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Abstract. Trend analysis of time series data is an important research
direction. In streaming time series the problem is more challenging, tak-
ing into account the fact that new values arrive for the series, probably
in very high rates. Therefore, effective and efficient methods are required
in order to classify a streaming time series based on its trend. Since new
values are continuously arrive for each stream, the classification is per-
formed by means of a sliding window which focuses on the last values of
each stream. Each streaming time series is transformed to a vector by
means of a Piecewise Linear Approximation (PLA) technique. The PLA
vector is a sequence of symbols denoting the trend of the series (either
UP or DOWN), and it is constructed incrementally. Efficient in-memory
methods are used in order to: 1) determine the class of each streaming
time series and 2) determine the streaming time series that comprise a
specific trend class. Performance evaluation based on real-life datasets
is performed, which shows the efficiency of the proposed approach both
with respect to classification time and storage requirements. The pro-
posed method can be used in order to continuously classify a set of
streaming time series according to their trends, to monitor the behavior
of a set of streams and to monitor the contents of a set of trend classes.

Keywords: data streams, time series, trend detection, classification,
data mining.

1 Introduction

The study of query processing and data mining techniques for data stream
processing has recently attracted the interest of the research community [2],
due to the fact that many applications deal with data that change very fre-
quently with respect to time. Examples of such application domains are network
monitoring, financial data analysis, sensor networks to name a few. The most
important property of data streams is that new values are continuously arrive,
and therefore efficient storage and processing techniques are required to cope
with the high update rate.
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A streaming time series S is a sequence of real values s1, s2, ..., where new
values are continuously appended as time progresses. For example, a tempera-
ture sensor which monitors the environmental temperature every five minutes,
produces a streaming time series of temperature values. As another example,
consider a car equipped with a GPS device and a communication module, which
transmits its position to a server every ten minutes. A streaming time series of
two-dimensional points (the x and y coordinates of its position) is produced.
Note that, in a streaming time series data values are ordered with respect to the
arrival time. New values are appended at the end of the series.

A class of algorithms for stream processing focuses on the recent past of
data streams by applying a sliding window on the data stream [2,3]. In this way,
only the last W values of each streaming time series is considered for query
processing, whereas older values are considered obsolete and they are not taken
into account. As it is illustrated in Figure 1, streams that are non-similar for a
window of length W (left), may be similar if the window is shifted in the time
axis (right).
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Fig. 1. Similarity using a sliding window of length W

We use trends as a base to classify streaming time series for two reasons.
First, trend is an important characteristic of a streaming time series. In several
applications the way that stream values are modified is considered important,
since useful conclusions can be drawn. For example, in a stock data monitoring
system it is important to know which stocks have an increasing trend and which
ones have a decreasing trend. Second, trend-based representation of time series
is more close to the human intuition. In the literature, many papers [6,7] use
the values of the data streams and a distance function like Euclidean distance to
cluster streams. Although a distance can be large for a pair of streams, these two
streams can be intuitionally considered similar, if their plots are examined. Thus,
distance functions aren’t always good metrics to cluster or to classify objects.

In this paper, we focus on the problem of continuous time series classification
based on the trends of the series as time progresses. Evidently, we expect that the
same series will show different trend for different time intervals. The classification
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is performed by considering the last W values of each stream (in a sliding window
manner). Again, two streaming time series that show similar trends for a specific
time interval may be totally dissimilar for another time interval. This effect is
illustrated in Figure 1, where the trends of the time series are represented by
dotted lines. We note also that two series which show similar trends may be
completely different with respect to the values they assume.

The rest of the article is organized as follows. In Section 2 we give significant
related work on the issue of trend analysis in streams. Section 3 discusses in detail
the proposed approach which is based on two important issues: 1) an effective
in-memory representation of the streams by means of an approximation and 2)
an efficient in-memory organization in order to quickly categorize a stream when
new values for that stream are available. Experimental results based on real-life
datasets are offered in Section 4, whereas Section 5 concludes the work and raises
some issues for further research in the area.

2 Related Work and Contribution

The last decade, mining time series has attracted the interest of the researchers.
Classification is a well-known data mining problem. Many papers have been
proposed to classify objects from different research domains as machine learning,
knowledge discovery and artificial intelligence.

The classification problem is more challenging in the case of streaming time
series due to the dynamic nature of the streaming case. In the recent past,
[1] proposed a classification system in which the training model adapts to the
changes of the data streams. The method is based on the micro-clusters, vectors
which contain simple statistics over a time period of a stream. Classification is
achieved by combining micro-clusters in different time instances (snapshots). The
method uses a periodically scheme to update the micro-clusters and reports the
classification on demand. Our method incrementally computes and continuously
reports the classification. Moreover the scheme, that was used, needs a training
set in opposition to our scheme that has a restricted number of classifiers and
the classifiers are a priori known. In [12] used info-fuzzy networks to address the
problem. Other approaches include one-pass mining algorithms [4,8], in which
the classification model is constructed in the beginning, and therefore do not
recognize possible changes in the underlying concept.

Piecewise linear approximation has been used to represent efficiently time
series in many topics as clustering, classification and indexing [16,17]. Many
variations have been proposed, among them are the piecewise aggregate approx-
imation (PAA) [11] that stores the mean value of equal-length segments and the
adaptive piecewise constant approximation (APCA) [10] that stores the mean
value and the right end-point of variable-length segments.

Trend analysis has been used to cluster time series in many domains such as
time series [18,13], bioinformatics [14] and ubiquitous computing [15]. Yoon et al
proposed six trend indicators. A time series is represented as a partial order of
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the indicators. A bitmap index is used to encode indicators into bit strings in
order to compute the distance between two time series with the XOR operator.
In [13,14] modifications of PLA are used to detect trends and three types of
them are used (up, down and steady) to cluster time series. These methods
study the clustering problem in time series. They do not use an incremental
way to compute the trend representation. Additionally the clustering algorithms
were proposed are not one-pass algorithms. So the methods are not appropriate
in a streaming case. In comparison with our method the trend representation
is incrementally computed and the classification is continuously reported using
an efficient in-memory access method. Recently, [16] proposed trend analysis
to address the problem of subsequence matching in financial data streams. The
Bollinger Band indicator (%b) is used to smooth time series and then the PLA is
applied. The %b indicator uses simple moving average and thus the whole sliding
window is required to compute next values of %b. So the pla representation is
not computed incrementally and in case of thousand of streams the memory
requisites are enormous.

The contribution of the work is summarized as follows:

– An incremental computation of the PLA approximation is presented, which
enables the continuous representation of the time series trends under the
sliding window paradigm.

– An efficient in-memory access method is proposed which facilitates funda-
mental operations such as: determine the class of a stream, insert a stream
into another class, delete a stream from an existing class.

– Continuous trend-based classification is supported, which enables the moni-
toring trend classes or the monitoring of data stream.

– The proposed technique can be applied even in the case where only a subset
of the data streams change their values at some time instance. Therefore, it
is not required to have stream values at every time instance for all streams.

3 Trend Representation and Classification

In data stream processing there are two important requirements posed by the
nature of the data. The first requirement states that processing must be very
efficient in order to allow continuous processing due to the large number of up-
dates. This suggests the use of the main memory in order to avoid costly I/O
operations. The second requirement states that random access to past stream
data is not supported. Therefore, any computations that must be performed
on the stream should be incremental, in order to avoid reading past stream
values. In order to be consistent with the previous requirements, we propose
a continuous classification scheme which requires small storage overhead and
performs the classification in an incremental manner, taking into consideration
the synopsis of each stream. Each stream synopsis requires significantly less
storage than the raw stream data, and therefore, better memory utilization is
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Table 1. Basic notations used throughout the study

Symbol Description
S a streaming time series
S(t) the value of stream S at time t

N number of streaming time series
n length of a streaming time series
W sliding window length
p period of moving average (p ≤ W )
EMAip(t) the i-th exponential moving average of period p (t ≥ p)
TRIX(t) percentage differences of EMA3p(t) signal
PLA piecewise linear approximation
PLA(i) the i-th segment of the PLA
k the number of segments of the PLA
tlmin the minimum time instance of a bucket list
tlmax the maximum time instance of a bucket list
tbmin the minimum time instance of a bucket
tbmax the maximum time instance of a bucket

achieved. Before we describe the proposed method in detail we give the basic
symbols used throughout the study in Table 1.

3.1 Time Series Synopsis

In this section we study the problem of the incremental determination of each
stream synopsis, in order to reduce the required storage requirements and en-
able stream classification based on trend. Trend detection has been extensively
studied in statistics and related disciplines [5,9]. In fact, there are several indices
that can be used in order to determine trend in a time series. Among the vari-
ous approaches we choose to use the TRIX indicator [9] which is computed by
means of a triple moving average on the raw stream data. We note that before
trend analysis is performed, a smoothing process should be applied towards re-
moving noise and producing a smoother curve, revealing the time series trend
for a specific time interval. This smoothing is facilitated by means of the TRIX
indicator, which is based on a triple exponential moving average calculation of
the logarithm of the time series values. In the sequel, we first explain the use of
the exponential moving average and then we introduce the TRIX indicator.

Definition 1.
The exponential moving average of period p over a streaming time series S is
calculated by means of the following formula:

EMAp(t) = EMAp(t − 1) +
2

1 + p
· (S(t) − EMAp(t − 1)) (1)

Definition 2.
The TRIX indicator of period p over a streaming time series S is calculated by
means of the following formula:
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TRIX(t) = 100 · EMA3p(t) − EMA3p(t − 1)
EMA3p(t − 1)

(2)

where EMA3p is a signal generated by the application of a triple exponential
moving average of the input time series.

The signal TRIX(t) oscillates around the zero line. Whenever TRIX(t)
crosses the zero line, it is an indication of trend change. This is exactly what we
need in order to perform a trend representation of an input time series. Figure 2
illustrates an example. Note that the zero line is crossed by the TRIX(t) signal,
whenever there is a trend change in the input signal. Figure 2 also depicts the
smoothing achieved by the application of the exponential moving average.
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Fig. 2. Example of a time series and the corresponding TRIX(t) signal

Definition 3.
The PLA representation of a streaming time series S for a time interval of W
values is a sequence of at most W -1 pairs of the form (t, trend), where t defines
the left-point time of the segment and trend denotes the trend of the stream
(UP or DOWN) in the specified segment.

Each time a new value arrives, the PLA is updated. Three operations (ADD,
UPDATE, EXPIRE) are implemented to support incremental computation of
the PLA. The ADD operation is applied when a trend change detected and adds
a new PLA-point. The UPDATE operation is applied when the trend is stable
and updates the timestamp of the last PLA-point. The EXPIRE operation is
applied when the first segment of the PLA is expired and deletes the first PLA-
point. Notice that when the UPDATE operation is applied the class of the stream
does not change.

3.2 Continuous Classification

In this section we study the way continuous classification is performed. Tak-
ing into account that each PLA segment has an UP or DOWN direction, the
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number of possible trend classes for a sliding window of length W is given by
CW = 2 · (W − 1) as it is illustrated by the following proposition.

Proposition.
The number of different classes CW of streaming time series is given by:

CW = 2 · (W − 1) (3)

where W is the sliding window length.

Proof.
To prove this proposition we use induction. Evidently, the proposition is true for
W=2 (note that W=2 is the smallest value for the sliding window length which
enables trend determination). We assume that the proposition is true for W=n,
and therefore Cn = 2 · (n-1). We will prove the proposition for W=n+1. The
values at positions n and n+1 define a straight line with either an increasing
trend (UP) or a decreasing trend (DOWN) (in the case where the TRIX indi-
cator is zero, we retain the previous trend). If the trend is UP and the trend of
the previous PLA segment is also UP, then the final result is UP. If the trend
is DOWN and the trend of the previous PLA segment is also DOWN, then
the final result is DOWN. If one of the above cases is true, then the (n+1)-th
stream value has no contribution at all. Now consider the case where the last
trend is UP and the previous trend is DOWN, or the case where the last trend is
DOWN and the previous trend is UP. If one of the aforementioned cases is true
then clearly, the (n+1)-th stream value contributes to another trend class. This
means that the (n+1)-th stream value can give two more trend classes. This
means that Cn+1 = Cn + 2. By the induction hypothesis we know that Cn =
2 · (n-1). Therefore, Cn+1 = 2 · (n-1) + 2 = 2 · n, and this completes the proof. �

Every time a new value for a streaming time series arrives, the corresponding
stream may change from a trend class to another. We illustrate the way contin-
uous classification can be achieved efficiently, by means of an in-memory access
method which organizes the streams according to the trend class they belong
and by taking into account time information to facilitate efficient search. During
continuous classification the following operations must be supported:

– We must quickly locate the class that the corresponding stream belongs to,
– We must delete (if necessary) the corresponding stream from the old class

and assign it to a new one, and
– We must report efficiently the stream identifiers that belong to a specific

trend class.

Each trend class is supported by several lists of buckets. The first bucket
of each list is the primary bucket whereas the other buckets are overflow buck-
ets. The overflow buckets are used only in the case where the stream must be
inserted in an existing list (step 2 of Algorithm Insert) and the primary bucket of
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the list is full (bucket size exceeded). Each bucket list is characterized by two
time instances tlmin and tlmax, denoting the minimum and the maximum time
instances which corresponds to the k − 1-th PLA point, where k is the number
of points contained in the PLA representation. We use the one before the last
PLA point as base to insert streams in bucket lists because is the last stable
point (the last point maybe changed if an update happens) and thus we have
to update the classification structure only when the stream changes class. Each
bucket is composed of a set of stream identifiers and two time instances tbmin

and tbmax. These time instances denote the time interval that each stream in
the bucket has been inserted.

In Figure 3 an example of the structure is depicted. The class DUD consists
of two bucket lists. The first list contains additionally an overflow bucket. For
the first list the tlmin is 10 and the tlmax is 15. This means that the streams
1,2,5,8 have the one before the last PLA point between time 10 and 15. For the
primary bucket of the first list the tbmin is 12 and the tbmax is 17 and contains
the streams 2,5 and 8. Therefore streams 2,5 and 8 were inserted in this class
between time 12 and 17. For the overflow bucket of the first list the tbmin is 18
and the tbmax is 18 and contains the stream 1. Stream 1 was inserted at time
instance 18. The description of the second list is the same.

We will explain how we use the bucket lists structure to continuous clas-
sify streams with an example. Assume the two bucket lists of the classes DUD
and DUDU of the Figure 3. The bucket size is 3 and the window size is 16.
At time instance 21 a new value for the stream 1 is arrived. The following
operations take place: a) we search the stream 1 in the bucket lists of class
DUD, b) we delete it, c) we update PLA and d) we insert it in the bucket lists
of class DUDU. The stream 1 has the one before last PLA point at time 14.
We search for the bucket list in which tlmin and tlmax enclose time 14 (step
1 of search algorithm). This is the first list. The first list contains an over-
flow bucket so we must find the insertion time of the stream 1 (insertion time
algorithm). The stream 1 was inserted in this class either when a new PLA-
point was added (PLA(k − 1)-point + 1) or when the first segment expired
(W + PLA(0)-point - 1). The maximum of these two times is the time that
the stream was inserted. Therefore the insertion time is 18. We search in the
list, a bucket in which tbmin and tbmax enclose time 18 (step 3 of search al-
gorithm). This is the overflow bucket (figure 8). We delete stream 1 and then
we delete the bucket because is empty (delete algorithm). Then we update the
PLA of the stream. The new class is the DUDU class. Now the one before
the last PLA point is at time 20. Since the bucket lists of this class is not
empty (step 1 of the insert algorithm) and since the tlmax of the one before
the last bucket list is smaller than 20 (step 2), we check if the last bucket
list is full (step 3). In the Figure 9 we can see that the primary bucket of
this list is not full. So we update the tlmax (step 3) and the tbmax and we
insert the stream in the primary bucket of this list (step 5). The algorithms for
insert, search and delete are given in Figure 4, Figure 5 and Figure 7
respectively.
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Fig. 3. Example of search algorithm with bucket size 3

Algorithm. Insert

/* Determine the list to insert the stream */
1. If the corresponding class is empty, then a new list is created and the values tlmin and tlmax

are set to the time instance tn−1 of the (n − 1)-th PLA point.
2. Otherwise, check if tn−1 is less than the tlmax value of the last list. If yes, then the stream

identifier is inserted into one of the existing bucket lists. The appropriate bucket list is the list in
which the tlmin and tlmax enclose the tn−1.

3. Otherwise, check if the primary bucket of the last list is full. If the primary bucket is not full then
the stream is inserted into that list by updating the corresponding value tlmax. If the primary
bucket is full, a new bucket list is generated and the values tlmin and tlmax are set to the time
instance tn−1 of the (n − 1)-th PLA point.
/* Determine the bucket to insert the stream */

4. If the primary bucket of the current list does not exist, then a primary bucket is created and the
stream is inserted. The tbmin and tbmax values are updated with the current time.

5. If the primary bucket of the current list is not full, then the stream is inserted into that bucket
and the tbmax value is updated with the current time.

6. Otherwise the stream is inserted into the last overflow bucket of the list, by updating
accordingly the tbmax value. If the last overflow bucket is full, a new overflow bucket is generated.

Fig. 4. Insertion algorithm

Algorithm. Search

1. Determine the bucket list by checking for the values of tlmin and tlmax

that enclose the time instance tn−1 of the stream.
2. If the list contains only a primary bucket, then the stream identifier is found into that bucket.
3. If the list contains a number of overflow buckets, then by using the time instance that

the stream has been inserted (Fig. 6), the corresponding overflow bucket which
contains the stream is easily detected.

Fig. 5. Search algorithm

4 Performance Study

The proposed trend-based classification scheme has been implemented in C++,
and the experimental evaluation has been performed on a Pentium IV machine
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Algorithm. Insertion Time

1. Compute the time that the last expiration has occurred. The time is given by lastEXP=W +
PLA(0)-point - 1.

2. Compute the time that the last ADD operation has occurred. The time is given by lastADD=
PLA(k − 1)-point + 1.

3. The time that the stream has been inserted is given by max(lastEXP ,lastADD).

Fig. 6. Insertion Time algorithm

Algorithm. Delete

1. Call algorithm Search in order to determine the position of the stream.
2. Remove the stream identifier from the bucket.
3. If the bucket is empty it is removed.
4. If the bucket list is empty it is removed.

Fig. 7. Deletion algorithm

with 1GByte RAM running Windows 2000. Two real-life datasets with different
characteristics have been used:

– STOCKS: is the daily stock prices obtained from http://finance.yahoo.com.
The data set consists of 93 time sequences, and the maximum length of each
one is set to 3,000.

– TAO: this dataset (Tropical Atmosphere Ocean) contains the wind speed of
65 sites on Pacific and Atlantic Ocean since 1974, obtained from the Pa-
cific Marine Environmental Laboratory (http://www.pmal.noaa.gov/tao).
We have used the highest data resolution (e.g. the sampling time inter-
val) that was available. About 12,000 streams form the data set, and the
maximum length of each one is set to 1,000.

In the sequel we give the performance results for different parameter values for
the sliding window length (W ), the exponential moving average period (p), the
number of the streaming time series (N), the bucket size(B). The experiments
are divided into two categories. The first category studies the quality of the
clustering and the second studies the performance. We focus on two performance
measures: the computational cost required to perform continuous classification
and the memory requirements of the proposed approach because they are the
most important metrics in determining the effectiveness and the robustness of a
stream processing system. The CPU cost was measured in seconds. Finally, the
proposed method works both in cases where all the streams or part of them are
updated. For the experiments below, the first case was used.

4.1 Quality of PLA

The underlying idea of the approach is to cluster streams using an abstractive
representation of the streams that is closer to the ”human sense” despite using
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the values of the streams and the Euclidean distance or others distance met-
rics. In this section we examined the conforming between the piecewise linear
approximation of a stream and the general shape of a stream without micro
changes.

Next, we give some classification examples. Figure 8 shows classification pat-
terns and a sample of streams that are associated with each one. For each stream,
both the raw data and the PLA are illustrated. The classification instances are
peaked after a random number of updates. Notice that if we are not contented
with the representation, we can choose a greater p for a more abstractive de-
scription of the stream, or a smaller p for a more comprehensive description.

Fig. 8. Classification examples

Additionally, Figure 9 shows the number of clusters for different values of p
with respect to W for the TAO and STOCKS data sets. The term CL raw is
used for the possible number of clusters that is entirely depended on the window
size W . It was expected the number of clusters, that is actually used, is reduced
as the p is increased because less details are represented by the PLA. Therefore
some streams are moved in classes with smaller number of segments.

4.2 Performance Evaluation

We first examine the performance of the method with respect to window length.
Figure 10 illustrates the total CPU cost (10a) and the CPU cost to compute
the PLA of all streams for all the updates (10b) for the TAO data set. Different
values for p are used. From Figure 10, the total CPU cost is determined from
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the PLA CPU cost. The latter is independent from the window size due to the
use of the TRIX indicator.

Table 2 illustrates the total memory for the STOCKS data set and partial
memory prerequisites for the PLA representation and the classification structure.
Total memory is essentially affected by the PLA memory. The PLA memory is
increased as the window size increases.

Next we examine the performance of our method with respect to the number
of streams. Figure 11a depicts the CPU cost for all the streams (12145) and for
all the updates (about 700) for the TAO data set. The term TOTAL CPU is
used for the sum of the PLA and the classification CPU cost. The CPU cost
increases linearly with respect to the number of streams.

The memory prerequisites of the PLA per update for the TAO data set are
illustrated in Figure 11b. The term MEM raw is used for the memory prereq-
uisites of the raw data. Notice that the y-axis scales logarithmically. The PLA
memory increases steadily with respect to the number of streams but it is less
than the 10% of raw data memory.

To better understand the influence of the bucket size in the classification
method, Figure 3 shows the CPU cost and the memory prerequisites of the
classification method. Large bucket size reduces the memory prerequisites but
increases CPU cost, whereas a small bucket size has the opposite results. The
bucket size is a trade-off between memory resources and computation time.
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Table 2. Total CPU and classification memory vs bucket size

Window Size Total Classification PLA
memory (KB) memory (%) memory (%)

128 13013.797 28.6% 71.4%
324 16065.762 25.9% 74.1%
520 19059.859 23.9% 76.1%
716 21772.871 21.4% 78.6%
912 24441.957 19.6% 80.4%
1108 27129.715 18.1% 81.9%
1304 29934.621 17.2% 82.8%
1500 32726.527 16.5% 83.5%
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Fig. 11. a) CPU cost and b) memory prerequisites of PLA vs number of streams for
TAO

Table 3. Total CPU and classification memory vs bucket size

Bucket Size Total CPU Classification
memory (MB)

50 3.745 25.061
100 3.7842 14.803
200 3.6836 8.573
300 3.73 6.082
400 3.801 4.764
500 3.9377 3.876
600 4.0029 3.286

5 Conclusions and Future Work

Trend analysis of time evolving data streams is a challenging problem due to the
fact that the trend of a time series changes with respect to time. In this paper
we studied the problem of continuous trend-based classification of streaming time
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series, by using a compact representation for each stream and an in-memory
access method to facilitate efficient search, insert and delete operations. A piece-
wise linear approximation (PLA) has been used in order to determine the trend
curve of each stream. The PLA representation has been applied on a smoothed
version of each stream. We have used the TRIX indicator for smoothing. More-
over, a continuous classification method has been presented which reassigns a
stream to new trend class if necessary. Performance evaluation results based on
real-life datasets have shown the feasibility and the efficiency of the proposed
approach.

In the near future we plan to extend the current work towards continuous
clustering of streaming time series, by taking into account the similarity between
trend classes.
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