Theory [23,26].

By placing an approximation space (U,≡) in a type-lowering retraction with
its power set 2U , [4] showed that a concept forms a set just in case it is ≡-
exact. Set-theoretic comprehension in (U,≡) is thus governed by the method of
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upper and lower approximations of RST. Thus, modal concepts indeed underlie
abstract set theory, raising serious questions regarding the philosophical moti-
vation for the standard approaches to “modal set theory”. The naive extention
of the language of axiomatic set theory to modal quantifier logic ignores the
conceptual priority of modality in abstract set theory.

This paper is organized as follows. Section one introduces the notion of a
proximity (or tolerance) space and its associated ortho-lattice of parts, providing
some motivating examples from, e.g., mathematics and physics. Then, general-
izing the developments of [3], section two introduces axiomatically the general
notion of a Proximal Frege Structure and its associated modal ortho-latice of
exact sets. Model constructions [4] ensuring the consistency of these notions are
then summarized. Some key properties of these models which are independent
of the basic axioms of PFS are discussed and an open question regarding the
tolerance relation of“matching” is raised. The paper concludes by airing the task
of axiomatizing abstract set theory as formalizations of the general notion of a
PFS.

2 Proximity Structures

Let U �= ∅ and ∼⊆ U×U be a tolerance (reflexive, symmetric) relation on U . The
pair (U,∼) is called a proximity structure. When in addition ∼ is an equivalence
relation, (U,∼) is called an approximation structure.1 For each point u ∈ U, let
[u]∼ denote the class of successors of u under ∼, i.e.,

[u]∼ =df {x ∈ U | u ∼ x}

∼-classes [u]∼ are called (∼-) granules, or elementary subsets, of U . Let A ⊆ U ;

Int∼(A) =df

⋃
{[u]∼ | [u]∼ ⊆ A},

Cl∼(A) =df

⋃
{[u]∼ | [u]∼ ∩A �= ∅},

are called the lower and upper approximations of A, respectively (in contexts
where ∼ is given, the subscripted “ ∼ ”is usually suppressed). A is called ∼-exact
iff it is the union of a family of ∼-granules, i.e., iff

A =
⋃

u∈X

[u]∼

for some X ⊆ U. Note that if ∼ is an equivalence relation, then A is ∼-exact iff
Cl(A) = A = Int(A). It is natural to regard ∼-exact subsets of U as the parts
of U and elementary subsets as the atomic parts of U. C(∼) denotes the family
of ∼-exact subsets of U. Then (U, C(∼)) is called a proximity space.2 When ∼ is
1 As indicated in the above Introduction, the symbol “≡” is often used to denote

tolerance relations which are also equivalence relations.
2 Proximity structures and spaces, also known as tolerance approximation spaces, gen-

eralized approximation spaces or parameterized approximation spaces, are studied in
[30,31].
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an equivalence relation, (U, C(∼)) is called an approximation space. A reason for
using the term “proximity”here is, as we shall see, it is helpful to think of x ∼ y
as meaning “x is near y”.

Let S = (U, C(∼)) be a proximity space and A,B ⊆ U. Following [7], define

A
∨

S B =df A ∪B,
A
∧

S B =df Int(A ∩B),
Ac =df Cl(U −A).

I.e., the join of A and B is their set theoretic union, their meet is the interior
of their intersection and the complement Ac of A is the exterior of U −A. Then

(C(∼),
∨

S
,
∧

S
,c , ∅, U) (1)

is a complete ortholattice [6,7,9] of exact subsets. That is, for any A,B ∈ C(∼),

1. (Ac)c = A,
2. A

∨
S A

c = U,
3. A

∧
S A

c = ∅,
4. A ⊆ B ⇒ Bc ⊆ Ac.

Any discrete space is a proximity space in which ∼ is the identity relation. More
generally, a proximity space S is a topological space if and only if its proximity
relation is transitive, and in that case S is almost (quasi) discrete in the sense
that its lattice of parts is isomorphic to the lattice of parts of a discrete space.

Proximity spaces admit of several interpretations which serve to reveal their
significance. Quoting directly from [7]:

(a) S may be viewed as a space or field of perception, its points as loca-
tions in it, the relation ∼ as representing the indiscernibility of locations,
the quantum at a given location as the minimum perceptibilium at that
location, and the parts of S as the perceptibly specifiable subregions of
S. This idea is best illustrated by assigning the set U a metric δ, choosing
a fixed ε > 0 and then defining x ∼ y ⇔ δ(x, y) ≤ ε.
(b) S may be thought of as the set of outcomes of an experiment and
∼ as the relation of equality up to the limits of experimental error. The
quantum at an outcome is then “the outcome within a specified margin
of error” of experimental practice.
(c) S may be taken to be the set of states of a quantum system and
s ∼ t as the relation: “a measurement of the system in a state s has a
non zero probability of leaving the system in state t, or vice-versa.”More
precisely, we take a Hilbert space H , put S = H − {0}, and define the
proximity relation ∼ on S by s ∼ t ⇔ 〈s, t〉 �= 0 (s is not orthogonal to
t). It is then readily shown that the lattice of parts of S is isomorphic to
the ortholattice of closed subspaces of H. Consequently, [complemented]
lattices of parts of proximity spaces include the [complemented] lattices of
closed subspaces of Hilbert spaces − the lattices associated with Birkhoff
and von Neumann’s “quantum logic”.
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(d) S may be taken to be the set of hyperreal numbers in a model of
Robinson’s nonstandard analysis (see, e.g., Bell and Machover [5]) and
∼ is the relation of infinitesimal nearness. In this case ∼ is transitive.
(e) S may be taken to be the affine line in a model of synthetic dif-
ferential geometry (see Kock [20]). In this case there exist many square
zero infinitesimals in S, i.e., elements ε �= 0 such that ε2 = 0, and we
take x ∼ y to mean that the difference x − y is such an infinitesimal,
i.e., (x − y)2 = 0. Unlike the situation in (d), the relation ∼ here is not
generally transitive.

3 Proximal Frege Structures

According to the principle of comprehension in set theory, every “admissible”
concept forms an element of the universe called a “set”. Frege represented this
principle by postulating the existence of an“extension function”assigning objects
to concepts. Models of set theory which establish a type-lowering correspondence
between a universe and its power set are thus called “Frege structures” [1,8]. [3,4]
considered the idea of basing a Frege structure upon an approximation space so
that the admissible concepts are precisely the exact subsets of the universe. This
section generalizes the development of the resulting “Proximal Frege Structure”
to arbitrary tolerance relations. Most of the results of [3] hold in this more general
setting and so are not given special mention.

Let (U,∼) be a proximity structure and �·� : 2U → U, �·� : U → 2U be
functions, called down and up (for type-lowering and type-raising), respectively.
Assume that:

1. (�·�, �·�) is a retraction pair, i.e., ��u�� = u (i.e., �·� ◦ �·� = 1U ); thus �·�
is a retraction and �·� is the adjoining section.

2. The operator �·� ◦ �·� is the operator Cl∼ over 2U . This is that for every
X ⊆ U, ��X�� is ∼-exact and

��X�� = Cl(X).

3. The ∼-exact subsets of U are precisely the X ⊆ U for which ��X�� = X .
They are fixed-point of the operator �·� ◦ �·�.

Then F = (U,∼, �·�, �·�) is called a (generalized) PFS. Elements of U are F-sets.
The family C(∼) of ∼-exact subsets of U is precisely the image of U under

�·� . In algebraic terms C(∼) is the kernel of the retraction mapping. Further we
have the isomorphism C(∼) ≈ U given by:

i : C(∼) → U : X $→ �X�, j : U → C(∼) : u $→ �u�.

In summary: C(∼) ≈ U 	 2U , where U 	 2U asserts the existence of a retraction
pair holding between 2Uand U.

As a simple example of a PFS, we offer the following two point structure

(U,∼, �·�, �·�),
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where U = {0, 1},∼= U × U, �∅� = 0, �X� = 1 (X ⊆ U,X �= ∅), �0� = ∅ and
�1� = U . A less trivial example [4] of a PFS based upon an equvalence relation,
G, is described in the sequel.

Let F = (U,∼, �·�, �·�) be a generalized PFS. Writing “u1 ∈F u2” for “u1 ∈
�u2�”, U is thus interpreted [3] as a universe of F-sets; �·� supports the relation
of set membership holding between F-sets (elements of U). Writing “{u : X(u)}”
to denote �X�, F thus validates the Principle of Naive Comprehension

(∀u)(u ∈F {u : X(u)} ↔ X(u)) (2)

for ∼-exact subsets X of U . Further, let x, y ∈ U ; then,

(∀u)(u ∈F x ↔ u ∈F y) ↔ x = y,

i.e., the principle of extensionality holds for F-sets.
Let x, y ∈ U . Define x to be set-theoretically indiscernible from y, symboli-

cally, x ≡F y, iff x and y are elements of precisely the same F-sets:

x ≡F y ⇔df (∀u)(x ∈F u ↔ y ∈F u).

Set-theoretic indiscernibiltity is thus an equivalence relation on U and a congru-
ence for the ∼-exact subsets of U . Further, define

x ≡∼ y ⇔df [x]∼ = [y]∼.

Note that since ∼ is a tolerance relation on U, all ∼-exact subsets of U are
relationally closed under ≡∼. Indeed, x ≡F y iff x ≡∼ y, i.e., ≡∼ is just set-
theoretic indiscernibility. Also,

x ≡F y ⇒ x ∼ y (x, y ∈ U)

holds generally but the converse principle

x ∼ y ⇒ x ≡F y (x, y ∈ U)

holds just in case ∼ is an equivalence relation. Thus, when ∼ is an equivalence
relation, it may always be interpreted as set-theoretic indiscernibility.

3.1 Ortholattice of Exact Sets

Let F = (U,∼, �·�, �·�) be a PFS based upon a tolerance relation ∼ . Since
elements of U represent exact subsets of U , the complete ortholattice given
(defined) by 1 is isomorphic to

(U, �∨�, �∧�,�c� , �∅�, �U�) (3)

under the restriction �·� 
 C(∼) of the type-lowering retraction to ∼-exact subsets
of U. Here, �∨�, �∧�,�c� , denote the definitions of join and meet natural to F-sets,
e.g.,

u1�∨�u2 =df ��u1�
∨

S�u1�� = ��u1� ∪ �u1��
u1�∧�u2 =df ��u1�

∧
S�u1��

u�c� =df ��u�c�.
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We define “u1�⊆�u2” to be “�u1� ⊆ �u2�”, i.e., inclusion is the partial ordering
naturally associated with the ortholattice of F-sets given in 3. Usually, the corner
quotes are suppressed in naming these operations.

Let a ∈ U . Since unions of ∼-exact subsets are ∼-exact,

{x ∈ U | (∃ y ∈ U)(a ∼ y ∧ x ∈F y)}

is an exact subset of U. Thus we define the outer penumbra of a, symbolically,
♦a, to be the F-set

∨
[a]∼. Similarly, since closures of intersections of ∼-exact

subsets are ∼-exact,

Cl({x ∈ U | (∀ y ∈ U)(a ∼ y → x ∈F y)})

is an exact subset of U. Define the inner penumbra, �a, to be the F-set
∧

[a]∼.
These operations, called the penumbral modalities, were interpreted in [3,4] using
David Lewis’ counterpart semantics for modal logic [22]. Given F-sets a and b,
we call b a counterpart of a whenever a ∼ b. Then �a (♦a) represents the set of
F-sets that belong to all (some) counterparts of a. In this sense, we can say that
an F-set x necessarily (possibly) belongs to a just in case x belongs to �a (♦a).

When augmented by the penumbral modal operators, the complete ortholat-
tice of F-sets given by 3 forms an extensive, idempotent modal ortholattice

(U, �∨�, �∧�,�c� , �∅�, �U�,♦,�), (4)

which fails, however, to satisfy the principle of monotonicity characteristic of
Kripkean modal logic. Curiously, in addition,

�♦u ⊆ �u (u ∈ U).

When ∼ is an equivalence relation, the lattice given by 4 is a modal Boolean
algebra (called the “penumbral” modal algebra [3,4]), an example of “abstract”
approximation space in the sense of [11] and “generalized” approximation space
in the sense of [34].

3.2 Models of PFS

An example of a PFS
G = (Mmax,≡, �·�, �·�)

based upon the equivalence relation ≡ of set theoretic indiscernibility was con-
structed in [4] with the theory of Sequences of Finite Projections (SFP) objects,
a branch of Domain Theory [29] which studies the asymptotic behaviour of
ω-sequences of monotone (order preserving) projections between finite partial
orders. 3 First, a complete partial order (cpo) D∞ satisfying

D∞ ≈CSFP [D∞ → T ]C
3 See also [2] for the details of this construction.
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is constructed [29] as the inverse limit of a recursively defined sequence of projec-
tions of finite partial orders, where ≈CSFP is continuous (limit preserving) order
isomorphism of cpo’s in the category CSFP of SFP objects and continuous func-
tions, [D∞ → T ]C is the cpo of all continuous (limit preserving) functions from
D∞ to T under the information order associated with the nesting of partial
characteristic functions and T is the domain of three-valued truth

true false
↖ ↗

⊥

under the information ordering ≤k (where ⊥ represents a truth-value gap as
in partial logic [10,13,19]). Then [4], since D∞ is an SFP object, each mono-
tone function f : D∞ → T is maximally approximated by a unique continuous
function cf in [D∞ → T ]C, whence cf in D∞ under representation. Then, the
complete partial order M of monotone functions from D∞ to T is constructed
as a solution for the reflexive equation

M ≈M≺ M → T *

where ≈M is order isomorphism of cpo’s in the category M of cpos’s and mon-
totone functions, and ≺ M → X * is the set of all “hyper-continuous” functions
from M to T . A monotone function f : M → T is said to be hyper-continuous
iff for every m ∈ M, f(m) = f(cm). In words, hyper-continuous functions are
those monotone functions which can not distinguish m from cm. Note that a
monotone function f : M → T is hyper-continuous just in case

cx = cy ⇒ f(x) = f(y) (x, y ∈ M).

I.e., over M, the equivalence relation of sharing a common maximal continuous
approximation is a congruence for all hyper-continuous functions.

Writing “x ∈ y” for y(x) = true and ‘x /∈ y” for y(x) = false, M may be
interpreted as a universe of partial sets-in-extension. Finally, let Mmax be the
set of maximal elements of M . Then [4] we have

(∀x, y ∈ Mmax)[x ∈ y ∨ x /∈ y].

Mmax is thus a classical (bivalent) subuniverse of M . Let ≡ be the relation of
set-theoretic indiscernibility, defined for x, y ∈ Mmax by

x ≡ y ⇔df (∀z ∈ Mmax)[x ∈ z ↔ y ∈ z].

Then we have the fundamental result [4] that set-theoretic indiscernibility over
Mmax is the relation of sharing a common maximal continuous approximation.

A natural example of a PFS based upon a non-transitive tolerance relation
on Mmax can now be given. Let x, y ∈ Mmax. x matches y iff there is a m ∈ M
such that cx, cy ≤ m. Matching is thus a tolerance relation over Mmax which ex-
presses the compatibility of the maximal continuous approximations of G-sets:
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two elements of Mmax match iff their respective maximal continuous approx-
imations yield, for any given argument, ≤k-comparable truth values, i.e., they
agree on the classical (non-⊥) truth values they take for a given argument. Since
matching is “hyper-continuous”(a congruence for ≡) in both x and y, all subsets
of Mmax which are exact with respect to matching are ≡-exact, whence they
may be comprehended as G-sets. Thus Mmax forms a generalized PFS under
the tolerance relation of matching.

On the Discernibility of the Disjoint: The above axioms for PFS’s based
upon an equivalence relation fall short of articulating all of the important struc-
ture of G. For example, distinct disjoint G-sets are discernible; in particular,
the empty G-set is a “singularity” in having no counterparts other than itself
[4]. Further, since the complements of indiscernible G-sets are indiscernible, it
follows that the universal G-set is also a singularity in this sense. These prop-
erties are logically independent of the basic axioms and may be falsified on the
two-point PFS presented above. For example, the “discernibility of the disjoint”
asserts the existence of infinitely many pairwise distinct granules of F-sets and
its adoption as an additional axiom of PFS’s entails Peano’s axioms for second
order arithmetic [4].

Plenitude: Another important property of G established in [4] is the following
principle of Plenitude. Let F = (U,≡, �·�, �·�) be a PFS based upon an equiva-
lence relation ≡. In [3], F was say to be a plenum iff the following two conditions
hold for all a, b ∈ U : (A) �a ≡ ♦a and (B) a ⊆ b and a ≡ b entails for all c ∈ U ,

a ⊆ c ⊆ b ⇒ c ≡ b.

[4] showed that G is a plenum and, further, if F is a plenum, then

([a]≡ , �∨�, �∧�,�c� ,�a,♦a)

is a complete Boolean algebra with the least (greatest) element �a (♦a). Thus,
the universe of a plenum factors into a family of granules [a]≡ , each of which
is a complete Boolean algebra4. We conclude by asking a question: does Mmax

satisfy conditions (A) and (B) − thus forming a “generalized plenum” whose
granules are complete ortho-lattices − under the non-transitive tolerance relation
of matching?

4 Conclusion

Our development of the notion of a generalized PFS has been axiomatic and
informal. The model construction of [4] ensures the consistency of these infor-
mal axioms. It further provides a natural example of a PFS based upon the
non-transitive tolerance relation of “matching”. The task of presenting various
axiomatic set theories as consistent “formalizations” of generalized PFS’s is a
4 E.g., though Mmax has hyper-continuum many elements, it factors into continuum

many such granules.
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task aired here for future research. E.g., the Principle of Naive Comprehension
for exact concepts given in 2 may be symbolized by both effective and noneffec-
tive axiom schemes in L. Characterizing the proof theoretic strength of theories
which adjoin various comprehension schemes for exact concepts to the first order
theory of a tolerance (or equivalence) relation remains an open problem in the
foundations of mathematics.
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Abstract. The theory of rough sets is an extension of the set theory,
for the study of intelligent systems characterized by insufficient and in-
complete information. Since proposed by Pawlak, rough sets have evoked
a lot of research. Theoretic study has included algebra aspect of rough
sets. In paper [1] the concept of rough group and rough subgroup was
introduced, but with some deficiencies remaining. In this paper, we in-
tend to make up for these shortages, improve definitions of rough group
and rough subgroup, and prove their new properties.

1 Introduction

Pawlak proposed the rough set theory in 1982. In recent years, there has been
a fast growing interest in this new emerging theory – ranging from work in
pure theory, such as e.g. topological and algebraic foundations [4], [5], [6], [7], to
diverse areas of applications.

In [2], based on Pawlak’s definition of rough equality, as well as the works
by Orlowska [8] and Banerjee and Chakraborty [9], the algebraic technique was
used to give a deep mathematical meaning to the rough set theory. The concepts
of topological Boolean algebra, rough algebra, quasi-Boolean algebra, topologi-
cal quasi-Boolean algebra and topological rough algebra, etc., were introduced.
Furthermore, it was proved that rough algebra is not a Boolean algebra, but a
quasi-Boolean algebra. In [3], based on the lattice theoretical approach suggested
by Iwinski [10], it was proved that the original family of rough sets +◦, as well
as + and the rough approximation space +∗ with corresponding operations, are
stone algebras. However, for groups, rings and fields, little work has been done.

In [1], the concepts of rough group and rough subgroup have been introduced,
but there are some parts that remain irrational. First, the definition of rough
group based on G, if G is a rough set, ∀x, y ∈G, x ∗ y ∈G, is vague. Second, in
the definition of second property of rough group, there are some items which are
unreasonable as concerning rough groupG: (1) the range in which the association
law holds is G; (2) the set e with the binary operation defined on U is trivial
rough subgroup of G; (3) the intersection of two rough subgroups of a rough

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 104–113, 2005.
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group is still a rough subgroup. The main work of this paper is to improve
the parts that mentioned above, then, to prove some properties of rough group
and rough subgroup. In section 2, a short overview of the work by Pawlak that
relates to this paper is given; in section 3, new definitions of rough group and
rough subgroup are introduced; in section 4, rough right cosets and rough left
cosets are defined and some properties of rough cosets are proved; in section
5, the definition of rough invariant sets is given and some of its properties are
proved; in section 6, the homomorphism and isomorphism of rough group are
introduced; in section 7, some examples for rough group, rough subgroup and
their properties are given; and in the last, further study need to be done in this
field and the significance of this research work are given in the conclusion part.

2 The Basic Theory of Rough Sets

Definition 1. Let U be a finite non-empty set called universe and R be a family
equivalence relation on U . The pair (U,R) is called an approximation space,
denoted by K = (U,R).

Definition 2. Let U be a universe, C be a family of subsets of U , C = {X1, X2,
. . . , Xn}. C is called a classification of U if the following properties are satisfied:

(1) X1 ∪X2 ∪ . . . ∪Xn = U ;
(2) Xi ∩Xj = (i �= j).

Definition 3. Let U be a universe and R be an equivalence relation on U . We
denote the equivalence class of object x in R by [x]R. The set {[x]R|x ∈ U} is
called a classification of U induced by R.

Definition 4. Let (U,R) be an approximation space and X be a subset of U .
The sets

(1) X = {x|[x]R ∩X �= };
(2) X = {x|[x]R ⊆ X};
(3) BN(X) = X −X

are called upper approximation, lower approximation, and boundary region of X
in K, respectively.

Property 1. Let X,Y ⊂ U , where U is a universe. The following properties hold:

(1) X ⊂ X ⊂ X
(2) = = , U = U = U
(3) X ∩ Y = X ∩ Y
(4) X ∩ Y ⊂ X ∩ Y
(5) X ∪ Y ⊂ X ∪ Y
(6) X ∪ Y = X ∪ Y
(7) X ⊂ Y if and only if X ⊂ Y ,X ⊂ Y



106 D. Miao et al.

3 Rough Group and Rough Subgroup

Definition 5. Let K = (U,R) be an approximation space and ∗ be a binary
operation defined on U . A subset G of universe U is called a rough group if the
following properties are satisfied:
(1) ∀x, y ∈ G, x ∗ y ∈ G;
(2) Association property holds in G;
(3) ∃e ∈ G such that ∀x ∈ G, x ∗ e = e ∗ x = x; e is called the rough identity

element of rough group G;
(4) ∀x ∈ G, ∃y ∈ G such that x ∗ y = y ∗ x = e; y is called the rough inverse

element of x in G.

Property 2. (1) There is one and only one identity element in rough group G.
(2) ∀x ∈ G, there is only one y such that x ∗ y = y ∗ x = e; we denote it by x−1.

Property 3. (1) (x−1)−1 = x.
(2) (x ∗ y)−1 = y−1 ∗ x−1.

Property 4. Elimination law holds in G, i.e. ∀a, x, x′, y, y′ ∈ G,
(1) if a ∗ x = a ∗ x′ then x = x′.
(2) if y ∗ a = y′ ∗ a then y = y′.

Definition 6. A non-empty subset H of rough group G is called its rough sub-
group, if it is a rough group itself with respect to operation ∗.
There is only one guaranteed trivial rough subgroup of rough group G, i.e. G
itself. A necessary and sufficient condition for {e} to be a trivial rough subgroup
of rough group G is e ∈ G.
Theorem 1. A necessary and sufficient condition for a subset H of a rough
group G to be a rough subgroup is that:
(1) ∀x, y ∈ H,x ∗ y ∈ H;
(2) ∀x ∈ H,x−1 ∈ H.

Proof. The necessary condition is obvious. We prove only the sufficient condition.
By (1) we have ∀x, y ∈ H,x ∗ y ∈ H , by (2) we have ∀x ∈ H,x−1∈H , by (1) and
(2) we have ∀x ∈ H,x ∗ x−1 = e ∈H , because association holds in G, so it holds
in H. Hence the theorem is proved.

Another difference between rough group and group is the following:
Theorem 2. Let H1 and H2 be two rough subgroups of the rough group G. A
sufficient condition for intersection of two rough subgroups of a rough group to
be a rough subgroup is H1 ∩H2 = H1 ∩H2.

Proof. Suppose H1 and H2 are two rough subgroups of G. It is obvious that
H1∩H2 ⊂ G. Consider x, y ∈ H1∩H2. Because H1 and H2 are rough subgroups,
we have x ∗ y ∈ H1, x ∗ y ∈ H2, and x−1 ∈ H1, x

−1 ∈ H2, i.e. x ∗ y ∈ H1 ∩H2

and x−1 ∈ H1 ∩ H2. Assuming H1 ∩ H2 = H1 ∩H2, we have x ∗ y ∈ H1 ∩H2

and x−1 ∈ H1 ∩H2. Thus H1 ∩H2 is a rough subgroup of G.

Definition 7. A rough group is called a commutative rough group if for every
x, y ∈ G, we have x ∗ y = y ∗ x.
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4 Rough Coset

Let (U,R) be a universe, G ⊂ U be a rough group and H be a rough subgroup
of G. Let us define a relationship of elements of rough group G as follows:

∼: a ∼ b if and only if a ∗ b−1 ∈ H ∪ {e}.

Theorem 3. ”∼” is a compatible relation over elements of rough group G.

Proof. ∀a ∈ G, since G is a rough group, a−1 ∈ G. Since a ∗ a−1 = e, we have
a ∼ a. Further, ∀a, b ∈ G, if a ∼ b, then a ∗ b−1 ∈ H ∪ {e} i.e. a ∗ b−1 ∈ H or
a ∗ b−1 ∈ {e}. If a ∗ b−1 ∈ H , then, since H is a rough subgroup of G, we have
(a ∗ b−1)−1 = b ∗ a−1 ∈ H , thus b ∼ a. If a ∗ b−1 ∈ {e}, then a ∗ b−1 = e. That
means b ∗ a−1 = (a ∗ b−1)−1 = e−1 = e, thus b ∼ a. Hence, ”∼” is compatible.

Definition 8. Compatible category defined by relation ”∼” is called rough right
coset. Rough right coset that contains element a is denoted by H ∗ a, i.e.

H ∗ a = {h ∗ a|h ∈ H, a ∈ G,h ∗ a ∈ G} ∪ {a}.

Let (U,R) be an approximation space, G ⊂ U be a rough group and H be its
rough subgroup. Consider relation of elements of G defined as follows:

∼′: a ∼′ b if and only if a−1 ∗ b ∈ H ∪ {e}.

Theorem 4. ”∼′” is a compatible relation over elements of rough group G.

Definition 9. Compatible category defined by relation ”∼′” is called rough left
coset. Rough left coset that contains element a is denoted by a ∗H, i.e.

a ∗H = {a ∗ h|h ∈ H, a ∈ G, a ∗ h ∈ G} ∪ {a}.

Remark: Generally speaking, the binary operation of rough group dissatisfies
commutative law, so the compatible relations ”∼” and ”∼′” are different. As a
result, the rough left and right cosets are also different.

Theorem 5. The rough left cosets and rough right cosets are equal in number.

Proof. Denote by S1, S2 the families of rough right and left cosets, respectively.
Define ϕ : S1 → S2 such that ϕ(H ∗ a) = a−1 ∗H . We prove that ϕ is bijection.

1. If H ∗ a = H ∗ b (a �= b), then a ∗ b−1 ∈ H . Because H is a rough subgroup,
we have b ∗ a−1 ∈ H , that means a−1 ∈ b−1 ∗ H , i.e. a−1 ∗ H = b−1 ∗ H .
Hence, ϕ is a mapping.

2. Any element a ∗H of S2 is the image of H ∗ a−1 – the element of S1. Hence,
ϕ is onto mapping.

3. If H ∗ a �= H ∗ b, then a ∗ b−1 /∈ H , i.e. a−1 ∗ H �= b−1 ∗ H . Hence, ϕ is a
one-to-one mapping.

Thus the rough left cosets and rough right cosets are equal in number.

Definition 10. The number of both rough left cosets and rough right cosets is
called index of subgroup H in G.
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5 Rough Invariant Subgroup

Definition 11. A rough subgroup N of rough group G is called a rough invariant
subgroup, if ∀a ∈ G, a ∗N = N ∗ a.

Theorem 6. A necessary and sufficient condition for a rough subgroup N of
rough group G to be a rough invariant subgroup is that ∀a ∈ G, a ∗N ∗ a−1 = N .

Proof. Suppose N is a rough invariant subgroup of G. By definition, ∀a ∈ G, we
have a ∗N = N ∗ a. Because G is a rough group, we have

(a ∗N) ∗ a−1 = (N ∗ a) ∗ a−1

a ∗N ∗ a−1 = N ∗ (a ∗ a−1)
i.e. a ∗N ∗ a−1 = N .

Suppose N is a rough subgroup of G and ∀a ∈ G, a ∗N ∗ a−1 = N . Then
(a ∗N ∗ a−1) ∗ a = N ∗ a
i.e. a ∗N = N ∗ a.

Thus N is a rough invariant subgroup of G.

Theorem 7. A necessary and sufficient condition for a rough subgroup N of G
to be a rough invariant subgroup is that ∀a ∈ G and n ∈ N , a ∗ n ∗ a−1 ∈ N .

Proof. Suppose N is a rough invariant subgroup of rough group G. We have
∀a ∈ G, a ∗N ∗ a−1 = N .

For any n ∈ N , we therefore have
a ∗ n ∗ a−1 ∈ N .

Suppose N is a rough subgroup of rough group G. Suppose ∀a ∈ G, n ∈ N ,
a ∗ n ∗ a−1 ∈ N . We have

a ∗N ∗ a−1 ⊂ N
Because a−1 ∈ G, we further have

a−1 ∗N ∗ a ⊂ N
It follows that

a ∗ (a−1 ∗N ∗ a) ∗ a−1 ⊂ a ∗N ∗ a−1

i.e. N ⊂ a ∗N ∗ a−1

Since a ∗N ∗ a−1 ⊂ N and N ⊂ a ∗N ∗ a−1, we have a ∗N ∗ a−1 = N . Thus N
is a rough invariant subgroup.

6 Homomorphism and Isomorphism of Rough Group

Let (U1, R1), (U2, R2) be two approximation spaces, and ∗, ∗ be binary operations
over universes U1 and U2, respectively.

Definition 12. Let G1 ⊂ U1, G2 ⊂ U2. G1, G2 are called rough homomorphism
sets if there exists a surjection ϕ : G1 → G2 such that

∀x, y ∈ G1, ϕ(x ∗ y) = ϕ(x)∗ϕ(y).

Theorem 8. Let G1 and G2 be rough homomorphism sets. If ∗ satisfies com-
mutative law, then ∗ also satisfies it.
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Proof. Consider G1, G2, and ϕ such that ∀x, y ∈ G1, ϕ(x ∗ y) = ϕ(x)∗ϕ(y). For
every ϕ(x), ϕ(y) ∈ G2, since ϕ is surjection, there exist x, y ∈ G1 such that
x → ϕ(x), y → ϕ(y). Thus ϕ(x ∗ y) = ϕ(x)∗ϕ(y), and ϕ(y ∗ x) = ϕ(y)∗ϕ(x).
Now, assuming x ∗ y = y ∗ x, we obtain ϕ(x)∗ϕ(y) = ϕ(y)∗ϕ(x). That means
that ∗ satisfies commutative law.

Theorem 9. Let G1 ⊂ U1, G2 ⊂ U2 be rough groups that are rough homomor-
phism and let ϕ(G1) = G2. Then ϕ(G1) is also a rough group.

Proof. 1. ∀x′, y′ ∈ ϕ(G1), consider x, y ∈ G1 such that x → x′, y → y′. We
have ϕ(x ∗ y) = ϕ(x)∗ϕ(y) ∈ G2 = ϕ(G1), that is x′∗y′ ∈ ϕ(G1).

2. Since e ∈ G1, ϕ(e) ∈ G2 and ∀ϕ(x) ∈ ϕ(G1), ϕ(e)∗ϕ(x) = ϕ(x ∗ e) = ϕ(x)
3. G1 is a rough group, so ∀x, y, z ∈ G1, x ∗ (y ∗ z) = (x ∗ y) ∗ z. Hence:

ϕ(x ∗ (y ∗ z)) = ϕ(x)∗ϕ(y ∗ z) = ϕ(x)∗(ϕ(y)∗ϕ(z))
ϕ((x ∗ y) ∗ z)) = ϕ(x ∗ y)∗ϕ(z) = (ϕ(x)∗ϕ(y))∗ϕ(z)
i.e. (ϕ(x)∗ϕ(y))∗ϕ(z)ϕ(x)∗(ϕ(y)∗ϕ(z)).

4. ∀x′ ∈ ϕ(G1), consider x ∈ G1 such that x → x′. Since G1 is a rough group,
x−1 ∈ G1. Hence ϕ(x−1) ∈ ϕ(G1) and ϕ(x)∗ϕ(x−1) = ϕ(x−1)∗ϕ(x) = ϕ(e).
Therefore, we can put (x′)−1 = ϕ(x−1). Consequently, we can conclude that
ϕ(G1) is a rough group.

Theorem 10. Let G1 ⊂ U1, G2 ⊂ U2 be rough groups that are rough homomor-
phism. Let e and e be rough identity elements of G1 and G2 respectively. Then
ϕ(e) = e and ϕ(a−1) = ϕ(a)−1.

Definition 13. Let G1 ⊂ U1, G2 ⊂ U2 be rough groups that are rough homo-
morphism. Let e and e be rough identity elements of G1 and G2 respectively. The
set {x|ϕ(x) = e, x ∈ G1} is called rough homomorphism kernel, denoted by N .

Theorem 11. Let G1 ⊂ U1, G2 ⊂ U2 be rough groups that are rough homomor-
phism. Rough homomorphism kernel N is a rough invariant subgroup of G1.

Proof. Let ϕ be onto mapping from G1 to G2. ∀x, y ∈ N we have ϕ(x) =
e, ϕ(y) = e. Thus ϕ(x ∗ y) = ϕ(x)∗ϕ(y) = e ∗ e = e, i.e. x ∗ y ∈ N . Moreover,
∀x ∈ N , we have ϕ(x) = e. Because ϕ(x−1) = ϕ(y)−1 = e−1 = e, we get
x−1 ∈ N . We can conclude that N is a rough invariant subgroup of G1.

Theorem 12. Let G1 ⊂ U1, G2 ⊂ U2 be rough groups that are rough homo-
morphism. Let H1, N1 be rough subgroup and rough invariant subgroup of G1,
respectively. Then:

(1) ϕ(H1) is rough subgroup of G2 if ϕ(H1) = ϕ(H1);
(2) ϕ(N1) is rough invariant subgroup of G2 if ϕ(G1) = G2 & ϕ(N1) = ϕ(N1).

Proof. (1):
Consider an onto mapping ϕ from G1 to G2 such that

∀x, y ∈ G1, ϕ(x ∗ y) = ϕ(x)∗ϕ(y).
∀ϕ(x), ϕ(y) ∈ ϕ(H1), by the definition of ϕ, there exists x, y ∈ H1 such that

x → ϕ(x) and ϕ(x)∗ϕ(y) = ϕ(x ∗ y) ∈ ϕ(H1).
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Because ϕ(H1) = ϕ(H1), we have
ϕ(x)∗ϕ(y) ∈ ϕ(H1).

Further, ∀ϕ(x) ∈ ϕ(H1), by the definition of ϕ, there exists x ∈ H1 such that
x → ϕ(x), y → ϕ(y).

Because H1 is a rough subgroup of G1, we have
x−1 ∈ H1.

Thus
ϕ(a)−1 = ϕ(a−1) ∈ ϕ(H1).

We can conclude that ϕ(H1) is a rough subgroup of G2.

Proof. (2):
By (1), it is easy to see that ϕ(N1) is a rough subgroup of G2 if

ϕ(N1) = ϕ(N1).
∀ϕ(x) ∈ G2, because ϕ(G1) = G2, we have

ϕ(x) ∈ ϕ(G1).
Thus

x ∈ G1, x−1 ∈ G1 and ϕ(x−1) ∈ ϕ(G1) = G2.
Because ∀ϕ(x) ∈ G2, ϕ(n) ∈ ϕ(N1) there is

ϕ(x)∗ϕ(n)∗ϕ(x−1) = ϕ(x ∗ n ∗ x−1)
and N1 is rough invariant subgroup of G1, we have

x ∗ n ∗ x−1 ∈ N1.
Hence

ϕ(x)∗ϕ(n)∗ϕ(x−1) ∈ ϕ(N1).
We can conclude that ϕ(N1) is a rough invariant subgroup of G1.

Theorem 13. Let G1 ⊂ U1, G2 ⊂ U2 be rough groups that are rough homo-
morphism. Let H2, N2 be rough subgroup and rough invariant subgroup of G2

respectively. Then

(1) H1 which is the inverse image of H2 is rough subgroup of G1 if ϕ(H1) = H2

(2) N1 which is the inverse image of N2 is rough invariant subgroup of G1 if
ϕ(G1) = G2 & ϕ(N1) = N2.

Proof. (2):
Because H1 is the inverse image of H2, we have

ϕ(H1) = H2.
That is, ∀x, y ∈ H1, we have

ϕ(x), ϕ(y) ∈ H2.
Because H2 is a rough subgroup of G2, we have

ϕ(x ∗ y) = ϕ(x)∗ϕ(y) ∈ H2 = ϕ(H1).
Thus

x ∗ y ∈ H1.
∀x ∈ H1, we have

ϕ(x) ∈ H2.
Because H2 is a rough subgroup of G2, we have

ϕ(x)−1 = ϕ(x−1) ∈ H2.
Thus x−1 ∈ H1.
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Proof. (2):
By (1), it is easy to know that N1 is a rough subgroup of G2 if

ϕ(N1) = ϕ(N1).
∀x ∈ G1, n ∈ N1, we have

ϕ(x) ∈ ϕ(G1) = G2, ϕ(x)−1 = ϕ(x−1) ∈ ϕ(G1) = G2, ϕ(n) ∈ N2

Because N2 is a rough invariant subgroup of G2, we have
ϕ(x)∗ϕ(n)∗ϕ(x−1) = ϕ(x ∗ n ∗ x−1) ∈ N2.

Thus
x ∗ n ∗ x−1 ∈ N1.

Hence N1 which is the inverse image of N2 is a rough invariant subgroup of G1

if ϕ(G1) = G2 and ϕ(N1) = N2.

7 Examples

Example 1. Let U be the set of all permutation of S4 and ∗ be the multiplication
operation of permutation. A classification of U is U/R = {E1, E2, E3, E4}, where

E1 = {(1), (12), (13), (14), (23), (24), (34)},
E2 = {(123), (132), (124), (142), (134), (143), (234), (243)},
E3 = {(1234), (1243), (1324), (1342), (1423), (1432)},
E4 = {(12)(34), (13)(24), (14)(23)},

Let X1 = {(1), (12), (13)}, then
X1 = {(1), (12), (13), (14), (23), (24), (34)}.

Because (12) ∗ (13) = (123) /∈ X1, we have X1 is not a rough group.
Let X2 = {(12), (123), (132)}, then

X2 = E1 ∪ E2.
Because

(1) ∀x, y ∈ X2, x ∗ y ∈ X2;
(2) (12) ∗ (12) = (1) ∈ X2;
(3) Association property holds in X2;
(4) (12)−1 = (12) ∈ X2, (123)−1 = 132 ∈ X2, (132)−1 = (123) ∈ X2.

Thus we have that X2 is a rough group.
Let X3 = {(1), (123), (132)}, then X3 = E1 ∪E2.
Because

(1) X3 ⊂ X2;
(2) ∀x, y ∈ X3, x ∗ y ∈ X3;
(3) (1)−1 = (1) ∈ X3, (123)−1 = (132) ∈ X3, (13)−1 = (13) ∈ X3;

Thus we have that X3 is a rough subgroup of rough group X2¡£

Example 2. Let U = {[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]} be a set of surplus
class with respect to module 9 and ∗ be the plus of surplus class. A classification
of U is U/R = {E1, E2, E3}, where E1 = {[0], [1], [2]}, E2 = {[3], [4], [5]}, E3 =
{[6], [7], [8]},
Let X1 = {[2], [7], [8], [1]}, then X1 = E1 ∪E2. Because [2] ∗ [1] = [3] /∈ X1, thus
we have X1 is not a rough group.

Let X2 = {[2], [7], [5], [4]}, then X2 = E1 ∪ E2 ∪ E3 = U . Because
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(1) ∀x, y ∈ X2, x ∗ y ∈ X2;
(2) Association property holds in X2;
(3) [2] ∗ [7] = 0 ∈ X2;
(4) [2]−1 = [7] ∈ X2, [7]−1 = [2] ∈ X2, [5]−1 = [4] ∈ X2, [4]−1 = [5] ∈ X2;

We have thatX2 is a rough group.
Let X3 = {[2], [3], [6], [7]}, then X3 = E1 ∪ E2 ∪ E3 = U .

Because

(1) ∀x, y ∈ X3, x ∗ y ∈ X3;
(2) Association property holds in X3;
(3) [0] ∈ X3

(4) [2]−1 = [7] ∈ X3, [7]−1 = [2] ∈ X3, [3]−1 = [6] ∈ X3, [6]−1 = [3] ∈ X3;

We have that X3 is a rough group.
Let X4 = X2 ∩X3 = {[2], [7]} then X4 = E1 ∪ E3

Because [2] ∗ [2] = [4] /∈ X4, we have X4 is not a rough subgroup of rough group
X2 or rough group X3.

Example 3. Let U be the set of all permutation of S4 and ∗ be the multiplication
operation of permutation. A classification of U is U/R = {E1, E2, E3, E4, E5},
where

E1 = {(1), (123), (132)},
E2 = {(12), (13), (23), (14), (24), (34)},
E3 = {(124), (142), (134), (143), (234), (243)},
E4 = {(1234), (1243), (1324), (1342), (1423), (1432)},
E5 = {(12)(34), (13)(24), (14)(23)},

Let G = {(12), (13), (123), (132)}, N = (123), (132), then
G = (1), (123), (132), (12), (13), (23), (14), (24), (34) N = (1), (123), (132)

It is easy to prove that G is a rough group and N is a rough subgroup of rough
group G. Because

(12) ∗N = (13), (23) = N ∗ (12) = (23), (13)
(13) ∗N = (23), (12) = N ∗ (13) = (12), (23)
(123) ∗N = (132), (1) = N ∗ (123) = (132), (1)
(132) ∗N = (1), (123) = N ∗ (132) = (1), (123)

We have N is a rough invariant subgroup.

8 Conclusion

In this paper we have shown that the theory of rough sets can be applied to
the algebra systems – groups. We have also improved some deficiencies of the
approach proposed in [1], and proved some new properties of rough groups and
rough subgroups. Following this, a lot of work should be still done continually,
such as e.g. an extension of theory of rough sets to rough rings and rough fields.
Further studies in this direction will enable to understand better the connections
between relatively novel ideas of the theory of rough sets and already well-known
algebraic approaches.
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Abstract. The aim of this paper is to compare concept lattices and
approximation spaces. For this purpose general approximation spaces
are introduced. It is shown that formal contexts and information sys-
tems on one hand and general approximation spaces on the other could
be mutually represented e.g. for every information system exists a gen-
eral approximation space such that both structures determines the same
indiscernibility relation. A close relationship between Pawlak’s approxi-
mation spaces and general approximation spaces also holds: for each ap-
proximation space exists a general approximation space such that both
spaces determine the same definable sets. It is shown on the basis of these
relationships that an extent of the every formal concept is a definable
set in some Pawlak’s approximation space. The problem when concept
lattices are isomorphic to algebras of definable sets in approximation
spaces is also investigated.

1 Introduction

Formal Concept Analysis (FCA) and Rough Set Theory (RST) are significant
theories in the field of data mining. They represent information in similar way,
as descriptions of objects over families of attributes. However, both theories
use different algebraic structures within information analysis. FCA uses concept
lattices which are, up to isomorphism, complete lattices, while RST uses algebras
of definable sets and algebras of rough sets connected with approximation spaces.
These algebras are complete, atomic Boolean and Stone algebras respectively.
Thus represented information is analyzed in different ways by FCA and RST.
The aim of this paper is to compare these different ways of analysis through
the comparison of their main tools, namely concept lattices and approximation
spaces. For this purpose general approximation spaces will be introduced.

� This paper presents results of research, which was done by the author during his
Ph.D. studies in the Department of Logic, Jagiellonian University, Kraków, Poland.
Research project was supported by the Polish Ministry of Science and Information
Society Technologies under grant no. 2 H01A 025 23.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 114–123, 2005.
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2 Information Structures

Concept lattices and approximation spaces are based on formal contexts and
deterministic information systems which are closely connected to single valued
information systems. These information structures are drafted in this section.

2.1 Single-Valued Information Systems

Single-valued information systems are basic information structures within the
“object - attribute” approach to the representation of information (Düntsch,
Gediga, Or�lowska, [2]).

A single-valued information system is a structure

〈OB,AT , {Va : a ∈ AT }〉,

where OB is a finite set of objects, AT is a finite set of mappings a : OB −→ Va;
each a ∈ AT is called an attribute and Va is the set of attribute values
of attribute a.

Single valued information systems are formal treatments of one of the oldest
and main operationalizations of data (Düntsch, Gediga, Or�lowska, [2]). Formal
contexts and deterministic information systems are other operationalizations of
data closely connected to single valued inforation systems. In fact both could be
seen as transformations of single valued information systems preserving distin-
guishability between objects with respect to attributes.

2.2 Formal Contexts and Concept Lattices

Concept lattices were introduced by Rudolph Wille ([7]). Construction of concept
lattices is based on some Galois connections determined by formal contexts.
For a detailed presentation of FCA see (Ganter, Wille [3]).

A formal context is a structure of the form

〈G,M, I〉,

where G and M are sets of objects and attributes respectively, and I ⊆ G ×M
is a binary relation. If g ∈ G, m ∈ M and (g,m) ∈ I, then the object g is said
to have the attribute m, in this case we write also gIm.

For a single-valued information system 〈OB,AT , {Va : a ∈ AT }〉 one can
construct a family of binary attributes QAT := {Qv

a : v ∈ Va}, where for all
x ∈ OB, Qv

a(x) = 1 ⇔ a(x) = v, otherwise Qv
a(x) = 0. The context relation IAT

is constructed as follows: (x,Qv
a) ∈ IAT ⇔ Qv

a(x) = 1. Thus 〈OB,QAT , IAT 〉
is a formal context such that a(x) = v ⇔ (x,Qv

a) ∈ IAT . This construction
presents a transformation single valued systems into formal contexts and it is
quite analogous to nominalizations of multivalued contexts (Ganter, Wille [3]).

For any formal context we define two functions i : P(G) −→ P(M) and
e : P(M) −→ P(G), as follows:

X i = {m ∈ M : (g,m) ∈ I,∀ g ∈ X}, where X i = i(X) for X ⊆ G,
Y e = {g ∈ G : (g,m) ∈ I,∀ m ∈ Y }, where Y e = e(Y ) for Y ⊆ M .
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Note that operators i and e creates a Galois connection (see Ganter, Wille
[3]).

A set me, for each attribute m ∈ M , one can interpret as an extent of the
attribute m, instead of me we will write /m/. Let Γ ⊆ M , then /Γ/ denotes the
family of extents of attributes from the family Γ i.e. /Γ/ := { /m/ : m ∈ Γ}.

For any formal context 〈G,M, I〉 we define an indiscernibility relation �M

as follows: for all x, y ∈ G,

(x, y) ∈ �M :⇔ (x,m) ∈ I ⇔ (y,m) ∈ I for each m ∈ M.

A formal concept of the context 〈G,M, I〉 is a pair (A,B) with A ⊆ G,
B ⊆ M , Ai = B and Be = A. A is called the extent and B is called the
intent of the concept (A,B). B(G,M, I) denotes the set of all concepts of the
context 〈G,M, I〉. Let (A1, B1), (A2, B2) ∈ B(G,M, I). (A1, B1) is a subconcept
of (A2, B2), if A1 ⊆ A2 (one can prove that this is equivalent to B2 ⊆ B1) and
we write (A1, B1) ≤ (A2, B2). Relation ≤ is a partial order on the family of all
concepts of the context 〈G,M, I〉. Moreover, partially ordered set 〈B(G,M, I),≤〉
is a complete lattice, this lattice we will also denote by B(G,M, I). The family of
extents of all formal concepts of the context B(G,M, I) is denoted by BM (G, I).
Let us note, that 〈BM (G, I),⊆〉 is a lattice isomorphic to the concept lattice
B(G,M, I).

2.3 Information Systems and Approximation Spaces

Deterministic information systems (see Pawlak [4]) slightly differ from one-
valued information systems: Attributes in the deterministic information systems
are not functions but arguments of one function which assigns each pair of an
object and an attribute, a value of that attribute.

A deterministic information system is a structure of the form

〈OB,AT , {Va : a ∈ AT }, f〉,

where OB is a non-empty set of objects, AT is a non-empty set of attributes, Va is
a non-empty set of values of the attribute a, and f is a function
OB ×AT −→

⋃
a∈AT Va such that for every (x, a) ∈ OB ×AT , f(x, a) ∈ Va. In

this paper we deal with deterministic information systems only, so in the sequel
the adjective“deterministic” is skipped. Let us note that for any single-valued
information system 〈OB,AT , {Va : a ∈ AT }〉 there is an information system
〈OB,AT , {Va : a ∈ AT }, f〉 such that f(x, a) = v ⇔ a(x) = v for all x ∈ OB
and a ∈ AT .

For any information system 〈OB,AT , {Va : a ∈ AT }, f〉, and for any set of
attributes A ⊆ AT we define the indiscernibility relation ind(A) for all x, y ∈ OB
as follows

(x, y) ∈ ind(A) :⇔ f(x, a) = f(y, a) for all a ∈ A.

An ordered pair (U,R) is called an approximation space, where U is non
empty set and R is an equivalence relation on U . Equivalence classes of the
relationR are called atoms of an approximation spaces (U,R) (shortly R-atoms).
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We assume that ∅ is also R-atom. A set X is called definable in an approximation
space (U,R), if X is a union of R-atoms. The family of all sets definable in the
space (U,R) is denoted by ComR(U).

For any X ⊆ U we define a lower approximation and an upper approximation
of X in (U,R) respectively:

R(X) =
⋃

{Y ∈ U/R : Y ⊆ X},

R(X) =
⋃

{Y ∈ U/R : Y ∩X �= ∅}.
In case it will not lead to misunderstanding we will use expressions “atom”

and“definable set” instead of expressions “R-atom” and “R-definable set”.
It is possible to show that X ∈ ComR(U) iff X = R(X) iff X = R(X).

3 General Approximation Spaces

In this paragraph we introduce general approximation spaces. We outline some
connections between general approximation spaces, complete algebras of sets and
indiscernibility relations determined by families of sets. We show that general
approximation spaces are equivalent to the classical Pawlak’s approximation
spaces. A detailed exposition and proofs can be found in (Wasilewski [6]).

Complete algebras of sets are, by definitions, algebras of sets closed under
arbitrary unions and intersections, where Boolean operations are finite union,
finite intersection and set complementation respectively. Set complementation
we denote by ”’”: let A be a complete algebra of sets on a set U and A ∈ A,
A′ := U \A.

Let C ⊆ P(U). Sgc(C) denotes the least complete algebra of sets on U con-
taining the family C. If A is an algebra of sets then At(A) denotes the family of
atoms of A.

Definition 1. Let U be any nonempty set and C ⊆ P(U). An ordered pair (U, C)
we call a general approximation space. We define two operators on the set U :
for any X ⊆ U :

C(X) :=
⋃

{A ∈ Sgc(C) : A ⊆ X},
C(X) :=

⋂
{A ∈ Sgc(C) : X ⊆ A}.

Elements of the complete algebra of sets Sgc(C) are called sets definable
in (U, C). The algebra Sgc(C) is denoted by ComC(U) and called the algebra
of definable sets in the approximation space (U, C). Operators C, C are called
a lower and an upper approximation respectively.

Any general approximation space determine an indiscernibility relation with
respect to sets and families of sets:

Definition 2. Let U be a nonempty set. For any set C ∈ P(U) we define an
indiscernibility relation with respect to C as follows:

x ≈C y ⇔def x ∈ C ⇔ y ∈ C
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For any family of sets C ⊆ P(U) we define an indiscernibility relation with
respect to family C:

(x, y) ∈ ≈C ⇔def (x, y) ∈
⋂

C∈C
≈C

Observe that ≈C and ≈C are equivalence relations on U.

There is the following connections between indiscernibility relations with re-
spect to families of sets and complete algebras of sets (Wasilewski [6]):

Proposition 1. Let U be a non-empty set, C ⊆ P(U) and A = Sgc(C), then

At(A) = U/≈C .

Let us recall that any complete algebra of sets is atomic. It is easy to show
that each set from complete algebra of sets is a union of its atoms. Thus the
following holds:

Proposition 2. Let U be a non-empty set, C ⊆ P(U) and A = Sgc(C). Each
set B ∈ A is a union of equivalence classes of the indiscernibility relation ≈C.

For each approximation space (U,R) there is a family of sets C ⊆ P(U) such
that R = ≈C. It is enough to consider U/R, since R = ≈U/R

. Obviously, the
partition U/R is not a unique family determining the relation R. Two different
families of sets can determine the same indiscernibility relation. The following
theorem shows a necessary and sufficient condition for it:

Theorem 1. Let U be any nonempty set and C,D ⊆ P(U), then:

≈C = ≈D ⇔ Sgc(C) = Sgc(D).

We can represent any approximation space by some general approximation
space in the following sense:

Theorem 2. For any approximation space (U,R) there is a general approxima-
tion space (U, C) such that ComR(U) = ComC(U), i.e. both spaces determine
the same definable sets.

Proof. Let (U,R) be an approximation space. Let us choose a family C ⊆ P(U)
such that R = ≈C (one can take the family U/R, other families, which are not
partitions, also can be taken). Thus (U, C) is a general approximation space. Since
R = ≈U/R

, then ≈U/R
= ≈C . Thus Sgc(U/R) = Sgc(C), by theorem 1. Let us

note that U≈U/R
= U/R. We obtain from proposition 1: At(Sgc(U/R)) = U≈U/R

,
thus At(Sgc(U/R)) = U/R. Proposition 2 implies that any set B ∈ Sgc(U/R) is a
union of equivalence classes of the relation ≈U/R

, thus any set B ∈ Sgc(U/R) is a
union of equivalence classes of the relation R. Therefore Sgc(U/R) ⊆ ComR(U),
i.e. all elements of Sgc(U/R) are definable sets in the approximation space (U,R).
Since Sgc(U/R) is closed under unions of all subfamilies of Sgc(U/R), then the
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reverse inclusion also holds. Thus ComR(U) = Sgc(U/R). We have shown that
Sgc(U/R) = Sgc(C), therefore ComR(U) = Sgc(C) and ComR(U) = ComC(U).
Thus the approximation space (U,R) and the general approximation space (U, C)
determine the same definable sets.

Theorem 3. Let (U,R) be an approximation space and (U, C) be a general ap-
proximation space. For any set X ⊆ U the following conditions are equivalent:

(1) R(X) = C(X) and R(X) = C(X),
(2) ≈C = R.

Thus general approximation spaces are equivalent to Pawlak’s approximation
spaces.

Proof. Let (U,R) be an approximation space and (U, C) be a general approxi-
mation space.

(⇐) Let ≈C = R. Consequently, as in the proof of theorem 2, we obtain that
ComR(U) = Sgc(U/R) = Sgc(C) = ComC(U). Since ComR(U) = Sgc(C), then
it follows from definitions that for all X ⊆ U , R(X) = C(X).

Let Y ⊆ U . Note that R(Y ) ∈ ComR(U), then R(Y ) ∈ Sgc(C). Therefore
R(Y ) ∈ {A ∈ Sgc(C) : X ⊆ A}, now then

⋂
{A ∈ Sgc(C) : X ⊆ A} ⊆ R(Y ).

Thus C(Y ) ⊆ R(Y ).
Note that Y ⊆ C(Y ). It follows from the definition of the operator R that

R(Y ) ⊆ R(C(Y )). Note that C(Y ) ∈ Sgc(C). Since ComR(U) = Sgc(C), then
from the fact thatX ∈ ComR(U) ⇔ R(X) = X we obtain thatR(C(Y )) = C(Y ).
We have shown that R(Y ) ⊆ R(C(Y )). Thus R(Y ) ⊆ C(Y ). Since the set Y ⊆ U
was chosen arbitrarily, then for any set X ⊆ U , R(X) = C(X).

(⇒) Let X ∈ ComR(U), thus X = R(X). Since R(X) = C(X), then X =
C(X) =

⋂
{A ∈ Sgc(C) : X ⊆ A}. Note that

⋂
{A ∈ Sgc(C) : X ⊆ A} ∈

Sgc(C), since Sgc(C) is a complete algebra of sets. Thus X ∈ Sgc(C), therefore
ComR(U) ⊆ Sgc(C).

Let X ∈ Sgc(C), then X ∈ {A ∈ Sgc(C) : X ⊆ A}. Thus
⋂

{A ∈ Sgc(C) :
X ⊆ A} ⊆ X , and C(X) ⊆ X . Reverse inclusion follows directly from the defini-
tion of the operator C. Thus X = C(X). Since C(X) = R(X), then X = R(X).
Consequently, we obtain that X ∈ ComR(U). Therefore Sgc(C) ⊆ ComR(U).
Thus ComR(U) = Sgc(C). We have shown in the proof of the theorem 2 that
ComR(U) = Sgc(U/R). Thus Sgc(U/R) = Sgc(C). It follows from theorem 1 that
≈U/R

= ≈C . Since R = ≈U/R
, then R = ≈C .

4 Representations

It is well known that Wille’s formal contexts and Pawlak’s information systems
are closely connected: Each formal context can be viewed as a deterministic
information system and every information system determines a formal context
such that both structures provide the same information about the underlying
objects (e.g. see Demri, Or�lowska [1]).
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Proposition 3. For any formal context 〈G,M, I〉 there is a general approxima-
tion space (U, C) such that �M = ≈C.

Proof. Let 〈G,M, I〉 be a formal context. Choose the family /M/ ⊆ P(G), and
note that for all x, y ∈ G and for any m ∈ M , x ∈ /M/ ⇔ (x,m) ∈ I. Thus
(x,m) ∈ I ⇔ (y,m) ∈ I iff x ∈ /m/ ⇔ y ∈ /m/ for all m ∈ M and consequently
�M = ≈/M/. Therefore (G, /M/) is a general approximation space such that
�M = ≈/M/.

Proposition 4. For any general approximation space (U, C) there is a formal
context 〈G,M, I〉 such that ≈C = �M .

Proof. Let (U, C) be a general approximation space. It is enough to note that
〈U, C,∈〉 is a formal context and, obviously, ≈C = �C .

Proposition 5. For any information system 〈OB,AT , {Va : a ∈ AT }, f〉 there
is a general approximation space (U, C) such that ind(AT ) = ≈C.

Proof. Let 〈OB,AT , {Va : a ∈ AT }, f〉 be an information system. For all a ∈ AT
and v ∈ Va we define a family Cv

a := {x ∈ OB : f(x, a) = v}. Let a family
CAT be defined as follows: CAT := {Cv

a : a ∈ AT , v ∈ Va}. Thus (OB, CAT ) is
a general approximation space. Assume that (x, y) ∈ ind(AT ). The following
steps are equivalent:

a(x) = a(y), ∀a ∈ AT
x ∈ a−1(v) ⇔ y ∈ a−1(v), ∀v ∈ Va∀a ∈ AT
x ∈ C ⇔ y ∈ C, ∀C ∈ CAT

(x, y) ∈ ≈CAT .

Thus (OB, CAT ) is a general approximation space such that ind(AT ) = ≈CAT .

Proposition 6. For any general approximation space (U, C) there is an infor-
mation system 〈OB,AT , {Va : a ∈ AT }, f〉 such that ≈C = ind(AT ).

Proof. Let (U, C) be a general approximation space. Consider an information
system 〈U, C, {VC : C ∈ C}, f〉, where VC = {0, 1} for each C ∈ C and a function
f assigns each pair (a, C) the value of the characteristic function χC for the
object a. Assume that (x, y) ∈≈C . The following steps are equivalent:

x ∈ C ⇔ y ∈ C, ∀C ∈ C
χC(x) = χC(y), ∀C ∈ C
f(x,C) = f(x,C), ∀C ∈ C
(x, y) ∈ ind(AT ).

Thus 〈U, C, {VC : C ∈ C}, f〉 is an information system such that ≈C = ind(AT ).

5 Concept Lattices and Approximation Spaces

In this section we show that extents of formal concepts of any concept lattice
are definable sets in some approximation space.
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Definition 3. Let U be any set, C ⊆ P(U). We define the following operator
DC : P(U) −→ P(U) on the set U :

DC(A) :=
⋂

{C ∈ C : A ⊆ C}.

Proposition 7. Let U be any set, C ⊆ P(U), then the operator DC is closure
operator on the set U , such that closed subsets of DC are exactly definable sets
in the general approximation space (U, C).

Proof. A ⊆ DC(A) follows directly from definition. Observe that for all C ∈ C,
{C ∈ C : DC(A) ⊆ C} = {C ∈ C : A ⊆ C} and so

⋂
{C ∈ C : DC(A) ⊆ C} =⋂

{C ∈ C : A ⊆ C}. Thus DC(DC(A)) = DC(A). If A ⊆ B, then {C ∈ C : B ⊆ C}
⊆ {C ∈ C : A ⊆ C}, and so

⋂
{C ∈ C : A ⊆ C} ⊆

⋂
{C ∈ C : B ⊆ C}. Therefore

DC(A) ⊆ DC(B). LetX = DC(X). Since DC(X) =
⋂

{C ∈ C : X ⊆ C} ∈ Sgc(C),
then the closed subset X is definable in the general approximation space (U, C).
Let Y ∈ Sgc(C), then Y ∈ {C ∈ C : Y ⊆ C}. Therefore DC(Y ) ⊆ Y and
Y = DC(Y ) Because set A,B,X, Y ⊆ U where chosen arbitrarily, then DC is a
closure operator on the set U such that its closed subsets are exactly definable
sets in the general approximation space (U, C).

Lemma 1. Let 〈G,M, I〉 be a context, A ⊆ G, Γ ⊆ M and ψ ∈ M , then:

(1) Γ e =
⋂
/Γ/,

(2) Ai = {m ∈ M : A ⊆ /m/},
(3) D/M/(A) =

⋂
{/m/ ∈ /M/ : A ⊆ /m/} = {m ∈ M : A ⊆ /m/}e = Aie.

Theorem 4. The extents of the formal concepts of the any formal context are
definable sets in some approximation space and general approximation space.

Proof. Let 〈G,M, I〉 be a formal context. Observe that (G, /M/) is a general
approximation space. Choose (A,B) ∈ B(G,M, I), thus A = Be and from lemma
1.1 we get A = Be =

⋂
/B/, where /B/ ⊆ /M/. Thus A = D/M/(A). It follows

from the proposition 7 that A is a definable set in the general approximation
space (G, /M/). Note that A = /M/(A). We have shown, proving Proposition 5,
that �M = ≈/M/. Thus from theorem 5 we get �M (A). ThereforeA is a definable
set in the approximation space (G,�M ). Since the concept (A,B) ∈ B(G,M, I)
was chosen arbitrarily, then an extent of the each concept of formal context
〈G,M, I〉 is a definable set in the approximation space (G,�M ) and in the general
approximation space (G, /M/).

Definition 4. A formal context 〈G,M, I〉 is:

complemented2 iff for any m ∈ M there is m0 ∈ M such that /m0/ = /m/′,
closed under intersections iff for any Γ ⊆ M there is m0 ∈ M such that⋂
/Γ/ = /m0/,

closed under unions iff for any Γ ⊆ M there is m0 ∈ M such that⋃
/Γ/ = /m0/,

Boolean iff 〈G,M, I〉 is complemented, closed under unions and intersections.

2 Complemented contexts usually are called dichotomic contexts.
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Lemma 2. For a context 〈G,M, I〉 the following conditions are equivalent:

(1) 〈G,M, I〉 is Boolean.
(2) 〈G,M, I〉 is complemented and closed under intersections.
(3) 〈G,M, I〉 is complemented and closed under unions.

Theorem 5. For any Boolean context 〈G,M, I〉 the following conditions hold:

(1) Sgc(/M/) = /M/.
(2) Sgc(/M/) = BM (G, I).
(3) The concept lattice B(G,M, I) is isomorphic to Com/M/(U) - algebra of

definable sets in the general approximation space (U, /M/).

Proof. Let 〈G,M, I〉 be a Boolean context, i.e. 〈G,M, I〉 is complemented, closed
under unions and intersections.

(1) Assume that A ∈ Sgc(/M/), then, by the proposition 7, A = D/M/(A).
Thus from lemma 1.3 we have A = D/M/(A) = {m ∈ M : A ⊆ /m/}e =⋂

{/m/ ∈ M : A ⊆ /m/}. Note that {m ∈ M : A ⊆ /m/} ⊆ M and
/{m ∈ M : A ⊆ /m/}/ = {/m/ ∈ M : A ⊆ /m/}. Since the context 〈G,M, I〉
is closed under intersections, then there is m0 ∈ M such that⋂

{/m/ ∈ M : A ⊆ /m/} = /m0/. Thus A = /m0/ and A ∈ /M/. Therefore
A ∈ /M/, and Sgc(/M/) ⊆ /M/. Reverse inclusion is obvious, then consequently
Sgc(/M/) = /M/.

(2) Let A ∈ Sgc(/M/), then A = D/M/(A), by the proposition 7. Lemma 1.3
implies that A = D/M/(A) = {m ∈ M : A ⊆ /m/}e. Let B := {m ∈ M : A ⊆
/m/}, therefore A = Be and by lemma 1.2 Ai = {m ∈ M : A ⊆ /m/} = B.
Thus (A,B) ∈ B(G,M, I), now then Sgc(/M/) ⊆ BM (G, I).

Assume that A ∈ BM (G, I), then there is B ⊆ M such that (A,B) ∈
B(G,M, I). Thus A = Be and by lemma 1.1 A =

⋂
/B/. Since /B/ ⊆ /M/ ⊆

Sgc(/M/), then
⋂
/B/ ∈ Sgc(/M/), now then A ∈ Sgc(/M/). Thus BM (G, I) ⊆

Sgc(/M/). Therefore Sgc(/M/) = BM (G, I).
(3) Remind that Sgc(/M/) = Com/M/(U). Since Sgc(/M/) = BM (G, I),

then BM (G, I) is a complete algebra of sets and so BM (G, I) is a complete, atomic
Boolean algebra. The concept lattice B(G,M, I), as a lattice, is isomorphic to the
extent lattice BM (G, I). Thus B(G,M, I) is a distributive, complemented lattice
with the complement operation induced from BM (G, I). Therefore the concept
lattice is a complete, atomic Boolean algebra isomorphic to Com/M/(U) - algebra
of definable sets in the general approximation space (U, /M/).

Theorem 6. Let a context 〈G,M, I〉 be closed under intersections and let the
family of attribute M is finite. Then the following conditions are equivalent:

(1) 〈G,M, I〉 is a Boolean context.
(2) Sgc(/M/) = BM (G, I).
(3) The concept lattice B(G,M, I) is isomorphic to Com/M/(G) - algebra of

definable sets in the general approximation space (G, /M/).
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Proof. Let 〈G,M, I〉 be a formal context closed under intersection such that
|M | < ℵ0. The implication (1) ⇒ (3) comes from theorem 5.3.

(3) ⇒ (2) Assume that B(G,M, I) is isomorphic to Com/M/(U) - alge-
bra of definable sets in the general approximation space (G, /M/). Thus the
extent lattice BM (G, I) is isomorphic to Com/M/(U). Since Com/M/(U) =
Sgc(/M/), then there is a bijection f : BM (G, I) −→ Sgc(/M/). Since |M | < ℵ0,
then |BM (G, I)| = |Sgc(/M/)| < ℵ0. Therefore Sgc(/M/) ⊆ BM (G, I). If not,
then should be B ∈ Sgc(/M/) such that B �∈ BM (G, I), and so |BM (G, I)| �=
|Sgc(/M/)|. It was shown in the proof of the theorem 4 that BM (G, I) ⊆
Com/M/(U), thus BM (G, I) ⊆ Sgc(/M/). Therefore Sgc(/M/) = BM (G, I).

(2) ⇒ (1) BM (G, I) = Sgc(/M/). Let m ∈ M , then /m/ ∈ Sgc(/M/). Since
/m/′ ∈ Sgc(/M/), /m/′ ∈ BM (G, I). Thus there is a family Γ ⊆ M such that
/m/′ =

⋂
/Γ/. Because the context 〈G,M, I〉 is closed under intersection, then

there is a property m0 ∈ M such that /m0/ =
⋂
/Γ/ = /M/′, so /m0/ = /m/′.

Since m ∈ M was chosen arbitrarily, then the context 〈G,M, I〉 is complemented.
Because 〈G,M, I〉 is closed under intersections, then from lemma 2 we obtain
that the context 〈G,M, I〉 is Boolean.

The question of necessary conditions for the extents of formal concepts of a
context 〈G,M, I〉 to be exactly the definable sets in some approximation space
(U,R) is still open.

References

1. Demri, S., Or�lowska, E.: Incomplete Information: Structure, Inference, Complexity.
Springer 2002.

2. Düntsch, I., Gediga, G., Or�lowska, E.: Relational attribute systems. International
Journal of Human-Computer Studies. 55 (2001) 293–309

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer
1999.

4. Pawlak, Z.: Rough sets. International Journal of Computing and Information Sci-
ences. 18 (1982) 341–356

5. Pawlak, Z.: Rough sets. Theoretical Aspects of Reasoning About Data. Kluwer Aca-
demic Publisher 1991

6. Wasilewski, P.: On Selected Similarity Relations and their Applications into Cogni-
tive Science. Ph.D. thesis, Jagiellonian University, Cracow, Poland 2004 (in polish)

7. Wille, R.: Restructuring lattice theory. In Rival, I., editor, Ordered Sets. Reidel,
Dodrecht. (1982) 445–470



Rough Sets over the Boolean Algebras

Gui-Long Liu

School of Information Sciences,
Beijing Language and Culture University, Beijing, 100083, P.R. China

liuguilong@blcu.edu.cn

Abstract. This paper studies some matrix properties of rough sets over
an arbitrary Boolean algebra, and their comparison with the correspond-
ing ones of Pawlak’s rough sets, a tool for data mining. The matrix repre-
sentation of the lower and upper approximation operators of rough sets
is given. Matrix approach provides an explicit formula for computing
lower and upper approximations. The lower and upper approximation
operators of column vector over an arbitrary Boolean algebra are de-
fined. Finally, a set of axioms is constructed to characterize the upper
approximation operator of column vector.

1 Introduction

The rough set theory, proposed by Zdzislaw Pawlak [1,2] in early eighties, is
an extension of the classical set theory. The main purpose of this theory is
the automated transformation of data into knowledge. It has a wide range of
uses, such as machine learning, pattern recognition, and data mining. Rough
set is especially helpful in dealing with vagueness and uncertainty in decision
situations. It has emerged as another major mathematical tool for modelling the
vagueness present in human classification mechanism.

Since rough set theory was proposed, many proposals have been made for
generalizing and interpreting rough sets [3,4,5]. Extensive studies have been car-
ried out to compare the rough set theory and its generalization.

This paper studies some matrix properties of rough sets over an arbitrary
Boolean algebra. we propose a matrix view of the theory of rough sets. Under
such a view, lower and upper approximations of rough set and generalized rough
set are related to the matrix operator. We can easily to give an explicit formula
for computing lower and upper approximations according to this matrix view.

The paper is organized as follows. In section 2, we provide some definitions
of rough sets. In section 3, we give the matrix characterization of the lower and
upper approximation operators of rough set. In section 4, we define the lower
and upper approximation operators of a column vector over an arbitrary Boolean
algebra, and extend the results of section 3 to the case of an arbitrary Boolean
algebra. In section 5, a set of axioms is constructed to characterize the upper
approximation operator of column vector.
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2 Preliminaries

In this section we recall some basic definitions of set approximations as well as
some generalizations of these definitions for similarity (tolerance) relations.

Let U be a nonempty finite set of objects called the universe. Let R be an
equivalence relation on U . We use U/R to denote the family of all equivalence
classes of R (or classifications of U), and we use [x] to denote an equivalence class
in R containing an element x ∈ U . The pair (U,R) is called an approximation
space. For any X ⊆ U one can define the lower approximation and the upper
approximation of X [1] by

RX = {x ∈ U |[x] ⊆ X}, and RX = {x ∈ U |[x] ∩X �= ∅}.

respectively. The pair (RX,RX) is referred to as the rough set of X . The rough
set (RX,RX) denote the description of X under the present knowledge, i.e., the
classification of U .

Several authors [5,10] point out a necessity to introduce a more general ap-
proach by considering a similarity (i.e. reflexive and symmetric) relation (or even
arbitrary binary relation ) R ⊆ U × U in the set U of objects instead of equiv-
alence relation. By taking a similarity class R(x) = {y ∈ U |xRy} instead of the
equivalence class one can obtain a generalization of the definitions of the lower
approximation and the upper approximation of X by RX = {x ∈ U |R(x) ⊆ X}
and RX = {x ∈ U |R(x) ∩X �= ∅} [3], respectively.

3 Matrices Representations of Rough Sets

In this section we will give the matrix representations of the lower approximation
and upper approximation.

When U is a finite universe set, say U = {u1,u2, . . . ,un} , and X is a subset
of U . Then the characteristic function of X is assigns 1 to an element that belong
to X and 0 to an element that does not belong to X . Thus subset X can be
represented by an n- tuple X = (x1, x2, . . . , xn)T (i.e., X is a column Boolean
vector), where T denote the transpose operation and

xi =
{

1, ui ∈ X
0, ui /∈ X

We do not distinguish the subset X of U and its corresponding column Boolean
vector X = (x1, x2, . . . , xn)T . For example, if U = {u1,u2,u3}, X = {u1,u3},
then we write X = (1, 0, 1)T . Let R be an arbitrary binary relation on U , and
let MR = (aij) be the corresponding n× n matrix representing R. That is.

aij =
{

1, uiRuj

0, uiRuj

For any X ⊆ U the lower approximation and the upper approximation of X
can be computed from MR and X . That is, the lower and upper approximation
operators of rough sets can be redefined using the matrix representation.
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Theorem 1. Let U = {u1,u2, . . . ,un} be the universe set, R an arbitrary binary
relation on U , MR the n× n matrix representing R, and X a subset of U , then

(a) RX = MRX, where MRX is the Boolean product of n × n (Boolean)
matrix MR and column Boolean vector X.

(b)RX = −(MR(−X)) , where −X denote the complementary set of X.

Proof. Note that the characteristic function of X is still denoted by X . ∧,∨
denote minimum and maximum operations, respectively. Let MR = (aij).

(a) If ui ∈ RX , then R(ui) ∩X �= ∅, and at least a uj ∈ R(ui),uj ∈ X , that
is to say uiRuj and uj ∈ X . Thus aij = 1, X(uj) = 1, and

(MRX(ui)) = ∨n
k=1(aik ∧X(uk)) = aij ∧X(uj) = 1

Hence RX ⊆ MRX . Similarly MRX ⊆ RX and MRX = RX .
(b) Since

x ∈ R(−X) ⇔ R(x) ⊆ −X ⇔ R(X) ∩X �= ∅ ⇔ x /∈ RX ⇔ x ∈ −RX.
Therefore, RX = −(R(−X)) = −(MR(−X)).

Example 1. Consider a universe U = {u1,u2,u3}. Let R be a binary relation
on U :

R = {(u1,u1), (u1,u3), (u2,u1), (u3,u2), (u3,u3)}

Suppose X = {u1,u3} = (1, 0, 1)T , then MR =

⎛⎝1 0 1
1 0 0
0 1 1

⎞⎠,

RX = MRX =

⎛⎝1 0 1
1 0 0
0 1 1

⎞⎠⎛⎝1
0
1

⎞⎠ =

⎛⎝1
1
1

⎞⎠ = U,

and

RX = −MR(−X) = −

⎛⎝1 0 1
1 0 0
0 1 1

⎞⎠⎛⎝0
1
0

⎞⎠ = −

⎛⎝0
0
1

⎞⎠ =

⎛⎝1
1
0

⎞⎠ = {u1,u2}.

Immediately from Theorem 1, we can derive the following conclusion:

Proposition 1. Let U = {u1,u2, . . . ,un} be the universe set, R an arbitrary
binary relation on U , and X a subset of U , then for all X ⊆ U

(a)X ⊆ RX if and only if R is a reflexive.
(b)R(RX) ⊆ RX if and only if R is a transitive.

Proof. (a) For singleton subset X = {ui} of U , we have X ⊆ RX . Using theorem
1, it follows {ui} ⊆ R{ui}, that is, 1 = ∨n

j=1(aij ∧X(uj)) = aii ∧ 1 = aii, Thus,
R is a reflexive.

Conversely, if R is a reflexive and ui ∈ X , then (RX)(ui) = ∨n
j=1(aij ∧

X(uj)) ≥ aii ∧X(ui) = 1, namely, ui ∈ RX , that is X ⊆ RX .
(b) R(RX) ⊆ RX , using theorem 1, if and only if (MR)2X ⊆ MRX for all

subset X ⊆ U . We know that (MR)2X ⊆ MRX if and only if (MR)2 ⊆ MR,
namely, R2 ⊆ R. Thus R(RX) ⊆ RX if and only if R is a transitive.
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4 Approximation Operators in Boolean Algebras

Yao [4] has proposed generalized notion of approximation operators in the finite
Boolean algebras. The Boolean matrix is the special case of matrix over a Boolean
algebra. In this section, using the matrix approaches, we will give the another
generalized approximation operators in Boolean algebras.

Let (L,∧,∨,−, 0, 1) be a Boolean algebra, and let Ln×n be the set of all n×n
matrices over L. Suppose that A = (aij) and B = (bij) are two n× n matrices
over L, we define A ∨B = (aij ∨ bij), AB = (∨n

k=1aik ∧ bkj), −A = (−aij), and
Ak = Ak−1A, (k = 1, 2, . . .). Similarly, we can define the product MX of a n×n
matrix M = (aij) over L and a n-column vector X = (x1, x2, . . . , xn)T over L,
where T denote the transpose.

Let Ln be the set of all n-column vector over L. Scalar multiplication in
Ln is defined as follows:c(x1, x2, . . . , xn)T = (c ∧ x1, c ∧ x2, . . . , c ∧ xn) for
all c ∈ L and (x1, x2, . . . , xn)T ∈ Ln. If we denote the n unit column vec-
tors e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T , then any n-
column vector of Ln is a linear combination of these, because (x1, x2, . . . , xn)T =
x1e1 ∨ x2e2 ∨ . . .∨ xnen. Suppose X = (x1, x2, . . . , xn)T , Y = (y1, y2, . . . , yn)T ∈
Ln, if we define X ≤ Y if and only if xi ≤ yi for all 1 ≤ i, j ≤ n, then (Ln,≤) is
a partially ordered set.

Definition 1. Let (L,∧,∨,−, 0, 1) be a Boolean algebra, and M = (aij) a n×n
matrix over L. M is said to be

1. reflexive, if aii = 1 for all 1 ≤ i ≤ n;
2. symmetric, if aij = aji for all 1 ≤ i, j ≤ n;
3. transitive, if A2 ≤ A;
4. and equivalence matrix, if it is reflexive, symmetric, and transitive.

Using the theorem 1, the approximation operators of a vector over an arbi-
trary Boolean algebras can be generalized as follows.

Definition 2. Let (L,∧,∨,−, 0, 1) be a Boolean algebra, M = (aij) a n × n
matrix over L, and X = (x1, x2, . . . , xn)T a n-column vector over L. The lower
and upper approximations of the n-column vector X, denote by MX and MX,
respectively, are defined as

MX = MX, and MX = −M(−X)

Since L = {0, 1} is a Boolean algebra. The n-Boolean column vector represents
a subset of universe, the above definition coincides with the lower and upper
approximation operators of Pawlak’s rough set if L = {0, 1}.

Example 2. Consider Boolean algebra D30 of all positive integer divisors of 30
under the partial order of divisibility. The join and meet of a, b are their least
common multiple and greatest common divisor, respectively. That is,

a ∨ b = LCM(a, b), a ∧ b = GCD(a, b)
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Let M =

⎛⎝15 2 3
6 1 5
3 1 6

⎞⎠, then for vector X =

⎛⎝2
3
5

⎞⎠,

MX =

⎛⎝15 2 3
6 1 5
3 1 6

⎞⎠⎛⎝2
3
5

⎞⎠ =

⎛⎝ 1
10
1

⎞⎠
and

MX = −

⎛⎝15 2 3
6 1 5
3 1 6

⎞⎠⎛⎝−2
−3
−5

⎞⎠ = −

⎛⎝15 2 3
6 1 5
3 1 6

⎞⎠⎛⎝15
10
6

⎞⎠ = −

⎛⎝30
3
6

⎞⎠ =

⎛⎝ 1
10
5

⎞⎠
The lower and upper approximations satisfy the following properties:

Theorem 2. Let (L,∧,∨,−, 0, 1) be a Boolean algebra, and M = (aij) a n× n
matrix over L. Then

(1) X ≤ MX ⇔ MX ≤ X ⇔ M is a reflexive matrix;
(2) M(MX) ≤ MX ⇔ MX ≤ M(MX) ⇔ M is a transitive matrix.

Proof. (1) if X ≤ MX , then for n-unit vectors ei ∈ Ln, 1 ≤ i ≤ n, Using
Definition 2, we have ei ≤ Mei, that is,

1 ≤ ∨n
j=1(aij ∧ ej) = aii ∧ 1 = aii

Thus, aii = 1 and M is a reflexive.
Conversely, if M is a reflexive matrix and X = (x1, x2, . . . , xn)T , then

∨n
j=1(aij ∧ xj) ≥ aii ∧ xi = 1 ∧ xi = xi

namely, X ≤ MX . Similarly, X ≤ MX ⇔ MX ≤ X can be proved by the
duality of M and M .

(2) Using Definition 2, M(MX) ≤ MX , if and only if (M)2X ≤ MX for
all X ∈ Ln. We also know that (M)2X ≤ MX if and only if (M)2 ≤ M . Thus
M(MX) ≤ MX if and only if M is a transitive. By the duality of M and M , it
follows: M(MX) ≤ MX if and only if MX ≤ M(MX).

From definition 2 we list some results about rough set of the vector over L:

Theorem 3. Let (L,∧,∨,−, 0, 1) be a Boolean algebra, and M = (aij) a n× n
equivalence matrix over L.Then for all n-column vectors X,Y over L,

(1) M(0, 0, . . . , 0)T = (0, 0, . . . , 0)T ,M(1, 1, . . . , 1)T = (1, 1, . . . , 1)T ;
(2) M(X ∨ Y ) = MX ∨MY,M(X ∧ Y ) = MX ∧MY ;
(3) if X ≤ Y , then MX ≤ MY and MY ≤ MX;
(4) M(X ∧ Y ) ≤ MX ∧MY and MX ∨MY ≤ M(X ∨ Y );
(5) X ≤ MX,MX ≤ X;
(6) M(MX) = MX ;M(MX) = MX,
(7) M(aX ∨ bY ) = aMX ∨ bMY for all a, b ∈ L.
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Proof. (1) Clearly, By Definition 2,

M(0, 0, . . . , 0)T = M(0, 0, . . . , 0)T = (0, 0, . . . , 0)T

and
M(1, 1, . . . , 1)T = −M(−(1, 1, . . . , 1)T )

= −M(0, 0, . . . , 0)T = −(0, 0, . . . , 0)T = (1, 1, . . . , 1)T

(2) By Definition 2,

M(X ∨ Y ) = M(X ∨ Y ) = MX ∨MY = MX ∨MY

and
M(X ∧ Y ) = −M(−(X ∧ Y )) = −M(−X ∨ −Y )

= −(M(−X) ∨M(−Y )) = −M(−X) ∧ −M(−Y ) = MX ∧MY

(3) If X ≤ Y , then MX ≤ MY . That is, MX ≤ MY . By duality, MX ≤
MY .

(4) From (3), M(X ∧Y ) ≤ MX , and M(X ∧Y ) ≤ MY , hence, M(X ∧Y ) ≤
MX ∧MY . Similarly, MX ∨MY ≤ M(X ∨ Y ).

(5) By the reflexive property of matrix M , X ≤ MX . By the duality of M
and M , MX ≤ X .

(6) Since M is an equivalence matrix, we have M2 = M , thus
M(MX) = M(MX) = M2X = MX = MX , and
M(MX) = −MM(−X) = −M(−X) = MX .
(7) By Definition 2, M(aX ∨ bY ) = M(aX ∨ bY ) = M(aX) ∨ M(bY ) =

aMX ∨ bMY = aMX ∨ bMY for all a, b ∈ L.

5 Rough Set Algebras

Pawlak’s lower and upper approximation operators have been axiomized. Now,
we want to know which are the characteristic properties for the upper approx-
imation operator over a Boolean algebra. In this section, we take an axiomatic
approach by starting explicitly properties on upper approximation operator. One
of main objectives is to investigate the conditions on approximation operators,
so that they characterize the rough set defined by a matrix over an arbitrary
Boolean algebra.

Theorem 4. Let L be a Boolean algebra. Suppose s, S : Ln → Ln is a pair of
dual operators, i.e., for all n-column vector X over L, s(X) = −S(−X). If S
satisfies the following axiom:

S(aX ∨ bY ) = aS(X) ∨ bS(Y ),

for all X,Y ∈ Ln and a, b ∈ L, then there exists a matrix M = (aij) over L such
that for all X ∈ Ln, s(X) = MX and S(X) = MX.
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Proof. Suppose operator S obey S(aX∨bY ) = aS(X)∨bS(Y ). We can construct
a matrix M = (aij) as follows:

aij = eT
i Sej, 1 ≤ i, j ≤ n,

then S(ej) =

⎛⎜⎜⎜⎝
a1j

a2j

...
anj

⎞⎟⎟⎟⎠ , and for all X = (x1, x2, . . . , xn)T ∈ Ln

MX = (aij)

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ = (aij)(x1 ∧ e1 ∨ x2 ∧ e2 ∨ . . . ∨ xn ∧ en)

= (aij)(x1 ∧ e1) ∨ (aij)(x2 ∧ e2) ∨ . . . ∨ (aij)(xn ∧ en)

=

⎛⎜⎜⎜⎝
a11 ∧ x1

a21 ∧ x2

...
an1 ∧ xn

⎞⎟⎟⎟⎠ ∨

⎛⎜⎜⎜⎝
a12 ∧ x1

a22 ∧ x2

...
an2 ∧ xn

⎞⎟⎟⎟⎠ ∨ . . . ∨

⎛⎜⎜⎜⎝
a1n ∧ x1

a2n ∧ x2

...
ann ∧ xn

⎞⎟⎟⎟⎠

= x1

⎛⎜⎜⎜⎝
a11

a21

...
an1

⎞⎟⎟⎟⎠ ∨ x2

⎛⎜⎜⎜⎝
a12

a22

...
an2

⎞⎟⎟⎟⎠ ∨ . . . ∨ xn

⎛⎜⎜⎜⎝
a1n

a2n

...
ann

⎞⎟⎟⎟⎠
= x1S(e1) ∨ x2S(e2) ∨ . . . ∨ xnS(en)
= S(x1e1 ∨ x2e2 ∨ . . . ∨ xnen) = SX.

From Theorem 2 and Theorem 4, we have

Theorem 5. Let L be a Boolean algebra. Suppose s, S : Ln → Ln is a pair
of dual operators, i.e., for all n-column vector X over L, s(X) = −S(−X), S
satisfies S(aX ∨ bY ) = aS(X) ∨ bS(Y ), for all X,Y ∈ Ln. Then there exists

(1) a reflexive matrix M = (aij) over L,
(2) a transitive matrix M = (aij) over L,

such that sX = MX and SX = MX for all X ∈ Ln, if and only if S satisfies

(1) X ≤ S(X);
(2) S(SX) ≤ SX.

Proof. By Theorem 4, there exists a matrix M over L such that S(X) = MX =
MX for all X ∈ Ln. Thus

(1) Matrix M is a reflexive if and only if X ≤ MX , if and only if X ≤ S(X).
(2) Matrix M is a transitive if and only if M2 ≤ M , if and only if S(S(X)) ≤

S(X).
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6 Conclusions

This paper presents a matrix view of the theory of rough sets. The traditional
views interpret rough set theory as an extension of set theory with two additional
unary operators and focus on the characterization of members of rough sets.
Under matrix view, it is easy to extend the lower and upper approximations of
a set to that of a vector over an arbitrary Boolean algebra. A set of axioms is
constructed to characterize the upper approximation operator of column vector
using matrix view.

Acknowledgements. The author expresses his sincere thanks to the anony-
mous referees for their careful reading, and for the helpful suggestions which
greatly improved the exposition of the paper.
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Abstract. In this paper, we introduce the notion of generalized alge-
braic lower (upper) approximation operator and give its characterization
theorem. That is, for any atomic complete Boolean algebra B with the
set A(B) of atoms, a map L : B → B is an algebraic lower approximation
operator if and only if there exists a binary relation R on A(B) such that
L = R−, where R− is the lower approximation defined by the binary
relation R. This generalizes the results given by Yao.

1 Introduction

The connections between modal logics and rough sets have been considered by
many authors [3,11,14,17]. They enable us to have a full understanding of the
rough set theory from the view point of modal logic. More importantly, results
from modal logic can be used to enrich the study of rough sets [3,17]. In this
paper, we attempt to make a further contribution.

Based on the results from modal logic, we consider a generalized rough lower
(upper) approximation operator and study its algebraic properties in the sense
of Yao [15,16]. Specifically, we prove more general and fundamental properties
of approximation spaces of generalized rough sets. They are in fact the general-
izations of the results presented in [15,16] and others.

Many papers on rough sets deal with a finite universe of approximation
spaces. For example, all theorems in [15] are based on the assumption of a finite
universe. Consider the following theorem (one of the main theorems in [16]):

A map L : P(X) → P(X) satisfies the conditions
(a) LX = X ,
(b) L(A ∩B) = LA ∩ LB,

if and only if there exists a binary relation R on X such that L = R−,
where R− is defined by R−(A) = {x ∈ X | ∀y(xRy → y ∈ A)} for each
subset A ⊆ X .

The theorem holds only for a finite universe X . In fact, there exists a counter
example for the infinite case. Let X be the set of all real numbers with usual
topology. We define a map L : P(X) → P(X) by: for A ∈ P(X),

LA is the interior of A, that is, the largest open set contained in A.
It is clear that
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(a) LX = X and
(b) L(A ∩B) = LA ∩ LB.

If the theorem above holds in this case, then there exists a binary relation R on
X such that L = R−. For each family {Aλ} of subsets of X , it holds that

R−(
⋂

Aλ) =
⋂

R−(Aλ).

By taking

An =
(
− 1
n
, 1 +

1
n

)
(n ∈ N),

we have ⋂
An = [0, 1],

and
L(
⋂

An) = (0, 1).

On the other hand, if L = R−, since

R−(
⋂

An) =
⋂

R−(An) =
⋂

LAn =
⋂

An,

we have
L(
⋂

An) = (0, 1) �= [0, 1] = R−(
⋂

An).

This is a contradiction. Thus, the theorem above does not hold for the infinite
set X . As a consequence, the results following from this theorem in Yao’s paper
hold only for a finite X .

We extend the theorem to without any restriction on the cardinality of X
and show the general results. It perhaps should be pointed out that although
some of the results are known to researchers in modal logics, they are not so well
known to researchers in rough sets. A further exploration of such results may
serve the purpose of bringing more insights into rough sets.

2 Preliminaries

Let X be a non-empty set and R a binary relation on X . A structure (X,R) is
called an approximation space [12]. We define a map R− : P(X) → P(X) based
on R as follows: for A ∈ P(X),

R−(A) = {x ∈ X | ∀y (xRy → y ∈ A)}.

From definition the following holds. (cf. [5,12,13])

Proposition 1.
(1) A ⊆ B =⇒ R−(A) ⊆ R−(B)
(2) R−(

⋂
λ Aλ) =

⋂
λ R−(Aλ)

(3)
⋃

λ R−(Aλ) ⊆ R−(
⋃

λ Aλ)
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A map L : P(X) → P(X) satisfying

(a) LX = X
(b) L(

⋂
Aλ) =

⋂
LAλ (∀Aλ ∈ P(X))

is called a lower approximation operator and a map H : P(X) → P(X) defined
by: for A ∈ P(X),

HA = (L(Ac))c,

is called a upper approximation operator. The two operators L and H are dual
to each other. We only need to treat the operator L. In case of X being finite,
the map L defined here is identical to the map L defined by Yao [15,16].

Lemma 1. For each A ∈ P(X),

A =
⋂{

{y}c | y /∈ A
}
.

Proof. Suppose that a ∈
⋂{

{y}c | y /∈ A
}
. For all y /∈ A, we have

a ∈ {y}c.

If a /∈ A, then a ∈ {a}c by the assumption. But this is a contradiction. Thus
a ∈ A, that is, ⋂{

{y}c | y /∈ A
}

⊆ A.

Conversely, since A ⊆ {y}c for all y /∈ A, it is clear that

A ⊆
⋂{

{y}c | y /∈ A
}
.

Thus we have
A =

⋂{
{y}c | y /∈ A

}
.

From this lemma, we can easily obtain the next result, which generalizes the
theorem given by Yao [15,16].

Theorem 1. For any map L : P(X) → P(X), L is a lower approximation
operator if and only if there exists a binary relation R on X such that L = R−.

Proof. (⇐=) It is obvious.
(=⇒) We define a relation R on X by

xRy ⇐⇒ x /∈ L({y}c).

From definition of R we can show that LA = R−(A) for any A ⊆ X . Indeed, if
x /∈ R−(A) then there exists y such that xRy but y /∈ A. Since y ∈ Ac, we have
{y} ⊆ Ac and hence A ⊆ {y}c. This implies that LA ⊆ L({y}c). On the other
hand xRy yields x /∈ L({y}c). Thus we have x /∈ LA and hence

LA ⊆ R−(A).
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Conversely, if x /∈ LA, since A =
⋂{

{y}c | y /∈ A
}

by the lemma above, then we
have

x /∈ LA = L
(⋂{

{y}c | y /∈ A
})

=
⋂{

L({y}c) | y /∈ A
}
.

Since there exists y /∈ A such that x /∈ L ({y}c), it follows from definition of R
that xRy and y /∈ A. Thus x /∈ R−(A), that is,

R−(A) ⊆ LA.

Hence we have
LA = R−(A) (∀A ⊆ X).

3 The General Case

By extending the results of last section, we can get algebraically general results.
For any non-empty set X , the set P(X) of all subsets of X can be considered as
a complete Boolean algebra under the usual operations ∪,∩ and c. Moreover, by
identifying an element a ∈ X with the singleton set {a} ∈ P(X), the Boolean
algebra P(X) is atomic with the set X of atoms. This enables us to give a general
definition of lower (upper) approximation operator (cf. [7,8,10]).

Let B be an atomic complete Boolean algebra with the set A(B) of atoms
and R a relation on A(B). For all element a ∈ A(B) and x ∈ B, we define maps
r : A(B) → B and R− : B → B by

r(a) =
∨

{bλ ∈ A(B) | aRbλ}

R−(x) =
∨

{a ∈ A(B) | r(a) ≤ x}.

If we take B = P(X) and A(B) = X , then the definition of R− coincides with
the operator L in Yao’s papers [15,16].

A map L : B → B satisfying the condition (∗)

(∗) L(
⋂

xλ) =
⋂

Lxλ (∀xλ ∈ B)

is called an algebraic lower approximation operator. We note that if we take the
index set Λ to be empty then we have L1 = 1. We can show the following results,
which are generalization of Yao’s ones.

Main Theorem. A map L : B → B is an algebraic lower approximation
operator if and only if there exists a relation R on A(B) such that L =
R−.

We prepare some lemmas to prove the theorem.

Lemma 2. For all a ∈ A(B) and x ∈ B, we have

a ≤ R−(x) ⇐⇒ r(a) ≤ x.
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Proof. Suppose that a ≤ R−(x) =
∨

{bλ ∈ A(B) | r(bλ) ≤ x}. Since

a = a ∧
∨

{bλ ∈ A(B) | r(bλ) ≤ x}

=
∨

{a ∧ bλ | r(bλ) ≤ x, a, bλ ∈ A(B)},

it follows from a ∈ A(B) that there exists bλ ∈ A(B) such that a = a ∧ bλ and
r(bλ) ≤ x. Thus we have a = bλ and r(a) ≤ x.

Conversely, assume that r(a) ≤ x. From definition of R−, it follows that
a ≤ R−(x) and hence

a ≤ R−(x) ⇐⇒ r(a) ≤ x.

Lemma 3. For a, b ∈ A(B), we have

b ≤ r(a) ⇐⇒ aRb.

Proof. If b ≤ r(a), since r(a) =
∨

{bλ ∈ A(B) | aRbλ}, then we have

b = b ∧ r(a)

= b ∧
∨

{bλ ∈ A(B) | aRbλ}

=
∨

{b ∧ bλ | aRbλ, b, bλ ∈ A(B)}.

There exists bλ ∈ A(B) such that b = b ∧ bλ and aRbλ. This means that b = bλ
and aRb.

Conversely, if aRb and b ∈ A(B) then b ≤ r(a). Thus,

b ≤ r(a) ⇐⇒ aRb.

Lemma 4. For all x ∈ B,

x =
∧{

b′λ | bλ �≤ x
}
.

Proof. If bλ �≤ x, (bλ ∈ A(B)), since bλ ∧x′ �= 0, then there is an atom a ∈ A(B)
such that a ≤ bλ ∧ x′. Then a = bλ and a ≤ x′. This implies that bλ ≤ x′, that
is, x ≤ b′λ. Hence we have

x ≤
∧{

b′λ | bλ �≤ x
}
.

Conversely, suppose that a ≤
∧{

b′λ | bλ �≤ x
}

for a ∈ A(B). In this case we
have a ≤ b′λ for all bλ �≤ x. If a �≤ x, then it follows from assumption that a ≤ a′

and hence a = 0. But this is a contradiction. Hence we get

a ≤ x,

that is, for all a ∈ A(B),

a ≤
∧{

b′λ | bλ �≤ x
}

=⇒ a ≤ x.
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Since B is atomic, ∧{
b′λ | bλ �≤ x

}
≤ x.

Therefore,
x =

∧{
b′λ | bλ �≤ x

}
.

From these lemmas we can obtain additional results.

Theorem 2. A map L : B → B is an algebraic lower approximation operator if
and only if there exists a relation R on A(B) such that L = R−.

Proof. (⇐=) It is obvious.
(=⇒) At first we shall show that Lx ≤ R−(x). For all a ∈ A(B), assume that

a �≤ R−(x). Since r(a) �≤ x and hence r(a) ∧ x′ �= 0, there is an atom b ∈ A(B)
such that b ≤ r(a) ∧ x′. Since b ≤ x′, we also have x ≤ b′ and Lx ≤ Lb′. On the
other hand, since b ≤ r(a), it follows that aRb and a �≤ Lb′ by definition of R.
Thus

a �≤ Lx.

That is, for all a ∈ A(B), a �≤ R−(x) implies a �≤ Lx. This yields

Lx ≤ R−(x).

Conversely, suppose that a �≤ Lx for all a ∈ A(B). Since x =
∧{

b′λ | bλ �≤ x
}
, we

get that
a �≤ Lx = L

(∧{
b′λ | bλ �≤ x

})
=
∧{

L(b′λ) | bλ �≤ x
}
.

Hence there are bλ ∈ A(B) such that a �≤ L(b′λ) and bλ �≤ x. It follows from
definition of R that aRbλ. Since bλ ≤ r(a), there exists bλ ∈ A(B) such that
bλ ≤ r(a) and bλ �≤ x. That is, r(a) �≤ x. This implies a �≤ R−(x). Thus for all
a ∈ A(B), we have

a �≤ Lx =⇒ a �≤ R−(x).

From R−(x) ≤ Lx it follows Lx = R−(x).

For ϕ : A(B) → B, three kinds of maps are defined in [7,8]:

ϕ : extensive ⇐⇒ x ≤ ϕ(x)
ϕ : symmetric ⇐⇒ x ≤ ϕ(y) implies y ≤ ϕ(x)

ϕ : closed ⇐⇒ y ≤ ϕ(x) implies ϕ(y) ≤ ϕ(x)

Since x and y are atoms, we see that a symmetric map ϕ can be represented by

ϕ : symmetric ⇐⇒ x ∧ ϕ(y) = 0 iff y ∧ ϕ(x) = 0.

That is, ϕ is self-conjugate in the sense of [1]. Considering the relation between
R and the properties of map ϕ corresponding to the possibility operator in modal
logics, if we define R by

(x, y) ∈ R ⇐⇒ y ≤ ϕ(x),
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then it can be proved that

ϕ : extensive ⇐⇒ R : reflexive
ϕ : symmetric ⇐⇒ R : symmetric

ϕ : closed ⇐⇒ R : transitive

For example, in the case of ϕ being closed, suppose that ϕ is closed and xRy
and yRz. Since y ≤ ϕ(x) and z ≤ ϕ(y), we have ϕ(y) ≤ ϕ(x) by closedness of
ϕ and hence z ≤ ϕ(y) ≤ ϕ(x). Thus we have z ≤ ϕ(x) and so xRz. This means
that R is transitive. Conversely, assume that R is transitive and y ≤ ϕ(x), that
is, xRy. For every u ∈ A(B) such that u ≤ ϕ(y), since yRu and xRy, it follows
that xRu and u ≤ ϕ(x). Thus we have for every u ∈ A(B), if u ≤ ϕ(y) then
u ≤ ϕ(x). This concludes that ϕ(y) ≤ ϕ(x), that is, ϕ is closed.

We note that we do not use the extra assumption of R at all in the proof
of the theorem. This means that if we add the condition to the relation R then
we can prove the corresponding theorem similarly. For example if we want a
theorem in case of a reflexive relation R, then we add the extensive condition
to the operator L. By considering the completeness theorem of modal logics, we
have the following result ([4,9]).

Theorem 3. A map L : B → B satisfying the conditions, respectively,

(L-ext) L : extensive
(L-sym) L : symmetric
(L-clo) L : closed

is an algebraic lower approximation operator if and only if there exists a relation
R on A(B) such that L = R− with the corresponding conditions

(ref) R is reflexive
(sym) R is symmetric
(trans) R is transitive

4 Other Properties

In this last section, we consider problems about the operator R−:

(Q1) When is it finitary ?
(Q2) When does it preserve

∨
?

In general an operator ξ on X is called finitary (cf. [1,2]) if

ξ(A) =
⋃

{ξ(F ) |F is a finite subset of A}.

As to (Q1), we give a definition of the relation R to be locally finite. Let X be a
non-empty set. A relation R on X is called locally finite if R(x) = {y ∈ X |xRy}
is a finite subset of X for every x ∈ X . Then we have an answer to (Q1).
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Theorem 4. R is locally finite if and only if R− is a finitary operator.

Proof. Suppose that R is locally finite. Since R− is order preserving, it is suffi-
cient to show that

R−(A) ⊆
⋃

{R−(B) |B is a finite subset of A}.

Let x ∈ R−(A). If we take B = R(x), then we have x ∈ R−(B) and B is the finite
subset of A. This implies that R−(A) ⊆

⋃
{R−(B) |B is a finite subset of A}.

Conversely, we assume that R− is finitary. Since X = R−(X), we have x ∈
R−(X) for any x ∈ X . There is a finite subset Ax of X such that x ∈ R−(Ax)
and hence R(x) ⊆ Ax. Since Ax is finite, R(x) is also finite for every x ∈ X .
This means that R is locally finite.

It is easy to show that if R is reflexive and transitive then we have

R−(
⋃

R−(Aλ)) =
⋃

R−(Aλ).

But in general, we do not have the property

(α) : R−(
⋃

Aλ) =
⋃

R−(Aλ).

Therefore, it is important to study when the equality holds. This is the question
(Q2). As to the problem we have

Theorem 5. (α) holds if and only if |R(x)| = 1 for every x ∈ X, that is, R is
a function.

Proof. We assume that (α) holds. If xRy and xRz, since x ∈ R−({y, z}) =
R−(y)∪R−(z), we have x ∈ R−(y) or x ∈ R−(z). If x ∈ R−(y), since xRz, then
we have z ∈ {y}, that is, z = y. The other case is similar. Thus we have y = z.
This implies that R is the function.

Conversely, we suppose that R is the function. In this case we have

R−(
⋃

Aλ) ⊆
⋃

R−(Aλ).

Otherwise, there is an element x ∈ R−(
⋃
Aλ) but x �∈

⋃
R−(Aλ). Thus, for

every λ ∈ Λ, there is an element yλ such that

xRyλ and yλ �∈ Aλ.

By assumption, we can choose an element t which is independent of λ ∈ Λ such
that

xRt but t �∈ Aλ for every λ ∈ Λ.

Hence, for the element t, we have xRt but t �∈
⋃
Aλ and

x �∈ R−(
⋃

Aλ).

This is a contradiction. Thus, we can conclude that R−(
⋃
Aλ) ⊆

⋃
R−(Aλ).

The converse inclusion is obvious, so we get that

(α) : R−(
⋃

Aλ) =
⋃

R−(Aλ).
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5 Conclusion

In this paper, we introduce the notion of generalized algebraic lower (upper)
approximation operator and give its characterization theorem. It is shown that
for any atomic complete Boolean algebra B with the set A(B) of atoms, a map
L : B → B is an algebraic lower approximation operator if and only if there
exists a binary relation R on A(B) such that L = R−. Moreover we consider the
relationships between modal logic and algebraic lower approximation operator
with additional properties. Final, we give answers to the questions (1) when is
the operator R− finitary? and (2) when does it preserve sup?

The results presented in this paper would provide more insights into and a
full understanding of approximation operators in rough set theory.
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Abstract. Many researchers study rough sets from the point of view
of description of the rough set pairs(a rough set pair is also called a
rough set), i.e. <lower approximation set, upper approximation set>. An
important result is that the collection of rough sets of an approximation
space can be made into a regular double Stone algebra. In this paper,
a logic for rough sets, i.e., the sequent calculus corresponding to rough
double Stone algebra, is proposed. The syntax and semantics are defined.
The soundless and completeness are proved.

1 Introduction

Rough set theory was introduced by Pawlak [12] to account for the definability
of a concept with an approximation in an approximation space (U, R), where
U is a set, and R is an equivalence relation on U. It captures and formalizes
the basic phenomenon of information granulation. The finer the granulation is,
the more concepts are definable in it. For those concepts not definable in an
approximation space, their lower and upper approximations can be defined.

Lin and Liu [9] replaced equivalence relation with arbitrary binary relation,
and the equivalence classes are replaced by neighborhood at the same time.
By means of the two replacements, they defined more general approximation
operators. Yao [16] interpreted Rough set theory as an extension of set theory
with two additional unary set-theoretic operators referred to as approximation
operators. Such an interpretation is consistent with interpreting modal logic
as an extension of classical two-valued logic with two added unary operators.
Based on atomic Boolean lattice, Jarvinen [8] proposed a more general framework
for the study of approximation. Dai [3]introduced molecular lattices into the
research on rough sets and constructed structure of rough approximations based
on molecular lattices.

At the same time, researchers also study rough sets from the point of view of
description of the rough set pairs, i.e. <lower approximation set, upper approxi-
mation set>. Iwiński [7] suggested a lattice theoretical approach. Iwiński’s aim,
which was extended by J. Pomykala and J. A. Pomykala [13] later, was to endow
the rough seubsets of U with a natural algebraic structure. In [5], Gehrke and
Walker extended J. Pomykala and J. A. Pomykala’s work in [13] by proposing

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 141–148, 2005.
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a precise structure theorem for the Stone algebra of rough sets which is in a
setting more general than that in [13]. J. Pomykala and J. A. Pomykala’s work
was also improved by Comer [2] who noticed that the collection of rough sets
of an approximation space is in fact a regular double Stone algebra when one
introduced another unary operator, i.e. the dual pseudo-complement operator.
In [10], Pagliani investigated rough set systems within the framework Nelson
algebras under the assumption of a finite universe. Banerjee and Chakraborty
[1] used pre-rough algebras adding some structure topological quasi-Boolean al-
gebras. In [6], Iturrioz presented some strong relations between rough sets and
3-valued �Lukasiewicz algebras.Under some conditions, rough sets of an approx-
imation can be interpreted as 3-valued Post algebras. Pagliani also studied the
relations between rough sets and 3-valued structures in [11] based on the as-
sumption of finite universe. In fact, a regular double Stone algebra is a 3-valued
�Lukasiewicz algebra, a semi-simple Nelson algebra or a co-Heyting algebra. So,
the work of Comer [2] are found to be quite significant in the studies of Rough
set theory.

The algebras mentioned above all have rough sets as their models. They
can be called rough algebras. The search for relationship between logic and
algebra goes back to the inventions of Boole and his follows [14]. Those inves-
tigations yielded what we now call Boolean algebra. The close links between
classical logic and the theory of Boolean algebras has been known for a long
time. Consequently, a question naturally arose: what are the logics that corre-
spond to rough algebras? Düntsch [4] presents a logic corresponding to regular
double Stone algebras. The interconnections between the logic and regular dou-
ble Stone algebras was discussed, but the logic itself including axioms, inference
rules, soundness and completeness were not discussed. More important, the logic
is Hilbert-type. Banerjee and Chakraborty [1] presented a logical system corre-
sponding pre-rough algebra. The logic is Hilbert-type formulations with axioms
and rules of inference. Sen and Chakraborty [15] proposed sequent calculi for
topological quasi-Boolean algebras and pre-rough algebras.

In this paper, we intend to study the logical system for rough sets as double
Stone algebraic semantics. Based on the work of Comer [2], the collection of
all the rough sets for a given approximation space can be made into a regular
double Stone algebra, called rough double Stone algebra in this paper. In the
present work, a logic for rough sets, i.e., the sequent calculus corresponding to
rough double Stone algebra, is proposed and studied. The language, axioms and
rules are presented. The soundness and completeness of the logic are proved.

2 Definitions and Notations

Let (U, R) be an approximation space, where U is the universe and R is an
equivalence relation on U. With each approximation space (U, R), two operators
on P(U) can be defined. For any X ⊆ U , then the lower approximation of X
and the upper approximation of X are defined as:

R−(X) =
⋃

{[X ]R|[X ]R ⊆ X} (1)
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R−(X) =
⋃

{[X ]R|[X ]R ∩X �= ∅} (2)

The pair < R−(X), R−(X) > is called a rough set. X is termed definable set(also
termed exact set) in approximation space (U, R) if and only if R−(X) = R−(X).
For the sake of simplicity, the lower approximation and upper approximation are
also denoted as X and X respectively. In this paper, we denote the collection of
all rough sets of an approximation (U,R) as RS(U).

Definition 1. A structure (L,∨,∧,∗ ,+ , 0, 1) is a regular double Stone algebra if

1. (L,∨,∧,∗ ,+ 0, 1) is a lattice with least element 0 and greatest element 1;
2. ∀x ∈ L there is an element x∗, for any y ∈ L satisfying

x ∧ y = 0 iff y ≤ x∗;

3. ∀x ∈ L there is an element x, for any y ∈ L satisfying

x ∨ y = 1 iff x+ ≤ y;

4. ∀x ∈ L, x∗ ∨ x∗∗ = 1, x+ ∧ x++ = 0;
5. x∗ = y∗ and x+ = y+ imply x = y.

The element x∗ is termed pseudo-complement of x, x+ is termed dual pseudo-
complement of x. The structure L satisfying the conditions 1-4 is called a double
Stone algebra. It is called regular, if it additionally satisfies the condition 5. In
fact,the condition 5 is equivalent to

x ∧ x+ ≤ x ∨ x∗.

It was shown by J. Pomykala and J. A. Pomykala [13] that the collection of
all rough sets of (U,R), denoted as RS(U), can be made into a Stone algebra
expressed as (RS(U),⊕,⊗,∗ , < ∅, ∅ >,< U,U >). The work of J. Pomykala and
J. A. Pomykala was improved by Comer [2] who noticed that RS(U) is in fact
a regular double Stone algebra expressed as:

(RS(U),⊕,⊗,∗ ,+ , < ∅, ∅ >,< U,U >),

where < ∅, ∅ > is the least element and < U,U > is the greatest element. The
union operator ⊕, join operator ⊗, pseudo-complement operator ∗ and the dual
pseudo-complement operator + are defined as following:

< X,X > ⊕ < Y , Y >=< X ∪ Y ,X ∪ Y > (3)

< X,X > ⊗ < Y , Y >=< X ∩ Y ,X ∩ Y > (4)

< X,X >∗=< U −X,U −X >=< (X)c, (X)c > (5)

< X,X >+=< U −X,U −X >=< (X)c, (X)c > (6)

Proposition 1. [2] A rough double Stone algebra (RS(U),⊕,⊗,∗ ,+ , < ∅, ∅ >,
< U,U >)is a regular double Stone algebra. Conversely, each regular double
Stone algebra is isomorphic to subalgebra of RS(U) for some approximation
space (U,R).
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3 Logic with Rough Double Stone Algebraic Semantics

Motivated by the background described in the preceding section, we propose
here a Logic for Rough sets with Double Stone algebraic semantics, i.e., the
sequent calculus corresponding to rough double Stone algebra. We denote this
logic as RDSL.

Expressions of the language of the logic RDSL are built from the symbols
of the following disjoint sets:

– VAR: prepositional variables p, q, !‘!‘
– Connectives: two binary connectives ∨,∧, which represent join and union;

two unary connectives ∼,¬,which represent pseudo-negation and dual
pseudo-negation.

– Constants: /,⊥ mean true and false.
– Brackets: ( , )

The set WFF of all wffs of RDSL is defined by the familiar method.

The semantics of the logic is defined as follows:

Definition 2. A rough double Stone algebra model or r2S model is a rough
double Stone algebra equipped with a meaning function m based on v : V AR →
P(U), called the valuation function, for which for all p ∈ V AR,

v(p) =< A,B >∈ RS(U) (7)

The meaning function m : WFF → P(U) extends the evaluation v to arbitrary
wffs as follows:

a) m(⊥) =< ∅, ∅ >
b) m(/) =< U,U >

For each p ∈ V AR, we get
c) m(p) = v(p)

For p, q ∈ WFF , we have
d) m(p ∧ q) = m(p) ⊗ (q)
e) m(p ∨ q) = m(p) ⊕ (q)
f) m(∼ p) = m(p)∗

g) m(¬p) = m(p)+

Definition 3. By a sequent we mean an expression of the form Γ ⇒ Δ, where
Γ and Δ are multisets of formulas.

Definition 4. Let Γ is p1, p2, ......, pm and Δ is q1, q2, ......, qn, then sequent Γ ⇒
Δ is said to be valid in a r2S model M,denoted as |=M Γ ⇒ Δ, if and only if

m(p1) ⊗ ...⊗ m(pm) ≤ m(q1) ⊕ ...⊕ m(qn)

which can be written as m(Γ ) ≤ m(Δ). Γ ⇒ Δ is said to be valid, denoted as
|= Γ ⇒ Δ, if Γ ⇒ Δ is valid in every r2S model M.
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Lemma 1. Let p, q ∈ WFF,m(p) =< A,B >,m(q) =< C,D >, then the
sequent p ⇒ q is valid if and only if A ⊆ C and B ⊆ D.

Now, we state the axioms and rules of RDSL in the following.

Axiom schemes:
(A1)p ⇒ p

(A2)p ⇒∼∼ p

(A3)∼ p ⇒∼∼∼ p

(A4)¬¬p ⇒ p

(A5)¬¬¬p ⇒ ¬p
We should notice that ∼ and ¬ are not standard negation connectives. They

can be called pseudo-negation connective and dual pseudo-negation connective
respectively.

Rules of inference:

(Cut)
Γ ⇒ p,Δ Γ ′, p ⇒ Δ′

Γ, Γ ′ ⇒ Δ,Δ′

(Rule∼)
Γ ⇒ Δ

∼ Δ ⇒∼ Γ

(Rule¬)
Γ ⇒ Δ

¬Δ ⇒ ¬Γ

(LW)
Γ ⇒ Δ

Γ, p ⇒ Δ

(RW)
Γ ⇒ Δ

Γ ⇒ p,Δ

(LC)
Γ, p, p ⇒ Δ

Γ, p ⇒ Δ

(RC)
Γ ⇒ p, p,Δ

Γ ⇒ p,Δ

(L∨)
Γ, p ⇒ Δ Γ ′, q ⇒ Δ′

Γ, Γ ′, p ∨ q ⇒ Δ,Δ′

(R∨)
Γ ⇒ p, q, Δ

Γ ⇒ p ∨ q, Δ

(L∧)
Γ, p, q ⇒ Δ

Γ, p ∧ q ⇒ Δ

(R∧)
Γ ⇒ p,Δ Γ ′ ⇒ q, Δ′

Γ, Γ ′ ⇒ p ∧ q, Δ,Δ′

(L⊥)Γ,⊥ ⇒ Δ

(R/)Γ ⇒ /, Δ
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∼ Γ is ∼ p1,∼ p2, ·, pm when Γ is p1, p2, ·, pm. A similar convention is adopted
for∼ Δ. ¬Γ is ¬p1,¬p2, ·, pm when Γ is p1, p2, ·, pm. A similar convention is
adopted for ¬Δ.

Remark 1. 0RDSL Γ ⇒ Δ will denote that Γ ⇒ Δ is a theorem of RDSL. If
there is no risk of confusion,0RDSL Γ ⇒ Δ is written as 0 Γ ⇒ Δ.

Theorem 1 (Soundness). If 0 Γ ⇒ Δ in RDSL, then Γ ⇒ Δ is valid in
every r2S-model, i.e. |=M Γ ⇒ Δ.

Proof. In order to prove the soundness of a logical system, it is necessary to
prove validity of the axioms and that the rules preserve validity. Here, we just
prove the validity of Axioms (A2),(A4) and that the rules (Cut),(Rule¬),(L∨)
preserve validity. Other axioms and rules can be proved similarly.

(A2). Let m(p) =< A,B >, then we can get the following by definition
of meaning function m(∼∼ p) =< A,B >∗∗=< B,B >.For A ⊆ B, (A2) is
straightforwardly obtained from Lemma 1.

(A4). Let m(p) =< A,B >, then we can get the following by definition of
meaning function m(¬¬p) =< A,B >++=< A,A >.For A ⊆ B, (A4) is also
straightforwardly obtained from Lemma 1.

(Cut). Let Γ ⇒ p,Δ and Γ ′, p ⇒ Δ′ be valid. The validity of Γ ⇒ p,Δ
means m(Γ ) ≤ m(Δ)⊕m(p). Let m(p) =< A,B >,m(Γ ) =< E,F >,m(Δ) =<
G,H >,m(Γ ′) =< I, J >,m(Δ′) =< P,Q >, then we know E ⊆ A∪G. It means

E ∩ I ⊆ (I ∩A) ∪ (G ∩ I) (8)

From the validity of Γ ′ ⇒ Δ′, we can get

I ∩A ⊆ P (9)

From (8) and (9), we get E ∩ I ⊆ G∪P . Similarly, we can prove F ∩J ⊆ H ∪Q.
Consequently, m(Γ ) ⊗ m(Γ ′) ≤ m(Δ) ⊕ m(Δ′), which means Γ, Γ ′ ⇒ Δ,Δ′

(Rule¬). Let Γ ⇒ Δ be valid. The validity of Γ ⇒ Δ means m(Γ ) ≤ m(Δ).
Let m(Γ ) =< E,F >,m(Δ) =< G,H >. By hypothesis, E ⊆ G. It is obvious
that Gc ⊆ Ec. Consequently, m(¬Δ) ≤ m(¬Γ ), which means ¬Δ ⇒ Γ .

(L∨). Let Γ, p ⇒ Δ and Γ ′, q ⇒ Δ′ be valid. That mean m(Γ )⊗m(p) ≤ m(Δ)
and m(Γ ′) ⊗ m(q) ≤ m(Δ′). Let m(p) =< A,B >,m(q) =< C,D >,m(Γ ) =<
E,F >,m(Δ) =< G,H >,m(Γ ′) =< I, J >,m(Δ′) =< P,Q >, then we know

A ∩ E ⊆ G (10)

I ∩ C ⊆ P (11)

From (10), we know A ∩ E ∩ I ⊆ G ∩ I. From (11), we get I ∩ C ∩ E ⊆ P ∩ E.
Consequently,

(A ∩ E ∩ I) ∪ (I ∩ C ∩ E) ⊆ (G ∩ I) ∪ (P ∩ E) ⊆ G ∪ P
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Then we get
E ∩ I ∩ (A ∪ C) ⊆ G ∪ P (12)

Similarly, we can get
F ∩ J ∩ (B ∪ D) ⊆ H ∪ Q (13)

From (12),(13) we know m(Γ )⊗m(Γ ′)⊗m(p∨q) ≤ m(Δ)⊕m(Δ′), which means
Γ, Γ ′, p ∨ q ⇒ Δ,Δ′.

By the validity of axioms and preserving validity of rules, mathematical in-
duction is used on the depth of derivation of the sequent, then the soundness
can be proved. 	


Theorem 2 (Completeness). If Γ ⇒ Δ is valid in every r2S-model, i.e.,|=M

Γ ⇒ Δ, then 0 Γ ⇒ Δ in RDSL.

Proof. In order to prove completeness of a system, we first construct the corre-
sponding Lindenbaum algebra. A relation ≈ is defined on the set WFF by the
following:

p ≈ q if and only if 0 p ⇒ q and 0 q ⇒ p

We can prove that ≈ is a congruence relation. The quotient algebra is then
formed in the usual way with the equivalence class [p] for each well-formed
formula p. Moreover, the relation ≤ on WFF/≈ defined by the equivalence

[p] ≤ [q] if and only if 0 p ⇒ q in RDSL

is an partial order on WFF/≈.
Then it is shown that the Lindenbaum algebra along with the canonical

valuation is a model for RDSL. This proves completeness, since if |= Γ ⇒ Δ,
it holds in (WFF/≈,≤) with the canonical valuation. Thus [Γ ] ≤ [Δ] which
implies 0 Γ ⇒ Δ in RDSL. 	


4 Conclusion

In this paper, we propose a logic RDSL for rough sets, i.e., the sequent calculus
corresponding to rough double Stone algebra. The syntax and semantics are de-
fined. The soundless and completeness are proved. A rough double Stone algebra
is in fact a regular double Stone algebra. Conversely, Comer [2] has proved that
any regular double Stone algebra is isomorphic to a subalgebra of some rough
double Stone algebra. As well known, a regular double Stone algebra is equiva-
lent to a 3-valued �Lukasiewicz algebra. So, we suppose that RDSL is equivalent
to the calculus with 3-valued �Lukasiewicz algebra models. In our future work,
we will check this suppose.
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Abstract. In the paper a greedy algorithm for construction of partial
tests is considered. Bounds on minimal cardinality of partial reducts are
obtained. Results of experiments with software implementation of the
greedy algorithm are described.

Keywords: partial cover, partial test, partial reduct, greedy algorithm.

1 Introduction

Let T be a decision table in which each column is labeled by an attribute and
each row is labeled by a decision. It is possible that equal rows have different
decisions. So we consider not only crisp but also rough decision tables [5].

A test is a subset of the set of attributes (columns) of the table which separate
all pairs of different rows with different decisions. A reduct is a test such that
each proper subset of this test is not a test.

A partial test is an arbitrary subset U of the set of attributes. Let a be the
number of unordered pairs of different rows from T with different decisions, and
b be the number of unordered pairs of different rows with different decisions
which can be separated by attributes from U . The number γ(U) = 1 − b/a is
called the inaccuracy of the partial test U . A partial test U is called a partial
reduct if for each proper subset V of the set U the inequality γ(V ) > γ(U) holds.
It is clear that for each partial test U there exists a partial reduct V such that
V ⊆ U and γ(V ) = γ(U). So if we have a partial test U then it is not difficult to
construct (by removal of some attributes from U) a partial reduct V such that
γ(V ) = γ(U) and |V | ≤ |U |.

The consideration of partial reducts and tests is justified in the case when
the aim of decision table investigation is the discovery of new knowledge [6]. If
a given decision table contains a noise then the construction of an exact reduct
may be excessive. On the other hand, if we will try to discover knowledge based
on obtained set of attributes, it will be more convenient for us to work with
smaller set.

The notions of partial test and partial reduct, considered in this paper, are
very close to the notion of approximate reduct introduced by Z. Pawlak in [5],

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 149–155, 2005.
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where he wrote that ”the idea of an approximate reduct can be useful in cases
when a smaller number of condition attributes is preferred over accuracy of
classification”.

H.S. Nguyen and D. Ślȩzak in [4] proved that for each α, 0 ≤ α < 1, the
problem of construction of a partial reduct with minimal cardinality, which in-
accuracy is at most α, is NP-hard (see full proof in [9]). Similar result for partial
covers was obtained by D. Ślȩzak in [8].

In [3] we have considered a greedy algorithm for partial test and reduct
construction for crisp decision tables, and some bounds on minimal cardinality
of partial reducts. In this paper we generalize results from [3] on the case of
rough decision tables and obtain two new lower bounds.

We consider a greedy algorithm that for a given decision table and a given
α, 0 ≤ α < 1, constructs a partial test which inaccuracy is at most α. Denote
by Rmin(α) the minimal cardinality of a partial test which inaccuracy is at most
α. It is clear that Rmin(α) is the minimal cardinality of a partial reduct which
inaccuracy is at most α. Denote by Rgreedy(α) the cardinality of the partial test
constructed by greedy algorithm. Denote by P the number of unordered pairs
of different rows with different decisions.

The considered greedy algorithm allows obtain not only upper bound on the
value Rmin(α) of the kind Rmin(α) ≤ Rgreedy(α) but also some lower bounds on
the value Rmin(α).

Based on results of P. Slav́ık from [6] we conclude that if 1P (1 − α)2 ≥ 2
then

Rgreedy(α) < Rmin(α) (ln 1P (1 − α)2 − ln ln 1P (1 − α)2 + 0.78) .

We can use this inequality to obtain a lower bound on Rmin(α) (see Propo-
sition 10 in Sect. 3). For example, if Rgreedy(0.1) = 90 and P = 100 then
Rmin(0.1) ≥ 24. Unfortunately, the considered bound depends on the value P . If
Rgreedy(0.1) = 90 and P = 1000 then we obtain the bound Rmin(0.1) ≥ 16 only.

Based on results from [2] we conclude that for any β, 0 < β ≤ α < 1, the
inequality

Rgreedy(α) ≤ Rmin(α− β) ln β−1 + 1

holds. We can use this inequality to obtain a lower bound on Rmin(α − β)
which will not depend on P (see Proposition 11 in Sect. 3). For example, if
Rgreedy(0.1) = 90 then Rmin(0.05) ≥ 30.

The third type of lower bounds, considered in this paper, can be found in
Sect. 3 (see Proposition 12).

The paper consists of four sections and conclusion. In the second section
we consider greedy algorithm for partial cover construction, some results from
[1,2,3,6] and two further lower bounds on minimal cardinality of partial cover.
Based on these results, in the third section we study greedy algorithm for partial
test construction. In the fourth section we describe results of some experiments
with software implementation of greedy algorithm for partial test construction.
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2 Greedy Algorithm for Partial Cover Construction

Let A be a nonempty finite set and S be a family of subsets of A such that⋃
B∈S B = A. Let Q = {B1, . . . , Bt} be a subfamily of S. Denote γ(Q) =

1−|B1 ∪ . . . ∪Bt| / |A|. The subfamily Q will be called a partial cover of the set
A, and the number γ(Q) will be called the inaccuracy of this partial cover. The
number t will be called the cardinality of the partial cover Q.

Let α be a real number and 0 ≤ α < 1. Denote by Cmin(α) the minimal
cardinality of a partial cover which inaccuracy is at most α.

Consider greedy algorithm constructing a partial cover which inaccuracy is at
most α. In the family S we choose a set B1 with maximal cardinality, and include
the set B1 into originating partial cover. If γ({B1}) ≤ α then we finish the work
of our algorithm. Otherwise, in the family S we choose a set B2 such that the
cardinality of B2 \B1 is maximal, and include the set B2 into originating partial
cover. If γ({B1, B2}) ≤ α then we finish the work of our algorithm. Otherwise,
in the family S we choose a set B3 such that the cardinality of B3 \ (B1 ∪ B2)
is maximal, and include the set B3 into originating partial cover, etc.

Denote by Cgreedy(α) the cardinality of the partial cover constructed by the
considered algorithm. It is clear that the inaccuracy of this partial cover is at
most α. Denote by N the cardinality of the set A.

The following statement was obtained by P. Slav́ık in [7].

Proposition 1. Let α be a real number, 0 ≤ α < 1 and 1N(1 − α)2 ≥ 2. Then

Cgreedy(α) < Cmin(α) (ln 1N(1 − α)2 − ln ln 1N(1 − α)2 + 0.78) .

In [1] it was proved that Cgreedy(α) < Cmin(0) lnα−1 + 1 if Cgreedy(α) > 1.
The following statement was obtained in [2].

Proposition 2. Let β be a real number and 0 < β ≤ α < 1. Then

Cgreedy(α) ≤ Cmin(α− β) lnβ−1 + 1 .

It is possible to use the considered greedy algorithm not only for partial
cover construction but also for obtaining of lower and upper bounds on the
value Cmin(α).

Let us apply the greedy algorithm with parameter α = 0 to the set A and
the family S. This algorithm will choose sequentially subsets B1, . . . , Bm from
S such that γ({B1, . . . , Bm}) = 0. Denote Q0 = ∅ and for i = 1, . . . ,m denote
Qi = {B1, . . . , Bi}. For i = 0, . . . ,m denote γi = γ(Qi). It is clear that

0 = γm < γm−1 < . . . < γ0 = 1 .

The following upper bound on Cmin(α) is obvious and was mentioned in [3].

Proposition 3. Let α be a real number, 0 ≤ α < 1, and k be the number from
{1, . . . ,m} such that γk ≤ α < γk−1. Then

Cmin(α) ≤ k .
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The next lower bound on Cmin(α) follows from Proposition 1.

Proposition 4. Let α be a real number, 0 ≤ α < 1, 1N(1 − α)2 ≥ 2 and k be
the number from {1, . . . ,m} such that γk ≤ α < γk−1. Then

Cmin(α) > k/ (ln 1N(1 − α)2 − ln ln 1N(1 − α)2 + 0.78) .

The following lower bound on Cmin(α) was proved in [3].

Proposition 5. Let α be a real number, 0 ≤ α < 1, k be the number from
{1, . . . ,m} such that γk ≤ α < γk−1 and k ≥ 3. Then

Cmin(α) ≥ max
{
(j − 1)/ ln(γj − α)−1 : j = k − 1, . . . , 2

}
.

Let us prove one more lower bound on Cmin(α).

Proposition 6. Let α be a real number, 0 ≤ α < 1, and k be the number from
{1, . . . ,m} such that γk ≤ α < γk−1. Then

Cmin(α) ≥ max {(γi − α)/(γi − γi+1) : i = k − 1, . . . , 0} .

Proof. Let i ∈ {k−1, . . . , 0}. Let Q = {Br1 , . . . , Brt} be a subfamily of the family
S such that γ(Q) ≤ α and t = Cmin(α). Denote D = Br1 ∪ . . . ∪ Brt . Denote
B = B1∪ . . .∪Bi (if i = 0 then B = ∅). It is clear that

∣∣Brj \B
∣∣ ≤ |A| (γi−γi+1)

for j = 1, . . . , t. Therefore |D| ≤ |B| + |A| (γi − γi+1)t. Since γ(Q) ≤ α, we have
1−|D| / |A| ≤ α and 1−α ≤ |D| / |A|. Hence 1−α ≤ |D| / |A| ≤ |B| / |A|+(γi −
γi+1)t. Since γi = 1 − |B| / |A|, we have 1 − α ≤ 1 − γi + (γi − γi+1)t. Therefore
t ≥ (γi − α)/(γi − γi+1). 	


3 Greedy Algorithm for Partial Test Construction

A decision table is a rectangular table T with n columns labeled by attributes
f1, . . . , fn. Rows of T are labeled by decisions.

Denote by P (T ) the set of unordered pairs of different rows from T with
different decisions. For i = 1, . . . , n denote by Pi the set of pairs from P (T )
such that rows from the considered pair are different in the column fi. Denote
S(T ) = {P1, . . . ,Pn}.

Denote F (T ) = {f1, . . . , fn}. A subset U = {fi(1), . . . , fi(t)} of the set F (T )
will be called a partial test for the table T , and the number γ(U) = 1 − |Pi(1) ∪
. . .∪Pi(t)|/|P (T )| will be called the inaccuracy of this partial test. A partial test
U for the table T will be called a partial reduct for the table T if for each subset
V of the set U such that V �= U the inequality γ(V ) > γ(U) holds. It is clear
that for each partial test U there exists a partial reduct V such that V ⊆ U and
γ(V ) = γ(U).

Let α be a real number and 0 ≤ α < 1. Denote by Rmin(α) the minimal
cardinality of a partial test which inaccuracy is at most α. It is clear that the
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number Rmin(α) coincides with the minimal cardinality of a partial reduct which
inaccuracy is at most α.

We can use greedy algorithm, described in the previous section, for con-
struction of partial tests. Let us apply greedy algorithm with the parameter
α to the set cover problem defined by the set P (T ) and the family S(T ). Let
{Pi(1), . . . ,Pi(t)} be the result of the considered algorithm work. Then {fi(1), . . . ,
fi(t)} is a partial test for the table T which inaccuracy is at most α. Of course,
by removal of some attributes from this partial test it is easy to obtain a partial
reduct which inaccuracy is at most α.

Denote by Rgreedy(α) the cardinality of the partial test constructed by the
considered algorithm. The next statement follows immediately from Proposi-
tion 1.

Proposition 7. Let α be a real number, 0 ≤ α < 1 and 1|S(T )| (1 − α)2 ≥ 2.
Then

Rgreedy(α) < Rmin(α) (ln 1|S(T )| (1 − α)2 − ln ln 1|S(T )| (1 − α)2 + 0.78) .

From Proposition 2 the next statement follows.

Proposition 8. Let β be a real number and 0 < β ≤ α < 1. Then

Rgreedy(α) ≤ Rmin(α− β) ln β−1 + 1 .

We will use the considered algorithm not only for partial test construction
but also for obtaining of lower and upper bounds on the value Rmin(α).

Let us apply the greedy algorithm for partial cover construction with parame-
ter α = 0 to the set P (T ) and the family S(T ). This algorithm will choose sequen-
tially subsets {Pi(1), . . . ,Pi(m)} from S(T ) such that γ({Pi(1), . . . ,Pi(m)}) = 0.
Denote Q0 = ∅ and for j = 1, . . . ,m denote Qj = {Pi(1), . . . ,Pi(j)}. For j =
0, . . . ,m denote γj = γ(Qj). It is clear that

0 = γm < γm−1 < . . . < γ0 = 1 .

The following statement is obvious.

Proposition 9. Let α be a real number, 0 ≤ α < 1, and k be the number from
{1, . . . ,m} such that γk ≤ α < γk−1. Then

Rmin(α) ≤ k .

Next statement follows immediately from Proposition 4.

Proposition 10. Let α be a real number, 0 ≤ α < 1, 1|S(T )| (1 − α)2 ≥ 2 and
k be the number from {1, . . . ,m} such that γk ≤ α < γk−1. Then

Rmin(α) > k/ (ln 1|S(T )| (1 − α)2 − ln ln 1|S(T )| (1 − α)2 + 0.78) .

Next statement follows immediately from Proposition 5.
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Proposition 11. Let α be a real number, 0 ≤ α < 1, k be the number from
{1, . . . ,m} such that γk ≤ α < γk−1 and k ≥ 3. Then

Rmin(α) ≥ max
{
(j − 1)/ ln(γj − α)−1 : j = k − 1, . . . , 2

}
.

Using Proposition 6 we obtain the following statement.

Proposition 12. Let α be a real number, 0 ≤ α < 1, and k be the number from
{1, . . . ,m} such that γk ≤ α < γk−1. Then

Rmin(α) ≥ max {(γi − α)/(γi − γi+1) : i = k − 1, . . . , 0} .

4 Results of Experiments

In this section we consider results of some experiments with software in Java
which implements greedy algorithm for partial test construction and allows to
obtain upper and lower bounds on the value Rmin(α) mentioned in Propositions
9 – 12.

We performed experiments with artificial rough and crisp decision tables
containing from 100 to 5000 objects (rows). Each table contains 30 conditional

Table 1. Cardinalities of partial tests for given inaccuracies and given number of rows

Number Inaccuracy
of 0.1 0.01 0.0
rows min avg max min avg max min avg max
100 4.0 4.0 4.0 6.0 6.55 7.0 9.0 9.6 11.0
500 4.0 4.0 4.0 7.0 7.0 7.0 13.0 14.2 15.0
1000 4.0 4.0 4.0 7.0 7.0 7.0 16.0 16.45 17.0
2500 4.0 4.0 4.0 7.0 7.0 7.0 19.0 19.35 20.0
5000 4.0 4.0 4.0 7.0 7.0 7.0 21.0 21.5 22.0

 0

 5

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Upper Bound
Lower Bound

Fig. 1. Upper and lower bounds on
the value Rmin(α) for a table with 4000
rows

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Bound from Proposition 10
Bound from Proposition 11
Bound from Proposition 12

Fig. 2. Three different lower bounds
on the value Rmin(α) for a table with
4000 rows



On Partial Tests and Partial Reducts for Decision Tables 155

attributes and one decision attribute. All conditional attributes have binary val-
ues. Decision attribute has 10 values. Each value is equally probable. For each
number of rows we performed 20 experiments. In Table 1 we present minimal, av-
erage and maximal cardinalities of partial tests constructed by greedy algorithm
with inaccuracies equal to 0.1, 0.01 and 0.

In Fig. 1 we show upper and lower bounds on minimal cardinality of partial
tests and reducts for a decision table containing 4000 rows. For this table the
cardinality of exact test (test with inaccuracy 0) constructed by greedy algorithm
equals to 21. The value of lower bound is taken as function ”12” of highest of the
three presented lower bound estimations.

In Fig. 2 we show three different lower bounds obtained for the same table.

5 Conclusion

In the paper a greedy algorithm for construction of partial tests is considered.
This algorithm can be useful in such applications of rough set theory where we
look at constructed partial tests and partial reducts as on a way of knowledge
representation.
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Abstract. In practice, many datasets are shared among multiple
users. However, different users may desire different knowledge from the
datasets. It implies that we need to provide a specification which mines
different solutions from the dataset according to the semantic of require-
ments. Attribute order is a better approach to describing the semantic.
A reduct algorithm based on attribute order has been presented in [1].
Because of its completeness for reduct and its unique output for a given
attribute order, this algorithm can be regarded as a mapping from the
attribute orders set to the reducts set. This paper investigates the struc-
ture of attribute orders set for the reduct. The second attribute theorem,
which can be used to determine the range of attribute orders with the
same reduct for a given attribute order, has been proved in [2]. Conse-
quently, key to use the second attribute theorem is how to find the second
attributes with the largest subscript for application in an efficient way.
This paper therefore presents a method based on the tree expression to
fulfill the above task.

Keywords: reduct, attribute order, second attribute, discernibility ma-
trix, tree expression.

1 Introduction

In practice, a dataset is often shared by many users with different requirement.
It implies that we need to provide a specification on the semantic of users’
requirements in order to mine the solutions that meet their requirements from
the dataset. Attribute order is a better approach to describing semantics. A
reduct algorithm based on attribute order has been presented in [1]. Due to its
completeness for the reduct and its unique output for a given attribute order,
this algorithm can be regarded as a mapping from the set of attribute orders
to the set of reducts, namely, R=reduct(S) where R is the reduct for attribute
order S. Since obviously it’s not a one-to-one mapping, there rise questions such
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as whether its inverse mapping S=reduct(R) can be formally expressed; which
attribute orders respond to the same reduct and whether there is any criterion for
judgment of two different orders with the same reduct. To clarify these questions,
we analyzed the relation between reducts and attribute orders and then presented
the notion second attribute and proved the second attribute theorem in [2].

The proof of the second attribute theorem was based on discernibility matrix
[6], thus the algorithm it implied has a time complexity of O(n2×m). Since most
information systems have more objects than attributes (n 3 m), an algorithm
of complexity O(n × m2) was designed and proven equivalent with the second
attribute algorithm implied by the second attribute theorem.

The aim of this paper is to present an integrated description for second at-
tribute and its functions, so proof for the results obtained in [2] is omitted whereas
proofs for some new results are given.

2 The Reduct Algorithm Based on Attribute Order [1]

Given an information system 〈U,C∪D〉 (U is the universe and C is the condition
attribute set), if ≺ is the total relation over C, S : a1 ≺ a2 ≺ · · · ≺ am is called
an attribute order. Let S,H be two attribute orders over C, for any attribute
aj(aj ∈ C) in S, there must be an attribute bk in H such that aj = bk. It is
obvious that there are many rules that can transform attribute order S into H
within limited times.

Assume M be the discernibility matrix of a given information system 〈U,C∪
D〉, Card(C) = m and S be an attribute order over C. ∀δ ∈ M , the attributes of
discernibility elements δ inherit attribute order S from left to right, i.e., δ = aB,
where a ∈ C and B ⊂ C − {a} (”a ” is the first attribute of δ by S, called the
label attribute of δ). Then the set below

{δ|δ = aB, δ inherit the attribute order S from left to right, δ ∈ M} (1)

is an equivalent relation defined on discernibility matrix M for attribute order
S. Denoted as L(S), it partitions M into equivalence classes, namely M/L(S) =
{[1]S, [2]S , · · · , [k]S}, where [x]S = {δ|δ = axB, δ ∈ M, δ inherit attribute orderS
from left to right} is the xth equivalence class of M in S.

Suppose N be the maximal subscript of non-empty equivalence classes in
M/L(S), N ≤ Card(C) and aN is the label attribute of non-empty equivalence
class [N ]S = {δ|δ = aNB, δ ∈ M}. The largest subscript can be expressed as
max{[M/L(S)]}. Here {[M/L(S)]} is the subscript set of the label attributes of
all the non-empty equivalence classes in M/L(S). The reduct algorithm based
on attribute order is demonstrated as follows. At the beginning, R = ∅.

Algorithm 1
(1). Let aN be a reduct attribute, R = R ∪ {aN};
(2). E = {a|a ∩ {aN} = ∅, a ∈ M},M = E;
(3). N ′ = max{[M/L(S)]}, N = N ′;
(4). Repeat (1)-(3) until M = ∅.
Set R is a reduct of 〈U,C ∪ D〉 for attribute order S.
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As to Algorithm 1, we have proved in [1] that it is complete for reduct and
its output is unique for the given attribute order.

Remark : If the solution an algorithm finds is a Pawlak reduct [5], this algo-
rithm is called a complete algorithm for reduct.

3 Second Attribute Theorem [2]

Based on [1], we analyzed the relation between reducts and attributes orders
and then proposed the notion second attribute and proved the second attribute
theorem in [2]. Here we review them as follows.

3.1 Notation Conventions

PAO : a pair of attribute orders.
x → y: attribute ax is moved rightward from position x to y in a given

attribute order.
RS(x): the functional expression of the reduct attribute at position x for

attribute order S. RS(x) = ∅ means that label attribute is a non-reduct attribute.
RS [x, y]: the functional expression of the reduct attributes in interval [x, y]

for attribute order S.
[x]∗S = {δ|δ ∈ [x]S , δ ∩RS [x+1,m] = ∅, 1 ≤ x ≤ m} : the set of discernibility

elements in [x]S that do not include any reduct attributes behind ax.

3.2 The Second Attribute and the Second Attribute Theorem

Taking the effect produced by moving attributes in an attribute order into ac-
count, we can transform the computation of the reducts of different attribute
orders into the inquiry about the second attributes of equivalence classes. As to
the effect produced by moving a reduct attribute leftward, we have proved in
[2] that any reduct attribute can be moved leftward to any position in S and
the reduct remains unchanged. Then the second attribute theorem deal with the
effect produced by moving a reduct attribute rightward.

Given an information system〈U,C ∪ D〉, Card(C) = m, S be an attribute
order over C. Suppose N be the maximal subscript of non-empty equivalence
classes in M/L(S) and aN be the label attribute of non-empty equivalence class
[N ]S . According to algorithm 1, firstly, the label attribute aN of the non-empty
equivalence class [N ]S is appointed a reduct attribute of the information system,
denoted as RS(N); secondly, all discernibility elements including RS(N) are
deleted from M , and then, the equivalence class [N − 1]S in M/L(S) is altered
to [N − 1]∗S = {δ|δ ∈ [N ]S , δ ∩RS [N,m] = ∅}. As the algorithm runs iteratively,
we use [x]∗S = {δ|δ ∈ [x]S , δ ∩RS [x+ 1,m] = ∅, 1 ≤ x ≤ m} to denote the set of
discernibility elements in [x]S that does not include any reduct attributes behind
ax, called the relative equivalence class of [x]S . If [x]∗S �= ∅, its label attribute is
a reduct attribute; otherwise it is a non-reduct attribute.

Let a ∈ [x]∗S , if a = axbtBt, the second attribute is bt; if α = ax, namely, α is
a core attribute in [x]∗S ; or [x]∗S = ∅, the second attribute of [x]∗S is appointed ∅.
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For the sake of readability, we introduce the principle of the second attribute
first, and then the second attribute theorem.

The principle of the second attribute
Assume S be a given attribute order over C, Δx be the set of the second

attributes of discernibility elements in [x]∗S , namely, Δx = {bt|α = axbtBt, (Bt ⊂
C), α ∈ [x]∗S}, attribute order Q be obtained by moving attribute ax by x → y
in S.

If y < min{t|bt ∈ Δx}, Δx remains unchanged for Q and reduct(S) =
reduct(Q).

If y ≥ max{t|bt ∈ Δx}, because discernibility elements in [x]∗S are assigned to
the equivalence classes in interval [x+1, y] when attribute ax is moved by x → y
in S,Δx = ∅ for Q. In other words, the second attributes in Δx are turned into
the label attributes for Q. It implies [y]∗Q = ∅ and ax is a non-reduct attribute
for Q, consequently, reduct(S) �= reduct(Q).

If min{t|bt ∈ Δx} ≤ y < max{t|bt ∈ Δx}, it means that some discernibility
elements in [x]∗S are assigned to the equivalence classes in interval [x+1, y] when
attribute ax is moved by x → y in S. And yet at least one of them still remains,
namely, [y]∗Q �= ∅, ax still is a reduct attribute for Q and reduct(S) = reduct(Q).

The second attribute theorem:
Given attribute order S, let attribute order Q be obtained by x → y in S

and the maximal subscript of the second attribute in Δx be m, then reduct(S) =
reduct(Q) if and only if y < m.

The significance of this theorem is that it relies only on the second attribute
of relative equivalence class of the current attribute order and can be used to
determine the range of attribute orders with the same reduct for a given attribute
order.

An interesting phenomenon is: if attribute orders H and G are obtained
by x → y(y = m) and x → z(z > m) in S respectively (m be the maximal
subscript of discernibility elements in Δx), reduct(H) �= reduct(S), reduct(G) �=
reduct(S), and yet reduct(H) = reduct(G). It shows that if y ≥ m, all the
attribute orders obtained by x → y will have the same reduct, no matter what
position y is at.

Example. Let M/L(S) = {{lw}, {fms, fw}, {em}, {mg}, {gw}} be the par-
tition of the discernibility matrix M for attribute order S : l ≺ f ≺ e ≺ m ≺
g ≺ s ≺ w ≺ d. The equivalence classes are [1]S = {lw}, [2]S = {fms, fw},
[3]S = {em}, [4]S = {mg}, [5]S = {gw}; the relative equivalence classes are
[1]∗S = {lw}, [2]∗S = {fms, fw}, [3]∗S = {em}, [4]∗S = ∅, [5]∗S = {gw}.

According to the second attribute theorem, if the moving position of at-
tributes g or f or l does not overrun that of w, and that of attribute e doesn’t
overrun that of m in S, for the obtained attribute order Q, reduct(Q) =
reduct(S). However, if the moving position of attributes g or f or l overruns
that of w, or e overruns that of m in S, for the obtained attribute order Q,
reduct(Q) �= reduct(S).
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4 The Basic Decision Theorem

The second attribute theorem is applied to move only one reduct attribute right-
ward at a time in a given attribute order. In this section, we try to move more
than one attribute in S rightward in series, and then observe the changes of
second attributes that occur when moving the reduct attributes in S rightward
every time.

4.1 The Normal Attribute Order

Let’s take into account a particular sort of attribute order, the normal attribute
order, which is obtained by moving all the reduct attributes in a given attribute
order to the left and all the non-reduct attributes to the right. Obviously, there
are more than one normal attribute order on a given attribute order. In fact if
we suppose S be an attribute order over C and the card of reducts be k, then
the card of normal attribute orders is k!(m−k)! and there rises a question: what
is the relation between a given attribute order and its normal attribute orders?
The following Proposition 1 proved in [2] provides the answer.

Proposition 1: Let S be a given attribute order and Q be its normal attribute
order. Then reduct(S) = reduct(Q).

Proposition 1 implies that all the normal attribute orders of a given attribute
order have the same reduct. The following Proposition 2 reveals the relation
between an attribute order and its normal attribute order obtained by moving
reduct attributes leftward.

Proposition 2: Let H be an attribute order, S be a normal attribute order
obtained by moving reduct attributes leftward in H. Then for [y]∗H(ay ∈ C),
∃[x]∗S(ax ∈ C) such that [y]∗H ⊆ [x]∗S, and the second attribute with the largest
subscript of [x]∗S is equal to that of [y]∗H .

Proof: Suppose a be a reduct attribute which is at position x in S and at
position y(x ≤ y) in H . For x ≤ t ≤ y, since the discernibility elements including
a in [t]∗H are absorbed into equivalence class [x]∗S in the process of moving reduct
attribute a leftward in H , [y]∗H ⊆ [x]∗S . Furthermore, their second attributes with
the largest subscript are the same, in that the label attributes of the absorbed
discernibility elements are ahead of a and the second attributes are behind a in
H And the sequence of non-reduct attributes remains unchanged in the process
of moving attribute a. End of the proof.

4.2 Rules on Attribute Moving [2]

In paper [2], the judgment of the reduct on PAO has been altered to the judgment
of the sequence of the adjacent PAOs. The process of altering the PAO to the
adjacent PAOs involves the notion of the consistency of two attribute orders and
the manner of attribute moving.

Assume S and H be two attribute orders over condition attributes set C. For
a, b ∈ C, if a ≺ b comes into existence both in S and H , S is consistent with
H in terms of a and b; Otherwise, S is inconsistent with H in terms of a and b.
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Attribute a in S is proper for H if and only if S is consistent with H in terms
of a and b for any attribute b behind a; otherwise, a is improper for H .

Grounded on the notions above, we presented and proved the following propo-
sition and rule on attribute moving in [2].

Proposition 3: For any attribute ax in S, there is a unique position y in S,
such that in the new attribute order Q obtained by x → y, ax is proper for H.

Rule 1: For two given attribute orders S and H, if attribute ax is improper
for H, then select y and move ax by x → y such that in the new attribute order
Q, ax is proper for H.

Proposition 3 shows that Rule 1 ensures attribute order S be transformed
into attribute order H with each attribute in S being moved only once. In fact,
any given attribute order S can be transformed into its normal attribute order
by moving the attributes in S within limited times.

For a given attribute order S, suppose 〈S,Q〉 be an adjacent PAO obtained
by x → y in S; [t]∗S and [t′]∗Q are the relative equivalence classes of S and
Q respectively. The change of the second attribute that occurs when moving
attributes rightward is depicted by lemmas proved in [2] and listed below.

Lemma 1: Let 〈S,Q〉 be an adjacent PAO obtained by moving reduct attribute
ax by x → y in S. reduct(S) = reduct(Q) if and only if [t]∗S = [t′]∗Q for all t �= x,
and [t]∗S ⊇ [t′]∗Q for t = x.

Lemma 2: Let 〈S,Q〉 be an adjacent PAO obtained by moving non-reduct
attribute ax by x → y in S, then [t]∗S ⊆ [t′]∗Q for all t �= x, and [t]∗S ⊇ [t′]∗Q for
t = x.

Lemma 1 and Lemma 2 show: if a reduct attribute is moved rightward, as
long as reduct(S) = reduct(Q), for t �= x, the relative equivalence sets does not
change; but if a non-reduct attribute is moved rightward, the relative equivalence
sets might change. However, if all the attributes in [x, y] are reduct attributes
or non-reduct attributes, {[y]∗Q|ay ∈ C} = {[x]∗S |ax ∈ C} holds. This implies
that if we change a normal attribute order of S to another, their sets of relative
equivalence classes remain unchanged, and if we do it by just moving the reduct
attributes, their corresponding sets of second attributes are also unchanged.

Proposition 4: Let S and H be two normal attribute orders for a given at-
tribute order Q. If their non-reduct attributes are arranged in the same sequence,
they have the same relative equivalence classes, and their second attributes with
the largest subscript are the same as well.

Based on the notion of normal attribute order, we propose the basic decision
theorem to facilitate the direct judgment of whether two different attribute orders
have the same reduct.

4.3 Basic Decision Theorem

Guided by the fact that any attribute order can be transformed into a given one
within limited times; Rule 2 is designed as follows according to Lemma 1 and 2,
which later are the foundation of the basic decision theorem [2].

Rule 2: Given attribute orders S and H, the sequence of adjacent PAOs:
〈S, S(1)〉, 〈S(1), S(2)〉, · · · , 〈S(m−1), H〉 can be achieved in two steps:
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(1). Select non-reduct attributes one by one and move them according to
Rule 1.

(2). Select reduct attributes one by one and move them according to Rule 1
In order to judge whether reduct(S(k−1)) = reduct(S(k)) holds for all k ∈

[1,m] (S(m) = H), the first question we face is: can Rule 2 ergode the whole
attribute orders set? It is answered as follows by the Ergodic Lemma proved in
[2].

Ergodic Lemma: Let 〈S,H〉 be a given PAO. Attribute order S can be trans-
formed into H according to Rule2 and each attribute in S is only moved once.

Grounded on the above discussion, the basic criterion is obtained in [2]:
Decision theorem: Let 〈S,H〉 be a given PAO, S be a normal attribute

order and 〈S, S(1)〉, 〈S(1), S(2)〉, · · · ,〈S(m−1), H〉 be the sequence of adjacent
PAOs of 〈S,H〉 according to Rule2. reduct(H) = reduct(S) holds if and only if
reduct(S(j))
= reduct(S) holds for every attribute order S(j) and reduct(S(m−1)) =
reduct(H).

We’d like to point out that attribute moving has to be done in the manner
of Rule 2; otherwise, the above decision theorem may not be true.

In addition to judging whether two different attribute orders have the same
reduct, decision theorem can also be used for determining the range in the set
of attribute orders in which all the attribute orders have the same reduct. We
conclude as follows.

Proposition 5: Let J be the set of all the attribute orders with the same reduct,
S ∈ J and S be a normal attribute order. Then, ∀H ∈ J, based on the second
attribute theorem, H can be obtained by moving attributes in S according to
Rule 2.

Proof: Firstly, according to Rule 2, obtain the attribute order S′ by moving
all the non-reduct attributes in S such that the non-reduct attributes in S′

are arranged in the same sequence as in H . Since the non-reduct attributes
can be moved rightward freely while the reduct does not change, reduct(S′) =
reduct(H). Consequently, H can be obtained by only moving reduct attributes
in S′. By Proposition 2, we have [y]∗H ⊆ [x]∗S′ and their second attributes with
the largest subscript are the same. Hence, for any reduct attribute ax in S′ that
needs to be moved, there is a unique position y in S′ which satisfies the second
attribute theorem and makes the attribute order S′′ obtained by x → y in S′

consistent with H in terms of ax and b for any attribute b behind ax. Therefore,
based on the second attribute theorem, H can be obtained by moving attributes
in S according to Rule 2. End of the proof.

5 The Second Attribute Algorithm

The second attribute theorem is based on the discernibility matrix, hence the
computation of the second attribute with the largest subscript is at least of
order n2 (n is the number of the objects in an information system) for time
complexity. Based on the tree expression in information system [3], we present
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here an algorithm called the second attribute algorithm, which is linear in n for
time complexity, to compute the second attribute with the largest subscript.

5.1 The Tree Expression [3]

Given an information system 〈U,C ∪ D〉, let S : a1 ≺ a2 ≺ · · · ≺ am be the
attribute order over C. The tree expression of 〈U,C ∪ D〉 for S, denoted by T ,
is a tree with each non-leaf node being assigned an attribute ai in C, each link
of non-leaf node ai being attached with a value in the domain of ai, and each
node being associated with a subset Eit that belongs to U/{a1, a2, · · · ai}; leaf
node being assigned a D-subtrees, denoted by T (dt), which is a tree composed
of only two levels: a root node dt and Card(E+t/D) leaf nodes, where E+t is
the equivalence class attached to leaf node a+t; each leaf node is attached with
a different non-empty equivalence class belonging to E+t/D.

If a condition attribute node ai is linked directly to the decision attribute
node in a tree expression, it is called a subtree expression and denoted as T (ai).
A subtree is a dead one if its position range remains unchanged when it is pruned;
otherwise, it is a live one.

The process of computing a reduct in an information system based on tree
expression is equivalent to that of pruning from the tree expression.

If a tree expression is obtained by pruning all the dead subtrees from a given
tree expression T , it is called the closed tree expression of T and denoted as TC .

5.2 The Second Attribute Algorithm

Since the second attribute algorithm is closely related to discernibility matrix,
relative equivalence classes [x]∗S(ax ∈ C) and tree expression, we analyzed their
characteristics and established the following rule to facilitate the designing of
the second attribute algorithm.

Rule 3
1. If a pair of branches has the same value for their root nodes and for their

decision attributes, leave out the comparing operation.
2. If there are more than one subtree at the same level, the comparing oper-

ation is restricted to each of these subtrees.
3. The comparing operation runs from top to bottom.
Given an information system 〈U,C ∪ D〉 and a normal attribute order S :

a1 ≺ a2 ≺ · · ·ak ≺ · · · ≺ am. Let a1, a2, · · · , ak be the reduct attributes, H
be anyone attribute order over C and ai+1 be the successor attribute of ai in
H . Based on tree expression and normal attribute order, the second attribute
algorithm is designed according to Rule 3 as follows.

Second attribute algorithm:
Suppose M ′ be the set of discernibility elements and each discernibility ele-

ment in M ′ includes only the label attribute and the second attribute.
At the beginning, Let H = S, and M ′ = ∅.
(1). Generate closed tree expression TC and subtree expression T (ai

k)(i =
1, 2, · · · , s) for H;
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(2). Fix on the range of the pairs of branche that need to be compared in
subtrees T (ai

k)(i = 1, 2, · · · , s) according to Rule 3.
(3). According to attribute order H and formulae F = F − {(x, y)|(x, y) ∈

F, aj(x) �= aj(y)}£ňprune the pairs of branches with different values for attribute
aj. The algorithm ends when F = ∅ or the comparing operation goes to the tail
of attribute order H.

If F = ∅ and the algorithm ends, let M ′ = M ′ ∪ {a|a = akaj} and H =
ak ≺ a1 ≺ a2 ≺ · · · ≺ ak−1 ≺ · · · ≺ am; If F �= ∅ and the algorithm ends, let
M ′ = M ′ ∪ {a|a = ak}£ňH = ak ≺ a1 ≺ a2 ≺ · · · ≺ ak−1 ≺ · · · ≺ am;

(4). Repeat (1)-(3) until H = S.
Then we find that Ω = {bt|a = axbt, a ∈ M ′} is the solution.

5.3 The Completeness of the Second Attribute Algorithm

If an algorithm ensures that each element in the solution it finds is the second
attribute with the largest subscript in its corresponding second attributes set,
this algorithm is called a complete algorithm for the second attribute with the
largest subscript.

In section 5.2, Rule 3(1) is based on the definition of discernibility matrix;
3(2) ensures that the second attribute has the root node of subtree as its label
attribute; 3(3) ensures that the second attribute of the output has the largest
subscript in its corresponding second attributes set.

Proposition 6: The second attribute algorithm based on tree expression is
complete for the second attribute with the largest subscript.

Proof: Suppose T be the tree expression for normal attribute order S. Ac-
cording to Proposition 4, we just need to prove that the algorithm is complete at
the last level subtree of the closed tree expression of T . Let the last level subtree
of the closed tree expression be T (ak), (x, y) denotes any pair of branches in the
subtree expression. The algorithm runs iteratively from j = k+1 to m. According
to the given normal attribute order S and the formula F = F − {(x, y)|(x, y) ∈
F, aj(x) �= aj(y)}, the pairs of branches with the same attribute value are se-
lected to be compared first. If for attribute aj, F = ∅ and the algorithm ends,
it implies that attribute aj is the second attribute with the largest subscript in
equivalence class [k]S ; if F �= ∅ and the algorithm ends, it means that attribute
ak is a core attribute, whose second attribute is appointed ∅. Hence, for a given
normal attribute order, the algorithm for subtree T (ak) is complete.

Since the algorithm goes through all the relative equivalence classes, it is
complete for second attributes with the largest subscripts. End of the proof.

5.4 Computational Complexity

The process and the computational complexity of obtaining the second attribute
with the maximal subscript based on discernibility matrix and on tree expression
are shown below.
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Discernibility matrix Complexity Tree expression Complexity

Work out the discernibility O(m × n2) Work out a normal. O(m2 × n)
matrix. attribute order
The discernibility matrix O(n4) Construct the subtree at O(k × m × n)
is simplified by using the its last level. Where k is a
absorption law. constant.
Partition M on equivalent O(n4) Fix on range F in which O(n × m)
relation L(S). the pairs of branches

need to be compared.
Work out the relative O(n2) Prune the pairs of O(n × m)
equivalence class [ax]∗S for branches with different
each equivalence class attribute value according
[ax]S in M/L(S) and work to the comparing rule
out the second attribute and work out the
with the maximal second attribute with the
subscript. maximal subscript.

It is obvious that the second attribute algorithm based on tree expression is
linear in n for time complexity.

6 Conclusion

The most interesting conclusions we reach in this paper are: first, for a given
attribute order S and its reduct R, by using the second attribute theorem we can
(1) determine the range of attribute orders within which all the attribute orders
have the same reduct ; (2) present a criterion for the judgement of whether two
different attribute orders have the same reduct. Second, By comparing with the
obtaining of second attribute based on discernibility matrix, this paper presents
an effective second attribute algorithm based on tree expression with both time
and space complexity linear with n, which greatly facilitates the using of the
second attribute theorem.

References

1. Wang, J., Wang, J.: Reduct Algorithms on Discernibility Matrix: The Ordered At-
tributes Method. J. Computer Science and Technology. 16(6) (2001) 489-504

2. Han, S.Q., Wang, J.: Reduct and Attribute Order. J. Computer Science and Tech-
nology. 19(4) (2004) 429-449

3. Zhao, M.: Data Description Based on Reduct Theory. PhD thesis, Institute of Au-
tomation, Chinese Academy of Sciences. (2004)

4. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5) (1982) 341-356
5. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information

systems. Intelligent Decision Support Handbook of Applications and Advance of the
Rough sets Theory, Slowinski R (eds.). (1991) 331-362



Pairwise Cores in Information Systems

Jakub Wróblewski
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Abstract. A core in information system is a set of attributes globally
necessary to distinct objects from different decision classes (i.e., the inter-
section of all reducts of the information system). A notion of a pairwise
core (2-core), which naturally extends the definition of a core into the
case of pairs of attributes is presented. Some useful features concerned
with the graph representation of pairwise cores are discussed.

The paper presents also practical application of the notion of 2-core.
It is known that a core (if exists) may be used to improve the reduct
finding methods, since there exist polynomial algorithms for core con-
struction. The same may be proven for a 2-core, which may be also used
for estimation of minimal reduct size.

Keywords: reducts, core, pairwise core, reduct finding algorithms.

1 Introduction

Rough set theory [7] provides the tools for extracting knowledge from incomplete
data based information. The rough set approximations enable us to describe
the decision classes, regarded as the sets of objects satisfying some predefined
conditions, by means of indiscernibility relations grouping into classes the objects
with the same values of the considered attributes. Rough set expert systems
are based on the notion of reduct [7] [9], a minimal subset of attributes which
is sufficient to discern between objects with different decision values. A set of
reducts can be used to generate decision rules, thus the reduct finding algorithms
are investigated intensively (cf. [9] [1] [4] [3]). The problem of optimal reducts
generation (criteria include reduct length, the number of generated rules etc.
[12]) is NP-hard, however, approximate algorithms (like the genetic one [10] [8])
can be used to obtain reducts in reasonable time.

The notion of a core of the information system, i.e., the intersection of all
reducts can be used in searching for reducts [9] [6] [3]. Our work extends this
notion to the pairwise core (2-core), i.e., the set of pairs of attributes such that
at least one of the attribute in a pair is necessary to discern between decision
classes. The next sections are devoted to the study of connections between 2-
cores and some graph-theoretic features and algorithms, as well as reduct finding
algorithms employing the new notions and theorems. Section 5 describes results
of experiments on benchmark data sets.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 166–175, 2005.
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2 Cores and Reducts

In rough set theory [7] [9] a sample of data takes the form of an information
system A = (U,A), where each attribute a ∈ A is a function a : U → Va into the
set Va of all possible values on a. Reasoning about data can be stated as, e.g.,
a classification problem, where the values of a distinguished decision attribute
are to be predicted under information over conditional attributes. In this case,
we consider a triple A = (U,A, d), called a decision table, where, for the decision
attribute d /∈ A, values vd ∈ Vd correspond to mutually disjoint decision classes
of objects.

Definition 1. Let A = (U,A, d), where A = {a1, . . . , an}, be given. For any
B ⊆ A, the B-indiscernibility relation is the equivalence relation defined by

INDA(B) = {(u1,u2) ∈ U × U : ∀a∈B a(u1) = a(u2)} (1)

Each u ∈ U induces a B-indiscernibility class of the form

[u]B = {u′ ∈ U : (u,u′) ∈ INDA(B)} (2)

Definition 2. The decision table A = (U,A, d) is consistent iff INDA(A) ⊆
INDA({d}), i.e., if there are no identical (wrt. A) objects with different deci-
sions.

We will assume further that our decision tables are consistent. Most of the
features and notions described in this paper hold also for the case of non-decision
problems (i.e., for information systems and general, not decision reducts) as well
as for inconsistent tables (using a generalized decisions [9]); however, for the sake
of simplicity of notation and proofs we will restrict ourselves to the less general
case.

Indiscernibility relation enables us to express global dependencies as follows:

Definition 3. Given A = (U,A, d), we say that B ⊆ A defines d in A iff

INDA(B) ⊆ INDA({d}) (3)

or, equivalently:

∀u1,u2∈U d(u1) �= d(u2) =⇒ ∃a∈Ba(u1) �= a(u2) (4)

Assume that A is consistent. We say that B ⊆ A is a decision reduct iff it
defines d and none of its proper subsets does it. By RA we will denote the set of
all decision reducts of A.

The following property is widely utilized by many reduct finding algorithms
[1]:

Lemma 1. Suppose that B ⊆ A defines d (note that B does not need to be a
reduct, because a reduct has to be locally minimal). There exists B′ ⊆ B such
that B′ is a reduct.
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Proof. If B is a reduct itself, then B′ = B. If B = ∅ then B is a reduct (because
it is locally minimal).

Suppose that B �= ∅ and B is not a reduct. In this case there exists B′′ ⊂ B
such that B′′ defines d. In this case there are two possibilities:

– B′′ is a reduct (thus B′ = B′′) and the procedure stops,
– B′′ is not a reduct (it is not minimal), thus the same procedure of reduction

may be applied to B′′.

Since B is finite and each step of the above procedure will decrease the cardinality
of involved subsets, the procedure of reduction must stop.

�

A reduct denotes a minimal set of attributes which are sufficient to define
(e.g. using decision rules) the value of decisions for all objects. On the other
hand, a core is used to denote attributes which are necessary for that.

Definition 4. Let A and the family of its decision reducts RA be given. By a
core C ⊆ A of the decision table A we will denote:

C =
⋂

R∈RA

R (5)

i.e., the intersection of all reducts. (To avoid confusion with the further notation,
the core will be sometimes denoted by 1-core).

The core may be empty. In fact, for many of real-world data it is empty (see
Table 2). It is interesting to see that, although the problem of minimal reduct
finding is NP-hard [9] and |RA| may be exponential, the core C is easy to be
found.

Lemma 2. For a consistent decision table A and its core C the following con-
dition holds:

a ∈ C ⇐⇒ INDA(A \ {a}) �⊆ INDA({d}) (6)

i.e., C is a set of all attributes which are indispensable for discernibility of deci-
sion classes in A.

Proof. Let a ∈ C =
⋂

R∈RA
R. Suppose that INDA(A \ {a}) ⊆ INDA({d}), i.e.,

A\{a} defines d. Thus, according to Lemma 1, there exists a reduct R ⊆ A\{a}.
This contradicts the assumption that a belongs to any reduct of A.

What is left is to show that if A \ {a} does not define d, then a ∈ C. It is
evident, as (by definition) in this case neither A \ {a} nor any of its subset may
be a reduct, thus any R ∈ RA must contain a.

�

Let us extend the notion of a 1-core as follows:

Definition 5. By the pairwise core or 2-core of a decision table A, denoted
by Cp, we mean a set of (unordered) pairs of attributes Cp ⊆ A×A such that:
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1. {a1, a2} ∈ Cp =⇒ a1 /∈ C ∧ a2 /∈ C, where C is a core of A,
2. {a1, a2} ∈ Cp =⇒ ∀R∈RA

a1 ∈ R ∨ a2 ∈ R,
3. Cp is the maximal set satisfying the above conditions.

The pairwise core is a set of pairs {a1, a2} of attributes such that neither a1

nor a2 belongs to a core, but at least one of them is required for discernibility
between decision classes (i.e., any reduct of A must contain at least one attribute
from every pair).

Such notions as reducts or cores are often defined using discernibility matrix
of decision table [9], i.e., the matrix of size |U |×|U | which for any pair of objects
u1,u2 (from different decision classes) contains a set of attributes discerning u1

and u2. In this formulation a 1-core may be found by collecting all attributes
present in the discernibility matrix as singletons. On the other hand, a 2-core
is a collection of all two-attribute elements of the matrix (not containing core
attributes).

As a natural extension of 1-core (i.e., a classical core) and 2-core one may
define a notion of k-core, i.e., the set of k-element subsets of attributes, which do
not contain elements of any lower l-core (l < k) and every reduct must contain
at least one attribute from every element of the k-core. Alternatively, the k-core
contain all k-element cells of indiscernibility table (not covered by any l-core,
l < k). We will not consider k-cores for k > 2 because of two reasons: first,
the most of the results presented in the next sections are not easily extendable
to the k-cores, and second, the time of computation of k-core (see below) rises
significantly.

As stated above, the problem of reduct finding is generally hard. In contrast,
both core and 2-core can be calculated quickly, i.e., in polynomial time wrt. both
the number of attributes and objects:

Fact 1 (algorithm for finding cores). The following procedure may be applied to
find both a core C and a pairwise core Cp of a consistent decision table A =
(U,A, d):

1. C := ∅, Cp := ∅
2. For all a ∈ A do
3. R := A \ {a}
4. If R does not define d, then C := C ∪ {a}
5. End For
6. For all ai, aj ∈ A \ C, i < j, do
7. R := A \ {ai, aj}
8. If R does not define d, then Cp := Cp ∪ {{ai, aj}}
9. End For.

To determine whether R defines d or not, one may use the following procedure,
based on an algorithm for reduct finding [10] [1]:
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1. Sort the set of objects U according to values of attributes from R.
2. Determine the indiscernibility classes [u]R, u ∈ U (linear scan, as U is

sorted).
3. If all [u]R have uniform values of decision d, then R defines d.

Alternatively, the discernibility matrix can be used to obtain both 1-core
and 2-core (refer to the discussion above). But the time and space complexity
of indiscernibility matrix calculation is O(m × n2) where m = |A|, n = |U |. For
a large data set the factor of n2 is too high. On the other hand, the algorithm
described above is O(m2×n logn) in a case of efficient implementation [1], which
is much more acceptable. Note that the procedure may be easily extended to k-
cores, but it will have the complexity of O(mk × n logn).

3 Pairwise Core Graph

The following notion allows us to use wide range of graph-theoretic tools and
heuristics for efficient reduct finding:

Definition 6. The pairwise core graph for a consistent decision table A =
(U,A, d) is an undirected graph GA = (V,E) such that:

V = A, E = Cp

where Cp is a 2-core for A.

The notion of pairwise core graph allows us to express connections between
reducts and 2-cores as some graph-theoretic features of GA. One of the most
interesting results is concerned with the vertex covering of graph GA (i.e., finding
a subset of vertices of GA such that every edge connects at least one vertex).

Theorem 1. Suppose that GA is a pairwise core graph for a consistent decision
table A. Let R ∈ RA be a reduct. Then R is a vertex cover of GA.

Proof. The proof is straightforward from Definitions 5 and 6, since for every
edge (ai, aj) at least one of the attributes ai, aj must be contained by R. �

Unfortunately, the opposite property does not hold, i.e., not all vertex covers
(even minimal ones) are reducts. The simplest example is a decision table for
which Cp = ∅ thus the minimal cover is empty, whereas the table may still have
nonempty reducts. Moreover, if B ⊆ A is a vertex cover of GA, then B is not
necessarily a subset of any reduct. For the decision table A presented below, we
have Cp = {{a1, a2}, {a3, a4}, {a5, a6}} and B = {a1, a3, a5}; as we can see, B is
a minimal vertex cover and is not a reduct (nor a subset of any of the 7 reducts
of A):
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a1 a2 a3 a4 a5 a6 d

0 0 0 0 0 0 0
1 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1
0 2 0 2 0 2 2

The following properties will be useful for reduct finding task:

Corollary 1. Suppose that GA contains a clique K = {ak1 , ..., aki}. Then any
reduct R ∈ RA must contain at least i− 1 attributes from K.

Corollary 2. Suppose that GA is a full graph: GA = Kn where n = |A|. Then:

RA = {A \ {ai}, i = 1, ..., n}

Proof. It is immediate from Corollary 1. Note that the set A cannot be a reduct
itself (because in this case C = A, thus Cp = ∅) and the only possible sets
containing at least n− 1 attributes are defined as above.

�

Note that Theorem 1 provides a lower bound on the reduct size: every reduct
must be at least as large as the minimal vertex covering of GA. Fortunately, we
do not need to find the minimal covering (which is NP-hard [2]) to obtain a
weaker lower bound:

Corollary 3. Suppose that GA may be divided into a set of disjoint cliques K1,
... Ki. Let R be an arbitrary reduct of A. Then:

|R| ≥ (|K1| − 1) + · · · + (|Ki| − 1) (7)

It is interesting to see that a structure of 2-core may be very rich:

Theorem 2. Let G be an arbitrary graph, |E| ≥ 1. Then, there exists A such
that GA = G.

Table 1. Example of a graph G and a decision table A such that GA = G

a1

a2

a4

a3

−→

a1 a2 a3 a4 d

u0 0 0 0 0 0
u1 1 1 0 0 1
u2 1 0 1 0 1
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Proof. Consider G = (V,E). Let A = (U,A, d) be defined such that A = V ,
a : U → {0, 1} for each a ∈ A, and U = {u0,u1, ...,uk} for k = |E|, and:

∀i d(u0) = 0 ∧ ai(u0) = 0

∀ej∈E d(uj) = 1 ∧ ai(uj) =
{

1 where ej = (ak1 , ak2), i = k1 ∨ i = k2

0 otherwise

In this decision table the 1-core is empty, because the decision table have
exactly two “1”-s in each row uj, j > 0 and thus reduction of any single attribute
is not enough to make u0 and uj indiscernible.

On the other hand, any reduct R of A must contain at least one attribute for
all edges ej = (ak1 , ak2). If not, a pair {u0,uj} (having opposite decision values)
will be indiscernible by R. �

An example presented in Table 1 illustrates the proof of Theorem 2.

4 Application of the Pairwise Cores for Reducts Finding

Finding a 1-core or a 2-core in an information system may lead to two kinds of
profits. Firstly, an information about importance of attributes and their influ-
ence into decision value is stated, which may be interesting in descriptive data
analysis. Secondly, due to the properties presented in Section 3, the 2-core graph
may be very helpful in reduct finding task.

Let A be given, let C and Cp will be a 1-core and a 2-core of A, respectively.
Suppose we have a method for finding all reducts being supersets of a set B ⊆ A.
One may use e.g. techniques adopted from [1] (i.e., reducing a subset of attributes
until a reduct is found, omitting attributes from B), or Apriori-like algorithm [4]
for all reducts finding. The following hints may be used for finding all reducts:

1. Let B = C, since all reducts must contain the core.
2. Divide GA into a family of disjoint cliques K1, ... Km.
3. For each Ki omit exactly one attribute and add the rest of them into B.

Then find all reducts being supersets of B.
4. Cycle through the above steps checking all possible combinations of omitted

attributes.

Any reduct of A must contain at least |Ki| − 1 attributes from every clique
Ki (Corollary 1). Thus, all reducts may be found by checking all supersets of
sets generated by the above procedure.

The procedure in the worst case is exponential (as the number of reducts
may be exponential, and the problem of finding maximal clique is NP-hard, and
the number of all possible combinations checked in step 4 may be exponential).
Nevertheless, the procedure may be treated as a heuristics which may highly
restrict the search space. The main advantage of the pairwise core graphs is that
they are in most cases considerably small. Even for large data sets (see Section
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5) these graphs can be analyzed exhaustively. For larger graphs one may use
e.g. greedy heuristics for decomposition into cliques: find the largest clique (by
selecing a vertex with maximal rank and finding a clique around it), then remove
it from the graph and iterate these steps until there is no clique (even a single
edge) left. This heuristics may be extended in many ways, e.g. by randomization.

Another direction of searching for all reducts is to generate all locally minimal
vertex covers ofGA and to analyze theirs supersets. This algorithm may be harder
to use as it is much easier to find one decomposition into cliques than all minimal
vertex covers.

5 Experimental Results

Several data sets were tested to find a 2-core and GA (see Table 2). We have
selected these decision tables because they are widely used as machine learning
benchmarks [5] and in most cases they contain mainly nominal (not numerical)
attributes which is preferable for reduct-based analysis of data. One of these
tables may be regarded as a relatively large one (Covtype). Results presented
in Table 2 show, that more than a half of these tables have nonempty 2-cores,
whereas in only 5 out of 14 cases a 1-core was nonempty. It means that the
notion of 2-core may be virtually more helpful for reduct finding tasks than the
1-core. For the largest decision table Covtype we found its 2-core in about 6
minutes (Celeron 1 GHz machine) which is still acceptable.

The variety of structures of pairwise core graphs of these decision tables is
surprisingly rich, what can be seen in Figure 1. Note that these vertices, which
are not present in any 2-core pair, were omitted in Figure 1.

Table 2. Experimental results: benchmark tables, the size of the core and the pairwise
core, the estimated (basing on a core and 2-core graph) minimal size of reducts and
actual minimal (or minimal known) size of reducts

Data set Size (obj.×attr.) Size of C Size of Cp Min. reduct
estim./known

Australian credit 690 × 14 1 0 1/3
CoIL 2000 5822 × 85 9 9 18/22

Optical digits 3823 × 64 0 0
Pen-based digits 7494 × 17 0 0

DNA splices 2000 × 180 0 0
German credit 1000 × 24 0 1 1/5

Letter 15000 × 16 3 14 7/10
Pima 768 × 8 0 0

Shuttle 43500 × 9 1 0 1/4
Covtype 581012 × 54 0 4 2/4
Soybean 307 × 35 2 7 6/9

Tic-tac-toe 958 × 9 0 36 8/8
Mushroom 8124 × 22 0 1 1/4

Lymnography 148 × 18 0 1 1/6
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Fig. 1. The pairwise core graphs for benchmark data sets (numbering of attributes
starts with 0). A. Letter, B. CoIL’2000, C. Soybean, D. Tic-Tac-Toe

Finally, the possibility of estimating the size of minimal reduct in the tables
was analyzed. Note that even for very large data sets their pairwise core graphs
are often relatively simple. For all analyzed data sets we may quickly perform
decomposition into disjoint cliques (even manually) and obtain a lower bound
of minimal reduct size due to Corollary 2. The results of these estimations are
presented in Table 2. For Tic-Tac-Toe data set we have obtained a full graph,
so we apply Corollary 2 directly and obtain the set of all reducts immediately.
For the rest of data sets, we obtained a lower bound which in some cases (CoIL
2000, Letter, Soybean) are not far from actual minimal reduct size.

The usefulness of the pairwise core graphs may be justified by the following
experiment. Suppose we have to check whether known 4-attribute reduct of Cov-
type decision table is the minimal one. The straightforward method is to check
all 3-attribute subsets, i.e., to perform 24804 sortings of more than half million
objects of the table [1]. On the other hand, the pairwise core for this data set is
Cp = {{a0, a5}, {a0, a9}, {a4, a9}, {a5, a9}}. It means that it is enough to check
only 3-attribute supersets of all possible vertex covers of pairwise core graph,
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i.e., 52 supersets of {a0, a9}, 52 supersets of {a5, a9} and the set {a0, a4, a5}. We
perform 105 sortings, which is 236 times faster than without use of the pairwise
core graph.

6 Conclusions

The notion of pairwse core (2-core) was introduced and discussed. This notion
may be interesting and helpful for reduct finding. One of the most interesting
results of this paper is Theorem 1 and its corollaries concerning connections
between reducts of decision tables and vertex covers of particular graph. The
size of minimal reduct may also be estimated due to Corollary 3.

The efficient algorithms for generating all reducts needs further research. The
algorithms may use a wide set of heuristics designed for clique finding and graph
covering, adopted to the special case of reduct finding. Results of experiments
on a set of benchmark tables (presented in Section 5) are very promising.

Acknowledgements. Supported by the Research Center of the Polish-Japanese
Institute of Information Technology.
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Abstract. Data preprocessing is an essential step of the KDD process.
It makes it possible to extract useful information from data. We propose
two coefficients which respectively study the informational contribution
of initial data in supervised learning and the intrinsic structure of initial
data in not supervised one. These coefficients are based on Kappa coeffi-
cient. The confrontation of these two coefficients enables us to determine
if feature construction is useful. We can present a system allowing the op-
timization of preprocessing step : feature selection is applied in all cases;
then the two coefficients are calculated for the selected features. With
the comparison of the two coefficients, we can decide the importance of
feature construction.

1 Introduction

In the Knowledge Discovery in Databases (KDD) process, the preprocessing step
is very important. This step conditions the quality of the discovered patterns and
makes it possible to find useful information from initial data. We can apply two
different feature transformation: feature selection and feature construction.

Feature selection removes at the same time the noise generated by some fea-
tures and redundant features. Thus, after feature selection, only relevant features
are kept, and the effective number of features under consideration is reduced.

Feature construction changes the representation space thanks to the creation
of synthetic features. Thus, after feature construction, the effective number of
features under consideration increases.

We think that feature selection must be applied in all cases. Indeed, fea-
ture selection reduces the effective number of features under consideration and
improves the learning accuracy or, in worst cases keeps it constant thanks to
the suppression of noisy, redundant and/or irrelevant features. Moreover, if all
features are relevant then feature selection won’t remove any features.

However, the question is: when apply feature construction? The answer de-
pends on data structure. It is possible to distinguish two different data structures:

1. The information necessary to discriminate endogenous feature is contained
in the initial features set. But among these features, some are redundant or
noisy. To eliminate these irrelevant features, feature selection is sufficient.

2. Some features discriminates the endogenous feature but they are not suffi-
cient. In this case, feature construction and feature selection are necessary.
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To answer this question, we use the Cohen’s Kappa coefficient, see [1], which
quantifies the degree of agreement’s quality between paired qualitative judge-
ments. We use the Kappa coefficient in two ways: in supervised learning and in
unsupervised one. So we obtain a double indicator:

1. Firstly, we want to obtain a ”measurement” of the information bringing by
exogenous features about the endogenous feature. So we answer the next
question: The results provided by the learning algorithm are they in agree-
ment with the endogenous feature?

2. Then, we want to assess the quality of the inherent structure of data. Without
any information about the endogenous feature, can the classes induced by
this feature be found?

2 Kappa Coefficient

The Kappa coefficient, κ, introduced by [1], is a measure of interrater agreement,
see table 1:

κ = (Po − Pe)/(1 − Pe) (1)

with the observed agreements,

Po = (
R∑

r=1

nrr)/n (2)

and the chance agreement,

Pe = (
R∑

r=1

nr.n.r)/n2 (3)

When the observed agreement exceeds the chance agreement, κ is positive, with
its magnitude reflecting the strength of agreement.

It reaches its maximum value (i.e. 1) when Pe = 0.5 and Po = 1. In this situ-
ation, the agreement between the two observers is maximum. The two observers
have the same judgements.

Although this is unusual in practice, κ is negative when the observed agree-
ment is less than the chance agreement.

The minimum value of κ is −1. It reaches its minimal value when Pe = 0.5
and Po = 0. In this situation, the two observers are in complete disagreement.
The two observers have opposite judgements.

Landis and Koch, in [2], propose threshold values for the Kappa coefficient. It
is thus possible to qualify the agreement between the two judgements considered
according to the value of the Kappa coefficient, (see table 2).
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Table 1. Two-way frequency table of the judgements of two observers

C
′
1 ... C

′
r ... C

′
R Total

C1 n11 ... n1r ... n1R n1.

... ... ... ... ... ... ...
Cr nr1 ... nrr ... nrR nr.

... ... ... ... ... ... ...
CR nR1 ... nRr ... nRR nR.

Total n.1 ... n.r ... n.R n

Table 2. Threshold values for the Kappa coefficient

κ Values Agreement

0.75 ≤ κ ≤ 1 Perfect
0.41 < κ < 75 Good
0 < κ ≤ 0.41 Weak

κ = 0 Independents judgements
−1 < κ < 0 Disagreement > agreement

κ = −1 Disagreement

2.1 Supervised Kappa Coefficient

We want to know if, without feature construction, exogenous features can well
discriminate the endogenous feature. The use’s condition of Kappa coefficient is
to be in presence of two paired samples. We will use the Kappa coefficient in the
following way :

1. The observer 1 is represented by the values of the endogenous variable, (in
table 2, Cr, in rows);

2. The observer 2 is represented by the values assigned by the learning algo-
rithm, (in table 2, C

′
r, in columns).

We are in presence of two paired sample. Indeed, the same sample is judged
by two different observers: the endogenous feature and the learning algorithm.
We can thus determine if the classification induced by the learning algorithm
corresponds to the classification induced by the endogenous feature.

We will note κS the Kappa coefficient obtained in this situation and we will
name it Supervised Kappa.

In order to calculate the value of κS, we must initially launch the learning
algorithm. Then, it is necessary to build the two-way frequency table. Then, we
can calculate κS .

2.2 Non-supervised Kappa Coefficient

In order to determine if data contains necessary and sufficient information to
discriminate the endogenous feature, we compare the result of a non-supervised
learning algorithm and the classification induced by the endogenous feature.
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We choose to use the K-Modes, see [3], if there are quantitative features and
we choose to use K-Means, see [4], if there are qualitative features.

Of course, we could use other method: these methods were adopted because
they are known and give us the possibility of choosing the number of the classes
of partition. We consider that the well classified objects are well classified in
comparison with the endogenous feature.

We can thus use the Kappa coefficient in the following way:

1. The observer 1 is represented by the values of the endogenous feature, (in
table 2, Cr, in rows);

2. The observer 2 is represented by the values assigned by the non supervised
learning algorithm, (in table 2, C

′
r, in columns).

We will note κNS the Kappa coefficient obtained in this situation and we will
name it Non-Supervised Kappa.

In order to calculate the value of κNS , we must initially launch the learning
algorithm. Then, it is necessary to build the two-way frequency table. Then, we
can calculate κNS .

3 Choice Procedure

The choice of constructing new features will depend on the values of the two
Kappa coefficients. The threshold values of Landis and Kosh are kept here.

Thus if the two values are strictly higher than 0.41 then feature construction
(FC) is useless. On the other hand, if these values are lower or equal to 0,
then feature construction is essential. In table 3, the ”recommended” concept is
stronger than the ”advised” concept.

If the value of κNS or κS is lower than 0 or if the values of κNS and κS are
between 0 to 0.41, feature construction is recommended.

If the value of κNS or κS is between 0 and 0.41 then feature construction is
advised. In these cases, feature construction can or cannot improve the learning
accuracy. However the decision must depend on :

1. The effective number of features : does the user want to reduce the effective
number of features?

2. The learning accuracy : does the user want to improve the learning accuracy
with-out taking account of the effective number of features?

3. The calculative cost.

Table 3. Decisional table

κNS κS ]0.41; 1[ ]0; 0.41[ ] − 1; 0[

]0.41; 1[ FC useless FC advised FC recommended
]0; 0.41[ FC advised FC recommended FC essential
] − 1; 0[ FC recommended FC essential FC essential
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In order to obtain a visual representation, we can use a graph whose X-axis
represents κS and the Y-axis represents κNS . Each data base is represented in
the decisional graph by a point having for X-coordinate the value of κS and for
Y-coordinate the value of κNS. According to the area in which the point is, the
user can easily know if he must or not apply feature construction.

4 Preprocessing Step

We propose to structure the preprocessing step. Two cases can be met :

1. Applying feature selection only ;
2. Applying feature construction and feature selection.

All features are provided to the preprocessing step. We apply a feature selection
method in order to remove the noisy, redundant and/or irrelevant features. The
features subset is then subjected to the two Kappa coefficients. If these coeffi-
cients conclude that feature construction is essential then a method of feature
construction is applied. If these coefficients conclude that the feature construc-
tion method is useless then the features subset is directly provided to the learning
algorithm.

5 Experimentation

We study 9 data bases resulting from the collection of UCI, [5]. The quantitative
features are discretized with Fusinter method, [6]. We use ID3, see [7]. The
objects set is shared in two subsets, while keeping the initial distribution of
classes. The first subset contains 30% of the objects set and will be used to
apply feature selection, to calcul the two Kappa coefficients, and to apply feature
construction if it’s necessary. The second subset contains 70% of the objects
set and will be used for the tests before and after the preprocessing step. The
method of feature selection used is developed by [8] and the method of feature
construction used is developed by [9]. On each data base, we first apply the
method of feature selection. Then, we calculate the two Kappa coefficients.

Tables 4 and 5 present the values of κNS and κS :

1. Few bases do not require feature construction. Only bases Monks-3, Iono
and Vehicle do not require this process.

2. Feature construction is essential for German base.
3. Feature construction is advised for Austra, Breast and CRX bases.
4. Feature construction is recommended for Pima and Tic Tac Toe bases.

We apply the feature construction method for all bases for which feature
construction is advised, recommended or essential.

Tables 6 and 7 present the cost and the standard deviation for a 10-Fold-
Cross-Validation and for a 5-Fold-Cross-Validation with ID3.
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Table 4. κNS

Austra Breast CRX Iono German Monks-3 Pima Tic Tac Toe Vehicle

Po 0,56 0,68 0,56 0,90 0,55 0,98 0,60 0,68 0,58
Pe 0,55 0,63 0,55 0,54 0,60 0,50 0,64 0,53 0,25

κNS 0,01 0,13 0,01 0,79 -0,11 0,96 -0,09 0,31 0,44

Table 5. κS

Austra Breast CRX Iono German Monks-3 Pima Tic Tac Toe Vehicle

Po 0,87 0,96 0,91 0,98 0,76 0,99 0,79 0,65 0,72
Pe 0,50 0,55 0,50 0,54 0,62 0,50 0,53 0,54 0,25
κS 0,75 0,90 0,81 0,96 0,38 0,99 0,54 0,25 0,62

Table 6. ID3 and 10-Fold-Cross-Validation.[Cost(σ)]

Without preprocessing With preprocessing Preprocessing step

Austra 16.6 (4.57) 15.72 (5.6) Selection + Construction
Breast 5.95 (1.95) 4.29 (2.13) Selection + Construction
CRX 14.73 (5.68) 14.06 (4.73) Selection + Construction

German 31.86 (7.53) 25.57 (7.16) Selection + Construction
Iono 21.37 (8.39) 11.73 (5.59) Selection

Monks-3 1.28 (1.28) 3.88 (2.69) Selection
Pima 26.11 (5.43) 25.45 (7.86) Selection + Construction

Tic Tac Toe 33.43 (5) 23.08 (5.59) Selection + Construction
Vehicle 34.24 (4.96) 28.75 (5.44) Selection

Table 7. ID3 and 5-Fold-Cross-Validation.[Cost(σ)]

Without preprocessing With preprocessing Preprocessing step

Austra 15,91 (2,58) 15,49 (4,63) Selection + Construction
Breast 5,7 (1,89) 5,29 (0,99) Selection + Construction
CRX 14,66 (2,43) 16,11 (2,36) Selection + Construction

German 28,57 (4,58) 24,14 (2,23) Selection + Construction
Iono 13,39 (3,62) 11,72 (2,91) Selection

Monks-3 1,29 (0,81) 3,86 (3,34) Selection
Pima 24,3 (2,48) 23,74 (5,22) Selection + Construction

Tic Tac Toe 22,8 (3,94) 24,1 (2,2) Selection + Construction
Vehicle 29,41 (3,49) 32,1 (2,78) Selection
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Table 8. Effective number of features under consideration

Without preprocessing With preprocessing

Austra 14 3
Breast 9 5
CRX 15 5

German 20 7
Iono 34 2

Monks-3 6 2
Pima 8 4

Tic Tac Toe 9 9
Vehicle 18 14

Table 9. Gap and relative gap(ID3 and 10-Fold-Cross-Validation)

Gap Relative Gap

Austra -0,88 -0,05
Breast -1,66 -0,28
CRX -0,67 -0,05

German -6,29 -0,20
Iono -9,64 -0,45

Monks-3 2,60 2,03
Pima -0,66 -0,03

Tic Tac Toe -10,35 -0,31
Vehicle -5,49 -0,16

Table 10. Gap and relative gap(ID3 and 5-Fold-Cross-Validation)

Gap Relative Gap

Austra -0,42 -0,03
Breast -0,41 -0,07
CRX 1,45 0,10

German -4,43 -0,16
Iono -1,67 -0,12

Monks-3 2,57 1,99
Pima -0,56 -0,02

Tic Tac Toe 1,30 0,06
Vehicle 2,69 0,09

Table 8 presents the effective number of features under consideration before
and after the preprocessing step.

Tables 9 and 10 present the gap and the relative gap between the learning
cost without preprocessing and the learning cost with preprocessing.
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The gap is: Learning cost with preprocessing - Learning cost without prepro-
cessing. The relative gap is: (Learning cost with preprocessing - Learning cost
without preprocessing)/Learnig cost without preprocessing.

In most cases, with the 10-Fold-Cross-Validation, the preprocessing step is
followed by an improvement of the accuracy and a reduction of the effective
number of features under consideration. We can note a reduction of the accu-
racy with Monks-3 : but This base doesn’t need feature selection nor feature
construction.

With the 5-Fold-Cross-Validation, we can note some reduction of the accu-
racy (bases CRX, Tic Tac Toe, Monks-3 and Vehicle) with a reduction of the
effective number of features under consideration. So, in this case the user must
arbitrate between the learning accuracy and the effective number of features
under consideration.

6 Conclusion

We create a system allowing to manage and to optimize the preprocessing step.
After the application of the feature selection process, we use two coefficients
based on the Kappa coefficient. These two coefficients enable us to determine
if feature construction is useful. The experiments show us that the feature con-
struction process is not always essential. The learning accuracy is improved.
The user can influence the decision related to the feature construction process
according to his priorities.

It would be interesting to create a coefficient which can arbitrate between
selection and construction. Four situations would be then possible:

1. Feature construction and feature selection are useful to improve the learning
accuracy;

2. Feature selection is essential and feature construction is useless;
3. Feature construction is essential and feature selection is useless;
4. Feature construction and feature selection are useless.

Thus, the preprocessing step would then be preceded by the calculus of a coef-
ficient which structure the preprocessing step.
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Abstract. In the research of knowledge acquisition based on rough sets
theory, attribute reduction is a key problem. Many researchers proposed
some algorithms for attribute reduction. Unfortunately, most of them
are designed for static data processing. However, many real data are
generated dynamically. In this paper, an incremental attribute reduction
algorithm is proposed. When new objects are added into a decision in-
formation system, a new attribute reduction can be got by this method
quickly.

1 Introduction

Rough Sets [1] (RS) is a valid mathematical theory to deal with imprecise, un-
certain, and vague information. It has been applied in such fields as machine
learning, data mining, intelligent data analyzing and control algorithm acquir-
ing, etc, successfully since it was developed by Professor Z. Pawlak in 1982.

Attribute reduction [2] is a key problem in rough sets based knowledge acqui-
sition, and many researchers proposed some algorithms for attribute reduction
[3-5]. Unfortunately, most of them are designed for static data processing. How-
ever, many real data are generated dynamically. Thus, many researchers suggest
that knowledge acquisition algorithms should better be incremental[6-8]. Some
incremental rough sets based rule extraction algorithms [9-11] have been de-
veloped, but they don’t consider attribute reduction problem. An incremental
attribute reduction algorithm is developed in paper [12]. It can only process
information systems without decision attribute. However, most of real informa-
tion systems are decision information system. Incremental attribute reduction
in decision information system would be more important. In paper [13-15], some
methods are proposed for incremental attribute reduction in decision information
system. In this paper, we develop an incremental attribute reduction algorithm.
It can generate a new reduction result for a decision information system quickly
after new objects are added. Now, we are comparing our algorithm with these
methods developed in paper [13-15] and testing more difficult data.

The rest of this paper is organized as follows: In section 2, basic notions
about rough sets theory are introduced. In section 3, we proposed the principle
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of incremental attribute reduction. In section 4, the incremental attribute reduc-
tion algorithm based on elementary set is developed. In section 5, the result of
simulation experiments is discussed. At last, we conclude this paper in section 6.

2 Basic Notions in Rough Sets Theory

For the convenience of description, some basic notions of decision information
systems are introduced here at first.

Definition 1. (decision information systems [16-18]) A decision information
system is defined as S =< U,R, V, f >, where U is a non-empty finite set of
objects, called universe, R is a non-empty finite set of attributes, R = C

⋃
D,

where C is the set of condition attributes and D is the set of decision attributes,
D �= . V =

⋃
p∈R

Vp , and Vp is the domain of the attribute p. f : U ×R → V is a

total function such that f(xi, p) ∈ Vp for every p ∈ R, xi ∈ U .

Definition 2. (indiscernibility relation [16-18]) Given a decision information
system S =< U,C

⋃
D, V, f >, each subset B ⊆ C of attribute determines

an indiscernibility relation IND(B) as follows: IND(B) = {(x, y)|(x, y) ∈ U ×
U, ∀b ∈ B, (b(x) = b(y))}. Equivalent classes of the relation IND(B) will be called
B elementary sets in S, we denote it as Ei. The set of all elementary sets will
be denoted by U /IND(B).

Definition 3. (consistency and inconsistency of elementary sets) Given a de-
cision information system S =< U,C

⋃
D, V, f >. An elementary set Ei ∈

U/IND(B) (B ⊆ C) is consistent iff all its objects have the same decision
value. Otherwise, it is inconsistent.

Definition 4. (lower-approximation and upper-approximation [16-18]) Given
an information system S =< U,R, V, f >, for any subset X ⊆ U and indiscerni-
bility relation IND(B), the B lower-approximation and upper-approximation of
X is defined as: B (X) = ∪{Yi|Yi ∈ U/IND(B)∧Yi ⊆ X}, B−(X) = ∪{Yi|Yi ∈
U/IND(B) ∧ Yi ∩X �= }.

Definition 5. (positive region [16-18]) Given a decision information system
S =< U,R, V, f >, P ⊆ R and Q ⊆ R , the P positive region of Q is defined as:
PosP (Q) =

⋃
X∈U/Q P (X).

3 Principle of Incremental Attribute Reduction

According to Definition 3, all elementary sets can be divided into two parts:
positive elementary set and negative elementary set.

Definition 6. (positive elementary set and negative elementary set): Given a
decision information system S =< U,C

⋃
D, V, f >, D={d}. All consistent C

elementary sets in S construct a set P s, that is,∀Ei∈Ps∀x,y∈Ei(d(x) = d(y)).
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Ps is called the positive elementary set. All inconsistent C elementary sets in S
construct another set Ns, that is,∀Ei∈Ns∃x,y∈Ei(d(x) �= d(y)) , Ns is called the
negative elementary set.

Definition 7. (collision elementary set): Given a decision information system
S =< U,C

⋃
D, V, f >, C and D are its condition attribute set and decision

attribute set respectively. Ps is its positive elementary set and Ns is its negative
elementary set. Given an attribute subset B ⊆ C, ∀Ei ∈ P s, if Ei can satisfy one
of the following two conditions:

(1) There is a elementary set Ej ∈ P s(Ei �= Ej) , Ei and Ej have the same
values for the condition attribute subset B, and different values for the decision
attribute set D.

(2) There is a elementary set Ej ∈ Ns , Ei and Ej have the same values for
the condition attribute subset B.

Then Ei is called a collision elementary set on attribute set B in Ps, otherwise
Ei is called a non-collision elementary set on attribute set B in Ps.

Proposition 1. (monotony of collision element set): Assume Ei is a non-
collision elementary set on attribute set B(B ⊆ C) , for any attribute set
A(B ⊆ A ⊆ C) , Ei is also a non-collision elementary set on attribute A. On
the contrary, assume Ei is a collision elementary set on attribute set B(B ⊆ C),
for any attribute set A(A ⊆ B ⊆ C), Ei a is also collision elementary set on
attribute set A.

Proof: according to Definition 7, it is obvious.

Proposition 2. Given a decision information system S =< U,C
⋃

D, V, f >,
for any attribute set B ⊆ C, PosB(D) = PosC(D) iff there is no collision
elementary set on B in its positive elementary set Ps.

Proof: It is obvious according to the define of positive region.
In this paper, an incremental attribute reduction algorithm is developed

based on Proposition 1 and Proposition 2.

4 Incremental Attribute Reduction Algorithm Based on
Elementary Sets

Let red be an attribute reduction of a decision information system S =< U,
C
⋃

D, V, f >, where D={d}. Thus, PosC(D) = Posred(D). According to
Proposition 2, there is no collision elementary set on attribute set red in the
positive elementary set Ps of S. When a new object (we denote it as recordnew)
is added into the decision information system, three different cases may happen.

1. ∃Ei∈Ns(recordnew ∈ Ei). According to Definition 7, it is obvious that there
is no collision element on red in Ps after recordnew is added into the decision
information systems, thus PosC(D) = Posred(D) still holds after recordnew

is added.
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2. ∃Ei∈Ps(recordnew ∈ Ei). There will be the following two cases:
2.1. ∀x∈Ei(d(x) = d(recordnew). According to Definition 7, it is obvious that

there is no collision elementary set on red in Ps after recordnew is added,
thus PosC(D) = Posred(D) still holds.

2.2. ∀x∈Ei(d(x) �= d(recordnew). That is, the elementary set Ei will no longer
belong to Ps after recordnew is added into Ei. Thus, P s = P s−Ei, Ns =
Ns

⋃
Ei. It is obvious that there is no collision elementary set on red in

Ps after recordnew is added, thus PosC(D) = Posred(D) still holds.
3. ∀Ei∈Ps∧Ei∈Nsrecordnew /∈ Ei. Thus, a new elementary set Enew will be

generated for recordnew . Enew must belong to the positive elementary set,
so P s = P s

⋃
Enew . We compare Enew with all other elementary sets in Ps

and Ns :
3.1. If Enew is a non-collision elementary set on red, it is obvious that there

is no collision elementary set on red in Ps after recordnew is added, then
PosC(D) = Posred(D) still holds.

3.2. If Enew is a collision elementary set on red, that is PosC(D) �= Posred(D)
after recordnew is added into Ps. We might as well assume that Enew

contradicts Ek on red. There must be some condition attributes in at-
tribute set C − red on which Enew and Ek have different values. Let
(c1, c2, ..., ck ∈ (C − red)) ∧ ∀x∈Enew,y∈Ek

((c1(x) �= c1(y)) ∧ (c2(x) �=
c2(y))∧...∧(ck(x) �= ck(y))), according to Definition 7, it is obviously that
Enew won’t contradict Ek on red∪{ci}(i = 1, ..., k). According to Propo-
sition 1, those elementary sets that don’t contradict Enew on red won’t
contradict on red∪ {ci}(i = 1, ..., k) also. Therefore, there is no collision
elementary set on red ∪ {ci} in Ps, that is PosC(D) = Posred∪{ci}(D).

In step 3.2, in order to get the attribute reduction result with as less number
of condition attributes as possible, we would not choose a condition attribute
from ci, c2, ..., ck and add it into red immediately in our algorithm when more
than 1 objects are added. We could generate a disjunctive formula for each of
them, that is bj = ci ∨ c2∨, ...,∨ck. After all new objects are added into the
original decision information system, we unite all these disjunctive formulas, let
it be F = b1 ∧ b2 ∧ ... ∧ bm(Suppose m disjunctive formulas are generated). F is
a conjunctive formal formula (CNF). We could transform F into a disjunctive
normal formula (DNF), that is, F = q1∨q2 ∨ ...∨qi ∨ ...∨qn(qi = c1∧c2 ∧ ...∧cl).
Suppose qi(qi = c1 ∧ c2 ∧ ... ∧ cl) is the smallest term in F, that is the number
of attributes in qi is less than all other terms in F. Let A = {c1, c2, ..., cl}. It
is obvious that there is no collision elementary set on red ∪ A in Ps, that is,
PosC(D) = Posred∪A(D).

In the following, we can get the attribute reduction of the new decision in-
formation systems after getting rid of possible redundant attribute in red ∪A.

Algorithm1: Incremental attribute reduction algorithm based on element set.

Input: An original decision information system S =< U,C
⋃

D, V, f >, one of
its attribute reduction red, its positive elementary set Ps and negative
element set Ns, and a new object set Add to be added.
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Output: the attribute reduction result Red of the new decision information
system S1 =< U

⋃
Add,C

⋃
D, V1, f1 >.

1. Choose the first object from Add and denote it as recordnew , let k=1, Add =
Add− {recordnew}.

2. if (∃Ei∈Ns(recordnew ∈ Ei)), go to Step 5.
3. if (∃Ei∈Ps(recordnew ∈ Ei)),

3.1. if ∀x∈Ei(d(x) = d(recordnew) , go to Step5.
3.2. if ∀x∈Ei(d(x) �= d(recordnew), P s = P s−Ei, Ns = Ns

⋃
Ei, go to Step5.

4. Generate a new elementary set Enew for recordnew .
4.1. for i=1 to |P s| do

4.1.1. Let Ei be the i-th elementary set in Ps.
4.1.2. If Enew contradicts Ei on attribute set red, let ci, c2, ..., cj be the

attributes in the attribute set C − red on which Enew and Ei have
different values, and bk = ci ∨ c2∨, ...,∨cj , k = k + 1.

4.2. for i=1 to |Ns| do
4.2.1. ( Let Ei be the i-th elementary set in Ns.
4.2.2. If Enew contradicts Ei on attribute set red, just like Step 4.1, we can

get bk = ci ∨ c2∨, ...,∨cj , k = k + 1.
4.2.3. 4.3 P s = P s ∪Enew .

5. If Add = ∅ , go to Step6. Otherwise, choose the next object from Add, and
denote it as recordnew , Add = Add− {recordnew}, go to Step 2.

6. Let F = b1 ∧ b2 ∧ ... ∧ bk−1 and transform F to a disjunctive formula
(F = q1∨q2∨...∨qi∨...∨qn ). Choose the smallest term qj(qi = c1∧c2∧...∧cl)
from F. A = {c1, c2, ..., cl}.

7. Red = red ∪A.
8. for i=1 to |Red| do

8.1. P = Red;
8.2. Let ci be i-th attribute in Red ;
8.3. P = P − {ci};
8.4. if PosC(D) = PosP (D), then Red = P .

9. Return Red.

5 Experiment Results

In order to test the validity of the our algorithm, three classical algorithms for
attribute reduction (attribute reduction algorithm based on information entropy,
attribute reduction algorithm based on discernibility matrix, and attribute re-
duction algorithm based on character choice) in RIDAS system [19] are used. The
configuration of the PC in our experiments is P4 2.66G(CPU), 512M(memory),
windows2000 (operation system).
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5.1 UCI Database Test

We use datasets Heart c ls, Pima India, Crx bq ls, Liver disorder and
Abalone from UCI database (These data sets can be downloaded at
http://www.ics.uci.edu) as test dataset. The parameters of these five data sets
are shown in Table 1. 80% objects of these five data sets are used as the original
decision information systems, and the other 20% are used as additive datasets re-
spectively. The whole dataset are used as the new decision information systems.
Firstly, we use the three classical algorithms to generate the attribute reduc-
tions for each original decision information system. Secondly, based on previous
results, we use Algorithm 1 to generate the attribute reductions for each new
decision information system. Finally, we use the three classical algorithms to
generate the attribute reductions for each new decision information system, and
compare them with the attribute reductions generating by Algorithm 1. The
experiment results are shown in Table 2. Where, T is running time of algorithm,
its unit is second. T=0 means that the running time is less than 1 millisecond.
n is the number of condition attributes in reduction results.

From Table 2, we can find that the running time of our incremental algorithm
is much less than non-incremental algorithms.

5.2 Test on Inconsistent Dataset

In order to test the validity of Algorithm 1 for processing inconsistent deci-
sion information systems, we construct five inconsistent datasets randomly. The

Table 1. Experiment Dataset

Dataset Number of Condition Attributes Number of Objects
Heart c ls 13 303
Pima India 8 738
Crx bq ls 15 690

Liver disorder 6 1260
Abalone 8 4177

Table 2. Experiment Results for UCI Databases

Character choice Information entropy discernibility matrix

Dataset Non-increm incremental Non-increm incremental Non-increm incremental
ental ental ental

T n T n T n T n T n T n
Heart c ls 4.704 9 0 9 0.156 9 0 9 0.187 9 0.016 9
Pima India 36.422 5 0 5 0.406 5 0.016 5 0.5 5 0.016 5
Crx bq ls 48.187 13 0.109 6 1.032 6 0.031 6 1.954 6 0.015 6

Liver disorder 71.64 5 0 5 0.078 5 0.016 5 1.359 5 0 5
Abalone 118.406 7 1.266 6 17.234 6 0.594 6 41.875 6 0.578 6



Incremental Attribute Reduction Based on Elementary Sets 191

Table 3. Experiment results of Intolerant Dataset

Character choice Information entropy discernibility matrix

Dataset Non-increm incremental Non-increm incremental Non-increm incremental
ental ental ental

T n T n T n T n T n T n
DataSet1 109.484 7 0.11 7 2.109 6 0.032 6 7.015 6 0.047 6
DataSet2 783.438 7 0.344 7 8.484 6 0.156 7 19.922 6 0.172 7
DataSet3 2598.39 7 0.875 7 19.219 6 0.453 7 42.875 7 0.484 7
DataSet4 6800.11 7 1.5 7 34.516 6 1.219 7 76.563 6 0.813 7
DataSet5 12727.11 8 1.375 8 54.625 7 1.5 7 122.06 7 1.719 7

number of objects of the five datasets are 1000, 2000, 3000, 4000 and 5000 re-
spectively. The number of condition attributes and decision attribute are 15 and
1. For the former 80% objects, the values of their former 10 condition attributes
and decision attribute are generated randomly from 0 to 9, and the other 5
condition attributes are all set to be 0. It is taken as the original decision infor-
mation system. For the other 20% objects, the values of their former 10 condition
attributes and decision attribute are generated randomly from 0 to 9, and the
other 5 condition attributes are generated randomly from 0 to 1. It is taken as
the dataset to be added. The whole dataset is taken as the new decision infor-
mation system. Some conflict objects will be generated in this way. The test
method is similar to 5.1. The experiment result is shown in Table 3.

From Table 3, we can find that the running time of our incremental algorithm
is also much less than non-incremental algorithms when processing inconsistent
decision information systems.

5.3 Continuous Incremental Learning Test

In order to simulate the incremental knowledge learning ability of a human brain,
we construct another dataset randomly. The number of condition attributes and
decision attribute are 15 and 1 respectively. The values of condition attributes
and decision attribute are generated randomly from 0 to 9, the number of objects
of this dataset is 1000 at first. We use the attribute reduction algorithm based
on information entropy to generate its attribute reduction. Then, we add new
objects into this dataset and use Algorithm 1 to generate the attribute reduction
of the new decision information system continuously. The number of objects
are 2000, 5000, 10,000, 20,000, 50,000, 100,000, 200,000, 500,000 and 1,000,000
respectively after new objects are added each time. The experiment result is
shown in Table 4. Where, N is the number of objects in new decision information
system, T is running time, h means hour, m means minute, s means second, and
n is the number of condition attributes in the attribute reduction result.

From Table 4, we can find that continuous incremental attribute reduction
could be conducted with Algorithm 1. It could simulate the incremental knowl-
edge learning process of a human brain.
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Table 4. Experiment Result of Continuous Incremental Test

N 2,000 5,000 10,000 20,000 50,000 100,000 200,000 500,000 1,000,000
T 0.328s 6s 22s 1m29s 12m34s 45m11s 2h20m42s 15h12m6s 71h46m40s
n 6 7 8 8 9 10 10 11 11

Based on above tests, we could have a conclusion that the Algorithm 1 can
generate attribute reduction for dynamic decision information systems quickly.

6 Conclusion

Incremental learning is an important problem in AI research. Attribute reduction
is a key problem for rough sets based knowledge acquisition. Some incremental
rough sets based algorithms for rule extraction have been developed. Unfortu-
nately, they don’t consider the attribute reduction problem. In paper [13-15],
some methods are proposed for incremental attribute reduction in decision in-
formation system. In this paper, an incremental attribute reduction algorithm
based on elementary sets is proposed, it can generate attribute reduction for
dynamic decision information systems quickly. Our experiment results illustrate
that this algorithm is effective. Now, we are comparing our algorithm with these
methods developed in paper [13-15] and testing more difficult data.
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Abstract. Feature selection refers to the problem of selecting those in-
put features that are most predictive of a given outcome; a problem en-
countered in many areas such as machine learning, pattern recognition
and signal processing. In particular, solution to this has found success-
ful application in tasks that involve datasets containing huge numbers
of features (in the order of tens of thousands), which would be impos-
sible to process further. Recent examples include text processing and
web content classification. Rough set theory has been used as such a
dataset pre-processor with much success, but current methods are inad-
equate at finding minimal reductions, the smallest sets of features possi-
ble. This paper proposes a technique that considers this problem from a
propositional satisfiability perspective. In this framework, minimal sub-
sets can be located and verified. An initial experimental investigation is
conducted, comparing the new method with a standard rough set-based
feature selector.

1 Introduction

Many problems in machine learning involve high dimensional descriptions of in-
put features. It is therefore not surprising that much research has been carried
out on dimensionality reduction [4]. However, existing work tends to destroy the
underlying semantics of the features after reduction or require additional infor-
mation about the given data set for thresholding. A technique that can reduce
dimensionality using information contained within the dataset and that preserves
the meaning of the features (i.e. semantics-preserving) is clearly desirable. Rough
set theory (RST) can be used as such a tool to discover data dependencies and
to reduce the number of attributes contained in a dataset using the data alone,
requiring no additional information [10,11].

Over the past ten years, RST has indeed become a topic of great interest
to researchers and has been applied to many domains. Given a dataset with
discretized attribute values, it is possible to find a subset (termed a reduct) of the
original attributes using RST that are the most informative; all other attributes
can be removed from the dataset with very little information loss. However,
current methods such as heuristic and stochastic-based search are inadequate
at finding minimal reductions. By reformulating the rough set reduction task

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 194–203, 2005.
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in a propositional satisfiability (SAT) framework, solution techniques from SAT
may be applied that should be able to discover such subsets, guaranteeing their
minimality.

The rest of this paper is structured as follows. Section 2 details the main
concepts involved in rough set feature selection, with an illustrative example.
The third section introduces propositional satisfiability and how the problem of
finding rough set reducts can be formulated in this way. The initial experimental
results of the application of the new method is presented in section 4. Section 5
concludes the paper, with a discussion of some of the future work in this area.

2 Rough Set-Based Feature Selection

Rough set theory [10] is an extension of conventional set theory that supports
approximations in decision making. The rough set itself is the approximation
of a vague concept (set) by a pair of precise concepts, called lower and upper
approximations, which are a classification of the domain of interest into disjoint
categories. The lower approximation is a description of the domain objects which
are known with certainty to belong to the subset of interest, whereas the upper
approximation is a description of the objects which possibly belong to the subset.

There are two main approaches to finding rough set reducts: those that con-
sider the degree of dependency and those that are concerned with the discernibil-
ity matrix. This section describes the fundamental ideas behind both approaches.
To illustrate the operation of these, an example dataset (table 1) will be used.

Table 1. An example dataset

x ∈ U a b c d ⇒ e

0 1 0 2 2 0
1 0 1 1 1 2
2 2 0 0 1 1
3 1 1 0 2 2
4 1 0 2 0 1
5 2 2 0 1 1
6 2 1 1 1 2
7 0 1 1 0 1

2.1 Rough Set Attribute Reduction

Central to Rough Set Attribute Reduction (RSAR) [3,7] is the concept of indis-
cernibility. Let I = (U, A) be an information system, where U is a non-empty
set of finite objects (the universe) and A is a non-empty finite set of attributes
such that a : U → Va for every a ∈ A. Va is the set of values that attribute a
may take. With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)} (1)
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The partition of U, generated by IND(P) is denoted U /IND(P) (or U /P) and
can be calculated as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})}, (2)

where

A ⊗ B = {X ∩ Y : ∀X ∈ A, ∀Y ∈ B, X ∩ Y �= Ø} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P . The
equivalence classes of the P -indiscernibility relation are denoted [x]P .

Let X ⊆ U. X can be approximated using only the information contained
within P by constructing the P-lower and P-upper approximations of X :

PX = {x | [x]P ⊆ X} (4)

PX = {x | [x]P ∩ X �= Ø} (5)

Let P and Q be equivalence relations over U, then the positive region can be
defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

The positive region contains all objects of U that can be classified to classes
of U/Q using the information in attributes P. For example, let P = {b,c} and Q
= {e}, then

POSP (Q) =
⋃

{Ø,{2, 5}, {3}} = {2, 3, 5}

Using this definition of the positive region, the rough set degree of dependency
of a set of attributes Q on a set of attributes P is defined in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree k (0 ≤ k ≤ 1),
denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U| (7)

In the example, the degree of dependency of attribute {e} from the attributes
{b,c} is:

γ{b,c}({e}) = |POS{b,c}({e})|
|U|

= |{2,3,5}|
|{0,1,2,3,4,5,6,7}| = 3

8

The reduction of attributes is achieved by comparing equivalence relations
generated by sets of attributes. Attributes are removed so that the reduced set
provides the same predictive capability of the decision feature as the original.
A reduct is defined as a subset of minimal cardinality Rmin of the conditional
attribute set C such that γR( D) = γC(D).
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QuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R ← {}
(2) do
(3) T ← R
(4) ∀x ∈ (C − R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R ← T
(8) until γR(D) == γC(D)
(9) return R

Fig. 1. The QuickReduct Algorithm

The QuickReduct algorithm given in figure 1, attempts to calculate a
reduct without exhaustively generating all possible subsets. It starts off with
an empty set and adds in turn, one at a time, those attributes that result in
the greatest increase in the rough set dependency metric, until this produces its
maximum possible value for the dataset.

According to the QuickReduct algorithm, the dependency of each attribute
is calculated, and the best candidate chosen. Attribute d generates the highest
dependency degree, so that attribute is chosen and the sets {a, d}, {b, d} and
{c, d} are evaluated. This process continues until the dependency of the reduct
equals the consistency of the dataset (1 if the dataset is consistent). In the exam-
ple, the algorithm terminates after evaluating the subset {b, d}. The generated
reduct shows the way of reducing the dimensionality of the original dataset by
eliminating those conditional attributes that do not appear in the set.

This, however, is not guaranteed to find a minimal subset. Using the depen-
dency function to discriminate between candidates may lead the search down a
non-minimal path. It is impossible to predict which combinations of attributes
will lead to an optimal reduct based on changes in dependency with the addi-
tion or deletion of single attributes. It does result in a close-to-minimal subset,
though, which is still useful in greatly reducing dataset dimensionality.

2.2 Discernibility Matrix-Based Selection

Many applications of rough sets to feature selection make use of discernibility
matrices for finding reducts. A discernibility matrix [12] of a decision table D =
(U, C ∪ D) is a symmetric |U| × |U| matrix with entries defined:

dij = {a ∈ C|a(xi) �= a(xj)} i, j = 1, ..., |U| (8)

Each dij contains those attributes that differ between objects i and j. For finding
reducts, the decision-relative discernibility matrix is of more interest. This only
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considers those object discernibilities that occur when the corresponding deci-
sion attributes differ. Returning to the example dataset, the decision-relative
discernibility matrix found in table 2 is produced. For example, it can be seen
from the table that objects 0 and 1 differ in each attribute. Although some at-
tributes in objects 1 and 3 differ, their corresponding decisions are the same so
no entry appears in the decision-relative matrix. Grouping all entries containing
single attributes forms the core of the dataset (those attributes appearing in
every reduct). Here, the core of the dataset is {d}.

Table 2. The decision-relative discernibility matrix

x ∈ U 0 1 2 3 4 5 6 7
0
1 a, b, c, d
2 a, c, d a, b, c
3 b, c a, b, d
4 d a, b, c, d b, c, d
5 a, b, c, d a, b, c a, b, d
6 a, b, c, d b, c a, b, c, d b, c
7 a, b, c, d d a, c, d a,d

From this, the discernibility function can be defined. This is a concise notation
of how each object within the dataset may be distinguished from the others. A
discernibility function fD is a boolean function of m boolean variables a∗

1, ..., a
∗
m

(corresponding to the attributes a1, ..., am) defined as below:

fD(a∗
1, ..., a

∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij �= ∅} (9)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime implicants of the dis-
cernibility function, all the minimal reducts of a system may be determined.
From table 2, the decision-relative discernibility function is (with duplicates re-
moved):

fD(a, b, c, d) = {a ∨ b ∨ c ∨ d} ∧ {a ∨ c ∨ d} ∧ {b ∨ c}
∧{d} ∧ {a ∨ b ∨ c} ∧ {a ∨ b ∨ d}
∧{b ∨ c ∨ d} ∧ {a ∨ d}

Further simplification can be performed by removing those sets (clauses) that
are supersets of others:

fD(a, b, c, d) = {b ∨ c} ∧ {d}

The reducts of the dataset may be obtained by converting the above expres-
sion from conjunctive normal form to disjunctive normal form (without nega-
tions). Hence, the minimal reducts are {b, d} and {c, d}. Although this is guar-
anteed to discover all minimal subsets, it is a costly operation rendering the
method impractical for even medium-sized datasets.
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For most applications, a single minimal subset is required for data reduction.
This has led to approaches that consider finding individual shortest prime impli-
cants from the discernibility function. A common method is to incrementally add
those attributes that occur with the most frequency in the function, removing
any clauses containing the attributes, until all clauses are eliminated [9]. How-
ever, even this does not ensure that a minimal subset is found - the search can
proceed down non-minimal paths.

3 RSAR-SAT

The Propositional Satisfiability (SAT) problem [5] is one of the most studied NP-
complete problems because of its significance in both theoretical research and
practical applications. Given a boolean formula (typically in conjunctive nor-
mal form (CNF)), the SAT problem requires an assignment of variables/features
so that the formula evaluates to true, or a determination that no such assign-
ment exists. In recent years search algorithms based on the well-known Davis-
Logemann-Loveland algorithm (DPLL) [5] are emerging as some of the most
efficient methods for complete SAT solvers. Such solvers can either find a solu-
tion or prove that no solution exists.

Stochastic techniques have also been developed in order to reach a solution
quickly. These pick random locations in the space of possible assignments and
perform limited local searches from them. However, as these techniques do not
examine the entire search space, they are unable to prove unsatisfiability.

A CNF formula on n binary variables x1, ..., xn is the conjunction of m clauses
C1, ..., Cm each of which is the disjunction of one or more literals. A literal is the
occurrence of a variable or its negation. A formula denotes a unique n-variable
boolean function f(x1, ..., xn). Clearly, a function f can be represented by many
equivalent CNF formulas. The satisfiability problem is concerned with finding
an assignment to the arguments of f(x1, ..., xn) that makes the function equal to
1, signalling that it is satisfiable, or proving that the function is equal to 0 and
hence unsatisfiable [14]. By viewing the selection problem as a variant of SAT,
with a bound on true assignments, techniques from this field can be applied to
reduct search.

3.1 Finding Rough Set Reducts

The problem of finding the smallest feature subsets using rough set theory can be
formulated as a SAT problem. Rough sets allows the generation from datasets of
clauses of features in conjunctive normal form. If after assigning truth values to
all features appearing in the clauses the formula is satisfied, then those features
set to true constitute a valid subset for the data. The task is to find the smallest
number of such features so that the CNF formula is satisfied. In other words,
the problem here concerns finding a minimal assignment to the arguments of
f(x1, ..., xn) that makes the function equal to 1. There will be at least one solu-
tion to the problem (i.e. all xis set to 1) for consistent datasets. Preliminary work
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has been carried out in this area [1], though this does not adopt a DPLL-style
approach to finding solutions.

The DPLL algorithm for finding minimal subsets can be found in figure 2,
where a search is conducted in a depth-first manner. The key operation in this
procedure is the unit propagation step, unitPropagate(F ), in lines (6) and (7).
Clauses in the formula that contain a single literal will only be satisfied if that
literal is assigned the value 1 (for positive literals). These are called unit clauses.
Unit propagation examines the current formula for unit clauses and automati-
cally assigns the appropriate value to the literal they contain. The elimination
of a literal can create new unit clauses, and thus unit propagation eliminates
variables by repeated passes until there is no unit clause in the formula. The
order of the unit clauses within the formula makes no difference to the results
or the efficiency of the process.

Branching occurs at lines (9) to (12) via the function selectLiteral(F ). Here,
the next literal is chosen heuristically from the current formula, assigned the
value 1, and the search continues. If this branch eventually results in unsatisfi-
ability, the procedure will assign the value 0 to this literal instead and continue
the search. The importance of choosing good branching literals is well known
- different branching heuristics may produce drastically different sized search
trees for the same basic algorithm, thus significantly affecting the efficiency of
the solver. The heuristic currently used within RSAR-SAT is to select the vari-
able that appears in the most clauses in the current set of clauses. Many other
heuristics exist for this purpose [14], but are not considered here.

A degree of pruning can take place in the search by remembering the size of
the currently considered subset and the smallest optimal subset encountered so
far. If the number of variables currently assigned 1 equals the number of those in
the presently optimal subset, and the satisfiability of F is still not known, then
any further search down this branch will not result in a smaller optimal subset.

DPLL(F ).
F , the formula containing the current set of clauses.

(1) if (F contains an empty clause)
(2) return unsatisfiable
(3) if (F is empty)
(4) output current assignment
(5) return satisfiable
(6) if (F contains a unit clause {l})
(7) F ′ ← unitPropagate(F )
(8) return DPLL(F ′)
(9) x ← selectLiteral(F )
(10) if ( DPLL(F ∪ {x}) is satisfiable)
(11) return satisfiable
(12) else return DPLL(F ∪ {−x})

Fig. 2. The definition of the DPLL algorithm
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Although stochastic methods have been applied to SAT problems [6], these
are not applicable here as they provide no guarantee of solution minimality. The
DPLL-based algorithm will always find the minimal optimal subset. However,
this will come at the expense of time taken to find it.

3.2 Pre-processing Clauses

The discernibility function can be simplified by replacing those variables that
are simultaneously either present or absent in all clauses by single representative
variables. For instance, in the formula below, variables a and f can be replaced
by a single variable.

{a ∨ b ∨ c ∨ f} ∧ {b ∨ d} ∧ {a ∨ d ∨ e ∨ f} ∧ {d ∨ c}

The first and third clauses may be considered to be {{a ∨ f} ∨ b ∨ c} and {{a ∨
f} ∨ d ∨ e} respectively. Replacing {a ∨ f} with g results in

{g ∨ b ∨ c} ∧ {b ∨ d} ∧ {g ∨ d ∨ e} ∧ {d ∨ c}

If a reduct resulting from this discernibility function contains the new variable g,
then this variable may be replaced by either a or f . Here, {g, d} is a reduct and so
{a, d} and {f, d} are reducts of the original set of clauses. Hence, fewer attributes
are considered in the reduct-determining process with no loss of information [13].
The complexity of this (optional) pre-processing step is O(a ∗ c + a2), where a is
the number of attributes and c is the number of clauses.

From the generation of the discernibility matrix, the core attributes are im-
mediately determined (as discussed in section 2.2). These may then be removed
from the discernibility function as they will appear in every rough set reduct.
Hence, if the union of the core attributes for a dataset results in a reduct, no
search is required as this will be the minimal subset.

4 Evaluation

Initial experimentation has been carried out using the algorithm outlined pre-
viously. The datasets have been obtained from [2]. Table 3 shows the average
time taken for the preprocessing of each dataset. For RSAR, this involves con-
structing partitions for each attribute. For RSAR-SAT, the discernibility matrix
is calculated and simplified. It can be seen from the table that RSAR-SAT re-
quires more pre-processing time. Included in this table are the number of clauses
appearing in the resultant discernibility function for the RSAR-SAT method.

The average times of the execution of these algorithms are also presented
in table 3. The time taken for RSAR-SAT is split into two columns. The first
indicates the average length of time taken to find the minimal subset, the second
how long it takes to verify that this is indeed minimal. For RSAR, an asterisk
next to the time indicates that it found a non-minimal reduct.

The results show that RSAR-SAT is comparable to RSAR in the time taken
to find reducts. However, RSAR regularly fails to find the smallest optimal sub-
set, being misled in the search process. For larger datasets, the time taken for



202 R. Jensen, Q. Shen, and A. Tuson

Table 3. Runtimes for RSAR and RSAR-SAT

Dataset No. of No. of RSAR SAT RSAR SAT: Minimal SAT: Full
clauses Features setup (s) setup (s) (s) (s) (s)

M-of-N 6 13 0.164 2.333 0.171* 0.001 0.007
Exactly 6 13 0.146 2.196 0.304* 0.001 0.008
Exactly2 10 13 0.136 1.898 0.823* 0.001 0.008

Heart 12 13 0.085 0.380 0.207* 0.002 0.009
Vote 12 16 0.076 0.333 0.170* 0.004 0.009

Credit 200 20 0.148 3.873 1.988* 0.077 0.094
LED 167 24 0.125 68.20 0.097* 0.041 0.051

Letters 57 25 0.019 0.074 0.067* 0.024 0.116
Derm 1126 34 0.187 11.31 0.758* 0.094 0.456
Derm2 1184 34 0.133 6.796 0.897* 0.104 0.878
WQ 6534 38 0.168 87.85 9.590* 0.205 116.1
Lung 171 56 0.032 0.125 0.059 0.023 0.786
DNA 3861 58 0.139 30.40 1.644* 0.227 53.81

RSAR-SAT verification exceeds that of RSAR. Note that the verification stage
involves simple chronological backtracking. There are ways in which this can be
made more effective and less time-consuming.

5 Conclusion

This paper has presented a new DPLL-based technique for locating and verifying
minimal subsets in the rough set context. The initial experimentation has shown
that the method performs well in comparison to RSAR, which often fails to find
the smallest subsets. Additional investigations to be carried out here include
evaluating the proposed work against further well established heuristic-based
approaches to reduct finding other than RSAR. Typical methods can be found
in [7,8,9,13].

DPLL resorts to chronological backtracking if the current assignment of vari-
ables results in the unsatisfiability of F . Much research has been carried out in
developing solution techniques for SAT that draws on related work in solvers
for constraint satisfaction problems (CSPs). Indeed the SAT problem can be
translated to a CSP by retaining the set of boolean variables and their {0, 1}
domains, and to translate the clauses into constraints. Each clause becomes a
constraint over the variables in the constraint. Unit propagation can be seen to
be a form of forward checking.

In CSPs, more intelligent ways of backtracking have been proposed such as
backjumping, conflict-directed backjumping and dynamic backtracking. Many
aspects of these have been adapted to the SAT problem solvers. In these solvers,
whenever a conflict (dead-end) is reached, a new clause is recorded to prevent
the occurrence of the same conflict again during the subsequent search. Non-
chronological backtracking backs up the search tree to one of the identified causes
of failure, skipping over irrelevant variable assignments.
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With the addition of intelligent backtracking, RSAR-SAT should be able to
handle datasets containing large numbers of features. As seen in the preliminary
results, the bottleneck in the process is the verification stage - the time taken to
confirm that the subset is indeed minimal. This requires an exhaustive search of
all subtrees containing fewer variables than the current best solution. Much of
this search could be avoided through the use of more intelligent backtracking.
This would result in a selection method that can cope with many thousands
of features, whilst guaranteeing resultant subset minimality - something that is
particularly sought after in feature selection.
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Abstract. We present a study on a rough set based approach for fea-
ture selection. Instead of using significance or support, Parameterized
Average Support Heuristic (PASH) considers the overall quality of the
potential set of rules. It will produce a set of rules with balanced support
distribution over all decision classes. Adjustable parameters of PASH can
help users with different levels of approximation needs to extract predic-
tive rules that may be ignored by other methods. This paper finetunes
the PASH heuristic and provides experimental results to PASH.

1 Introduction

One of the main research challenges of information analyzing from large databases
is how to reduce the complexity of the data. One faces two characteristics of com-
plexity, namely, the curse of dimensionality and the peaking phenomenon. The
curse of dimensionality refers to the fact that the complexity grows exponen-
tially with the dimension. Therefore, the time required to generate rules will
increase dramatically with the number of features [2]. The peaking phenomenon
says that if the number of training instances is relatively smaller than the num-
ber of features, it will degrade the accuracy of prediction [14]. Feature selection
techniques aim at simplifying complexity of data by reducing the number of un-
necessary, irrelevant, or unimportant features. The additional benefits of doing
feature selection include improving the learning efficiency and increasing pred-
icative accuracy.

The ability to process insufficient and incomplete information makes rough
set theory a good candidate for classification and feature selection [3]. In fact,
rough set theory has a very close tie with feature selection. Similar to the concept
of keys in database, the reduct represents the minimal set of non-redundant
features that are capable of discerning objects in a information table. Another
concept, the core, which is the intersection of all reducts, represents the set of
indispensable features. Many researchers have presented their study on using
rough set theory for feature selection [4,7,11,16,17]. Normally, the measures of
necessity of the features are calculated by the functions of lower and upper
approximations. These measures are employed as heuristics to guide the feature
selection processes. For example, Hu proposes a heuristic in favors of significant
features, i.e., features causing the faster increase of the positive region [7]. The
heuristic of Zhong et al. considers the positive region as well as the support of
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rules [17]. However, it may not be sufficient by considering only the significant
or support factors. It may be useful to consider the overall quality of the set of
potential rules. The new heuristic function called Average Support Heuristic is
a study towards this direction [16]. To further develop this idea, 100% support
may not be needed for all applications. Parameterized Average Support Heuristic
(PASH) is the result of this improvement.

We will reformat and fine-tune the PASH heuristic in this paper. The ex-
perimental results will also be presented. The organization of this paper is as
follows: Section 2 studies feature selection in brief term. Section 3 reviews rough
set based feature selection methods. The PASH heuristic is presented in Section 4
and experimental results in Section 5. Finally, the paper ends with concluding
remarks.

2 Brief of Feature Selection

Feature selection is considered as one of the important research topics of ma-
chine learning [6]. In many applications, especially in the age of an information
explosion, one collects many features that are potentially useful. However, all of
these features may not be useful or relevant to one’s classification, forecasting,
or clustering objects. Therefore, choosing a subset of the original features will
often lead to better performance. Features may be classified as significant, rel-
evant, dependent and useless according to their importance to the application.
The goal of feature selection is to find the optimal subset of features that satisfy
certain criteria. For instance, although there may be dozens of features (make,
brand, year, weight, length, hight, engine size, transmission, colour, owner, price,
etc.) available when one purchases a second hand vehicle, one may only read a
handful of important features (e.g., make, year, engine, colour and price) that
meet one’s needs.

Studies show that there are at least four criteria to judge a feature selection
method [5], such as,

– Find the minimal feature subset that is necessary and sufficient to decide
the classes;

– Select a subset of M features from a set of N features, M < N , such that
the value of a criterion function is optimized over all subsets of size M ;

– Improve prediction accuracy or decrease the size of the feature subset without
significantly decreasing prediction accuracy of the classifier built using only
the selected features;

– Select a small subset such that the resulting class distribution, given only
the values for the selected feature, is as close as possible to the original class
distribution given all feature values.

It is observed that each of the criterion considers two parameters, namely,
the size of the selected feature subset and the accuracy of the classifier induced
using only the selected features. No matter what criterion is employed, one has
to define an evaluation measure to express the chosen criterion. The evaluation
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measure must be able to reflect both of the parameters. From a machine learning
point of view, the feature selection problem is in fact a search problem. The
optimal feature subset is one that maximizes the value of an evaluation measure.
Therefore, the general search principles apply to feature selection.

An exhaustive search of 2n possible subsets for a feature set of size n is almost
infeasible under most circumstances [6]. It could only be used in a domain where
n is small. However, the needs for feature selection is limited in such cases. In
random search, the candidate feature subset is generated randomly and each
time the evaluation measure is applied to the generated feature subset to check
whether it satisfies the criterion. This process repeats until one that satisfies
the criterion is found. The process may stop when a predefined time period has
elapsed or a predefined number of subsets have been tested. A random search
algorithm worthwhile to mention is the LVF algorithm proposed by Liu and
Setiono [12].

The third and most commonly used method is called the heuristic search,
where a heuristic function is employed to guide the search [9,10]. The search is
performed towards the direction that maximizes the value of a heuristic function.
Heuristic search is an important search method used by the feature selection com-
munity. The rough set approaches for feature selection discussed in this article
are heuristic search methods.

The exhaustive search is infeasible due to its high time complexity. The ran-
dom and heuristic search reduce computational complexity by compromising
performance. It is not guaranteed that an optical result can be achieved. They
are not complete search techniques. However, if a heuristic function is monotonic,
as the branch and bound method proposed by Narendra and Fukunaga, the op-
timal subset of features can be found muck quick than exhaustive search [13].

3 Evolution of Rough Sets Based Feature Selection

As we discussed above, reducts in a rough set represent sets with minimal number
of features. These features are significant features. The most important features
are those appearing in core, i.e., in every reduct. The measures of necessity of
features are usually calculated based on the concept of lower and upper approxi-
mations. These measures are employed as heuristics to guide the feature selection
process.

The concepts in the rough set theory can manifest the property of strong
and weak relevance as defined in [8]. They can be used to define the necessity of
features. There are at least three types of rough set based heuristics, namely the
significance oriented method, the support oriented method, and average support
heuristic appearing in literature. The heuristic in [7] favors significant features,
i.e., features causing the faster increase of the positive region. Zhong’s heuristic
considers the positive region as well as the support of rules [17]. The Average
Support Heuristic considers the overall quality of the potential set of rules rather
than the support of the most significant rule [16].
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3.1 Significance Oriented Methods

One of the simplest and earliest rough set based feature selection method is to
use significance of features as the heuristic as studied by Hu [7]. The feature
selection process selects the most significant feature at each step until the stop
condition is satisfied. The most significant feature is the one that, by adding
this feature, can cause the fastest increase of dependency between condition
attributes and decision attribute, where the dependency reflects the relative size
of positive region. In short, the significance oriented method always selects the
feature that makes the positive region grow faster.

The significance oriented method is simple and the heuristic function can
be computed with low time complexity. However, this method only considers
one of the two factors in feature selection: the number of instances covered by
the potential rules (the size of positive region). It ignores the second factor: the
number of instances covered by each individual rule (the support of each rule.)
Rules with very low support are usually of little use.

3.2 Support Oriented Methods

The support oriented method proposed Zhong et al. considers both factors [17].
This method selects features based on the composite metric: the size of consistent
instance and the support of an individual rule. The heuristic function is defined
as the product of the positive region and the support of the most significant
rule, where the most significant rule is the one with the largest support. In
the remaining part of the paper, we refer to Zhong’s heuristic as the maximum
support heuristic.

The maximum support heuristic is far from an ideal heuristic. It only consid-
ers the support of the most significant rule rather than the overall quality of the
potential rules. Among the classes of the training instances, this method favors
one of them. As a result, it will produce rules with a biased support distribution.

3.3 Average Support Heuristic

A newer heuristic function, called average support heuristic, was proposed re-
cently [16]. The average support heuristic uses the average support of the rules
to replace the highest support of the rule in the maximum support heuristic.
The heuristic function is defined as the product of the positive region and the
average support of the most significant rules over all decision classes, as follows:

F (R, a) = Card(POSR+{a}(D))× 1
n

∑n
i=1 S(R, a, di) (1)

where

S(R, a, di) = MAXSize(POSR+{a}(D = di)/IND(R+ {a}))
is the support of the most significant rule for decision class {D = di} and D is
the decision attribute. The domain of D is {d1, d2, . . . , dn}. We call the second
factor 1

n

∑n
i=1 S(R, a, di) the overall quality of potential rules. As the heuristic

considers all the decision classes, the biased support distribution can be avoided.
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4 Parameterized Average Support Heuristic

Completely ignoring the inconsistent instances of the information table, as the
above heuristic functions do, is not a good strategy when the size of the boundary
region increases [16]. Some useful predictive rules obtained from the boundary
region might be lost in the result. The predictive rules hold true with high
probability but are not necessarily 100%.

All the above heuristics are defined on the basis of the traditional lower
approximation, the union of which includes only the consistent instances. In order
to include the predictive rules, we give a broader concept of lower approximation,
upon which a parameterized average support heuristic is defined.

The decision-theoretic rough set model and variable precision rough set model
are two examples of non-traditional lower approximation [15,18]. They consider
the information in the boundary region. However, the a priori probability of each
decision class required by these models is usually unknown in the real world ap-
plication. Furthermore, the pair of lower and upper limit certainty threshold
parameters confines these models to information tables with only a binary deci-
sion attribute.

Our new lower approximation does not require known a priori probabilities of
the decision classes and it is applicable to multi-valued decision attribute. Sup-
pose we have an information table T , in which the domain of decision attribute
D, denoted by VD, contains n values, such that VD = {d1, d2, . . . , dn}. Here we
consider two different situations: (1) the a priori probabilities are unknown; and
(2) the a priori probabilities are known.

4.1 Lower Approximation with Unknown a Priori Probability

When the a priori probabilities are unknown, we assume they are equal, i.e.
P (D = d1) = P (D = d2) = · · ·P (D = dn). In this case, we define the lower
approximation of class {D = di} as follows:

R∗(D = di) =
⋃

{Ej ∈ U/IND(R) : P (D = di|Ej) > P (D �= di|Ej)}, (2)

where P (D �= di|Ej) =
∑n

k=1,k �=i P (D = dk|Ej). The lower approximation of
class {D = di} is the set of such objects Ej in U that, given Ej , the probability
of D = di is greater than the probability of D �= di. In other words, Ej is
predictive of concept D = di from D �= di.

Since P (D �= di|Ej) = 1 − P (D = di|Ej), we can rewrite Equation 2 to
Equation 3:

R∗(D = di) =
⋃

{Ej ∈ U/IND(R) : P (D = di|Ej) > 0.5}, (3)

where P (D = di|Ej) could be estimated by taking the ratio of
Card(D = di

⋂
Ej)/Card(Ej).

When the decision attribute has fewer number of values, in the extreme
case, the decision attribute is binary, that is, |VD| = 2, Equation 2 may be too
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broad and degrade the performance. We can introduce a parameter k(k ≥ 1) to
Equation 2 as follows:

R∗(D = di) =
⋃

{Ej ∈ U/IND(R) : P (D = di|Ej) > k × P (D �= di|Ej)}. (4)

Equation 4 reflects that, given Ej , the concept D = di is k times more probable
than the concept D �= di.

By replacing P (D �= di|Ej) with 1 − P (D = di|Ej), Equation 4 becomes

R∗(D = di) =
⋃

{Ej ∈ U/IND(R) : P (D = di|Ej) > k
k+1}. (5)

As k ≥ 1 =⇒ k
k+1 ≥ 0.5, we can simplify Equation 5 as:

R∗(D = di) =
⋃

{Ej ∈ U/IND(R) : P (D = di|Ej) > t(t ≥ 0.5)}. (6)

Clearly, Equation 3 is a special case of Equation 6. Equation 6 guarantees that
each object E ∈ U is contained in at most one lower approximation, that is,

R∗(D = di)
⋂

R∗(D = dj) = φ, (i �= j).

4.2 Lower Approximation with Known a Priori Probability

In the case that the a priori probabilities of decision classes are known, Equa-
tion 6 is too simple to be effective. Assume that the information table obtained
from the training data can reflect the distribution of decision classes. The a priori
probability of class (D = di) could be estimated by

(D = di) =
Card(D = d1)

Card(U)
.

We can modify Equation 6 to Equation 7:

R∗(D = di) =
⋃

{Ej ∈ U/IND(R) :

P (D=di|Ej)
P (D=di)

= MAX{P (D=dk|Ej)
P (D=dk) , 1 ≤ k ≤ n}

and P (D = di|Ej) > t(t ≥ 0.5)}.

(7)

Equation 7 ensures that the lower approximation of class {D = di} contains
such objects Ej ∈ U that, given Ej , the probability of class {D = di} increases
faster than any other classes. Equation 7 also guarantees

R∗(D = di)
⋂

R∗(D = dj) = φ, (i �= j).

Equation 6 is a special case of Equation 7.
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4.3 PASH

Parameterized average support heuristic or PASH is defined the same as the
average support heuristic in appearance. It is also a product of two factors:
Card(POSR+{a}(D)) × Q(R, a), where Card(POSR+{a}(D)) is the cardinality
of the positive region and Q(R, a) is the overall quality of potential rules. The
difference is that, in PASH, the positive region is the union of the new lower
approximations and Q(R, a) is also defined on the new lower approximations.

In summary, there are two cases to be considered when using PASH:

– When the a priori probabilities of decision classes are unknown, we assume
they have equal a priori probability and use Equation 6.

– When the a priori probabilities of decision classes are known, we use Equa-
tion 7.

Average support heuristic and parameterized average support heuristic can
be viewed as extensions to maximum support heuristic.

5 Experiments

We will give brief experiments and analysis of results in this section. We con-
ducted a series of experiments with PASH using the mushroom data set obtained
from the UC Irvine’s machine learning repository [1]. Comparisons with results
achieved with other methods running on the same data set were also performed.
The mushroom data set has 8,124 instances with 22 condition attributes and
1 decision attribute. These algorithms are implemented in C language and exe-
cuted on a PC with CPU 1.7GHz and 128MB RAM. There were three groups
of experiments conducted.

5.1 Comparison of PASH with the Other Three Methods

We first tested PASH with the parameter value 1 under the stop condition
POSR(D) = POSC(D), that is, the program stops when one reduct is found.
The execution time was around 15 minutes under this stop condition.

Table 1. Result of feature selection with stop condition POSR(D) = POSC(D)

Method Selected features

Significance-oriented 5,20,8,12,3

Maximum support 5,10,17,6,8,16,18,13,12,11,22,4

Average support 5,10,17,6,8,16,18,13,12,11,4,7,19,20

PASH (parameter=1) 5,16,17,6,18,8,10,12,13,11,4,7,19,20

The comparison of the PASH result with results of significance-oriented
method, maximum support method and average support method is presented
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Table 2. Result of PASH with stop condition POSR(D) = POSC(D)

Parameter Selected features

5 5,16,17,6,18,8,10,12,13,11,4,7,19,20

15 5,16,17,6,18,7,4,12,13,11,8,10,19,20

30 5,18,16,17,6,7,4,12,13,11,8,10,19,20

60 5,18,16,17,6,8,10,13,12,11,4,7,19,20

100 5,10,17,6,8,16,18,13,12,11,4,7,19,20

in Table 1. The left column indicates the method used and the right column lists
the selected features in the order of selection. For example, the last row indicates
that PASH selects the 5th feature as the most important feature, followed by
the 16th feature, and then the 17th. The significance-oriented method obtained
the smallest reduct which contains only five features. It may be concluded as the
most time-efficient method. However, the features obtained from the significance-
oriented method are not so important if they are evaluated by the criteria used
in other methods. In other words, although a smaller and concise reduct is ob-
tained, it may lose some important features. In fact, the significance-oriented
method selected the 20th feature as the second most important feature whereas
the maximum support method did not select it at all. The other two methods
consider the 20th feature as the least important feature in the reducts. Another
finding is that all three methods except the first one selected the 17th feature as
the third important one but the significance-oriented method ignored it.

5.2 PASH with a Standard Stop Condition

The second set of experiments aimed to find out how the parameters value affect
the feature selection results.

We tested PASH with random parameters under the same stop condition
as the first set of experiments. The experimental results are shown in Table 2.
The left column is the value of the parameter and the right column lists the
selected features in the order of selection. It is suggested that the values of the
parameter do not affect the size of reducts. However, the value of the parameter
does influence the order of features in the reduct, i.e., the importance of the
features. It is interesting that no matter what parameter value is used, the most
important features (e.g. the 5th, the 17th) would be ordered in the first few steps
and the least important ones would appear in the later parts of the reduct (e.g.
the 19th, the 20th). In other words, PASH is not very sensitive to the parameter
value and quite stable in feature selection.

5.3 Approximate Reducts with Different Parameter Levels

Finally, we tested PASH with different parameters under the stop condition
POSR(D)/POSC(D) >85%. This allows the program to stop when an approx-
imate reduct is obtained. 85% is an accuracy threshold.
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Table 3. Results of the PASH with stop condition POSR(D)/POSC(D) >85%

Parameter Selected features

5 5,16,17,6,18,8

15 5,16,17,6,18,7,4

30 5,18,16,17,6,7,4

60 5,18,16,17,6,8

100 5,10,17

In real world applications where the size of data set is large, we may not
need to complete the computation of a reduct with PASH. If some of the most
important features can be obtained in the first few steps, it may not need to
compute the remaining less important features. The remaining part may cost
a large part of the execution time. An approximate reduct which includes the
most important features can be obtained with an accuracy threshold. In the
test, we set the threshold as 85% and the program stops when the condition
POSR(D)/POSC(D) >85% is satisfied. Table 3 shows the result using PASH
with different parameter values under this stop condition. It is shown that PASH
stopped after selecting 3 to 7 features. Comparing with Table 2, PASH obtained
an approximate reduct in much fewer steps. It is more efficient to use an ap-
proximate reduct with fewer features. It is suggested that when an appropriate
parameter (e.g. parameter = 100) is given, PASH can produce satisfactory re-
sults efficiently. In fact, reducts with 3 features were obtain with parameter size
over 100.

6 Concluding Remarks

We present a recently proposed rough set based feature selection method, param-
eterized average support heuristic, and report a set of experiments results based
on PASH in this paper. PASH considers the overall quality of the potential rules
and thus may produce a set of rules with balanced support distribution over all
decision classes. PASH includes a parameter to adjust the level of approximation
and keeps the predictive rules that are ignored by the existing methods. The ex-
periment results suggest that the an approximate reduct can be obtained with
adjustable criteria. Further experiments with different data sets and parameter
values need to be conducted.
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Abstract. Most existing rough set-based feature selection algorithms
suffer from intensive computation of either discernibility functions or
positive regions to find attribute reduct. In this paper, we develop a new
computation model based on relative attribute dependency that is de-
fined as the proportion of the projection of the decision table on a subset
of condition attributes to the projection of the decision table on the union
of the subset of condition attributes and the set of decision attributes.
To find an optimal reduct, we use information entropy conveyed by the
attributes as the heuristic. A novel algorithm to find optimal reducts of
condition attributes based on the relative attribute dependency is im-
plemented using Java, and is experimented with 10 data sets from UCI
Machine Learning Repository. We conduct the comparison of data clas-
sification using C4.5 with the original data sets and their reducts. The
experiment results demonstrate the usefulness of our algorithm.

Keywords: Rough set theory, machine learning and data mining, clas-
sification, data reduction, feature selection.

1 Introduction

There are many factors affecting the performance of data analysis, and one
prominent factor is the size of the data set. In the era of information, the
availability of huge amounts of computerized data that many organizations pos-
sess about their business and/or scientific research attracts many researchers
from different communities such as statistics, bioinformatics, databases, machine
learning and data mining. Most data sets collected from real world applications
contain noisy data, which may distract the analyst and mislead to nonsense con-
clusions. Thus the original data need to be cleaned in order to not only reduce
the size of the dataset but also remove noise as well. This data cleaning is usually
done by data reduction.

Feature selection has long been an active research topic within statistics,
pattern recognition, machine learning and data mining. Most researchers have
demonstrated the interest in designing new methods and improving the per-
formance of their algorithms. These methods can be divided into two types:
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exhaustive or heuristic search. The exhaustive search probes all possible subsets
chosen from the original features. This is prohibitive when the number of the
original features is large. In practice, the heuristic search is the way out of this
exponential computation and in general makes use of background information to
approximately estimate the relevance of features. Although the heuristic search
works reasonably well, it is certain that some features with high order correlation
may be missed out.

Rough set theory has been used to develop feature selection algorithm by find-
ing condition attribute reduct. Most existing rough set-based feature selection
algorithms suffer from intensive computation of either discernibility functions
or positive regions to find attribute reduct. In order to improve the efficiency,
in this paper, we develop a new computation model based on relative attribute
dependency. With this model, a novel algorithm to find optimal reducts of con-
dition attributes based on the relative attribute dependency are proposed and
implemented. The implemented algorithm is experimented with 10 data sets
from UCI Machine Learning Repository. The experiment results demonstrate
their usefulness and are analyzed for further research.

2 Rough Set Approach

Rough set theory was developed by Pawlak [12] in the early 1980’s and has
been used in data analysis, pattern recognition, and data mining and knowledge
discovery [8], [15]. Recently, rough set theory has also been employed to select
feature subset [4], [11], [12], [16], [18], [9], [20], [21]. In the rough set community,
feature selection algorithms are attribute-reduct oriented, that is, finding optimal
reduct of condition attributes of a given data set. Two main approaches to finding
attribute reducts are recognized as discernibility function-based and attribute
dependency-based [3], [12], [20], [21]. These algorithms, however, suffer from
intensive computations of either discernibility functions for the former or positive
regions for the latter, although some computation efficiency improvement has
been made in some new developments.

In rough set theory, the data is collected in a table, called decision table.
Rows of the decision table correspond to instances, and columns correspond to
features (or attributes). All attributes are recognized into two groups: conditional
attributes set C as input and decision attributes set D as output.

Assume P ⊆ C ∪ D and Q ⊆ C ∪D, the positive region of Q with respect to
P, denoted POSP (Q), is defined as POSP (Q) =def

∑
X∈U/IND(Q) PX , where

PX is the lower approximation of X and U/IND(Q) is the equivalent partition
induced by Q. The positive region of Q with respect to P contains all objects
in U that can be classified using the information contained in P . With this
definition, the degree of dependency of Q from P , denoted γP (Q), is defined as
γP (Q) =def

|POSP (Q)|
|U| , where |X | denotes the cardinality of the set X .

The degree of attribute dependency provides a measure how an attributes
subset is dependent on another attributes subset. γP (Q) = 1 means that Q
totally depends on P , γP (Q) = 0 indicates that Q is totally independent from P ,
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while 0 < γP (Q) < 1 denotes a partially dependency of Q from P . Particularly,
assume P ⊂ C, then γP (D) can be used to measure the dependency of the
decision attributes from a conditional attributes subset. The task of rough set
attribute reduction is to find a subset of the conditional attributes set, which
functions as the original conditional attributes set without loss of classification
capability. This subset of the conditional attributes set is called reduct, and
defined as follows [15].

R ⊆ C is called a reduct of C, if and only if POSR(D) = POSC(D), or
equivalently, γR(D) = γC(D). A reduct R of C is called a minimum reduct of C
if, ∀ Q ⊂ R, Q is not a reduct of C.

A reduct R of C has the same expressiveness of instances as C with respect
to D. A decision table may have more than one reduct. Anyone of them can
be used to replace the original condition attributes set. Finding all the reducts
from a decision table, however, is NP-hard. Thus, a natural question is which
reduct is the best. Without domain knowledge, the only source of information to
select the reduct is the contents of the decision table. For example, the number
of attributes can be used as the criteria and the best reduct is the one with
the smallest number of attributes. Unfortunately, finding the reduct with the
smallest number of attributes is also NP-hard. Some heuristic approaches to
finding a good enough reduct have been proposed, which will be discussed in
Section 6.

3 Relative Attribute Dependency Based on Rough Set
Theory

In order to improve the efficiency of algorithms to finding optimal reducts of con-
dition attributes, we proposed a new definition of attribute dependency, called
relative attribute dependency, with which we showed a sufficient and necessary
condition of the optimal reduct of conditional attributes [4]. The relative at-
tribute dependency degree can be calculated by counting the distinct instances
of the subset of the data set, instead of generating discernibility functions or
positive regions. Thus the computation efficiency of finding minimum reducts is
highly improved.

Most existing rough set-based attribute reduction algorithms suffer from in-
tensive computation of either discernibility functions or positive regions. In the
family of QuickReduct algorithms [19], in order to choose the next attribute to be
added to the candidate reduct, one must compute the degree of dependency of all
remaining conditional attributes from the decision attributes. This means that
the positive regions POSR∪{p}(D), ∀ p ∈ C−R, must be computed. To improve
the efficiency of the attribute reduction algorithms, we define a new concept,
called the degree of relative attribute dependency. For this purpose, we assume
that the decision table is consistent, that is, ∀ t, s ∈ U , if fD(t) �= fD(s), then
∃ q ∈ C such that fq(t) �= fq(s). This assumption is not realistic in most real-life
applications. Fortunately, any decision table can be uniquely decomposed into
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two decision tables, with one being consistent and the other the boundary area
[15], and our method could be performed on the consistent one.

We first define the concept of projection and then define the relative attribute
dependency. Let P ⊆ C ∪ D. The projection of U on P , denoted as ΠP (U), is
a sub-table of U and constructed as follows: 1) eliminating attributes C ∪ D −
P from U ; and 2) merging all indiscernible tuples (rows) with respect to the
remainning attributes.

Let Q ⊆ C. The degree of relative dependency, denoted χQ(D), of Q on D

over U is defined as χQ(D) = |ΠQ(U)|
|ΠQ∪D(U)| , where |ΠX(U)| is actually the number

of equivalence classes in U/IND(X).
The relative attribute dependency is the proportion of the projection of the

decision table on a subset of condition attributes to the projection of the decision
table on the union of the subset of condition attributes and the set of decision
attributes. On the other hand, the regular attribute dependency is the proportion
of the positive region of one subset of attributes with respect to another subset of
attributes to the decision table. With the relative attribute dependency measure,
we propose a new computation model to find a minimum reduct of condition
attributes in a consistent decision table, which is described as follows.
The Computation Model Based on Relative Attribute Dependency

(RAD):
Input:

A decision table U , condition attributes set C and decision attributes set D
Output:

A minimum reduct R of condition attributes set C with respect to D in U
Computation:

Find a subset R of C such that χR(D) = 1, and ∀ Q ⊂ R,χQ(D) < 1.
The following theory shows that our proposed computation model is equivalent
to the traditional model. The correctness of our model is built on the following
condition: a subset of condition attributes is a minimum reduct in the tradition
model if and only if it is a minimum reduct of condition attributes in our new
model [4].

Theorem 1. Assume U is consistent. R ⊆ C is a reduct of C with respect to D
if and only if 1) χR(D) = χC(D) = 1; and 2) ∀ Q ⊂ R,χQ(D) < χC(D).

The degree of relative attribute dependency provides a mechanism of finding a
minimum reduct of the conditional attributes set of a decision table. This depen-
dency measure can be more efficiently calculated than the traditional functional
computation.

4 A Heuristic Algorithm for Finding Optimal Reducts

Some authors propose algorithms for constructing the best reduct, but what is
the best depends on how to define the criteria, such as the number of attributes
in the reduct. In the absence of criteria, the only source of information to select
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the reduct is the content of the data table. A common metric of data content
is information entropy contained in the data items. In this section, we develop
a heuristic algorithm to implement the proposed model based on the relative
attribute dependency. The algorithm is based on the heuristic backward elim-
ination in terms of the information entropy conveyed by condition attributes.
The algorithm calculates the information entropy conveyed in each attribute
and selects the one with the maximum information gain for elimination.

The goal of the algorithm is to find a subset R of the condition attributes set
C such that R has the same classification power as C with respect to the given
decision table. As our model suggests, such R is a minimum reduct of C with
the total relative dependency on the decision attributes set D. To find such an
R, we initialize R to containing all condition attributes in C, and then eliminate
redundant attributes one by one.

Given the partition by D, U/IND(D), of U , the entropy, or expected in-
formation based on the partition by q ∈ C , U/q, of U, is given by E(q) =∑

Y ∈U/q
|Y |
|U| I(q|Y ), where I(q|Y ) = −

∑
X∈U/IND(D)

|Y ∩X|
|Y | log2

|Y ∩X|
|Y | . Thus,

the entropyE(q) can be represented asE(q) = − 1
|U|
∑

X∈U/IND(D)

∑
Y ∈U/q |X∩

Y | log2
|X∩Y |
|Y | .

Algorithm A: Attribute information entropy based backward elimination
Input: Consistent decision table U , condition attributes set C, decision

attributes set D
Output: R – a minimum reduct of condition attributes set C with respect

to D in U
Procedure:

1. R ← C, Q ← ∅
2. For each attribute q ∈ C Do
3. Compute the entropy E(q) of q
4. Q ← Q ∪ {< q, E(q) >}
5. While Q �= ∅ Do
6. q ← argmax{E(p)| < p,E(p) >∈ Q}
7. Q ← Q − {< q, E(q) >}
8. If χR−{q}(D) = 1 Then
9. R ← R− {q}
10. Return R

The following theorem demonstrates the correctness of Algorithm A [4].

Theorem 2. The outcome of Algorithm A is a minimum reduct of C with re-
spect to D in U .

Algorithm A has been implemented using the computer programming language
Java. To calculate the information entropy of condition attributes and the rela-
tive dependency, the original data set is sorted using the Radix-Sort technique.
One can easily see that the time complexity of Algorithm A is O(|C||U |log2|U |),
where |C| is the number of condition attributes, and |U | is the number of tuples
in the decision table.
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5 Experiments

We select 10 data sets from UCI machine learning repository [2] to experiment
our implemented algorithm, which are illustrated in Table 1. These data sets were
carefully chosen to avoid numerical attributes and reflect diverse sizes. Since the
current version of our approach only considers categorical attributes, numerical
attributes need to be partitioned into non-intersected intervals. To verify our ap-
proach, we choose such data sets with small number of tuples and small number
of attributes, small number of tuples and large number of attributes, large num-
ber of tuples and small number of attributes, as well as large number of tuples
and large number of attributes. We also remove all inconsistent tuples from all
data sets.

Table 1 describes each data set with the number of condition attributes and
the number of rows. All data sets have only one decision attribute. Since some
data sets such as breast-cancer-wisconsin, dermatology, zoo, and audiology, con-
tain tuple identifiers as a column which provides no information for data analysis,
we remove these id columns. Table 1 also shows our experiment results using Al-
gorithm A, where the column Number of Rows under Reducts gives the number
of distinct tuples in the reduced data set by projecting the original data set on
the reduct that the algorithm found; the column Number of Condition Attributes
shows the number of condition attributes contained in the reduct.

From Table 1, one can see that in the cases where reducts were smaller
than the number of condition attributes in the original data set, the number of
indiscernible rows was reduced very much.

To verify the effectiveness of the reducts discovered by Algorithm A, we run
C4.5 [17] on both original data sets and the reudcts. The experiment results
are listed in Table 2, which shows the classification accuracy by applying C4.5
on each original data set and its reduct found by our algorithm, recpectively.

Table 1. The 10 data sets excerpted from the UCI machine learning repository

Data Set Original Data Sets Reducts
Number Number of Number Number of
of Rows Condition of rows Condition

Attributes Attributes
Adult+Stretch (AS) 20 4 4 2
Breast-Cancer-Wisconsin (BCW) 699 9 299 4
Dermatology (DER) 366 33 313 10
House-votes-84 (HV) 435 16 227 9
Lung-cancer (LC) 32 56 26 6
SPECT (SPE) 187 22 171 22
Yellow-small (YS) 20 4 4 2
Zoo (ZOO) 101 16 22 5
Audiology (AUD) 200 69 157 13
Soybean-large (SOY) 307 35 249 11
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Table 2. Classification accuracy comparison using C4.5: Original data sets vs. reducts

Data Set Original Data Sets Reducts
Adult+Stretch (AS) 90.1 91.4
Breast-Cancer-Wisconsin (BCW) 92.5 92.3
Dermatology (DER) 96 97.2
House-votes-84 (HV) 86.7 89.3
Lung-cancer (LC) 97.5 98.2
SPECT (SPE) 93.2 94.3
Yellow-small (YS) 78.6 76.4
Zoo (ZOO) 82.4 84.5
Audiology (AUD) 92.2 94.6
Soybean-large (SOY) 94.8 95.3

From Table 2, one can see that, with C4.5, using the reducts that are discovered
by Algorithm A, we can obtain almost the same good classifiers as using the
original data sets in most situations.

Actually, only 2 of 10 data sets, namely, Breast-Cancer-Wisconsin and
Yellow-small, C4.5 can find more accurate classifiers from the original data
sets than from the reducts induced by our algorithm, and the difference is very
small (92.5% vs. 92.3% for Breast-Cancer-Wisconsin, 78.6% vs. 78.4% for Yellow-
small). This experimental results show us that Algorithm A is very useful and
can be used to find optimal reducts for most application data sets to replace
the original data sets. It is demonstrated that the reducts that the algorithm
discovers have almost the same classification power as the original data sets,
which is what feature selection research pursuits.

6 Related Work

Many feature subset selection algorithms have been proposed, and many ap-
proaches and algorithms to find classifiers based on rough set theory have been
developed in the past decades. Grzymala-Busse [5], [6] developed a learning sys-
tem LERS that applies two algorithms LEM1 and LEM2 based on rough sets
to deal with non-numerical and numerical attributes, respectively. LERS finds
a minimal description of a concept, which is a set of rules. The rough measure
of the rules describing a concept X is defined as |X∩Y |

|Y | , where Y is the set of
all examples described by the rule. This definition is very similar to our relative
attribute dependency, which is defined as |ΠQ(U)|

|ΠQ∪D(U)| . Nguyen and Nguyen [12]
developed an approach to first construct the discernibility relation by sorting
the data tuples in the data table, the use the discernibility relation to build the
lower and upper approximations, and finally apply the approximations to find a
semi-minimal reduct. Our algorithm takes advantage of the Radix-sorting tech-
nique, and has the same running efficiency as theirs, but our algorithm does not
need to maintain the discernibility relation, and lower and upper approxima-
tions. Recently, Lin and Yin [9] use the cardinality of distinct value of attributes
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as heuristics to guess a short reduct quickly and then extend to the best reduct.
Zhang and Yao [21] proposes a greedy approach to find an ”optimal” reduct.
Zhang et al. [20] present an algorithm to generate the optimal reduct from the
discernibility matrix, which uses the occurrence frequence of attributes as heuris-
tics to speed up the selection process. An algorithm QuickReduct that is very
close to ours was proposed by Shen and Chouchoulas [19] develop an algorithm,
which is a filter approach of feature selection and a forward searching hill climber.
QuickReduct initializes the candidate reduct R as an empty set, and attributes
are added to R incrementally using the following heuristic: the next attribute
to be added to R is the one with the highest significance to R with respect to
the decision attributes. R is increased until it becomes a reduct. The basic idea
behind this algorithm is that the degree of attribute dependency is monotoni-
cally increasing. There are two problems with this algorithm, however. First, it is
not guaranteed to yield the best reduct with the smallest number of attributes.
Second, to calculate the significance of attributes, the discernibility function and
positive regions must be computed, which is inefficient and time-consuming. A
variant of QuickReduct, called QuickReduct II is also a filter algorithm, but
performs the backward elimination using the same heuristic [19].

Almuallim and Dietterich [1] proposed an exhaustive search algorithm, FO-
CUS, in 1994. The algorithm starts with an empty feature set and carries out
exhaustive search until it finds a minimal combination of features that are suf-
ficient for the data analysis task. It works on binary, noise-free data and runs
in time of O(NM ), where N is the number of tuples, and M is the number of
attributes. They also proposed three heuristic algorithms to speed up the search
algorithm. Kira and Rendell [7] developed a heuristic algorithm, RELIEF, for
data classification. RELIEF assigns a relevance weight to each feature, which is
meant to denote the relevance of the feature to the task. RELIEF samples in-
stances randomly from the given data set and updates the relevance values based
on the difference between the selected values and the two nearest instances of the
same and opposite classes. It assumes two-class classification problems and does
not help with redundant features. If most of the given features are relevant to
the task, it would select most of them even though only a fraction is necessary
for the classification. Another heuristic feature selection algorithm, PRESET,
was developed by Modrzejewski [3] in 1993, that heuristically ranks the features
and assumes a noise-free binary domain. Chi2 is also a heuristic algorithm pro-
posed by Liu and Setiono [10] in 1995, which automatically removes irrelevant
continuous features based on the statistics and the inconsistency found in the
data. Some other algorithms have been employed in data classification methods,
such as C4.5 by Quinlan [17], FRINGE by Pagallo and Haussler [13].

7 Summary and Future Work

We proposed a novel definition relative attribute dependency, with which we
developed a computational model for finding optimal reducts of conditional at-
tributes. The relative attribute dependency degree can be calculated by counting
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the distinct instances of the subset of the data set, instead of generating discerni-
bility functions or positive regions. Thus the computation efficiency of finding
minimum reducts is highly improved. We implemented an algorithm using the
object-oriented programming language Java, based on the backward elimination.

We experiment the implemented algorithm with 10 data sets from UCI Ma-
chine Learning Repository. These data sets are carefully excerpted to cover var-
ious situations with different number of features and tuples. Our experiment
results show the algorithm significantly reduces the size of original data sets,
and improves the prediction accuracy of the classifiers discovered by C4.5. It
is demonstrated that the reducts yielded by our algorithm have all the same
classification accuracy as the entire original data sets.

Our future work will focus on the following aspects: 1) Apply more existing
classification algorithms besides C4.5 to the results of our algorithms to see
whether the classifier can be improved. We expect the classifier discovered in
the reducts is more accurate than the one discovered in the original data sets.
2) Extend the algorithms to be able to process other types of data, such as
numerical data. 3) Attempt to develop novel classification algorithms based on
our definition of relative attribute dependency.
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Abstract. Consistent extensions of information systems have been ear-
lier considered in the literature. Informally, a consistent extension of a
given information system includes only such objects corresponding to
known attribute values which are consistent with the whole knowledge
represented by rules extracted from the information system. This pa-
per presents a new look at consistent extensions of information systems
focusing mainly on partially consistent extensions and broadening the ap-
proach proposed earlier by Z. Suraj. To this end, a notion of a partially
consistent extension of an information system is introduced. The mean-
ing, properties and application examples of such extensions are given. In
the approach presented, we admit the situation that some objects in an
extension are consistent only with a part of the knowledge extracted from
the information system. We show how a factor of consistency with the
original knowledge for a given object from an extension can be computed.
Some coefficients concerning rules in information systems are defined to
compute a factor of consistency. The notions presented are crucial for
solving different problems. An example is given in the paper to show an
application of the proposed approach in modelling of concurrent systems
described by information systems.

1 Introduction

In the rough set theory introduced by Z. Pawlak, information systems are used
to represent knowledge about elements of a universe of discourse (cf. [1]). Any
information system can be represented as a data table, where columns are la-
beled by attributes, rows are labeled by objects, and entries of the table are
attribute values. The main idea of building an extension of a given information
system S is the following. An extension of S is created by adding to S new ob-
jects corresponding to known attribute values. The consistent extensions have
been earlier considered (see [2], [3]). In [3], a definition of the so-called maximal
consistent extension of an information system S is given as well as algorithms
for determining it are proposed. In [2], a new method of determining consistent
extensions of information systems is proposed. That paper also contains some
necessary and sufficient conditions for the existence of consistent extensions. In
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the case of consistent extensions, each new object added to S satisfies all true
rules extracted from S. One of the interesting problems concerning consistent
extensions is to find a maximal (with respect to the number of objects) consis-
tent extension of a given information system S. Maximal consistent extensions
are used, among others, in the modelling of concurrent systems described by
information systems (see [4], [5]). If an information system S describes a concur-
rent system (i.e., includes all global states of the system observed or measured
by us), then the maximal consistent extension of S represents the largest set of
global states of the concurrent system consistent with all rules extracted from
S. Rules represent some restrictions put on the local states of individual pro-
cesses of a given concurrent system. In this paper, we introduce a notion of a
partially consistent extension of an information system S. New objects added
to the system S do not have to satisfy all rules true in S. An interesting thing
is to determine a degree of consistency of a new added object with the original
knowledge represented by the rules. In the approach proposed, we first search
for all rules which are not true for a given object, next, we compute some level of
significance of these rules in S. This level is expressed by the support or strength
coefficient computed from a data table representing S. Obviously, the smaller the
strength the greater is the consistency. It is worth noting that other approaches
to computing a consistency degree are possible. The consistency factor can have
the following interpretation. Its value can be interpreted as a degree of certainty
to which the added object representing a global state can appear in the described
system with respect to the knowledge possessed (in the original information sys-
tem). Our approach to extensions of information systems presented here widens
and generalizes that presented in [2] and [3]. The membership of objects to the
consistent extensions of information systems does not have to be clear-cut like
previously. Thanks to the introduction of the notion of a partially consistent ex-
tension, the transition from the belongingness to nonbelongingness of objects to
the consistent extension is not abrupt. It is important that we admit that some
requirements, restrictions, specification, etc. may be satisfied to a certain degree
only. For example, in economic or financial systems, some states not satisfying
less significant restrictions may be admit in the specific situations.

The rest of the paper is organized as follows. A brief review of the basic
concepts underlying the rough set theory and information systems is given in
Section 2. Basic definitions of consistent and partially consistent extensions of
information systems are presented in Section 3. In Section 4, some approaches to
generating maximal consistent extensions are cursorily described. Finally, con-
cluding remarks are given in Section 5. The main idea of the approach proposed
is illustrated by a practical example taken from economics.

2 Preliminaries

First, we recall basic concepts of the rough set theory [1] used in the paper.
An information system is a pair S = (U,A), where U is a nonempty, fi-

nite set of objects, called the universe, A is a nonempty, finite set of attributes,
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i.e., a : U → Va for a ∈ A, where Va is called the value set of a. With every
information system S = (U,A) we associate a formal language L(S). The alpha-
bet of L(S) consists of A (the set of attribute constants), V =

⋃
a∈A

Va (the set

of attribute value constants) and the set {¬,∨,∧,⇒,⇔} of propositional con-
nectives, called negation, disjunction, conjunction, implication and equivalence,
respectively. An expression of the form (a, v), where a ∈ A and v ∈ Va is called
an atomic (elementary) formula of L(S). The set of formulas of L(S) is the least
set satisfying the following conditions: (1) (a, v) is a formula of L(S), (2) if φ
and ψ are formulas of L(S), then so are ¬φ, φ ∨ ψ, φ ∧ ψ, φ ⇒ ψ, and φ ⇔ ψ.

The object u ∈ U satisfies formula φ of L(S), denoted by u |=
S

φ (or in short

u |= φ), if and only if the following conditions are satisfied: u |= (a, v) iff a(u) = v,
u |= ¬φ iff not u |= φ, u |= φ ∨ ψ iff u |= φ or u |= ψ, u |= φ ∧ ψ iff u |= φ and
u |= ψ, u |= φ ⇒ ψ iff u |= ¬φ ∨ ψ, u |= φ ⇔ ψ iff u |= φ ⇒ ψ and u |= ψ ⇒ φ.

If φ is a formula of L(S), then set |φ|S = {u ∈ U : u |= φ} is called the
meaning of formula φ in S. For any formula φ of L(S), set |φ|S can be defined
inductively as follows: |(a, v)|S = {u ∈ U : a(u) = v}, |¬φ|S = U − |φ|S ,
|φ ∨ ψ|S = |φ|S ∪ |ψ|S , |φ ∧ ψ|S = |φ|S ∩ |ψ|S , |φ ⇒ ψ|S = ¬|φ|S ∪ |ψ|S ,
|φ ⇔ ψ|S = (|φ|S ∩ |ψ|S) ∪ (¬|φ|S ∩ ¬|ψ|S).

A rule in the information system S is a formula of the form φ ⇒ ψ, where φ
and ψ are referred to as the predecessor and the successor of a rule, respectively.
The rule φ ⇒ ψ is true in S if |φ|S ⊆ |ψ|S . An inhibitor rule in the information
system S is a formula of the form φ ⇒ ¬ψ. In this paper, we consider only true
rules for which φ is a conjunction of atomic formulas of L(S) and ψ is an atomic
formula of L(S), i.e., each rule has the form (a1, v1) ∧ . . . ∧ (aq, vq) ⇒ (ad, vd).
A rule is called minimal in S if and only if removing any atomic formula from
the predecessor of a rule causes that a rule is not true in S. The set of all
minimal rules true in S will be denoted by RUL(S). A method for generating
the minimal rules in an information system is given among others in [6], [5]. Each
rule of the form (a1, v1)∧ . . .∧(aq, vq) ⇒ (ad, vd) can be transformed into a set of
inhibitor rules: {(a1, v1)∧ . . .∧(aq, vq) ⇒ ¬(ad, vd1), . . . , (a1, v1)∧ . . .∧(aq , vq) ⇒
¬(ad, vdk

)}, where vd1 , . . . , vdk
∈ Vad

−{vd}. The set of all minimal inhibitor rules
true in S will be denoted by RUL(S).

3 Extensions of Information Systems

In this section, we recall some earlier and introduce new notions concerning
extensions of information systems. Especially, we are interested in consistent
and partially consistent extensions. An important thing is how to compute for
each object from the extension of a given information system S, its consistency
factor using the knowledge included in S.

Definition 1 (Extension of an information system). Let S = (U,A) be an
information system. An information system S∗ = (U∗, A∗) is called an exten-
sion of S if and only if the following conditions are satisfied: (1) U ⊆ U∗, (2)
card(A) = card(A∗), (3) ∀

a∈A
∃

a∗∈A∗
Va∗ = Va ∧ a∗(u) = a(u) for all u ∈ U .
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Each extension S∗ of a given information system S includes the same num-
ber of attributes and only such objects whose attribute values appeared in the
original table representing S. Moreover, the data table representing S is a part
of the data table representing S∗, i.e., all objects which appear in S, also appear
in S∗.

Remark 1. In the sequel, the sets A and A∗ will be marked by the same letter
A.

Example 1. Information systems can be applied as a tool for the description
of concurrent systems (cf. [4], [7], [5]). Then, elements of U can be interpreted
as global states of a given concurrent system and attributes from A can be
interpreted as local processes in a given system. With every process a ∈ A,
there is associated a finite set Va of its local states. So, each row in the table
includes record of local states of processes from A. Let us assume that we have
observation of some economic processes like exchange rates (marked by usd and
euro), a stock exchange index (marked by wig) and an oil price (marked by
oil). All observed global states of an economic system are presented using an
information system (see Table 1a). The meaning of local states of processes
is the following: -5 - decrease of 5%, -1 - decrease of 1%, 0 - no change, 1 -
increase of 1%, 2 - increase of 2%, 3 - increase of 3%, 5 - increase of 5%. Each
row of a data table describes percentage changes of quotations on a given day
with relation to the previous day. So, we have the set of global states U =
{d1, d2, . . . , d10}, the set of attributes (local processes) A = {usd, euro,wig, oil},
and the value sets of attributes (the sets of local states of processes) Vusd =
Vwig = {−1, 0, 1, 2}, Veuro = {−1, 0, 1}, Voil = {−5,−1, 0, 1, 2, 3, 5}. Table 1b

Table 1. An information system S (a) and its extension S∗ (b)

(a)

U\A usd euro wig oil

d1 0 0 1 -1
d2 1 0 -1 2
d3 0 0 -1 3
d4 2 1 0 0
d5 2 1 0 -5
d6 -1 -1 0 2
d7 0 0 0 1
d8 -1 -1 1 5
d9 -1 0 2 -1
d10 1 0 0 2

(b)

U\A usd euro wig oil

d1 0 0 1 -1
d2 1 0 -1 2
d3 0 0 -1 3
d4 2 1 0 0
d5 2 1 0 -5
d6 -1 -1 0 2
d7 0 0 0 1
d8 -1 -1 1 5
d9 -1 0 2 -1
d10 1 0 0 2
d11 0 0 0 2
d12 1 -1 0 3

represents some extension S∗ of information system S. Objects d11 and d12 have
been added. It is easy to check that system S∗ satisfies all conditions given in
Definition 1.
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The number of extensions of a given information system S = (U,A) is equal
to 2n−k − 1 (see [3]), where k = card(U), A = {a1, a2, . . . , am}, n = card(Va1 ×
Va2 × . . .× Vam), and Vai is a value set of ai for i = 1, 2, . . . ,m. By a nontrivial
extension of a given information system S = (U,A) we understand any extension
S∗ = (U∗, A) of S such that U ⊂ U∗. The set of all extensions of a given
information system S will be denoted by EXT (S). This set may be partially
ordered by a relation ”≤” defined as follows: S∗

1 ≤ S∗
2 if and only if U∗

1 ⊆ U∗
2

for all S∗
1 = (U∗

1 , A), S∗
2 = (U∗

2 , A) ∈ EXT (S). Maximal elements in EXT (S)
ordered by ”≤” are called maximal extensions of S. There exists exactly one
maximal extension for every information system. It includes all objects generated
by the cartesian product of attribute value sets (i.e., Va1 ×Va2 × . . .×Vam). The
maximal extension of a given information system S will be denoted by SMAX .

Let S = (U,A) be an information system, S∗ = (U∗, A) its extension, and
u ∈ U∗. By ˜RULu(S) we denote the set of all rules true in S, which are not true
for object u from extension S∗ of S, i.e.,˜RULu(S) = {(φ ⇒ ψ) ∈ RUL(S) : ¬u |= (φ ⇒ ψ)} for u ∈ U∗ (1)

or, in other words:˜RULu(S) = {(φ ⇒ ψ) ∈ RUL(S) : u |= φ ∧ ¬u |= ψ} for u ∈ U∗. (2)

For a given set RUL′(S) ⊆ RUL(S) of rules in S, we can compute some
coefficients, like support and strength, defined below. These coefficients will be
needed to compute consistency factors of objects from extensions.

Definition 2 (Support of a set of rules). Let RUL(S) be a set of all minimal
rules true in an information system S and RUL′(S) ⊆ RUL(S). The number
supp(RUL′(S)) is called the support of RUL′(S) and defined as

supp(RUL′(S)) = card

⎛⎝ ⋃
(φ⇒ψ)∈RUL′(S)

|φ ∧ ψ|S

⎞⎠ . (3)

The support of RUL′(S) is equal to the number of objects in S satisfying simul-
taneously the predecessor and the successor of at least one rule from RUL′(S).
Obviously, 0 ≤ supp(RUL′(S)) ≤ card(U).

Definition 3 (Strength of a set of rules). Let RUL(S) be a set of all minimal
rules true in an information system S and RUL′(S) ⊆ RUL(S). The number
str(RUL′(S)) is called the strength of RUL′(S) and defined as

str(RUL′(S)) =
supp(RUL′(S))

card(U)
. (4)

The strength of RUL′(S) is a relative measure of the support coefficient (with
reference to the number of all objects in S). So, we have 0 ≤ str(RUL′(S)) ≤ 1.

For any object u from extension S∗ of a given information system S, we can
define some coefficient called a consistency factor. This coefficient expresses a
consistency degree of u with the knowledge included in the original information
system S.
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Definition 4 (Consistency factor of an object). Let S = (U,A) be an
information system, S∗ = (U∗, A) its extension, and u ∈ U∗. The consistency
factor of object u is the number defined as

ξS(u) = 1 − str( ˜RULu(S)). (5)

We have 0 ≤ ξS(u) ≤ 1 for each u ∈ U∗. It is obvious that if u ∈ U , then
ξS(u) = 1 because ˜RULu(S) = ∅ (the empty set).

Example 2. Let us consider the information system S and its extension S∗ from
Example 1. On the basis of the knowledge possessed (the information system S
given in Table 1a), we would like to know what the consistency factor ξS(d11)
of object d11 from extension S∗ is . The set RUL(S) of all minimal rules true
in S includes 49 rules and its presentation has been omitted here. The set of
rules which are not satisfied by object d11 is shown in Table 2. Moreover, the
table includes, for each rule, the objects from system S satisfying simultaneously
both the predecessor formula and the successor formula of a rule. According to

Table 2. The set ˜RULd11(S)

φ ⇒ ψ |φ ∧ ψ|S
(oil, 2) ∧ (euro, 0) ⇒ (usd, 1) {d2, d10}
(wig, 0) ∧ (usd, 0) ⇒ (oil, 1) {d7}

formula (3), we obtain supp( ˜RULd11(S)) = card({d2, d7, d10}) = 3. Because
card(U) = 10, therefore from (4) we have str( ˜RULd11(S)) = 0.3 and from (5)
ξS(d11) = 0.7. We can say that object d11 is consistent with the knowledge
included in S to a degree of 0.7. On the other hand, we can say that the degree
of certainty that global state d11 will appear in the modeled system is equal to
0.7.

Definition 5 (Consistent extension of an information system). Let S =
(U,A) be an information system and S∗ = (U∗, A) its extension. S∗ is called a
consistent extension of an information system S if and only if ξS(u) = 1 for all
u ∈ U∗.

The set of all consistent extensions of a given information system S will be
denoted by ÊXT (S). This set may be partially ordered by a relation ”≤”defined
as follows: S∗

1 ≤ S∗
2 if and only if U∗

1 ⊆ U∗
2 for all S∗

1 = (U∗
1 , A), S∗

2 = (U∗
2 , A) ∈

ÊXT (S). Maximal elements in ÊXT (S) ordered by ”≤” are called maximal
consistent extensions of S. There exists exactly one maximal consistent extension
for every information system (see [2]). The maximal consistent extension of a
given information system S will be denoted by ŜMAX .

Let S = (U,A) be an information system, SMAX = (U ′, A) its maximal
extension, and ŜMAX = (U ′′, A) its maximal consistent extension. Then, we
have S ≤ ŜMAX ≤ SMAX (or, equivalently, U ⊆ U ′′ ⊆ U ′).
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Definition 6 (Partially consistent extension of an information system).
Let S = (U,A) be an information system and S∗ = (U∗, A) its extension. S∗ is
called a partially consistent extension of an information system S if and only if
there exists u ∈ U∗ such that ξS(u) < 1.

Definition 7 (Consistency factor of an extension). Let S = (U,A) be an
information system and S∗ = (U∗, A) its extension. The consistency factor of
extension S∗ of S is the number defined as ξ(S∗) = min

u∈U∗
ξS(u).

Obviously, if ξ(S∗) = 1, then extension S∗ is consistent, and if ξ(S∗) < 1, then
extension S∗ is partially consistent. It is worth mentioning that the consistent
extension S∗ of S includes the same knowledge as the original information system
S. However, if we add to S a new object u such that ξS(u) < 1, then the
knowledge included in S is modified. Since then some rules from RUL(S) are
not true in S∗, where S∗ is the system arisen from S by adding u. We can also say
this about a maximal partially consistent extension Ŝβ

MAX of a given information
system S with the consistency factor equal to β. Such an extension consists of
each object u from the maximal extension SMAX of S for which ξS(u) ≥ β.

For each information system S, we can compute the so-called consistency
formula σ(S) of S. σ(S) is a formula in L(S) language constructed on the basis
of either the set RUL(S) of all minimal rules true in S or the set RUL(S) of all
minimal inhibitor rules true in S. For RUL(S) = {φ1 ⇒ ψ1, . . . , φr ⇒ ψr}, we
obtain σ(S) = (¬φ1∨ψ1)∧. . .∧(¬φr ∨ψr) using the logical law (x ⇒ y) ⇔ (¬x∨
y). This formula can be transformed into σ(S) = ¬(φ1 ∧¬ψ1)∧ . . .∧¬(φr ∧¬ψr),
and next σ(S) = ¬[(φ1 ∧ ¬ψ1) ∨ . . . ∨ (φr ∧ ¬ψr)]. Analogously, for RUL(S) =
{φ1 ⇒ ¬ψ′

1, . . . , φr ⇒ ¬ψ′
r}, where ψ′

1 = ¬ψ1, . . . , ψ
′
r = ¬ψr according to the

construction of inhibitor rules, we obtain σ(S) = ¬(φ1 ∧ ψ′
1) ∧ . . . ∧ ¬(φr ∧ ψ′

r)
using the logical law (x ⇒ ¬y) ⇔ ¬(x ∧ y). This formula can be transformed
into σ(S) = ¬[(φ1 ∧ψ′

1)∨ . . .∨(φr ∧ψ′
r)]. It is easy to see that formulas σ(S) and

σ(S) are equivalent, i.e., |σ(S)|S = |σ(S)|S . So, for a given information system
S, the sets RUL(S) and RUL(S) are equivalent in the sense that they describe
the same sets of objects belonging to the maximal consistent extension ŜMAX

of S.

Corollary 1. Let S = (U,A) be an information system, SMAX = (U ′, A) be a
maximal extension of S, and ŜMAX = (U

′′
, A) be a maximal consistent extension

of S. If u ∈ U ′ and u |= σ(S) (or, equivalently, u |= σ(S)), then u ∈ U
′′
.

4 Generating Extensions of Information Systems

The maximal extension of a given information system S = (U,A), where
A = {a1, a2, . . . , am}, includes all objects generated by the cartesian product of
attribute value sets (i.e., Va1 ×Va2 × . . .× Vam). Only a part of them belongs to
the consistent extension of S. One of the problems is to find a maximal consistent
extension of a given information system S. In [3], the algorithm for computing
a maximal consistent extension has been given. That algorithm consists of two
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stages. At the first stage, all attribute value vectors (objects) determined by the
cartesian product of attribute value sets, which do not appear in S, are fixed. At
the second stage, each object u obtained in the first step is verified using the set
RUL(S) of all minimal rules true in S. If there exists a rule (φ ⇒ ψ) ∈ RUL(S)
such that u does not satisfy φ ⇒ ψ, then u does not belong to the maximal
consistent extension.

In [4], [8], the methods for constructing concurrent models in the form of
coloured Petri nets [9] from information systems have been described. Coloured
Petri (CP) nets are used, among others, for modelling, specifying and designing
concurrent systems. For a given information system S, the constructed model has
the following property: the reachability set of markings (including all markings
reachable from the initial marking) defines a maximal consistent extension of S.
A block diagram in Figure 1 shows a computation path. The foregoing way is

Fig. 1. Generating a maximal consistent extension

accessible from the computer tool called ROSECON [10]. This system supports
users in automated discovering of net models from data tables. For a given
information system S, we can obtain its net model CPNS in the form of a
coloured Petri net; next, we can compute a full occurrence graph OG(CPNS)
(a graph with a node for each reachable marking) [9] of this model. OG(CPNS)
includes markings corresponding to all attribute value vectors (objects) from the
maximal consistent extension of S.

Example 3. Let us consider the information system S from Example 1. We would
like to find all global states in which the described system can hold apart from
those observed by us, which are consistent with the whole knowledge included in
the data table representing S. In order to do it we need to compute the maximal
consistent extension ŜMAX of S. Using the ROSECON system we obtain the
maximal consistent extension shown in Table 3. It is easy to see that object d11

is new. It satisfies the consistency formula σ(S) of S, which has the form:
σ(S) = ¬{[(usd, 2) ∧ (oil, 3)] ∨ [(usd, 1) ∧ (oil, 3)] ∨ [(usd,−1) ∧ (oil, 3)] ∨ [(usd, 1) ∧
(euro, 1)]∨ [(usd, 0)∧ (euro, 1)]∨ [(usd,−1)∧ (euro, 1)]∨ [(usd, 1)∧ (oil, 0)]∨ [(usd, 0)∧
(oil, 0)]∨ [(usd,−1)∧ (oil, 0)]∨ [(usd, 1)∧ (oil,−5)]∨ [(usd, 0)∧ (oil,−5)]∨ [(usd,−1)∧
(oil,−5)] ∨ [(usd, 2) ∧ (euro,−1)] ∨ [(usd, 1) ∧ (euro,−1)] ∨ [(usd, 0) ∧ (euro,−1)] ∨
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Table 3. A maximal consistent extension ŜMAX of S

U\A usd euro wig oil

d1 0 0 1 -1
d2 1 0 -1 2
d3 0 0 -1 3
d4 2 1 0 0
d5 2 1 0 -5
d6 -1 -1 0 2

U\A usd euro wig oil

d7 0 0 0 1
d8 -1 -1 1 5
d9 -1 0 2 -1
d10 1 0 0 2
d11 2 1 0 2

[(usd, 2)∧(oil, 1)]∨[(usd, 1)∧(oil, 1)]∨[(usd,−1)∧(oil, 1)]∨[(usd, 2)∧(oil, 5)]∨[(usd, 1)∧
(oil, 5)]∨[(usd, 0)∧(oil, 5)]∨[(usd, 2)∧(wig, 2)]∨[(usd, 1)∧(wig, 2)]∨[(usd, 0)∧(wig, 2)]∨
[(euro, 1) ∧ (oil,−1)] ∨ [(euro,−1) ∧ (oil,−1)] ∨ [(euro, 1) ∧ (wig,−1)] ∨ [(euro,−1) ∧
(wig,−1)]∨[(euro, 1)∧(oil, 3)]∨[(euro,−1)∧(oil, 3)]∨[(euro, 0)∧(usd, 2)]∨[(euro, 0)∧
(oil, 0)]∨[(euro,−1)∧(oil, 0)]∨[(euro, 0)∧(oil,−5)]∨[(euro,−1)∧(oil,−5)]∨[(euro, 1)∧
(oil, 1)] ∨ [(euro,−1)∧ (oil, 1)] ∨ [(euro, 1)∧ (oil, 5)]∨ [(euro, 0)∧ (oil, 5)]∨ [(euro, 1)∧
(wig, 2)] ∨ [(euro,−1) ∧ (wig, 2)] ∨ [(wig, 2) ∧ (oil, 3)] ∨ [(wig, 0) ∧ (oil, 3)] ∨ [(wig, 1) ∧
(oil, 3)]∨ [(wig, 1)∧ (usd, 2)]∨ [(wig,−1)∧ (usd, 2)]∨ [(wig, 1)∧ (euro, 1)]∨ [(wig, 2)∧
(oil, 0)] ∨ [(wig, 1) ∧ (oil, 0)] ∨ [(wig,−1) ∧ (oil, 0)] ∨ [(wig, 2) ∧ (oil,−5)] ∨ [(wig, 1) ∧
(oil,−5)]∨ [(wig,−1)∧ (oil,−5)]∨ [(wig, 2)∧ (oil, 1)]∨ [(wig, 1)∧ (oil, 1)]∨ [(wig,−1)∧
(oil, 1)] ∨ [(wig, 2) ∧ (oil, 5)] ∨ [(wig, 0) ∧ (oil, 5)] ∨ [(wig,−1) ∧ (oil, 5)] ∨ [(oil,−1) ∧
(usd, 1)]∨[(oil, 2)∧(wig, 2)]∨[(usd, 0)∧(oil, 2)∧(euro, 0)]∨[(wig, 1)∧(oil, 2)∧(usd,−1)]∨
[(wig,−1)∧ (oil, 2)∧ (usd,−1)]∨ [(wig, 1)∧ (oil, 2)∧ (euro,−1)]∨ [(euro, 0)∧ (wig, 1)∧
(usd,−1)]∨ [(usd,−1)∧(oil, 2)∧(euro, 0)]∨ [(wig, 0)∧(oil,−1)∧(usd, 0)]∨ [(wig,−1)∧
(oil,−1)∧(usd, 0)]∨[(wig, 0)∧(euro, 0)∧(usd,−1)]∨[(wig,−1)∧(euro, 0)∧(usd,−1)]∨
[(wig, 0)∧(oil,−1)∧(usd,−1)]∨[(wig, 1)∧(oil,−1)∧(usd,−1)]∨[(wig,−1)∧(oil,−1)∧
(usd,−1)] ∨ [(oil, 2) ∧ (wig, 1) ∧ (usd, 0)] ∨ [(oil, 2) ∧ (wig, 1) ∧ (euro, 0)] ∨ [(usd, 0) ∧
(oil, 2) ∧ (wig,−1)] ∨ [(usd, 1) ∧ (wig, 1) ∧ (euro, 0)] ∨ [(oil, 2) ∧ (wig, 0) ∧ (usd, 0)]}.

In order to determine a maximal partially consistent extension Ŝβ
MAX (with a

consistency factor equal to β) of a given information system S, we must compute
a consistency factor ξS(u) for each object u from the maximal extension SMAX of
S and we have to remove each u from SMAX for which ξS(u) < β. This approach
seems to be simple to realize, but its computational complexity is high. We must
have the set RUL(S) of minimal rules true in S. The problem of computing
of RUL(S) is NP-hard [11]. Thus, it is important to work out algorithms for
generating maximal consistent extensions without the necessity of computing
rules.

5 Conclusions

In this paper, we have defined a notion of a partially consistent extension of a
given information system. In the approach considered in the paper we admit that
some objects added to the original information system S are not consistent with
the whole knowledge included in S, but with its part only. We have shown how
to compute a consistency factor with this knowledge for any object from some
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extension of S. The approach presented generalizes that proposed earlier. Some
important problems concerning extensions of information systems remain to be
solved, among others: determining necessary and sufficient conditions for the ex-
istence of nontrivial consistent extensions of information systems, elaboration of
efficient algorithms for generating maximal consistent extensions and maximal
partially consistent extensions (with assumed consistency factors) of informa-
tion systems, calculating consistency factors of objects without the necessity of
computing rules.
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Abstract. According to the sizes of the attribute set and the infor-
mation table, the information tables are categorized into three types of
Rough Set problems, Pattern Recognition/Machine Learning problems,
and Statistical Model Identification problems. In the first Rough Set sit-
uation, what we have seen is as follows: 1) The ”granularity” should be
taken so as to divide equally the unseen tuples out of the information
table, 2) The traditional ”Reduction” sense accords with the above insis-
tence, and 3) The ”stable” subsets of tuples, which are defined through a
”Galois connection” between the subset and the corresponding attribute
subset, may play an important role to capture some characteristics that
can be read from the given information table. We show these with some
illustrative examples.

1 Introduction

So far, an information table has been considered as a subset of the universe
that is the product space of attributes. In addition, reflecting the difference of
treatments, such a finite piece of information is called an “information table” in
rough set community, “instances” in machine learning or data mining commu-
nities and “training samples” in pattern recognition community. An information
table implies that we are given only part of full information of a finite size. An
instance or a sample is the word related to finding a true model or a true rule,
that is, learning, and often the size of full information is infinite. However, we
are using these different terms to the same object. In this study, we start with
classifying information tables from the viewpoint of the number of attributes
and the number of tuples. This way gives us a piece of intuition and enables us
to take different approaches depending on given information tables.

We consider also about so-called“reduction”in rough set or“feature selection”
in pattern recognition, and “prime implicant” in machine learning. The goal is
the same and is to find a minimum number of attributes/features/terms so as to
keep a condition we require. However, it does not always work, because we need
many attributes when the number of decision classes is large or when it requires

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 234–243, 2005.
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essentially many attributes. We will discuss what removing an attribute in the
entropy of division.

Last, we suggest to use the “stable” subsets to express any subset of tuples
sharing a same property. Here, a subset is called “stable” when it is unchanged
after mappings from a attribute subset to a tuple subset and the tuple subset to
another attribute subset.

2 Categories of Information Tables

2.1 Information Table

Let us consider an information table. First we consider m different attributes as
A = {A1, A2, . . . , Am}, Ai = O or C, where O is a finite ordered set and C is a
finite categorical set. Here, we identify the attributes with their domains as long
as no confusion occurs. Therefore, A is of m different domains. Then the universe
U is written as the product space of these: U = UA = A1 × A2 × · · · × Am. An
information table T = {x1, x2, . . . , xn} is given as a subset of U and denoted
also by Un for emphasizing the number of tuples.

2.2 Categories of Information Tables

First, we consider an information table shown in Fig. 1. We regard such an
information as a limited piece of information or incomplete information. We are
limited in two ways. First, the attribute set A may be incomplete compared
to the full attribute set Φ, so that it can happen that we cannot discern each
tuple in the current attribute set. However, this situation may be resolved by
obtaining further evidence (attributes). Second, we have only a part Un of full
information UA even in the current attribute set A. Therefore, we have to infer
the remaining tuples that are possible to be represented in the same universe.

Next, on the basis of above considerations, let us classify such information
tables into three categories according to the size of attribute set and the size

A1 A2 Am Am+1... ...

Τ
Un

Α
Φ

UA

Ω

Fig. 1. An information table
as part

1

1

1
1

A1 A2 Am... Freq.

1

2

1

2

1

1

2

1

A1 A2 Am... Freq.

199

100

53

212

101

190

230

421

305

Rough Set
Pattern Recognition/Machine Learning

Model Identification

(A) (B) (C)

A1 A2 Am... Freq.

Fig. 2. Three types of information tables
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of information table. In Fig.2, due to the limitation of the universe size or the
limitation of the tuple set size, we traverse among (A), (B) and (C). One useful
viewpoint is as follows; (A) is typical in rough set problems in which the goal is
to extract some characteristics among a given subset of tuples or to infer those
over a full tuple set in the universe, (B) is typical in pattern recognition and in
machine learning in which the goal is to identify a concept (a subset) from a
limited number of instances (samples), and (C) is typical in statistics in which
we want to know the probabilistic structure from a finite but reasonable number
of instances.

Classification of information tables is important in the following sense. If we
take the problem at hand as one in Type (A), we have to note that some char-
acteristics extracted from a given information table also say something for the
remaining unseen tuples. For example, if we specify a combination of attributes
valid only for a certain subset of given tuples, e.g., tuples belonging to a same
decision class, then there exist the other tuples satisfying the same relation. In
the case of Type (B), the goal is identification of a concept (a subset over the
universe). Under this goal, it is worth finding a compact representation of the
concept. There are many ways to specify a same subset. Among these, it is con-
venient to find out some simple way to express such a concept. In decision rules,
a conjunctive expression of conditional attributes is such an example. In the case
of Type (C), it may be useful to take a histogram approach. In this situation, the
goodness of the methodology is evaluated in the consistency (the identification
in the limit) and the convergence rate to the true model.

As for traversing between (A) to (B) and (B) to (C), there are two viewpoints.
As the number of the attributes decreases or the number of tuples increases, the
problem goes to (A) to (B) and (B) to (C). That is, as the amount of information
increases or as the possible worlds reduces, then we could know the nature of
the problem more than before. We can interpret this also from the viewpoint of
granularity. As the granule increases, we approach to (B) or to (C). That is, if
we are satisfied with a more rough expression, we can have an easier problem.
Reversely speaking, we should let the granule smaller if we want to investigate
the information table in detail. Notifying this fact is important when we analyze
a given information table. For example, we often face up to the problem where
the number of tuples available is limited. Then we should find an appropriate
“granule” to analyze such an information table. Excess granularity causes too
specific knowledge, while too less granularity causes too general knowledge.

In this paper, we consider only Type (A). In this case, the main topic is how
a characteristics extracted from a limited number of tuples affects the remaining
unseen tuples. Therefore, throughout this paper, we assume all members are
discernible, i.e., x �= y for distinct two elements x, y ∈ T .

2.3 Relations

A relation R is said to be “decomposable” if R can be written by

R = R1 ×R2 × · · · ×Rm,
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where the following holds:

xRy ↔ (x, y) ∈ R ↔ (xi, yi) ∈ Ri ↔ xiRiyi, ∀i ∈ {1, 2, . . . ,m}.

It is easy to confirm that when R is an equivalence relation (shortly, e.r.) and
decomposable (shortly, d.e.r., from now on), then the partition derived from R,

PR = U/R = {[x]R = {y|(x, y) ∈ R} |x ∈ U}

is also decomposed as

PR = PR1 × PR2 × · · · × PRm = A1/R1 ×A2/R2 × · · · ×Am/Rm

= {[x1]R1} × {[x2]R2} × · · · × {[xm]Rm}.

We prepare two extreme relations R
¯

and R̄ as

xRy ⇔ x = y, xR̄y ⇔ x, y ∈ U.

That is, any reflective relation R is found between R
¯

and R̄. These two notations
are defined on each Ri as well. It looks meaningless for R̄, but it will play an
important role later. It is also noted that both R

¯
and R̄ are decomposable e.r.’s.

Therefore, using these special relations, the universe U can be interpreted by

U/R ↔ U = A1 ×A2 × · · · ×Am ↔ A1/R1 ×A2/R2 × · · · ×Am/Rm

where ↔ shows the one-to-one corresponding in which a set X or a member x
corresponds to the set consisting only of X or x, respectively, such as

Ai = {ai1, ai2, . . . , aiki} ↔ Ai/Ri = {{ai1}, {ai2}, . . . , {aiki}} .

In this way, the universe U is identified as U/R = {{x1}, {x2}, . . .}. So, from
now on, we identify these two expressions as the same, as long as no confusion
occurs. In the “reduction” that will be discussed later, we have an option for
the decomposable R and their Ri’s as R = {R1 or R̄1} × {R2 or R̄2} × · · · ×
{Rm or R̄m}.

We may say that one extreme relation R
¯

causes a world consisting of individ-
ual tuples, while another extreme R̄ cause a world consisting of a whole tuples.
Using a decomposable e.r. R between these, we have a world consisting of sev-
eral subsets mutually exclusive and covering U . Such an intuition is strongly
related to the zooming theory proposed by Murai et al. [1,2] in which a sequence
of logics or analyses goes to by zooming-in and zooming-out operations, which
corresponds to choosing a larger R or a smaller R.

3 Representative Granularity

3.1 Granularity

A “granularity” is usually referred to as an e.r. R on U [3]. That gives a certain
level of expression of any concept (subset) X . Indeed, as long as the available
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attributes are all finite, we have so-called “measurement granularity”RM = R
in the beginning [4]. Here we use a notation R̃ to distinguish a relation R̃ on
U/R from a usual relation R′ on U . We distinguish R and R̃ by calling R a “base
granularity (base relation)” and R̃ a “representation granularity (representation
relation).”As long as we use R

¯
, it is identical to consider R̃ on U/R and a relation

R̃ on U . However, this distinguishing gives an extension and flexible treatment
as for granularity.

Example 1 Let A1 = {a, b, c} and A2 = {0, 1}. Take an e.r. R ⊆ (A1 ×A2) ×
(A1 ×A2). Then R is defined on U = A1 ×A2 = {x1, x2, . . . , x6}. On the other
hand, consider the base relation R

¯
on U . Then we have

U/R =
{
{x1 = (a, 0)}, {x2 = (a, 1)}, . . . , {x6 = (c, 1)}

}
.

At this time, we see the one-to-one correspondence between R and R̃ through

(x, y) ∈ R ↔ ({x}, {y}) ∈ R̃ ⊆ U/R× U/R.

On the other hand, it is possible to think, as a base relation, another decom-
posable e.r. R = R1 × R̄2 on U . Then U/R =

{
{x1, x2}, {x3, x4}, {x5, x6}

}
.

This brings more rough granular. We can consider another d.e.r. R =
R1 × R̄2 where R1 = {(a, a), (b, b), (c, c), (a, b), (b, a)} which gives a parti-
tion: U/R =

{
X1 = {x1, x2, x3, x4}, X2 = {x5, x6}

}
. In this case, the num-

ber of possible e.r. on U/R and the corresponding partitions are only two:
{{X1}, {X2}} , {{X1, X2}}.

We adopt a d.e.r. R only as “granular”and consider a representation relation
R̃ on U/R.

3.2 Discernibility and Reduction

A principle concept of Rough Sets is “discernibility.” One of purposes of Rough
Sets theory is to find the minimal subsets of attributes keeping some discernibility
on a given T . Sometimes, a harder request is imposed to find the minimum
number of attributes. This goal is refereed to as “reduction.” In this section, we
extend this concept in a natural way.

A granular R is said to keep the “individual discernibility” when it holds

T = {[x]R ∩ T }, where T = {x1, x2, . . . , xn}.

Then we can regard T is a restriction of U such as

T = U |T = U ∩ T .

In addition, T derives a partition PT and the corresponding equivalence relation
RT which is defined as

PT = U/RT =
{
T c, {xi}(i = 1, 2, . . . , n)

}
.
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We, then, can also consider T as a set of singleton sets as

T =
{
{xi}(i = 1, 2, . . . , n)

}
. (1)

According to this double notation, we may write PT = T ∪ {T c}.
Let us introduce one more notation. By R|T we denote an e.r. when e.r. R

is restricted on T and by PR|T the corresponding partition as

R|T = R ∩ (T × T ), PR|T = {[x]R ∩ T } = {[x]R|T }

Then, the condition of granularity R and the corresponding partition PR to
keep individual discernibility is written as

R|T = RT − (T c × T c) and PR|T = T . (2)

That is, such a partition PR is identical to T in the sense of Eq. (1) when it is
restricted on T .

The point is that unlike U itself, T is a subset of U , which is a part of full
information. So far, only T has been our main concern. However once we pay an
attention to the remaining U − T , the problem becomes to evaluate how U − T
is partitioned by a granularity R keeping (2). We denote such a granularity by
RI . Here it should be noted that RI is defined on U/R. Then there are some
criteria to think:

1. (Minimum Division Criterion) minimize |PR|. This is the same as the re-
quirement to take as large relation as possible.

2. (Maximum Entropy Criterion) maximize entropy

H(PR) = −
|PR|∑

|[x]R|/|U | log |[x]R|/|U |.

This requires the granule to be as uniform as possible. Or equivalently, each
world determined by d.e.r. R should be as same size as possible.

Usually it is better to use both criteria in some way; for example, take the
minimum division criterion primly and the entropy criterion secondly. Such a
criterion is given by |PR| +H(PR)/ log |PR|. In the ordinal “reduction” we want
to choose an attribute subset so as to have the smallest number of attributes
as possible. In this case, the size of the partition becomes small so that the
minimum division criterion is fairly satisfied. In addition, removing an attribute
produces an equally-sized partition so that the entropy criterion is automatically
satisfied. However, there is a big difference.

Example 2 Let us consider Fig. 3. In Fig.3 (a), A1 = {1, 2, 3, 4} and A2 =
{1, 2, 3} are both ordered finite sets. Thus, U = {(i, j) |i = 1, 2, 3, 4, j = 1, 2, 3}.
Let us find an d.e.r. R distinguishing two tuples x4 = (4, 1) and x9 = (1, 3)
for T = {x4, x9}. There are five such R’s (Fig.3 (b)-(f)). They use only one
attribute A1 or A2, and |PR| = 2. So reduction is possible to be achieved. If we
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(b) H(3/12,9/12)
    =0.81

(a) Two tuples
in A1={1,2,3,4}
and A2={1,2,3}.
R = R1 x R2
|P1|=4,|P2|=3

(c) H(6/12,6/12)
    = 1.0

(d) H(9/12,3/12)
    =0.81

(e) H(4/12,8/12)
    = 0.92

(f) H(8/12,4/12)
    = 0.92

Fig. 3. A case of individually discernibility

RP TP RP RP

Fig. 4. Relationship between
partitions

further require the maximum entropy criterion to them, then (c) is chosen. The
chosen (c) gives a d.e.r.

R = R1 × R̄2 ,or shortly, R = R1

and the corresponding partition PR is

PR =
{
X1 = {x1, x2, x5, x6, x9, x10}, X2 = {x3, x4, x7, x8, x11, x12}

}
.

It is noted that in this granular R, two tuples x4 and x5 are identified as X1

and X2, respectively. This is our representation granularity RI. The relationship
between several relations defined so far are displayed in Fig. 4.

It seems to be natural to require the uniformness on each axis in addition to
above two criteria. We call such a criterion ‘the maximum component entropy
criterion.”However, it can be shown that this criterion is satisfied automatically
due to the maximum entropy criterion when the partition size |PR| is the same.

Example 3 Let us consider Fig. 5 under the maximum component entropy cri-
terion.

In Fig. 5(a), A1 = {1, 2, . . . , 6} and A2 = {1, 2, . . . , 5} that are both ordered
finite sets. Thus, U = {(i, j) |i = 1, . . . , 6, j = 1, . . . , 5}. The three d.e.r. R’s
(Fig. 5(b)-(d)) satisfy the maximum component entropy criterion. Indeed these
three produces an almost equally-spaced partition on each attribute. Among these
three, (b) and (c) uses only one attribute A1 or A2. So they are best in the
meaning of usual reduction. However, if we use the minimum division criterion,
(d) is the best. The chosen (d) gives a d.e.r. R = R1 × R2 connected to the
partition

PR = {{(1 − 3, 1, 2)}, {(4 − 6, 1, 2)}, {(1 − 3, 3 − 5)}, {(4 − 6, 3 − 5)}} .
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(a) Four tuples
in A1={1-6}, A2={1-5}.
R = R1 x R2
|P1|=6,|P2|=5,|P|=30

(b) |P|=6
    H(5/30,...5/30)
    = 2.58

(d) |P|=4
    H(6/30.6/30,9/30,9/30)
    = 1.97

(c) |P|=5
    H(6/30,...6/30)
    = 2.32

Fig. 5. Another case of individually discerni-
bility

(e) |P|=4
    H(5/30,...10/30)
    = 1.918

(f) |P|=4
    H(6/30,...6/30)
    = 1.922

Fig. 6. Minimum division cases

If we do not impose the maximum component entropy criterion, we have two
more candidates (Fig. 6(e),(f)). Even in this case, (d) becomes best in the entropy
values.

As a result of previous discussions, we can say: ”the ’Reduction’ is a trial to
find the maximum and equally-sized granule upon some discernibility. In other
words, the set of worlds should be granularized equally and each world should be
represented by one of tuples we can see.” In many cases, this statement is con-
sistent to the traditional “reduction” criterion of minimum number of attributes.

3.3 Galois Connection

Next, let us consider how to express a concept (a subset) X of the universe U .
When a tuple x is given by x = (x1, x2, . . . , xm), xi ∈ Ai, we define an operator
called “closure” of X as follows.

Definition 1 (Closure)

[X ] ≡
⋃

x∈X

x1 ×
⋃

x∈X

x2 × · · · ×
⋃

x∈X

xm

≡ [X1] × [X2] × · · · [Xm]

Clearly, [X ] is a subset of U as well as X itself. We, thus, have some properties:

Property 1 1. X ⊆ [X ] 2. [[X ]] = [X ]

Furthermore, let us consider a sequence of attribute-value subsets derived
from X as AX = ([X1], [X2], . . . , [Xm]), [X ]i ⊆ Ai. Then the following flow can
be seen:

X → AX → [X ] → A[X] = AX → [X ] → · · · . (3)
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Reversely, for any sequence of attribute-value subsets B = (B1, B2, . . . , Bm),
Bi ⊆ Ai, and the product space of those XB = B1 ×B2 × . . .×Bm, we have

B → XB → B → XB → · · · . (4)

We, therefore, notice that

1. Triple arrow operator is identical to single arrow operator (see (3)).
2. Double arrow operator brings identity for any B and [X ]. (see (3) and (4)).

Thus, if X = [X ] we have X ↔ AX . This one-to-one corresponding is called a
“Galois connection” between U and A. Here, a subset X such that X = [X ] is
said to be “closed” in this paper.

3.4 Maximal Conjunctive Closed Subsets and Set Cover

As we have seen, a closed subset X is“stable”under the arrow operation, that is,
[X ] = X . This means that we may identify a closed subset X with its attribute-
value set sequence AX . Thus, it seems better to use only such closed subsets to
express any subset. Indeed, this is possible as shown below.

Let us consider a special type of closed subsets called “conjunctive subsets”
as follows. A subset X is said to be “conjunctive” when X is written as

X = B1 × B2 × · · · ×Bm,

where Bi ⊆ Ai, Bi = [li,Li] for Bi = O(i = 1, 2, . . . ,m).

This conjunctive subsets are obviously closed from the form. To obtain an com-
pact expression, we furthermore requite such conjunctive closed subsets to be
maximal in the set inclusion relation. Then, it is easy to see that any subset X
can be expressed by the union of maximal conjunctive closed subsets. A disjunc-
tive normal form of a logical formula is such an example.

4 Discussion

We have defined a “representation granularity.” Our motivation is described
as follows. When an information table is given with a number of finite at-
tributes, such a piece of information is already granularized. To indicate it, we
defined the measurement granularity RM . Next, to discern each tuple of the
information table, we considered another granularity RI on U/RM . Obviously,
RI is more rough than RM . If we move to keeping a class discernibility, we
could find a more rough granularity RD on U/RI . It is possible to consider a
sequence U/R,U/R/RI , U/R/RI/RD, . . . and simply U/R,U/RI , U/RD, . . . if
R,RI , RD, . . . are refinements of their predecessors [4]. That is our way to con-
sider several viewpoints to analyze a given information table. Under this view-
point, a lower approximation and an upper approximation of a subset shows a
gap between RM and RI .

We have also emphasized on the granularity bringing an almost equally divi-
sion. This is because what we extracted from a given information table can affect
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to the remaining unseen tuples. Then, this criterion seems to give a good guide-
line. In this direction, we recommended to use the maximal conjunctive closed
subsets for expressing any concept. This is a standpoint to make us be conscious
to the remaining unseen tuples. As long as such a maximal conjunctive closed
subset, every tuples in the set is explicitly considered through the corresponding
d.e.r. relation.

All these things enable us to find useful knowledge efficiently and understand-
ably. This is because a more rough granularity reduces to the size of represen-
tation space and a maximal conjunctive closed subset helps us to understand it
due to its disjunctive form. As for the reduction of the complexity, we will show
this in another paper in which a polynomial time learnability is shown w.r.t. the
size of the information table.

5 Conclusion

We have insisted that the information tables should be specified as one of three
categories according to the size of the attribute set and the size of available tu-
ples. In addition, if we stand at the simplest Rough Set category, what should
be considered is to divide the unseen tuples as equally as possible. The tradi-
tional “reduction” can be interpreted in the same sense. From this viewpoint,
we justified that a “stable” subsets expression is best for capturing any concept.
Although only finite attributes are considered in this paper, this framework is
easily extended to continuous attributes.
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Abstract. In incomplete data missing attribute values may be univer-
sally interpreted in several ways. Four approaches to missing attribute
values are discussed in this paper: lost values, ”do not care” conditions,
restricted ”do not care” conditions, and attribute-concept values. Rough
set ideas, such as attribute-value pair blocks, characteristic sets, charac-
teristic relations and generalization of lower and upper approximations
are used in these four approaches. A generalized rough set methodology,
achieved in the process, may be used for other applications as well. Addi-
tionally, this generalized methodology is compared with other extensions
of rough set concepts.

1 Introduction

Initially rough set theory was applied to complete data sets (with all attribute
values specified). Recently rough set theory was extended to handle incomplete
data sets (with missing attribute values) [1], [2]–[6], [7], [8], [13], and [14].

Development of appropriate methodology to incomplete data sets is crucial
since many real-life data sets have missing attribute values. Mining incomplete
data requires either a preprocessing (filling in missing attribute values before the
main process of rule set induction, decision tree generation, etc.) or mining the
data set taking into account that it is incomplete. In this paper we will use the
latter approach.

We will distinguish four types of missing attribute values. The first type of
missing attribute value will be called lost. A missing attribute value is lost when
for some case (example, object) the corresponding attribute value was mistakenly
erased or forgotten to enter into the data set. The original value existed but for
a variety of reasons now it is not accessible.

The next three types of missing attribute values, called ”do not care” condi-
tions, restricted ”do not care” conditions and attribute-concept values are based
on an assumption that these values were initially, when the data set was created,
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irrelevant. For example, in a medical setup, patients were subjected to prelimi-
nary tests. Patients whose preliminary test results were negative were diagnosed
as not affected by a disease. They were perfectly well diagnosed in spite of the
fact that not all tests were conducted on them. Thus some test results are missing
because these tests were redundant. In different words, a missing attribute value
of this type may be potentially replaced by any value typical for that attribute.
This type of a missing attribute value will be called a ”do not care” condition.
A special case of a ”do not care” condition, called restricted ”do not care” con-
dition, has another interpretation: a restricted ”do not care” condition may be
replaced by any value typical for that attribute excluding lost values. Obviously,
when the data set does not have any lost values, both ”do not care” conditions,
ordinary and restricted, are interpreted in the same way. On the other hand, we
may have different expectations, for example, if a patient was diagnosed as not
affected by a disease, we may want to replace the missing test (attribute) value
by any typical value for that attribute but restricted to patients in the same
class (concept), i.e., for other patients not affected by the disease. Such missing
attribute value will be called attribute-concept value.

Note that all four types of discussed attribute values are universal (or stan-
dard), since they can be used for any incomplete data set. Obviously, if we are
familiar with the reason why some attribute values are missing, we should apply
the appropriate interpretation: lost value or one of the three types of ”do not
care” conditions.

For incomplete decision tables there are two special cases: in the first case, all
missing attribute values are lost, in the second case, all missing attribute values
are ordinary ”do not care” conditions. Incomplete decision tables in which all at-
tribute values are lost, from the viewpoint of rough set theory, were studied for
the first time in [6], where two algorithms for rule induction, modified to handle
lost attribute values, were presented. This approach was studied later, e.g., in
[13] and [14], where the indiscernibility relation was generalized to describe such
incomplete decision tables.

On the other hand, incomplete decision tables in which all missing attribute
values are ”do not care” conditions, from the view point of rough set theory,
were studied for the first time in [2], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally such values were replaced by all values
from the entire domain of the attribute, later, by attribute values restricted to
the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being ”do not care
conditions”, were extensively studied in [7], [8], including extending the idea of
the indiscernibility relation to describe such incomplete decision tables.

In general, incomplete decision tables are described by characteristic rela-
tions, in a similar way as complete decision tables are described by indiscerni-
bility relations [3], [4], and [5].

In rough set theory, one of the basic notions is the idea of lower and upper
approximations. For complete decision tables, once the indiscernibility relation
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is fixed and the concept (a set of cases) is given, the lower and upper approxi-
mations are unique.

For incomplete decision tables, for a given characteristic relation and con-
cept, there are three important and different possibilities to define lower and
upper approximations, called singleton, subset, and concept approximations [3].
Singleton lower and upper approximations were studied in [7], [8], [12], [13], [14].
Note that similar three definitions of lower and upper approximations, though
not for incomplete decision tables, were studied in [15]. In this paper we further
discuss applications to data mining of all three kinds of approximations: single-
ton, subset and concept. As it was observed in [3], singleton lower and upper
approximations are not applicable in data mining.

Note that some other rough-set approaches to missing attribute values were
presented in [1] and [2] as well.

2 Blocks of Attribute-Value Pairs

We assume that the input data sets are presented in the form of a decision ta-
ble. An example of a decision table is shown in Table 1. Rows of the decision

Table 1. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high – no yes
2 very high yes yes yes
3 ? no no no
4 high yes yes yes
5 high ? yes no
6 + yes no no
7 normal no yes no
8 – yes * yes

table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Table 1, U = {1, 2, ..., 8}. Independent variables are
called attributes and a dependent variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. In Table 1, A = {Tempera-
ture, Headache, Nausea}. Any decision table defines a function ρ that maps the
direct product of U and A into the set of all values. For example, in Table 1,
ρ(1,T emperature) = high. Function ρ describing Table 1 is completely specified
(total). A decision table with completely specified function ρ will be called com-
pletely specified, or, for the sake of simplicity, complete. In practice, input data for
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data mining are frequently affected by missing attribute values. In other words,
the corresponding function ρ is incompletely specified (partial). A decision table
with an incompletely specified function ρ will be called incomplete.

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that lost values will be denoted
by ”?”, ”do not care” conditions by ”*”, restricted ”do not care” conditions by
”+”, and attribute-concept values by ”–”. Additionally, we will assume that for
each case at least one attribute value is specified.

Incomplete decision tables are described by characteristic relations instead of
indiscernibility relations. Also, elementary blocks are replaced by characteristic
sets [3]–[5].

An important tool to analyze complete decision tables is a block of the
attribute-value pair. Let a be an attribute, i.e., a ∈ A and let v be a value
of a for some case. For complete decision tables if t = (a, v) is an attribute-value
pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v. For incomplete decision tables the definition of a block of an
attribute-value pair must be modified in the following way:

– If for an attribute a there exists a case x such that ρ(x, a) =?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks[(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is a ”do not care” condition or a restricted ”do not care” condition, i.e.,
ρ(x, a) = ∗ or ρ(x, a) = +, then the case x should be included in blocks
[(a, v)] for all specified values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., ρ(x, a) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x , a) = {ρ(y, a) | ρ(y, a) is specified , y ∈ U, ρ(y, d) = ρ(x, d)}.

These modifications of the definition of the block of attribute-value pair are con-
sistent with the interpretation of missing attribute values: lost, ”do not care”con-
ditions, restricted ”do not care” conditions, and attribute-concept values. Also,
note that the attribute-concept value is the most universal, since if V (x, a) = ∅,
the definition of the attribute-concept value is reduced to the lost value, and
if V (x, a) is the set of all values of an attribute a, the attribute-concept value
becomes a ”do not care” condition.

In Table 1, for case 1, ρ(1, Headache) = −, and V (1, Headache) = {yes}, so
we add the case 1 to [(Headache, yes)]. For case 3, ρ(3,T emperature) =?, hence
case 3 is not included in either of the following sets: [(T emperature, high)],
[(T emperature, very high)], and [(T emperature, normal)].

Similarly, ρ(5, Headache) = ?, so the case 5 is not included in [(Headache,
yes)] and [(Headache, no)]. For case 6, ρ(6, Headache) = +, so the case 6
is included in [(Temperature, normal)], [(Temperature, high)], and [(Temper-
ature, very high)]. Also, ρ(8,T emperature) = −, and V (8, T emperature) =



248 J.W. Grzymala-Busse

{high, very high}, so the case 8 is a member of both [(T emperature, high)]
and [(T emperature, very high)]. Finally, ρ(8, Nausea) = ∗, so the case 8 is
included in both [(Nausea, no)] and [(Nausea, yes)]. Thus,

[(Temperature, high)] = {1, 4, 5, 6, 8},
[(Temperature, very high)] = {2, 6, 8},
[(Temperature, normal)] = {6, 7},
[(Headache, yes)] = {1, 2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.
For a case x ∈ U the characteristic set KB(x) is defined as the intersection of

the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a and
its value ρ(x, a),

– If ρ(x, a) =? or ρ(x, a) = ∗ then the set K(x, a) = U ,
– If ρ(x, a) = +, then K(x, a) is equal to the union of all blocks of (a, v), for

all specified values v of attribute a,
– If ρ(x, a) = −, then the corresponding set K(x, a) is equal to the union

of all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = {x}.

The way of computing characteristic sets needs a comment. For both lost values
and ”do not care” conditions the corresponding set K(x, a) is equal to U because
the corresponding attribute a does not restrict the set KB(x): if ρ(x, a) = ∗, the
value of the attribute a is irrelevant; if ρ(x, a) =?, only the existing values need
to be checked. However, the case when ρ(x, a) = − is different, since the at-
tribute a restricts the set KB(x). Furthermore, the description of KB(x) should
be consistent with other (but similar) possible approaches to missing attribute
values, e.g., an approach in which each missing attribute value is replaced by
the most common attribute value restricted to a concept. Here the set V (x, a)
contains a single element and the characteristic relation is an equivalence rela-
tion. Our definition is consistent with this special case in the sense that if we
compute a characteristic relation for such a decision table using our definition or
if we compute the indiscernibility relation as for complete decision tables using
definitions from Section 2, the result will be the same. For Table 2 and B = A,

KA(1) = {1, 4, 5, 6, 8}∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {1, 6, 8},
KA(2) = {2, 6, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 6, 8}∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 6, 8}∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = ({1, 4, 5, 6, 8} ∪ {2, 6, 8} ∪ {6, 7}) ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} =

{1, 6, 8},
KA(7) = {6, 7} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = ({1, 4, 5, 6, 8} ∪ {2, 6, 8}) ∩ {1, 2, 4, 6, 8} ∩ U = {1, 2, 4, 6, 8}.
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Characteristic set KB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes.

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x , y) ∈ R(B) if and only if y ∈ KB (x ).

Thus, the relation R(B) may be defined by (x, y) ∈ R(B) if and only if y is
indistinguishable from x by all attributes from B. In [12] ”y is indistinguishable
from x” was phrased as ”x is similar to y”. Furthermore, in [12] the set KB(x)
was denoted by R−1(x). The characteristic relation R(B) is reflexive but—in
general—does not need to be symmetric or transitive. Also, the characteristic
relation R(B) is known if we know characteristic sets K(x) for all x ∈ U . In
our example, R(A) = {(1, 1), (1, 6), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8),
(5, 4), (5, 5), (5, 8), (6, 1), (6, 6), (6, 8), (7, 7), (8, 1), (8, 2), (8, 4), (8, 6), (8,
8)}. The most convenient way is to define the characteristic relation through the
characteristic sets.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in [13], see also, e.g., [14]. For decision tables
where all missing attribute values are ”do not care” conditions a special charac-
teristic relation was defined in [7], see also, e.g., [8]. For a completely specified
decision table, the characteristic relation R(B) is reduced to the indiscernibility
relation IND(B).

3 Definability

For completely specified decision tables, any union of elementary sets of B is
called a B-definable set [11]. Definability for completely specified decision tables
should be modified to fit into incomplete decision tables. For incomplete decision
tables, a union of some intersections of attribute-value pair blocks will be called
B-locally definable sets. A union of characteristic sets KB(x), where x ∈ X ⊆ U
will be called a B-globally definable set. Any set X that is B-globally definable
is B-locally definable, the converse is not true. For example, the set {6, 8} is
A-locally definable since {6, 8} = [(T emperature, very high)] ∩ [(Nausea, no)].
However, the set {6, 8} is not A-globally definable. Obviously, if a set is not B-
locally definable then it cannot be expressed by rule sets using attributes from
B. This is why it is so important to distinguish between B-locally definable sets
and those that are not B-locally definable.

Note that definability, introduced in [12], differs from our definition. For
example, the set {1, 2, 4, 6, 8}, A-globally definable according to our definition,
is not definable in [12]. Additionally, sets that are definable in [12], are not even
A-locally definable according to our definition.
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4 Lower and Upper Approximations

For completely specified decision tables lower and upper approximations are
defined on the basis of the indiscernibility relation. Let X be any subset of the
set U of all cases. The set X is called a concept and is usually defined as the
set of all cases defined by a specific value of the decision. In general, X is not a
B-definable set. However, set X may be approximated by two B-definable sets,
the first one is called a B-lower approximation of X , denoted by BX and defined
as follows

{x ∈ U | [x]B ⊆ X}.

The second set is called a B-upper approximation of X , denoted by BX and
defined as follows

{x ∈ U | [x]B ∩X �= ∅}.

The above shown way of computing lower and upper approximations, by con-
structing these approximations from singletons x, will be called the first method.
The B-lower approximation of X is the greatest B-definable set, contained in X .
The B-upper approximation of X is the smallest B-definable set containing X .

As it was observed in [11], for complete decision tables we may use a second
method to define the B-lower approximation of X , by the following formula

∪{[x]B | x ∈ U, [x]B ⊆ X},

and the B-upper approximation of x may be defined, using the second method,
by

∪{[x]B | x ∈ U, [x]B ∩X �= ∅}.

Obviously, for complete decision tables both methods result in the same respec-
tive sets, i.e., corresponding lower approximations are identical, and so are upper
approximations.

For incomplete decision tables lower and upper approximations may be de-
fined in a few different ways. In this paper we suggest three different definitions
of lower and upper approximations for incomplete decision tables. Again, let X
be a concept, let B be a subset of the set A of all attributes, and let R(B) be
the characteristic relation of the incomplete decision table with characteristic
sets K(x), where x ∈ U . Our first definition uses a similar idea as in the previ-
ous articles on incomplete decision tables [7], [8], [13], [14], i.e., lower and upper
approximations are sets of singletons from the universe U satisfying some prop-
erties. Thus, lower and upper approximations are defined by analogy with the
above first method, by constructing both sets from singletons. We will call these
approximations singleton. A singleton B-lower approximation of X is defined as
follows:

BX = {x ∈ U | KB(x) ⊆ X}.

A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩X �= ∅}.
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In our example of the decision table presented in Table 2 let us say that B = A.
Then the singleton A-lower and A-upper approximations of the two concepts:
{1, 2, 4, 8} and {3, 5, 6, 7} are:

A{1, 2, 4, 8} = {2, 4},

A{3, 5, 6, 7} = {3, 7},

A{1, 2, 4, 8} = {1, 2, 4, 5, 6, 8},

A{3, 5, 6, 7} = {1, 3, 5, 6, 7, 8}.

We may easily observe that the set {2, 4} is not A-locally definable since in all
blocks of attribute-value pairs cases 2 and 8 are inseparable. Additionally, the
set {1, 3, 5, 6, 7, 8}, by the same reason, is not A-locally definable. Thus, as
it was observed in, e.g., [3]–[5], singleton approximations should not be used, in
general, for data mining and, in particular, for rule induction.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method,
using characteristic sets instead of elementary sets. There are two ways to do
this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x) | x ∈ U,KB(x) ⊆ X}.

A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U,KB(x) ∩X �= ∅}.

Since any characteristic relation R(B) is reflexive, for any concept X , singleton
B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively. For the same decision table,
presented in Table 2, the subset A-lower and A-upper approximations are

A{1, 2, 4, 8} = {2, 4, 8},

A{3, 5, 6, 7} = {3, 7},

A{1, 2, 4, 8} = {1, 2, 4, 5, 6, 8},

A{3, 5, 6, 7} = {1, 2, 3, 4, 5, 6, 7, 8} = U.

The second possibility is to modify the subset definition of lower and upper ap-
proximation by replacing the universe U from the subset definition by a concept
X . A concept B-lower approximation of the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X}.
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Obviously, the subset B-lower approximation of X is the same set as the concept
B-lower approximation of X . A concept B-upper approximation of the concept
X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X �= ∅} =
= ∪{KB(x) | x ∈ X}.

The concept upper approximations were defined in [9] and [12] as well. The
concept B-upper approximation of X is a subset of the subset B-upper approxi-
mation of X . Besides, the concept B-upper approximations are truly the smallest
B-definable sets containing X . For the decision table presented in Table 2, the
concept A-upper approximations are

A{1, 2, 4, 8} = {1, 2, 4, 6, 8},

A{3, 5, 6, 7} = {1, 3, 4, 5, 6, 7, 8}.
Definitions of lower approximations, numbered as (9) and (10) in [12], are dif-
ferent from any of the definitions of lower approximations from this paper. Sets
defined by (9) and (10) in [12] are, in general, not even A-locally definable. Sim-
ilarly, a set defined by yet another definition of upper approximation, numbered
as (11) in [12] (and different from any of the three upper approximations defined
in this paper this paper) does not need to be A-locally definable as well.

Note that for complete decision tables, all three definitions of lower approxi-
mations, singleton, subset and concept, coalesce to the same definition. Also, for
complete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

5 Conclusions

Four standard interpretations of missing attribute values are discussed in this
paper. These interpretations may be applied to any kind of an incomplete data
set. This paper shows how to compute blocks of attribute-value pairs for data sets
with missing attribute values, how to compute characteristic sets (generalization
of elementary sets), how to compute characteristic relation (i.e., generalization
of an indiscernibility relation), and three types of approximations (reduced for
ordinary approximations for complete data sets). Additionally, the idea of global
and local definability for incomplete data sets is introduced. In general, sets
computed as results of singleton approximations are not even A-locally definable.
Thus they should not be used for data mining.
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Abstract. Minimal rule generation in Non-deterministic Information
Systems (NISs), which follows rough sets based rule generation in
Deterministic Information Systems (DISs), is presented. According
to certain rules and possible rules in NISs, minimal certain rules and
minimal possible rules are defined. Discernibility functions are also
introduced into NISs for generating minimal certain rules. Like mini-
mal rule generation in DISs, the condition part of a minimal certain
rule is given as a solution of an introduced discernibility function. As
for generating minimal possible rules, there may be lots of discernibility
functions to be solved. So, an algorithm based on an order of attributes is
proposed. A tool, which generates minimal certain and minimal possible
rules, has also been implemented.

Keywords: Rough sets, Non-deterministic information, Minimal rules,
Discernibility functions, Tool for rule generation.

1 Introduction

Rough set theory is seen as a mathematical foundation of soft computing. This
theory usually handles tables with deterministic information. Many applications
of this theory to rule generation, machine learning and knowledge discovery have
been presented [1,2,3,4].

We follow rule generation in DISs [1,2,3,4] and propose rule generation in
NISs. NISs were proposed by Pawlak, Or�lowska and Lipski in order to handle
information incompleteness in DISs, like null values, unknown values, missing
values. From the beginning of the research on incomplete information, NISs
have been recognized to be the most important framework for handling infor-
mation incompleteness [5,6]. Therefore, rule generation in NISs will also be an
important framework for rule generation from incomplete information.

However, very few work deals with rule generation from incomplete informa-
tion on computers. In [6], Lipski showed a question-answering system besides
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an axiomatization of logic. Grzymala-Busse developed a system named LERS,
which depends upon LEM1 and LEM2 algorithms [7,8]. Kryszkiewicz proposed
a framework of rules in incomplete information systems [9]. These are the most
important work for handling incomplete information, especially missing values,
on computers.

In this paper, we briefly survey rule generation in DISs and propose rule
generation in NISs.

2 Basic Definitions

A Deterministic Information System (DIS) is a quadruplet (OB,AT , {V ALA|
A ∈ AT }, f), where OB is a finite set whose elements are called objects, AT
is a finite set whose elements are called attributes, V ALA is a finite set whose
elements are called attribute values and f is such a mapping that f : OB×AT →
∪A∈ATV ALA which is called a classification function. If f(x,A)=f(y,A) for
every A ∈ ATR ⊂ AT , we see there is a relation between x and y for ATR. This
relation is an equivalence relation over OB. Let [x]ATR denote an equivalence
class {y ∈ OB|f(y,A)=f(x,A) for every A ∈ ATR}.

Let us consider two sets CON ⊂ AT which we call condition attributes
and DEC ⊂ AT which we call decision attributes. An object x ∈ OB
is consistent (with any distinct object y ∈ OB), if f(x,A)=f(y,A) for ev-
ery A ∈ CON implies f(x,A)=f(y,A) for every A ∈ DEC. For any x ∈
OB, let imp(x,CON,DEC) denote a formula called implication: ∧A∈CON [A,
f(x,A)] ⇒ ∧A∈DEC [A, f(x,A)], where a formula [A, f(x,A)] implies that
f(x,A) is the value of the attribute A. This is called a descriptor.

A Non-deterministic Information System (NIS) is also a quadruplet (OB,
AT , {V ALA|A ∈ AT }, g), where g : OB ×AT → P (∪A∈ATV ALA) (a power set
of ∪A∈ATV ALA). Every set g(x,A) is interpreted as that there is an actual value
in this set but this value is not known.

Definition 1. Let us consider a NIS=(OB,AT , {V ALA|A ∈ AT }, g), a set
ATR ⊂ AT and a mapping h : OB×ATR → ∪A∈ATRV ALA such that h(x,A) ∈
g(x,A). We call a DIS=(OB,ATR, {V ALA|A ∈ ATR},h) a derived DIS (for
ATR) from NIS.

Definition 2. For a set ATR={A1, · · · , An} ⊂ AT and any x ∈ OB, let
PT (x,ATR) denote the Cartesian product g(x,A1) × · · · × g(x,An). We name
every element a possible tuple (for ATR) of x. For a possible tuple ζ=(ζ1, · · ·,
ζn) ∈ PT (x,ATR), let [ATR, ζ] denote a formula

∧
1≤i≤n[Ai, ζi].

Definition 3. Let P I(x,CON,DEC) (x ∈ OB) denote a set {[CON, ζ] ⇒
[DEC, η]|ζ ∈ PT (x,CON), η ∈ PT (x,DEC)}. We name an element of P I(x,
CON,DEC) a possible implication (from CON to DEC) of x.

Example 1. Let us consider NIS1 in Table 1. There are 7346640384 derived
DISs for all attributes. For CON={A,B} and DEC={C}, there are 216(=23×
33) derived DISs. Here, PT (1, {A,B})={(3, 1), (3, 3), (3, 4)}, PT (1, {C})={(3)}
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Table 1. A Table of NIS1

OB A B C D E F G H

1 {3} {1, 3, 4} {3} {2} {5} {5} {2, 4} {3}
2 {2} {3, 4} {1, 3, 4} {4} {1, 2} {2, 4, 5} {2} {2}
3 {4, 5} {5} {1, 5} {5} {2} {5} {1, 2, 5} {1}
4 {1} {3} {4} {3} {1, 2, 3} {1} {2, 5} {1, 2}
5 {4} {1} {2, 3, 5} {5} {2, 3, 4} {1, 5} {4} {1}
6 {4} {1} {5} {1} {4} {2, 4, 5} {2} {1, 2, 3}
7 {2} {4} {3} {4} {3} {2, 4, 5} {4} {1, 2, 3}
8 {4} {5} {4} {2, 3, 5} {5} {3} {1, 2, 3} {1, 2, 3}
9 {2} {3} {5} {3} {1, 3, 5} {4} {2} {3}
10 {4} {2} {1} {5} {2} {4, 5} {3} {1}

and P I(1, {A,B}, {C}) consists of three possible implications [A, 3] ∧ [B, 1] ⇒
[C, 3], [A, 3] ∧ [B, 3] ⇒ [C, 3] and [A, 3] ∧ [B, 4] ⇒ [C, 3]. Since there exists
no possible tuple (3, ) ∈ PT (x, {A,B}) (x �= 1), each possible implication is
consistent.

For NISs, we have proposed a framework of Rough Non-deterministic
Information Analysis [10]. In this analysis, we apply the standard methods
in rough set theory to every derived DIS, and we deal with the certainty and
the possibility, or the worst case and the best case. An important problem is how
to compute two modalities depending upon all derived DISs from a NIS. A sim-
ple method, such that every definition is sequentially computed in all derived
DISs from a NIS, is not suitable. Because the number of derived DISs from
a NIS increases in exponential order. We have proposed possible equivalence
relations and inf and sup information for solving this problem [10].

3 Theoretical Foundations of Rule Generation in NISs

Definition 4. For any τ ∈ P I(x,CON,DEC), let DD(τ, x, CON,DEC) de-
note a set {ϕ| ϕ is such a derived DIS for CON ∪ DEC that an implication
imp(x,CON,DEC) in ϕ is equal to τ}.
Definition 5. If P I(x,CON,DEC) is a singleton set {τ}, we say τ (from x) is
definite. Otherwise we say τ (from x) is indefinite. If a set {ϕ ∈ DD(τ, x, CON ,
DEC)| x is consistent in ϕ} is equal to DD(τ, x, CON , DEC), we say τ
is globally consistent (GC). If this set is equal to ∅, we say τ is globally
inconsistent (GI). Otherwise we say τ is marginal (MA). By combining two
cases, i.e., ‘D(efinite) or I(ndefinite)’ and ‘GC, MA or GI’, we define six
classes, DGC, DMA, DGI, IGC, IMA, IGI, for possible implications.

Table 2. Six classes of possible implications in NISs

GC MA GI

Definite DGC DMA DGI

Indefinite IGC IMA IGI
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A possible implication τ1 belonging to DGC class is consistent in all derived
DISs, and this τ1 is not influenced by the information incompleteness, therefore
we especially say τ1 is a certain rule. A possible implication τ2 (from object x)
belonging to IGC class is consistent in every ϕ ∈ DD(τ2, x, CON,DEC), too.
However, one of P I(x,CON,DEC) is the real implication with unknown truth
attributes values, therefore we say τ2 is a possible rule. A possible implication
τ3 belonging to MA class is consistent in some derived DISs. Because there
may be a derived DIS with unknown truth attributes values, we also say τ3 is
a possible rule.

The definition of classes GC and MA is semantically the same as the def-
inition in [9]. For handling the information incompleteness in NISs, we intro-
duced possible implications. In [9], Kryszkiewicz proposed generalized decision
∂AT (x) for handling null values in DISs. In definite class, our definition and
Kryszkiewicz’s definition specify the same implications. However, there exists a
difference [10]. Now, we give necessary and sufficient conditions for characterizing
GC, MA and GI classes.

Definition 6. Let us consider a NIS and a set ATR ⊂ AT . For any ζ ∈ PT (x,
ATR), we fix the tuple of x to ζ, and define (1) and (2) below.
(1) inf(x, ζ, ATR)={y ∈ OB|PT (y,ATR)={ζ}},
(2) sup(x, ζ, ATR)={y ∈ OB|ζ ∈ PT (y,ATR)}.

In Definition 6, inf(x, ζ, ATR) implies a set of objects whose tuples are
ζ and definite. A set sup(x, ζ, ATR) implies a set of objects whose tuples
may be ζ. In DISs, [x]ATR=inf(x, ζ, ATR)=sup(x, ζ, ATR) holds, and {x} ⊂
inf(x, ζ, ATR) ⊂sup(x, ζ, ATR) holds in NISs.

Theorem 1 [10]. For a NIS, let us consider a possible implication
τ :[CON, ζ] ⇒ [DEC, η] ∈ P I(x, CON,DEC). Then, the following holds.
(1) τ belongs to GC class if and only if sup(x, ζ, CON) ⊂ inf(x, η,DEC).
(2) τ belongs to MA class if and only if inf(x, ζ, CON) ⊂ sup(x, η,DEC).
(3) τ belongs to GI class if and only if inf(x, ζ, CON) �⊂ sup(x, η,DEC).

Corollary 2. Let us consider a possible implication whose decision part is [DEC,
η]. Then, the following holds.
(1) For an object x, let (AT -DEC)∗ be a set of attributes {A ∈ AT -DEC||PT (x,
A)|=1}. In this case, PT (x, (AT -DEC)∗) consists of a possible tuple. Let ζ
denote this tuple. It is possible to generate a certain rule from object x if and
only if sup(x, ζ, (AT -DEC)∗) ⊂ inf(x, η,DEC) holds.
(2) It is possible to generate a possible rule from object x if and only if inf(x, ζ′,
(AT -DEC)) ⊂ sup(x, η,DEC) holds for a possible tuple ζ′ ∈ PT (x,AT -DEC).

Proposition 3 [10]. For any NIS, let ATR ⊂ AT be {A1, · · · , An}, and let a
possible tuple ζ ∈ PT (x,ATR) be (ζ1, · · · , ζn). Then, the following holds.
(1) inf(x, ζ, ATR)=∩iinf(x, (ζi), {Ai}).
(2) sup(x, ζ, ATR)=∩isup(x, (ζi), {Ai}).

By means of Theorem 1 and Proposition 3, it is possible to decide a class
of each possible implication. Namely, we first prepare inf(x, (ζi,j), {Ai}) and
sup(x, (ζi,j), {Ai}) for any x ∈OB, any Ai ∈AT and any (ζi,j) ∈PT (x, {Ai}).
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Then, we produce inf(x, ζ, CON), sup(x, ζ, CON), inf(x, η,DEC) and sup(x,
η,DEC) according to Proposition 3. Finally, we apply Theorem 1 to them. By
means of Corollary 2, it is possible to decide whether certain or possible rules
can be generated from an object x.

4 Certain Rules Based on an Order of Attributes

In [11], we introduced a total order, which is defined by the significance of at-
tributes, over (AT -DEC), and realized a tool for rule generation.

Algorithm 1 [11]. (Order-method)
(Step 1) Fix the decision part [DEC, η] of the rule.
(Step 2) Translate data file into inf and sup information according to [DEC, η].
(Step 3) Apply Corollary 2, and obtain a set OBDGC(DEC, η)={x ∈ OB| a
certain rule, whose decision part is [DEC, η], can be generated from x}.
(Step 4) According to the order of attributes, generate sup(x, ζ, CON) for
(x ∈ OBDGC(DEC, η)), and apply Theorem 1.

Due to the order of attributes, it is easy to define attributes CON . Namely,
CON is sequentially {A1}, {A1, A2}, · · ·, {A1, · · · , An} for the order A1, A2, · · ·,
An of attributes. The following is the real execution of Step 4 in Table 1. Here,
an attribute is identified with the ordinal number of the attribute.

?-step4.
Rs File:’data.rs’. /* Translated data file */
DECLIST:<inf=[3,5,10],sup=[3,4,5,6,7,8,10]>
Certain Rules from object 3

[2,5]&[5,2]=>[8,1][17496/17496(=324/324,54/54),Definite,GC]
Certain Rules from object 5

[1,4]&[2,1]&[4,5]=>[8,1][1944/1944(=36/36,54/54),Definite,GC]
Certain Rules from object 10

[1,4]&[2,2]=>[8,1][648/648(=12/12,54/54),Definite,GC]
EXEC_TIME=0.046(sec)
yes
However in this implementation, the minimality of a rule, which is defined in

the next section, is not assured. In reality, a possible implication [2,2]⇒[8,1] from
object 10 is also a certain rule. The details of order-method and real execution
time for some NISs are in [11].

5 A Problem on Minimal Rule Generation in NISs

Now, let us consider minimal rules in NISs. According to the usual definition
in DISs [1,2,7], we give the definition of minimal rules in NISs.

Definition 7. Let us consider a possible implication τ : [CON, ζ] ⇒ [DEC, η],
which belongs to GC class. We say τ is a minimal rule in GC, if there is no
proper non-empty subset CON∗ ⊂ CON such that [CON∗, ζ∗] ⇒ [DEC, η] (ζ∗
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is a tuple restricted to CON∗) belongs to GC class. A minimal rule in MA
class is similarly defined.

Problem 1. For a NIS, let DEC be decision attributes and let η be a tuple
of decision attributes values for DEC. Then, find all minimal certain rules and
minimal possible rules in the form of [CON, ζ] ⇒ [DEC, η].

This problem has already been investigated in DISs. To find a minimal
reduct in a DIS is proved to be NP-hard [12]. Basically, it is necessary to ex-
amine each possible implication [CON ′, ζ′] ⇒ [DEC, η] for (CON ′ ⊂ CON).
In such a situation, a discernibility function in DISs has been proposed [12].
Some algorithms including reduction of attributes were investigated by means of
discernibility functions. We also introduce discernibility functions in NISs, and
investigate a method to generate minimal rules in NISs.

6 Discernibility Functions and Minimal Certain Rules

Let us suppose OBDGC(DEC, η) �= ∅ in Algorithm 1. According to Theorem 1,
the problem is to find such a minimal conjunction [CON, ζ] that sup(x, ζ, CON)
⊂ inf(x, η,DEC). Here, sup(x, ζ, CON)=∩isup(x, (ζi), {Ai}) (Ai ∈ CON , PT
(x, {Ai})={ζi}) holds. Therefore, a minimal set of definite descriptors, which dis-
criminate every object in OB-inf(x, η,DEC) from inf(x, η,DEC), becomes a
minimal conjunction [CON, ζ]. According to this property, we give the following
definitions.

Definition 8. Let us consider an object x ∈ OB. Any distinct y ∈ OB is
discriminated from x by a definite descriptor [Ai, ζi] (Ai ∈ AT -DEC) in x,
if y �∈ sup(x, (ζi), {Ai}) and PT (x,Ai)={ζi}. Let DISC(x, y) denote a disjunc-
tion of such definite descriptors in x. We say [Ai, ζi] is a core descriptor, if
DISC(x, y)=[Ai, ζi].

Definition 9. For every x ∈ OBDGC(DEC, η), we define
DFDGC(x)=∧y∈OB−inf(x,η,DEC)DISC(x, y),

and we name DFDGC(x) a discernibility function of x (in DGC class).

Definition 10. For a discernibility function DFDGC(x), let us identify every
descriptor in DFDGC(x) with a propositional variable. If a set SOL of descriptors
assigns true to DFDGC(x), we say SOL satisfies DFDGC(x). Especially, if OB-
inf(x, η,DEC)=∅ holds, we define every descriptor satisfies DFDGC(x).

Example 2. In Table 1, let us consider possible implications [CON, ζ] ⇒ [H, 1].
Since a definite descriptor [H, 1] appears in objects 3, 5 and 10, it may be possible
to generate certain rules from these three objects. The following shows a real
execution to obtain DFDGC(3).

?-dfdgc(3).
DF=[[1,[2,5],[4,5],[5,2]],[2,[2,5],[4,5]],[4,[2,5],[4,5],[6,5]],
[6,[2,5],[4,5],[5,2]],[7,[2,5],[4,5],[5,2]],[8,[5,2],[6,5]],
[9,[2,5],[4,5],[5,2],[6,5]]]
EXEC_TIME=0.003(sec)
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Since DISC(3, y) �= ∅ holds for every y ∈ OB-inf(3, (1), {H})=OB-{3, 5, 10}=
{1, 2, 4, 6, 7, 8, 9}, it is possible to generate a certain rule from object 3. Here, the
first element [1,[2,5],[4,5],[5,2]] implies that each descriptor [B, 5], [D, 5] and [E, 2]
discriminates object 1 from object 3. The complexity of calculating DFDGC(x)
depends upon |AT -DEC| × |OB-inf(x, η,DEC)|. A set {[B, 5], [E, 2]} satisfies
this function, and neither {[B, 5]} nor {[E, 2]} satisfy this function. Thus, we
obtain a minimal certain rule [B, 5] ∧ [E, 2] ⇒ [H, 1].

Theorem 4. For a NIS, let us suppose x ∈ OBDGC(DEC, η) �= ∅ and OB-
inf(x, η, DEC) �= ∅. Then, for a minimal solution SOL satisfying DFDGC(x),
∧DESC∈SOLDESC ⇒ [DEC, η] is a minimal certain rule.

7 Minimal Certain Rule Generation in DGC Class

At first, we propose a simple method to obtain all minimal solutions of a dis-
cernibility function, which we name enumeration method (e-method). In this
method, we enumerate every subset of all descriptors in DFDGC(x), then we
sequentially examine the satisfiability of DFDGC(x).

Algorithm 2. (Enumeration method)
Input: An object x ∈ OBDGC(DEC, η) �= ∅.
Output: All minimal solutions of DFDGC(x), and all minimal certain rules.
begin

generate DFDGC(x);
enumerate every subset SUB of all descriptors in DFDGC(x)
according to the number of elements;

repeat the following until there exists no SUB;
if SUB satisfies DFDGC(x), SUB is a minimal solution,
(∧DESC∈SUBDESC ⇒[DEC,η] is a minimal certain rule)
and remove every SUB1 (SUB⊂SUB1);

end.

E-method can obtain all minimal solutions of DFDGC(x). However, there
exist 2|ALL DESC| kinds of subsets for a set ALL DESC of all descriptors in
DFDGC(x). Therefore, this method works well just for small size NISs.

Now, let us consider another method to obtain a minimal subset of descrip-
tors, which satisfy DFDGC(x). Namely, we sequentially select a descriptor in
DFDGC(x), and we reduce DFDGC(x) to new DF ′

DGC(x). By repeating this
procedure, it is possible to obtain a set of descriptors satisfying DFDGC(x). We
name this method an interactive selection method (is-method). However, we
have to pay attention to this method. Let us consider the following example.

Example 3. Let a,b,c,d be descriptors in a NIS, and let us suppose DF=(a ∨
b)∧ (b∨ c)∧ (c∨d) be a discernibility function for a class. If we select descriptor
a in DF , DF is revised to DF ′=(b ∨ c) ∧ (c ∨ d). This absorption law is the
key procedure to reduce DF . In [13], this absorption law takes an important
role. Similarly if we select descriptor b in DF ′, DF ′ is revised to DF ′′=(c ∨ d).
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Finally, we select descriptor c and we obtain a set {a, b, c}. This set satisfies DF ,
but this set is not minimal. Because, both sets {a, c} and {b, c} satisfy DF .

For solving the problem in Example 3, we combine is-method with e-method,
and propose Algorithm 3. We name this method interactive selection and
enumeration method with a threshold value (isetv-method). In this method,
at first we depend upon ise-method and we reduce DFDGC(x) to DF ′

DGC(x).
Let SOL denote a set of currently selected descriptors, and let LIST DESC de-
note a set of all distinct descriptors in DF ′

DGC(x). When the amount of selected
descriptors and descriptors in DF ′

DGC(x) is less than a threshold value α, i.e.,
|SOL| + |LIST DESC| ≤ α, we employ e-method. A threshold value controls
to obtain all minimal solutions in DFDGC(x). The property is as follows:

(Property 1) For large threshold values, less selections are necessary and most
of all minimal solutions are generated. However, it takes much execution time in
e-method. Because, there exist 2|ALL DESC| kinds of subsets.
(Property 2) For small threshold values, more selections are necessary and mini-
mal solutions depending upon selections are generated. In this case, it takes less
execution time in e-method.

Algorithm 3.(Interactive selection and enumeration method with a
threshold value)
Input: An object x ∈ OBDGC(DEC, η) �= ∅ and a threshold value α.
Output: Minimal solutions and minimal certain rules, which depend upon selec-
tions of descriptors.
begin

Fix a value α; DF=DFDGC (x); CORE=∅; SOL=∅;
for (every descriptor DESC in DF) if (DESC is a core) CORE=

CORE ∪ {DESC} and remove every disjunction with DESC from DF;

if (DF==∅) CORE is a unique minimal solution,

∧DESC∈COREDESC ⇒[DEC,η] is a minimal certain rule and end;

assign no to FINISH;

while (DF �= ∅) do

if (|SOL| + |LIST_DESC| ≤ α) assign SOL to SOL ∪ LIST_DESC,

and exit while loop;

assign the number of disjunctions in DF to NUM;

find a set COMMON={DESC|DESC is in every disjunction in DF};
if (COMMON �= ∅) CORE ∪ SOL ∪ {DESC′} (DESC′ ∈ COMMON) is

a solution of DFDGC(x), apply E-method and obtain minimal

solutions, remove every DESC′ from DF, and assign the number of

disjunctions in the revised DF to NUM ′; else assign NUM ′=NUM;

if (NUM ′! = NUM) there exist no solutions of DFDGC(x),
assign yes to FINISH and exit while loop;

select a descriptor DESC in DF, SOL=SOL ∪ {DESC} and remove

every disjunction with DESC from DF;

end_while;

if (FINISH==no) apply E-method to descriptors CORE ∪ SOL,

and obtain minimal solutions of DFDGC(x);
end.
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8 A Real Execution of ISETV-Method in DGC Class

The following is a real execution of isetv-method for object 5 in Table 1. In non-
interactive mode, solutions consisting of only core descriptors are handled. There
exist no such solutions. Then, interactive mode starts. In Operation 2, the thresh-
old value α is fixed to 3. In Operation 3, a descriptor [2, 1] is selected, and a com-
mon descriptor [4, 5] is found. For a set {[2, 1], [4, 5]}, e-method is applied and a
minimal certain rule is generated. In order to obtain other minimal certain rules,
the same procedure is applied to DF= [[1, [1, 4]], [6, [7, 4]]] in Loop 2. In this case,
SOL={[2, 1]} and LIST DESC= {[1, 4], [7, 4]}, so |SOL|+ |LIST DESC| ≤ 3
holds. E-method is applied to {[1, 4], [2, 1], [7, 4]} again. The selected descriptor
[2,1] can be reduced, and a minimal certain rule is displayed.

?-isetv_method(5). [Operation 1]

===== NON-INTERACTIVE MODE ================

Core Descriptors:[]

EXEC_TIME=0.003(sec)

===== INTERACTIVE MODE ====================

Input a Threshold Value:3. [Operation 2]

[Loop:1]
DF without Core:[[1,[1,4],[4,5]],[2,[1,4],[2,1],[4,5],[7,4]],

[4,[1,4],[2,1],[4,5],[7,4]],[6,[4,5],[7,4]],[7,[1,4],[2,1],[4,5]],
[8,[2,1],[7,4]],[9,[1,4],[2,1],[4,5],[7,4]]]
Descriptors in DF:[[1,4],[2,1],[4,5],[7,4]]

Select a Descriptor:[2,1]. [Operation 3]

Revised DF without Core:[[1,[1,4],[4,5]],[6,[4,5],[7,4]]]

Common Descriptors in Revised DF:[[4,5]]

Execute E-method for {[2,1],[4,5]}
[2,1]&[4,5]⇒[8,1][972/972(=18/18,54/54),Definite,GC]

This rule covers objects [5],Coverage=0.333

[(0.1,0.1),(1.0,1.0),(0.142,0.333)] /* Minimum and maximum of */

[Loop:2] /* Support,Accuracy,Coverage */

DF without Core:[[1,[1,4]],[6,[7,4]]]

Descriptors in DF:[[1,4],[7,4]]

Threshold Value Condition is Satisfied

Execute E-method for {[1,4],[2,1],[7,4]}
[1,4]&[7,4]⇒[8,1][3888/3888(=72/72,54/54),Definite,GC]

This rule covers objects [5],Coverage=0.333

[(0.1,0.1),(1.0,1.0),(0.142,0.333)]
yes

9 Minimal Possible Rule Generation in Other Classes

Minimal possible rule generation in DMA class is similar to that in DGC
class. According to Theorem 1, the problem is to find such a minimal conjunc-
tion [CON, ζ] that inf(x, ζ, CON) ⊂ sup(x, η,DEC) and PT (x,CON)={ζ}.
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In DGC, we employed sup(x, ζ, CON) and inf(x, η,DEC), but in DMA we
employ inf(x, ζ, CON) and sup(x, η,DEC). Let DISCDMA(x, y) denote a dis-
junction of such definite descriptors in x that y �∈ inf(x, (ζ), {A}), and we define
DFDMA(x)=∧y∈OB−sup(x,η,DEC)DISCDMA(x, y). In order to obtain all mini-
mal solutions of DFDMA(x), we similarly apply isetv-method to DFDMA(x),
and it is possible to generate all minimal possible rules in DMA class.

In IGC class, the problem is find such a minimal conjunction [CON, ζ] that
sup(x, ζ, CON) ⊂ inf(x, η,DEC). Similarly in IMA class, the problem is find
such a minimal conjunction [CON, ζ] that inf(x, ζ, CON) ⊂ sup(x, η,DEC).
In both cases, PT (x,CON) may not be a singleton set. This implies there exist
|
∏

A∈CON g(x,A)| kinds of possible tuples and there exist |
∏

A∈CON g(x,A)|
kinds of discernibility functions.

Since isetv-method depends upon a discernibility function, it is hard to han-
dle |

∏
A∈CON g(x,A)| kinds of discernibility functions. For this reason, we apply

order-method in Section 4 to each possible tuple in
∏

A∈CON g(x,A), and we
finally apply e-method to an obtained set of attributes. In this way, we have
implemented programs for minimal possible rules in IGC and IMA.

10 Concluding Remarks

A framework of Minimal rule generation in NISs is presented. For assuring the
minimality of rules, we introduced discernibility functions. The minimal condi-
tion part in a rule is obtained as a solution of a discernibility function. According
to some experiments, the absorption law seems effective for reducing a discerni-
bility function. So, isetv-method will be applicable to relatively large-scaleNISs.
It is necessary to investigate the complexity of each algorithm, too.
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Abstract. Rough Set Theory is a mathematical tool to deal with vague-
ness and uncertainty. Rough Set Theory uses a single information table.
Relational Learning is the learning from multiple relations or tables. This
paper studies the use of Rough Set Theory and Variable Precision Rough
Sets in a multi-table information system (MTIS). The notion of approxi-
mation regions in the MTIS is defined in terms of those of the individual
tables. This is used in classifying an example in the MTIS, based on the
elementary sets in the individual tables to which the example belongs.
Results of classification experiments in predictive toxicology based on
this approach are presented.

Keywords: Rough Set Theory, Variable Precision Rough Sets, multi-
table information system, relational learning, prediction.

1 Introduction

Rough set theory [1,2,3,4], introduced by Zdzislaw Pawlak in the early 1980s,
is a mathematical tool to deal with vagueness and uncertainty. Rough set the-
ory defines an indiscernibility relation that partitions the universe of examples
into elementary sets. In other words, examples in an elementary set are indis-
tinguishable. A concept is rough when it contains at least one elementary set
that contains both positive and negative examples. The indiscernibility relation
is defined based on a single table.

Relational Learning is based on multiple relations or tables. Inductive Logic
Programming (ILP) [5,6] is one of the approaches to Relational Learning. A brief
survey of research in Rough Sets and Relational Learning is presented in [7].

The authors’ work is in the intersection of Rough Sets and ILP. The gRS–ILP
model [8,9] introduces a rough setting in Inductive Logic Programming. It de-
scribes the situation where any induced logic program cannot distinguish be-
tween certain positive and negative examples. Any induced logic program will
either cover both the positive and the negative examples in the group, or not
cover the group at all, with both the positive and the negative examples in this
group being left out.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 265–274, 2005.
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The Variable Precision Rough Set (VPRS) model [10] allows for a controlled
degree of misclassification. The Variable Precision Rough Set Inductive Logic
Programming (VPRSILP) model [11] is an extension of the gRS–ILP model
using features of the VPRS model. The cVPRSILP approach [12] uses clauses
as the attributes. Test cases are classified based on their proximity to significant
elementary sets.

In this paper, a Multi–Table Information System is defined that extends
the single information table of rough set theory to multiple information tables.
Notions from the Variable Precision Rough Set model are then introduced and
used for prediction. An illustrative experiment in toxicology is then presented.

2 Multi–table Information System

2.1 Definitions

Tables and Information Systems: Consider a universe U of elements. A table
T is defined as T = (U, A, V, ρ), where A is a finite set of attributes; V =

⋃
a∈A Va

is the set of attribute values of all attributes, where Va is the domain (the set of
possible values) of attribute a; and ρ : U × A → V is an information function
such that for every element x ∈ U , ρ(x, a) ∈ Va is the value of attribute a for
element x. This definition is based on the definition of Rough Set Information
System in [1].

Each element x ∈ U can be pictured as corresponding to a row in a table
of rows and columns, with each column corresponding to an attribute a ∈ A.
ρ(x, a) is the value in the table at the intersection of the row corresponding to
x and the column corresponding to a.

We define a Multi-Table Information System (MTIS) as a finite set of tables
denoted as T = {T0,T1, . . . ,Tn}, where each table Ti, 1 ≤ i ≤ n is defined as
above and is denoted as Ti = (Ui, Ai, Vi, ρi). T0 = {U0, A0, V0, ρ0} is a decision
table with one of the attributes d ∈ A0, as a binary valued decision attribute.
A similar definition is also found in [13]. We denote U0 as U , the universe of
examples, since A0 has the decision attribute.

In every Ti, 0 ≤ i ≤ n, let Li ⊂ Ai consist of link attributes that are used
to link different tables. These are attributes that are common between different
tables.

Let Ii = (Ui, Bi, Vi, ρi), 0 ≤ i ≤ n, where Bi = Ai − Li. We note that Ii

corresponds to the classical rough set information system.

Elementary Sets: An equivalence relation Ri, called indiscernibility relation,
is defined on the universe Ui of an information system Ii, 0 ≤ i ≤ n,as

Ri = {(x, y) ∈ Ui × Ui | ∀b ∈ Bi, ρi(x, b) = ρi(y, b)}

In the information system Ii, the elementary set containing the element x ∈
Ui, with respect to the indiscernibility relation Ri, is

[x]Ri = {y ∈ Ui | yRix}
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We consider R to be the indiscernibility relation on U over the entire MTIS
T . Two elements x, y ∈ U , are indiscernible, that is xRy, if they cannot be
distinguished using the information available in all the tables of the MTIS T .
The elementary set of x consists of all elements y such that xRy.

Positive, Negative and Boundary Regions: In general, let the concept Xi

be defined as some subset of Ui, where i = 0, 1, . . . , n,.The concept X ⊆ U with
respect to the universe of examples U are the elements of U that have a particular
value (say, t) of the decision attribute d. That is, X = {x ∈ U | ρ0(x, d) = t}.

The lower approximation of Xi ⊆ Ui, with respect to any universe of elements
Ui and an equivalence relation Ri on Ui, is the union of the elementary sets of
Ui with respect to Ri that are contained in Xi. The upper approximation of Xi

is the union of the elementary sets of Ui with respect to Ri that have a non–zero
intersection with Xi.

The lower approximation of Xi ⊆ Ui, denoted RiXi, with respect to a uni-
verse of elements Ui and an equivalence relation Ri, where i = 0, 1, . . . , n. is
defined as RiXi = {x | [x]Ri ⊆ Xi}. The upper approximation of Xi, denoted
RiX , is defined as RiXi = {x | [x]Ri ∩ X �= ∅}. The lower approximation of Xi

is also known as the Positive region of Xi.
The set BNRi(Xi) = RiXi − RiXi is called the Boundary region of Xi. The

set U − RiXi is called the outside region of Xi, or the Negative region of Xi.
The lower approximation, upper approximation, Boundary region and Nega-

tive region with respect to the entire MTIS are defined as above but with respect
to the equivalence relation R.

β–positive and β–negative Regions: The conditional probability that an
element x in an elementary set [x]Ri is positive is

P (+|[x]Ri) =
|[x]Ri ∩ X |

|[x]Ri |

The conditional probability that the element x in the elementary set is negative
is

P (−|[x]Ri) = 1 − P (+|[x]Ri)

When the context is clear, the conditional probability of an elementary set is
taken to be P (+|[x]Ri).

The βu–positive region is the union of the elementary sets whose conditional
probability is greater than or equal to βu, where βu ≥ 0.5. The βl–negative region
is the union of the elementary sets whose conditional probability is less than βl

where βl ≤ 0.5. These are based on the definitions in [14]. When βu = 1 − βl,
we denote it as β, and note that βl = 1 − β.

The βu–positive region with respect to the entire MTIS is defined as the union
of the elementary sets in which each element has a probability greater than or
equal to βu that it is positive (P (+|[x]R) ≥ βu), where βu ≥ 0.5. The βl–negative
region with respect to the entire MTIS is defined as the union of the elementary
sets in which each element has a probability less than or equal to βl that it is
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positive (P (+|[x]R) ≤ βl), where βl ≤ 0.5. We note that the ratio of the count
of positive elements by the total count of elements is not specifically used in the
definition.

2.2 Studies in the Propositional Case

A simple case is studied as a first step towards the study of the more complex
cases. This case corresponds to a single table of classical rough set theory being
broken up into several tables.

Tables and Information Systems: Consider a Multi-Table Information Sys-
tem (MTIS) as defined earlier, where the following hold: Every table has the
same universe of elements. The same attribute is used as the link attribute in
each table. The values of the link attribute in the table are unique. Other than
the link attribute, no attribute occurs in more than one table.

Let T be an MTIS and denoted as T = {T0,T1, . . . ,Tn}, where the following
hold: For each table Ti, 0 ≤ i ≤ n,
(1) Ui = U ,
(2) Li = {l}, l ∈ Ai

(3) ρ(x, l) �= ρ(y, l), for every x, y ∈ U such that x �= y.
(4) ai �= aj , ai ∈ Bi, aj ∈ Bj , i �= j, 0 ≤ i, j ≤ n.

Let TC be a single table combining the individual tables. The attributes of
the combined table are the union of the attributes of the individual tables. The
set of values for each attribute is the same as the set of values of that attribute
in the respective individual table. The mapping from an element attribute pair
onto a value is the same as the mapping from that element attribute pair in the
respective individual table.

Thus, the combined table TC is defined as TC = {UC , AC , VC , ρC}, where
UC = U , AC =

⋃
0≤i≤n Ai, VC =

⋃
0≤i≤n Vi, ρC : UC × AC → VC such that for

every element x ∈ UC , ρC(x, a) = ρi(x, a) where a ∈ Ai, 0 ≤ i ≤ n.
Let the corresponding information system be IC = {UC , BC , VC , ρC}, where

BC = AC − {l}.
As a simple illustration, consider T = {T0,T1} as shown below.

Table T0

drug element charge decision
d1 c -7 true
d2 n 5 true

Table T1

drug property value
d1 salmonella p
d2 chromaberr n

Combining the two tables together, we get the following combined table TC

Table TC

drug element charge property value decision
d1 c -7 salmonella p true
d2 n 5 chromaberr n true
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The classical rough set information systems I0, I1 and IC are given below.
The classical rough set information systems I0, I1 and IC are given below.

Table I0

element charge decision
c -7 true
n 5 true

Table I1

property value
salmonella p
chromaberr n

Table IC

element charge property value decision
c -7 salmonella p true
n 5 chromaberr n true

Elementary Sets: Let RC be the indiscernibility relation on UC . We note that
in this propositional case, for any x, y ∈ UC , xRCy iff xR0y ∧ xR1y ∧ . . . ∧ xRny.

That is, since BC =
⋃

0≤i≤n Bi

[x]RC =
⋂

0≤i≤n

[x]Ri

In this case, we note that the equivalence relation R over the entire MTIS is
the same as RC .

Posterior Probability of an Example Being Positive: The probability
that an example x is +ve is computed in terms of the conditional probabilities
of the elementary sets of x in each table.

Since the elementary sets of element x in the information systems Ii, 0 ≤
i ≤ n are denoted by [x]Ri , the posterior probability that x is +ve, given its
elementary sets in each table, is denoted by P (+|[x]R1 [x]R2 . . . [x]Rn). As defined
earlier, P (+|[x]R1) denotes the conditional probability of the elementary set
[x]R1 . P (+) and P (−) denote the prior probability that an example is positive
or negative. P ([x]R1 [x]R2 . . . [x]Rn |+) is the probability of a +ve example falling
in the elementary sets [x]R1 , [x]R2 . . . [x]Rn .

Applying Bayes rule gives

P (+|[x]R1 [x]R2 . . . [x]Rn) =
P ([x]R1 [x]R2 . . . [x]Rn |+)P (+)

P ([x]R1 [x]R2 . . . [x]Rn)

A simplifying assumption that the event of an example falling in a particular
elementary set in one information system is independent of the event of the
example falling in a particular elementary set in another information system
yields

P (+|[x]R1 [x]R2 . . . [x]Rn) =

1

1 +
(

1
P (+|[x]R1) − 1

)(
1

P (+|[x]R2) − 1
)
. . .
(

1
P (+|[x]Rn) − 1

)(
P (+)
P (−)

)n−1 (1)
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Positive, Negative and Boundary Regions: We now study the relationship
between the Positive, Negative and Boundary Regions in individual information
systems and those in the overall system, and note the following.

If an element is in the positive (negative) region in any one of the individual
information systems, it is in the positive (negative) region of the overall system.

Even if an element is in the boundary region in all the individual information
systems, it need not be in the boundary region of the overall system.

In other words, the positive (negative) region in any individual information
system is a subset of the positive (negative) region of the system. The boundary
region in any individual information system is a superset of the boundary region
of the system.

β–Positive and β–Negative Regions: We now study the relationship be-
tween the β–positive, β–negative and β–boundary regions in individual informa-
tion systems and those in the overall system, and note the following.

If an element is in the β–positive region in all the individual information
systems, then it has atleast a β probability of being positive, that is, it is in the
β–positive region of the overall system (by the definition of the β–positive region
used in this paper).

(If the definition of β–positive region is taken as the union of elementary sets
whose ratio of count of positive elements by the total count of elements is greater
than β, we note the following: even if an element is in the β–positive region in
all the individual information systems, it need not be in the β–positive region of
the overall system.)

From equation 1, we note the following. Consider β′
u > P (+). If an element

is in the βu–positive region in atleast one information system, and is in the
β′

u–positive region in all the information systems, then it is in the βu–positive
region of the overall system. Similarly, consider β′

l < P (+). If an element is in the
βl–negative region in atleast one information system, and is in the β′

l–negative
region in all the information systems, then it is in the βl–negative region of the
overall system.

From equation 1, we also note the following. If an element is in more number
of elementary sets in the βu–positive region than the elementary sets in the
β′

u negative region, and is not in any elementary set in the (1 − βu)–negative
region, then it is in the βu–positive region of the overall system. Similarly, if an
element is in more number of elementary sets in the βl–negative region than the
elementary sets in the β′

l positive region, and is not in any elementary set in the
(1−βl)–positive region, then it is in the βl–negative region of the overall system.

2.3 Studies in ‘Multiple Rows Per Example’ Case

These studies are in the case where multiple rows in a table could correspond to
a single example. In each of U1, U2, . . . , Un several elements may map onto a
single element in U .

As a simple illustration, consider T = {T0,T1,T2} as shown below.
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Table T0

drug decision
d1 true
d2 true

Table T1

drug element charge
d1 c -7
d1 c -2
d2 n 5
d2 n 8

Table T2

drug property value
d1 salmonella p
d1 cytogen p
d2 salmonella p
d2 chromaberr n

Combining the three tables together, we get the following combined table TC

Table TC

drug element charge property value decision
d1 c -7 salmonella p true
d1 c -7 cytogen p true
d1 c -2 salmonella p true
d1 c -2 cytogen p true
d2 n 5 salmonella p true
d2 n 5 chromaberr n true
d2 n 8 salmonella p true
d2 n 8 chromaberr n true

The classical rough set information systems I0, I1, I2 and IC are given below.

Table I0

drug decision
d1 true
d2 true

Table I1

element charge
c -7
c -2
n 5
n 8

Table I2

property value
salmonella p
cytogen p
salmonella p
chromaberr n

Table IC

element charge property value decision
c -7 salmonella p true
c -7 cytogen p true
c -2 salmonella p true
c -2 cytogen p true
n 5 salmonella p true
n 5 chromaberr n true
n 8 salmonella p true
n 8 chromaberr n true

We note that since every element in UC maps onto a unique element in U ,
each element in UC is associated with the value of the decision attribute of
the corresponding element in U . Similarly, each element in U1, U2, . . . , Un is
associated with the value of the decision attribute of the corresponding element
in U .
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The definitions and discussions in the simpler case discussed in the previous
section follow in this case also. Equation 1 is valid under the restriction that more
than one element in any particular elementary set in any information system does
not map onto the same element in U . (Elements in different elementary sets can
map onto the same element in U .)

3 Application to Predictive Toxicology

The rodent carcinogenicity tests conducted within the US National Toxicology
Program by the National Institute of Environmental Health Sciences (NIEHS)
has resulted in a large database of compounds classified as carcinogens or oth-
erwise. The Predictive Toxicology Evaluation project of the NIEHS provided
the opportunity to compare carcinogenicity predictions on previously untested
chemicals. This presented a formidable challenge for programs concerned with
knowledge discovery. The ILP system Progol [15] has been used in this Predictive
Toxicology Evaluation Challenge [16,17]. The dataset used is the Predictive Tox-
icology Evaluation Challenge dataset found at http://web.comlab.ox.ac.uk/
oucl/research/areas/machlearn/cancer.html. The predicates atm, bond and
has_property are used.

Illustrative experiments were performed earlier by the authors and the details
are available in [7], where the best average prediction accuracy was 63.33%, and
in [18], where the best average prediction accuracy was 66%.

The dataset used in this experiment has four tables with the fields as follows:
drugtab (drugid, decision), atomtab (drugid, atomid, element, number, charge),
bondtab (drugid, atomid1, atomid2, number), and proptab (drugid, prop, value).

Continuous attributes are discretised. Three information systems are got from
these tables as follow: atomtab (element, number, charge), bondtab (number)
and proptab (prop, value). Elementary sets and the βu–positive and βl–negative
regions are determined for these information systems.

The following procedure is used. The value of β′
u is taken to be P (+) if

P (+) > 0.5, or 0.5 otherwise. The value of β′
l is taken to be P (+) if P (+) < 0.5,

or 0.5 otherwise. Predict1 predicts an element as positive if it falls in more
elementary sets in the βu–positive region than in the elementary sets in the
β′

u–negative region, and in no elementary sets in the (1 − βu)–negative region.
Predict1 predicts an element as negative if it falls in more elementary sets in the
βl–negative region than in the elementary sets in the β′

l–positive region, and in
no elementary sets in the (1 − βl)–positive region. If there is no element from
the training set in the elementary set, that elementary set is ignored.

Predict1 is used with βu as 0.7 and βl as 0.3. If there is no prediction, then
Predict1 is used with βu as 0.6 and βl as 0.4. If there is still no prediction, then
Predict0 is used. The results follow.
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βu = 0.7, βl = 0.3 βu = 0.6, βl = 0.4 Equation 1 Overall
Pos Neg Acc Pos Neg Acc Pos Neg Acc Pos Neg Acc
+ - + - + - + - + - + - + - + -
3 0 0 0 1.00 2 0 2 1 0.60 11 2 4 8 0.76 16 2 6 9 0.76
2 0 0 0 1.00 4 0 0 2 1.00 10 2 6 7 0.68 16 2 6 9 0.76
4 0 0 0 1.00 6 0 2 0 0.75 7 1 8 5 0.57 17 1 10 5 0.67
3 0 1 0 0.75 3 0 1 1 0.80 10 2 8 4 0.58 16 2 10 5 0.64
3 0 0 0 1.00 2 1 1 1 0.60 7 5 8 5 0.48 12 6 9 6 0.55
1 0 0 0 1.00 3 0 0 2 1.00 14 0 2 11 0.93 18 0 2 13 0.94
0 0 1 1 0.50 3 1 0 1 0.80 11 3 6 6 0.65 14 4 7 8 0.67
0 0 1 0 0.00 3 0 0 1 1.00 12 3 7 6 0.64 15 3 8 7 0.67
3 0 0 0 1.00 4 0 2 0 0.67 11 0 5 8 0.79 18 0 7 8 0.79
1 0 0 1 1.00 7 0 0 1 1.00 8 2 8 5 0.57 16 2 8 7 0.70
20 0 3 2 0.88 37 2 8 10 0.82 101 20 62 65 0.67 158 22 73 77 0.71

The average prediction accuracy in the first table (Predict1 on the entire
dataset, with βu as 0.7 and βl as 0.3) is 88 %, in the second table (Predict1 on
the remaining elements, with βu as 0.6 and βl as 0.4) is 82 %, the third table
(Predict0 on the remaining elements) is 67 %, and the overall average prediction
accuracy is 71 %. The average prediction accuracy is seen to be higher than the
corresponding value of β used.

4 Conclusions

This paper presents an approach to learning from a Multi–Table Information
System, by using Rough Set Theory and Variable Precision Rough Sets, without
converting the MTIS into a traditional single table Information System. The
results of an illustrative example in toxicology are presented.

A brief theoretical basis is presented for the relation between the βu–positive
and βl–negative regions of individual tables, and those in the overall system. It is
also noted in the illustrative experiment using ten–fold cross–validation that this
result is useful in the prediction accuracy of test cases. The average prediction
accuracy is seen to be higher than the corresponding value of β used.
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Abstract. The rough relational database model was developed for the man-
agement of uncertainty in relational databases. In this paper we discuss rough 
functional dependencies and the normalization process used with them. 
Normalization is an important part of the relational database design process and 
rough normalization provides similar benefits for the rough relational database 
model. 
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1   Introduction 

Databases are known for the ability to store and update data in an efficient manner, 
providing reliability and the elimination of data redundancy. The relational database 
model, in particular, has well-established mechanisms built into the model for 
properly designing the database and maintaining data consistency. Constraints and 
data dependencies are used in database normalization to realize these goals and 
minimize such problems as update anomalies, thereby providing greater integrity 
maintenance.  

Several types of data dependencies exist, and constraints on data may be specified 
in advance by the database administrator. These identify key attributes that uniquely 
identify tuples and constrain the possible relation instance values for specified relation 
schemas. The most important of these for the design of relational schemas is the 
functional dependency. A functional dependency specifies constraints on the 
attributes of a relation schema R that hold for all instances of the database. These 
dependencies are used in the process of normalization, which creates well-designed 
databases. This process is inherent to database design with relational databases [1]. In 
[2], fuzzy functional dependencies and normalization applied to fuzzy relational 
databases is discussed. 

Rough set theory, developed by Pawlak [3], [4] provides a mathematical 
framework for the representation of uncertainty. It has been used in various 
applications, most notably for representation of uncertainty in databases for data 
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mining and improved information retrieval [5], [6]. In previous research, we 
developed the rough relational database model [7], and in [8] we defined rough 
functional dependencies. In this paper we discuss the concept of normalization based 
on these rough functional dependencies in the rough relational database. This is 
important because while we make the database more flexible to support uncertainty 
management, we must retain the ability to specify constraints and manage updates 
based on these constraints so that our database remains consistent. The traditional 
relational database is a special case of the rough relational database, and examples of 
poor design and the importance of normalization found throughout the literature for 
relational databases also apply for the rough relational database. 

2   Background: Rough Sets and Rough Relational Database 

Rough sets [3], [4] have been established as a mechanism for uncertainty management 
for both data and queries in relational databases in several ways [5], [7], [9]. In rough 
sets an approximation space is defined on some universe U by imposing upon it some 
equivalence relation which partitions the universe into equivalence classes called 
elementary sets, based on some definition of ‘equivalence’ as it relates to the 
application domain. This partitioning can be adjusted to increase or decrease the 
granularity of a domain, to group items together that are considered indiscernible for a 
given purpose, or to “bin” ordered domains into range groups. 

Any finite union of these elementary sets is called a definable set. A rough set X ⊆ 
U, however, can be defined in terms of the definable sets by its lower (RX) and upper 

( R X) approximation regions: 

RX = {x  U   |  [x]R  ⊆  X} 
and 

R X = {x  U   |  [x]R ∩  X  ≠  ∅}. 

RX is the positive region, U- R X is the negative region, and R X – RX is the 
boundary or borderline region of the rough set X. The lower and upper approximation 
regions, then, allow the distinction between certain and possible inclusion in a rough 
set.  

The rough relational database model is an extension of the standard relational 
database model of Codd [1]. It captures all the essential features of the theory of rough 
sets including the notion of indiscernibility of elements through the use of equivalence 
classes and the idea of denoting an undefinable set by its lower and upper approximation 
regions. Full details of the rough relational database model are found in [7]. We review 
only a few relevant definitions here. 

The attribute domains in this model are partitioned by equivalence relations 
designated by the database designer or user. Within each domain, a group of values that 
are considered indiscernible form an equivalence class. The query mechanism uses class 
equivalence rather than value equality in retrievals. A user may not know the particular 
attribute value, but might be able to think of a value that is equivalent to the value 
required. For example, if the query requests "COLOR = 'BLUE'", the result will contain 
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all colors that are defined as equivalent to BLUE, such as CERULEAN, INDIGO, or 
AZURE, making the exact wording of a query less critical.  

The rough relational database has several features in common with the ordinary 
relational database. Both models represent data as a set of relations containing tuples. 
The relations themselves are also sets. The tuples of a relation are its elements, and like 
the elements of sets in general, are unordered and nonduplicated. A tuple ti takes the form 
(di1, di2, ..., dim), where dij is a domain value of a particular domain set Dj. In the ordinary 
relational database, dij ∈ Dj. In the rough relational database, however, as in other non-
first normal form extensions to the relational model [10], [11], dij ⊆ Dj, and although it is 
not required that dij be a singleton, dij ≠ ∅. Let P(Di) denote the powerset(Di) - ∅.   

Definition. A rough relation R is a subset of the set cross product 
 P(D1) × P(D2) ×  ⋅ ⋅ ⋅ × P(Dm). 

A rough tuple t is any member of R, which implies that it is also a member of P(D1) × 
P(D2) × ⋅ ⋅ ⋅ × P(Dm). If ti is some arbitrary tuple, then ti = (di1, di2, ..., dim) where dij ⊆ Dj.  

Definition. Tuples ti = (di1, di2, ..., dim) and tk = (dk1, dk2, ..., dkm) are redundant if 
 [dij] = [dkj] for all j = 1,..., m. 

Tuples are sets of attributes, so this definition can be modified to define redundant 
sets of attribute values or sub-tuples: 

Definition. Two sub-tuples X = (di1, di2, ..., dim) and Y = (dk1, dk2, ..., dkm) 
         are redundant if [dij] = [dkj] for all  j = 1, ..., m. 

Note that the attributes themselves are not ordered, but that an attribute component of 
X has a corresponding component in Y. This definition is used in defining functional 
dependencies of lower approximation tuples. Recall that the rough relational database is 
in non-first normal form; there are some attribute values which are sets. The following 
definition, which applies to upper approximation tuples, is also necessary. This definition 
captures redundancy between elements of attribute values that are sets. 

Definition. Two sub-tuples X = (di1, di2, ..., dim) and Y = (dk1, dk2, ..., dkm) 

are roughly-redundant if for some [p]  [dij] and [q]  [dkj], 
[p] = [q] for all j = 1, ..., m. 

3   Rough Functional Dependencies 

A functional dependency can be defined as in [12] through the use of a universal 
database relation concept. Let R = {A1, A2, …, An} be a universal relation schema 
describing a database having n attributes. Let X and Y be subsets of R. A functional 
dependency between the attributes of X and Y is denoted by X→Y. This dependency 
specifies the constraint that for any two tuples of an instance r of R, if they agree on 
the X attribute(s) they must agree on their Y attributes(s): if t1[X] = t2[X], then it must 
be true that t1[Y] = t2[Y]. Tuples that violate the constraint cannot belong in the 
database. 

Functional dependencies are data dependencies that are functional in the same 
sense as functions in mathematics. Therefore, if the functional dependency X→Y 
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holds, then the values of X functionally determine the values of Y; equivalently, Y is 
functionally dependent on X. The functional dependencies are used to specify 
constraints on tuple values based on the semantics of the relation attributes. 
Functional dependencies must hold for all instances of the database on which it is 
defined. With these constraints incorporated into the design of the database schema, it 
is possible to restrict the tuples that comprise relations. These constraints aid in the 
maintenance of data integrity and prevention of update anomalies. 

The database designer may specify functional dependencies on relation schemas. 
These are typically based on the primary key. However, there are usually many 
additional functional dependencies that will also hold. These dependencies can be 
inferred from those specified through the use of inference axioms. 

The rough functional dependency [8] is based on the rough relational database 
model. The classical notion of functional dependency for relational databases does not 
naturally apply to the rough relational database, since all the “roughness” would be 
lost. We review rough functional dependencies for the rough relational database 
model here as they are needed for our definitions of normal forms in a later section. 

Definition. A rough functional dependency, X→Y, for a relation schema R exists if for 
all instances T(R), 

(1) for any two tuples t, t   RT,  
 redundant(t(X), t (X))  redundant(t(Y), t (Y)) 

(2) for any two tuples s, s   R T,  
 roughly-redundant(s(X), s (X))  roughly-redundant(s(Y), s (Y)). 

Y is roughly functional dependent on X, or X roughly functionally determines Y, 
whenever the above definition holds. This implies that constraints can be imposed on 
a rough relational database schema in a rough manner that will aid in integrity 
maintenance and the reduction of update anomalies without limiting the 
expressiveness of the inherent rough set concepts. The classical functional 
dependency for the standard relational database is a special case of the rough 
functional dependency; indiscernibility reduces to simple equality and part (2) of the 
definition is unused since all tuples in relations in the standard relational model 
belong to the lower approximation region of a similar rough model. 

The first part of the definition of rough functional dependency compares with that 
of fuzzy functional dependencies discussed in [13], where adherence to Armstrong’s 
axioms was proven. The results apply directly in the case of rough functional 
dependencies when only the lower approximation regions are considered. Given a set 
of rough functional dependencies, the complete set of rough functional dependencies 
can be derived using Armstrong’s axioms as shown in [8]. The rough functional 
dependency, therefore, is an important formalism for design in the rough relational 
database. The next step is rough database normalization. 

4   Rough Normal Forms 

Normalization [1], [12] of relational databases is a process of evaluating the 
functional dependencies in a relation, and determining whether the dependencies meet 
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certain conditions, which will minimize redundancy in the database and reduce the 
insertion, deletion, and update anomalies that could occur. These normal forms are 
based on the traditional definitions of key, superkey, candidate key, and prime 
attribute, as can be found in [12]. In general, a key is an attribute upon which all other 
attributes are functionally dependent, and a prime attribute is one that is part of a key. 

During the normalization process, if a relation schema does not meet the 
conditions for a particular normal form, then steps are taken to decompose relations in 
order to meet the specified criteria. Although normal forms range from first normal 
form (1NF), a basic structure of the standard relational model, through fifth normal 
form (5NF), typically 3NF or Boyce-Codd normal form, a stricter version of 3NF, is 
used. Each normal form is more restrictive than the previous one. For example, a 
relation in 3NF is also in 2NF, but the opposite is not necessarily true. In non-first 
normal form extensions [10], [11] to the relational model, such as the rough relational 
model [7] discussed here, we need not concern ourselves with the 1NF restriction. 

4.1   Rough Second Normal Form 

A rough relation schema is in rough 2NF if every non prime attribute is fully 
functionally dependent on the key. In this rough relation, there will be no partial 
dependencies. 

Definition. Let F be the set of rough functional dependencies for schema R, and let K 
be a key of R. Then R is in rough 2NF if and only if none of the nonprime attributes is 
partially roughly dependent on K. 

Consider, for example, a rough relation schema R(A, B, C, D, E) having rough 
functional dependencies B A, BC D and BC E. Here BC is the key, D and E are 
fully roughly functionally dependent on BC, and A is partially roughly functionally 
dependent on BC. 

In order to normalize R so that our database schema is in rough 2NF, we must do 
the following: 

 

1. For each partial key form a new rough relation containing the partial key and all 
of the attributes that are fully roughly functionally dependent on it. 

2. Remove those nonprime attributes from the original rough relation that are in 
this new rough relation. 

 

Performing this procedure on the relation schema R above yields the following 
database schema: R(B, C, D, E), S(B, A). This is now in rough 2NF since every 
attribute of R is fully roughly functionally dependent on the key AB and every 
attribute of S is fully roughly functionally dependent on the key B. 

4.2   Rough Third Normal Form  

A rough relation schema is in rough 3NF if every non prime attribute is fully 
functionally dependent on the key and there exist no transitive dependencies. In  such 
a rough relation schema, there will be no dependencies on attributes other than the 
key. 
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Definition. Let F be the set of rough functional dependencies for schema R, and let K 
be a key of R. Then R is in rough 3NF if whenever some nontrivial dependency G H 
holds in R, then either (a) G is a superkey or (b) H is a prime attribute. 

Consider, for example, a rough relation schema R(B, C, G, H) having rough 
functional dependencies B C, B G, B H, and also G H. Here B is the key, but 
notice that H is dependent on G, and G is dependent on B. This is a transitive 
dependency that prevents rough schema R from being in rough 3NF. G is not a 
superkey, and H is not a prime attribute. 

In order to normalize our schema so that it will meet the requirements for 3NF, 
perform the following: 

1. For each transitive dependency form a new rough relation containing the non 
prime attribute that functionally determines the others in the dependency (this 
becomes the key) and all of the attributes that are roughly functionally 
dependent on it. 

2. Remove those attributes from the original rough relation that are non prime 
attributes in this new rough relation. 

In order to normalize R(B, C, G, H) in the example above so that it is in rough 
3NF, a new rough relation schema is created: R(B, C, G), S(G, H). Notice that no 
transitive dependencies exist. 

It is important that decomposition into rough third normal form also results in 
additional desirable properties, rough lossless join and rough dependency 
preservation. The rough lossless join property insures that the original relations can 
be recovered from their decompositions and that spurious tuples are not generated 
when the decomposed relations are joined. Such spurious tuples represent erroneous 
information that is not part of the database. 

A rough dependency preserving decomposition insures that all rough functional 
dependencies that exist before the decomposition remain after the decomposition. If 
this property does not hold, such that rough dependencies cannot be represented by 
individual rough relations, inefficient and unnecessary join operations would be 
required in order for constraints based on the dependency to be checked. 

We can insure lossless join decomposition that preserves dependencies if the 
following steps are taken: 

1. For the set of functional dependencies F for rough relation schema R, find a 
minimal cover G, with no partial functional dependencies. 

2. Eliminate from R any attributes that are not included in G and place them in a 
separate rough relation schema. 

3. For each X, left hand side, of dependencies in G, create new rough relation 

schema in the decomposition with attributes {X  {A1}  …  {Ak}}, where 
X  A1, … X  Ak are the rough functional dependencies in G with X as the 
left hand side. 

4. If no relation schema in the decomposition contain a key of R, then create an 
additional rough relation schema that contains attributes that form a key of R. 

Each relation schema in the decomposition will be in rough 3NF, and it can be 
shown that the lossless join and dependency preservation properties hold. We address 
these concepts further in a subsequent paper.  
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4.3  Rough Boyce Codd Normal Form 

In terms of reducing redundancy, rough BCNF is the most desirable to achieve. It is 
more strict than rough 3NF since it eliminates condition (b) from the definition. Some 
decompositions result in “losing” the functional dependency and we must be careful 
not to decompose the schema in such a way as to not generate spurious tuples from a 
join operation. 

Definition. Let F be the set of rough functional dependencies for schema R, and let K 
be a key of R. Then R is in rough BCNF if R is in rough 3NF and for any nontrivial 
dependency G H in F, G is a superkey. 

Although more restrictive normal forms have been defined for relational databases, a 
database design in BCNF is often considered “good” with respect to functional 
dependencies. For the rough relational database, rough 3NF or rough BCNF is usually 
sufficient.  

5   Conclusion 

Functional dependencies and normalization play a significant role in relational database 
design. The functional dependencies defined on relation schemas determine allowable 
values for all database instances. When database schema are normalized, the design has 
many desirable properties. Redundancy is reduced and anomalies from insert, delete, and 
update operations will be minimized.  

In this paper we introduced rough normalization for the rough relational database 
model. The normal forms are based on rough functional dependencies. We defined rough 
second, rough third, and rough Boyce-Codd normal forms (2NF, 3NF, and BCNF), and 
explained how the rough relational database schema can be placed in these rough normal 
forms. This is important since although rough sets and the rough relational database 
model offer great benefits and allow for the management of various types of uncertainty, 
we still expect to develop good designs in this model. The formalisms for rough 
functional dependencies and rough relational database normalization developed here 
provide techniques to insure this is the case.  
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Abstract. The article introduces the basic ideas and investigates the
probabilistic version of rough set theory. It relies on both classification
knowledge and probabilistic knowledge in analysis of rules and attributes.
One-way and two-way inter-set dependency measures are proposed and
adopted to probabilistic rule evaluation. A probabilistic dependency mea-
sure for attributes is also proposed and demonstrated to have the mono-
tonicity property. This property makes it possible for the measure to
be used to optimize and evaluate attribute based-representation through
computation of attribute reduct, core and significance factors.

1 Introduction

The rough set theory introduced by Pawlak [5] is concerned with finite universes
and finite set cardinality-based evaluative measures. It lays out the foundations
of the inspiring idea of classification knowledge, in the form of the approximation
space, and of the notion of rough set and its approximations. Typical applica-
tion scenario involves a partially known universe, represented by a set of samples,
based on which rough set-based analysis is performed. The results are then con-
sidered to apply to the whole universe. This kind of approach is common in
probabilistic reasoning, with the probability function used to represent relations
among sets (events). The probability function values can be estimated from dif-
ferent sources, including assumed distribution functions and set frequencies in
a sample. The set frequency estimators of probability theory correspond to set
cardinality-based evaluative measures of rough set theory. This correspondence
was observed quite early in the development of rough set methodology, leading
to a succession of probabilistic generalizations [5-9,13-15] of the original rough
set theory. The rough set theory methodologies provide additional instruments,
originally not present in the probability theory, to conduct deeper analysis of
experimental data and to construct adaptive models of the relations existing in
the universe. The probability theory, on the other hand, contributes the basic
notion of probability and its estimation, distribution evaluative measures, the
notion of probabilistic independence and Bayes’s equations, which together help
to enhance the rough set theory to make it more applicable to real-life problems.

In what follows, the probabilistic version of rough set theory is presented and
investigated, partially based on prior results of related research [7][13][14][9]. In
the presentation, clear distinction is being made between classification knowledge
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and probabilistic knowledge. These two kinds of knowledge are defined in section
2. The probabilistic notion of event independence is generalized in section 3, to
introduce one-way and two-way measures of set dependencies. One of the mea-
sures, the absolute certainty gain, is adopted as a probabilistic rule evaluative
parameter. The probabilistic rules, their evaluation and their computation are
discussed in section 4. In section 5, computation of rules satisfying predefined
certainty requirements is discussed. Elements of the Bayesian rough set model
[7] are introduced in section 6, as a prerequisite to the investigation of proba-
bilistic attribute dependencies in section 8. In section 9, the monotonicity of the
introduced probabilistic attribute dependency measure, called λ-dependency, is
discussed. This leads to the definition of probabilistic reduct, core and signifi-
cance factors for attributes. The characterization of unrelated, or independent
attributes is also provided. Due to space restrictions, the proofs of theorems are
omitted.

2 Classification and Probabilistic Knowledge

The rough set approaches are developed within the context of a universe of
objects of interest U such as, for example, the collection of patients, sounds,
web pages etc. We will assume here that the universe is infinite in general,
but that we have access to a finite sample S ⊆ U expressed by accumulated
observations about objects in S. The sample represents available information
about the universe U . We will say that a subset X ⊆ U occurred if X ∩ S �= ∅,
where X ∩ S is a set of occurrences of X .

We will also assume the knowledge of an equivalence relation, called the
indiscernibility relation on U [5], IND ⊆ U⊗U with finite number of equivalence
classes called elementary sets. The pair (U, IND) is called the approximation
space. The collection of elementary sets will be denoted by IND∗. The ability
to form elementary sets reflects our classification knowledge about the universe
U . In the context of this article, the classification knowledge means that each
elementary set E is assigned a description, denoted as des(E), which specifies
a criterion distinguishing all elements of E from its complement. That is, E =
{e ∈ U : des(e) = des(E)}. Any subset X ⊆ U expressible as a union of
some elementary sets is said to be definable. Otherwise, the set X is undefinable,
or rough[5]. Any non-elementary definable set will be called a composed set.
The classification knowledge is said to be trivial (and useless), if there is only
one elementary set, corresponding to the whole universe U . The classification
knowledge, in the framework of rough set theory, is normally used in the analysis
of a target set X ⊆ U . The target set is usually undefinable. Typical objective
of the rough-set analysis is to form an approximate definition of the target set
in terms of some definable sets.

In the framework of the variable precision rough set model (VPRSM)[14], the
classification knowledge is assumed to be supplemented with the probabilistic
knowledge. It is assumed that all subsets X ⊆ U under consideration in this
article are measurable by a probabilistic measure function P with 0 < P (X) <
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1. That is, they are likely to occur but their occurrence is not certain. The
probabilistic knowledge consists of three parts:

• For each equivalence class E of the relation IND, it is assumed that its
probabilistic measure P (E) is known;

• We assume that the conditional probability P (X |E) of X , for each elemen-
tary set E, is also known;

• The prior probability P (X) of the target set X is known.

All these probabilities can be estimated based on data in a standard way by
taking ratios of cardinalities of sample data.

3 Probabilistic Dependencies Between Sets

In the presence of probabilistic knowledge, it is possible to evaluate the degree of
dependencies between measurable subsets of the universe U . This is particularly
of interest in context of evaluation of rules learned from data [12]. In what
follows, we propose two kinds of measures to evaluate the degree of connection
or dependency between any two sets. The measures can be seen as generalizations
of the well-known notion of probabilistic independence of random events.

The first, one-way dependency measure is concerned with quantifying the
degree of the one-way relation between sets, denoted as Y ⇒ X , where X and
Y are arbitrary measurable subsets of U . For the one-way dependency measure,
the use of function called absolute certainty gain (gabs), is proposed:

gabs(X |Y ) = |P (X |Y ) − P (X)|, (1)

where | ∗ | denotes absolute value function. The one-way dependency represents
the degree of change of the certainty of prediction of X as a result of the oc-
currence of the set Y . In an approximation space, if the set Y is definable then
absolute certainty gain can be computed directly from the available probabilistic
knowledge according to the following:

Proposition 1. If Y is definable in the approximation space (U, IND), then
the absolute certainty gain between sets X and Y is given by:

gabs(X |Y ) =
|
∑

E⊆Y P (E)P (X |E) − P (X)
∑

E⊆Y P (E)|∑
E⊆Y P (E)

(2)

The values of the one-way dependency fall in the range 0 ≤ gabs(X |Y ) ≤
max(P (¬X),P (X)) < 1. In addition, let us note that if sets X and Y are
independent in probabilistic sense, that is if P (X ∩ Y ) = P (X)P (Y ) then
gabs(X |Y ) = 0. We may also note that gabs(U |Y ) = 0 and gabs(φ|Y ) = 0,
for any measurable subset Y such that P (Y ) > 0.

The second, two-way dependency measure is concerned with measuring the
degree of the two-way connection between sets, represented by Y ⇔ X , where X
and Y are arbitrary measurable subsets. For the two-way measure, the function
dabs, called absolute dependency gain, is suggested:
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dabs(X,Y ) = |P (X ∩ Y ) − P (X)P (Y )|. (3)

The absolute dependency gain reflects the degree of probabilistic depen-
dency between sets by quantifying the amount of deviation of P (X ∩ Y ) from
probabilistic independence between sets X and Y , as expressed by the product
P (X)P (Y ). Similarly, |P (¬X ∩ Y ) − P (¬X)P (Y )| is a degree of deviation of
the ¬X from total independence with Y . Since P (¬X ∩ Y ) − P (¬X)P (Y ) =
−(P (X ∩ Y ) − P (X)P (Y )), both target set X and its complement ¬X are de-
pendent in the same degree with any measurable set Y .

As in the case of one-way dependency, if the set Y is definable then the abso-
lute dependency gain can be computed directly from the available probabilistic
knowledge, according to the following:

Proposition 2. If Y is definable in the approximation space (U, IND), then
the absolute dependency gain between sets X and Y is given by:

dabs(X,Y ) = |
∑
E⊆Y

P (E)P (X |E) − P (X)
∑
E⊆Y

P (E)| (4)

The one-way and two-way dependencies are connected by dabs(X,Y ) =
P (Y )gabs(X |Y ). It follows that the values of the two-way dependency fall in
the range 0 ≤ dabs(X,Y ) ≤ P (Y )max(P (¬X),P (X)) < P (Y ) < 1. Also
0 ≤ dabs(X,Y ) ≤ P (X)max(P (¬Y ),P (Y )) < P (X) < 1 i.e. 0 ≤ dabs(X,Y ) <
min(P (X),P (Y )). In addition, let us note that if sets X and Y are independent
in probabilistic sense, that is if P (X ∩ Y ) = P (X)P (Y ) then dabs(X,Y ) = 0.
We may also note that dabs(U, Y ) = 0 and dabs(φ|Y ) = 0, for any arbitrary
subset Y such that P (Y ) > 0.

4 Probabilistic Rules

The inter-sets dependency measures introduced in previous section can be used to
evaluate the quality of probabilistic rules [14][12]. In the context of probabilistic
approach to rough set theory, probabilistic rules are formal linguistic expressions
representing relationships between subsets of the universe U . For any definable
subset Y and an arbitrary subset X of the universe U , the probabilistic rule is
a statement des(Y ) → s(X), denoted shortly by rX|Y , where s(X) is a string of
characters used to refer the set X and des(Y ) is a description of the set Y . The
set Y is referred to as rule support set. As opposed to the description of a set,
s(X) is just a reference to a possibly undefinable set, whose description might
be unknown. Since rules of this kind are normally used to determine, or to guess,
the membership of an object in the set X based on knowing that it belongs to
the definable set Y , for obvious reason it does not make much sense dealing with
rules in which X is definable. Consequently, we will assume that the conclusion
part s(X) of the rule rX|Y corresponds to an undefinable set X .

Traditionally, the probabilistic rules are assigned two probabilistic parameters
characterizing the relation between sets X and Y :
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• The rule rX|Y certainty parameter defined as the conditional probability
cert(rX|Y ) = P (X |Y );

• The rule rX|Y generality (also called support) parameter defined as the prob-
ability gen(rX|Y ) = P (Y );

Certainty and generality parameters can be equivalently replaced by certainty
and strength measures, where the strength is defined as str(rX|Y ) = P (X ∩ Y ).
However, rule certainty and generality, or the certainty and strength, do not
completely capture the intuitive perception of rule quality. For example, a rule
with high certainty P (X |Y ) may not be very useful if the prior probability of
X is also high. On the other hand, if the prior probability of X is low, a high
certainty rule will represent a significant increase in the ability to predict X .
Intuitively, such a rule will be very valuable.

To properly represent the degree of certainty increase attributed to a proba-
bilistic rule rX|Y , relative to the prior probability P (Y ), the use of the absolute
certainty gain parameter gabs(rX|Y ) = gabs(X |Y ) is proposed. The absolute cer-
tainty gain represents the degree of increase of the certainty of prediction of X ,
as a result of the occurrence of the set Y . As the absolute certainty gain cannot
be derived from certainty and generality parameters, we propose that probabilis-
tic rules be evaluated in terms of the following three parameters: generality (or
strength), certainty and certainty gain instead of generality and certainty only.

Any elementary set E ∈ IND∗ corresponds to an elementary rule des(E) →
s(X). The strength, certainty and the absolute certainty gain of elementary rules
can be simply obtained from the available probabilistic knowledge. It was shown
in the Proposition 1 that the absolute certainty gain can be computed from the
probabilities associated with the elementary sets. The following Proposition 3
demonstrates that strength and certainty of any probabilistic rule des(Y ) →
s(X) can also be computed in similar way.

Proposition 3. The strength, certainty and absolute certainty gain of the rule
r = des(Y ) → s(X) are respectively given by str(rX|Y ) = P (Y ) =

∑
E⊆Y P (E)

and cert(rX|Y ) = P (X |Y ) =
∑

E⊆Y P (E)P (X|E)∑
E⊆Y P (E) .

The practical implication from the Propositions 1 and 3 is that once the
basic probabilistic knowledge is estimated from data, there is no need to refer
to the data set again to compute any kind of probabilistic rules and attribute
dependencies.

5 Probabilistic Approximation Regions

In applications related to data mining and machine learning, a common objective
is finding rules that meet predefined level of quality. We show in this section
that rules computed within the context of VPRSM have the quality level in
the form of the certainty gain level requirement imposed through settings of
model parameters. In the VPRSM, the probabilistic knowledge represented by
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the probability estimates associated with elementary sets is used to construct
generalized rough approximations of the target subset X ⊆ U . The defining
criteria are expressed here in terms of conditional probabilities and of the prior
probability P (X) of the target set X . Two certainty control criteria parameters
are used to control degree of required certainty gain in the lower approximations
of the set X or its complement ¬X .

The first parameter, referred to as the lower limit l, satisfying the constraint
0 ≤ l < P (X) < 1, represents the highest acceptable degree of the conditional
probability P (X |E) to include the elementary set E in the negative region of
the set X , i.e. in the positive region of its complement ¬X .

The second parameter, referred to as the upper limit u, satisfying the con-
straint 0 < P (X) < u ≤ 1, defines the positive region of the set X. The upper
limit reflects the least acceptable degree of the conditional probability P (X |E)
to include the elementary set E in the positive region.

The VPRSM is called symmetric if l = 1 − u [13][14]. In this case, with
the precision control parameter denoted as β = u = 1 − l, the negative and
positive regions of the set X, are defined respectively by NEGβ(X) = ∪{E :
P (¬X |E) ≥ β} and POSβ(X) = ∪{E : P (X |E) ≥ β}. Because β > P (X),
then both positive and negative regions can be expressed in terms of absolute
certainty gain: NEGβ(X) = ∪{E : gabs(¬X |E) ≥ β − P (X)} and POSβ(X) =
∪{E : gabs(X |E) ≥ β − P (X)}. Consequently, we can define the positive region
POS(X,¬X) = NEG(X) ∪ POS(X) of the classification (X,¬X) by a single
formula as POSβ(X,¬X) = ∪{E : gabs(X |E) ≥ β − P (X)}

Clearly, the approximation regions for the asymmetric VPRSM [14] can be
also expressed in terms of the absolute gain function. The positive region of the
classification (X,¬X) represents the area of desired absolute certainty gain, as
expressed by the parameter β. Based on the positive region, probabilistic rules
can be computed using any lower approximation-based techniques [8][2][15]. All
these rules will satisfy the imposed minimum absolute certainty gain requirement
β − P (X).

The boundary area is a definable subset of U where the minimum certainty
gain requirement is not satisfied, that is: BNDβ(X,¬X) = ∪{E : gabs(X |E) <
β − P (X)} No probabilistic rule computed from BND(X,¬X) will meet the
minimum absolute certainty gain threshold of β − P (X).

The definable area of the universe U characterized by the total lack of rela-
tionship to the target set X ⊆ U was identified in [14] as the absolute boundary
region of the set X . In the absolute boundary region, every elementary set E
is probabilistically independent from the set X , i.e. P (X ∩ E) = P (X)P (E).
The boundary area can be expressed by using of the absolute dependency gain
function as the criterion: BND∗(X,¬X) = ∪{E : dabs(X |E) = 0}.

The area of the universe characterized by at least some probabilistic connec-
tion with the target setX is called the absolute positive region of the classification
(X,¬X). It can be expressed as POS∗(X,¬X) = ∪{E : dabs(X |E) > 0}. Be-
cause dabs(X |E) > 0 is equivalent to P (X |E) > P (X) or P (X |E) < P (X), the
absolute positive region of the classification (X,¬X) can be broken down into the
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absolute positive region of the set X , POS∗(X) = ∪{E : P (X |E) > P (X)} and
the absolute negative region of the set X , NEG∗(X) = ∪{E : P (X |E) < P (X)}.

The absolute approximation regions form the basis of the Bayesian Rough
Set Model investigated in [7]. They are also useful in the analysis of probabilistic
dependencies between attributes, as demonstrated in the following sections.

6 Elementary, Composed and Binary Attributes

In many applications, the information about objects is expressed in terms of
values of observations or measurements referred to as features. For the purpose
of rough set-based analysis, the feature values are typically mapped into finite-
valued numeric or symbolic domains to form composite mappings referred to
as attributes. A common kind of mapping is dividing the range of values of a
feature into a number of suitably chosen subranges via a discretisation procedure.
Formally, an attribute a is a function a : U → a(U) ⊆ Va, where Va is a
finite set of values called the domain of the attribute a. The size of the domain
of an attribute a, denoted as com(a) = card(Va), will be called a theoretical
complexity of the attribute. The theoretical complexity reflects the maximum
number of values an attribute can take. Each attribute defines a classifications
of the universe U into classes corresponding to different values of the attribute.
That is, each attribute value v ∈ a(U), corresponds the set of objects Ea

v =
a−1(v) = {e ∈ U : a(e) = v}. The classes Ea

v , referred to as a-elementary sets,
form a partition of U . The equivalence relation corresponding to this partition
will be denoted as INDa. We will divide the attributes into two categories:

• The initial, given collection of attributes A, elements of which a ∈ A are
referred to as elementary attributes;

• The composed attributes, which are formed by taking combinations of some
elementary attributes.

The values of a composed attribute are combinations of values of component
elementary attributes. Each composed attribute is a subset of A. For proper
reference between an elementary attribute and its value, we will assume that
composed attributes are ordered. For the sake of consistency, we will also treat
elementary attributes a as single-element subsets of A, {a} ⊆ A, and the empty
subset of A, {} will be interpreted as a trivial attribute, i.e. with only one value
corresponding to the whole universe U . In the context of this assumption, both
elementary and composed attributes C will be perceived in two ways: as sub-
sets C ⊆ A and also as mappings C : U → C(U) ⊆ ⊗a∈CVa, where ⊗ denotes
Cartesian product operator of all domains of attributes in C, the domain of C.
The theoretical complexity of a composed attribute is a product of theoretical
complexities of all its elementary attribute domains, com(C) =

∏
a∈C com(a).

The theoretical complexity of a trivial attribute is one. In practical applications,
the theoretical complexity estimates our ability to learn from example obser-
vations, or the learnability of a classification represented by an attribute. High
theoretical complexity attributes lead to non-learnable classifications.
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The lowest complexity, non-trivial attributes are binary-valued attributes.
Every non-trivial and non-binary attribute can be replaced equivalently by a
collection of binary attributes. The binary attributes are defined for each value
v of the attribute a, by creating a new attribute av such that av(e) = 1 if a(e) = v
and av(e) = 0 if a(v) �= v.

The composed attribute Ba consisting of the binary attributes is equivalent to
the attribute a because it generates the same classification of U as the attribute
a, that is, INDBa = INDa. Using binary elementary attributes has a number of
advantages, including the consistency of representation, ease of implementation
and increased generality of minimal length rules computed by applying the idea
of rough set theory value reduct [5]. Consequently, from now on in this article, we
will assume that all elementary attributes are binary. The composed attributes
are vectors of binary attributes. The theoretical complexity of a composed at-
tribute containing n binary attributes can be simply calculated as 2n. Therefore,
the number of bits n can be used as an alternative complexity measure.

7 Probabilistic Dependencies Between Attributes

The presence of non-trivial classification of the universe may improve the degree
of the decision certainty. We will assume in this section that the classification
IND∗

C corresponds to a composed, in general, attribute C ⊆ A. The degree
of improvement can be quantified using the expected value egabs(X |C) of the
absolute gain functions assigned elementary rules rX|E , E ∈ IND∗

C :

egabs(X |C) =
∑

E∈IND∗
C

P (E)gabs(rX|E) (5)

The expected gain function defined by (5) measures the average degree of
increase of the occurrence probability of X or ¬X , relative to its prior probability
P (X), as a result of presence of the classification knowledge, as represented
by equivalence classes of the indiscernibility relation IND∗

C and the associated
probabilities. The notion of the expected gain function stems from the idea of
the relative gain function reported in [14].

The expected gain function egabs can also be seen as the measure of the
degree of probabilistic dependency between classification represented by the re-
lation IND and the partition of the universe corresponding to the sets X and
¬X . This follows from the following proposition:

Proposition 4. The expected gain function can be expressed as

egabs(X |C) =
∑

E∈IND∗
C

|P (X ∩ E) − P (X)P (E)| =
∑

E∈IND∗
C

dabs(X,E) (6)

The measure can be also expressed in the form:

egabs(X |C) = P (X)
∑

E∈IND∗
C

gabs(E|X). (7)
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For the purpose of normalization of the expected gain function, the following
Proposition 5 is useful.

Proposition 5. The expected gain falls in the range 0 ≤ egabs(X |C) ≤ 0.5.

The target set X and the attribute C are independent if egabs(X |C) = 0.
The independence can occur only if P (X ∩ E) = P (X)P (E), for all elementary
sets E ∈ IND∗

C . That is, for the independence between X , or ¬X , and the
partition IND∗

C to hold, the set X , or ¬X , must be independent with each
element of the partition IND∗

C . Conversely, the strongest dependency occurs
when X is definable and when P (X) = 0.5. This would suggest the use of the
λ-dependency function 0 ≤ λ(X |C) ≤ 1, defined by:

λ(X |C) =
egabs(X |C)

2P (X)(1 − P (X))
, (8)

as a normalized measure of dependency between attribute C and the tar-
get classification (X,¬X). The function λ(X |C) = 1 only if X is definable in
the approximation space (U, INDC), that is if the dependency is deterministic
(functional). In line with our initial assumption of 0 < P (X) < 1, λ(X |C) is
undefined for X = φ and for X = U .

Finally, because elementary attributes are binary, the λ-dependency function
can be used to evaluate the degree of probabilistic dependency between any
composed attribute C ⊆ A and an elementary attribute a ∈ A. Consequently,
the dependency between elementary attribute a and composed attribute C will
be denoted as λ(a|C). To be consistent with this notation, we will use symbol d
to denote the decision attribute representing the target classification (X,¬X).

8 Optimization and Evaluation of Attributes

One of the main advantages of rough set methodology is the ability to perform
reduction of features or attributes used to represent objects. The application
idea of reduct, introduced by Pawlak [5] allows for optimization of representa-
tion of classification knowledge by providing a systematic technique for removal
of redundant attributes. It turns out that the idea of reduct is also applicable
to the optimization of probabilistic knowledge representation, in particular with
respect to the representation of the probabilistic dependency between a com-
posed attribute and a binary attribute. The following theorem, based on [7],
demonstrates that the probabilistic dependency measure between attributes is
monotonic, which means that expanding a composed attribute C ⊂ A by extra
bits would never result in the decrease of dependency λ(d|C) with the decision
attribute d corresponding to the partition (X,¬X) of the universe U .

Theorem 1. λ-dependency is monotonic, that is, for any composed attribute
C ⊂ A and an elementary attribute a ∈ A the relation λ(d|C) ≤ λ(d|C ∪ {a})
holds.
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As a consequence of the Theorem 1, the notion of the probabilistic reduct of
attributes RED ⊆ C can be defined as a minimal subset of attributes preserving
the dependency with the decision attribute d. That is, the reduct satisfies the
following two properties:

• λ(d|RED) = λ(d|C);
• for any attribute a ∈ RED: λ(d|RED − {a}) < λ(d|RED).

The probabilistic reducts can be computed using any methods available for
reduct computation in the framework of the original rough set approach. The
reduct provides a method for computing fundamental factors in a probabilistic
relationship.

An important question is to characterize attributes that are neutral with
respect to the relation between attribute C and d. Such attributes will have no
effect on dependency with the decision attribute and will be always eliminated
from any reduct. The following Theorem 2 provides the answer to this question.

Theorem 2. If an attribute a is independent with C∪{d} i.e. if λ(a|C ∪{d}) =
0, then λ(d|C ∪ {a}) = λ(d|C).

The above theorem suggests that for a new attribute to possibly contribute
to the increase of dependency λ(C|d), it should be correlated either with d or C.
We also note that the independence of the attribute a with C ∪{d} is a two-way
property, that is, λ(C ∪ {d}|a) = 0 if and only if λ(a|C ∪ {d}) = 0.

Elementary and composed attributes appearing in a reduct can be evaluated
with respect to their contribution to the dependency with the target attribute by
adopting the notion of a significance factor. The significance factor sigRED(B) of
an attribute B ⊆ A represents the relative decrease of the dependency λ(d|RED)
due to removal of B from the reduct:

sigRED(B) =
λ(d|RED) − λ(d|RED −B)

λ(d|RED)
(9)

Finally, as in the original rough set approach, one can define the core set of
elementary attributes as the ones which form the intersection of all reducts
of C, if the intersection is not empty. After [5], any core attribute a satisfies
the inequality λ(d|C) > λ(d|C − {a}), which leads to a simple method of core
computation.

9 Conclusion

The article is an attempt to introduce a comprehensive probabilistic version of
rough set theory by integrating ideas from Pawlak’s classical rough set model,
elements of probability theory with its notion of probabilistic independence, the
variable precision model of rough sets and the Bayesian model. The novel aspects
of the approach include the introduction of measures of inter-set dependencies,
based on the notion of absolute certainty gain and probabilistic dependence, the
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adaptation of the absolute certainty gain to probabilistic rule evaluation, the
introduction of the notion of a composed attribute and of the attribute depen-
dency measure based on the idea of expected gain function and its application
to attribute optimization and evaluation. The presented ideas seem to connect
well with the general methodology of rough sets, hopefully leading to new appli-
cations and better understanding of fundamental issues of learning from data.
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Abstract. This paper focuses on a rough set method to analyze human
evaluation data with much ambiguity such as sensory and feeling data.
In order to handle totally ambiguous and probabilistic human evaluation
data, we propose a probabilistic approximation based on information
gains of equivalent classes. Furthermore, we propose a two-stage method
to simply extract uncertain if − then rules using decision functions of
approximate regions. Finally, we applied the proposed method to practi-
cal human sensory evaluation data and examined the effectiveness of the
proposed method. The result shown that our proposed rough set method
is more applicable to human evaluation data.

1 Introduction

The original rough sets approach is restricted to the case where there exist the
fully correct and certain classifications derived from the decision table. Unfortu-
nately, we have many cases where there is no lower approximation of a classifica-
tion. Furthermore, if there are only very few elements of lower approximation of
some decision set, the if−then rules extracted from these few elements might be
unreliable. Thus, it is necessary to handle a huge decision table. Consequently,
combining rough sets approaches and probability concept, many research papers
[1,2,3,4,5] have been published.

On the other hand, we have applied rough set methods to Kansei Engineering
(KE) problems [7]. One of the core technologies in KE is to identify the relational
rules between design elements of products and human evaluation data such as
sensory and feeling evaluation [8]. Recently, it has been shown that rough set
approaches are very effective to extract human decision rules in KE [9].

Accordingly, the aim of this paper is to develop a rough set method suitable
for analyzing human evaluation data with much ambiguity. If one considers the
properties of the human evaluation data such as ambiguity and non-linearity,
we have to construct a rough set method that can treat the case where there is
no lower approximation of a classification, and the case where the decision class
occurs with different prior probability. Thus, our approach inspired by VPBRS-
models [3,4,5] is based on a new information gain to equivalent classes suitable
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for handling totally ambiguous and probabilistic properties of human evaluation
data. Moreover, we propose a two-stage method for simply extracting uncertain
decision rules from probabilistic decision table using decision functions of ap-
proximated classes. We applied our method to extract uncertain decision rules
from the data obtained by human sensory evaluation experiment in practical
coffee manufacturing problem.

The rest of the paper is organized as follows: preliminaries and notations to
describe a decision table for human evaluation data are introduced in Section 2;
in Section 3, a concept of information gain and probabilistic approximations to
properly handle human evaluation data is introduced; in Section 4, we introduce
a two-stage method to extract uncertain decision rules using decision functions
from an approximated decision table; we show an application of our method to
practical human evaluation data in Section 5; finally, Section 6 is the conclusions
and our future work.

2 Preliminaries and Notations

Let us start with a simple example of human evaluation data with respect to
products shown in Table 1 where a set of products, a set of design attributes
(conditional attributes) of products and human evaluation (decision attribute)
to product are denoted as E = {E1, E2, E3, E4}, A = {a1, a2, a3} and d.

Table 1. An example of human evaluation data

Product ( E ) Event (U ) a1 a2 a3 Evaluation ( d )

x11 0 1 1 0
x21 0 1 1 0

E1 x31 0 1 1 0
x41 0 1 1 1
x51 0 1 1 1
x12 1 0 1 1
x22 1 0 1 1

E2 x32 1 0 1 1
x42 1 0 1 0
x52 1 0 1 2
x13 0 1 0 1
x23 0 1 0 2

E3 x33 0 1 0 2
x43 0 1 0 2
x53 0 1 0 2
x14 1 1 1 0
x24 1 1 1 0

E4 x34 1 1 1 0
x44 1 1 1 0
x54 1 1 1 1
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An evaluation event of j − th evaluator to i − th product is denoted as xji.
There are four products and five human evaluators. Ei are equivalent classes
because the same product has the same attribute values.

Any attribute of A has a domain of its design attribute values, Va1 = {0, 1},
Va2 = {0, 1} and Va3 = {0, 1}, which may be color, shape and size of products.
Human evaluation d has also a domain of its evaluation values Vd = {0, 1, 2},
which may be ”very good ”, ”good ” and ” no good”. A set of decision classes is
D = {D0,D1,D2 } where Dj = { x | d(x) = j }, j = 0, 1, 2.

It should be noted that there is no lower approximation to any decision class,
and that decision classes of human evaluation are assumed to occur with different
prior probability. Thus, we have to define an approximate lower approximation
of decision class by introducing the information gain to positive region. Table 1
will be used to illustrate our approach with a numerical example.

Formally, we have U = {x11, . . . , xji, . . . , xmn} for the universe denoted as
a set of events of n-evaluators to m-products, A = {a1, . . . , ak, . . . , ap} for p-
conditional attributes, U/A = {E1, . . . , Ei, . . . , Em} for m-products, and D =
{D1, . . . ,Dj , . . . ,Dr} for r-decision classes where Dj = { x | d(x) = j }. Any
conditional attribute ak is a mapping function ak (x) = vk and has a set of its
values Vak. A decision attribute d is a mapping function d (x) = vd and has Vd.

These evaluation data include at least two important probabilistic aspects.
One is the probability of decisions dependent on the conditional attributes of
products and the other is the prior probability of decision. Such probabilities are
experientially acceptable in human evaluation data. These probabilities are well
known as the conditional and prior probability, respectively. According to many
literatures such as [2,3,4,5,6], the following probabilities can be defined:

P (Dj |Ei) =
card(Dj ∩Ei )
card(Ei )

. ( the conditional probability )

P (Dj) =
card(Dj )
card(U )

. ( the prior probability)

In the example of Table 1, we have Table 2.

Table 2. The prior and conditional probabilities

P (D0)=0.40 P (D0|E1)=0.6 P (D0|E2)=0.2 P (D0|E3)=0.0 P (D0|E4)=0.8

P (D1)=0.35 P (D1|E1)=0.4 P (D1|E2)=0.6 P (D1|E3)=0.2 P (D1|E4)=0.2

P (D2)=0.25 P (D2|E1)=0.0 P (D2|E2)=0.2 P (D2|E3)=0.8 P (D2|E4)=0.0

3 Rough Sets Approach Based on Information Gain

According to the parameterized version of Bayesian Rough Set (BRS) model [3],
let us consider the difference between probabilities P (Dj) and P (Dj |Ei) as a
kind of information gain. We define the information gain denoted as
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g(i, j) = 1 − P (Dj)
P (Dj|Ei)

, (1)

which means that the larger the conditional probability is, the larger the infor-
mation gain is. Since the information gain enables to evaluate the influence of the
set of conditional attributes on decision class relative to its prior probability, our
approach based on the information gain is applicable to the human evaluation
data with different prior probability. The similar concept to (1) is used in market
basket analysis [10] and the meaning of (1) would be clear. This information gain
would be acceptable with the following numerical cases:

1) P (Dj) = 0.6 and P (Dj|Ei) = 0.8 : g(i, j) = 0.25,
2) P (Dj) = 0.2 and P (Dj|Ei) = 0.4 : g(i, j) = 0.50.

It follows from the above that the case 2) is more informative than the case
1), although the differences between P (Dj) and P (Dj |Ei) are the same. This
fact can be acceptable for everyone. The definition of information gain by (1)
corresponds with our intuition that the large increment of P (Dj |Ei) being more
than P (Dj) should take larger information gain when P (Dj) is low, while the
same increment of P (Dj |Ei) should take smaller information gain when P (Dj)
is high. The similar index can be considered in [3], which can be written as

g∗(i, j) =
P (Dj |Ei) − P (Dj)

1 − P (Dj)
. (2)

Thus, using (2), we have g∗(i, j) = 0.5 in the case 1) and g∗(i, j) = 0.25 in the
case 2). This result is contrary to one obtained by our information gain. Let us
define the positive region by using the information gain with parameter β as

POSβ(Dj) =
⋃ {

Ei

∣∣ g(i, j) ≥ β
}

=
⋃ {

Ei

∣∣ P (Dj |Ei) ≥ P (Dj)
1 − β

}
.

(3)

It should be noted that β ≤ 1−P (Dj). In other words, β should be less than
the residual of the prior probability P (Dj).

Using the duality of rough sets NEGβ(Dj) = POSβ(¬Dj), the negative
region can be automatically defined as

NEGβ(Dj) =
⋃ {

Ei

∣∣ P (Dj |Ei) ≤ P (Dj) − β

1 − β

}
. (4)

It should be noted that β ≤ P (Dj).
Then, since 0 ≤ P (Dj)−β

1−β ≤ P (Dj) ≤ P (Dj)
1−β , we have the following boundary

region:

BNDβ(Dj) =
⋃ {

Ei

∣∣ P (Dj |Ei) ∈
(

P (Dj) − β

1 − β
,
P (Dj)
1 − β

)}
. (5)
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It should be noted that β is similar to 1−ε in [3]. If we take β = 0, POSβ(Dj),
NEGβ(Dj) and BNDβ(Dj) are characterized by P (Dj |Ei) ≥ P (Dj) , P (Dj|Ei)
≤ P (Dj), and P (Dj |Ei) = P (Dj) , respectively. As the value of β increases up to
min(1− P (Dj),P (Dj)), the positive and negative regions decrease, and bound-
ary region increases. Furthermore, as the value of β increases, the information
associated with Dj is strongly relevant to Ei.

Lastly it follows that

U = POSβ(Dj) ∪NEGβ(Dj) ∪BNDβ(Dj) . (6)

We can have decision rules with different certainty by changing the value
of β. It should be noticed that there are orthogonal partitions with respect to
decision classes D = {D1, . . . ,Dr}.

In the example of Table 1, assuming β = 0.2, we have:

POS0.2(D0) =
⋃{

Ei

∣∣ P (D0|Ei) ≥ P (D0)
0.8

= 0.5
}

= E1 ∪ E4 ,

NEG0.2(D0) =
⋃{

Ei

∣∣ P (D0|Ei) ≤ 0.25
}

= E2 ∪ E3 ,

BND0.2(D0) = ∅ .

4 Extraction Method of Decision Rules from
Approximate Regions

We propose here a two-stage method to simply extract uncertain probabilistic
decision rule. The first stage extracts certain decision rules by using relative
decision functions[11] of approximation region classes. Then the second stage
gives rule evaluation factors to the extracted rules.
First Stage. Since approximate regions are exclusive each other from (6). we
have a consistent decision table with respect to each approximate region. Thus,
we can construct a decision matrix relative to each approximate class. A decision
matrix with respect to POSβ(Dj) can be described as Table 3.

Table 3. A decision matrix with respect to approximate regions

NEGβ(Dj) BNDβ(Dj)

EN1 . . . Ej EB1 . . . EBn

EP1

...
...

...
POSβ(Dj) Ei . . . . . . Mβ

ij(Dj)
...

EPm
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Any element of the decision matrix is defined:

Mβ
ij(Dj) =

{∨
ak = vik

∣∣ ak(Ei) �= ak(Ej), ∀ak ∈ A
}

, (7)

where ∨ ak = vik is a disjunction of attribute elements to discern Ei and Ej .
From POSβ(Dj), we can derive minimal decision rules in the form of if

condition then decision using the following decision function.

POSβ−rule(Dj) =
∨

Ei∈POSβ(Dj)

∧
Ej /∈POSβ(Dj)

Mβ
ij(Dj) . (8)

Similarly, we can derive rules fromNEGβ(Dj) orBNDβ(Dj). In the example
of Table 1, we have the decision matrix with respect to POS0.2(D0) shown in
Table 4.

Table 4. The decision matrix with respect to POS0.2(D0)

NEG0.2(D0)

E2 E3

POS0.2(D0)
E1 a1 = 0 ∨ a2 = 1 a3=1

E4 a2=1 a1 = 1 ∨ a3 = 1

From Table 4, we can obtain the following rules.

r1 : if a1 = 0 and a3 = 1, then d = 0 {E1}
r2 : if a1 = 1 and a2 = 1, then d = 0 {E4}
r3 : if a2 = 1 and a3 = 1, then d = 0 {E1, E4}

(9)

The symbols at the end of each decision indicate the equivalence classes matching
with the condition part of the rule. Notice that the condition part of the rule r3
is matching with E1 and E4.

Second Stage. The second stage gives rule evaluation factors to the extracted
rules. We can convert the above rule represented as certain deterministic one
into uncertain probabilistic rule by giving rule evaluation factors.

With considering indexes in [2], we can define the following three evaluation
factors in the context of our applications by using the number of evaluation to
products |Ei | and the effects of products on decision P (Dj |Ei). The extracted
rule rulek can be represented in the form of if condk then Dj (k = 1, . . . ,m). Let
Condk be a set of the equivalence classes Ei matched with the condition part
condk of the extracted rule, and | • | denote cardinality.



300 T. Nishino, M. Nagamachi, and H. Tanaka

The following certainty factor denoted as cer (Condk; Dj ) means the ratio
of the number of events satisfied with if − then rule to the number of events
satisfied with the condition part condk of the rule.

cer (Condk; Dj ) =
|Condk ∩ Dj |

|Condk |

=

∑
Ei∈Condk

|Ei | P (Dj|Ei)∑
Ei∈Condk

|Ei |
,

(10)

where |Condk ∩ Dj | referred as support is the number of events matched with

both condk and d = j which equals
∑

Ei∈Condk
|Ei | P (Dj |Ei), and |Condk | is

the number of events matched with condk which equals
∑

Ei∈Condk
|Ei |. This

certainty factor shows the degree to which condk → Dj holds. It should be noted
that we derive if − then rules from POSβ(Dj).

In our applications, we can use this factor as confidence degree of decision to
predict the human evaluation from any product design elements. Inversely, when
we have to estimate the attribute values of the product candidates from targeted
human evaluation, the following coverage factor denoted as cov (Condk; Dj ) will
be useful.

cov (Condk; Dj ) =

∑
Ei∈Condk

|Ei | P (Dj |Ei)
|Dj | , (11)

which means the ratio of the number of events satisfied with constructed rule
to the number of the events satisfied with Dj . This factor shows the degree to
which Dj → condk, i.e., the inverse of rule holds.

The following strength factor denoted as σ (Condk; Dj ) can be used to eval-
uate the set of decision rules.

σ (Condk; Dj ) =

∑
Ei∈Condk

|Ei | P (Dj|Ei)
| U | , (12)

which means the ratio of the number of events satisfied with if − then rule to
all the events.

In similar way, we can associate if−then rules fromNEGβ(Dj) orBNDβ(Dj)
with three factors mentioned above.

For example, the rule r1 in (9) has the following values of three factors.
Since Cond1={E1}, we have:
cer(E1; D0) = |E1 |P (D0|E1)

|E1| = 0.6,
cov(E1; D0) = 0.375,
σ(E1; D0) = 0.15.

In similar way, as for r3 we have:
Cond3={E1, E4 } ,
cer(E1, E4; D0) = |E1 |P (D0|E1) + |E4 |P (D0|E4)

|E1 |+|E4 | = 0.7,
cov(E1, E4; D0) = 0.875,
σ(E1, E4; D0) = 0.35.
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5 Applications to Human Sensory Evaluation Data

We carried out experiments to identify the hidden relations between the sig-
nificant coffee manufacturing conditions and human sensory evaluations. The
manufacturing conditions were combinations of two conditional attributes of
raw beans (a1) and its roast time (a2). Va1 = {Colombia Excelsio, Brazil No2
s 17/18, Mocha Lekempti }, and Va2 = {Light, Medium, French } which roast
time was controlled by roast machine.

A coffee manufacturing expert made 9-sorts of coffee by combining Va1 and
Va2 , and 10-evaluators evaluated them on 5-points semantic differential scale of
10-sensory words, such as ”aroma”, ”fruity”, and ”want to buy”. The evaluation
scores were divided into two decision classes D = {D0,D1}, for example, D =
{Good aroma, No good aroma}. We obtained the decision table of 90-evaluation
data for every coffee taste word as shown in Table 5.

Apparently, in spite of much ambiguity of human sensory data, if-then rules
were able to be extracted from decision table of every measured sensory word
by using our proposed method. Although we can show every rules for each sen-
sory word, for simplicity, we show only the following if − then rules as for
D0 = {Good aroma} which prior probability is 0.644 and relatively higher. The
evaluation factors of these rules are shown in Table 6.

Table 5. Human evaluation decision table of aroma

Product ( E ) Event ( U ) Beans ( a1 ) Roast ( a2 ) Evaluation ( d )

x11 Colombia French 0
x12 Colombia French 0

E1

...
...

...
...

x19 Colombia French 0
x1,10 Colombia French 1
x21 Colombia Medium 0

E2

...
...

...
...

x2,10 Colombia Medium 1
...

...
...

...
...

x51 Brazil Medium 1

E5

...
...

...
...

x5,10 Brazil Medium 0
...

...
...

...
...

x91 Mocha Light 1
x92 Mocha Light 1

E9

...
...

...
...

x99 Mocha Light 0
x9,10 Mocha Light 1
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Table 6. The rule evaluation factors of ”aroma” rules: β = 0.0

Certainty (cer) Coverage (cov) Strength (σ)

r1 0.87 0.47 0.30
r2 0.80 0.14 0.09
r3 0.80 0.14 0.09
r4 0.67 0.63 0.22
r5 0.40 0.13 0.04

r1 : if Roast = french, then Aroma = good
r2 : if Roast = medium and Beans = Colombia, then Aroma = good
r3 : if Roast = medium and Beans = Mocha, then Aroma = good
r4 : if Roast = light, then Aroma = no good
r5 : if Roast = medium and Beans = Brazil, then Aroma = no good

The rule r1 means that french coffee has good aroma for 87% person and in-

versely 47% of good aroma coffee is french. Each sum of coverage values of
positive (r1, r2, r3) and negative (r4, r5) rules is 75 % and 76%.

When β = 0.2, we obtained the following rules with Table 7:

r6 : if Roast = french, and Beans = Colombia, then Aroma = good
r7 : if Roast = french, and Beans = Brazil, then Aroma = good
r8 : if Roast = light, then Aroma = no good
r9 : if Roast = medium, then Aroma = good or no
r10 : if Roast = french, and Beans = Mocha, then Aroma = good or no

There are two boundary rules (r9, r10). Although the average of certainties is
higher than when β = 0.0, each sum of coverage values of positive (r6, r7) and
negative (r8) rules falls down to 32% and 63%.

In similar way, even when decision class’ prior probability is lower, our pro-
posed method was able to extract decision rules because of set approximation
based on the information gain. As a result, we found that not only these ex-

Table 7. The rule evaluation factors of ”aroma” rules: β = 0.2

Certainty (cer) Coverage (cov) Strength (σ)

r6 0.90 0.16 0.10
r7 0.90 0.16 0.10
r8 0.67 0.63 0.22
r9 1.00 0.24 0.24
r10 1.00 0.09 0.09
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tracted decision rules corresponded with expert knowledge, but also these rules
would be very useful for coffee manufacturing fitted to human taste.

6 Conclusions

We introduced a new information gain that better reflects the gain feature of
human sensory and feeling evaluation data. Next, the probabilistic set approx-
imations method was introduced based on the new definition of information
gain. Moreover, we proposed the two-stage method to derive probabilistic deci-
sion rules using the decision functions of approximated decision classes. Finally,
we applied our proposed method to extracting uncertain decision rules from
practical human evaluation data of coffee taste.

We found out that our VPBRS based rough sets approach to extract decision
rules from human evaluation data would be more applicable and powerful to
the practical problems we face to now. For approaching our goals, however,
for example, we need to handle tolerance relation between products as well as
equivalence relation . In nearest future, we plan to apply rough set approach to
larger data set of human evaluation.
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Abstract. In this paper, we study variable precision rough set models
based on multiple decision tables. The models can control the admissible
level of classification error in each table, the ratio of supporting decision
tables to all decision tables and the ratio of opposing decision tables to
all decision tables. As the classical rough set model plays a key role in
analysis of decision tables such as reduction, rule induction, etc., the pro-
posed variable precision rough set models will play a key role in analysis
of multiple decision tables.

1 Introduction

Recently, the applicability and advantages of rough sets [1] have been demon-
strated in the literatures. The rough set analysis has been developed under a
single decision table. However, we may have multiple decision tables when the
information comes from multiple information sources or when objects are evalu-
ated by multiple decision makers. In such cases, it would be better for obtaining
more robust and accurate results to analyze all information provided from mul-
tiple decision tables in a lump. When each decision table is obtained from a
decision maker, it can be regarded as partial information about the opinion of
the decision maker. Therefore, the analysis of multiple decision tables is impor-
tant for the investigation of group opinion, agreement in the group and group
preference. We focus on the case when multiple decision tables are obtained from
many decision makers.

In order to know product designs which are preferred by many customers
as decision rules, Enomoto et al. [2] discussed rule induction from multiple de-
cision tables based on rough set analysis. To analyze multiple decision tables,
they proposed merging decision rules which is originally proposed by Mori [4]
in analysis of single decision tables. However, in their method, we should first
enumerate all decision rules from each decision table and then merge decision
rules obtained from different decision tables. This requires a formidable compu-
tational effort and will be inapplicable when each decision table becomes large.
Moreover, it is reported that the results can be different by the order of decision

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 304–313, 2005.
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rules to be merged [3]. They proposed a few heuristic methods to order decision
rules to be merged [3]. Then this approach includes a brute force method in the
enumeration of decision rules from each decision table and also some ad hoc and
heuristic methods to order decision rules to be merged.

In order to treat the problem more theoretically, Inuiguchi et=al. [5] have
discussed rule induction from two decision tables. They extended the discerni-
bility matrix method [6] to the case of two decision tables. They showed that
there are a lot of approaches to treat the problem even in two decision tables.
However, some of their various approaches cannot be applicable in the real world
because they require a lot of computational effort.

In this paper, we propose a new rough set approach to analysis of multiple
decision tables. While the previous approaches have focused on induction of
decision rules, the proposed approach focuses on the definition of a rough set,
i.e., definitions of lower and upper approximations. Given a rough set, we may
define a reduct, induce decision rules, and so on. Then a definition of rough set
can play a key role in analysis of multiple decision tables.

In order to treat the error caused by human evaluation as well as to accom-
modate disagreements among decision tables, we introduce the variable precision
rough set model. Sets of objects are not assumed to be common among decision
tables but sets of attributes and their domains are. Under this assumption, an
object can be absent in some decision tables. Depending on the treatment of the
absent objects, two kinds of rough sets are proposed.

In the next section, we briefly introduce decision tables and variable precision
rough sets. We reformulate the decision tables using condition attribute patterns.
In Section 3, we define rough sets under multiple decision tables. First agreement
ratios are defined in two ways. Then by the use of agreement ratios, rough
sets under multiple decision tables are defined. Some properties are described.
In Section 4, simple numerical example is given to demonstrate the differences
between two kinds of rough sets and transition of rough sets by the change in
values of parameters.

2 Variable Precision Rough Sets and Decision Tables

2.1 Decision Tables

Rough sets proposed by Pawlak [1] has been applied to analysis of decision tables.
The rough set analysis utilizes indiscernibility relations tactfully. By the rough
set analysis, we can obtain minimal set of condition attributes to classify objects
correctly and induce decision rules from a given decision table.

A decision table is composed of a set of objects U , a set of condition attributes
C and a decision attribute d. A decision table is denoted by (U,C ∪ {d}). We
regard each attribute a ∈ C∪{d} as a function from U to Va, where Va is the set
of attribute values a takes. An example of a decision table is given in Table 1. In
Table 1, we have U = {ui, i = 1, 2, . . . , 10}, C = {Design,Function, Size} and
d = Dec. (Decision).
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Table 1. An example of decision table

object Design Function SizeSize Dec.
u1 classic simple compact accept
u2 classic multiple compact accept
u3 classic multiple normal reject
u4 modern simple compact reject
u5 modern simple normal reject
u6 classic multiple compact accept
u7 modern multiple normal reject
u8 classic simple compact accept
u9 classic multiple normal accept
u10 modern multiple normal reject

Table 2. A decision table described by
condition attribute patterns

pattern Design Function Size σ

w1 classic simple compact (2,0)
w2 classic multiple compact (2,0)
w3 classic multiple normal (1,1)
w4 modern simple compact (0,1)
w5 modern simple normal (0,1)
w6 modern multiple normal (0,2)

Given a decision table (U,C∪{d}), we define the condition attribute pattern,
or simply, pattern InfC(u) of an object u ∈ U by

InfC(u) =
⋃

a∈C

{〈a, a(u)〉}, (1)

where a(u) shows the attribute value of u with respect to attribute a ∈ C ∪ {d}.
The set V U

C of all patterns in the given decision table is defined by

V U
C = {InfC(u) | u ∈ U}. (2)

Let Vd be the set of decision attribute values. Then frequency function σC and
rough membership function μC are defined as follows for w ∈ V U

C and vd ∈ Vd,

σC(w, vd) = |Inf−1
C (w) ∩ d−1(vd)|, (3)

μC(w, vd) =
|Inf−1

C (w) ∩ d−1(vd)|
|Inf−1

C (w)|
, (4)

where Inf−1
C and d−1 are inverse images of InfC and d, respectively, i.e.,

Inf−1
C (w) = {u ∈ U | InfC(u) = w} and d−1(vd) = {u ∈ U | d(u) = vd}.

σC(w, vd) shows the number of objects whose patterns are w and whose decision
attribute values are vd. μC(w, vd) shows the ratio of objects which take decision
attribute value vd to all objects whose patterns are w. Given σC(w, vd) for every
vd ∈ Vd, we obtain μC(w, vd) as

μC(w, vd) =
σC(w, vd)∑

vd∈Vd

σC(w, vd)
. (5)

However σC(w, vd) cannot be obtained from μC(w, vd) for every vd ∈ Vd. We
can rewrite a decision table described by patterns w ∈ V U

C and frequencies
{σC(w, vd) | vd ∈ Vd}. For example, the decision table shown in Table 1 can be
rewritten as a table shown in Table 2. In Table 2, each entry in column ‘σ’ shows a



Variable Precision Rough Set Approach 307

vector (σC(wj , accept), σC(wj , reject)). In rough set analysis, the order of objects
appearing in a decision table does not affect the results of the analysis. Then
having a decision table described by patterns w ∈ V U

C as in Table 2 is equivalent
to having a usual decision table as in Table 1. From this fact, we assume that
decision tables are given by using patterns in what follows.

2.2 Rough Sets and Variable Precision Rough Sets

In rough set analysis of decision tables, a decision class or a union of decision
classes X̂ is analyzed. Namely, associated with X̂, there is a unique set X ⊆ Vd

of decision attribute values such that

X̂ = {u ∈ U | d(u) ∈ X}. (6)

To a set X ⊆ Vd of decision attribute values, a rough membership function μC

of patterns w ∈ V U
C is defined as

μC(w, X) =

∑
vd∈X

σC(w, vd)∑
vd∈Vd

σC(w, vd)
. (7)

Given a set of decision attribute values X ⊆ Vd, lower and upper approxi-
mations composing a rough set are defined as sets of patterns instead of objects
by;

C(X) = {wi ∈ V U
C | μC(wi, X) = 1}, (8)

C(X) = {wi ∈ V U
C | μC(wi, X) > 0}. (9)

The relations of C(X) and C(X) with usual lower and upper approximations
C∗(X̂) and C∗(X̂) are given as

C∗(X̂) = Inf−1
C (C(d(X̂))) = Inf−1

C (C(X)), (10)

C∗(X̂) = Inf−1
C (C(d(X̂))) = Inf−1

C (C(X)). (11)

A rough set of X̂ is often defined by a pair (C∗(X̂), C∗(X̂)). In this paper, a pair
(C(X), C(X)) is called a rough set of X .

In the rough set defined by a pair (C(X), C(X)), patterns wi included in
lower approximation C(X) satisfy μC(wi, X) = 1. This implies that all objects
having a pattern wi take a common decision attribute value in X . However,
from the consideration of possible errors in observation, evaluation, and so on,
this requirement to be a member of lower approximation C(X) is too rigorous
especially when the size of the given decision table is large. With such errors, we
may obtain an empty lower approximation which deteriorates the effectiveness of
the rough set analysis. In order to overcome this inconvenience, variable precision
rough sets [7] have been proposed by relaxing the requirement to be a member
of the lower approximation.
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Let ε1 ∈ [0, 0.5) be an admissible level of classification error, lower and upper
approximations in a variable precision rough set (VPRS) of X is defined as a set
of patterns by

Cε1
(X) = {wi ∈ V U

C | μC(wi, X) ≥ 1 − ε1}, (12)

Cε1(X) = {wi ∈ V U
C | μC(wi, X) > ε1}. (13)

A VPRS of X is defined by a pair (Cε1
(X), Cε1(X)). As can be seen easily,

we have Cε1
(X) = C(X) and Cε1(X) = C(X) when ε1 = 0. As ε1 increases,

Cε1
(X) becomes larger and Cε1(X) becomes smaller.
The following properties hold:

Cε1
(X) ⊆ Cε1(X), (14)

Cε1(X) = V U
C − Cε1

(Vd −X). (15)

In this paper, we propose rough sets under multiple decision tables each of
which is obtained by human evaluations. In consideration of the error caused by
human evaluation as well as the disagreements among decision tables, the VPRS
model is applied to the definitions.

3 Rough Sets Under Multiple Decision Tables

3.1 Agreement Ratio

We assume n decision tables evaluated by n decision makers are given. Let T be
a set of decision tables Ti = (Ui, C ∪ {d}), i = 1, 2, . . . , n, i.e., T = {T1,T2, . . . ,
Tn}. We assume that all decision tables Ti, i = 1, 2, . . . , n share a set C of
condition attributes and the unique decision attribute d. On the other hand, sets
of objects Ui, i = 1, 2, . . . , n can be different among decision tables. Therefore,
sets of patterns, V Ui

C = {InfC(u) | u ∈ Ui}, i = 1, 2, . . . , n can be also different
among decision tables. We define VC =

⋃
i=1,2,...,n V

Ui

C for convenience.
The evaluation can be different among decision makers. Therefore, decision

rules behind each decision table may conflict with those behind another deci-
sion table. To treat the disagreement among decision tables, we introduce an
agreement ratio. The difficulty to define an agreement ratio is in the treatment
of patterns absent in a decision table but appears in the other decision tables
because of the difference among sets of objects Ui, i = 1, 2, . . . , n.

One of conceivable approaches is to define an agreement ratio to each pattern
by using decision tables including the pattern. Following this approach, we can
define lower and upper agreement ratios to each pattern with respect to a set X
of decision attribute values as

τ ε1
(wi, X) =

|{Tj ∈ T | wi ∈ CTj
ε1

(X)}|
|{Tj ∈ T | wi ∈ V

Uj

C }|
, (16)

τ ε1(wi, X) =
|{Tj ∈ T | wi ∈ C

Tj

ε1
(X)}|

|{Tj ∈ T | wi ∈ V
Uj

C }|
, (17)
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where CTj
ε1

(X) and C
Tj

ε1
(X) are ε1-lower approximation and ε1-upper approxi-

mation corresponding to decision table Tj . By (15), we have

τ ε1
(wi, X) ≤ τ ε1(wi, X), (18)

τ ε1(wi, X) = 1 − τ ε1
(wi, Vd −X). (19)

Then we call τ ε1
(wi, X) and τ ε1(wi, X) lower agreement ratio and upper agree-

ment ratio, respectively.

3.2 Upper Estimation of a Rough Membership Value

When the number of decision tables including the pattern is small, the lower
and upper agreement ratios defined by (16) and (17) possess lower reliability.
To overcome this drawback, it is conceivable to use estimated decision attribute
values to absent patterns so that all decision tables are used in calculation of
agreement ratios to any pattern.

To make such estimation, we propose the upper estimations of rough mem-
bership values. Consider a decision table Ti and a pattern w �∈V Ui

C . To a pattern
wk ∈ V Ui

C , we define a set of Bk(w) condition attributes by

Bk(w) = {a | ∃va ∈ Va, 〈a, va〉 ∈ w ∩ wk}. (20)

Using Bk(w), the restriction of w on Bk is defined by

w↓Bk(w) = {〈a, va〉 | 〈a, va〉 ∈ w ∩ wk}. (21)

We can define a rough membership value μTi

Bk(w)(w
↓Bk(w), X) in decision table

Ti in the same way as (7) with the exception of a case when Bk(w) = ∅. Namely,

μTi

Bk(w)(w
↓Bk(w), X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
vd∈X

σTi

Bk(w)(w
↓Bk(w), vd)∑

vd∈Vd

σTi

Bk(w)(w
↓Bk(w), vd)

, if Bk(w) �= ∅,

|{u ∈ Ui | d(u) ∈ X}|
|Ui|

, if Bk(w) = ∅,

(22)

where σTi

B is a frequency function of decision table Ti with respect to a set B ⊆ C
of condition attributes.

Then, the upper estimation of rough membership value of a pattern w �∈V Ui

C

can be defined by

μ̂Ti

C (w, X) =

⎧⎨⎩ max
wk∈V

Ui
C

μBk(w)(w↓Bk(w), X), if w �∈ V Ui

C ,

μTi

C (w, X), if w ∈ V Ui

C ,
(23)

where μTi

C is a rough membership function with respect to decision table Ti.
We have

∑
vd∈Vd

μ̂Ti

C (w, {vd}) ≥ 1. In this sense, we call μ̂Ti

C (w, X) an upper
estimation of the rough membership value.
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Note that when decision rule ‘if an object u satisfies a pattern w↓Bk(w) then
u takes a decision attribute value in X ’ induced from decision table Ti, we have
μBk(w)(w↓Bk(w), X) = 1. Moreover, when decision rule ‘if an object u satisfies
a pattern w↓Bk(w) then u takes a decision attribute value in X ’ is certain with
degree α ∈ [0, 1] under decision table Ti, we have μBk(w)(w↓Bk(w), X) ≥ α.
Therefore the upper estimation μ̂Ti

C (w, X) shows to what extent we certainly
infer that an object having a pattern w takes a decision attribute value in X .

3.3 Modified Approximations and Modified Agreement Ratios

Using the upper estimation of rough membership value, we can define (ε1, ε2)-
lower approximation and (ε1, ε2)-upper approximation as modifications of ε1-
lower approximation and ε2-upper approximation, respectively, by

CTi
ε1,ε2

(X) = {wi ∈ VC | μ̂Ti

C (wi, X) ≥ 1 − ε1, μ̂
Ti

C (wi, U −X) ≤ ε2}, (24)

C
Ti

ε1,ε2
(X) = {wi ∈ VC | μ̂Ti

C (wi, X) > ε1 or μ̂Ti

C (wi, U −X) < 1 − ε2}, (25)

where we assume ε1 ≤ ε2 < 1 − ε1. From μ̂Ti

C (wi, X) + μ̂Ti

C (wi, U −X) ≥ 1, it is
possible to have μ̂Ti

C (wi, X) ≥ 1 − ε1 and μ̂Ti

C (wi, U −X) > ε1 at the same time.
If μ̂Ti

C (wi, X) ≥ 1− ε1 and μ̂Ti

C (wi, U −X) > ε1 are satisfied at the same, objects
having pattern wi may take a decision attribute value in X and simultaneously a
decision attribute value in U−X both with high estimated degrees μ̂Ti

C (wi, U−X)
and μ̂Ti

C (wi, U−X). This is contradictory. In order to avoid such a contradiction,
we exclude such a pattern wi from lower approximation by adding condition
μ̂Ti

C (U −X |wi) ≤ ε2. The definition of (ε1, ε2)-upper approximation also follows
this idea.

(ε1, ε2)-lower approximation and (ε1, ε2)-upper approximation satisfy

CTi
ε1,ε2

(X) ⊇ CTi
ε1

(X), C
Ti

ε1,ε2
(X) ⊇ C

Ti

ε1
(X), (26)

CTi
ε1,ε2

(X) ⊆ C
Ti

ε1,ε2
(X), (27)

C
Ti

ε1,ε2
(X) = VC − CTi

ε1,ε2
(Vd −X). (28)

Note that CTi
ε1

(X) and C
Ti

ε1
(X) are defined under universe V Ui

C while CTi
ε1,ε2

(X)

and C
Ti

ε1,ε2
(X) are defined under universe VC . When VC = V Ui

C , we have

CTi
ε1,ε2

(X) = CTi
ε1

(X) and C
Ti

ε1,ε2
(X) = C

Ti

ε1
(X).

Using (ε1, ε2)-lower approximation and (ε1, ε2)-upper approximation, for
each wi ∈ VC and for a set X of decision attribute values, we can defined the
modified lower and upper agreement ratios as

τ ε1,ε2
(wi, X) =

|{Tj ∈ T | wi ∈ CTj
ε1,ε2

(X)}|
|T| , (29)

τ ε1,ε2(wi, X) =
|{Tj ∈ T | wi ∈ C

Tj

ε1,ε2
(X)}|

|T| . (30)
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From (28), we have

τ ε1,ε2(wi, X) = 1 − τ ε1,ε2
(wi, Vd −X). (31)

3.4 Rough Sets Under Multiple Decision Tables

Let a pair (τX , τX ) represent a pair of lower and upper agreement ratios,
(τ ε1

, τε1) or a pair of modified lower and upper agreement ratios, (τ ε1,ε2
, τ ε1,ε2).

Then we can define (X , δ1, δ2)-lower approximation and (X , δ1, δ2)-upper ap-
proximation as

Tδ1,δ2
X (X) = {wi ∈ VC | τX (wi, X) ≥ 1 − δ1, τX (wi, X) ≥ 1 − δ2}, (32)

T
δ1,δ2

X (X) = {wi ∈ VC | τX (wi, X) > δ1, or τX (wi, X) > δ2}, (33)

where we assume 0 ≤ δ2 ≤ δ1 < 0.5. A variable X takes ε1 or {ε1, ε2}. From
(19) and (31), we have τε1

(wi, X) = 1 − τ ε1(wi, X) and τε1,ε2
(wi, X) = 1 −

τ ε1,ε2(wi, X). Therefore, δ2 in (32) and (33) represents the admissible ratio of
decision tables which support the opposite conclusion.

We easily obtain the following properties of (X , δ1, δ2)-lower approximation
and (X , δ1, δ2)-upper approximation:

Tδ1,δ2
X (X) ⊆ T

δ1,δ2

X (X), (34)

T
δ1,δ2

X (X) = VC − Tδ1,δ2
X (Vd −X). (35)

4 A Numerical Example

Consider 4 decision tables T1 ∼ T4 given in Tables 3∼6. Those decision ta-
bles show preferences of 4 hypothetical decision makers in evaluation of au-
dio equipments. In those decision tables, we have C = {Design,Function,Size},
d =Dec. (Decision) and Vd = {accept, reject}. The column of Dec. in each de-
cision table shows vectors of frequencies, (σTi

C (wk, accept), σTi

C (wk, reject)). We
calculate lower approximations of {accept} and {reject} under a set of decision
tables, T = {T1,T2,T3,T4}.

We calculate (ε1, δ1, δ2)-lower approximations fixing δ2 = 0 but varying values
of ε1 and δ1. As an example, we show the calculation process of T0.3,0

0.2 ({accept}).
ε1-lower approximation in each decision table is obtained as

CT1
0.2({accept}) = {w1,w2,w7}, C

T1

0.2({accept}) = {w1,w2,w3,w5,w7},
CT2

0.2({accept}) = {w1,w7,w8}, C
T2

0.2({accept}) = {w1,w3,w5,w7,w8},
CT3

0.2({accept}) = {w1,w6,w7,w8}, C
T3

0.2({accept}) = {w1,w2,w3,w6,w7,w8},
CT4

0.2({accept}) = {w7,w8}, C
T4

0.2({accept}) = {w2,w3,w7,w8}.

Then agreement ratios are obtained as in Table 7. Hence, we obtain T0.3,0
0.2

({accept}) = {w7,w8}. We should note that w1 is rejected because we have
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Table 3. Decision table T1

V U1
C Design Function Size Dec.
w1 classic simple compact (6, 1)
w2 classic multiple compact (6, 0)
w3 classic multiple normal (1, 2)
w4 modern simple compact (0, 2)
w5 modern simple normal (1, 2)
w6 modern multiple compact (0, 1)
w7 modern multiple normal (8, 0)

Table 4. Decision table T2

V U2
C Design Function Size Dec.
w1 classic simple compact (5, 0)
w2 classic multiple compact (0, 1)
w3 classic multiple normal (3, 3)
w5 modern simple normal (1, 3)
w6 modern multiple compact (1, 4)
w7 modern multiple normal (6, 0)
w8 classic simple normal (9, 1)

Table 5. Decision table T3

V U3
C Design Function Size Dec.
w1 classic simple compact (3, 0)
w2 classic multiple compact (1, 3)
w3 classic multiple normal (2, 3)
w4 modern simple compact (0, 3)
w6 modern multiple compact (1, 0)
w7 modern multiple normal (8, 0)
w8 classic simple normal (2, 0)

Table 6. Decision table T4

V U4
C Design Function Size Dec.
w1 classic simple compact (1, 4)
w2 classic multiple compact (1, 3)
w3 classic multiple normal (1, 3)
w5 modern simple normal (1, 5)
w6 modern multiple compact (0, 3)
w7 modern multiple normal (3, 0)
w8 classic simple normal (6, 0)

Table 7. Lower and upper agreement ratios

pattern w1 w2 w3 w4 w5 w6 w7 w8

τ 0.2 0.75 0.25 0 0 0 0.25 1 1
τ 0.2 0.75 0.75 1 0 0.667 0.25 1 1

Table 8. Upper estimations

table pat. μ̂ table pat. μ̂

T1 w8 ( 6
7
, 5

12
) T2 w4 (1, 4

5
)

T3 w5 (1, 1) T4 w4 ( 8
17

, 1)

τ0.2(w1, {accept}) = 0.75 < 1. Varying values of ε1 and δ1, we obtain Tδ1,0
ε1

({accept}) and Tδ1,0
ε1

({reject}) as in Table 9. In Table 9, the former is shown on
the upper part of each cell and the latter on the lower part.

Now let us calculate (ε1, ε2, δ1, δ2)-lower approximations fixing ε2 = 0.5
and δ2 = 0 but varying values of ε1 and δ1. To this end, we should calcu-
late the upper estimations of rough membership values for missing patterns
in each decision table. The missing pattern (pat.) and upper estimations (μ̂)
are shown in Table 8. The column ‘μ̂’ shows vectors of upper estimations,
(μ̂Ti

C (w, {accept}), μ̂Ti

C (w, {reject})). Varying values of ε1 and δ1, we obtain Tδ1,0
ε1,0.5

({accept}) and Tδ1,0
ε1,0.5({reject}) as shown in Table 10. In Table 10, the former

is shown on the upper part of each box and the latter on the lower part. In
Tables 9 and 10, we observe that lower approximations do not become larger as
ε1 increases because of condition τX (wi, X) ≥ 1 − δ2 in their definitions.

Comparing Tables 9 and 10, we know rough sets using upper estimations
of rough membership values are more restrictive. This is because few absent
patterns become members of lower and upper approximations of each table, i.e.,
decision attribute values of absent patterns cannot be inferred from information
of other patterns. In this example, upper estimations are not useful but will be
effective when inference from other patterns works.
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Table 9. Tδ1,0
ε1

({accept}) and Tδ1,0
ε1

({reject})

ε1\δ1 [0, 1/4) [1/4, 1/3) [1/3, 1/2)[
0,

1
10

)
{w7} {w7} {w7, w8}
{w4} {w4} {w4}[

1
10

,
1
7

)
{w7, w8} {w7, w8} {w7, w8}
{w4} {w4} {w4}[

1
7
,
1
5

)
{w7, w8} {w1, w7, w8} {w1, w7, w8}
{w4} {w4} {w4}[

1
5
,
1
4

)
{w7, w8} {w7, w8} {w7, w8}
{w4} {w4} {w4}[

1
4
,
1
3

)
{w7, w8} {w7, w8} {w7, w8}
{w4} {w4} {w4, w5}[

1
3
,
2
5

)
{w7, w8} {w7, w8} {w7, w8}
{w4, w5} {w4, w5} {w4, w5}[

2
5
,
1
2

)
{w7, w8} {w7, w8} {w7, w8}
{w4, w5} {w3, w4, w5} {w3, w4, w5}

Table 10. Tδ1,0
ε1,0.5({accept}) and

Tδ1,0
ε1,0.5({reject})

ε1\δ1 [0, 1/4) [1/4, 1/2)[
0,

1
10

)
{w7} {w7}
∅ {w4}[

1
10

,
1
7

)
{w7} {w7, w8}
∅ {w4}[

1
7
,
1
5

)
{w7, w8} {w1, w7, w8}

∅ {w4}[
1
5
,
1
3

)
{w7, w8} {w7, w8}

∅ {w4}[
1
3
,
2
5

)
{w7, w8} {w7, w8}

∅ {w4, w5}[
2
5
,
1
2

)
{w7, w8} {w7, w8}

∅ {w3, w4, w5}

Finally, from Tables 9 and 10, we can observe that products of pattern w7 are
accepted by all decision makers while products having pattern w4 are rejected.
Then we can advise factories to increase the production of audio equipments of
pattern w7 and to reduce the production of audio equipments of pattern w4.
By rough sets under multiple decision tables, we can analyze what patterns are
popular and what pattern are unpopular. The induction of simple rules inferring
popular patterns and unpopular patterns is one of future research topics.
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1 Faculty of Economics, University of Catania,
Corso Italia, 55, 95129 Catania, Italy

2 Institute of Computing Science, Poznań University of Technology,
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Abstract. A generalization of the original idea of rough sets and vari-
able precision rough sets is introduced. This generalization is based on the
concept of absolute and relative rough membership. Similarly to variable
precision rough set model, the generalization called parameterized rough
set model, is aimed at modeling data relationships expressed in terms
of frequency distribution rather than in terms of a full inclusion rela-
tion used in the classical rough set approach. However, differently from
variable precision rough set model, one or more parameters modeling
the degree to which the condition attribute values confirm the decision
attribute value, are considered. The properties of this extended model
are investigated and compared to the classical rough set model and the
variable precision rough set model.

1 Introduction

In the rough set approach (Pawlak 1982, 1991), classification of an object x
from a universe U to a given set X is based on available data. For example, in
medical diagnosis, the objects are patients, the given set X is a set of patients
suffering from a disease, and the available data are results of medical tests.
Objects described by the same data are indiscernible in view of data and form
elementary sets called granules. An elementary set including object x is denoted
by [x]R where R is the indiscernibility relation for which xRy means that x and y
have the same description for given data. Thus [x]R is the set of patients having
the same results of the tests. The classification involves three regions:

– the positive region, including patients for which the available data suggest a
certain membership to the given set, i.e. all x ∈ U such that [x]R ⊆ X ,

– the negative region, including patients for which the available data suggest a
certain non-membership to the given set, i.e. all x ∈ U such that [x]R∩X �= ∅,
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– the boundary region, including patients for which the available data suggest
neither a certain membership nor a certain non-membership to the given set,
i.e. all x ∈ U such that [x]R ∩X �= ∅ and [x]R ∩ (U \X) �= ∅.

The Variable Precision Rough Set (VPRS) model (Ziarko 1993, 1994) defines
the positive region as an area where, on the basis of available data, the rough
membership of objects to the given set is certain to some degree. The rough
membership (Pawlak and Skowron 1994) is calculated from data as the ratio of
objects from elementary set [x]R that belong to X :

μR
X(x) = card ([x]R ∩X) / card ([x]R), 0 ≤ μR

X(x) ≤ 1.

For example, in the medical diagnosis, the rough membership is calculated from
data as the percentage of patients with the same results of the tests and suffering
from the considered disease; the positive region includes patients whose rough
membership to the set of patients suffering from the considered disease is not
smaller than a given threshold t > 0.

Analogously, the negative region includes objects whose membership to set
X is smaller than a given threshold q < 1, q < t. Finally, the boundary region
includes objects whose membership is between q and t.

The rough membership used to define the above regions, can be considered as
an absolute rough membership because it is relative to elementary set [x]R only
and does not take into account the percentage of objects from X being outside
the elementary set, i.e. in U \ [x]R. Comparison of a percentage of objects from
X being inside and outside the elementary set, respectively, needs a concept of
relative rough membership. For example, the relative rough membership of x in
X can be defined as

μ̂R
X(x) =

card ([x]R ∩X)
card ([x]R)

− card ((U \ [x]R) ∩X)
card (U \ [x]R)

.

Consequently, the generalized VPRS model considered in this paper assumes that
in order to include object x in the positive region of set X , it is not sufficient to
have a minimum percentage of objects from X in [x]R, but it is also necessary
that the percentage of objects from X in [x]R is sufficiently greater than the
percentage of objects from X outside [x]R. In other words, it is necessary that
both the absolute and the relative memberships of x in X are not smaller than
given thresholds t and α, respectively.

Coming back to the example of medical diagnosis, let us suppose that 80% of
patients positive to all tests suffer from the disease. This would seem to suggest
that the positive result of all tests indicates the presence of the disease. Thus, if
we used the VPRS model with, say t = 0.75, we would include all the patients
positive to all the tests in the positive region. Suppose, moreover, that, on the
other hand, 85% of patients not positive to at least one test are suffering from the
disease. This means that passing from the set of patients with the positive result
of all the tests to the set of patients not positive to at least one test, increases
the percentage of patients suffering from the disease, instead of decreasing it.
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This means that the tests are not determinant for the diagnosis of the disease.
Therefore, in contrast to the previous conclusion from the VPRS model, we
should not include the patients with positive result to all the tests in the positive
region. Using our generalization of the VPRS model, this is possible with, say
t = 0.75 and α = 0.2. In fact, in this case we have that μR

X(x) > t but μ̂R
X(x) < α

for each patient x with positive result of all the tests.
The above definition of μ̂R

X(x) is one among many possible definitions be-
cause the relative rough membership is equivalent to an interestingness measure
considered for decision rules in data mining (see, for example, (Hilderman and
Hamilton 2001) and (Yao and Zhong 1999) for exhaustive reviews of the subject).
For the sake of the simplicity, in this paper, we consider a class of interestingness
measures related to the concept of Bayesian confirmation (Greco, Pawlak and
S�lowiński 2004).

Let us remark that the idea of using an interestingness measure for definition
of variable precision rough approximations is not new (see e.g. Ziarko (2001),
Ślȩzak and Ziarko (2002), Ślȩzak (2005)), however, it has been used in a single
condition of membership. In this paper, we are considering for the first time two
conditions of membership, corresponding to absolute and relative rough mem-
berships, and representing two complementary aspects of rough approximation.

The article is organized as follows. Second section introduces confirmation
measures and recalls some desirable properties of symmetry and asymmetry
proposed by Eells and Fitelson (2002). Third section gives some basic notions
concerning decision rules and decision algorithms within rough set approach.
Fourth section introduces rough set confirmation measures. Fifth section intro-
duces our model of rough set approximation. Final section presents conclusions.

2 Confirmation Measures

According to Fitelson (2001), measures of confirmation quantify the degree to
which a piece of evidence E provides “evidence for or against” or “support for
or against” a hypothesis H . Fitelson remarks, moreover, that measures of con-
firmation are supposed to capture the impact rather than the final result of the
“absorption” of a piece of evidence.

Bayesian confirmation assume the existence of a probability Pr. In the fol-
lowing, given a proposition X , Pr(X) is the probability of X . Given X and Y ,
Pr(X |Y ) represents the probability of X given Y , i.e.

P r(X |Y ) = P r (X ∧ Y ) /P r (Y ) .

In this context, a measure of confirmation of a piece of evidence E with respect to
a hypothesis H is denoted by c(E,H). c(E,H) is required to satisfy the following
minimal property:

c(E,H) =

⎧⎨⎩> 0 if P r (H |E) > P r (H)
= 0 if P r (H |E) = P r (H)
< 0 if P r (H |E) < P r (H)
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The most well known confirmation measures proposed in the literature are the
following:

d(E,H) = P r(H |E) − P r(H)
r(E,H) = log [P r (H |E ) /P r (H)]
l(E,H) = log [P r (E |H ) /P r (E |¬H )]
f(E,H) = [P r (E|H) − P r (E|¬H)] / [P r (E|H) + P r (E|¬H)]
s(E,H) = P r(H |E) − P r(H |¬E)
b(E,H) = P r(H ∧ E) − P r(H)P r(E)

For the sake of the simplicity we suppose that Pr(E|H) and Pr(E|¬H), Pr(H)
are always different from zero and, therefore, the above measures (more precisely,
r(E,H), l(E,H) and f(E,H)) are always well defined.

Many authors have considered, moreover, some more or less desirable prop-
erties of confirmation measures. Fitelson (2001) makes a comprehensive survey
of these considerations. At the end of his retrospective, Fitelson concludes that
the most convincing confirmation measures are l(E,H) and f(E,H). He also
proves that l(E,H) and f(E,H) are ordinally equivalent, i.e. for all E,H and
E′, H ′, l(E,H) ≥ l(E′, H ′) if and only if f(E,H) ≥ f(E′, H ′).

Among the properties of confirmation measures reviewed by Fitelson (2001),
there are properties of symmetry introduced by Carnap (1962) and investigated
recently by Eells and Fitelson (2002). For all E and H , one can have:

• Evidence Symmetry (ES): c(E,H) = –c(¬E,H)
• Commutativity Symmetry (CS): c(E,H) = c(H ,E)
• Hypothesis Symmetry (HS): c(E,H) = –c(E,¬H)
• Total Symmetry (TS): c(E,H) = c(¬E,¬H)

Eells and Fitelson (2002) remarked that given (CS), (ES) and (HS) are equiv-
alent, and that (TS) follows from the conjunction of (ES) and (HS). Moreover,
they advocate in favor of (HS) and against (ES), (CS) and (TS). The reason in
favor of (HS) is that the significance of E with respect to H should be of the
same strength, but of opposite sign, as the significance of E with respect to ¬H .

Eells and Fitelson (2002) prove that

1) s and b verify (ES), whereas d, r, l and f do not verify (ES),
2) d, s, b, f and l verify (HS), whereas r does not verify (HS),
3) r and b verify (CS), whereas d, s, f and l do not verify (CS),
4) s and b verify (TS), whereas d, r, f and l do not verify (TS).

Thus, assuming that (HS) is a desirable property, while (ES), (CS) and (TS)
are not, Eells and Fitelson (2002) conclude that with respect to the property of
symmetry, d, f and l are satisfactory confirmation measures while s, r and b are
not satisfactory confirmation measures.

3 Decision Rules and Decision Algorithm

Let S = (U , A) be an information table, where U and A are finite, non-empty sets
called the universe and the set of attributes, respectively. If the set A is divided
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into two disjoint subsets of attributes, called condition and decision attributes,
then the system is called a decision table and is denoted by S = (U , C, D),
where C and D are sets of condition and decision attributes, respectively. With
every subset of attributes, one can associate a formal language of logical formulas
L defined in a standard way and called the decision language. Formulas for a
subset B ⊆ A are build up from attribute-value pairs (a, v), where a ∈ B and
v ∈ Va (set Va is a domain of a), by means of logical connectives ∧ (and), ∨
(or), ¬ (not). We assume that the set of all formula sets in L is partitioned into
two classes, called condition and decision formulas, respectively.

A decision rule induced from S and expressed in L is presented as Φ→Ψ ,
read ”if Φ, then Ψ”, where Φ and Ψ are condition and decision formulas in L,
called premise and conclusion, respectively. A decision rule Φ→Ψ is also seen as a
binary relation between premise and conclusion, called consequence relation (see
critical discussion about interpretation of decision rules as logical implications
in (Greco, Pawlak and S�lowiński 2004)).

Let ||Φ|| denote the set of all objects from universe U , having the property
Φ in S.

If Φ→Ψ is a decision rule, then suppS(Φ,Ψ) = card(||Φ∧Ψ ||) will be called
the support of the decision rule and

σS(Φ, Ψ) = suppS (Φ, Ψ) / card (U)

will be referred to as the strength of the decision rule.
With every decision rule Φ→Ψ we associate certainty and coverage factors

cerS(Φ, Ψ) = suppS (Φ, Ψ) / card (‖Φ‖) ,
covS(Φ, Ψ) = suppS (Φ, Ψ) / card (‖Ψ‖) .

If cerS(Φ,Ψ)=1, then the decision rule Φ→Ψ will be called certain, otherwise the
decision rule will be referred to as uncertain.

A set of decision rules supported in total by the universe U constitutes a
decision algorithm in S. Pawlak (2002) points out that every decision algorithm
associated with S displays well-known probabilistic properties. In particular, it
satisfies the total probability theorem and Bayes’ theorem. As a decision algo-
rithm can also be interpreted in terms of the rough set concept, these properties
give a new look on Bayes’ theorem from the rough set perspective. In conse-
quence, one can draw conclusions from data without referring to prior and pos-
terior probabilities, inherently associated with Bayesian reasoning. The revealed
relationship can be used to invert decision rules, i.e., giving reasons (explana-
tions) for decisions, which is useful in decision analysis.

4 Confirmation Measures and Decision Algorithms

In this section, we translate confirmation measures to the language of decision
algorithms. A preliminary question that arises naturally in this context is the fol-
lowing: why a new measure is required for decision rules in addition to strength,
certainty and coverage? In other words, what is the intuition behind the confir-
mation measure that motivates its use for characterization of decision rules?
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To answer this question, it will be useful to recall the following example proposed
by Popper (1959). Consider the possible result of rolling a die: 1,2,3,4,5,6. We
can built a decision table, presented in Table 1, where the fact that the result
is even or odd is the condition attribute, while the result itself is the decision
attribute.

Table 1. Decision table

Condition attribute Decision attribute
(result odd or even) (result of rolling the die)

odd 1
even 2
odd 3
even 4
odd 5
even 6

Let us consider the cases Ψ=”the result is 6” and ¬Ψ=”the result is not 6”. Let
us also take into account the information Φ=”the result is an even number (i.e.
2 or 4 or 6)”. Therefore, we can consider the following two decision rules:

• Φ→Ψ = ”if the result is even, then the result is 6”,
with certainty cerS(Φ,Ψ)=1/3,

• Φ→ ¬Ψ = ”if the result is even, then the result is not 6”,
with certainty cerS(Φ,¬Ψ)=2/3.

Note that the rule Φ→Ψ has a smaller certainty than the rule Φ→ ¬Ψ . However,
the probability that the result is 6 is 1/6, while the probability that the result is
different from 6 is 5/6. Thus, the information Φ raises the probability of Ψ from
1/6 to 1/3, and decreases the probability of ¬Ψ from 5/6 to 2/3. In conclusion,
we can say that Φ confirms Ψ and disconfirms ¬Ψ , independently of the fact
that the certainty of Φ→Ψ is smaller than the certainty of Φ→ ¬Ψ . From this
simple example, one can see that certainty and confirmation are two completely
different concepts, so it advocates for a new index expressing the latter type of
information.

Given a decision rule Φ→Ψ , the confirmation measure we want to introduce
should give the credibility of the proposition: Ψ is satisfied more frequently
when Φ is satisfied rather than when Φ is not satisfied.

Differently from Bayesian confirmation, however, we start from a decision
table rather than from a probability measure. In this context, the probability Pr
of Φ is substituted by the relative frequency Fr in the considered data table S,
i.e. FrS(Φ) = card (‖Φ‖)/card (U).

Analogously, given Φ and Ψ , Pr(Ψ |Φ) – the probability of Ψ given Φ – is
substituted by the certainty factor cerS(Φ,Ψ) of the decision rule Φ→Ψ .

Therefore, a measure of confirmation of property Ψ by property Φ, denoted
by c(Φ,Ψ), where Φ is a condition formula in L and Ψ is a decision formula in L,
is required to satisfy the following minimal property
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c(Φ,Ψ) =

⎧⎨⎩
> 0 if cerS (Φ, Ψ) > FrS (Ψ)
= 0 if cerS (Φ, Ψ) = FrS (Ψ)
< 0 if cerS (Φ, Ψ) < FrS (Ψ)

(i)

Definition (i) can be interpreted as follows:

• c(Φ,Ψ)>0 means that property Ψ is satisfied more frequently when Φ is
satisfied (then, this frequency is cerS(Φ,Ψ)), rather than generically in the
whole decision table (where this frequency is FrS(Ψ)),

• c(Φ,Ψ)=0 means that property Ψ is satisfied with the same frequency when
Φ is satisfied and generically in the whole decision table,

• c(Φ,Ψ)<0 means that property Ψ is satisfied less frequently when Φ is satis-
fied, rather than generically in the whole decision table.

Observe that (i) can also be interpreted as follows:

• c(Φ,Ψ)>0 means that property Ψ is satisfied more frequently when Φ is
satisfied rather than when Φ is not satisfied,

• c(Φ,Ψ)=0 means that property Ψ is satisfied with the same frequency when
Φ is satisfied and when Φ is not satisfied,

• c(Φ,Ψ)<0 means that property Ψ is satisfied more frequently when Φ is not
satisfied rather than when Φ is satisfied.

The specific confirmation measures recalled in section 2 can be rewritten in this
context as follows:

d(Φ, Ψ) = cerS(Φ, Ψ) − FrS(Ψ)
r(Φ, Ψ) = log [cerS (Φ, Ψ) / FrS (Ψ)]
l(Φ, Ψ) = log [cerS (Ψ, Φ) / cerS (¬Ψ, Φ)]
f(Φ, Ψ) = [cerS (Ψ, Φ) − cerS (¬Ψ, Φ)] / [cerS (Ψ, Φ) + cerS (¬Ψ, Φ)]
s(Φ, Ψ) = cerS(Φ, Ψ) − cerS(¬Φ, Ψ)
b(Φ, Ψ) = cerS(Φ, Ψ) − FrS(Φ)FrS(Ψ)

Clearly, all the results about confirmation measures obtained within Bayesian
confirmation theory are valid for the confirmation measures defined in the con-
text of decision algorithms considered within rough set theory.

In this context, moreover, a new monotonicity property introduced in (Greco,
Pawlak and S�lowiński 2004) is desirable for confirmation measures. The monoto-
nicity says that the confirmation measure c(Φ,Ψ) must be non-decreasing with
respect to suppS(Φ, Ψ) and suppS(¬Φ,¬Ψ), and non-increasing with respect to
suppS(¬Φ, Ψ) and suppS(Φ,¬Ψ ). The confirmation measures verifying monoto-
nicity are l(Φ,Ψ), f(Φ,Ψ) and s(Φ,Ψ), whereas monotonicity does not hold for
d(Φ,Ψ), r(Φ,Ψ) and b(Φ,Ψ) (Greco, Pawlak and S�lowiński 2004). Therefore, the
only confirmation measures which verify both symmetry/asymmetry properties
of Eells and Fitelson and monotonicity property (M) are the two ordinally equiv-
alent confirmation measures l(Φ,Ψ) and f(Φ,Ψ).

Below, we will use the confirmation measures as rough relative membership
functions.
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5 Parameterized Rough Sets

Suppose we are given a finite set U �= ∅ (the universe) of objects we are interested
in. If R is an equivalence relation over U , then by U/R we mean the family of
all the equivalence classes of R and [x]R denotes the equivalence class of x ∈ U .
Given a set X ⊆ U , the lower and the upper approximations of X in U are
defined, respectively, as

R(X) = {x ∈ U : [x]R ⊆ X},
R(X) = {x ∈ U : [x]R ∩X �= ∅}.

Set BN R(X) = R(X)–R(X) will be called the R-boundary of X .
Let t and q be two real parameters, called lower limit and upper limit, re-

spectively, such that 0 ≤ q ≤ t ≤ 1. According to the VPRS model (Ziarko 1993,
1994), lower and upper approximations of X in U are defined, respectively, as

Rt(X) = {x ∈ U :
card([x]R∩X)

card([x]R) ≥ t},

Rq(X) = {x ∈ U :
card([x]R∩X)

card([x]R) > q}.

Ślȩzak (2005) proposed an alternative parameterized rough set model called
rough Bayesian model, in which the lower and upper approximations of X are
defined as follows, for εt, εq ∈ [0, 1], such that εt ≥ εq:

Rεt
(X) = {x ∈ U :

card([x]R∩X)
card([x]R) ≥ εt

card(X)
card(U) },

Rεq (X) = {x ∈ U :
card([x]R∩X)

card([x]R) > εq
card(X)
card(U) }

Let us consider now the relative rough membership functions c(x,X) for x ∈
U and X ⊆ U . c(x,X) is defined as a measure of confirmation that evidence
y ∈ [x]R gives to hypothesis y ∈ X . They clearly correspond to confirmation
measures introduced in section 4, as follows:

d(x,X) =
card([x]R∩X)

card([x]R) − card(X)
card(U)

r(x,X) = log

[
card([x]R∩X)

card([x]R) / card(X)
card(U)

]
l(x,X) = log

[
card([x]R∩X)

card(X) /
card([x]R∩(U\X))

card(U\X)

]
f(x,X) =

[
card([x]R∩X)

card(X) − card([x]R∩(U\X))
card(U\X)

]
/

[
card([x]R∩X)

card(X) +
card([x]R∩(U\X))

card(U\X)

]
s(x,X) =

card([x]R∩X)
card([x]R) − card((U\[x]R)∩X)

card(U\[x]R)

b(x,X) =
card([x]R∩X)

card(U) − card([x]R)
card(U)

card(X)
card(U)

Let us remark that in the above definitions of relative rough membership func-
tions, the log function takes the following extreme values: log(0/a) = −∞ and
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log(a/0) = +∞, for all a > 0. Let also α and β, α ≥ β, be two real values
in the range of variation of relative rough membership c(x,X) (for example, if
c(x,X) = d(x,X), then α,β ∈[-1,1]).

The parameterized lower and upper approximations of X in U with respect
to relative rough membership c(x,X) are defined, respectively, as

Rt,α(X) = {x ∈ U :
card([x]R∩X)

card([x]R) ≥ t and c(x,X) ≥ α},

Rq,β(X) = {x ∈ U :
card([x]R∩X)

card([x]R) > q or c(x,X) > β}.

One can notice that above definitions boil down to the following special cases:

1. The classical rough set model (Pawlak 1982), when t = 1, q = 0, α = β =
min{c(x,X) : x ∈ U and X ⊆ U}. This definition does not involve neither
absolute nor relative rough membership

2. The VPRS model (Ziarko 1993, 1994), when 0 ≤ q ≤ t ≤ 1, α = β =
min{c(x,X) : x ∈ U and X ⊆ U}. This definition involves an absolute
rough membership only.

3. The rough Bayesian model (Ślȩzak 2005), when t = 1, q = 0, c(x,X) =
l(x,X), and α = logεt, β = logεq. This definition involves a relative rough
membership only.

Our parameterized rough set model is the most general since it involves both
absolute and relative rough membership, moreover, it can be generalized further
by considering more than one relative rough membership.

Theorem 1. The following properties hold:

1). For every relative rough membership c(x,X), for every X ⊆ U , for every
q,t ∈]0,1], with q < t, and for every α,β in the range of variation of relative
rough membership c(x,X), such that α > β,

Rt,α(X) ⊆ Rq,β(X).

2). If the relative rough membership c(x,X) is one among d(x,X), l(x,X),
f(x,X), s(x,X), b(x,X), then for every X ⊆ U , for every t ∈]0,1], and
for every α in the range of variation of relative rough membership c(x,X)

Rt,α(X) = U \R1−t,β(U \X)

with β = −α.
3). If c(x,X) = l(x,X) or c(x,X) = f(x,X), for every x ∈ U and X ⊆ U , for

every q,t ∈ [0, 1] and for every α,β in the range of variation of relative rough
membership c(x,X), then

Rt,α(X) ⊇ R(X), Rq,β(X) ⊆ R(X).

4). If c(x,X) = r(x,X), for every x ∈ U and X ⊆ U , for every q ∈ [0, 1] and
for every β in the range of variation of c(x,X), then

Rq,β(X) ⊆ R(X). �
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Results of Theorem 1 correspond to very well known properties of the classical
rough set model and the VPRS model. More precisely, 1) means that the lower
approximation is always included in the upper approximation, and 2) represents
complementarity property (given that some conditions are satisfied, the lower ap-
proximation is the complement of the upper approximation of the complement).
3) and 4) represent properties relating rough approximations of the classical
model with rough approximations of our parameterized rough set model, which
are also verified by the VPRS model.

Theorem 2. The following properties do not hold:

1). For relative rough membership functions c(x,X) equal to b(x,X), or d(x,X),
or r(x,X), or s(x,X), for every x ∈ U and X ⊆ U , for every t ∈]0,1] and
for every α in the range of variation of relative rough membership c(x,X),

Rt,α(X) ⊇ R(X).

2). For relative rough membership functions c(x,X) equal to b(x,X), or d(x,X),
or s(x,X), for every x ∈ U and X ⊆ U , for every q ∈]0,1] and for every β
in the range of variation of relative rough membership c(x,X),

Rq,β(X) ⊆ R(X).

3). For every relative rough membership c(x,X), for every X,Y ⊆ U , for ev-
ery q, t ∈]0, 1] and for every α,β in the range of variation of relative rough
membership c(x,X),
Rt,α(X ∩ Y ) ⊆ Rt,α(X) ∩Rt,α(Y ),
Rt,α(X ∪ Y ) ⊇ Rt,α(X) ∪Rt,α(Y ),
Rq,β(X ∩ Y ) ⊆ Rq,β(X) ∩Rq,β(Y ),
Rq,β(X ∪ Y ) ⊇ Rq,β(X) ∪Rq,β(Y ). �

The results of Theorem 2 are somehow surprising: they say that some very typical
properties of rough sets do not hold in the context of the parameterized rough set
approach. This is due to the behavior of some relative rough membership func-
tions. However, even if consideration of a relative rough membership provokes
violation of some typical properties of rough approximations, the parameterized
rough set approach gives a much more complete and realistic perspective to
data analysis. In fact, there is a tradeoff between the elegance of a mathematical
model, typical for classical rough set model and VPRS model, on one side, and
the rich formulation permitting to control many specific aspects of data analysis,
typical for parameterized rough set model, on the other side.

Let us conclude this section with the remark that, since the above confirma-
tion measures are related to different aspects of data analysis, the parameterized
rough set model can be simply generalized by considering two or even more
relative rough membership functions.



324 S. Greco, B. Matarazzo, and R. S�lowiński

6 Conclusions

We presented a parameterized rough set model that is a generalization of the
VPRS model. Differently from the VPRS model, however, we do not take into
account the frequency distribution only but also some parameters modeling the
degree to which the condition attribute values confirm the decision attribute
value. Consequently, we propose to use two kinds of parameters corresponding
to absolute and relative rough membership. This model gives a richer insight into
data analysis, compared to competitive rough set models, and this compensates
the violation of some properties that are typically verified by rough set models.
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Abstract. We examine methods of valued tolerance relations where the
conventional methods based on rough sets are extended in order to han-
dle incomplete information. The methods can deal with missing values
probabilistically interpreted. We propose a correctness criterion to the
extension of the conventional methods. And then we check whether or
not the correctness criterion is satisfied in a method of valued tolerance
relations. As a result, we conclude that the method does not satisfy the
correctness criterion. Therefore, we show how to revise the method of
valued tolerance relations so that the correctness criterion can be satis-
fied.

1 Introduction

Rough sets, proposed by Pawlak [10], give suitable methods to knowledge dis-
covery from data. Usually, methods based on rough sets are applied to complete
data not containing uncertainty and imprecision. However, there ubiquitously
exist uncertainty and imprecision in the real world[9].

Researches handling uncertainty and imprecision are actively done on the
field of databases [9], but are not so much on the field of knowledge discovery.
Some pioneering work was done by Slowiński and Stefanowski [13] and Grzy-
mala [3] to handle imprecise information by using rough sets. Recently, several
investigations have been made on this topic.

Kryszkiewicz applies rough sets to a data table containing incomplete infor-
mation by assuming a missing value expressing unknown as indiscernible with an
arbitrary value[6,7,8]. An indiscernibility relation under the assumption is called
a tolerance relation. The tolerance relation is reflexive, symmetric, but not al-
ways transitive. In this method an object in which some attribute values are
missing values is indiscernible with every object for the attributes. Stefanowski
and Tsoukiàs apply rough sets to a data table containing incomplete information
by making an indiscernibility relation from the assumption that an object with
an exact attribute value is similar to another object with the attribute value
being missing, but the converse is not so[14,16]. They call the indiscernibility
relation a similarity relation. The similarity relation is only reflexive. The above
two methods handle incomplete information by deriving an indiscernibility re-
lation from giving some assumptions to indiscernibility of missing values, and
then by applying the conventional methods of rough sets to the indiscernibility
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relation. Thus, obtained results depend on the assumptions to indiscernibility of
missing values.

Furthermore, Stefanowski and Tsoukiás propose a method without assump-
tions to indiscernibility of missing values. They make an indiscernibility relation
by introducing the probabilistic degree that two objects cannot be discerned
[14,15,16]. In their method, an attribute can equally take an arbitrary value in
the corresponding domain when the attribute value is a missing value; in other
words, the missing value is equal to an imprecise value expressed in a uniform
probability distribution over the domain. Under no assumption to indiscernibil-
ity of missing values, indiscernibility degrees of objects are calculated, which are
elements of an indiscernibility relation. The indiscernibility relation is called a
valued tolerance relation and each element is a value in the interval [0, 1]. In the
method, they use indiscernible sets and use implication operators in calculating
an inclusion degree of two indiscernible sets.

On the other hand, a method based on possible worlds is proposed [11,12].
This method is to apply the conventional method based on rough sets to possible
tables into which an incomplete table is divided, and then to aggregate the
obtained results. The method does not use any assumptions to indiscernibility of
missing values. We can obtain to what degree every possible rule probabilistically
holds. This method is time-consuming, because the more the number of missing
values increases, the more the number of possible tables increases exponentially.
However, this method admits of no doubt for how to handle imprecise values.

Active researches are made into imprecise information in the field of data-
bases [9]. Some extensions have to be made to operators in order to directly
deal with imprecise information. In order to check whether or not the extended
operators create correct results in query processing, a correctness criterion is
used[1,4,5,17]. The correctness criterion is as follows:

Results obtained from applying an extended operator to imprecise relations are
the same as ones obtained from applying the corresponding conventional operator
to possible relations derived from those imprecise relations.

We adopt this criterion to rough-set-based methods and check whether extended
methods satisfy the correctness criterion or not. Using the correctness criterion
means obtaining methods directly handling imprecise information, not dividing
an imprecise table into possible tables, under the method that admits of no
doubt for how to handle imprecise information.

This paper is organized as follows. In Section 2, the outline of methods based
on rough sets and the process of checking the correctness criterion are described.
Section 3 is for methods of possible tables. Section 4 is for methods of valued
tolerance relations. In section 5 we address how to revise methods of valued
tolerance relations so that the correctness criterion can be satisfied. The last
section addresses conclusions.

2 Methods Based on Rough Sets

In a data table t having a set A(= {A1, . . . , An}) of attributes and consisting of
objects, the indiscernibility relation IND(X) for a subset X ⊆ A of attributes is

IND(X) = {(o, o′) ∈ t× t | ∀Ai ∈ X o[Ai] = o′[Ai]},
where o[Ai] and o′[Ai] are attribute values of objects o and o′, respectively. We
suppose that the family of all equivalence classes obtained from the indiscerni-
bility relation IND(X) is denoted by E(X) (= {E(X)1, . . . , E(X)m}), where
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E(X)i is an equivalence class. When every value of attributes comprising X is
exact, E(X)i∩E(X)j = ∅ with i �= j. Thus, the objects are uniquely partitioned.
The indiscernible set S(X)o ∈ E(X) of an object o for a set X of attributes is

S(X)o = {o′ ∈ t | ∀Ai ∈ X o[Ai] = o′[Ai]}.

The lower approximation IND(Y,X) and the upper approximation IND(Y,X)
of IND(Y ) by IND(X) are expressed by means of using indiscernible sets as
follows:

IND(Y,X) = {o ∈ t | ∃o′S(X)o ⊆ S(Y )o′},

IND(Y,X) = {o ∈ t | ∃o′S(X)o ∩ S(Y )o′ �= ∅}.

When an object o takes imprecise values for some attributes, it does not
always take the same actual value as another object o′, even if both objects have
the same expression. To what degree the object o takes the same actual value as
the object o′ is obtained. The degree is an indiscernibility degree of the object o
with the object o′. The indiscernible set S(X)o is replaced as follows:

S(X)o = {(o′, κ(o[X ] = o′[X ]) | (κ(o[X ] = o′[X ]) �= 0) ∧ (o �= o′)} ∪ {(o, 1)},

where κ(o[X ] = o′[X ]) is an indiscernibility degree of objects o and o′ for a set
X of attributes, and

κ(o[X ] = o′[X ]) =
⊗

Ai∈X

κ(o[Ai] = o′[Ai]),

where the operator
⊗

depends on the properties of imprecise attribute values.
When the imprecise attribute values are expressed in probability distributions,
the operator is product. We have to extend the conventional methods to handle
the indiscernible set. Although some authors propose how to extend the conven-
tional methods, they do not address at all why their extension is correct. Thus,
in order to check whether the extended methods are correct or not, we adopt
the following correctness criterion:

Results obtained from directly applying an extended method to an imprecise ta-
ble are the same as ones obtained from applying the corresponding conventional
method to possible tables derived from that imprecise table.

This is formulated as follows:

Suppose that rep(t) is a set of possible tables derived from a data table t con-
taining imprecise values. Let q′ be the conventional method applied to rep(t),
where q′ corresponds to an extended method q directly applied to the data table
t. The two results is the same; namely,

q(t) = q′(rep(t)).

When this is valid, the extended method q gives correct results.
In rough-set-based methods this correctness criterion is checked as follows:

– Derive a set of possible tables from a data table containing imprecise values.
– Aggregate the results obtained from applying the conventional method to

each possible table.
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– Compare the aggregated results with ones obtained from directly applying
the extended method to the original data table.

When two results coincide, the correctness criterion is satisfied. In the next sec-
tion, we address methods of possible tables. We focus on the lower approxima-
tion IND(Y,X) in a data table, because the upper approximation IND(Y,X)
is equal to the whole objects in the data table.

3 Methods of Possible Tables

We suppose that data table t containing missing values is given as follows:

t
O A B
1 x a
2 x a
3 @ b
4 @ a

Here, column O denotes the object identity and @ denotes a missing value that
means unknown. Possible tables obtained from table t are those that every miss-
ing value @ is replaced by an element comprising the corresponding domain.
Suppose that domains dom(A) and dom(B) of attributes A and B are {x, y}
and {a, b}, respectively. The following four possible tables are derived:

Poss(t)1
O A B
1 x a
2 x a
3 x b
4 x a

Poss(t)2
O A B
1 x a
2 x a
3 x b
4 y a

Poss(t)3
O A B
1 x a
2 x a
3 y b
4 x a

Poss(t)4
O A B
1 x a
2 x a
3 y b
4 y a

We check which object contributes the lower approximation IND(A,B) in these
possible tables. For Poss(t)1, indiscernible sets of the objects for attribute A are,

S(A)o1 = S(A)o2 = S(A)o3 = S(A)o4 = {o1, o2, o3, o4}.

The indiscernible sets of the objects for attribute B are,

S(B)o1 = S(B)o2 = S(B)o4 = {o1, o2, o4}, S(B)o3 = {o3}.

With what degree each object oi(i = 1, 4) belongs to IND(B,A) is,

κ(oi ∈ IND(B,A)) = max
j

κ(S(A)oi ⊆ S(B)oj ) = 0.

Thus, there exists no object that contributes to IND(B,A) in Poss(t)1. Sim-
ilarly, only the fourth object contributes to IND(B,A) in Poss(t)2. All the
objects contribute to IND(B,A) in Poss(t)3. The first and second objects con-
tribute to IND(B,A) in Poss(t)4. Collectively speaking at every object, the
first object contributes to IND(B,A) in Poss(t)3 and Poss(t)4; the second
in Poss(t)3 and Poss(t)4; the third in Poss(t)3; the fourth in Poss(t)2 and
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Poss(t)3. One of the possible tables is the actual table, but it is unknown which
table is the actual one. In this point, they can be regarded as probabilistically
equal; namely, each of them has the same probabilistic degree 1/4. Thus, with
what degree each object oi belongs to IND(B,A) is as follows:

κ(o1 ∈ IND(B,A)) = 0 × 1/4 + 0 × 1/4 + 1 × 1/4 + 1 × 1/4 = 1/2,

κ(o2 ∈ IND(B,A)) = 0 × 1/4 + 0 × 1/4 + 1 × 1/4 + 1 × 1/4 = 1/2,

κ(o3 ∈ IND(B,A)) = 0 × 1/4 + 0 × 1/4 + 1 × 1/4 + 0 × 1/4 = 1/4,

κ(o4 ∈ IND(B,A)) = 0 × 1/4 + 1 × 1/4 + 1 × 1/4 + 0 × 1/4 = 1/2.

We examine whether or not the same value κ(oi ∈ IND(B,A)) for each
object oi is obtained by means of using the extended method, a method of
valued tolerance relations, in the following section.

4 Methods of Valued Tolerance Relations

Stefanowski and Tsoukiàs[14,15,16] take the interpretation that when an at-
tribute value is a missing value, the actual value is one of elements in the do-
main of the attribute and which element is the actual value does not depend
on an specified element; in other words, each element has the same probability
for the element being the actual value. This means that every missing value is
expressed in a uniform probability distribution over the domain. Indiscernibility
degrees of every pair of objects are calculated, where any assumptions to indis-
cernibility of missing values are not used. An obtained indiscernibility relation
is reflexive and symmetric, but consists of values in the interval [0, 1]. The in-
discernibility relations IND(A) and IND(B) for attributes A and B in table t
are, respectively,

IND(A) =

⎛⎜⎝ 1 1 1/2 1/2
1 1 1/2 1/2

1/2 1/2 1 1/2
1/2 1/2 1/2 1

⎞⎟⎠ , IND(B) =

⎛⎜⎝1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1

⎞⎟⎠ .

The indiscernible sets of the objects for attribute A are,

S(A)o1 = {(o1, 1), (o2, 1), (o3, 1/2), (o4, 1/2)},
S(A)o2 = {(o1, 1), (o2, 1), (o3, 1/2), (o4, 1/2)},
S(A)o3 = {(o1, 1/2), (o2, 1/2), (o3, 1), (o4, 1/2)},
S(A)o4 = {(o1, 1/2), (o2, 1/2), (o3, 1/2), (o4, 1)}.

The indiscernible sets of the objects for attribute B are,

S(B)o1 = S(B)o2 = S(B)o4 = {(o1, 1), (o2, 1), (o4, 1)}, S(B)o3 = {(o3, 1)}.

Suppose that an object o belongs to sets S and S′ with probabilistic degrees
Po,S and Po,S′ , respectively. The degree κ(S ⊆ S′) that the set S is included in
another set S′ is,

κ(S ⊆ S′) =
∏
o∈S

κ(o ∈ S → o ∈ S′) =
∏
o∈S

(1 − Po,S + Po,S × Po,S′).
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In this formula, the inclusion degree of two sets is calculated by means of using
Reichenbach implication (u → v = 1 − u + u × v). Now, S and S′ are S(A)oi

and S(B)ok
, respectively, and Poi,S(A)oi

and Poi,S(B)ok
are κ(oi[A] = oj [A]) and

κ(ok[B] = oj [B]), respectively. Thus, the degree with which the object o1 belongs
to IND(B,A) is as follows:

κ(o1 ∈ IND(B,A)) = max
k

κ(S(A)o1 ⊆ S(B)ok
)

= κ(S(A)o1 ⊆ S(B)o1)
= 1 × 1 × (1 − 1/2 + 1/2 × 0) × (1 − 1/2 + 1/2 × 1) = 1/2.

Similarly,

κ(o2 ∈ IND(B,A)) = κ(S(A)o2 ⊆ S(B)o2) = 1/2,

κ(o3 ∈ IND(B,A)) = κ(S(A)o3 ⊆ S(B)o3)

= (1 − 1/2 + 1/2 × 0) × (1 − 1/2 + 1/2 × 0)
×1 × (1 − 1/2 + 1/2 × 0) = 1/8,

κ(o4 ∈ IND(B,A)) = κ(S(A)o4 ⊆ S(B)o4)

= (1 − 1/2 + 1/2 × 1) × (1 − 1/2 + 1/2 × 1)
×(1 − 1/2 + 1/2 × 0) × 1 = 1/2.

Thus, the lower approximation IND(B,A) is

IND(B,A) = {(o1, 1/2), (o2, 1/2), (o3, 1/8), (o4, 1/2)}.

The degree κ(o3 ∈ IND(B,A)) of the object o3 is not equal to one obtained
from possible tables.

5 Revising Methods of Valued Tolerance Relations

The method of valued tolerance relations, which is proposed by Stefanowski and
Tsoukiàs[14,15,16], probabilistically handles missing values. We have to examine
why this method of Stefanowski and Tsoukiàs cannot satisfy the correctness
criterion. Stefanowski and Tsoukiàs calculates the inclusion degree of two sets
to which each element belongs with a probabilistic degree as follows:

– Calculate with what probabilistic degree every element belonging to a set
also belongs to another set by using Reichenbach implication.

– Multiply the obtained degrees together.

The process shows that the total inclusion degree is obtained through aggregating
the inclusion degrees separately obtained for each element. This is valid under the
condition that an inclusion degree for an element is determined independently
of another element. Is this valid in the present situation?

In the previous section, the degree κ(o3 ∈ IND(B,A)) of the lower approx-
imation IND(B,A) for the third object o3 does not coincide with the degree
obtained from using possible tables. This would be due to not taking into account
the fact that when the third object is indiscernible with the first for attribute A,
simultaneously it is indiscernible with the second; in other words, the first and
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the second objects have to be dealt with together. This strongly suggests that
the condition described above is not valid in the present situation.

Furthermore in order to examine this, we go into issues for using implication
operators. In Reichenbach implication, a probability P rob(a → b) of a sentence
a → b is equal to 1 − P rob(a) + P rob(a) × P rob(b), when probabilities that a
sentence a is valid and that a sentence b is valid are given with P rob(a) and
P rob(b), respectively. This comes from the following: when the sentence a is
valid, a → b is valid with P rob(a) × P rob(b); when a is invalid, a → b is valid
regardless of b; namely, a → b is valid with 1 − P rob(a) when a is invalid; thus,
P rob(a → b) is 1 − P rob(a) + P rob(a) × P rob(b) generally. Is it correct in the
present situation that a → b is valid regardless of b when a is invalid?

The fact that an object oj belongs to S(X)oi with a probabilistic degree
κ(oi[X ] = oj [X ]) means that oj is equal to oi for a set X of attributes with
the degree κ(oi[X ] = oj [X ]). In the method of Stefanowski and Tsoukiàs using
an implication, Reichenbach implication, the degree that oj ∈ S(X)oi → oj ∈
S(Y )oi is valid is 1 − κ(oi[X ] = oj [X ]) + κ(oi[X ] = oj [X ]) × κ(oi[Y ] = oj [Y ]),
when oj is equal to oi for sets X and Y of attributes with probabilistic degrees
κ(oi[X ] = oj [X ]) and κ(oi[Y ] = oj [Y ]), respectively. This calculation means
that the object oj unconditionally contributes IND(Y,X) with a probabilistic
degree 1− κ(oi[X ] = oj [X ]); namely, κ(oi[Y ] = oj [Y ]) = 1, when oj is not equal
to oi for a set X of attributes with a probabilistic degree 1 − κ(oi[X ] = oj [X ]).
However, this is not correct if there exists another object ok that is equal to oj

with a probabilistic degree for a set X of attributes, but that is not at all to oi

for X , as is shown in the following example.
We suppose that data table t′ containing missing values is given as follows:

t′

O A B
1 x a
2 y a
3 @ b
4 @ a

In data table t′ only the attribute value o2[A] is different from data table t
in section 3. Notice there exists another object o2 that is equal to o3 with a
probabilistic degree for attribute A, but that is not at all equal to o1 for A.
Results obtained from using possible tables are:

κ(o1 ∈ IND(B,A)) = 1/2,

κ(o2 ∈ IND(B,A)) = 1/2,

κ(o3 ∈ IND(B,A)) = 0,

κ(o4 ∈ IND(B,A)) = 1/2.

The indiscernibility relations IND(A) for attribute A in table t′ is as follows:

IND(A) =

⎛⎜⎝ 1 0 1/2 1/2
0 1 1/2 1/2

1/2 1/2 1 1/2
1/2 1/2 1/2 1

⎞⎟⎠ .
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IND(B) is the same as in table t. The indiscernible sets of the objects for
attribute A are,

S(A)o1 = {(o1, 1), (o3, 1/2), (o4, 1/2)},
S(A)o2 = {(o2, 1), (o3, 1/2), (o4, 1/2)},
S(A)o3 = {(o1, 1/2), (o2, 1/2), (o3, 1), (o4, 1/2)},
S(A)o4 = {(o1, 1/2), (o2, 1/2), (o3, 1/2), (o4, 1)}.

The indiscernible sets of the objects for attribute B are the same as in table t.
We focus on the degree with which the third object o3 belongs to IND(B,A).

κ(o3 ∈ IND(B,A)) = κ(S(A)o3 ⊆ S(B)o3)

= (1 − 1/2 + 1/2 × 0) × (1 − 1/2 + 1/2 × 0) × 1
×(1 − 1/2 + 1/2 × 0) = 1/8.

In the example, the contribution of the fact that o3 is equal to o1 for attribute
A with a probabilistic degree κ(o3[A] = o1[A]) is calculated by means of 1 −
κ(o3[A] = o1[A]) + κ(o3[A] = o1[A]) × κ(o3[B] = o1[B]). The fact that o3 is
not equal to o1 for attribute A means that o3 is equal to another object o2
for attribute A, because the domain of A is comprised of two elements; namely,
{x, y}. Thus, when o3 is not equal to o1 for attribute A with a probabilistic degree
1 − κ(o3[A] = o1[A]), o3 has to be unconditionally equal to o2 for attribute B.
However, this is not valid in table t′. In other words, we cannot separate the
two facts that o3 is equal to o1 for an attribute A with a probabilistic degree
κ(o3[A] = o1[A]) and o3 is not equal to o1 for attribute A with a probabilistic
degree 1−κ(o3[A] = o1[A]); in other words, o3 is equal to o2 for attribute A with
a probabilistic degree 1 − κ(o3[A] = o1[A])(=κ(o3[A] = o2[A])). These two facts
link with each other disjunctively. We simultaneously have to deal with the two
facts.

From considering the above viewpoint, we propose a new formula for calcu-
lating κ(oi ∈ IND(Y,X)).

Let SS(X)oi be the set of elements removed grades from S(X)oi . Let ps(X)oi,l

be an element of the power set PS(X)oi of SS(X)oi\oi.

κ(oi ∈ IND(Y,X)) = max
k

κ(S(X)oi ⊆ S(Y )ok
)

= max
k

(
∑

l

(κ(∧o′∈ps(X)oi,l
(oi[X ] = o′[X ])

∧o′ �∈ps(X)oi,l
(oi[X ] �= o′[X ]))

×κ(∧o′∈ps(X)oi,l
(oi[Y ] = o′[Y ])))

×κ(ps(X)oi.l
⊆ SS(Y )ok

),

where κ(f) is a probabilistic degree that a formula f is valid and κ(f) = 1 when
there is no f .

In this formula, all the elements in an indiscernible set are simultaneously
handled. The first in the first term denotes a probabilistic degree with which
some objects (o′ ∈ ps(X)oi,l) are indiscernible and the others (o′ �∈ ps(X)oi,l)
are discernible for a set X of attributes. The second in the first term denotes a
probabilistic degree with which the objects (o′ ∈ ps(X)oi,l) that are indiscernible
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for X are also indiscernible for a set Y of attributes. The other term is equal to
1 if ps(X)oi,l

is included in SS(Y )ok
otherwise 0.

Proposition
Using the new formula, the method of valued tolerance relations satisfies the
correctness criterion for the lower approximation.

As an example, we calculate the degree of the lower approximation κ(o3 ∈
IND(B,A)) for the object o3 in data table t.

κ(o3 ∈ IND(B,A)) = max
k

κ(S(A)o3 ⊆ S(B)ok
) = κ(S(A)o3 ⊆ S(B)o3),

where the second equality comes from κ(o3[B] = oj [B]) = 0 for j = 1, 2, and 4.
For the object o3,

SS(A)o3\o3 = {o1, o2, o4}.

For the power set PS(A)o3 of SS(A)o3\o3,

PS(A)o3 = {{∅}, {o1}, {o2}, {o4}, {o1, o2}, {o1, o4}, {o2, o4}, {o1, o2, o4}}.

We calculate only for the element {∅}, because κ(o3[B] = oj [B]) = 0 for j = 1, 2,
and 4. For the element {∅},

κ((o3[A] �= o1[A]) ∧ (o3[A] �= o2[A]) ∧ (o3[A] �= o4[A])) = 1/4.

Thus,

κ(o3 ∈ IND(B,A)) = 1/4 × 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 1/4.

This value is equal to one obtained from possible tables. Similarly, for each object
oi with i = 1, 2, 4, the same results are derived as in section 3. Thus, the obtained
results coincide with ones from possible tables.

6 Conclusions

We have proposed the correctness criterion in which results obtained from apply-
ing an extended method to an imprecise table are the same as ones obtained from
applying the corresponding conventional method to possible tables derived from
that imprecise table. We have examined a method of tolerance relations under
the probabilistically interpretation of missing values for whether it satisfies the
correctness criterion or not. The method of valued tolerance relations does not
simultaneously handle all the elements in an indiscernible set. By the example,
it is shown that the method does not satisfy the correctness criterion. Therefore,
we have proposed a new formula in which all the elements in an indiscernible
set are simultaneously dealt with. Using the new formula, the method of valued
tolerance relations satisfies the correctness criterion for the lower approximation.
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15. Stefanowski, J. and Tsoukiàs, A. [2000] Valued Tolerance and Decision Rules, in W.
Ziarko and Y. Yao, (eds.), Rough Sets and Current Trends in Computing, Lecture
Notes in Artificial Intelligence 2005, Springer-Verlag, pp. 212-219.
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Abstract. Pawlak recently introduced rough set flow graphs (RSFGs) as
a graphical framework for reasoning from data. Each rule is associated
with three coefficients, which have been shown to satisfy Bayes’ theo-
rem. Thereby, RSFGs provide a new perspective on Bayesian inference
methodology.

In this paper, we show that inference in RSFGs takes polynomial time
with respect to the largest domain of the variables in the decision tables.
Thereby, RSFGs provide an efficient tool for uncertainty management.
On the other hand, our analysis also indicates that a RSFG is a special
case of conventional Bayesian network and that RSFGs make implicit
assumptions regarding the problem domain.

1 Introduction

Bayesian networks [10] are a semantic modelling tool for managing uncertainty
in complex domains. For instance, Bayesian networks have been successfully ap-
plied in practice by NASA [4] and Microsoft [5]. A Bayesian network consists
of a directed acyclic graph (DAG) and a corresponding set of conditional prob-
ability tables (CPTs). The probabilistic conditional independencies [13] encoded
in the DAG indicate that the product of the CPTs is a unique joint probability
distribution. Although Cooper [1] has shown that the complexity of inference is
NP-hard, several approaches have been developed that seem to work quite well in
practice. Some researchers, however, reject any framework making probabilistic
conditional independence assumptions regarding the problem domain.

Rough sets, founded by Pawlak’s pioneering work in [8,9], are another tool
for managing uncertainty in complex domains. Unlike Bayesian networks, no as-
sumptions are made regarding the problem domain under consideration. Instead,
the inference process is governed solely by sample data. Very recently, Pawlak in-
troduced rough set flow graphs (RSFGs) as a graphical framework for reasoning
from data [6,7]. Each rule is associated with three coefficients, namely, strength,
certainty and coverage, which have been shown to satisfy Bayes’ theorem. There-
fore, RSFGs provide a new perspective on Bayesian inference methodology.

In this paper, we study the fundamental issue of the complexity of inference in
RSFGs. Our main result is that inference in RSFGs takes polynomial time with
respect to the largest domain of the variables in the decision tables. Thereby,
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c© Springer-Verlag Berlin Heidelberg 2005



336 C.J. Butz, W. Yan, and B. Yang

RSFGs provide an efficient framework for uncertainty management. On the other
hand, our analysis also indicates that a RSFG is a special case of Bayesian
network. Moreover, unlike traditional rough set research, implicit independency
assumptions regarding the problem domain are made in RSFGs.

This paper is organized as follows. Section 2 reviews the pertinent notions of
Bayesian networks and RSFGs. The complexity of inference in RSFGs is studied
in Section 3. In Section 4, we make a note on RSFG independency assumptions.
The conclusion is presented in Section 5.

2 Background Knowledge

In this section, we briefly review Bayesian networks and RSFGs.

2.1 Bayesian Networks

Let U = {v1, v2, . . . , vm} be a finite set of variables. Each variable vi has a finite
domain, denoted dom(vi), representing the values that vi can take on. For a
subset X = {vi, . . . , vj} of U , we write dom(X) for the Cartesian product of the
domains of the individual variables in X , namely, dom(X) = dom(vi) × . . . ×
dom(vj). Each element x ∈ dom(X) is called a configuration of X .

A joint probability distribution [12] on dom(U) is a function p on dom(U)
such that the following two conditions both hold: (i) 0 ≤ p(u) ≤ 1, for each con-
figuration u ∈ dom(U), and (ii)

∑
u∈dom(U) p(u) = 1.0. A potential on dom(U)

is a function φ on dom(U) such that the following two conditions both hold: (i)
0 ≤ φ(u), for each configuration u ∈ dom(U), and (ii) φ(u) > 0, for at least one
configuration u ∈ dom(U). For brevity, we refer to φ as a potential on U rather
than dom(U), and we call U , not dom(U), its domain [12].

Let φ be a potential on U and x ⊆ U . Then the marginal [12] of φ onto X ,
denoted φ(X) is defined as: for each configuration x ∈ dom(X),

φ(x) =
∑

y∈dom(Y )

φ(x, y), (1)

where Y = U − X , and x, y is the configuration of U that we get by combining
the configuration, x of X and y of Y . The marginalization of φ onto X = x can
be obtained from φ(X).

A Bayesian network [10] on U is a DAG on U together with a set of con-
ditional probability tables (CPTs) { p(vi|Pi) | vi ∈ U }, where Pi denotes the
parent set of variable vi in the DAG.

Example 1. One Bayesian network on U = {Manufacturer (M),Dealership (D),
Age (A)} is given in Figure 1.

We say X and Z are conditionally independent [13] given Y in a joint distri-
bution p(X, Y, Z, W ), if

p(X, Y, Z) =
p(X, Y ) · p(Y, Z)

p(Y )
. (2)
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AM D

M p ( M ) M D p ( D | M ) D A p ( A | D ) 

Ford 0.20 Ford Alice 0.60 Alice Old 0.30
Honda 0.30 Ford Bob 0.30 Alice Middle 0.60

Toyota 0.50 Ford Carol 0.00 Alice Young 0.10

Ford Dave 0.10 Bob Old 0.40
Honda Alice 0.00 Bob Middle 0.60

Honda Bob 0.50 Bob Young 0.00

Honda Carol 0.50 Carol Old 0.00

Honda Dave 0.00 Carol Middle 0.60

Toyota Alice 0.10 Carol Young 0.40

Toyota Bob 0.30 Dave Old 0.10

Toyota Carol 0.10 Dave Middle 0.30

Toyota Dave 0.50 Dave Young 0.60

Fig. 1. A Bayesian network on {Manufacturer (M), Dealership (D), Age (A)}

The independencies [13] encoded in the DAG of a Bayesian network indicate
that the product of the CPTs is a unique joint probability distribution.

Example 2. The independency I(M,D, A) encoded in the DAG of Figure 1 in-
dicates that

p(M,D, A) = p(M) · p(D|M) · p(A|D), (3)

where the joint probability distribution p(M,D, A) is shown in Figure 2.

2.2 Rough Set Flow Graphs

Rough set flow graphs are built from decision tables. A decision table is a po-
tential φ(C,D), where C is a set of conditioning attributes and D is a decision
attribute. In [6], it is assumed that the decision tables are normalized, which we
denote as p(C,D).

Example 3. Consider the set C = {Manufacturer (M)} of conditioning at-
tributes and the decision attributeDealership (D). One decision table φ1(M,D),
normalized as p1(M,D), is shown in Figure 3 (left). Similarly, a decision table on
C = {Dealership (D)} and decision attribute Age (A), normalized as p2(D, A),
is depicted in Figure 3 (right).

Each decision table defines a binary flow graph. The set of nodes in the flow
graph are {c1, c2, . . . , ck}∪ {d1, d2, . . . , dl}, where c1, c2, . . . , ck and d1, d2, . . . , dl

are the values of C and D appearing in the decision table, respectively. For each
row in the decision table, there is a directed edge (ci, dj) in the flow graph, where
ci is the value of C and dj is the value of D. For example, given the decision
tables in Figure 3, the respective binary flow graphs are illustrated in Figure 4.
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M D A p(M,D,A)

Ford Alice Old 0.036

Ford Alice Middle 0.072

Ford Alice Young 0.012

Ford Bob Old 0.024

Ford Bob Middle 0.036

Ford Dave Old 0.002

Ford Dave Middle 0.006

Ford Dave Young 0.012

Honda Bob Old 0.060

Honda Bob Middle 0.090

Honda Carol Middle 0.090

Honda Carol Young 0.060

Toyota Alice Old 0.015

Toyota Alice Middle 0.030

Toyota Alice Young 0.005

Toyota Bob Old 0.060

Toyota Bob Middle 0.090

Toyota Carol Middle 0.030

Toyota Carol Young 0.020

Toyota Dave Old 0.025

Toyota Dave Middle 0.075

Toyota Dave Young 0.150

Fig. 2. The joint probability distribution p(M, D, A) defined by the Bayesian network
in Figure 1

Each edge (ci, dj) is labelled with three coefficients: strength p(ci, dj), cer-
tainty p(dj |ci) and coverage p(ci|dj). For instance, the strength, certainty and
coverage of the edges of the flow graphs in Figure 4 are shown in Figure 5.

It should perhaps be emphasized here that all decision tables φ(C,D) define
a binary flow graph regardless of the cardinality of C. Consider a row in φ(C,D),
where c and d are the values of C and D, respectively. Then there is a directed
edge from node c to node d. That is, the constructed flow graph treats the
attributes of C as a whole, even when C is a non-singleton set of attributes.
For instance, in Example 1 of [6], the decision table φ(C,D) is defined over
conditioning attributes C = {M,D} and decision attribute A. One row in this
table has M = “Ford”, D = “Alice” and A = “Middle”. Nevertheless, the
constructed flow graph has an edge from node c1 to node “Middle”, where
c1 = (M = “Ford”,D = “Alice”). For simplified discussion, we will henceforth
present all decision tables in which C is a singleton set.

In order to combine the collection of binary flow graphs into a general flow
graph, Pawlak makes the flow conservation assumption [6]. This assumption
means that the normalized decision tables are pairwise consistent [2,13].
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M D 1 (M,D) p1  ( M,D ) D A 2 (D,A) p2  ( D,A )

Ford Alice 120 0.120 Alice Old 51 0.051
Ford Bob 60 0.060 Alice Middle 102 0.102

Ford Dave 20 0.020 Alice Young 17 0.017

Honda Bob 150 0.150 Bob Old 144 0.144

Honda Carol 150 0.150 Bob Middle 216 0.216

Toyota Alice 50 0.050 Carol Middle 120 0.120

Toyota Bob 150 0.150 Carol Young 80 0.080

Toyota Carol 50 0.050 Dave Old 27 0.027

Toyota Dave 250 0.250 Dave Middle 81 0.081

Dave Young 162 0.162

Fig. 3. Decision tables p1(M, D) and p2(D, A), respectively

Manufacturer (M) Dealership (D) Dealership (D) Age (A)

Bob

Carol

Dave

Alice

Young

Middle

Old

Bob

Carol

Dave

Alice

Toyota

Honda

Ford

Fig. 4. The respective binary flow graphs for the decision tables in Figure 3, where the
coefficients are given in Figure 5

Example 4. The two decision tables p1(M,D) and p2(D, A) in Figure 3 are pair-
wise consistent, since p1(D) = p2(D). For instance, p1(D = “Alice”) = 0.170 =
p2(D = “Alice”).

We now introduce the key notion of rough set flow graphs. A rough set flow
graph (RSFG) [6,7] is a DAG, where each edge is associated with the strength,
certainty and coverage coefficients. The task of inference is to compute p(X =
x|Y = y), where x and y are values of two distinct variables X and Y .

Example 5. The rough set flow graph for the two decision tables p1(M,D) and
p2(D, A) in Figure 3 is the DAG in Figure 6 together with the appropriate
strength, certainty and coverage coefficients in Figure 5. From these three coeffi-
cients, the query p(M = “Ford”|A = “Middle”), for instance, can be answered.
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M D p1(M,D) p1(D|M) p1(M|D) D A p2(D,A) p2(A|D) p2(D|A)

Ford Alice 0.12 0.60 0.71 Alice Old 0.05 0.30 0.23 

Ford Bob 0.06 0.30 0.16 Alice Middle 0.10 0.60 0.19 

Ford Dave 0.02 0.10 0.07 Alice Young 0.02 0.10 0.08 

Honda Bob 0.15 0.50 0.42 Bob Old 0.14 0.40 0.63 

Honda Carol 0.15 0.50 0.75 Bob Middle 0.22 0.60 0.42 

Toyota Alice 0.05 0.10 0.29 Carol Middle 0.12 0.60 0.23 

Toyota Bob 0.15 0.30 0.42 Carol Young 0.08 0.40 0.31 

Toyota Carol 0.05 0.10 0.25 Dave Old 0.03 0.10 0.14 

Toyota Dave 0.25 0.50 0.93 Dave Middle 0.08 0.30 0.15 

Dave Young 0.16 0.60 0.62 

Fig. 5. The strength p(ai, aj), certainty p(aj |ai) and coverage p(ai|aj) coefficients for
the edges (ai, aj) in the two flow graphs in Figure 4, respectively

Manufacturer (M) Dealership (D) Age (A)

Alice

Dave

Ford

Honda

Toyota

Bob

Old

Young

Carol

Middle

Fig. 6. The rough set flow graph (RSFG) for the two decision tables in Figure 3, where
the strength, certainty and coverage coefficients can be found in Figure 5

3 The Complexity of Inference

In this section, we establish the complexity of inference in RSFGs by polynomi-
ally transforming a RSFG into a Bayesian network and then stating the known
complexity of inference. That is, if the RSFG involves nodes {a1, a2, . . . , ak, b1, b2,
. . . , bl, . . . , k1, k2, . . . , km}, then the corresponding Bayesian network involves
variables U = {A, B, . . . , K}, where dom(A) = {a1, a2, . . . , ak}, dom(B) = {b1, b2,
. . . , bl}, . . . , dom(K) = {k1, k2, . . . , km}.

Let G be a RSFG for a collection of decision tables. It is straightforward to
transform G into a Bayesian network by applying the definition of RSFGs.
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We first show that the Bayesian network has exactly one root variable. Let
ai be a root node in G. The strength of ai is denoted as φ(ai). Let a1, a2, . . . , ak

be all of the root nodes in G, that is, a1, a2, . . . , ak have no incoming edges in
G. By the definition of throughflow in [6],

k∑
i=1

φ(ai) = 1.0. (4)

In other words, there is one variable A in U , such that dom(A) = {a1, a2, . . . , ak}.
In the Bayesian network, A is the only root variable.

By definition, the outflow [6] from one node in G is 1.0. Let {b1, b2, . . . , bl} be
the set of all nodes in G such that each bi, 1 ≤ i ≤ l, has at least one incoming
edge from a root node a1, a2, . . . , ak. By the definition of throughflow in [6],

l∑
j=1

φ(bj) = 1.0. (5)

This means there is a variable B ∈ U such that dom(B) = {b1, b2, . . . , bl}. In the
constructed Bayesian network of G, the root variable A has exactly one child
B. This argument can be repeated to show that variable B has precisely one
child, say C, and so on. The above discussion clearly indicates the structure of
the Bayesian network constructed from G is a chain. In other words, there is
only one root variable, and each variable except the last has exactly one child
variable.

We now turn to the quantitative component of the constructed Bayesian
network. For each variable vi, a CPT p(vi|Pi) is required. Consider the root
variable A. The CPT p(A) is obtained from the strengths φ(a1), φ(a2), . . . , φ(ak).
By Equation (4), p(A) is a marginal distribution. We also require the CPT
p(B|A). Recall that every outgoing edge from nodes a1, a2, . . . , ak must be an
incoming edge for nodes b1, b2, . . . , bl. Moreover, let ai be any node with at least
one edge going to b1, b2, . . . , bl. Without loss of generality, assume ai has edges
to b1, b2, . . . , bj. This means we have edges (ai, b1), (ai, b2), . . . , (ai, bj)∈ G. By
definition, the certainty is

φ(B = bj|A = ai) =
φ(A = ai, B = bj)

φ(A = ai)
. (6)

Since every decision table is normalized, φ(A = ai, B = bj) = p(A = ai, B = bj).
Therefore, the certainty in Equation (6) is, in fact,

p(B = bj |A = ai). (7)

Hence,
j∑

m=1

p(B = bm|A = ai) = 1.0. (8)
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Equation (8) holds for each value a1, a2, . . . , ak of A. Therefore, the conditional
probabilities for all edges from a1, a2, . . . , ak into b1, b2, . . . , bl define a single
CPT p(B|A). This argument can be repeated for the remaining variables in the
Bayesian network. Therefore, given a RSFG, we can construct a corresponding
Bayesian network in polynomial time.

Example 6. Given the RSFG in Figure 6, the corresponding Bayesian network
is shown in Figure 1.

There are various classes of Bayesian networks [10]. A chain Bayesian network
has exactly one root variable and each variable except the last has precisely one
child variable. A tree Bayesian network has exactly one root variable and each
non-root variable has exactly one parent variable. A singly-connected Bayesian
network, also known as a polytree, has the property that there is exactly one
(undirected) path between any two variables. A multiply-connected Bayesian
network means that there exist two nodes with more than one (undirected) path
between them. Probabilistic inference in Bayesian networks means computing
p(X = x|Y = y), where X, Y ⊆ U , x ∈ dom(X) and y ∈ dom(Y ). While Cooper
[1] has shown that the complexity of inference in multiply-connected Bayesian
networks is NP-hard, the complexity of inference in tree Bayesian networks is
polynomial. Inference, which involves additions and multiplications, is bounded
by multiplications. For a m-ary tree Bayesian network with n values in the
domain for each node, one needs to store n2+mn+2n real numbers and perform
2n2 +mn + 2n multiplications for inference [11].

We can now establish the complexity of inference in RSFGs by utilizing
the known complexity of inference in the constructed Bayesian network. In this
section, we have shown that a RSFG can be polynomially transformed into
a chain Bayesian network. A chain Bayesian network is a special case of tree
Bayesian network, that is, where m = 1. By substitution, the complexity of
inference in a chain Bayesian network is O(n2). Therefore, the complexity of
inference in RSFGs is O(m2), where m = max(|dom(vi)|), vi ∈ U . In other
words, the complexity of inference is polynomial with respect to the largest
domain of the variables in the decision tables. This means that RSFGs are an
efficient tool for uncertainty management.

4 Other Remarks on Rough Set Flow Graphs

One salient feature of rough sets is that they serve as a tool for uncertainty
management without making assumptions regarding the problem domain. On
the contrary, we establish in this section that RSFGs, in fact, make implicit
independency assumptions regarding the problem domain.

The assumption that decision tables p1(A1, A2), p2(A2, A3),. . ., pm−1(Am−1,
Am) are pairwise consistent implies that the decision tables are marginals of a
unique joint probability distribution p(A1, A2, . . . , Am) defined as follows

p(A1, A2, . . . , Am) =
p1(A1, A2) · p2(A2, A3) · . . . · pm−1(Am−1, Am)

p1(A2) · . . . · pm−1(Am−1)
. (9)
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a
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( ii )
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b

c

d e

( iii )

a
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d
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b

c

d

e

a

Fig. 7. Types of Bayesian network: (i) chain, (ii) tree, (iii) singly connected, and (iv)
multiply-connected

Example 7. Assuming the two decision tables p1(M,D) and p2(D, A) in Figure
3 are pairwise consistent implies that they are marginals of the joint distribution,

p(M,D, A) =
p1(M,D) · p2(D, A)

p1(D)
, (10)

where p(M,D, A) is given in Figure 2.

Equation (9), however, indicates that the joint distribution p(A1, A2, . . . , Am)
satisfies m−2 probabilistic independencies I(A1, A2, A3 . . .Am), I(A1A2, A3, A4

. . .Am), . . ., I(A1 . . .Am−2, Am−1, Am). In Example 7, assuming p1(M,D) and
p2(D, A) are pairwise consistent implies that the independence I(M,D, A) holds
in the problem domain p(M,D, A).

The important point is that the flow conservation assumption [6] used in the
construction of RSFGs implicitly implies probabilistic conditional independen-
cies holding in the problem domain.

5 Conclusion

Pawlak [6,7] recently introduced the notion of rough set flow graph (RSFGs)
as a graphical framework for reasoning from data. In this paper, we established
that the computational complexity of inference using RSFGs is polynomial with
respect to the largest domain of the variables in the decision tables. This result in-
dicates that RSFGs provide an efficient framework for uncertainty management.
At the same time, our study has revealed that RSFGs, unlike previous rough
set research, makes implicit independency assumptions regarding the problem
domain. Moreover, RSFGs are a special case of Bayesian networks. Future work
will study the complexity of inference in generalized RSFGs [3].
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Abstract. In this paper, we study rough set approximations under fuzzy
and random environments. A fuzzy set-valued mapping defines a pair of
upper and lower fuzzy rough approximations. Properties of fuzzy approx-
imation operators are examined and the crisp representations of fuzzy
approximation operators are presented. A fuzzy random variable from a
universe U to a universe W carries a probability measure defined over
subsets of U into a system of upper and lower probabilities over subsets
of W . The connections between fuzzy approximation spaces and fuzzy
belief structures are also established.

1 Introduction

One of the main directions for the development of rough set theory is the exten-
sion of Pawlak rough approximation operators. In Pawlak’s rough set model [11],
an equivalence relation is a key and primitive notion. This equivalence relation,
however, seems to be a very stringent condition that may limit the application
domain of the rough set model. To solve this problem, several authors have gen-
eralized the notion of approximation operators by using nonequivalence binary
relations [15], [16], [21], [24]. Rough set approximation operators can also be
extended to fuzzy environment, the results are called rough fuzzy sets or fuzzy
rough sets [1], [4], [8], [19], [21].

The classical rough-set data analysis uses only the internal knowledge, avoid
external parameters and does not rely on prior model assumptions. It is well
known, however, that in many real-world cases, available databases may be ob-
tained by some random experiments. Thus the uncertainty due to randomness
of the approximation spaces of rough set theory must be considered [6], [7], [17].
One important method used to deal with such uncertainty is the Dempster-Shafer
theory of evidence (also called the theory of belief function). It was originated
by Dempster’s concept of lower and upper probabilities [2], and extended by
Shafer [13] as a theory. The basic representational structure in this theory is a
belief structure which consists of a family of subsets, called focal elements, with
associated individual positive weights summing to one. The primitive numeric
measures derived from the belief structure are a dual pair of belief and plausi-
bility functions. A belief function can also be induced from a random set [10].
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The Dempster-Shafer theory can be generalized to the fuzzy environment [3],
[5], [23], [26]. There are strong relationships between rough set theory and the
Dempster-Shafer theory of evidence [14], [18], [25].

On the other hand, we often encounter random experiments whose outcomes
are expressed in inexact linguistic terms. A possible way to handle the prob-
lem is to use the concept of fuzzy random variables introduced by Kwakernaak
[9]. A fuzzy random variable is a random variable taking fuzzy sets as values.
Kwakernaak’s random variables take fuzzy numbers as values and later Puri
and Ralescu [12] introduced the notion of a fuzzy random variable as a fuzzy
set-valued function from a probability space to a set of fuzzy subsets of Rn sub-
ject to certain measurability conditions. Fuzzy random variables hence generalize
random variables, random vectors, and random sets.

The present paper studies rough set approximations under fuzzy and random
environment. Rough sets based on a fuzzy random variable, which include the
mechanisms of numeric and non-numeric aspects of uncertain knowledge, are
defined. The connections between fuzzy approximation spaces and fuzzy belief
structures are discussed.

2 Fuzzy Plausibility and Belief Functions

Let U be a nonempty set. The class of all subsets (respectively, fuzzy subsets) of
U will be denoted by P(U) (respectively, by F(U)). The class of all normalized
fuzzy sets of U will be denoted by F0(U), that is, F0(U) = {A ∈ F(U) : ∃x ∈
U such thatA(x) = 1}. For anyA ∈ F(U), the α-level and the strong α-level ofA
will be denoted by Aα and Aα+, respectively, that is, Aα = {x ∈ U : A(x) ≥ α}
and Aα+ = {x ∈ U : A(x) > α}, where α ∈ I = [0, 1], the unit interval, A0 = U ,
and A1+ = ∅. We denote by ∼ A the complement of A. The cardinality of a fuzzy
set A ∈ F(U) is denoted by |A| =

∑
x∈U

A(x), and if P is a probability measure

on U , then the probability of the fuzzy set A, denoted by P (A), is defined, in
the sense of Zadeh [27], by

P (A) =
∑
x∈U

A(x)P (x). (1)

Definition 1. Let U be a nonempty finite universe of discourse. A fuzzy set
function m : F(U) → I = [0, 1] is referred to as a fuzzy basic probability assign-
ment if it satisfies

(FM1) m(∅) = 0, (FM2)
∑

A∈F(U)

m(A) = 1.

A fuzzy set A ∈ F(U) with m(A) > 0 is referred to as a focal element of m.
Let M = {A ∈ F(U) : m(A) �= 0}, then the pair (M,m) is called a fuzzy belief
structure.

From a given fuzzy belief structure, a pair of fuzzy plausibility and fuzzy
belief functions can be derived.
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Definition 2. A fuzzy set function Bel : F(U) → I is called a fuzzy belief
function iff (if and only if)

Bel(X) =
∑

A∈M
m(A)NA(X), ∀X ∈ F(U), (2)

and a fuzzy set function P l : F(U) → I is called a fuzzy plausibility function iff

P l(X) =
∑

A∈M
m(A)ΠA(X), ∀X ∈ F(U), (3)

where NA and ΠA are the fuzzy necessity and fuzzy possibility measures generated
by the fuzzy set A as follows:

NA(X) =
∧

u∈U

(X(u) ∨ (1 −A(u))), ∀X ∈ F(U)

ΠA(X) =
∨

u∈U

(X(u) ∧A(u)), ∀X ∈ F(U). (4)

Remark 1. In Definition 2, if X ∈ P(U) and A ∈ P(U), then by Eq. (4) it can
easily be checked that

NA(X) �= 0 ⇐⇒ NA(X) = 1 ⇐⇒ A ⊆ X,

and
ΠA(X) �= 0 ⇐⇒ ΠA(X) = 1 ⇐⇒ A ∩X �= ∅.

Therefore, if (M,m) is a crisp belief structure, i.e.

(M1) m(∅) = 0, (M2)
∑

A∈P(U)

m(A) = 1,

then we can deduce that

Bel(X) =
∑

A⊆X

m(A), (5)

and
P l(X) =

∑
A∩X �=∅

m(A). (6)

Thus a fuzzy belief (plausibility, respectively) function is indeed a generalization
of a crisp belief (plausibility, respectively) function.

3 Fuzzy Rough Sets

Let U and W be two finite nonempty universes of discourse. Let F : U → F0(W )
be a fuzzy set-valued mapping, such a fuzzy set-valued function can generate a
normalized fuzzy binary relation R from U to W whose membership function is
defined by

R(u,w) = F (u)(w), ∀(u,w) ∈ U ×W.

Any normalized fuzzy binary relationR from U to W can derive a fuzzy mapping
F from U to W defined by
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F (u)(w) = R(u,w), ∀(u,w) ∈ U ×W.

The triple (U,W,F ) is referred to as a fuzzy approximation space.

Definition 3. Let (U,W,F ) be a fuzzy approximation space generated by a fuzzy
set-valued mapping F : U → F0(W ). For any X ∈ F(W ), the upper and lower
approximations of X, F (X)and F (X), with respect to the fuzzy approximation
space (U,W,F ) are fuzzy sets of U whose memberships are defined respectively
by, for any x ∈ U ,

F (X)(x) =
∨

y∈W

(F (x)(y) ∧X(y)),

F (X)(x) =
∧

y∈W

((1 − F (x)(y)) ∨X(y)).
(7)

The pair (F (X), F (X)) is referred to as a fuzzy rough set. The two fuzzy set
operators from F(W ) to F(U), F and F , are called the upper and lower fuzzy
rough approximation operators respectively.

Using the concepts of upper and lower fuzzy approximations, knowledge hid-
den in fuzzy information systems may be unraveled and expressed in the form
of decision rules, see e.g. [22].

It can be verified that the upper and lower fuzzy rough approximation oper-
ators, F and F , satisfy the properties: ∀A,B ∈ F(W ), ∀α ∈ I,

(FL1) F (A) =∼ F (∼ A), (FU1) F (A) =∼ F (∼ A),

(FL2) F (A ∪ α̂) = F (A) ∪ α̂, (FU2) F (A ∩ α̂) = F (A) ∩ α̂;

(FL3) F (A ∩B) = F (A) ∩ F (B), (FU3) F (A ∪B) = F (A) ∪ F (B);

(FL0) F (α̂) = α̂, (FU0) F (α̂) = α̂,

(FLU0) F (A) ⊆ F (A) .

where the set operations are defined in the sense of Zadeh [28], and â is the
constant fuzzy set: â(x) = a, for all x.

Remark 2. In Definition 3, if F : U → P0(W ) is a crisp set-valued mapping, and
X ∈ P(W ) is a crisp subset of W , then it can easily be verified that

F (X)(u) = 1 ⇐⇒ F (u) ∩X �= ∅,
F (X)(u) = 1 ⇐⇒ F (u) ⊆ X.

Thus the pair of upper and lower fuzzy rough approximation operators is indeed
a generalization one of upper and lower crisp rough approximation operators,
i.e.,

F (X) = {u ∈ U : F (u) ∩X �= ∅},
F (X) = {u ∈ U : F (u) ⊆ X}.

(8)

On the other hand, the lower and upper fuzzy rough approximation operators
defined by Eq.(7) can be represented by crisp approximation operators [21].
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Theorem 1. Let (U,W,F ) be a fuzzy approximation space and A ∈ F(W ), then

(1) F (A) =
∨

α∈I

[α ∧ 1Fα(Aα)] =
∨

α∈I

[α ∧ 1Fα(Aα+)]

=
∨

α∈I

[α ∧ 1Fα+(Aα)] =
∨

α∈I

[α ∧ 1Fα+(Aα+)],

(2) F (A) =
∨

α∈I

[α ∧ 1F1−α(Aα)] =
∨

α∈I

[α ∧ 1F1−α(Aα+)]

=
∨

α∈I

[α ∧ 1F(1−α)+(Aα)] =
∨

α∈I

[α ∧ 1F(1−α)+(Aα+)],

and ∀α ∈ I

(3) [F (A)]α+ ⊆ Fα+(Aα+) ⊆ Fα+(Aα) ⊆ Fα(Aα) ⊆ [F (A)]α,

(4) [F (A)]α+ ⊆ Fα+(Aα+) ⊆ Fα(Aα+) ⊆ Fα(Aα) ⊆ [F (A)]α,

(5) [F (A)]α+ ⊆ F1−α(Aα+) ⊆ F(1−α)+(Aα+) ⊆ F(1−α)+(Aα) ⊆ [F (A)]α,

(6) [F (A)]α+ ⊆ F1−α(Aα+) ⊆ F1−α(Aα) ⊆ F(1−α)+(Aα) ⊆ [F (A)]α.

Where the crisp upper and lower approximations are defined as Eq.(8).

4 Connections Between Fuzzy Approximation Spaces and
Fuzzy Belief Structures

Let U and W be two finite nonempty universes of discourse. For simplicity,
we treat a fuzzy set-valued function F : (U,P ) → F0(W ) with a probability
distribution P on U such that P ({u}) > 0 for all u ∈ U as a fuzzy random
variable. Such a function is measurable with respect to the discrete measurability
spaces (U,P(U)) and (W,P(W )). We can see that a fuzzy set-valued function
F : (U,P ) → F0(W ) is a fuzzy random variable iff its α-level set function
Fα : (U,P ) → P(W ), defined by Fα(u) = {w ∈ W : F (u)(w) ≥ α}, is a random
set for all α ∈ I.

Assume that F : (U,P ) → F0(W ) is a fuzzy random variable, the quadru-
ple ((U,P ),W, F ) is referred to as random fuzzy approximation space. For any
X ∈ F(W ), the probabilities of the upper and lower fuzzy approximations of X
with respect to random fuzzy approximation space ((U,P ),W, F ), P (F (X)) and
P (F (X)) generate two quantities P (X) and P (X) as follows:

P (X) = P (F (X)) =
∑

x∈U

F (X)(x)P (x),

P (X) = P (F (X)) =
∑

x∈U

F (X)(x)P (x),
(9)

The two quantities P (X) and P (X) are respectively called the upper and lower
probabilities of X induced by the fuzzy random variable F .

Theorem 2. The upper and lower probability functions, P and P , induced by a
fuzzy random variable F : (U,P ) → F0(W ), are fuzzy plausibility and fuzzy belief
functions respectively, and the corresponding fuzzy basic probability assignment



350 W.-Z. Wu

is m(A) = P (j(A)), where j(A) = {u ∈ U : F (u) = A}, A ∈ F(W ). Conversely,
if P l and Bel are a dual pair of fuzzy plausibility and fuzzy belief functions on
W , that is,

P l(X) =
∑

A∈M
m(A)ΠA(X), ∀X ∈ F(W ),

Bel(X) =
∑

A∈M
m(A)NA(X), ∀X ∈ F(W ), (10)

where ΠA and NA are the possibility and necessity measures generated by the
fuzzy set A defined by Eq. (4), then there exists a random fuzzy approximation
space ((U,P ),W, F ), i.e., there exists a finite universe of discourse U , a probabil-
ity measure P on U , and a fuzzy random variable F from U to W , such that its
induced upper and lower probabilities are respectively the fuzzy plausibility and
fuzzy belief functions, i.e.,

P (X) = P l(X), P (X) = Bel(X), ∀X ∈ F(W ). (11)

Proof. Assume that ((U,P ),W, F ) is a fuzzy random approximation space, for
A ∈ F(W ), define

j(A) = {u ∈ U : F (u) = A}. (12)

Obviously, j satisfies:

j(A) ∩ j(B) = ∅ for A �= B and
⋃

A∈F(W )

j(A) = U. (13)

Let
m(A) = P (j(A)), A ∈ F(W ).

Since P ({u}) > 0 for all u ∈ U , we have

m(A) > 0 ⇐⇒ j(A) �= ∅. (14)

Thus, in terms of Eq. (13) and Eq. (14), we have, for all X ∈ F(W ),

P (X) = P (F (X)) =
∑

u∈U

F (X)(u)P ({u})

=
∑

u∈U

P ({u})(
∨

y∈W

(F (u)(y) ∧X(y)))

=
∑

A∈F(W )

∑
u∈j(A)

P ({u})(
∨

y∈W

(F (u)(y) ∧X(y)))

=
∑

A∈F(W )

∑
u∈j(A)

P ({u})(
∨

y∈W

(A(y) ∧X(y)))

=
∑

A∈M
P (j(A))

∨
y∈W

(A(y) ∧X(y)) =
∑

A∈M
m(A)ΠA(X).

Therefore P : F(W ) → I is a fuzzy plausibility function.
Likewise we can conclude that

P (X) =
∑

A∈M
m(A)(

∧
y∈W

(1−A(y))∨X(y)) =
∑

A∈M
m(A)NA(X), ∀X ∈ F(W ),

which implies that P is a fuzzy belief function.
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Conversely, if P l and Bel are a dual pair of fuzzy plausibility and fuzzy belief
functions on W , let M = {A1, A2, . . . , Ak} be the family of focal elements of m.
Let U = {u1,u2, . . . ,uk} be a set having k elements, we define a set function
P : P(U) → I as

P ({ui}) = m(Ai), i = 1, 2, . . . , k,

P (X) =
∑

u∈X

P ({u}), X ⊆ U.

It is easy to see that P is a probability measure on U .
We then define a fuzzy set-valued function F : U → F(W ) as

F (ui) = Ai, i = 1, 2, . . . , k.

Since Ai is normalized for each i = 1, 2, . . . , k and P is a probability measure
on U , F is a fuzzy random variable from (U,P ) to F0(W ). It is clear that
j(A) = {ui} for A = Ai and ∅ otherwise. Then m(A) = P (j(A)) > 0 for A ∈ M
and 0 otherwise. Therefore, for all X ∈ F(W ), we have

P (F (X)) =
∑

u∈U

F (X)(u)P ({u}) =
∑

A∈M
P (j(A))

∨
y∈W

(A(y) ∧X(y))

=
∑

A∈M
m(A)ΠA(X) = P l(X).

Similarly, we can conclude that

P (F (X)) =
∑

A∈M
m(A)NA(X) = Bel(X).

Remark 3. This theorem shows that an arbitrary fuzzy belief structure (M,m)
can be associated with a random fuzzy approximation space ((U,P ),W, F ) such
that the induced dual pair of upper and lower fuzzy rough approximation oper-
ators from F(W ) to F(U) may be used to interpret the dual pair of fuzzy plau-
sibility and fuzzy belief functions induced by the fuzzy belief structure (M,m).

Remark 4. It should be noted that if there is no prior probability on U , the
principle of indifference of the statistical model must be used in rough-set data
analysis, i.e., we can take the probability on U as: P ({x}) = 1/|U | for all x ∈ U ,
and thus the randomization methods are still applicable. The upper and lower
probability functions, P and P , are still fuzzy plausibility and fuzzy belief func-
tions respectively. Conversely, if P l and Bel are a dual pair of fuzzy plausibility
and fuzzy belief functions on W with m(A) being a rational number for each
A ∈ M, then there exists a random fuzzy approximation space ((U,P ),W, F )
with probability P ({x}) = 1/|U | for all x ∈ U such that its induced upper and
lower probability functions are respectively the plausibility and belief functions,
i.e., Eq. (11) holds.

5 Conclusion

We have developed a new rough set model defined by a fuzzy random variable
which includes the mechanisms of numeric aspect (upper and lower probabilities
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of a fuzzy set) and non-numeric aspect (upper and lower approximations of
a fuzzy set) of uncertain knowledge under fuzzy and random environment. We
have also established relationships between fuzzy approximation spaces and fuzzy
belief structures which shows that, though fuzzy rough set theory and the fuzzy
evidence theory capture different aspects of uncertainty, they complement each
other in analysis. The paper may be treated as a fuzzy generalization of Dempster
[2] as well as Yao [25]. Further research is to study on properties of the fuzzy
plausibility and fuzzy belief functions and their application to fuzzy information
analysis.
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Abstract. This paper is concerned with describing and analyzing the
control actions which are accomplished by a human operator, who con-
trols a complex dynamic system. The decision model is expressed by
means of a decision table with fuzzy attributes. Decision tables are gen-
erated by the fuzzification of crisp data, basing on a set of fuzzy linguistic
values of the attributes. A T-similarity relation is chosen for comparing
the elements of the universe. Fuzzy partitions of the universe with re-
spect to condition and decision attributes are generated. The task of
stabilization of the aircraft’s altitude performed by a pilot is consid-
ered as an illustrative example. The limit-based and mean-based vari-
able precision fuzzy rough approximations are determined. The measure
of u-approximation quality is used for evaluating the consistency of the
human operator’s decision model, and assessing the importance of par-
ticular condition attributes in the control process.

1 Introduction

Uncertainty and vagueness are inherent features of data that are obtained from
real processes controlled by an expert. The knowledge acquisition from such
a kind of data is an interesting and important task especially in the area of
engineering, expert systems and decision support systems.

In contrast to the classical approach of control theory, which treats the human
operator as a controller, a new paradigm in form of the fuzzy sets theory was
elaborated in the recent decades, which turned out to be suitable for modelling
the expert’s controlling behavior. The expert formulates his knowledge of proper
control actions in the form of fuzzy decision rules. He defines the input and
output variables and the membership functions of the linguistic values which
are used in the rules. However, the experts can not always formulate the rule
system explicitly. Hence, the decision system of the human operator has to be
discovered, basing on the recorded process data. In such a case the rough sets
theory can be successfully applied.

The use of the rough sets paradigm for modelling the human operator’s con-
trol in industrial processes was initiated by Mrózek [12,13,14]. He utilized basi-
cally decision tables with crisp attributes. The intervals of the attributes values
were coded as integers. Only static or slow processes were taken into account.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 354–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Modelling dynamic processes using the crisp rough sets description was in-
vestigated in our former work [8,9]. It concerned the issue of generating and
analyzing decision tables, which represented the control actions of a skilled mil-
itary pilot, performing various flight tasks on a flight simulator. The obtained
information systems were relatively large. The original rough sets approach is
very sensitive to small changes in data. It can be especially observed in case of
large decision tables. Therefore, we could effectively adopt the variable precision
rough sets model (VPRS) introduced by Ziarko [6,17].

In this paper we consider some issues connected with application of the vari-
able precision fuzzy rough sets model (VPFRS), proposed in [10,11], to modelling
the human operator’s decision system. This is a new contribution to our previous
work, in which mainly theoretical aspects of the VPFRS model were considered.
In particular, we discuss how to construct from process data decision tables with
fuzzy attributes, choose an adequate fuzzy similarity relation, and analyze de-
cision tables with the help of the VPFRS model. Additionally, we give a new
definition of the upper variable precision fuzzy rough set approximation.

By using fuzzy sets one is able to introduce suitable linguistic values in the
decision rules. In consequence, we obtain fuzzy decision tables, which are more
adequate for describing the control actions of a human operator, because the
human utilizes linguistic terms rather than numbers in his inference. The fuzzy
rough sets extension is necessary for analyzing the obtained decision tables with
fuzzy attributes. The variable precision fuzzy rough sets model is particularly
advantageous in analysis of large fuzzy information systems, which are usually
generated in case of dynamic processes.

2 Human Operator’s Decision Model

2.1 Decision Tables with Fuzzy Attributes

Let us introduce the necessary description needed for construction of fuzzy de-
cision tables. To this end we adopt an extension of Bodjanova’s idea of fuzzy
concepts [1], which was improved by Fernández Salido and Murakami in [4].

We have a finite universe U with N elements: U = {x1, x2, . . . , xN}. Each
element x of the universe U is described with the help of fuzzy attributes, which
are divided into a subset of n condition attributes C = {c1, c2, . . . , cn}, and a
subset of m decision attributes D = {d1, d2, . . . , dm}.

For each fuzzy attribute a set of linguistic values can be given. We denote
by Vi1, Vi2, . . . , Vini the linguistic values of the condition attribute ci, and by
Wj1,Wj2, . . . ,Wjmj the linguistic values of the decision attribute dj , where ni

and mj is the number of the linguistic values of the i-th condition and the j-th
decision attribute respectively, i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

For any element x ∈ U its membership degrees in all linguistic values of
the condition attribute ci (or decision attribute dj) have to be determined. It
is done during the fuzzification stage, by utilizing the recorded crisp value of
a particular attribute of x. When the linguistic values of an attribute have the
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Table 1. Decision table with fuzzy attributes

c1 c2 · · · cn d1 d2 · · · dm

x1 V1(x1) V2(x1) · · · Vn(x1) W1(x1) W2(x1) · · · Wm(x1)
x2 V1(x2) V2(x2) · · · Vn(x2) W1(x2) W2(x2) · · · Wm(x2)

· · ·
xN V1(xN) V2(xN) · · · Vn(xN) W1(xN) W2(xN) · · · Wm(xN)

form of singletons or disjoint intervals, with membership degree equal to 1 in the
original domain of the attribute, then only one linguistic value can be assigned
to that attribute. In that case we get a classical crisp decision table. In general,
we obtain a non-zero membership of x to more than one linguistic value of an
attribute. Moreover, we may say that the value of an attribute for a given element
x is a fuzzy set in the domain of all linguistic values of that attribute. So, we
denote by Vi(x) the fuzzy value of the condition attribute ci for any x, as a fuzzy
set in the domain of the linguistic values of ci:

Vi(x) = {μVi1(x)/Vi1, μVi2(x)/Vi2, . . . , μVini
(x)/Vini} .

Wj(x) denotes the fuzzy value of the decision attribute dj for any x, as a fuzzy
set in the domain of the linguistic values of dj :

Wj(x) = {μWj1 (x)/Wj1, μWj2 (x)/Wj2, . . . , μWjmj
(x)/Wjmj } .

2.2 Similarity Relations for Condition and Decision Attributes

The problem of comparing objects described by fuzzy sets has been widely stud-
ied in the literature [2,4]. Many different forms of similarity relation have been
invented and investigated, e.g. Greco, Matarazzo and S�lowiński proposed [5] ap-
proximation of fuzzy sets by means of fuzzy relations which are only reflexive.
In our considerations, when we focus on the analysis of the recorded process
data, the symmetry and some kind of transitivity of the fuzzy similarity relation
should be assumed.

After fuzzification of real crisp numbers obtained from the control process,
each row of the decision table (in a vector representation) contains the mem-
bership degrees of a particular element x in all possible linguistic values of the
condition and decision attributes. We use further a symmetric, reflexive and T-
transitive fuzzy similarity relation [2,4], which is defined by means of the distance
between the compared elements. For the sake of brevity the following formulas
will only be given for condition attributes.

If we want to compare any two elements x and y of the universe U with
respect to the condition attribute ci, then the similarity between x and y could
be expressed as:

Sci(x, y) = 1 − max
k=1,ni

|μVik
(x) − μVik

(y)| . (1)



Variable Precision Fuzzy Rough Sets Model 357

The above definition of Sci(x, y) is one of many possible measures of similarity
between the fuzzy sets Vi(x) and Vi(y). This is the case of T-similarity relation
based on the �Lukasiewicz T-norm [4].

In order to evaluate the similarity SC(x, y), with respect to condition at-
tributes C, we have to aggregate the results obtained for all attributes ci, i =
1, 2, . . . , n. This can be done by using the T-norm operator min as follows:

SC(x, y) = min
i=1,n

Sci(x, y) = min
i=1,n

(1 − max
k=1,ni

|μVik
(x) − μVik

(y)|) . (2)

By the calculation of similarity for all pairs of elements of the universe U we
obtain a symmetric similarity matrix. Every row of the similarity matrix forms
a fuzzy set in the domain of U . If the value of similarity between the elements
x and y is equal to 1, they do belong to the same similarity class. It means
that two rows of the similarity matrix must be merged into one fuzzy set with
the membership degrees equal to 1 for x and y. This way we obtain a family
of fuzzy similarity classes C̃ = {C1, C2, . . . , Cñ} for the condition attributes C
and a family of fuzzy similarity classes D̃ = {D1,D2, . . . ,Dm̃}, for the decision
attributes D.

The generated partitions C̃ and D̃ satisfy the property of covering U suffi-
ciently and the property of disjointness [3]. For the partition C̃ with ñ elements
the properties of covering and disjointness are expressed as follows:

inf
x∈U

max
i=1,ñ

μCi(x) > 0 , (3)

∀ i, j ∈ {1, 2, . . . , ñ} ∧ i �= j , sup
x∈U

min(μCi(x), μCj (x)) < 1 . (4)

Now, we are able to calculate the approximations of D̃ by C̃. This will be done
by using the VPFRS model.

2.3 Variable Precision Fuzzy Rough Approximations

We want to recall here our approach to VPFRS that bases on the use of fuzzy
R-implication operators and extends the basic idea of inclusion error introduced
by Ziarko [6,17].

Because every similarity class is a fuzzy set in the domain of U , calculating
the approximations of particular members of the family D̃ by the family C̃ entails
the problem of inclusion of one fuzzy set in another fuzzy set. Different measures
of fuzzy sets inclusion were considered in the literature e.g. [1] and [7].

An important notion, on which our VPFRS model is based, is the inclusion
degree of a fuzzy set A in a fuzzy set B with respect to particular elements of a
set A. We construct a fuzzy set called the fuzzy inclusion set of A in B, denoted
by AB . We apply to this end an implication operator →:

μAB (x) =
{
μA(x) → μB(x) if μA(x) > 0 ,
0 otherwise. (5)

Only the proper elements of A (support of A) are taken into account. In the
definition (5) an implication operator → is used, with the aim of maintaining
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the compatibility (in limit cases) between the fuzzy rough sets model of Dubois
and Prade [3] and our VPFRS model. This was stated in [10].

Furthermore, we require that the degree of inclusion with respect to x should
be equal to 1, if the inequality μA(x) ≤ μB(x) for that x is satisfied:

μA(x) → μB(x) = 1 if μA(x) ≤ μB(x) . (6)

We can easy show that the requirement (6) is always satisfied by residual im-
plicators (R-implicators) [15]. We have found out [10] that the most appropri-
ate residual implicator for the VPFRS model is the �Lukasiewicz R-implicator:
x → y = min(1, 1 − x+ y).

In order to generalize the measure of inclusion error [10] introduced by Ziarko,
we use a special interpretation of the VPRS approach. The determination of
the lower approximation of a set in the (crisp or fuzzy) VPRS model can be
interpreted as counting the indiscernibility classes into the lower approximation,
basing on the ”better” elements (concerning their membership in the set AB)
and disregarding the ”worst” elements of the indiscernibility classes, provided
that an admissible error is not exceeded. So, we must determine the error that
would be made, when the “worst” elements of an approximating fuzzy set were
discarded. We discard those elements by applying the notion of α-cut, defined
for any fuzzy set A ⊆ U and a level α ∈ [0, 1]:

Aα = {x ∈ U : μA(x) ≥ α} . (7)

The generalized measure of inclusion error of any nonempty fuzzy set A in a
fuzzy set B is called the α-inclusion error eα(A,B), and defined as:

eα(A,B) = 1 − power(A ∩AB
α )

power(A)
, (8)

where power denotes the cardinality of a fuzzy set.
An α value will be needed to express how many ”bad” elements may be

disregarded without violating the admissible error.
The admissible inclusion error will be expressed by using a lower limit l

and an upper limit u for the required inclusion degree. The limits l and u were
introduced in the extended version of VPRS by Katzberg and Ziarko [6], with

0 ≤ l < u ≤ 1 . (9)

For a given decision table we approximate particular fuzzy similarity classes
Dj ∈ D̃, j = 1, 2, . . . , m̃, generated with respect to the decision attributes D,
by all elements of the fuzzy partition C̃, generated with respect to the condition
attributes C. According to the discussion given above we admit of some level
of tolerance and take into account only the best elements of the approximating
class. The u-lower approximation of a fuzzy set Dj by C̃ is a fuzzy set on the
domain C̃ with the membership function expressed as follows:

μC̃uDj
(Ci) =

{
fiu if ∃αu = sup{α ∈ (0, 1] : eα(Ci,Dj) ≤ 1 − u} ,
0 otherwise, (10)
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where

fiu = inf
x∈Siu

μCi(x) → μDj (x) , Siu = supp(Ci ∩ (CDj

i )αu) ,

and supp denotes the (crisp) support of a fuzzy set.
In the definition of the upper approximation we use only the best elements

of the complement of the intersection of the approximating class Ci and the
approximated set Dj . The l-upper approximation of the set Dj by C̃ is a fuzzy
set on the domain C̃ with the membership function expressed by:

μ
C̃lDj

(Ci) =
{
fil

if ∃αl = sup{α ∈ (0, 1] : e′α(Ci,Dj) ≤ l} ,
1 otherwise, (11)

where

fil
= sup

x∈Sil

μCi(x) ∗ μDj (x) , Sil
= supp(Ci ∩ (Ci ∩ Dj)αl

) ,

e′α(Ci,Dj) = 1 − power(Ci ∩ (Ci ∩ Dj)α)
power(Ci)

,

and ∗ denotes a fuzzy T-norm operator.
The limit-based fuzzy rough approximations are sensitive to small changes of

data. An alternative definition of fuzzy rough approximations given in [10] bases
on the mean value of membership (in the fuzzy inclusion set) for all used (not
discarded) elements of the approximating class. Different importance of partic-
ular elements in the approximating classes is taken into account by determining
the weighted mean membership in the inclusion set.

We define the weighted mean u-lower approximation of the set Dj by C̃ as a
fuzzy set on the domain C̃ with the following membership function:

μC̃uDj
(Ci) =

{
fiu if ∃αu = sup{α ∈ (0, 1] : eα(Ci,Dj) ≤ 1 − u} ,
0 otherwise, (12)

where

fiu =
power((CDj

i ∩ (CDj

i )αu) · Ci)

card((CDj

i )αu)
. (13)

The membership function of the weighted mean l-upper approximation of the
set Dj by C̃ is defined as follows:

μ
C̃lDj

(Ci) =
{
fil

if ∃αl = sup{α ∈ (0, 1] : eα(Ci,Dj) < 1 − l} ,
0 otherwise, (14)

where

fil
=

power((CDj

i ∩ (CDj

i )αl
) · Ci)

card((CDj

i )αl
)

. (15)

The weighted mean value of inclusion degree of Ci in Dj is determined by using
only those elements of Ci, which are included in Dj at least to a degree of αu and
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αl and denoted by fiu and fil
respectively. The operator · used in (13) and (15)

denotes the product of fuzzy sets, obtained by multiplication of the respective
values of membership functions.

Furthermore, we can use a generalized measure of u-approximation quality
in order to deal with fuzzy sets and fuzzy relations.

For the family D̃ = {D1,D2, . . . ,Dm̃} and the family C̃ = {C1, C2, . . . , Cñ}
the u-approximation quality of D̃ by C̃ is defined as follows:

γC̃u
(D̃) =

power(PosC̃u
(D̃))

card(U)
, (16)

where
PosC̃u

(D̃) =
⋃

Dj∈D̃

ω(C̃uDj) ∩ Dj . (17)

The fuzzy extension ω denotes a mapping from the domain C̃ into the domain
of the universe U , which is expressed for any fuzzy set A by:

μω(A)(x) = μA(Ci) if μCi(x) = 1 . (18)

Note, that we use in (17) the notion of restricted positive region defined in [11]
for any fuzzy set A and a similarity relation S as follows:

PosSu(A) = A ∩ ω(SuA) . (19)

The u-approximation quality of D̃ by C̃ will be used as a measure of consistency
of the human operator’s decision model.

3 Example

We consider now the task of stabilization of the aircraft’s altitude, performed by
a pilot. Two condition attributes c1 and c2 were taken into account:

c1 – altitude deviation from the required value
(values: V11 – “Large Negative”, V12 – “Small Negative”, V13 – “Zero”,

V14 – “Small Positive”, V15 – “Large Positive”);
c2 – rate of climb

(values: V21 – “Negative”, V22 – “Zero”, V23 – “Positive”).

One decision attribute d1 was used:

d1 – change of the rudder deflection angle,
(values: W11 – “Negative (Decrease)”, W12 – “Zero (No Change)”,

W13 – “Positive (Increase)”).

The membership functions selected for all linguistic values of the attributes have
a typical “trapezoidal” shape.
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Table 2. Decision table with fuzzy attributes in vector representation

c1 c2 d1

x1 (0.0, 0.0, 1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0)
x2 (0.0, 0.0, 1.0, 0.0, 0.0) (0.1, 0.9, 0.0) (0.0, 0.9, 0.1)
x3 (0.0, 0.2, 0.8, 0.0, 0.0) (0.8, 0.2, 0.0) (0.0, 0.0, 1.0)
x4 (0.0, 0.0, 0.0, 1.0, 0.0) (0.0, 0.3, 0.7) (0.9, 0.1, 0.0)
x5 (0.0, 0.0, 0.9, 0.1, 0.0) (1.0, 0.0, 0.0) (0.0, 0.3, 0.7)
x6 (0.0, 0.0, 0.0, 0.0, 1.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0)
x7 (0.0, 0.0, 0.0, 1.0, 0.0) (0.8, 0.2, 0.0) (0.0, 1.0, 0.0)
x8 (0.0, 0.0, 1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0)
x9 (0.0, 0.9, 0.1, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 0.0, 1.0)
x10 (0.1, 0.9, 0.0, 0.0, 0.0) (0.0, 0.9, 0.1) (0.0, 1.0, 0.0)
x11 (0.0, 1.0, 0.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 0.1, 0.9)
x12 (0.9, 0.1, 0.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0)
x13 (0.0, 0.0, 1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0)
x14 (0.0, 0.0, 1.0, 0.0, 0.0) (0.1, 0.9, 0.0) (0.0, 1.0, 0.0)
x15 (0.0, 0.0, 1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0)

In reality, the process of altitude stabilization is more complicated, but a
simplified description is sufficient for our considerations. The decision table with
fuzzy attributes was generated from the control process by the fuzzification stage.
In order to analyze the obtained decision table with the help of VPFRS the
following steps were executed:

1. Determining the similarity matrix on the domain U × U with respect to all
condition attributes and the similarity matrix with respect to all decision
attributes, according to (2).

2. Determining the family of similarity classes C̃ and D̃.
3. Calculating the u-lower approximation of particular decision similarity

classes by the family of condition similarity classes, in the domain of C̃,
according to (10) and (12).

4. Determining the u-lower approximation of D̃ by C̃ in the domain of U , and
calculating the u-approximation quality of D̃ by C̃, according to (16).

5. Evaluating the importance of each condition attribute for the human oper-
ator’s decision model.

We obtained in the second step 11 similarity classes with respect to the condition
attributes and 7 similarity classes with respect to the decision attribute. In the
next step the �Lukasiewicz implication operator was used in calculations. The
last step consists in checking up the value of u-approximation quality of D̃ by
C̃, after discarding particular condition attributes from the decision table. The
omitted condition attribute is indispensable, when the value of u-approximation
quality decreases. The results of u-approximation quality of D̃ by C̃ before and
after removing of each condition attribute are given in Table 2.1. We see that
even for a small universe the value of u-approximation quality increases, when we



362 A. Mieszkowicz-Rolka and L. Rolka

Table 3. u-approximation quality for different values of required inclusion degree

γC̃u
(D̃)Method Removed

attribute u = 1 u = 0.9 u = 0.85 u = 0.8 u = 0.75

none 0.667 0.680 0.747 0.900 0.920
�L-inf c1 0.207 0.233 0.347 0.447 0.467

c2 0.393 0.393 0.400 0.400 0.500

none 0.885 0.887 0.901 0.946 0.948
�L-w.mean c1 0.462 0.471 0.689 0.719 0.743

c2 0.705 0.705 0.742 0.742 0.782

use the VPFRS model with u < 1, especially for the limit-based method. Thus,
the u-approximation quality is a good measure of consistency of the human
operator’s decision model. The analyzed pilot’s decision system has a relatively
high consistency. Calculations after discarding particular condition attributes
lead to a conclusion that each of the condition attributes is important in the
decision model.

4 Conclusions

In this paper we proposed to describe the human operator’s decision model in
the form of decision table with fuzzy attributes. The fuzzy character of attributes
corresponds with the human ability to inference using linguistic concepts rather
than numbers. The variable precision fuzzy rough sets model was recommended
for analyzing this kind of decision tables. Particular steps of analysis were pre-
sented and discussed using a simple example. It was shown that relaxation of
strong inclusion requirements of one fuzzy set in another fuzzy set (admitting
of a certain misclassification level in the human operator’s control) leads to
an increase of the u-approximation quality of D̃ by C̃. The change of the u-
approximation quality of D̃ by C̃, after omitting particular condition attribute
in a decision table, is a good indicator of importance of that attribute in the
human operator’s decision system. The VPFRS model is an universal tool for
analyzing decision tables with fuzzy or crisp attributes.
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16. S�lowiński, R., (ed.): Intelligent Decision Support: Handbook of Applications and
Advances of the Rough Sets Theory. Kluwer Academic Publishers, Boston Dor-
drecht London (1992)

17. Ziarko, W.: Variable Precision Rough Sets Model. Journal of Computer and System
Sciences 46 (1993) 39–59



CRST: A Generalization of Rough Set Theory

Tian Hong1,2, Zhao Pixi1, and Wang Xiukun1

1 Dalian University of Technology, Dalian, China
2 Dalian Jiaotong University, Dalian, China

th@djtu.edu.cn

Abstract. Rough set theory is developed based on the notion of equiva-
lence relation, but the property of equivalence has limited its application
fields, which may not provide a realistic description of real-world rela-
tionships between elements. The paper presents a transition from the
equivalence relation to the compatibility relation, called Compatibility
Rough Set Theory or, in short, CRST. A specific type of fuzzy compati-
bility relations, called conditional probability relations, is discussed. All
basic concepts or rough set theory are extended. Generalized rough set
approximations are defined by using coverings of the universe induced by
a fuzzy compatibility relation. Generalized rough membership functions
are defined and their properties are examined.

Keywords: Rough Set Theory (RST), Compatibility Rough Set Theory
(CRST), Compatibility Relation, Fuzzy Compatibility Relation.

1 Introduction

Rough set theory is a new mathematical approach to uncertain and vague data
analysis. It plays an important role in many applications of data mining and
knowledge discovery. The application of rough set theory for machine learning,
knowledge discovery, decision analysis, expert system, decision support, classifi-
cation, pattern recognition, fuzzy control and others have proved to be a very
effective new mathematical approach [1]. It offers a mathematical model and
tools for discovering hidden patterns in data, recognizing partial or total depen-
dencies in data, removing redundant data, and many others [2, 3].

Rough set theory generalizes classical set theory by studying sets with im-
precise boundaries. A rough set, characterized by a pair of lower and upper
approximations, may be viewed as an approximate representation of a crisp set
in terms of two subsets derived from a partition on the universe [4, 5].

The main objective of this paper is to generalize the standard rough sets by
coverings of the universe induced by a fuzzy compatibility relation. The pro-
posed rough sets may be considered as generalized fuzzy rough set [6, 7]. Rough
membership functions are generalized and defined with respect to the covering,
and their properties are investigated.

In this paper we present extensions of the basic concepts of rough set theory.
Section 2 presents compatibility relations. Section 3 presents the Generalized
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Rough Set Approximations. Generalized Rough Membership Functions are de-
fined in Section 4. An illustrative example is discussed in Section 5 and we
conclude in Section 6.

2 Compatibility Relations

In general, relationships between elements may not necessarily be transitive for
representing non-equivalence relationships between elements, conditional prob-
ability relations was introduced recently [8]. Conditional probability relations
maybe considered as a generalization of compatibility relations and fuzzy com-
patibility relations.

The concept of conditional probability relations was introduced by Intan and
Mukaidono in the context of fuzzy relational database [8]. It may be considered
as a concrete example of fuzzy compatibility relation, which in turn is a special
type of fuzzy binary relation.

The concept of compatibility relations are defined as follows:

Definition 1. A compatibility relation is a mapping,c : U × U −→ [0, 1], such
that for any x, y ∈ U ,

Reflexivity : c(x, x) = 1 (1)

Symmetry : c(x, y) = c(y, x) (2)

Definition 2. A fuzzy compatibility relation is a mapping, C : U ×U −→ [0, 1],
such that for any x, y ∈ U ,

Reflexivity : C(x, x) = 1 (3)

Symmetry : if C(x, y) > 0 then C(y, x) > 0 (4)

Definition 3. A conditional probability relation is a mapping, R : U × U −→
[0, 1], such that for any x, y ∈ U ,

R(x, y) = P (y|x) (5)

Where R(x, y) means the degree x supports y or the degree x is similar to y.
When objects in U are represented by sets of features or attributes as in the

case of binary information tables, we have a simple procedure for estimating the
conditional probability relation. More specifically, we have:

R(x, y) = P (y|x) =
|x ∩ y|

|x| (6)

Where |.| denotes the cardinality of a set.

Definition 4. Let μx and μy be two fuzzy sets over a set of attribute A for two
elements x and y of a universe U . A fuzzy conditional probability relation is
defined by:

R(x, y) =
∑

a∈A min{μx(a), μy(a)}∑
a∈A μx(a)

(7)
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It can be easily verified that satisfies properties of a fuzzy compatibility
relation. Additional properties of similarity as defined by conditional probability
relations can be found in [8].

3 Generalized Rough Set Approximations

From fuzzy compatibility relations and conditional probability relations, cover-
ings of the universe can be defined and interpreted. The concept of rough sets
can be generalized based on coverings of universe.

Definition 5. Let U be a non-empty universe , and C a fuzzy compatibility
relation on U . For any element x ∈ U , Rα

s (x) and Rα
p (x) are defined as the

set of elements that support x and the set of elements that are supported by x,
respectively, to a degree of at least α ∈ [0, 1] , as follows:

Rα
s (x) = {y ∈ U |C(x, y) ≥ α} (8)

Rα
p (x) = {y ∈ U |C(y, x) ≥ α} (9)

The set Rα
p (x) consists of elements that are similar to x, at least to a degree

of α. The set Rα
s (x) consists of elements to which x is similar, at least to a

degree of α. By the reflexivity, it follows that we can construct two covering of
the universe, {Rα

p (x)|x ∈ U} and {Rα
s (x)|x ∈ U}. By extending rough sets, we

obtain two pairs of generalized rough set approximations.

Definition 6. For a subset X ⊆ U , we define two pairs of generalized rough set
approximations:

(1) element-oriented generalization

aprα
e
(X) = {x ∈ U |Rα

p (x) ⊆ X}
aprα

e (X) = {x ∈ U |Rα
p (x) ∩ X �= ∅}

(2) compatibility-class-oriented generalization

aprα
c
(X) =

⋃
{Rα

p (x)|Rα
p (x) ⊆ X, x ∈ U}

aprα
c (X) =

⋃
{Rα

p (x)|Rα
p (x) ∩ X �= ∅, x ∈ U}

In Definition 6(1), the lower approximation consists of those elements in U
whose similarity classes are contained in X . The upper approximation consists
of those elements whose similarity classes overlap with X . In Definition 6(2), the
lower approximation is the union of all similarity classes that are contained in
X . The upper approximation is the union of all similarity classes that overlap
with X . Relationships among these approximations can be represented by:

aprα
e
(X) ⊆ aprα

c
(X) ⊆ X ⊆ aprα

e (X) ⊆ aprα
c (X) (10)
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The difference between lower and upper approximations is the boundary
region with respect to X :

BNα
e (X) = aprα

e (X) − aprα
e
(X) (11)

BNα
c (X) = aprα

c (X) − aprα
c
(X) (12)

Similarly, one can define rough set approximation based on the covering
{Rα

s (x)|x ∈ U}.
The pair (aprα

e
, aprα

e ) gives rise to two unary set-theoretic operators. It is
referred to as rough set approximation operators [9]. By combining with other
set-theoretic operators such as∼,∪,and ∩, we have the following results:

aprα
e
(X) =∼ aprα

e (∼ X) (13)

aprα
e (X) =∼ aprα

e
(∼ X) (14)

aprα
e
(X) ⊆ X ⊆ aprα

e (X) (15)

aprα
e
(∅) = aprα

e (∅) = ∅ (16)

aprα
e
(U) = aprα

e (U) = U (17)

aprα
e
(X ∩ Y ) = aprα

e
(X) ∩ aprα

e
(Y ) (18)

aprα
e (X ∩ Y ) ⊆ aprα

e (X) ∩ aprα
e (Y ) (19)

aprα
e
(X ∪ Y ) ⊇ aprα

e
(X) ∪ aprα

e
(Y ) (20)

aprα
e (X ∪ Y ) = aprα

e (X) ∪ aprα
e (Y ) (21)

X �= ∅ =⇒ apr0
e(X) = U (22)

X ⊂ U =⇒ apr0
e
(X) = ∅ (23)

α ≤ β =⇒ aprβ
e (X) ⊆ aprα

e (X) (24)

α ≤ β =⇒ aprα
e
(X) ⊆ aprβ

e
(X) (25)

X ⊆ Y =⇒ aprα
e
(X) ⊆ aprα

e
(Y ) (26)

X ⊆ Y =⇒ aprα
e (X) ⊆ aprα

e (Y ) (27)

Property (13) and (14) show that lower and upper approximations are dual
operators with respect to set complement ∼. Properties (16) and (17) provide
two boundary conditions. Properties (18),(19),(20) and (21) may be considered
as weak distributive and distributive over set intersection and union, respectively,
when α = 0, (22) and (23) show that lower and upper approximations of a non-
empty set X ⊂ U are equal to U and ∅ , respectively. Property (24) and (25)
show that if the value of α is larger then the lower approximation is also bigger,
but the upper approximation is smaller. Property (26) and (27) indicate the
monotonicity of approximation operators with respect to set inclusion.

Lower and upper approximations of Definition 6(2) satisfy the following prop-
erties:

aprα
c
(X) =∼ aprα

c (∼ X) (28)
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aprα
c (X) =∼ aprα

c
(∼ X) (29)

aprα
c
(X) ⊆ X ⊆ aprα

c (X) (30)

aprα
c
(∅) = aprα

c (∅) = ∅ (31)

aprα
c
(U) = aprα

c (U) = U (32)

aprα
c
(X ∩ Y ) = aprα

c
(X) ∩ aprα

c
(Y ) (33)

aprα
c (X ∩ Y ) ⊆ aprα

c (X) ∩ aprα
c (Y ) (34)

aprα
c
(X ∪ Y ) ⊇ aprα

c
(X) ∪ aprα

c
(Y ) (35)

aprα
c (X ∪ Y ) = aprα

c (X) ∪ aprα
c (Y ) (36)

X �= ∅ =⇒ apr0
c(X) = U (37)

X ⊂ U =⇒ apr0
c
(X) = ∅ (38)

α ≤ β =⇒ aprβ
c (X) ⊆ aprα

c (X) (39)

α ≤ β =⇒ aprα
c
(X) ⊆ aprβ

c
(X) (40)

X ⊆ Y =⇒ aprα
c
(X) ⊆ aprα

c
(Y ) (41)

X ⊆ Y =⇒ aprα
c (X) ⊆ aprα

c (Y ) (42)

It should be pointed out that they are not a pair of dual operators. Property
(28) and (29) indicate that the results of iterative operations of both lower and
upper approximation operators are the same a single application.

4 Generalized Rough Membership Functions

As pointed out in [5], there are at least two views which can be used to interpret
the rough set theory, operator-oriented view and set-oriented view. The operator-
oriented view discussed in previous section provides the generalization of lower
and upper approximation operators. In this section, we provide a set-oriented
view based on the notion of rough membership functions.

By using coverings of the universe in Definition 5, we extend rough member-
ship function and obtain three values of generalized rough membership function.

Definition 7. For a subset X ⊆ U , with respect to a value α ∈ (0, 1], we define
the following three rough membership functions:

μm
X(y)α = min

{ |Rα
p (x) ∩ X |
|Rα

p (x)| |x ∈ U, y ∈ Rα
p (x)

}
(43)

μM
X (y)α = max

{ |Rα
p (x) ∩ X |
|Rα

p (x)| |x ∈ U, y ∈ Rα
p (x)

}
(44)

μ∗
X(y)α = avg

{ |Rα
p (x) ∩ X |
|Rα

p (x)| |x ∈ U, y ∈ Rα
p (x)

}
(45)



CRST: A Generalization of Rough Set Theory 369

They are referred to as the minimum, maximum and average rough mem-
bership functions, respectively. Note: average function is interpreted as given
example, avg{0.5, 0.5, 0.2} = 0.4.

The above definition generalizes the concept of rough membership functions
proposed in [10]. It provides a concrete interpretation of coverings used to define
the approximation operators [11]. The minimum, the maximum and the average
equations may be assumed to be the most pessimistic, the most optimistic and
the balanced view in defining rough membership function. The minimum rough
membership function of y is determined by a set,Rα

p (x) , which contains y and has
the smallest relative overlap with X . The maximum rough membership function
is determined by a set,Rα

p (x) , which contains y and has the largest relative
overlap with X . The average rough membership function depends on the average
of all sets, Rα

p (x)’s, that contains y.
The relationships of the three rough membership functions can be expressed

by:
μm

X(y)α ≤ μ∗
X(y)α ≤ μM

X (y)α (46)

Depending on the value of α , we can define a family of rough membership
functions. The minimum, maximum and average rough membership functions
satisfy the properties: for X, Y ⊆ U ,

μm
U (x)α = μ∗

U (x)α = μM
U (x)α = 1 (47)

μm
∅ (x)α = μ∗

∅(X)α = μM
∅ (x)α = 0 (48)

[∀x ∈ U, y ∈ Rα
p (x) ⇔ z ∈ Rα

p (x)] =⇒
μm

X(y)α = μm
X(z)α, μ∗

X(y)α = μ∗
X(z)α, μM

X (y)α = μM
X (z)α (49)

∃x ∈ U, y, z ∈ Rα
p (x) =⇒

(μm
X(y)α �= 0 ⇒ μm

X(z)α �= 0), (μm
X(y)α = 1 ⇒ μm

X(z)α = 1) (50)

y ∈ X =⇒ μm
X(y)α > 0 (51)

μM
X (y)α = 1 =⇒ y ∈ X (52)

X ⊆ Y =⇒ [μm
X(y)α ≤ μm

Y (y)α, μ∗
X(y)α ≤ μ∗

Y (y)α, μM
X (y)α ≤ μM

Y (y)α] (53)

X �= ∅ =⇒ μm
X(x)0 = μ∗

X(x)0 = μM
X (x)0 =

|X |
|U | = P (X) (54)

Properties (47) and (48) show the boundary conditions, namely, for U and
∅, the minimum, maximum and average membership functions have the same
values for all elements, 1 and 0, respectively. Properties (49) and (50) indicate
that two similar elements in a covering should have similar rough membership
functions. Properties (51) and (52) show the constraints on the membership
values of elements of X . Property (53) shows the monotonicity of approximation
operators with respect to section inclusion. When α is set to be 0, the covering
of the universe consists only of U . In this case, the rough membership values of
elements in X equal to the probability of X , as shown by property (54).
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With respect to set-theoretic operators,¬ ,∪, and∩, rough membership func-
tions satisfy the properties:

μm
¬X(x)α = 1 − μM

X (x)α (55)

μM
¬X(x)α = 1 − μm

X(x)α (56)

μ∗
¬X(x)α = 1 − μ∗

X(x)α (57)

max(0, μm
X(x)α + μm

Y (x)α − μM
X∪Y (x)α) ≤

μm
X∩Y (x)α) ≤ min(μm

X(x)α, μm
Y (x)α) (58)

max(μM
X (x)α, μM

Y (x)α) ≤ μM
X∪Y (x)α) ≤

min(1, μM
X (x)α + μM

Y (x)α − μm
X∩Y (x)α) (59)

μ∗
X∪Y (x)α = μ∗

X(x)α + μ∗
Y (x)α − μ∗

X∩Y (x)α (60)

5 An Illustrative Example

Let us illustrate the above concepts by using binary information tables given
by table1£ňwhere the set of objects,U = {x1, . . . , x20}, is described by a set of
eight attributes,A = {a1, . . . , a8} . Suppose α is chosen to be 0.7. By Definitions
3, 4 and 5, we obtain similarity classes of all elements in as follows:

Table 1. Binary Information Table

U/A a1 a2 a3 a4 a5 a6 a7 a8 U/A a1 a2 a3 a4 a5 a6 a7 a8

x1 0 0 1 0 1 0 0 0 x11 0 0 0 1 1 0 1 1
x2 1 1 0 1 0 0 1 0 x12 1 0 0 0 1 0 0 0
x3 0 0 1 1 0 0 1 1 x13 1 0 1 0 1 0 1 0
x4 0 1 0 1 0 1 0 1 x14 1 0 0 0 0 1 1 0
x5 1 0 1 1 0 0 1 0 x15 0 0 1 0 1 0 1 1
x6 0 0 1 0 1 0 1 0 x16 0 0 0 1 0 0 1 1
x7 0 1 1 0 0 0 1 0 x17 0 1 0 1 1 0 0 1
x8 1 1 0 0 0 0 1 1 x18 1 0 0 1 0 0 1 0
x9 0 1 0 1 1 0 1 0 x19 0 0 1 0 1 1 0 1
x10 0 1 0 0 0 1 1 0 x20 1 0 0 1 0 1 0 0

R0.7
p (x1) = {x1} R0.7

p (x11) = {x3, x9, x11, x13, x15}
R0.7

p (x2) = {x2, x5, x8, x9, x18} R0.7
p (x12) = {x12}

R0.7
p (x3) = {x3, x5, x11, x15, x16} R0.7

p (x13) = {x1, x5, x6, x12, x13, x15}
R0.7

p (x4) = {x4, x17} R0.7
p (x14) = {x14}

R0.7
p (x5) = {x2, x3, x5, x13} R0.7

p (x15) = {x1, x3, x6, x11, x13, x15, x19}
R0.7

p (x6) = {x1, x6, x13, x15} R0.7
p (x16) = {x3, x11, x16}

R0.7
p (x7) = {x7} R0.7

p (x17) = {x4, x9, x11, x17}
R0.7

p (x8) = {x2, x8} R0.7
p (x18) = {x2, x5, x18}

R0.7
p (x9) = {x2, x9, x11, x17} R0.7

p (x19) = {x1, x15, x19}
R0.7

p (x10) = {x10} R0.7
p (x20) = {x20}
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Consider the set of objects:

X = {x1, x3, x6, x10, x14, x15, x19}

The rough set approximations of according to Definition6 are:
apr0.7

e
(X) = {x1, x10, x14, x19}

apr0.7
e (X) = {x1, x3, x5, x6, x10, x11, x13, x14, x15, x16, x19}

apr0.7
c

(X) = {x1, x10, x14, x15, x19}
apr0.7

c (X) = {x1, x2, x3, x5, x6, x9, x10, x11, x12, x13, x14, x15, x16, x19}
Rough boundaries of X are:
BN0.7

e (X) = {x3, x5, x6, x11, x13, x15, x16}
BN0.7

c (X) = {x2, x3, x5, x6, x9, x11, x12, x13, x16}
For the element x19 , it belongs to two similarity classes: R0.7

p (x15) and
R0.7

p (x19). Moreover, we have:

|R0.7
p (x15) ∩ X |
|R0,7

p (x15)|
=

5
7

|R0.7
p (x19) ∩ X |
|R0,7

p (x19)|
= 1

By Definition 7, the minimum, maximum, and average rough membership
values of x19 are given by:

μm
X(x19)0.7 = min(1,

5
7
) =

5
7

μM
X (x19)0.7 = max(1,

5
7
) = 1

μ∗
X(x19)0.7 = avg(1,

5
7
) =

6
7

The above procedure can be applied to fuzzy information table. In this case,
a fuzzy conditional probability relation as defined in Definition 4 can be used to
construct α−covering of the universe.

6 Conclusions

In general, relationship between elements may not necessarily be transitive. For
representing non-equivalence relationships between elements, conditional prob-
ability relation was introduced recently [12]. Conditional probability relations
may be considered as a generalization of compatibility relations. They can be
considered as a special type of fuzzy compatibility relations [13].

In this paper, we introduce the notion of fuzzy compatibility relation. Condi-
tional probability relations are suggested for the construction and interpretation
of coverings of the universe. From the coverings induced by a fuzzy compati-
bility relation, we generalize the standard rough set approximations. Two pairs
of lower and upper approximation operators are suggested and studied. Three
rough membership functions, the minimum, maximum and average, are intro-
duced and their properties are examined.
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Abstract. In this paper, to deal with practical situations where a fuzzy
classification must be approximated by available knowledge expressed
in terms of a Pawlak’s approximation space, we investigate an exten-
sion of approximation quality measure to a fuzzy classification aimed
at providing a numerical characteristic for such situations. Furthermore,
extensions of related coefficients such as the precision measure and the
significance measure are also discussed. A simple example is given to
illustrate the proposed notions.

1 Introduction

Basically, while a fuzzy set introduced by Zadeh [18] models the ill-definition of
the boundary of a concept often described linguistically, a rough set introduced
by Pawlak [13] characterizes a concept by its lower and upper approximations
due to indiscernibility between objects. Since their inception, both the theories
of fuzzy sets and rough sets have been proving to be of substantial importance
in many areas of application [12,14,19].

During the last decades, many attempts to establish the relationships between
the two theories, and to hybridize them have been made, e.g. [7,12,15,16,17].
Recently, Banerjee and Pal [2] have proposed a roughness measure for fuzzy
sets, making use of the concept of a rough fuzzy set [7]. In [10,11], the authors
pointed out some undesired properties of Banerjee and Pal’s roughness measure
and, simultaneously, introduced an alternative roughness measure for fuzzy sets.

In rough-set-based data analysis, the so-called approximation quality mea-
sure is often used to evaluate the classification success of attributes in terms
of a numerical evaluation of the dependency properties generated by these at-
tributes. To deal with practical situations where a fuzzy classification must be
approximated by available knowledge expressed in terms of a Pawlak’s approxi-
mation space, we introduce in this paper an extension of approximation quality
measure aimed at providing a numerical characteristic for such situations. Fur-
thermore, extensions of related coefficients such as the precision measure and
the significance measure are also discussed.
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2 Rough Sets and Approximation Quality

The rough set theory begins with the notion of an approximation space 〈U, R〉,
where U be the universe of discourse and R an equivalence relation on U . Denote
by U/R the quotient set of U by the relation R, and U/R = {X1, X2, . . . , Xm},
where Xi is an equivalence class of R, i = 1, 2, . . . ,m.

Given an arbitrary set X ∈ 2U , in general it may not be possible to describe
X precisely in 〈U, R〉. One may characterize X by a pair of lower and upper
approximations defined as follows [13]:

R(X) = ∪
Xi⊆X

Xi; R(X) = ∪
Xi∩X �=∅

Xi

The pair (R(X), R(X)) is the representation of an ordinary set X in the approx-
imation space 〈U, R〉 or simply called the rough set of X.

In [14], Pawlak introduces two numerical characterizations of imprecision of a
subset X in the approximation space 〈U, R〉: accuracy and roughness. Accuracy
of X , denoted by αR(X), is defined as

αR(X) =
|R(X)|
|R(X)|

(1)

where | · | denotes the cardinality of a set. Then the roughness of X , denoted
by ρR(X), is defined by subtracting the accuracy from 1: ρR(X) = 1 − αR(X).
Note that the lower the roughness of a subset, the better is its approximation.

In the rough set theory, the so-called approximation quality γ is often used
to describe the degree of partial dependency between attributes. Assume now
there is another equivalence relation P defined on U , which forms a partition
(or, classification) U/P of U , say U/P = {Y1, . . . , Yn}. Note that R and P may
be induced respectively by sets of attributes applied to objects in U . Then the
approximation quality of P by R, also called degree of dependency, is defined by

γR(P ) =
∑n

i=1 |R(Yi)|
|U | (2)

which is represented in terms of accuracy as follows [8]

γR(P ) =
n∑

i=1

|R(Yi)|
|U | αR(Yi) (3)

3 Fuzzy Sets and Mass Assignment

Let U be a finite and non-empty set. A fuzzy set F of U is represented as a
mapping μF : U −→ [0, 1], where for each x ∈ U we call μF (x) the membership
degree of x in F . Given a number α ∈ (0, 1], the α-cut, or α-level set, of F is
defined as: Fα = {x ∈ U |μF (x) ≥ α}.
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Viewing the membership function μF of a fuzzy set F as the possibility
distribution of possible values of a variable, this distribution is easily related to
the basic probability assignment of a consonant body of evidence [6], the family
of its α-cuts forms a nested family of focal elements. Note that in this case the
normalization assumption of F is imposed due to the body of evidence does
not contain the empty set. In [9], a formal connection between fuzzy sets and
random sets was also established. Interestingly, this view of fuzzy sets was used
by Baldwin in [1] to introduce the so-called mass assignment of a fuzzy set with
relaxing the normalization assumption of fuzzy sets, and to provide a probability
based semantics for a fuzzy concept defined as a family of possible definitions of
the concept. The mass assignment of a fuzzy set is defined as follows [1].

Let F be a fuzzy subset of a finite universe U such that the range of the
membership function μF , denoted by rng(μF ), is rng(μF ) = {α1, . . . , αn}, where
αi > αi+1 > 0, for i = 1, . . . , n − 1. Let

Fi = {x ∈ U |μF (x) ≥ αi}

for i = 1, . . . , n. Then the mass assignment of F , denoted by mF , is a probability
distribution on 2U defined by

mF (∅) = 1 − α1

mF (Fi) = αi − αi+1, for i = 1, . . . , n,

with αn+1 = 0 by convention. The α-level sets Fi, i = 1, . . . , n, (or {Fi}n
i=1 ∪{∅}

if F is a subnormal fuzzy set) are referred to as the focal elements of mF . From
now on, unless stated otherwise we assume that fuzzy sets are always normal.

4 Roughness Measures of a Fuzzy Set

4.1 Rough Fuzzy Sets

Let a finite approximation space 〈U, R〉 be given. Let F be a fuzzy set in U
with the membership function μF . The upper and lower approximations R(F )
and R(F ) of F by R are fuzzy sets in the quotient set U/R with membership
functions defined [7] by

μR(F )(Xi) = max
x∈Xi

{μF (x)}, μR(F )(Xi) = min
x∈Xi

{μF (x)} (4)

for i = 1, . . . ,m. (R(F ), R(F )) is called a rough fuzzy set.
The rough fuzzy set (R(F ), R(F )) then induces two fuzzy sets F ∗ and F∗ in

U with membership functions defined respectively as follows

μF∗(x) = μR(F )(Xi) and μF∗(x) = μR(F )(Xi)

if x ∈ Xi, for i = 1, . . . ,m. That is, F ∗ and F∗ are fuzzy sets with constant
membership degree on the equivalence classes of U by R, and for any x ∈ U ,
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μF∗(x) (respectively, μF∗(x)) can be viewed as the degree to which x possibly
(respectively, definitely) belongs to the fuzzy set F [2].

Under such a view, we now define the notion of a definable fuzzy set in 〈U, R〉.
A fuzzy set F is called definable if R(F ) = R(F ), i.e. there exists a fuzzy set F
in U/R such that μF (x) = μF(Xi) if x ∈ Xi, i = 1 . . . ,m. Further, as defined in
[2], fuzzy sets F and G in U are said to be roughly equal, denoted by F ≈R G,
if and only if R(F ) = R(G) and R(F ) = R(G).

4.2 Roughness Measures of Fuzzy Sets

In [2], Banerjee and Pal have proposed a roughness measure for fuzzy sets in
a given approximation space. Essentially, their measure of roughness of a fuzzy
set depends on parameters that are designed as thresholds of definiteness and
possibility in membership of the objects in U to the fuzzy set.

Consider parameters α, β such that 0 < β ≤ α ≤ 1. The α-cut (F∗)α and
β-cut (F ∗)β of fuzzy sets F∗ and F ∗, respectively, are called to be the α-lower
approximation, the β-upper approximation of F in 〈U, R〉, respectively. Then a
roughness measure of the fuzzy set F with respect to parameters α, β with
0 < β ≤ α ≤ 1, and the approximation space 〈U, R〉 is defined by

ρα,β
R (F ) = 1 − |(F∗)α|

|(F ∗)β |
(5)

It is obvious that this definition of roughness measure ρα,β
R (·) strongly depends

on parameters α and β.
As pointed out in [10], this measure of roughness has several undesirable

properties. Simultaneously, the authors also introduce a parameter-free measure
of roughness of a fuzzy set as follows.

Let F be a normal fuzzy set in U . Assume that the range of the membership
function μF is {α1, . . . , αn}, where αi > αi+1 > 0, for i = 1, . . . , n − 1, and
α1 = 1. Let us denote mF the mass assignment of F defined as in the preceding
section and Fi = {x ∈ U |μF (x) ≥ αi}, for i = 1, . . . , n.

With these notations, the roughness measure of F with respect to the ap-
proximation space 〈U, R〉 is defined by

ρ̂R(F ) =
n∑

i=1

mF (Fi)(1 − |R(Fi)|
|R(Fi)|

) =
n∑

i=1

mF (Fi)ρR(Fi) (6)

That is, the roughness of a fuzzy set F is the weighted sum of the roughness
measures of nested focal subsets which are considered as its possible definitions.

Observation 1. – Clearly, 0 ≤ ρ̂R(F ) ≤ 1.
– ρ̂R(·) is a natural extension of Pawlak’s roughness measure for fuzzy sets.
– F is a definable fuzzy set if and only if ρ̂R(F ) = 0.

Let F ∗ and F∗ be fuzzy sets induced from the rough fuzzy set (R(F ), R(F ))
as above. Denote

rng(μF∗) ∪ rng(μF∗) = {ω1, . . . , ωp}
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such that ωi > ωi+1 > 0 for i = 1, . . . , p− 1. Obviously, {ω1, . . . , ωp} ⊆ rng(μF ),
and ω1 = α1 and ωp ≥ αn. With this notation, we have

Proposition 1. For any 1 ≤ j ≤ p, if there exists αi, αi′ ∈ rng(μF ) such that
ωj+1 < αi < αi′ ≤ ωj then we have Fi ≈R Fi′ , and so ρR(Fi) = ρR(Fi′ ).

Further, we can represent the roughness ρ̂R(F ) in terms of level sets of fuzzy
sets F∗ and F ∗ in the following proposition.

Proposition 2. We have

ρ̂R(F ) =
p∑

j=1

(ωj − ωj+1)(1 −
|(F∗)ωj |
|(F ∗)ωj |

)

where ωp+1 = 0, by convention.

More interestingly, we obtain the following.

Proposition 3. If fuzzy sets F and G in U are roughly equal in 〈U, R〉, then we
have ρ̂R(F ) = ρ̂R(G).

5 Rough Approximation Quality of a Fuzzy Classification

As mentioned above, the roughness of a crisp set is defined as opposed to its
accuracy. Note that we also have a similar correspondence between the roughness
and accuracy of a fuzzy set. In particular, in the spirit of the preceding section,
it is eligible to define the accuracy measure of a fuzzy set F by

α̂R(F ) =
n∑

i=1

mF (Fi)αR(Fi) (7)

and then we also have
α̂R(F ) = 1 − ρ̂R(F ) (8)

Before extending the the measure of rough dependency defined by (2) (or equiv-
alently, (3)) for the case where P is a fuzzy classification of U instead of a crisp
one, let us define the cardinality of a fuzzy set in the spirit of its probabilistic
based semantics. That is, if {Fi}n

=1 could be interpreted as a family of possible
definitions of the concept F , then mF (Fi) is the probability of the event “the
concept is Fi”, for each i. Under such an interpretation, the cardinality of F ,
also denoted by |F |, is defined as the expected cardinality by

|F | =
n∑

i=1

mF (Fi)|Fi| (9)

Quite interestingly, the following proposition [5] shows that the expected cardi-
nality (9) is nothing but the Σ-count of the fuzzy set F as introduced by De
Luca and Termini [4].
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Proposition 4. We have: |F | =
n∑

i=1

mF (Fi)|Fi| =
∑

x∈U

μF (x)

Let us return to an approximation space 〈U, R〉 and assume further a fuzzy
partition, say FC = {Y1, . . . , Yk}, defined on U . This situation may come up
in a natural way when a linguistic classification is defined on U and must be
approximated in terms of already existing knowledge R.

In such a situation, with the spirit of the proposal described in the preceding
section, one may define the approximation quality of FC by R as

γ̂R(FC) =
1

|U |

k∑
i=1

ni∑
j=1

mYi(Yi,j)|R(Yi,j)| (10)

where for i = 1, . . . , k, mYi and {Yi,j}ni

j=1 respectively stand for the mass assign-
ment of Yi and the family of its focal elements. Straightforwardly, it follows from
Proposition 4 that

γ̂R(FC) =
1

|U |

k∑
i=1

|(Yi)∗| (11)

where (Yi)∗, i = 1, . . . , k, are fuzzy sets with constant membership degree on the
equivalence classes of U by R as defined in Section 3. It is also interesting to
note that the approximation quality of FC by R can be also extended via (3) as
follows

γ̂′
R(FC) =

k∑
i=1

|R(Yi)|
|U | α̂R(Yi) (12)

Furthermore, similar as mentioned in [14], the measure of rough dependency
γ̂R does not capture how this partial dependency is actually distributed among
fuzzy classes of FC. To capture this information we need also the so-called pre-
cision measure π̂R(Yi), for i = 1, . . . , k, defined by

π̂R(Yi) =
ni∑

j=1

mYi(Yi,j)
|R(Yi,j)|

|Yi,j |
(13)

which may be considered as the expected relative number of elements in Yi ap-
proximated by R. Clearly, we have π̂R(Yi) ≥ α̂R(Yi), for any i = 1, . . . , k. As such
the two measures γ̂R and π̂R give us enough information about “classification
power” of the knowledge R with respect to linguistic classification FC.

In rough-set-based data analysis, R is naturally induced by a subset, say B,
of the set of attributes imposed on objects being considered. Then as suggested
in [14], we can also measure the significance of the subset of attributes B′ ⊆ B
with respect to the linguistic classification FC by the difference

γ̂R(FC) − γ̂R′(FC)

where R′ denotes the equivalence relation induced by the subset of attributes
B \B′. This measure expresses how influence on the quality of approximation if
we drop attributes in B′ from B.
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Table 1. A Relation and Induced Fuzzy Partition

(a) Relation in a Relational Database (b) Induced Fuzzy Partition of

U Based on Salary

ID Degree Experience (n) Salary

1 Ph.D. 6 < n ≤ 8 63K

2 Ph.D. 0 < n ≤ 2 47K

3 M.S. 6 < n ≤ 8 53K

4 B.S. 0 < n ≤ 2 26K

5 B.S. 2 < n ≤ 4 29K

6 Ph.D. 0 < n ≤ 2 50K

7 B.S. 2 < n ≤ 4 35K

8 M.S. 2 < n ≤ 4 40K

9 M.S. 2 < n ≤ 4 41K

10 M.S. 8 < n ≤ 10 68K

11 M.S. 6 < n ≤ 8 50K

12 B.S. 0 < n ≤ 2 23K

13 M.S. 6 < n ≤ 8 55K

14 M.S. 6 < n ≤ 8 51K

15 Ph.D. 6 < n ≤ 8 65K

16 M.S. 8 < n ≤ 10 64K

U μLow μMedium μHigh

1 0 0 1

2 0 0.87 0.13

3 0 0.47 0.53

4 1 0 0

5 1 0 0

6 0 0.67 0.33

7 0.67 0.33 0

8 0.33 0.67 0

9 0.27 0.73 0

10 0 0 1

11 0 0.67 0.33

12 1 0 0

13 0 0.33 0.67

14 0 0.6 0.4

15 0 0 1

16 0 0 1

6 An Illustration Example

Let us consider a relation in a relational database as shown in Table 1 (a) (this
database is a variant of that found in [3]). Then by Degree and Experience
we obtain an approximation space

〈U, ind({Degree,Experience})〉

where U = {1, . . . , 16}, and the corresponding partition is

U/ind({Deg.,Ex.}) = {{1, 15}, {2, 6}, {3, 11, 13, 14}, {4, 12}, {5, 7}, {8, 9}, {10, 16}}

Further, consider now for example a linguistic classification

{Low, Medium, High}

defined on the domain of attribute Salary, say [20K,70K], with membership
functions of linguistic classes depicted graphically as in Fig. 1. Then the linguistic
classification induces a fuzzy partition on U whose membership functions of fuzzy
classes shown in Table 1 (b).
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Fig. 1. A Linguistic Partition of Salary Attribute

Table 2. The approximations of the fuzzy partition based on Salary

Xi {1, 15} {2, 6} {3, 11, 13, 14} {4, 12} {5, 7} {8, 9} {10, 16}
μHigh∗ 1 0.13 0.33 0 0 0 1
μHigh∗ 1 0.33 0.67 0 0 0 1

μMedium∗ 0 0.67 0.33 0 0 0.67 0
μMedium∗ 0 0.87 0.67 0 0.33 0.73 0

μLow∗ 0 0 0 1 0.67 0.27 0
μLow∗ 0 0 0 1 1 0.33 0

Then approximations of the fuzzy partition induced by Salary in the ap-
proximation space defined by Degree and Experience are given in Table 2.

Using (11) we obtain

γ̂{Degree,Experience}(Salary) =
13.46
16

= 0.84

That is we have the following partial dependency in the database

{Degree,Experience} ⇒0.84 Salary (14)

To calculate the precision measure of fuzzy classes we need to obtain the mass
assignment for each fuzzy class and approximations of its focal sets respectively.
For example, the mass assignment of Low and approximations of its focal sets
are shown in Table 3.

Then we have
π̂{Degree,Experience}(Low) = 0.878

Similarly, we also obtain

π̂{Degree,Experience}(Medium) = 0.646
π̂{Degree,Experience}(High) = 0.876
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Table 3. Mass assignment for μLow and approximations of its focal sets

α 1 0.67 0.33 0.27
Lowα {4, 5, 12} {4, 5, 12, 7} {4, 5, 12, 7, 8} {4, 5, 12, 7, 8, 9}

mLow(Lowα) 0.33 0.34 0.06 0.27
R(Lowα) {4, 12} {4, 5, 12, 7} {4, 5, 12, 7} {4, 5, 12, 7, 8, 9}
R(Lowα) {4, 5, 12, 7} {4, 5, 12, 7} {4, 5, 12, 7, 8, 9} {4, 5, 12, 7, 8, 9}

Now in order to show how the influence of, for example, attribute Experi-
ence on the quality of approximation, let us consider the partition induced by
the attribute Degree as follows.

U/ind({Deg.}) = {{1, 2, 6, 15}, {3, 8, 9, 10, 11, 13, 14, 16}, {4, 5, 7, 12}}

Then we obtain approximations of the fuzzy partition induced by Salary in
the approximation space defined by Degree given in Table 4.

Table 4. The approximations of the fuzzy partition based on Salary

Xi {1, 2, 6, 15} {3, 8, 9, 10, 11, 13, 14, 16} {4, 5, 7, 12}
μHigh∗ 0.13 0 0
μHigh∗ 1 1 0

μMedium∗ 0 0 0
μMedium∗ 0.87 0.73 0.33

μLow∗ 0 0 0.67
μLow∗ 0 0.33 1

Thus we have
γ̂{Degree}(Salary) =

3.2
16

= 0.2

Similarly, we also easily obtain

γ̂{Experience}(Salary) =
5.06
16

= 0.316

As we can see, both attributes Degree and Experience are highly signif-
icant as without each of them the measure of approximation quality changes
considerably. It would be worth noting that based on background knowledge one
may infer a dependency between {Degree, Experience} and Salary which is
often expressed linguistically, however such a dependency in general can not be
described by traditional data dependencies.

7 Conclusions

In this paper we have extended the measure of rough dependency for fuzzy
classification for dealing with practical situations where a fuzzy classification
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must be approximated by available knowledge expressed in terms of a classical
approximation space. Such situations may come up naturally for example when
we want to realize partial dependency between attributes which is inferred based
on background knowledge; while such a dependency can not be expressed in
terms of traditional data dependencies as described in Example.
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Abstract. A method of constructing a classifier that uses fuzzy reason-
ing is described in this paper. Rules for this classifier are obtained by
means of algorithms relying on a tolerance rough sets model. Got rules
are in so called sharp” form, a genetic algorithm is used for fuzzification
of these rules. Presented results of experiments show that the proposed
method allows getting a smaller rules set with similar (or better) classi-
fication abilities.

1 Introduction

An attempt of combining well defined techniques of decision rules induction with
fuzzy classification, that allows to achieve good classification results in uncer-
tainty situations with using of small rules number, is described in the paper.
In the case of fuzzy classification, obtaining fuzzy rules set that will be used by
classifier is still a current issue. Our proposition of getting fuzzy rules for classifi-
cation consists in using decision rules induction algorithms for rules induction in
so called ”sharp” form, and then, by means of the genetic algorithm, fuzzification
of the best rules in order to obtain classifier with both good describing and clas-
sification abilities. The rules fuzzification causes a transition from classification
based on rules voting to constructive fuzzy reasoning [13].

The main purpose of the method we propose is rules set restriction with
keeping its good classification abilities.

Algorithms used in decision rules induction and the process of fuzzy rules
searching by means of the genetic algorithm are described in succeeding chapters.
Results of experiments carried out for benchmark data and for data coming from
industrial monitoring systems are also presented.

2 Induction of Decision Rules Based Upon Rough Sets
Theory

Rough sets theory can be treated as a tool for data table analysis. Table data
are representing as decision table DT = (U,A∪{d}), where U is a set of objects,
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A is a set of features describing these objects called conditional attributes and
d is a decision attribute, d /∈ A. Each attribute can be treated as a function
a : U → Xa (d : U → Y ), where Xa is a set of values of a attribute. For each
decision attribute value v ∈ Y, set Cv = {x ∈ U : d(x) = v} is called a decision
class.

In rough sets theory rules of the following form are considered:

if a1 ∈ Va1 and ... and aN ∈ VaN then d = v (1)

where: {a1, .., aN} ⊆ A, ∀i∈{1,...,N} Vai ⊆ Dai . Each expression a ∈ Va is called
a descriptor, especially in standard rough sets model [6] descriptors are in a = v
form, where v ∈ Va.

The set of attributes occurred in conditional part of the rule consists of the
attributes belonging to a relative reduct [6]. Depends on induction rules method
it is the relative reduct for objects or the relative reduct for whole decision table.

Below we introduce the essential definitions that allow presenting our meth-
ods of decision rules generation.

With any subset of attributes B ⊆ A, an equivalence relation denoted by
IND(B) called the B-indiscernibility relation, can be associated and defined by
IND(B) = {(x, y) ∈ U × U : ∀a∈B (a(x) = a(y))}. By [x]IND(B) we denote the
equivalence class of IND(B) defined by x ∈ U. For every x ∈ U, each minimal
attribute set B ⊆ A satisfying the condition {y ∈ [x]IND(B) : d(x) �= d(y)} =
{y ∈ [x]IND(A) : d(x) �= d(y)} is called the relative reduct for object x.

Application of rough set theory to data containing numerical attributes re-
quired their previous discretization [3] or tolerance based rough sets model use
[12], in which the B-indiscernibility relation IND(B) is replaced by tolerance
relation τ(B) (equivalence classes [x]IND(B) are replaced by tolerance sets IB(x))
in the following way:

∀x,y∈U (x, y) ∈ τ(B) ⇔ ∀ai∈B [δai(ai(x), ai(y)) ≤ εai ]) (2)

∀y∈U (y ∈ IB(x) ⇔ (x, y) ∈ τ(B)), (3)

where δai is a distance function (e.g. δai(ai(x), ai(y)) = |a(x)−a(y)|
max Da−min Da

), εaiare
fixed numbers called tolerance thresholds. The relative reducts set for object
x can be determined based on analysis the corresponding row (column) in the
discernibility matrix modulo d [10]. The discernibility matrix modulo d is a
square matrix [cxy]x,y∈U with the elements defined as follows:

cxy =
{
a ∈ A : (y �= Ia(x)) ∧ (d(x) �= d(y))

∅ : d(x) = d(y) (4)

In consideration of their computational complexity, algorithms of generating
object-related relative reducts using discernibility matrix can be employed for
tables consisting of several thousand objects.

User is usually interested in getting the shortest rules, therefore in practical
applications the shortest relative reducts are used. In [5], [12], the algorithms of



Fuzzy Rules Generation Method for Classification Problems 385

finding the minimal relative reduct without using the discernibility matrix are
presented.

We use the tolerance model of rough sets in our researches. Before rules
calculation, we discretize the numerical data using the entropy method [3], then
for some datasets (if cuts set get after discretization is big) we look for similarities
between data that have been already discretized. We take a simple algorithm of
finding the proper values of tolerance thresholds. We consider vectors of the form
(ε, ε, .., ε), where ε is increased 0.05 each step begin from ε = 0. From various
tolerance threshold optimality criteria the most frequently we used the following
formula:

(nRdRIAn¬Rd¬RIA − nRd¬RIAn¬RdRIA)2

nRIAn¬RIAnRd
n¬Rd

, (5)

where: nRd
number of object pairs with the same value of the decision attribute;

nRIA number of object pairs staying in relation τ(A); nRdRIA number of object
pairs with the same value of the decision attribute, staying in relation. The
n¬RdRIA , nRd¬RIA , n¬Rd¬RIA values we define analogously to nRdRIA . Discussion
of other methods tolerance threshold values searching one find, among others,
in [7], [12].

Rough sets tolerance model application leads to approximate rules calcula-
tion. For calculation the quality of each rule, one compute the values of a rule
quality evaluation measure [1]. We use the measures known as the Pearson, Gain
or Michalski‘s measure [1] in our experiments. Usually, high accuracy and cov-
erage are requirements of decision rules. Then, the probability that dependence
representing by a rule is standing not only for analyzed table but also for objects
from outside of the table increases.

We propose an approximate rule generation algorithm RMatrix [7]:
input: DT = (U,A ∪ {d}), the tolerance thresholds vector (ε, ε, ..., ε),
q - quality evaluation measure, x - object, rule generator, an order of conditional
attributes (ai1 , ai2 , ..., aicard(a)) so as the attribute the most frequently appearing
in cx is the first (attribute appearing the most rarely is the last)
begin
create the rule r, which has the decision descriptor d = d(x) only; rbest := r;
for every j := 1, ..., card(A) add the descriptor aij ∈ Vaij

to conditional part

of the rule r (where Vaij
= {aij (y) ∈ Xaij

: y ∈ Iaij
(x)})

if qp(r) > qp(rbest) then rbest := r
return rbest

The algorithm generates one rule for every object from U . Next descriptor
adding causes an increasing of rule accuracy.

Another rule induction algorithm we used is the algorithm MODLEM [11],
that generate rules of similar form as it was quoted in the first formula. MOD-
LEM algorithm builds conditional descriptors occurring in rules premise differ-
ently (the algorithm does not require discretization).

If a is a symbolic attribute, the values range in the descriptor is a one-element
set (a ∈ {va}, which is better to be written down as a = va). If attribute a is
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a numeric attribute, the range of Va values can take one of the three forms:
(−∞, va], [va,+∞), [v1

a, v
2
a], where v1

a, v
2
a, va ∈ Va.

Establishing points v1
a, v

2
a, va ∈ Va (these points we call border points) in

conditional attributes of each rule follows by minimizing of conditional entropy of
sets of objects lying to the left (U1 ⊆ U) and to the right (U2 ⊆ U) of considered
candidate for border point. An optimal is the candidate that minimizes a value
of the below expression:

|U1|
|U | Entr(U1) +

|U2|
|U | Entr(U2) (6)

The detailed description of the algorithm can be found in [11]. In a standard
form the algorithm generates exact rules or so exact as analyzed rules set allows
for (if the set is inconsistent, it is clear that some of generated rules will not be
exact). Generating of exact rules in the case of industrial data analysis that are
usually burdened with some uncertainty (for example, following from measure
errors) leads to undesirable situations: generating of big number of rules that
might be over-fitted to data. An introducing of rule quality evaluation measure
in the algorithm, similarly as in RMatrix, is a possible modification of MODLEM
algorithm [8].

As it was noticed during research [8], regardless of used evaluation measure, a
quality of rule created by MODLEM increases so far as to gain a certain maximal
value, and then decreases. This observation was used by us in a modification
of stopping criterion for created rules. In the modified version of MODLEM
algorithm, after next border point finding, there is also computed a value of the
rule evaluation measure. An output rule is the rule with maximal value of used
measure, and when this value starts to decrease, rule generation is finished.

3 Rules in Fuzzy Form

Conditional descriptors of obtained rules have ”sharp” form, therefore a condi-
tional part of a rule is a hypercube in a features space. In consequence, the space
occupied by a given decision class can be approximated only by hypercubes. If a
shape of the decision class is irregular then apart from strong rules that cover a
big areas of the given class, it will exist rules covering edges of this class or atyp-
ical examples. Although voting classification is good for rules in ”sharp” form,
big rules number is characterized by small describing power (from data min-
ing point of view). Moreover, algorithms of filtration or rules generalization not
always allow significant limitation of the obtained rules set without decreasing
classification abilities.

Fuzzification of the strongest from obtained rules should allow covering a
whole examples described space by smaller rules number. Change of based on
voting classification method for fuzzy one should not cause worsening of classi-
fication results.
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Transposing the obtained rules set on base of fuzzy sets theory we deal with
knowledge base composed of MISO rules in the following form:

R(k) : if a1 is A
(k)
1 and a2 isA

(k)
2 and ... and aN is A

(k)
N then d is B(k) (7)

where A(k)
1 , A(k), ..., A

(k)
N denote the values of linguistic variables a1, a2, ..., aN of

the antecedent defined in the following universes of discourse:X1, X2, ..., XN , and
B(k) stands for the value of linguistic variable d of the consequent in universe of
discourse Y . Membership functions have initially a form of rectangle (fig. 2. the
first graph). Rules fuzzification consists in replacing these membership functions
with pseudo-trapezoidal ones. For fuzzy rules, constructive reasoning [13] is used.

4 The Genetic Algorithm Application for Rules
Fuzzification

It’s easy to observe that there are many possibilities of ”sharp”rules fuzzification.
For that reason the algorithm realizing fuzzification process must have a heuristic
character. For realization and supervision rules fuzzification process the genetic
algorithm was used.

In such approach to the subject one can say that rules induction is a model
identification, while reduction and fuzzification process is parametric identifica-
tion. Rules fuzzification process follows in order described below:
Step 1. Rules induction.
Step 2. Sorting of rules coming from each decision class according to their qual-
ity (established by selected evaluation measure q).
Step 3. Arbitrary selection of the best rules group from each decision class (in
particular, the whole rules set can be subjected to fuzzification, it’s also possi-
ble to add rules into classifier iteratively, beginning from the best rules in each
decision class, as long as we will obtain the best classification results).
Step 4. Coding of rules selected in third step to the form acceptable by the
genetic algorithm. Rules r1, .., rn are subjected to fuzzification. Thus, each spec-
imen in population codes these n rules. Each rule consists of a certain number
of descriptors desc1 i, .., descm i, where i is the considered rule number (all con-
ditional attributes needn’t appear in the rule premise). Each descriptor can be
coded by four numbers p1 ≤ p2 ≤ p3 ≤ p4. These numbers are those values
on attribute values axis which allow uniquely determining a pseudo-trapezoidal
membership function (fig. 2).
Step 5. Creation of a first population. In some ordered way specimens are drawn
into the first population. Firstly, in the first population lands a specimen rep-
resenting ”sharp” rules (fig. 2, the first graph). Secondly, in the first population
lands also a specimen that represents a descriptor extended on a whole attribute
domain (fig. 2, the central graph). And thirdly, in the first population lands also
a specimen representing a triangle membership function (fig. 2, the third graph).
Remaining specimens are created randomly. Decisions are coded as succeeding
natural numbers. Each decision is extended for 0.5 on either side of a code given
to this decision.
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Single
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number are written in the binary form 

Fig. 1. Representation of a single specimen

1 11

p2 p3p1= amin p4= amax p1 p2=p3 p4p1=p2 p3=p4

Fig. 2. Various forms of conditional descriptors in the first population

Step 6. Activation of the genetic algorithm. Used cross-over mechanism allows
crossing all rules included in specimen at a time (thus we meet with n-positions
cross-over, where n is a number of coded rules). A mutation consists on changing
in description of one of descriptors occurring in a rule, one of values p1, p2, p3 or
p4. Classification accuracy achieved by a specimen during objects tuning set clas-
sification is the function evaluating a specimen adaptation. The genetic algorithm
succeeding populations and stopping criterion drawing takes place according to
standard way [4]. The GaLib library made available by MIT was exploited in
implementation.

5 Numerical Examples

In order to verify the proposed solution several benchmark data sets have been
tested (we present results for Iris, and Diabetest-Statlog data), tests has been
also carried out on data coming from coal-mine equipments monitoring systems.

The first of industrial data sets includes information about dewater pumps
work in abyssal mining stations. Each pump’s work cycle (from switch on till
switch off) gave one record for analyzed set. Each record in the set was de-
scribed by the following attributes: the pump temperature in the steady state
TU , the initial temperature T0, power in the steady state PU , delivery in the
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Table 1. Results for benchmarks datasets

Iris data set Diabetest-Statlog data set
Algorithm Classification Rules

accuracy number
RMatrix 97% 7
GA fuzzification
of selected rules 95% 4

Algorithm Classification Rules
accuracy number

RMatrix 74% 19
GA fuzzification
of selected rules 76% 8

Table 2. Results for industrial datasets

Dewater pump’s states classification Total cutting energy classification
Algorithm Classification Rules

accuracy number
MODLEM 95% 455
MODLEM Modyf. 85% 16
GA fuzzification
of selected rules 90% 9

Algorithm Classification Rules
accuracy number

MODLEM 86% 91
MODLEM Modyf. 85% 35
GA fuzzification
of selected rules 83% 9

steady state QU , the number Li of the pump restarts the day before, times
t20−30, t30−40, t40−50, t50−60, t60−70 when the pump temperature changes for ten
degrees. Two decision classes pointing at a number of weeks left to the pump
repair needed for the sake of worsening technical parameters (”more then two
weeks till repair”, ”less then two weeks till repair”) were defined [9].

The second of data set includes parameters that were registered during rock
cutting process. Each cut gave one record for analyzed set. Attributes described
an individual record were: cutting scale, cutting depth, the geometric blade pa-
rameters (blade angle b, position angel d, revolution angle r), the rock type s.
Determining of mentioned attributes’ values influence on unit cutting energy
Ec value was one of aims of the analysis. A range of variable Ec values was di-
vided into three intervals, getting in this way three decision classes (”low energy”,
”average energy”, ”high energy”).

For benchmark data sets the presented results have been obtained by the 10-
fold cross validation methodology, for industrial data, by train and test method.

The genetic algorithm was started with cross-over probability 0.8, and muta-
tion probability 0.1. During cross-over process there can appear such descriptors
that doesn’t satisfied the conditions p1 ≤ p2 ≤ p3 ≤ p4, (thus descriptor interpre-
tation in the context of membership function is impossible), then the cross-over
isn’t realized. This fact causes the high cross-over probability. In cases we have
described a whole set of training data was used as a tuning set. The number of
the best rules was established adaptively by maximizing classification accuracy
obtained on trained set.

6 Conclusions

The algorithm of decision rules induction (RMatrix), some modification of known
algorithm MODLEM and method of transition from classification that uses vot-
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ing scheme to fuzzy classification have been presented in the paper. For rules
fuzzification process supervising the genetic algorithm has been used.

Presented data sets analysis results confirm genetic algorithm usefulness for
tuning of classifier that relies on fuzzy logic in order to limit a number of rules
used in classification. Application of the genetic algorithm allowed getting better
classification results then in the case of rules fuzzification according to the manu-
ally specified scheme [2]. A smaller number of rules can be easier interpreted by a
user, thus these rules can be a source of a new, earlier unknown knowledge about
a problem he is interested in. Improvement of classification abilities and signif-
icant limitation of rules quantity is obtained at the cost of more computation
connected with genetic algorithm application.

Regarding classification abilities improvement one cannot draw explicit con-
clusions whether there are essential differences in obtained classifiers. For the
present the conclusion is that based on voting classification is just as good as
fuzzy classification. But there is no doubt about accuracy on training set to in-
crease significantly after tuning. That is obvious because the genetic algorithm
adjusts rules to data. It is possible for this property to prove undesirable because
rules can over-fit to data.

Working out a procedure of the genetic algorithm stop while tuning rules
become over-fit to data which makes worse classification results on tested data
will be a matter of further works. Elaboration a better (faster) procedure of
subjected to fuzzification rules selection will be also a matter of further search.
In order to attain this, measures that allow determining degrees of area inclusion
in a space of features covered by particular rules, will be used.

References

1. Bruha I.: Quality of Decision Rules: Definitions and Classification Schemes for
Multiple Rules. In: Machine Learning and Statistics, The Interface, John Wiley
and Sons, 1997

2. Drwal G., Sikora M.: Fuzzy Decision Support System with Rough Set Based Rules
Generation Method. In:Rough Sets and Current Trends in Computing, LNAI 3006.
Springer-Verlag (2004) 727-733

3. Fayad U. M., Irani K. B.: Multi-Interval Discretization of Continuous-Valued At-
tributes for Classification Learning. Proceedings of the 13th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann (1993) 1022-1027

4. Goldberg D. E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing, 1989.

5. Nguyen H. S., Nguyen S. H.: Some Efficient Algorithms for Rough Set Methods.
Proceedings of IPMU-96, Granada, Spain, 2 (1996) 1451-1456

6. Pawlak Z.: Rough Sets. International Journal of Information and Computer Sci-
ences 11 (5), (1982) 341-356

7. Sikora M., Proksa P.: Algorithms for generation and filtration of approximate deci-
sion rules, using rule-related quality measures. Bulletin of IRSS 5 (1/2), (RSTGC-
2001), 2001

8. Sikora M., Proksa P.: Induction of decision and association rules for knowledge dis-
covery in industrial databases. ICDM-IEEE, Workshop of Alternative Techniques
in Data Mining, Brighton, 2004



Fuzzy Rules Generation Method for Classification Problems 391

9. Sikora M., Widera D.: Identification of diagnostics states for dewater pumps work-
ing in abyssal mining pump stations. Proceedings of the XV International Confer-
ence on System Sciences, Wroc�law, Poland, 2004

10. Skowron A., Rauszer C.: The Discernibility Matrices and Functions in Information
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Abstract. Based on the rough set theory, this paper introduces a mul-
tilayer rough-fuzzy rules design method to keep fuzzy rules dimension
of every layer not more than three for consistency with man’s thinking
characteristics, advantageous for understanding, checking and correcting
rules. For rationally reducing and integrating input variables, the paper
presents a rapid fuzzy rules extraction algorithm based on RST, to dis-
cover knowledge from sample database. This algorithm improves C-D
indiscernible matrix. It introduces the computation program for core at-
tributes. The program for quasi-optimal attribute reduction is presented,
in which information increment of decision D is used as heuristic infor-
mation of attributes selection to accelerate selective velocity of optimal
attributes set. This multilayer fuzzy controller is combined with conven-
tional PID, applied in unit control system of power plant. The simulation
results show that the control system has higher control qualities with high
speed, small overshoot and strong robustness.

1 Introduction

Fuzzy logic control (FLC) has been applied in industrial process control systems
broadly, since it was firstly used to boiler and steam engine control by Mamdani.
But FLC design is still short of systematism. In most cases, cut-and-try methods
are employed for selection of control rules, discourse universe, fuzzy membership
functions and scaling factors. When the numbers of input variables and their
linguistic terms rise for high-order and multi-input systems, controller dimension
increases and fuzzy rules’ number enhances exponentially. Fuzzy rules are mostly
acquired by experts’ experience and knowledge while man’s logic thinking is
usually not more than 3 dimensions. Thus, determination of fuzzy rules is hard
to resolve.

Rough set theory (RST) is a kind of mathematical theory that deals with im-
precise, conflicting and incomplete information and has far-reaching applications
in data mining, speech recognition, pattern recognition, intelligent control and
other fields [1,2,3]. Not needed any apriori knowledge, RST can reduce data on
the premise of keeping essential information and acquire minimal representation;
it can extract easy-confirmed rules from experiences. RST and fuzzy sets anal-
yse two aspects of incomplete information and extend Cantor sets from different
aspect. So they complete each other in real applications.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 392–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This paper proposes a design method of fuzzy controller for MIMO (multi-
input and multi-output) system according to the controller essence. The multi-
layer fuzzy rule design method is depicted in Section 2, whose main idea focus on
reducing and integrating input variables. For rationally reducing and integrating
input variables, Section 3 presents a RST-based rapid algorithm of fuzzy rule
extraction to select the optimal attributes (fuzzy rule premise component) in the
light of requests, simplify gradually control problem by information fusion and
extract objective fuzzy rules from sample data, whose dimension number is no
more than three for good understanding, examination and amendment. Section
4 gives a simulation experiment and the conclusion is depicts in Section 5.

2 FLC Design for MIMO System

The controller is a mapping transform of input and output variables, that is,
Y = F (X), in which, X and Y are input and output variable vector respec-
tively, F is control algorithm. Thus, nesting multilayer strategies can be used in
MIMO system, namely, Y = f(g(X)). Algorithm g deals primarily with input
data, and algorithm f gives real controls according to the outputs of inner layer
algorithm g. The work of algorithm f will be reduced if the dimension of output
variable vector of algorithm g is smaller than that of X . Algorithm g, called
reducing-dimension function, performs to integrate and mine problem informa-
tion; algorithm f , called action function, reasons by those reducing ingredients
and information. For the FLC, the functions g and f is corresponding to differ-
ent rules. In this paper, the fuzzy rules adopt the multilayer form of IF-THEN,
shown in Table1. Obviously, the key for the construction of functions g and f is
how to establish multilayer fuzzy rules.

Taking the multi-input and single output system for example, knowledge
represen-tation system is established by sample database, choosing properly N
condition attributes, such as given instruction, error, error change, etc. The con-
troller’s output, namely, process control quality is adopted as decision attribute.
After sample data discretization and normalization, fuzzy information represen-
tation system (FIRS) is established. Firstly, redundant rows are deleted. Then
reduction attributes set is computed (How to compute will be presented in Sec-
tion 3). Suppose reduction attributes set is consisted of condition attributes set
C = [C1, C2, . . . , Cn] (n denotes attributes number) and decision attribute D.
These condition and decision attributes are corresponding to premise and conse-
quent components of fuzzy rules respectively. Reduction of condition attributes
equals dimension decrease of FLC, thus the input number of FLC is reduced
from N to n.

The most important attributes set Cp1 = [C1, C2, . . . , Cp1] is calculated in
fuzzy decision table, where 1 ≤ p1 ≤ n. Attribute important degrees are eval-
uated by heuristic function (HF) of attribute selection defined in Section 3. By
these p1 condition attributes and decision attribute D, FIRS is parted to two
fuzzy decision sub-tables, consistent sub-table S11 and inconsistent sub-table S12.
The rules carried by table S11 are as follows.
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Table 1. All multilayer fuzzy rules based on rough set theory

layer no multilayer fuzzy rule form
Rule i: If C1 is A11i, . . ., and Cp1 is A1p1i, Then D is B1i

first . . .
layer Rule j: If C1 is A11i, . . ., and Cp1 is A1p1i, Then Y1 is E1i

. . .

Rule i: If Y1 is E11i, and Cp1+1 is A21i, . . ., and Cp1+p2 is A2p2i,
Then D is B2i

second . . .
layer Rule j: If Y1 is E11j , and Cp1+1 is A21j , . . ., and Cp1+p2 is A2p2j ,

Then Y2 is E2ij

. . .

Rule i: If Yr−1 is Er−1i, and C∑ pn+1 is Ar1i, . . ., and Cn is Arpri,
Then D is Bri

r-th . . .
layer Rule j: If Yr−1 is Er−1j , and C∑ pn+1 is Ar1j , . . ., and Cn is Arprj,

Then D is Brj

. . .

Rule i:If C1 is A11i, . . ., and CP1 is A1P1i, Then D is B1i

Where Ck(k = 1, 2, . . . , p1) denotes the selected condition attributes. Amki is
the corresponding attribute value, in which m is the layer number (here m = 1);
k indicates attribute serial number; i marks the fuzzy rule number. Confidence
degrees of fuzzy rules, the weights, are defined by fuzzy membership degrees. In
inconsistent sub-table S12, these p1 condition attributes divide objects into x1

classes. Then x1 rules are as follows.
Rule j:If C1 is A11j , . . ., and CP1 is A1P1j , Then Y1 is E11j

In which, Y1 is taken as temporary pre-decision of the first layer reducing-
dimension function g1 and E1j (j = 1, 2, . . . , x1) is corresponding attribute value.
The rules based on sub-tables S11 and S12 are corresponding to fuzzy inference
function as first layer reducing-dimension function g1. However, the function
g1 is not entirely same to reducing-dimension function because the rules from
sub-table S11 can get conclusion directly without action function f .

Pre-decision Y1 is used to denote attributes [C1, C2, . . . , Cp1] in inconsistent
sub-table S12 where the value is E1j(j = 1, 2, . . . , x1) and fuzzy membership
degree is confidence degrees of fuzzy rule. For the new represented sub-table S12,
second selection of most important attributes Cp2 = [Cp1+1, Cp1+2, . . . , Cp1+p2]
is done according to attribute important degrees, in which 1 ≤ p1 + p2 ≤ n.
The attributes set [Y1, Cp1+1, Cp1+2, . . . , Cp1+p2] distinguishes decision table as
consistent sub-table S21 and inconsistent sub-table S22. Same to above proce-
dure, other fuzzy rules are acquired, that is, the second layer reduced-dimension
function g2.

By analogy, all reduction attributes [C1, C2, . . . , Cn] are calculated. The last-
layer’s rules are corresponding to action function f . The rules from the last layer
may be inconsistent, whose confidence degrees are appointed by fuzzy mem-
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bership degrees. In fact, the existence of inconsistent rules accords to practical
conflict phenomena. The existence shows the objectivity and soundness of con-
clusion of RST-based reduced algorithm.

Set fuzzy control inference function F has pr layers, then mapping relation
of input and output variables is:

u = F (X) = f [gpr−1(gpr−2(. . . g1(X)))] (1)

This method not only decreases total dimension of FLC, but also discovers
multilayer fuzzy inference function. In every layer, fuzzy rules have small dimen-
sions. According to man’s thinking character that dimension is not more than 3,
p1, . . . , pr are set as 2 or 1. That makes all rules easy to be understood, suitable
to thinking characters, favor of comparison with experts’ knowledge and rules
amendment.

In the above procedure, attributes reduction and attribute important degrees
are very important for multilayer fuzzy rules establishment. The essence of this
idea is using input variables’ integration to simplify control rules design. Only
rational reduction and combination of fuzzy premise components can assure ra-
tional controller simplification. Using the RST-based rapid algorithm of fuzzy
rules extraction, described as follows, can solve this key problem. The algorithm
can calculate the important degrees of condition attributes, reduce the unneces-
sary attributes, integrate the premise components of fuzzy rules and extract the
fuzzy rules.

3 RST-Based Rapid Algorithm of Fuzzy Rules Extraction

The key of fuzzy rules extraction by RST depends on rough set reduction. How-
ever, it has been proved that minimal or optimal reduction problem is NP-hard
[4]. Thus, heuristic approach is employed to calculate quasi-minimal or quasi-
optimal reduction, which can satisfy requirements and enhance the computing
speed.

The first three steps depict the establishment process of the fuzzy decision
table. Step 4 improves the C-D indiscernible matrix [5]. By analyzing the matrix,
a computation program for core attributes is given. The program can avoid
computing matrix. Step 5 presents the concrete program for the quasi-optimal
reduction of attributes. Information increment of decision is used as heuristic
information of attribution selection to accelerate the algorithm speed. The last
two steps attain the multilayer fuzzy rules. The details are shown as follows.

Step 1: The condition attributes (input variables) and decision attributes (out-
put variables) are properly selected by the measured data of inputs and outputs,
then the decision table is made out.

The data of every sample time is an object of decision table. Because the
response of the system has the transition period, any sample-time output is
related to previous sample-time inputs and output. So the condition attributes
should include input variable vectors X(t), X(t−kT ) and output variable vector
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Y (t− kT ), in which T denotes sample time and k = 1, 2, . . . decided by system
order.
Step 2: The redundant rows are deleted. The consistent degree of decision table
is computed. IF it isn’t satisfied, turn back to step 1; otherwise, continue.
Step 3: The measured data is normalized by discrete fuzzy normalization al-
gorithm [6], and the knowledge representation system of fuzzy information is
established.
Step 4: The core attributes CORED of decision D for decision table is calculated.

In the view of making decision, the knowledge representation system S
consists of consistent and inconsistent subsystems S1, S2. The core attributes
needn’t be reckoned for inconsistent data. Therefore, this paper improves C-D
indiscernible matrix as follows to avoid unnecessary computation between incon-
sistent data.

bij =
{

{a ∈ C : a(xi) �= a(xj)} D(xi) �= D(xj) and (xi or xj ∈ S1 )
Φ D(xi) = D(xj) or (xi and xj ∈ S2 )

i, j = 1, 2, . . . , n; i �= j
(2)

If |bij | = 1, the attribute included in bij is just the core attribute. What’s
more, if this attribute is expunged from the whole decision table, object xi and
object xj would be inconsistent at least and the inconsistent object number
would increase more than 1. If |bij | > 1 and any one of attributes included in
bij is omitted, xi and xj are still consistent. If |bij | = 0, then xi, xj are surely
consistent when they belong to the same decision class; the existence of any
attribute is vain and there is no change of the inconsistent object number with
the deletion of any attributes when xi and xj are both elements of inconsistent
subsystem. In short, if any attributes is taken off from the decision table and
the inconsistent object number rises, that belongs to the core attributes CORED

of D, otherwise, that doesn’t belong to CORED surely. So the core attributes
can be directly computed by inconsistent objects number change to simplify the
program complexity and decrease computing time. Delete any attribute from the
decision table, then check the inconsistent object number change, at last if the
number increases, add the attribute to CORED, otherwise, don’t add. By this
analysis, the core computation program can be presented as Figure 1.

The program computes the core attributes directly. It needn’t calculate the
indiscernible matrix to improve computation speed.
Step 5: The core attributes CORED, or adding some important attributes ac-
cording to apriori knowledge, are employed as the starting-point of calculation.
The most important attribute is chosen at a time by heuristic information until
the selected attributes set satisfies the request, which is REDD(C) generally.

Information incrementΔID(r,R) of decision D shows the classification ability
of attributes, defined as:

ΔID(r,R) = I(r ∪R/D) − I(R/D) (3)

Where I(/D) indicates information quantity with respect to decision D and
it is often used as heuristic information of attribute importance. It can be used
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1) Set X = Φ,Y = C

2) Compute num;

//num indicates the inconsistent object number

3) ∀a ∈ Y , check numa change;

//numa denotes the inconsisten object

//number after deletion of attribute a

4) if numa > num, then X = X ∪ {a} and Y = Y − {a};

5) if Y �= φ , turn back to 3);

6) CORED=X ;

7) End

Fig. 1. The program for the core attributes CORED of decision D

1) Set X = CORED , Y = C − CORED ;

2) Compute TF (C,D) of decision table,

3) Compute TF (X,D),

4) if TF (X,D) = TF (C,D), turn to 10),

5) For all r ∈ Y , compute HF(r,X,D),

6) select r‘ with greatest value of HF (a,R,D);

7) X = X ∪ {r‘}, Y = Y − {r‘};

8) Compute TF (X,D),

9) if TF (X,D) = TF (C,D), turn to 10), otherwise turn to 5),

10) REDD = X ,

11) End.

Fig. 2. The program for the quasi-optimal attributes reduction of REDD of decision D

as heuristic information of attribute selection, that is, heuristic function (HF ) is
defined: HF (r,R,D) = ΔID(r,R) , where HF (r,R,D) represents the classifica-
tion ability increment after addition of attributer r to attribute set R. Obviously,
the more great HF (r,R,D) is, the more important attribute r is and the more
classification ability r increases for R.. The terminal function (TF ) of evaluation
is defined as TF (R,D) = ID(R). If TF (R,D) equals to that of original deci-
sion table, the calculation is end and R is just the quasi-optimal reduction of
attributes. The concrete algorithm is as Figure 2.
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Fig. 3. Flow-diagram of multilayer rough-fuzzy rules extraction algorithm

Step 6: The decision table of fuzzy information is reduced and at the same time
the existence of inconsistent rules is permitted.

The fuzzy membership degree is used as the credit degree of fuzzy rules,
the rules weight, which is the key for dealing with inconsistent rules. Obviously,
it is not hopeful that the existence of inconsistent decision rules in the real
rule-base, which is related to the quantity and quality of sample data. But this
kind of results is objective, which actually shows the objectivity and soundness
of conclusion of RST-based reduced algorithm. The same rules with different
credit degrees can be consolidated by the maximum or average credit degree.

Step 7:The reduced fuzzy rules with formal IF-THEN are attained.
By heuristic information of attributes selection, the attributes are chosen

gradually to get multilayer fuzzy rules. Fuzzy con-troller function is described
by these IF-THEN rules.

The multilayer rough-fuzzy rules extraction algorithm is shown in Figure 3.

4 Simulation Research

In thermal power plant, the electric generating unit, as the controlled plant of
the load control system, is a multi-variable coupling plant, which is composed
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of boiler and turbine-generator whose dynamic characters are totally different.
During load control process for unit, energy balance of supply and demand must
be properly kept, considering load response performances and operation param-
eters stability.

In view of control task based on the characteristics of large change range
of load, N0, p0, NE , pT are selected as controller’s input variables; μt and μB

are adopted as controller’s output variables, where N0, p0, NE , pT , μt and μB

denote load instruction, main steam pressure setting value, steam turbine’s real
power and main steam pressure, the opening degree of turbine’s main throttle
and the fuel volume of boiler respectively. FLC can improve distinctly control
dynamic performance where far from working point and have strong robustness
for controlled plant’s parameters change compared with traditional PID. But
FLC is generally difficult to eliminate error in small range. So the whole con-
trol system adopts the hybrid intelligent control (IC) of multilayer rough-fuzzy
controller and PID controller and takes full use of their advantages. The rough-
fuzzy controller operates mainly in large error range while PID controller runs
primarily in small error range.

A certain mathematic model of electric generating unit is studied for simu-
lation experiments. Set the transform function is:[

pr

NE

]
=

[
2.194

(1+80s)2 −2.194(0.064 + 0.093
1+124s )

1
(1+80s)2

68.81s
(1+12s)(1+82s)

][
μB

μT

]
(4)

Figure 4 presents pT and NE response curves under load instruction from
43.3% to 90% respectively. In these Figure s, the left cures are pT response
curves; the right curves are NE response curves; curves 1 show simulation results
of hybrid control of multilayer rough-fuzzy controller and PID controller; curves
2 are conventional PID control responds that employ the mode of boiler following
turbine for unit load control. For pT control, the hybrid control has high rising
speed, small overshoot than PID control. For NE control, the hybrid control also
has high rising speed, but the overshoot is a little larger than PID control. The
dynamic process of the hybrid intelligent control has relatively greater fluctuation
than PID control. The main reason is that FLC is corresponding to nonlinear
PD control. When the error is larger, rough-fuzzy control runs chiefly with rapid
response speed and relatively larger fluctuation.

The dynamic characteristics and parameters alter because of operating con-
ditions changes of unit or the slow effect of aging, wearing etc. Given different
time constant as Formula (5).[

pr

NE

]
=

[
2.194

(1+65s)2 −2.194(0.064 + 0.093
1+150s )

1
(1+90s)2

68.81s
(1+10s)(1+100s)

][
μB

μT

]
(5)

After the parameters variation, Figure 5 illuminates pT and NE response
curves under load instruction from 43.3% to 90% respectively. The left cures
are pT response curves and the right curves are NE response curves. The curves
1 show simulation results of hybrid control and curves 2 are conventional PID
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Fig. 4. pT and NE response curves under load instruction from 43.3% to 90% respec-
tively
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Fig. 5. pT and NE response curves under load instruction from 43.3% to 90% after
parameters variation respectively

control responds. Accordingly, hybrid control has high rising speed and strong
robustness owing to FLC.

5 Conclusion

Aiming at MIMO system, this paper proposes a multilayer fuzzy rules design
method based on rough set theory. According to man’s thinking logic character-
istics, this method may select the dimension number of every layer fuzzy rules
no more than 3, advantageous for understanding, checking and correcting rules.
The key work, reducing and integrating input variables, is done by a rapid fuzzy
rules extraction algorithm based on RST. In this algorithm, an improved C-D in-
discernible matrix is proposed and analyzed. Then a computing core attributes
method is given. The main programs and algorithm flow is shown in Figure
1-3. The multilayer rough-fuzzy controller is combined with conventional PID
controller, applied in unit control system of power plant in this paper. The sim-
ulation results show that the control system has better control quality, such as
high speed, small overshoot and strong robustness.
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University of Granada, Department of Computer Architecture and Technology,
E.T.S. Computer Engineering, 18071 Granada, Spain

http://atc.ugr.es

Abstract. The fuzzy Takagi-Sugeno-Kang model and the inference sys-
tem proposed by these authors is a very powerful tool for function approx-
imation problems due to its capability of expressing a complex nonlinear
system using a set of simple linear rules. Nevertheless, during the learn-
ing and optimization process, usually a trade-off has to be carried out
among global system accuracy and sub-models (rules) interpretability. In
this paper we review the TaSe model [8] for function approximation (for
Grid-Based Fuzzy Systems and extend it to consider Clustering-Based
Fuzzy Systems) that is learned from an I/O numerical data set and that
will allow us to extract strong interpretable rules, whose consequents
are the Taylor Series Expansion of the model output around the rule
centres. This TaSe model provides full interpretability to the local mod-
els with high accuracy in the global approximation. The rule extraction
process using the TaSe model and its properties will be reviewed using
a significant example.

1 Introduction

Rule extraction is a crucial problem in many scientific, engineering and economic
areas. Several paradigms have been applied for this topic and a huge number of
works can be found in the literature. More specifically, when dealing with a
modelling problem from a continuous data set with samples of the form

{(xm; zm) ; m = 1, 2, . . . ,M ; with zm = f(xm) ∈ IR, and xm ∈ IRn} (1)

soft-computing techniques such as Neural Networks(NN) and Fuzzy Systems(FS)
have been applied. Typically, NN provide a good approximation for the modelling
problem, but the models obtained suffer from the lack of interpretability. In
opposite, FS provide a good interpretable model from which rules can be easily
extracted. Both paradigms are frequently mixed in the so-called neuro-fuzzy
modelling techniques.

The Takagi-Sugeno-Kang (TSK) [1] neuro-fuzzy model has been widely used
for function modelling due to its capacity of obtaining a highly interpretable
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model with high accuracy in the approximation, using a relatively low number
of simple rules. Nevertheless, during the modelling process from a set of I/O
data using a TSK model, some aspects of the intrinsic interpretability of that
can be lost. The transparency of the input space partitioning, the number of
rules of the obtained system [2] and the interpretability of the local models [3]
are three crucial issues in the modelling of I/O data using TSK systems from
the interpretability point of view.

In general, in Fuzzy Systems two types of partitioning of the input space can
be carried out. On the one hand Grid-Based Fuzzy Systems (GBFSs) [6] perform
a thorough coverage of the input space, they are highly interpretable since every
rule make use of the the same group of fuzzy sets in each input variable, but,
nevertheless, they notoriously suffer from the curse of dimensionality [8] in the
number of rules. On the otherhand, Clustering-Based Fuzzy Systems (CBFSs)
[7] place the rules in the zones of the input space in which they are needed, they
are usually seen as less interpretable than GBFS [2], but the number of rules is
not an exponential function of the number of input variables and the number of
membership functions (MFs) per variable as in GBFSs.

In relation to both types of partitioning in TSK models, with respect to
the transparency of the model, some approaches try to use similarity measures
among the fuzzy sets obtained in the optimization of the TSK system process [4],
but for GBFSs, a “partition-like”[8] MF distribution avoids a strong overlapping
among the fuzzy sets. For CBFSs we will introduce now an equivalent approach
to that of “partition” in section 3. With respect to the number of rules, higher-
order consequent TSK rules can reduce drastically the number of rules needed to
perform the approximation [5]; nevertheless, high-order TSK rules have always
been seen as non-interpretable. The TaSe model, as we will review, allows such
interpretability [8]. And finally with respect to the interpretability of the local
sub-models some approaches have tried to overcome this problem [9,3]. Here we
present the TaSe model as a rule extractor that provides fully TSK interpretable
rules with respect to the rule centres both for GBFSs and CBFSs.

2 Interpretable Rule Extraction from I/O Data Using
Grid Partitioning

Typically, the structure of a multiple-input single-output (MISO) TSK system
and its associated fuzzy inference method comprises a set of K IF-THEN rules
in the form

Rulek : IF x1 is μk
1 AND . . . AND xn is μk

n THEN y = Rk (2)

where the μk
i are fuzzy sets characterized by membership functions μk

i (xi) in
universes of discourse Ui (in which variables xi take their values), and where Rk

are the consequents of the rules.
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The output of a fuzzy system with rules in the form shown in eq. 2 can be
expressed (using weighted average aggregation) as

F (x) =

K∑
k=1

μk(x)Rk

K∑
k=1

μk(x)
(3)

provided that μk(x) is the activation value for the antecedent of the rule k, which
can be expressed as

μk(x) = μk
1(x1)μk

2(x2) . . . μk
n(xn) (4)

As we have mentioned before, TSK fuzzy systems are often used to deal
with function approximation problems, due to it’s ability to explain non-linear
relations using a relatively low number of simple rules. We must recall that the
problem of function approximation deals with estimating an unknown function
f from samples of the form 1, and is a crucial problem for a number of scientific
and engineering areas. The main goal is thus to learn an unknown functional
mapping between the input vectors and their corresponding continuous output
values, using a set of known training samples. Later, this generated mapping will
be used to obtain the expected output given any new input data.

For the case of GBFS, the TaSe model was presented in [8]; we will now
review the main topics surrounding this methodology.

The TaSe model obtains rules whose consequents can be interpreted as the
Taylor Series Expansion of the model output around the rule centres. This result
is possible thanks to two main characteristics of the TaSe TSK model:

1. Rule consequents that have a general polynomial form that admits the Taylor
Theorem that states that: “if a function f(x) defined in an interval has
derivatives of all orders, it can be approximates near a point x = a as its
Taylor Series Expansion around that point:

f(x) = f(a) + (x − a)T

[
∂f

∂xi
(a)
]

i=1...n

+
1
2
(x − a)TW (x − a)

+ . . .+
1

(l + 1)!
f (l+1)(c)(x − a)l+1 (5)

where in each case, c is a point between x and a, and where W is a triangular
matrix of dimensions l × l ”. Taylor series opens a door for the approxima-
tion of any function through polynomials, that is, through the addition of
a number of simple functions. It is therefore a fundamental key in the field
of Function Approximation Theory and Mathematical Analysis. Using the
general formulation of the TSK model, we can use rule consequents Rk (in
eq. 2) that have the truncated form of eq. 5.
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2. Rule antecedent structure that allows such interpretability, i.e. that allows
the model output to be continuous and differentiable, and such that in each
rule centre only its respective rule consequent has influence in the output. In
the case of GBFS, the Orderly Local Membership Function (OLMF) bases
[10] allow such interpretability. The most important characteristics of the
OLMF bases are:
– all MFs are local (i.e. non-negative and vanishing with the distance),

defined in a delimited domain and of the same type
– every MF extreme point coincides with the centre of the adjacent MF

(they form a partition, thus avoiding uncontrolled overlapping of the
MFs)

– all MFs are p times differentiable and the p-th derivative of the MF is
continuous in all its domain

– the p-th derivative of the MF vanishes at its centre and at its boundaries
– the basis must accomplish the addition-to-unity property

Given a system with such two characteristics, and using Least Squares (LSE)

J =
∑

m=1..M

(f (xm) − zm)2 (6)

for obtaining the rule consequent coefficients [11] from a I/O data set, leads to
a good approximator system with interpretable sub-models (rules) [8].

3 Interpretable Rule Extraction from I/O Data Using
Clustering Partitioning

As we have seen, for GBFS, Bikdash in [10] presented a modified Membership
Function (MF) type, the OLMF bases that allowed local models (rules) inter-
pretability, and Herrera in [11] and [8], this approach was expanded to be used
in function approximation problems from a I/O data set (TaSe model) and was
endowed with a complete GBFS learning algorithm (TaSe learning algorithm).
Nevertheless, for CBFS this problem is more tricky. For CBFSs, that in some
cases are equivalent to Radial Basis Function Networks, we can have rules with
the same truncated Taylor Series form, but in principle it’s not so easy to have
an input partition that satisfies the requirement that in each rule centre only its
respective rule consequent has influence in the output, neither exists a Member-
ship Function type that carry out such property in CBFSs.

As expounded in the introduction, for CBFSs as was for GBFSs, the problems
of lack of transparency of the input space partition, an excessive number of rules,
and the obtention of sub-models that don’t reflect properly the model output in
the area they have influence on, are three main issues that appear when dealing
with fuzzy rule extraction in I/O data modelling from the interpretability point
of view. Usually most of the neuro-fuzzy approaches (including RBF networks
[12]) are centred in reducing the global error function, but don’t deal with the
natural posterior process of rule extraction and interpretability of the obtained
model.
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As we have mentioned, for CBFS it’s impossible to have MFs that carry out
the two desired properties in the input space partition. The non-grid input space
partition organization avoids this possibility. Consider Gaussian-type MFs and
suppose the simplest case in which we have a one-dimensional input space with
domain [0,1] and two MFs (thus two rules) centred in c1 = 0.3 and c2 = 0.7
with σ = 0.3. In this case there is a strong overlap among both MFs in both rule
centres. To avoid this overlap we will allow the domain of the first MF μ1(x)
to be limited by the function 1 − μ2(x), i.e., when the activation value of the
other rule is 1, the activation value of the first rule will be forced to be 0. More
specifically the activation value for the first rule μ1(x) will be limited by

1 − μ′2(x); μ′2(x) =
{
μ2(x) if x < c2

1 if x ≥ c2
(7)

and on the other hand, the activation value for the first rule μ1(x) will be limited
by

1 − μ′1(x); μ′1(x) =
{
μ1(x) if x > c1

1 if x ≤ c1
(8)

i.e. the final activation value of any point for the each rule will be

μk∗(x) = μk(x)

j=n;
j �=k∏
j=1

(
1 − μ′j(x)

)
(9)

(a) (b)

Fig. 1. a) Original MFs for a one-dimensional example. b) Activations using the mod-
ified Aggregation Operator.

Thus, generalizing to the n-dimensional case with any number of rules K,
the general expression for the output of the TSK system, using weighted average
(to force each activation value of each rule at the same rule centre to be 1) can
be calculated as
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F (x) =

K∑
k=1

μk∗(x)Rk

K∑
k=1

μk∗(x)
=

K∑
k=1

⎛⎝μk(x)

j=n;
j �=k∏
j=1

(
1 − μ′j(x)

)⎞⎠Rk

K∑
k=1

⎛⎝μk(x)

j=n;
j �=k∏
j=1

(1 − μ′j(x))

⎞⎠ (10)

where the μ′j(x) has the form

μ′j(x) = μ′j
1 (x1)μ

′j
2 (x2) . . . μ′j

n (xn) (11)

in which each μ′j
i (xi) has the form shown in eq. 7 or 8 depending on the relative

position of the centres cji and cki .
This new formulation of the system output in eq. 10 is simply a modified

aggregation operator with weighted averaging behavior. Fig. 1 shows the uni-
dimensional toy example with two MFs cited previously, with the original MFs
μ1(x) and μ2(x) and the final effective MFs μ1∗(x) and μ2∗(x).

4 Example of Interpretable Rule Extraction Using the
TaSe Model

Consider the example function

y4 (x1, x2) =
1

1 + exp(10 (x1 − x2))
x1, x2 ∈ [0, 1] (12)

presented for comparisons in [13]. From this function example we will extract
400 equidistributed samples as our I/O data set, from which we will perform
our interpretable rule extraction methodology using the TaSe model, both for
clustering and grid-based fuzzy systems. For the two models we will perform rule
extraction using 9 second order polynomial consequent rules. Thus we will obtain
9 interpretable rules that will define the shape of the model output around the
rule centres, that are placed in a grid form in the case of GBFSs and that will
be scattered in the case of CBFSs.

First consider the use of GBFSs. Using the learning methodology presented
in [8], the optimal variable rule centres in the two variables (3 MFs per variable
implies one variable rule centre for each variable, considering fixed the other
two MF centres, one at each extreme of the domain) for this example (see eq.
12) are placed approximately in the middle of the variables domain (around
0.5). Thus the 9 rules are centred in {0, 0.5, 1} for variable x1 and again in
{0, 0.5, 1} for variable x2. Fig. 2 shows the original function y4 (see eq. 12) and
the approximation obtained using these 9 rules obtained using the Grid-Based
TaSe model. Our approach as we can see obtains a very good approximation of
this function using only 9 rules (the NRMSE [6] obtained is 0.02).
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a) b)

Fig. 2. a) Original function y4. b) Approximation obtained by the Grid-Based TaSe
model using 9 rules.

The nine rules obtained by the TaSe GBFS learning methodology are

IF x1 is 0 and x2 is 0 THEN y = 4.30x2
1 + 0.0x1x2

−4.30x2
2 − 2.56x1 + 2.56x2 + 0.50

IF x1 is 0 and x2 is 0.5 THEN y = −3.43x2
1 − 3.74x1(x2 − 0.5)

+0.78(x2 − 0.5)2 − 0.06x1 + 0.25(x2 − 0.5) + 1.00
IF x1 is 0 and x2 is 1 THEN y = −1.19x2

1 − 4.06x1(x2 − 1)
−1.19(x2 − 1)2 − 0.12x1 + 0.12(x2 − 1) + 1.00

IF x1 is 0.5 and x2 is 0 THEN y = −0.78(x1 − 0.5)2 + 3.74(x1 − 0.5)x2

+3.43x2
2 − 0.25(x1 − 0.5) + 0.06x2 + 0.0

IF x1 is 0.5 and x2 is 0.5 THEN y = 0.0(x1 − 0.5)2 + 0.0(x1 − 0.5)(x2 − 0.5)
+0.0(x2 − 0.5)2 − 2.28(x1 − 0.5) + 2.28(x2 − 0.5) + 0.50

IF x1 is 0.5 and x2 is 1 THEN y = 0.78(x1 − 0.5)2 − 3.74(x1 − 0.5)(x2 − 1)
−3.43(x2 − 1)2 − 0.25(x1 − 0.5) + 0.06(x2 − 1) + 1.00

IF x1 is 1 and x2 is 0 THEN y = 1.19(x1 − 1)2 + 4.06(x1 − 1)x2

+1.19x2
2 − 0.12(x1 − 1) + 0.12x2 − 0.0

IF x1 is 1 and x2 is 0.5 THEN y = 3.43(x1 − 1)2 + 3.74(x1 − 1)(x2 − 0.5)
−0.78(x2 − 0.5)2 − 0.06(x1 − 1) + 0.25(x2 − 0.5) + 0.0

IF x1 is 1 and x2 is 1 THEN y = −4.30(x1 − 1)2 + 0.0(x1 − 1)(x2 − 1)
+4.30(x2 − 1)2 − 2.56(x1 − 1) + 2.56(x2 − 1) + 0.50

Now, fig. 3 shows the approximation obtained plus the representation of the
local models, identified by the consequent polynomials centred in their respective
centres, and a representation of the local models themselves. We can clearly see
how the TaSe model for GBFSs obtains rules whose consequent representation
highly resembles the output of the model in the vicinity of the rule centres.

Now consider the use of CBFSs for the same problem. In this case, we have
placed the rule centres according to the CFA clustering algorithm presented
in [12], and afterwards we have used LSE to obtain the optimal consequent
coefficients together with a gradient descent approach to obtain the optimal rule
centres. Fig. 4 shows the effective activation values for each rule of the resulting
CBFS TaSe model, and also the activation values for each of the rules in the
previous case when we used the GBFS TaSe model.
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a) b)

Fig. 3. a) Original function y4. b) Approximation obtained by the Grid-Based TaSe
model using 9 rules.

a) b)

Fig. 4. a) Activation functions μk∗(x) for the nine rules in the TaSe CBFS. b) Activa-
tion functions for the nine rules in the TaSe GBFS.

The rule centres for the TaSe CBFS model, after the gradient descent proce-
dure for optimization of the rule centres (the sigmas are automatically calculated
using the nearest centre criteria as in [14]), are placed in [0.71, 1], [0.43, 0.02],
[0.83, 0.02], [0.54, 0.82],[0.02, 0.27], [0.61, 0.38], [0.91, 0.50], [0,1.00], [0.23, 0.48].
This approach obtains again a very good approximation to function y4 using
only 9 rules (the NRMSE obtained is 0.007, that is even better than the previ-
ous NRMSE = 0.02 obtained by the TaSe GBFS)

Fig. 5 shows the approximation obtained plus the representation of the lo-
cal models, identified by the consequent polynomials centred in their respective
centres, and a representation of the local models themselves. We can clearly
see how the TaSe model for CBFSs also obtains rules whose consequent repre-
sentation highly resembles the output of the model in the vicinity of the rule
centres. Note that in this case the rule centres are not grid distributed along
the domain but according to the optimal position found in the gradient descent
approach. Nevertheless, the rule centres could be forced to be placed at any
specific points without using any optimization method for centres placing, and
the interpretability properties of the rules would be kept (the accuracy could be
lower then).
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a) b)

Fig. 5. a) Original function y4. b) Approximation obtained by the Clustering-Based
TaSe model using 9 rules (see also fig. 4.b to remind where the centres were localized).

Thus, we have seen that it is possible to obtain highly interpretable neuro-
fuzzy systems using the TaSe methodology. We have a low number of rules,
spread in a transparent input space partitioning, and that together provide a
very good representation of the whole I/O data but also alone are a good rep-
resentation of the input space area they represent (thanks to the Taylor Series
Expansion). Specifically for the case of the CBFS, they have been seen as low
interpretable systems due to the fact that they use different fuzzy sets in each
rule. Nevertheless with our approach for input space partitioning, we can claim
that each rule specifically defines a region in the n-dimensional space without
a strong overlapping with the rest of the rules in all the input dimensions. For
the given example, the TaSe CBFS has provided a better global approximation
(0.006 NRMSE) than the TaSe GBFS (0.02 NRMSE) but obviously due to the
higher flexibility inherent to the clustering-based neuro-fuzzy models (we had 9
free parameters in opposite to the 2 free parameters -centres- in the GBFS).

5 Conclusions

We have reviewed the TaSe model as an interpretable rule extractor, that can get
rid of the loss of interpretability inherent to most of the learning and optimization
techniques for TSK fuzzy systems when dealing with I/O data modelling. Also
we have presented a modified TaSe model for CBFSs that allows interpretable
rule extraction, thanks to an input space partitioning that resembles that of
“partition-like” in GBFSs. Finally a comparison has been made among both
approaches from the interpretability point of view using an example. The TaSe
model for CBFS overcomes partially the reputation of low interpretable systems
because of the fact that they use different MFs per rule, thanks to the partition-
like input space partitioning expounded in section 3. The TaSe model for I/O
data modelling both for GBFS and for CBFS, provides full interpretability to
the local models with high accuracy in the global approximation.
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A New Feature Weighted Fuzzy Clustering
Algorithm�

Jie Li, Xinbo Gao, and Licheng Jiao

School of Electronic Engineering,
Xidian Univ., Xi’an 710071, P.R. China

Abstract. In the field of cluster analysis, the fuzzy k-means, k-modes
and k-prototypes algorithms were designed for numerical, categorical and
mixed data sets respectively. However, all the above algorithms assume
that each feature of the samples plays an uniform contribution for cluster
analysis. To consider the particular contributions of different features,
a novel feature weighted fuzzy clustering algorithm is proposed in this
paper, in which the ReliefF algorithm is used to assign the weights for
every feature. By weighting the features of samples, the above three
clustering algorithms can be unified, and better classification results can
be also achieved. The experimental results with various real data sets
illustrate the effectiveness of the proposed algorithm.

1 Introduction

Cluster analysis is one of multivariate statistical analysis methods and an impor-
tant branch of unsupervised pattern classification in statistical pattern recogni-
tion [1]. The goal of cluster analysis is to partition an unlabeled sample set into
some subsets so that the homogenous samples can be classified into the same
subset and the inhomogeneous samples can be classified into different subsets.
So, it can be used to investigate the closeness among the objects in quantity and
to obtain the validate classification.

Fuzzy k-means (FKMe) algorithm is one of effective cluster analysis methods,
which has been widely used in unsupervised pattern recognition and fuzzy control
and other fields. Unfortunately, the FKMe algorithm can only deal with the
numerical data set. In practice, both the numerical data and categorical data,
even mixed data may be encountered. Since the categorical domain is disorder,
it does not always work to convert the categorical values to numerical values.
For this purpose, the k-modes and k-prototypes algorithms are presented for
processing the categorical data set and the mixed data set respectively [2,3].

In the k-means and k-modes algorithms, contributions of all the features of
samples are considered uniformly for classification. Even the k-prototypes algo-
rithm only employs a weight to balance the numerical features and categorical
features. In fact, since the feature values come from different measuring sensors,
� This work was supported by National Natural Science Foundation of China

(No.60202004) and the Key Project of Chinese Ministry of Education (No.104173).
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there exist different dimensions, accuracy and reliability. In the other hand, not
all the extracted features are suitable for pattern classification with the same
degree. So, the above three clustering algorithms have some certain limitations
in practical applications.

To consider the different contributions of features for classification, a novel
feature weighted fuzzy clustering algorithm is presented in this paper. In this
new method, the feature selection technique [4], the ReliefF algorithm is used to
assign the weight for each feature. In this way, the fuzzy k-means, k-modes and
k-prototypes algorithms can be unified, and better classification performance
can be achieved. In the other hand, the contribution amounts of all the features
can also be obtained.

The rest of this paper is organized as follows. In next section, the feature
selection technique, the ReliefF algorithm is briefly introduced. Section 3 presents
the feature weighted clustering algorithm. The experimental results are given
in Section 4 with performance comparison among the proposed algorithm and
the available k-means, k-modes and k-prototypes algorithms. The final section
concludes this paper and points out the research topics in the future work.

2 The ReliefF Algorithm

Feature selection has been widely applied in the fields of data mining, image
processing and pattern recognition, which is often used to assign a weight for each
feature according to its contribution and to find the most effective features. The
basic Relief algorithm is proposed by Kira and Rendell in 1992 [5], which is fit
for the classification problem with two classes. In 1994, Kononenko extended the
Relief algorithm to ReliefF algorithm so that it can be suitable for classification
problem with multiple classes.

Let X = {x1, x2, · · · , xn} be a given set of objects to be clustering processed,
in which xi = [xi1, xi2, · · · , xiN ]T denotes the N features of the i-th object
(sample). Let λ be a matrix with order of 1×N , which assigns the weight for each
feature. For any a sample xi, R nearest-neighbor samples are first found out from
the class of xi, denoted as hj , j = 1, 2, · · · , R. Then R nearest-neighbor samples
are found out from other classes respectively, denoted as mlj , j = 1, 2, · · · , R, l �=
class(xi). Let diff−hit be a matrix with order of N × 1, which denotes the
difference between hj and xi in features.

diff−hit =
R∑

j=1

|xi − hj |
max(X) − min(X)

(1)

Let diff−miss be a matrix with order of N × 1 , which represents the dif-
ference between mlj and xi in features.

diff−miss =
∑

l �=class(xi)

p(l)
1 − p(class(xi))

R∑
j=1

|xi − mlj |
max(X) − min(X)

(2)
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where, p(l) indicates the priori probability of the l-th class, which equals to the
ratio of total number of samples in the l-th class to the total number of samples
in data set. In ReliefF algorithm, the λ is updated as follows.

λ = λ− diff−hit

R
+
diff−miss

R
(3)

Repeating the above steps several times, the appropriate weight of each fea-
ture will be achieved.

3 The Feature Weighted Clustering Algorithm

Let X = {x1, x2, · · · , xn} be a set of objects to be clustering processed, and xj =
[xr

j , x
c
j ]

T , j = 1, 2, · · · , n, denote the m features of the j-th samples, in which xr
j =

[xr
j1, · · · , xr

jt] indicates the numerical features and xc
j = [xc

j,t+1, · · · , xc
jm] stands

for the categorical features. Let P = [p1, p2, · · · , pk], and pi = [pr
i1, · · · , pr

it, p
c
i,t+1,

· · · , pc
im]T , i = 1, 2, · · · , k represent the prototype of the i-th class. In the k-

prototypes algorithm, the objective function is defined as follows.

J(P ) =
k∑

i=1

( n∑
j=1

t∑
l=1

|xr
jl − pr

il|2 + λ

n∑
j=1

m∑
l=t+1

δ(xc
jl , p

c
il)
)

(4)

In the right hand of (4), the first term is the squared Euclidean distance in
numerical feature space, and the second term is a simple dissimilarity matching
measurement. Here δ(·) is defined as

δ(a, b) =
{

0 a = b
1 a �= b

(5)

The weight λ is used to balance the two kinds of features. From (4), it can
be found that although the k-prototypes algorithm employs a parameter λ to
control the proportion between the numerical and categorical feature sets, within
the numerical or categorical feature sets, the contributions of each feature is
assumed uniform for classification.

First, we extend the crisp k-partition to fuzzy k-partition. For the fuzzy
k-prototypes clustering, the objective function is modified as

J(W,P ) =
k∑

i=1

( n∑
j=1

w2
ij

t∑
l=1

|xr
jl − pr

il|2 + λ

n∑
j=1

w2
ij

m∑
l=t+1

δ(xc
jl, p

c
il)
)
, (6)

where wij ∈ [0, 1] indicates the membership degree of sample xj to the i-th
cluster. Note that we weight a exponential 2 for wij to guarantee the extension
from crisp partition to fuzzy partition not trivial [6].

Furthermore, we extend the fuzzy k-prototypes algorithm by weighting ev-
ery feature. The corresponding weight for each feature can be obtained with the
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ReliefF algorithm. Let λr = [λr
1, · · · , λr

t ]
T denote the weights for the numeri-

cal features and λc = [λc
t+1, · · · , λc

m]T stand for the weights for the categorical
features. Then the clustering objective function is rewritten as

J(W,P ) =
k∑

i=1

( n∑
j=1

w2
ij

t∑
l=1

λr
l |xr

jl − pr
il|2 +

n∑
j=1

w2
ij

m∑
l=t+1

λc
l δ(x

c
jl, p

c
il)
)

(7)

By minimizing the objective function J(W,P ), the optimal clustering result can
be achieved. Note that since all the weights can be classified into two groups,
one for numerical features and another for categorical features, the two groups
weights will be updated with ReliefF algorithm respectively. The weights for
numerical features are updated as Eq.(8).

λr = λr − diff−hitr

R
+
diff−missr

R
, (8)

where both the diff−hitr and diff−missr are matrices with order of t × 1
defined in Eq.(1) and Eq.(2), which denote the difference of numerical features.

Both the diff−hitc and diff−missc are matrices with order of (m−t+1)×1
and indicate the difference of categorical features, which are defined as Eq.(9)
and Eq.(10).

diff−hitc =
R∑

j=1

δ(hc
i , x

c
i ) (9)

diff−missc =
∑

l �=class(xi)

p(l)
1 − p(class(xi))

R∑
j=1

δ(mc
i , x

c
i ) (10)

Then, the weights for categorical features will be updated as Eq.(11).

λc = λc − diff−hitc

R
+
diff−missc

R
(11)

In this way, according to Eq.(8) and Eq.(11), the ReliefF algorithm can be used
to obtain the weights for numerical and categorical features. Note that in the
ReliefF algorithm to obtain the nearest neighbor, the distance function of each
object-pair (xi, xj) is defined as

D(xi, xj) =
t∑

l=1

λr
l |xil − xjl| +

m∑
l=t+1

λc
l δ(x

c
il, x

c
jl), (12)

in which λr
l and λc

l are the current weights for numerical features and the cate-
gorical features respectively. In this algorithm, the λr

l and λc
l is initalized as 1

m ,
and then they are updated with Eq.(8) and Eq.(11).

In addition, the ReliefF algorithm is initially proposed for supervised classi-
fication. In that application, each training sample has a determined class label.
While, the processed samples are unlabeled in cluster analysis. To this end, we
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first employ the clustering result to label the samples. Then the ReliefF algo-
rithm will be able to obtain the proper weight for each feature. By several times
of iterations, the proposed new clustering algorithm will achieve the final optimal
clustering result.

Although the proposed feature weighted clustering algorithm is constructed
based on the fuzzy k-prototypes algorithm, it can also be used to modify the
fuzzy k-means and k-modes algorithms. It is obvious that when λc = 0, the new
algorithm corresponds to the feature weighted fuzzy k-means algorithm, and when
λr = 0, the new algorithm corresponds to the feature weighted fuzzy k-modes
algorithm. That is to say, the proposed feature weighted clustering algorithm
unifies the k-means, k-modes and the k-prototype algorithms.

4 Experimental Results

To verify the effectiveness of the proposed feature weighted clustering algorithm,
we conduct several test experiments with various data sets. By comparing with
the traditional fuzzy k-means, k-modes and k-prototypes algorithms, the feasi-
bleness and effectiveness of the new algorithm is demonstrated.

To evaluate the performance of the proposed algorithm objectively, here we
select three labeled data sets as testbed. In the experiments, it is assumed that
the class label of each sample is not available, and the different clustering algo-
rithms are performed on the data set to assign the class label for each sample.
Finally, by relabeling algorithm one can obtain the corresponding relationship
between the real class labels and the assigned labels by clustering algorithm, and
the classification performance will be able to achieved easily.

4.1 Experiment with Numerical Data Set

To test the classification performance of the proposed algorithm for the numerical
data set, we adopt the famous IRIS data set as testbed [7].

The IRIS data set contains 150 samples in 4-dimensional feature space, and
the 4 components of each sample represent the petal length, petal width, sepal
length and sepal width of IRIS respectively. The whole data set is often divided
into 3 categories, i.e., Setosa, Versicolor and Virginica, each of which is com-
posed of 50 samples. In feature space, the sample distribution of the Setosa are
separated from the other 2 categories, while there exists overlapping between
the Versicolor and the Virginica categories.

We employ the traditional fuzzy k-means algorithm (FKMe) and the pro-
posed feature weighted FKMe algorithm to classify the IRIS data set. By rela-
beling the assigned class labels and the real labels of the 150 samples, the wrong
classified number (WCN) of samples and the wrong classification rate (WCR)
are computed as criteria for comparing the classification performance of the 2
clustering algorithms.
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For the data set of IRIS, Hathaway provided the real cluster centers of the
above 3 categories in 1995 [8].

p1 = (5.00, 3.42, 1.46, 0.24),
p2 = (5.93, 2.77, 4.26, 1.32),
p3 = (6.58, 2.97, 5.55, 2.02).

Naturally, the sum of the squared error (SSE) between the obtained cluster
centers by the algorithm and the real centers can also be used as criteria to
evaluate the performance of the different clustering algorithms.

The clustering results of the FKMe algorithm and the feature weighted FKMe
(FWFKMe) algorithm are presented in Table 1. It is obvious that the FWFKMe
algorithm achieves not only the smaller wrong classification rate but also the
more accuracy cluster centers than the traditional FKMe algorithm. The obtain
weight matrix is λr = [3.9720, 2.6880, 9.4350, 14.4810], which implies that the
forth feature has the biggest contribution and the second feature has the smallest
contribution for classification of these 3 categories.

Table 1. The comparison of performance between the FKMe and FWFKMe algorithms
on the IRIS data set

Algorithms WCN WCR The obtained cluster centers SSE
p1 = (5.0062, 3.4242, 1.4684, 0.2492)

FKMe 16 10.67% p2 = (5.8946, 2.7460, 4.4154, 1.4273) 0.1554
p3 = (6.8484, 3.0750, 5.7283, 2.0741)
p1 = (5.0060, 3.4276, 1.4626, 0.2463)

FWFKMe 6 4% p2 = (5.9082, 2.7490, 4.2671, 1.3313) 0.0125
p3 = (6.6459, 3.0050, 5.5923, 2.0462)

4.2 Experiment with Categorical Data Set

To verify the classification performance of the proposed feature weighted clus-
tering algorithm for the categorical data set, we employ the real data set of bean
diseases as testbed [9]. The bean disease data set contains 47 recorders, and each
of which is described with 35 features. Each recorder is labeled as one of the fol-
lowing 4 kinds of diseases, i.e., Diaporthe stem canker, Charcoal rot, Rhizoctonia
root rot, and Phytophthora rot. Except the Phytophthora rot with 17 recorders,
all the other categories have 10 recorders.

The traditional k-modes (KMo) and the proposed feature weighted k-mode
(FWKMo) algorithms are used to classify the data set of bean disease. The classi-
fication result is shown in Table 2, in which D,C,R,P denote one of disease types
respectively. The FWKMo algorithm obtains a completely correct classification,
which illustrates its effectiveness.

Fig.1 shows the obtained weights for features of bean disease data set by
the proposed algorithm. It can be found that the weights of the 11-th, from
the13-th to the 19-th and from the 29-th to the 34-th features are zeros, which
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Table 2. The comparison of performance between the KMo and FWKMo algorithms
on the bean disease data set

Clustering algorithms D C R P WCN WCR
FWKMo 10 10 10 17 0 0%

KMo 13 10 10 14 9 20%
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Fig. 1. The obtained weights for features of the bean disease data set

implies these 14 features having no contribution for classification of the above
4 categories. By checking the original data set, all the recorders have the same
values in the 14 features. It proves that the proposed algorithm can not only
improve the classification performance but also be used for feature optimal choice
in pattern recognition.

4.3 Experiment with Mixed Data Set

As well known, the mixed data sets with numerical and categorical attributes are
often encountered in data mining and other applications. To test the performance
of the proposed algorithm to such mixed data set, we select the real data set of
zoo as testbed [10], which contains 101 recorders, and each recorder including 15
categorical attributes and 1 numerical attribute.

The k-prototypes (KP) and the feature weighted KP (FWKP) algorithms are
adopted to classify the data set of zoo. The traditional k-prototypes algorithm
makes 19 mistakes in classification, while the FWKP algorithm makes 3 mistakes.
The classification result of FWKP algorithm is shown in Table 3, in which the
number with “*” denotes the amount of the wrong classified samples. Since the
number of mammals is greater than others, it is partitioned into 2 classes falsely,
i.e., class 1 and class 7. The crawlers and amphibians are merged into one class.
The other classes are achieved correct classification.

Fig.2 shows the obtained weights for categorical features of zoo data set. It is
obvious that the forth feature has the biggest weight, which implies the biggest
contribution in this feature. In fact the forth feature is the key attribute for
distinguishing the mammals from others. The fourteenth feature has the smallest
weight. In addition, the weight for the numerical attribute is λr = 46.1842 .
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Table 3. The classification result of the FWKP algorithms on the data set of zoo

Standard Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Categories (31) (20) (14) (10) (8) (8) (10)

Mammals (41) 31 10∗

Birds (20) 20
Fish (13) 13

Insectology (8) 8
Molluscs (10) 2∗ 8
Crawlers (5) 1∗ 4

Amphibians (4) 4
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Fig. 2. The obtained weights for categorical features of the zoo data set

The above experimental results with various data sets demonstrate that the
proposed feature weighted clustering algorithm is reasonable and effective.

5 Conclusions

This paper presents a novel feature weighted clustering algorithm. On the one
hand, the proposed algorithm unifies the traditional k-means, k-modes and k-
prototypes algorithms by introducing weights for each dimensional feature. On
the other hand, it can obtain better classification performance than traditional
clustering algorithms. In addition, the new algorithm can be used to analyze the
different contributions among the features for classification, which is suitable for
feature optimal choice in pattern recognition.

Of course, since the weights for features should be optimized by iterative Reli-
efF algorithm, the good performance of the proposed feature weighted clustering
algorithm is at a cost of more CPU times. In addition, to employ the ReliefF
algorithm, one have to specify a value for the number of nearest neighbors, R.
However, how to choice an optimal value of R is an open problem, which is
remained for future work.
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Abstract. The work leading to this paper is semantic image classifi-
cation. The aim is to evaluate contributions of clustering mechanisms
to organize low-level features into semantically meaningful groups whose
interpretation may relate to some description task pertaining to the ima-
ge content. Cluster assignment reveals underlying structures in the data
sets without requiring prior information. The semantic component indi-
cates that some domain knowledge about the classification problem is
available and can be used as part of the training procedures. Besides,
data structural analysis can be applied to determine proximity and over-
lapping between classes, which leads to misclassification problems. This
information is used to guide the algorithms towards a desired partition
of the feature space and establish links between visual primitives and
classes. It derives into partially supervised learning modes. Experimental
studies are addressed to evaluate how unsupervised and partially super-
vised fuzzy clustering boost semantic-based classification capabilities.

1 Introduction

The objective of this paper is to evaluate contributions of clustering mechanisms
to the first instance of the semantic problem in large-scale image databases:
classification using generic semantic descriptions. The challenge relates to the
automatic classification of visual information.

In order to reduce the complexity of the classification process and improve its
accuracy, the image database is partitioned into classes according to the proper-
ties of the extracted low-level descriptors. The database is clustered by applying
Fuzzy C-Means algorithm (ref [1][2]) on the descriptor space as presented in
Sect. 2.

As presented in [3], three problems are found in clustering algorithms: (1)
determining the optimal number of clusters to partition the data space, (2) the
clusters do not match the expected groups, and (3) the cluster populations are
equalized.

Since the number of classes in the underlying classification problem can be
predetermined, the optimal number of clusters to partition the data space can be
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computed in function of the class set cardinality. Subsequently, validity functions
(cf. [4][5]) such as the fuzziness performance index [6] or the compactness and
separation [7] can be used.

Furthermore, it can be assumed that an expert user has classified a small set
of images per class in the database. Sect. 3 shows how this type of information
can be used to perform structural analysis of the descriptor space.

The second problem can be tackled using the classified images (labeled data)
to guide the clustering algorithm towards a desired partition of the descriptor
space[8]. However, the nature of the problem demands an extension to deal with
the subjectivity and fuzziness of the human interpretation [9]. Consequently, a
fuzzy clustering method with partial supervision is proposed in Sect. 4.

Shape and size regularization methods have been proposed (cf. [10]) to handle
the third problem, which occurs in response of the tendency presented in c-means
clustering algorithms when grouping data within (hyper-) spherical or (hyper-)
ellipsoid spaces based on the similarity to the cluster prototypes. Besides, as
indicated in [11] the objective function being selected in advance predefines the
shapes that want to be found in the data set. Accordingly, the method presented
in Sect. 4 uses an objective function to modify the shape of the clusters .

Sect. 5 presents an experimental study in which clustering mechanisms have
been applied to improve performance of semantic classifiers. Concluding remarks
are given in Sect. 6.

2 Unsupervised Fuzzy Partition of the Feature Space

Clustering methods help to organize low-level features into groups which in-
terpretation may relate to some classification or description task pertaining to
the image content. Thus, feature vectors are clustered according to similarities
among them [12]. Such a similarity between vectors is quantified or measured
using a proximity metric.

Fuzzy clustering applies a partitioning-optimization technique based on mini-
mization of an objective function that measures the desirability of partitions [13].

The criterion function is a scalar index that indicates the quality of the
partition and has the form

J(X,V,U) =
N∑

i=1

c∑
j=1

um
ijd

2(xi,vj) , (1)

where X is a data space consisting of N p-dimension feature vectors to cluster,
V is a set of c(2 ≤ c ≤ N) cluster prototypes – centers, and U is a matrix
belonging to the set of all possible fuzzy partitions defined by

6 =

{
U ∈ +Nc| ∀

1≤i≤N
1≤j≤c

uij ∈ [0, 1] ,
c∑

j=1

uij = 1, 0 <
N∑

i=1

uij < N

}
, (2)

where uij is the degree of membership of vector xi in the cluster j, vj is the
p-dimension prototype of the cluster, d2(·) is any distance norm expressing the
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(a) Features vectors ranked by membership degree in the cluster

(b) Images used to extract the low-level vectors

Fig. 1. Sample of clustering results resembling semantic grouping (e.g. Outdoor or City
view)

similarity between any feature vector and the prototype, and m(1 < m < ∞) is
a fuzzy exponent which determines the degree of overlap of fuzzy clusters.

Fig. 1 presents clustering results after applying fuzzy c-means onto a two-class
classification problem using color descriptions. In this case feature similarity can
be used to ascribe images to a common semantic class.

If clusters are manually labeled as a representative of a class with an identi-
fying string, e.g. “skyline”, then the problem may appear to have been finessed.
However, the adequacy of such a solution depends on human interaction, which
is completely subjective.

Besides, it is intuitive that two objects can be similar in their visual primitives
but semantically different to a human observer. This is a drawback to classify
images using only low-level vision and the foundation of the critical paradigm of
“bridging the semantic gap”[14].
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Alternatively, if clusters are described by an equivalence class

[vj ]E
.= {xi : xi ∈ X,E(vj) = 1} , (3)

where vj(1 ≤ j ≤ c) is a cluster center (or prototype) and xi(1 ≤ i ≤ N) is a
feature vector associated with the i-th image in the data set X . Then, the set of
equivalence classes

X/E
.= {[vj ]E} (4)

called a quotient set forms a partition of the feature space. The clustering out-
come can be used as a pre-processing classification procedure based on the map
from X onto X/E is defined by

φ : X $→ X/E . (5)

Information provided by this pre-classification step along with hints given by
an expert user regarding to the problem domain knowledge are quite useful to
design the semantic classifier and subsequently improve its accuracy.

3 Structural Data Analysis

As the image classifier is designed on the space formed with low-level visual
primitives, it is worth to take another look at images by running cluster analysis
and visualizing the relationships between the clusters and classes as well as
linkages formed between the clusters themselves.

This type of analysis provides an interesting insight as to the geometry and
complexity of classes, homogeneity of clusters and proximity between the classes.
Anticipating the possible complex geometry of individual classes, usually the
number of cluster is kept higher than the number of categories of images.

As we are concerned with unsupervised learning, it is very likely that the clus-
ter is not completely homogeneous and could comprise also some other patterns
coming from remaining classes.

The first and second classes with higher percentage of patterns within the
cluster are marked as dominant classes. Accepting the notation in which a size
of dots corresponds to the percentage of the dominant class forming the cluster
and a thickness of line originating from the cluster characterizes its linkages
with other classes, we can succinctly portray the essential relationships between
clusters, classes, and their geometry.

As illustrated in Fig. 2, clusters can be predominantly associated with a
class with practically no linkages (associations) with other classes (e.g. c1 : ω3).
Others are very much a mixture of classes with very limited dominance of the
most frequent class (c2 : ω1, ω2, ω3). There is a weaker linkage between classes
ω1 and ω3 than the one presented by classes ω2 and ω3.

Fig. 3 presents cluster-class relationships after applying fuzzy c-means onto
a multi-class classification problem. The descriptor space is grouped into five
semantic classes namely animal, building, city view, landscape, and vegetation.
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The entries (bubble size) correspond to percentage of feature vectors (patterns)
from each class assigned to the cluster.

Occurrence of several dominant classes contributes to higher values of the con-
fusion rate coming with the specific cluster. Furthermore, ranking the frequent
class pairs presenting higher levels of association helps to determine classes in
which their abstractions are leading to misclassification. Tab. 1 summarizes this
observation on a basis of the class-cluster dependencies.

Fig. 2. Graphical visualization of clusters (c1, c2, c3) and related classes (ω1, ω2, ω3)
along with the “classification” content of the clusters

Fig. 3. Cluster-class dependencies (5× 10). Class linkages are indicated by connecting
lines. E.g. semantic relation between animal-vegetation (cluster 1) and building-city
view (cluster 10) is stronger than animal-city view (cluster 6)

Looking at pair classes, vegetation-animal presents the highest confusion.
This semantic overlapping can be observed at cluster and image level. One sample
of the latter is given in Fig. 4 in which an animal image satisfies also criteria of
vegetation.
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Table 1. Ranking of frequent class pairs presenting higher levels of association leading
to misclassification

Rank Pair of classes

1 Vegetation - Animal
2 Building - City view
3 Vegetation - Landscape
4 Landscape - City view
5 Building - Animal

Fig. 4. Semantic overlapping: image categorized as “animal” with strong content of
“vegetation”

4 Partially Supervised Clustering for Semantic
Classification

Semantic-based image classification combines low and high-level numerical inter-
pretations of the visual content. The built-in knowledge of descriptions enables
systems to perform more “intelligent”processing on large-scale image databases.

The training data set is denoted by

X =

⎧⎪⎨⎪⎩x1
1, . . . x1

n1︸ ︷︷ ︸
labeled 1

. . .xc
1, . . . ,x

c
nc︸ ︷︷ ︸

labeled c

xu
1 , . . . ,x

u
nu︸ ︷︷ ︸

unlabeled

⎫⎪⎬⎪⎭ = Xd ∪Xu , (6)

where superscripts 1, . . . , c indicate the class label for design data and u for
unlabeled data. It leads to a partition matrix with the form

U︸︷︷︸
N×c

=

⎡⎣ Ud︸︷︷︸
c×Nd

Uu︸︷︷︸
c×Nu

⎤⎦T

. (7)

Information concerning design data can also be provided using additional
structures [11]. A binary vector to indicate whether the data is or is not labeled.

b = [bi] , i = 1, 2, . . . , N

bi =
{

1, xi ∈ Xd

0, xi ∈ Xu (8)
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and a matrix containing degrees of memberships for the known data

F = [fij ] , i = 1, 2, . . . , N ; j = 1, 2, . . . , c . (9)

The partially supervised method, based on [3][11], defines the objective func-
tion as follows

J(X,V,U) =
N∑

i=1

c∑
j=1

(1 − bi + αfijbi)mum
ijd

2(xi,vj) , (10)

where the binary vector b and matrix F are defined by Eq. 8 and Eq. 9, re-
spectively. α(α ≤ 0) denotes a scaling factor to keep a balance between the
supervised and unsupervided components within the minimization-optimization
mechanism [11]. As studied in [8], the fuzzy exponent m is set up to 2. The value
of α is suggested to be proportional to the rate N/Nd where Nd indicates the
number of labeled data.

The necessary conditions for minimization of Eq. 10 can be obtained using
the Lagrange multipliers technique with the constraints established at Eq. 2.

The distance matrix is calculated as

d2
ij

.= ‖xi − vj‖2
A = (xi − vj)T Aj(xi − vj) , (11)

where Aj is the identity matrix for Euclidean distance and inverse of fuzzy
variance-covariance matrix for Mahalanobis distance [11]. The latter is computed
as follows

A−1
j =

[
1

ρjdet(Pj)

] 1
n

Pj , (12)

where typically ρj = 1, j = 1, . . . , c, and

Pj =

∑N
i=1 u2

ij(xi − vj)(xi − vj)T∑N
i=1 u2

ij

. (13)

Cluster prototypes are defined by

vj =

∑N
i=1(1 − bi + αfijbi)2u2

ijxi∑N
i=1(1 − bi + αfijbi)2u2

ij

(14)

and the membership degrees are computed by

uij =

⎧⎨⎩
fij , bi = 1[∑c

k=1

(
dij

dik

)2
]−1

, bi = 0
. (15)

The complete algorithm is summarized in Tab. 2
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Table 2. Partially supervised clustering algorithm

Given X = Xd ∪ Xu, data space containing labeled and unlabeled data

N = Nd + Nu, number of feature vectors

c, number of clusters

b, indicator vector

F, known membership matrix

δ, criterion used in the Picard Iteration

E, maximum number of epochs (optional stop condition)

Step 1 Initialize the partition matrix randomly, U(0) including F
Step 2 Calculate cluster centers using Eq. 14

Step 3 Compute the distance matrix applying Eq. 11

Step 4 Update the partition matrix using Eq. 15

Step 5 Compare U(t+1) to U(t). If ‖U(t+1) − U(t)‖ < δ or t > E then STOP

Otherwise return to step 2 with U(t) = U(t+1)

5 Experimental Results

Fig. 5 depicts a two-class synthetic data set presented in [3], which is used to eval-
uate clustering results applying the unsupervised (left) and partially supervised
(right) algorithms presented above.

Several experiments were conducted using a feature space built with color
and texture descriptions extracted from 1000 images. Pictures were categorized

Fig. 5. Space partition, membership degrees, cluster centers, and shapes obtained by
unsupervised clustering (left) do not match the expected solution as does its counter-
part the partially supervised algorithm (right) using few labeled data
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(a) Unsupervised feature space partition

(b) Partially supervised feature space partition

Fig. 6. Cluster-class dependencies (5×5) Values next to the bubbles indicate percentage
of patterns within the cluster. Pre-classification accuracy is improved from 49% to
64.3% by labeling 17% of training data

into a certain class (animal, building, city view, landscape, and vegetation), if
the camera was focused in an object satisfying the name of the class.

As is observed in Fig. 6, partially supervised clustering achieves more optimal
grouping and reduces mixture of classes within clusters. The new clusters are
more accurate in terms of semantic categorization.

6 Conclusions

Information obtained through clustering algorithms (prototypes, space partition)
and analysis (class-cluster dependencies, ranking of overlapped categories) pro-
vides a better insight of the image abstractions, refine the classifier design, and
improve classification performance. More specific“user-driven”information is in-
corporated by tagging global and local annotations, e.g. region-oriented labels,
and creating a keyword profile for each cluster.
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Ranking of dominant classes along with information given by pair classes
and the strength of their linkage are useful to perform either individual feature
selection or feature weighting in order to minimize the average within-cluster
dispersion and maximizes the average between-cluster dispersion.

Clustering outcomes can be used to learn support vectors and subsequently
define an optimal decision hyperplane to classify new patterns. Alternatively,
cluster prototypes can be used in the design of a radial basis function type
of classifier. Thus, partially supervised clustering equipped with an objective
function establishes a solid base to build a more accurate semantic categorization.
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Abstract. A new algorithm of evolutionary computing, which combines
clone selective algorithm involved in artificial immunity system theory
and mind evolution algorithm (MEA) proposed in reference [4], is pre-
sented in this paper. Based on similartaxis which is the one of MEA
operators, some operators borne by the new algorithm including clone
mutation, clone crossover, clone selection, is also introduced. Then the
clone mind evolution algorithm (CMEA) is developed by using the di-
versity principle of antigen-antibody. The simulating results of the rep-
resentative evaluation function show that the problem of degeneration
phenomenon existing in GA and MEA can be perfectly solved, and the
rapidity of convergence is evidently improved by CMEA studied in the
paper. In the example of the solution to the numerical problem, the
search range of solution is expanded and the possibility of finding the
optimal solution is increased.

1 Introduction

In the research field which modern information science and life science over-
lap and interpenetrate to form into, artificial immune system (AIS) is an other
research focus subsequently following cranial nerves (e.g. neural network) and
evolutionary computing (e.g. GA), which is inspired by the biological immune
system (BIS). BIS mechanics based research on computing model is concentrated
on two main aspects: network model of AIS and immune learning algorithm. The
former aims to construct various computing model, based on the clone selective
theory of Bernet [1] and the unique network adjusting theory of Jernet [2], to
imitate or explain immune phenomena by simulation experiments. The latter is
focused on computing methods with stronger intentness or implement strategies
based on existed system models. Clonal selection algorithm [3] that is presented
by Castro, Kim, Du, etc. is one of outstanding achievement. The characteristics
of memory, learning and evolution are utilized to implement the task such as
machine learning or pattern recognition. Mind evolution algorithm (MEA) [4]
that is a kind of evolution computing method has been applied in the field of
intelligent control [5]. In this paper, how to utilize practicable clone selective
behavior to design suitable clone selective optimal method in order to improving
the optimal result of MEA is studied.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 431–440, 2005.
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2 Philosophy of MEA

The nature evolution of biology depends on inheritance and nature selection.
The evolutionary process will experience thousands of years. Comparatively, the
evolutionary process of the human’s mind is short. The reason is that human
being cannot only adapts actively the change of the nature environment but
studies knowledge and experience from predecessor and other people selfcon-
sciously. This phenomenon is called similartaxis. During the recent years, with
the development of the exchange way of the information, the development of
human’s mind is accelerating. At the same time, many innovations have been
acquired by human. This phenomenon is called dissimilation. Depending on the
similartaxis and dissimilation, people develop science and technology.

MEA is a new type of evolutional computing method that simulates evolu-
tional process of people’s thought. It uses the concept ’population’ of GA, but is
radically different from it. “Similartaxis” and “dissimilation” operators are pre-
sented. Since memory function and directional study mechanism are introduced
and population optimization replaces the individual optimization, the intelli-
gence of the algorithm is improved and the search efficiency is also enhanced.

2.1 Population and Group

The set of all individuals is called a population. The population is divided into
several groups, and there are two main classes of groups: the winner groups and
the temporary groups.

2.2 Billboard

The billboards, which record the information of the individuals or the groups
including theirs serial number, operation and score, provide the environment of
information communication among the individuals or the groups. There are two
kinds of billboards: one is the local billboard which is used to record information
of individuals in each group; another is the global billboard which is used to
record information of each group in the whole population.

2.3 Similartaxis and Dissimilation

“Similartaxis” performs local competition inside subpopulations among individ-
uals and produces local optimal points. At first N individuals are distributed
normally around one “winner” with the variance δ and then the scores of them
are computed and the one with highest score is the “winner” that will take part
in the global competition delegating the subpopulation in the following dissimi-
lation.

“Dissimilation”performs global competition. The“winners”of subpopulations
from“similartaxis”compete with each other and those having high score are kept
to next round but the others are eliminated and are replaced by new individuals
distributed in the solution space. This makes the evolution of the population
heads toward the optimal point and gets there finally.



Research on Clone Mind Evolution Algorithm 433

Intelligent

MEA
Optimizing
Program

integral
&

Fuzzy
controller

Ke

S Kd

Ku G0(S)u��

d �

��

�

y

� �

�
� �

�

�

e
R

+ - �

�

+

Fig. 1. Schematic diagram of an optimal fuzzy controller based MEA

2.4 Convergence

It can be proved by means of Markov chains that population of discrete state
executed by similartaxis operator is convergent at the global optimal state with
total probability. But because of localness of similartaxis, there is little probabil-
ity that the local optimal state transfers to the global optimal state. In order to
this transfer probability, it is necessary to introduce dissimilation operator [6].

2.5 The Application of MEA

MEA has been successfully applied to intelligent control. The principium of an
optimal fuzzy controller OFC design method based on MEA is showed in figure
1. At first the system and the controller are constructed and the membership
functions are built with conventional method. Then the fuzzy rules and quanti-
fied factors and proportional factors are optimized by use of MEA. During the
optimizing process, the universe of the parameters (including the fuzzy control
rules and quantified factors and proportional factors) is divided into different
subspaces according to their own solution range and then MEA searches the
best solutions in each subspace and forms a number of parameter groups and
evaluates each group synthetically with one criterion. The optimization is along
the direction that the criterion value reduces. The criterion is selected by de-
signers practically to meet the demand of system performance.

When the parameters that make the criterion value least are found, so is the
optimal operation condition.

The design procedures are shown as following:

1. Decide controller structure.
2. Select appropriate membership functions, fuzzy variables and universe.
3. Set the solution spaces of parameters.
4. Make optimizing program and optimize the parameters.
5. End of design.

It is convenient to complete this method by software and easy to generalize it.
Once it is completed, the program can be used to design any fuzzy controller and
what the designer need to do is to reset a number of parameters and membership
functions.
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3 Mechanism of Clone Selection

Nowadays, most of researches on the intelligent systems revolve around the mech-
anism of inspiring and learning of person brain. Over the last few years, there
has been an ever increasing interest in the area of artificial immune systems
(AIS) and their applications.The ability of the immune system to respond to an
antigen exists before it ever encounters that antigen.

The immune system relies on the prior formation of an incredibly diverse
population of B cells and T cells.When an animal is exposed to an antigen, some
subpopulation of its bone marrow derived cells (B lymphocytes) respond by pro-
ducing antibodies (Ab). Each cell secretes only one kind of antibody, which is
relatively specific for the antigen. By binding to these antibodies (receptors),
and with a second signal from accessory cells, such as the T-helper cell, the
antigen stimulates the B cell to proliferate (divide) and mature into terminal
(non-dividing) antibody secreting cells, called plasma cells. The various cell di-
visions (mitosis) generate a clone, i.e., a set of cells that are the progeny of a
single cell. While plasma cells are the most active antibody secretors, large B
lymphocytes, which divide rapidly, also secrete Ab, albeit at a lower rate. While
B cells secrete Ab, T cells play a central role in the regulation of the B cell
response and are preeminent in cell mediated immune responses. Lymphocytes,
in addition to proliferating and/or differentiating into plasma cells, can differen-
tiate into long-lived B memory cells. Memory cells circulate through the blood,
lymph and tissues, and when exposed to a second antigenic stimulus commence
to differentiate into large lymphocytes capable of producing high affinity an-
tibodies, pre-selected for the specific antigen that had stimulated the primary
response [7]. The clou of reference [8] is that antibody in cell surface as offspring
of natural exists in the form of receptor, and can selectively react to antigen. The
reaction, which takes place between antigen and receptor, can cause to clonal
breeding of cell. So the great number of clonal cell owns the identical speci-
ficity of antibody. Some of these clonal cells in which some cells differentiate to
a generation of antibody cell, and others form immunity memory cell so as to
attend the second immunity reaction later. Clone selective theory acts as an im-
portant enlightenment role for improving the performance of MEA, because of
the clone selective course of antibody possesses learning, memory development,
diversity of antibody, selfadaptive adjustment and such performance, so as to
prevent the phenomenon of “prematurity” well, efficiently improve the rapidity
of optimization and advance the quality of optimization result.

4 Clone Mind Evolutionary Algorithm (CMEA)

In general, the following steps of CMEA are made up of 6 key steps illustrated
in figure 2. It is well known that antigen, antibody, affinity of antigen-antibody
is respectively corresponded to the object function, optimal solution, and match
degree of solution to the object function.
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Fig. 2. Diagram of CMEA

1. step1: antigen recognition Choose the target function and various con-
straints as the antigen of CMEA, then the immune system confirms that the
antigen invades;

2. step2: initial antibody production While iterating at the first time, the
antibody is produced at random in the whole solution space, or by means
of activating memory cells. At the same time, the foregone antigen is re-
moved, and M individuals from the database including the optimal antibody
(optimal solution) are choose to produce initial antibody groups;

3. step3: affinity calculation Separately calculates the affinity between anti-
gen and antibody, and the affinity between antibody and antibody;

4. step4: groups’ construction N individuals with supreme affinity are ar-
ranged in an order. For every individual with supreme affinity, k-1 individuals
are randomly choosed among the remaining individuals, and are constructed
to a group (the size of group is k). Thus N groups are produced by the
identical operation to the N individual of supreme affinity;

5. step5: Calculate every individual affinity in each group again;
6. step6: According to clone operators, produce new group with the following

steps:

(a) clone: Choose A(m) individuals that own higher antibody-antigen affin-
ity and lower antibody- antibody affinity, then regard them as cloned
individuals and add clonal results to new groups.

(b) clone mutation: Carry out clone mutation operation on the groups af-
ter completing clone operator. In order to reserve the original information
of antibody population, do not operate mutation to A(m) individuals.
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(c) clone crossover: Choose A(n) individuals that have higher antibody-
antibody affinity and lower antigen-antibody affinity, and uniformly code
them. Then, execute crossover operator.

(d) clone selection: Select M new individuals owning the highest affinity
to form a new generation of population in order to keep the number
of individuals. Meanwhile, other rejected individuals are deleted from
groups.

7. step7: Terminal condition Repeat step5 and step6, until satisfy termi-
nation condition (convergence criterion), optimal course end. In this paper,
limited iteration times are adopted as termination condition. Choose the
optimal individual as the result of algorithm.

5 Convergence Analysis of CMEA

In generally speaking, we consider maximum problem in this paper, to find
solution for an optimal problem ϕ :

∏m
i=1[di,ui → R(di ≺ ui)], where m is

the number of the optimized variables, i.e. X = {x1, x2, . . . , xm} . The antigen
ϕ : Rm → R is the optimized function. Real number code is adopted in this
paper.

Antibody group Ā = {A1, A2, . . . , An} is an nth multi group; it is a point in
the Antibody population space Sn[9].

Definition 1. M = {Ā|max(f(Ā)) = f∗, ∀Ā ∈ Sn} is called satisfied popula-
tion set, that is, any initial antibody population in M at least contains a best
solution.

The mathematic model of CMEA can be described as: after real number
coded, CEMA process is a memorized stochastic walk form one state to another
state, which can be described by a Markov Chain process.

In the antibody population space Sn, antibody group transferred from the
state Ā(k) = {A1(k), A2(k) . . . An(k)} to a new one Ā(k+1) = {A1(k+1), A2(k+
2) . . . An(k + 1)} after the CMEA operation and this process is expressed by:
Ā(k + 1) = T (Ā(k)) = T c

d ◦ T c
s ◦ T c

r ◦ T c
c (Ā(k))

Where, T c
d is clone operator, T c

s is clone selection operator, T c
r is clone re-

combination operator, and T c
c is clone mutation operator.

Mark Ā(k) = X ,Ā(k + 1) = Y then the transition probability pxy(k) =
p{Ā(k + 1) = Y |Ā(k) = X}

When X �= Y :

pxy(k) =

⎧⎪⎨⎪⎩
0 i ∈ M, j /∈ M

n∏
j=1

pdp
k
s

(
qj−1∑
i=1

(pi
m)d(X,Y )(1 − pi

m)l−d(X,Y )

)
other

(1)
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when X = Y :

pxy(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 −

|M|∑
L�=Y

n∏
j=1

pdpk
s

(
qj−1∑
i=1

(
pid(X,Y )

m (1 − pi
m)l−d(X,Y )

))
i ∈ M, j ∈ M

1 −
|Sn|−|M|∑

L�=Y

n∏
j=1

pdpk
s

(
qj−1∑
i=1

(pi
m)d(X,L)(1 − pi

m)l−d(X,L)

)
i /∈ M, j /∈ M

(2)

Equation (1), (2) are the main model of the CMEA.

Theorem 1. The antibody population series of the CMEA algorithm is {Ā, k ≥
0}, and it is a finite nonhomogeneous reducible Markow chain.

Proof. Any antibody in an antibody population Ā = {A1, A2 . . . An} is a limited
real number in a limited population, so its state variable is changing in a limited
state space Sn, for pk

s has relation with population state in time k, so does pxy(k),
so it is nonhomogeneous.

From the definition of M , M is a closed set, because:

1. If X,Y ∈ M , then pxy(k) > 0,pxy(k) > 0 i.e.X ↔ Y
2. If X ∈ M and Y �∈ M , then pxy(k) = 0, i.e. X �→ Y

So {Ā(k), k ≥ 0} is reducible.
Thus, the theorem 1 is proved.

Theorem 2. The antibody population series {Ā(k), k ≥ 0} of the CMEA algo-
rithm is convergent to satisfied population set with probably 1. That is, to any
initial state Ā0

lim
k→∞

P{Ā(k) ∈ M |Ā(0) = Ā0} = 1 (3)

Proof. Without loss of generality, suppose f(A) has only one maximum, mark:
F (A(k)) = max{f(A(k)i), i = 1, 2, . . . n},

P (k) = p{Ā(k + 1) = Y |Ā(k) = X ;X,Y ∈ Sn} = (pxy(k);X,Y ∈ Sn) (4)

Equation 4 is called the state transfer matrix.
To selection operator, there exist:

pk
s =

{
0 F (X) > F (Y )
1 F (X) ≤ F (Y ) (5)

Then for F (Y ) ≥ F (X), we have: pxy(k) = p{T c
d ◦ T c

s ◦ T c
r ◦ T c

c = Y } > 0 if
F (Y ) < F (X) we have: pxy(k) = 0,Mark:

P (∞) = lim
k→∞

P (k) = (P∞(X,Y );X,Y ∈ Sn) (6)

Then:

P∞(X,Y ) =
{
> 0 F (X) ≥ F (Y )
= 0 F (Y ) < F (X) (7)
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Obviously: P (∞) is a stochastic matrix, and {Ā(k), k ≥ 0 is strong ergodic.
To any initial state Ā0 , we have:

lim
k→∞

P{Ā(k) = Y |Ā(0) = Ā0} = π∞(Y ) (8)

And
k→∞∑
γ∈M

π∞(Y ) = 1 , so:

lim
k→∞

P{Ā(k) = Y |Ā(0) = Ā0| =
∑

Y ∈M

π∞(Y ) = 1 (9)

This completes the proof of Theorem 2.

6 Research Example

In order to verify the preceding analysis, numerical experimentation employing
MEA, CMEA and GA are studied by the following classical testing functions.

1. fit1 =
3∑

i=1

x2
i xi ∈ [−5, 5]

The function is adopted for testing rapidity of convergence, the global min-
imum f(0, 0, 0) = 0 .

2. fit2 = 100(x2
1 − x2)2 + (1 − x1)2 xi ∈ [−5, 5]

The minimum point (0, 0) of this function locates at curved surface with
a long and narrow paraboloid, so it is difficult to find the minimum. The
function is used to test immaturity convergence.

3. fit3 = 0.5 + [sin2(x2
1 + x2

2)1/2 − 0.5]/[1 + 0.001(x2
1 + x2

2)]2

Minimum of this function is fit3(0,0)=0. Within scope of 3.14 around (0, 0),
there are many protuberant department that is the global suboptimal points.
The function characteristic that is properties of strong oscillation and the global
optimal point surrounded by the suboptimal global points make it is very difficult
to find the global optimal solution. In experiments, let M=200, there kinds of
algorithms are respectively examined 100 times with evaluation function. But
if the optimal solution is not improved within 10 times, then the calculating is
terminal in advance. In every operation cycle, if the value of fitness is smaller
than the threshold 0.0001, the algorithm is regarded as success, otherwise failure.
The number of successful optimization is denoted as NTS, and the number of
failure is denoted as NTF, where NTS+NTF=100. The sum of all successful
iteration times divided by the successes times is the mean successful iteration
times denoted as NMIS. Table 1 shows test data.

Showed from experiment results, the searching and optimization ability of
CMEA is greater than of MEA and GA. Especially, when the extreme point
is surrounded by the local subextreme points, more embody the superiority
ofCMEA. Function fit3 optimization result shows, in 100 times operations, MEA
succeeds four only, and CMEA have 100% rate of success. The optimization re-
sult of CMEA is 10e-9 times more accurate than that of MEA.
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Table 1. Optimization Result

Evaluation function Algorithm Threshold NTS NTF NMIS Optimal evaluation value
MEA 100 0 20.24 5.252053e-5

fit1 CMEA 100 0 19.27 2.225179e-14
Ga 99 1 69.20 6.628564e-6

MEA 84 16 79.37 1.864154e-4
fit2 CMEA 0.0001 100 0 8.11 1.272805e-7

GA 100 0 98.75 3.464789e-5
MEA 4 96 77 9.172560e-5

fit3 CMEA 100 0 11.86 2.947642e-14
GA 82 18 42.63 1.096471e-6

7 Conclusion

Both CMEA and MEA belong to group search strategy, and emphasize the infor-
mation exchanging among the individuals of population. So there are similarities
between CMEA and MEA.

Firstly on the structure, both of them circularly proceed with a course that
is “initial population production → dividing into smaller groups → calculating
evaluation function → exchanging information among individuals of groups →
producing a new generation of population”. Population is divided into several
groups to prevent information exchange among groups. So it is helpful for the
population differentiation, for the maintenance of diversity and for the prevention
of prematurity, eventually the optimal solution is obtained with greater proba-
bility; Secondly on the property, both of them inhere parallelism in essence so
as to make it difficult to fall into the local minimum in searching process.

On the other hand, due to the introduced operators such as antigen recog-
nition, clone, clone mutation, clone crossover, and clone selection etc., there are
some difference between them as follows:

1. clone mutation operator does not affect on the optimal solution which is
held in memory units. Thus it ensures to converge fast the global optimal
solution;

2. The considerable calculation is caused by affinity measure, including the
affinity of the antibody-antigen and the affinity of antibody-antibody. But
it do not influence the rapidity of convergence;

3. By promoting or restraining the antibody production, the function of self-
regulation is achieved, and the diversity of individuals is guaranteed. Con-
sidering both the local and global search ability, it is especially suitable to
optimize the multimodal function;

4. Mutation operator of MEA is replaced by clone crossover and clone mutation,
thus it is sure to extend the search region and to ensure the convergence to
the global optimal solution.
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Abstract. The Estimation of Distribution Algorithm is a new class of 
population based search methods in that a probabilistic model of individuals are 
estimated based on the high quality individuals and used to generate the new 
individuals. In this paper we compute 1) some upper bounds on the number of 
iterations required for global convergence of EDA 2) the exact number of 
iterations needed for EDA to converge to global optima. 

1   Introduction 

Genetic Algorithms (GAs) are a class of optimization algorithm motivated from the 
theory of natural selection and genetic recombination. It tries to find better solution by 
selection and recombination of promising solution. It works well in wide verities of 
problem domains. The poor behaviors of genetic algorithms in some problems, in 
which the designed operators of crossover and mutation do not guarantee that the 
building block hypothesis is preserved, have led to the development of other type of 
algorithms. The search for techniques to preserve building blocks has led to the 
emergence of new class of algorithm called Probabilistic Model Building Genetic 
Algorithm (PMBGA) also known as Estimation of Distribution Algorithm (EDA). 
The principle concept in this new technique is to prevent disruption of partial 
solutions contained in an individual by giving them high probability of being 
presented in the child individual. It can be achieved by building a probabilistic model 
to represent correlation between variables in individual and build model to generate 
next population.  

The EDAs are classified into three classes based on the interdependencies between 
variables in individuals [9]. Instances of EDAs algorithm include Population-based 
Incremental Learning (PBIL) [1], Univariate Marginal Distribution Algorithm 
(UMDA) [10], Learning Automata-based Estimation of Distribution Algorithm 
(LAEDA) [14], Compact Genetic Algorithm (cGA) [7] for no dependencies model, 
Mutual Information Maximization for Input Clustering (MIMIC) [3], Combining 
Optimizer with Mutual Information Trees (COMIT) [2] for bivariate dependencies 
model, and Factorized Distribution Algorithm (FDA) [11], Bayesian Evolutionary 
Algorithm (BOA) [13] for multiple dependencies model, to name a few. 

Some researchers have studied the working mechanism of EDAs. Mühlenbein [10], 
González et al [4][5], Höhfeld and Rudolph [6] have studied the behavior of UMDA 
and PBIL. Mühlenbein and Mahnig [12] discussed the convergence of FDA for 
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separable additively decomposable functions. In [15], Zhang and Mühlenbein proved 
that EDAs with infinite population size globally converge. Despite the fact that 
working mechanisms of EDAs has been studied, the time complexity and the speed of 
convergence of EDAs algorithm are not known. In this paper we propose some results 
on the number of iterations needed for EDAs to converge globally when population 
size is infinite. Our approach is proposed in two sections. At first some upper bounds 
on the number of iterations required for global convergence of EDA are calculated 
and then in the second section the exact number of iterations needed for EDA to 
converge to global optima is calculated. 

The rest of paper is organized as follows. Section 2 briefly presents the EDA 
algorithm and its modeling when EDA uses an infinite population size. Section 3 and 
4 demonstrate some theorems about time complexity of EDAs. Conclusion is given in 
final section. 

2   Estimation of Distribution Algorithm with Infinite Population 
Size 

Given a search space D and a positive and continuous function f(x): D→ℜ ≥0, find 

});(max{ Df ∈xx  . (1) 

Let D* be a set of all points at which function f reaches its maximum value fmax. The 
steps of the EDA algorithm for solving such an optimization problem are described 
below. 

1-Initialization: generate an initial population, (0), of N individuals.  
2-Selection: choose Se (Se<N) individuals from population (n) (i.e. population in 
iteration n) to form the parent population S(n) using a selection schema such as 
truncation, tournament or proportional selection schema. 
3-Updating: perform updating operations on individuals of parent population at 
iteration n, S(n), and generate new individuals to form the new population at time n, 
(n+1), e.g. (n+1)= S(n). 

4- If E{f(X)| (n+1)}=fmax  then stop else go to step 2 . 

Condition of step 4 of the above algorithm is met when every individual in the 
population is an optimal solution, that is, the EDA has globally converged. 

Let the underlying probability distribution functions for the individuals of (n) and 
S(n) be P(X| (n)) and P(X| S(n)), respectively. By the famous Glivenko-Canteli 

theorem [17], the empirical probability density functions induced by individuals in 
(n) and S(n) will converge to P(X| (n)) and P(X| S(n)) respectively, as the sizes of 
(n) and S(n) tend to infinity. Therefore P(X| (n)) and P(X| S(n)) can be thought of 

as the population and the parent population at iteration n in EDA with infinite 
population [15]. Below we describe the selection schemes used in this paper. 

The Truncation Selection Schema: Truncation selection ranks all the individuals in 
population (n) according to their fitness and selects the best ones as the set of parents 

S(n). In truncation selection with threshold 0<μ<1 only the 100μ% of best individuals 
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are selected to become the parents for the next generation. When the population size 
is infinite, it can be modeled as [15]:  
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The Two-Tournament Selection Schema: In the two-tournament selection model, 2 
individuals are chosen from the current population (n) and the best individual is 
selected to be a parent. This selection must be repeated Se times to generate the set of 
parents S(n). When the population size is infinite then this schema can be modeled as 
[15][16],  
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Remark 1. In [15] Zhang and Mühlenbein have proved that EDA with truncation, or 
two-tournament selection schema, when using infinite population size, will globally 
converge. 

Let d( ) be the ratio of the number of individuals in population  , that do not 
belong to D*, to the size of  . The sequence {d( (n)); n=0,1,2,…} generated by EDA 
is a random sequence in general. If  d( ) is 0, then all individuals of population , are 
members of D*. If the population size tends to infinity, then according to Glivenko-
Canteli theorem [17] d( (n)) can be computed as follows, 
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Define the global convergence stopping time of EDA as 
τ=min{n|E{f(X)| (n)}=fmax} where for every τ≤ t E{f(X)| (t)}=fmax,  According to the 
definition of it, τ is the first time that EDA globally converges. τ can be infinite or 
finite. In the same manner, we define τ′ as min{n|d( (n))=0}. In the following we state 
two lemmas to show the relationship between τ′ and τ. 

Lemma 1. The global convergence stopping time of EDA,τ, is equal to τ′= 
min{n|d( (n))=0}. 

Proof. We prove this lemma by contradiction. First assume that τ<τ′, by the 
definition of τ′ we have d( (τ))>0 i.e. there exists at least one y∈ (τ) that doesn’t 
belong to D* (i.e. f(y)<fmax) and P(X=y| (τ))=b>0. Thus we have 
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Using (5) and the fact that E{f(X)| (τ)}=fmax we can conclude that fmax≤ f(y) and 
hence a contradiction. Second, assume that τ >τ′.  Using definitions of τ and τ′, and 
(4) we have 
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Using (6) and 0 ≤ P(X = x| (τ′)) ≤ 1, we have, 
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By definition of E{f(X)| (τ′)} we can write 
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Using (7) and (8) we have 
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Which contradicts the assumption that τ>τ′ and hence the proof. Q.E.D. 

Lemma 2. If τ′ = min{n| d( (n)) = 0}, then for every τ′ ≤ t,  d( (t)) = 0. 

Proof. Proof is done by contradiction. Assume that d( (t)) ≠ 0, then there exists at 
least one y∈ (t) that doesn’t belong to D* (i.e. f(y)<fmax) and P(X=y| (t)) = b > 0. So 
we have, 
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Using (9) and E{f(X)| (t)}=fmax  (By lemma 1), we have fmax≤ f(y) and hence a 
contradiction. Q.E.D. 

Lemma 1 indicates that τ = τ′ and Lemma 2 and Remark 1 state that τ′ is the 
stopping time of {d( (n)); n=0,1,2,…}. That is the stopping time of {E{f(X)| 
(n)};n=0,1,2,…} is the  same as the  stopping time of  {d( (n)); n=0,1,2,…} and for 

this reason in the rest of the paper  we study the  time complexity of d( (n)) rather 
than the time complexity of  {E{f(X)| (n)};n=0,1,2,…}. 

Using above notations and lemmas the EDA algorithm can be described as follows.   

1- Initialization: P(X = x| (0)) > 0 for all x (That is P(X=x| (0)) = p for all x where 
0<p<1). 
2- Selection: generate P(X | S(n)) from P(X| (n)) according to a selection schema.  
3- Updating: P(X| (n+1)) is set to P(X | S(n)). 
4- if d( (n+1)) = 0  then stop; otherwise go to step 2. 

3   Upper Bounds on Time Complexity of Global Convergence 

The Results for upper bounds on time complexity of global convergence of EDA 
reported in this paper can be summarized by the following two theorems. 

Theorem 1. If an EDA with infinite population size and truncation selection schema 
is used for optimizing function f, then the termination condition is met at most after 
(μd( (0))/((1-μ)(1-d( (0)))))+1 iterations. 
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It is obvious that 0<μ<1 is an important parameter for the stopping time of EDA 
when EDA use truncation selection schema. Lower values for μ will impose a lower 
upper bound on the stopping time and higher values for μ will exert a higher upper 
bound on the stopping time of EDA. 

Theorem 2. If an EDA using infinite population size and 2-tournament selection 
schema is considered for optimizing f, at most after (d( (0))/(1- d( (0))))+1 iterations 
the termination condition is met. 

Before we give the proofs of the above two theorems we state one useful lemma. 

Lemma 3. If d( )≤h0, h0>0, for any given population  and {E{d( (n)) - d( (n+1))| 
d( (n)) >0} ≥ (1 / h1)} then starting from any initial population (0) with d( (0)) > 0,  

10}0))0((|{ hhdE ≤>ξτ  . (10) 

Proof1. Since {E{d( (n)) - d( (n+1)) | d( (n))>0} ≥ (1/h1)} we have  {d( (n)); 
n=0,1,2,…} as a super-martingale. Since h0 ≥ d( (n)) ≥ 0, it ultimately converges, that 
is 
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From the definition of stopping timeτ, we have d( (τ)) = 0. Therefore, 
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Since E{d( (n)) - d( (n+1)) | d( (n)) >0}≥(1/h1)}, for n-1<τ, we have 
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From (11) we can write 
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Using (12) and by induction on n, we can get 
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From (13) and d( ) ≤ h0, we have 
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 and hence the proof. Q.E.D. 
                                                           
1 The idea of the proof is borrowed from [8]. 
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Now we are ready to prove theorems 1 and 2. To do this we first prove that 
conditions of lemma 3 stand and then using lemma 3 we conclude the theorems. 

Proof of theorem 1: We first show that conditions of lemma 3 hold and then use 
lemma 3 to conclude the theorem. 
Using the definition of d( (n)) and steps 2 and 3 of EDA algorithm we can write 
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Using (2) and the fact that for all x∈D* we have f(x) = fmax ≥ (n), (14) can be 
rewritten as  
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Using (15) and induction on n we have 

From (16) we have, 
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From (16) and (17) we conclude that conditions of Lemma 3 are satisfied and 
therefore we can write, 
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Hence the proof. Q.E.D. 

Proof theorem 2: Using the definition of d( (n)) and steps 2 and 3 of EDA algorithm,  
we can write, 
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Using (3) and the fact that for all y∈D we have fmax≥ f(y), we can rewrite (18) as 
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Using (19) and induction on n we can write 
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Using the (18), (19) and (20) we have  
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Hence the theorem. Q.E.D. 

4   Computation of Global Convergence Stopping Time 

In this section, some strong results about the convergence of EDA are derived. As 
stated before {d( (n)); n=0,1,2,…} is a random sequence in general and when 
population size tends to infinity this sequence becomes a deterministic sequence. In 
other words by knowing d( (n-1)) we can compute the exact value of d( (n)). We can 
use these properties to derive some strong results about the convergence of EDA. 

Definition 1. (Convergence Rate). Let {an; n=0,1,2,…} be a sequence that 
converges to a*. If we have 
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then {an; n=0,1,2,…} converges to a* with convergence rate . 
The results for the exact number of iterations needed for EDA to converge to 

global optima reported in this paper can be summarized by the following two 
theorems 

Theorem 3. If we use an EDA with infinite population size and truncation selection 
method having threshold μ then a) After 1+(log(1-d( (0)))/log μ) iterations the 
condition of termination is met. b) {d( (n)); n=0,1,2,…} converges to 0 with 
convergence rate 1/ μ. 

Theorem 4. If we use an EDA with infinite population size and 2-tornumant selection 
method, then a) After 1+(log(1-d( (0)))/log 0.5) iterations the condition of 
termination is met. b) {d( (n)); n=0,1,2,…} converges to 0 with convergence rate 2. 

Before we give the proofs of theorems 3 and 4, we state two lemmas for the 
computation of d( (n)). 
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Lemma 4. For EDA algorithm with infinite population size and truncation selection 
method d( (n)) can be  computed as follows, 
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where 0<μ<1 is the selection threshold. 

Proof. We the definition d( (n)) and (2) we have, 
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From (21) we have 
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Characteristic equation of (22) is,  

0
1

)1
1

(2 =++−
μμ

rr  . (23) 

By solving (23) we have 
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Q.E.D. 
Lemma 5. For EDA algorithm with infinite population size and tournament selection 
method we have 

ndnd 2)))0((1(1))(( ξξ −−= . 

Proof. By the definition of d( (n)).and (3) we have, 
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The characteristic equation of (24) is,  
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By solving (24) we have 
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Q.E.D. 
Now we use Lemmas 4 and 5 and prove theorems 3 and 4. 

Proof of theorem 3.  (a) By definition of stopping time and Lemma 4 we have 
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Using (26) we conclude, 
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μξτ log/)))0((1log( d−=  . (27) 

By (27) after 1+(log(1-d( (0)))/log μ) iterations the condition of termination is met. 
(b) By lemma 4, we have 
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From definition 1, {d( (n)); n=0,1,2,…} converges to 0 with convergence rate 1/ μ. 
Q.E.D. 
Proof of theorem 4: (a) By definition of stopping time and lemma 5 we have 
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Using (28) we have, 
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By (29) after 1+(log(1-d( (0)))/log 0.5) iterations the condition of termination is met. 
(b) By lemma 5, we conclude that 
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According to definition 1, {d( (n)); n=0,1,2,…} converges to 0 with convergence rate 
2. Q.E.D. 

5   Conclusion 

This paper presented some new results for global convergence computation time for 
EDA algorithms. The following quantities were computed: 1) some upper bounds on 
the number of iterations required for global convergence of EDA 2) the exact number 
of iterations needed for EDA to converge to global optima. 
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Abstract. We propose a new algorithm to find minimal rough set
reducts by using Particle Swarm Optimization (PSO). Like Genetic Al-
gorithm, PSO is also a type of evolutionary algorithm. But compared
with GA, PSO does not need complex operators as crossover and muta-
tion that GA does, it requires only primitive and simple mathematical
operators, and is computationally inexpensive in terms of both memory
and times. The experiments on some UCI data compare our algorithm
with GA-based, and other deterministic rough set reduction algorithms.
The results show that PSO is efficient to minimal rough set reduction.

1 Introduction

Rough set reduction method has been used for feature selection [1,2]. It is worth
to find minimal reducts, with which we can generate more general decision rules
and better classification quality of new samples. However, the problem of finding
a minimal reduct is NP-hard [3]. So some heuristic or approximation algorithms
have to be considered.

X.Hu gives a rough set reduction algorithm using positive region based at-
tribute significance as heuristics [4]. G. Y. Wang develops a conditional infor-
mation entropy reduction algorithm [5]. These hill-climbing methods, however,
do not guarantee to find a global optimal or minimal reducts. Using the at-
tribute significance discriminate between candidates may lead the search down
a non-minimal path.

Wroblewski and Bazan et al. [6,8] use genetic algorithms to find minimal
reducts. One of their methods uses classical genetic algorithm with individuals
represented by bit strings to short reducts finding. This method, sometimes
fails to find the global optimum. Another is the hybrid algorithm that exploits
advantages of both genetic and heuristic algorithms. Genetic algorithm is used
to produce proper attributes order, and heuristic algorithm finds the minimal
reducts. Although this method is much better, it increases the computation
complexity [6]. One of the most widely used hybrid algorithm is the order-based
genetic algorithm [7]. Slezak and Wroblewski [10] extend it to search approximate
entropy reducts.

We propose a new algorithm to find minimal rough set reducts with Particle
Swarm Optimization (PSO). PSO is a new evolutionary computation technique

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 451–460, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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[12], in which each potential solution is seen as a particle with certain velocity
flying through the problem space. Each particle adjusts its flying according to
its own flying experience and its companions’. The Particle Swarms find opti-
mal regions of complex search spaces through the interaction of individuals in
population. PSO has been successfully applied to a large number of difficult
combinatorial optimal problems. In general, it exceeds Genetic Algorithms [13].

In this paper, like classical genetic algorithm, the particle’s position is bi-
nary representation for subsets of the set of attributes. The compared genetic
algorithm for rough set reduction is also classical.

2 Related Rough Set Concepts

First we briefly review the basic concepts of the rough set theory [5,8].
Let I = (U,A) be an information system, where U is the universe with non-

empty set of finite objects. A is a non-empty finite set of attributes. For ∀a ∈ A
determines a function fa : U → Va. If P ⊆ A, there is an associated equivalence
relation:

IND(P ) = {(x, y) ∈ U × U |∀a ∈ P, fa(x) = fa(y)} (1)

The partition of U , generated by IND(P ) is denoted U/P . If (x, y) ∈ IND(p),
then x and y are indiscernible by attributes from P . The equivalence classes
of the P-indiscernibility relation are denoted [x]p. Let X ⊆ U , the P-lower ap-
proximation PX and P-upper approximation PX of set X can be defined as:

PX = {x ∈ U |[x]p ⊆ X} (2)

PX = {x ∈ U |[x]p ∩X �= φ} (3)

Let P,Q ⊆ A be equivalence relations over U , then the positive, negative and
boundary regions can be defined as:

POSp(Q) = ∪
X∈U/Q

PX (4)

NEGp(Q) = U − ∪
X∈U/Q

PX (5)

BNDp(Q) = ∪
X∈U/Q

PX − ∪
X∈U/Q

PX (6)

The positive region of the partition U/Q with respect to P, POSp(Q), is the set
of all objects of U that can be certainly classified to blocks of the partition U/Q
by means of P . Q depends on P in a degree k ∈ [0, 1], denoted P ⇒k Q

k = γp(Q) =
|POSp(Q)|

|U | (7)
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If k = 1, Q depends totally on P , if 0 < k < 1, Q depends partially on P , and
if k = 0 then Q does not depend on P . When P is a set of condition attributes
and Q is the decision, γp(Q) is the quality of classification.

The attribute reduction is to remove some redundant attributes so that the
reduced set provides the same quality of classification as the original one. A
reduct is defined as:

Red = {R ⊆ C|γR(D) = γC(D), ∀B ⊂ R, γB(D) �= γC(D)} (8)

A dataset may have many attribute reducts. The minimal cardinality reduct
is:

Redmin = {R ∈ Red|∀R′ ∈ Red, |R| ≤ |R′ |} (9)

The intersection of all reducts is called core, the elements of which are those
attributes that cannot be eliminated. The core is defined as:

Core(C) = ∩Red (10)

3 PSO for Rough Set Reduction

Since PSO has been used widely to solve combination optimization problems. In
this paper we apply PSO to find minimal rough set reducts. Particle swarm opti-
mization (PSO) is an evolutionary computation technique developed by Kennedy
and Eberhart [12]. The original intent was to graphically simulate the choreog-
raphy of a bird flock. Shi.Y introduced inertia weight into the particle swarm
optimizer to produce the standard PSO algorithm [14,15].

3.1 Standard PSO Algorithm

PSO is initialized with a population of particles. Each particle is treated as a
point in a S-dimensional space. The ith particle is represented as Xi = (xi1, xi2,
. . . , xiS). The best previous position (pbest, the position giving the best fitness
value) of any particle is P = (pi1, pi2, . . . , piS). The index of the global best par-
ticle is represented by ‘gbest’. The velocity for particle i is Vi = (vi1, vi2, . . . , viS).
The particles are manipulated according to the following equations:

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗Rand() ∗ (pgd − xid) (11)

xid = xid + vid (12)

Where w is the inertia weight, it is a positive linear function of time changing
according to the generation iteration. Suitable selection of the inertia weight
provides a balance between the global and local exploration. The acceleration
constants c1 and c2 in equation (11) represent the weighting of the stochastic
acceleration terms that pull each particle toward pbest and gbest positions. Low
values allow particles to roam far from target regions before being tugged back,
while high values result in abrupt movement toward, or past, target regions.
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rand() and Rand() are two random functions in the range [0,1]. Particle’s veloc-
ities on each dimension are limited to a maximum velocity Vmax. If Vmax is
too small, particles may not explore sufficiently beyond locally good regions. If
Vmax is too high particles might fly past good solutions.

The first part of equation (11) makes the “flying particles”has memory capa-
bility and exploring new search space. The second part is the “cognition” part,
which represents the private thinking of the particle itself. The third part is the
“social”part, which represents the collaboration among the particles. The equa-
tion (11) is used to update the particle’s velocity. Then the particle flies toward
a new position according to equation (12). The performance of each particle is
measured according to a pre-defined fitness function.

The process for implementing the PSO algorithm is as follows:

1) Initialize a population of particles with random positions and velocities on
S dimensions in the problem space.

2) For each particle, evaluate the desired optimization fitness function in d
variables.

3) Compare particle’s fitness evaluation with particle’s pbest. If current value
is better than pbest, then set pbest value equal to the current value, and the
pbest location equal to the current location in d dimensional space.

4) Compare fitness evaluation with the population’s overall previous best. If
current value is better than gbest, then reset gbest to the current particle’s
array index and value.

5) Change the velocity and position of the particle according to formulas (11)
and (12).

6) Loop to 2) until a criterion is met, usually a sufficiently good fitness or a
maximum number of iterations (generations).

3.2 Encoding

To apply PSO to rough set reduction, we represent the particle’s position as
binary bit strings of length N, where N is the total attribute number. Every
bit represents an attribute, the value ‘1’ means the corresponding attribute is
selected while ‘0’ not selected. Each position is an attribute subset.

3.3 Representation of Velocity

Each particle’s velocity is represented as a positive integer varying between 1
and Vmax. It implies that at one time how many of the particle’s bit should be
changed to as the same as that of the global best position, i.e. the velocity of the
particle flying toward the best position. The number of different bits between
two particles relates to the difference between their positions. See Fig.1 is for the
principle of velocity updating.

For example, Pgbest = [1, 0, 1, 1, 1, 0, 1, 0, 0, 1] and Xi = [0, 1, 0, 0, 1, 1, 0, 1, 0,
1]. The difference between gbest and the particle’s current position is Pgbest−
Pi = [1,−1, 1, 1, 0,−1, 1,−1, 0, 0]. ‘1’ means that, by being compared with the
best position, this bit (feature) should be selected but not, which will decrease
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Fig. 1. The principle of velocity updating. Individual particles (1 and 2) are accelerated
toward the location of the best solution, gbest, and the location of their own personal
best, pbest, in the two dimension problem space

classification quality. On the other hand, ‘-1’ means that, by being compared
with the best position, this bit should not be selected but it does. Redundant
features will make the length of the subset longer. Both cases will lead to lower
fitness value. Assume that the number of ‘1’ is a and that of ‘-1’ is b. The value of
(a−b) is the distance between two positions. (a−b) may be positive or negative,
such a variety makes particles possess ‘exploration ability’ in solution space. In
this example, (a− b) = 4 − 3 = 1, so Pg −Xi = 1.

3.4 Position Update Strategies

After updating velocity, particle’s position will be updated by the new velocity.
If the new velocity is V , the number of different bits between the current particle
and gbest is xg, there exists two cases while updating the position:

1) V ≤ xg. In this case, randomly change V bits of the particle, which are
different from that of gbest. The particle moves toward the global best while
keeping itself ‘searching ability’.

2) V > xg. In this case, besides changing all the different bits to be same as that
of gbest, we should further randomly (‘random’ implies ‘exploration ability’)
change (V −xg) bits outside the different bits between particle and gbest. So
after the particle reaching to the global best position, it keep on moving some
distance toward other directions, which gives it further searching ability.

3.5 Velocity Limitation (Maximum Velocity, Vmax)

In our experiment, first we limit the particles’ velocity in the region of [1, N ]. But
we notice that in some cases after some generations, the swarms find out a global



456 X. Wang et al.

best (but not the real optimal one) solution, and in the following generations
the gbest keeps freezing. It can only find the sub-optimal solution. This indicates
that the maximum velocity is too high and particles often ‘fly past’ the optimal
solution.

We set Vmax = (1/3) ∗ N and limit the velocity in [1, (1/3) ∗ N ], which
prevents velocity to be too large. By limiting the maximum velocity, particles
cannot fly too far away from the optimal solution. Once finding a global best po-
sition, other particles will adjust their velocities and positions, searching around
the best position. If V < 1, then V = 1. If V > (1/3) ∗N , V = (1/3) ∗N . PSO
can often find the optimal reducts quickly under such a limit.

3.6 Fitness Function

We use the fitness function as given in equation (13):

Fitness = α ∗ γR(D) + β ∗ |C| − |R|
|C| (13)

Where γR(D) is the classification quality of condition attribute set R relative to
decision D, |R| is the length of selected feature subset. |C| is the total number of
features. α and β are two parameters corresponding to the importance of classi-
fication quality and subset length. α ∈ [0, 1] and β = 1 − α. In our experiments
we set α = 0.9, β = 0.1. The high α assures that the best position is at least a
real rough set reduct. Our goal is to maximize fitness values.

3.7 Setting Parameters

In our algorithm, the inertia weight decreases along with the iterations according
to the equation (14).

W = Wmax − Wmax −Wmin

itermax
∗ iter (14)

Where Wmax is the initial value of weighting coefficient.Wmin is the final value of
weighting coefficient. itermax is the maximum number of iterations or generation.
iter is the current iteration or generation number.

4 Experiments

We compare the rough set attribute reduction algorithm with Particle Swarms
Optimization (PSORSFS) and other rough set reduction algorithms on some
discrete UCI datasets [16]. Comparison algorithms include positive region
(POSAR), conditional entropy (CEAR), and the GA-based attribute reduction
algorithm (GAAR). The parameter settings for GAAR and PSORSFS are in
Table 1. The experimental results are listed in Table 2.

From the results, it can be seen that in some cases hill-climbing methods
can find out the optimal solution. For example, POSAR find exclusive optimal
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Table 1. PSORSFS&GAAR parameter settings

Population Maximum Crossover Mutation c1 c2 weight Max
size Generation Probability Probability weight Velocity

GA 100 100 0.6 0.4 - - - -
PSO 20 100 - - 2.0 2.0 1.4∼0.4 (1/3) ∗ N

Table 2. Reduct size found by Reduction algorithms (∗ Optimal solution)

Data Features Instances POSAR CEAR GAAR PSORSFS
Breastcancer 9 699 4 4 4 4

M-of-N 13 1000 7 7 6 6
Exactly 13 1000 8 8 6 6
Exactly2 13 1000 10 11 11 10∗

Vote 16 300 9 11 9 8∗
Zoo 16 101 5∗ 10 6 5∗

Lymphography 18 148 6∗ 8 8 7
Mushroom 22 8124 5 5 5 4∗

Led 24 2000 6 12 8 5∗
Soybean-small 35 47 2 2 6 2

Lung 56 32 4∗ 5 6 4∗

Table 3. Classification results with different reducts 1: Number of rules; 2: Classifica-
tion accuracy

Data POSAR CEAR GAAR PSORSFS
1 2 1 2 1 2 1 2

Breastcancer 67 95.94 75 94.20 64 95.65 64 95.80
M-of-N 35 100 35 100 35 100 35 100
Exactly 50 100 50 100 50 100 50 100
Exactly2 217 83.7 178 69.6 200 80.8 217 83.7

Vote 25 94.33 25 92.33 25 94.0 25 95.33
Zoo 13 96.0 13 94.0 13 92.0 10 96.0

Lymphography 32 85.71 42 72.14 38 70.00 39 75.71
Mushroom 19 100 61 90.83 19 100 23 99.70

Led 10 100 228 83.10 10 100 10 100
Soybean-small 5 100 4 100 4 97.50 4 100

Lung 11 86.67 13 73.33 12 70.0 8 90.0

solution on dataset Exactly2 and Lymphography. But on other datasets, what
they find is always not optimal. CEAR often contains more redundant features
than POSAR. As for stochastic searching algorithms, GAAR and PSORSFS,
PSORSFS successfully find the optimal reducts on most of these datasets. For
instance, PSORSFS finds an optimal reduct on Mushroom, and finds the exclu-
sive optimal reduct on Exactly2, Vote and Led.
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Table 4. PSO searching process on data Exactly2

Iter Best Solution Fitness Value Feature Subset Length
1 1,2, 4, 5, 7, 8, 9, 10, 11, 12, 13 0.8272 11
2 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 13 0.8362 11
3 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 13 0.8362 11

4-11 1,2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 0.8663 12
12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 0.9154 11
13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.9231 10

Fig. 2. Evolution process of the global best on data Exactly2

Compared with GA, PSO is more faster in finding out the optimal solution
(Table 4 and Fig.2). Since PSO only requires primitive and simple mathematical
operators, it is computationally inexpensive and asks for less memory. Most of its
time is cost on basic rough set computation. GA is affected greatly by problem
dimension. It needs more time for generations with the increasing of feature
number. This is due to its complex crossover and mutation operations.

The comparison of the number of decision rules and the classification accu-
racy with different reducts are shown in Table 3. We use the LEM2 algorithm [11]
to extract rules from the data and the global strength [8,9] for rule negotiation
in classification. We apply the ten-fold cross validation method to estimate the
classification accuracy. Most of the reducts found by PSO can generate rather
minimal rules and higher classification accuracy.

5 Conclusions

This paper proposes a new method to find minimal rough set reducts with Parti-
cle Swarm Optimization. Experimental results demonstrate competitive perfor-
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mance. PSO has a strong search capability in problem space and can efficiently
find minimal reducts. It is a promising method for rough set reduction.

More experiments and further investigation into this technique may be re-
quired. In this paper, we apply PSO to find minimal size of reducts and like
classical genetic algorithm, the particle’s position is binary representation for
attributes subsets. We will go further to select a reduct due to the number of
decision rules it generates rather than its length. If a reduct generates fewer
rules, it means that the rules are more general and they should better recognize
new objects [8]. We should also extend to hybrid algorithm, order-based PSO
for searching approximate entropy reducts [10], where the particle’s position is a
permutation of attributes and PSO is use to find the proper order. Such reducts
are much better applicable in practice. These will be our future works.
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Abstract. In this paper, Mind Evolutionary Algorithm (MEA) is intro-
duced to correct the nonlinearity of voltage-controlled oscillator (VCO)
in linear frequency modulation continuous wave (LFMCW) radar level
gauge. Firstly, the frequency modulation (FM) voltage is divided into sev-
eral subsections. By using fast Fourier transform (FFT) analysis for the
beat frequency signals and distilling the characteristic of the spectrum,
an evaluation function is constructed. Then MEA is applied to optimize
the end coordinates of the subsections to achieve the nonlinear curve of
FM voltage so as to compensate for the nonlinearity of VCO. Experi-
ments show that the proposed method has good correction performance
with no requirement of additional hardware and measuring equipment
and is easy to apply.

1 Introduction

Linear frequency modulation continuous wave (LFMCW) radar level gauge has
advantages of non-touch, high resolution, and good media adaptability. It has
been widely used in diverse level measurements. However, the nonlinearity of
the voltage-controlled oscillator (VCO) in LFMCW will cause nonlinearity in the
final frequency output, which is modulated by linear voltage. The beat frequency
signal being mixed is no longer the idea single frequency signal due to frequency
and phase variation and the spectrum width being broadened. The resolution of
the LFMCW and the S/N ratio are then being affected, and thus degraded the
computation accuracy [1]. The open loop and closed loop correction methods are
usually taken to eliminate this kind of nonlinearity with hardware and software
[2,3,4,5,6,7], but there are difficulties and problems in getting high correction
accuracy with low cost. So we need a new method.

Mind evolutionary algorithm (MEA) is a new type of evolutional computing
method that simulates evolutional process of people’s thoughts. It uses the con-
cept ’population’ of genetic algorithm (GA), but is radically different from it.
”Similartaxis” and ”dissimilation” operators are presented. Since memory func-
tion and directional study mechanism are introduced and population optimiza-
tion replaces the individual optimization, the intelligence of the algorithm is im-
proved and the search efficiency is also enhanced. MEA has successfully solved
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the problems of precocity and slowness of convergence [8,9,10]. It has been suc-
cessfully applied to solve concrete compound [11] and other problems.

This paper analyzes the effect of the frequency modulation(FM) nonlineari-
ties of VCO to the range resolution, based on which a new subsection correction
method of the VCO voltage control signal is proposed.

2 Influence on LFMCW Radar of Nonlinearities of VCO

LFMCW radar adopts periodic modulation voltage to control VCO to gener-
ate continuous wave signal s(t), at the same time receives the echo signal r(t)
reflected from target after a delay τ (τ=R/C, where R is distance from radar
to target and C is light velocity). Fig. 1(a) shows the block diagram of homo-
dyne LFMCW radar. Fig. 1(b) shows the transmitted and received signals as
functions of time; dashed line is ideal and solid line is the actual situation. The
instantaneous difference in frequency between transmitted and received signal is
beat frequency, which is obtained by mixing the target return signal r(t) with
the transmitted signal s(t). The beat frequency reflects the target’s distance.
Therefore the information of the objective’s distance can be gained by analyzing
the spectrum of the beat frequency in one cycle and getting the frequency at the
point with the maximum amplitude value.

Suppose the initial control voltage V (t) is a sawtooth wave with period T ,
V (t) = V0 +Vmt/T within [V0,V0 +Vm] to control VCO generating a transmitted
signal s(t) with period T and bandwidth B. In the effective processed bandwidth
T0(T0=T -τ ,τ�T ), the beat frequency signal Sb(t) is single-frequency signal. Its
bandwidth δf b is 1/T0. Samuel O.Piper [12] gave the range resolution equation
of LFMCW radar as follows:

ΔR = TC/(2B) × δfb (1)

For τ�T , the relation T0≈T can be obtained and the limit resolution of LFMCW
radar is ΔR≈ C/(2B). When the transmitted signal is a non-ideal frequency
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Fig. 1. (a) Diagram of LFMCW radar system (b) Transmitted and received signals
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modulation signal, the spectrum of beat signal is spread leading to the decline of
the range resolution. Reference [13] analyzed the approximate relation between
frequency modulation linearity and range resolution. As the result of the non-
linearity of VCO, the transmitted signal produced with control voltage can be
described as:

f (t) = F [V (t)] = F0 +KV0 +
KVmt

T
+ E [V (t)]

Δ= f0 +Bt/T + e(t) (2)

where e(t) is the error function of frequency characteristic. Linearity function
and linearity are respectively defined as:{

L(t) = e(t)/B
L = |L(t)|max

(3)

It is non-ideal linear frequency modulation when e(t) �=0. Suppose the beat
signal is Sb(t) and target delay is τ , then the corresponding beat frequency is

g(t) = f(t) − f(t− τ) = Bτ/T + e(t) − e(t− τ) (4)

where Bτ/T determines the spectrum center of Sb(t), denoting target range,
and e(t)−e(t-τ) determines the spectrum width of Sb(t). For a very small τ , the
variety of e(t) is also small. Thus the beat frequency can be approximated by

g(t) = f(t) − f(t− τ) = Bτ/T + e′(t)τ (5)

If the change of amplitude is not considered, Sb(t) can be denoted as

Sb(t) = A cos [2πBτ t/T + 2πe(t)τ + φ0] (6)

According to the signal modulation theory, the 20dB spectral bandwidth of
Sb(t) is

Δf ≈ 4π |e(t)|max τFm (7)

Fm is the maximal frequency of the signal components contained in e(t) and
can be denoted by Fm = a/T , where a is the parameter relational to the shape of
e(t) and the variety of speed. With a view to |e(t)|max = LB, the above equation
can be rewritten as

Δf ≈ 4πaLBτ/T (8)

Compared with that with ideal linear frequency modulation, the spectrum of
Sb(t) has changed. The ratio is

Δn = Δf/δf = 4πaLBτ (9)

It can be seen that the spectrum of beat signals will be broadened and the
beat frequency spectral width is broadened Δn times. The result of spectral
analysis will take up many spectral bins, which worsen the range resolution.
Simultaneously the nonlinearity and the phase noise produced by it might induce
several fake peaks appearing beside the main peak in the spectrum gained by
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Fig. 2. Spectrum of the beat signal with nonlinear frequency modulation

fast Fourier transform (FFT). It will influence the judgments of the main peak
in practical measurement with great difference. Fig. 2 shows the spectrum of the
measurement of a metal flat placed three meters before the radar level gauge. It
can be seen that there are a series of fake peaks on the right side of the main
peak.

To eliminate e(t) from equation (2), a nonlinear frequency modulation voltage
can be used to compensate the nonlinearity of VCO. But it is impossible to find
a universal function to realize the compensation because the specialty of each
VCO is different. Using the correction method of nonlinearity in analog circuits
as reference, this paper uses MEA to acquire the nonlinear frequency modulation
voltage and then perform the subsection correction of the nonlinearity of VCO.

3 The Correction of Linearity Based on MEA

3.1 Brief Introduction of MEA

The concepts of ‘population’ and ‘evolution’ are introduced into MEA. Evolu-
tionary objectives include NS “superior” subpopulations, NT “temporary” sub-
populations and a global information board. Each subpopulation is composed
of SG individuals and a local information board. “Similartaxis” and “dissimila-
tion” operators execute the virtual evolutionary process. “Similartaxis”performs
the local competition inside the subpopulations and the individuals in same
subpopulation exchange information and learn from each other. “Dissimilation”
performs the global competition and the subpopulations exchange information
and learn from each other. MEA has strong ability to search for the global opti-
mum and has advantages in convergence ability and calculative efficiency against
GA. Please see reference [8,9] for the detailed description. The brief introduction
on MEA is as follows:
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At the beginning of “study”, M individuals are scattered in solution space
evenly and randomly. Then the score of each individual is calculated and those
with highest scores are selected as “winners”, the seeds of future subpopulations.

“Similartaxis” performs local competition inside subpopulations among indi-
viduals and produces local optimal points. At first N individuals are distributed
normally around one“winner”with the variance δ and then their scores are com-
puted. The highest one is the winner, and will take part in the global competition
in the following dissimilation.

“Dissimilation” completes global competition. The “winners” of subpopula-
tions from “similartaxis” compete with each other and those with high score are
kept to next round but the rest are eliminated and replaced by new individuals
distributed in the solution space. This makes the population evolves toward the
global optimum. Thus the “similartaxis”and “dissimilation”are repeated in turn
until the stop conditions are met.

3.2 The Conception of the Subsection Nonlinearity Correction
Method Based on MEA

The nonlinear voltage can be used to eliminate the nonlinearity of VCO. The
frequency modulation curve is divided into several subsections and each end of
the subsections varies in a limited area. Thereby the problem of correction is
transformed to the optimization of the coordinates of these ends. It is MEA
that performs the task. Then, the curve of optimal nonlinear voltage is gained
by joining the ends optimized by MEA. As shown in Fig. 3, if the FM curve is
departed into M segments, there are M+1 ends—original spot, terminal spot
and M−1 mid spots. Whereas the original and terminal spots are invariable, the
mid ones are alterable. Suppose the coordinate of the ith mid spot is denoted by
(xi,yi) and it is subjected to xi ∈ [xl, xh], yi ∈ [yl, yh], then the confine where
the point varies is described as following:⎧⎪⎪⎨⎪⎪⎩

xl = i×N/M − 0.5δ
xh = i×N/M + 0.5δ
yl = i×N/M − 0.5δ
yh = i×N/M + 0.5δ

i = 1, 2 · · · ,M − 1 (10)

Where δ is the length of area, i.e. the variety range of coordinate xi and yi;
N is the length of the digital sequence output from D/A converter; M is the
number of segments.

There are totally M − 1 points, i.e. 2(M -1) coordinates to be optimized.
Thus each individual in MEA includes 2(M−1) variables. Because a 16-bit fixed
point digital signal processor(DSP) is employed in the experiment, to exert the
superiority of the processor and enhance the calculative efficiency, 16-bit binary
code method is adopted. In the evolutionary process, the schema characteristic
of excellent individuals is distilled and the schema information is used to instruct
the learning among the individuals in“similartaxis”and“dissimilation”operation
[14].
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Fig. 3. The sketch map for FM voltage curve subsections. In this figure, FM voltage
curve is divided into six subsections and the area of dashed square is alterable space of
mid point

3.3 Structure for Fitness Function

For optimal algorithms, a proper fitness is a key factor for global optimal. The
purpose of this paper is to reduce the spectral spread brought by VCO FM
nonlinearities and restrain the fake peaks arose by nonlinearity and phrase noise.
Accordingly the fitness function employed in this paper has the form of:

Fit = αFit1 + βFit2 (11)

Fit1 =
{

Linitial − ln
0

Linitial ≥ ln
Linitial < ln

(12)

Fit2 =
Pmax

P1
+

Pmax

P2
(13)

Where α and β are evaluating coefficients. Fit1 denotes the evaluation to spectral
spread. As limited with the dashed square in Fig. 4, the number of the spectrum
bins over 1/2 peak magnitude is used to evaluate the extended spectrum, Lintial

is the number before corrected. ln is the number during the evolution. Consider-
ing some changeable ends randomly generated in initial stages of evolution might
worsen the linearity, let Fit1=0 when Linitial < ln.

Fit2 is the evaluation to the restrain effect of the fake peaks to the sides of
the main peak. Pmax is the amplitude value of the main peak after spectrum
analyzed. P1 and P2 respectively denotes the amplitude values of the two fake
peaks closest to the main peak which is marked with square in Fig. 5.

An individual during the evolution is a series of numbers in [0 65535]. Firstly,
they are transformed into the practical coordinates and linked as a voltage curve.
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Fig. 5. The implication of Fit2

Link the points as a voltage curve

Sample digital sequence through A/D converter

FFT calculate  and distill the characteristic of spectrum

Compute the evaluation with the fitness function

Decode the individual into the practical coordinates

Output the FM voltage through D/A converter

Start

Output the evaluation result

End

Fig. 6. The flow chart of the evaluation to the individual

Then the voltage curve is output through D/A converter to control VCO to
generate frequency signals .Fig. 6 is the flow chart of the evaluation to the
individual.

4 Experiment Results

For the LFMCW radar level gauge employed in this paper, the center frequency
is 9.5GHz, FM bandwidth is 0.7GHz, FM period is 0.75ms, the 16-bit fixed
point DSP processor is TMS320VC5509, and the frequency of the system clock
is 120MHz. In the experiment, a metal flat is placed three meters before the
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Fig. 7. FM voltage curve after nonlinearity correction. Dashed line is the line of linear
FM voltage, solid curve is the result by the proposed method.
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Fig. 8. The spectrum before and after correction. (a) is before correction and (b) is
after correction.

LFMCW radar level gauge as the target, the new method proposed above is
applied to correct the nonlinearity of VCO. The corrected nonlinear voltage
curve is shown in Fig. 7. Fig. 8 shows the same position spectrum comparison
between before and after correction which is obtained by 4096 points FFT with
1024 points sample padded zeros. After corrected, the value of the main peak is
improved notably and the fake peaks beside it are restrained efficiently. Fig. 9 is
the main peak bins of Fig. 8. It shows the spectrum spread narrowed. For MEA
algorithm, the maximum iterative times is set as 100. During the experiment,
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Fig. 9. The bins figure before and after correction. (a) is before correction and (b) is
after correction.

the average iterative times for the optimal solution is 29. The results show that
the new method is valid and the level measurement is notably improved.

5 Conclusion

MEA based nonlinear correction algorithm for the VCO in LFMCW radar level
gauge is proposed in this paper. The frequency modulation voltage is firstly
divided into several subsections, and then MEA is used to optimize the end
coordinates of the subsections to get nonlinear frequency modulation voltage
curve, so as to compensate for the nonlinearity of VCO. Good linear frequency
modulation signal can be obtained without measuring the frequency or phase of
the high frequency signals. And at the same time, its high accuracy is guaranteed.
The proposed algorithm is suited for diverse level measurements due to its low
cost, simplicity and good performance with no additional correction circuit.
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Abstract. This paper discusses the degree of granularity and depen-
dence of contingency tables from the viewpoint of linear algebra. From
the results of determinantal divisors, it seems that the devisors provide
information on the degree of dependencies between the matrix of the
whole elements and its submatrices and the increase of the degree of
granularity may lead to that of dependence. However, this paper shows
that a constraint on the sample size of a contingency table is very strong,
which leads to the evaluation formula where the increase of degree of
granularity gives the decrease of dependency.

1 Introduction

Independence (dependence) is a very important concept in data mining, espe-
cially for feature selection. In rough sets [1], if two attribute-value pairs, say
[c = 0] and [d = 0] are independent, their supporting sets, denoted by C and D
do not have a overlapping region (C ∩ D = φ), which means that one attribute
independent to a given target concept may not appear in the classification rule
for the concept.

This idea is also frequently used in other rule discovery methods: let us con-
sider deterministic rules, described as if-then rules, which can be viewed as classic
propositions (C → D). From the set-theoretical point of view, a set of examples
supporting the conditional part of a deterministic rule, denoted by C, is a subset
of a set whose examples belong to the consequence part, denoted by D. That is,
the relation C ⊆ D holds and deterministic rules are supported only by positive
examples in a dataset [2].

When such a subset relation is not satisfied, indeterministic rules can be de-
fined as if-then rules with probabilistic information [3]. From the set-theoretical
point of view, C is not a subset, but closely overlapped with D. That is, the re-
lations C∩D �= φ and |C∩D|/|C| ≥ δ will hold in this case.1 Thus, probabilistic
rules are supported by a large number of positive examples and a small number
of negative examples.
1 The threshold δ is the degree of the closeness of overlapping sets, which will be given

by domain experts. For more information, please refer to Section 3.
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On the other hand, in a probabilistic context, independence of two attributes
means that one attribute (a1) will not influence the occurrence of the other
attribute (a2), which is formulated as p(a2|a1) = p(a2).

Although independence is a very important concept, it has not been fully and
formally investigated as a relation between two attributes. Tsumoto introduces
linear algebra into formal analysis of a contingency table [4]. The results give the
following interesting results. First, a contingency table can be viewed as com-
parison between two attributes with respect to information granularity. Second,
algebra is a key point of analysis of this table. A contingency table can be viewed
as a matrix and several operations and ideas of matrix theory are introduced into
the analysis of the contingency table. Especially, The degree of independence,
rank plays a very important role in extracting a probabilistic model from a given
contingency table.

This paper gives a further investigation on the degree of independence of
contingency matrix.

Intuitively and empirically, when two attributes has many values, the depen-
dence between these two attributes becomes low. However, from the results of
determinantal divisors, it seems that the devisors provide information on the de-
gree of dependencies between the matrix of the whole elements and its submatri-
ces and the increase of the degree of granularity may lead to that of dependence.
The key of the resolution of these conflicts is to consider the constraint on the
sample size.

In this paper we show that a constraint on the sample size of a contingency
table is very strong, which leads to the evaluation formula where the increase of
degree of granularity gives the decrease of dependency.

2 Contingency Table from Rough Sets

2.1 Notations

In the subsequent sections, the following notations is adopted, which is intro-
duced in [5]. Let U denote a nonempty, finite set called the universe and A
denote a nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where
Va is called the domain of a, respectively. Then, a decision table is defined as
an information system, A = (U,A ∪ {D}), where {D} is a set of given decision
attributes. The atomic formulas over B ⊆ A ∪ {D} and V are expressions of
the form [a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set
F (B, V ) of formulas over B is the least set containing all atomic formulas over
B and closed with respect to disjunction, conjunction and negation. For each
f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all objects in U
with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa
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Table 1. Contingency Table (n × m)

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

2.2 Multi-way Contingency Table

Two-way contingency table can be extended into a contingency table for multi-
nominal attributes.

Definition 1. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables is a table of a set
of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|, |[R1 =
Aj ∧R2 = Bi]A|, |[R1 = A1∧R1 = A2∧· · ·∧R1 = Am]A|, |[R2 = B1∧R2 = A2∧
· · · ∧R2 = An]A| and |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m). This table is
arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =

∑m
i=1 x1i = x·j,

|[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 = Bi]A| = xij , |U | = N = x··
(i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).

3 Rank of Contingency Table (Multi-way)

The relation between rank and independence in a multi-way contingency table
is obtained.

Theorem 1. Let the corresponding matrix of a given contingency table be a
square n × n matrix. If the rank of the corresponding matrix is 1, then two
attributes in a given contingency table are statistically independent. If the rank
of the corresponding matrix is n , then two attributes in a given contingency table
are dependent. Otherwise, two attributes are contextual dependent, which means
that several conditional probabilities can be represented by a linear combination
of conditional probabilities. Thus,

rank =

⎧⎪⎨⎪⎩
n dependent

2, · · · , n− 1 contextual independent

1 statistical independent 	


This theorem can be generalized into m × n matrix. If the corresponding
matrix of a given contingency table is not square and of the form m × n , then
its rank is at most min(m, n).

Theorem 2. Let the corresponding matrix of a given contingency table be a
m × n matrix. The rank of this matrix is less than min(m, n). If the rank of the
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corresponding matrix is 1, then two attributes in a given contingency table are
statistically independent. If the rank of the corresponding matrix is n , then two
attributes in a given contingency table are dependent. Otherwise, two attributes
are contextual dependent, which means that several conditional probabilities can
be represented by a linear combination of conditional probabilities. Thus,

rank =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(m, n) dependent

2, · · · ,
min(m, n) − 1 contextual independent

1 statistical independent 	


In the cases of m �= n, we need a discussion on submatrix and subderminant in
the next section.

4 Rank and Degree of Dependence

4.1 Submatrix and Subdeterminant

The next interest is the structure of a corresponding matrix with 1 ≤ rank ≤
n− 1. First, let us define a submatrix (a subtable) and subdeterminant.

Definition 2. Let A denote a corresponding matrix of a given contigency table
(m × n). A corresponding submatrix Ai1i2···ir

j1j2···js
is defined as a matrix which is

given by an intersection of r rows and s columns of A (i1 < i2 < · · · < ir, j1 <
j2 < · · · < jr).

Definition 3. A subdeterminant of A is defined as a determinant of a submatrix
Ai1i2···ir

j1j2···js
, which is denoted by det(Ai1i2···ir

j1j2···js
).

Let us consider the contingency table given as Table 1. Then, a subtable for
Ai1i2···ir

j1j2···js
is given as Table 2.

4.2 Rank and Subdeterminant

Let δij denote a co-factor of aij in a square corresponding matrix of A. Then,

Δij = (−1)i+jdet(A1,2,··· ,i−1,i+1,··· ,n
1,2,··· ,j−1,j+1,··· ,n).

Table 2. A subtable (r × s)

Aj1 Aj2 · · · Ajr Sum
Bi1 xi1j1 xi1j2 · · · xi1jr xi1·
Bi2 xi2j1 xi2j2 · · · xi2jr xi2·
· · · · · · · · · · · · · · · · · ·
Bir xirj1 xirj2 · · · xirjn xir·
Sum x·1 x·2 · · · x·n x·· = |U | = N



On Degree of Dependence Based on Contingency Matrix 475

It is notable that a co-factor is a special type of submatrix, where only ith-row
and j-column are removed from a original matrix. By the use of co-factors, the
determinant of A is defined as:

det(A) =
n∑

j=1

aijΔij ,

which is called Laplace expansion.
From this representation, if det(A) is not equal to 0, then Δij �= 0 for

{ai1, ai2, · · · , ain} which are not equal to 0. Thus, the following proposition is
obtained.

Proposition 1. If det(A) is not equal to 0 if at least one co-factor of aij(�= 0),
Δij is not equal to 0.

It is notable that the above definition of a determinant gives the relation
between a original matrix A and submatrices (co-factors). Since cofactors gives
a square matrix of size n− 1, the above proposition gives the relation between a
matrix of size n and submatrices of size n− 1. In the same way, we can discuss
the relation between a corresponding matrix of size n and submatrices of size
r(1 ≤ r < n− 1).

4.3 Rank and Submatrix

Let us assume that corresponding matrix and submatrix are square (n× n and
r × r, respectively).

Theorem 3. If the rank of a corresponding matrix of size n × n is equal to r,
at least the determinant of one submatrix of size r× r is not equal to 0. That is,
there exists a submatrix Ai1i2···ir

j1j2···jr
, which satisfies det(Ai1i2···ir

j1j2···jr
) �= 0

Corollary 1. If the rank of a corresponding matrix of size n× n is equal to r,
all the determinants of the submatrices whose number of columns and rows are
larger than r + 1(≤ n) are equal to 0. 	


Thus, one attribute-value pair is statistically dependent on other two pairs,
statistically independent of the other attribute. In other words, if two pairs are
fixed, the remaining one attribute-value pair will be statistically independently
determined.

4.4 Determinantal Divisors

From the subdeterminants of all the submatrices of size 2, all the subdetermi-
nants of a corresponding matrix has the greatest common divisor, equal to 3.

From the recursive definition of the determinants, it is show that the subde-
terminants of size r + 1 will have the greatest common divisor of the subdeter-
minants of size r as a divisor. Thus,
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Theorem 4. Let dk(A) denote the greatest common divisor of all the subdeter-
minants of size k, det(Ai1i2···ik

j1j2···jr
). d1(A), d2(A), · · · , dn(A) are called determinan-

tal divisors. From the definition of Laplace expansion,

dk(A)|dk+1(A). 	


It is notable that a simple change of a corresponding matrix gives a sig-
nificant change to the determinant, which suggests a change of structure in
dependence/independence.

The relation between dk(A) gives a interesting constraint.

Proposition 2. Since dk(A)|dk+1(A), the sequence of the devisiors is monoton-
ically increasing one:

d1(A) ≤ d2(A) · · · ≤ dr(A),

where r denotes the rank of A.

The sequence of B illustrates this: 1 < 3 < 18.
Let us define a ratio of dk(A) to dk−1(A), called elementary divisors, where

C denotes a corresponding matrix and k ≤ rankA:

ek(C) =
dk(C)
dk−1(C)

(d0(C) = 0).

The elementary divisors may give the increase of dependency between two
attributes. For example, e1(B) = 1, e2(B) = 3, and e3(B) = 6. Thus, a transition
from 2 × 2 to 3 × 3 have a higher impact on the dependency of two attributes.

It is trivial to see that det(B) = e1e2e3, which can be viewed as a decompo-
sition of the determinant of a corresponindg matrix.

4.5 Divisors and Degree of Dependence

Since the determinant can be viewed as the degree of dependence, this result
is very important. If values of all the subdeterminants (size r) are very small
(nearly equal to 0) and dr(A) � 1, then the values of the subdeterminants (size
r + 1) are very small. This property may hold until the r reaches the rank of
the corresponding matrix. Thus, the sequence of the divisiors of a corresponding
matrix gives a hidden structure of a contingency table.

Also, this results show that d1(A) and d2(A) are very important to estimate
the rank of a corresponding matrix. Since d1(A) is only given by the greatest
common divisor of all the elements of A, d2(A) are much more important com-
ponents. This also intuitively suggests that the subdeterminants of A with size
2 are principal components of a corresponding matrix from the viewpoint of
statistical dependence.

Recall that statistical independence of two attributes is equivalent to a corre-
sponding matrix with rank being 1. A matrix with rank being 2 gives a context-
dependent independence, which means three values of two attributes are inde-
pendent, but two values of two attributes are dependent.
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4.6 Elementary Divisors and Elementary Transformation

Let us define the following three elementary (row/column)transformations of a
corresponding matrix:

1. Exchange two rows (columns), i0 and j0 (P (i0, j0)).
2. Multiply −1 to a row (column) i0 (T (i0;−1)).
3. Multiply t to a row (column) j0 (i0) and add it to a row i0 (j0). (W (i0, j0, t)).

Then, three transformations have several interesting characteristics.

Proposition 3. Matrices corresponding to three elementary transformations are
regular.

Proposition 4. Three elementary transformations do not change the rank of a
corresponding matrix.

Proposition 5. Let Ã denote a matrix transformed by finite steps of three op-
erations. Then,

rankÃ = rankA, dr(Ã) = dr(A),

where r denotes the rank of matrix A.
Then, from the results of linear algebra, the following interesting result is

obtained.

Theorem 5. With the finite steps of elementary transformations, a given cor-
responding matrix is transformed into

Ã =

⎛⎜⎜⎜⎜⎜⎝
e1

e2
. . . O

er

O O

⎞⎟⎟⎟⎟⎟⎠ ,

where ej = dj(A)
dj−1(A) (d0(A) = 1) and r denotes the rank of a corresponding matrix.

Then, the determinant is decomposed into the product of ej.

dr(Ã) = dr(A) = e1e2 · · · er. 	


5 Degree of Granularity and Dependence

From Theorem 5, it seems that the increase of the degree of granularity gives
that of the dependence between two attributes.

However, our empirical observations are different from the above intuitive
analysis. Thus, there should be a strong constraint which suppress the above
effects on the degree of granularity.

Let us assume that the determinant of a give contingency matrix gives the
degree of the dependence of the matrix. Then, from the results of linear algebra,
we obtain the following theorem.
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Theorem 6. Let A denote a n× n contingency matrix, which includes N sam-
ples. If the rank of A is equal to n, then there exists a matrix B (n× n) which
satisfies

BA =

⎛⎜⎜⎜⎝
ρ1

ρ2 O
. . .

O ρn

⎞⎟⎟⎟⎠ = P,

where ρ1 + ρ2 + · · · + ρn = N .
It is notable that the value of determinants of P is larger than A:

detA ≤ detP 	


It is easy to see that the tranformed matrix P has a very nice property to
calculate the determinant.

Proposition 6. The determinant of the transformed matrix P is equal to the
multiplication of ρ1 to ρn. That is,

detP = ρ1ρ2 · · ·ρn 	


Then, the following constraint will be have the special meaning:

ρ1 + ρ2 + · · · + ρn = N, (1)

because the following inequality holds in general:

ρ1 + ρ2 + · · · + ρn

n
≥ n

√
ρ1ρ2 · · · ρn, (2)

where the equality holds when ρ1 = ρ2 = · · · = ρn. Since the above inequality
can be transformed into:

ρ1ρ2 · · · ρn ≤
(
ρ1 + ρ2 + · · · + ρn

n

)n

,

the following inequality is obtained:

detP = ρ1ρ2 · · · ρn ≤
(
ρ1 + ρ2 + · · · + ρn

n

)n

, (3)

where the equality holds when ρ1 = ρ2 = · · · = ρn. From the theorem 6 and
equation 1, the following theorem is obtained.

Theorem 7. When a contingency matrix A holds AB = P , where P is a diag-
onal matrix, the following inequality holds:

detA ≤
(
N

n

)n

,
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Proof.

detA = det(PB−1)
≤ detP

= ρ1ρ2 · · ·ρn

≤
(
ρ1 + ρ2 + · · · + ρn

n

)n

=
(
N

n

)n

, (4)

where the former equality holds when detB−1 = detB = 1 and the latter equality
holds when ρ1 = ρ2 = · · · = ρn = N

n .

Thus, the maximum value of the determinant of A is at most
(

N
n

)n
. Since N

is constant for the given matrix A, the degree of dependence will decrease very
rapidly when n becomes very large. That is,

detA ∼ n−n.

Thus,

Corollary 2. The determinant of A will converge into 0 when n increases into
infinity.

lim
n→∞

detA = 0. 	


This results suggest that when the degree of granularity becomes higher, the
degree of dependence will become lower, due to the constraints on the sample
size.

However, it is notable that N/n is very important. If N is very large, the
rapid decrease will be observed N is close to n. For the behavior of (N/n)n, we
can apply the technique of real analysis, which will our future work.

6 Conclusion

In this paper, a contingency table is interpreted from the viewpoint of granu-
lar computing and statistical independence. Matrix algebra is a key point of the
analysis of a contingency table and the degree of independence, rank plays a very
important role in extracting a probabilistic model. From the correspondence be-
tween contingency table and matrix, the following results are obtained: First, the
value of determinants gives the degree of of dependency between attribute-value
pairs for a set of submatrices with the same size. Second, from the characteris-
tics of the determinants, the larger rank a corresponding matrix has, the higher
the two attributes are dependent. This results is shown by a monotonicity of a
sequence of determinantal divisors. Third, elementary divisors give a decompo-
sition of the determinant of a corresponding matrix. Finally, the constraint on
the sample size of a contingency table is very strong, which leads to the evalu-
ation formula where the increase of degree of granularity gives the decrease of
dependency.
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Abstract. We address the problem of determination of the size of the
test set which can can guarantee statistically significant results in classi-
fier error estimation and in selection of the best classifier from a given set.
We focus on the case of the 0-1 valued loss function and we provide one
and two sides optimal bounds for Validation (known also as Hold-Out
Estimate and Train-and-Test Method). We also calculate the smallest
sample size, necessary for obtaining the bound for given estimation ac-
curacy and reliability of estimation, and we present the results in tables.
Finally, we propose strategies for classifier design using the bounds de-
rived.

Keywords: Computational learning theory, Model Selection, Model As-
sessment, Hold-Out Estimate, Train-and-Test, Validation.

1 Introduction

The ability to act properly in a partially unknown environment is one of the
most important properties of an intelligent system. In the case of classification,
this ‘proper act’ is a generalization ability — an ability to classify new samples
correctly.

In a classifier design cycle, there are two aspects which concern the classifier
behaviour on new samples: Model Selection and Model Assessment. During the
Model Selection process, we try to choose the best classifier from a given set. For
example, in a rough set theory, this phrase refers to choosing the minimal support
for decision rules. During the Model Assessment, we estimate the generalization
ability of the classifier.

There are several methods for performing Model Selection and Assessment.
However, we restrict ourselves to the analysis of Validation (also known as Train-
and-Test Method or Hold-Out Estimate). The reason is that the quality of Val-
idation estimation is independent from the classifying algorithm. Hence, an effi-
cient universal bound can be obtained.

We derive optimal bounds in a probabilistic model of a learning process,
based on independence of samples. In this model, we restrict ourselves to the
case of the 0-1 valued loss function. Since the 0-1 valued loss function is the one
used most often in pattern recognition, this case has multiple applications.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 481–490, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Using the bounds, the smallest number of samples, needed for performing of
the model selection and assessment with statistically significant results, can be
determined. The ‘optimality’ of bound assures that the size of a testing sample,
assessed by it, is necessary and it cannot be decreased.

We describe the model and give a formal definition of Validation in Sect. 2.
In Sect. 3 we present results concerning the classifier error estimation using Val-
idation. We also provide the tables, where the smallest sample size necessary for
obtaining the bound for given estimation accuracy and reliability of estimation
is calculated. We discuss the bound in the case of testing many classifiers with
the same sample. In Sect. 4, we present the Model Selection and Assessment
strategies based on the bounds.

2 The Problem of Learning from the Statistical Point of
View

In this section, the fundamental concepts of the learning theory are introduced.
Let X be the set of examples (attribute value vectors), Y be the set

of decisions (labels), and ρ be a Borel probability measure on Z = X × Y . ρ
plays an important role in sampling as it describes the probability of getting a
given sample as well as distribution of decision for any example. Unfortunately,
ρ is unknown to us.

We are given a finite sequence z =
(
(x1, y1), . . . , (xm, ym)

)
, where xi is an

example and yi – a decision for i = 1, . . . ,m. The sequence z will be called a
sample of the length m; z is randomly got by m independent draws according
to the probability measure ρ; z describes all our knowledge about ρ.

An algorithm Am : Zm → (X → Y ) is also such that for each sample z of
the length m, Am yields a classifier (i.e., a function) fz : X → Y .

Having a classifier, we want to evaluate its quality. The quality of a classifier
f is determined by its generalization error defined by

E(f) =
∫

Z

V
(
y, f(x)

)
dρ(x, y),

where V : Y × Y → R+ is called the loss function. For example, the loss
function can be defined by:

V
(
y, f(x)

)
= (y − f(x))2,

V
(
y, f(x)

)
= |y − f(x)|,

or

V
(
y, f(x)

)
=
{

0 if y = f(x)
1 if y �= f(x).

For a finite set of decisions Y = {d1, d2, . . . , dl}, the last case may be generalized
to

V
(
di, dj

)
= ai,j
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where ai,i = 0 and 0 ≤ ai,j ≤ 1. Such a loss function allows us to express the
fact that we prefer one type of the classifier error to another. In this paper, we
concern only with the 0-1 valued loss function, i.e., we assume that

V : Y × Y → {0, 1}.

We want to estimate E(fz), which cannot be calculated directly. To this end,
we use the generalization error evaluators such as Validation.

The idea of Validation is to divide a given sample z into two distinct parts
z1, z2. The sample z1 will be used to learn the classifier and the sample z2 =(
(x′1, y

′
1), . . . , (x

′
m′ , y′m′)

)
to test it by calculation of

Ez2(fz1) =
1
m′

m′∑
i=1

V
(
y′i, fz1(x

′
i)
)
.

Ez(f) is called the empirical error of the function f on the sample z. Hav-
ing calculated Ez2(fz1), we claim that its value is similar to the value of the
generalization error of fz1 .

Ez2(fz1) ∼ E(fz1 )

In the next sections, we will try to express this similarity by numeric means.

3 Bounds for Classifier Error Estimation

The simplest way to obtain the quality of estimation is to assess

|Ez2(fz1) − E(fz1)|

or at least
E(fz1) − Ez2(fz1)

if we are interested only in how bad the estimation can be.
According to [8], we may use the following inequalities:

Theorem 1. Let m denote the size of z2, and let ε > 0. If V
(
fz1(x), y

)
∈ {0, 1},

then the least δ such that

P
(
E(fz1 ) − Ez2(fz1) > ε

)
< δ (1)

has the value

δ = max
k<(1−ε)m

k∑
i=0

(m

i

)(
ε+

k

m

)i(
1 − ε− k

m

)m−i

.

The behaviour of the bound is shown in Table 1.
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Table 1. Number of samples needed for inequality (1) to hold for given ε and δ

ε\δ 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010 0.0005 0.0002 0.0001
0.005 16624 27255 42379 54319 66549 83038 95695 108475 125522 138510
0.010 4206 6864 10645 13630 16687 20809 23974 27169 31430 34677
0.015 1891 3073 4753 6080 7439 9271 10677 12097 13991 15434
0.020 1076 1741 2686 3432 4197 5227 6018 6817 7882 8694
0.025 697 1122 1727 2205 2694 3353 3860 4371 5053 5572
0.030 489 785 1205 1537 1876 2334 2686 3041 3514 3875
0.035 364 581 889 1133 1383 1719 1977 2238 2586 2851
0.040 281 448 684 871 1062 1319 1517 1717 1983 2186
0.045 225 356 543 690 841 1045 1201 1359 1569 1729
0.050 184 291 442 561 683 848 975 1103 1273 1403
0.055 154 242 367 465 566 703 807 913 1054 1161
0.060 131 205 310 392 477 592 680 768 887 977
0.065 112 175 265 336 408 505 580 656 757 833
0.070 98 152 230 290 353 437 501 566 653 720
0.075 86 134 201 254 308 381 438 494 570 628
0.080 77 118 177 224 272 336 385 435 502 552
0.085 69 105 158 199 241 298 342 386 445 490
0.090 62 95 141 178 216 267 306 345 398 438
0.095 56 86 127 160 194 240 275 310 357 393
0.100 51 78 115 145 176 217 249 280 323 355
0.105 47 71 105 132 160 197 226 255 293 323
0.110 43 65 96 121 146 180 206 233 268 294
0.115 40 60 88 111 134 165 189 213 245 270
0.120 37 55 82 102 123 152 174 196 226 248
0.125 34 51 76 95 114 140 161 181 208 229
0.130 32 48 70 88 106 130 149 168 193 212
0.135 30 45 65 82 98 121 138 156 179 197
0.140 28 42 61 76 92 113 129 145 167 183
0.145 26 39 57 71 86 105 120 135 156 171
0.150 25 37 54 67 80 99 113 127 146 160
0.155 24 35 50 63 75 93 106 119 137 150
0.160 22 33 48 59 71 87 99 112 128 141
0.165 21 31 45 56 67 82 94 105 121 133
0.170 20 29 42 53 63 77 88 99 114 125
0.175 19 28 40 50 60 73 84 94 108 118
0.180 18 27 38 47 57 69 79 89 102 112
0.185 17 25 36 45 54 66 75 84 97 106
0.190 17 24 35 43 51 63 71 80 92 101
0.195 16 23 33 41 49 60 68 76 87 96
0.200 15 22 31 39 46 57 65 72 83 91

Theorem 2. Let ε > 0 and m be such that 1
4ε2 + 1 ≤ m. The least δ such that

P
(
|E(fz1 ) − Ez2(fz1)| > ε

)
< δ (2)
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satisfies

δ = max
0≤k<m(1−ε)

k∑
i=0

(m

i

)(
ε+

k

m

)i(
1 − ε− k

m

)m−i

+

+
m∑

i=k+�2mε�+1

(m

i

)(
ε+

k

m

)i(
1 − ε− k

m

)m−i

.

The behaviour of the bound is shown in Table 2 As we can see, the necessary
number of samples for the two side bound is only slightly greater that the number
of samples for the one side bound for small δ.

Observe that Theorem 1 provides us with the optimal δm,ε for the following
inequality:

P(E(f) − Ez(f) > ε) ≤ δm,ε.

Now, we will look for the optimal bound, considering inequalities of the form

P(E(f) > g(Ez(f))) ≤ δ,

where g : { 0
m , 1

m , . . . , m
m} → [0, 1] is monotonically increasing and g(1) = 1. Let

Gm,δ = {g : { 1
m
,

2
m
, . . . ,

m

m
} → [0, 1] | P(E(f) > g(Ez(f))) ≤ δ ∧

∧ ∀x,y x < y ⇒ g(x) ≤ g(y) ∧ g(1) = 1}.
In order to compare the quality of inequalities, we introduce a partial order on
Gm,δ. For any g1, g2 ∈ Gm,δ, let

g1 � g2 iff ∀x g1(x) ≤ g2(x).

g1 � g2 means that the bound estimated using g1 is better than the one estimated
by g2. The optimal bound is the one corresponding to the �-least element.

Definition 1. Let k < m and gm,δ( k
m ) = p be such that

k∑
i=0

(m

i

)
pi(1 − p)m−i = δ

and gm,δ(1) = 1.

Since
∑k

i=0

(
m
i

)
pi(1 − p)m−i is strictly monotonically decreasing with growing

p, gm,δ is well-defined.

Theorem 3. Let 0 < δ < 1, m ∈ N. gm,δ is the �-least element of Gm,δ, i.e.,

P(E(f) > gm,δ(Ez(f))) < δ

is the optimal bound.
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Table 2. Number of samples needed for inequality (2) to hold for given ε and δ

ε\δ 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010 0.0005 0.0002 0.0001
0.005 27100 38500 54200 66400 78800 95500 108300 121200 138400 151400
0.010 6800 9650 13550 16600 19700 23900 27100 30300 34600 37850
0.015 3034 4300 6034 7400 8767 10634 12034 13467 15400 16834
0.020 1700 2425 3400 4150 4925 5975 6775 7575 8650 9475
0.025 1100 1540 2180 2660 3160 3820 4340 4860 5540 6060
0.030 767 1084 1517 1850 2200 2667 3017 3367 3850 4217
0.035 558 786 1115 1358 1615 1958 2215 2486 2829 3100
0.040 425 613 850 1038 1238 1500 1700 1900 2163 2375
0.045 345 478 678 823 978 1189 1345 1500 1712 1878
0.050 280 390 550 670 790 960 1090 1220 1390 1520
0.055 228 328 455 555 655 791 900 1010 1146 1255
0.060 192 275 384 467 550 667 759 842 967 1050
0.065 162 231 324 400 470 570 647 724 824 900
0.070 143 200 279 343 408 493 558 622 708 772
0.075 127 174 247 300 354 427 487 540 620 674
0.080 113 157 213 263 313 375 425 475 544 594
0.085 100 136 189 236 277 336 377 424 483 524
0.090 89 123 173 206 245 300 339 378 428 467
0.095 79 111 153 190 222 269 300 337 385 422
0.100 70 100 140 170 200 240 275 305 345 380
0.105 67 91 124 153 181 220 248 277 315 343
0.110 60 82 114 141 164 200 228 250 287 314
0.115 57 74 105 127 153 183 209 231 261 287
0.120 50 71 96 117 138 167 192 213 242 263
0.125 44 64 88 108 128 156 176 196 224 244
0.130 43 58 81 100 120 143 162 181 204 227
0.135 41 56 78 93 112 134 152 167 189 208
0.140 36 50 72 86 104 125 140 158 179 193
0.145 35 49 66 80 97 114 132 145 166 180
0.150 34 47 64 77 90 107 120 137 154 170
0.155 33 42 59 71 84 100 113 126 146 159
0.160 29 41 57 66 79 94 107 119 135 147
0.165 28 37 52 64 73 88 100 113 128 140
0.170 27 36 50 59 71 86 95 106 121 133
0.175 23 35 46 58 66 80 89 100 115 123
0.180 23 31 45 53 62 75 84 95 109 117
0.185 22 30 41 52 60 71 82 90 103 111
0.190 22 29 40 48 56 69 77 85 98 106
0.195 21 29 36 47 54 65 72 80 93 100
0.200 20 25 35 43 50 60 68 75 88 95

Proof. First, we prove that gm,δ ∈ Gm,δ. It is obvious that gm,δ( k
m ) ≤ gm,δ(k+1

m ).
Let gm,δ(−1

m ) = 0. We show that the inequality holds.

P(E(f) > g(Ez(f))) =
m∑

i=0

P(Ez(f) =
i

m
)P(E(f) > g(Ez(f))|Ez(f) =

i

m
) =
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=
m∑

i=0

(m

i

)
E(f)i(1 − E(f))m−iP(E(f) > gm,δ(

i

m
)) ≤

≤ max
k∈{−1,0,...,m−1}

sup
p∈(gm,δ( k

m ),gm,δ( k+1
m )]

m∑
i=0

(m

i

)
pi(1 − p)m−iP(p > gm,δ(

i

m
)) =

= max
k∈{−1,0,...,m−1}

sup
p∈(gm,δ( k

m ),gm,δ( k+1
m )]

k∑
i=0

(m

i

)
pi(1 − p)m−i < δ

Now, we show that gm,δ is the smallest in Gm,δ. Let g ∈ Gm,δ. Assume that
E(f) = g( k

m ) + ε. Then,

lim
ε→0+

P(E(f) > g(Ez(f))) = lim
ε→0+

k∑
i=0

(m

i

)
E(f)i(1 − E(f))m−i =

=
k∑

i=0

(m

i

)
g(

k

m
)i(1 − g(

k

m
))m−i.

Since g ∈ Gm,δ,
k∑

i=0

(m

i

)
g(

k

m
)i(1 − g(

k

m
))m−i ≤ δ.

Thus, from monotonicity of
∑k

i=0

(
m
i

)
pi(1 − p)m−i,

g(
k

m
) ≥ gm,δ(

k

m
).

Using Theorem 3, we derive an efficient algorithm for that approximation of
gm,δ for given m and δ. Let kp be the largest k such that

k∑
i=0

(m

i

)
pi(1 − p)m−i ≤ δ

and n ∈ N. We calculate k j
n

for j ∈ {0, 1, . . . , n}. Values gm,δ satisfy following
inequality:

min{ j
n

: k j
n

≥ k} − 1
n
< gm,δ

( k
m

)
≤ min{ j

n
: k j

n
≥ k}.

Function g( k
m ) = min{ j

n : k j
n

≥ k} generates a bound that is worse than the
best one less than 1

n .
Table 3 illustrates the behaviour of the bound.

Remark 1. If we consider function g( k
m ) = gm,δ(k−1

m ), where p−1 = −1, than we
will obtain the inequality

P(E(f) > g(Ez(f))) ≥ δ.

As
∑m

i=0 pk − pk−1 = 1, the average distance between lower and upper bounds
is 1

m .
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Table 3. Values of gm,δ( k
m

) for a chosen values of k and m = 1000 (In sup row are the
maximum values)

k
m
\δ 0.1000 0.0500 0.0200 0.0100 0.0050 0.0020 0.0010 0.0005 0.0002 0.0001

0.01 0.0054 0.0070 0.0088 0.0101 0.0113 0.0129 0.0140 0.0151 0.0165 0.0176
0.02 0.0070 0.0090 0.0113 0.0129 0.0145 0.0164 0.0177 0.0191 0.0208 0.0220
0.05 0.0101 0.0129 0.0162 0.0185 0.0206 0.0231 0.0250 0.0268 0.0290 0.0307
0.10 0.0133 0.0170 0.0213 0.0242 0.0269 0.0302 0.0326 0.0348 0.0376 0.0397
0.15 0.0155 0.0199 0.0249 0.0282 0.0313 0.0351 0.0378 0.0403 0.0435 0.0458
0.20 0.0172 0.0220 0.0275 0.0311 0.0345 0.0387 0.0416 0.0444 0.0479 0.0504
sup 0.0208 0.0266 0.0330 0.0373 0.0413 0.0460 0.0494 0.0526 0.0565 0.0593

We construct a two sides bound, combining the one side ones:

Theorem 4. Let 0 < δ < 1 and m ∈ N.

P(E(f) > gm,δ(Ez(f)) ∪ E(f) < 1 − gm,δ(1 − Ez(f))) < 2δ.

As Remark 1 is valid for the two sides inequality, we see that it is quite strict.
Now, we deal with another important question: What does it happen, when

one uses the same test sample for testing many classifiers?
Assume that we have k classifiers f1, . . . , fk and we want to estimate proba-

bility that E(fi) ∈ G(Ez(fi)) for each of them, i.e.,

P(E(f1) ∈ G(Ez(f1)) ∧ · · · ∧ E(fk) ∈ G(Ez(fk))).

The trivial bound uses the fact that P(A ∨ B) ≤ P(A) + P(B) for any random
events A and B:

P(E(f1) ∈ G(Ez(f1)) ∧ · · · ∧ E(fk) ∈ G(Ez(fk))) ≥

1 − k +
k∑

i=0

P(E(fi) ∈ G(Ez(fi))) (3)

On the other hand, if Ez(f1), . . . , Ez(fk) are independent, then

P(E(f1) ∈ G(Ez(f1)) ∧ · · · ∧ E(fk) ∈ G(Ez(fk))) =
k∏

i=0

P(E(fi) ∈ G(Ez(fi))).

Note that unseemingly, the independence of Ez(f1), . . . , Ez(fk) is possible when
E(fi) is small, whereas the classifiers f1, . . . , fk are similar.

If we assume P(E(fi) ∈ G(Ez(fi))) = 1 − δ, we can easily calculate the
difference between the trivial bound and the case of independence.

k∏
i=0

P(E(fi) ∈ G(Ez(fi))) − 1 + k −
k∑

i=0

P(E(fi) ∈ G(Ez(fi))) =

= (1 − δ)k − 1 + kδ ≤ 1
2
(kδ)2
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As we can see, there is no big difference between the both cases, so the trivial
bound is near to the optimal one in the interesting cases.

4 Model Selection and Assessment

In order to assess the model, we simply need to estimate its generalization error,
using one of the bounds presented above. The procedure is the following:

– Divide the data given into the training sample and the test sample. Choose
the size of the test sample, m, according to Table 1 or 2, and the total number
of samples.

– Generate the classifier f using training sample.
– Test f using the test sample and the bound from Theorem 3 or 4.

To assure the bound to hold true, it has to be chosen before the testing process
starts. The test may be performed only once. Any repetition, especially the
one performed in order to choose the best bound, causes a rapid decrease in
reliability.

While selecting a classifier from a given set, we are interested in its behaviour
in comparison to the other ones. We select the classifier which has the smallest
empirical error. The question is: How many samples do we need to know that the
classifier which has the smallest empirical error is the one that has the smallest
generalization error?

When classifiers have very similar generalization errors, they are almost in-
distinguishable. Fortunately, in this case, it is not really important which one we
choose. It is enough to consider the differences bigger than ε.

The most straightforward way is to use Theorem 4 for every classifier from
the set. Testing multiple classifiers on the same data will decrease the reliability,
as shown in (3). So we will obtain the bound

P(E(f1) ∈ G(Ez(f1)) ∧ · · · ∧ E(fk) ∈ G(Ez(fk))) ≥ 1 − kδ, (4)

where
G(Ez(fi)) = [1 − gm,δ(1 − Ez(fi)), gm,δ(Ez(fi))].

If G(Ez(fi)) ∩G(Ez(fj)) = ∅, then we can decide which one is better with prob-
ability ≥ 1 − kδ. The procedure is the following:

– Divide the data given into the training sample and the validation sample.
Choose the validation sample size, m, according to Table 2, the number of
classifiers to be constructed and total number of samples.

– Generate classifiers f1, . . . , fk using the training sample.
– Select the best classifier that has the smallest empirical error on the valida-

tion sample. The relation between the generalization errors of classifiers is
described by the inequality (4).
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As we can see in Table 2, in order to estimate the error of 100 classifiers with the
reliability 95%, one needs to have aproximately 4 times the number of samples
that is needed to estimate the error of one classifier. The advantage is that all
classifiers are already assessed after the selection process. We may combine the
model selection and the model assessment and we may use the same sample for
both of them. As a consequence, the sample is bigger and the bound is tighter.
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Abstract. In this paper, a new variant of Bagging named DepenBag is
proposed. This algorithm obtains bootstrap samples at first. Then, it em-
ploys a causal discoverer to induce from each sample a dependency model
expressed as a Directed Acyclic Graph (DAG). The attributes without
connections to the class attribute in all the DAGs are then removed.
Finally, a component learner is trained from each of the resulted sam-
ples to constitute the ensemble. Empirical study shows that DepenBag
is effective in building ensembles of nearest neighbor classifiers.

1 Introduction

Ensemble learning methods train multiple component learners and then com-
bine their predictions. Since the generalization ability of an ensemble could be
significantly better than that of a single learner, ensemble learning has been a
hot topic during the past years [9].

Bagging [4] is one of the most famous ensemble learning algorithms, which
utilizes bootstrap sampling [10] to generate multiple training sets from the origi-
nal training set and then trains a learner from each generated training set. This
algorithm has achieved great success in building ensembles of decision trees and
neural networks. A recent empirical study [11] on ensembles of C4.5 decision
trees disclosed that although many ensemble learning algorithms where com-
ponent learners could be trained in parallel have been developed, few of them
significantly outperforms Bagging. However, as Breiman indicated [4], although
Bagging could work well on unstable base learners such as decision trees and
neural networks, it could hardly work on stable base learners such as nearest
neighbor classifiers. Since nearest neighbor classifiers are very useful in real-
world applications [1][8], it will be desirable if the powerful Bagging algorithm
can be adapted to such local learners.

Recently, there are many works devoted to adapting Bagging to k-nearest
neighbor classifiers [2][22]. In this paper, a new variant of Bagging is proposed
with the help of graphical models [20]. For a given data set, the proposed method
generates many samples from the training set via bootstrap sampling. Then, it
employs a causal discoverer to induce a dependency model expressed as a Di-
rected Acyclic Graph (DAG) from each sample. If a node has neither direct nor
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indirect connections to the class node in all the DAGs, then the corresponding
attribute is removed. Finally, a component learner is trained from each sam-
ple and their predictions are combined via majority voting. Since the proposed
method introducing dependency into Bagging, it is called as DepenBag (ab-
breviated from Dependency Bagging). Empirical study shows that DepenBag is
effective on building ensembles of nearest neighbor classifiers.

The rest of this paper is organized as follows. Section 2 briefly introduces
causal discovery with graphical models. Section 3 presents the DepenBag algo-
rithm. Section 4 reports on the empirical study and explores why DepenBag
works. Finally, Section 5 concludes and raises several issues for future work.

2 Causal Discovery with Graphical Models

Graphical model is a succinct and efficient way to represent dependency rela-
tions among a set of attributes [20]. Roughly speaking, a graphical model con-
tains two parts, i.e. structure that qualitatively describes the relation among
different attributes, and parameter that quantitatively describe the relation be-
tween an attribute and its parents. When the structure of a graphical model
is a Directed Acyclic Graph (DAG), it is often referred to as directed graphical
model, which is very popular in expert systems. Its semantics lend it to what is
sometimes loosely referred to as causal model [20], which represents the causal
relation among different attributes and constitutes an efficient tool to perform
probabilistic inference. If such a model is induced from a data sample, it can be
called as dependency model which reflects the (in)dependency relation occurred
in the corresponding sample.

According to the nature of the attributes concerned, there exist two different
kinds of causal models, i.e. linear causal model and Bayesian network. The former
is also referred to as Gaussian network. In a linear causal model, all the attributes
are continuous, and the local parameters are given by the coefficients of the
linear function between each node and its parents. In a Bayesian network, all
the attributes are categorical, and the parameters are often represented as a set
of conditional probability tables.

During the past decade, learning causal models, especially the Bayesian net-
work, has become an active topic and many algorithms have been developed.
Roughly speaking, there are two fundamentally different paradigms, i.e. the
statistic test paradigm and the evaluation+search paradigm. Algorithms belong-
ing to the first paradigm try to get some conditional independence relations
between some subset of attributes, and use these independence relations to infer
the structure of model. Algorithms belonging to the second paradigm use some
metrics to evaluate the goodness of fit of a structure to the data set, transform
the structure learning problem into an optimization problem, and then solve the
problem by search. Since the statistic test paradigm usually requires an expo-
nential number of conditional independence tests and many of these tests involve
with large condition set, the evaluation+search paradigm is more popularly used.
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For a given data set, the number of possible directed graphical model struc-
tures that may fit the data is exponential in the number of attributes [21]. The
huge search space poses a great challenge, but also gives a good chance of us-
ing diverse heuristic search strategies. Through comparing a number of different
search strategies, Heckerman et al. [12] recognized that greedy search is the best
choice when the quality of results and the computational efficiency are both con-
cerned. Cooper and Herskovits [6] proposed an algorithm that employs greedy
search to find the structure with the best BDe metric. Given the total ordering
on the nodes, it begins by assuming that a node has no parents, and then repeat-
edly adds the parent whose addition will improve the BDe metric. The process
terminates when the metric cannot be increased through adding any parent. On
the learning of linear causal models, greedy search based algorithms have also
been presented [7], which can be used even when the total ordering on the nodes
is not available. Note that greedy search usually fails to find the global optima.
A common augmenting strategy is hill-climbing search with random restarts [5].

Almost all the algorithms in causal discovery suffer from the problem that,
even given infinite data, they can only identify the model up to Markov equiva-
lence, i.e. members in the same Markov equivalence class can not be distinguished
from each other using statistical data. Therefore, although the real causal model
should be fixed for a concrete domain, due to the Markov equivalence class and
heuristic nature of the evaluation+search algorithms, it is usually difficult to find
the exact causal model. Instead, different models may be induced from different
samples of the domain, which can be referred as dependency models because they
reflect the (in)dependency relation occurred in corresponding samples. Such kind
of models are employed by the DepenBag algorithm to help generate accurate
but diverse component k-NN classifiers.

3 DepenBag

Krogh and Vedelsby [14] have derived a famous equation E = Ē − Ā, where E
is the generalization error of an ensemble, while Ē and Ā are the average gen-
eralization error and average ambiguity of the component learners, respectively.
This equation discloses that the more accurate and the more diverse the com-
ponent learners are, the better the ensemble is. Unfortunately, it is difficult to
manipulate the diversity directly because as a recent study [16] reveals, although
there are many measures of diversity, their usefulness in ensemble construction
is very limited. In fact, the study on how to effectively measure and exploit
diversity is very active and many problems remain unsolved [15]. Nevertheless,
methods that could help generate accurate but diverse component learners are
very desirable in building strong ensembles.

In Bagging, for a given data set D, T samples D1,D2, . . . ,DT are generated
by the bootstrap sampling process. Note that the data distribution held by a
sample, say Di, is usually different from that of D. Assume that D is described
by n attributes, i.e. {A1, A2, . . . , An} where An is the class attribute. It is evident
that these T samples are also described by the same set of attributes. Previous
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research ignores the phenomenon that on Di some attribute, say Ai(i �= n), may
become irrelevant to An. This is the fact even though Ai may be relevant to An

on D. For an extreme example, suppose Ai is a binary attribute whose value is
0 or 1, and 0 is the dominant value of Ai on D, that is, only a small fraction
of instances in D hold the value 1 on Ai. Since statistically only about 63.2%
instances in D will appear in the sample Di [4], on Di there are chances that all
the instances hold the value 1 on Ai so that Ai conveys no information of An.
In other words, Ai becomes an irrelevant attribute which is useless in predicting
the value of An. It is obvious that if Ai is useless on all of these T samples,
it should be removed because intuitively, such a removal might help reduce the
degree of overlapping of the samples therefore help increase the diversity of the
component learners. Moreover, since Ai is irrelevant to the learning objective
on the samples, removing it might help increase the accuracy and/or the learn-
ing efficiency because the existence of irrelevant attributes might interfere the
learning on relevant attributes.

Causal discovery provides a feasible way to identify these irrelevant at-
tributes. Suppose a dependency model expressed as a DAG is induced on Di,
and let DMi denote this model, as shown in Figure 1. It is evident that the class
attribute A8 won’t be impacted by the attributes A5, A6 and A7 because they
have neither direct nor indirect connections to A8. In other words, A5, A6 and
A7 are irrelevant attributes to A8 on Di. These attributes can be easily identified
from DMi through tracing the paths leading to or from the class attribute. If
such a process is performed on all the bootstrap samples, i.e. D1,D2, . . . ,DT ,
then the irrelevant attributes shared by the samples can be found out. Thus,
component learners can be trained on the samples where the shared irrelevant
attributes are removed. Such a routine leads to the DepenBag algorithm whose
pseudo-code is shown in Table 1, where x is an instance to be predicted and Y
is the set of values that An can take.

Fig. 1. A dependency model involving eight attributes

Intuitively, an alternative routine may be to induce a dependency model
on the original data set, identify and remove attributes irrelevant to the class
attribute, then perform bootstrap sampling and train a component learner on
each sample. Unfortunately, such a routine overlooks the fact that irrelevant
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Table 1. The DepenBag algorithm

Input: Data set D, base learner L, causal discoverer C, trials T
Output: Ensemble L∗

Process:
Irrelevant = {A1, A2, . . . , An−1}
for t = 1 to T {

Dt = bootstrap sample from D
if Irrelevant �= ∅

DMt = C(Dt)
Irrelevantt = irrelevant attributes identified on DMt

Irrelevant = Irrelevant ∩ Irrelevantt

}
for t = 1 to T {

if Irrelevant �= ∅
remove attributes in Irrelevant from Dt

Lt = L (Dt)
}
L∗ (x) = arg max

y∈Y

∑
t: Lt(x)=y

1

attributes on the original data set may become relevant to the class attribute
on some sample. The reason is the same as what has been used to explain
the phenomenon that relevant attributes may become irrelevant after bootstrap
sampling, that is, the distribution held by a sample is rarely the same as that of
the original data set. In fact, these originally irrelevant attributes might provide
extra resource for increasing the diversity of the component learners, and only
the irrelevant attributes shared by the samples are useless. So, DepenBag induces
a suite of dependency models on the samples instead of only one model on the
original data set. This also distinguishes DepenBag from routines that perform
feature selection at first and then run Bagging to generate an ensemble.

From a Bayesian view, given its ancestors in conditional dependence, the
class attribute won’t be impacted by any other attributes. For example, for the
dependency model shown in Figure 1, the value of the class attribute A8 could
be fully determined by the value of its ancestors, i.e. A1 and A2. So it seems that
A3 and A4 can also be removed. However, in the absence of time order a causal
discoverer is usually only able to find an equivalence class of models. Hence it
is not clear which attributes are real ancestors. So, in the DepenBag algorithm
these attributes are not removed.

4 Empirical Study

Ten data sets from the UCI Machine Learning Repository [3] are used in the
empirical study. The number of instances, number of categorical attributes, and
number of continuous attributes of these data sets are tabulated in Table 2. In
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Table 2. Experimental data sets

Data set Size Categorical Continuous

wpbc 194 0 33
sonar 208 0 60
liver 345 0 6
ionosphere 351 0 33
vote 435 16 0
credit 653 9 6
diabetes 768 0 8
tic 958 9 0
german 1,000 0 24
sick 2,643 16 6

the experiments 3-NN classifiers are used, other k values will be investigated in
the future. Note that all the data sets are with binary classes, therefore tie won’t
occur in the predictions made by single k-NN (k = 3) classifiers.

Almost any algorithm that could induce directed graphical model can be used
to instantiate the causal discoverer C in Table 1. Here the MLGS algorithm [7]
is used, which uses the MML criterion and could discover dependency models
expressed as DAGs even without prior knowledge of total ordering among at-
tributes. The algorithm was implemented under the BNT package [19]. Since
this causal discoverer can deal with only categorical attributes (as mentioned in
Section 2, current causal discoverers can deal with only categorical attributes or
only continuous attributes), continuous attributes are discretized with the Chi2
algorithm [18] before the induction of the dependency models. After the removal
of irrelevant attributes, these discretized attributes are recovered to their original
continuous values for the training of the component learners. In the empirical
study, each ensemble built by DepenBag comprises 10 k-NN (k = 3) classifiers.

Besides Bagging, considering that the working mechanism of DepenBag looks
like performing feature selection on each bootstrap samples, another algorithm
named ReliefF-Bag is designed and compared. This algorithm employs the fa-
mous feature selection algorithm ReliefF [13] to select 75% attributes on each
sample, and then builds a component learner from each sample. Note that even
when the causal discovery process in DepenBag is viewed as only a specific fea-
ture selection process, it has an apparent advantage to most feature selection
schemes, that is, it does not require the pre-specification of the number of at-
tributes to be selected. In the empirical study, each ensemble built by ReliefF-Bag
is constituted of 100 k-NN (k = 3) classifiers.

4.1 Comparison on Generalization Error

Ten times 10-fold cross validation is performed on each data set listed in Table 2.
In detail, each data set is partitioned into ten subsets with similar sizes and
distributions. Then, the union of nine subsets is used as the training set while



Dependency Bagging 497

Table 3. Comparison on generalization error

Data set Single Bagging ReliefF-Bag DepenBag

wpbc .2633 ± .0097 .2685 ± .0091 .3312 ± .0085 .1907 ± .0053
sonar .1587 ± .0068 .1925 ± .0088 .1918 ± .0061 .2849 ± .0124
liver .3684 ± .0099 .4265 ± .0086 .3240 ± .0064 .3703 ± .0101
ionosphere .1451 ± .0063 .1533 ± .0072 .1394 ± .0040 .1422 ± .0058
vote .0437 ± .0036 .0498 ± .0028 .0400 ± .0041 .0435 ± .0026
credit .1505 ± .0045 .1643 ± .0049 .1598 ± .0041 .1391 ± .0029
diabetes .2605 ± .0039 .2840 ± .0054 .3451 ± .0024 .2357 ± .0064
tic .1805 ± .0022 .1733 ± .0016 .2161 ± .0043 .1473 ± .0041
german .2940 ± .0031 .3350 ± .0039 .3540 ± .0050 .2780 ± .0031
sick .0519 ± .0011 .0545 ± .0011 .0954 ± .0009 .0280 ± .0007

the remaining subset is used as the test set, which is repeated for ten times such
that every subset has been used as the test set once. The average test result is
regarded as the result of the 10-fold cross validation. The whole above process
is repeated for 10 times with randomly partitions of the ten subsets, and the
average results are recorded as the final results.

The generalization error of the compared algorithms are presented in Table 3,
where “Single”denotes single k-NN classifier. The table entries show the average
error and standard deviations (the values following ‘±’). Pairwise two-tailed t-
tests with .05 significance level are performed on each data set, and the result
of the algorithm which is significantly better than others are boldfaced.

Table 3 shows that Bagging is almost always worse than single k-NN classi-
fier except on tic, which confirms that Bagging can be hardly used in building
ensembles of nearest neighbor classifiers [4]. ReliefF-Bag is better than single
k-NN classifier on three data sets too, i.e. liver, ionosphere, and vote (on vote
the difference is not statistically significant), which suggests that the enhance-
ment contributed by pure feature selection to Bagging is limited. In contrast to
these ensemble algorithms, DepenBag is only worse than single k-NN classifier
on sonar and liver (on liver the difference is not statistically significant). It is
evident that DepenBag is with the best performance in the empirical study.

4.2 Error-Ambiguity Decomposition

In order to explore why DepenBag works well, the error-ambiguity decomposition
[14] is performed on the experimental results presented in Table 3. In detail, the
errors of the ensembles presented in Table 3 are regarded as E, while the average
errors of the component learners constituting the ensembles are regarded as Ē,
then Ā, the average ambiguity, can be obtained from Ē − E since E = Ē − Ā
[14]. The decomposition results are shown in Table 4 (the zero Ās are caused by
round truncation), where on each data set, the smallest Ē and the biggest Ā are
boldfaced (without statistical significance test).

Table 4 shows that on six data sets, i.e. wpbc, ionosphere, diabetes, tic, ger-
man, and sick, the Ē of DepenBag is the smallest among that of all of the
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Table 4. Error-ambiguity decomposition of the experimental results

Bagging ReliefF-Bag DepenBag
Data set

Ē Ā Ē Ā Ē Ā

wpbc .2953 .0268 .3312 .0000 .2079 .0172
sonar .1859 -.0066 .1918 .0000 .2588 -.0261
liver .3977 -.0288 .3240 .0000 .4254 .0551
ionosphere .1567 .0034 .1394 .0000 .1283 -.0139
vote .0448 -.0050 .0468 .0068 .0518 .0083
credit .1749 .0106 .1603 .0005 .1738 .0347
diabetes .2956 .0116 .3451 .0000 .2409 .0052
tic .2701 .0968 .2430 .0269 .2184 .0711
german .3280 -.0070 .3540 .0000 .2842 .0062
sick .0563 .0018 .0939 -.0015 .0386 .0106

compared ensemble algorithms, while on liver, vote, credit, german, and sick the
Ā of DepenBag is the biggest. Through comparing the table entries belonging to
Bagging and DepenBag, it can be found that DepenBag can decrease Ē as on
wpbc, ionosphere, credit, diabetes, tic, german, and sick, while it can also increase
Ā as on liver, vote, credit, german, and sick. It is evident that both the decrease
of Ē and the increase of Ā owe much to the causal discovery process employed
by DepenBag. It can also be found that on different data sets where DepenBag
is effective, its success may be caused by either small Ē, or big Ā, or both. Ta-
ble 4 also shows ReliefF-Bag can generate accurate component nearest neighbor
classifiers in some cases, but since these classifiers are not diverse, the overall
performance of ReliefF-Bag is not so good as that of DepenBag. In summary,
the success of DepenBag owes much to the fact that the causal discovery pro-
cess employed by DepenBag can help generate accurate but diverse component
nearest neighbor classifiers.

5 Conclusion

In this paper, the DepenBag algorithm is proposed. After bootstrap sampling,
this algorithm discovers a dependency model on each sample, then identifies
and removes irrelevant attributes shared by the samples, and finally combines
the component learners trained from each of the samples via majority voting.
Empirical study shows that this algorithm is effective in building ensembles of
k-NN classifiers, and its success owes much to the fact that it could generate
accurate but diverse component k-NN classifiers.

A weakness of DepenBag is that the cost of building an ensemble is burdened
by the discovery of a dependency model on each sample. However, obtaining
a stronger ensemble may be worthy of the extra cost in many applications,
especially when considering that the causal discovery process can be executed
off-line and therefore the predictive process of an ensemble built by DepenBag
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might be more efficient than that of an ensemble built by Bagging because usually
fewer attributes are involved in identifying the nearest neighbors.

The strategy for removing attributes adopted by DepenBag is quite conser-
vative. This is because an attribute is removed only when it is irrelevant to the
class attribute on all the bootstrap samples. It may be possible to explore vari-
ants of DepenBag that removes irrelevant attributes shared by several instead
of all samples, or even removes irrelevant attributes for a sample based on only
its own dependency model. This is an interesting issue for future work.

Moreover, although this paper shows that DepenBag is effective in building
ensembles of nearest neighbor classifiers, it is not clear whether it is also effective
on other kinds of stable base learners such as naive Bayes classifier, or even
effective on unstable base learners such as decision trees and neural networks.
This is left to be investigated in the future.

Furthermore, the role of causal discovery in DepenBag is in fact a specific
scheme for perturbing the input attributes to introduce more diversity. Previous
work has shown that incorporating such perturbation is beneficial to Bagging
in building decision tree ensembles [17], while DepenBag shows that it is also
helpful in building nearest neighbor classifier ensembles. Exploring other efficient
and effective schemes for perturbing the input attributes for Bagging is another
interesting issue for future work.
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Abstract. We consider two classification approaches. The metric-based
approach induces the distance measure between objects and classifies new
objects on the basis of their nearest neighbors in the training set. The
rule-based approach extracts rules from the training set and uses them to
classify new objects. In the paper we present a model that combines both
approaches. In the combined model the notions of rule, rule minimality
and rule consistency are generalized to metric-dependent form.

An effective polynomial algorithm implementing the classification
model based on minimal consistent rules has been proposed in [2]. We
show that this algorithm preserves its properties in application to the
metric-based rules. This allows us to combine this rule-based algorithm
with the k nearest neighbor (k-nn) classification method. In the com-
bined approach the rule-based algorithm takes the role of nearest neigh-
bor voting model. The presented experiments with real data sets show
that the combined classification model have the accuracy higher than
single models.

1 Introduction

Empirical comparison of rule-based systems [2] and metric-based methods [1]
shows that each approach is more accurate than the other one for some clas-
sification problems but not for all. Therefore a lot of work has been done to
construct hybrid classifiers that take the advantages of both approaches [4,6,8].

All these methods focus on how to use distance measure or the nearest neigh-
bors of an object to be classified to improve the selection of rules for classification.
However, in classification problems with many attributes the space of possible
rules is enormous and searching for accurate rules is a very hard task. Therefore
for many such problems the k nearest neighbors (k-nn) method is more accurate
than rule-based systems and the approach where one uses rules to improve k-nn
can be more effective than using k-nn to improve rule-based classification.

In the paper we propose the general hybridization framework where the no-
tion of rules is generalized to a metric-dependent form and the rules generated
from a training set are used to verify and improve selection of nearest neighbors
in the k-nn. We apply this framework to the case where minimal consistent rules
[9] are used to improve the k-nn. The idea of improving k-nn by rule induction
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was used in [7]. However, the rules in [7] have specific, non-uniform conditions
and do not correspond to the metric-based model presented in the paper.

2 Metric Based Generalization of Minimal Consistent
Rules

We assume that a finite set of training examples Utrn is provided. Each training
example x ∈ Utrn is decribed by a vector of attribute values (x1, . . . , xn) cor-
ressponding to a fixed set of n attributes A = {a1, . . . , an}, and by its decision
value dec(x) from a discrete and finite set Vdec = {d1, . . . dm}.

Originally the notions of rule minimality and consistency [9] were introduced
for rules with equality conditions: ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj . We
generalize this approach to a metric-dependent form. We assume only that the
metric ρ is an lp-combination of metrics for particular attributes (p ≥ 1):

ρ(x, y) =

(
n∑

i=1

wi · ρi(xi, yi)p

) 1
p

. (1)

The equality aij = vj as the condition in the premise of a rule represents selec-
tion of attribute values, in this case always a single value. We replace equality
conditions with a more general metric based form of conditions. This form allows
us to select more than one attribute value in a single attribute condition, and
thus, to obtain more general rules.

Definition 1. A generalized rule consists of a premise and a consequent:

ρi1(v1, ∗) ≤ r1 ∧ . . . ∧ ρip(vp, ∗) < rp ⇒ dec = dj .

Each condition ρiq (vq, ∗) ≤ rq or ρiq(vq, ∗) < rq in the premise of the generalized
rule represents the range of acceptable values of a given attribute aiq around a
given value vq. The range is specified by the distance function ρiq that is the
component of the total distance ρ and by the threshold rq.

The definition of rule consistency with a training set for the generalized rules
is analogous to the equality-based rules. This describes the rules that classify
correctly all the covered objects in a given training set:

Definition 2. A generalized rule α ⇒ dec = dj is consistent with a training
set Utrn if for each object x ∈ Utrn matching the rule the decision of the rule is
correct, i.e., dec(x) = dj.

Next, we generalize the notion of rule minimality.

Definition 3. A consistent generalized rule ρi1(v1, ∗) < r1 ∧ . . . ∧ ρip(vp, ∗) <
rp ⇒ dec = dj is minimal in a training set Utrn if for each attribute aiq ∈
{ai1 , . . . , aip} occurring in the premise of the generalized rule the rule ρi1(v1, ∗) <
r1 ∧ . . . ∧ ρiq (vq, ∗) ≤ rq ∧ . . . ∧ ρip(vp, ∗) < rp ⇒ dec = dj with the enlarged
range of acceptable values on this attribute (obtained by replacing < by ≤ in the
condition of the original rule) is inconsistent with the training set Utrn.
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Algorithm 1. Algorithm decisionlocal−rules(x) classifying a given test object x
based on lazy induction of local rules.

for each dj ∈ Vdec support[dj] := ∅
for each y ∈ Utrn

if rlocal(x, y) is consistent with Utrn then

support[dec(y)] := support[dec(y)]∪ {y}
return arg maxdj∈Vdec

|support[dj]|

Observe, that each condition in the premise of a minimal consistent generalized
rule is always a strict inequality. It results from the assumption that a training
set Utrn is finite.

Both the metric and the metric-based rules can be used to define tolerance
relations which are used in construction of generalized approximation spaces [10].

3 Effective Classification by Minimal Consistent Rules

In this section we recall the classification model based on all minimal consistent
rules in the original equality-based form [2]. The complete set of all minimal
consistent rules has good theoretical properties: it corresponds to the set of all
rules generated from all local reducts of a given training set [12]. The original
version of the classification model [2] uses the notion of rule support:

Definition 4. The support of a rule ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj in
a training set Utrn is the set of all the objects from Utrn matching the rule and
with the same decision dj :

support(ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj) =
{x = (x1, . . . , xn) ∈ Utrn : xi1 = v1 ∧ . . . ∧ xip = vp ∧ dec(x) = dj}.

The rule support based models compute the support set for each rule r ∈ R
covering a test object x from a given set of rules R and then they select the
decision with the greatest total number of the supporting objects:

decrules(x,R) := arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

α⇒dec=dj∈R: x satisfies α

support(α ⇒ dec = dj)

∣∣∣∣∣∣ .
(2)

The classification model proposed in [2] is the rule support model where R is
assumed to be the set of all minimal consistent rules.

The number of all minimal consistent rules can be exponential. Therefore
Bazan [2] proposed Algorithm 1 that classifies objects on the basis of the set of
all minimal consistent rules without computing them explicitly. It simulates the
rule support based classifier decrules by lazy induction of local rules.
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Definition 5. The local rule for a given pair of a test object x and a training
object y ∈ Utrn is the rule rlocal(x, y) defined by∧

ai∈A: yi=xi

ai = yi ⇒ dec = dec(y).

The conditions in the premise of the local rule rlocal(x, y) are chosen in such a
way that both the test object x and the training object y match the rule and
the rule is maximally specific relative to the matching condition. The following
relation holds between minimal consistent rules and local rules:

Fact 6. [2] The premise of a local rule rlocal(x, y) implies the premise of a cer-
tain minimal consistent rule if and only if the local rule rlocal(x, y) is consistent
with the training set Utrn.

This property made it possible to prove that Algorithm 1 simulates correctly the
classifier based on all minimal consistent rules:

Corollary 7. [2] The classification result of the rule support based classifier
from Equation 2 with the set R of all minimal consistent rules and the lazy local
rule induction classifier (Algorithm 1) is the same for each test object x:

decrules(x,R) = decisionlocal−rules(x).

The consistency checking of a local rule rlocal(x, y) can be made in O(|Utrn| |A|)
time. Hence, the classification of a single object by Algorithm 1 has the polyno-
mial time complexity O(|Utrn|2 |A|).

4 Metric Based Generalization of Classification by
Minimal Consistent Rules

The original version of Algorithm 1 was proposed for data with nominal at-
tributes only and it uses equality as the only form of conditions on attributes in
the premise of a rule. We generalize this approach to the metric-dependent form
of rules introduced in Section 2. This allows us to apply the algorithm to data
both with nominal and with numerical attributes.

For the generalized version of the classifier based on the set of all generalized
minimal consistent rules we use the notion of generalized rule center.

Definition 8. An object (x1, . . . , xn) is the center of the generalized rule from
Definition 1 if for each attribute condition ρiq(vq , ∗) < rq (or ρiq (vq, ∗) ≤ rq)
occuring in its premise we have xiq = vq.

For a given set of generalized rules R and an object x by R(x) we denote the
set of all rules in R centered at x. Observe, that a rule can have many centers if
there are attributes that do not occur in the premise of the rule.
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In the generalized rule support based classification model the support set for
a test object x is counted using all generalized minimal consistent rules centered
at x:

decisiongen−rules(x,R) := arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

r∈R(x)

support(r)

∣∣∣∣∣∣ (3)

where R contains all generalized minimal consistent rules. Although in the gener-
alized version we consider only minimal consistent rules centered at a test object
the number of these rules can be exponential as in the non-generalized version.

Since it is impossible to enumerate all generalized minimal consistent rules
in practice, we propose to simulate the generalized rule support based classifica-
tion model from Equation 3 by analogy to Algorithm 1. First, we introduce the
definition of a generalized local rule analogous to Definition 5. The conditions
in generalized local rule are chosen in such a way that both the test and the
training object match the rule and the conditions are maximally specific.

Definition 9. The generalized local rule for a given pair of a test object x and
a training object y ∈ Utrn is the rule rgen−local(x, y):∧

ai∈A

ρi(xi, ∗) ≤ ρi(xi, yi) ⇒ dec = dec(y).

First, we identify the relation between the original and the generalized notion
of local rule. Let us consider the case where to define the generalized rules the
Hamming metric is used for all the attributes:

ρi(xi, yi) =
{

1 if xi �= yi

0 if xi = yi.

It is easy to check that:

Fact 10. For the Hamming metric the generalized local rule rgen−local(x, y) in
Definition 9 is equivalent to the local rule rlocal(x, y) in Definition 5.

The most important property of the generalization is the relation between gen-
eralized minimal consistent rules and generalized local rules analogous to Fact 6.

Theorem 11. The premise of the generalized local rule rgen−local(x, y) implies
the premise of a certain generalized minimal consistent rule centered at x if and
only if the generalized local rule rgen−local(x, y) is consistent with Utrn.

Proof. First, we show that each generalized local rule rgen−local(x, y) consistent
with Utrn extends to the generalized minimal rule centered at x. We define the
sequence of rules r0, . . . , rn. The first rule is the local rule r0 = rgen−local(x, y).
To define each next rule ri we assume that the previous rule ri−1:∧

1≤j<i

ρj(xj , ∗) < Mj

∧
i≤j≤n

ρj(xj , ∗) ≤ ρj(xj , yj) ⇒ dec = dec(y).
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is consistent with the training set Utrn and the first i− 1 conditions of the rule
ri−1 are maximally general, i.e., replacing any strong inequality ρj(xj , ∗) < Mj

for j < i by the weak makes this rule inconsistent. Let Si be the set of all
the object that satisfy the premise of the rule ri−1 with the condition on the
attribute ai removed:

Si = {z ∈ Utrn : z satisfies
∧

1≤j<i

ρj(xj , ∗) < Mj

∧
i<j≤n

ρj(xj , ∗) ≤ ρj(xj , yj)}.

In the rule ri the i-th condition is maximally extended in such way that the rule
remains consistent. It means that the range of acceptable values for the attribute
ai in the rule ri has to be equal or less than the attribute distance from x to
any object in Si with a decision different from dec(y). If Si does not contain an
object with a decision different from dec(y) the range remains unlimited:

Mi =
{

∞ if ∀z ∈ Si dec(z) = dec(y)
min{ρi(xi, zi) : z ∈ Si ∧ dec(z) �= dec(y)} otherwise.

By limiting the range of values on the attribute ai in the rule ri to Mi:∧
1≤j<i

ρj(xj , ∗) < Mj ∧ρi(xi, ∗) < Mi

∧
i<j≤n

ρj(xj , ∗) ≤ ρj(xj , yj) ⇒ dec = dec(y)

we ensure that the rule ri remains consistent. On the other hand, the value Mi

is maximal: replacing the strong inequality by the weak inequality or replacing
Mi by a larger value makes an inconsistent object z ∈ Si match the rule ri.

Since ri−1 was consistent the range Mi is greater than the range for the
attribute ai in the rule ri−1: Mi > ρ(xi, yi). Hence, the ranges for the previous
attributes M1, . . . ,Mi−1 remain maximal in the rule ri: widening of one of these
ranges in the rule ri−1 makes an inconsistent object match ri−1 and the same
happens for the rule ri.

By induction the last rule rn :
∧

1≤j≤n ρj(xj , ∗) < Mj ⇒ dec = dec(y) in the
defined sequence is consistent too and all the conditions are maximally general.
Then rn is consistent and minimal. Since the premise of each rule ri−1 implies
the premise of the next rule ri in the sequence and the relation of implication
is transitive the first rule r0 that is the generalized local rule rgen−local(x, y)
of the objects x, y implies the last rule rn that is a minimal consistent rule.
Thus we have proved the theorem for the case when the generalized local rule is
consistent.

In case where the generalized local rule rgen−local(x, y) is inconsistent with the
training set each rule centered at x implied by rgen−local(x, y) covers all objects
covered by rgen−local(x, y), in particular it covers an object causing inconsistency.
Hence, each rule implied by rgen−local(x, y) is inconsistent too. 	


Consider the classifier decisiongen−local−rules(x) defined by Algorithm 1 with
a single change: the generalized local rules rgen−local(x, y) are used instead of
original local rules rlocal(x, y). Theorem 11 ensures that for each object x this
algorithm counts all and only those objects that are covered by a certain general-
ized minimal consistent rule centered at x. Hence, we obtain the final conclusion.
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Corollary 12. The classification result of the generalized rule support based
classifier from Equation 3 with the set R of all the generalized minimal con-
sistent rules and Algorithm 1 used with the generalized local rules is the same
for each test object x:

decisiongen−rules(x,R) = decisiongen−local−rules(x).

The time complexity of the generalized lazy rule induction algorithm is the same
as the complexity of the non-generalized version: O(|Utrn|2 |A|).

5 Combination of k Nearest Neighbors with Generalized
Rule Induction

To classify an object x the k-nn classifier finds the set NN(x, k) of k nearest
neighbors of x and it assigns the most frequent decision in NN(x, k) to x:

decisionknn(x) := arg max
dj∈Vdec

|{y ∈ NN(x, k) : dec(y) = dj}| . (4)

The k-nn model implements the lazy learning approach: the k nearest neigh-
bors of a test object x are searched during the classification. The previous ap-
proaches [4,6,8] combining k-nn with rule induction do not preserve the laziness
of learning. We propose the algorithm that preserves lazy learning, i.e., rules are
constructed in lazy way at the moment of classification. The proposed combina-
tion uses the metric based generalization of rules described in Section 4.

For each test object x Algorithm 1 looks over all the training examples y ∈
Utrn during construction of the support sets support[dj ]. Instead of that we can
limit the set of the considered examples to the set of the k nearest neighbors of
x. The intuition is that training examples far from the object x are less relevant
for classification than closer objects. Therefore in the combined method we use
the modified definition of the rule support, depending on the object x:

Definition 13. The k-support of the generalized rule α ⇒ dec = dj for a test
object x is the set:

k − support(x, α ⇒ dec = dj) = {y ∈ NN(x, k) : y matches α ∧ dec(y) = dj}.

The k-support of the rule contains only those objects from the original support
set that belong to the set of the k nearest neighbors.

Now, we define the classification model that combines the k-nn method with rule
induction by using the k-supports of the rules:

decisionknn−rules(x,R) := arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

r∈R(x)

k − support(x, r)

∣∣∣∣∣∣ . (5)
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where R is the set of all generalized minimal consistent rules. The classifier
decisionknn−rules(x,R) can be defined by the equivalent formula:

arg max
dj∈Vdec

|{y ∈ NN(x, k) : ∃r ∈ R(x) supported by y ∧ dec(y) = dj}| .

This formula shows that the combined classifier can be viewed as the k-nn clas-
sifier with the specific rule based zero-one voting model.

As for the generalized rule support classifier we propose an effective algo-
rithm simulating the combined classifier decisionknn−rules based on the gener-
alized local rules. The operation of consistency checking for a single local rule in
Algorithm 1 takes O(|Utrn| |A|) time. We can use the following fact to accelerate
this consistency checking operation in the generalized algorithm:

Fact 14. For each training object z ∈ Utrn matching a generalized local rule
rgen−local(x, y) based on the distance ρ from Equation 1 the distance between the
objects x and z is not greater than the distance between the objects x and y:

ρ(x, z) ≤ ρ(x, y).

Proof. The generalized local rule rgen−local(x, y) for a test object x =
(x1, . . . , xn) and a training object y = (y1, . . . , yn) has the form∧

ai∈A

ρi(xi, ∗) ≤ ρi(xi, yi) ⇒ dec = dec(y).

If z = (z1, . . . , zn) matches the rule then it satisfies the premise of this rule. It
means that for each attribute ai ∈ A the attribute value zi satisfies the following
condition: ρi(xi, zi) ≤ ρi(xi, yi). Hence, we obtain that the distance between the
objects x and z is not greater than the distance between the objects x and y:

ρ(x, z) =

(∑
ai∈A

wiρi(xi, zi)p

) 1
p

≤
(∑

ai∈A

wiρi(xi, yi)p

) 1
p

= ρ(x, y). 	


The above fact proves that to check consistency of a local rule rgen−local(x, y)
with a training set Utrn it is enough to check only those objects from the training
set Utrn that are closer to x than the object y.

Algorithm 2 is the lazy simulation of the classifier decisionknn−rules(x,R)
combining the k nearest neighbors method with rule induction. The algorithm
follows the scheme of Algorithm 1. There are two differences. First, only the k
nearest neighbors of a test object x are allowed to vote for decisions. Second, the
consistency checking operation for each local rule rgen−local(x, y) checks only
those objects from the training set Utrn that are closer to x than the object
y. Thus the time complexity of the consistency checking operation for a single
neighbor is O(k |A|). Hence, the cost of consistency checking in the whole proce-
dure testing a single object is O(k2 |A|). In practice, consistency checking takes
less time than searching for the k nearest neighbors. Thus addition of the rule
induction to the k nearest neighbors algorithm does not lengthen significantly
the performance time of the k-nn method.
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Algorithm 2. Algorithm decisionknn−local−rules(x) simulating the classifier
decisionknn−rules(x,R) with lazy induction of the generalized local rules.

for each dj ∈ Vdec support[dj] := ∅
neighbor1, . . . , neighbork := the k nearest neighbors of x

sorted from the nearest to the farthest object

for each i := 1 to k
if rgen−local(x, neighbori) is consistent

with neighbor1, . . . , neighbori−1 then

support[dec(neighbori)] :=support[dec(neighbori)]∪{neighbori}
return arg maxdj∈Vdec

|support[dj]|

6 Experimental Results

In this section we compare the performance of the classical k-nn with the com-
bined model described in Section 5. To compare classification accuracy we used
the 8 large data sets from the repository of University of California at Irvine
[3]: segment (19 attr, 2310 obj), splice-DNA (60 attr, 2000 train, 1186 test obj),
chess (36 attr, 3196 obj), satimage (36 attr, 4435 train, 2000 test obj), pendig-
its (16 attr, 7494 train, 3498 test obj), nursery (8 attr, 12960 obj), letter (16
attr, 15000 train, 5000 test obj) and census94 (13 attr, 30160 train, 15062 test
obj). The data provided originally as a single set (segment, chess, nursery) were
randomly split into a training and a test part with the split ratio 2 to 1.

For each of these 8 data sets the classical k-nn and the combined model
were trained and tested 5 times for the same partition of the data set and the
average classification error was calculated for comparison. In each test of a given
classification method, first, the metric defined by the City-VDM metric [4] was
induced from the training set with p = 1 and attribute weighting [11], then the
optimal value of k was estimated from the training set with the procedure [7] in

Fig. 1. The average classification error of the classical k-nn and the method combining
k-nn with rule induction
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the range 1 ≤ k ≤ 100, and finally, the test part of a data set was tested with
the previously estimated value of k.

Since distance-based voting by the k nearest neighbors outperforms majority
voting [5], both in the k-nn and in the combined model we assigned the inverse
squre distance weights 1

ρ(x,y)2 to the neighbors y ∈ NN(x, k) instead of equal
weights (used in Equations 4 and 5) while classifying a test object x.

Figure 1 shows that the method combining the k-nn with rule based induction
is for all the data sets at least equally accurate as the k-nn alone, and sometimes it
improves significantly the k-nn accuracy. For example, for nursery the combined
model gives the 0.3% error in comparison to the 0.82% error of the pure k-nn
and for chess the combined model gives the 1.46% error in comparison to the
2.24% error of the k-nn. Investigating lack of improvement for some data we
observed that very few neighbors are rejected. For future we consider to apply
rules that are more specific and selective than the local rules proposed.

7 Conclusions

In the paper we have introduced the new hybrid classification model that com-
bines the rule based classification with the k nearest neighbors method. An
important property of the combined model is that by adding rule based compo-
nent we do not change essentially the performance time of the k nearest neigh-
bors method. In this model the nearest neighbors of a test object are verified
and filtered by the rule based-component. This gives more certainty that these
neighbors are appropriate for decision making. The experiments confirm that the
combined model can provide more accurate classification than the k-nn alone.
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Abstract. This paper proposes a framework for combining classifiers
based on OWA operators in which each individual classifier uses a
distinct representation of objects to be classified. It is shown that this
framework yields several commonly used decision rules but without
some strong assumptions made in the work by Kittler et al. [7]. As an
application, we apply the proposed framework of classifier combination
to the problem of word sense disambiguation (shortly, WSD). To this
end, we experimentally design a set of individual classifiers, each of
which corresponds to a distinct representation type of context considered
in the WSD literature, and then the proposed combination strategies
are experimentally tested on the datasets for four polysemous words,
namely interest, line, serve, and hard, and compared to previous studies.

Keywords: Computational linguistics, Classifier combination, Word
sense disambiguation, OWA operator.

1 Introduction

The automatic disambiguation of word senses has been an interest and concern
since the 1950s. Roughly speaking, word sense disambiguation involves the as-
sociation of a given word in a text or discourse with a particular sense among
numerous potential senses of that word. As mentioned in [5], this is an “inter-
mediate task” necessarily to accomplish most natural language processing tasks.
It is obviously essential for language understanding applications, while also at
least helpful for other applications whose aim is not language understanding such
as machine translation, information retrieval, among others. Since its inception,
many methods involving WSD have been developed in the literature (see, e.g.,
[5] for a survey). During the last decade, many supervised machine learning al-
gorithms have been used for this task, including Näıve Bayesian (NB) model,
decision trees, exemplar-based model, SVM, maximum entropy, etc. As observed
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in studies of machine learning systems, although one could choose one of learning
systems available to achieve the best performance for a given pattern recognition
problem, the set of patterns misclassified by the different classification systems
would not necessarily overlap [7]. This means that different classifiers may po-
tentially offer complementary information about patterns to be classified. In
other words, features and classifiers of different types complement one another
in classification performance. This observation highly motivated the interest in
combining classifiers during the recent years. Especially, classifier combination
for WSD has been unsurprisingly received much attention recently from the
community as well, e.g., [6,4,13,8,2,14].

As is well-known, there are basically two classifier combination scenarios. In
the first scenario, all classifiers use the same representation of the input pattern.
In the context of WSD, the work by Kilgarriff and Rosenxweig [6], Klein et
al. [8], and Florian and Yarowsky [2] could be grouped into this first scenario.
In the second scenario, each classifier uses its own representation of the input
pattern. An important application of combining classifiers in this scenario is the
possibility to integrate physically different types of features. In this sense, the
work by Pedersen [13] can be considered as belonging to this scenario, although
the difference of representations here is only in terms of size of context windows.
Further, an important issue in combining classifiers is the combination strategy
used to derive a consensus decision.

In this paper, we focus on classifier combination for WSD in the second
scenario mentioned above. Particularly, we first consider various ways of using
context in WSD as distinct representations of a polysemous word under consid-
eration, then all these representations are used jointly to identify the meaning of
the target word. By considering each representation of the context as an infor-
mation inspired by a semantical or syntactical criterion for the purpose of word
sense identification, we can apply OWA operators for aggregating multi-criteria
to form an overall decision function considered as the fuzzy majority based vot-
ing strategy [9]. Interestingly, this approach also yields several commonly used
decision rules for WSD. It would be worth noting that in [7], the authors pro-
posed a theoretical framework for combining classifiers which also leads to many
commonly used decision rules used in practice. However, to derive these decision
rules, this framework adopts several assumptions imposed on individual classi-
fiers (for more details, see [7]) which, to our opinion, are difficult to be accepted
and verified in text-related applications.

This paper is organized as follows. In Section 2, it is necessary to briefly
recall the notion of OWA operators. After reformulating the WSD problem in
terms of a pattern recognition problem with multi-representation of patterns,
Section 3 discusses two strategies of combining classifiers for WSD based on the
Bayesian approach and OWA operators respectively. In Section 4, we describe
our method of feature selection for WSD problem. Then Section 5 presents ex-
perimented results and some comparison with previous known results on the
same test datasets. Finally, some conclusions are presented in Section 6.
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2 OWA Operators

The notion of OWA operators was first introduced in [15] regarding the prob-
lem of aggregating multi-criteria to form an overall decision function. A mapping

F : [0, 1]n → [0, 1]

is called an OWA operator of dimension n if it is associated with a weighting
vector W = [w1, . . . ,wn], such that 1) wi ∈ [0, 1] and 2)

∑
i wi = 1, and

F (a1, . . . , an) =
n∑

i=1

wibi

where bi is the i-th largest element in the collection a1, . . . , an.
OWA operators provide a type of aggregation operators which lay between

the “and” and the “or” aggregation. As suggested by Yager [15], there exist at
least two methods for obtaining weights wi’s. The first approach is to use some
kind of learning mechanism. That is, we use some sample data, arguments and
associated aggregated values and try to fit the weights to this collection of sample
data. The second approach is to give some semantics or meaning to the weights.
Then, based on these semantics we can directly provide the values for the weights.
In the following we use the semantics based on fuzzy linguistic quantifiers for
the weights.

The fuzzy linguistic quantifiers were introduced by Zadeh in [16]. According
to Zadeh, there are basically two types of quantifiers: absolute, and relative.
Here we focus on the relative quantifiers typified by terms such as most, at
least half, as many as possible. A relative quantifier Q is defined as a mapping
Q : [0, 1] → [0, 1] verifying Q(0) = 0, there exists r ∈ [0, 1] such that Q(r) = 1,
and Q is a non-decreasing function. For example, the membership function of
relative quantifiers can be defined [3] as

Q(r) =

⎧⎨⎩
0 if r < a
r−a
b−a if a ≤ r ≤ b

1 if r > b
(1)

with parameters a, b ∈ [0, 1].
Then, Yager [15] proposed to compute the weights wi’s based on the linguistic

quantifier represented by Q as follows:

wi = Q(
i

n
) − Q(

(i− 1)
n

), for i = 1, . . . , n. (2)

3 Classifier Combination for WSD

In this section, after reformulating the WSD problem in terms of a pattern recog-
nition problem with multi-representation of patterns, the Bayesian approach to
combining classifiers for the WSD problem is reviewed. Then, a framework of
classifier fusion strategies in WSD based on OWA operators is developed.
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3.1 WSD with Multi-representation of Context

As is well-known, in WSD problem, context plays an essentially important role
and is the only means to identify the meaning of a polysemous work. Given an
ambiguous word w, which may have m possible senses (classes): c1, c2,. . . , cm,
in a context C, the task is to determine the most appropriate sense of w.

Generally, context C can be used in two ways [5]: in the bag-of-words ap-
proach, the context is considered as words in some window surrounding the
target word w; in the relational information based approach, the context is con-
sidered in terms of some relation to the target such as distance from the target,
syntactic relations, selectional preferences, phrasal collocation, semantic cate-
gories, etc. As such, for a target word w, we may have different representations
of context C corresponding to different views of context. Assume we have such
R representations of C, say f1, . . . , fR, serving for the aim of identifying the right
sense of the target w. Clearly, each fi can be also considered as a semantical rep-
resentation of w. Each representation fi of context has its own type depending
on which way context is used. In the sequent, we can use a set of features and a
representation interchangeably without danger of confusion.

3.2 Bayesian Combination Strategy

Assume that the set of features fi, which is considered as a representation of
context C of the target w, is used by the i-th classifier. Due to the interpretation
of fi’s and the role of context in WSD, we shall assume that the classification
models are mutually exclusive, i.e. that only one model can be associated with
each target w.

Under such a mutually exclusive assumption, given representations fi (i =
1, . . . , R), the Bayesian theory suggests that the word w should be assigned to
class cj provided the a posteriori probability of that class is maximum, namely

j = arg max
k

P (ck|f1, . . . , fR) (3)

That is, in order to utilize all the available information to reach a decision, it is
essential to consider all the representations of the target simultaneously.

The decision rule (3) can be rewritten using Bayes theorem as follows:

j = arg max
k

P (f1, . . . , fR|ck)P (ck)
P (f1, . . . , fR)

Because the value of P (f1, . . . , fR) is unchanged with variance of ck, we have

j = arg max
k

P (f1, . . . , fR|ck)P (ck) (4)

As we see, P (f1, . . . , fr|ck) represents the joint probability distribution of the
representations extracted by the classifiers. Assume that the representations used
are conditional independent, so that (4) can be rewritten as follows:

j = arg max
k

P (ck)
R∏

i=1

P (fi|ck) (5)
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According to Bayes rule, we have:

P (fi|ck) =
P (ck|fi)P (fi)

P (ck)
(6)

Substituting (6) into (5), we obtain:

j = arg max
k

P (ck)
R∏

i=1

P (ck|fi)P (fi)
P (ck)

= arg max
k

[P (ck)]−(R−1)
R∏

i=1

P (ck|fi) (7)

The decision rule (7) quantifies the likelihood of a hypothesis by combining
the a posteriori probabilities generated by the individual classifiers by means of
a product rule.

3.3 The Combination Strategy Based on OWA Operators

As mentioned in Introduction, each representation fi of the context C can be
considered as providing the information inspired by a semantical or syntactical
criterion for the purpose of word sense identification. Under such a consideration,
let us assume that we have R classifiers corresponding to R representations fi
of the context, each of which provides a soft decision for identifying the right
sense of the target word w in the form of a posterior probability P (ck|fi), for
i = 1, . . . , R.

Now, we can define an overall decision function D, with the help of an OWA
operator F of dimension R, which combines individual opinions to derive a con-
sensus decision as follows:

D(ck) = F (P (ck|f1), . . . ,P (ck|fR)) =
R∑

i=1

wipi (8)

where pi is the i-th largest element in the collection P (ck|f1), . . . ,P (ck|fR), and
W = [w1, . . . ,wR] is a weighting vector semantically associated with a fuzzy
linguistic quantifier.

Then, the fuzzy majority based voting strategy suggests that the target word
w should be assigned to class cj provided that D(cj) is maximum, namely

j = arg max
k

D(ck) (9)

It should be worth mentioning that the use of OWA operators in classifier
combination has been studied, for example, in [9]. In this work we use OWA
operators for classifier fusion in their semantic relation to linguistic quantifiers
so that we could provide a framework for combining classifiers, which also yields
several commonly used decision rules but without some strong assumptions made
in the work by Kittler et al. [7].

As studied in [15], using Zadeh’s concept of linguistic quantifiers and Yager’s
idea of associating their semantics to various weighting vectors W , we can obtain
many commonly used decision rules as following.
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Max Rule. First let us use the quantifier there exists which can be relatively
represented as a fuzzy set Q of [0, 1] such that Q(r) = 0, for r < 1/R and Q(r) =
1, for r ≥ 1/R. We then obtain from (2) the weighting vector W = [1, 0, . . . , 0],
which yields from (8) and (9) the Max Decision Rule as

j = argmax
k

[
max

i
P (ck|fi)

]
(10)

Min Rule. Similarly, if we use the quantifier for all which can be defined as a
fuzzy set Q of [0, 1] such that Q(1) = 1 and Q(r) = 0, for r �= 1 [15]. We then
obtain from (2) the weighting vector W = [0, . . . , 0, 1], which yields from (8) and
(9) the Min Decision Rule as

j = argmax
k

[
min

i
P (ck|fi)

]
(11)

Median Rule. In order to have the Median decision rule, we use the absolute
quantifier at least one which can be equivalently represented as a relative quan-
tifier with the parameter pair (0, 1) for the membership function Q in (1). Then
we obtain from (2) the weighting vector W = [1/R, . . . , 1/R], which from (8)
and (9) leads to the median decision rule as:

j = arg max
k

[
1
R

R∑
i=1

P (ck|fi)
]

(12)

Fuzzy Majority Voting Rules. We now use the relative quantifier at least
half with the parameter pair (0, 0.5) for the membership function Q in (1). Then,
depending on a particular value of R, we can obtain from (2) the corresponding
weighting vector W = [w1, . . . ,wR] for the decision rule, denoted by FM1, as:

j = argmax
k

[
R∑

i=1

wipi

]
(13)

where pi is the i-th largest element in the collection P (ck|f1), . . . ,P (ck|fR).
Similarly, we can also use the relative quantifier as many as possible with

the parameter pair (0.5, 1) for the membership function Q in (1) to obtain the
corresponding decision rule, denoted by FM2.

Interestingly also, from the following relation

R∏
i=1

P (ck|fi) ≤
R

min
i=1

P (ck|fi) ≤
R∑

i=1

wipi ≤ R
max
i=1

P (ck|fi) ≤
R∑

i=1

P (ck|fi) (14)

it suggests that the Max and Min decision rules can be approximated by the
upper or lower bounds appropriately. Especially, under the assumption of equal
priors, the decision rule (7) simplifies to the Product rule, which is a lower
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approximation of the Min rule, while approximating Max rule by the upper
bound yields the Sum rule.

In addition, from the classical voting strategy, we can also obtain the following
decision rule.

Majority Vote Rule. Majority voting follows a simple rule as: it will vote for
the class which is chosen by maximum number of individual classifiers. This can
be done by hardening the a posteriori probabilities P (ck|fi) in terms of functions
Δki defined as follows:

Δki =

{
1, if P (ck|fi) = max

j
P (cj |fi)

0, otherwise

then the right class (sense) cj is determined as follows:

j = argmax
k

∑
i

Δki (15)

3.4 Multi-representation of Context for WSD

It is worth to emphasize that, as mentioned above, two of the most important
kinds of information for determining the sense of a polysemous word are the topic
of the context and relational information representing the structural relations
between the target word and the surrounding words in a local context. A bag
of unordered words in the context can determine the topic of the context and
collocation can determine grammatical information. Ordered words in a local
context are also an important resource for relational information. We did not use
syntactical relations such as verb-object, which are used by Ng and Lee in [12],
because this information can be found in collocation features and a syntactic
parser does not always output a correct result. More particularly, we use five
kinds of representations corresponding to five classifiers. Each representation is
a set of features organized as following:

– f1 is a set of unordered words in the large context, namely

f1 = {w−n1 , . . . ,w−2,w−1,w1,w2, . . . ,wn1}
– f2 is a set of words assigned with their positions in the local context, namely

f2 = {(w−n2 ,−n2), . . . , (w−2,−2), (w−1,−1), (w1, 1), (w2, 2), . . . , (wn2 , n2)}
– f3 is a set of part-of-speech tags assigned with their positions in the local

context, namely

f3 = {(p−n3 ,−n3), . . . , (p−2,−2), (p−1,−1), (p1, 1), (p2, 2), . . . , (pn3 , n3)}
– f4 is a set of collocations of words, namely

f4 = {w−l · · ·w−1ww1 · · ·wr| + r ≤ n4}
– f5 is a set of collocations of part-of-speech tags, namely

f5 = {p−l · · · p−1wp1 · · · pr| l + r ≤ n5}
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Where wi is the word at position i in the context of the ambiguous word w
and pi be the part-of-speech tag of wi, with the convention that the target word
w appears precisely at position 0 and i will be negative (positive) if wi appears
on the left (right) of w.

In the experiment, we design the window size of topic context (for both left
and right windows) as 50 for the representation f1, i.e. n1 = 50, while the win-
dow size of local context as 3 for remaining representations, i.e. ni = 3, for
i = 2, 3, 4, 5. Our representations for the individual classifiers are richer than the
representation that just uses words in the context because the features contain-
ing richer information about structural relations are also used. Even that the
unordered words in a local context may also contain structure information, but
collocations and words and part-of-speech tags assigned with their positions of
course will bring richer information.

4 Experiments

4.1 Data

We tested on the datasets for four words, namely interest, line, serve, and hard,
which are used in numerous comparative studies of word sense disambiguation
methodologies such as Pedersen [13], Ng and Lee [12], Bruce & Wiebe [1], and
Leacock and Chodorow [10]. We have obtained those data from Pedersen’s home-
page 1. There are 2369 instances of interest with 6 senses, 4143 instances of line
with 6 senses, 4378 instances of serve with 4 senses, and 4342 instances of hard
with 3 senses.

4.2 Experimental Results

In the experiment, we obtain the results that are the average of 5 results from
10-folds cross validation. Data included four datasets corresponding to four
polysemous words interest, line, hard, and serve, were tested based on multi-
representation of context as defined in the preceding section. Table 1 shows the
experimental results obtained by using various strategies of classifier combina-
tion developed in Section 3 and the best results obtained by individual classifiers
respectively. It is of interest to note that Majority Voting, which is widely used
in many studies of combining classifiers, may not be a good choice for classifier
combination in WSD.

Table 2 shows the comparison of results from the best classifier combination
with previous WSD studies, which were also tested on the four words. It is shown
that the best classifier combination based on multi-representation of context
gives the highest accuracy on all the four words.

1 http://www.d.umn.edu/∼tpederse/data.html
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Table 1. Experimental Results

Best individual Product Sum Max Min Median Majority FM1 FM2

classifier (% ) (% ) (% ) (% ) (% ) (% ) Voting (% ) (% ) (% )

interest 86.8 91.4 89.2 90.0 89.9 90.2 88.7 91.0 90.2

line 82.8 89.4 81.4 86.6 87.0 83.9 79.8 84.3 83.1

hard 90.2 89.5 85.2 89.8 89.2 91.0 90.4 91.2 91.0

serve 84.4 89.6 86.9 87.5 87.9 88.6 85.4 88.9 88.6

Table 2. The comparison with previous studies

(%) BW2 M NL LC P Best combined classifiers

interest 78 – 87 – 89 91.4

line – 72 – 84 88 89.4

hard – – – 83 – 91.2

serve – – – 83 – 89.6

5 Conclusion

In this paper we have argued that various ways of using context in WSD can be
considered as distinct representations of a polysemous word under consideration,
then all these representations are used jointly to identify the meaning of the tar-
get word. This consideration allowed us to develop a framework for combining
classifiers based on Bayesian approach and the notion of OWA operators with
the help of fuzzy majorities. Interestingly, this framework also yields many com-
monly used decision rules for WSD, without assumptions imposed on individual
classifiers as done in [7]. We also experimentally explored all developed combina-
tion strategies on the datasets for four polysemous words, namely interest, line,
serve, and hard, which are used in numerous comparative studies of word sense
disambiguation methodologies. It has been also shown that multi-representation
of context significantly improves the accuracy of WSD by combining classifiers,
as individual classifiers corresponding to different types of representation suit-
ably offer complementary information about the target to be assigned a sense,
this consequently helps to make more correct decisions.

Acknowledgement. This research is partly conducted as a program for the
“Fostering Talent in Emergent Research Fields” in Special Coordination Funds
for Promoting Science and Technology by the Japanese Ministry of Education,
Culture, Sports, Science and Technology.
2 In the table, BW, M, NL, LC, and P respectively abbreviate for Bruce & Wiebe [1],

Mooney [11], Ng & Lee [12], Leacock & Chodorow [10], and Pedersen [13].
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System Health Prognostic Model Using
Rough Sets

Zbigniew M. Wojcik

OnBoard Software Inc.,
12621 Silicon Drive, San Antonio, TX 78249

Abstract. A new rough sets data fusion model is presented fusing mea-
sured health degradation levels and influences on these degradations. The
data fusion model is a system of matrix inequalities of the rough sets
covariances. Rough sets variance allows to explicitly assess only health
degradations assuring increased signal-to-noise ratio, thus high accuracy
of processing. The matrices of inequalities fuse measured health degra-
dation levels and influences on these degradations. Adaptations mecha-
nisms are by a new machine learning approach determining weights of the
terms of the inequalities at the time of key events found in the historical
data. Prognostic is always time-sequenced, therefore methods based on
time sequences are incorporated, e.g. a new data fusion model exploiting
time-dependency of events, assuring high quality of prediction. Deter-
ministic prognostic is by estimating the pattern of health degradation in
question, finding the match with degradation pattern in historical data,
and then tracing this historical degradation pattern up to its conclusion.
The model is hierarchical: the right sides of the data fusion expressions
substitute for endogenous variables of higher-level expressions.

1 Introduction

Rough sets approach [3] incorporates a conceptual and mathematical informa-
tion model that splits data into: (a) data that is CERTAIN and HEALTHY, and
(b) all other related data that is AMBIGUOUS or UNHEALTHY, and builds
relationships on the above two groups of data. The rough sets approach is sig-
nificant for health degradation data analysis, because of: (1) Setting the focus
on the split of all data into the two parts: on completely healthy and on partly
degraded of different levels of degradation; (2) Providing tools to measure level
of health ambiguity and level of health degradation; (3) Intelligent data mining,
because considering relationships between unambiguous and ambiguous data is
known from the psychology of human perception as INTELLIGENT.

Our rough sets approach incorporates the Universe (or data) U of degrada-
tion signals (called test points) and a set R of equivalence relations. Examples
of test points: (a) trf, the set of measurements of turbine fan vibration level
over time, (b) tit, the set of Turbine Inlet Temperatures over time. Each test
point u ∈ U has its own equivalence relation r ∈ R. Each first level equiv-
alence relation r for each test point u describes the equivalence class of the

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 522–531, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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measurements ’in healthy condition’ not looked for, because the focus is on
health degradation. Health degradation of a part described by the test point
u is represented by the complement of u/r in u. Diagnostics of a health prob-
lem is frequently based on a specific non-empty intersection of the equivalence
relations ’in degraded condition’. For instance, a disintegration of an engine is
likely to happen when: TRF/degraded

⋂
TIT/degraded �= φ, where degraded

≡ ’in degraded condition’. Engine disintegration is thus representable by non-
empty indiscernibility relation [3] over two or more specific equivalence relations,
e.g.: disintegration ⇐ IND{trf degraded, tit degraded} = trf/degraded

⋂
tit/degraded executed on paired elements that occur at the same time. Un-
healthy situations are detected by rough sets variance. Rough sets variance pre-
vents obscuration of degradation information by measuring distance to healthy
interval. Statistical population variance of variable X : Var(X) = 1/N

∑
(x−x)

(x− x) where (x− x) is a measure of deviation of the values x from their mean.
The statistical variance obscures degradation information, because it collects
into the sum also healthy measurements. There may be no significant differ-
ence between: (a) a signal of a few unhealthy measurements accompanied with
a large number of small deviations from the mean and (b) a signal of no un-
healthy measurements accompanied with a large number of slightly higher (but
still normal) deviations from the mean. Rough sets variance of variable X for N
measurements is:

rsV ar(X) = Median|x− L(X)| (1)

where: L(X) is the value of the healthy range of X, nearest to x ; the x must
be outside of the healthy range, otherwise x − L(X)=0 and is rejected from
considering to the median. Only non-zero degradations count. Rough sets vari-
ance is non-linear. For a large number of elements the rough sets variance
may also be expressed by: rsV a(X) = 1/N

∑
(x − L(X))(x − L(X)), or by

rsVm(X) = 1/N
∑

|x− L(X)|
Statistical covariance between variables X and Y : Cov(X,Y ) = 1/N

∑
(x−

x)(y − y). Rough sets covariance (compare [6]) between variables X and Y for
N measurements is as follow:

rsCov(X,Y ) = Median(x− L(X))(y − L(Y )) (2)

Also rough sets covariance provides very high signal-to-noise ratio, as opposed
to the statistical covariance which incorporates the mean. For a large num-
ber of elements the rough sets variance may also be expressed by rsV a(X) =
1/N

∑
(x− L(X))(y − L(Y )).

In the context of the mining to health degradation data, selected differences
between rough sets approach and statistics can be stressed as follow: 1. Statistics
focuses on deviations from the mean, sampling, distributions, probabilities; 2.
Rough sets focus on relationships between (a) unambiguous / healthy and (b)
ambiguous / unhealthy data. Parameters of relationships are used instead of
distribution parameters and probabilities. Data AS IS are analyzed without
sampling.
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The equivalence class of measurements x taken at test pointX of a part
represented by the equivalence relation r = in degraded condition equals:

x/r =
⋂

{x ∈ X : |x| > rsV ar(X)} (3)

where |x| > rsV ar(X) ≡ r ≡ ’degraded’. The
⋂

means that r ≡ ’degraded’ is
the indiscernibility relation over all historical data of the test point X.

With the approximate knowledge k=(X,’degraded’), the degraded health at
test pointX can be approximated by two subsets [3]:

xr =
⋃

{x ∈ x/r : x ⊆ X} (4)

xr =
⋃

{x ∈ x/r : x
⋂
X �= Ø} (5)

called the lower and upper approximations of health degradation represented by
the test point X.

Any health degradation issues are time - sequenced and inter-related with
many degradation problems which also are time dependent. Health degradations
detected by rough sets variance must be related, around times when they occur,
with other health degradations, e.g. with the aid of the rough sets covariance. All
these other health degradations can be predicted: by using historical data and
rough sets covariances they can be discovered as inherently co-occurring with
the health degradations detected with the aid of the rough sets variance. Health
degradations are quite deterministic in nature: if a symptom occurs, a number
of specific degradations are likely to follow, and if two or more symptoms occur
simultaneously, then a severe specific health degradation is almost imminent.

The basic rough set model introduced by Pawlak [3] and the Variable Preci-
sion Rough Set Model (VPRSM) [8,1,2,4] are concerned with implicit static-like
data (i.e. not necessarily sequenced by time) and rather probabilistic type of
events. The IF-THEN rules generated from this type of data are probabilistic
in nature. The rough sets model proposed in this paper considers only data se-
quenced by time. The time makes data mining deterministic in the domain of
health degradations. Predictions are more accurate when data is deterministic, or
much less amount of data is needed for the same quality predictions. E.g., an im-
minent problem is very likely for only a few specific symptoms occurring almost
simultaneously in time. This way the proposed method is to significantly improve
the quality of prediction. Time attribute can be used in the basic Pawlak’s rough
set model or the VPRSM to make predictions deterministic and then to develop
a more deterministic classifications. The conditional probabilities of VPRSM are
suitable to do time-related classifications by introducing time moment, estimat-
ing overlap of events with that time moment and sequencing all time moments.

This article attacks the classification of time-sequenced events by rough sets
covariances of co-occurring degradation features, by new data fusion model and
a new neural net based on this data fusion model. The proposed system ana-
lyzes data recorded from interrelated system components and makes predictions
using the degradation levels of these components and health status measure-
ments from historical data. Statistical failure time does not predict failure of a
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particular item based on its specific level of degradation, but on statistics of a
large number of items. Without the deterministic knowledge of the degradation
level and influences on degradations no other health status can be determined
except the probability of survival for the item being measured. This assumption
is true e.g. when material fatigue leads to failure. Application of the proposed
model needs knowledge of events co-existing in time and properties of changes
of observations over time. All this knowledge can be acquired from historical
databases. The proposed approach makes sense of knowledge databases.

The proposed model is a data fusion system similar to [6], in which terms are
the products of ratios of degradation and the ratios of influences on the degra-
dations. The degradation data fusion system presented here is deterministic for
data sequenced by time. It exploits available degradation signals and gets opti-
mized by removal of insignificant terms. The model is hierarchical and does not
limit the object’s complexity. Reasoning is deterministic and rule-like chaining is
applicable. Determinism of time sequences allows using simple inequalities with
weights learned at the time of major events such as failure times, near-failures
or major repairs. Patterns of degradation are created from historical data at
times of known failures or major repairs. Predictions are made by: (i) matching
current object conditions with the patterns of degradation learned through his-
torical data, and (ii) computing and applying the increments of degradations and
of the influences on the degradations learned from the patterns matched, minute-
by-minute, to see when possible failures could happen. A method is offered for
computing elementary increments to extrapolate the actual and predicted pat-
terns of degradation to the points of predicted failures and repairs. The system
avoids obscuration of rare degradation measurements by healthy measurements
by using rough sets: any healthy status is immediately considered irrelevant. Lo-
gistics operations can be optimized by accurately preparing to predicted repairs.
Influences of environmental degradations that start to affect system at the ear-
liest stages can be traced back. The existing structural modelling and regression
models are equalities, not inequalities. New proposed reasoning technology is
based on testing the inequality ′ >′ in each modelling record, making a rule that
fires an alarm if the measurement data implies a significant level of degradation.
Records of lower-level components are listed and executed first, and whenever
inequality is true, using its right side as an operand of one of the inequalities
that is listed later as a higher-level component. Coefficients are not computed as
in structural modelling by minimizing an error, but by a new machine learning
from time-sequenced events.

The state-of-the-art machine learning methods do not adapt to the time of an
event but to the event itself: this prediction of time of fault or time of repair is not
direct and therefore incurs inaccuracies. A near-deterministic approach proposed
allows making predictions based on degradation patterns gathered automatically
for different applications and at the time moments of failures. Prediction of fail-
ures and the health status takes place by deterministic application of these incre-
ments to the actual patterns of degradation matched. Statistical (and not deter-
ministic) predictions would require more cases, which are not always available.
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The above new concepts are presented below with more details, and with
results of predicting disintegration of a C-5 aircraft engine.

2 Fusion of Degradation Factors Sequenced by Time

The proposed prognostic tool balances the messages of positive performance
with the messages of negative performance by applying some weights over a time
period. When a failure status is approached, the positive performance reports will
decrease and at the same time the negative reports will substantially increase.
The parameters are collected in a similar way as performance is measured for
computing systems [7]. Latent variables describing object’s health degradation
over some recent time periods are collected into matrices. The object is in good
health if each record of the following matrix inequalities is true (compare [6]):

[p] > [D][n] + [G][x] (6)

where: [p] is the column matrix of M health endogenous variables, i.e. health
variables influenced by other health variables. The [p] on the left side of (6) are
positive performance ratios. E.g., the value of each specific element p1 of [p]
equals to the ratio of the number of estimates when the propulsion health on
object1 was at least good, to the number of all the health estimates during the
same time in question. The ratio t = (time over which a part was working over
the last 3 years) / ( 3 years ) can be used as p2.

[G] is the matrix of rough sets compound covariances representing degrada-
tion influences of all health exogenous variables x on the endogenous variables p:

Gpk = (1/K)
K∑

k=1

|(pk − ‖p‖)
I∏

i=1

(xki − ‖xi‖)| (7)

where: ‖xi‖ it is not the mean or median, but it is the upper or lower bound of the
range of healthy measurements of exogenous variable xi, a concept of the rough
sets representing a set of elements indiscernible by equivalence relation ’in healthy
condition’. The difference xki − ‖xi‖ denotes the difference of current measured
value xki from the whole healthy range ‖xi‖ of xi, i.e. from the upper or lower
value of xi. Term with the measurement value xki in the healthy range is set to 0.
E.g., in some cases pressure should not be higher, and in some cases lower than
a limit; k is the time moment of taking sample; ‖p‖ is the upper bound of the set
of the measurements of endogenous variable p, indiscernible by the equivalence
relation ’in healthy condition’, and the difference pk −‖p‖ on the right side of (6)
denotes the degradation of p - the difference of current measurement pk of p from
the whole healthy range ‖p‖ of p; K is the normalization factor over the number
of all elements summed, making Gpx a ratio; k is the measurement index.

Eq.(7) computes the product of measures of degradations of I exogenous
variables and one endogenous variable at each time moment k, and sums it
over total time K. The above rough sets compound covariance is the measure
of non-obscured degradation relationship between the I exogenous variables on
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the endogenous variable p working together in a compound system with possible
multiple mutual influences. Most measurements of the health status may be in
the healthy state and only several deviations may be symptomatic to a health
problem. The state-of-the-art statistical covariance incorporating the deviation
from the mean would obscure a small number of significant deviations, which
make insignificant contribution to a sum compared to thousands of small devi-
ations in the healthy range. The rough sets covariance may incorporate more
that one exogenous variable and is non-linear: it ignores small deviations in the
healthy range.

EXAMPLE: When the endogenous variable p is binary, e.g. of two values {work-
ing, not working} ≡ {1, 0}, then ‖p‖ = 0. When each measured status of p is
working, then pk − ‖p‖ = 1 for all k making degradations observable in ex-
ogenous variables. Then Gpx > 0 because p ≡ working and thus exogenous
variables xi have observed influence on p. More values of p allow to observe
growing degradation of p.

[n] and [x] are the column matrices of weights of endogenous and exogenous
variables initially set to 1, so that at the beginning of data analysis, instead of
(6) the following is assumed: [p] > [D] + [G];

[D] is the matrix of rough sets covariances [6] representing degradation in-
fluences of all health status endogenous variables on the endogenous variables:

Dpv = (1/M)
M∑

k=1

|(pk − ‖p‖)(vk − ‖v‖)| (8)

where: ‖p‖ and ‖v‖ are the bounds of the set of the measurements k of en-
dogenous variables p and v indiscernible by the equivalence relation ’in degraded
condition’. Endogenous variable can affect any other endogenous variable except
itself: the diagonal of [D] is set to 0 to prevent each endogenous variable from
having a direct degradation influence on itself: Dpv =0 for v = p. Normalization
by M makes Dpv a ratio. Only degradation levels are considered in rough sets
covariance.

By incorporating the above rough sets degradation covariances, the proposed
tool directly rejects obscuration by all measurements indiscernible by healthy
status, automatically sets to 0 all influences of no impact on the system degra-
dation, and retains only critical influences degrading the system. By this the
proposed system correctly assesses the critical factors for prediction. Relating
health status measurement to the equivalence class of the rough sets represent-
ing the healthy ranges and not to the mean or to median is the key difference
with respect to statistics [6]. Note, that matrices [p], [D], and [G] are not the
values of the variables as commonly used in statistics, they are the ratios directly
representing health problem level. The proposed tool can manipulate the bound
level to trace details of the early stages of the degradation, whereas the fault
code threshold is basically fixed.
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3 Machine Learning in Time-Sequenced Data Fusion
Model

Machine learning, in general, adapts weights for classification purposes. The goal
here is to discriminate precisely between the degraded and the healthy system
by using weights that are learned in a changing environment. Fast and reliable
determination of the weights, with the aid of the original machine learning is
proposed, instead of using a slow, multiple step convergence to the weights.

Inequalities (6) have no weights yet adapting the values of the upper bounds
of the proposed degradation covariances to the actual health problems on the ob-
ject: smaller bounds would set Ineq.(6) to false quicker than higher bounds. The
solution is to first set the bounds ‖p‖ and ‖v‖ of the set of the measurements in-
discernible by the equivalence relation ’in healthy condition’ to some reasonable
levels, and then to adapt them to actual (degraded) health conditions in a ma-
chine learning process by introducing a weight Wx for each dependent variable
p. The weight Wx which is the same at each independent variable x is computed
at the minimum problem needing repair when the object is no longer ready for
application, by read-out of all the values p, [D], [G] in:

p = [D]n + [G]x = [D] + [G]Wx (9)

where n = 1 and x = Wx, and simply determining the Wx from (9) as the
unknown. Any further increase of any of influences of [D] or [G] will keep Ineq.(6)
false: the degradation ratios and the degradation influences only grow once they
start to exist. Because the fault or significant degradation needing repair must
be detected even at zero influences from the other endogenous variables, [D] = 0
to determine weight Wx. For instance, for the dependent variable p representing
the propulsion health degradation on object1, the weights Wxi are determined
from:

[p] = [G][Wx] (10)

by investigating each problem i in propulsion system on object1 in the past and
finding the maximum of Wxi for all the health problems in exogenous variables:

Wx = maxi(Wxi) (11)

After each weight Wxi is determined, the system health decision inequalities
become as (6) with [x]=[Wx]. Finding the maximum of the weights Wxi for all
the system health problems i for the endogenous variable p sets the Ineq.(6) to
false quite easily for any problem considered in (9, 10, 11) even when the object
with that problem would still be in working conditions. The maximum weight
Wx determines the upper approximation of all faults and system conditions close
to faults. To find the range of health ambiguity issues, the lower approximation
is found for the minimum of weights Wxi for each problem i:

Wx = mini(Wxi) (12)

The conditions of the system in between the lower and upper approximations
are worthy maintenance care, and at least data should be examined. The system
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belonging to the lower approximation certainly does not fit for the application,
however, when using only the minimum of weights Wxi there is a risk of not
spotting a real health problem that would be detected for a Wx located in
between its minimum and maximum. The table composed of all weights Wxi

made for all problems i is the solution, telling exactly when the object is not
ready for the application. The lower and upper approximations are still useful
to estimate the level to which maintenance is needed on a compound system.
Each group of problems should have its own sub-set of records in (6) and its
own weight Wxi. Similarly, adjusting the degradation weights [Wn] in: p =
[D][Wn] + [G][Wx] makes system accurately sensitive to degradations caused
by endogenous variables: at [G] = 0 the weights Wnj are determined for all
problems j.

The advantages of the proposed machine learning that computes each weight
as unknown from the equations are: (i) high precision of classification; (ii) high
speed of accurate machine learning even from one example to classify one class
of degradation cases; and (iii) simplicity, by adjusting weights directly on the
level of dichotomization concepts and by this easiness to interpret the machine
learning process.

4 Example of Predicting Jet Engine Disintegration

To deterministically predict C-5 jet engine disintegration, DB tables were created
to collect rs statistics on the following jet engine degradations: 1. Rapid ramp in
Compressor Fan Vibration (crf) level; 2. Highest tit (Turbine Inlet Temperature);
and 3. High n1rpm/n2rpm (the ratio of turbine fan speed [revolutions per minute]
to compressor fan speed). DB Table 1 (a file) collects ramp type degradation in-
formation vibration ramp = {x ∈ X : SIZE > rsVar(X ramp) }, where X=crf ;
SIZE is the length of the vertical component of each ascending ramp detected
in X ; rough sets variance rsVar(X ramp) = Median | SIZE − 1.2 | with healthy
vibration ramp interval=1.2; LEV EL is the percent of the ramp length [mil] over
a threshold=1.2; BEGIN and END are the times of vibration ramp beginning
and end. DB Table 2 collects degradation information in: (a) test point tit, and
(b) ratio of n1 rpm to n2 rpm only if the vibration ramp degradation was de-
tected. The highest tit = {x ∈ X : SIZE > rsV ar(X) ∩ tit = max{all tit}},
where all tit is the set of tit of all 4 C-5 engines: all tit = { Eng1 tit, Eng2 tit,
Eng13 tit, Eng4 tit }; high n1/n2 = {x ∈ X : SIZE > rsV ar(X) ∩ n1/n2 >
Average{all n1/n2} }.

DB Table 1: Vibration ramp-degradation in Engine 3 crf fan signal:

PART SIGNAL DEGRADATION SIZE LEVEL% BEGIN END
Eng3 crf vibration_ramp 3.84 320 0 10
Eng3 crf vibration_ramp 1.92 160 42 50
Eng3 crf vibration_ramp 1.6 133 159 177
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DB Table 2: Range degradations in Engine 3 tit and n1/n2 signals:

PART SIGNAL DEGRADATION SIZE LEVEL% BEGIN END
Eng3 tit highest 23.5 2.79 0 10
Eng3 n1/n2 high 0.0113 1.1682 0 10
Eng3 tit highest 26.7 3.26 42 50
Eng3 n1/n2 high 0.0113 1.1115 42 50
Eng3 tit highest 26.6 3.29 159 177
Eng3 n1/n2 high 0.011 1.0707 159 177

Engine disintegration ≡ DISINTEGRAT ION soon is predicted at the
first intersection of vibration ramp and highest tit and high n1/n2. These inter-
sections are computed by applying data from the intermediate DB Tables 1 and
2 to the rough sets compound covariance (7) instead of operating on the level of
signal. The intermediate DB tables collecting degradation features at separate
test points assure very fast evaluation of the rough sets compound covariances.
DB Tables 3 and 4 list the results of this prediction. In fact, a complete jet engine
disintegration happened at the third ramp of crf: the engine should be shut-off
at the first ramp.

The endogenous variable p of (7) is initially with two values {working, dis-
integrated} ≡ {1,0} and with ‖p‖ = 0. At the time of each disintegration ramp,
each measured status of p = p+ 1 on right side of (7), so that Ineq.(6) turns to
false to shut-off the engine. Several cases of engine disintegration are analyzed
now to determine accurate value of the weight Wx.

DB Table 3: Disintegration after ramp-degradation in Engine 3 crf fan signal
combined with range degradations in Engine 3 tit and n1 / n2 signals:

PART SIGNAL DEGRADATION SIZE LEVEL% BEGIN END}
Eng3 crf DISINTEGRATION_vibr_ramp 3.84 320 0 10
Eng3 crf DISINTEGRATION_vibr_ramp 1.92 160 42 50
Eng3 crf DISINTEGRATION_vibr_ramp 1.6 133 159 177

DB Table 4: Disintegration after ramp-degradation in Engine 3 crf3 fan signal
combined with range degradations in Engine 3 tit and n1 / n2 signals:

PART SIGNAL DEGRADATION SIZE LEVEL% BEGIN END
Eng3 tit DISINTEGRATION_soon 23.5 2.79 0 10
Eng3 n1/n2 DISINTEGRATION_soon 0.0113 1.1682 0 10
Eng3 tit DISINTEGRATION_soon 26.7 3.26 42 50
Eng3 n1/n2 DISINTEGRATION_soon 0.0113 1.1115 42 50
Eng3 tit DISINTEGRATION_soon 26.6 3.29 159 177
Eng3 n1/n2 DISINTEGRATION_soon 0.011 1.0707 159 177

5 Conclusion

The paper uncovers very large areas of applications for rough sets, including
predictions of health problems, diagnostics, mission readiness evaluation, equip-
ment maintenance, optimization of logistics operations, avoidance of unnecessary
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repairs and data fusion for decision making. The paper defines and proves use-
fulness of the rough sets approaches for the tasks like real-time prediction of
equipment disintegration.

New tools were developed and used for accurate data mining and predic-
tion, such as rough sets variance, rough sets covariances, time-sequenced data
fusion model, and deterministic machine learning. The rough sets compound
covariance proved successful to mine and detect engine disintegration, and new
time-sequenced data fusion model to predict it in real-time. Determinism of these
new tools assure higher accuracy of predictions and increased precision of mining
in historical data.

Prognostic is always time-sequenced, therefore should incorporate methods
based on time sequences. Focus on time-sequenced knowledge is implied to make
progress in data mining.

Machine learning is commonly understood as a slow adjustment of weights,
and not just by setting the weights using knowledge. Rough sets variance and
covariance provide accurate values and weights for the terms of the new determin-
istic data fusion model, which constitute knowledge model for time-sequenced
prognostic. This deterministic knowledge acquisition is advantageous: is faster
and more accurate compared to statistical or stochastic adjustment of weights.
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Abstract. Live Logic is an integrated approach for support of the learn-
ing and decision making in conditions of uncertainty. The approach covers
both induction of probabilistic logical hypotheses from known examples
and deduction of the plausible solution for an unknown case based on
the inducted hypotheses.

The induction method generalizes empirical data, discovering statis-
tical patterns, expressed in logical language. The deduction method uses
multidimensional ranking to reconcile contradictory patterns exhibited
by a particular case.

The method was applied on clinical data of the patients with prostate
cancer who underwent prostatectomy. The goal was to predict biochemi-
cal failure based on the pre- and post- operative status of the patient. The
patterns found by the method proved to be insightful from the pathol-
ogist’s point of view. Most of them had been confirmed on the control
dataset.

In our experiments, the predictive accuracy of the Live LogicTM was
also higher than that of other tested methods.

1 Introduction

Live LogicTM induction method is developed for learning with inconclusive, in-
consistent, noisy data. We assume, the dataset of known observations represents
only small part of the general population, and the used descriptors are not enough
to distinguish the concepts under study completely. The problem is further com-
plicated by requirement for the decision rule to be transparent for the persons
who supply the data. This is a very common situation for medical problems, for
example.

Traditional approaches building logical rules (such as decision trees [6], Log-
ical analysis of data [13], induction logic programming [7]) build deterministic
rules which do not capture the uncertain nature of the problem.

Currently, there are two major ways expressing uncertainty and building
the decision systems from inconclusive data: fuzzy systems, and rough sets
systems.
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Fuzzy systems build rules which infer fuzzy conclusions from fuzzy premises
[4]. The main source of uncertainty taken into account in the fuzzy approach is
uncertainty of the descriptions of the training data. Yet, in most of applications,
data contain crisp numeric features. Fuzzy systems have to use some external
knowledge to introduce the membership functions artificially.

The classic rough sets classifiers work with decision space granulated by in-
discernibility relationship introduced prior the analysis. In this approach, each
example is considered as a decision rule, which infers its class (decision) from the
conditions [5]. If all examples with indiscernible conditions have the same class,
the rule is considered to be deterministic. Otherwise, the rule is said to describe
a borderline case.

Both traditional approaches tend to produce large amount of rules. The finer
is the granulation of the decision space, the more rules will be produced, and
the smaller is support of each rule, since the size of the available training set
is always limited. It leads to poor predictive ability and poor interpretability
[4]. It can be seen, for example, in the application of the rough sets to predict
metastases in breast cancer patients [18].

Various precision rough sets [19] approach addresses this problem by intro-
ducing probabilistic membership function. The concept of tolerance approxima-
tion spaces (see [11] and [12]) further extends possibilities of inductive learning
by considering similarity relations, more general than indiscernibility relation-
ship. Another way of increasing the power and predictive ability of the decision
rules was introduced in [2] with approximate rules, with relaxed requirement on
conditional probability of the correct decision.

Several other approaches are proposed to find coarse homogeneous granules
in information space based on data itself, to take into account the association
between the values of attributes and the decisions. For example, in the same work
[2] authors propose methods of discretization for attributes with large number
of values. In in [12], some methods for finding similarity relationships in data
are introduced. In all the mentioned works, the coarse granules in information
space are built upon indiscernibility relationship by combining fine homogeneous
granules.

In this paper, we propose an alternative way to build interpretable and sta-
tistically justified decision rules with uncertain data. We discover information
granules not by combining elementary homogeneous granules but by eliminating
external parts of heterogeneous multidimensional blocks in attribute space, until
the necessary homogeneity will be achieved.

Live LogicTM builds all the most general rules, sufficiently supported by
data. The approach allows us to work with continuous attributes, without prior
discretization or finding similarity relationship on each variable.

To make the decisions for new instances using these uncertain rules, we
propose a novel deduction procedure, which involves preliminary classification
of instances by all the rules and multidimensional ranking of these decision
vectors.
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2 Induction Method

2.1 Definitions

The induction procedure finds maximal sufficiently homogeneous granules in the
feature space as patterns. The theoretical aspects of the proposed induction
method are investigated in [10].

The procedure works with data in the form [X,Y ], where X = {xi,j}, i =
1, . . . ,m, j = 1, . . . , n is matrix with description of n observations (cases) by m
features; Y = {y1, . . . , yn} is a binary outcome vector, assigning a class to each
observation. For j ∈ [1, n], if yj = c, (c ∈ {1, 2}), we say that the j-th observation
xj belongs to the class c. Denote C1, C2 all the observations from the classes 1,
2, respectively.

The dataset may have features of various types, such as continuous, nominal
or ordinal. For a feature pi, i ∈ [1,m], denote [αi, βi] its range in the dataset.

The procedure induces rules of the type:

“MostLikely”I(p1, a1, b1)& . . .&I(pm, am, bm) ⇒ (y = c), (1)

where, for every i ∈ {1, . . . ,m}, pi is a feature, ai, bi are arbitrary numbers,
I(pi, ai, bi) is an interval predicate of the form ai ≤ pi ≤ bi, y is the class
variable.

If both ai = αi, bi = βi, the predicate I(pi, ai, bi) is true for all possible values
of the variable pi, and it is called trivial . The premises in the rule above will
be called clause. The set X(B) of the observations satisfying the clause B is
called block of the clause B.

We assume, each feature has its own admissible set of interval predicates.
Consider a case of “oriented” [16] feature, which naturally correlates with out-
come. For example, the condition “degree of cancer” correlates with the “prog-
nosis”. Then an interpretable rule may associate “small” or “large” values of the
feature with the decision, not“middle”values. For such a feature, only predicates

I(pi, αi, c) = (p ≤ c), I(pi, c, βi) = (p ≥ c),

including ends of the domain are pragmatically justified and admissible.
For a nominal feature, the only meaningful non-trivial predicates are equali-

ties
I(p, c, c) = (p = c).

The trivial interval is admissible for each feature.
Also, we may want to restrict the number of the nontrivial predicates in

the clauses, because complex patterns are often difficult to understand and use.
Denote B(k) all clauses with not more than k non-trivial admissible statements.

Suppose, B is a clause in B(k), where all predicates are admissible. Clause
B is a (h, g)-interesting in B(k) for the class C, if it satisfies the next two
requirements:
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1. The block X(B) is h-homogeneous: The proportion of the cases of the
class C, among all the cases X(B) is above the threshold h:

‖X(B)
⋂
C‖

‖X(B)‖ ≥ h.

2. The block X(B) is g-representative : The proportion of the all cases of
the class C in X , which belong to X(B), is above the threshold g:

‖X(B)
⋂
C‖

‖C‖ ≥ g.

The requirements on the interesting clause interpret the quantifier “most
likely” in (1).

The goal of the induction step of the Live LogicTM is to find all (h, g)-patterns
for given values h, g.

One may notice here that the concept of h-homogeneous block may be in-
terpreted as an approximate rule from [2]. However, here it is only auxiliary
concept, used to define (h, g)-interesting rules. Unlike approximate rules, the
rules we build here are required to be not only sufficiently consistent, but also
representative, describe enough of known examples.

An (h, g)-interesting clause for the class C is a (h, g)-pattern for the class
C, if it is the most general among (h, g)-interesting clauses. If an observation
satisfies the conditions of the pattern we will say that it exhibits the pattern.

One can notice the parallel and difference between Live LogicTM and associa-
tion rules method (see [1] and[3]), since the definition of interesting clause closely
resemble requirements on support and confidence of the interesting association
rules.

The most important difference between Live LogicTM and association rules
method, in our view, is that the goal of learning step in our method is patterns,
which are the most general among interesting rules, not all interesting rules.
The most general, representative rules are the most robust ones, because they are
supported by maximum number of cases; and they are the most parsimonious and
understandable, since they do not contain excessive conditions and unnecessary
terms.

The discovered patterns describe the maximal sufficiently homogeneous gran-
ules in the feature space, which can be used to classify new instances.

2.2 The Block Algorithm

The algorithm, mostly, follows one presented in [8] and [9].
Since we have descriptions of only n cases, every feature has not more than n

different values in the dataset. Therefore, it is sufficient to search patterns only
among blocks with limits ai, bi in their interval statements taken among actual
values of the feature in the dataset. We further decrease the search space by
considering only clauses form B(k) with admissible interval statements for each
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feature. The algorithm uses “smart” search among all admissible clauses to find
the patterns.

First, describe the convenient way of coding clauses. We code the interval
statement a ≤ pj ≤ b by the pair 〈Lj(a), Rj(b)〉, where Lj(t), Rj(t) are the num-
bers of the values of the feature j, which are less and higher than t, respectively.
Notice that the trivial interval statement for any feature will be coded by the
pair 〈0, 0〉. A block B = I1& . . .&Im is coded by the sequence 〈d1, . . . , d2m〉,
where d2i−1, d2i is a pair, coding i-th interval statement Ii.

Let us define the order on the set of all clauses. For clauses B1 = 〈d1, . . .,
d2m〉, B2 = 〈q1, . . . q2m〉, B1 ≺ B2 if there exists i such that dj = qj for all j < i
and qi > di. The first clause in this order is the clause with all trivial intervals.

For a clause B, denote Nxt(B, k) the very next after B clause in B(k) in
the order ≺; NxtOut(B, k) the very next after B block in B(k) in the order ≺
which is not included in B.

The current clause in the algorithm is denoted by W . The algorithm starts
search with the trivial clause W = 〈0, . . . , 0〉. Let the set M be the current set
of found patterns, empty at the start of the algorithm. The parameters h, g, k
from the definition of a pattern and class C are selected upfront.

LetR(B, g) denote the condition that the clauseB is g-representative,H(B,h)
the condition that the clause B is h-homogeneous. By definition, a pattern is the
most general clause B ∈ B(k) satisfying the conditions R(B, g)&H(B,h). Then
the algorithm [8] may be presented the next way:

– Case 1: If R(W, g) is not true, W := NxtOut(W,k),
– Case 2: If R(W, g) and H(W,h) are true,

1. if M does not contain any clause C : C ⇒ W , then M := M∪{W};
2. W := NxtOut(W,k);

– Case 3: If R(W, g) is true, but H(W,h) is false, W := Nxt(W,k).

In the first case, the current clause is not a pattern, and there are no patterns
among the clauses, less general than the current one. Therefore, we skip all less
general clauses in the order and find the next one not included in W .

In the second case, the current clause is a pattern, if it is not less general
than any pattern in the set M . In this case, we put it in the set of the patterns
M . Since no clause less general than the current one can be a pattern, we skip
all next less general clauses in the order ≺.

In the third case, the clause is not a pattern. But some less general clause
may be a pattern. Therefore, we proceed to test the very next clause in the order
≺.

The algorithm repeats this conditional operator in a loop until the procedure
Nxt(W,k) or NxtOut(W,k) required on the current step is impossible.

The paper [8] contains proof that the algorithm above finds all patterns for
the given class.

The algorithm avoids looking over many possible clauses because, when the
current clause is not representative or is a pattern, we skip the less general clause,
following in the order. The order is designed to maximize this advantage.
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3 Deduction and Decision Making Apparatus

3.1 Decision Vectors

Below we assume that the dataset has only two classes. By definition, patterns
for a certain class describe mostly cases of this class. A pattern of a class C may
be considered as a classifier: if the case exhibits the pattern, it is classified as a
case of the class C. If the case does not exhibit the pattern, the classifier does
not give any answer.

If each observation exhibits patterns of only one class, the final conclusion is
obvious. Most of time, this is not the case. Therefore, we need a reconciliation
procedure.

Suppose, we discovered k1 patterns of the first class, and k2 patterns of the
second class. Then each case may be coded by a decision vector r of the length
k1 + k2, using the next procedure:

– if the case exhibits the pattern i of the first class, ri = 1, otherwise ri = 0;
– if the case exhibits the pattern j of the second class, rk1+j = −1, otherwise
rk1+j = 0.

As result of this procedure, we will have dataset R with binary features,
where each entry is a decision vector for an instance in the dataset X .

3.2 Multidimensional U-Scoring

Having decision vectors, one now needs to compare evidence provided for each
instance to belong to one class over the other. Thus, some scoring method and
threshold needs to be chosen.

A traditional approach is voting: a score assigned to a vector with values 1, -1
and 0 is the sum of its values. This approach may be generalized as a “weighted
voting” system, where the score is a weighted sum of the classifiers’ values. The
weights need to take into account mutual correlation of the features and their
relative importance for the decision process.

To overcome the need for subjective weights, we use a multidimensional U-
score (mU-score) proposed by K. Wittkowski [15]. The dataset R meets the
requirement for mU-scoring: each classifier is “oriented” (positively correlated
with the outcome). The mU-scores of decision vectors are built upon a partial
order [14] on them. In this order, instances classified by different classifiers are
deemed incomparable. The order is defined as follows: for any two vectors r1, r2 ∈
R, r1 < r2 iff for every coordinate i, r1i ≤ r2i and r1 �= r2.

Then, for each d ∈ R

mUScore(d) =
∑
r∈R

I(d > r) −
∑
r∈R

I(r > d),

where I(a) equals 1, if a is true and is equal 0 otherwise. In another words, the
score of the decision vector d is number of vectors in R which are smaller that d
minus number of vectors which are larger than d in the described partial order.
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The proper threshold for the separation of the classes by the mU-score may
be found by optimization of a chosen criterion for sensitivity and specificity of
classification.

4 Application of the Method

The method was applied on a dataset from Baylor College of Medicine of the pa-
tients with prostate cancer after prostatectomy. The patients were characterized
by 15 clinical features. For each patient, either his known time of the biochem-
ical failure or the last observation is present in the data. The goal was to learn
to predict biochemical failure within 5 years after the surgery. For this purpose,
only the patients with known time of failure and patients with observations after
5 years were selected. The dataset consists of two parts, separated by historical
reasons: one part includes 171 cases, out of them 35 are failures. The second
dataset contains 282 cases, with 52 failures. Thus, in each dataset, only about
20% of cases belong to the first class. Traditional machine learning methods
designed to maximize accuracy of the decision (as SVM, for example) produce
the rule, which classifies all or almost all cases as low risk, which is not accept-
able. The goal was to develop a decision rule, having high min(sensitivity,
specificity), because both sensitivity and specificity are important in this case.

The induction step of the Live LogicTM had its own control. First, each pat-
tern, obtained on one dataset, was tested on another dataset. Second, patholo-
gist, specializing in the prostate cancer, analyzed the patterns to evaluate their
consistency with current medical knowledge. Generally, the features were coded
in such a way, that the higher value of the feature, the higher is the risk. The
found patterns, mostly, follow this rule. One exception is the feature“uicc”, which
characterizes the degree of the spread of primary tumor over prostate. The pat-
terns for low and high risk contain conditions for high levels of spread only. The
reason is that for small tumors cancer aggressiveness is difficult to recognize and
the prognosis can not be certain. Below are the examples of the found patterns.

Table 1. Examples of patterns of high and low risk of failure

High Risk Train % Test %
tnm = 5 92 100

gg1 > 3 83 87
tnm > 3
ln =1 92 100
uicc > 4 90 100
tnm > 3
prepsa > 11.4 86.7 88.9
gg1 > 3
tnm > 2

Low Risk Train % Test %
uicc < 4 97.3 86.7
ggtot ≤ 7
tnm ≤ 3
uicc > 4 97.1 83.3
gg1 ≤ 3
tnm ≤ 4
uicc > 4 97.3 86.7
svi = 0
ggtot ≤ 7
tnm ≤ 4
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In the tables above, tnm stands for “TNM stage”, ggtot means “Prostatec-
tomy Gleason Grade”, gg1 means “Prostatectomy Gleason Score 1”, svi means
“Seminal Vesical Invasion”, ln is “Lymph Node Status”, prepsa is “Preoperative
PSA”.

In the next table, we compare sensitivity and specificity of the decision rules
obtained on one set and tested on another set. For comparison we use SVRcTM

method which uses some adjustment of the support vector regression method for
the censored data [17].

Comparing Sensitivity and Specificity of Live LogicTM and SVRcTM

Datasets Sensitivity Specificity
Training Testing LL SVRcTM LL SVRcTM

Set 1 Set 2 0.79 0.5 0.77 0.87
Set 2 Set 2 0.8 0.65 0.66 0.81

As we see from this table, sensitivity of Live LogicTM is consistently higher,
while the specificity is lower than that of SVRcTM . For the practical purposes,
the results of the Live LogicTM are preferable, since low sensitivity means that
large cohort of the high risk patients will not get a necessary treatment. The
results of Live LogicTM are preferable from the min(sensitivity, specificity)
criterion as well.

5 Conclusions

The main contribution of this paper is a general approach to the problem of
learning under uncertainty, where the resulting rules need to be understandable.
The learning and decision making methods for this problem are presented. The
learning method finds all strongest and sufficiently consistent decision rules. The
decision making method is based on multidimensional partial ordering and calcu-
lation of U-score. We demonstrate the advantages of the approach in application
to the problem of prognosis of clinical failure for patients with prostate cancer
after prostatectomy.
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Abstract. The relation of similarity is essential in understanding and developing
frameworks for reasoning with vague and approximate concepts. There is a wide
spectrum of choice as to what properties we associate with similarity and such
choices determine the nature of vague and approximate concepts defined in terms
of these relations. Additionally, robotic systems naturally have to deal with vague
and approximate concepts due to the limitations in reasoning and sensor capabil-
ities. Halpern [1] introduces the use of subjective and objective states in a modal
logic formalizing vagueness and distinctions in transitivity when an agent rea-
sons in the context of sensory and other limitations. He also relates these ideas to
a solution to the Sorities and other paradoxes. In this paper, we generalize and ap-
ply the idea of similarity and tolerance spaces [2,3,4,5], a means of constructing
approximate and vague concepts from such spaces and an explicit way to distin-
guish between an agent’s objective and subjective states. We also show how some
of the intuitions from Halpern can be used with similarity spaces to formalize the
above-mentioned Sorities and other paradoxes.

1 Introduction and Preliminaries

1.1 Introduction

In a recent paper, Halpern [1] points out the tight correlation between similarity notions
on individuals and their relation to vague predicates. He also considers a distinction
between the subjective and objective realities of agent systems and how standard prop-
erties of similarity such as transitivity do not necessarily make sense when taking into
account epistemic and subjective states of agent systems. Objectively, viewing similar-
ity as an equivalence relation may make sense, but when taking into account capabilities
of agents to discern, or their subjective psychological states, it may not make sense to
view similarity as a transitive relation. One can also find other examples where intran-
sitivity may hold at the objective level, but not at the subjective level.

When viewing similarity and vagueness in this respect, it turns out that a number of
interesting reasoning paradoxes such as the Sorities Paradox, can be explained in a mat-
ter both satisfactory in the formal sense and also in the pragmatic sense, where agents
would have to represent and reason about such concepts as heaps. In attacking these
problems, [1] proposes a modal logic which semantically represents both the subjective
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and objective states accessible by an agent and also allows for the ability to distinguish
between perception reports and what an agent may definitely know about its objective
state. This is done by introducing two modal operators.

Rather than going the modal route, we introduce a general method for modeling
similarity relations, approximate sets, and vague predicates. We show how this formal
framework can be used to model scenarios associated with an agent, its objective and
subjective realities, similarity relations contributing to the definition of vague or ap-
proximate predicates, and the sensory limitations essentially defining what it formally
means for an agent to have a subjective view of reality as observed through its sensory
filters. The basis for this representational capability are similarity spaces, neighbor-
hoods of individuals derived from such spaces and approximate or vague predicates
defined using such neighborhoods. We also show that when restricted to finite domains
in a relational database framework, inference associated with the approach is tractable.

Before providing the formal framework, we describe an intuitive scenario from [1].
Relative predicates associated with the sensing modalities are often difficult to represent
and define due to the subjective nature of the concepts involved. For example, given
samples of beverages and the task of stating which one is sweeter than which, it is
difficult to characterize a comparative component of the definition while keeping it
consistent with the objective sensor data from which it is grounded.

On the one hand, similarity of sweetness is transitive relative to the number of grains
of sugar in beverages, but at a more subjective level, transitivity breaks down. We often
experience such comparative situations where beverage A’s sweetness is indistinguish-
able from beverage B, and B’s sweetness is indistinguishable from beverage C, but A’s
sweetness is in fact quite distinguishable from C. Distinguishability at this level is qual-
itatively different from that at the granular level where a beverage with n grains of sugar
is indistinguishable from that with n+1 grains of sugar and so on and so forth.

It is obvious to see how the Sorities Paradox is related to this issue. At an objective
level, heaps are simply piles of sand with a certain number of grains in them. At the
subjective level they are based on subjective perception reports which do not necessarily
reflect transitive nature of the sensor data, but should still remain consistent with it.

The literature on similarity is vast and it is often the case that different properties
of the associated relation are played off against the other, such as transitivity versus
intransitivity, symmetry versus anti-symmetry, etc. One can relax the requirement of
a tradeoff in many ways. Some such relaxations are introduced in Section 1.3 and used
throughout the paper. In summary, our main goal is to introduce a general framework for
representing similarity structures, which permits the definition of vague sets/relations
in a meaningful and intuitive way. This will be partly verified by modeling some of the
interesting scenarios presented in [1]. The starting point for the approach we propose
was initiated by [6], but substantially generalized and applied in [2,3,4,5].

1.2 Paper Structure

In the remainder of this section, we provide some preliminary definitions. In Section 2,
we consider the objective and subjective levels of an agent system interfacing with
sensors to an external environment. We then relate these levels to vague concepts. In
Section 3, we introduce similarity spaces which are the formal vehicle for making
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distinctions between objective and subjective perceptual descriptions and formalizing
vagueness using approximate sets constructed from similarity-based neighborhoods. In
Section 5, we formalize a number of examples including those already mentioned. In
Section 6, we state some results on the complexity of the approach. In Section 7, we
refer to some of the related literature and conclude the paper.

1.3 Preliminaries

Below we assume that [0, 1] is the closed interval of all real numbers between 0 and
1, ordered by the standard ordering on reals ≤. We shall also use value Υ , meaning
“unknown”, which is not in [0, 1] and is incomparable wrt ≤ with any number of [0, 1].
Let U be a set, σ : U × U −→ [0, 1] ∪ {Υ} be a binary function on U and p ∈ [0, 1] be
a given real number. Then, σ is called

– p-serial iff for any x ∈ U there is y ∈ U such that σ(x, y) ≥ p
– p-reflexive iff for any x ∈ U , σ(x, x) ≥ p (note: p-reflexivity implies p-seriality)
– p-symmetric iff for any x, y ∈ U , σ(x, y) ≥ p implies σ(y, x) ≥ p
– p-transitive iff for any x, y, z ∈ U , σ(x, y)≥p and σ(y, z)≥p implies σ(x, z)≥p

One can also relax transitivity, as is often done in the fuzzy set area (cf. [7]).

2 Objectiveness, Subjectiveness and Vagueness

It is often the case that an intelligent system interfaces to external environment through
the use of real sensors as in the robotics domain or through virtual sensors as in the
software agent domain. Already, at this sensor interface level, there is a gap between
what the world is actually like and what the robot or software agent is capable of per-
ceiving given a particular sensor suite. For example, a red car may often be perceived
by a robot to be brown in color due to special lighting conditions. There is an additional
gap between raw sensor data and additional qualitative structures derived via the raw
data and additional data fusion and knowledge construction processes. For example,
a vehicle which is objectively on a road may be perceived by sensors to be both on and
off the road due to sensor noise and inaccuracies, but at a qualitative level, a normative
decision has been made to view the vehicle as being completely on the road.

In order to make these distinctions clear, we assume the existence of an objective
reality independent of any agent’s particular perceptive capabilities and the existence
of a subjective reality specific to an agent. Each agent may or may not have different
subjective realities and one agent may in fact have several subjective realities based on
its particular configuration and context. Assuming the distinction between objective and
subjective realities of an agent, we can refer to an agent’s objective state in addition to
its subjective states. This distinction is central to Halpern’s approach [1] and we will
show how our framework can clearly model this distinction in a highly flexible manner.
We also use the term subjective perception to refer to perceptual activity which results in
the generation of perception reports associated with the subjective state(s) of an agent.

In addition to perception reports regarding properties and relations between ob-
jects, perception reports about objects themselves and their similarity or lack thereof
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is equally important as input to reasoning processes. Subjective perception often can-
not distinguish objects which are different at the objective level. In some situations this
leads to borderline cases, where the observer cannot classify objects relative to a given
concept. For example, we may not be able to state unequivocally that a vehicle is too
close to another or that it is moving too fast relative to a specified speed limit.

According to the literature (see, e.g., [8]), a concept is vague when it has borderline
cases, i.e., some objects cannot be classified to the concept or to its complement with
certainty. In this paper vagueness is modelled by introducing similarity-based approxi-
mations of concepts. More specifically, the lower approximation of a concept consists
of objects that are known to belong to the concept and the upper approximation of the
concept consists of objects that might belong to the concept.

Observe that even the properties of similarity notion might be substantially different
at the objective and subjective level, as illustrated by the following examples.

Example 2.1. Consider a robot equipped with a camera. Assume that the camera’s field
of view does not allow the robot to fully observe itself, which is a very strong perceptual
limitation. In this case the similarity relation on the objective level is reflexive, while
on the robot’s subjective level it does not have to be reflexive, since the robot cannot
observe itself (but might be p-reflexive and/or p-serial, for some p). �

Example 2.2. Assume that in a given application one considers a similarity relation, ∼,
between children and parents. On the objective level, it is defined to satisfy x ∼ y iff
[Child(x, y)∧Sex(x) = Sex(y)]. Then ∼ is not symmetric.1 Now, suppose that on the
subjective level one cannot recognize whetherChild(x, y) holds. In this case similarity
is defined as x ∼s y iff [Υ ∧ Sex(x) = Sex(y)], which is symmetric. �

Example 2.3. Consider the similarity between persons in the set {P1,P2,P3}. This re-
lation, on the objective level, does not have to be transitive, since similarities between
persons P1 and P2 as well as between P2 and P3 do not have to imply the similar-
ity between P1 and P3. On the other hand, subjectively, a robot might not be able to
distinguish between P1,P2 and P3, which makes the similarity relation transitive. �

3 Similarity Spaces

Similarity spaces are used as the formal mechanism for representing the indistinguisha-
bility of individuals in a specific domain of discourse. Similarity spaces are quite ver-
satile in use. They are also used as a basis for defining approximate sets and vague
predicates in addition to modeling the sensory limitations of agents and provide a for-
mal basis for constructing and analyzing subjective state.

Similarity spaces [2] generalize tolerance spaces as defined in [3]. Comparing the
current approach to the approaches of [2,3], we assume that the similarity function can
return the value Υ , since the similarity between some objects might be unknown. Also,
as argued in [2], and advocated in Examples 2.1 and 2.2, we also relax the requirements
that similarity has to be symmetric or reflexive. However, in order to make approxima-
tions intuitively meaningful, we will require the seriality of similarity spaces.

1 In fact, one usually compares children to parents, not vice versa and it might be desirable that
computer reflects this human behavior.
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Definition 3.1. By a similarity function on a setU we mean any function σ : U×U −→
[0, 1] ∪ {Υ}. A similarity function σ is called a total similarity function if, for any
x, y ∈ U , σ(x, y) ∈ [0, 1]. For p ∈ [0, 1], by a similarity relation to a degree at least p,
based on σ, we mean the relation σp = {〈x, y〉 | σ(x, y) ≥ p}. Such defined σp is also
simply called the similarity relation. �

A similarity relation is used to construct similarity neighborhoods for individuals.

Definition 3.2. By a neighborhood of u wrt σp we mean the pair of sets nσp

(u) =〈
nσp

+ (u), nσp

⊕ (u)
〉
, where nσp

+ (u) = {u′ ∈ U | σp(u,u′) holds} is called the lower
approximation of the neighborhood, and nσp

⊕ (u) = nσp

+ (u) ∪ {y | σ(u, y) = Υ} is
called the upper approximation of the neighborhood. �

The lower approximation nσp

+ (u) consists of elements which, in the context of avail-
able knowledge, are surely similar enough to u, while the upper approximation nσp

⊕ (u)
consists additionally of elements that might be similar to u due to the unknown status
of the similarity function. Note that in the case when σ is a total similarity function, we
have that nσp

+ (u) = nσp

⊕ (u), thus the neighborhood can be considered as a single crisp
set rather than pair of approximations.

Definition 3.3. A similarity space is defined as tuple Σ = 〈U, σ, p〉, consisting of

– a nonempty set U , called the domain of Σ
– a similarity function σ
– a similarity threshold p ∈ [0, 1].

If σ is a total similarity function, then Σ is called total. If σ is p-serial (p-reflexive,
p-symmetric, p-transitive) then Σ is called serial (reflexive, symmetric, transitive). �

Tolerance spaces, as defined in [3], are total reflexive and symmetric similarity spaces
(cf. [9]). Since reflexivity implies seriality, tolerance spaces are serial similarity spaces.

4 Approximations and Vagueness

Let us define the notions of approximation and vagueness as understood in this paper.

Definition 4.1. Let Σ = 〈U, σ, p〉 be a serial similarity space and let S ⊆ U . The
lower and upper approximation of S wrt Σ, denoted respectively by SΣ+ and SΣ⊕ , are

defined by SΣ+
def= {u ∈ U : nσp

+ (u) ⊆ S} and SΣ⊕
def= {u ∈ U : nσp

⊕ (u) ∩ S �= ∅}. �

By SΣ− and SΣ
 we denote the complement of S⊕ and of S+ , respectively. The bound-
ary region of S, denoted by SΣ± , is defined as (SΣ⊕−SΣ+).

Intuition behind Definition 4.1 is depicted in Fig.1. The element marked by ∇ is
in the lower approximation of S – its whole lower approximation neighborhood is in-
cluded in S. The element marked by � is in the boundary region – its upper approxima-
tion neighborhood contains elements which are in S and elements outside S. Finally,
the element marked by � is outside of the upper approximation – its whole upper ap-
proximation neighborhood is outside S. Given a particular similarity space, one can be
sure that ∇ is in S, � is outside S. The membership of � in S cannot be determined.
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Fig. 1. Approximations of set S wrt a similarity space Σ

We observe2 that the following proposition holds.

Proposition 4.2. For any serial Σ = 〈U, σ, p〉 and S ⊆ U , we have SΣ+ ⊆ SΣ⊕ . �

If Σ is not serial, then, in general, the above inclusion does not hold. Without this
property, the intuitive idea of an approximate set being bound set theoretically from
below and above would not hold.

Definition 4.3. Given a similarity spaceΣ = 〈U, σ, p〉, by a vague set overΣ or simply
a vague set3 (when Σ is known from context), we shall understand a pair 〈SΣ+ , SΣ⊕〉,
where S ⊆ U . 〈SΣ+ , SΣ⊕〉 is called a crisp set over Σ (or simply a crisp set, when Σ
is known), when SΣ+ = SΣ⊕ . Then we write SΣ+ rather than the whole pair. �

Observe that in the definition above, boundary regions model borderline cases. More-
over, the parameter p ofΣ may vary when perceptual capabilities of an observer change.
Consequently, for a given concept its boundary region is not definitely fixed but contex-
tual. Note also that relations are sets of tuples and can be approximated given a similar-
ity space on tuples of the corresponding type.

We assume that the objective level is specified by means of crisp or vague rela-
tions, e.g., stored in a relational or deductive database, or defined by means of formulas
of a given logic with underlying relational semantics. We also assume that any serial
similarity space Σ reflects perceptual limitations of an observer’s subjective level:

Definition 4.4. Assume Σ = 〈U, σ, p〉 is a serial similarity space and let Z = 〈X,Y 〉
be a vague set over U . Then a perception report of Z wrt Σ1 = 〈U1, σ1, p1〉 is defined
as the vague set 〈XΣ+

1
, YΣ⊕

1
〉. �

2 E.g., by a slight generalization of the corresponding argument given in [2].
3 We sometimes use the term approximate set as a synonym for “vague set”. We also deal with

vague predicates to mean that their extensions are vague sets (of tuples of respective arity).
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Definition 4.4 allows one to model perception reports pertaining to both the objective
and subjective levels of different agents. For example, in agent communication, a re-
ceiving agent may view the sending agent’s knowledge as objective and then apply a
perceptual filter in terms of its current perceptual limitations. The resulting interpreta-
tion of knowledge is that perceived subjectively by the receiver and it is different from
that perceived "objectively" by the sender. For example, the vague setZ can be provided
by an agent with some perceptual limitations modelled by Σ. Receiver approximatesZ
using its own filter Σ1. These ideas are developed, in the context of tolerance spaces, in
[4,5], and can easily be generalized onto arbitrary serial similarity spaces.

We also have the following theorem about the unfalsifiability of perception in the
case of serial similarity spaces. It essentially states that once an element is surely per-
ceived to be in a set under observation, it cannot be further classified not to be in the set,
even when the similarity threshold is arbitrarily changed (without violating seriality).
Similarly, once it is surely perceived to be outside the set, it cannot be further classified
to be in the set no matter what the similarity threshold is (again, retaining seriality).

Theorem 4.5. Let Σ = 〈U, σ, p〉 and Σ1 = 〈U, σ, q〉 be any serial similarity spaces.4

Then, for any vague set Z = 〈X,Y 〉 over U , we have:

1. if s ∈ XΣ+ then s ∈ XΣ⊕
1

2. if s ∈ YΣ− then s ∈ YΣ

1

Proof. We prove the first part. The second is symmetric. Consider the following cases:

q ≤ p : then nσp

⊕ (s) ⊆ nσq

⊕ (s). If s ∈ XΣ+ then, by seriality of Σ, s ∈ XΣ⊕ . Thus
nσp

⊕ (s) ∩X �= ∅, i.e., nσq

⊕ (s) ∩X �= ∅, i.e., s ∈ XΣ⊕
1

q > p : then nσq

+ (s) ⊆ nσp

+ (s). Thus, if s ∈ XΣ+ then nσq

+ (s) ⊆ nσp

+ (s) ⊆ X . By
seriality ofΣ1, nσq

+ (s) �= ∅. Thus nσq

+ (s)∩X �= ∅. By definition, nσq

+ (s) ⊆ nσq

⊕ (s),
hence nσq

⊕ (s) ∩X �= ∅, i.e., s ∈ XΣ⊕
1

. �

In the non-serial case the above theorem does not hold, as is shown in Example 5.1.

5 Examples

The first example provides a counter-example to Theorem 4.5 in the case of non-
seriality of the underlying similarity spaces.

Example 5.1. Let us go back to Example 2.1. Assume that there are two objects:Ob and
the robot Ro, and that the robot determines similarity σ(Ob,Ob) = 1.0, σ(Ob,Ro) =
σ(Ro,Ob) = 0.8 and σ(Ro,Ro) = 0.6. Consider similarity spaces Σ = 〈{Ob,Ro}, σ,
0.8〉 and Σ1 = 〈{Ob,Ro}, σ, 1.0〉. Σ is serial while Σ1 is not. We have: {Ob}Σ+ =
{Ro} and {Ob}Σ⊕

1
= {Ob}. Thus Ro is in {Ob}Σ+ but not in {Ob}Σ⊕

1
which, in the

non-serial case, falsifies Theorem 4.5 with X = {Ob}. �

Consider the heap example and the Sorites Paradox, widely discussed, also in [1].

4 Thus, it is sufficient to require that σ is
(
max{p, q}

)
-serial.
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Example 5.2. Let Heap(n) be a predicate, denoting that n grains of sand make a heap.
Assume that an agent is asked to recognize heaps, provided that the objective level def-
inition of Heap is Heap(n) = n ≥ 100. Assume further that the agent’s subjective re-
ality is modeled in terms of a perception filter given by the similarity space 〈N, σ, 0.8〉,
where N is the set of natural numbers and

σ(k,m) = 1 − | k − m |
max{1, k,m} . 5

Since σ is total, we have that nσ0.8

+ (i) = nσ0.8

⊕ (i) = {j | σ(i, j) ≥ 0.8}. We now
calculate approximations of [100,+∞] which is the set of natural numbers satisfying
the predicate Heap. Using Definition 4.1, we get HeapΣ+ = [125,+∞) and HeapΣ⊕ =
[80,+∞).Consequently, we can put HeapΣ− = N−HeapΣ⊕ = [0, 79] and HeapΣ± =
HeapΣ⊕ −HeapΣ+ = [80, 125). HeapΣ+(n) implies HeapΣ+(n+1), but the converse
implication is satisfied only when n is greater than or equal to a certain natural number,
in our case, n = 125. Similarly, HeapΣ⊕(n+ 1) implies HeapΣ⊕(n) for n ≥ 80.

The above induction is related to the Sorites Paradox. We share the opinion that
the paradox results from mixing the objective and subjective levels. Quantitative mea-
surements on the objective level are often not reflected by a qualitative change on the
subjective level. One cannot expect a relatively small change, that cannot be observed
due to perceptual limitations, to cause qualitative change at the agent’s subjective level.
“Grains of sand” are too small to register a qualitative change from non-heap to heap.

To be more specific, consider similarity σ(1000, 1001) = 1 − 1/1001 = 0.999
between 999 and 1000 grains of sand. Given particular perceptual limitations, say p =
0.99, we have that 999 and 1000 grains are indiscriminately different. One grain is too
small “particle” to be recognized in this context and to make a qualitative change. �

In Example 5.2 we computed the subjective perception of Heap wrt the considered
similarity space. One can additionally solve two other related tasks, where the subjective
perception of Heap is understood according to Definition 4.4:

– given a subjective perception of Heap and a similarity space Σ, determine the ob-
jective level definition of Heap

– given an objective level definition of Heap, a subjective perception of Heap and
a similarity space σ, determine the similarity threshold p of Σ,

Example 5.3. Assume that we compare the sweetness of coffee cups by comparing the
number of sugar grains in each cup. Suppose further that objectively two cups contain-
ing k and m grains of sugar, respectively, are of the same sweetness, denoted by k ∼ n,
when for some natural number i, both k and m are in the same interval [i∗10, i∗10+9].
Clearly, ∼ is transitive. Suppose, a robot is given the task to measure sweetness, but has
some subjective limitations pertaining to its sensors. Limitations are represented as the
similarity spaceΣ = 〈{0, 1, 2, . . .}, σ, 0.6〉, where σ is defined as in Example 5.2. Now,
σ(2, 3) = 2/3 ≥ 0.6, σ(3, 5) = 0.6 ≥ 0.6 and σ(2, 5) = 0.4 �≥ 0.6, i.e., 2, 3 and 3, 5
are of the same sweetness wrt Σ, whereas 2, 5 are not. Thus, on the subjective level,
transitivity does not apply. �

5 This similarity function is just an example. However, it reflects the intuition that heaps, say, of
1000 and 1001 grains are more similar than heaps of, e.g., 100 and 101 grains.
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Example 5.4. Let Fast(c) be a predicate denoting that a car c’s speed is very high. We
assume here that each car is characterized by its speed, measured by a radar.6 The speed
of a car c is given by a function S(c), whose value is in [0, 200] ∪ Υ . Assume that an
agent is asked to identify fast cars, provided that the objective level definition of Fast,
given particular road conditions, is Fast(c) ≡ [S(c) ≥ 80].

Suppose that the agent’s subjective perceptual capability is modelled by a similarity
space Σ = 〈C, σ, 0.9〉, where C is the set of considered cars and

σ(c1, c2)
def=

⎧⎨⎩
1 −| S(c1) − S(c2) | /200 when S(c1), S(c2) �= Υ
1 when S(c1) = S(c2) = Υ
Υ otherwise.

We have nσ0.9

+ (c) = {c′ | σ(S(c), S(c′)) ≥ 0.9}. In the same way we have nσ0.9

⊕ (c) =
nσ0.9

+ (c) ∪ {c′ | σ(S(c), S(c′)) = Υ}. We now compute approximations of the set
FC = {c ∈ C | S(c) ≥ 80}. Using Definition 4.1, we finally obtain that FCΣ+ =
{c ∈ C | S(c) ≥ 100} and FCΣ⊕ = {c ∈ C | S(c) ≥ 60 or S(c) = Υ}. �

6 Complexity of the Approach

The approach we propose is tractable in the case of finite domains, as shown below.

Definition 6.1. A similarity space Σ = 〈U, σ, p〉 is tractable, if U is finite and, for all
a, b ∈ U , σ(a, b) can be computed in deterministic polynomial time in the size of U . �

Assume the considered relations are stored in relational or deductive databases tractable
intensional part (e.g., expressed by the classical first-order rules or fixpoint calculus –
see, e.g., [10]). Under such assumptions, we have the following proposition.

Proposition 6.2. Let Σ = 〈U, σ, p〉 be a tractable similarity space. Then, for any set
S ⊆ U , approximations SΣ+ and SΣ⊕ are computable in deterministic polynomial
time in the size of U . �

In consequence, any query referring to RΣ+ and RΣ⊕ , where R is a relation on U , are
computable in deterministic polynomial time in the size of U .

7 Relation to Other Approaches and Conclusion

The use of similarity spaces is a generalization of Pawlak’s [6] pioneering work with
rough sets where indiscernibility among individuals is modeled in terms of equivalence
classes on feature/value pairs. In this paper, we also extend the results in [2,3,4,5].
The incentive for this generalization is due to the novel manner in which Halpern [1]
approaches problems of intransitivity and vagueness. Fuzzy sets [11,12,13] provide an-
other means of modeling vagueness and [14,15] provide insights into how one can
formally translate between fuzzy and rough sets. These techniques can also be applied
to our generalizations. There is also some relevant work outside the soft computing
genre which attempts to provide methods and techniques for reasoning with approxi-
mate relations of which ( [16,17,18,19,20]) are representative.

6 Note that a radar may not be able to measure the speed of some cars.
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Abstract. The decision theory is defined typically as the combination of
utility theory and probability theory. In this paper we generalize the de-
cision theory as the performance measure theory and uncertainty theory.
Intelligent agents look for approximate optimal decisions under bounded
resources and uncertainty. The $-calculus process algebra for problem
solving applies the cost performance measures to converge to optimal
solutions with minimal problem solving costs, and allows to incorporate
probabilities, fuzzy sets and rough sets to deal with uncertainty and in-
completeness.
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1 Introduction

In 1944 von Neumann and Morgenstern [9] gave the foundations of the decision
theory using utilities and probabilities. In 1995 Russell and Norvig [7] in the
most popular AI textbook argued that the decision theory = utility theory +
probability theory. In this paper, we generalize the utility theory to allow to use
various performance measures, including utilities, costs and fitness, and proba-
bility theory we extend to uncertainty theory, including probabilities, fuzzy sets
and rough sets.

AI typically deals with dynamic, incomplete and uncertain domains where
conventional algorithms do not perform well because of intractability or even
undecidability. If so, the need for the new computational theory serving better
new real-world applications and not hampered by computational explosion is
obvious. Simply, in the solution of computational problems, the complexity of the
reasoning process/search should be taken into account. Resource-based reasoning
[4,7], called also anytime algorithms, trading off the quality of solutions for the
amount of resources used, seems to be particularly well suited for the solution of
hard computational problems in real time and under uncertainty. Additionally,
new superTuring models of computation [2,3] trying to provide nonalgorithmic
solutions to the TM undecidable problems, can and should be useful for solutions
� Research supported in part by ONR under grant N00014-03-1-0421.
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of real-world problems. On the other hand, process algebras [5] are currently the
most mature approach to concurrent and distributed systems, and seem to be
the appropriate way to formalize multiagent systems.

The $-calculus, presented in this paper (section 3), belongs to superTuring
models of computation and provides a support to handle intractability and unde-
cidability in problem solving. Technically, this is a process algebra derived from
Milner’s π-calculus [5] extended by von Neumann/Morgenstern’s costs/utilities
[9] and a very general search method, called the kΩ-optimization. This novel
search method allows to simulate many other search algorithms (of course, not
all), including A*, minimax, expectiminimax, hill climbing, dynamic program-
ming, evolutionary algorithms, neural networks. The search tree can be infinite
- this in the limit allows to solve nonalgorithmically some undecidable prob-
lems (for instance, the halting problem of the Universal Turing Machines, or
to approximate a nonexisting universal search algorithm). For solutions of in-
tractable problems the total optimization is utilized to provide an automatic
way to deal with intractability by optimizing together the quality of solutions
and search costs. In this paper we present the solution of the total optimization
problem (section 3.4) in the context of uncertain dynamic environments using
either probabilities, or fuzzy sets or rough sets membership functions.

2 Measuring Problem Solving Performance: Optimization
Under Bounded Resources

The performance of search algorithms (intelligence of an agent) can be evaluated
in four ways (see e.g. [7]) capturing whether a solution has been found, its quality
and the amount of resources used to find it.

Definition 1. On completeness, optimality, search optimality, and to-
tal optimality We say that the search algorithm is

– Complete if it guarantees reaching a terminal state/solution if there is one.
– Optimal if the solution is found with the optimal value of its objective func-

tion.
– Search Optimal if the solution is found with the minimal amount of re-

sources used (e.g., the time and space complexity).
– Totally Optimal if the solution is found both with the optimal value of its

objective function and with the minimal amount of resources used.

Definition 2. On problem solving as a multiobjective minimization
problem Given an objective function f : A × X → R, where A is an algo-
rithm space with its input domain X and codomain in the set of real numbers,
R, problem solving can be considered as a multiobjective minimization problem to
find a∗ ∈ AF and x∗ ∈ XF , where AF ⊆ A are terminal states of the algorithm
space A, and XF ⊆ X are terminal states of X such that

f(a∗, x∗) = min{f1(f2(a), f3(x)), a ∈ A, x ∈ X}
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where f3 is a problem-specific objective function, f2 is a search algorithm objec-
tive function, and f1 is an aggregating function combining f2 and f3.

Without losing generality, it is sufficient to consider only minimization prob-
lems. An objective function f3 can be expanded to multiple objective funtions
if the problem considered has several objectives. The aggregating function f1

can be arbitrary (e.g., additive, multiplicative, a linear weighted sum). The only
requirement is that it captures properly the dependence between several objec-
tives. In particular, if f1 becomes an identity function, we obtain the Pareto
optimality

f(a∗, x∗) = min{(f2(a), f3(x)), a ∈ A, x ∈ X}
Using Pareto optimality is simpler, however we lose an explicit dependence be-
tween several objectives (we keep a vector of objectives ignoring any priorities,
on the other hand, we do not have problems combining objectives if they are
measured in different “units”, for example, an energy used and satisfaction of
users). For fixed f2 we consider an optimization problem - looking for minimum
of f3, and for fixed f3 we look for minimum of search costs - search optimum of
f2.

Objective functions allow capturing convergence and the convergence rate
of construction of solutions much better than symbolic goals. Obviously every
symbolic goal/termination condition can be expressed as an objective function.
For example, a very simple objective function can be the following: if the goal is
satisfied the objective is set to 1, and if not to 0. Typically, much more complex
objective functions are used to better express evolutions of solutions.

Let (A∗, X∗) denotes the set of totally optimal solutions. In particular X∗

denotes the set of optimal solutions, and A∗ the optimal search algorithms.
Let Y be a metric space, where for every pair of its elements x, y there is

assigned the real number D(x, y) ≥ 0, called distance, satisfying three conditions:

1. D(x, x) = 0,
2. D(x, y) = D(y, x)
3. D(x, y) + D(y, z) ≥ D(x, z)

The distance function can be defined in different ways, e.g., as the Hamming
distance, Euclidean distance, D(x) = 0 if x satisfies termination condition and
D(x) = 1 otherwise. To keep it independent from representation, and to allow
to compare different solving algorithms, we will fix the distance function to the
absolute value of difference of the objective functions D(x, y) = |f(x) − f(y)|.
We extend the definition of the distance from the pairs of points to the distance
between a point and the set of points D(x, Y ) = min{|f(x) − f(y)|; y ∈ Y }

In problem solving, we will be interested in the distance to the set of op-
timal solutions Y ∗, i.e., in the distance D((a, x), (A∗, X∗)), and in particular
D(x,X∗),D(a,A∗), where x ∈ X is the solution of the given problem instance,
and a ∈ A is the algorithm producing that solution.

Definition 3. On solution convergence For any given problem instance, its
solution evolved in the discrete time t = 0, 1, 2, ..., will be said to be
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– convergent to the total optimum iff there exists such τ that for every t > τ
D((a[t], x[t]), (A∗, X∗)) = 0,

– asymptotically convergent to the total optimum iff for every ε, ∞ > ε > 0,
there exists such τ that for every t > τ D((a[t], x[t]), (A∗, X∗)) < ε,

– convergent with an error ε to the total optimum, where ∞ > ε > 0 iff there
exists such τ that for every t > τ D((a[t], x[t]), (A∗, X∗)) ≤ ε,

– divergent, otherwise.

If solution is convergent and τ is fixed, then the convergence is algorithmic,
otherwise it is nonalgorithmic. Asymptotic convergence is nonalgorithmic (the
time is unbounded).

Search can involve single or multiple agents. For multiple agents search can
be cooperative, competitive, or random. In cooperative search other agents help
to find an optimum, in competitive search - they distract to reach an optimum,
and in random search other agents do not care about helping or distracting
to reach an optimum. Search algorithms can be online, where action execution
and computation are interleaved, and offline, where the complete solution is
computed first and executed after without any perception.

3 The $-Calculus Algebra of Bounded Rational Agents

The $-calculus is a mathematical model of processes capturing both the final
outcome of problem solving as well as the interactive incremental way how the
problems are solved. The $-calculus is a process algebra of Bounded Rational
Agents for interactive problem solving targeting intractable and undecidable
problems. It has been introduced in the late of 1990s [1,2,3,8]. The $-calculus
(pronounced cost calculus) is a formalization of resource-bounded computation
(also called anytime algorithms), proposed by Dean, Horvitz, Zilberstein and
Russell in the late 1980s and early 1990s [4,7]. Anytime algorithms are guar-
anteed to produce better results if more resources (e.g., time, memory) become
available. The standard representative of process algebras, the π-calculus [5] is
believed to be the most mature approach for concurrent systems.

The $-calculus rests upon the primitive notion of cost in a similar way as the
π-calculus was built around a central concept of interaction. Cost and interaction
concepts are interrelated in the sense that cost captures the quality of an agent
interaction with its environment. The unique feature of the $-calculus is that it
provides a support for problem solving by incrementally searching for solutions
and using cost to direct its search. The basic $-calculus search method used for
problem solving is called kΩ-optimization. The kΩ-optimization represents this
“impossible” to construct, but “possible to approximate indefinitely” universal
algorithm. It is a very general search method, allowing the simulation of many
other search algorithms, including A*, minimax, dynamic programming, tabu
search, or evolutionary algorithms. Each agent has its own Ω search space and
its own limited horizon of deliberation with depth k and width b. Agents can
cooperate by selecting actions with minimal costs, can compete if some of them
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minimize and some maximize costs, and be impartial (irrational or probabilis-
tic) if they do not attempt optimize (evolve, learn) from the point of view of
the observer. It can be understood as another step in the never ending dream
of universal problem solving methods recurring throughout all computer science
history. The $-calculus is applicable to robotics, software agents, neural nets,
and evolutionary computation. Potentially it could be used for design of cost
languages, cellular evolvable cost-driven hardware, DNA-based computing and
molecular biology, electronic commerce, and quantum computing. The $-calculus
leads to a new programming paradigm cost languages and a new class of com-
puter architectures cost-driven computers.

3.1 The $-Calculus Syntax

In $-calculus everything is a cost expression: agents, environment, communica-
tion, interaction links, inference engines, modified structures, data, code, and
meta-code. $-expressions can be simple or composite. Simple $-expressions α are
considered to be executed in one atomic indivisible step. Composite $-expressions
P consist of distinguished components (simple or composite ones) and can be
interrupted.

Definition 4. The $-calculus The set P of $-calculus process expressions con-
sists of simple $-expressions α and composite $-expressions P , and is defined by
the following syntax:

α ::= ($i∈I Pi) cost
| (→i∈I c Pi) send Pi with evaluation through channel c
| (←i∈I c Xi) receive Xi from channel c
| (′i∈I Pi) suppress evaluation of Pi

| (ai∈I Pi) defined call of simple $-expr. a with parameters Pi

| (āi∈I Pi) negation of defined call of simple $-expression a

P ::= ( ◦ i∈I α Pi) sequential composition
| ( ‖ i∈I Pi) parallel composition
| ( ∪∪ i∈I Pi) cost choice
| ( ∪+ i∈I Pi) adversary choice
| (
i∈I Pi) general choice
| (fi∈I Pi) defined process call f with parameters Pi, and its

associated definition (:= (fi∈I Xi) R) with body R

The indexing set I is a possibly countably infinite. In the case when I is
empty, we write empty parallel composition, general, cost and adversary choices
as ⊥ (blocking), and empty sequential composition (I empty and α = ε) as ε
(invisible transparent action, which is used to mask, make invisible parts of $-
expressions). Adaptation (evolution/upgrade) is an essential part of $-calculus,
and all $-calculus operators are infinite (an indexing set I is unbounded). The
$-calculus agents interact through send-receive pair as the essential primitives of
the model.
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Sequential composition is used when $-expressions are evaluated in a textual
order. Parallel composition is used when expressions run in parallel and it picks
a subset of non-blocked elements at random. Cost choice is used to select the
cheapest alternative according to a cost metric. Adversary choice is used to select
the most expensive alternative according to a cost metric. General choice picks
one non-blocked element at random. General choice is different from cost and
adversary choices. It uses guards satisfiability. Cost and adversary choices are
based on cost functions. Call and definition encapsulate expressions in a more
complex form (like procedure or function definitions in programming languages).
In particular, they specify recursive or iterative repetition of $-expressions.

Simple cost expressions execute in one atomic step. Cost functions are used
for optimization and adaptation. The user is free to define his/her own cost met-
rics. Send and receive perform handshaking message-passing communication,
and inferencing. The suppression operator suppresses evaluation of the under-
lying $-expressions. Additionally, a user is free to define her/his own simple
$-expressions, which may or may not be negated.

3.2 The $-Calculus Semantics: The kΩ-Search

In this section we define the operational semantics of the $-calculus using the kΩ-
search that captures the dynamic nature and incomplete knowledge associated
with the construction of the problem solving tree.

The basic $-calculus problem solving method, the kΩ-optimization, is a very
general search method providing meta-control, and allowing to simulate many
other search algorithms, including A*, minimax, dynamic programming, tabu
search, or evolutionary algorithms [7]. The problem solving works iteratively:
through select, examine and execute phases. In the select phase the tree of pos-
sible solutions is generated up to k steps ahead, and agent identifies its alphabet
of interest for optimization Ω. This means that the tree of solutions may be
incomplete in width and depth (to deal with complexity). However, incomplete
(missing) parts of the tree are modeled by silent $-expressions ε, and their cost es-
timated (i.e., not all information is lost). The above means that kΩ-optimization
may be if some conditions are satisfied to be complete and optimal. In the exam-
ine phase the trees of possible solutions are pruned minimizing cost of solutions,
and in the execute phase up to n instructions are executed. Moreover, because
the $ operator may capture not only the cost of solutions, but the cost of re-
sources used to find a solution, we obtain a powerful tool to avoid methods
that are too costly, i.e., the $-calculus directly minimizes search cost. This basic
feature, inherited from anytime algorithms, is needed to tackle directly hard op-
timization problems, and allows to solve total optimization problems (the best
quality solutions with minimal search costs). The variable k refers to the limited
horizon for optimization, necessary due to the unpredictable dynamic nature
of the environment. The variable Ω refers to a reduced alphabet of informa-
tion. No agent ever has reliable information about all factors that influence all
agents behavior. To compensate for this, we mask factors where information is
not available from consideration; reducing the alphabet of variables used by the
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$-function. By using the kΩ-optimization to find the strategy with the lowest
$-function, meta-system finds a satisficing solution, and sometimes the optimal
one. This avoids wasting time trying to optimize behavior beyond the foreseeable
future. It also limits consideration to those issues where relevant information is
available. Thus the kΩ optimization provides a flexible approach to local and/or
global optimization in time or space. Technically this is done by replacing parts
of $-expressions with invisible $-expressions ε, which remove part of the world
from consideration (however, they are not ignored entirely - the cost of invisible
actions is estimated).

3.3 Probabilistic, Fuzzy Sets and Rough Sets Performance Measure

The domain of the cost function is a problem-solving derivation tree constructed
by the kΩ-optimization meta-procedure. The derivation tree consists of nodes S
and edges E. Both kΩi[t] and xi[t] $-expressions form own trees, where kΩi[t] tree
is responsible for generation, pruning and evaluation of xi[t] tree representing a
problem solution. To avoid the complexity to analyze and synchronize two trees
for total optimization, both trees can be compressed/collapsed into a single tree,
where kΩi[t] can be represented as nodes, and xi[t] as edges of the combined
tree, or, alternatively, kΩi[t] can form edges, and xi[t] nodes of the tree. In such
a way, a problem-solving tree will capture both solutions and the search process.
The cost function $3 measures the quality of solutions (costs of xi[t]), the cost
function $2 measures the costs of search (costs of kΩi[t]), and $1 aggregating
function combines costs of solutions and search.

Let us define costs of nodes and edges as $2 : S → R∞ and $3 : E → R∞ (or
alternatively, as $3 : S → R∞ and $2 : E → R∞, depending whether kΩ and x
have been associated with nodes or edges of the tree).

Then the cost of the problem-solving trees T as combining costs of the search
and the solution quality can be defined as $ : T → R∞, i.e.,

$(kΩi[t], xi[t]) = $1($2(kΩi[t]), $3(xi[t])),

where $1 is an aggregating cost function, $2 is a search cost function, and $3 is
the problem-specific cost function.

In this paper, both $1, $2, and $3 will take the same uniform form of the
standard cost function defined below. In other words, both trees, edges and nodes
will form the $-expressions, and then it is sufficient to define how to compute
the costs of $-expressions.

Let v : Aε → R∞ be costs of simple cost expressions, including a silent
expression. They are context dependent, i.e., they depend on states. In particular,
cost of ε may depend which cost expression is made invisible by ε. Technically, $
is defined on the problem-solving tree, consisting of nodes and edges expressed
by $-expressions, as the function mapping the tree to a real number: $i : P →
R∞, i = 2, 3. Thus it is sufficient to define costs of $-expressions P. Note that the
value of the cost function (or its estimate) can change after each loop iteration
(evaluation of a simple cost expression).
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Definition 5. A Standard Cost Function For every $-expression P its cost
($i P ), i = 1, 2, 3 is defined as below:

1. ($i ⊥) = +∞

2. ($i ε) =
{

0 for observation congruence
(v ε) for strong congruence

3. ($i α) = cα + (v α), where cα =
{

0 α does not block
+∞ α blocks

($i ᾱ) = 1
cα

+ (v ᾱ)

4. ($i (
i∈I Pi)) =

⎧⎨⎩Σi∈I (pi ∗ ($i Pi)) for probability-based cost function
maxi∈I (mi ∗ ($i Pi)) for fuzzy sets-based cost function
maxi∈I (μi ∗ ($i Pi)) for rough sets-based cost function

where pi is the probability of choice of the i-th branch, mi is a fuzzy set
membership function of choice of the i-th branch, and μi is a rough sets
membership function of the i-th branch choice

5. ($i ( ∪∪ i∈I Pi)) = (mini∈I ($i Pi))
6. ($i ( ∪+ i∈I Pi)) = (maxi∈I ($i Pi))
7. ($i (◦ i∈I α Pi)) = ($i α) + Σi∈I ($i P ′

i )
where P ′

i represents a possible change of Pi by receive or return value by α

8. ($i ‖ i∈IPi))=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ΣJ⊆I pJ ∗ (($i {αj}j∈J) + ($i ( ‖ i∈I−J,j∈J Pi P ′
j))) for

probability-based standard cost function
maxJ⊆I mJ ∗ (($i {αj}j∈J ) + ($i ( ‖ i∈I−J,j∈J Pi P ′

j))) for
fuzzy sets-based standard cost function
maxJ⊆I μJ ∗ (($i {αj}j∈J) + ($i ( ‖ i∈I−J,j∈J Pi P ′

j))) for
rough sets-based standard cost function

where pJ is the probability of choice of the J-th multiset, mi is a fuzzy set
membership function of choice of the J-th multiset, and μi is a rough sets
membership function of the J-th multiset choice

9. ($i (fi∈I Qi)) = ($i P{Qi/Xi}) where (:= (fi∈I Xi) P ).

Cost choice calculates costs as the minimum of costs of its components. Ad-
versary choice cost is defined as the cost of its most expensive component. Gen-
eral choice cost has been defined as the average component cost if to use prob-
abilities to represent uncertainty, or the maximum if to use fuzzy sets [10] or
rough sets [6]. Sequential composition cost adds costs of its components. Paral-
lel composition cost selects a nonempty multiset that does not block. It has been
defined as the average component cost. Alternatively, parallel composition could
select a specific multiset to be executed, e.g., the maxium subset that does not
block (for the maximum concurrency semantics), or the subset with the minimal
costs (probably the most interesting alternative, on the other hand, increasing
costs of the kΩ-search). However, both these alternatives we will leave as viable
choices for the user who can overwrite the cost of parallel composition definition
if it is preferable. Cost of the recursive (user defined) function call is calculated
as the cost of its body.
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3.4 The $-Calculus Support for Intractability: Optimization Under
Bounded Resources and Total Optimality

Definition 6. (On elitist selection of the $-calculus search) The $-
calculus search will use an elitist strategy if states selected for expansion in
the next loop iteration of the kΩ-optimization will contain states with the most
promising (i.e., minimal) costs.

Using elitism will allow to expand the most promising parts of the tree only.

Definition 7. (On admissibility of the $-calculus search) The $-calculus
search will be admissible if the costs of silent $-expressions are not overestimated.

The admissibility requirement will prohibit to stop prematurely search if a
non-optimal goal is found that may look a more promising than the optimal
goal. Note that elitist selection concept is typical for evolutionary algorithms,
and admissibility for heuristic search, e.g., the A* algorithm.

A total optimality provides a direct and elegant method to deal with in-
tractability of problem solving search. It will use a power of evolution to avoid
expensive search methods. In other words, both the solutions and algorithms
producing the solutions will be evolved (but for the price that perhaps the qual-
ity of solutions found would be worse compared to solutions where we ignore
search costs, i.e., total optima in most cases are different than problem-specific
optima).

Definition 8. (On total optimality of the $-calculus search) The $-
calculus search of the i-th agent is totally optimal if the kΩ-optimization has
its goal condition set to the optimum of the cost function $i(kΩi[t], xi[t]) and
$i(kΩi[t], xi[t]) is convergent/asymptotically convergent to the set of optimal so-
lutions (kΩ∗

i , X
∗
i ).

Theorem 1. (On total optimality of the $-calculus search) For a given
kΩ-optimization procedure kΩi[0] with an initial problem solution xi[0], if the
$-calculus search of the i-th agent satisfies four conditions

1. the goal condition is set to the optimum of the search algorithm cost function
$i(kΩi[t], xi[t]) with the optimum $∗i ,

2. search is complete,
3. elitist selection is used, and
4. search is admissible,

then the kΩ-optimization will find and maintain the optimum (kΩ∗
i , x

∗
i ) of

$i(kΩi[t], xi[t]) in t = 0, 1, 2, ... iterations.

Proof: By completeness, the kΩ-search reaches (perhaps in an infinite number of
loop iterations) a goal state that is equivalent to the optimal state. By elitism, the
found optimum will not be lost even for cases where the verification of finding the
optimum will be very difficult or impossible (e.g., a very complex or not precisely
defined analytically fitness function). By admissibility the premature stopping
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in a local optimum will be prevented, because an optimal state will be always
looking as a more promising. Always the most promising node (the cheapest one,
according to the $i metric) will be in the group of nodes selected for expansion
in a new iteration, because the kΩ-optimization expands all nodes in order of
increasing $i values, thus it must eventually expand the optimal (reachable) goal
state. Both conditions imply that the kΩ-optimization will eventually converge
(asymptotically converge), perhaps requiring an infinite number of generations,
to the total optimum (kΩ∗

i , x
∗
i ) of $i, i.e., the best quality solution with minimal

resources used.

The possible scenario to test the total optimality could be a robot navigating
from the starting to the terminal point, where the trajectory of the robot is a
subject to uncertainty (wheels are slippery, sensors measurements are imprecise).
Thus we can interpret that the robot, instead of the desired point/state, may
reach several points/states measured either with some probablity, or fuzzy, or
rough membership function. The robot tries to find both the shortest path, and
to minimize the time spent on the trajectory computation at the same time.

4 Conclusions

In the paper the solution of the total optimization problem under uncertainty
has been presented. The extension of this work could be twofold: a new ax-
iomatization of the utility theory allowing to incorporate fuzzy sets and rough
sets instead of probabilities, and the standardization of the cost performance
measures that may lead to a new cost paradigm languages.
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Abstract. The information entropy, as a measurement of the average
amount of information contained in an information system, is used in
the classification of objects and the analysis of information systems. The
information entropy of a partition is non-increasing when the partition is
refined, and is related to rough sets by Wong and Ziarko. The partitions
and information entropy have some graph-theoretical properties. Given
a non-empty universe U, all the partitions G on U are taken as nodes,
and a relation V between partitions are defined and taken as edges. The
graph obtained is denoted by (G, V ), which represents the connections
between partitions on U. According to the values of the information en-
tropy of partitions, a directed graph (G,

−→
V ) is defined on (G, V ). It will

be proved that there is a set of partitions with the minimal entropy;
and a set of partitions with the maximal entropy; and the entropy is
non-decreasing on any directed pathes in (G,

−→
V ) from a partition with

the minimal entropy to one of the partitions with the maximal entropy.
Hence, in (G,

−→
V ), the information entropy of partitions is represented in

a clearly structured way.

Keywords: Information systems, information entropy, classification,
partitions.

1 Introduction

Entropy as a basic notion of science was introduced by Clausius to summarize
thermal behavior of systems in equilibrium or changing in reversible fashion in
the second principle of thermodynamics. The second principle of thermodynam-
ics says that in a spontaneous evolution of closed system not in equilibrium,
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the entropy always increases and attains its maximum value for the state of
equilibrium.

The physical entropy used in thermodynamics is more or less closely related
to the concept of information as used in communication theory (see [5]). If so,
then what is the state of equilibrium of an information system? Information
systems are used to represent objects in the real worlds. When the informa-
tion entropy of an information system is not equal to zero, it means that the
knowledge or the language (the set of attributes in the information system) is
not expressible enough to distinguish objects from each other ([1],[9]). An in-
formation system is taken as an approximation of information about objects in
the real world. As we know better about these objects, the information system
should be refined. Hence, we can define that an information system (U,A) is in
the state of equilibrium, if for any x, y ∈ U, if x �= y then there is at least one
a ∈ A such that x(a) �= y(a). Define θ to be an equivalence relation on U such
that for any x, y ∈ U, xθy iff for every a ∈ A, x(a) = y(a). Let {X1, ..., Xk} be
the equivalence classes of θ. We define the information entropy of information
system (U,A) by

E(U,A) =
1
n

k∑
i=1

|Xi| loga |Xi|,

where n = |U |, and a = 2, e, or 10, and a is omitted below. Hence, an information
system is in the state of equilibrium if and only if the information entropy of the
system is equal to 0.

Using information entropy to measure the uncertainty of rough set prediction
is a competing way for predicting a decision variable. Let Q be a set of conditional
attributes, and d a decision attribute such that A = Q ∪ {d}. Assume that the
partition of U given by Q is X1, ..., Xt, and the partition of U given by d is
Y1, ..., Ys; and assume that c ≤ t is such that for every i ≤ c,Xi ⊆ Yj for some j.
Wong and Ziarko ([6]) firstly studied the connection between entropy and rough
set analysis, and claimed the following

Claim. Suppose that for each c < i ≤ t, | Xi ∩ Yj |= di for all j ≤ s. Then

H loc(d | Q) =
| Yj

Q − Yj
Q

|
n

for all j ≤ s.
Düntsch and Gediga ([2]) gave three models for predicting a decision variable,

defined by different entropy, and gave a counterexample to the claim by Wong
and Ziarko. A modified version of the claim has an affirmative answer (Sui, et
al.[5]).

As a measurement of the average amount of information, the entropy E(θ)
is known to be minimal (0) when θ is the identity relation θ0 on U , i.e., θ is
the finest equivalence relation on U ; and maximal (logn) when θ is the trivial
relation θ1 on U, i.e., θ is the coarsest equivalence relation on U. Except that
E(θ) is non-increasing when θ is refined, little is known about E(θ) for any
equivalence relation θ on U which is finer than θ1 and coarser than θ2. In this
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paper we shall discuss E(θ) for any equivalence relation θ on U, and describe the
value distribution of E(θ) for different θ’s. Given an equivalence relation θ on U,

let {X1, ..., Xk} be the partition induced by θ, and xi = |Xi|. Then, n =
∑k

i=1 xi.
We call such a k-dimensional vector (x1, ..., xk) a k-partition of n.

Given natural numbers n and k with n > k, we define a graph (G, V )n,k

such that every node in G denotes a k-partition of n, i.e., a k-dimensional vector
(x1, ..., xk) such that

∑k
i=1 xk = n; and two nodes (x1, ..., xk) and (y1, ..., yk)

have an edge iff there are i, j ≤ k such that xi = yi + 1 and xj = yj − 1, and for
any i′ �= i, j, xi′ = yj′ , where yi = min{y1, ..., yk} and yj = max{y1, ..., yk}. By
introducing the information entropy of partitions, graph (G, V )n,k is transformed
into a directed graph (G,−→V )n,k such that (x,y) ∈ −→

V if and only if E(x) ≤ E(y).
In the middle of (G,−→V )n,k there is a circle on which the entropy of every node
is minimal, and the entropy of nodes is increasing when nodes leave the circle.

The paper is arranged as follows: in the next section we give the basic defini-
tions and properties of information entropy; in the third section we give the basic
properties of the entropy of k-partitions and two examples to show basic ideas
about the value distribution of the entropy of k-partitions; in the fourth section
for any pair (n, k) satisfying n ≥ k, we define one undirected graph (G, V )n,k and
one directed graph (G,−→V )n,k and prove that the entropy of nodes in (G, V )n,k

is non-decreasing when the nodes leave the middle of the graphes; and the last
section concludes the paper.

2 The Preliminaries

Given an information system (context, approximation space) (U,A), where U
is a nonempty universe and A is a set of attributes, we have an equivalence
relation θ, where θ is defined on U as follows: for any x, y ∈ U, xθy iff for all a ∈
A, x(a) = y(a). For X ⊆ U, we say that XA =

⋃
{θx : θx ⊆ X} is the lower

approximation or positive region of X, and X
A

=
⋃

{θx : x ∈ X} is the upper
approximation or possible region of X, where θx is the equivalence class of θ
containing x.

Given a partition P = {Xi : i ≤ k} of U, we define the entropy of P by

H(P ) =
k∑

i=1

|Xi|
n

log
(

n

|Xi|

)
= logn− 1

n

k∑
i=1

|Xi| log |Xi|,

where n =| U | . If Pθ is the partition induced by θ we denote H(Pθ) by H(θ)
or H(A). To simplify the discussion in the next section, we shall use

E(θ) =
1
n

k∑
i=1

|Xi| log |Xi|,

instead of H(θ). When θ is the identity relation θ0 on U, E(θ) = 0; and when θ
is the coarsest relation θ1 on U, that is, for any x, y ∈ U, xθy, E(θ) = logn.
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Proposition 2.1. Given two equivalence relations θ1 and θ2 on universe U, if
θ1 is a refinement of θ2 then

E(θ1) ≤ E(θ2),

equivalently, H(θ1) ≥ H(θ2).
�

Düntsch and Gediga ([2]) defined the conditional entropy as follows. Let Q
be a set of conditional attributes, d a decision attribute such that A = Q ∪ {d}.
Assume that the partition given by Q is X1, ..., Xt, the partition given by d is
Y1, ..., Ys. Assume that c ≤ t is such that for every i ≤ c,Xi ⊆ Yj for some j. For
every 1 ≤ i ≤ t and 1 ≤ j ≤ s, define

π̂i =
|Xi|
n

; η̂i,j =
| Xi ∩ Yj |

|Xi|
.

The conditional entropy of d given Q is defined as

H loc(d | Q) =
t∑

i=c+1

π̂i

∑
j≤s

η̂i,j log(
1
η̂i,j

).

Then, H loc(d | Q) = H(Q → d) −H(Q).
Sui, et al. ([5]) proved the following theorem and refuted Wong and Ziarko’s

claim.

Theorem 2.2. Suppose that for each c < i ≤ t, | Xi ∩ Yj |= di for all j ≤ s.
Then

H loc(d | Q) = log(s + 1)
| Yj

Q − Yj
Q

|
n

for all j ≤ s.
�

Düntsch and Gediga [2] gave a counterexample to the claim and a proposition
to show that the value of H loc(d | Q) does not depend so much on γ as it does
on the number of classes of θd which is not Q-definable, where γ = 1

n

∑c
i=1 |Xi|.

It is easy to show that the counterexample and the proposition follow directly
from theorem 2.2.

3 The Entropy and Partitions

As for the entropy E(θ), we know that (3.1) the maximal value of E(θ) is logn;
(3.2) the minimal value is 0; and (3.3) E(θ) is non-increasing if θ is refined. We
know little about the entropy of partitions between the finest and coarsest parti-
tions. In the following we discuss the connection between entropy and partitions
in a graph-theoretical way. To simplify the discuss we shall use xi to denote |Xi|,
so that a partition is denoted by a vector (x1, ..., xk) such that

∑k
i=1 xi = n.



The Graph-Theoretical Properties of Partitions and Information Entropy 565

Given a k-dimensional vector (x1, ..., xk), we say that (x1, ..., xk) is a k-
partition of n, if

∑k
i=1 xi = n. We denote a k-partition (x1, ..., xk) of n by

x. Given a k-partition x of n, define the information entropy of x by

E(x) =
1
n

k∑
i=1

xi log xi.

Proposition 3.1. Assume that n = kd+ r. Given a k-partition x of n, if there
is a C ⊆ {1, ..., k} such that

(1) |C| = r;
(2) for every i ∈ C, xi = d+ 1; and
(3) for every i �∈ C, xi = d,

then E(x) is minimal.

Proof. First of all, for any natural numbers x, y, we have that

(x + y)x+y ≥ xx · yy;
(x + 1)x+1 · (x− 1)x−1 ≥ xx · xx;

and
(x+ y) log(x+ y) ≥ x log x+ y log y;
(x+ 1) log(x+ 1) + (x− 1) log(x− 1) ≥ x log x+ x log x.

To prove that E(x) is minimal, we prove by induction on k that for any
m = (m1,m2, ...,mk),

(d+ 1)(d+1)r · dd(k−r) ≤ mm1
1 · mm2

2 · · ·mmk

k .

Hence, E(x) = log((d+ 1)(d+1)r · dd(k−r)) ≤ log(mm1
1 · mm2

2 · · ·mmk

k ) = E(m).
Assume the claim holds for k − 1. Without loss of generality, assume that

mk > d+ 1. By the induction assumption, we have that if r ≥ 1 then

(d+ 1)(d+1)(r−1) · dd(k−r+1) ≤ mm1
1 · mm2

2 · · · (mk − 1)mk−1;

and if r = 0 then

dd(k−1) · (d− 1)(d−1) ≤ mm1
1 · mm2

2 · · · (mk − 1)mk−1.

Assume r ≥ 1. Then,

(d+ 1)(d+1)r · dd(k−r) = (d+ 1)(d+1)(r−1) · (d+ 1)(d+1) · dd(k−r+1) · d−d

≤ mm1
1 · mm2

2 · · · · · (mk − 1)mk−1 (d+ 1)(d+1)

dd

≤ mm1
1 · mm2

2 · · · · · mmk

k ,

because, (mk − 1)(mk−1) (d+ 1)(d+1)

dd
≤ mmk

k when mk > d+ 1.
Similar to prove the case when r = 0.

�
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Example 3.2. Let k = 2. n has 2-partitions:

(0, n), (1, n− 1), ..., (n− 1, 1), (n, 0).

E((0, n)) and E((n, 0)) are maximal.
If n is even then E

((
n
2 ,

n
2

))
is minimal; for any i ≤ n

2 , E((i−1, n− i+1)) >
E((i, n− i)), and for any i > n

2 , E((i− 1, n− i+ 1)) < E((i, n− i)), we denoted
by

(0, n) ← (1, n− 1) ← · · ·
(n

2
,
n

2

)
→ · · · → (n− 1, 1) → (n, 0);

If n is odd then E
((

n−1
2 , n+1

2

))
and E

((
n+1

2 , n−1
2

))
are minimal and equal; for

any i ≤ n−1
2 , E((i− 1, n− i+ 1)) > E((i, n− i)), and for any i > n+1

2 , E((i−
1, n− i+ 1)) < E((i, n− i)), and, we denoted by

(0, n) ← · · · ←
(
n− 1

2
,
n+ 1

2

)
=
(
n+ 1

2
,
n− 1

2

)
→ · · · → (n, 0).

�
Example 3.3. Let k = 3 and n = 3. Define (G, V )3,3 such that G is the set of all
the 3-partitions of 3, and V is defined as follows: ((x1, x2, x3), (y1, y2, y3)) ∈ V
iff either

(1) x1 = y1, x2 = y2 − 1, y2 = max{y1, y2}, or
(2) x1 = y1 − 1, x2 = y2, y1 = max{y1, y2}, or
(3) x1 = y1 − 1, x2 = y2 + 1, y1 = max{y1, y2}, y2 = min{y1, y2}.

We have graph (G, V )3,3 as in Fig. 1.

Fig. 1. (G, V )3,3

(0,0,3)
�� ��

(0,1,2) (1,0,2)
�� �� �� ��

(0,2,1) (1,1,1) (2,0,1)
�� �� �� �� �� ��

(0,3,0) (1,2,0) (2,1,0) (3,0,0)

E((1, 1, 1)) is minimal;
E((0, 0, 3)), E((0, 3, 0)), E((3, 0, 0)) are maximal.
E((0, 2, 1)) = E((1, 2, 0)) = E((2, 1, 0)) = E((0, 1, 2)) = E((1, 0, 2));
E((0, 2, 1)) > E((1, 1, 1)) < E((2, 0, 1)).

In Fig. 1, if (1, 1, 1) → (2, 0, 1) denotes E((1, 1, 1)) < E((2, 0, 1)); (1, 1, 1) =
(2, 1, 0) denotes E((1, 1, 1)) = E((2, 1, 0)), then we get the following directed
graph in Fig. 2, denoted by (G,−→V )3,3.
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Fig. 2. (G,
−→
V )3,3

(0,0,3)

��� ��	

(0,1,2) (1,0,2)
���� ��	 ��� ����

(0,2,1) (1,1,1) (2,0,1)� ���
 ���� ��
 ��� ���� ���
(0,3,0) (1,2,0) (2,1,0) (3,0,0)� �

�
Example 3.4. Let k = 3 and n = 4. We have that

E((1, 1, 2)) = E((1, 2, 1)) = E((2, 1, 1)) is minimal;
E((0, 0, 4)), E((0, 4, 0)), E((4, 0, 0)) are maximal.
E((0, 3, 1)) = E((1, 3, 1)) = E((3, 1, 1)) = E((3, 0, 1)) = E((0, 1, 3)) =

E((1, 0, 3));
E((0, 2, 2)) > E((1, 1, 2)) < E((2, 0, 2)).

Similarly we have graph (G, V )4,3 in Fig. 3 and (G,−→V )4,3 in Fig. 4.

Fig. 3. (G, V )4,3

(0,0,4)
�� ��

(0,1,3) (1,0,3)
�� �� �� ��

(0,2,2) (1,1,2) (2,0,2)
�� �� �� �� �� ��

(0,3,1) (1,2,1) (2,1,1) (3,0,1)
�� �� �� �� �� �� �� ��

(0,4,0) (1,3,0) (2,2,0) (3,1,0) (4,0,0)

Fig. 4. (G,
−→
V )4,3

(0,0,4)

��� ��	

(0,1,3) (1,0,3)

��� ��	 ��� ��	

(0,2,2) (1,1,2) (2,0,2)� ���
 ��	 ���� ���� ��� ���
(0,3,1) (1,2,1) (2,1,1) (3,0,1)� ���
 ���� ��
 ��� ��
 ��� ���� ���

(0,4,0) (1,3,0) (2,2,0) (3,1,0) (4,0,0)� � � �

�
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4 The Graph-Theoretical Representation of Partitions
and Entropy

In this section we give the definition of the undirected graph (G, V ) and directed
graph (G,−→V ).

Definition 4.1. Fix n and k such that n ≥ k. We define a graph (G, V )n,k

(simply denoted by (G, V )) such that

(a) G = {(x1, ..., xk) :
k∑

i=1

xi = n}; and

(b) given x = (x1, ..., xk),y = (y1, ..., yk) ∈ G, (x,y) ∈ V if and only if there
are i, j ≤ k such that

(b1) xi = yi + 1, xj = yj − 1, yi = min{y1, ..., yk}, yj = max{y1, ..., yk};
and
(b2) for any i′ ≤ k such that i′ �= i, j, xi′ = yi′ .

Let
z1 = (n, 0, ..., 0), z2 = (0, n, ..., 0), ...,zk = (0, 0, ..., n).

Let n = kd+ r. Define a subset W of G as follows: for any vector x ∈ G, x ∈
W iff there is a set C ⊆ {1, ..., k} such that |C| = r; for any i ∈ C, xi = d + 1;
and for any i �∈ C, xi = d.

By (3.1) and Proposition 3.1, we have the following

Proposition 4.2. (i) For any 1 ≤ i ≤ k, E(zi) is maximal among {E(x) : x ∈
G};

(ii) For any w ∈ W, E(w) is minimal among {E(x) : x ∈ G}.
�

Lemma 4.3. Let ρ be the graph-theoretical distance on (G, V ). For any x,y ∈ G
with (x,y) ∈ V, if

min{ρ(x, zi) : 1 ≤ i ≤ k} < min{ρ(y, zi) : 1 ≤ i ≤ k}

then there are i, j ≤ k such that xi = yi+1, xj = yj −1, yi = min{y1, ..., yk}, yj =
max{y1, ..., yk}, and for any i′ ≤ k such that i′ �= i, j, xi′ = yi′ .

Proof. Directly from the definition of (G, V ).
�

Theorem 4.4. For any x,y ∈ G with (x,y) ∈ V,

(i) if min{ρ(x, zi) : 1 ≤ i ≤ k} = min{ρ(y, zi) : 1 ≤ i ≤ k} then E(x) = E(y);
(ii) if min{ρ(x, zi) : 1 ≤ i ≤ k} < min{ρ(y, zi) : 1 ≤ i ≤ k} then E(x) > E(y);
(iii) if min{ρ(x, zi) : 1 ≤ i ≤ k} > min{ρ(y, zi) : 1 ≤ i ≤ k} then E(x) < E(y).

Proof. We prove (ii) only, and it is similar to prove (i) and (iii).
(ii) By lemma 4.3, there are i, j ≤ k satisfying (b1) and (b2). Hence,
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E(x) − E(y) =
1
n

(xi log xi + xj log xj − yi log yi − yj log yj) .

Because xi + xj = yi + yj and xj < yj ≤ xi + xj

2
, we have that

1
xi + xj

(xi log xi + xj log xj) >
1

yi + yj
(yi log yi + yj log yj) .

Therefore, E(x) − E(y) > 0, i.e., E(x) > E(y).
�

We define a directed graph (G,−→V ) as follows. Label (G, V ) in the following
way:

• mark every w ∈ W with �;
• for any x,y ∈ G with (x,y) ∈ V, if

min{ρ(x, zi) : 1 ≤ i ≤ k} = min{ρ(y, zi) : 1 ≤ i ≤ k}

then mark edge (x,y) with =; if

min{ρ(x, zi) : 1 ≤ i ≤ k} < min{ρ(y, zi) : 1 ≤ i ≤ k}

then mark edge (x,y) with ←; if

min{ρ(x, zi) : 1 ≤ i ≤ k} > min{ρ(y, zi) : 1 ≤ i ≤ k}

then mark edge (x,y) with → .

After labelling, we have a directed graph, denoted by (G,−→V ). In Example
3.4, after being labelled, Fig. 3 becomes Fig. 4.

Corollary 4.5. For any x,y ∈ G with (x,y) ∈ V, (x,y) ∈ −→
V (i.e., x → y) if

and only if E(x) ≤ E(y).
Proof. From theorem 4.4.

�
Corollary 4.6. Given x,y ∈ G, if there is a directed path from x to y in (G,−→V )
then there is a zi such that

ρ(x, zi) > ρ(y, zi).

Hence, if there is a directed path from x to y in (G,−→V ) then E(x) < E(y).
�

5 Conclusions

We discussed and compared the entropy of different partitions, and built a graph
(G, V )n,k for any natural numbers n and k with n ≥ k. It is proved that there
is a set of partitions with the minimal entropy; and a set of partitions with the
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maximal entropy; and the entropy is non-decreasing on any directed pathes in
(G,−→V )n,k from a partition with the minimal entropy to one of the partitions
with the maximal entropy.

On the graph (G,−→V )3,3 there are two circles of the equal entropy: the first
one consists of only one vector (1, 1, 1); the second one consists of six vectors
(1, 2, 0), (2, 1, 0), (2, 0, 1), (1, 0, 2), (0, 1, 2), (0, 2, 1) such that

E((1, 2, 0))=E((2, 1, 0))=E((2, 0, 1))=E((1, 0, 2))=E((0, 1, 2))=E((0, 2, 1));

and on the graph (G,−→V )4,3, there are two circles of the equal entropy: the first
one consists of only three vectors (1, 1, 2), (1, 2, 1), (2, 1, 1), and

E((1, 1, 2)) = E((1, 2, 1)) = E((2, 1, 1));

the second one consists of six vectors (0,3,1), (1,3,0), (3,1,0), (3,0,1), (1,0,3),
(0,1,3) such that

E((0, 3, 1))=E((1, 3, 0))=E((3, 1, 0))=E((3, 0, 1))=E((1, 0, 3))=E((0, 1, 3)),

and this circle is disconnected.
The same situation occurs when k > 3, where the circle becomes a hyper-ball.

We conjecture that given any pair (n, k) with n ≥ k, there is a set of hyper-balls
in (G,−→V )n,k such that for any two consecutive hyper-balls, any node on one
hyper-ball is connected directly with a node on another hyper-ball.
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Abstract. This study provides a comparison between the rough sets and proba-
bilistic network algorithms in application to learning a pseudo-independent (PI)
model, a type of probabilistic models hard to learn by common probabilistic
learning algorithms based on search heuristics called single-link lookahead. The
experimental result from this study shows that the rough sets algorithm outper-
forms the common probabilistic network method in learning a PI model. This
indicates that the rough sets algorithm can apply to learning PI domains.

1 Introduction

Inductive machine learning is a process by which dependency relations among attributes
of a dataset are automatically discovered. The rough sets [14] and probabilistic networks
(PNs) [15] are both widely applied for dealing with vagueness and uncertainty in in-
ductive learning and reasoning. The rough sets method is based on a pair of sets, called
lower- and upper-approximation, and PN methods are founded on graphical models in
which the probability distribution on the problem domains are encoded. Depending on
the learning method used, the learned result varies in form: a set of decision rules by
the rough sets method and a graphical model by the PN methods.

PN learning algorithms typically consist of a search through a space of candidate
structures and a scoring measure by which the structures are evaluated and the best
one is selected. However, the exhaustive search is NP-hard [3], and the learning al-
gorithms, therefore, uses a heuristic search method. The common search heuristics is
the single-link lookahead [27] which generates network structures that differ only by
a single link at each level of search. The problem with this heuristics is that it cannot
learn a special type of domains called pseudo-independent(PI) domains [27] where a
group of marginally independent attributes show collective dependency, a special type
of dependency that holds only in the scope of a group and not in any subsets of it. Thorn-
ton [20] showed that the parity mapping, which is a type of PI models, cannot be learned
by many popular learning algorithms that rely on a probabilistic or statistical method,
which include the perceptron learning algorithm, the neural network backpropagation
algorithm, the CART family [2], and the ID3 [16] due to the statistical neutrality of the
mapping. On the more general type of PI models, Xiang et al. [27] proved that all major
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PN learning algorithms such as the Kutato [5], the Lam-Bacchus [10], the PC [19], and
the K2 [4] algorithm fail to recover any PI models.

Note that the learnability of a learning algorithm on PI domains is not related to
its scoring function or noise threshold level but to its scope of search. Although weak
collective dependency can be approximated to independency, according to the PI model
theory collective dependency can be of any strength including the degree of strength
that cannot be approximated to independency. Incorrectly learned models introduce
silent errors when used for classification, inference or decision making. Therefore, it
is practically important to correctly recover PI models especially when learned mod-
els are to be used for critical tasks. About practicalness of PI models, an empirical
study [23] with a real-world dataset showed a learned PI model reached the ultimate
predictive accuracy, but caused only slight increase in inference complexity.

To learn PI models, the more sophisticated search method called multi-link looka-
head [28] is needed, and it was implemented in a learning algorithm called RML [23].
The algorithm is equipped with the Kullback-Leibler cross entropy as its scoring mea-
sure for the goodness-of-fit to data. Regardless of either the common single-link or
the multi-link method, however, the probabilistic learning method in general has some
known disadvantages such as its large sample size required for obtaining probability
distribution (relative frequencies) and its output graphical form that is less friendly to
the human and less expressive than a set of rules. Therefore, it is meaningful to explore
the learnability of algorithms from different approaches, and yet no other algorithms
except the multi-link method have been known so far to learn PI models.

Table 1. The mixed PI model [21]

(X1, . . . , X5) P (.) (X1, . . . , X5) P (.) (X1, . . . , X5) P (.) (X1, . . . , X5) P (.)
(0, 0, 0, 0, 0) 0.0000 (0, 1, 0, 0, 0) 0.0018 (1, 0, 0, 0, 0) 0.0080 (1, 1, 0, 0, 0) 0.0004
(0, 0, 0, 0, 1) 0.0000 (0, 1, 0, 0, 1) 0.0162 (1, 0, 0, 0, 1) 0.0720 (1, 1, 0, 0, 1) 0.0036
(0, 0, 0, 1, 0) 0.0000 (0, 1, 0, 1, 0) 0.0072 (1, 0, 0, 1, 0) 0.0120 (1, 1, 0, 1, 0) 0.0006
(0, 0, 0, 1, 1) 0.0000 (0, 1, 0, 1, 1) 0.0648 (1, 0, 1, 0, 0) 0.0704 (1, 1, 0, 1, 1) 0.0054
(0, 0, 1, 0, 1) 0.0072 (0, 1, 1, 0, 1) 0.0012 (1, 0, 1, 0, 1) 0.0176 (1, 1, 1, 0, 1) 0.0216
(0, 0, 1, 1, 0) 0.1152 (0, 1, 1, 1, 0) 0.0192 (1, 0, 1, 1, 0) 0.1056 (1, 1, 1, 1, 0) 0.1296
(0, 0, 1, 1, 1) 0.0288 (0, 1, 1, 1, 1) 0.0048 (1, 0, 1, 1, 1) 0.0264 (1, 1, 1, 1, 1) 0.0324

The purpose of this study is to investigate the performance of the rough sets algo-
rithm on a PI domain in comparison with two PN learning algorithms: one with the
single-link and the other the multi-link search method. The single-link search method
represents the common PN learning algorithms, and the multi-link method serves for
the learning algorithm with the best known accuracy so far on PI domains. This study
uses a reclassification method for the performance evaluation, which divides a set of
sample data into a training set and a test set, and obtains an output classifier learned
from the training set by an algorithm, followed by testing the performance of the clas-
sifier by reclassifying the test set.



A Comparative Evaluation of Rough Sets and Probabilistic Network Algorithms 573

2 Methodology

2.1 Algorithm and Software Selection

ROSETTA [8] [13] was chosen for representing the rough sets method for this exper-
iment. ROSETTA uses the Rough Set Exploration System (RSES) [1] library. For the
procedures of the experiment, the following specific methods are used: Johnson’s algo-
rithm [7] for computing object-related reducts, and the standard voting [6] for reclassi-
fying the test set. Johnson’s algorithm which is implemented as JohnsonReducer [6] in
ROSETTA uses a greedy algorithm for computing a single reduct. The standard voting
is an algorithm for classifying each object into the class that maximizes the support (or
any other measures) of a rule.

WEBWEAVR-III [22] was selected for both PN methods: the single-link and multi-
link learning. By setting the number of lookahead links to one, the algorithm can repre-
sent the single-link method and to any number greater than one it can do the multi-link
method [28]. WEBWEAVR-III employs the Kullback-Leibler cross entropy [9] as its
scoring metric for measuring the goodness-of-fit of candidate structures to data and a
user-provided threshold value as the stopping condition that defines the minimum en-
tropy decrement for continuing the search. The detailed description of the algorithm is
found in [23].

2.2 Data Preparation

This experiment requires a dataset of a PI domain. There are three different types of
PI domains, that is, full [27], partial [23], and mixed [12] PI models. Collective de-
pendency of PI models means an extra constraint over domain attributes. Because full
or partial PI models have the stronger constraint than mixed PI models that the distri-
bution over the domain must satisfy, real-world PI domains are expected to be found
more likely in the form of a mixed type. In this experiment, hence, the mixed type of PI
models was chosen for the type of a PI domain to be experimented with.

The dataset should be prepared for being isolated of any factors that may give a
bias in performance evaluation on an algorithm under test. Such factors include incom-
pleteness, noise and inaccuracy in data. For this reason, a synthetic dataset was used.
It was created from the joint probability distribution over a mixed PI domain of five
binary attributes shown in Table 1. Such a domain, especially a PI subdomain, of a
small dimension (or the size of the joint space of attribute dimensions) is best suited
to the primary aim of this experiment, that is, to test the learnability of the rough sets
algorithm on a PI domain. Furthermore, domains of a small dimension help relax the
computational time and space requirement for learning and, especially, for the multi-
link method although the multi-link and the single-link method have the same order of
the worst-case computational complexity [28].

Figure 1 depicts the graphical representation of the mixed PI model shown in Table 1
which is the structural learning target for this experiment. The multi-link method can
recover this structure correctly. On the other hand, the single-link method will return an
incorrectly learned structure such as Figure 2 where the links 〈X1, X2〉 and 〈X1, X3〉
are missing since the single-link method cannot discover the collective dependency
among the PI subdomain {X1, X2, X3}.
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Fig. 1. The graphical representation for the
mixed PI model shown in Table 1
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Fig. 2. The learned result on the same do-
main by the single-link method

2.3 Method for Comparison

The measures popularly used for comparing algorithms include the predictive accuracy,
complexity and comprehensibility of the learned classifier, and the learning time and the
sample size required for the learning. In this experiment, accuracy was chosen for the
only quantitative measure for evaluation because the other measures are not suitable for
the instrument of “cross-comparison” among the incompatible algorithms. For exam-
ple, consider the learning time measure. It judges the performance of algorithms under
comparison in terms of computational time complexity on condition that each algorithm
does not require its input and/or output to be processed by pre- and/or post-processing
programs. Learning time cannot be a fair measure if algorithms with a different format
of input or output are compared by learning time since extra steps for “normalizing” the
different input or output to the same format would likely require different computation
time for each format. As a qualitative supplement to the quantitative analysis based on
accuracy, pattern comparison between the rule structures and network structures of high
predictive accuracy was made.

The predictive accuracy measures how close the learned classifier is to the “true”
classifier. Various metrics such as entropy have been proposed to measure this distance
which represents the error rate. In this experiment, confusion matrices were used for
representing the measured accuracy of the classifiers. As shown in Table 9 or 10, a
confusion matrix is a square matrix of which rows correspond to the true classification
and columns correspond to the predictive classification done by a classifier.

Since this experiment uses a synthetic dataset whose true classifier is known, esti-
mation on the true classification is not needed. However, the sole measure of accuracy
may lead a possible over-fitting problem. Methods that tackle the problem based on the
minimum description length (MDL) [17] approach include the approximate reducts [18]
in the field of the rough sets method and the MDL-based learning method [10] in the
field of the single-link method. For the multi-link method, the current research in this
direction is still in progress [25] [26] [12] [11] that intends to provide explicit trade-
off [24] between accuracy and complexity. For this experiment, a reasonable level of
model complexity giving the best accuracy was pursued by using measures such as
support, accuracy and coverage for the rough sets method and by adjusting the thresh-
old value for the PN learning methods.
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To evaluate the predictive accuracy of a learned classifier, this experiment employed
a reclassification method which divides the input dataset into a training set and a test set,
and obtains an output classifier learned from the training set by an algorithm, followed
by testing the performance of the classifier by reclassifying the test set. Both the training
set and the test set were made of the size larger than the sample complexity of each
learning.

2.4 Experiment Setup

Procedure 1 (Rough sets method) (i) Compute object-related reducts from the
training set. Johnson’s greedy search algorithm is used for this.

(ii) Generate decision rules on each attribute by using the reducts from Step (i).
Compute the quality (the strength) of the generated rules, and, based on this,
control the number of rules to a reasonable size.

(iii) Classify the objects in the test set by using the rules from Step (ii). The stan-
dard voting algorithm is used for this classification. Measure the classification
performance by producing the confusion matrix on each decision attribute.

All tasks listed above can be done by ROSETTA that uses the RSES library.

Procedure 2 (PN methods) (i) Tune the entropy decrement threshold based on
the optimum parameter approach for the maximum performance. Since the
optimum values are not the same between the single-link and the multi-link
method, they should be tuned separately.

(ii) Build a probabilistic network from the training set by the single-link method
(or the multi-link method) with the optimum threshold setting.

(iii) On each object in the test set, randomly select a decision attribute and mask
the value. Take the value of each attribute in the object, except the decision at-
tribute, and input it as an evidence to the network built from Step (ii), followed
by classifying the object by inference using the network. Check whether the
classification is correct and record the score. Repeat this step until all objects
in the test set are classified.

(iv) On each decision attribute, create a confusion matrix on the classification
scores from Step (iii) and measure the performance of the network.

3 Experimental Result

Table 2 shows the object-related reducts acquired by the rough sets method with setting
the decision attribute on X1. The reducts are good enough to capture all the depen-
dency and conditional independency/dependency relation involving X1. The attribute
X5 is redundant and is correctly removed from this set of reducts. This removal is, in
terms of probabilistic relation, due to X1 being conditionally independent of X5 given
X3, which can be represented by P (X1 | X3, X5) = P (X1 | X3). The collective
dependency is expressed by the generated decision rules shown in Table 7, which are
X2(0) AND X3(0) =⇒ X1(1) and X2(0) AND X3(0) =⇒ X1(0) OR X1(1).
This rule shows 100 % accuracy in the data. This is a surprising result since this rule
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Table 2. The reducts setting the deci-
sion attribute on X1

Reduct Support Length

{X3, X4} 100 2

{X2, X3} 100 2

{X2, X3, X4} 100 3

Table 3. The reducts setting the deci-
sion attribute on X2

Reduct Support Length

{X3} 100 1

{X1, X3} 100 2

Table 4. The reducts setting the deci-
sion attribute on X3

Reduct Support Length

{X1, X5} 100 2

{X1, X2} 100 2

{X1, X2, X4} 100 3

{X1, X2, X4, X5} 100 4

{X1, X2, X5} 100 3

Table 5. The reducts setting the
decision attribute on X4

Reduct Support Length

{} 1 0

Table 6. The reducts setting the
decision attribute on X5

Reduct Support Length

{X2} 100 1

{X1} 100 1

{X3} 100 1

{X2, X3} 100 2

describes (collective) dependency among X1, X2, X3 which would not be recovered by
any probabilistic algorithms equipped with the single-link lookahead search. For ex-
ample, the result from the single-link method is depicted by Figure 2 where the links
〈X1, X2〉 and 〈X1, X3〉 are missing. The classification accuracy on the decision at-
tribute X1 is shown in the confusion matrix on the top left of Table 9 that shows the
accuracy of the rough sets classifier on X1 is 0.7755, close to 0.7945 from the multi-
link, while the accuracy of the single-link reaches only 0.6975 shown in Table 10. This
means the rough sets classifier outperforms the single-link on X1 by 10 % in accuracy.

The object-related reducts on X2 are shown in Table 3, which accord with collective
dependency among {X1, X2, X3}. This is also supported by the rules in Table 8. The
accuracy of the rough set classifier outperforms the single-link by 15 %, which is shown
on the top right of Table 9 and 10 .

The reducts on X3 in Table 4 contain an error of including X4 which is conditionally
independent of X3 given X1. This error is propagated to the generated rules, causing a
deterioration in predictive accuracy resulting 0.866 shown in Table 9 but is still 3.5 %
better accuracy than the single-link classifier shown in Table 10.

X4 and X5 are the attributes irrelevant to collective dependency. For this reason,
both the single-link and the multi-link classifier give the same accuracy as shown in
Figure 3. On those attributes, the rough sets classifier performs only as good as the
single-link, which is the case of X4, or even worse in the case of X5. Conversely, this
strongly suggests that the good performance made on X1, X2 and X3 by the rough
sets comes from its recognition of the collective dependency, not from its overall good
capability in learning regardless of dependency patterns.
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Table 7. The rule output with the decision attribute on X1

Decision Rule
LHS

Support
RHS

Support
RHS

Accuracy
LHS

Coverage
RHS

Coverage

X3(1) ∧ X4(1) =⇒ X1(1) ∨ X1(0) 3717
2372,
1345

0.638,
0.362 0.465

0.465,
0.556

X2(0) ∧ X3(1) =⇒ X1(0) ∨ X1(1) 3219
1411,
1808

0.438,
0.562 0.402

0.584,
0.324

X2(0) ∧ X3(0) =⇒ X1(1) 1589 1589 1.0 0.199 0.285

X2(1) ∧ X3(1) ∧ X4(0) =⇒
X1(1) ∨ X1(0)

903
846,
57

0.937,
0.063 0.113

0.152,
0.024

X2(1) ∧ X3(0) ∧ X4(1) =⇒
X1(0) ∨ X1(1)

664
615,
49

0.926,
0.074 0.083

0.254,
0.009

X2(1) ∧ X3(0) ∧ X4(0) =⇒
X1(0) ∨ X1(1)

164
134,
30

0.817,
0.183 0.021

0.055,
0.005

Table 8. The rule output with the decision attribute on X2

Decision Rule
LHS

Support
RHS

Support
RHS

Accuracy
LHS

Coverage
RHS

Coverage

X3(1) =⇒ X2(1) ∨ X2(0) 5583
2364,
3219

0.423,
0.577 0.698

0.741,
0.670

X1(1) ∧ X3(0) =⇒ X2(0) ∨ X2(1) 1668
1589,
79

0.953,
0.047 0.209

0.330,
0.025

X1(0) ∧ X3(0) =⇒ X2(1) 749 749 1.0 0.094 0.235

Table 9. The confusion matrices from the rough sets algorithm

Predicted
Values 0 1 Ratio

Actual

0 177 428 0.293
1 21 1374 0.985

Ratio 0.894 0.762 0.776

The decision attribute on X1

Predicted
Values 0 1 Ratio

Actual

0 1201 0 1.0
1 622 177 0.222

Ratio 0.659 1.0 0.689

The decision attribute on X2

Predicted
Values 0 1 Ratio

Actual

0 523 48 0.916
1 220 1209 0.846

Ratio 0.704 0.962 0.866

The decision attribute on X3

Predicted
Values 0 1 Ratio

Actual

0 0 685 0.000
1 0 1315 1.000

Ratio Undef. 0.658 0.658

The decision attribute on X4

Predicted
Values 0 1 Ratio

Actual

0 1159 37 0.969
1 468 336 0.418

Ratio 0.712 0.901 0.748

The decision attribute on X5
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Table 10. The confusion matrices from the single-link method

Predicted
Values 0 1 Ratio

Actual

0 0 605 0.000
1 0 1395 1.000

Ratio Undef. 0.698 0.698

The decision attribute on X1

Predicted
Values 0 1 Ratio

Actual

0 1201 0 1.000
1 799 0 0.000

Ratio 0.601 Undef. 0.601

The decision attribute on X2

Predicted
Values 0 1 Ratio

Actual

0 523 48 0.916
1 281 1148 0.803

Ratio 0.650 0.960 0.836

The decision attribute on X3

Predicted
Values 0 1 Ratio

Actual

0 0 685 0.000
1 0 1315 1.000

Ratio Undef. 0.658 0.658

The decision attribute on X4

Predicted
Values 0 1 Ratio

Actual

0 1148 48 0.960
1 281 523 0.650

Ratio 0.803 0.916 0.836

The decision attribute on X5
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Fig. 3. Comparison of classification performance of the three algorithms on decision attributes
X1 to X5
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4 Discussion

This study empirically showed that the rough sets algorithm can be applied to learning
a PI domain and can achieve the better result than common PN learning algorithms.
This result is significant for the problem of learning PI domains since, generally, the
rough sets method has the lower sample complexity for learning a classifier than PN
methods and its classifier has the more expressive power. A possible explanation for the
better performance by the rough sets classifier is that unlike the common PN learning,
the rough sets algorithm is not based on any probabilistic/statistical methods of which
learning depends on the search scope. Instead, it is based on symbolic logic and algebra
to learn relevant relations among attributes. Although the rough sets classifier was out-
performed by the multi-link, it could be rather due to the dataset artificially generated
from a probabilistic domain model; only a conjecture that needs to be confirmed with
further tests with different experimental setting.

Further studies can be made on the following directions: trying with other methods
for computing reducts and generating rules, followed by comparing the results; repeat-
ing the same experiment on real-world datasets with the larger number of attributes
and comparing the performance between the rough sets and the multi-link method; im-
plementing trade-off between accuracy and model complexity in the three algorithms
and repeating the experiment; and developing the method for measuring the normalized
computation time for the incompatible algorithms on comparison.

Acknowledgments. The author is grateful to the anonymous reviewers for their com-
ments on this work, and especially thanks Dominik Ślęzak for many helpful comments
on formatting this final camera-ready paper.
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Abstract. In this paper, we revisit the consensus of computational com-
plexity on exact inference in Bayesian networks. We point out that even
in singly connected Bayesian networks, which conventionally are believed
to have efficient inference algorithms, the computational complexity is
still NP-hard.

1 Introduction

Bayesian networks (BNs) have gained popularity in the last decade as a suc-
cessful framework for processing uncertainty using probability. A Bayesian net-
work [7] consists of two components: a directed acyclic graph (DAG) and a set
of conditional probability distributions (CPDs). The product of these CPDs de-
fines a joint probability distribution (JPD). One of the most important tasks
for a BN is to perform probabilistic inference, which simply means computing
the posterior probability distribution for a set of variables given the evidence
that some other variables in the network are taking specific values. There are
two kinds of probabilistic inference that can be performed, namely, exact in-
ference and approximate inference. Exact inference means computing the exact
posterior probability distribution. Approximate inference produces an inexact,
bounded solution, but guarantees that the exact solution is within those bounds.
In this paper, we will only comment on the computational complexity of exact
inference.

During the development of various probabilistic inference algorithms, the
following statements regarding computational complexity of exact inference in
BNs are made. Singly connected BNs have linear time algorithm in the number
of nodes in a network or the size of the network for exact inference. On the other
hand, multiply connected Bayesian networks do not admit efficient algorithms
for exact inference in the worst case. Finally, exact probabilistic inference in the
general case is NP-hard because it was proved that exact inference in multiply
connected BNs is NP-hard [1] 1. Based on the above remarks, it has come to the
consensus that the singly connected BNs are favorable and tractable while the
1 It is perhaps worth mentioning that approximate inference in BNs was also proved

NP-hard [8].
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multiply connected BNs are intractable (at least in the worst case) and should
be blamed for causing the exact inference in BNs to be NP-hard.

In this paper, we revisit the consensus of computational complexity on exact
inference in BNs. It seems that the consensus is somewhat misleading. Our main
argument is that inference in a singly connected BN can be exponential in the
worst case. More specifically, we adapt the proof in [1] to demonstrate that
exact inference in singly connected BNs can also be NP-hard. That is to say, the
hardness of exact inference in BNs should have nothing to do with the topological
structure of the DAG of a BN.

The paper is organized as follows. In Section 2, we introduce pertinent back-
ground material and notation. We review the current consensus on exact infer-
ence in BNs in Section 3. In Section 4, we point out an inconsistency in the
consensus. We investigate the inconsistency in Section 5. We discuss the impli-
cation of our investigation and conclude the paper in Section 6.

2 Background

We use R = {x1, . . . , xn} to represent a set of discrete variables. Each xi

takes value from a finite domain denoted Vxi . We use capital letters such as
X to represent a subset of R and its domain is denoted by VX . By XY we
mean X ∪ Y . We write xi = α, where α ∈ Vxi , to indicate that the variable
xi is instantiated to the value α. Similarly, we write X = β, where β ∈ VX , to
indicate that X is instantiated to the value β. For convenience, we write p(xi)
to represent p(xi = α) for all α ∈ Vxi . Similarly, we write p(X) to represent
p(X = β) for all β ∈ VX .

Definition 1. Let R = {x1, . . . , xn} be a set of discrete variables. A Bayesian
network (BN) defined over R consists of two components:(i) a directed acyclic
graph (DAG) D whose nodes correspond one-to-one to the variables in R, and
(ii) a set {p(xi|πxi) | 1 ≤ i ≤ n} of CPDs where πxi denotes the parents of
xi in D. The product of the CPDs define a unique joint distribution p(R) as:
p(R) =

∏
1≤i≤n p(xi|πxi).

BNs are usually classified into three categories, according to the topological
structures of their respective DAGs.

Definition 2. A BN is called a tree structure BN if for each node in the DAG
of the BN except the root, there is only one parent node.

Definition 3. A BN is called a singly connected BN (also known as polytree ) if
there exists at most one (undirected) path between any two nodes in the DAG
of the BN. Obviously, tree structure BNs are special cases of singly connected
BNs.

Definition 4. A BN is called a multiply connected BN if there exists more than
one (undirected) path between at least two nodes in the DAG of the BN.
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Fig. 1. (i) The DAG of a tree structure BN. (ii) The DAG of a singly connected BN.
(iii) The DAG of a multiply connected BN.

Example 1. By definition, the BN in Fig. 1(i) is a tree structure BN. The BN in
Fig. 1(ii) is a singly connected BN. The BN in Fig. 1(iii) is a multiply connected
BN.

The classification of tree structure, singly connected, and multiply connected
BNs, resulted to some extent from the historical development of different algo-
rithms for exact inference, which are discussed in the next section.

3 Computational Complexity of Exact Inference: The
Consensus

The key problem in BNs is to perform probabilistic inference, which means com-
puting p(X) or p(X |Y = β), where X ∩ Y = ∅, and β ∈ VY . The fact that Y is
instantiated to β, i.e., Y = β, is called the evidence.

Algorithms for tree structure BNs and singly connected BNs were designed
first. In 1982, Pearl first developed an algorithm featuring message-passing for
carrying out probabilistic inference in tree structure BNs. The following year
Kim and Pearl extended the algorithm to singly connected BNs. These results
were summarized in [6]. For tree structure BNs, Pearl gave a complexity result
for exact inference in [6]. For an m-ary tree with n values in the domain for each
node in the tree structure BN, one needs to store n2 + mn + 2n real numbers
and perform 2n2 + mn+ 2n multiplications per update for inference. Obviously,
both storage and computation are efficient in tree structure BNs. For singly
connected BNs, it is commonly written that the time and space complexity of
exact inference in singly connected BNs is linear in the size of the networks. Here,
the size is defined as the number of CPD entries. Further more, if the number
of parents of each node is bounded by a constant, then the complexity will also
be linear in the number of nodes [8].

For multiply connected BNs, the algorithms developed for singly connected
BNs can be adapted to process multiply connected BNs through conditioning [8].
Nevertheless, the predominant algorithm so far is the so-called local computation
method [5].
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The local computation method first transforms the DAG of a BN into a sec-
ondary structure called junction tree through the moralization and triangulation
procedures. A formal treatment on triangulation and building junction trees can
be found in [8]. After constructing the junction tree, a potential (a nonnegative
function) φ(Ci) is formed for each clique Ci in the junction tree. We say the size
of a clique Ci is the cardinality of its domain, that is, |VCi |. It is easy to see
that the bigger the size of a clique, the more expensive the computation will be
whenever φ(Ci) is engaged in the computation for inference.

Exact inference in multiply connected BNs was developed as follows. Lau-
ritzen and Spiegelhalter [4] first proposed the local computation method for exact
inference on junction trees (also called clustering method) and showed that their
method can be implemented in a computationally feasible manner in some real-
life expert systems. The authors were concerned with the size of the clique in
the junction tree (transformed from the DAG of a BN), and they realized that
their method would not be computational feasible if a large clique is present in
the junction tree. Different architectures were developed to implement the local
computation method. Jensen et al. [3] provided an object-oriented version of
the computational scheme in [4]. This extension forms the core of the renowned
Hugin architecture. Consequently, the Hugin architecture has the same concern
as the Lauritzen-Spiegelhalter architecture, namely, the size of the clique in a
junction tree. The Shafer-Shenoy architecture [9] used a different propagation
scheme and used hypertree and Markov tree (junction tree) to describe the ar-
chitecture. In [9], it was repeatedly emphasized that the efficiency and feasibility
of their architecture depends on the size of the clique in a junction tree. Cooper
formally confirmed these concerns by showing that exact probabilistic inference
in BNs is NP-hard [1].

To summarize, the above discussion gives rise to the consensus that singly
connected BNs have efficient inference, while multiply connected BNs do not.
Thus, multiply connected BNs are the core of the inference problem.

4 Inconsistency in the Consensus

Although the local computation method was originally developed with the in-
tention to solve the problem of exact inference in multiply connected BNs, it
is important to realize that it is also applicable to singly connected BNs. In
other words, given a singly connected BN, besides the specifically designed al-
gorithms in [6], one can also apply the local computation architecture to solve
the inference problem in a given singly connected BN. Regarding inference in
singly connected BNs, an inconsistency arises when we compare the specifically
designed algorithms [6] with the local computation method [5].

Consider an application involving a singly connected BN. On one hand, if one
applies the specifically designed algorithms [6], results will be returned in time
linear to the size of the network [8]. On the other hand, if one applies the local
computation architecture, one has to be cautious that the size of the cliques in
the constructed junction tree should be feasible. If a large clique is present in the
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junction tree and the size of the clique is not feasible, then the task of inference
would not be computational feasible even given a singly connected BN.

In other words, there are then two different claims regarding inference in a
singly connected BN. One is very positive and says this is definitely efficient in
time linear to the size of the network. The other is rather conservative and says
this may not be computational feasible if the junction tree transformed from the
given singly connected BN contains a large clique. These two claims are seemingly
inconsistent and are more carefully examined in the next section.

5 Exploring the Inconsistency

The concern of the local computation architecture pertains to the presence of
a large clique size in the junction tree, which renders the local computations
intractable. When transforming a singly connected BN into a junction tree, is
it possible to create a large clique? The answer is definitely yes as the following
example shows.

Example 2. Consider the singly connected DAG D in Fig. 2 (i). Note that the
node x in D has n parents, i.e., y1, . . . , yn. The junction tree constructed from
D is shown in Fig. 2 (ii). As one may notice that one of the cliques contains
variables x, y1, . . . , yn. If n is large, even assuming all the variables are binary,
storing the potential φ(x, y1, . . . , yn) or engaging it in any computation will
not be feasible as the storage and computation will be exponential with respect
to the number of variables involved.

1
y
2

y
n

x

z

(i) (ii)

y y
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n
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x z
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Fig. 2. (i) A singly connected DAG D, where variable x has a large number of parents.
(ii) The constructed junction tree has a large clique.

Example 2 explicitly demonstrates that a node in a singly connected BN with
a large number of parent nodes must result in a large clique in the transformed
junction tree. That is, it is entirely possible for a singly connected BN to have a
large size clique. The presence of a large size clique will cause not only a storage
problem for the corresponding CPD p(x|y1, . . . , yn), but also the problem of
engaging p(x|y1, . . . , yn) in any computation during inference.
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The exponential computational complexity entailed by large size cliques oc-
curring in a junction tree hints that exact inference might be NP-hard. Cooper [1]
successfully proved that the exact inference is NP-hard by transforming a well
known NP-complete problem, namely, the 3SAT problem [2], into a decision
problem version of exact inference in multiply connected BNs. Since a singly
connected BN, as demonstrated in Example 2, may also induce large cliques, it
is thus worth exploring whether exact inference in a singly connected BN is also
NP-complete.

In the following, we first demonstrate that a variant of the 3SAT problem is
itself also a NP-complete problem. We then further show that this variant can
be transformed into a singly connected BN in order to show that exact inference
in singly connected BNs is also NP-hard.

5.1 A Variant of the 3SAT Problem

The 3SAT problem includes a collection C = {c1, c2, . . . , cm} of clauses on a
finite set U of n Boolean variables. If u is a variable in U , then u and ¬u are
literals over U . Each clause ci contains a disjunction of three literals over U , for
example, (¬u2 ∨ u6 ∨ ¬u8). A truth assignment for U is an assignment which
assigns either T (true) or F (false) to each variable in U . The literal u is true
if and only if the variable u is assigned T. The literal ¬u is false if and only
if the variable u is assigned F . Given a truth assignment, a clause is satisfied
(or evaluated true) if at least one literal is true. The clause (¬u2 ∨ u6 ∨ ¬u8)
is satisfied (i.e., true) unless u2 = T , u6 = F and u8 = T . A collection C of
clauses over U is satisfiable if and only if there exists some truth assignment
for U that simultaneously satisfies all of the clauses in C. The 3SAT decision
problem involves determining whether there is a truth assignment for U that
satisfies all of the clauses in C. We denote an instance of the 3SAT problem as
I = (U, C).

Example 3. Consider an instance I = (U, C) of the problem 3SAT in which
U = {u1,u2,u3,u4} and C = {(u1 ∨ u2 ∨ u3), (¬u1 ∨¬u2 ∨ u3), (u2 ∨¬u3 ∨ u4)}.
One satisfying truth assignment is given by u1 = T , u2 = F , u3 = F and
u4 = T . Thus, this instance of 3SAT decision problem has the answer “yes” in
this example. This example will be called 3SATex.

We now introduce a variant of the 3SAT problem, which will be referred to as
the 3SATV problem. We then prove that the 3SATV problem is NP-complete.

Very much similar to the 3SAT problem, the 3SATV problem also includes
a collection C

′
of clauses on a finite set U

′
of n Boolean variables. The only

difference between 3SAT and 3SATV is that each variable in U
′

is denoted uj
i

with not only the subscript i but also a superscript j. The 3SATV decision
problem involves determining whether there is a truth assignment for U

′
that

satisfies all of the clauses in C
′
and all the variables in U

′
with the same subscript

are assigned the same truth value. We denote an instance of the 3SATV problem
as I

′
= (U

′
, C

′
).
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Example 4. Consider an instance I
′

= (U
′
, C

′
) of the 3SATV problem, where

U
′

= {u1
1, u2

1, u1
2, u2

2, u3
2, u1

3, u2
3, u3

3, u1
4} and C

′
= {(u1

1 ∨ u1
2 ∨ u1

3), (¬u2
1 ∨

¬u2
2 ∨u2

3), (u3
2 ∨¬u3

3 ∨u1
4)}. We want to determine whether there exists an truth

assignment for U
′
that satisfies all of the clauses in C

′
, furthermore, we require

that variables u1
1, u2

1, u3
1 are assigned the same truth value; variable u1

2, u2
2, u3

2

are assigned the same truth value; u1
3, u2

3, u3
3 are assigned the same truth value.

One satisfying truth assignment is given by uj
1 = T where j = 1, 2, 3, uj

2 = F

where j = 1, 2, 3, uj
3 = F where j = 1, 2, 3 and u1

4 = T . Thus, this instance of
the 3SATV decision problem has the answer “yes”. This example will be called
3SATVex.

In the following, we will prove that the 3SATV problem is also NP-complete.
We first demonstrate how one can polynomially transform any instance of a
known NP-complete problem, for example, the 3SAT problem, to an instance of
the 3SATV problem. We use an example to illustrate this transformation.

Consider the instance I = (U, C) in 3SATex in Example 3 and the instance
I

′
= (U

′
, C

′
) in 3SATVex in Example 4. We demonstrate how one can transform

I = (U, C) into I
′
= (U

′
, C

′
). If we rewrite the clause set C from 3SATex and

the clause set C
′

from 3SATVex together below, one may immediately realize
that the transformation is straightforward.

C = {(u1 ∨ u2 ∨ u3), (¬u1 ∨ ¬u2 ∨ u3), (u2 ∨ ¬u3 ∨ u4)},
C

′
= {(u1

1 ∨ u1
2 ∨ u1

3), (¬u2
1 ∨ ¬u2

2 ∨ u2
3), (u

3
2 ∨ ¬u3

3 ∨ u1
4)}.

The clause set C
′

is obtained by transforming each clause in C to a clause in
C

′
. More specifically, we transform one-to-one a clause c (in C) to a clause c

′

(in C
′
) by adding a superscript j to each variable ui occurring in the clause c

to obtain the variable uj
i which will appear in the transformed clause c

′
. The

superscript j indicates that the original variable ui appears for the jth time
in the clause set C. For example, consider the clause (¬u1 ∨ ¬u2 ∨ u3) in C
above. When transforming this clause to a corresponding clause in C

′
, we add

superscript to each variable occurring in it, namely, u1, u2, and u3. Since u1 now
appears for the second time (variable u1 appears for the first time in the clause
(u1 ∨ u2 ∨ u3)), it is then transformed into the variable u2

1. Similarly, u2 and u3

are transformed into u2
2 and u3

3, respectively. Once we obtain the transformed
clause set C

′
, the set of Boolean variable U

′
is just the union of all the variables

occurring in each clause in C
′
. Obviously, this process can be generalized to be

applied to any instance of the 3SAT problem in polynomial time.
Besides showing that one can transform polynomially any instance of the

3SAT problem to an instance of the 3SATV problem, in order to prove that the
3SATV problem is NP-complete, we also need to show that any instance I of
the 3SAT problem is satisfiable if and only if the transformed instance I

′
of the

3SATV problem is also satisfiable.
Suppose instance I is satisfiable, that means there exists a truth assignment

to the variables in U such that all the clauses in C are evaluated true. For the
instance I

′
, we now demonstrate a truth assignment to the variables in U

′
such



588 D. Wu and C. Butz

that all the clauses in C
′

are evaluated true as well. For each variable ui in U ,
there are variables uj

i in U
′
which are constructed from the multiple occurrence

of the variable ui among the clauses in C. We assign the same truth value of ui

to those variables uj
i in U

′
. In other words, it ui is assigned T(F), then uj

i are
all assigned T(F). For any clause c in C consisting of variables ui, uj, and uk,
according to the construction process of I

′
, there is a corresponding clause c

′

in C
′

consisting of variable ul
i, um

j , and un
k . Since ul

i, um
j , and un

k are assigned
the same truth values as those of ui, uj, and uk, respectively, and clause c is
satisfiable, it then follows that the clause c

′
is also satisfiable. Therefore, every

clause in C
′
is satisfiable.

Suppose the instance I
′
is satisfiable, we now need to show that there exists a

truth assignment to the variables in U under which every clause inC is satisfiable.
Consider a truth assignment to the variables in U

′
such that each clause c

′
in C

′

is satisfiable. For variables uj
i in U

′
, they are all assigned the same truth value,

we then assign the same truth value assigned to uj
i to the variable ui in U . We

thus obtain a truth assignment to every variable in U . Suppose the clause c
′
in

C
′

consists of variable ul
i, um

j , and un
k . According to the construction process

described early, there is a corresponding clause c in C consisting of variables ui,
uj, and uk. Since ui, uj, and uk are assigned the same truth values as those of
ul

i, um
j , and un

k , respectively, it then follows that the clause c in C is satisfiable.
Therefore, every clause c in C is satisfiable.

The above discussion in fact proves the following theorem.

Theorem 1. The 3SATV problem is NP-complete.

5.2 The Complexity of Exact Inference in Singly Connected BNs

To prove that a problem Q′ is NP-hard, it is sufficient to transform a known
NP-complete problem Q to Q′ and to show that this transformation can be
done in time that is polynomial in the size of Q. In this subsection, we trans-
form the 3SATV problem to a decision-problem version of probabilistic inference
using singly connected BNs (PISBND). The transformation from the PISBND
decision problem to the probabilistic inference problem, called PISBN, will be
straightforward. Therefore, we will show that PISBN is NP-hard.

We first show how to polynomially transform 3SATV into PISBND, a decision
problem that determines whether p(Y = T ) > 0 in a given singly connected BN.
PISBN returns “yes,” if p(Y = T ) > 0; it returns “no,” otherwise.

Let I
′
= (U

′
, C

′
) be any instance of the 3SATV problem. We seek to con-

struct a singly connected BN on U
′
C

′
Y from any instance of 3SATV in polyno-

mially time, where Y is a new variable, such that p(Y = T ) > 0 if and only if
C

′
is satisfiable.
The nodes in the constructed singly connected BN are U

′ ∪ C
′ ∪ {Y }. Each

variable uj
i ∈ U

′
is represented as a node ui in the singly connected BN. Each

clause ci ∈ C
′

is represented as a node ci in the singly connected BN. For each
clause ci ∈ C

′
, let the three literals in ci be denoted w1

i , w2
i and w3

i . For instance,
given clause c2 = (¬u1 ∨¬u2 ∨ u3), then w1

2 = u1, w2
2 = u2, w3

2 = u3. The edges
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c  1   2c   3c

y

  2u  1u   3u   1u   2u   3u   2u   4u  3u  1   1   1   2   2   2   3   3   1

Fig. 3. A singly connected BN transformed from 3SATVex

can now be defined as follows. For each node ci ∈ C
′
, there is a directed edge

from each of the three literals w1
i , w2

i and w3
i to ci. Finally, there are directed

edges from each ci ∈ C
′
to variable Y .

Example 5. Given the example 3SATVex, the DAG of the constructed singly
connected BN is shown in Figure 3.

The CPDs for the singly connected BN are now constructed. For each of
the root nodes uj

i ∈ U
′
, the CPD p(uj

i ) is p(uj
i = T ) = 1/2. For each of the

clause nodes cj ∈ C
′
, the CPD p(cj |w1

j ,w
2
j ,w

3
j ) is defined as follows. If clause

cj is T , then p(cj = T |w1
j ,w

2
j ,w

3
j ) = 1; otherwise, if clause cj is F , then p(cj =

T |w1
j ,w

2
j ,w

3
j ) = 0. The last CPD to construct is p(Y |c1, c2, . . . , cm). If c1 = T ,

and c2 = T , . . ., and cm = T , then p(Y = T |c1, c2, . . . , cm) = 1; otherwise,
p(Y = T |c1, c2, . . . , cm) = 0. That is, if at least one clause ci = F , then p(Y =
T |c1, c2, . . . , cm) = 0. We now show the claim in the next result.

Theorem 2. Let I
′
= (U

′
, C

′
) be any instance of the 3SATV problem. Con-

sider the singly connected BN on U
′
C

′
Y constructed as above. Then C

′
is sat-

isfiable if and only if p(Y = T ) > 0 in the constructed singly connected BN. 2

Thus, we have shown that any instance of 3SATV can be polynomially trans-
formed to PISBND. This result implies that PISBN is NP-hard.

6 Concluding Remarks

Our analysis raises the question as to why inference in singly connected BNs is
considered to be efficient. The complexity of exact inference in singly connected
BNs was written as O(N · qe) in [6], where N is the number of variables in the
BN, q denotes the cardinality of the domain of each variable, and the number of
parents for each variable in the BN is bounded by e. Obviously, if e is bounded
and q is fixed, qe is the coefficient of N and O(Nqe) could be considered linear
and not exponential. However, if the number of parents for each variable in the
BN is not bounded by e, then as N grows bigger, e may also grow bigger (e can

2 Due to page limit, the proof will appear in an extended version of this paper.
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be as large as N − 1), then the complexity O(Nqe) perhaps can not be simply
considered as linear(or polynomial) anymore.

Our investigation in the previous sections has showed that the feasibility of
exact inference lies with whether the DAG of a BN contains a node with a large
number of parent nodes (which causes exponential storage and computation).
The presence of a node with a large number of parents can occur in both singly
connected and multiply connected BNs. Therefore, in both singly and multiply
connected BNs, the computation for exact inference will be exponential in the
worst case. On the contrary, the computational cost in tree structure BNs is
efficient as characterized by Pearl in [6]. This is a result of the fact that, by
definition, every node in a tree structure BN has at most one parent node.
Subsequently every clique in the constructed junction tree will contain only two
nodes, i.e., no large size clique will ever be created.
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Abstract. This paper presents a formal method based on the high-level
semantics of processes to reason about continuous change. With a case
study we show how the semantics of processes can be integrated with the
situation calculus. The soundness and completeness of situation calculus
with respect to the process semantics are proven. Furthermore, the logical
programming is implemented to support the semantics of processes with
the situation calculus.

1 Introduction

In the real world, a vast variety of applications need logical reasoning about
physical properties in continuous systems, e.g., specifying and describing physi-
cal systems with continuous actions and changes. The early research work on this
aspect was encouraged to address the problem of representing continuous change
in a temporal reasoning formalism. The research standpoint concentrated on spe-
cialized logical formalisms, typically of the situation calculus and its extensions
[7,9,6].

Whereas these previously described formalisms have directly focused on cre-
ating new or extending already existing specialized logical formalisms, the other
research direction consists in the development of an appropriate semantics as the
basis for a general theory of action and change, and applied to concrete calculi
[10,1,11,12,2].

In this paper, we present a formal method of integrating the semantics of
processes with the situation calculus to reason about continuous change. With a
case study we show how the semantics of processes can be integrated with the sit-
uation calculus to reason about continuous change. In Section 2, the semantics of
processes is described briefly. In Section 3, an example domain is introduced, and
a conventional mathematical model is constructed. Section 4 shows the method
how to represent the semantics of processes in the situation calculus. In Section
5, the soundness and the completeness of the situation calculus with respect to
the semantics of processes are proven. In Section 6, the logical programming is
implemented to support the semantics of processes with the situation calculus.
In Section 7, we have the concluding remarks for this work.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 591–600, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



592 C. Li

2 The Semantics of Processes

In this section, we introduce the high-level semantics of processes [3] for reasoning
about continuous processes, their interaction in the course of time, and their
manipulation.

Definition 2.1. A process scheme is a pair 〈C,F 〉 where C is a finite, ordered
set of symbols of size l > 0 and F is a finite set functions f: IRl+1 → IR.

Definition 2.2. Let N be a set of symbols (called names). A process is a 4-tuple
〈n, τ , t0, p〉 where

1. n ∈ N;
2. τ = 〈C,F 〉 is a process scheme where C is of size m;
3. t0 ∈ IR; and
4. p = (p1, . . . , pm) ∈ IRm is an m-dimensional vector over IR.

Definition 2.3. A situation is a pair 〈S, ts〉 where S is a set of processes and ts
is a time-point which denotes the time when S started.

Definition 2.4. An event is a triple 〈P1, t,P2〉 where P1 (the precondition) and
P2 (the effect) are finite sets of processes and t ∈ IR is the time at which the
event is expected to occur.

Definition 2.5. An event 〈P1, t,P2〉 is potentially applicable in a situation 〈S, ts〉
iff P1 ⊆ S and t > ts.

Definition 2.6. Let ε be a set of events and 〈S, ts〉 a situation, then the successor
situation Φ(〈S, ts〉) is defined as follows.

1. If no applicable event exists in ε, then Φ(〈S, ts〉) = 〈S,∞〉;
2. if 〈P1, t,P2〉 ∈ ε is the only applicable event, then Φ(〈S, ts〉) = 〈S′, ts〉,

where S′ = (S \ P1) ∪ P2 and ts′ = t;
3. Otherwise Φ(〈S, ts〉) is undefined, i.e., events here are not allowed to occur

simultaneously.

Definition 2.7. An observation is an expression of the form [t] ∝ (n) = r where

1. t ∈ IR is the time of the observation;
2. ∝ is either a symbol in C or the name of a function in F for some process

scheme 〈C,F 〉;
3. n is a symbol denoting a process name; and
4. r ∈ IR is the observed value.

Definition 2.8. A model for a set of observations Ψ (under given sets of names
N and events E ) is a system development 〈S0, t0〉, Φ(〈S0, t0〉), Φ2(〈S0, t0〉), . . .
which satisfies all elements of Ψ . Such a set Ψ entails an (additional) observation
ψ iff ψ is true in all models of Ψ .
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3 An Example: Pendulum and Balls Scenario

We illustrate how an example, the interaction between a pendulum and balls that
travel along a 1-dimension space, can be formalized. As described in Figure 1,
a pendulum collides at angle ϕ = 0 with a ball being at position y = yc at the
same time. We need to find appropriate equations describing various possible
movements and interactions. Supposing the damping factor is neglected, the
motion of the pendulum can be described by the following differential equation.

m · l2 · d2ϕ
dt2 = −m · g · l · sinϕ− l2 · dϕ

dt

where l is the length of the pendulum, m is the mass of the pendulum, and
g is 9.8 m

s2 . Solving the differential equation results in the angle of the pendulum
ϕ, the angular velocity ϕ′ and the angular acceleration ϕ′′. ϕmax denotes the
maximum angle of the motion of the pendulum, TP0 the starting time of the
motion of the pendulum, and γ the time constant of the pendulum.

y

x

   z

B

A

ϕ
ϕ

P

=0
max

−ϕmax

(x   , y   , z   )c c c

Fig. 1. Pendulum and balls A and B in positions

Here we define two different types of events. The first is the collision of two
balls A and B , caused by identical locations at a certain time. The second type
of event is the collision between one of the balls and the pendulum P , defined
by the angle of the pendulum being zero while the ball’s position is at the y-axis
position of the pendulum yc, at the same time. The pendulum is assumed to
be of much larger mass than the balls, such that the collision will simply be an
elastic impact with one of the balls (reflection into opposite direction) while the
pendulum keeps moving continuously.

For ball A and ball B moving along the y-axis, we use the process scheme
τmove = 〈C,F 〉, namely, C = {y0, v} and F = {y = y0 + v·(t − t0)}. As the
process scheme for the motion of the pendulum we obtain τpendulum = 〈C′, F ′〉
where C′ = {ϕmax, γ, yc} and F ′ = {ϕ, ϕ′, ϕ′′}.
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4 Representing the Process Semantics in the Situation
Calculus

4.1 Situation Calculus with the Branch Time

The situation calculus is the most popular formalism designed to represent the-
ories of action and change [5]. The situation calculus does not yet provide a very
rich temporal ontology. Pinto and Reiter proposed the concept of a time line to
extend the original situation calculus by incorporating the basic elements of a
linear temporal logic [8,9]. For reasoning about time in the situation calculus, a
predicate actual is incorporated.

A new sort is incorporated into the situation calculus, interpreted as a con-
tinuous time line. The sort is considered isomorphic to the non-negative real.
Intuitively, each situation has a starting time and an ending time. Actions occur
at the ending time of situations. This is captured by the following axioms.

(∀s, a) end (s, a) = start (do (a, s)).
(∀s, a) start (s) < start (do (a, s)).
start (S0) = 0.

The predicate occurs is introduced as describing a relation between action
types and situations.

occurs (a, s) ≡ actual (do (a, s)).

To establish the relation between actions that occur and the time at which
they occur, the predicate occursT is defined as

occursT (a, t) ≡ (∃s) occurs (a, s) ∧ start (do (a, s)) = t.

Similarly, a relation holdsT between fluents and time points and a relation dur-
ing between time points and situations are defined as

holdsT (f, t) ≡ (∃s) actual (s) ∧ during (t, s) ∧ holds (f, s).

during (t, s) ≡ actual (s) ∧ start (s) < t ∧ (∀a) [occurs (a, s) → end (s, a) ≥ t].

4.2 An Axiomatization of Pendulum and Balls Scenario

In the pendulum and balls scenario, we suppose that two balls move toward
each other along the y-axis. A pendulum maybe collides at its suspension point
with one of balls. The successor state axioms and action precondition axioms
are suitable for formalizing the motion processes of the balls and the events. We
have the following successor state axioms:

Poss (a, s) → holds (moving (ball, τmove,T , (l, v)), do (a, s)) ≡
(a = impetus (ball, (l, v)) ∧ occursT (a,T )
∧f = F (l, v, t,T )) ∨ (holds (moving (ball, τmove,T , (l, v)), s) ∧
¬(a = impetus (ball, (l, v)))).
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Poss (a, s) → holds (sway (Pendulum, τpendulum,TP0, (ϕmax, γ, yc)), do (a, s))
≡ (a = starting (Pendulum, (ϕmax, γ, yc)) ∧
occursT (a,TP0) ∧ ϕ = −ϕmax · cos(2π

γ · (t− tP0)))
∨ (holds (sway (Pendulum, τpendulum,TP0, (ϕmax, γ, yc)), s)
∧¬(a = starting (Pendulum, (ϕmax, γ, yc)))).

We formalize the actions with the action precondition axioms as follows.

Poss (starting (ball, (l, v)), s) ≡
occursT (impetus (ball, (l, v)),T ) ∧ start (s) < T .

Poss (starting (Pendulum, (ϕmax, γ, yc)), s) ≡
occursT (starting (Pendulum, (ϕmax, γ, yc)),TP0) ∧ start (s) < TP0.

Poss (collide ((Pendulum, ball), ((ϕmax, γ, yc), (lnew, vnew)), t), s) ≡
holds (sway (Pendulum, τpendulum,TP0, (ϕmax, γ, yc)), s) ∧
holds (moving (ball, τmove, t, (lold, vold)), s) ∧ t = yc−lold

vold
+ t0

∧ lnew = yc ∧ vnew = −vold ∧ vold �= 0.

Poss (collision ((ballA, ballB), ((l′A0, v
′
A0), (l

′
B0, v

′
B0)), t), s) ≡

holds (moving (ballA, τmove,TA0, (lA0, vA)), s) ∧
holds (moving (ballB, τmove,TB0, (lB0, vB)), s) ∧
t = (lB0 − lA0 + vA · TA0 − vB · TB0)/(vA + vB)
∧ l′A0 = l′B0 = lA0 + vA · (t− TA0) ∧
v′A0 = v′B0 = vA + vB ∧ start (s) < t.

There are two natural actions (events) that may occur in this scenario:

natural (a) ≡ a = collide ((Pendulum, ball), ((ϕmax, γ, yc), (lnew , vnew)), t) ∨
a = collision ((ballA, ballB), ((l′A0, v

′
A0), (l

′
B0, v

′
B0)), t).

Suppose that ball A starts from position 0m at time 2sec to move with
speed 0.4m/sec, while ball B starts from position 4m at time 4sec with speed
-0.3m/sec. If there is no other event to occur, the two balls A and B which
move toward each other along y-axis would have a collision at time 10sec. We
start the pendulum with suspension point xc = 1m, yc = 0.3m, zc= 0, time
constant γ = 1 and starting angle ϕmax = 10 at time TP0 = 1. The natural
action (event) of the collision between the pendulum and ball A will occur at
time t = (yc − yA0)/vA + tA0 = 2.75 sec.

This nearest event results in the pendulum moving unchanged while the ball
A moves into the opposition direction, and avoids the collision possibility of the
balls A and B. Here we describe the initial facts and equality constraints as
follows.

F : y = y0 + v · (t− t0); F ′ : ϕ = −ϕmax · cos(2π
γ · (t− tP0))



596 C. Li

Furthermore, the occurrence axiom can be described as follows.

occurs(starting (Pendulum, (ϕmax, γ, yc)), S1) ∧
occurs(impetus (ballA, (yA0, vA)), S2) ∧ occurs(impetus (ballB, (yB0, vB)), S3)

where start (S1) = 1sec ∧ start (S2) = 2sec∧ start (S3) = 4sec, S0 < S1 <
S2 < S3.

Let AXIOMS be the axioms given in Subsection 4.1 with the action precon-
dition and the successor state axioms. It is easy to see that for any model M of
AXIOMS it holds that M |= S1 = do (starting (Pendulum, (ϕmax, γ, yc)), S0)
∧S2 = do (impetus (ballA, (yA0, vA)), S1) ∧S3 = do (impetus (ballB, (lB0, vB)), S2).

From the occurrence axiom and the ordering statement, we infer that M sat-
isfies occursT (impetus (ballA, (yA0, vA)), tA0)∧ occursT (impetus (ballB, (yB0, vB)),
tB0) ∧ occursT (starting (Pendulum, (ϕmax, γ, yc)), tP0) and tP0 < tA0 < tB0.

The natural action collide will occur in the time t for which the equation
t = (yc − yold)/vA0 + tA0 ∧ ynewA = yc ∧ vnewA = −vB will be true.

Thus, occursT (collide ((Pendulum, ballA), ((ϕmax, γ, yc), (ynewA, vnewA)), t))
will hold in the model M. By using the successor state axiom for sway and the
action precondition axioms, we obtain M |=

S4 = do (collide ((Pendulum, ballA), ((ϕmax, γ, yc), (ynewA, vnewA)), t), S3) ∧
holds (sway (Pendulum, τpendulum,TP0, (ϕmax, γ, yc)), S4) ∧
holds (moving (ballA, τmove,TA0, (ynewA, vnewA)), S4).

5 Soundness and Completeness Theorem

Definition 5.1. Let Σproc be a theory of action with occurrences and continuous
processes. It should include:

– basic axioms of the situation calculus;
– axioms based on the actual time line;
– successor state axioms and action precondition axioms.

The problem of reasoning about actions and continuous processes is: given
an incomplete description of the actions that occur in time, what are the actions
that actually will occur, especially in regard of the implicit events in the process
semantics? Here we choose models that contain minimal sets of occurring actions
and events. This can be formalized using circumscription. In order to simplify
the presentation of circumscription, we consider the predicates occurs, holdsT ,
during and the function end to be abbreviations.

The circumscription policy is as follows.

CIRC(Σproc; occursT ; actual, start)

We select the models that satisfy Σproc with a minimal extension for the
predicate occursT . The predicate actual and the function start are variable ele-
ments in circumscription. Clearly, these elements need to vary since occursT is
defined in terms of them. Notice that the situation tree is fixed except for the
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elements that determine what the actual line looks like. A property of this policy
is that if we know all the actions that occur, and if it is consistent to believe that
they are all that occurred, then the circumscription will select those models in
which the actual line of situation contains all and only those actions.

Based on Lifschitz’s results [4], we present the model-theoretic meaning of
the above circumscription.

Let D = (P , E) be a consistent domain description for the process semantics,
where P is a set of initial processes and E is a set of events. We write P =
(p1, p2, . . . , pm) and E = (e1, e2, . . . , en).

Let π denote the translation from the domain description of the process se-
mantics into the formalism of the situation calculus. The following symbols are
used: situation variables s, s′, . . . , time variables t, t′, . . . , action (event) vari-
ables a, a′, . . . , fluent representing process P (n, F,R,C), action A(n,C) and
event E(n̂, Ĉ, t). Furthermore, let OBS(P, α, ts) denote an observation of the
process with name n at time ts in the process semantics, where α is a symbol in
C or R for some process scheme (C,F ) and α = r (r is an observed value). In
the situation calculus we describe an observation in the form

holdsT (P (n, F,R,C), ts) ∧ α = r

where α is a variable name in R or C.

Lemma 1. Let D be a domain description for the process semantics. For any
process P from D, if CIRC[πD ∧Σproc] |= holdsT (P (n, F,R,C), ts) ∧ α ∈ (R ∪
C) ∧ α = r, then D entails OBS(P, α, ts) ∧ α = r.

Proof. Assume that a process P (n, F,R,C) in CIRC[πD∧Σproc] holds at time
ts. For some parameter α and α ∈ R∪C, there exists an observed value which we
denote by r. Since CIRC[πD ∧ Σproc] |= holdsT (P (n, F,R,C), ts), there must
exist the actual occurrences of a set of actions and events in some order such
that the process holdsT (P (n, F,R,C), ts) holds at time ts. Σproc is a theory in
which the set Tocc contains an axiom of the form

(∃s1, . . . , sn) occurs (A1, s1) ∧ . . . ∧ occurs (An, sn) ∧ O<(s1, . . . , sn) ≡
(∃t1, . . . , tn) occursT (A1, t1) ∧ . . . ∧ occursT (An, tn) ∧O<(t1, . . . , tn)

where O< is an ordering formula.

Thus, every model in CIRC[πD ∧Σproc] satisfies

occurs (a, s) ≡ (a = A1 ∧ s = S1) ∨ . . . ∨ (a = An ∧ s = Sn), correspondingly,

occursT (a, t) ≡ (a = A1 ∧ t = T1) ∨ . . . ∨ (a = An ∧ t = Tn), where T1 < . . . <
Tn < ts. Then, every model of CIRC[πD ∧Σproc] also will satisfy

Sn = do (An−1, Sn−1) ∧ . . . ∧ S2 = do (A1, S1) ∧ S1 = S0.

tn = start (do (An−1, Sn−1)) ∧ . . . ∧ t2 = start (do (A1, S1)) ∧ t1 = start (S0).

Thus, for all models in CIRC[πD ∧ Σproc], there must exists time points ti
and ti+1 where 1 ≤ i < n, so that the process P (n, F,R,C) holds in the time
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period [ti, ti+1], and it is concluded that for ts ∈ [ti, ti+1], α ∈ (R ∪ C) ∧ α = r
must be true.

We need to prove that D |= OBS(P, α, ts) ∧ α = r under the condition
mentioned above. We prove this by contradiction. Suppose that the observation
of the processOBS(P, α, ts) with the observation value α = r is not entailed from
the domain description D. Then there exists a model of D, in which the value
of the observation α = r is false. Thus, a corresponding system development of
this model (under the domain description D with initial processes and events)
satisfies that the observation OBS(P, α, ts) which its value α = r is false. In the
process semantics, since a system development 〈S0, t0〉, Φ(〈S0, t0〉), Φ2(〈S0, t0〉),
. . . is regarded as an infinite sequence of situations which are transformed by
the events and actions, the state of the system at the particular time-point ts
can be described by the collection of processes S where 〈S, ti〉 = Φi(〈S0, t0〉)
and 〈S′, ti+1〉 = Φi+1(〈S0, t0〉) such that ti ≤ ts < ti+1. Corresponding to the
situation calculus paradigm, it follows that the observation where its value α = r
for OBS(P, α, ts) at the time ts does not hold. In this case, the contradiction
between this assumption and the premise takes place. Thus, it follows that D
entails the observation OBS(P, α, ts) ∧ α = r.

Theorem 1. [Soundness Theorem] Let D be a domain description for process
semantics, for any process P if πD entails πP , then D entails P .

Proof. By Lemma 1, an observation OBS(P, α, ts) ∧ α = r is entailed by D, if
CIRC[πD ∧ Σproc] |= πOBS. Suppose that πD entails πP , since the observa-
tion is made during a development of the system being modelled and involved
in some concrete process at time ts, the observed process holds under the devel-
opment of the system (given the set of initial processes and the set of events),
if holdsT (P (n, F,R,C), ts) is true in all the models of CIRC[πD ∧ Σproc]. It
follows that D entails P .

Theorem 2. [Completeness Theorem] Let D be a domain description for process
semantics, for any process P if D entails P , then πD entails πP .

Proof. Given a process P and let D entail P . Then in the process semantics,
there must be a system development satisfying a set of observations Ψ for the
process P under D. We assume that a model for the observations Ψ is represented
as a system development 〈S0, t0〉, . . . , 〈Sn, tn〉 which satisfies all elements of Ψ
(where 〈Si, ti〉 is defined as a situation at the start time ti, and there exists
a successor situation function Φ such that we can yield an infinite sequence
of situation: 〈Si+1, ti+1〉 = Φ(〈Si, ti〉) see [3]). Let OBS(P, α, ts) represent an
observation for the process P at time ts and the observed value α = r. Then
OBS(P, α, ts) ∈ Ψ and OBS(P, α, ts) is true in all models of Ψ .

By the definition of the system development, it is consistent to assume that
all the events (actions) are only those that occur during the system development
and the events (actions) are totally ordered. Let M be a model for OBS(P, α, ts).
Thus, there is a corresponding model πM of the theory Σproc in the situation
calculus that satisfies
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occurs (a, s) ≡ (a = A1 ∧ s = S1) ∨ . . . ∨ (a = An ∧ s = Sn),

and also

occursT (a, t) ≡ (a = A1 ∧ t = T1) ∨ . . . ∨ (a = An ∧ t = Tn).

Since Σproc is a theory in which Tocc takes the form

occurs (A1, S1) ∧ . . . ∧ occurs (An, Sn) ∧ O<(S1, . . . , Sn)

where O< is an ordering formula, therefore, πM is a model of CIRC[πD∧Σproc].
Thus, holdsT (P (n, F, R, C)) ∧ α ∈ (R ∪ C) ∧ α = r is true in all models of
CIRC[πD ∧Σproc]. It follows that πD entails πP .

6 Implementation

We have implemented a logic programming system supporting the process se-
mantics based on the situation calculus in Prolog under the environment of
Eclipse, which incorporates a number of subroutines and additional features.

The logical program for the example of balls and pendulum is shown partially
as follows. Because of space restrictions we here omit the clauses specifying the
functions of the manipulation of situation and process set.

%%% Primitive actions %%%

action(impetus(ball(a), pos(a, Y), v(a, Y), t(a,T))).

action(impetus(ball(b), pos(a, Y), v(a, Y), t(a, T))).

%%% Initial situation %%%

initial_proc([ball(a), ball(b), pendulum(p), pos(a,0), pos(b,4),

v(a,0),v(b,0), v(p,0), last_Tdc(0), t(a, 0), t(b, 0), t(p,0)]).

%%% Preconditions for primitive actions %%%

poss(impetus(ball(a), pos(a, Y), v(a, Y), t(a, T)), S) :-

T=2, V=0.4 , initial_state(I, S0),occurs(T, action(impetus(ball(a),

pos(a, Y), v(a, Y), t(a, T)))).

poss(impetus(ball(b), pos(b, Y), v(b, Y), t(b, T)), S) :-

T=4, V=-0.3, initial_state(I, S0),occurs(T, action(impetus(ball(b),

pos(b, Y), v(b, Y), t(b, T)))).

poss(natural(a), S, Tdc):-

proc_match([ball(X), pendulum(p), v(X,VX), var(p, VY), pos(X, X0),

pos(p, Y0), t(X, TX), t(p, TV)],S,_), Tdc is TX+(Y0-X0)*VX.

%%% Successor state axioms for primitive fluent %%%

holds(moving(ball(X), pos(X,Y), v(X,V), t(X,Tdc), _), do(a,S)):-

holds(moving(ball(X), pos(X,Y), v(X,V), t(X,Tdc), _),S),

poss(natural(a), S, Tdc), next_state(I,S), Tdc>0.

holds(moving(ball(X), pos(X,Y), v(X,V), t(X,Tdc), _),S):-

poss(impetus(ball(X), pos(X, Y), v(X, Y), t(X, T)),S),

next_state(I,S), Tdc>0.

%%% specifying process and state transition %%%

holdsAt(sway(pendulum(p),pos(p, Y), var(p, V), t(p, Tdc),L),TT):-

holds(sway(pendulum(p), pos(p, Y), var(p, V), t(p, Tdc), L),S),

proc_match([ball(X), pendulum(p), v(X, VX), var(p, VY), pos(X,X0),

pos(p,Y0),t(X,TX),t(p,TV)],S,_),TT>Tdc, L is -10*cos(2*3.14*(TT-T)).
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7 Concluding Remarks

This paper presents a formal method based on the high-level semantics of pro-
cesses to reason about continuous change. With a case study we show how to
integrate the semantics of processes with the situation calculus for reasoning
about continuous changes. Our method carries on some important properties of
Pinto and Reiter’s temporal situation calculus, and implements the automated
reasoning about continuous change in the logical programming framework. The
main difference is that we adopt a more general concept of the process, which is
more appropriate to the semantic description in the case of continuous change.
We have proven the soundness and completeness of the situation calculus with
respect to the process semantics. Furthermore, the logical programming is im-
plemented to support the semantics of processes with the situation calculus.
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Abstract. In this paper, we investigate the deficiency of Goyal and
Egenhofer’s method for modeling cardinal directional relations between
simple regions and provide the computational model based on the con-
cept of mathematical morphology, which can be a complement and refine-
ment of Goyal and Egenhofer’s model for crisp regions. Based on fuzzy
set theory, we extend Goyal and Egenhofer’s model to handle fuzziness
and provide a computational model based on alpha-morphology, which
combines fuzzy set theory and mathematical morphology, to refine the
fuzzy cardinal directional relations. Then the computational problems
are investigated. We also give an example of spatial configuration in 2-
dimensional discrete space. The experiment results confirm the cognitive
plausibility of our computational models.

1 Introduction

Goyal and Egenhofer’s model [1] represents the cardinal direction relation be-
tween simple spatial regions. This model considers the effect of the region’s shape
on their directional relations, but the reference region is still approximated by
the minimum bounding rectangle, which leads to some anomalous instances.

Our work is based on the dilation operation in mathematical morphology,
by which a region is dilated by a structuring element (a ray with an angle).
We consider the intersection of the dilated reference region with the target re-
gion to define the cardinal direction between them. We find that this method is
cognitively plausible.

The importance of modeling for vague regions has been realized by more
and more researchers. Generally the vagueness is captured by a broad boundary.
The vagueness can be classified as uncertainty and fuzziness. In this paper, we
will focus on fuzziness. Cicerone and Felice [14] has investigated the cardinal
relations between regions with a broad boundary qualitatively. We present the
computational model for cardinal direction between fuzzy regions after we in-
troduce the concept of fuzzy set and fuzzy morphology and present the previous
works on modeling directions. A fuzzy region can be regarded as a set of α-cut
level regions (crisp regions), on which the computational method for cardinal
direction relation between crisp regions can be applied.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 601–611, 2005.
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This paper could be useful as a basis for discussion on navigation, e.g. storm
front or wildfire (fuzzy set) is approaching and individual motorists need an alert
telling them which direction to go to avoid the storm. We can combine the direc-
tion of the approaching front with road network information to suggest a route.

In this paper, the crisp regions are regular, connected and non-empty closed
point sets in the Euclidean space +2. Accordingly the fuzzy regions are regular,
connected and non-empty closed fuzzy point sets in the Euclidean space +2.
Schneider [11] has given the definition of fuzzy region based on the framework
of fuzzy set theory and fuzzy topology. In the next section, we present Goyal
and Egenhofer’s model and point out its deficiency. The mathematical morpho-
logical model for refining cardinal directional relations between crisp regions is
introduced in section 3. Section 4 presents the extended Goyal and Egenhofer’s
model to handle fuzziness and combines the fuzzy set theory with mathematical
morphology to produce the computational model for refining cardinal directional
relations between fuzzy regions. An example is given to examine the properties
of the models in section 5. Some conclusions are given in the last section.

2 Goyal and Egenhofer’s Model

Goyal and Egenhofer [1] introduced a direction-relation model for extended
spatial objects that considers the influence of the objects’ shapes. It uses the
projection-based direction partitions and an extrinsic reference system, and con-
siders the exact representation of the target object with respect to the reference
frame. The reference frame with a polygon as reference object has nine direction
tiles: North(NA), NorthEast(NEA), East(EA), SouthEast(SEA), South(SA),
SouthWest(SWA),West(WA), NorthWest(NWA), and Same(OA). The cardinal
direction from the reference object to a target is described by recording those
tiles into which at least one part of the target object falls (Fig. 1). From Fig. 1,
we can see that B lies to the North(N), NorthEast(NE) and East(E) of A.

At a finer level of granularity, the model of Goyal and Egenhofer [1] also
offers the option to record how much of a region falls into each tile. Such re-
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Fig. 1. Capturing the cardinal direction relation between two polygons, A and B,
through the projection-based partitions around A as the reference object
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Fig. 2. Illustration for anomalous cardinal direction relation defined by Goyal and
Egenhofer’s model

lations are called cardinal direction relations with percentages and can be rep-
resented with cardinal direction matrices with percentages. Goyal and Egen-
hofer’s model can more precisely describe the cardinal direction relations be-
tween regions than the model approximating regions (reference and target re-
gions) by their Minimum Bounding Rectangles (MBRs)(formed by broken lines
Xmin, Xmax, Ymin and Ymax, where Xmin(respectively Ymin) is the minimum x-
coordinate(respectively y-coordinate), and Xmax(respectively Ymax) is the max-
imum x-coordinate(respectively y-coordinate) of the region, as shown in Fig. 1).
But the model still approximates the reference region with its MBR, which leads
to some anomalous instances. Figure 2 is taken as an example for illustration.
According to the above model the cardinal direction relation between the target
region B and the reference region A is O, i.e., the location of B is the Same as
the MBR of A. Obviously we can see that B is North of, East of and NorthEast
of A, i.e. B is partially surrounded by A. Namely, the real direction relation
between region A and B is not captured by Goyal and Egenhofer’s model.

3 Mathematical Morphological Model

Mathematical morphology is a well-known body of methods and theories, which
has been proven valuable in many image analysis applications. Recently it has
been used to represent spatial relationship knowledge [2,3]. The major part of
morphological operations can be defined as a combination of two basic oper-
ations, dilation and erosion, and non-morphological operations like difference,
sum, maximum or minimum of two sets. The operation of interest in this paper
is mainly dilation.

The dilation and erosion of a set X by a structuring element B in a space
S (n-dimensional continuous or discrete space) are described respectively by
DB (X) (or X ⊕B) and EB(X) (or XΘB) as follows:

DB(X) = {x ∈ S|B̆x ∩X �= ∅} , (1)

EB(X) = {x ∈ S|Bx ⊆ X} , (2)
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Fig. 3. Illustration of effect of dilation using a 3 × 3 square structuring element

where Bx denotes the translation of B at point x, and B̆x denotes the reflection
of Bx about its origin. Dilation, in general, causes objects to dilate or grow in
size; erosion causes objects to shrink. To illustrate the dilation operation, we
take the greyscale dilation for binary images as an example. Suppose that the
structuring element is a 3 × 3 square, with the origin at its center as shown
in Fig. 3. Note that in the figure, foreground pixels are represented by 1’s and
background pixels by 0’s. The input image is in the leftmost corner of Fig. 3,
and the dilated image in the rightmost corner.

To compute the dilation of a binary input image by this structuring element,
we consider each of the background pixels in the input image in turn. For each
background pixel (which we will call the input pixel) we superimpose the struc-
turing element on top of the input image so that the origin of the structuring
element coincides with the input pixel position. Here, the reflection of Bx about
its origin is identical with Bx (i.e. B̆x=Bx). If at least one pixel in the structur-
ing element coincides with a foreground pixel in the image underneath, then the
input pixel is set to the foreground value. If all the corresponding pixels in the
image are background however, the input pixel is left at the background value.
The result is shown in Fig. 3.

To define the cardinal directional relations using the dilation operator in
mathematical morphology, of particular interest to us is the class of structuring
elements that we refer to as“rays”. In the continuous case, they are line segments
with one end at the origin. Let Θ denote the angle between a ray and the
horizontal line. We will refer to these rays as ray(r, θ) (Fig. 4). In the discrete
case, we must use an appropriate digitization of a line segment. If a direction is
defined as an angle interval, the structuring element is a sector.

Before we use these rays as structuring elements to define the cardinal di-
rectional relationships, we should introduce the concept of Hausdorff Distance
(HD) metric first. For two non-empty, closed sets X and Y in space S, let Sr

denote a closed (super) sphere (a sphere in 3-dimensional space or a circle in
2-dimentional space) centered at origin and whose radius is r. The Hausdorff
Distance between X and Y : HD(X,Y ) is defined as follows:



Modeling and Refining Directional Relations 605

�

� �

� � � �

��

	




�

	



	




Fig. 4. Example of cardinal direction evaluation through dilation operation by the
structuring element ray with different angles (the broken line segments constitute the
new boundary part of the region induced by dilation operation)

HD(X,Y ) = inf{r|X ⊆ DSr(Y ) ∩ Y ⊆ DSr(X)} (3)

By considering the degree of intersection of a region A dilated by ray(r, θ)(r ≥
HD(A,B)) with another region B, we can derive the degree of the relationship
B is in the direction Θ relative to A. The degree of intersection can be defined as

Area
(
Dray(r,θ)(A) ∩B

)/
Area(B) . (4)

From Fig. 4, we can see that the region B is completely included in the
dilated region A by a ray with θ = π/2, i.e. the region B is completely North of
A. If we want to know the degree to which region B is East of A, we can dilate
A by a ray with θ = 0 and consider their intersection. If we want to know the
degree to which region B is rightly NorthEast of region A (assuming we consider
the right NorthEast corresponding to θ = π/4), we can dilate A by a ray with
θ = π/4 and consider their intersection (see Fig. 4). Other direction relations of
interest can be defined similarly.

Goyal and Egenhofer’s model describes a complete partition of the whole
space and defines the cardinal direction relationships more precisely than previ-
ous models (e.g. model based on MBRs). But it is rough when compared to the
morphological method. These relations can be described as a hierarchy. Consider-
ing the regular cardinal directional relations, i.e. N, E, S and W, the morphologi-
cal model can lead to the same results as Goyal and Egenhofer’s model. But when
the diagonal cardinal directional relations (i.e. NW, NE, SE, SW ) are examined,
Goyal and Egenhofer’s model presents the rough partition and cannot represent
detailed information, which can be computed using the morphological model.
For example, we can not differentiate between the cardinal directional relations
of C relative to A and of B relative to A (see Fig. 5) by Goyal and Egenhofer’s
model, which are all NE, but we can know that the cardinal directional relation
of B relative to A is right NE but it is a little bit NE for C relative to A(i.e.
with less degree when compared to B)when the morphological model is used.
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Fig. 5. Example for cardinal directional relations that Goyal and Egenhofer’s model
regards as identical, but the morphological model can differentiate

4 Modeling Cardinal Directional Relationships Between
Fuzzy Regions

So far, spatial data modeling implicitly assumes that the extent and hence the
boundary of spatial objects is precisely determined and universally recognized.
This leads exclusively to determinate spatial models. Increasingly, researchers
are beginning to realize that there are many spatial objects in reality which do
not have sharp boundaries or whose boundaries cannot be precisely determined.
Erig and Schneider [4] has identified two kinds of vagueness or indeterminacy
concerning spatial objects: uncertainty and fuzziness. In this paper, the fuzzy
region is based on a finite-valued (multi-valued) logic, i.e. it is associated to an
n-valued membership function for representing a wide range of belonging of a
point to a fuzzy region, where n > 3.

4.1 Fuzzy Set Theory

Fuzzy set theory [5] is an extension and generalization of Boolean set theory. Let
X denote the set of objects, called the universe of discourse (it is 2-dimensional
space in this paper), and Ã denote a fuzzy subset.

The set Ã = {
(
x, μÃ(x)

)
|x ∈ X} is called a fuzzy set in X. From structured

point of view, a fuzzy region can be described in terms of nested α-level sets.
The α-cut level region of a fuzzy region Ã is defined by

Aα = {x ∈ X |μÃ(x) ≥ α ∩ 0 ≤ α ≤ 1} ,

and the strict α-cut level region of a fuzzy region Ã is defined by

A∗
α = {x ∈ X |μÃ(x) > α ∩ 0 ≤ α < 1} .

Clearly, Aα is a crisp region whose boundary is defined by all points with
membership value α. The strict α-cut level region for α=0 is called the support
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of Ã, i.e., supp(Ã) = A∗
0. The α-cut level regions of a fuzzy region are nested,

i.e., for membership values 1 = α1 > α2 > · · · > αn > αn+1 = 0, one has
Aα1 ⊆ Aα2 ⊆ · · ·Aαn ⊆ Aαn+1 .

α-cuts give a very convenient way for linking fuzzy concepts and crisp con-
cepts. By using α-cuts, all standard operations of fuzzy sets can be derived from
their crisp counterparts. Alpha-Morphology can be derived by combining mathe-
matical morphology and fuzzy set theory. Based on the proposed morphological
model for cardinal directional relationships between crisp regions and Alpha-
Morphology, we can handle the refinement of cardinal directional relationships
between fuzzy regions.

4.2 Modeling and Refining Cardinal Directional Relationships
Between Fuzzy Regions

In Alpha-Morphology, for two fuzzy sets U and V, the fuzzy dilation of U by
fuzzy structuring element V is defined as [6]:

(U ⊕ V )α = Uα ⊕ Vα , (5)

where ⊕ is the dilation operator. This definition is from the field of image
processing. The resulting fuzzy set can be obtained using an aggregation schema
(see [6], page 9). Bloch and Maitre [7] presented a formula to compute the result
image in a comprehensive way as follows:

(U ⊕ V )(x) = sup
y∈X

min[U(x− y), V (y)] . (6)

Koppen et al. [6] proved the two formulae ( 5) and ( 6) were equal for image
processing, i.e. when applied, they can produce the same result(see [6],page 10).
Gader [8] defined fuzzy spatial direction relations between two crisp images based
on fuzzy morphology, and the experiments showed that this fuzzy morphology
method was more cognitively correct than previous methods(for details, see [8]).
Based on these results, we extend the computational model in [8] to handle our
case, i.e. cardinal directional relations between fuzzy regions.

For simplicity, we consider the structuring elements to be crisp ones, i.e.
ray(r, θ)(θ=0, π/4, π/2, 3π/4, π, -3π/4, -π/2 and -π/4, corresponding to East,
NorthEast, North, NorthWest, West, SouthWest, South and SouthEast, respec-
tively). For a fuzzy region A and a crisp structuring element B, the formula (5)
can be modified as:

(A⊕B)α = Aα ⊕B . (7)

To allow for the computation of the area of a fuzzy region, we adopt the
definition in [9], where the area of a fuzzy region F is defined as the scalar
cardinality of F, i.e.,

Area(F ) =
∑
x∈X

μF (x) . (8)

To aggregate the α-cut level regions and use the aggregated measurements
to determine binary cardinal directional relations between two fuzzy regions, we
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adopt the concept of basic probability assignment in [15], which has also been
applied in [10] to handle fuzzy regions in images and in [13] to calculate the topo-
logical relations between fuzzy regions. A basic probability assignment m(Aαi)
can be attached to each α-cut level region Aαi . m(Aαi) can be interpreted as
the probability that Aαi is the “true” representative of A. The value of m(Aαi)
is defined as follows:

m(Aαi) = αi − αi+1 , (9)

which satisfies
∑

m(Aαi) = α1 − αn+1 = 1 − 0 = 1.
Then, the degree to which fuzzy region B̃ is located in the direction θ relative

to fuzzy region Ã can be defined as follows:

μθ

(
Ã, B̃

)
=

(
n∑

i=1

m(Aαi)
(
Area((Aαi ⊕ ray(r, θ)) ∩B)

Area(B)

)p
)1/p

, (10)

where i enumerates all the levels α ∈ [0, 1] that represent distinct α-cuts of a
given fuzzy set Ã, μθ

(
Ã, B̃

)
is the generalized mean value and p is used to suit

the required degree of optimism or pessimism (in this paper, we set p=1), and
αi > 0.

Our method is based on operations on regions instead of points. It is appli-
cable to regions both in continuous space and discrete space, and the computa-
tional cost is cheap while the fuzziness of both the reference region and target
region is considered. Moreover if A and B are crisp regions and p=1, the for-
mula is the same as the formula (4), so our model provides a unified framework
for modelling cardinal directional relations between regions. When the structur-
ing element ray(r, θ) is fuzzy like in [8], we can apply formula (6) to the item
Aαi ⊕ ray(r, θ) and the intersection operation in formula (10) becomes a fuzzy
one, which has been discussed in fuzzy set theory.

To enable Goyal and Egenhofer’s model to handle fuzziness, we can easily
define the following formula similar to [13] to compute the degree to which B̃ is
in the direction C relative to Ã:

μC

(
Ã, B̃

)
=

n∑
i=1

m(Aαi )μC(Aαi , B) , (11)

where μC(Aαi , B) denotes the percentage of cardinal directional relation C be-
tween B and Aαi computed by Goyal and Egenhofer’s model, and the area of
B is computed using formula (8), and i enumerates all the levels α ∈ [0, 1] that
represent distinct α-cuts of a given fuzzy set Ã, and αi > 0.

4.3 Computational Problems

In this paper, we regard the reference point set as a region, because the point
set is conceptually unitary. This kind of point set can be represented by its
convex hull. Formally, the convex hull is the smallest convex set containing the
points; Informally, it is a rubber band wrapped around the “outside” points.
For a point set X, we use CH(X) to denote its convex hull. The algorithm



Modeling and Refining Directional Relations 609

for computing CH(X) has been well studied in computational geometry, and
many fast algorithms have been put forward (for example in [12]). In this paper
considering directional relations between two regions, the convex hull of the
reference region can give the same result as the reference region, so we replace
the reference region with its convex hull, which can simplify the computation.
Then the formula (10) can be reformulated as

μθ

(
Ã, B̃

)
=

(
n∑

i=1

m(Aαi)
(
Area ((CH(Aαi ) ⊕ ray(r, θ)) ∩B)

Area(B)

)p
)1/p

. (12)

To this end, we just need to compute the dilation of the convex hull of the
reference region, which leads to a convex region. When the convex region is
dilated by a ray, the resulting region is still a convex region whose boundary is
the convex hull of the new vertexes resulting from the translating of the original
vertexes along the ray plus the original vertexes. So we just need to compute the
new vertexes and combine them with the original vertexes to form the resulting
region. Obviously the new vertexes are computed from the original vertexes and
some may become the inner point of the new region while others form the new
vertexes of the new region. An original vertex that leads to inner points when
translating along the ray can be decided by checking if the ray going through it
intersects with the original region at any other point. So the computation can
be further simplified by only considering part of the original vertexes.

We then consider the intersection between two regions, i.e., the intersection
between the dilated reference region and the target region (point set). When the
target region is based on vector model, the intersection of these two regions can
be seen as the intersection of two polygons, which has been investigated widely in
computational geometry. When the target region is based on raster model (e.g.,
in our experiment), we only need to consider the points that fall into the dilated
reference region, which is also a well-studied computational geometry problem.

5 Simulation Experiment

To examine the properties of the presented computational model of cardinal
directional relations between fuzzy regions, we give an example of spatial config-
uration in 2-dimensional discrete space (see Fig. 6), which can be a special case of
2-dimensional Euclidean space. In this kind of space, a non-trivial boundary of a
point set S is a directed line lα with the direction α such that at least two points
lie in lα and all other points of S lie in the right half-plane of lα. A region can be
defined by the convex closure, which is formed by a set of non-trivial boundaries.
There are three discretized regions A, B and C, which are fuzzy point sets com-
posed of many points labeled with the degree to which they belong to regions A,
B and C, respectively. The points that have no labels definitely belong to their
regions.

In this example, we use p=1. The cardinal direction relations RNE, RSE,
RSW and RNW denote right NorthEast, right SouthEast, right SouthWest
and right NorthWest, respectively. We postulate they correspond to θ =
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Fig. 6. An example for evaluating our computational model

π/4,−π/4,−3π/4 and 3π/4. We first use formula (11) to compute the eight
cardinal directional relations, and then use formula (12) to refine the results
considering RNE, RSE, RSW and RNW. The results of computing the cardi-
nal directional relations between regions A, B and C are listed in table 1. As
expected, the results computed using our model are optimistic and conform to
human perception and the mathematical model can refine the direction relation
to a finer level. For example, the degree to which the fuzzy region C is located
SouthEast relative to the fuzzy region B is 1, which means that region C is
definitely SouthEast of region B regardless of their fuzziness, and the degree to
which the fuzzy region C is located rightly SouthEast of the fuzzy region B is
0.19, which means that the possibility of region C being right SouthEast of B
is small. It can also be seen that our model measures the cardinal directional
relationships quantitatively by taking into account of the fuzziness of regions.

Table 1. Computation results using our model for Fig. 6

�������μθ(X, Y )
θ

N NE/RNE E SE/RSE S SW/RSW W NW/RNW

μθ(A, B) 0.22 0.98/0.40 0 0 0 0 0 0
μθ(A,C) 0 0.30/0 0.70 0 0 0 0 0
μθ(B, A) 0 0 0 0 0.02 0.98/0.48 0 0
μθ(B, C) 0 0 0 1/0.19 0 0 0 0
μθ(C, B) 0 0 0 0 0 0 0 1/0.18
μθ(C, A) 0 0 0 0 0 0.54/0 0.43 0.03/0

6 Conclusions

Computational models for computing and refining cardinal directional relation
between fuzzy regions have been put forward and their usefulness is shown by the
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results in the experiment. We show that the two models are also compatible with
the crisp ones. The morphological model can be a refinement of the conventional
model to distinguish more detailed information and avoid some anomalies. The
two models are very useful in modeling knowledge in GIS, content-based image
retrieval system and computer vision, etc. More experiments will be carried out
to evaluate our computational models. The application of this technique to one
of these systems is the future research.
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Abstract. This paper presents a novel method for finding interesting
patterns from spatio-temporal data. First, we perform a pairwise com-
parison of spatio-temporal sequences using the multiscale matching, tak-
ing into account the requirements for multiscale observation. Next, we
construct the clusters of sequences using rough-set based clustering tech-
nique. Experimental results on real soccer game records demonstrated
that the method could discover some interesting pass patterns that may
be associated with successful goals.

1 Introduction

Clustering of spatio-temporal data provides a new, data-oriented way of discov-
ering interesting knowledge about the movement of targets. It has been receiving
much attention in various fields such as crime research, meteorology and sports
data analysis, as a tool for revealing common behavioral characteristics of the
targets. For example, in soccer game, by clustering spatio-temporal data about
the pass sequence, one may obtain interesting knowledge about the strategy of
a team like ’frequent use of right-side attack’.

This paper presents a novel method for visualizing interesting patterns hidden
in the spatio-temporal data. As a tangible data we employ soccer game records,
as they involve the most important problems in spatio-temporal data mining –
the temporal irregularity of data points. Especially, we focus on discovering the
features of pass transactions, which resulted in successful goals, and representing
the difference of strategies of a team by the pass strategies.

There are two points that should be technically solved. First, the length of a
sequence, number of data points constituting a sequence, and intervals between
data points in a sequence are all irregular. A pass sequence is formed by con-
catenating contiguous pass events; since the distance of each pass, the number
of players translating the contiguous passes are by nature difference, the data
should be treated as irregular sampled time-series data. Second, multiscale ob-
servation and comparison of pass sequences are required. This is because a pass
sequence represents both global and local strategies of a team. For example, as
a global strategy, a team may frequently use side-attacks than counter-attacks.
As a local strategy, the team may frequently use one-two pass. Both levels of

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 612–621, 2005.
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strategies can be found even in one pass sequence; one can naturally recognize it
from the fact that a video camera does zoom-up and zoom-out of a game scene.
In order to solve these problems, we employed multiscale matching [1], [2], a
pattern recognition based contour comparison method. And we employed rough
clustering [3], which are suitable of handing relative dissimilarity produced by
multiscale matching.

The rest of this paper is organized as follows. Section 2 describes the data
structure and preprocessing. Section 3 describes multiscale matching. Section 4
describes rough clustering. Section 5 shows experimental results on the FIFA
world cup 2002 data and Section 6 concludes the results.

2 Data Structure and Preprocessing

2.1 Data Structure

We used the high-quality, value-added commercial game records of soccer games
provided by Data Stadium Inc., Japan. The current states of pattern recognition
technique may enable us to automatically recognize the positions of ball and
players [4], [5], [6], however, we did not use automatic scene analysis techniques
because it is still hard to correctly recognize each action of the players.

The data consisted of the records of all 64 games of the FIFA world cup 2002,
including both heats and finals, held during May-June, 2002. For each action in a
game, the following information was recorded: time, location, names(number) of
the player, the type of event (pass, trap, shoot etc.), etc. All the information was
generated from the real-time manual interpretation of video images by a well-
trained soccer player, and manually stored in the database. Table 1 shows an
example of the data. In Table 1, ’Ser’ denotes the series number, where a series

Table 1. An example of the soccer data record

Ser Time Action T1 P1 T2 P2 X1 Y1 X2 Y2

1 20:28:12 KICK OFF Senegal 10 0 -33
1 20:28:12 PASS Senegal 10 Senegal 19 0 -50 -175 50
1 20:28:12 TRAP Senegal 19 -175 50
1 20:28:12 PASS Senegal 19 Senegal 14 -122 117 3004 451
1 20:28:14 TRAP Senegal 14 3004 451
...

...
169 22:18:42 P END France 15 1440 -685

denotes a set of contiguous events marked manually by expert. The remaining
fields respectively represent the time of event occurrence (’Time’), the type of
event (’Action’), the team ID (’T1’) and player ID (’P1’) of one acting player
1, the team ID (’T2’) and player ID (’P2’) of another acting player 2, spatial
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position of player 1 (’X1’, ’Y1’), and spatial position of player 2 (’X1’, ’Y1’),
Player 1 represents the player who mainly performed the action. As for pass
action, player 1 represents the sender of a pass, and player 2 represents the
receiver of the pass. Axis X corresponds to the long side of the soccer field, and
axis Y corresponds to the short side. The origin is the center of the soccer field.
For example, the second line in Table 1 can be interpreted as: Player no. 10 of
Senegal, locating at (0,-50), sent a pass to Player 19, locating at (-175,50).

2.2 Target Series Selection

We selected the series that contains important PASS actions that resulted in
goals as follows.

1. Select a series containing an IN GOAL action.
2. Select a contiguous PASS event. In order not to divide the sequence into

too many subsequences, we regarded some other events as contiguous events
to the PASS event; for example, TRAP, DRIBBLE, CENTERING, CLEAR,
BLOCK. Intercept is represented as a PASS event in which the sender’s team
and receiver’s team are different. However, we included an intercept into the
contiguous PASS events for simplicity.

3. From the Selected contiguous PASS event, we extract the locations of Player
1, X1 and Y1, and make a time series of locations p(t) = {(X1(t), Y1(t))|1 ≤
t ≤ T } by concatenating them. For simplicity, we denote X1(t) and Y1(t) by
x(t) and y(t) respectively.

Fig. 1. Spatial representation of a PASS sequences

Figure 1 shows an example of spatial representation of a PASS sequence
generated by the above process. Table 2 provides an additional information, the
raw data that correspond to Figure 1. In Figure 1 the vertical line represents the
axis connecting the goals of both teams. Near the upper end (+5500) is the goal



A Clustering Method for Spatio-temporal Data and Its Application 615

of France, and near the lower end is the goal of Senegal. This example PASS
sequence represents the following scene: Player no. 16 of France, locating at (-
333,3877), send a pass to player 18. Senegal cuts the pass at near the center of
the field, and started attack from the left side. Finally, Player no. 11 of Senegal
made a CENTERING, and after several block actions of France, Player no. 19
of Senegal made a goal.

Table 2. Raw data corresponding the sequence in Figure 1

Ser Time Action T1 P1 T2 P2 X1 Y1 X2 Y2

47 20:57:07 PASS France 16 France 18 -333 3877 122 -2958
47 20:57:08 PASS France 18 France 17 122 2958 -210 -2223
47 20:57:10 DRIBBLE France 17 -210 2223 -843 -434
47 20:57:14 PASS France 17 France 4 -843 434 298 -685
47 20:57:16 PASS France 4 France 6 298 685 1300 217
47 20:57:17 TRAP France 6 1300 217
47 20:57:19 CUT Senegal 6 -1352 -267
47 20:57:19 TRAP Senegal 6 -1352 -267
47 20:57:20 PASS Senegal 6 Senegal 11 -1704 702 -2143 2390
47 20:57:21 DRIBBLE Senegal 11 -2143 2390 -1475 5164
47 20:57:26 CENTERING Senegal 11 -1475 5164
47 20:57:27 CLEAR France 17 175 4830
47 20:57:27 BLOCK France 16 281 5181
47 20:57:27 CLEAR France 16 281 5181
47 20:57:28 SHOT Senegal 19 -87 5081
47 20:57:28 IN GOAL Senegal 19 -140 5365

By applying the above preprocess to all the IN GOAL series, we obtained N
sequences of passes P = {pi|1 ≤ i ≤ N} that correspond to N goals, where i of
pi denote the i-th goal.

2.3 Data Cleansing and Interpretation

Continuous actions occurred at the same location should be considered as a single
action. For example, in Table 2, the 7th and 8th actions consisting of CUT and
TRAP should be treated as a single action, because their interaction does not
actually involve any movement of a ball on the field. The 13rd and 14th actions
consisting of BLOCK and CLEAR should be similarly treated as a single action.
In such a case, we employed only the first action and removed other redundant
actions.

We here do not use the time information provided in the data for each action,
because the time resolution is insufficient for calculating the moving speed of a
ball. Instead, with a fixed interval we performed re-sampling of a trajectory of
ball between two successive actions. In this experiment we linearly interpolated
the location data at every 55 locational unit (Field length / 200).
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3 Multiscale Comparison of Pass Sequences

For every pair of PASS sequences {(pi, pj) ∈ P |1 ≤ i < N, i < j ≤ N}, we
apply multiscale matching to compare their dissimilarity. Based on the resul-
tant dissimilarity matrix, we perform grouping of the sequences using rough
clustering [3].

Multiscale Matching is a method to compare two planar curves by partly
changing observation scales. We here briefly explain the basic of multiscale
matching. Details of matching procedure are available in [2].

Let us denote two input sequences to be compared, pi and pj , by A and
B. First, let us consider a sequence x(t) containing X1 values of A. Multiscale
representation of x(t) at scale σ, X(t, σ) can be obtained as a convolution of x(t)
and a Gaussian function with scale factor σ as follows.

X(t, σ) =
∫ +∞

−∞
x(u)

1
σ
√

2π
e−(t−u)2/2σ2

du (1)

where the gauss function represents the distribution of weights for adding the
neighbors. It is obvious that a small σ means high weights for close neighbors,
while a large σ means rather flat weights for both close and far neighbors. A
sequence will become more flat as σ increases, namely, the number of inflection
points decreases. Multiscale representation of y(t), Y (t, σ) is obtained similarly.
The m-th order derivative of X(t, σ), X(m)(t, σ), is derived as follows.

X(m)(t, σ) =
∂mX(t, σ)

∂tm
= x(t) ⊗ g(m)(t, σ). (2)

According to the Lindeberg’s notions [7], it is preferable to use the modified
Bessel function instead of Gaussian function as a convolution kernel for discrete
signals. Below we formalize the necessary functions:

X(t, σ) =
∞∑

n=−∞
e−σIn(σ)x(t − n) (3)

where In(σ) denotes the modified Bessel function of n-th order. The first- and
second-order derivatives of X(t, σ) are given as follows.

X
′
(t, σ) =

∞∑
n=−∞

−n

σ
e−σIn(σ)x(t − n) (4)

X
′′
(t, σ) =

∞∑
n=−∞

1
σ

(
n2

σ
− 1)e−σIn(σ)x(t − n) (5)

The curvature of point t at scale σ is obtained as follows.

K(t, σ) =
X ′Y ′′ −X ′′Y ′

(X ′2 + Y ′2)3/2
, (6)
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Fig. 2. An illustrative example of multiscale description and matching

whereX ′,X ′′, Y ′ and Y ′′ denote the first- and second-order derivatives ofX(t, σ)
and Y (t, σ) by t, respectively.

Next, we divide the sequence K(t, σ) into a set of convex/concave subse-
quences called segments based on the place of inflection points. A segment is a
subsequence whose ends correspond to the two adjacent inflection points, and
can be regarded as a unit representing substructure of a sequence.

Let us assume that a pass sequence A(k) at scale k is composed of R segments.
Then A(k) is represented by

A(k) =
{
a
(k)
i | i = 1, 2, · · · , R(k)

}
, (7)

where a(k)
i denotes the i-th segment of A(k) at scale σ(k). By applying the same

process to another input sequenceB, we obtain the segment-based representation
of B as follows.

B(h) =
{
b
(h)
j | j = 1, 2, · · · , S(h)

}
(8)

where σ(h) denote the observation scale of B and S(h) denote the number of
segments at scale σ(h).

After that, we trace the hierarchy of inflection points from the top scale to
bottom scale based on the proximity of inflection points. This trace is important
to capture the hierarchy of segment replacement and to guarantee the connec-
tivity of segments represented at at different scales.

The main procedure of multiscale matching is to find the best set of seg-
ment pairs that minimizes the total segment difference. The search is performed
throughout all the scales. Figure 2 illustrates the process. For example, three
contiguous segments B(0)

3 , B(0)
4 and B

(0)
5 of sequence B at scale 0 have no sim-

ilar segments of sequence A at scale 0. However, at a global scale, they can be
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represented (merged) as a single segment B(2)
1 at scale 2, whose shape is similar

to A
(1)
1 or A(2)

1 of sequence A at scales 1 or 2. As their origin is A(0)
3 , we can

conclude that the set of segments B(0)
3 , B(0)

4 and B
(0)
5 are structurally similar

to segment A(0)
3 . On the contrary, segments such as B(0)

0 and B
(0)
1 have locally

similar segments A
(0)
0 and A

(0)
1 respectively. In this way, we can compare the

structural similarity of sequences by changing the observation scales.
There are two restrictions in determining the best set of the segments. First,

the resultant set of the matched segment pairs must not be redundant or in-
sufficient to represent the original sequences. Namely, by concatenating all the
segments in the set, the original sequence must be completely reconstructed
without any partial intervals or overlaps.

Second, the segment dissimilarities accumulated over all matched pairs must
be minimized. Dissimilarity d(a(k)

i , b
(h)
j ) of two segments a(k)

i and b
(h)
i is defined

as follows.

d(a(k)
i , b

(h)
j ) =

| θ(k)
ai − θ

(h)
bj

|

θ
(k)
ai + θ

(h)
bj

∣∣∣∣∣∣ l
(k)
ai

L
(k)
A

−
l
(h)
bj

L
(h)
B

∣∣∣∣∣∣ (9)

where θ
(k)
ai and θ

(h)
bj

denote rotation angles of tangent vectors along segments

ai
(k) and bj

(h), l(k)
ai and l

(h)
bj

denote the length of segments, L
(k)
A and L

(h)
B denote

the total length of sequencesA and B at scales σ(k) and σ(h), respectively.
The total difference between sequences A and B is defied as a sum of the

dissimilarities of all the matched segment pairs as

D(A,B) =
P∑

p=1

d(a(0)
p , b(0)p ), (10)

where P denotes the number of matched segment pairs. The matching process
can be fasten by implementing dynamic programming scheme [2].

4 Grouping of Sequences by Rough Clustering

One of the important issues in multiscale matching is treatment of ’no-match’
sequences. Theoretically, any pairs of sequences can be matched because a se-
quence will become single segment at enough high scales. However, this is not
a realistic approach because the use of many scales results in the unacceptable
increase of computational time. If the upper bound of the scales is too low, the
method may possibly fail to find the appropriate pairs of subsequences. For ex-
ample, suppose we have two sequences, one is a short sequence containing only
one segment and another is a long sequence containing hundreds of segments.
The segments of the latter sequence will not be integrated into one segment until
the scale becomes considerably high. If the range of scales we use does not cover
such a high scale, the two sequences will never be matched. In this case, the
method should return infinite dissimilarity, or a special number that identifies
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the failed matching. This property prevents conventional agglomerative hierar-
chical clusterings (AHCs) [8] from working correctly. Complete-linkage (CL-)
AHC will never merge two clusters if any pair of ’no-match’ sequences exist be-
tween them. Average-linkage (AL-) AHC fails to calculate average dissimilarity
between two clusters.

In order to handle the ’no-match’ problem, we employed rough clustering
[3], that can handle relatively defined dissimilarity. This method is based on
iterative refinement of N binary classifications, where N denotes the number
of objects. First, an equivalence relation, that classifies all the other objects
into two classes, is assigned to each of N objects by referring to the relative
proximity. Next, for each pair of objects, the number of binary classifications in
which the pair is included in the same class is counted. This number is termed
the indiscernibility degree. If the indiscernibility degree of a pair is larger than a
user-defined threshold value, the equivalence relations may be modified so that
all of the equivalence relations commonly classify the pair into the same class.
This process is repeated until class assignment becomes stable. Consequently, we
may obtain the clustering result that follows a given level of granularity, without
using geometric measures.

5 Experimental Results

We applied the proposed method to the action records of 64 games in the FIFA
world cup 2002 described in Section 2. First let us summarize the procedure of
experiments.

1. Select all IN GOAL series from original data.
2. For each IN GOAL series, generate a time-series sequence containing con-

tiguous PASS events. In our data, there was in total 168 IN GOAL series
excluding own goals. Therefore, we had 168 time-series sequences, each of
which contains the sequence of spatial positions (x(t), y(t)).

3. For each pair of the 168 sequences, compute dissimilarity of the sequence pair
by multiscale matching. Then construct a 168 × 168 dissimilarity matrix.

4. Perform cluster analysis using the induced dissimilarity matrix and rough
clustering method.

The following parameters were used in multiscale matching: the number of scales
= 100, scale interval = 0.5, start scale = 0.5, cost weight for segment replacement
= 20.0. We used the following parameters for rough clustering: σ = 2.0, Th = 0.3.
These parameters were determined through preparatory experiments.

Out of 14,196 comparisons, 7,839 (55.2%) resulted in ’matching failure’ for
which we assigned a special value of ’-1’ as their dissimilarity. For this highly
disturbed dissimilarity matrix, rough clustering produced a total of 12 clusters,
each of which contains 4, 87, 27, 17, . . . sequences respectively. Figures 3 - 6
respectively show examples of sequences grouped into the four major clusters:
cluster 2 (87 cases), 3 (24 cases), 4 (17 cases), 6 (16 cases). Cluster 2 contained
remarkably short sequences. They represented special events such as free kicks,
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Fig. 3. Sequences in cluster 2 (87 cases). Fig. 4. Sequences in cluster 3 (24 cases).

Fig. 5. Sequences in cluster 4 (17 cases). Fig. 6. Sequences in cluster 6 (16 cases).

penalty kicks and corner kicks, that made goals after one or a few touches. On the
contrary, cluster 3 contained complex sequences, each of which contained many
segments and often included loops. These sequences represented that the goals
were succeeded after long, many steps of pass actions, including some changes of
the ball-owner team. Clusters 4 and 6 contained rather simple sequences, most
of which contained only several segments. These sequences represented that the
goals were obtained after interaction of a few players. These observations demon-
strate that the sequences were clustered according to the structural complexity
of the pass routes.

6 Conclusions

In this paper, we have presented a new method for cluster analysis of spatio-
temporal data with an application to finding interesting pass patterns from time-
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series soccer game records. Taking two characteristics of the pass sequence –
irregularity of data and requirements of multiscale observation – into account,
we developed a cluster analysis method based on multiscale matching and rough
clustering, which may build a new scheme of sports data mining. Although the
experiments are in the preliminary stage and subject to further quantitative eval-
uation, the proposed method demonstrated its potential for finding interesting
patterns in real soccer data. The future work will include the use of ball speed,
use of other feature points than inflection points, and optimization of segment
difference parameters.
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Abstract. We discuss the problems of spatio-temporal reasoning in the
context of hierarchical information maps and approximate reasoning net-
works (AR networks). Hierarchical information maps are used for rep-
resentation of domain knowledge about objects, their parts, and their
dynamical changes. They are constructed out of information maps con-
nected by some spatial relations. Each map describes changes (e.g., in
time) of states corresponding to some parts of complex objects. We dis-
cuss the details of defining relations between levels of hierarchical infor-
mation maps as well as between parts satisfying some additional con-
straints, e.g. spatial ones.

1 Introduction

One of the forms of data representation is an information system, where each
investigated object is described by means of some attributes (features). Once
some reflexive binary relation on a set of objects is given (e.g., a neighbourhood
relation), one can consider new information systems with more complex objects
that are clusters (clumps) of objects determined by this relation. In this case,
the attributes reflect some more general properties of objects, i.e., properties of
sets of objects. This approach is typical for time series analysis, where attributes
(features) are defined on the basis of relevant windows [10]. The chosen neigh-
bourhoods and their properties should make it possible to induce the high quality
approximations of a given concept. Observe that there are two problems in this
approach: discovery of relevant neighbourhoods of objects and their properties.
These are key problems of spatio-temporal data mining [3].1

In this paper, we extend this approach to the case of information maps and
hierarchical information maps, where unstructured objects are substituted by
more complex information granules corresponding to structured objects evolving
in time. The paper is a continuation of [15,16,7].

We emphasise that in the case of modelling of structured objects the infor-
mation granulation, in passing from a lower level of a hierarchy (defined by the
structure of an object) to a higher one, may be performed, e.g., by indiscerni-
bility or similarity relation. Hierarchical information maps make it possible to
model information granules relevant for the target tasks by taking into account
the functionality that the information granules should possess.
1 See [11] for recent issues on modelling of spatio-temporal data.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 622–631, 2005.
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2 Preliminaries

In the paper, we use the notation of rough set theory [6,4]. In particular, by
A = (U,A) we denote an information system with the universe U of objects and
the attribute set A. Each attribute a ∈ A is a function a : U → Va, where Va is the
value set of a. For a given set of attributes B ⊆ A, we define the indiscernibility
relation IND(B) on the universe U that partitions U into classes of indiscernible
objects. We say that objects x and y are indiscernible with respect to B if and
only if a(x) = a(y) for each a ∈ B.

Decision tables are denoted by A = (U,A, d), where d /∈ A is the decision
attribute. The decision attribute d defines partition of the universe U into de-
cision classes. An object x is inconsistent if there exists an object y such that
xIND(A)y, but x and y belong to different decision classes, i.e., d(x) �= d(y).
The positive region of a decision table A (denoted by POS(A)) is the set of all
consistent objects.

Any pair (A,R), where A = (U,A, d) is a decision table and R is a set of
binary and reflexive relations over U × U , is called a relational decision table.
For any R ∈ R by R(x) we denote the neighbourhood of an object x, i.e., the
set {y ∈ U : xRy}. One can consider a new decision table AR = (UR, AR, dR)
obtained from (A,R), where UR = {(x,R(x)) : x ∈ U} is a family of object
neighbourhoods, AR is a set of attributes describing properties of objects and
their neighbourhoods, and, e.g., dR((x,R(x))) = d(x). In this way, one can con-
sider attributes whose values depend on the context in which objects occur, i.e.,
on neighbourhoods of objects rather than on objects only. This approach is typ-
ical for time series analysis, where attributes (features) are defined on the basis
of relevant windows [2,1,10]. It is also used in multi-criteria decision making (see,
e.g., [17]). The chosen neighbourhoods and their properties should make it pos-
sible to induce high quality approximations of a given target concept. Observe
that there are two problems in this approach: discovery of relevant neighbour-
hoods of objects and properties of such neighbourhoods defined by means of
some new attributes. The former problem is related to the selection of R as well
as R ∈ R for any object, whereas the latter is based on discovery of a relevant
language of formulas expressing properties of neighbourhoods and next on the
selection of relevant formulas from this language. Discovery of relevant neigh-
bourhoods and their properties for proper object approximation is a key problem
of spatio-temporal data mining [3]. From such a decision table there can be de-
rived concept approximation classifiers by using strategies developed in rough
sets or other areas like machine learning and pattern recognition.

3 Information Maps

3.1 Basic Definitions

Information maps [14,16] are usually generated from experimental data (e.g., in-
formation systems or decision tables) and are defined by some binary (transition)
relations on the set of states. In this context a state consists of an information
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Fig. 1. (a) An information map; (b) An information map of an information system

label and the corresponding information extracted from a given data set. This
kind of structure provides basic models over which one can search for relevant
patterns for many data mining problems [14,16].

An information map A is a quadruple

A = (E,≤, I, f), (1)

where E is a finite set of information labels, ≤ ⊆ E × E is a binary transi-
tion relation on information labels, I is an information set and f : E → I is
an information function associating any information label with the correspond-
ing information. In Fig. 1a, we present an example of information map, where
E = {e1, e2, e3, e4, e5}, I = {f(e1), f(e2), f(e3), f(e4), f(e5)}, and the transition
relation ≤ is a partial order on E.

A state is any pair (e, f(e)), where e ∈ E. The set {(e, f(e)) : e ∈ E} of all
states of A is denoted by SA. The transition relation on information labels can
be extended to the relation on states, e.g., in the following way: (e1, i1) ≤ (e2, i2)
if and only if e1 ≤ e2. A path in A is any sequence s0s1s2 . . . of states such that
si ≤ si+1 for every i ≥ 0, and if si ≤ s ≤ si+1 then s = si or s = si+1.

3.2 Information Maps of Data Tables

Any information system A = (U,A) defines its information map as a graph
consisting of nodes that are elementary patterns generated by A, where an ele-
mentary pattern (or information signature) InfB(x) is a set {(a, a(x)) : a ∈ B}
of attribute-value pairs over B ⊆ A consistent with a given object x ∈ U . Thus,
the set of labels E is equal to the set INF (A) = {InfB(x) : x ∈ U,B ⊆ A}
of all elementary patterns of A. The relation ≤ is defined in a straightfor-
ward way, i.e., for e1, e2 ∈ INF (A), e1 ≤ e2 if and only if e1 ⊆ e2. Hence,
relation ≤ is a partial order on E. Finally, the information set I is equal to
{Ae : e ∈ INF (A)}, where Ae is a sub-system of A with the universe Ue equal
to the set {x ∈ U : ∀(a, t) ∈ e a(x) = t}. Attributes in Ae are attributes from A
restricted to Ue. The information function f mapping INF (A) into I is defined
by f(e) = Ae for any e ∈ INF (A) (see Fig. 1b).

One can consider other information functions for information maps over data
tables. Such a function can be a kind of“view”of dependencies in the data table.
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Then, for example, f(e) can be equal to the set of all dependencies in Ae that
have sufficient support and confidence.

3.3 Decision Tables over Information Maps

One of the typical schemes of object classification is based on the analysis of
decision tables. From the given information about an object (object pattern),
we try to classify it relative to a proper decision class. In many cases this scheme
needs to be extended because the context of the information should be consid-
ered together with the information itself. This means that instead of a single
information signature relative to the investigated object x, we also have to ex-
amine some other objects that are in some relation to x. Properties of those
objects can be important in order to extend information about x by information
about the context in which x occurs. In a more complex case, we can consider
states of objects and relations between such states. Temporal relations between
states, in the case of objects changing in time, provide another possible source
of information about the context in which objects occur.

Thus, the scheme of object classification can be as follows. We are given a
decision table. Next, it can be extended by some relations on objects (or values
of attributes) to a relational decision table defining some neighbourhoods of ob-
jects (possibly overlapping each other). Thus, we construct a new decision table,
where objects are pairs (object, object neighbourhood), and attributes describe
properties of the objects in the context of their neighbourhoods.

In the case of information maps, the above idea is generalised to more com-
plex information granules that are pairs (state, state neighbourhood), where
state is a state of a given information map A and state neighbourhood is the
neighbourhood of this state in A. A state can be identified by some information
about an object and it determines some set of objects (a sub-table), e.g., set of
objects indiscernible by means of some attributes. Thus, state neighbourhood
is a much more complex structure than object neighbourhood in the previous
case, because it is a set (defined by transition relation) of sub-tables satisfying
some constraints. Also the attributes of the constructed decision table are more
complex because they express properties of complex neighbourhoods. The deci-
sion attribute is complex as well because it classifies a state, which is a complex
object (in our example – a sub-table). Thus, for a given state s, we can consider,
e.g., the distribution of objects corresponding to s in decision classes as the value
of decision for s.

4 Hierarchical Information Maps

4.1 Spatio-temporal Modelling of Objects

Let us discuss in more detail the possibilities of modelling of objects evaluated
over time. In the simplest case, we can consider separate series of observations:
one series corresponds to one object (see Fig. 2a). Each of the series of observa-
tions can be modelled, e.g., by an information map (see Section 3), where labels
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Fig. 2. States of objects evaluating in time

correspond to time indices and information to object signatures (for details see
[16]). To make the modelling more general, one can combine different series to
one more complex information map by joining those states that carry the same
information. In this case, we lose some information about the observed objects,
however, the model is more general, hopefully still relevant, and applicable to a
potentially larger number of cases (see Fig. 2b).

Another possibility is to construct an information map where states denote all
the possible states of observed objects (defined by means of some properties, e.g.,
“moving car”, “stopped car”) and the transition relation describes the possible
next (previous) states if some temporal relation is additionally satisfied. The
main difference here is that the states are not labelled by time indices but by
some properties of objects. Thus, the space of states can potentially be reduced
to a significant degree.

Yet another case of perceiving objects is when we consider their structure.
Structured (complex) objects can consist of some parts constrained by some rela-
tions of different nature, e.g., spatial relations. The parts can be built from some
simpler parts and therefore the structure can be hierarchical with many differ-
ent levels. The relation object-part corresponds in most cases to some spatial
relation. These problems are considered in rough-mereological approach [9].

The combination of the last two cases, i.e., structured objects evaluating in
time, gives spatio-temporal objects. For modelling of such objects we can use
hierarchical information maps. Each level of such a map models temporal be-
haviour of the corresponding parts. The levels are connected by spatial relation,
e.g., object-part relation relative to the actual context (state of a complex ob-
ject and states of its parts) (see Fig. 3). The hierarchical information maps are
presented in more detail in the following section.

Especially interesting in modelling of object changes are rules that describe
how changes of some features (attributes) influence changes of some other ones.
Let us consider an example related to information maps. Assume that with any
label e there is associated an information f(e) which is a pair (T1(e),T2(e)) of
theories representing some view on knowledge represented in Ae consisting of
the set of dependencies between conditional and decision attributes in the data
table Ae, respectively. Such a view can consist of association rules with sufficient
support and confidence. Assume that e′ is another label (e.g., an extension of e).
Then, one can consider rules making it possible to predict differences between
T2(e) and T2(e′) on the basis of differences between T1(e) and T1(e′). Such rules
are interesting on different levels of hierarchical modelling for spatio-temporal
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Fig. 3. An example of hierarchical information map

reasoning. Moreover, the laws for predicting changes in decisions quite often re-
quire to discover relevant trends of conditional attribute changes (e.g., over some
period of time) from data. We plan to develop algorithmic tools for discovery
of such laws (dependencies) supported by hierarchical modelling. Observe that
in searching for these laws one should, in particular, discover relevant “views” of
sets of dependencies and measures of differences.

4.2 Hierarchical Information Maps

One possibility of modelling structured objects evaluated over time is to use
some multi-level relational structure. A hierarchical information map is an ex-
ample of such a structure. It consists of several levels, each modelling temporal
behaviour of parts from the same level of the object’s structure. Every part
of a complex (structured) object defines its own space of states together with
the corresponding transitions. Thus, on each level we keep several graphs – one
graph for one part. The edges of these graphs are labelled with some temporal
relations, however, they are defined for particular parts. The lowest level of the
map corresponds to elementary (atomic) parts.

We connect the nodes of graphs from adjacent levels by some spatial rela-
tion, defining schemes of constructing a more complex object in a given state
from its parts (which are also in some states). An example is presented in Fig.
3. A complex object in state v1 consists of two parts that are in states x1 and
y1. The same object in state v3 consists of three parts in states x3, y2, and z2,
respectively. With each non-atomic part in some state xi at any level, we can
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associate a decision table containing, e.g., information about historical obser-
vations of this part in xi. The rows (objects) of such a system correspond to
different observations.

In a more general case, there can be also given some other relations defined
between parts from the same level, e.g., spatial or temporal, reflecting some
constraints which should be satisfied by parts in given states in order to reason
about more complex object (see Fig. 3). For example, the state of an object
can change from safe to unsafe if its parts are in some particular states and,
additionally, if they are too close each other. Thus, while modelling complex
objects we have to also take into account such relations.

We propose to use labelling of relations linking levels of hierarchical informa-
tion maps. A label can reflect the fact that some parts satisfy some additional
constraintR, or do not satisfy R, or, e.g., do not satisfy any additional constraint
at all. In Fig. 4 we can see a part of hierarchical information map where two
parts x and y constitute a more complex object x⊕ y. There are two additional
constraints defined: relations R and S, denoted by dashed and dotted line re-
spectively. From the map it follows that the state of the complex object x ⊕ y
can depend on the states of parts x and y as well as satisfaction of R or S.

A very important problem is how to check that some complex relation is
satisfied or not. Some simple constrains can be checked directly by using some
predefined formulas. For example, we can consider a spatial relation “too close”
reflecting the fact that two cars are too close each other. Assuming that mea-
surements include location of the cars, we can directly compute the distance and
check whether the relation is satisfied or not.

In a more general case we are unable to check satisfiability of relations directly
and have to learn it from historical observations of objects. For this purpose,
we propose to construct relevant decision tables and to induce classifiers. Let
A = (a1, . . . , an), B = (b1, . . . , bm) be sets of attributes describing parts x and
y respectively, and let R be a binary relation that we want to learn. We can
construct a decision table AR = (X × Y,A ∪ B, dR), where X and Y are all
historical observations of parts x and y respectively; each pair of observations
(xi, yj) ∈ X ×Y is described by a vector (a1(xi), . . . , an(xi), b1(yj), . . . , bm(yj));
and dR is a binary decision attribute taking value 1 if given observation of
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Fig. 4. Satisfaction of spatial or spatio-temporal constraints R and S
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parts x and y satisfies the relation R, and 0 otherwise. One can also consider
extraction of new features from A ∪ B to make the approximation of R more
precise. Therefore, for each non-trivial constraint related to parts on a certain
level of information map we need to build separate classifier.

In the case of spatio-temporal constraints we may be required to define more
complex decision tables for classifier’s induction. First of all, we may need to
observe a particular object in time, e.g., in some time window. Then, the set
of attributes has to be extended by features describing dynamical properties of
observed objects. Secondly, new features may have to be extracted. For example,
basing on positions of two parts we can extract a new feature describing distance
between them by using some specialised metric.

The presented structure – multi-level hierarchical information maps – con-
sists of several information maps that are linked together by some relations on
the sets of states. It is important to note that in modelling of such maps we
express properties of states and relations between them using the language of
domain knowledge (e.g., a simplified natural language). Next, using hierarchi-
cal information maps and experimental data one can search for AR networks
(see [15,16]), representing relevant patterns for approximation of complex con-
cepts that appear on different levels of maps. Such AR networks are constructed
along the derivations performed in domain knowledge using the representation
in hierarchical information maps.

4.3 Constructing Higher Levels of Hierarchical Maps by
Information Granulation

In this section we discuss an important role which the relational structure gran-
ulation [13,8] plays in searching for relevant patterns in approximate reasoning,
e.g., approximation patterns (see Fig. 5). For any object x, there is defined a
neighbourhood I(x) specified by the value of the uncertainty function from an
approximation space (see [12]). From these neighbourhoods some other, more
relevant ones (e.g., for the considered concept approximation), should be found.
Such neighbourhoods can be extracted by searching in a space of neighbour-
hoods generated from values of the uncertainty function by applying to them
some operations like generalisation operations, set theoretical operations (union,
intersection), clustering, and operations on neighbourhoods defined by functions
and relations in the underlying relational structure.2 Fig. 5 illustrates an ex-
emplary scheme of searching for neighbourhoods (patterns, clusters) relevant
for concept approximation. In this example f denotes a function with two ar-
guments from the underlying relational structure. Due to the uncertainty, we
cannot perceive objects exactly but only by using available neighbourhoods de-
fined by the uncertainty function from an approximation space. Hence, instead of
the value f(x, y) for a given pair of objects (x, y), one should consider a family of
neighbourhoods F = {I(f(x′, y′)) : (x′, y′) ∈ I(x)× I(y)}. From this family F , a
subfamily F ′ of neighbourhoods can be chosen which consists of neighbourhoods

2 Relations from such a structure may define relations between objects or their parts.
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Fig. 5. Relational structure granulation

with some properties relevant for approximation. Next, a subfamily F ′ can be,
e.g., generalised to clusters that are relevant for the concept approximation, i.e.,
clusters sufficiently included into the approximated concept (see Fig. 5). The
inclusion degrees can be measured by granulation of the inclusion function from
the relational structure.

Using information granulation one can construct from a given information
map a new one at the higher level which is simpler (more compact) but still
sufficient for approximation of complex concepts with a satisfactory quality.

5 Conclusions

In the paper, we have discussed some problems related to hierarchical approxima-
tion of spatio-temporal knowledge by means of hierarchical information maps.
They can help to discover AR networks representing relevant spatio-temporal
patterns from data and soft domain knowledge.

The levels of hierarchical information maps are connected by some spatial
or spatio-temporal relations. Satisfaction of different constraints may lead to
connecting of the same states from one level to different state in the upper level.
We have also discussed the problem of learning such constraints.
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17. R. S�lowiński, S. Greco, and B. Matarazzo. Rough set analysis of preference-ordered
data. In J. Alpigini, J. Peters, A. Skowron, and N. Zhong, eds., LNAI 2475, pp.
44–59, 2002. Springer-Verlag.



Ordered Belief Fusion in Possibilistic Logic

Churn-Jung Liau

Institute of Information Science,
Academia Sinica, Taipei, 115, Taiwan

liaucj@iis.sinica.edu.tw

Abstract. In this paper, we propose a logical framework for reason-
ing about uncertain belief fusion. The framework is a combination of
multi-agent epistemic logic and possibilistic logic. We use graded epis-
temic operators to represent agents’ uncertain beliefs, and the operators
are interpreted in accordance with possibilistic semantics. Ordered fu-
sion can resolve the inconsistency caused by direct fusion. We consider
two strategies to merge uncertain beliefs. In the first strategy, called level
cutting fusion, if inconsistency occurs at some level, then all beliefs at the
lower levels are discarded simultaneously. In the second, called level skip-
ping fusion, only the level at which the inconsistency occurs is skipped.
We present the formal semantics and axiomatic systems for these two
strategies.

Keywords: Belief fusion, database merging, epistemic logic, multi-agent
systems, possibilistic logic.

1 Introduction

The development of epistemic logic has been stimulated by the philosophical
analysis of knowledge and belief [7]. This kind of logic has attracted the attention
of researchers from diverse fields, such as artificial intelligence (AI), economics,
linguistics, and theoretical computer science. Among them, AI researchers and
computer scientists have developed some technically sophisticated formalisms
and applied them to the analysis of distributed and multi-agent systems [6,13].

The application of epistemic logic to AI and computer science emphasizes
the interaction of agents, from which multi-agent epistemic logic has been de-
veloped. One representative example of such logic is proposed by Fagin et al.
[6]. The term “knowledge” is used in a broad sense in [6] to cover cases of be-
lief and information1. The most novel feature of their logic is its consideration of
common knowledge and distributed knowledge among a group of agents. Distrib-
uted knowledge is that which can be deduced by pooling everyone’s knowledge.
In this paper, the distributed knowledge operator is also called the direct fusion
operator. While it is essential that proper knowledge must be true, the belief of
1 More precisely, the logic for belief is called doxastic logic. However, here we use the

three terms knowledge, belief, and information interchangeably, so epistemic logic is
assumed to cover all these notions.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 632–641, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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an agent may be wrong. Therefore, in general, there will be conflict between the
beliefs to be merged. In this case, everything can be deduced from the distrib-
uted belief due to the notorious omniscience property of epistemic logic, so the
merged result will be useless for further reasoning. To resolve the inconsistency of
merged belief, ordered fusion operators are incorporated into multi-agent epis-
temic logic. This has resulted in the development of fusion logics [3,4,8,9], in
which the reliability ordering of agents is taken into account when their beliefs
are merged.

While multi-agent epistemic logic does not consider the uncertainty of beliefs,
a quantitative modal logic (QML) has been proposed for reasoning about such
beliefs [10,11,12]. The direct fusion of uncertain beliefs is also considered in
possibilistic logic, PL⊗

n , which extends QML with distributed belief operators
[1]. The inconsistency problem in the direct fusion of beliefs also arises in the
direct> fusion of uncertain beliefs. Therefore, in this paper, we propose the
ordered fusion of uncertain beliefs to resolve the problem.

2 Review of Previous Approaches

In this section, we review some logics for distributed belief fusion. For brevity,
we only sketch the syntax and semantics of these logics, and omit their proof
methods.

2.1 Direct Fusion in Epistemic Logic

In [6], some variants of epistemic logic systems are presented. Using the naming
convention in [2], the most basic system with distributed beliefs is called KD

n , with
n being the number of agents and D denoting the distributed belief operators. In
this system, logical omniscience is the only property imposed on agents’ beliefs.
Nevertheless, we further require that the belief of each individual agent should
be consistent, even though the agents’ collective beliefs may be in conflict. Thus,
we actually use the logic KDD

n in [6], where an axiom D is used to guarantee the
consistency of each agent’s belief.

The alphabet of KDD
n consists of the following symbols: a countable set Φ0 =

{p, q, r, . . .} of atomic propositions; the propositional constants ⊥ (falsum or
falsity constant) and / (verum or truth constant); the binary Boolean operator
∨ (or) and the unary Boolean operator ¬ (not); a set Ag = {1, 2, . . . , n} of
agents; the modal operator-forming symbols “[” and “]”; and the left and right
parentheses “ (” and “)”.

The set of well-formed formulas (wffs)is defined as the smallest set containing
Φ0 ∪ {⊥,/} and is closed under Boolean operators and the following rule2:

– if ϕ is a wff, then [G]ϕ is a wff for any nonempty G ⊆ Ag.

The intuitive meaning of [G]ϕ is “The group of agents G has distributed belief ϕ”

2 We change the syntactic notation of epistemic logic in [6] slightly.



634 C.-J. Liau

As usual, other classical Boolean connectives, such as ∧ (and), ⊃ (implica-
tion), and ≡ (equivalence) can be defined as abbreviations. Also, we write 〈G〉ϕ
as an abbreviation of ¬[G]¬ϕ. When G is a singleton {i}, we write [i]ϕ instead
of [{i}]ϕ, so [i]ϕ means that agent i knows ϕ.

For the semantics, a possible world model for KDD
n is a triple

(W, (Ri)1≤i≤n, V ),

where

– W is a set of possible worlds,
– Ri ⊆ W × W is a serial binary relation3 over W for 1 ≤ i ≤ n,
– V : Φ0 → 2W is a truth assignment mapping each atomic proposition to the

set of worlds in which it is true.

From the binary relations, Ri’s, we can define a derived relation, RG, for each
nonempty G ⊆ Ag:

RG = ∩i∈GRi.

Note that the seriality of Ri guarantees the consistency of each agent’s belief
state. However, RG may be not serial.

Informally, Ri(w) is the set of worlds that agent i considers possible under w
according to his belief, so RG(w) is the set of worlds that are considered possible
under w according to the direct fusion of agents’ beliefs. This informal intuition is
reflected in the definition of the satisfaction relation. Let M = (W, (Ri)1≤i≤n, V )
be a model and L be the set of wffs for KDD

n . The satisfaction relation |=M⊆
W ×L is then defined by the following inductive rules (we use the infix notation
for the relation and omit the subscript M for convenience):

1. w |= p iff w ∈ V (p), for each p ∈ Φ0,
2. w �|= ⊥ and w |= /,
3. w |= ¬ϕ iff w �|= ϕ,
4. w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ,
5. w |= [G]ϕ iff for all u ∈ RG(w), u |= ϕ.

2.2 Ordered Fusion in Epistemic Logic

To encode the degrees of reliability of n agents, we use ordering relations over
any subset of {1, . . . , n}. Let T On denote the set of all possible strict total
orders over any non-empty subset of {1, . . . , n}; then we can associate a unique
syntactic notation with each total order in T On. Let X = {i1, i2, . . . , im} be a
non-empty subset of {1, . . . , n} and > be a strict total order such that ij > ik
iff j < k for all 1 ≤, j, k ≤ m; then the syntactic notation for (X, >) is the string

i1 > i2 > · · · > im.

In this paper, the capital letter O is used to denote meta-variables ranging
over such notations. Let O be the string i1 > i2 > · · · > im; then the set
3 A binary relation R is serial if ∀w∃u.R(w, u).
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{i1, i2, . . . , im} is called the domain of O and denoted by δ(O). In this case,
O > im+1 denotes i1 > i2 > · · · > im > im+1 if im+1 �∈ δ(O). As the syntactic
notation is unique for each total order, we can also identify the notation with
the total order itself, so we can write O ∈ T On. Furthermore, the upper-case
Greek letter Ω is used to denote meta-variables ranging over nonempty subsets
of T On.

In [9], two logics for ordered distributed belief fusion are proposed. The first,
DBFc

n, is based on a level cutting strategy. The set of DBFc
n wffs is defined by

the rules for KDD
n and the following rule:

– if ϕ is a wff, then [O]ϕ is a wff for any O ∈ T On.

Intuitively, [O]ϕ means that ϕ is derivable from the merged beliefs of agents in
δ(O) according to the specific order of O.

For the semantics, a DBFc
n model is a possible world model (W, (Ri)1≤i≤n, V )

for KDD
n . For each O ∈ T On, a derived relation, Rc

O, is defined inductively as
follows:

Rc
O>i(w) =

{
Rc

O(w) if
⋂

j∈δ(O>i) Rj(w) = ∅,
Rc

O(w) ∩ Ri(w) otherwise,

for any w ∈ W . The superscript c denotes level cutting fusion and can usually be
omitted when the context is clear. The following satisfaction condition is then
added to those of epistemic logic:

w |= [O]ϕ iff for all u ∈ RO(w), u |= ϕ.

Let O = i1 > i2 > · · · > im. Also, define Gj = {i1, i2 . . . , ij} for 1 ≤ j ≤ m
and assume k is the largest j such that

⋂
i∈Gj

Ri(w) �= ∅; then we have

RO(w) =
⋂

i∈Gk

Ri(w).

In other words, beliefs from agents below level k are completely discarded from
the merged result. Our rationale is that if a belief in level k + 1 is unacceptable,
then any belief in a less reliable level is also unacceptable.

The second logic, DBFs
n, is based on a level skipping strategy, which only

skips the agent causing the inconsistency and continues to consider the next level.
This strategy corresponds to the suspicious attitude of multi-source reasoning
[3], and has also been used in belief revision by Nebel [14]. The set of DBFs

n is
the smallest set containing Φ0 ∪ {⊥,/}, and is closed under Boolean operators
and the following rule:

– if ϕ is a wff, so is [Ω]ϕ for any nonempty Ω ⊆ T On.

When Ω is a singleton {O}, we write [O]ϕ instead of [{O}]ϕ. If Ω = {O1, . . . , Om}
such that |δ(Oi)| = 1 for all 1 ≤ i ≤ m, then [Ω] is the distributed belief oper-
ator among ordinary agents. Therefore, the language is more general than that
of DBFc

n.
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For the semantics, DBFs
n model is still a possible world model (W, (Ri)1≤i≤n, V )

for KDD
n . Therefore, we can define Rs

O inductively as follows:

Rs
O>i(w) =

{
Rs

O(w) if Rs
O(w) ∩ Ri(w) = ∅,

Rs
O(w) ∩ Ri(w) otherwise,

for any w ∈ W . As in the case of Rc
O, the superscript s denotes the level skipping

strategy and can be omitted when the context is clear. We further define

RΩ =
⋂

O∈Ω

RO.

Then, the following clause is used to define the satisfaction of modal formulas in
DBFs

n.

– w |= [Ω]ϕ iff for all u ∈ RΩ(w),u |= ϕ.

2.3 Direct Fusion in Possibilistic Logic

In [1], a logic PL⊗
n is proposed for reasoning about distributed belief fusion with

a continuous T-norm ⊗4. The set of PL⊗
n wffs is the smallest set containing

Φ0 ∪ {⊥,/}, and is closed under Boolean operators and the following rule:

– if ϕ is a wff, so are Bi
aϕ and Daϕ for any 1 ≤ i ≤ n and rational number

a ∈ [0, 1].

The intuitive meaning of Bi
aϕ is that agent i believes ϕ with strength (at least)

a, and the modal operator, Da, represents the distributed beliefs of all agents
with strength (at least) a.

Formally, the semantics of PL⊗
n is based on possibility theory [15]. A Π⊗

n -
structure is a tuple (W, (πi)0≤i≤n, V ) such that W is a set of possible worlds;
each πi maps each world w to a possibility distribution πi,w : W → [0, 1] over
W ; V maps elements in Φ0 to subsets of W ; and, for any w ∈ W ,

π0,w ≤
n⊗

i=1

πi,w.

In possibility theory, each possibility distribution π can derive the associated
possibility measure Π : 2W → [0, 1] and necessity measure N : 2W → [0, 1] as

Π(X) = sup
x∈X

π(x)

N(X) = 1 − sup
x �∈X

π(x).

Then, the satisfaction relation |= for Π⊗
n -structures are defined as

– w |= Bi
aϕ iff Ni,w(|ϕ|) ≥ a,

– w |= Daϕ iff N0,w(|ϕ|) ≥ a,

where |ϕ| = {x ∈ W | x |= ϕ} is the truth set of ϕ in the model, and Ni,w is the
necessity measure associated to πi,w for 0 ≤ i ≤ n and w ∈ W .
4 A T-norm is any binary operation on [0,1] that is commutative, associative, and

non-decreasing in each argument, and has 1 as its unit.
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3 Ordered Fusion in Possibilistic Logic

To resolve the inconsistency problem in PL⊗
n , we combine DBFc

n (resp. DBFs
n)

with PL⊗
n . Since possibilistic logic is inconsistency-tolerant [5], we introduce

a parameter, ε, to denote the degree of inconsistency tolerance. Recall that a
possibility distribution π : X → [0, 1] is normalized if Π(X) = supx∈X π(x) = 1.
A normalized possibility distribution represents a consistent belief state. If π
is not normalized, i.e., supx∈X π(x) < 1, π represents a partially inconsistent
belief state. 1− supx∈X π(x) is called the inconsistency degree of π, and denoted
by ι(π).

3.1 Level Cutting Fusion in Possibilistic Logic

In this subsection, we present a logic for reasoning about possibilistic belief fusion
based on a level cutting strategy. The logic is called CFPL⊗,ε

n , where ε is the
inconsistency tolerance degree of the logic. The set of CFPL⊗,ε

n wffs is defined as
the smallest set containing Φ0 ∪ {⊥,/}, and is closed under Boolean operators
and the following rule:

– if ϕ is a wff, then [G]aϕ, [O]aϕ, [G]+a ϕ, and [O]+a ϕ are wffs for any nonempty
G ⊆ Ag, any O ∈ T On, and any rational number a ∈ [0, 1].

As in epistemic logic, we use [i] instead of [{i}] when {i} is a singleton. The
intuitive meanings of [i]aϕ and [Ag]aϕ are respectively the same as those of
Bi

aϕ and Daϕ in PL⊗
n . However, we not only consider a single agent and the

set of all agents, but also any nonempty subset of agents. [G]+a ϕ is similar to
[G]aϕ, except that the former means the strength of belief is greater than a.
Additionally, we have modal operators corresponding to the ordered fusion of
uncertain beliefs. [O]aϕ (resp. [O]+a ϕ) means that an agent merging distributed
beliefs in accordance with the ordering O will believe ϕ with a strength of at
least (resp. more than) a.

For the semantics, a CFPL⊗,ε
n -model is a tuple M = (W, (πi)1≤i≤n, V ) such

that W is a set of possible worlds; each πi maps each world w to a possibility
distribution πi,w : W → [0, 1] over W such that ι(πi,w) ≤ ε; and V maps elements
in Φ0 to subsets of W . Note that we require the inconsistency degree of the belief
state of each single agent to be no more than ε. This is the inconsistency tolerance
degree of the logic. Any belief with inconsistency beyond this degree must be
discarded. Let us now define derived possibility distributions πG,w and πO,w from
{πi | 1 ≤ i ≤ n} for each nonempty subset G ⊆ Ag, O ∈ T On, and w ∈ W as
follows:

πG,w =
⊗
i∈G

πi,w

πO>i,w =
{
πO,w if ι(

⊗
j∈δ(O>i) πj,w) > ε,

πO,w ⊗ πi,w otherwise,

Then, the satisfaction relation |= for the CFPL⊗,ε
n -model is defined as
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– w |= [G]aϕ iff NG,w(|ϕ|) ≥ a,
– w |= [G]+a ϕ iff NG,w(|ϕ|) > a,
– w |= [O]aϕ iff NO,w(|ϕ|) ≥ a,
– w |= [O]+a ϕ iff NO,w(|ϕ|) > a,

where |ϕ| is the truth set of ϕ in the model, and NG,w (resp. NO,w) is the necessity
measure associated with πG,w (resp. πO,w) for G ⊆ Ag (resp. O ∈ T On) and
w ∈ W .

A set of wffs Σ is satisfied in a world w, written as w |= Σ, if w |= ϕ for all
ϕ ∈ Σ. We write Σ |=M ϕ if for each possible world w in M , w |= Σ implies
w |= ϕ, and Σ |=CFPL⊗,ε

n
ϕ if Σ |=M ϕ for each CFPL⊗,ε

n -model M . A wff ϕ is
valid in M if ∅ |=M ϕ. Σ can be omitted when it is empty. Thus, |=M ϕ and
|=CFPL⊗,ε

n
ϕ are the abbreviations of ∅ |=M ϕ and ∅ |=CFPL⊗,ε

n
ϕ respectively.

The subscript is also usually omitted if it is clear from the context.
An axiomatic system for CFPL⊗,ε

n is presented in Figure 1. The system was
developed by generalizing KDD

n to QML [10,11,12]. However, the consistency of
each individual agent’s belief is replaced by (1 − ε)-consistency, which means
that the inconsistency degree of each agent’s belief state is at most ε. Axiom G2
enforces this requirement. The axioms governing modal operators [O]a and [O]+a
are generalized from those of DBFc

n. Also, the symbol ⊕ in axiom G3 denotes a
T-conorm corresponding to ⊗, which is defined by a ⊕ b = 1 − (1 − a) ⊗ (1 − b).

A wff ϕ is derivable from the system CFPL⊗,ε
n , or simply, ϕ is a theorem

of CFPL⊗,ε
n , if there is a finite sequence ϕ1, . . . , ϕm such that ϕ = ϕm and

every ϕi is an instance of an axiom schema, or obtained from earlier ϕj ’s by the
application of an inference rule. It is written as 0CFPL⊗,ε

n
ϕ if ϕ is a theorem of

CFPL⊗,ε
n . Let Σ ∪ {ϕ} be a subset of wffs, then ϕ is derivable from Σ in the

system CFPL⊗,ε
n , written as Σ 0CFPL⊗,ε

n
ϕ, if there is a finite subset Σ′ of Σ

such that 0CFPL⊗,ε
n

∧
Σ′ ⊃ ϕ. We drop the subscript when no confusion occurs.

We now have the soundness and completeness results for the system CFPL⊗,ε
n .

Theorem 1. For any wff of CFPL⊗,ε
n , |= ϕ iff 0 ϕ.

3.2 Level Skipping Fusion in Possibilistic Logic

In this subsection, we present a logic for reasoning about possibilistic belief fusion
based on a level skipping strategy. The logic is called SFPL⊗,ε

n , where ε is the
inconsistency tolerance degree of the logic. The set of SFPL⊗,ε

n wffs is defined as
the smallest set containing Φ0 ∪ {⊥,/}, and is closed under Boolean operators
and the following rule:

– if ϕ is a wff, then [Ω]aϕ and [Ω]+a ϕ are wffs for any nonempty Ω ⊆ T On

and any rational number a ∈ [0, 1].

Semantically, an SFPL⊗,ε
n -structure is the same as a CFPL⊗,ε

n -structure.
However, we redefine πO,w for each O ∈ T On and w ∈ W as follows:

πO>i,w =
{
πO,w if ι(πO,w ⊗ πi,w) > ε,
πO,w ⊗ πi,w otherwise.
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– Axioms:
1. P: all tautologies of propositional calculus
2. Bookkeeping (� denotes either [G] or [O]):

(a) �cϕ ⊃ �+
d ϕ if c > d

(b) �+
c ϕ ⊃ �cϕ

(c) �0ϕ
(d) ¬�+

1 ϕ
3. G1:

(a) ([G]aϕ ∧ [G]a(ϕ ⊃ ψ)) ⊃ [G]aψ
(b) ([G]+a ϕ ∧ [G]+a (ϕ ⊃ ψ)) ⊃ [G]+a ψ

4. G2: ¬[i]+ε ⊥
5. G3: if G1 ∩ G2 = ∅, then

(a) ([G1]aϕ ∧ [G2]bϕ) ⊃ [G1 ∪ G2]a⊕bϕ
(b) ([G1]+a ϕ ∧ [G2]+b ϕ) ⊃ [G1 ∪ G2]+a⊕bϕ

6. O1:
(a) ¬[δ(O > i)]+ε ⊥ ⊃ ([O > i]aϕ ≡ [δ(O > i)]aϕ)
(b) ¬[δ(O > i)]+ε ⊥ ⊃ ([O > i]+a ϕ ≡ [δ(O > i)]+a ϕ)

7. O2:
(a) [δ(O > i)]+ε ⊥ ⊃ ([O > i]aϕ ≡ [O]aϕ)
(b) [δ(O > i)]+ε ⊥ ⊃ ([O > i]+a ϕ ≡ [O]+a ϕ)

– Rules of Inference:
1. R1 (Modus ponens, MP):

ϕ ϕ ⊃ ψ

ψ

2. R2 (Generalization, Gen):
ϕ

[G]1ϕ

Fig. 1. The axiomatic system for CFPL⊗,ε
n

Furthermore, we also define πΩ,w for each Ω ⊆ T On and w ∈ W as

πΩ,w =
⊗
O∈Ω

πO,w.

Then, the satisfaction relation |= for the SFPL⊗,ε
n -model is defined as

– w |= [Ω]aϕ iff NΩ,w(|ϕ|) ≥ a,
– w |= [Ω]+a ϕ iff NΩ,w(|ϕ|) > a,

where |ϕ| is the truth set of ϕ in the model, and NΩ,w is the necessity measure
associated with πΩ,w. The definition of the validity and consequence relation is
the same as above.

An axiomatic system can be also developed for SFPL⊗,ε
n by generalizing the

corresponding axioms in DBFs
n, as shown in Figure 2.
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– Axioms:
1. P: all tautologies of propositional calculus
2. Bookkeeping:

(a) [Ω]cϕ ⊃ [Ω]+d ϕ if c > d
(b) [Ω]+c ϕ ⊃ [Ω]cϕ
(c) [Ω]0ϕ
(d) ¬[Ω]+1 ϕ

3. V1:
(a) ([Ω]aϕ ∧ [Ω]a(ϕ ⊃ ψ)) ⊃ [Ω]aψ
(b) ([Ω]+a ϕ ∧ [Ω]+a (ϕ ⊃ ψ)) ⊃ [Ω]+a ψ

4. V2: ¬[i]+ε ⊥
5. V3: if Ω1 ∩ Ω2 = ∅, then

(a) ([Ω1]aϕ ∧ [Ω2]bϕ) ⊃ [Ω1 ∪ Ω2]a⊕bϕ
(b) ([Ω1]+a ϕ ∧ [Ω2]+b ϕ) ⊃ [Ω1 ∪ Ω2]+a⊕bϕ

6. O1:
(a) ¬[{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]aϕ ≡ [Ω ∪ {O, i}]aϕ)
(b) ¬[{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]+a ϕ ≡ [Ω ∪ {O, i}]+a ϕ)

7. O2:
(a) [{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]aϕ ≡ [Ω ∪ {O}]aϕ)
(b) [{O, i}]+ε ⊥ ⊃ ([Ω ∪ {O > i}]+a ϕ ≡ [Ω ∪ {O}]+a ϕ)

– Rules of Inference:
1. R1 (Modus ponens, MP):

ϕ ϕ ⊃ ψ

ψ

2. R2 (Generalization, Gen):
ϕ

[Ω]1ϕ

Fig. 2. The axiomatic system for SFPL⊗,ε
n

The definition of derivability and theoremhood in the SFPL⊗,ε
n system is

the same as above. We now have the soundness and completeness theorem
for SFPL⊗,ε

n .

Theorem 2. For any wff of SFPL⊗,ε
n , |= ϕ iff 0 ϕ.

4 Concluding Remarks

In this paper, we present two logics for reasoning about ordered possibilistic belief
fusion. Direct fusion and ordered fusion in epistemic logic, as well as direct fusion
in possibilistic logic have been proposed in the previous literature. Therefore,
the results in this paper fill a gap in the previous work. We believe that the
logics, which are summarized in Table 1, are applicable to reasoning in multi-
agent systems.



Ordered Belief Fusion in Possibilistic Logic 641

Table 1. Logics for belief fusion

without uncertainty with uncertainty
direct fusion KDD

n PL⊗
n

ordered fusion DBFc
n /DBFs

n CFPL⊗,ε
n /SFPL⊗,ε

n
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Abstract. As an extension of the traditional modal logic, the fuzzy
first-order modal logic is discussed in this paper. A description of fuzzy
first-order modal logic based on constant domain semantics is given, and
a formal system of fuzzy reasoning based on the semantic information
of models of first-order modal logic is established. It is also introduced
in this paper the notion of the satisfiability of the reasoning system and
some properties associated with the satisfiability are proved.
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1 Introduction

Modal logic is an important logic branch developed firstly in the category of non-
classical logics ([1]), and has been now widely used as a formalism for knowledge
representation in artificial intelligence and an analysis tool in computer science
([2],[3]). Along with the study of the modal logics, it has been found that the
modal logic has a close relationship with many other knowledge representation
theories. The most well-known result is the connection of the possible world se-
mantics for the modal epistemic logic S5 with the approximation space in rough
set theory (see [4]), where the system S5 has been shown to be useful in the
analysis of knowledge in various areas (see [5]). As a fragment of the first order
logic, modal logics are limited to deal with crisp assertions, as its possible world
semantics is crisp. That is, assertions about whether a formal proposition holds
are yes-no questions. More often than not, the assertions encountered in the real
world are not precise and thus cannot be treated simply by using the yes-no
questions. Fuzzy logic directly deals with the notion of vagueness and impre-
cision, and has been used in many research areas such as interval mathematics
([6]), possibility theory ([7]), rough set theory ([14]) or artificial neural networks.
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By combining with fuzzy logic, traditional modal logic has been extended.
For example, Hájek ([8]) provided a complete axiomatization of fuzzy S5 system
where the accessibility relation is the universal relation; Godo and Rodŕıguez
([9],[10]) gave a complete axiomatic system for an extension of Hájek’s logic
with another modality corresponding to a fuzzy similarity relation; Zhang, et al.
([11],[12]) established a formal system of fuzzy reasoning based on propositional
modal and discussed the soundness and completeness of the system. The work in
this paper is an extensive study of the fuzzy propositional modal logic. We shall
discuss the properties of the fuzzy first-order modal logic based on constant
domain semantics, introduce a fuzzy reasoning formal system based on fuzzy
first-order modal logic, and study the satisfiability of the reasoning procedure.

2 A Quick Overview of First-Order Modal Logic

In general, first-order modal logic will have its alphabet of symbols: a set of vari-
able symbols, denoted by V S = {x1, x2, ...}; a set of relation symbols, denoted
by PS = {Pn

i : n, i = 1, 2, ...}, where Pn
i is the ith n-place relation symbol;

the logical symbols, ¬ (negation), ∧ (and), ∨ (or), ⊃ (material implication);
quantifiers ∀ (for all) and ∃ (exists); the modal operator symbols � (necessity
operator) and ♦ (possibility operator).

Definition 1. An atomic formula of first-order modal logic is any expression
of the form P (x1, ..., xn), where P is an n-place relation symbol and x1, ..., xn

are variables.

Definition 2. The set of first-order formulas of first-order modal logic is the
smallest set satisfying the following conditions: Every atomic formula is a for-
mula; if ϕ is a formula, so are ¬ϕ, �ϕ, ♦ϕ , ∀xϕ and ∃xϕ; if ϕ and ψ are
formulas and ◦ is a binary connective, then ϕ ◦ ψ is a formula.

To establish the formal systems of modal logics, it is convenient to take ¬, ⊃
and � as primitive, and the other connectives and modal operator as defined.
For quantifiers we take ∀ as primitive, and treat ∃ as defined. Hence, the modal
logic formal system contains following axioms and inference rules:
• Axioms: Ap1 (ϕ ⊃ (ψ ⊃ ϕ));

Ap2 ((ϕ ⊃ (ψ ⊃ γ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ γ)));
Ap3 ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ));
Ap4 (∀xϕ(x) ⊃ ϕ(y)), where y is any variable free for x in ϕ(x);
Ap5 (∀x(ϕ ⊃ ψ) ⊃ (∀xϕ ⊃ ∀xψ));
K (�(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ));
T (�ϕ ⊃ ϕ);
E (¬�¬ϕ ⊃ �¬�¬ϕ).

• Inference rules: N(necessity rule) if 0 ϕ then 0 �ϕ;
UG(universal generalization) if 0 ϕ then 0 ∀xϕ;
MP (modus ponens) if 0 ϕ ⊃ ψ and 0 ϕ then 0 ψ.



644 Z. Zhang, Y. Sui, and C. Cao

A constant domain semantics (or model) for first-order modal logic is a structure
M = 〈W, R,D, I〉 where W is a set of possible worlds, R is a relation on W , D is
a non-empty set called the domain of the frame 〈W, R〉, I is an interpretation of
the frame 〈W, R,D〉, which assigns to each n-place relation symbol P and to each
possible world w ∈ W , some n-place relation on the domain D. Thus, I(P,w) is
an n-place relation on D, and so each n-tuple 〈d1, ..., dn〉 of members of D either
is in the relation I(P,w) or is not. Notice that in the constant domain semantics,
the domain of quantification is the same from possible world to possible world.

Remark 1. Different modal logics are characterized by the different classes of
frames which rely on the properties of the relations defined between possible
worlds. Without loss of generality, we shall consider the logic which is charac-
terized by the class of reflexive, symmetric and transitive frames.

Let M = 〈W, R,D, I〉 be a model. A valuation in model M is a mapping v that
assigns to each free variable x some member v(x) of domain D.

Definition 3. Let M be a model and ϕ be a formula. For each w ∈ W and each
valuation v in M , the notion that ϕ is true at possible world w of model M with
respect to valuation v, denoted by M,w |=v ϕ, is defined as follows:

(1) If ϕ is an atomic formula P (x1, ...xt), then M,w |=v P (x1, ...xt) provided
〈v(x1), ..., v(xt)〉 ∈ I(P,w).
(2) M,w |=v ¬ϕ ⇔ M,w �|=v ϕ.
(3) M,w |=v ϕ ⊃ ψ ⇔ M,w |=v ¬ϕ or M,w |=v ψ.
(4) M,w |=v �ϕ ⇔ for every w′ ∈ W , if wRw′ then M,w′ |=v ϕ.
(5) M,w |=v ∀xϕ ⇔ for every x-variant v′ of v in M , M,w |=v′ ϕ, where v′ is
an x-variant of v, i.e. v′ and v agree on all variables except possibly variable x.

Definition 4. Let M be a model and ϕ be a formula. For each w ∈ W , we
say that ϕ is true at possible world w of model M , denoted by M,w |= ϕ, if
M,w |=v ϕ for every valuation v in M ; we say that ϕ is true in model M ,
denoted by M |= ϕ, if M,w |= ϕ for every possible world w of M .

Typically, first-order modal logics are limited to deal with crisp concepts. How-
ever, many useful concepts encountered in the real world do not have a precisely
defined criteria of membership. To cope with this, we shall introduce a fuzzy
first-order modal logic system based on believable degrees.

3 Fuzzy First-Order Modal Logic with Believable Degrees

Our fuzzy first-order modal system will have the same alphabet of symbols and
the set of formulas as in the first-order modal logic mentioned in section 2. In or-
der to deal with the vagueness and imprecision notions, we extend the first-order
modal logics by using expressions of form 〈ϕ(x1, ...xt), ε〉 with intended mean-
ing that the believable degree of the individuals expressed by variables x1, ..., xt

having the relation expressed by formula ϕ is at least ε, where ϕ(x1, ...xt) is a
formula of the first-order modal logic and ε ∈ [0, 1]. An expression of the form
〈ϕ, ε〉 is also called a fuzzy assertion.
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Definition 5. A constant domain semantics (or model) for the fuzzy first-order
modal logic is a structure M = 〈W ,R,D, I〉, where W is a set of possible worlds,
R is a binary relation on W, D is a non-empty set called domain of the frame
〈W ,R〉, I is interpretation of the frame 〈W ,R,D〉, which assigns to each formula
ϕ(x1, ..., xt) with free variables x1, ..., xt and to each possible world w ∈ W, some
t-place function on D such that following conditions are satisfied:
(1) If ϕ is an atomic formula P(x1, ..., xt) then for each t-tuple (d1, ..., dt) of D,

I(P ,w)(d1, ..., dt) ∈ [0, 1].
(2) I(¬ϕ,w)(d1 , ..., dt) = 1 − I(ϕ,w)(d1, ..., dt).
(3) I(ϕ ⊃ ψ,w)(d1, ..., dt) = max{1 − I(ϕ,w)(d1 , ..., dt), I(ψ,w)(d1 , ..., dt)}.
(4) I(�ϕ,w)(d1, ..., dt) = inf{I(ϕ,w′)(d1, ..., dt) : wRw′}.
(5) For any ϕ(x, x1, ...xt) and any t-tuple 〈d1, ..., dt〉 of members of D,

I(∀xϕ,w)(d1 , ..., dt) = inf{I(ϕ,w)(d, d1, ..., dt) : d ∈ D}.
Let M = 〈W ,R,D, I〉 be a model. A valuation in M is a mapping v that assigns
to each free variable x some member v(x) of domain D.

Definition 6. Let M be a model and ϕ be a formula with free variables x1, ..., xt.
For each w ∈ W and each valuation v in M, a fuzzy assertion 〈ϕ, ε〉 is true at
possible world w of model M with respect to valuation v, denoted by M,w |=v

〈ϕ, ε〉, if I(ϕ,w)(v(x1), ..., v(xt)) ≥ ε.

Proposition 1. Let M be a model and ϕ be a formula. Then for each w ∈ W
and each valuation v in M, following properties hold.
(1) If ϕ is an atomic formula P (x1, ...xt), then M,w |=v 〈P (x1, ...xt), ε〉 provided
I(P,w)(v(x1), ..., v(xt)) ≥ ε.
(2) If M,w |=v 〈¬ϕ, ε〉 then I(ϕ,w)(v(x1), ..., v(xt)) ≤ 1 − ε.
(3) M,w |=v 〈ϕ ⊃ ψ, ε〉 ⇔ M,w |=v 〈¬ϕ, ε〉 or M,w |=v 〈ψ, ε〉.
(4) M,w |=v 〈�ϕ, ε〉 ⇔ for every w′ ∈ W, if wRw′ then M,w′ |=v 〈ϕ, ε〉.
(5) M,w |=v 〈∀xϕ, ε〉 ⇔ for every x-variant v′ of v in M, M,w |=v′ 〈ϕ, ε〉. �

Definition 7. Let M be a model and 〈ϕ, ε〉 be a formula. For each w ∈ W, we
say that 〈ϕ, ε〉 is true at possible world w of model M, denoted by M,w |= 〈ϕ, ε〉,
if M,w |=v 〈ϕ, ε〉 for every valuation v in M; we say that 〈ϕ, ε〉 is true in model
M, denoted by M |= 〈ϕ, ε〉, if M,w |= 〈ϕ, ε〉 for every possible world w of M.

Proposition 2. Let M be a model and ϕ(x) be a formula in which x is free, and
let y be any variable which is free for x in ϕ(x). Suppose v and v′ are valuations
in M such that v′ is x-variant of v and has v′(x) = v(y). Then for any ε ∈ [0, 1]
and any possible world w, M,w |=v 〈ϕ(y), ε〉 if and only if M,w |=v′ 〈ϕ(x), ε〉.

Proof. The proposition is proved by induction on the length of the formula ϕ(x).
For basic step, assume ϕ(x) is an atomic formula, say P (x, x1, ..., xt) where x
and xi are free variables and xi �= x for all i = 1, ..., t. Since v′ is x-variant of v,
we have v(xi) = v′(xi) for all i = 1, ..., t, by the assumption that v(y) = v′(x)
we have I(P,w)(v(y), v(x1), ..., v(xt)) = I(P,w)(v′(x), v′(x1), ..., v′(xt)), which
implies that M,w |=v 〈P (y, x1, ..., xt), ε〉 holds iff M,w |=v′ 〈P (x, x1, ..., xt), ε〉.

In the induction step, the cases that ϕ(x) is ¬ψ(x), or is ψ(x) ⊃ ξ(x), or is
�ψ(x) can be easily verified. Now we consider the case that ϕ(x) is ∀zψ(x), where
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z �= x. Suppose that M,w �|=v 〈∀zψ(y), ε〉. We show that M,w �|=v′ 〈∀zψ(x), ε〉.
Let u be a z-variant of v and M,w �|=u 〈ψ(y), ε〉. Define valuation u′ by setting
u′(x) = u(y) and u′(x′) = u(x′) for all x′ such that x′ �= x. Then, u′ is x-variant of
u, and by the induction hypothesis applied to ψ(x), we have M,w �|=u′ 〈ψ(x), ε〉.
Now y is free for x in ∀zψ(x), so z �= y. For any x′, if x′ �= z and x′ �= x then
u′(x′) = u(x′) = v(x′) = v′(x′), notice that u′(x) = u(y) = v(y) = v′(x), thus
u′ is z-variant of v′. Since M,w �|=u′ 〈ψ(x), ε〉, then, M,w �|=v′ 〈∀zψ(x), ε〉. The
converse can be verified by a similar argument. �

Proposition 3. Let M = 〈W ,R,D, I〉 be any model such that R is an equiva-
lence relation on W. Then,
(a) M |= 〈Ap1, 0.5〉;
(b) M |= 〈Ap2, 0.5〉;
(c) M |= 〈Ap3, 0.5〉;
(d) M |= 〈Ap4, 0.5〉;
(e) M |= 〈Ap5, 0.5〉;
(f) M |= 〈K, 0.5〉;
(g) M |= 〈T, 0.5〉;
(h) M |= 〈E, 0.5〉.

Proof. We prove (d) and (e) as examples. Now, let w be any possible world and
v be any valuation in M. For (d), we prove that M,w |=v 〈∀xϕ(x) ⊃ ϕ(y), 0.5〉,
i.e. I(∀xϕ(x) ⊃ ϕ(y),w)(v(y)) ≥ 0.5, where y is free for x in ϕ(x). Notice that
I(∀xϕ(x) ⊃ ϕ(y),w)(v(y)) = max{1 − I(∀xϕ(x),w)(v(y)), I(ϕ(y),w)(v(y))}, it
is sufficient to show that either I(∀xϕ(x),w)(v(y)) ≤ 0.5 or I(ϕ(y),w)(v(y)) ≥
0.5. If I(∀xϕ(x),w)(v(y)) > 0.5〉 then M,w |=v 〈∀xϕ(x), 0.5〉. Define valuation
v′ in I by setting v′(x) = v(y) and v′(x′) = v(x′) for all x′ such that x′ �= x,
then v′ is x-variant of v, and thus M,w |=v′ 〈ϕ(x), 0.5〉. By Proposition 2, we
have that M,w |=v 〈ϕ(y), 0.5〉, i.e. I(ϕ(y),w)(v(y)) ≥ 0.5.

For (e), let y be a free variable in ∀x(ϕ ⊃ ψ) ⊃ (∀xϕ ⊃ ∀xψ), let α(d) =
I(ϕ,w)(d, v(y)) and β(d) = I(ψ,w)(d, v(y)). We have I((∀x(ϕ ⊃ ψ) ⊃ (∀xϕ ⊃
∀xψ)),w)(v(y)) = max{1 − I(∀x(ϕ ⊃ ψ),w)(v(y)), I((∀xϕ ⊃ ∀xψ),w)(v(y))},
where 1 − I((∀x(ϕ ⊃ ψ)),w)(v(y)) = 1 − inf{I((ϕ ⊃ ψ),w)(d, v(y)) : d ∈ D} =
1 − inf{max{1 − α(d), β(d)} : d ∈ D}, and where I((∀xϕ ⊃ ∀xψ),w)(v(y)) =
max{1−I(∀xϕ)(v(y)), I(∀xψ,w)(v(y))} = max{1−inf{α(d) : d ∈ D}, inf{β(d) :
d ∈ D}}. If max{1−inf{α(d) : d ∈ D}, inf{β(d) : d ∈ D}} < 0.5 then there exists
d′ ∈ D, α(d′) > 0.5 and β(d′) < 0.5, thus inf{max{1−α(d), β(d)} : d ∈ D} < 0.5.
Therefore, we have that 1 − inf{max{1 − α(d), β(d)} : d ∈ D} > 0.5, which
implies that I((∀x(ϕ ⊃ ψ) ⊃ (∀xϕ ⊃ ∀xψ)),w)(v(y)) ≥ 0.5. �

Proposition 4. Let M be any fuzzy modal model. If M |= 〈ϕ, ε〉 then M |=
〈�ϕ, ε〉. �

Proposition 5. If M |= 〈ϕ ⊃ ψ, ε〉 and M |= 〈ϕ, ε′〉 then M |= 〈ψ, ε〉, where
ε, ε′ ∈ [0, 1] such that ε > 1 − ε′. �

Proposition 6. If M |= 〈ϕ, ε〉 then M |= 〈∀xϕ, ε〉. �
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There is a close relationship between modal logics and the theory of rough set
([13]). The notion of rough set was introduced by Pawlak, and has been widely
used in the areas of data mining and knowledge representation and reasoning
([14],[15]). The basic ingredients in the rough set theory are the lower and upper
approximation. More precisely, let (U, R) be an information system, where U is
a non-empty universe and R is an equivalence relation on U. For any subset X
of U , the lower and upper approximations of X are defined respectively by

RX = {y ∈ U : [y]R ⊆ X}
RX = {y ∈ U : [y]R ∩ X �= ∅}

X is definable (or exact) if it is the union of R-equivalence classes, and is rough
otherwise. Now in the fuzzy first-order modal logic, let M = 〈W ,R,D, I〉 be a
fuzzy modal model, where R is an equivalence relation on W , and

‖ 〈ϕ, ε〉 ‖= {w ∈ W : M,w |= 〈ϕ, ε〉}.

Below we show relationship between rough sets and fuzzy modal logic.

Proposition 7. We have equality ‖〈�ϕ, ε〉‖= R ‖〈ϕ, ε〉‖, as well as inclusion
‖〈♦ϕ, ε〉‖⊇ R ‖〈ϕ, ε〉‖. Moreover, if the domain of the possible worlds is finite
then ⊇ can be replaced by =. �

4 Fuzzy Reasoning and Satisfiability

Let Σ be a set of fuzzy assertions and 〈ϕ, ε〉 be a fuzzy assertion. We say that
〈ϕ, ε〉 is a logical consequence of Σ, denoted by Σ |= 〈ϕ, ε〉, if every model of Σ is
a model of 〈ϕ, ε〉. The process of deciding whether Σ |= 〈ϕ, ε〉 or not is called a
fuzzy reasoning procedure based on fuzzy first-order modal logics. To verify that
Σ |= 〈ϕ, ε〉, one has to verify that every model of Σ is a model of 〈ϕ, ε〉, which
is not convenient in practical applications. To cope with it, we attempt to find a
method which can be used to decide whether Σ |= 〈ϕ, ε〉 or not effectively. The
associated work about fuzzy propositional modal logic has been discussed in [11]
and [12]. In the following, we shall extend the work from propositional modal
logic to first-order modal logic and establish a fuzzy reasoning formal system
based on fuzzy first-order modal logic.

The basic idea is to syntactize the semantic information. In detail, we extend
the logical langauge for the fuzzy first-order modal logic in such a way that
there are infinite many possible world symbols w and a binary relation symbol
R. Under an extended interpretation I, w is interpreted to be a possible world,
and R to be R, the accessibility relation in the frame of interpretation I.

Definition 8. In addition to the basic symbols of the first-order modal logic,
the fuzzy reasoning formal system also contains a set of possible worlds symbols
w1,w2, ..., a set of relation symbols {<,≤, >,≥} and a binary relation symbol
R. The basic expression, called fuzzy constraint, in the system is in the form of
〈w : ϕ rel ε〉 , where ϕ is any formula in the first-order modal logic, ε ∈ [0, 1]
and rel ∈ {<,≤, >,≥}.
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Definition 9. An interpretation I of the system contains a model (WI ,R,DI , I),
where for any w, wI ∈ WI is a possible world, RI = R. Also for any w and
any formula ϕ(x1, ..., xt) with free variables x1, ..., xt, (ϕI ,wI) (simply denoted
by I(ϕ,w)) ia a t-place function on DI such that the properties (1)-(5) in Def-
inition 5 are satisfied. For any two possible world symbols w and w′, w′ is said
to be accessible from w if wIRIw′I .

Definition 10. A fuzzy constraint 〈w : ϕ rel ε〉, where ϕ is a formula with
free variables x1, ..., xt, is said to be satisfiable in I if there exists a valuation v
such that I(ϕ,w)(v(x1), ..., v(xt)) rel ε. A set S of fuzzy constraints is said to
be uniformly satisfiable in an interpretation I if there exists a valuation v such
that every fuzzy constraint of S is satisfiable in I with respect to v.

Proposition 8. Let S be a set of fuzzy constraints and 〈w : �ϕ ≥ ε〉 ∈ S. If S
is satisfiable in I then S ∪{〈w′ : ϕ ≥ ε〉} is satisfiable in I for any w′ such that
w′ is accessible from w.

Proof. Let v be the valuation in I such that S is satisfiable in I with respect to
v. Then we have that I(�ϕ,w)(v(x1), ..., v(xt)) ≥ ε. Let us notice that we have
I(�ϕ,w)(v(x1), ..., v(xt)) = inf{I(ϕ,w′)(v(x1), ..., v(xt)) : wIRIw′I}. Thus
we have I(ϕ,w′)(v(x1), ..., v(xt)) ≥ ε for any w′ such that wIRIw′I , i.e., for
any w′ accessible from w, 〈w′ : ϕ ≥ ε〉 is satisfied in I by valuation v. �

Proposition 8 is also correct if ≥ is replaced by >. As for the constraints with
the form 〈w : �ϕ ≤ ε〉, the condition of the associated proposition should be
modified slightly. This is due to the simple fact that inf S ≤ ε does not necessarily
imply the existence of an element in S that is less than or equal to ε.

Proposition 9. Let S be a set of fuzzy constraints and 〈w : �ϕ < ε〉 ∈ S. If S
is satisfiable in I then S∪{〈w′ : ϕ < ε〉} is satisfiable in I for some w′ such that
w′ is accessible from w. Moreover, if 〈w : �ϕ ≤ ε〉 ∈ S and S is satisfiable in I
with the condition such that WI is finite, then S ∪ {〈w′ : ϕ ≤ ε〉} is satisfiable
in I for some w′ such that w′ is accessible from w.

Proof. The proof of the former part is similar to that of Proposition 8 with the
property that inf{I(ϕ,w′)(v(x1), ..., v(xt)) : wIRIw′I} < ε. The proof of the
latter part is based on the fact that inf{I(ϕ,w′)(v(x1), ..., v(xt)) : wIRIw′I} ≤
ε and that WI is finite. �

Proposition 10. If S is satisfiable in an interpretation I and 〈w : ¬ϕ rel n〉 ∈
S, then S ∪ {〈w : ϕ rel∗ 1 − ε〉} is satisfiable in I. Where rel ∈ {≥,≤, >, <}
and rel∗ is the converse of rel.

Proof. Let v be the valuation in I such that S is satisfiable in I with respect to v.
Then we have I(¬ϕ,w)(v(x1), ..., v(xt)) rel ε. Since I(¬ϕ,w)(v(x1), ..., v(xt)) =
1−I(ϕ,w)(v(x1), ..., v(xt)), we have that I(ϕ,w)(v(x1), ..., v(xt)) rel∗ 1−ε, i.e.,
〈w : ϕ rel∗ 1 − ε〉 is also satisfied by the valuation v. �
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Proposition 11. If S is satisfiable in I and 〈w : ϕ ⊃ ψ ≤ ε〉 ∈ S, then
S ∪ {〈w : ϕ ≥ 1 − ε〉, 〈w : ψ ≤ ε〉} is satisfiable in I.

Proof. Let v be the valuation in I such that S is satisfiable in I with re-
spect to v. Then the proposition can be easily proved by the fact that I(ϕ ⊃
ψ,w)(v(x1), ..., v(xt)) ≤ ε if and only if I(ϕ,w)(v(x1), ..., v(xt)) ≥ 1 − ε and
I(ψ,w)(v(x1), ..., v(xt)) ≤ ε. �

Proposition 12. If S is satisfiable in I and 〈w : ϕ ⊃ ψ ≥ ε〉 ∈ S, then at least
one of the sets S ∪ {〈w : ϕ ≤ 1 − ε〉} and S ∪ {〈w : ψ ≥ ε〉} is satisfiable in I.

Proof. This is simply because that if I(ϕ ⊃ ψ,w)(v(x1), ..., v(xt)) ≥ ε then we
have either I(ϕ,w)(v(x1), ..., v(xt)) ≤ 1 − ε or I(ψ,w)(v(x1), ..., v(xt)) ≥ ε. �

Proposition 13. If S is satisfiable in I and 〈w : ∀xϕ(x) ≥ ε〉 ∈ S, then
S ∪ {〈w : ϕ(y) ≥ ε〉} is satisfiable in I, given any variable y free for x in ϕ(x).

Proof. Let v be the valuation such that I(∀xϕ(x),w)(v(x1), ..., v(xt)) ≥ ε. Then
for any v′, if v′ is x-variant of v then I(ϕ,w)(v′(x), v′(x1), ..., v′(xt)) ≥ ε. Now
let u be the valuation such that u(x) = v(y) and u(x′) = v(x′) for any x′ �= x.
Then we have that u is x-variant of v, thus by Proposition 2 we have that
I(ϕ(y),w)(v(y), v(x1), ..., v(xt)) ≥ ε since y is free for x in ϕ(x), therefore the
constraint 〈w : ϕ(y) ≥ ε〉 is also satisfied by v in I. �

Proposition 13 also holds if the symbol ≥ is replaced by >. For the constraint
with the form 〈w : ∀xϕ(x) ≤ ε〉, the condition of the associated proposition
should also be modified slightly just like that in Proposition 9. But at this time,
the interpretation domain DI will be considered.

Proposition 14. If S is satisfiable in I and 〈w : ∀xϕ(x) < ε〉 ∈ S, where x dose
not occur free in any formula of the constraint in S, then S ∪{〈w : ϕ(x) < ε〉} is
satisfiable in I. Moreover, If 〈w : ∀xϕ(x) ≤ ε〉 ∈ S, where x dose not occur free
in any formula of the constraint in S, and S is satisfiable in I with the condition
that DI is finite , then S ∪ {〈w : ϕ(x) ≤ ε〉} is satisfiable in I.

Proof. Let v be the valuation such that I(∀xϕ(x),w)(v(x1), ..., v(xt)) < ε. Then
there exists a valuation v′ such that v′ is x-variant of v and I(ϕ,w)(v′(x),
v′(x1), ..., v′(xt)) < ε i.e., the fuzzy constraint 〈w : ϕ(x) < ε〉 is satisfied by v′

in I. Suppose 〈w : ψ rel ε′〉 is any fuzzy constraint in S, and x1, ..., xt are free
variables in ψ. Since x is not free in ψ and v′ is x-variant of v, we have that
I(ψ,w)(v′(x1), ..., v′(xt)) = I(ψ,w)(v(x1), ..., v(xt)). Thus the fuzzy constraint
〈w : ψ rel ε′〉 is also satisfied by v′ in I. When consider the fuzzy constraint
with the form 〈w : ∀xϕ(x) ≤ ε〉, the valuation v′ also exists simply because that
DI is finite. �
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5 Conclusion and Further Works

In this paper we discussed the properties of the fuzzy first-order modal logic, and
introduce a fuzzy reasoning formal system based on the first-order modal logic,
and studied the properties about the satisfiability of the reasoning procedure.
Our further work is to discuss the soundness and completeness of the fuzzy
reasoning system and build a reasoning mechanism which can be used to decide
whether Σ |= 〈ϕ, ε〉 or not efficiently.

Acknowledgement: The authors are grateful to the anonymous referee of the
RSFDGrC 2005 for the useful suggestion.
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Abstract. In this paper, we propose arrow decision logic (ADL), which
combines the main features of decision logic and arrow logic. Decision
logic represents and reasons about knowledge extracted from decision ta-
bles based on rough set theory, while arrow logic is the basic modal logic
of arrows. The semantic models of ADL are pairwise comparison tables,
which are useful in rough set-based multicriteria analysis. Consequently,
ADL can represent preference knowledge induced from multicriteria de-
cision tables.

Keywords: Arrow logic, decision logic, multicriteria decision analysis,
rough sets.

1 Introduction

The rough set theory proposed by Pawlak [16] provides an effective tool for
extracting knowledge from data tables. To represent and reason about extracted
knowledge, a decision logic (DL) is proposed in [17]. The semantics of the logic is
defined in a Tarskian style through the notions of models and satisfaction. While
DL can be considered as an instance of classical logic in the context of data
tables, different generalizations of DL corresponding to some non-classical logics
are also desirable from the knowledge representation viewpoint. For example, to
deal with uncertain or incomplete information, some generalized decision logics
have been proposed [2,13,14,20,21].

When rough set theory is applied to multi-criteria decision analysis (MCDA),
it is crucial to deal with preference-ordered attribute domains and decision classes
[4,5,6,7,8,9,10,18]. The original rough set theory cannot handle inconsistencies
arising from violation of the dominance principle due to its use of the indis-
cernibility relation. In the above-mentioned works, the relation is replaced by a
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dominance relation for solving the multi-criteria sorting problem, and the data
table is replaced by a pairwise comparison table (PCT) for solving multi-criteria
choice and ranking problems. This approach is called the dominance-based rough
set approach (DRSA). For MCDA problems, DRSA can induce a set of decision
rules from exemplary decisions provided by decision-makers. The induced deci-
sion rules play the role of a comprehensive preference model and can provide
recommendations in a new decision-making environment. DL has also been gen-
eralized to represent such kinds of decision rules[3].

In this paper, we propose arrow decision logic (ADL), which combines the
main features of DL and arrow logic to represent the decision rules induced from
PCT. The atomic formulas of ADL are descriptors the same as those in DL;
while the formulas of ADL are interpreted with respect to each pair of objects,
just as in the pair frames of arrow logic[15,19]. The semantic model of ADL is
PCT; thus, ADL can represent preference knowledge induced from multicriteria
decision tables.

The remainder of this paper is organized as follows. In Section 2, we review
DL and arrow logic. In Section 3 we present the syntax and semantics of ADL,
and define some quantitative measures for the rules of ADL. Finally, we present
our conclusions in Section 4.

2 Decision Logic and Arrow Logic

2.1 Decision Logic

In data mining problems, data is usually provided in the form of a data table
(DT). A formal definition of a data table is given in [17].

Definition 1. A data table1 is a quadruple

T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}),

where U is a nonempty finite set, called the universe; A is a nonempty finite set
of primitive attributes; for each i ∈ A, Vi is the domain of values for i; and for
each i ∈ A, fi : U → Vi is a total function.

In [17], a decision logic (DL) is proposed to represent the knowledge discov-
ered from data tables. It is called decision logic because it is particularly useful
in a special kind of data tables, called decision tables. A decision table is a data
table T = (U,A, {Vi | iA}, {fi | i ∈ A}) such that A can be partitioned into
two sets, called condition attributes and decision attributes. By data analysis,
decision rules relating the condition and the decision attributes can be derived
from the table. A rule is then represented as an implication between formulas of
the logic.

The basic alphabet of a DL consists of a finite set of attribute symbols, A,
and for i ∈ A, a finite set of value symbols, Vi. An atomic formula of DL is a
1 Also called knowledge representation systems, information systems, or attribute-

value systems.
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descriptor, (i, v), where i ∈ A and v ∈ Vi. The set of DL well-formed formulas
(wff) is the smallest set containing the atomic formulas and is closed under the
Boolean connectives ¬ and ∨. If ϕ and ψ are wffs of DL, then ϕ −→ ψ is a rule
in DL, where ϕ is called the antecedent of the rule and ψ the consequent. As
usual, we use standard Boolean connectives ∧,⊃,≡ as abbreviations.

A data table T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A}) is a model for a given DL
if there is a bijection τ : A → A such that for every a ∈ A, Vτ(a) = Va. Thus, by
somewhat abusing the notation, we usually denote an atomic formula as (i, v),
where i ∈ A and v ∈ Vi, if the data tables are clear from the context. Intuitively,
each element in the universe of a data table corresponds to a data record, and
an atomic formula, which is in fact an attribute-value pair, describes the value of
some attribute in data record. Thus, the atomic formulas (and therefore the wffs)
can be verified or falsified in each data record. This gives rise to a satisfaction
relation between the universe and the set of wffs.

Definition 2. Given a DL and a data table T = (U,A, {Vi | i ∈ A}, {fi | i ∈ A})
for it, the satisfaction relation |=T between U and the wffs of DL is defined
inductively as follows (the subscript T is omitted for brevity).

1. x |= (i, v) iff fi(x) = v,
2. x |= ¬ϕ iff x �|= ϕ,
3. x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ.

If ϕ is a DL wff, the set mT (ϕ) defined by

mT (ϕ) = {x ∈ U | x |= ϕ} (1)

is called the meaning set of the formula ϕ in T . If T is understood, we simply
write m(ϕ).

A formula ϕ is said to be valid in a data table, T , if and only if m(ϕ) = U .
That is, ϕ is satisfied by all individuals in the universe. We usually write |= ϕ
instead of |=T ϕ, when T is clear from the context.

2.2 Arrow Logic

Arrow logic is the basic modal logic of arrows [15,19]. An arrow can represent a
state transition in program execution, a morphism in category theory, an edge
in a directed graph, etc. In arrow logic, an arrow is an abstract entity; however,
we can usually interpret it as a concrete relationship between two objects, which
results in a pair-frame model[15,19]. Below, we present the basic syntax and
semantics of arrow logic.

The basic alphabet of arrow logic consists of a countable set of propositional
symbols, the Boolean connectives ¬ and ∨, the modal constant δ, the unary
modal operator ⊗, and the binary modal operator ◦. The set of arrow logic wffs
is the smallest set containing the propositional symbols and δ, closed under the
Boolean connectives ¬ and ∨, and satisfying

– if ϕ is a wff, then ⊗ϕ is a wff, too.
– if ϕ and ψ are wffs, so is ϕ ◦ ψ.
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Semantically, these wffs are interpreted in arrow models.

Definition 3
1. An arrow frame is a quadruple F = (W,C,R, I) such that C ⊆ W ×W ×W ,

R ⊆ W ×W and I ⊆ W .
2. An arrow model is a pair M = (F,π), where F = (W,C,R, I) is an arrow

frame and π is a valuation that maps propositional symbols to subsets of W .
An element in W is called an arrow in the model M.

3. The satisfaction of a wff ϕ at an arrow w of M, denoted by w |=M ϕ (as
usual, the subscript M can be omitted), is inductively defined as follows:
(a) w |= p iff w ∈ π(p), for any propositional symbol p,
(b) w |= δ iff w ∈ I,
(c) w |= ¬ϕ iff w �|= ϕ,
(d) w |= ϕ ∨ ψ iff w |= ϕ or x |= ψ,
(e) w |= ϕ ◦ ψ iff there are s, t with (w, s, t) ∈ C, s |= ϕ, and t |= ψ,
(f) w |= ⊗ϕ iff there is a t with (w, t) ∈ R and t |= ϕ.
Intuitively, an arrow frame (W,C,R, I) can be seen as a set of edges, W ,

in a directed graph. An arrow is in I if it forms an edge from a node to itself;
(w, s) ∈ R if s is a reversed arrow of w; and (w, s, t) ∈ C if w is a composed
arrow of s and t. This intuition is reflected in the definition of pair frames.

Definition 4. An arrow frame F = (W,C,R, I) is a pair frame if there exists a
set U such that W ⊆ U × U and
1. for x, y ∈ U , if (x, y) ∈ I then x = y,
2. for x1, x2, y1, y2 ∈ U , if ((x1, y1), (x2, y2)) ∈ R, then x1 = y2 and y1 = x2,
3. for x1, x2, x3, y1, y2, y3 ∈ U , if ((x1, y1), (x2, y2), (x3, y3)) ∈ C, then x1 = x2,

y2 = x3, and y1 = y3.

3 Arrow Decision Logic

3.1 Pairwise Comparison Table

In [4,5,6], pairwise comparison tables (PCT) are proposed for dealing with mul-
ticriteria choice or ranking problems. In PCT, the strength of the preference
between objects, instead of the evaluation scores of the objects, are given with
respect to each criterion. Formally, a PCT is a quadruple

T = (U,A, {Hi | i ∈ A}, {fi | i ∈ A}),
where U and A are the same as in the definition of data tables; for each i ∈ A,
Hi is a finite set of integers, and fi : U × U → Hi encodes the preferential
information2. Each Hi denotes a set of different grades of preference (such as
“very weak”, “weak”, “strong”, etc.) with respect to the criterion i. If fi(x, y) =
h > 0, then x is preferred to y by degree h with respect to the criterion i. If
fi(x, y) = h < 0, then x is inferior to y by degree h with respect to the criterion
i. If fi(x, y) = 0, then x is similar to y with respect to the criterion i. A PCT
is coherent if for each i ∈ A and x, y ∈ U , fi(x, y) > 0 implies fi(y, x) ≤ 0 and
fi(x, y) < 0 implies fi(y, x) ≥ 0. In this paper, we only consider coherent PCT.
2 Without loss of generality, we have changed the original definition in [4,5,6] slightly.
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3.2 Formulas and Semantics of ADL

To represent rules induced from a PCT, we propose arrow decision logic (ADL).
An atomic formula of ADL is a descriptor of the form (i,≥h) or (i,≤h), where
i ∈ A and h ∈ Hi. In addition, the wffs of ADL are defined by the formation rules
for arrow logic. Also, we define a rule of ADL as ϕ −→ ψ, where ϕ and ψ are
wffs of ADL, called the antecedent and the consequent of the rule respectively.

A PCT can be seen as a pair frame for arrow logic. Thus, the wffs of ADL
are evaluated with respect to a pair of objects. More precisely, the satisfaction
of a wff with respect to a pair of objects (x, y) is defined as follows:

1. (x, y) |= (i,≥h) iff fi(x, y) ≥ h,
2. (x, y) |= (i,≤h) iff fi(x, y) ≤ h,
3. (x, y) |= δ iff x = y,
4. (x, y) |= ¬ϕ iff (x, y) �|= ϕ,
5. (x, y) |= ϕ ∨ ψ iff (x, y) |= ϕ or (x, y) |= ψ,
6. (x, y) |= ⊗ϕ iff (y, x) |= ϕ,
7. (x, y) |= ϕ ◦ ψ iff there exists z such that (x, z) |= ϕ and (z, y) |= ψ.

If ϕ is an ADL wff and T is a PCT, the set mT (ϕ) defined by

mT (ϕ) = {(x, y) ∈ U × U | (x, y) |= ϕ} (2)

is called the meaning set of the formula ϕ in T . If T is understood, we simply
write m(ϕ). A formula ϕ is valid in T if m(ϕ) = U . Some quantitative measures
that are useful in data mining can be redefined for ADL rules.

Definition 5. Let Φ be the set of all ADL rules and T = (U,A, {Hi | i ∈
A}, {fi | i ∈ A}) be a PCT, then

1. the rule ϕ −→ ψ is valid in T iff mT (ϕ) ⊆ mT (ψ)
2. the absolute support function αT : Φ → N is

αT (ϕ −→ ψ) = |mT (ϕ ∧ ψ)|

3. the relative support function ρT : Φ → [0, 1] is

ρT (ϕ −→ ψ) =
|mT (ϕ ∧ ψ)|

|U |2

4. the confidence function γT : Φ → [0, 1] is

γT (ϕ −→ ψ) =
|mT (ϕ ∧ ψ)|

|mT (ϕ)| .

Without loss of generality, we can assume that the elements of U are natural
numbers from 0 to |U | − 1. Each wff can then be seen as a |U | × |U | Boolean
matrix, called its characteristic matrix . Thus, we can employ matrix algebra to
test the validity of a rule and calculate its support and confidence in an analogous
way to that proposed in [11,12]. This is based on the intimate connection between
arrow logic and relation algebra[15,19].

By using ADL, three main types of decision rules mentioned in [8] can be
represented as follows:
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1. D≥-decision rules: ∧
i∈B

(i,≥hi) −→ (d,≥1),

2. D≤-decision rules: ∧
i∈B

(i,≤hi) −→ (d,≤0),

3. D≥≤-decision rules:∧
i∈B1

(i,≥hi) ∧
∧

i∈B2

(i,≤hi) −→ (d,≥1) ∨ (d,≤0),

where B,B1, and B2 ⊆ A are sets of criteria and d ∈ A is the decision attribute.
We assume that {0, 1} ⊆ Hd so that fd(x, y) = 1 means that x outranks y, and
fd(x, y) = 0 means that x does not outrank y.

Furthermore, the modal formulas of ADL allow us to represent some prop-
erties of preference relations. For example,

1. reflexivity: δ −→ (i,≥0) ∧ (i,≤0),
2. anti-symmetry: ⊗(i,≥h) −→ (i,≤−h), and
3. transitivity: (i,≥h1) ◦ (i,≥h2) −→ (i,≥h1+h2).

Reflexivity means that each object is similar to itself in any attribute; anti-
symmetry means that if x is preferred to y by degree (at least) h, then y is
inferior to x by degree (at least) h; and transitivity denotes the additivity of
preference degrees. The measures α, ρ, and γ can be used to assess the degree of
reflexivity, anti-symmetry, and transitivity of an induced preference relation.

3.3 An Example

We now illustrate ADL by example. Assume that Table 1 is the summary of the
reviews of ten papers submitted to a journal. The papers are rated according to
four criteria:

Table 1. A data table of the reviews of 10 papers

U \ A o p t d

1 4 4 3 4
2 3 2 3 3
3 4 3 2 3
4 2 2 2 2
5 2 1 2 1
6 3 1 2 1
7 3 2 2 2
8 4 1 2 2
9 3 3 2 3
10 4 3 3 3
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– o: originality,
– p: presentation,
– t: technical soundness, and
– d: the overall evaluation (the decision attribute)

Let us further assume that each Vi (i = o, p, t, d) is endowed with a weak
preference relation �i such that 4 �i 3 �i 2 �i 1. Then a PCT from the data
table is defined as

(U,A, {Hi | i ∈ A}, {fi | i ∈ A}),

where U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};A = {o, p, t, d};Hi = {−3,−2,−1, 0, 1, 2, 3};
and fi is defined as fi(x, y) = i(x) − i(y) for all x, y ∈ U and i ∈ A, where i(x)
is the value of criterion i of x in the original data table. As examples, let us
consider the following two rules:

r1 = (o,≥2) −→ (d,≥1),

r2 = (p,≤−2) −→ (d,≤0),

then we have
α ρ γ

r1 7 0.07 0.875
r2 15 0.15 1

Note that rule r2 is valid though it only has a support value of 0.15. Furthermore,
since in this example m((d,≥1) ∨ (d,≤0)) = U × U holds, the D≥≤-decision
rules are always valid and have confidence value 1. Also, we note that the anti-
symmetry rule ⊗(i,≥h) −→ (i,≤−h) is valid in this PCT, which means that the
preference relation is anti-symmetrical.

4 Conclusions

In this paper, we present arrow decision logic, which is useful for representing
rules induced from preference-ordered data tables that are commonly used in
MCDA. The main advantage of using arrow decision logic is its precision in
syntax and semantics. As DL is a precise way to represent decision rules induced
from classical data tables, we use ADL to reformulate the decision rules induced
from PCT in DRSA.

While this paper is primarily concerned with the syntax and declarative se-
mantics of ADL, efficient algorithms for data mining based on logical represen-
tation are also important. One of our future research directions is to develop
such algorithms.

In addition to decision logics, another kind of logic arising from data tables
is called information logic [1], the semantics of which is the Kripke semantics for
modal logics. We believe that it would also be interesting to explore information
logics with respect to dominance relations.
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Abstract. In different fields data are presented under the form of Prop-
erty Systems or Attribute Systems (i. e. Information Systems). In order
to collect items linked together by attributes or properties we can use
a number of techniques whose results range from exact classifications to
different kinds of approximations. This range depends on the collecting
operators and the characteristics of the Information System at hand. In
this paper we discuss how to transform Information Systems in order to
apply a well-funded set of operators and to improve their precision.

1 Introduction

Structures in which objects (entities, items) are connected with properties, ”Prop-
erty Systems” or structures evaluating attributes of given objects, ”Attribute
Systems”, have been widely investigated in Computer Science. We shall refer
to both types of structures as to Information Systems. In [5] we have showed
how Information Systems can be transformed into relational systems 〈G,R〉,
called ”I-Quantum Relational Systems”, where R ⊆ G×G is a preorder, so that
Pawlak’s Approximation Spaces (see [6]) are instances of I-Quantum Relational
Systems. In the present paper we want to show how Attribute Systems may be
transformed into Property Systems and Property Systems into systems fulfill-
ing particular nice properties for classification purposes (strictly speaking this
transform is an instance of what in Formal Concept Analysis is called a ”concep-
tual scaling” - see [9]). In the present paper we shall show how the transformed
systems are equivalent under an intuitive, although not exclusive, notion of an
”informational equivalence”. This way we can:

– uniformly treat Attribute Systems and Property System using operators from
relational modal logic,

– use adjoint relationships between modal operators to define topological op-
erators on transformed Information Systems,

– exhibit when and how topological and operational patterns change when
these operators are applied to informationally equivalent (with respect to
the notion we have chosen) Information Systems.

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 660–670, 2005.
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2 Property Systems and Attribute Systems

A basic way to represent observation systems is to arrange them into structures
composed by: (a) a set G of ’objects’, (b) a set M of ’observable properties’
and (c) a fulfillment relation, �, between G and M . Moreover we assume that
a property which is not fulfilled by any element is a ”non-property” and that an
object g does not manifest any property is a ”non-object” from an observational
point of view so that we start from the following definition:

Definition 1. A triple 〈G,M,�〉 where G and M are finite sets, �⊆ G×M is a
relation such that for all g ∈ G there is m ∈ M such that g � m, and vice-versa,
is called a property system or a P-system.

Among P-systems we distinguish:
a) Functional systems, or FP-systems, where � is functional in the sense that
for any element g ∈ G, g � m and g � m′ implies m = m′.
b) Dichotomic systems or DP-systems, if for all p ∈ M there is p ∈ M such that
for all g ∈ G, g � p if and only if g �� p.

A more complex way to structure observations is given by Attribute Systems:

Definition 2. A triple 〈G,At, {Va}a∈At, 〉, where G, At and Va are sets (of ob-
jects, attributes and, resp., attribute-values) and for all a ∈ At, a : G $−→ Ata is
a function, is called a deterministic Attribute System or an A-system.

From now on we assume that P always denotes a Property System 〈G,M,�〉 and
that A denotes an Attribute System 〈G,At, {Va}a∈At〉.

3 P-Systems, Classification and Approximation

If 〈G,M,�〉 is an FP-system, by pulling back � along itself we obtain the kernel
k� which is an equivalence relation, so that any element of G is associated one
and only one equivalence class modulo k�. On the contrary, if we deal with
generic P-systems, we cannot directly obtain sharp classifications by means of
the above maneuver, but we need a mathematical machinery based on the notion
of an ”approximation”.

To this end we have to notice that since the only relationships between objects
are induced by the fulfillment relation � and such relationships are grouping
relations, we can compare subsets of objects but not, directly, objects. Therefore,
the result of such an activity is a ”type” not a ”token”. It follows that we shall
lift from the level of pure P-systems 〈G,M,�〉 to that of Perception systems
〈℘(G), ℘(M), {φi}i∈I〉 where φi is a map ℘(G) $−→ ℘(M) or ℘(M) $−→ ℘(G).

In [5] we have introduced some approximating operators derived from inves-
tigations presented in [9], [7], [1], [2] and [3]. The starting point is the definition
of formal operators linking sets of objects with sets of properties:

Definition 3 (Formal operators). Let P = 〈G,M,�〉 be a P-system. Then:
– 〈�〉 : ℘(M) $−→ ℘(G); 〈�〉(Y ) = {g ∈ G : ∃m(m ∈ Y & g � m)};
– [�] : ℘(M) $−→ ℘(G); [�](Y ) = {g ∈ G : ∀m(g � m =⇒ m ∈ Y )};
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– [[�]] : ℘(M) $−→ ℘(G); [[�]](Y ) = {g ∈ G : ∀m(m ∈ Y =⇒ g � m)};
– 〈��〉 : ℘(G) $−→ ℘(M); 〈��〉(X) = {m ∈ M : ∃g(g ∈ X & g � m)}
– [��] : ℘(G) $−→ ℘(M); [��](X) = {m ∈ M : ∀g(g � m =⇒ g ∈ X)};
– [[��]] : ℘(G) $−→ ℘(M); [[��]](X) = {m ∈ M : ∀g(g ∈ X =⇒ g � m)}.

NOTE: From now on, if an operator, say Op, is applied to a singleton {x} we shall also
write Op(x) instead of the correct Op({x}), if there is no risk of confusion.

Then we can prove that the following adjointness relationships hold (see [5]):

M 9〈�〉,[��] G; G 9〈��〉,[�] M; M 9[[�]],[[��]] Gop; G 9[[��]],[[�]] Mop,

where M =< ℘(M),⊆>, G =< ℘(G),⊆> and given two partial orders O and
O′ and two maps σ : O $−→ O′ and ι : O′ $−→ O, O′ 9ι,σ O if and only if
∀p ∈ O, ∀p′ ∈ O′, ι(p′) ≤ p ⇐⇒ p′ ≤′ σ(p). In this case we say that ι and σ
fulfill an adjointness relation or that 〈σ, ι〉 is an ”axiality” or a Galois adjunction.
If the right structure is reversed upside-down we say that 〈σ, ι〉 is a ”polarity”
or a Galois connection. From this general fact (plus a few others derivable from
our assumptions on the relation �) a number of consequences follows (see [1]
and [7] for definitions and details in two comparable frameworks). Let ρ be �
or ��. Then: (a) [ρ] is a necessity operator, (b) 〈ρ〉 is a possibility operator,
(c) [[ρ]] is a sufficiency operator. By combining them we can prove that: (d)
int(X) = 〈�〉[��](X) is an interior operator on G; (e) cl(X) = [�]〈��〉(X) is
a closure operator on G; (f) A(Y ) = [��]〈�〉(Y ) is a closure operator on M; (g)
C(Y ) = 〈��〉[�](Y ) is an interior operator on M; (h) est(X) = [[�]][[��]](X)
and IT S(Y ) = [[��]][[�]](Y ) are the two closure operators on G and, resp., M,
used in Concept Lattices.

NOTE: If needed, operators will be decorated by superscripts denoting the systems
they refer to.

Particularly, adjointness relations make the following hold:

cl(X) ⊆ X ⊆ int(X), ∀X ⊆ G (3.1)

We can interpret the above relationships by saying that

• cl is an upper approximation of the identity map on ℘(G);
• int is a lower approximation of the identity map on ℘(G).

More precisely, because of the adjunction properties, one can prove that
〈��〉(X) = min([�]←(↑ X)) = min{X ′ ⊆ G : [�](X ′) ⊇ X}, so that cl(X)
- i. e. [�]〈��〉(X) - is the best approximation from above to X via function [�].
Dually, [��](X) = max(〈�〉←(↓ X)) = max{X ′ ⊆ G : 〈�〉(X ′) ⊆ X}. Hence
int(X) is the best approximation from below to X , via function 〈�〉1.
1 If 〈�	〉 is injective ([�] is surjective), then we can exactly reach X from above by

means of [�]. The element that must be mapped is, indeed, 〈�	〉(X). Dually, if [�	]
is injective (〈�〉 is surjective), then we can exactly reach X from below by means of
〈�〉 applied to [�	](X).
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Therefore, we have introduced the notion of a Multi-agent pre-topological
Approximation Space over two sets G and M as a structure

〈G,M, {pGPk}k∈K〉 or, shortly, 〈G, {pGPk}k∈K〉

where any Pk is an Information System on the same set of objects G (not
necessarily the same set of properties M) and pGPk = {intPk , clPk , estPk}. This
generalisation makes it possible to manipulate sets of objects by subsequently
applying informational criteria induced by different P-systems.

In particular we called 〈G,G, int, cl〉 a Basic pre-topological Approximation
Space.

Now we have to solve some problems: a) For one cannot apply the above
operators to A-systems, is it possible to transform A-systems into P-systems
in order to be able to apply that formal machinery? b) Generally cl is not a
topological closure operator, since in general it is not additive and int is not a
topological interior operator since in general it is not multiplicative; is it possible
to transform P-systems in order to make these operators topological? c) What
are the connections (if any) between these transforms? d) How to define a notion
of ”informational equivalence” which makes it possible to control them?

4 From Information Systems to Information Quantum
Relational System

In [5] we have given a solution to d) and b) based on the notion of an Information
Quantum, or i-quantum. In this paper we aim at building the solution of a) and
c) on it. An i-quantum is a way to collect together objects that fulfill at least the
same properties as a given object.

Definition 4 (Information Quantum - or I-Quantum)

1. Let 〈G,At, {Va}a∈At〉 be an Attribute System. For all g ∈ G let us define:
Qg = {g′ : ∀a ∈ At, ∀x ∈ Va((a(g) = x) =⇒ (a(g′) = x))}.

2. Let 〈G,M,�〉 be a Property System. Then for all g ∈ G let us define:
Qg = {g′ : ∀p ∈ M(g � p =⇒ g′ � p)}.

The set Qg is called the i-quantum at g and we can extend the operator Q
to subsets X of G by setting QX =

⋃
x∈X Qx. After that we can introduce the

notion of an I-Quantum Relational System:

Definition 5. Let S be an Information System. Let us define a binary relation
RS on G as follows:

〈g, g′〉 ∈ RS iff g′ ∈ Qg, for all g, g′ ∈ G.

We call RS the i-quantum relation induced by S. Moreover, Q(S) will denote the
relational system 〈G,G,RS〉, called the I-Quantum Relational System - IQRS,
induced by S.
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It is immediate to verify that i-quantum relations are preorders2.
This way we have actually transformed an Information System S into a P-

system Q(S) where RS plays the role of a fulfillment relation. Thus, by means of
the adjointness relations together with fact that i-quanta relations are preorders,
one can prove what follows (see [5]):

Proposition 1. Let S be an Information System. Then:

1. If S is an A-system, an FP or a DP system, then RS is an equivalence
relation and ImQ equipped with the set theoretical operations is a Boolean
algebra.

2. If S is an FP-system then (a) RS = k�; (b) cl and int are topological closure,
respectively, interior operators.

3. clQ(S) = [R�
S ]〈RS〉 = 〈RS〉 and both 〈RS〉 and Q are a topological closure

operators, whose images are closed under intersections (and symmetrically
by reversing the relations).

4. intQ(S) = 〈R�
S 〉[RS] = [RS] and [RS] is a topological interior operator, whose

image is closed under unions (and symmetrically by reversing the relations).

On this basis any boxed operator induced by an IQRS is a topological lower ap-
proximation and any diamond-like operator is a topological upper approximation
of subsets of G.

5 Comparing Information Systems

The notion of an i-quantum makes it possible to compare Information Systems.
First of all we should ask whether it is possible to compare two quanta of in-
formation Qg and Qg′ . At first sight we would say that Qg is finer than Qg′ if
Qg ⊆ Qg′ . However, this intuition works for P-systems, but not for A-systems
because from Proposition 1.(1) if Qg ⊆ Qg′ then Qg′ ⊆ Qg. Thus non trivial
comparisons of quanta of information in A-systems require a specialised notion
of an i-quantum, which, in any case, is useful for P-systems too.

Definition 6 (Relativised quanta of information)
– Let A be an A-system. The quantum of information of g relative to a subset
A ⊆ At is defined as: Qg 
 A = {g′ ∈ G : ∀a ∈ A, ∀x ∈ Va((a(g) = x) =⇒
(a(g′) = x))}.

– Let P be a P-system. The quantum of information of g with respect to a
subset A ⊆ M is defined as: Qg 
 A = {g′ ∈ G : ∀a ∈ A(g � a =⇒ g′ � a)}.

Definition 7 (I-quantum dependence). Let S be an Information System.
Let A,A′ ⊆ At (or A,A′ ⊆ M), g ∈ G.
1. We say that A′ functionally depends on A at g, in symbols A $→g A

′, if for
all g′ ∈ G, g′ ∈ Qg 
 A =⇒ g′ ∈ Qg 
 A′ (that is, if Qg 
 A ⊆ Qg 
 A′).

2 With different names, these notions were introduced in [2] to analyse the topological
features of P-systems.
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2. We say that A′ functionally depends on A, in symbols A $→ A′, if for all
g ∈ G, A $→g A

′.
3. If A $→ A′ and A′ $→ A, we say that A and A′ are informationally equivalent,

A ∼=I A
′ (thus, A ∼=I A

′ if for all g ∈ G, Qg 
 A = Qg 
 A′).
So, a set of attributes (properties) A′ functionally depends on a set of at-

tributes (properties) A if A has a higher discriminatory capability than A′3.
From now on, if �
 X denotes the relation � with co-domain restricted to X

then with S 
 X we shall denote the subsystem 〈G,X,�
 X〉. If S is an A-system
and X ⊆ At, with S 
 X we shall denote the subsystem 〈G,X, {Va}a∈X〉.

The following statement formalises the above intuitions with respect to i-quantum
relations:

Proposition 2. Let S be an Information System. Let A,A′ ⊆ At (A,A′ ⊆ M)
such that A $→ A′. Then R(A�A) ⊆ R(A�A′).

Proof. The proof is immediate. Suppose A $→ A′. Then for all g ∈ G, Qg 
 A ⊆
Qg 
 A′, so that 〈g, g′〉 ∈ R(A�A) implies 〈g, g′〉 ∈ R(A�A′). qed

It follows that we can naturally extend the notion of a functional dependence
in order to compare two sets X and X ′ of properties or attributes from two
distinct (property or attribute) systems S and S′ over the same set of points G.
Thus, we can extend the notion of ”informational equivalence” to entire systems:

Definition 8. Let S and S′ be Information Systems over the same set of points
G. Let S and S′ be the sets of attributes (properties) of S and, respectively, S′.
We say that S and S′ are informationally equivalent, in symbols S ∼=I S′, if and
only if for any g ∈ G,Qg 
 S = Qg 
 S′.

Informational equivalence tells something about the behaviour of cl and int:

Proposition 3. Let it be P ∼=I P′. Then for all x ∈ G, clP(x) = clP
′
(x). If both

clP and clP
′
are topological, then clP(X) = clP

′
(X) and intP(X) = intP

′
(X),

for any X ⊆ G.

Proof. Suppose clP(x) �= clP
′
(x). Then there is g ∈ G such that, say, g ∈ clP(x)

and g /∈ clP
′
(x). It follows that 〈��〉(g) ⊆ 〈��〉(x) but 〈�′�〉(g) � 〈�′�〉(x).

Thus x ∈ QP(g) and x /∈ QP′
(g), so that P �∼=I P′. If both closure operators

are additive, then by easy induction we obtain that clP(X) = clP
′
(X) for any

X ⊆ G. Moreover, suppose intP(X) �= intP
′
(X). Then −intP(X) �= −intP′

(X),
so that clP(−X) �= clP

′
(−X) - contradiction. qed

The above reasoning for generic subsets does not hold if either clP or clP
′
is

not topological because in this case the equality between clP and clP
′
is guaran-

teed just for singletons so that clP(−X) �= clP
′
(−X) is not a contradiction. No-

tice that we can have P and P′ such that intP(x) �= intP
′
(x) but still P ∼=I P′.

Therefore, the relation ∼=I is far to be considered the ”best” way to compare
Information Systems, though very useful to our purposes.
3 If S is an A-system then the notion of an i-quantum dependence relation turns into

the usual notion of a functional dependence.
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Now we want to stress the fact that we can compare not only the informa-
tional behaviour of the same point g with respect two different sets of properties
(attributes) X and X ′, but we can also compare the behaviours of two different
points g and g′ with respect to the same set of properties (attributes) P .

Definition 9. Let S be an Information System, X ⊆ M (or X ⊆ At) and
g, g′ ∈ G.

1. We say that g is an X-specialisation of g′ (or that g′ is an X-approximation
of g), in symbols g′ �X g, if and only if the following condition holds:

∀x ∈ G(g′ ∈ Qx 
 X =⇒ g ∈ Qx 
 X).

2. We say that g is a specialisation of g′, g′ � g, if and only if g′ �M g.

Since for q-reflexivity x ∈ Qx, any x ∈ G, if g′ �X g then g ∈ Qg′ 
 X , so that
g′ �X g says that g fulfills at least all the properties from X that are fulfilled
by g′. Therefore, g′ � g implies 〈g′, g〉 ∈ RS. Conversely, if 〈g′, g〉 ∈ RS then
g ∈ Qg′ . Hence g′ ∈ Qx implies g ∈ Qx, any x ∈ G, from transitivity of RS.
It follows that the two relations � and RS coincide. In fact they are the same
instance of the usual topological notion of a specialisation preorder. Indeed in
view of Proposition 1.(3) we can construct a topological space 〈G, ImQ〉 on G
whose specialisation preorder is indeed � (that is, RS).

6 Transforming Perception Systems

Now we are equipped with a sufficient machinery in order to compare trans-
formed systems.

Let A be an A-system. To get a P-system out of A, the basic step derives
from the observation that any attribute a is actually a set of properties, namely
the possible attribute values for a. Thus we start associating each attribute a
with the family N (a) = {av}v∈Va . We set N (At) =

⋃
a∈At N (a). For each value

v, av is the property ”taking value v for attribute a”. This transform is usually
called a ”scale nominalisation”. Now let us set a relation �N as:

g �N av if and only if a(g) = v, all g ∈ G, a ∈ At, v ∈ Va.

We call the resulting system, N (A) = 〈G,N (At),�N 〉, the ”nominalisation of
A”. N (A) will be called a nominal A-system or NA-system.

Proposition 4. Let A be an A-system. Then: (a) N (A) is a P-system; (b)
N (A) ∼=I A.
Proof. (a) is obvious. (b) Let us prove that for any g ∈ G, Qg 
 At = Qg 
 N (At).
Indeed, if g′ ∈ Qg 
 At, then a(g) = x if and only if a(g′) = x, all a ∈ At.
Therefore for any x ∈ N (a), g � ax if and only if g′ � ax, whence g′ ∈ Qg 
 N (a).
Finally, g′ �� ax′ for any other x′ �= x, so we have the reverse implication. qed

Moreover, if we formally consider P-systems as binary A-systems, we can also
nominalise P-systems. But in this case we have a further property:
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Proposition 5. Let P be a P-system. Then N (P) is a dichotomic system.

Proof. This is obvious, because for any property p, the nominalisation N (p) =
{p1, p0} forms a pair of complementary properties, since for all g ∈ G, g �N p1

if and only if g � p and g �N p0 if and only if g �� p. qed

Nominalisation of dichotomic or functional systems does not give rise to any
further result.

Proposition 6. If P is a DP system or an FP system, then N (P) ∼=I P.

Proof. If P is dichotomic let 〈p, p〉 be a pair of complementary properties. After
nominalisation we shall obtain two pairs N (p) = {p1, p0} and N (p) = {p1, p0}.
Clearly, for any g ∈ G, g � p in P if and only if g �N p1 in N (P). But g �N p1

if and only if g ��N p0 if and only if g �N p0. Conversely, g � p if and only if
g �N p0 if and only if g ��N p1 if and only if g �N p1. If P is functional and
g′ ∈ Qg 
 M then g � m if and only if g′ � m, since 〈��〉(g) = 〈��〉(g′) = m.
Thus the proof runs as in Proposition 4.(b). qed.

For N (A) is not only a P-system but it is still an A-system with At = {0, 1},
we obtain the following corollary:

Corollary 1. Let S be an Information System. Then N (S) ∼=I N (N (S)).

Proof. If S is a P-system then N (S) is a dichotomic systems so that from Propo-
sition 6 N (N (S)) ∼=I N (S). If S is an A-system then N (S) is a binary A-system
and from Proposition 4.(b) N (S) ∼=I N (N (S)). qed

Corollary 2. If A is an A-system then there is a dichotomic system D such
that D ∼=I A.

Proof. : Since N (A) is a P-system, from Proposition 5 N (N (A)) is dichotomic.
But from Proposition 4.(b) and Corollary 1 A ∼=I N (A) ∼=I N (N (A)). qed

As a side result we again obtain Proposition 1.(1). Notice that this Propo-
sition, as well as Corollary 1, relies on the fact that we are dealing with deter-
ministic Information Systems so that either two objects converge on the same
attribute-value, or they diverge, but not both.

6.1 Example

Here are some examples: a P-system P = 〈G,M,�〉, an FP-system F = 〈G,M ′, f̂〉
and an A-system A = 〈G,At, V 〉 over the same set G:

� b b′ b′′ b′′′ f̂ m m′ m′′ A A′ A′′

a 1 1 0 0 a 1 0 0 a 1 b α
a′ 0 1 0 1 a′ 0 1 0 a′ 0 c α
a′′ 0 1 1 1 a′′ 1 0 0 a′′ 1 b α
a′′′ 0 0 0 1 a′′′ 0 0 1 a′′′ 3 f δ
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Considering the system P let A = {b, b′} and B = {b′′, b′′′}. Then Qa′′ 
 A =
{a, a′, a′′} while Qa′′ 
 B = {a′′}. It follows that B $→a′′ A. On the contrary,
Qa′ 
 A = {a, a′, a′′} and Qa′ 
 B = {a′, a′′, a′′′} are not comparable. Hence
B $→ A does not hold. If we compare the above systems we notice what follows:
a) A �∼=I P because QA

a = {a, a′′} while QP
a = {a}. Neither P $→ A because

QP
a′ = {a′, a′′} while QA

a′ = {a′}. b) F ∼=I A, because for all g ∈ G,QA
g = QF

g .
Let us now nominalise the Information Systems A and P:

�N
A A0 A1 A3 A′

b A′
d A′

f A′′
α A′′

δ �N
P b1 b0 b′1 b′0 b′′1 b′′0 b′′′1 b′′′0

a 0 1 0 1 0 0 1 0 a 1 0 1 0 0 1 0 1
a′ 1 0 0 0 1 0 1 0 a′ 0 1 1 0 0 1 1 0
a′′ 0 1 0 1 0 0 1 0 a′′ 0 1 1 0 1 0 1 0
a′′′ 0 0 1 0 0 1 0 1 a′′′ 0 1 0 1 0 1 1 0

Thus N (A) = {A0, A1, A3}, N (b) = {b1, b0} and so on. It is evident that, for
instance, a ∈ Q

N (A)
a′′ and a′′ ∈ Q

N (A)
a . But the same happens already in A.

Indeed, QA
a = {a, a′′} = QA

a′′ . On the contrary, QP
a′ = {a′, a′′} but Q

N (P)
a′ = {a′}.

In fact a′′ ∈ QP
a′ because it fulfills all the properties fulfilled by a′ (i. e. b′

and b′′′) plus the additional property b′′. But in N (P) this latter fact prevents
a′′′ from belonging to Q

N (P)
a′ , because property b′′ splits into the pair 〈b′′0 , b′′1〉

and a′ �N
P b′′0 while a′′ �N

P b′′1 , what are mutually exclusive possibilities. If we
further nominalise N (P) and split, for instance, 〈b′′0 , b′′1〉 into 〈b′′01

, b′′00
, b′′11

, b′′10
〉,

it is obvious that the pairs 〈b′′01
, b′′10

〉 and 〈b′′00
, b′′11

〉 give the same information as
b′′0 and, respectively, b′′1 . It is not difficult to verify that RN (A) = RA so that
N (A) ∼=I Q(A).

6.2 Dichotomic, Functional and Nominal Systems

First notice that the reverse of Proposition 1.(1) does not hold. For instance, if
P′ is such that G = {1, 2, 3, 4},M = {A,B,C} and � (1) = {A,B},� (2) =
{A,B},� (3) = {B,C} and � (4) = {B,C}, Qg is an equivalence class, any
g ∈ G though P′ is neither dichotomic nor functional. Also, if A is an A-system,
then N (A) is not necessarily dichotomic. However N (A) ∼=I N (N (A)) which
is dichotomic (see Corollary 1). Indeed, notice that N (N (A)) is informationally
equivalent to the system defined as follows:

1) For each av in N (A), if Va is not a singleton set ¬av = {av′}v′ �=v,v′∈Va , while
if Va = {v} then set ¬av = {av′}. We set P = {av}v∈Va ∪ {¬av}v∈Va .
2) For each g ∈ G set g �∗ ¬av if and only if g �� av and g �∗ av if and only if
g � av. Clearly ¬av is the complementary copy of av. Thus, 3) set S = 〈G,P,�∗〉.
We can easily verify that S is a dichotomic system and that S ∼=I N (A).

In reversal, since for any P-system P, N (P) induces an equivalence relation,
we can ask whether N (P) itself ”is”, in some form, an A-system. Indeed it is
trivially an A-system with set of attributes values V = {0, 1} and such that
m1(g) = 1 iff g � m1 iff g �� m0 iff m0(g) = 0 and m1(g) = 0 iff g � m0 iff
g �� m1 iff m0(g) = 1, all m ∈ M and by trivial inspection one can verify that
〈G,N (M), {0, 1}〉 ∼=I N (P).
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Finally we discuss another natural equivalence. We know that if S is an A-
system, or a DP or a FP system then RS is an equivalence relation (see Propo-
sition 1). Thus a question arises as how to define a functional system F (S)
informationally equivalent to a given A or DP system S. The answer is simple. If
S is a P-system consider it as an A-system. Any tuple t ∈

∏
a∈At Va is a combi-

nation of attribute-values and has the form 〈a1m , . . . , ajn〉. We set g �∗ t only if
a1(g) = aim for any ai ∈ At and aim ∈ t. The resulting system 〈G,

∏
a∈At Va,�∗〉

is the required F (S). Indeed �∗ is a map because no g ∈ G can satisfy different
tuples. Thus RF (S) is an equivalence relation such that 〈g, g′〉 ∈ RF (S) only if
a(g) = a(g′) for all a ∈ At (or in M). It follows that N (S) ∼=I F (S) so that if S
is dichotomic or it is an A-system then RS = RF (S) and S ∼=I F (S).

7 Conclusions

We have seen how to make different kinds of Information Systems into a uni-
form theoretical framework, via the notion of a quantum of information and
control these manipulations by means of a particular notion of an ”informational
equivalence”. This has practical consequences too. Indeed, the relational modal
or/and topological operators that we have defined over P-systems may be di-
rectly translated into extremely simple constructs of functional languages such
as LISP or APL (see [3]), thus providing a sound implementation. Finally, this
approach directly links the logical interpretation of approximation operators to
the manipulation of concrete data structures for it coherently embeds the con-
crete operations on Boolean matrices into a very general logical framework (the
same relational interpretation of a modal operator applies to any sort of binary
Kripke frame).
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Abstract. In this paper, we introduce a discrete event control for Cat
and Mouse example based on a paraconsistent logic program EVALPSN
stable model computation. Predicting and avoiding control deadlock states
are crucial problems in discrete event control systems. We show that the
EVALPSN control can deal with prediction and avoidance of control dad-
lock states in the Cat and Mouse by defining general rules to represent
the deadlock states in EVALPSN, and is much more flexible than the pre-
vious version of EVALPSN Cat and Mouse control. We also show how to
translate the control properties of the Cat and Mouse into EVALPSN.

Keywords: discrete event control, EVALPSN(Extended Vector Anno-
tated Logic Program with Strong Negation), stable model, control dead-
lock, paraconsistent logic program.

1 Introduction

We have proposed a paraconsistent logic program called EVALPSN (Extended
Vector Annotated Logic Program with Strong Nagation) in order to deal with de-
feasible deontic reasoning and inconsistency [7,8], and already applied EVALPSN
to various kinds of safety verification and control such as railway interlock-
ing verification, traffic light control, and pipeline valve control [9,10,11,12]. We
have a basic discrete event control example called Cat and Mouse [14] to which
EVALPSN defeasible deontic control has been already applied, and a EVALPSN
control for the Cat and Mouse [13]. The Cat and Mouse is a basic discrete event
control example in which a cat and a mouse travel safely in a maze with door-
way open-close control. Generally, an automaton model is used for controlling
the Cat and Mouse doorways. However, the automaton model control is not
flexible, that is to say, if the allocation of rooms and doorways in the Cat and
Mouse maze has a minor change, the automaton model has to be reconstructed
according to the new maze architecture. Moreover, the construction method of

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 671–681, 2005.
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the automaton model is complicated, and the automaton model is not so ade-
quate for computation and implementation. On the other hand, the EVALPSN
control for the Cat and Mouse is adequate for computation and implementation
compared to the automaton model one, because it is a logic program consisting
of only 16 EVALPSN clauses, and can be computed and implemented easily. It
is an inevitable problem for discrete event control to predict and avoid control
deadlock. In the Cat and Mouse, such a deadlock state is defined as a state in
which neither the cat nor the mouse can move to any other rooms. A control
method in EVALPSN clauses to avoid the deadlock state has been previously
implemented in the EVALPSN control. Therefore, even if the allocation of rooms
and doorways in the maze is changed a little, the EVALPSN control has to be
reconstructed as well as the automaton model control.

In this paper, we introduce a much more flexible EVALPSN control for the
Cat and Mouse than the previous one. In the new EVALPSN control, the con-
trol deadlock is defined as EVALPSN clauses, and it is easy to predict and
avoid it. Moreover, the control properties for the Cat and Mouse are represented
more commonly in the new EVALPSN control, and the EVALPSN can meet
a change of the allocation of rooms and doorways. In fact, the control proper-
ties are translated into six general rules and into EVALPSN. Although the new
EVALPSN control is flexible, it requires stable model computation to predict
and avoid deadlock states in each stage of the Cat and Mouse. It takes long
time to compute stable models, which is a fatal problem for control. In order to
realize prompt control, we restrict the deadlock prediction in the new EVALPSN
control to predicting only one stage ahead.

This paper is organized as follows: first, we review EVALPSN briefly and
introduce the Cat and Mouse; next, we show how to interpret the control prop-
erties in the six control rules and EVALPSN; last, we describe how the Cat and
Mouse is controlled by the EVALPSN.

2 EVALPSN

2.1 EVALPSN Overview

Generally, a truth value called an annotation is explicitly attached to each literal
in annotated logic programs [1]. For example, let p be a literal, μ an annotation,
then p : μ is called an annotated literal. The set of annotations constitutes a
complete lattice [2]. An annotation in VALPSN (Vector Annotated Logic Pro-
gram with Strong Negation) [6] which can deal with defeasible reasoning is a
2-dimensional vector called a vector annotation such that each component is a
non-negative integer and the complete lattice Tv of vector annotations is de-
fined as:

Tv = { (x, y)|0 ≤ x ≤ n, 0 ≤ y ≤ n, x, y and n are integers }.
The ordering of the lattice Tv is denoted by a symbol �v and defined: let v1 =
(x1, y1) ∈ Tv and v2 = (x2, y2) ∈ Tv,

v1 �v v2 iff x1 ≤ x2 and y1 ≤ y2.
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Fig. 1. Lattice Tv(n = 2) and Lattice Td

For each vector annotated literal p : (i, j), the first component i of the vector
annotation denotes the amount of positive information to support the literal p
and the second one j denotes that of negative information. For example, a vector
annotated literal p : (2, 1) can be intuitively interpreted that the literal p is known
to be true of strength 2 and false of strength 1. In order to deal with defeasible
deontic reasoning we have extended VALPSN to EVALPSN. An annotation in
EVALPSN called an extended vector annotation has a form of [(i, j), μ] such that
the first component (i, j) is a 2-dimentional vector as well as a vector annotation
in VALPSN and the second one,

μ ∈ Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,/},

is an index representing deontic notion or some kinds of inconsistency. The or-
dering of the lattice Td is denoted by a symbol �d and described by the Hasse’s
diagrams in Fig. 1. The intuitive meaning of each member in the lattice Td is ; ⊥
(unknown), α (fact), β (obligation), γ (non-obligation), ∗1 (both fact and obliga-
tion), ∗2 (both obligation and non-obligation), ∗3 (both fact and non-obligation)
and / (inconsistent). Therefore, EVALPSN can deal with not only inconsistency
between usual truth values but also between permission and forbiddance, obli-
gation and forbiddance, and fact and forbiddance. The complete lattice Te of
extended vector annotations is defined as the product Tv ×Td. The ordering over
the lattice Te is denoted by a symbol � and defined as : let [(i1, j1), μ1] and
[(i2, j2), μ2] be extended vector annotations,

[(i1, j1), μ1] � [(i2, j2), μ2] iff (i1, j1) �v (i2, j2) and μ1 �d μ2.

There are two kinds of epistemic negations ¬1 and ¬2 in EVALPSN, which
are defined as mappings over Tv and Td, respectively.

Definition 1. (Epistemic Negations, ¬1 and ¬2)

¬1([(i, j), μ]) = [(j, i), μ], ∀μ ∈ Td,

¬2([(i, j),⊥]) = [(i, j),⊥], ¬2([(i, j), α]) = [(i, j), α],
¬2([(i, j), β]) = [(i, j), γ], ¬2([(i, j), γ]) = [(i, j), β],
¬2([(i, j), ∗1]) = [(i, j), ∗3], ¬2([(i, j), ∗2]) = [(i, j), ∗2],
¬2([(i, j), ∗3]) = [(i, j), ∗1], ¬2([(i, j),/]) = [(i, j),/].
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These epistemic negations, ¬1 and ¬2, can be eliminated by the above syntactic
operation. On the other hand, the strong negation (ontological negation ∼) in
EVALPSN can be defined by the epistemic negations, ¬1 or ¬2, and interpreted
as classical negation [2].

Definition 2. (Strong Negation)

∼ F =def F → ((F → F ) ∧ ¬(F → F )),

where F be a formula and ¬ be ¬1 or ¬2, and → indicates a material implication.

Definition 3. (well extended vector annotated literal)
Let p be a literal. p : [(i, 0), μ] and p : [(0, j), μ] are called well extended vector an-
notated literals(weva-literals for short), where i, j ∈ {1, 2}, and μ ∈ { α, β, γ }.

Definition 4. (EVALPSN)
If L0, · · · ,Ln are weva-literals,

L1 ∧ · · · ∧ Li∧ ∼ Li+1 ∧ · · · ∧ ∼ Ln → L0

is called an Extended Vector Annotated Logic Program clause with Strong Nega-
tion (EVALPSN clause for short). If it does not include the strong negation, it
is called an EVALP clause for short. An Extended Vector Annotated Logic Pro-
gram with Strong Negation is a finite set of EVALPSN clauses.

Deontic notions and fact are represented by extended vector annotations as fol-
lows:

“fact” is annotated as an annotation [(m, 0), α] ;
“obligation” is annotated as an annotation [(m, 0), β] ;
“forbiddance” is annotated as an annotation [(0,m), β] ;
“permission” is annotated as an annotation [(0,m), γ] ;

where m is a positive integer. For example, a weva-literal p : [(2, 0), α] can be
intuitively interpreted as “it is known that the literal p is a fact of strength 2”,
and a weva-literal q : [(0, 1), β] can be intuitively interpreted as “the literal q is
forbidden of strength 1”.

2.2 EVALPSN Stable Model

The stable model semantics for EVALPSN is defined in [3,5].

Definition 5. (Gelfond-Lifschitz transformation) [3]
Let I be any interpretation for an EVALPSN P , P I , the Gelfond-Lifschitz(G-L)
transformation of the EVALPSN P with respect to the interpretation I is an
EVALP obtained from the EVALPSN P by deleting

− each EVALPSN clause that has a literal ∼ (C :μ) in its body with I |= C :μ,
and

− all strongly negated weva-literals in the bodies of the remaining EVALPSN
clauses.



A Discrete Event Control Based on EVALPSN Stable Model Computation 675

Since the EVALP P I obtained by the G-L transformation has no strong negation,
it has the unique least model given by TP I ↑ ω [4].

Definition 6. (Stable Model for EVALPSN)
Let I be an interpretation for an EVALPSN P .

The interpretation I is called the stable model of the EVALPSN P
iff

I = TP I ↑ ω.

Generally, logic programs with strong negation may have more than two stable
models or no stable model. Let us show an example.

Example 1. Let P be the EVALPSN:

{ Q(n) : [(2, 0), α], R(n) : [(2, 0), α],
Q(n) : [(1, 0), α]∧ ∼ P (n) : [(0, 2), β] → P (n) : [(2, 0), β],
R(n) : [(1, 0), α]∧ ∼ P (n) : [(2, 0), β] → P (n) : [(0, 2), β] },

and
I1 = { Q(n) : [(2, 0), α], R(n) : [(2, 0), β], P (n) : [(2, 0), β] }.

Then

P I1 = { Q(n) : [(2, 0), α], R(n) : [(2, 0), β], Q(n) : [(1, 0), α] → P (n) : [(2, 0), β] }

and the interpretation I1 is a stable model of the EVALPSN P . Moreover, let

I2 = { Q(n) : [(2, 0), α], R(n) : [(2, 0), β], P (n) : [(0, 2), β] }.

Then the interpretation I2 is also a stable model of the EVALPSN P .

3 EVALPSN Control for Cat and Mouse

3.1 Cat and Mouse Example

CAT AND MOUSE [14] A cat and a mouse are placed in the maze shown
in Fig. 2. Each doorway in the maze is either for the exclusive use of the cat,
or for the exclusive use of the mouse. The doorways ci (i = 1, 2, . . . , 7) and
mj(j = 1, 2, . . . , 6) are for the cat and mouse, respectively. It is also assumed
that each doorway, with the exception of c7, can be opened or closed as required
in order to control the movement of the cat and the mouse. The objective is to
find the control schema that permits the cat and the mouse the greatest possible
freedom of movement, but which also guarantees the following two properties:

1. the cat and the mouse never occupy the same room simultaneously, and
2. it is always possible for the cat and the mouse to return to the initial state,

i.e., the state in which the cat is in room 2, and the mouse in the room 4.
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Taking the second property 2 into account, we consider states such that neither
the cat nor the mouse can move to any other rooms. Suppose that the cat and
mouse are in the rooms 0 and 3, respectively. As the doorway c7 for the cat
cannot be controlled to be closed, all the available doorways c1,c4, and m6 must
be closed. Then, both the cat and mouse are isolated. We call such a state
deadlock.

3.2 Cat and Mouse Control in EVALPSN

We have already introduced an EVALPSN control for the Cat and Mouse [13],
which is specified for the allocation of rooms and doorways in the maze. There-
fore, if the maze has a minor change, the EVALPSN control does not work well.
We provide a more flexible EVALPSN control with the prediction and avoidance
of deadlock for the Cat and Mouse. In order to realize the flexible control, we
make the following logical assumtions for the maze:

– there exist doorways between any two rooms, and even if we have no doorway
between the two rooms in fact, a strongly (uncontrollably) closed doorway is
supposed to exist;

– there also exist doorways for both the cat and mouse any room to itself, which
are assumed to be strongly open;

- a broken doorway being always open is treated as a strongly open doorway,
for example, the broken doorway C7 for the cat is treated as a strongly open
doorway;

– we call a state transition from a state to the following one a step.

In order to formalize the control in EVALPSN, we interpret the properties
1 and 2 as six general control rules, and translate them into EVALPSN. We
introduce some annotated predicates used in the EVALPSN control.
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Fig. 4. Lattices Tvn(n = 1, 2, 3) of Annotations

occu(i, t) : [ani, μ] the room i is occupied by an animal(ani) at the t-th step,
where the cat(cat) and mouse(mou) are represented as conflicting annota-
tions such that ani ∈ Tv1 = {⊥1, cat, mou,/1} in Fig. 4, and μ ∈ Td; for
example, a weva-literal occu(i, t) : [cat, β] represents both bligation for the
cat occupying the room i and forbiddance from the mouse (¬1cat) occupying
the room i.

door(i, j, ani, t) : [dst, μ] the doorway for the animal ani from the room i
to the room j is controlled to be in a state(dst) at the t-th step. The four
doorway states, “strongly open”(sop),“open”(op),“closed”(cl) and“strongly
closed”(scl) of doorways are considered as conflicting annotations such that
dst ∈ Tv2 = {⊥2, cl, scl, · · · , op, sop,/2} in Fig. 4, and μ ∈ Td;

circum(i, j, t) : [st, μ] circumstance in which the cat and mouse are in the
rooms i and j at the t-th step, respectively, is a deadlock state or not, where
the states“deadlock”(dl) and “normal”(nl) are also considered as conflicting
annotations such that st ∈ Tv3 = {⊥3, nl, dl,/3} in Fig. 4, and μ ∈ Td.

The properties 1 and 2 can be interpreted in the following six rules and translated
into EVALPSN.

CONTROL RULES

Rule 1. If the animals ani and eani are in the rooms i and j in Fig. 3,
respectively, and there is a controllable doorway for the animal ani from the
room i to the room j at the t-th step, then the doorway must be closed, that is
to say, it is forbidden to control the doorway open. This rule is translated into

occu(i, t) : [ani, α] ∧ occu(j, t) : [eani, α] ∧
∼ door(i, j, ani, t) : [sop, α]∧ ∼ door(i, j, ani, t) : [scl, α]
→ door(i, j, ani, t) : [cl, β], (1)
where i �=j, ani, eani ∈ {cat,mou}, t = u,u + 1,

and the expression ∼ door(i, j, ani, t) : [sop, α]∧ ∼ door(i, j, ani, t) : [scl, α] rep-
resents that there is a controllable doorway for the animal ani between the rooms
i and j.
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Rule 2. If the doorway for the animal ani from the room i to the room j in
Fig. 3 is strongly closed or open at the t-th step, then the doorway must be
closed or open, respectively. This rule is translated into

door(i, j, ani, t) : [scl, α] → door(i, j, ani, t) : [cl, β], (2)
door(i, j, ani, t) : [sop, α] → door(i, j, ani, t) : [op, β], (3)
where i �=j, ani ∈ {cat,mou}, t = u,u + 1.

Rule 3. If there is a controllable doorway for the animal ani from the room i
to the room j in Fig. 3 at the t-th step, and no forbiddance from the doorway
being open, then the doorway must be open. This rule is translated into

∼ door(i, j, ani, t) : [sop, α]∧ ∼ door(i, j, ani, t) : [scl, α] ∧
∼ door(i, j, ani, t) : [cl, β] → door(i, j, ani, t) : [op, β], (4)
where i �=j, ani ∈ {cat,mou}, t = u,u + 1.

Rule 4. If the animals ani and eani are in the rooms i and j in Fig. 3, and
all the doorways from the rooms i and j must be closed at the t-th step, then
such circumstance is defined as deadlock in EVALPSN :

occu(i, t) : [ani, α] ∧ occu(j, t) : [eani, α] ∧
4∧

l=0

door(i, l, ani, t) : [cl, β] ∧
4∧

m=0

door(j,m, eani, t) : [cl, β]

→ circum(i, j, t) : [dl, α], (5)
where l �=i, i �=j, m �=j, and ani, eani ∈ {cat,mou}, t = u + 1.

Rule 5. If the animals ani and eani are in the rooms i and k in Fig. 3,
respectively, there is a controllable doorway for the animal ani from the room j
to the room k at the t-th step, and the next state in which the animals ani and
eani are in the room i and the room j is a deadlock state, then the doorway
for the animal eani from the room k to the room j must be closed. This rule is
translated into

occu(i, t) : [ani, α] ∧ occu(k, t) : [eani, α] ∧
∼ door(k, j, eani, t) : [sop, α]∧ ∼ door(k, j, eani, t) : [scl, α] ∧
circum(i, j, t+ 1): [dl, α] → door(k, j, eani, t) : [cl, β], (6)
where i �=j, j �=k, k �=i, and ani, eani ∈ {cat,mou}, t = u.

Rule 6. If the animals ani and eani are in the rooms i and k in Fig. 3,
respectively, there is a controllable doorways for the animal eani from the room
k to the room j, and the doorway for the animal eani from the room j to the
room i (or the doorway for the animal ani from the room i to the room j) are
strongly open at the t-th step, then the doorway for the animal eani from the
room k to the room j must be closed. This rule is translated into
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occu(i, t) : [ani, α] ∧ occu(k, t) : [eani, α] ∧
∼ door(k, j, eani, t) : [sop, α]∧ ∼ door(k, j, eani, t) : [scl, α] ∧
door(j, i, eani, t) : [sop, α] → door(k, j, eani, t) : [cl, β], (7)

occu(i, t) : [ani, α] ∧ occu(k, t) : [eani, α] ∧
∼ door(k, j, eani, t) : [sop, α]∧ ∼ door(k, j, eani, t) : [scl, α] ∧
door(i, j, ani, t) : [sop, α] → door(k, j, eani, t) : [cl, β], (8)
where i �=j, j �=k, k �=i, and ani, eani ∈ {cat,mou}, t = u,u + 1.

In order to detect the deadlock states, all traveling routes for the cat and
mouse are checked in the EVALPSN stable model computation. The EVALPSN
{(1), · · · , (5)} have infinite stable model computation, if they have no restriction
on the step number t.

In Fig. 5, an ordered pair (i, j) shows that the cat and mouse are in the rooms
i and j, respectively, and in fact it contains infinite state transition chains such
as {(2, 4) ⇒ (0, 4) ⇒ (3, 4) ⇒ (1, 4) ⇒ · · · (2, 4) ⇒ · · ·}. In order to avoid such
eternal computation, we restrict the EVALPSN computation with the present
step t = u and the next step t = u+1, which makes the EVALPSN stable model
computation much easier, although the prediction of deadlock states is restricted
to until one step ahead.

3.3 Examples

Initial Stage Suppose that the cat and mouse are appeared in the rooms 2 and
4 initially. Then, each doorway open-close state is computed by the EVALPSN
P0 consisting of all ground instances of EVALPSN clauses, (1),· · ·,(5), with u = 0
as follows. First, EVALP clauses representing the locations of the cat and mouse,

occu(2, 0): [cat, α] and occu(4, 0): [mou, α],

are input to the EVALPSN P0; next, EVALP clauses representing all door-
ways that are strongly closed or open such as door(1, 4,mou, 0) : [scl, α] and
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door(1, 3, cat, 0) : [sop, α] are also input to the EVALPSN P0; lastly, two stable
models of the EVALPSN P0 that predict the two routes, the initial state (2, 4)
to the state (0, 4) and the initial state (2, 4) to the state (2, 3) in Fig. 5, are
computed, where it is verified that neither the states (0, 4) nor (2, 3) are deadlock
states; then both of them include the weva-literals,

door(0, 1, cat, 0): [op, β], door(0, 3, cat, 0): [op, β],
door(1, 2, cat, 0): [op, β], door(2, 0, cat, 0): [op, β],
door(3, 4, cat, 0): [op, β], door(4, 0, cat, 0): [op, β],
door(0, 2,mou, 0): [op, β], door(0, 4,mou, 0): [op, β],
door(1, 0,mou, 0): [op, β], door(2, 1,mou, 0): [op, β],
door(3, 0,mou, 0): [op, β], door(4, 3,mou, 0): [op, β],

which indicate the doorway control at the initial stage(t = 0) as obligation (all
doorways must be open).
2nd Stage Suppose that only the cat has moved to the room 0. Then, each
doorway open-close state is computed by the EVALPSN P1 consisting of all
ground instances of EVALPSN clauses (1),· · ·,(5) with u = 1 as well as the
initial stage. First, EVALP clauses representing the locations of the cat and
mouse,

occu(0, 1): [cat, α] and occu(4, 1): [mou, α],

are input to the EVALPSN P1; next, EVALP clauses representing all door-
ways that are strongly closed or open such as door(1, 4,mou, 1) : [scl, α] and
door(1, 3, cat, 1) : [sop, α] are also input to the EVALPSN P1; lastly, two stable
models of the EVALPSN P1 that predict the two routes, the states (0, 4) to (1, 4)
and the states (0, 4) to (3, 4) in Fig. 5, are computed, where it is verified that
neither the states (1, 4) nor (3, 4) are deadlock states; then both of them include
the weva-literals,

door(0, 1, cat, 1): [op, β], door(0, 3, cat, 1): [op, β],
door(1, 2, cat, 1): [op, β], door(2, 0, cat, 1): [op, β],
door(3, 4, cat, 1): [op, β], door(4, 0, cat, 1): [op, β],
door(0, 2,mou, 1): [op, β], door(0, 4,mou, 1): [op, β],
door(1, 0,mou, 1): [op, β], door(2, 1,mou, 1): [op, β],
door(3, 0,mou, 1): [op, β], door(4, 3,mou, 1): [cl, β],

which indicate the doorway control at the second stage(t = 1) as obligation (the
doorway for the mouse from the room 4 to the room 3 must be closed and the
other doorways must be open).

4 Conclusion

In this paper, we have introduced a more flexible EVALPSN control for the Cat
and Mouse, which contains deadlock state prediction and avoidance. The idea
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of the deadlock prediction and avoidance would be applicable to other discrete
event control systems suffering from dealing with deadlock.

We have already implemented a simulation system for the EVALPSN cat and
mouse control realizing prompt computation.
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Abstract. Granular computing as an enabling technology and as such
it cuts across a broad spectrum of disciplines and becomes important to
many areas of applications. In this paper, the notions of tolerance relation
based information granular space are introduced and formalized mathe-
matically. It is a uniform model to study problems in model recognition
and machine learning. The key strength of the model is the capability of
granulating knowledge in both consecutive and discrete attribute space
based on tolerance relation. Such capability is reestablished in granula-
tion and an application in information classification is illustrated. Simu-
lation results show the model is effective and efficient.

1 Introduction

Information granules, as the name itself stipulates, are collections of entities,
usually originating at the numeric level, that are arranged together due to their
similarity, functional adjacency, indistinguishability, coherency or alike [1]. The
entities on data layer usually belong to two types: discrete or consecutive. Many
models and methods of granular computing [2][3][4][5][11][12] have been proposed
and studied, however, most of them discuss discrete and consecutive data respec-
tively. In their theories, discretization features are represented by attributes,
which is calculated by the methods such as feature extraction, feature reduction
and classification or only discretization. That means the features of one type can
be generated from the other. So, it is time to construct a uniform model to study
some important problems in pattern recognition and machine learning, such as
feature extraction, feature reduction, discretization and classification.

Nowadays, many researchers study the equivalence relation based granular
computing theory, such as Zhang B. and Y.Y. Yao [3][6] indicate that granule
is closely related to quotient space. In reality, tolerance relation is a more broad
relation. So, this paper discuss mainly about the tolerance relation based gran-
ular computing theory. There are a lot of papers on tolerance based rough set
approaches [13][14][15], but this approaches don’t uses the multi-level framework
for granular computing and discuss mainly discretization features.
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2 Model of Tolerance Relation Based Granular Space

In 1962, Zeeman proposed that cognitive activities can be viewed as some kind
tolerance spaces in function spaces. The tolerance spaces, which are constructed
by tolerance relations based on distance functions, is used for stability analysis of
dynamic system by Zeeman. In this paper, a tolerance spaces based on distance
functions are developed for the analysis of information granulation, which is
defined as tolerance relation granulation in the following parts.

2.1 Tolerance Relation Based Granular Space

The aim of describing a problem at different granularities is to enable the com-
puter to solve the same problem at different granule size hierarchically. Suppose
the triplet (OS, TR, NTC ) describes a tolerance relation based granular space
TG, where

OS denotes an object set system, which is illustrated by definitions 2.1-2.2;
TR denotes a tolerance relation system, which is illustrated by definitions

2.3-2.7;
NTC denotes a nested tolerance covering system, which is illustrated by

definitions 2.8-2.13.

2.2 Object Set System

Object set system is composed by the objects at difference levels. OSk represents
an object at level k.

Definition 2.1. OS0, called an original object vector, is a vector of Rn, where
R is the real number set.

Definition 2.2. OS1, called a subset object of level 1, is a set of original object
vectors. Generally speaking, OSk+1 is a set of level k subset objects, OSk.

For example, in image processing, OS0 can be viewed as a pixel of an image,
OS1 can be viewed as an image and OS2 can be viewed as a set of frames in
video stream.

2.3 Tolerance Relation System

Tolerance relation system is a (parameterized) relation structure, and it is com-
posed by a set of tolerance relations.

Definition 2.3. A tolerance relation sn, sn⊆X×X, is a reflexive and symmet-
rical binary relation, where X is the original space of object vector and X⊆Rn.

Suppose α and β are two n dimensional vectors of X, and dis(α, β|ω) is
a distance function, where the dimensional weight ω = (ω0, ω1, !‘, ωn−1) and
ωi ≥ 0.

Definition 2.4. sp(α, β|dis,d), called a simple tolerance proposition, is defined
as

sp(α, β|dis,d) ⇔ dis(α, β|ω) ≤ d, (1)
where d≥0 is a real number, called the radius of sp(α, β|dis,d).
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Definition 2.5. A compound tolerance proposition P(α, β|D), where D =
{d1, d2, · · ·, dk} and di is the radius of spi(α, β|disi, di), is a Boolean function
composed by a group of spi(α, β|disi, di) related with ”∧” , ”∨” and ”¬” opera-
tors and 0≤i≤k. For simplicity, the dimensional weight ωi in spi(α, β|disi, di)
is same.

In the case that P(α, β|D) contains the negative operator ”¬”, P(α, β|D) may
not be reflexive, and for sp(α, β|dis,d) ⇔ dis(α, β|ω) ≥ d is not a tolerance
relation, so it can’t be used in compound tolerance proposition. In this case,
P(α, β|D) can be recomposed by extending it to P(α, β|D)∨(dis(α, β|ω) ≤ d) ,
where d0 ≤ d.

Definition 2.6. The tolerance relation sn(P, ω, DIS, D) induced by P(α, β|D)
is defined as (α, β)∈ sn(P, ω, DIS, D)⇔P(α, β|D), where DIS = {dis1,dis2, ··
·,disk}.

Proposition P, weight vector ω, distance function vector DIS and radius
vector D are the four important elements in a tolerance relation. Tolerance
relation system is composed by a set of tolerance relations and many space areas
can be described by tolerance relation system.

2.4 The Nested Tolerance Covering System

The nested tolerance covering system is a (parameterized) granule structure,
which denotes different levels granules and the granulation process based on
above object system and tolerance relation system. The nested tolerance covering
on OSk can be constructed as follows.

The Nested Tolerance Covering on OS1

In this subpart, the definitions of granules, tolerance covering and nested toler-
ance covering are presented. Besides, with definition 2.8 and definition 2.9, the
granulation process on OS1 is illustrated. Here, we focus on the extension of a
granule, that is, how to use the objects to construct granules.

Definition 2.8. A small granule over OS1 is a set

G0(a |ω0) = {x |(x,a) ∈ sn(P, ω0,DIS,D) ∧ x ∈ OS1}, (2)

where Grid ⊆ OS1 and a=(a’), a’∈Grid. a’ can be viewed as the location of
G0(a|ω0). Grid is the set of all possible locations and defined as grid point set.
ω0 is the coordinate.

Definition 2.9. A nested tolerance covering over OS1 is defined as follows:

(1) A level 0 granule G0(a|ω0) is a subset of OS1 under coordinate L0 = ω0

and a is the location of G0(a|ω0) in OS1. The set of all level 0 granules,
{G0(a|ω0)}, under L0, a grid point set Grid0 and a tolerance relation set
sn(L0,Grid0) is defined as C1(0).

(2) Suppose Gk(ηk|ωk) is a level k granule and a level k+1 granule

Gk+1(ηk+1|ωk+1)={x |((x, η(k+1)(k+1))∈sn(P, ωk+1,DIS,D))∧x∈Gk(ηk|ωk)}
(3)



Tolerance Relation Based Granular Space 685

where ηi=(ηi0 ηi1, · · ·, ηii). ηi is the location set of all ancestor granules of
Gi(ηi|ωi). ηip is the location of Gi(ηi|ωi)’s ancestor Gp(ηp|ωp) in its father
granule Gp−1(ηp−1|ωp−1). For G0(η0|ω0), η0 = a. η(k+1)(k+1) is the location of
Gk+1(ηk+1|ωk+1) in its father granule Gk(ηk|ωk). If Gk+1(ηk+1|ωk+1)=Gk(ηk|ωk),
the set of all small level k+1 granule Gk+1(ηk+1|ωk+1) is defined as tolerance
covering GWk+1(ηk+1|ωk+1) on Gk(ηk|ωk), which is based on the coordinate
system Lk+1 = (ω0, · · ·, ωk+1), a grid point set Gridk+1⊆ Gk(ηk|ωk), and a
tolerance relation set sn(Lk+1,Gridk+1).

Based on above, suppose C1(0)=GW0(η0|ω0), C1(k)={GWk(ηk|ωk)}, and⋃
GWk(ηk|ωk)= OS1, then ⋃

k=0,1,···

TC1 = (C1(k)) (4)

is the nested tolerance covering over OS1.

The Adjoint Nested Tolerance Covering System on Level k Granules
In this subpart, the definition of adjoint subset object are presented, which can
be viewed as the intension of a granule. Two ways to generate the adjoint subset
object are developed as follows.

Definition 2.10. An adjoint subset object at level k over a nested tolerance
covering of OS1 is a new feature vector set. Each new feature vector belongs to
a level k granule Gk(ηk|ωk), and can be generated from nested smaller granules
by two ways:

(1) Computing a new vector directly over all original object vectors OS0

(Def.2.1) belong to Gk(ηk|ωk). For example, the vector can be the centroid
vector of Gk(ηk|ωk), or a new long vector constructed by arranging all vectors
of Gk(ηk|ωk) in a row, which is a prevalent method in image module matching
algorithms.

(2) Computing a new vector through nested granules in C 1(k). According
to above defined nested structure, a level k granule is larger than a level k+1
granule, so new vectors at level k can be calculated from new vectors of level
k+1, each object vector OS0 in OS1 can be viewed as the highest level new
vectors, and OS1 itself can be viewed as a level 0 granule and assigned a new
feature vector. After assigning every level k granule of OS1 a new feature vector,
all level k granules can be viewed as a new subset object.

The first kind is called as a usual adjoint subset object and the second is
called as a nested subset object. Based on adjoint subset objects, adjoint nested
tolerance covering system can be created as:

Definition 2.11. After assigning a new feature vector V to every OS1, a nested
tolerance covering

TC2 = (
⋃

k=0,1,···
C2(k)) (5)

on OS2 can be constructed using the method constructing TC1 in OS1. A
granule of TC2 can be viewed as a classification of OS1 and an integral class
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label c can be assigned to OS1. If we divide every dimension of feature vectors
V into regions marked by n∈{0,1,2,···, N}, then a new discretized feature vector
V ’ can be created by adding the classification label c to it. Such kind of new
feature vectors are denoted as decision objects, Iobject.

Similarly, we can define TCk on OSk and decision objects on OSk. The
tolerance relation based granular space is so versatile that it includes all clas-
sification processes using distance functions and most of the multi-scale feature
extraction processes in pattern recognition. For the sake of pages, we only focus
on the knowledge discovery of lattice sub space of above granular space.

3 The Lattice Sub Space in Granular Space

Lattice is a simple but important sub space structure included by above granular
space.

Definition 3.1. A level l granule Gl(η|ω) on a subset object OSp is a set of
OSp−1, so in some cases, there are lattices L ⊆ TCp, where TCp =

⋃
(Cp(k)) is

a nested tolerance covering on OSp. These lattices are based on inclusion relation
”⊂”and operators ”∪”and ”∩”. In the lattice case, there must be some overlapped
granules in Cp(l). If none of granules in TCp are overlapped, granules in Cp(l)
can be viewed as equivalent classes, so the granular theory based on equivalent
relation is a special case.

Many problems can be described by the lattice space. In the following pages,
we illustrate an example of lattice space, which is based on decision objects. Our
object is to classify new decision objects according to the knowledge extracted
from old classified objects. The information lattice space, based on a nested
tolerance relation based granular space, can be used to model problems and
describe problem solving algorithms. We also take a lot of experiments to test
our theory’s validity and ability to this problem.

3.1 The Construction of Tolerance Relation Based Granular Space

First, we define the object set system. Here OS0 ∈ OS1 can be viewed as a
decision object Iobject = (v0, v1, · · ·, vn−1, vn), where vi is a discretized feature
and vn = c is the class label of this decision object. OS1 can also be viewed as
a decision table (Def.3.7) composed by decision objects.

Second, we define the tolerance relation system. The distance function dis(α, β|
ωi) and the tolerance proposition P(α, β|D) can be defined by the following
definition.

Definition 3.2. P(α, β|D)=dis(α, β|ω) ≤0, where

dis(α, β|ωi) =
n∑
j=0

ωij(αj ⊕ βj), (6)

α = (α0, α1, · · ·, αn), β = (β0, β1, · · ·, βn), and
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αj ⊕ βj =
{

0 if αj = βj

1 else (7)

According to above definition, the tolerance relation is generated as (α, β) ∈
sn(P, ω,DIS,D) ⇔ P(α, β|D). ωi=(ωi0, ωi1,· · ·,ωin) is a coordinate and ωij=1
or 0.

Third, we define the nested tolerance covering system. The following defini-
tion presents the method generating a new granule and its adjoint vector. With
different forms of coordinate ω, different new granules are generated. The last
element of ω is always ”1”because the granules without the same decision cannot
be combined.

Definition 3.3. A nested tolerance covering TC1 = (
⋃

k=0,1,··· C1(k)) on OS1

can be constructed using the method defined in section 2.4.1, where

C1(i) = {Gi(Obj |ωi)|Gi(Obj |ωi) = {Obl|dis(Obl,Obj |ωi) ≤ 0, Obj ∈ OS1}},
(8)

where Obj = (vj0, vj1, ···, vjn). Gi(Obj |ωi) is a level i granule and i=Σj=0,···,n−1

ωij . A new vector VGij=(VGij0, VGij1, · · ·, VGij(n−1), VGijn) , denoted as
decision rule (Def.3.9), is assigned to it, where if ωp is equal to 1 then vgijp=
vjp, else vgijp=”*”. If dis(Obl,Obj |ωi) ≤ 0, then Gi(Obl|ωi) = Gi(Obj |ωi).

For example, if Ob1 = (f1, r1, e1, s1), Ob2 = (f1, r1, e2, s1), r = 3, and ω=(1,
1, 0, 1), then G2(Ob2) = (f1, r1, ∗, s1), and the level of the granule is i=2.

Fig. 1. Decision Granular Lattice of Table 1

In our algorithm, VGij is computed from VG(i+1)l with method 2 in def-
inition 2.10 and the following definition is more detailed one. Definition 3.4.
Suppose C1(i) = {Gi1,Gi2, ···,Giq} is a level i tolerance covering over G(i−1)p ⊆
OS1. By Proposition 3.2, q=2 and dis(VGi1,VGi2|ω) ≤ 1, where ω = {1, 1, · ·
·, 1}. Then VG(i−1)p = {vg(i−1)p0, vg(i−1)p1, · · ·, vg(i−1)pn} of G(i−1)p can be
calculated by: if vgi1 ⊕ vgi2 = 0, vg(i−1)pj=vgi1j , else vg(i−1)pj=”*”.

In granular space, each granule has only one feature vector VGij , so VGij

can be viewed as the key of Gij . This viewpoint is ensured by Proposition 3.2.
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3.2 Decision Table and Decision Rule

In above description of problem, we mention that OS1 is a decision table and
the adjoint vector of each granule can be viewed as a decision rule. For the
convenience of description, we define the two concepts clearly.

Definition 3.5. A decision table is defined as S =< U,C,D,V, f >. The details
can be found in Ref. [8].

Definition 3.6. Let S =< U,C,D,V, f > be a decision table, and let B ⊆ C.
Then the rule set F generated from S and B consists of all rules of the form

∧ (a, v) : a ∈ B and v ∈ Va ∪ {∗} → d = vd, (9)

where vd ∈ Va. The symbol * means that the value of the corresponding attribute
is irrelevant for the rule, i.e., in conjunction we are not considering the descriptor
for this attribute a. The length of the rule is the number of attribute values in
precondition that not equal to ”*”, denoted as || · ||.

For example, in a decision system with 5 condition attributes (a1, ···,a5), (a1 =
1) ∧ (a2 = ∗) ∧ (a3 = 1) ∧ (a4 = 1) ∧ (a5 = ∗) → d = 4 is a rule according to
definition 3.6. In this paper, we describe a rule as a vector and the above decision
rule is described as (1, *, 1, 1, *, 4), and the length of the rule is 3.

3.3 Decision Granule

Now, we choose some granules from the constructed granular space to solve our
problem, called decision granules.

Definition 3.7. Let S be a decision table and Gij describes a granule. Gij is a
decision granule, iff Gij satisfies the following conditions:
(1) The objects in Gij satisfy a tolerance proposition(Def 2.4-2.5) ;
(2) VGij (Def. 3.6) is a decision rule defined at definition 3.6;
(3) There isn’t any object in S satisfying the condition of VGij , but not satis-
fying the decision of VGij .

Definition 3.8. Let S be an decision table, then G∗ denotes the maximal deci-
sion granule, where VG∗ is the rule covered all objects; GΦ denotes the minimal
decision granule, where VGΦ is the rule covered none objects.

3.4 Decision Granular Lattice

Definition 3.9. Suppose Gij and Gkp are two decision granules, where k≥i.
Then, we denote that Gij ⊆ Gkp, iff dis(V Gij ,VGkp|ω) = 0 and ||VGij || ≥
||VGkp||. Here, we call Gij is the child granule of Gkp, and VGkp is the ancestral
granule of VGij . If ||VGij || = ||VGkp||+1, we call VGij is the son granule of
VGkp, and VGkp is the father granule of VGij .

Proposition 3.1. The relation ”⊆”(Def.3.6) is a partial ordering relation.

Proposition 3.2. Let S =< U,C,D,V, f > be a decision table, GS is the set
of all decision granules generated from S (including G∗ and GΦ) and ”⊆” is the
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relation defined by definition 3.9, then < GS,⊆> is a lattice, called decision
granular lattice.

For the sake of pages, we aren’t proving these propositions here.

Definition 3.10. Suppose Gij and Gpg are two decision granules, Gij is conflict
with Gpg, iff

1∑
k=0

ωj(vgijk ⊕ vgpqk) = 0 (10)

and the decisions of VGij and VGpq are different.

Definition 3.11. Suppose Gij and VGpq are two decision granules, Gij is equal
to Gpg, iff dis(VGij , VGpq|ω)=0.

Now, we present a simple algorithm generating granular lattice from decision
table S. Suppose m is the number of condition attributes and n is the number
of objects in S, objecti is the ith object in S.

Algorithm 1 Decision Granular Lattice Construction Algorithm (DGLC)
Input: Decision table S ;
Output: Granular Lattice GL;
Step 1(Initialization):

FOR(i = 1; i ≤ n ; i + +)
{Generate Gi, where VGi=objecti;
Add Gi to GL; }

Number of granules = n;
//In the following, we call Gi is the ith granule in GL if the granule is the

ith granule added to GL.
Step 2(Generating granules and establish relationships):
Start=1; End=n ;
While (Start ≤ End)

{FOR (i= Start ; i ≤ End − 1; i + +){
FOR (j=i+1; j ≤ End; j + +){
Suppose Gi is the ith granule and Gi is the j th;
Generate G and VG from Gi and Gj according to Def. 3.7;
If G exist and there isn’t any conflict granule with G, then {
If there isn’t any granule equal to G
{Add G to GL; Connect G to Gi and Gj ;
Number of granules++;}

else Connect granule G’ that is equal to G (Def. 3.11) to Gi and Gj ;}}}}
Start=n+1; End=Number of granules;}

Step 3(Establishing the remaining relationships)
Connect the maximal decision granule to the granules without father;
Connect the granules without son to the minimal decision granule.

End
Example 1: Table 1 is a decision table and the last attribute is the decision
attribute. Input table 1 to DGLC algorithm and Fig. 1 is the resulted decision
granular lattice.
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Table 1. A Decision Table

Object F R E S
X1 f1 r1 e1 s1

X2 f2 r1 e3 s1

X3 f2 r1 e2 s0

X4 f3 r2 e1 s1

X5 f1 r1 e2 s1

3.5 Decision Granular Lattice Based Classification Algorithm

We can use decision granular lattice to classify new decision objects and the
following is the decision granular lattice based classification algorithm (DGLC).

Definition 3.12. The matching degree of object object to a decision granule G
is defined as Match(object, G), and Match(object, G)=max{level | level is the
level number of G or G’s child granule Gij , where object satisfy VG or VGij}.

Algorithm 2 Decision Granular Lattice Based Classification Algorithm
(DGLBC)
Input: Testing table S, decision granular lattice GL;
Output: Classification Result
FOR (i=1; i ≤ n; i++)//n is the object number of S
{ Max = 0;MatchGranule = Φ;

FOR (each son granule G of G∗ (Def.3.11))
{ If VG cover objecti,
Y = Match (objecti, G);
If (Y > Max) Max=Y ; MatchGranule= G;}}}

Decision of objecti=the decision of the adjoint vector of MatchGranule;}
From the experiment results, we conclude that decision granular lattice can

classify data with higher correct rate than most of other algorithms. In specially,
decision granular lattice has very high classification correct rate when the train-
ing set is small. It is because decision granular lattice is a granulation knowledge
structure, which not only includes the knowledge of the final results but includes
the granulated knowledge with different granularities.

4 Conclusion

We basically construct a more uniform granulation model, which is established
on both consecutive space and discrete attribute space and based on tolerance
relation.

(1) A tolerance relation based granular space TG, which is described as (OS,
TR, NTC ), are modeled and constructed.

(2) An illustration of how to use the tolerance relation based granular space
to represent and solve problems is presented.
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(3) A decision granular lattice is developed. The lattice is a granulation
knowledge structure, which not only includes the knowledge of the final results
but includes the granulated knowledge at different granularities.
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Abstract. In this paper, we discuss the most suitable “representation
granularity”, keeping several types of discernibility including individually
discernibility and class discernibility. In the traditional “reduction”sense,
the goal is to find the smallest number of attributes such that they enable
us to discern each tuple or each decision class. However, once we pay
attention to the number of attribute values too, that is, the size of each
attribute, another criterion is needed. Indeed, we should ask ourselves
about which one is better in the following two situations: 1) we can
discern them with a single attribute of size ten, and 2) we can do this with
two attributes of size five. This study answers this question with some
criteria. Especially, we deal with continuous attributes. If we evaluate
this difference in the light of understandability, we may prefer the latter,
because they give more simple descriptions. Such a combination of simple
nominal description helps us as a language or as a Kansei representation.
To do this, we propose some criteria and algorithms to find near-optimal
solutions for those criteria. In addition, we show some results for some
databases in UCI Machine Learning Repository.

1 Introduction

When we recognize objects (faces, fruits, books, feelings and so on), we do not
always pay attention to all attributes/features of those objects. Especially, it is
well known that an “expert” in a problem domain often choose some of features
and sometimes enhance them to distinguish an object from the others. If we
consider this situation well, it is noticed that we usually discern each object by
enumerating its distinctive features in an appropriate roundness (a granularity)
of description. We call such a roundness and its linguistic representation“Kansei”
representation. “Kansei” is a Japanese word which refers to the psychological
image evoked by the competing sensations of external stimuli, and affected by
emotions and personal sense of values. Generally, this word is often used in the
field of “Kansei Engineering”. Kansei Engineering is proposed by Nagamachi [1],
which is used to translate the feeling (Kansei) of the customer of a product to its
physical design elements. Now, Kansei Engineering is applied to various fields
Such as Kansei Information Processing, Kansei Information Retrieval, Kansei

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 692–700, 2005.
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mining, and so on [2,3,4,5,6]. This study is a little different from such approaches
in the following sense. In the previous Kansei-related studies, some nominal
values are given such as those in a questionnaire. In such a case, the size of
attribute values is already given according to a subjective point of view. In our
study, when an ordered attribute or a continuous attribute is given, we try to find
an appropriate size of attribute values (the number of equally-spaced intervals) ,
while keeping the potential or the expression ability. If we have a small number
of intervals, it might be possible to give them Kansei-like expressions. As a
result, with a set of Kansei representation words such as “bad”, “normal” and
“medium”, we can share a same feeling about distinctive characteristic specifying
the object. According to this direction, let us consider how to obtain Kansei
representation, to specify an object among many objects as a help for people.
Obviously, too rough description is not enough for distinguishing that object
from the others. While, too fine description is redundant. That is, it is desired
to find an appropriate roundness of representation on that problem domain.
Such a trial is “reduction” in Rough Sets. We seek the minimum number of
attributes enough for discern each object. However, such a “reduction” trial is
not sufficient in finding an appropriate roundness. To have Kansei representation,
each attribute has to be described in a few words.

To achieve this goal, we consider “representation granularity” according to
several criteria on the basis of discernibility. A continuous attribute does not
give us an appropriate roundness, because a statement such as ‘x = 2.3’ does
not resort to our feeling. Rather, Kansei representation such as ‘x is medium’
is hoped. To do this, we quantize a continuous feature by a few number of
intervals and translate them to nominal values. This quantization can be seen as
an extension of the traditional “reduction” in Rough Sets, as will be described
later. We show some results of this approach in some databases of UCI Machine
Learning Repository.

2 Reduction and Partition

A principal concept of Rough Sets [7, 8, 9] is “discernibility”. One of purposes
of Rough Sets theory is to find the minimal subsets of attributes keeping some
discernibility on a given information/decision table T . This goal is referred to
as “reduction”. However, the number of attribute values, not the number of
attributes, has not been considered so far. Therefore, it can happen that the
number of attributes is small but those attributes are described in a very fine way,
that is, the number of the attribute values is too many. Such a fine description
is not useful in the light of understandability. Here, let us consider m different
attributes and denote their domains by C1, C2, . . . , Cm. In addition, by U =
C1 ×C2 × · · · ×Cm, we denote the universe. An information table T is given as
a subset of U. First let us see an example as follow.

Example 1. Let us consider Fig. 1. In Fig. 1 (a), C1 = C2 = {1, 2, . . . , 8} are
both ordered finite sets. Thus, U = {(i, j)|i = 1, 2, . . . , 8, j = 1, 2, . . . , 8}. Let us
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find an equivalence relation R distinguishing two classes ◦ and ×. In the tradi-
tional “reduction” sense, we choose (b). The corresponding partition is described
by PR = {{(1, 1 − 8), (2, 1 − 8), . . . , (8, 1 − 8)}} of size 8. It is noted that only
the first attribute is chosen from the two attributes. However, we need a fine
granular in the attribute. While, it is obvious that we can do this by only two
attribute values such as “low” and “high”, or “small” and “large”, in Kansei rep-
resentation (Fig. 1 (c)). This example shows that we can sometimes obtain

Fig. 1. “Further reduction” by unifying some values: (a) Base partition, (b) Reduction,
and (c) The simplest partition

“further reduction” by unifying some attribute values in addition to attribute
selection (“usual reduction”). Next, let us consider another example.

Example 2. Let us consider Fig. 2. Where the attributes and the universe are
those of the same as the first example. Let us find an equivalence relation R
distinguishing two class ◦ and ×. In the traditional “reduction” sense, we choose
(b), because only one attribute is needed. In that way we cannot unify the
attribute values. However, we can also find a 2 × 2 granularity (c), though it
needs two attributes. The latter is advantageous in Kansei representation.

Fig. 2. “Reduction” vs. “Kansei Partition”: (a) Base partition, (b) Reduction, and (c)
The simplest partition
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3 Variable Granularity

In this section, let us describe formally above discussion. A “granularity” is usu-
ally referred to as an equivalence relation R on U . That gives a certain level of
expression of any concept. In Rough Sets theory, a “base”granularity along with
the attributes is given as a tool for describing the objects in an information table
(or a decision table). However, in the case when all the attributes are enough,
especially when continuous attributes are considered, we need a finite granularity
because the information table is finite. Let us call this granularity“measurement
granularity.” In fact, this is possible by finding the largest granule enough for
separating the closest pair. Then, such a granularity becomes finite from the
nature. Next, we proceed to find the largest granularity enough for discerning
each object/record/tuple. We call such a granularity “individually discernible
granularity”. We also furthermore can proceed to “class discernible granularity”.

3.1 Representation Granularity

First, we put the first priority on the uniformity that is related to equally-sized
granules and evenly-divided resolution. Then, we divide a continuous attribute
into some equally-spaced intervals. The both ends are determined by the maximal
and minimal values of available objects on that attribute. We define several
“representation granularities” on a set of m different attributes C1, C2, . . . , Cm

as

G = (g1, g2, ..., gm) ,

gi = 2−di , (i = 1, 2, ...,m)

where di is a non-negative integer. That is, we divide a whole interval into 2di

small intervals. Here, the jth attribute with dj = 0 is automatically removed,
that is, “reduction” is automatically carried out.

3.2 Measurement Granularity

First, we call the granularity of given data itself “measurement granularity.”We
give it on account of the measurement precision, the description precision of
the attribute, and data expression on memory. Here we assume that the mea-
surement is fine enough for discerning individuals. However, it is possible that
the measurement granularity is not enough for this goal. Then we need a finer
granularity in measurements.

3.3 Discernible Granularity

Next, we define two kinds of granularity on the basis of two kinds of discernibility.
In the following, we identify a representation granularity with its equivalence
relation. In addition, we will use the word “largest”in granularity as for the size
of the partition or the number of equivalence classes.
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1) Individually Discernible Granularity RI :
The largest equivalence relation RI such that x �= y ⇒ [x]RI �= [y]RI , where
[x]RI is an equivalence class of x ∈ U in RI .

2) Class Discernible Granularity RD:
The largest equivalence relation RD such that D(x) �= D(y) ⇒ [x]RD �=
[y]RD , where D(x) is the decision class of x ∈ U .

We can consider one more granularity by loosening the class discernibility:
3) Class Discernible Granularity with a Grade RG:

The largest granularity with a “class-purity parameter” θ (0 < θ ≤ 1) such
that

∀i, max
j

nij

ni
≥ θ,

where ni is the number of the objects contained in the ith equivalence class,
nij is the number of the objects belonging to decision class j in the ith
equivalence class.

We show an example of those granularities in Fig. 3.

Fig. 3. Several kinds of granularity: (a) Measurement granularity, (b) Individually dis-
cernible granularity, (c) Class discernible granularity and (d) Class Discernible Gran-
ularity with a grade. (the class-purity is 0.571 in the both sides that is over θ = 0.55)

3.4 Evaluation of Granularity

So far, we used the word “largest” without an exact definition. Here we give
it. There are some possible definitions as for a given equivalence relation or
the corresponding partition. Let us consider a representation granularity G =
(2−d1 , 2−d2, . . . , 2−dm). Then, we define the two following criteria.

J1(G) = d = log2

m∏
i=1

2di =
m∑

i=1

di,

J2(G) = d−H

(
d1

d
,
d2

d
, . . . ,

dm

d

)
/log m,

where H

(
d1

d
,
d2

d
, . . . ,

dm

d

)
= −

m∑
i=1

di

d
log

di

d
.

We say that a granularity is the “largest” when it minimizes one of these two.
The first criterion J1 requires the number of equivalence classes to be minimum.
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So, it gives the smallest partition. However, this criterion does not consider an
unbalance of granularity of each attribute, so that it cannot distinguish (a) and
(b) in Fig. 4. Therefore, we recommend J2 (Fig. 4 (b)), because it is advanta-
geous in Kansei representation. It requires the entropy of the granularity of each
attribute to be minimum in addition to J1. So, it is expected to have a simpler
granularity with a combination of attributes.

Fig. 4. Two granularities in two criteria of J1 and J2: (a) J1(Ga) = 0 + 2 = 2 and
J2(Ga) = 2 − 0 = 2 , (b) J1(Gb) = 1 + 1 = 2 and J2(Gb) = 2 − 1 = 1

3.5 Algorithms

We used a genetic algorithm (GA) to have the granularities satisfying J1 and
J2. We encoded the integer value of di in a gene and an m-tuple (d1, d2, . . . , dm)
in a chromosome. In the following experiments, the population size (the num-
ber of chromosomes) is 101, the crossover probability is 1.0, and the mutation
probability is 0.01. We used a roulette selection and elite strategy, and termi-
nated the iteration when the evaluation for the elite converges for successive 10
generations.

4 Experiments

We dealt with two datasets of Iris and Wine from the UCI Machine Learning
Repository [10] to evaluate the performance of the proposed method. Table 1
shows the characteristics of those two datasets, i.e., the number of objects, the
number of attributes and the number of classes. Here, all the attributes are con-
tinuous. First, we found in order the measurement granularity, the individually

Table 1. Characteristic of Two Datasets

dataset #objects #attributes #classes
Iris 150 (50,50,50) 4 3

Wine 178 (59,71,48) 13 3

discernible granularity and the class discernible granularity. Next, we translated
the attribute values to a small number of Kansei words to help us to understand
the attribute.
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Table 2. Granularities of Iris

Attribute
Sepal Length
Sepal Width
Petal Length
Petal Width

Granularity 2di

RM RI RD

64 32 1

32 32 8
64 16 8
32 32 16

Table 3. Kansei Representation of Iris: ‘–’ means “do not care”.

(a) Some records of Iris data (b) Kansei representation
x S.L. S.W. P.L. P.W. Class
x1 5.7 3.8 1.7 0.3 1
x2 5.1 3.7 1.5 0.4 1
x3 6.1 2.8 4.0 1.3 2
x4 6.4 3.2 4.5 1.5 2
x5 7.6 3.0 6.6 2.1 3
x6 6.3 2.7 4.9 1.8 3

[x]RD S.L. S.W. P.L. P.W. Class
[x1]RD – 3/8 1/8 1/16 1
[x2]RD – 3/8 1/8 2/16 1
[x3]RD – 2/8 3/8 5/16 2
[x4]RD – 3/8 3/8 5/16 2
[x5]RD – 2/8 4/8 7/16 3
[x6]RD – 2/8 4/8 7/16 3

Table 4. Granularities of Wine

Attribute
Alcohol

Malic acid
Ash

Alcalinity of ash
Magnesium

Total phenols
Flavanoids

Nonflavanoid phenols
Proanthocyanins
Color intensity

Hue
OD280/OD315 of d.w

Proline

Granularity 2di

RM RI RD

512 1 2
512 2 2
256 2 2
256 1 2
128 4 1

32 4 1

512 2 1

64 4 1

512 2 1

2048 2 4
256 2 1

512 8 2
2048 4 4

The results are shown in Tables 2 – 5. In the both discernible granularities
we succeeded to reduce the attribute size largely from their original size in the
measurement granularity especially in Wine. In addition, those sizes were further
reduced in the class discernibility. In Iris, one attribute was removed (Table 2).
As a result, some records of Iris data (Table 3 (a)) are translated into 8-level or
16-level representations (Table 3 (b)). It is hard to describe them linguistically,
but 8 or 16 is rough enough.
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In Wine, six attributes were removed in the class discernible granularity (Ta-
ble 4). As a result, some records of Wine data (Table 5 (a)) are translated into
a rough-level description which brings us Kansei representations (Table 5 (b)).
Here we described them in two words (“small” or “large”) or four words (“small”,
“rather small”, “rather large” or “large”). These representations could indicate
the distinctive features or more sharply compared with the original description
of the records.

Table 5. Kansei Representation of Wine

(a) Some records of Wine data
x Alco M.A. As Alca Mag T.P. Fla N.P. Proa C.I. Hue OD Prol Class
x1 14.23 1.71 2.43 15.6 127 2.8 3.06 0.28 2.29 5.64 1.04 3.92 1065 1
x2 14.37 1.95 2.5 16.8 113 3.85 3.49 0.24 2.18 7.8 0.86 3.45 1480 1
x3 12.08 1.13 2.51 24.0 78 2.0 1.58 0.4 1.4 2.2 1.31 2.72 630 2
x4 12.34 2.45 2.46 21.0 98 2.56 2.11 0.34 1.31 2.8 0.8 3.38 438 2
x5 12.53 5.51 2.64 25.0 96 1.79 0.6 0.63 1.1 5.0 0.82 1.69 515 3
x6 13.45 3.7 2.6 23.0 111 1.7 0.92 0.43 1.46 10.68 0.85 1.56 695 3

(b) Kansei representation
[x]RD Alco M.A. Ash Alca C.I. OD Prol Class
[x1]RD large small large small rather small large rather large 1
[x2]RD large small large small rather large large large 1
[x3]RD small small large large small large rather small 2
[x4]RD small small large large small large small 2
[x5]RD small large large large rather small small small 3
[x6]RD large large large large large small rather small 3

5 Conclusion

In this paper, we have discussed the appropriate roughness of description us-
ing “representation granularity”, as a tool for obtaining “Kansei” representation.
We have thought that the given granularity (the measurement granularity) is
usually too fine, and makes it hard to understand the records. This is the same
even when reduction (removal of some attributes) is carried out. Especially, such
a problem occurs when we deal with continuous attributes. However, we some-
times can have more rough granularity enough for discerning each record or
each class. We have analyzed such granularities. We defined some granularities
on the basis of some discernibility criteria, and proposed an algorithm to find
the near-optimal solution for them. As a result, it was shown that we can have
a granularity that enables us to understand each record in a friendly “Kansei”
manner. This representation also gives us an insight about “how fine we should
describe the attributes” or “which attributes have to be emphasized”. We will
extend “representation granularity” to categorical attributes in the future.

In this paper, we only have considered on equally-spaced division as a granu-
larity. This is because we put the first priority on the uniformity that is related to
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equally-sized granules. It is natural to assume such uniformity in the first stepof
analysis. If another criterion is considered for different goals such as informa-
tion reduction goal, then variable-length intervals or more general discretization
would be important. However, our uniformity releases us from specification of
reasoning and brings the easiness for understanding. Such an equally-spaced di-
vision is the first step in our future work, although the second step is now under
consideration. In the first step, we could have an appropriate size of equally-sized
granules and we could couple some granules in the second step. Such a two-stage
process would help us understand 1) to what degree of granularity is appropriate
under the current (limited) knowledge and 2) what kind of coupling is possible
on the appropriately chosen granularity to have Kansei-like expressions. In ad-
dition, we will compare our proposed method with Rough Set methods applying
discretization and knowledge reduction in the future.
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Abstract. In this paper, the concept of a granulation order is proposed
in an information system. The positive approximation of a set under a
granulation order is defined. Some properties of positive approximation
are obtained. For a set of the universe in an information system, its
approximation accuracy is monotonously increasing under a granulation
order. This means that a proper family of granulations can be chosen for
a target concept approximation according to the user requirements. An
algorithm based on positive approximation is designed for decision rule
mining, and its application is illustrated by an example.

1 Introduction

Granular computing is a new active area of current research in artificial intel-
ligence, and a new concept and computing formula for information processing.
It has been widely applied to branches of artificial intelligence such as problem
solving, knowledge discovery, image processing, semantic Web services, etc.

In 1979, the problem of fuzzy information granule was introduced by L.A.
Zadeh in [1]. Then, in [2-4] he introduced the concept of granular computing,
as a term with many meanings, covering all the research of theory, methods,
techniques and tools related to granulation. A general model based on fuzzy set
theory was proposed, and granules were defined and constructed basing on the
concept of generalized constraints in [3]. Relationships among granules were rep-
resented in terms of fuzzy graphs or fuzzy if-then rules. Z. Pawlak [5] proposed
that each equivalence class may be viewed as a granule consisting of indistin-
guishable elements, also referred to as to an equivalence granule. Some basic
problems and methods such as logic framework, concept approximation, and
consistent classification for granular computing were outlined by Y.Y. Yao in
[6]. The structure, modeling, and applications of granular computing under some
binary relations were discussed, and the granular computing methods based on
fuzzy sets and rough sets were proposed by T.Y. Lin in [7]. Quotient space theory
was extended to fuzzy quotient space theory based on fuzzy equivalence relation
by L. Zhang and B. Zhang in [8], providing a powerful mathematical model and
tools for granular computing. By using similarity between granules, some basic
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issues on granular computing were discussed by G.J. Klir in [9]. Several mea-
sures in information systems closely associated with granular computing, such
as granulation measure, information and rough entropy, as well as knowledge
granulation, were discussed by J.Y. Liang in [10, 11]. Decision rule granules and
a granular language for logical reasoning based on rough set theory were studied
by Q. Liu in [12].

In the view of granular computing, a general concept described by a set
is always characterized via the so-called upper and lower approximations under
static granulation in rough set theory, and a static boundary region of the concept
is induced by the upper and lower approximations. However a general concept
described by using positive approximation is characterized via the variational
upper and lower approximations under dynamic granulation, which is an aspect
of people’s comprehensive solving ability at some different granulation space.
The positive approximation extend classical rough set, enrich rough set theory
and its application. The paper is organized as follows: in section 2, the concepts
of a granulation order and the positive approximation under it are proposed. For
any general concept of the universe, its boundary region is changeable and the
approximation accuracy measure is monotonously increasing under a granulation
order. This means that a proper family of granulations can be chosen for a
target concept approximation according to the requirements of users; in section
3, an algorithm based on positive approximation is designed for decision rule
mining, The algorithm will be helping for understanding the idea of positive
approximation; in section 4, we show how the algorithm MABPA works by the
example.

2 Positive Approximation

Let S = (U,A) be an information system, P,Q ∈ 2A two attribute subsets. By
IND(P ) and IND(Q), we denote the indiscernible relation induced by P and
Q. we define a partial relation � on 2A as follows: P � Q (Q � P ) if and only
if, for every Pi ∈ U/IND(P ), there exists Qj ∈ U/IND(Q) such that Pi ⊆ Qj ,
where U/IND(P ) = {P1,P2, ...,Pm} and U/IND(Q) = {Q1,Q2, ...,Qn} are
partitions induced by IND(P ) and IND(Q).

Let S = (U,A) be an information system, X a subset of U and P ⊆ A an
attribute set. In rough set theory, X is characterized by P (X) and P (X), where

P (X) =
⋃

{Y ∈ U/IND(P )|Y ⊆ X}, (1)

P (X) =
⋃

{Y ∈ U/IND(P )|Y
⋂

X �= }. (2)

In an information system, a partition U/IND(R) of U induced by the equiv-
alence relation IND(R), R ∈ 2A, provides a granulation world for describing
a concept X . So a sequence of attribute sets Ri ∈ 2A (i = 1, 2, ..., n ) with
R1 � R2 � ... � Rn can determine a sequence of granulation worlds, from the
most rough to the most fine one. We define the upper and lower approximations
of a concept under a granulation order.
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Definition 1. Let S = (U,A) be an information system, X a subset of U and
P = {R1, R2, ..., Rn} a family of attribute sets with R1 � R2 � ... � Rn (Ri ∈
2A), we define P -upper approximation PX and P -lower approximation PX of
X as follows:

PX = RnX, (3)

PX =
n⋃

i=1

RiXi, (4)

where X1 = X and Xi = X −
i−1⋃
k=1

RkXk, for i = 2, ..., n.

bnP (X) = PX−PX is called P -boundary region of X , posP (X) = PX is called
P -positive region of X , and negP (X) = U − PX is called P -negative region of
X . Obviously, we have PX = posP (X) ∪ bnP (X).

Definition 1 shows that a target concept is approached by the change of the
lower approximation PX and the upper approximation PX .

Theorem 1. Let S = (U,A) be an information system, X a subset of U and
P = {R1, R2, ..., Rn} a family of attribute sets with R1 � R2 � ... � Rn (Ri ∈
2A). Let Pi = {R1, R2, ..., Ri}. Then for ∀Pi (i = 1, 2, ..., n), we have

Pi(X) ⊆ X ⊆ Pi(X), (5)

P1(X) ⊆ P2(X) ⊆ ... ⊆ Pn(X). (6)

Proof. The proof follows directly from Definition 1.

Theorem 1 states that the lower approximation enlarges as the granulation or-
der become longer through adding equivalence relation, which help to describe
exactly the target concept.

In [14] , the approximation measure αR(X) was originally introduced by Z.
Pawlak for classical lower and upper approximation, where αR(X) = |RX|

|RX| (X �=
). Here we introduce the concept to the positive approximation in order to de-
scribe the uncertainty of concept under a granulation order.

Definition 2. Let S = (U,A) be an information system, X a subset of U and
P = {R1, R2, ..., Rn} a family of attribute sets with R1 � R2 � ... � Rn (Ri ∈
2A). The approximation measure αP (X) is defined as

αP (X) =
|PX |
|PX |

, (7)

where X �= .

Theorem 2. Let S = (U,A) be an information system, X a subset of U and
P = {R1, R2, ..., Rn} a family of attribute sets with R1 � R2 � ... � Rn (Ri ∈
2A). Let Pi = {R1, R2, ..., Ri}. Then for ∀Pi (i = 1, 2, ..., n), we have

αP1(X) ≤ αP2(X) ≤ ... ≤ αPn(X). (8)
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Proof. The proof follows directly from Theorem 1 and Definition 2.

Theorem 2 states that the approximation measure αP (X) increases as the gran-
ulation order become longer through adding equivalence relation.

3 Application

We apply rough set methods for decision rule mining from decision tables. It is
not always possible to extract general laws from experimental data by computing
first all reducts of a decision table and next decision rules on the basis of these
reducts [15, 16].

In this section, we proposed an algorithm for decision rule mining in con-
sistent decision tables by using positive approximation. The application will be
helping for understanding the idea of positive approximation proposed in the
paper.

Let S = (U,C ∪ D) be a consistent decision table [13], where C and D are
condition and decision attribute sets respectively, and C ∩ D = . The positive
region of D with respect to C is defined as follows

posC(D) =
⋃

X∈U/D

CX. (9)

In a decision table S = (U,C ∪ D), the significance of c ∈ C with respect to
D is defined as follows [13]:

sigD
C−{c}(c) = γC(D) − γC−{c}(D), (10)

where γC(D) = |posC(D)|
|U| .

In a decision table S = (U,C ∪ D), the significance of c ∈ C − C
′
(C

′ ⊆ C)
with respect to D is defined as follows

sigD
C′ (c) = γC′∪{c}(D) − γC′ (D), (11)

where γC(D) =
|pos

C
′ (D)|

|U| .

Algorithm MABPA (mining rules in a consistent decision table)

Input: consistent decision table S = (U,C ∪ D);
Output: decision rules Rule.

(1) For ∀c ∈ C, compute the significance and relative core

coreD(C) = {c ∈ C|sigD
C−c(c) > 0};

(2) If coreD(C) �= , let P1 = coreD(C); else, for ∀c ∈ C, compute the dependence
γc(D) of D to c; let γc1(D) = max{γc(D)|c ∈ C} and P1 = c1;
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(3) Compute U/D = {Y1, Y2, ..., Yd};
(4) Let P = {P1}, i = 1, U∗ = U , Γ = , Rule = ;
(5) Compute U∗/IND(Pi) = {Xi1, Xi2, ..., Xisi};
(6) Let Γ

′
= {Xk ∈ U∗/IND(Pi | Xk ⊆ Yj(Yj ∈ U/D, j = {1, 2, ..., d})}. Let

Rule
′
= , for ∀Xk ∈ Γ

′
, put desPi(Xk) −→ desD(Yj)(Yj ∈ U/D, Yj ⊇ Xk)

into Rule
′
. Let Rule = Rule ∪Rule

′
, Γ = Γ ∪ Γ

′
;

(7) If
⋃

x∈Γ x = U , go to (8); else, U∗ = U∗ −
⋃

x∈Γ x, for ∀c ∈ C −Pi, compute
sigD

Pi
(c), let sigD

Pi
(c2) = max{sigD

Pi
(c), c ∈ C − Pi}, Pi+1 = Pi ∪ {c2}, let

P = P ∪ {Pi+1}, i = i+ 1, go to (5);
(8) Output Rule.

Obviously, generation of decision rules is not based on a reduct of a decision table,
but P (a granulation order) and U∗ in the MABPA. By using MABPA algorithm,
the time complexity to extract rules is polynomial. At the first step, we need to
compute coreD(C), i.e., compute sigD

C−c(c) for all c ∈ C. The time complexity for
computing coreD(C) is O(|C||U |2). At step 3, the time complexity for computing
U/D is O(|U |2). At step 5, the time complexity for computing U∗/IND(Pi) is
O(|U |2). At step 7, the time complexity for computing all sigD

Pi
(c) is O(|C −

Pi||C||U |2); the time complexity to choose maximum for significance of attribute
is |C − Pi|. From step 5 to step 7, |C| − 1 is the maximum value for the circle
times. Therefore, the time complexity is

|C|−1∑
i=1

(O(|U |2) +O(|C − Pi||C||U |2) +O(|C − Pi|)) = O(|C|3|U |2).

Other steps will not be considered because that their time complexity are all
const. Thus the time complexity of the algorithm MABPA is as follows

O(|C||U |2) +O(|U |2) +O(|U |2) +O(|C|3|U |2) = O(|C|3|U |2).

In next section, we show how the algorithm MABPA works using an example.

4 Case Study

A consistent decision table S = (U,C ∪ D) is given by Table 1, where C =
{a, b, c, d, e} is condition attribute set and D = {f} is decision attribute set. By
the algorithm MABPA, we can extract decision rules from Table 1. We have:

U/C = {{1}, {2}, {3, 11}, {4}, {5}, {6}, {7, 12}, {8}, {9}, {10}},

U/D = {{1, 2, 3, 4, 5, 11}, {6, 7, 8, 9, 10, 12}}.
According to the formula sigD

C−{c}(c) = γC(D) − γC−{c}(D), we have

sigD
C−{a}(a) = sigD

C−{b}(b) = sigD
C−{c}(c) = sigD

C−{d}(d) = sigD
C−{e}(e) = 0

So we get coreD(C) = .
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Table 1. Example of a consistent decision table

U attributes
a b c d e f

1 3 2 3 0 2 1
2 2 2 3 0 2 1
3 1 0 2 0 1 1
4 3 1 3 0 2 1
5 2 0 3 0 2 1
6 0 0 1 0 0 0
7 3 2 0 1 1 0
8 1 0 1 0 0 0
9 2 0 2 1 1 0
10 1 1 3 1 0 0
11 1 0 2 0 1 1
12 3 2 0 1 1 0

By the formula γC′ (D) = |posC′ (D)|/|U |(C ′ ⊆ C), we have

γ{a}(D) = 1/12, γ{b} = 0, γ{c}(D) = 4/12, γ{d}(D) = 4/12, γ{e}(D) = 7/12

Hence, P1 = {e} and P = {P1}. For

U/IND(P1) = {{1, 2, 4, 5}}, {3, 7, 9, 11, 12}, {6, 8, 10}}

we get
Γ = {{1, 2, 4, 5}, {6, 8, 10}},

and
Rule = {r1 : des{e}({1, 2, 4, 5}) → desD({1, 2, 3, 4, 5, 11}),

r2 : des{e}(6, 8, 10) → desD({6, 7, 8, 9, 10, 12})}.
For ⋃

x∈Γ

x = {1, 2, 4, 5, 6, 8, 10} �= U,

we need to compute significance of the rest of attributes a, b, c, d with respect to
D. By the formula for sigD

C′ (c), we obtain

sigD
{a}∪{e}(a) = γ{a}∪{e}(D) − γ{e}(D) = 5/12,

sigD
{b}∪{e}(b) = γ{b}∪{e}(D) − γ{e}(D) = 2/12,

sigD
{c}∪{e}(c) = γ{c}∪{e}(D) − γ{e}(D) = 2/12,

sigD
{d}∪{e}(d) = γ{d}∪{e}(D) − γ{e}(D) = 5/12.

So we can choose a as c2 (see the step (7) in the algorithm MABPA ). Then,
we have P2 = {a, e},P = {P1,P2} and U∗ = {3, 7, 9, 11, 12}. For

U∗/IND(P2) = {{3, 11}, {7, 12}, {9}},
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we get
Γ = {{1, 2, 4, 5}, {3, 11}, {6, 8, 10}, {7, 12}, {9}}

and
Rule = {r1 : des{e}({1, 2, 4, 5}) → desD({1, 2, 3, 4, 5, 11}),

r2 : des{e}({6, 8, 10}) → desD({6, 7, 8, 9, 10, 12}),

r3 : des{a,e}({3, 11}) → desD({1, 2, 3, 4, 5, 11}),

r4 : des{a,e}({7, 12}) → desD({6, 7, 8, 9, 10, 12}),

r5 : des{a,e}({9}) → desD({6, 7, 8, 9, 10, 12})}.

It is easy to see
⋃

x∈Γ x = U . So the algorithm MABPA is ended, and Rule
is obtained. For intuition, the five decision rules obtained by MABPA from the
decision table S are listed in Table 2.

Table 2. Rules obtained for the decision table S

Rule attributes
a e f

r1 2 1
r2 1 1 1
r3 0 0
r4 3 1 0
r5 2 1 0

This example shows the mechanism of the decision rule mining algorithm based
on positive approximation.

5 Conclusions

In this paper, we extend rough set approximation under static granulation to
rough set approximation under dynamic granulation, the positive approxima-
tion is defined and its some properties are obtained. A target concept can be
approached by the change of the positive approximation. An algorithm based on
positive approximation for decision rule mining is given, and its application is il-
lustrated by an illustrative example. The results obtained in this paper will play
an important role in further research on rough set approximation and granular
computing.
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Abstract. Significance of granular logic, including the operational rules,
studying background, is presented in this paper. This closeness relation
” ∼λ ” is quoted in granular logic,and the closeness relation ” ∼λ ”
quoted in granular logic is defined via logical truth values. Hence, we
induce several new relative properties and inference rules in the granular
logic with the closeness relation. The granular logical reasoning systems
with the closeness relation ” ∼λ ” are also established. And this paper
proves a few real examples by deductive reasoning in the systems. Sig-
nificance of granular logic with closeness relation ∼λ is also described in
the paper.

Keywords: Closeness relation, Granular logic, closeness degree, Deduc-
tive Reasoning.

1 Introduction

The idea of this paper is derived from granular computing approaches and rough
logic with rough equality relation =R. Hence, we present a short review of these
approaches. Zadeh in 1979 published a paper on ”Fuzzy sets and Granularity”
,which is probably the first granular computing that is outside of partition the-
ory [1]. Granular computing is proposed based on Zadeh’s granular mathematics,
which is T.Y.Lin’s contribution [2]. Lin proposed the word of Granular Comput-
ing and developed a wide range of theories [17,18,26,27]; And Zadeh emphasized
the studying on granular logic in his papers [2,3]. He thinks that Granular Logic
is a subset of Fuzzy Logic, and to be the better theoretical tools of describ-
ing global granulation decomposed, local granules amalgamated and causation
relation between granules.

Next we turn to granular logic with closeness relation ∼λ. Equal relation
” = ” is a very important and frequently using relation, which is reflexive,
symmetric and transitive. So we may do the substitute between two objects of
having equal relation. The equal relation ” = ” is quoted into classical logic, such
that the logical reasoning in the classical logic with equal relation is convenient
by using it, such as, paramodulation reasoning is the substitute. By two modal
operators, Banarjee and Chakraborty quoted a new relation ” ≈ ” in S5 of

D. Śl ↪ezak et al. (Eds.): RSFDGrC 2005, LNAI 3641, pp. 709–717, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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modal logic [4], that is, α ≈ β iff (Lα ↔ Lβ) ∧ (Mα ↔ Mβ),where α and β are
logical formulas, L andM are necessary and possible operators in the modal logic
respectively. Thus which had many new results in modal logic, not only enrich the
content and theory of modal logic, but also provide the convenience for theorem
proof in modal logic. In rough set theory, by lower and upper approximations
Pawlak defined the rough equal relation of two sets [5], namely X =R Y iff
R∗(X) = R∗(Y ) ∧ R∗(X) = R∗(Y ), where X and Y are the sets on universal
U , R∗(S) and R∗(S) are the lower and upper approximations of R with respect
to S respectively, which deducted many new properties for rough set theory.
Stepaniuk proposed an approximate first-order logic σ = (IND, R1, · · · , Rm,=)
by using an equal relation ” = ”, such that first-order logic with equal relation
= is approximated. He established the approximate reasoning systems in the
logic [8]. The author defined a λ-level rough equality for two objects by λ-level
rough equality relation ” =λR ”, namely, x1 =λR x2 iff | f(a, x1) − f(a, x2) |< ε
,where x1,x2 are arbitrary objects on U of discourse universe, f is an information
function on an information system S = (U,A, V, f). a ∈ A is an attribute,
f(a, x) ∈ V is the attribute value of object x with respect to attribute a.ε is
any small positive real number or a given threshold by experts [9]. Thereby, we
deduct many new results for rough logic, to enrich the theory in rough logic
and produce the λ-level rough paramodulation reasoning. In the paper, we will
quote the closeness relation in granular logic, having a granular logic system
with closeness relation predicate ∼λ.We will do the deductive reasoning and
other approximate proof in the granular logical system with the ∼λ. We define
the closeness relation ” ∼λ ” in granular logic [6], that is, for ∀G,G′,G ∼λ G′

iff | TIλuλ
(ϕ) − TIλuλ

(ϕ′) |< ε ∧ ε = 1 − λ ∧ (m(ϕ) ⊆λ m(ϕ′)) ∧ (m(ϕ′) ⊆λ

m(ϕ)),where G = (ϕ,m(ϕ)) and G′ = (ϕ′,m(ϕ′)) are granular formulas in
granular logic [6,20-22], TIλuλ

(F ) is the truth value of assignment to formula F
in rough logic,TIλuλ is the joining assignment symbol [7].

We will further extend the studies of granular logic [6] in the paper, that is,
to quote the closeness relation ∼λ in granular logic, and construct an approx-
imate reasoning system of granular logic with closeness relation. In the logical
systems, we may prove many relative theorems, so as to offer many convenience
for approximate reasoning in the logic.

Rest of the paper is organized as follows: Section 2 defines a granular logic
with closeness relation ∼λ. Section 3 describes several relative properties in the
logic. Section 4 proves many theorems of granular computing with deductive
reasoning. The last section concludes the paper.

2 A Granular Logic with Closeness Relation ∼λ

Zadeh in 1979 defined that data granules are characterized by propositions [1],
formally, denoted by

g = x is G is λ
or written by set

g = {e ∈ U : uλ(x) = e ∧ e ∈λ G ⊆λ U}
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Table 1. Information Table

U a b c d
1 5 4 0 1
2 3 4 0 0
3 3 4 0 2
4 0 2 0 1
5 3 2 1 2
6 5 2 0 1

where uλ is the assignment symbol on U , G is a fuzzy subset on U . Obviously,
0 ≤ λ ≤ 1. By the viewpoint of fuzzy set, ∈λ (e) = λ or μG(e) = λ, namely λ
is the value of fuzzy function μG with respect to entity e; By viewpoint of fuzzy
logic, λ is the truth value of fuzzy proposition g. So, Zadeh’s idea is the granular
propositional logic. We studied a granular logic based on Zadeh’s idea [6]. In the
granular logic, a granule is defined as a pair (F,m(F )), where F is an assertion,
or logical formula or predicate. The logical formula F may be a classical logical
formula, rough logical formula or any non-standard logical formula. m(F ) is
the meaning set corresponding to F . Because the pair is both logical formula
and set, hence we call the pair granular logical formula [6,20-22]. In fact, this
should be a generalization of granular propositional logic defined by Zadeh. For
example, in the following information table IS = (U,A), assertion F is taken as
an elementary conjunction form CFB(x), where B ⊆ A is the subset of attribute
set A, x ∈ U is individual variable on U . If B = {a, b}, F = CFB(x) = a5 ∧ b4,
then the granule of F is the meaning set of F , denoted by:

(F,m(F )) = (a5 ∧ b4,m(a5 ∧ b4)) = (a5 ∧ b4,m(a5) ∩ m(b4))

We quote further the closeness relation ∼λ into the granular logic in the pa-
per, which is also constructed the granular logical system with closeness relation
∼λ. Its syntax is denoted by

Γ = {QUA,ENT , V AR, FUN,WFG,OPE,PAR,∼λ},

where

• QUA = {∀} is a set of the universal quantifier. And the ∀ is dual with exist
quantifier ∃, hence ∃ may be got from ∀ and negative symbol ¬.

• ENT = {e1, · · · , em} is the set of constant symbols, which is interpreted as
the entity on U ;

• V AR = {x1, · · · , xn} is a set of variables, which are viewed as variational
measure on U . The assignment to them has the entity on U ;

• FUN = {f, g, · · ·} is the set of function symbols, to be called as term on
GL;

• WFG = {Ξ,Ω,R, p, q, · · · , G1, G2, · · ·} is called the set of granular logical
functions on information system IS = (U,A),where R is interpreted as B ⊆
A and it is the indiscernibility relation on IS, to be viewed as a special
predicate;p, q, · · · are interpreted as the attributes on A, to be also called as
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predicate;G1, G2, · · · are the well-formed formulas in granular logic, to be the
structure of pair (F,m(F ));

• OPE = {¬,⊕,⊗,<,=} is the set of operation symbols in granular logical for-
mula on IS. They are similar as usual operation symbol in logic, to be called
negative, disjunctive, conjunctive, implication and equalization respectively;

• PAR = {(, )} is the set of parenthesis.

3 Closeness Relation ∼λ and Its Relative Properties

The closeness relation ∼λ of two granular logical formulas is defined as follows:

Definition 1. For G,G′ ∈ GL, G ∼λ G′ iff G is close to G′ to degree at least
λ iff | TIλuλ

(ϕ) − TIλuλ
(ψ′) |< ε ∧ m(ϕ) ⊆λ m(ψ) ∧ m(ψ) ⊆λ m(ϕ), where

G = (ϕ,m(ϕ)), G′ = (ψ,m(ψ)). ∼λ is called closeness relation to degree at least
λ.

The closeness relation ∼λ is quoted in granular logic,to have several new re-
sults about closeness concept. For discernment, the following derivable symbol
0 in classical logic is substituted by |∼.

Property 1. ∀G ∈ WFG,if α ∼λ β, then G(α) ∼λ G(β),where α and β are the
terms included in G.
Property 2. ∀G,G′ ∈ WFG, |∼ G ∼λ G′ →|∼ m(ϕ) ∼λ m(ψ), where ϕ is the
assert in G, ψ is the assert in G′.
Property 3. ∀G,G′ ∈ WFG, |∼ G ∼λ G′ → m∗(ϕ) ∼λ m∗(ψ).
Property 4. ∀G,G′ ∈ WFG, |∼ G ∼λ G′ → m∗(ϕ) ∼λ m∗(ψ)).
Property 5. ∀G,G′ ∈ WFG, |∼ G ∼λ G′ → m(ϕ ∧ γ) ∼λ m(ψ ∧ γ)).
Property 6. ∀G,G′ ∈ WFG, |∼ G ∼λ G′ → m∗(ϕ ∧ γ) ∼λ m∗(ψ ∧ γ)).
Property 7. ∀G,G′ ∈ WFG,|∼ G ∼λ G′ → m∗(ϕ ∧ γ) ∼λ m∗(ψ ∧ γ)).
Property 8. ∀G,G′ ∈ WFG, |∼ G ∼λ G′ →|∼ ¬G′ ∼λ ¬G.
Property 9. ∀G,G′ ∈ WFG, if |∼ G ∼λ G′∧ |∼ G,then |∼ G′.
Property 10. ∀G,G′ ∈ WFG, if |∼ G ∼λ G′ then |∼ (U − m(ϕ)) ∼λ

(U − m(ψ)).
Property 11. ∀G,G′ ∈ WFG, if |∼ G ∼λ G′ then |∼ (ϕ →λ ψ) ∧ (ψ →λ

ϕ) ∧ (m(ϕ) ⊆λ m(ψ)) ∧ (m(ψ) ⊆λ m(ϕ)).

Where m∗(F ) and m∗(F ) are the lower and upper approximations of meaning
set of assert F respectively, γ is any assert in usually logic. Here, we proved the
property 5. The proof of rest properties is similar.Property 5 is proved as follows:

Proof: m(ϕ ∧ γ) = {x ∈ U : x |≈ ϕ ∧ γ} = {x ∈ U : x |≈ ϕ ∧ x |≈ γ} = {x ∈
U : x |≈ ϕ} ∩ {x ∈ U : x |≈ γ} = m(ϕ) ∩ m(γ).

For the same reason, m(ψ ∧ γ) = m(ψ) ∩ m(γ).
Suppose, m(ϕ∧ γ)¬ ∼λ m(ψ ∧ γ),then ∃x ∈ U , [x] ⊆λ m(ϕ∧ γ) and [x]¬ ⊆λ

m(ψ ∧ γ),that is, [x] ⊆λ m(ϕ) ∩ m(γ),but [x]¬ ⊆λ m(ψ) ∩ m(γ).Because [x] ⊆λ

m(ϕ) ∩ m(γ) so [x] ⊆λ m(ϕ) and [x] ⊆λ m(γ).Because [x]¬ ⊆λ m(ψ) ∩ m(γ)
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so [x]¬ ⊆λ m(ψ),that is, x¬ ∈λ m(ψ),but [x] ⊆λ m(ϕ), so x ∈λ m(ϕ). So
m(ϕ)¬ ∼λ m(ψ), this is contrary to G ∼λ G′,hence m(ϕ ∧ γ) ∼λ m(ψ ∧ γ).

Definition 2. Let G1 = (ϕ,m(ϕ)) and G2 = (ψ,m(ψ)) be two granules.
The computing rules of them with respect to granular connectives: ¬(negative),
⊕(disjunctive), ⊗(conjunctive), <(implicative) and =(equivalent) are defined as
follows respectively:

(1) ¬(ϕ,m(ϕ)) = (¬ϕ,U − m(ϕ));
(2) (ϕ,m(ϕ)) ⊕ (ψ,m(ψ)) = (ϕ ∨ ψ,m(ϕ) ∪ m(ψ));
(3) (ϕ,m(ϕ)) ⊗ (ψ,m(ψ)) = (ϕ ∧ ψ,m(ϕ) ∩ m(ψ));
(4) (ϕ,m(ϕ)) < (ψ,m(ψ)) = (ϕ → ψ,m(ϕ) ⊆ m(ψ));
(5) (ϕ,m(ϕ)) = (ψ,m(ψ)) = (ϕ ↔ ψ, (m(ϕ) ⊆ m(ψ) ∧ m(ψ) ⊆ m(ϕ)).

We see that the calculus of granules in the logic are the operations of pairs
called granule, where the first element of the pair is a logical formula and the sec-
ond element is a meaning set corresponding to the formula. Because the pair is
an entirety consisting of both syntax and semantics, hence the pair is both logic
and set theory. So we can use both logical method and set theory method in ap-
proximate reasoning or other uncertainty reasoning. This is the superiority to ap-
proximate reasoning using information granulating and granular computing. The
superiority of reasoning is illustrated with real examples for problem solving in
artificial intelligence and deductive reasoning in rough logic respectively [6,14,17].

3.1 Axiom Schema in Granular Logic with Closeness Relation ∼λ

GA1 Each axiom schema in classical logic is one of granular logical axiom
schema£ż
The closeness relation ∼λ is quoted in granular logic,which will be used as a new
predicate,to have several special axioms:
GA2 Identity TIλuλ

(α ∼λ α) ≥ λ;
GA3 Symmetry TIλuλ

(α ∼λ β) ≥ λ → TIλuλ
(β ∼λ α) ≥ λ;

GA4 Transitive TIλuλ
(α ∼λ β) ≥ λ∧ TIλuλ

(β ∼λ χ) ≥ λ → TIλuλ
(α ∼λ χ) ≥

λ;
GA5 Substitute TIλuλ

(α ∼λ β) ≥ λ → TIλuλ
(P (· · ·α · · ·) ∼λ P (· · ·β · · ·)) ≥

λ;

Where α,β,χ may be terms or well-formed formulas, P is a well-formed formula
of including term α or β or χ. We see that closeness relation ∼λ can be used in
approximate reasoning from the special axioms.

3.2 Reasoning Rules

G−R1 G-Modus Ponens(G-MP):If |∼ (ϕ,m(ϕ))<(ψ,m(ψ)) and |∼ (ϕ,m(ϕ)),
then |∼ (ψ,m(ψ)),where |∼ (ϕ,m(ϕ)) means that logical formula ϕ is true or
rough true,semantic set m(ϕ) of ϕ is universal U or m(ϕ) ∼λ U . So, truth
value of granular logical formula (ϕ,m(ϕ)) is the semantics in both logic and set
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theory, namely rough logical formula ϕ is true or rough true to degree at least
λ in rough logic [10,11,12,13,14].

G−R2 G-Universal Generalized(G-UG): |∼ (ϕ,m(ϕ)),then |∼ ((∀x)ϕ,m(ϕ)),
namely for ∀x ∈ V AR, to have uλ ∈ V AL, uλ(x) = e ∈ U , that |∼ (ϕ,m(ϕ(e)))
holds, where m(ϕ(e)) is universal or m(ϕ) ∼λ U , m(ϕ) is close to U to degree
at least λ, and truth value of ϕ is 1 or > 0.5.

3.3 Semantics of the Logical Formulas

The semantics of granular logical formulas is the 6-tuple£ž

M = (U,A, IG, V AL,m,∼λ).

Where U is a set of the entities;A is a set of the attributes.Its subset B ⊆ A
is an indiscernibility relation on U ;IG = {IG1 , · · · , IGh

} is a set of all interpre-
tations on U ; V AL = {uG1, · · · ,uGt} is a set of all assignment symbols on U ,
uG ∈ V AL is different from meaning function symbol m. For ∀ϕ ∈ WFF , lower
and upper satisfiability with respect to IG ∈ IG and uG ∈ V AL in the model M
are denoted respectively:

M,uG |≈Lϕ (ϕ,m(ϕ)), M,uG |≈Hϕ (ϕ,m(ϕ)) and M,uG |≈mϕ (ϕ,m(ϕ))

Where L and H is rough lower and upper approximate operators with respect
to indiscernibility relation B ∈ A, for convenience, B∗ and B∗ is denoted by L
and H respectively.

4 Reasoning in Granular Logic with Closeness Relation
∼λ

The reasoning systems are consisted of five axioms GA1 − GA5 and two rules,
GR1 − GR2. We can prove many theorems with closeness relation in the sys-
tems. For convenience, L and H is denoted by lower and upper approximations
in operator rough logic respectively [6,9,14].

Theorems
(A1) (LLϕ,m(LLϕ)) ∼λ (HLϕ,m(HLϕ));
(A2) (LHϕ,m(LHϕ)) ∼λ (Hϕ,m(Hϕ));
(A3) (HHϕ,m(HHϕ)) ∼λ (LHϕ,m(LHϕ));
(A4) (HHϕ,m(HHϕ)) ∼λ (Hϕ,m(Hϕ)).

We prove the theorem A2. The proof needs only to show:

(LHϕ ∼λ Hϕ) ∧ (m(LHϕ) ∼λ m(Hϕ)).

Proof
(1) (L¬ϕ →λ ¬ϕ) ∧ (m(L¬ϕ) ⊆λ m(¬ϕ))),
Definition of operator L [14]
(2) (ϕ →λ Hϕ) ∧ (m(ϕ) ⊆λ m(Hϕ)) ,
Property 8 in (1) and dual of L and H [14,15].
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(3) (Lϕ →λ HLϕ) ∧ (m(Lϕ) ⊆λ m(HLϕ)),
ϕ is substituted by Lϕ in (2).
(4) (HLϕ →λ Lϕ) ∧ (m(HLϕ) ⊆λ m(Lϕ)),
Properties of operators L and H [5,14,17].
(5) (HLϕ ∼λ Lϕ) ∧ (m(HLϕ) ∼λ m(Lϕ))) ,
By the definition of ∼λ in (3) and (4).
(6) (HLHϕ ∼λ LHϕ) ∧ (m(HLHϕ) ∼λ m(LHϕ)),
ϕ is substituted by Hϕ in (5).
(7) ((LHϕ ∼λ HHϕ) ∧ (m(LHϕ) ∼λ m(HHϕ)) ,
Properties of operators L and H [5,6,14].
(8) (HHϕ ∼λ Hϕ) ∧ (m(HHϕ) ∼λ m(Hϕ)),
Properties of operators L and H [5,6,14].
(9) (LHϕ ∼λ Hϕ) ∧ (m(LHϕ) ∼λ m(Hϕ)),
To quote ”Hypothetical Syllogism” [6,14-16] in (7) and (8).

Similarly, we can prove (A1), (A3) and (A4) in the theorems.

5 Conclusion

Closeness relation ∼λ is quoted in granular logic ,which have many new re-
sults,such as,the reasoning rule of paramodulation in classical logic can be quoted
in approximate reasoning of granular logic.The special axioms provided by ∼λ

will be widely applied in approximate reasoning.And the real example of the
applications in the paper has explained to be convenient and efficacious based
on the reasoning of closeness relation ∼λ.

The study of granular logic with closeness relation ∼λ brings a new path
for applications of classical logic. The logic provides the better theoretical tool
for treating irregular knowledge. The operation of the logic involves the decom-
position of global granulation and the amalgamation of local granules, thus it
provides the new idea for problem solving in AI. The logic is also a new gener-
alization of Rough Logic. It extends a new predicate ∼λ.Truth concept and its
operations of the logic are different from classical logic and other non-standard
logic. The logic is both logic and set theory. Thus it may use the logical methods
when treating truth values,and it may use the set theory approach when treating
including and closeness degree.

Further study is the spatial-temporal granular logic, namely spatial-temporal
change function π , temporal operators U and s will be added into granular logic.
The knowledge described has the properties of space and time, hence treat-
ment for irregular knowledge may be different along with different of space and
time.
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Abstract. We discuss an ontological framework for approximation, i.e.,
to approximation of concepts and vague dependencies specified in a given
ontology. The presented approach is based on different information gran-
ule calculi. We outline the rough–fuzzy approach for approximation of
concepts and vague dependencies.

1 Introduction

We discuss the ontology for approximation in a granular computing framework.
One of the main task in granular computing is to develop calculi of information
granules [12,23,14,16]. Such calculi are aiming at constructing from elementary
granules some target granules satisfying a given specification to a satisfactory
degree. Hence, together with operations for construction of information granules
one should define relevant measures of inclusion (to a degree) and closeness
(to a degree) of granules. This idea has been presented and developed in the
rough–mereological framework (see, e.g., [11,12]). Observe, that constructions
of granules are often described by multilevel schemes and the final construction
of the target information granule is obtained by a relevant composition of local
schemes.

Vague dependencies have vague concepts in premisses and conclusions. The
approach to approximation of vague dependencies based only on degrees of close-
ness of concepts from dependencies and their approximations (classifiers) is not
satisfactory for approximate reasoning. Hence, more advanced approach should
be developed. Approximation of any vague dependency is a method which allows
for any object to compute the arguments “for” and “against” its membership
to the dependency conclusion on the basis of the analogous arguments rela-
tive to the dependency premisses. Any argument is a compound information
granule (compound pattern). Arguments are fused by local schemes (production
rules) discovered from data. Further fusions are possible through composition
of local schemes, called approximate reasoning schemes (AR schemes) (see, e.g.,
[2,12,10]). To estimate the degree to which (at least) an object belongs to con-
cepts from ontology the arguments “for” and “against” those concepts are col-
lected and next a conflict resolution strategy is applied to them to predict the
degree.
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Several information granule calculi are involved in solving the problem of
ontology approximation. Information granules in such calculi are represented by
compound patterns.

By granulation of the discovered patterns to layers of vague concepts one can
obtain more relevant approximations of dependencies. We outline the rough–
fuzzy approach based on granulation.

The paper is organized as follows. In Section 2 we recall the basic concepts on
approximation spaces. Rough information granule calculi based on the so called
transducers are discussed in Section 3. In Section 4 we outline the approach to
approximation of concepts and vague dependencies.

2 Approximation Spaces

In this section we recall a general definition of an approximation space [13,21].
Several known approaches to concept approximations can be covered using such
spaces, e.g., the approach given in [9], approximations based on the variable
precision rough set model [26] or tolerance (similarity) rough set approximations
(see, e.g., [13,21] and references in [13,21]).

For every non-empty set U, let P (U) denote the set of all subsets of U.

Definition 1. [13,21] A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where
– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function,
– ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters.

The uncertainty function defines for every object x, a set of objects described
similarly. The set I(x) is called the neighborhood of x (see, e.g., [9,7]). A set
X ⊆ U is definable in AS#,$ if and only if it is a union of some values of the
uncertainty function. The rough inclusion function defines the degree of inclusion
of any X ⊆ U in Y ⊆ U . In the simplest case it can be defined by (see, e.g., [13],
[21]):

νSRI (X,Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅.

This measure is widely used by the data mining and rough set communities. It is
worth mentioning that Jan �Lukasiewicz [8] was the first one who used this idea
to estimate the probability of implications. However, rough inclusion can have a
much more general form than inclusion of sets to a degree (see, e.g., [11,16,20]).

The lower and the upper approximations of subsets of U are defined as fol-
lows.

Definition 2. For an approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.
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The lower approximation of a set X with respect to an approximation space
AS#,$ is the set of all objects, which can be classified with certainty as objects
of X with respect to AS#,$. The upper approximation of a set X with respect
to an approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

The approximation spaces defined above have been generalized in [20]) to
approximation spaces consisting of information granules. Approximation spaces
themselves can be treated as special information granules. Granulation of approx-
imation spaces, defined by operations of granulation and extension of relational
structures, are studied, e.g., in [20]. For simplicity of considerations, we use in
the paper the simple model of approximation space that has been recalled above.

3 Rough Information Granules and Transducers

Rough information granules are rough sets represented by some tuples of crisp
sets (selected from lower and upper approximations, boundary regions, or com-
plement of upper approximations). Then operations on such information granules
transform rough sets into rough sets. Local schemes, called transducers [4], are
used to represent operations for computing the lower and upper approximations
of the target concept from the lower and upper approximations of arguments rep-
resenting more elementary concepts. Multilevel schemes are representing com-
positions of such local schemes.

In [4], the authors study approximation transducers, devices that convert
input approximate relations into output approximate ones by means of first-order
theories. Different rough set techniques are applied to produce approximations of
relations. In defining approximate transducers, methods of relational databases
are invoked.

One can try to extend this approach to rough sets corresponding to approx-
imations of concepts constructed using different operations such as transitive
closure of relations, projections of sets, sets defined by formulas of modal logic,
fixed point of some operators, etc. However, it is necessary to remember that the
estimation of approximations of such concepts, obtained from approximations
of concepts from which they are generated, can be of poor quality. The reason
is the same as in the case of set theoretical operations, i.e., the approximation
operations are not distributive with respect to such operations. Hence, the ap-
proximation quality can drop quickly with increasing of operation complexity.
For example, if the only available information for approximation of the transitive
closure R∗ of relation R is the approximation of R then, usually, the received
approximation will be of poor quality compared with the approximation that can
be obtained by direct approximation of R∗, i.e., by using examples and counter
examples of tuples satisfying R∗.

The conclusion is that, unfortunately, the approximation of more compound
concepts has to be constructed gradually using more specific information, e.g.,
on patterns (information granules) discovered in construction of classifiers for
some simpler concepts. In general, the high quality approximation of a concept
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dependent on some simpler concepts can not be derived from approximations
of these simpler concepts only. In the next section we propose a step toward
solution of this problem.

4 Approximation of Concepts and Dependencies from
Ontology

In this section we discuss an approach to approximation of concepts and vague
dependencies specified in a given concept ontology [15]. In the ontology concepts
and local dependencies between them are specified. Global dependencies can be
derived from local dependencies. Such derivations can be used as hints in search-
ing for relevant compound patterns (information granules) in approximation of
more compound concepts from the ontology.

The ontology approximation problem is one of the fundamental problems
related to approximate reasoning in distributed environments. One should con-
struct (in a given language that is different from the ontology specification lan-
guage) not only approximations of concepts from ontology but also vague depen-
dencies specified in the ontology. It is worthwhile to mention that an ontology
approximation should be induced on the basis of incomplete information about
concepts and dependencies specified in the ontology. Information granule calculi
based on rough sets have been proposed as tools making it possible to solve this
problem.

One can distinguish local and global dependencies between vague concepts
specified in a given ontology. By a local dependency we mean a dependency con-
sisting of concepts in premisses in a sense“close” to the concept in the conclusion
so that the process of inducing of classifiers and approximation of the dependency
can be performed automatically from the partial information available about the
concepts. If one would like to approximate a “global” dependency in which the
vague concepts on the left hand side of dependency are “far” from concept on
the right hand side then one should use additional information to bound the
search for relevant patterns for concept approximation and dependency approxi-
mation. The solution in this case can be based on hierarchical learning (see, e.g.,
[22,2,3,5]).

Any concept from the left hand side of a given vague dependency is called
its premise and the dependency conclusion is the concept from the right hand
side of the dependency. By approximation of a given vague dependency we un-
derstood a method which allows for any object to compute the arguments “for”
and “against” its membership to the dependency conclusion on the basis of anal-
ogous arguments relative to the dependency premisses. Any argument “for” or
“against” is a compound information granule (pattern) consisting of a pattern
together with a degree to which (at least) this pattern is included to the concept
and a degree to which (at least) the analyzed object is included to the pattern.
Any local scheme (production rule) (see, e.g., [16]) or rough mereological connec-
tive (see, e.g., [12]) yields the fusion result of arguments for premisses that is next
taken as the argument for the dependency conclusion. By composition of local
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schemes more advanced fusion schemes are obtained, called approximate reason-
ing schemes (AR schemes) (see, e.g., [2,16,12,19]). They show how the arguments
from premisses of dependencies are fused to arguments for more compound con-
cepts derived in a given ontology from premisses. AR schemes can correspond
to different parts of complex spatio-temporal objects. Hence, there is a need for
composing AR schemes for parts into AR schemes for objects composed from
these parts [19].

We assume that there are distinguished some primitive concepts in a given
ontology for which it is possible to derive arguments “for” and “against” from
experimental data tables (e.g., with sensory attributes). To estimate the degree to
which a given object belongs (at least) to a given concept C from ontology there
are collected arguments“for”and “against”by using appropriate AR schemes for
this concept C and next is used a conflict resolution strategy for predicting the
degree.

Observe also that the discovered information granules (patterns) can be used
to specify different regions of the object universe on which different “parts” of
approximation of a given vague dependency can be expressed in a more relevant
way.

Now, we present more details on approximation of concepts and dependen-
cies.

Patterns for a more complex concept C can be constructed along derivation of
C from C1, C2 using the existing dependencies in ontology. The derivation helps
gradually to construct patterns for more compound concepts in the derivation
from less compound concepts (closer to C1, C2).

Let us now consider as an example of the dependency:

If C1 and C2 then C, (1)

where C1, C2, C are vague concepts. We assume that examples of positive and
negative cases for such concepts are given. We also assume that the condition
attributes for C1, C2 are specified. To approximate the target concept C relevant
patterns should be derived. The main idea is presented in Figure 1. We assume
that basic information granules (basic patterns) used for approximation of con-
cepts C1, C2 can be induced for C1, C2. Such patterns can be defined, e.g., by left
hand sides of decision rules with decisions corresponding to the concepts C1, C2

and to their complements. For such basic granules, one can define operations of
construction of more complex patterns relevant for approximation of the target
concept C. The relevant patterns can be obtained by tuning parameters of the
operations. One of the most important kind of such operations is defined by
the constrained sums of information systems specified by patterns [18]. These
operations filter objects satisfying the constraint from objects satisfying basic
patterns.

For discovered patterns the degrees of their inclusion into the considered
concepts are estimated.

Next, some rules are derived that make it possible to predict the degrees
of inclusion of objects to target patterns (i.e., discovered for the dependency
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U

C
Pat

U1

C1

Pat1

U2

C2

Pat2

Fig. 1. Vague Concepts in U1, U2, U and Patterns

conclusion) from degrees of inclusion to source patterns (i.e., discovered for the
dependency premisses) used for construction of the target patterns. Such rules
are of the following form:

If the degree of inclusion of x in Pati is at least degi for i = 1, 2

then the degree of inclusion of x in Pat is at least deg

where Pat is a pattern constructed from Pat1 and Pat2 and deg1, deg2, deg,
are the degrees of inclusion of x in patterns Pat1,Pat2,Pat, respectively, and
Pat1,Pat2, Pat are relevant patterns discovered for approximation of concepts
C1, , C2, C, respectively (for the details, the reader is referred to [14]).

The discovered patterns with their degrees of inclusion into concepts are
used in the construction of classifiers. The degrees of inclusion of patterns in
the concepts and objects in patterns are used by a conflict resolution strategy to
predict the decision, i.e., to decide if the analyzed concept belongs to a concept or
not. This is the standard procedure for construction of classifiers. In our example,
the procedure of a classifier construction is performed for concepts C1, C2, C. In
such a construction of classifiers inductive reasoning is used.

One can take into account some concordance conditions between strategies
for conflict resolution in the constructed classifiers for C1, C2 and C. By tuning
such conditions one can optimize the approximation of vague dependency on
different object regions. This idea is depicted in Figure 2 (see also [5,3] for an
application of weights defined by rule votes in extracting relevant patterns).
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Fig. 2. Dependencies and Concordance Conditions

By granulation of discovered local schemes (production rules) more com-
pound local schemes (production rules) can be discovered for approximation of
concepts and dependencies. Such local schemes can represent dependencies be-
tween different layers of vague concepts. In this case one can use an approach
based on the rough–fuzzy approach. To explain this idea we outline the approach
using rough–fuzzy granules. These granules make it possible to derive a family of
dependencies approximating a given dependency between vague concepts. The
family consists of dependencies corresponding to different layers of the vague
concepts.

Let us now discuss shortly an example of rough–fuzzy granules. Let DT =
(U,A, d) be a decision table with a binary decision d : U −→ {0, 1}, i.e., d is the
characteristic function of some X ⊆ U . If the decision table is inconsistent [9],
then one can define a new decision deg such that deg(x) ∈ [0, 1] for any x ∈ U ,
may be interpreted as a degree to which x belongs to X [9,16]. Let us consider
such a new decision table DT ′ = (U,A, deg).

For given reals 0 < c1 < . . . < ck, where ci ∈ (0, 1] for i = 1, . . . , k, we define
ci-cut by Xi = {x ∈ U : ν(x) ≥ ci}. Assume thatX0 = U andXk+1 = Xk+2 = ∅.
Any B ⊆ A satisfying the following condition:

UPP (ASB, (Xi −Xi+1)) ⊆ (Xi−1 −Xi+2), for i = 1, . . . , k, (2)

is called relevant for approximation of cuts 0 < c1 < . . . < ck in DT ′.
The condition (2) expresses the fact that the boundary region of the set

between any two successive cuts is included into the union of this set and two
adjacent to it such sets.

The language Lrf of rough–fuzzy patterns for DT ′ consists of tuples
(B, c1, . . . , ck) defining approximations of regions between cuts, i.e.,

(LOW (ASB , (Xi −Xi+1)), UPP (ASB , (Xi −Xi+1))), for i = 0, . . . , k, (3)
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where we assume that B is relevant for approximation of cuts 0 < c1 < . . . < ck
in DT ′.

Observe that searching for relevant patterns describing regions between cuts
is related to tuning parameters (B, c1, . . . , ck) to obtain relevant patterns for the
target concept approximation.

From a concept description in DT ′ (on a sample U) one can induce the
concept approximation on an extension U∗ ⊇ U . We consider, in a sense, richer
classifiers, i.e., the classifiers that make it possible to predict different degrees to
which the concept is satisfied. Such degrees can correspond to linguistic terms
(e.g., low, medium, high) linearly ordered and to the boundary regions between
successive degrees.

Any local scheme corresponding to a local dependency between vague con-
cepts can be considered as a family of transducers satisfying a monotonicity
property with respect to the linear order of linguistic degrees. This property can
be expressed as follows:

if the granule corresponds to a linguistic membership degree deg of the depen-
dency conclusion and it is constructed by the local scheme from some more
elementary granules corresponding to some membership degrees
(deg1, . . . , degn)

then this local scheme will yield a granule corresponding to deg at least
from granules corresponding to (deg′1, . . . , deg

′
n) satisfying deg′i ≥ degi for

i = 1, . . . , n, where ≥ denotes the linear order between linguistic degrees.

There are several problems to be solved to construct relevant layers of vague
concepts for the approximation of dependencies between vague concepts. Among
them are:

1. the problem of inducing relevant layers for the concepts;
2. the problem of inducing classifiers for the layers;
3. the monotonicity problem (the family of dependencies should satisfy the

monotonicity property).

The discovered layers should make it possible to represent dependencies be-
tween vague concepts on the regions corresponding to the layers. We have devel-
oped strategies discovering such dependencies. Here, one can find an analogy to
a neuron but a much more advanced neuron than that used in artificial neural
networks [10].

We can conclude that taking fuzzy sets as models for vague concepts one can
use rough sets for their constructive approximation. Then information granules
we are searching for are families of approximations of different layers of concepts
and dependencies between such approximated layers.

Observe that the family of dependencies discussed above may also be used
in reasoning about changes. A linear order between layers corresponding to lin-
guistic degrees of concept membership makes it possible to predict the degree of
inclusion of a given object x to C on the basis of changes of degrees to which x
is included in C1, C2.
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Conclusions

We have discussed an ontological approach to the approximation problem. This
approach covers the approximation of vague concepts and dependencies specified
in a given ontology. Our ontology is presented in the framework of information
granule calculi. The outlined methods for hierarchical construction of patterns,
classifiers and vague dependency approximation create the basic step in our cur-
rent project aiming at developing approximate reasoning methods in distributed
or multiagent systems.
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Abstract. This paper examines the knowledge representation theory of
granulations. The key strengths of rough set theory are its capabilities
in representing and processing knowledge in table format. For general
granulation such capabilities are unknown. For single level granulation,
two initial theories have been proposed previously by one of the authors.
In this paper, the theories are re-visited, a new and deeper analysis is
presented: Granular information table is an incomplete representation, so
computing with words is the main method of knowledge processing. How-
ever for symmetrical granulation, the pre-topological information table
is a complete representation, so the knowledge processing can be formal.

1 Introduction

Relational database theory is designed to model the real world of a long dura-
tion [10]. For each instance the interactions among entities can be very different
from the other instance. So the relational model takes the common denominator
and ignores the interactions among entities. So it assumes the universe of all
entities and various attribute domains are Cantor sets, in which no interactions
among elements are modeled. However, in data mining or data analysis the mod-
eling is instance based. So the assumption that the underlying structure of the
universe of entities is a classical set is an over simplified one.

1.1 Models of Real World Entities

A more realistic modeling is needed. What should be the proper model of real
world entities? There are two views available. The first one is from the model
theory of first order logic, where a model is a Cantor set together with the
relational structure. The second one is from granulation.
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2 Granulation and Relational Structure

Let us revise our arguments in [14]. According to Lotfi Zadeh [20]:

– ”information granulation involves partitioning a class of objects (points) into
granules, with a granule being a clump of objects (points), which are drawn
together by indistinguishability, similarity or functionality.”

– The phrase ”drawn together by indistinguishability, similarity or functional-
ity,” in general, can be expressed mathematically by relations.

If the group of drawn together consists of n objects, then the relation is n-ary;
we may refer to such structure as n-ary granulation. In general, for every n, there
may be several, even infinitely many, n-ary relations. In granular computing, n
can be any cardinal number. In relational structure of the model theory, they are
all finite; first order logic does not use predicates of non-finite places. In real life,
we go seldom beyond initial few n, taking topological space into consideration,
n = 2 is adequate.

2.1 Basic Granulation and Relational Structure

As a first step, we have considered the simplest granulation or the simplest
relational structure (of first order logic). In other words, the underlying structure
is a binary granulation or equivalently binary relational structure [14], [10], [7],
[6]. In this paper, we take a deeper and new view on its representation theory.

”Drawn together,” in the binary cases, implies certain level of symmetry. If p
is drawn towards q, then q is also drawn towards p. Such symmetry, we believe,
is imposed by impreciseness of natural language. To avoid such implications, we
will rephrase it to ”drawn towards an object p,” so that it is clear the reverse
may or may not be true.

In binary relation, ”drawn together”can be viewed as a special case of ”drawn
towards p,” since p may vary through every object of a granule. So for each p,
we will use B(p) to denote the group of objects that are drawn toward p. Now
we have a localized version of Zadeh’s word:

Definition 1. By a binary granulation we mean the association of an object
p ∈ V with a granule B(p) ⊆ V (neighborhood), where p varies through all
objects of the universe V . This association is a mapping V −→ 2V , called a
basic or binary granulation (BG).

2.2 Geometric and Algebraic Views

It will be helpful to visualize the granulation, for this goal, we will use geometric
terminology. We will refer to a granule as a neighborhood of p, and the collection,

{B(p) | p varies through V }

is called the basic (binary) neighborhood system (BNS) of V . Note that it is
possible that B(p) is an empty set. In this case we will simply say p has no
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neighborhood by abuse of language; to be very correct, we should say p has an
empty neighborhood.

Also we should note that many different points, p, q, . . . may have the same
neighborhood (granule) B(p) = B(q). The set of all q such that B(q) is equal
to B(p), is called the center set C(p) of the granule B(p); each element in C(p)
is called a center. The collection of the center sets forms a partition on V.

To help us manipulating the granulation, we also reformulate it algebraically:

R = {(p, v) | v ∈ B(p) and p ∈ V }

is a binary relation (BR) defined by BG.

Proposition 1. A basic (binary) neighborhood system (BNS), a basic (binary)
granulation (BG), and a binary relation (BR) are equivalent.

3 Knowledge Representations

First we setup a convention.

Convention: A symbol is a string of ”bits and bytes.”Regardless of whether that
symbol may or may not have the intended real world meaning, no real world
meaning participates in the formal processing. A symbol is termed a word, if the
intended real world meaning participates in the formal processing.

Please note that ”symbol” here is equivalent to the ”word” in group theory.
The main idea here is to extend representation theory of rough sets to granu-

lar computing, in which granules have overlapping semantics. Real world granula-
tion often cannot be expressed by equivalence relations. For example, the notions
of “near”,“similar”, and “conflict” are not equivalence relations. The granulation
of human body by body, leg and head, and etc is not a partition. So there are
intrinsic needs to generalize the knowledge representation theory of partition
(rough set theory) to more general settings (granular computing).

We will re-interpret and refine some earlier works; see the latest overview in
[7]. Here are the three main topics:

1. Relational Table: This is the classical rough set representation of partitions.
The basic idea is to assign a meaningful name to each equivalence class of
an equivalence relation (partition). These names are independent from each
other, since equivalence classes are mutually disjoint. The representation,
in rough set theory, has been called an information system, a knowledge
representation system, an information table, or a data table. In the relational
database theory, it is called a bag relation.

2. Granular Table: This is the first representation theory of granulation ob-
served [12], [15], [14]. The basic idea is to assign a meaningful name to each
granule of a granulation (binary relation.) These names are not independent
from each other, since granules may overlap; in other words, these names
have non-trivial interactions. We capture these interactions partially. We
represent it by the binary relation of the intersections of granules.
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3. Topological Table: The representation is similar, but deeper than granular
table. In this representation, we also consider the induced partition. Each
equivalence class, called the center set, is uniquely associated with a gran-
ule. Hence, we assign a meaningful name to each granule, as well as equiv-
alence class; so we have a granular table and a partition table. They are
algebraically isomorphic [11]. In the partition table, we capture the inter-
actions of granules by a pre-topology [7], [8], [9]. If the granulation (binary
relation) is symmetric, the representation is complete in the sense we can
recapture the binary relations from the pre-topological table.

4 Relational Tables - Representations of Partitions

A partition is a collection of pairwise disjoint subsets whose union is V . The
corresponding algebraic concept is an equivalence relation. So each subset is
called an equivalence class in mathematics; to synchronize with granulation, we
may call it granule. It is the simplest kind of granulation.

Pawlak (1982) [18] and Tony Lee (1983)[5] observed that a relational table
is a knowledge representation of a universe of entities. Each column induces an
equivalence relation (partition) on the universe; n columns induce n partitions.
More generally, they observed:

Proposition 2. A subset B of attributes of a relational table K, in particular
a single attribute, induces an equivalence relation QB on V .

To do the knowledge representation, we will explore the converse. We shall recall
some of the analysis in [12], [13], [15], [14].

Definition 2. The pair (V, Q) is a granular data model (GDM), if V is a
classical set of entities, and Q is a finite family of equivalence relations on V.

Pawlak called it a knowledge base. As the latter one often has different meaning,
we will use GDM. By reversing Pawlak and Tony Lee’s observation, we assign a
word (meaningful to human) to each equivalence class. Such an assignment can
be expressed in a table format. We will illustrate the idea by example.

Let U = {id1, id2, . . . , id9} be a set of nine balls with two partitions:

1. {{id1, id2, id3}, {id4, id5}, {id6, id7, id8, id9}}
2. {{id1, id2}, {id3}, {id4, id5}, {id6, id7, id8, id9}}

We label the first partition COLOR and the second WEIGHT. They are the best
summarizations of the given partitions from the view of human. Next, we will
name each equivalence class by its real world characteristic: We name the first
equivalence class Red, because each ball of this group has red color (appears
to human). Note that this name reflects human’s view and human only. For
example, physical characteristics, such as wave length are not implemented and
stored in the system. In AI, such terms, COLOR and Red, are called semantic
primitive [1]. They are primitives (undefined terms) from the view of computer
systems, but they do have the intent to represent human perceived semantics.
We will summarize the previous analysis as follows:
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1. id1 −→ ({id1, id2, id3}) −→ Red
The first −→ says that id1 belongs to the equivalence class [id1] and
the second −→ says that the equivalence class has been named Red.

2. id2 −→ ({id1, id2, id3}) −→ Red
. . .

4. id4 −→ ({id4, id5}) −→ Orange
. . .

9. id9 −→ ({id6, id7, id8, id9}) −→ Yellow

Similarly, we have names for all WEIGHT-classes. We have constructed Table 1:

Table 1. Constructing a relational table by naming each granule

U COLOR WEIGHT
id1 Red W1
id2 Red W1
id3 Red W2
id4 Orange W3
id5 Orange W3
id6 Yellow W4
id7 Yellow W4
id8 Yellow W4
id9 Yellow W4

Note that each word represents an equivalence class of a partition. So the words
within a column have no overlapping semantics; Each word is independent from
each other. So these words can be treated as symbols. In the table processing of
rough set theory, they have been regarded as symbols. Their intended semantics
can only be carried out in the presence of human operators.

4.1 Granular Tables

The representation of a partition is rested on two properties:

1. Each object p belongs to an equivalence class (the union of equivalence class
covers the whole universe)

2. No objects belong to more than one equivalence class (equivalence classes
are pairwise disjoint)

We need a similar property in binary granulation: Let B be a binary granulation

1. Each object, p ∈ V , is assigned to one and only one B-granule
2. No objects are assigned to more than one granule. Note that we are not

using the memberships; we are considering the binary granulation, that is,
the association between object and its granule.

Next we assign each B-granule a unique meaningful name. Such an association
allows us to represent a finite set of binary granulations by a ”relational table”,
called a granular table.
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Let us recall the illustration in [15]. In binary granulation, each p is associated
with a unique binary neighborhood Bp, which consists of balls that have certain
color component:

1. Bid1 = Bid2 = Bid3 = {id1, id2, id3, id4, id5} is the set of all balls that have
red color component in their color coating.

2. Bid4 = Bid5 = {id1, id2, id3, id4, id5, id6, id7, id8, id9} is the set of all balls
that have red or yellow color components in their color coating.

3. Bid6 = Bid7 = Bid8 = Bid9 = {id4, id5, id6, id7, id8, id9} is the set of all balls
that have yellow color components in their color coating.

Then to each binary granule (neighborhood), we assign a word (not a symbol).

1. Having-RED = Name(Bid1) = . . . = Name(Bid3); The name indicates that
all the balls in this granule has red color component in its coating.

2. Having-RED+YELLOW = Name(Bid4) = Name(Bid5); The name indicates
that all the balls in this granule has red and yellow color component(orange
color is a mixture of red and yellow)

3. Having-YELLOW = Name(Bid6) = . . . =Name(Bid9)

These words have human-perceived semantics attached and will participate in
formal processing. The non-empty intersections among granules imply that there
are non-trivial logical interactions among these words; and such interactions will
be respected during data processing. By considering the following map:

• Entities → Granules → Words, we have
1. id1 → Bid1 → Having-RED

. . .
4. id4 → Bid4 → Having-RED+YELLOW
5. id5 → Bid4 → Having-RED+YELLOW

. . .
9. id9 → Bid1 → Having-YELLOW
... similar statements for WEIGHT

They are summarized in granular table Table 2. To process such a table, we need
computing with words (respecting the semantics). In Table 3, we express the
binary relation, called granular binary relation, among these words. The binary
relation only partially captures the interactions among words (in a column).
Note that this binary relation reflects the non-empty intersection of granules:
For example (Having-Red, Having-Red+Yellow) ∈ BCOLOR if and only if the
two granules have non-empty intersection.

Perhaps, we should stress again that attribute values have overlapping se-
mantics; so the interactions among these words have to be properly handled.

Definition 3. The name of a granule is binary related to the name of another
granule, if they have non-empty intersection.

Such a binary relation is described in Table 3; but we need to stress that the
binary relation does not adequately describe the relationships among granules.
We need computing with words to deal with the information on semantic level.



734 I-J. Chiang, T.Y. Lin, and Y. Liu

Table 2. Granular Table: There are interactions among the words

BALLs Granulation 1 Granulation 2
id1 Having-RED W1
id2 Having-RED W1
id3 Having-RED W2
id4 Having-RED+YELLOW W3
id5 Having-RED+YELLOW W3
id6 Having-YELLOW W4
id7 Having-YELLOW W4
id8 Having-YELLOW W4
id9 Having-YELLOW W4

Table 3. A Symmetric Binary Relation for Color Attributes

Having-RED Having-RED
Having-RED Having-RED
Having-RED Having-RED+YELLOW

Having-RED+YELLOW Having-RED
Having-RED+YELLOW Having-RED+YELLOW
Having-RED+YELLOW Having-YELLOW

Having-YELLOW Having-RED+YELLOW
Having-YELLOW Having-YELLOW

5 Topological Tables

Note that the binary granulation B : V → 2U ; p $→ B(p) is a map whose in-
verse images C(p) = B−1(B(p)) induce an equivalence relation EB on V. The
equivalence class is called the center set of B(p). Let the center set be:

Cw = B−1(Bp), (1)

where w=Name(Bp). Verbally, Cw consists of all objects that have the same
B-granule Bp. We use the granule’s names to index the family of the center sets

CHaving-RED ≡ Center of Bid1 = Center of Bid2

= Center of Bid3 = {id1, id2, id3}
CHaving-RED+YELLOW ≡ Center of Bid4 = Center of Bid5

= {id4, id5}
CHaving-YELLOW ≡ Center of Bid6 = . . . = Center of Bid9

= {id6, id7, id8, id9}

For B(p) = ∅, C(p) = {x | B(x) = ∅}. We call the collection of {C(p) |
p ∈ V } topological partition with the understanding that there is a neigh-
borhood B(p) for each equivalence class C(p). The neighborhoods capture the
interaction among equivalence classes. Such a family {C(p)} is a partition in
BNS-spaces. Now, we will define the topological binary relation.
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Definition 4. The name of a granule is topologically binary related to the name
of another granule, if the first granule has non-empty intersection with the center
set of second granule. We regard the name of the second granule as a member of
the neighborhood of the name of first granule.

Thus, for example to define the topological binary relation BCOLOR we have

(Having − RED,Having − RED + YELLOW) ∈ BCOLOR

if Bid1 ∩CHaving-RED+YELLOW �= ∅ and idi ∈ CHaving-RED etc. Note that
the B-granule is definable by the induced partition, if B is symmetric [8], [9].

Proposition 3. If B ⊆ V × V is a symmetric binary relation, and EB its
induced equivalence relation, then each B-binary neighborhood is a union of EB-
equivalence classes.

So B is definable on attribute domain (a quotient set of V) that consists of all
center sets. So Table 4 and Table 5 completely defined by B and vice versa.

Note that such a binary structure cannot be deduced from the table structure.
We are ready to introduce the notion of semantic property.

Definition 5. A property is said to be semantic if it is not implied by the table
structure. A property is said to be syntactic if it is implied by the table structure.

The binary relation (Table 3) is not derived from the table structure (of Table 2)
so it is a semantic property. This type of tables has been studied in [17,16] for
approximate retrievals; and is called topological relations or tables. Formally:

Definition 6. A relational table (e.g. Table 4) whose attributes are equipped
with topological binary relations (e.g. Table 5 for COLOR attribute) is called a
(pre-) topological relation.

By replacing the names of binary granules with the center sets, Table 2 is trans-
formed to Table 4; they are isomorphic. However, the topologies are different:
Table 5 provides the topology of Table 4. Table 3 provides that of Table 2.

Table 4. Topological Table

BALLs Granulation 1 Granulation 2
id1 CHaving-RED W1
. . . . . . . . .

id3 CHaving-RED W2
id4 CHaving-RED+YELLOW W3
. . . . . . . . .

id9 CHaving-YELLOW W4
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Table 5. A Topological Binary Relation on the Center sets of COLOR

CHaving-RED CHaving-RED
CHaving-RED CHaving-RED+YELLOW
CHaving-RED+YELLOW CHaving-RED
CHaving-RED+YELLOW CHaving-RED+YELLOW
CHaving-RED+YELLOW CHaving-YELLOW
CHaving-YELLOW CHaving-RED+YELLOW
CHaving-YELLOW CHaving-YELLOW

Table 6. Topological Table

BALLs Granulation 1 Granulation 2
id1 NAME(CHaving-RED) NAME(W1)

. . . . . . . . .

id4 NAME(CHaving-RED+YELLOW) NAME(W3)

. . . . . . . . .

id9 NAME(CHaving-YELLOW) NAME(W4)

Theorem 1. Given a finite set of binary relations B, a finite set of equivalence
relations EB can be induced. The knowledge representation of B is a topological
representation of EB.

Proof. (A Sketchy) As we have illustrated before, the knowledge representations
of B and EB are accomplished by giving meaningful names to the granules and
its center sets respectively. Note that Table 4 is a table of equivalence classes of
EB and its knowledge representation in Table 6 is a table with symbolic names
replacing the equivalence classes. By replacing the names of binary granules with
those of the center sets we will have Table 2 transformed to Table 6. Therefore,
syntactically, the knowledge representation of B and EB is the same (isomor-
phic). We can directly impose an isomorphic binary relation on Table 6. Note
that Table 5 and the imposed relation provide the same pre-topology. In other
words, the isomorphism becomes a topological isomorphism; 	


6 Conclusions

In the series of our papers, we have literally taken Zadeh’s intuitive description
of clumps as a formal mathematical notion of granulation. It is essentially a mild
generalization of binary relations and neighborhood systems in (pre-)topological
spaces [19], [17], [16], [14], [15], [7], [6]. By giving a (meaningful) name to each
granule, we have a representation theory. The processing of this kind of rep-
resentations has to be relied on computing with words; there are unformalized
interactions among the attributes values (names of overlapping granules); the in-
teractions need further investigation. However, the topological view, in the case
of symmetric binary relational structure, does capture the representation quite
”completely” in the sense that the interactions among granules can be specified
formally by binary relations (of center sets which are equivalence classes).
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Ramos-Jiménez, Gonzalo II-138
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Wróblewski, Jakub I-166
Wu, Dan I-581

Wu, Jianping II-634
Wu, Rui II-456
Wu, Wei-Wen II-484
Wu, Wei-Zhi I-84, I-345
Wu, Yu I-185, II-323

Xia, Feng II-624
Xia, Youming I-561
Xie, Gang I-431, I-461, II-530
Xie, Keming I-431, II-614
Xu, Ke II-634

Yan, Gaowei I-461
Yang, Boting I-335
Yang, Jie I-451
Yang, Ming II-241
Yan, Wen I-335
Yao, JingTao I-204
Yao, Yiyu II-69
Yeon, YeonKwang II-251
Yi, Sangho II-662
Yin, Chenbo II-575
Yin, Jianwei II-273
Yu, Da-Ren II-147
Yuan, Zhe II-323

Zhang, Guojun II-585
Zhang, Jinlong II-530
Zhang, Ming I-204
Zhang, Wen-Xiu I-43, I-84, II-157
Zhang, Zaiyue I-642
Zhao, Pixi I-364
Zhao, Ruiqing II-456
Zhao, Wenjing I-431
Zheng, Xinqun II-342
Zheng, Zheng I-682
Zhong, Ning II-23
Zhou, Chunguang II-383, II-438
Zhou, Qingmin II-575
Zhou, Wengang II-383, II-438
Zhou, Zhi-Hua I-491
Zhu, Haiping II-585
Ziarko, Wojciech I-283
Zou, Hua II-604


	Frontmatter
	Invited Papers
	Rough Sets and Flow Graphs
	A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems
	Granular Computing with Shadowed Sets

	Rough Set Approximations
	Rough Sets and Higher Order Vagueness
	Approximation in Formal Concept Analysis
	Second-Order Rough Approximations in Multi-criteria Classification with Imprecise Evaluations and Assignments
	New Approach for Basic Rough Set Concepts
	A Partitional View of Concept Lattice
	Characterizations of Attributes in Generalized Approximation Representation Spaces

	Rough-Algebraic Foundations
	Proximity Spaces of Exact Sets
	Rough Group, Rough Subgroup and Their Properties
	Concept Lattices vs.~Approximation Spaces
	Rough Sets over the Boolean Algebras
	Algebraic Approach to Generalized Rough Sets
	Logic for Rough Sets with Rough Double Stone Algebraic Semantics

	Feature Selection and Reduction
	On Partial Tests and Partial Reducts for Decision Tables
	The Second Attribute
	Pairwise Cores in Information Systems
	Data Preprocessing and Kappa Coefficient
	Incremental Attribute Reduction Based on Elementary Sets
	Finding Rough Set Reducts with SAT
	Feature Selection with Adjustable Criteria
	Feature Selection Based on Relative Attribute Dependency: An Experimental Study

	Reasoning in Information Systems
	On Consistent and Partially Consistent Extensions of Information Systems
	A New Treatment and Viewpoint of Information Tables
	Incomplete Data and Generalization of Indiscernibility Relation, Definability, and Approximations
	Discernibility Functions and Minimal Rules in Non-deterministic Information Systems
	Studies on Rough Sets in Multiple Tables
	Normalization in a Rough Relational Database

	Rough-Probabilistic Approaches
	Probabilistic Rough Sets
	Variable Precision Bayesian Rough Set Model and Its Application to Human Evaluation Data
	Variable Precision Rough Set Approach to Multiple Decision Tables
	Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets
	Rough Sets Handling Missing Values Probabilistically Interpreted
	The Computational Complexity of Inference Using Rough Set Flow Graphs

	Rough-Fuzzy Hybridization
	Upper and Lower Probabilities of Fuzzy Events Induced by a Fuzzy Set-Valued Mapping
	Variable Precision Fuzzy Rough Sets Model in the Analysis of Process Data
	CRST: A Generalization of Rough Set Theory
	An Extension of Rough Approximation Quality to Fuzzy Classification
	Fuzzy Rules Generation Method for Classification Problems Using Rough Sets and Genetic Algorithms
	Multilayer FLC Design Based on RST

	Fuzzy Methods in Data Analysis
	Interpretable Rule Extraction and Function Approximation from Numerical Input/Output Data Using the Modified Fuzzy TSK Model, TaSe Model
	A New Feature Weighted Fuzzy Clustering Algorithm
	User-Driven Fuzzy Clustering: On the Road to Semantic Classification

	Evolutionary Computing
	Research on Clone Mind Evolution Algorithm
	A Study on the Global Convergence Time Complexity of Estimation of Distribution Algorithms
	Finding Minimal Rough Set Reducts with Particle Swarm Optimization
	MEA Based Nonlinearity Correction Algorithm for the VCO of LFMCW Radar Level Gauge

	Machine Learning
	On Degree of Dependence Based on Contingency Matrix
	Model Selection and Assessment for Classification Using Validation
	Dependency Bagging
	Combination of Metric-Based and Rule-Based Classification
	Combining Classifiers Based on OWA Operators with an Application to Word Sense Disambiguation
	System Health Prognostic Model Using Rough Sets

	Approximate and Uncertain Reasoning
	Live Logic<Superscript>{\itshape TM}</Superscript>: Method for Approximate Knowledge Discovery and Decision Making
	Similarity, Approximations and Vagueness
	Decision Theory = Performance Measure Theory + Uncertainty Theory

	Probabilistic Network Models
	The Graph-Theoretical Properties of Partitions and Information Entropy
	A Comparative Evaluation of Rough Sets and Probabilistic Network Algorithms on Learning Pseudo-independent Domains
	On the Complexity of Probabilistic Inference in Singly Connected Bayesian Networks

	Spatial and Temporal Reasoning
	Representing the Process Semantics in the Situation Calculus
	Modeling and Refining Directional Relations Based on Fuzzy Mathematical Morphology
	A Clustering Method for Spatio-temporal Data and Its Application to Soccer Game Records
	Hierarchical Information Maps

	Non-standard Logics
	Ordered Belief Fusion in Possibilistic Logic
	Description of Fuzzy First-Order Modal Logic Based on Constant Domain Semantics
	Arrow Decision Logic
	Transforming Information Systems
	A Discrete Event Control Based on EVALPSN Stable Model Computation

	Granular Computing
	Tolerance Relation Based Granular Space
	Discernibility-Based Variable Granularity and Kansei Representations
	Rough Set Approximation Based on Dynamic Granulation
	Granular Logic with Closeness Relation $``\sim_{\lambda}"$ and Its Reasoning
	Ontological Framework for Approximation
	Table Representations of Granulations Revisited

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




