

Lecture Notes in Computer Science 3631
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Johann Eder Hele-Mai Haav
Ahto Kalja Jaan Penjam (Eds.)

Advances in Databases
and Information Systems

9th East European Conference, ADBIS 2005
Tallinn, Estonia, September 12-15, 2005
Proceedings

13

Volume Editors

Johann Eder
University of Klagenfurt, Department of Informatics Systems
Universitätsstrasse 65, 9020 Klagenfurt, Austria
E-mail: eder@isys.uni-klu.ac.at

Hele-Mai Haav
Ahto Kalja
Jaan Penjam
Tallinn University of Technology, Institute of Cybernetics
Akadeemia 21, 12618 Tallinn, Estonia
E-mail: {helemai,ahto,jaan}@cs.ioc.ee

Library of Congress Control Number: 2005932083

CR Subject Classification (1998): H.2, H.3, H.4, H.5, J.1

ISSN 0302-9743
ISBN-10 3-540-28585-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28585-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11547686 06/3142 5 4 3 2 1 0

Preface

The 9th East-European Conference on Advances in Databases and Information
Systems was held on September 12–15, 2005, in Tallinn, Estonia.

It was organized in a cooperation between the Institute of Cybernetics at
Tallinn University of Technology, the Department of Computer Engineering of
Tallinn University of Technology, and the Moscow chapter of ACM SIGMOD.

The main objective of the ADBIS series of conferences is to provide a fo-
rum for the dissemination of excellent research accomplishments and to promote
interaction and collaboration between the Database and Information Systems
research communities from Central and East European countries and the rest
of the world. The ADBIS conferences provide an international platform for the
presentation of research on database theory, the development of advanced DBMS
technologies, and their advanced applications in particular in information sys-
tems.

The 2005 conference continued the ADBIS conferences held in St. Peters-
burg (1997), Poznan (1998), Maribor (1999), Prague (2000), Vilnius (2001),
Bratislava (2002), Dresden (2003), and Budapest (2004). The conference con-
sisted of regular sessions with technical contributions reviewed and selected by
an international Program Committee, as well as of invited talks and tutorials
given by leading scientists.

For the first time the ADBIS conferences had a satellite event, a workshop
on data mining and knowledge discovery. The ADMKD 2005 workshop, with its
own international Program Committee as well as proceedings, served as a forum
to encourage researchers and practitioners to discuss and investigate data mining
research and implementation issues, and to share experience in developing and
deploying data mining systems.

The ADBIS series of conferences continues with growing interest as demon-
strated by the large number of 144 submitted papers from 40 countries from
all over the world. This volume contains one invited paper and 27 high-quality
papers selected in a rigorous reviewing process by the international Program
Committee with members from 27 countries. The papers cover a wide range
of topics of database and information systems research, in particular, database
theory, data modelling and query processing as well as database interoperability
and XML databases.

As a tradition, the next 19 papers from the PC ranking were accepted in a
be included to separate volume of research communications published by Tallinn
University of Technology Press as a local volume of ADBIS 2005 proceedings,
and published electronically in the CEUR Workshop Proceedings series:
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/.

Many people and organizations contributed to the success of ADBIS 2005.
Our thanks go to the authors and invited speakers for their outstanding con-

VI Preface

tribution to the conference and the proceedings. We very much acknowledge
the Program Committee members for their reviewing and for accepting a heavy
workload. Our thanks go also to the additional referees who carefully reviewed
the submissions. Without the willingness and enthusiasm of many scientists shar-
ing their expertise and voluntarily donating their time for thoroughly evaluating
the merits of submitted work, this conference would not have been possible.

We wish to thank all the organizing team and our sponsors, who made the
conference possible. Our special thanks go to Ms. Kristiina Kindel for maintain-
ing the ADBIS 2005 Web site and Mr. Rein Lõugas for the technical preparation
of the manuscript of the conference proceedings.

Last but not least, we are grateful to Springer for supporting the publication
of the ADBIS 2005 proceedings in their LNCS series.

September 2005 Johann Eder
Hele-Mai Haav

Ahto Kalja
Jaan Penjam

Conference Organization

General Chair

Jaan Penjam (Institute of Cybernetics at Tallinn University of Technology,
Estonia)

General Co-chair

Ahto Kalja (Department of Computer Engineering of Tallinn University of
Technology, Estonia)

Program Committee Co-chairs

Johann Eder (University of Klagenfurt, Austria)
Hele-Mai Haav (Institute of Cybernetics at Tallinn University of Technology,

Estonia)

Program Committee

Antonia Albani
Luciano Baresi
Janis Barzdins
Andras Benczur
Maria Bielikova
Juris Borzovs
Sjaak Brinkkemper
Bostjan Brumen
Albertas Caplinskas
Wojciech Cellary
Asuman Dogac
Johann Eder
Remigijus Gustas
Hele-Mai Haav
Mirjana Ivanovic
Hannu Jaakkola
Leonid Kalinichenko
Ahto Kalja
Marite Kirikova
Mikhail Kogalovsky

Christoph Koch
Christian Koncilia
John Krogstie
Rein Kuusik
Peri Loucopoulos
Kalle Lyytinen
Yannis Manolopoulos
Rainer Manthey
Saulius Maskeliunas
Mihhail Matskin
Misha Missikoff
Tadeusz Morzy
Pavol Navrat
Nikolay Nikitchenko
Kjetil Norvag
Boris Novikov
Thimios Panagos
Torben Bach Pedersen
Jaan Penjam
Jaroslav Pokorny

VIII Organization

Henrikas Pranevichius
Boris Rachev
Jolita Ralyte
Gunter Saake
Klaus-Dieter Schewe
Joachim Schmidt
Vaclav Snasel
Dan Suciu
Eva Söderström
Kuldar Taveter

Jaak Tepandi
Bernhard Thalheim
Olegas Vasilecas
Victor Vianu
Gottfried Vossen
Tatjana Welzer
Viacheslav Wolfengagen
Robert Wrembel
Alexander Zamulin

ADBIS Steering Committee

Chairman: Leonid Kalinichenko (Russian Academy of Science, Russia)

Andras Benczur (Hungary)
Radu Bercaru (Romania)
Albertas Caplinskas (Lithuania)
Johann Eder (Austria)
Janis Eiduks (Latvia)
Hele-Mai Haav (Estonia)
Mirjana Ivanovic (Yugoslavia)
Mikhail Kogalovsky (Russia)
Yannis Manolopoulos (Greece)
Rainer Manthey (Germany)

Tadeusz Morzy (Poland)
Pavol Navrat (Slovakia)
Boris Novikov (Russia)
Jaroslav Pokorny (Czech Republic)
Boris Rachev (Bulgaria)
Anatoly Stogny (Ukraine)
Bernhard Thalheim (Germany)
Tatjana Welzer (Slovenia)
Viacheslav Wolfengagen (Russia)

Organizing Committee

Eve Kann, Kristina Kindel, Sulev Kuiv, Rein Lõugas, Marje Tamm (Institute of
Cybernetics at Tallinn University of Technology, Estonia)

Marion Lepmets, Tarmo Robal (Department of Computer Engineering, Tallinn
University of Technology, Estonia)

Additional Referees

B. Akcay
A. Ansper
S. Apel
M. Aziz
G.B. Laleci
G. Barzdins
P. Bertolazzi
V. Bicer
S. Bossung
A. Buldas
R. Butleris
D. Buy
E. Celms
J. Chmielewski
V. Derballa
L. Dmitriy

M. Družovec
D. Eleyan
F.A. Ferrarotti
M. Freudenthal
L. Galambos
M. Garcia
I. Geist
G. Gidofalvi
A. Glazs
S. Hagemann
S. Hartmann
T. Herstel
H. Höpfner
P. Hupe
A. Imada
M. Janssen

X Organization

Y. Kabak
I. Karydis
A. Kaya
M. Kirchberg
A. Kiss
S. Klöckner
V. Kotkas
J. Laucius
J. Lechtenbörger
T. Leich
N. Leonid
C. Letz
J. Løland
W.M.N. Wan Kadir
W. Martens
N. Mehandjiev
T. Namli
A. Nanopoulos
L. Nemuraite
L. Novak
A. Okcan
M. Olduz
B. Paradauskas
I. Petrounias Karlis Podnieks

P.R.F. Sampaio
M. Rekouts
F. Riaz-ud-Din
A. Riha
F. Rizzolo
P. Rusakovs
J. Rykowski
S. Scherzinger
I. Schmitt
A. Schneidewind
H.-W. Sehring
T. Skopal
F. Taglino
C. Thomsen
I. Timko
L. Tininini
A. Tretiakov
V. Tulit
S. Unal
J. Vain
A. Vakali
M. Vassilakopoulos
P. Vassiliadis
M. Zemlicka

Table of Contents

Invited Paper

XML Databases and Beyond-Plenty of Architectural Challenges Ahead
Theo Härder . 1

Regular Papers

Database Theory

Usable Recursive Queries
Tomasz Pieciukiewicz, Krzysztof Stencel, Kazimierz Subieta 17

Relation-Collapse: An Optimisation Technique for the Similarity
Algebra SA

Thomas Herstel, Ingo Schmitt . 29

On Modal Deductive Databases
Linh Anh Nguyen . 43

Declarative Data Fusion – Syntax, Semantics, and Implementation
Jens Bleiholder, Felix Naumann . 58

Non-destructive Integration of Form-Based Views
Jan Hidders, Jan Paredaens, Philippe Thiran, Geert-Jan Houben,
Kees van Hee . 74

Database Modelling and Physical Database Design

A Multi-version Data Model and Semantic-Based Transaction
Processing Protocol

Alexander Yakovlev . 87

Managing Schema Versions in Object-Oriented Databases
Xian Liu, David Nelson, Simon Stobart, Sue Stirk 97

Efficient Integrity Checking for Databases with Recursive Views
Davide Martinenghi, Henning Christiansen . 109

XII Table of Contents

A Formal Model for the Problem of View Selection for Aggregate Queries
Jingni Li, Zohreh Asgharzadeh Talebi, Rada Chirkova,
Yahya Fathi . 125

Efficient Main-Memory Algorithms for Set Containment Join Using
Inverted Lists

Dmitry Shaporenkov . 139

Query Processing

VA-Files vs. R*-Trees in Distance Join Queries
Antonio Corral, Alejandro D’Ermiliis, Yannis Manolopoulos,
Michael Vassilakopoulos . 153

The Expressivity of Constraint Query Languages with Boolean Algebra
Linear Cardinality Constraints

Peter Revesz . 167

Heterogeneous Databases and Interoperability

Extensible Canonical Process Model Synthesis Applying Formal
Interpretation

Leonid Kalinichenko, Sergey Stupnikov, Nikolay Zemtsov 183

Location Awareness of Information Agents
Merik Meriste, Jüri Helekivi, Tõnis Kelder, Andres Marandi,
Leo Mõtus, Jürgo Preden . 199

XML and Databases

Algebraic Semantics of XML Schema
Leonid Novak, Alexandre Zamulin . 209

Efficient XPath Evaluation
Bing Wang, Ling Feng, Yun Shen . 223

A Prototype for Translating XQuery Expressions into XSLT Stylesheets
Niklas Klein, Sven Groppe, Stefan Böttcher, Le Gruenwald 238

Combining Tree Structure Indexes with Structural Indexes in Query
Evaluation on XML Data

Attila Kiss, Vu Le Anh . 254

Table of Contents XIII

A DataGuide-Based Concurrency Control Protocol for
Cooperation on XML Data

Peter Pleshachkov, Petr Chardin, Sergey Kuznetsov 268

Data Mining and Knowledge Discovery

Mining Fuzzy Classification Rules Using an Artificial Immune System
with Boosting

Bilal Alatas, Erhan Akin . 283

Continuous Trend-Based Classification of Streaming Time Series
Maria Kontaki, Apostolos N. Papadopoulos, Yannis Manolopoulos . . . 294

Information Systems and Software Engineering

Conceptual Content Management for Software Engineering Processes
Sebastian Bossung, Hans-Werner Sehring, Michael Skusa,
Joachim W. Schmidt . 309

Using Step-Wise Refinement to Build a Flexible Lightweight
Storage Manager

Thomas Leich, Sven Apel, Gunter Saake . 324

BiChord: An Improved Approach for Lookup Routing in Chord
Junjie Jiang, Ruoyu Pan, Changyong Liang, Weinong Wang 338

Information Systems Development

On Business Rules Automation: The BR-Centric IS Development
Framework

Irma Valatkaite, Olegas Vasilecas . 349

CFP Taxonomy of the Approaches for Dynamic Web Content
Acceleration

Stavros Papastavrou, George Samaras, Paraskevas Evripidou,
Panos K. Chrysanthis . 365

Long-Term Temporal Data Representation of Personal Health Data
Tore Mallaug, Kjell Bratbergsengen . 379

Author Index . 393

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 1 – 16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XML Databases and Beyond-
Plenty of Architectural Challenges Ahead

Theo Härder

University of Kaiserslautern, D-67653 Kaiserslautern, Germany
haerder@informatik.uni-kl.de

Abstract. A key observation is that the invariants in database management
determine the mapping steps of the supporting architecture. Referring to the
multi-layered architecture of record-oriented database management systems
(DBMSs), we sketch the advances made during the past decades. Then, we
explore the ways how this proven architecture can be used to implement
XML DBMSs (XDBMSs). Major changes and adaptations are needed in
most of the layers to support fine-grained XML document processing
(XDP). The use of DeweyIDs opens a new paradigm for the management
of XML document trees: While preventing node relabeling, even in case
arbitrary large subtrees are inserted into an XML document, DeweyIDs
offer great benefits for efficient navigation in the document trees, for
declarative query processing, and for fine-grained locking thereby avoiding
access to external storage as far as possible. The proposed architecture also
captures horizontal and vertical distribution of XML processing.
Nevertheless, new architectural models are needed beyond record-oriented
data types.

1 Introduction

Data independence is accomplished by the data model through set orientation and
value-based, declarative requests together with the database management system
(DBMS) implementing it. A high degree of logical and physical data independence is
urgently needed to provide a flexible view mechanism thereby insulating the users,
e.g., application programs, from DB schema evolution and to let the DBMS “survive”
the permanent change in computer science in general and in the DB area in particular.
Furthermore, DBMSs have a lifetime >20 or even >30 years. Therefore, far-reaching
requirements concerning the extensibility and evolution of a DBMS are abundant:
growing information demand led to enhanced standards with new object types,
constraints, etc.; advances in research and development bred new storage structures
and access paths, etc.; rapid changes of the technologies used and especially Moore’s
law strongly affected storage devices, memory, connectivity (e.g., Web), and so on.

We could already experience that a multi-layered hierarchical DBMS architecture
is appropriate to fulfil the design objectives of data independence and to enable long-
term system evolution and flexible extensibility as far as relational and object-

2 T. Härder

relational data models and their implementations are concerned [8]. For this reason,
we believe that it is a good starting point for architectural considerations of DBMSs
beyond them.

Table 1. Description of the DBMS mapping hierarchy

Level of abstraction Objects Auxiliary mapping data

L5
Nonprocedural or
algebraic access

Tables, views, tuples Logical schema description

L4
Record-oriented,

navigational access
Records, sets,

hierarchies, networks
Logical and physical
schema description

L3
Record and access
path management

Physical records,
access paths

Free space tables, DB-key
translation tables

L2 Propagation control Segments, pages DB buffer, page tables

L1 File management Files, blocks Directories, VTOCs, etc.

1.1 The History of the Layer Model

Mike Senko developed initial architectural concepts named Data Independent
Accessing Model [18]. DIAM consists of four hierarchically layered levels called
entity set model, string model, encoding model, and physical device level model.
Some years later, Härder and Reuter refined these ideas and proposed a mapping
model or reference architecture consisting of five hierarchical layers which should
cooperate as "abstract machines" and achieve a high degree of information hiding
among them to facilitate evolution and extensibility. As depicted in Table 1 [11], the
architectural description embodies the major steps of dynamic abstraction from the
level of physical storage up to the user interface. At the bottom, the database consists
of huge volumes of bits stored on non-volatile storage devices, which are interpreted
by the DBMS into meaningful information on which the user can operate. With each
level of abstraction (proceeding upwards), the objects become more complex,
allowing more powerful operations and being constrained by a growing number of
integrity rules. The uppermost interface supports a specific data model, in our case by
data access via SQL.

1.2 Major Extensions and Optimizations

While the explanation model concerning the DBMS architecture is still valid, an
enormous evolution/progress has been made during the last two decades concerning
functionality, performance, and scalability. The fact that all these enhancements and
changes could be adopted by the proposed architecture is a strong indication that we

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 3

refer to a salient DBMS model. We cannot elaborate on all extensions, let alone to
discuss them in detail, but we want to sketch some major improvements/changes.

Layer L1 was enhanced by the necessary functionality to attach and operate many
new types of storage devices such as SSDs, Worms, DVDs. Furthermore, specialized
mapping functions allowed tailored clustering measures or LOB representation on
external storage. Disk arrays with various forms of interleaving supported schemes
with adjustable degrees of redundancy (e.g., the RAID project) and enabled
declustering of objects at various levels to provide for parallel access.

At layer L2, Moore’s Law increased the available memory for DB buffers by a
factor of 104 within the past 20 years thereby achieving an optimization by default.
Use of improved replacement algorithms—exploiting reference density combined
with LRU (e.g., LRU-K)—, prefetching and pipelined execution in case of scan-based
DB processing, etc. greatly improved DB buffer efficiency. Furthermore, configuring
a set of buffers (for example, up to 80 in DB2) to separate workloads of different
types and optimized to specific data types further boosted performance behavior at
level L2.

Of all access path structures, which could potentially fill level L3, the dominant
one is still the ubiquitous B-tree. Despite a "firestorm" of research resulting in a few
hundred proposals of novel index structures, the B- or B*-tree seem to be sufficient to
cover all practical needs. At best, a few other structures such as UB-tree, R-tree, or
Grid file are integration candidates for specialized access support. Indeed, the most
dramatic performance enhancements at this architectural layer are due to fine-grained
locking methods, in particular, applied to index structures, i.e., to B*-trees [16].

To mention a few optimization measures applied at level L4 and referring to the
access paths of L3: selection and join algorithms utilizing TIDs of existing indexes
thereby avoiding physical I/O as much as possible, hash joins which may also
dramatically reduce access to external storage, and adaptive algorithms of various
kinds which support load balancing and optimized throughput. Such adaptive
techniques include setting or adjusting the degree of parallelism depending on the
current workload, reordering and merging ranges to optimize repeated probes into an
index, sharing scans among multiple queries, and so on [4].

Compilation and optimization of queries embodies the major functionality of L5.
Although the quality of the optimizer—as a kind of landmark concept of a DBMS—
has greatly improved in the course of the past two decades, e.g., by using refined
statistics and histograms, there still remain open problems and even emerge new
challenges. For example, user-defined types have to carry their own cost model to be
integrated by cost-based optimizers. Furthermore, effective optimizers for dynamic
QEPs (query execution plans) must address the problems of changes in resource
availability or at least provide for dynamic plans with alternative algorithms or
alternative plan shapes [4].

1.3 The Search for Future DBMS Architectures

The architectural layers sketched so far perfectly match the invariants of set-oriented,
record-like database management: storage management (L1 and L2), access path and

4 T. Härder

record management (L3), compilation, optimization, and evaluation of queries (L4
and L5). During the recent decade, integration efforts for functionality not fitting into
this framework were primarily based on a kind of loose coupling of components—
called Extenders, DataBlades, or Cardridges—and a so-called extensibility
infrastructure. Because these approaches could neither fulfil the demands for seamless
integration nor the overblown performance and scalability expectations, future
solutions may face major changes in the architecture.

A hot topic of research is the appropriate integration of XML document
management, because messages are data, too. Questions controversially discussed so
far are "Will the DBMSs of the future be hybrids, storing both relational and XML?"
or "Will everything be stored in XML format?" making myriads of SQL systems
"legacy applications". Besides hybrid architectures, which map XML documents and
tables by separate storage and access systems and support coexistence/combination of
DB requests of both kinds, a futuristic scenario motivated by the questions above was
discussed in ROX: Relational over XML [15] to support SQL APIs as well as XDP
interfaces. While XML operations on native XML structures are the target of
optimization in XDBMSs, such future DBMS architectures represent mixed SQL and
XQuery systems to run SQL applications on native XML or on hybrid structures
concurrently.

A key observation of relational DBMS architectures is that the invariants in
database management determine the mapping steps of the supporting architecture.
Because of the record-oriented nature of fine-grained management of XML
documents the invariants of XDP are, at least, similar to the relational ones.
Therefore, we explore in Section 2 the ways how the original layer model has to be
adjusted to serve for the description and explanation of XDBMS implementations. In
Section 3, we consider variants of this model to be applied to data management
scenarios where horizontal and vertical distribution of XML database processing is
needed. Section 4 sketches a number of new data types which cannot be smoothly
integrated into the architectural framework and argues about the need for enhanced
adaptivity and dependability properties for future DBMSs. Finally, we conclude with
some brief remarks in Section 5.

2 Architectural Requirements for XML Databases

Currently available relational or object-relational (O)RDBMSs only manage
structured data well. There is no effective and straightforward way for handling XML
data. This is obviously true when simple CLOB types have to be used. In particular,
searching of XML documents becomes prohibitively slow. But also more refined
mappings do not lead to good solutions per se: An innumerable number of algorithms
[19] has been proposed for the mapping of semi-structured XML data to structured
relational database tables and columns (the so-called "shredding"). All these
approaches have failed to efficiently support the wide spectrum of DB applications
and to guarantee satisfactory performance in high-performance transaction
environments. Furthermore, as XML documents permeate information systems and

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 5

databases with increasing pace, they are more and more used in a collaborative way.
If you run today an experiment on existing DBMSs with collaborative XML
documents, you may experience a "performance catastrophe" meaning that most
transactional operations are processed in strict serial order. The challenge for database
system development is to provide adequate and fine-grained management for these
documents enabling efficient and concurrent read and write operations. Therefore,
future XML DBMSs will be judged according to their ability to achieve high
transaction parallelism.

2.1 XTC Architecture

First attempts to provide for DB-based XML processing focused on using the lower
layer features of relational DBMSs such that roughly the access and storage system
layers were reused and complemented by the data system functionality tailored to the
demands of the XML data model (e.g., DOM, SAX, XQuery); this implied the
mapping (called “shredding”) of XML document structures onto a set of tables.

Transaction Services

File Services
I/O Manager Temp File Manager

Propagation Control
Buffer Manager

Access Services
Index Manager Catalog Manager

Record Manager

Node Services
Node Manager

Transaction Manager

Lock Manager

XML Services
XML ManagerXPath Processor XSLT Processor

Interface Services
Http Agent Ftp Agent DOM RMI SAX RMI API RMI

OS File System Transaction Log File Container Files Temp Files

Fig. 1. XTC system – overview

Although viable within our five-layer architecture (by reusing L1 to L4), this idea
had serious performance trade-offs, mainly in the areas of query optimization and
concurrency control. New concepts and implementation techniques in the reused
layers are required to achieve efficient query processing. For these reasons, so-called
native XML DBMSs emerged in recent years, an architectural example of which is
illustrated in Fig. 1. The current state of the XTC architecture (XML Transaction

6 T. Härder

Coordinator [12]) perfectly proves that native XDBMSs can be implemented along
the lines of our five-layer architecture.

2.2 Storage and Buffer Management

At the layers L1 and L2, reuse of concepts as described in Section 1.2 is obvious.
Hence, we can more or less adopt the mechanisms proven in relational DBMS
implementations and adjust them to the specific needs of XML document
representations. In summary, our storage layer offers an extensible file structure based
on the B*-tree mechanism as a container of single XML documents such that updates
of an XML document (by IUD operations) can be performed on any of its nodes. We
have shown that a very high degree of storage occupancy (> 96%) for XML
documents is achieved under a variety of different update workloads.

Although the functionality in the remaining three layers is comparable at an
abstract level, the objects and the specific implementation methods exhibit strong
distinctions. Due to space restrictions, we can only focus on some new important
aspects.

2.3 Access Services

Efficient and effective processing and concurrent operations on XML documents are
greatly facilitated, if we use a specialized internal representation, which enables fine-
granular management and locking. For this reason, we have implemented in our XTC
system the taDOM storage model illustrated in Fig. 3 as a slight extension of the
XML tree representation defined in [21]. In contrast to the DOM tree, we do not
directly attach attributes to their element node, but introduce separate attribute roots,
which connect the attribute nodes to the respective elements. String nodes are used to
store the actual content of an attribute or a text node. Via the DOM API, this
separation enables access of nodes independently of their value. Our representational
enhancement does not influence the user operations and their semantics on the XML
document, but is solely exploited by the lock manager to achieve certain kinds of
optimizations.

Most influential for an access model to the tree nodes of an XML document is a
suitable node-labeling scheme for which several candidates have been proposed in the
literature. While most of them are adequate to label static XML documents, the design
of schemes for dynamic documents allowing arbitrary insertions within the tree—free
of reorganization, i.e., no reassignment of labels to existing nodes—remains a
challenging research issue. The existing approaches can be classified into range-based
and prefix-based labeling schemes. While range-based schemes consisting of
independent numbering elements (e.g., DocID, startPos: endPos, level, see [1]) seem
to be less amenable to algorithmic use and cannot always avoid relabeling in case of
node insertions, prefix-based schemes seem to be more flexible. We believe that they
are at least as expressive as range-based schemes, while they guarantee stability of
node IDs under arbitrary insertions, in addition. In particular, we favor a scheme
supporting efficient insertion and compression while providing the so-called Dewey
order (defined by the Dewey Decimal Classification System). Conceptually similar to

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 7

the ORDPATH scheme [17], our scheme refines the mapping and solves practical
problems of the implementation.

Fast access to and identification of all nodes of an XML document is mandatory to
enable effective indexing primarily supporting declarative queries and efficient
processing of direct-access methods (e. g., getElementById()) as well as navigational
methods (e. g., getNextSibling()). For this reason, we have implemented the node
labeling scheme whose advantages should be illuminated by referring to Fig.2. For
example, a DeweyID is 1.3.4.3.5 which consists of several so-called divisions
separated by dots (in the human readable format). The root node of the document is
always labeled by DeweyID 1 and consists of only a single division. The children
obtain the DeweyID of their parent and attach another division whose value increases
from left to right. To allow for later node insertions at a given level, we introduce a
parameter distance which determines the gap initially left free in the labeling space.
In Fig.3, we have chosen the minimum distance value of 2. Furthermore, assigning at
a given level a distance to the first child, we always start with distance + 1, thereby
reserving division value 1 for attribute roots and string nodes (illustrated for the
attribute root of 1.3 with DeweyID 1.3.1). Hence, the mechanism of the Dewey order
is quite simple when the IDs are initially assigned, e.g., when all nodes of the
document are bulk-loaded.

1

book

Stevens

TCP/IP...

1994
65,95

W.

T

T

T

T

1

1.3

1.3.4.3 1.3.5

1.3.5.3

1.3.3
title

1.3.3.3

1.3.3.3.1

1.3.1

1.3.1.3 1.3.1.5
year

1.3.1.3.1

id

1.3.1.5.1

1.3.4.3.3.3.1

1.3.4.3.5.3.1

author price

last first

1.3.4.3.5.3

1.3.4.3.3

1.3.5.3.1

1.3.4.3.5

1.3.4.3.3.3

1.71.5

bib

bookbook

T

element

attribute root

attribute

text node

string node

. . .
publisher

last

1.7.3

1.7.3.3

Fig. 2. A sample taDOM tree labeled with DeweyIDs

In the above tree example, the author node is inserted later within the gap 1.3.3 to
1.3.5. Because arbitrary many nodes may be inserted into any gap, we need a kind of
overflow mechanism indicating that the labeling scheme remains at the same level
when an odd division value is not available anymore for a gap. Thus, we reserve even
division values for that purpose; they may occur consecutively (depending on the

8 T. Härder

insertion history) where an uninterrupted sequence of even values just states that the
same labeling level is kept [13].

The salient features of a scheme assigning a DeweyID to each tree node include the
following properties: Referring to the DeweyID of a node, we can determine the level
of the node in the tree and the DeweyID of the parent node. Hence, we can derive its
entire ancestor path up to the document root without accessing the document. By
comparing the DeweyIDs of two nodes, we can decide which node appears first in the
document’s node order. If all sibling nodes are known, we can determine the exact
position of the node within the
document tree. Furthermore, it is
possible to insert new nodes at
arbitrary locations without
relabeling existing nodes. In
addition, we can rapidly figure out
all nodes accessible via the typical
XML navigation steps, if the nodes
are stored in document order, i.e., in
left-most depth-first order.

Fast (indexed) access to each
node is provided by variants of B*-
trees tailored to our requirements of
node identification and direct or
relative location of any node. Fig.
3a illustrates the storage structure—
consisting of document index and
document container as a set of
chained pages—for the sample
XML document of Fig. 2, which is
stored in document order; the key-value pairs within the document index are
referencing the first DeweyID stored in each container page. Additionally to the
storage structure of the actual document, an element index is created consisting of a
name directory with all element names occurring in the XML document (Fig. 3b); for
each specific element name, in turn, a node-reference index is maintained which
addresses the corresponding elements using their DeweyIDs. In all cases, variable-
length key support is mandatory; additional functionality for prefix compression of
DeweyIDs is very effective. Because of reference locality in the B*-trees while
processing XML documents, most of the referenced tree pages (at least the ones
belonging to the upper tree layers) are expected to reside in DB buffers—thus
reducing external accesses to a minimum.

2.4 Node Services—Support of Navigation, Query Evaluation, and Locking

Selection and join algorithms based on index access via TID lists together with the
availability of fine-grained index locking boosted the performance of DBMSs [8],
because they reduced storage access and minimized blocking situations for concurrent

Fig. 3. Document storage using B*-trees

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 9

transactions as far as possible. Both factors are even more critical in XDBMS. Hence,
when designing such a system, we have to consider them very carefully.

Using the document index sketched in Fig. 3, the five basic navigational axes
parent, previous-sibling, following-sibling, first-child, and last-child, as specified in
DOM [21], may be efficiently evaluated—in the best case, they reside in the page of
the given context node cn. When accessing the previous sibling ps of cn, e.g., node
1.5 in Fig. 2, an obvious strategy would be to locate the page of 1.5 requiring a
traversal of the document index from the root page to the leaf page where 1.5 is
stored. This page is often already present in main memory because of reference
locality. From the context node, we check all IDs backwards, following the links
between the leaf pages of the index, until we find ps—the first ID with the same
parent as cn and the same level. All IDs skipped along this way were descendants of
 ps. Therefore, the number of pages to be accessed depends on the size of the subtree
having ps as root. An alternative strategy avoids this unwanted dependency: After the
page containing 1.5 is loaded, we inspect the ID d of the directly preceding node of
1.5, which is 1.3.5.3.1. If ps exists, d must be a descendant of ps. With the level
information of cn, we can infer the ID of ps: 1.3. Now a direct access to 1.3 suffices
to locate the result. The second strategy ensures independence from the document
structure, i.e., the number of descendants between ps and cn does not matter anymore.
Similar search algorithms for the remaining four axes can be found. The parent axis,
as well as first-child and next-sibling can be retrieved directly, requiring only a single
document index traversal. The last-child axis works similar to the previous-sibling
axis and, therefore, needs two index traversals in the worst case.

For declarative access via query
languages like XQuery, a set-at-a-time
processing approach—or more
accurately, sequence-at-a-time—and the
use of the element index promise in some
cases increased performance over a
navigational evaluation strategy.
Nevertheless, the basic DOM primitives
are a fallback solution, if no index
support is available. To illuminate the
element index use for declarative access,
let us consider a simple XQuery predicate
that only contains forward and reverse
step expressions with name tests:
axis1::name1/.../axisN::nameN. XQuery
contains 13 axes, 8 of which span the
four main dimensions in an XML
document: parent–child, ancestor–
descendant, preceding-sibling–following-
sibling, and preceding–following. For
each axis, we provide an algorithm that
operates on a duplicate-free input
sequence of nodes in document order and

phase 1: creation of a hash table
HT
HT(1.3)=1.3.3

HT(1.3.5.3)=1.3.5.

HT(1.3.5)=1.3.5.5

HT(1.3.9.3)=1.3.9.

input
1.3.3
1.3.5
1.3.5.3.3
1.3.5.3.5
1.3.5.5
1.3.7
1.3.9.3.5
1.3.9.3.7

Fig. 4. Following-sibling algorithm

10 T. Härder

produces an output sequence with the same properties and containing for the specified
axis all nodes which passed the name test. Therefore, the evaluation of axes is closed
in this group of algorithms and we can freely concatenate them to evaluate path
expressions having the referenced structure. Our evaluation strategy follows the idea
of structural joins [1] adjusted to DeweyIDs, and additionally expanded to support the
preceding-sibling–following-sibling and preceding–following dimensions.

Let us consider the following-sibling axis as an example. In Fig. 4, the nodes of the
input sequence P, which may be the result of a former path step, are marked in a dark
shade. Furthermore, the sequence of nodes F in our document that satisfy the name
test for the current evaluation of the following-sibling axis carry the letter 'n'. The
DeweyIDs of these nodes are retrieved using the element index. A problem of using
the following-sibling axis is the possible generation of duplicates. For example, node
1.3.9 qualifies as a following-sibling for nodes 1.3.3, 1.3.5, and 1.3.7. Because
duplicate removal is an expensive operation, our strategy is to avoid duplicates in the
first place. The evaluation algorithm works as follows: In a first phase, input P is
processed in document order. For each DeweyID d, a pair (key, value) as (parent(d),
d) is added to a hash table HT. If parent(d) is already present in HT, d can be skipped.
Because we process P in document order, only the first sibling among a group of
siblings is added to HT. In the second phase, we iterate over F and probe each ID f
against HT. If parent(f) is contained in HT, we simply compare whether or not f is a
following-sibling of HT(parent(f)). This comparison can easily be done by looking at
the two DeweyIDs. Assume, the parent of f=1.3.5.3.5 is contained in HT and f is a
following-sibling of HT(1.3.5.3), then f will be included into the result sequence. For
ID f=1.3.9.3.3, this test fails, because f is not a following-sibling of 1.3.9.3.5. F is
processed in document order, therefore, the output also obtains this order. Similar
evaluation algorithms are provided for all other axes.

Fine-grained concurrency control is of outmost importance for collaborative use of
XML documents. Although predicate locking of XQuery and XUpdate-like
statements [21] would be powerful and elegant, its implementation rapidly leads to
severe drawbacks such as the need to acquire large lock granules, e.g., for predicate
evaluations as shown in Fig. 4, and undecidability problems—a lesson learned from
the (much simpler) relational world. To provide for a multi-lingual solution, we
necessarily have to map XQuery operations to a navigational access model to
accomplish fine-granular concurrency control. Such an approach implicitly supports
other interfaces such as DOM, because their operations correspond more or less
directly to a navigational access model. Therefore, we have designed and optimized a
group of lock protocols explicitly tailored to the DOM interfaces which are absolutely
complex—20 lock modes for nodes and three modes for edges together with the
related compatibilities and conversion rules—, but for which we proved their
correctness [12] and optimality 1[14].

1 By using so-called meta-synchronization, XTC maps the meta-lock requests to the actual

locking algorithm which is achieved by the lock manager’s interface. Hence, exchanging the
lock manager’s interface implementation exchanges the system's complete XML locking
mechanism. In this way, we could run XTC in our experiments with 11 different lock
protocols. At the same time, all experiments were performed on the taDOM storage model
optimized for fine-grained management of XML documents.

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 11

2.5 Query Compilation and Optimization

The prime task of layer L5 is to produce QEPs, i.e., to translate, optimize, and bind
the multi-lingual requests—declarative as well as navigational—from the language
models to the operations available at the logical access model interface (L4). For
DOM and SAX requests, this task is straightforward. In contrast, XQuery or XPath
requests will be a great challenge for cost-based optimizers for decades. Remember,
for complex languages such as SQL:2003 (simpler than the current standard of
XQuery), we have experienced a never-ending research and development history—for
30 years to date—and the present optimizers still are far from perfect. For example,
selectivity estimation is much more complex, because the cardinality numbers for
nodes in variable-depth subtrees have to be determined or estimated. Furthermore, all
current or future problems to be solved for relational DBMSs [4] will occur in
XDBMSs, too.

3 Architectural Variants

Because the invariants in database management determine the mapping steps of the
supporting architecture, we can also use our architectural framework in new data
management scenarios where XDBMSs are involved, as long as the basic invariants
still hold true: page-oriented mapping to external storage, management of record-
oriented data, set-oriented/navigational data processing. Similar to the scenarios
evolved in the past for relational database management, equivalent ones may emerge
in the future, in case XDBMSs gain the momentum in the market.

3.1 Horizontal Distribution of XDBMS Processing

A variety of DB processing scenarios can be characterized as the horizontal
distribution of the entire DB functionality and of partitioned/replicated data to
processing nodes connected by a network. As a consequence, the core requirements
remain, leading to a simplified architectural model sketched in Fig. 5, which consists
of identical layered models for every node together with a connection layer
responsible for communication, adaptation, or mediation services. In an
implementation, this layer could be integrated with one of the existing layers or
attached to the node architecture to encapsulate it for the remaining system.

For these reasons, our layer model can serve as a framework for the
implementation of XDBMS variants for architectural classes such as Shared Nothing,
Shared Disk, and Parallel DBMSs, because all of them have to run identical
operations in the various layers. Adaptation of processing primarily concerns the
handling of partitioning or replication and, as a consequence, issues of invalidation,
synchronization, and logging/recovery.

When heterogeneity of the data models or autonomy of database systems comes
into play, the primary tasks of the connection layer are concerned with adaptation and
mediation. Federated XDBMSs could represent the entire spectrum of possible data
integration scenarios and would need an adjustment of the DB requests at the level of

12 T. Härder

the data model or a compensation of functionality not generally available. As opposed
to distributed homogeneous XDBMSs, some users (transactions) may only refer to a
local view thereby abstaining from federated services, while, at the same time, other
users exploit the full services of the data federation. The other extreme case among
the federation scenarios is represented by Multi-XDBMSs, for which the connection
layer primarily takes over the role of a global transaction manager passing unmodified
DB requests to the participating DB servers.

3.2 Vertical Distribution of XDBMS Processing

Our layer model also fits to client/server database processing. In this category, the
major concern is to make XDBMS processing capacity available close (or at least
closer) to the application of the client (computer). So far, client/server DBMSs are
used in applications relying on long-running transactions with a checkout/checkin
mechanism for (versioned) data. Hence, the underlying data management scenarios
are primarily tailored to engineering applications. Object-oriented DBMS distinguish
between file servers, object servers, and query servers: the most sophisticated ones are
the query servers. Their real challenge is declarative, set-oriented query processing
thereby using the current content of the query result buffer [3].

access services

compilation, optimi-

storage & buffer

communication�/�adaptation�/�mediation

. . .

management

zation & evaluation

access services

compilation, optimi-

storage & buffer
management

zation & evaluation

Fig. 5. Horizontal XDBMS distribution

Until recently, query processing in such buffers was typically limited to queries
with predicates on single tables (or equivalent object types). Now, a major
enhancement is pursued in scenarios called database caching. Here, full-fledged
DBMSs, used as frontend DBs close to application servers in the Web, take over the
role of cache managers for a backend DB. As a special kind of vertical distribution,
their performance-enhancing objective is to evaluate more complex queries in the
cache which, e.g., span several tables organized as cache groups by equi-joins [10].
The magic concept is predicate completeness where the DBMS (i.e., its cache
manager) has to guarantee that all objects required for the evaluation of a query

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 13

predicate are present in the cache and are consistent with the DB state in the backend
DB. So far, these concepts are explored for relational models, e.g., SQL. However, we
have observed that the idea of predicate completeness can be extended to other types
of data models—in particular, XML data models—, too. Thinking about the potential
of this idea gives us the vision that we could support the entire user-to-data path in the
Internet with a single XML data model [9].

While the locality preservation of the query result buffer in query server
architectures can take advantage of application hints [3], adaptivity of database
caching is a major challenge for future research [2]. Furthermore, precise
specification of relaxed currency and consistency of data is an important future task
to better control the widespread and growing use of distant caches and asynchronous
copies 7]. Other interesting research problems occur if transactional updates are
directly performed in DB caches. Instead of processing them in the backend DB first,
they could be executed in the cache or even jointly in cache and backend DB under a
2PC protocol. Such update models may lead to futuristic considerations where the
conventional hierarchic arrangement of frontend cache and backend DB is dissolved:
If each of them can play both roles and if together they can provide consistency for
DB data, more effective DB support may be gained for new applications such as grid
or P2P computing.

storage system

. . .

Fig. 6. Desirable extentions for future DBMS architectures

4 New Types of DBMS Architectures

XML data could not be adequately integrated into the original layer model because
the processing invariants valid in record-oriented DBMS do not hold true for
document trees with other types of DB requests. Therefore, we needed substantial
changes and adaptations, especially in layers L3 to L5, while the overall layered
framework could be preserved. However, what has to be done when the conceptual
differences of the data types such as VITA (video, image, text, audio) or data streams
are even larger?

14 T. Härder

4.1 The Next Database Revolution Ahead

VITA types, for example, are managed in tailored DB buffers and are typically
delivered (in variable-length junks) to the application thereby avoiding additional
layer crossings. In turn, to avoid data transfers, the application may pass down some
operations to the buffer to directly manipulate the buffered object representation.
Hence, Fig. 6 illustrates that the OS services or, at best, the storage system represent
the least common denominator for the desired DBMS extensions.

If the commonalities in data management invariants for the different types and
thus the reuse opportunities for functionality are so marginal, it makes no sense to
squeeze all of them into a unified DBMS architecture. As a proposal for future
research and development, Jim Gray sketched a framework leading to a diversity of
type-specific DBMS architectures [6]. As a consequence, we obtain a collection of
heterogeneous DBMSs which have to be made accessible for the applications—as
transparently as possible by suitable APIs. Such a collection embodies an “extensible
object-relational system where non-procedural relational operators manipulate object
sets. Coupled with this, each DBMS is now a Web service” [6]. Furthermore, because
they cooperate on behalf of applications, ACID protection has to be assured for all
messages and data taking part in a transaction.

4.2 Dependability Versus Adaptivity

Orthogonal to the desire to provide functional extensions, the key role of DBMSs in
modern societies places other kinds of “stress” on their architecture. Adaptivity to
application environments with their frequently changing demands in combination
with dependability in critical situations will become more important design goals—
both leading to contradicting guidelines for the architectural design.

So far, information hiding and layers as abstract machines were the cornerstones
for the design of large evolutionary DBMSs. Typically, adaptable component (layer)
behavior cannot be achieved by exploiting local “self”-observations alone. Hence,
autonomic computing principles applied to DBMS components require more
information exchange across components (introducing more dependencies) to gain a
more accurate view when decisions relevant for behavioral adaptations have to be
made. Trouble-free operation of a DBMS primarily comes from adjustment
mechanisms automatically applied to problems of administration, tuning,
coordination, growth, hardware and software upgrades, etc. Ideally, the human system
manager should only set goals, policies, and a budget while the automatic adaptation
mechanisms should do the rest [5]. Online feedback control loops are key to achieve
such adaptation and "self-*" system properties, which, however, amplify the
information channels across system layers.

In contrast, too many information channels increase the inter-component
complexity and are directed against salient software engineering principles for highly
evolutionary systems. In this respect, they work against the very important
dependability objective which is much broader than self-tuning or self-administration.
Hence, design challenges are to develop a system which should be always available,
i.e., exhibiting an extremely high availability, and which only services authorized

 XML Databases and Beyond-Plenty of Architectural Challenges Ahead 15

uses, i.e., even hackers cannot destroy data or force the system to deny services to
authorized users. Jim Gray summarizes the main properties of a dependable and
adaptive system as always-up + secure + trouble-free. To develop such systems,
innovative architectures observing new software engineering principles have to be
adopted. However, most of their properties are not easily amenable to mathematical
modeling and runtime analysis, because they are non-functional in general. Weikum
calls for a highly componentized system architecture with small, well-controlled
component interfaces and limited and relatively simple functionality per component
which implies the reduction of optional choices [20]. The giant chasm to be closed
results from diverging requirements: growing system complexity due to new
extensions and improved adaptivity as opposed to urgent simplification needs
mandatory for the development of dependable systems.

5 Conclusions

In this paper, we primarily explored how XDBMSs fit into the framework of a multi-
layered hierarchical architecture originally developed for record-oriented data models.
We proposed major changes and adaptations for which DeweyIDs embody the
fundamentally new concept. Their expressive power and stability enabled new classes
of evaluation algorithms for services supporting navigation, declarative queries, and
fine-grained locking. Finally, we sketched some ideas for integration data types which
cannot be efficiently mapped to the layer architecture and emphasized the need to
decidedly improve adaptability and dependability properties in future DBMSs.

References

[1] Al-Khalifa, S. et al.: Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. Proc. 18th Int. Conf. on Data Engineering, 141 (2002)

[2] Altinel, M. et al.: Cache Tables: Paving the Way for an Adaptive Database Cache. VLDB
2003: 718-729

[3] Deßloch, S., Härder, T., Mattos, N. M., Mitschang, B., and Thomas, J.: Advanced Data
Processing in KRISYS. VLDB J. 7(2): 79-95 (1998)

[4] Graefe, G.: Dynamic Query Evaluation Plans: Some Course Corrections? IEEE Data Eng.
Bull. 23(2): 3-6 (2000)

[5] Gray, J.: What next?: A dozen information-technology research goals. J. ACM 50(1): 41-
57 (2003) (Journal Version of the 1999 ACM Turing Award Lecture)

[6] Gray, J.: The Next Database Revolution. SIGMOD Conference 2004: 1-4
[7] Guo, H., Larson, P.-A., Ramakrishnan, R., Goldstein, J.: Relaxed Currency and

Consistency: How to Say "Good Enough" in SQL. SIGMOD Conference 2004: 815-826
[8] Härder, T.: DBMS Architecture—Still an Open Problem. Proc. Datenbanksysteme in

Business, Technologie und Web (BTW 2005), LNI P-65, Springer, 2-28, 2005
[9] Härder, T.: Caching over the Entire User-to-Data Path in the Internet, in: T. Härder, W.

Lehner (eds), Data Management in a Connected World, LNCS 3551, 2005, pp. 67–89
[10] Härder, T., Bühmann, A.: Query Processing in Constraint-Based Database Caches. Data

Engineering Bulletin 27:2 (2004) 3-10

16 T. Härder

[11] Härder, T., Reuter, A.: Concepts for Implementing a Centralized Database Management
System. Proc. Int. Comp. Symp. on Appl. Systems Development, 1983, Nürnberg, 28-60

[12] Haustein, M., Härder, T.: Optimizing Concurrent XML Processing, submitted (2005)
[13] Haustein, M., Härder, T., Mathis, C., and Wagner, M.: DeweyIDs—The Key to Fine-

Grained Management of XML Documents, submitted (2005)
[14] Haustein, M., Härder, T., and Luttenberger, K.: Contest of Lock Protocols—The Winner

is taDOM3+, submitted (2005), http://wwwdvs.informatik.uni-kl.de/pubs/p2005.html
[15] Halverson, A., Josifovski, V., Lohman, G., Pirahesh, H., and Mörschel, M. ROX:

Relational Over XML. Proc. 30th Int. Conf. on Very Large Data Bases, Toronto (Sept.
2004)

[16] Mohan, C.: ARIES/KVL: A Key-Value Locking Method for Concurrency Control of
Multiaction Transactions Operating on B-Tree Indexes. VLDB 1990: 392-405

[17] O'Neil, P. E. et al.: ORDPATHs: Insert-Friendly XML Node Labels. Proc. SIGMOD
Conf.: 903-908 (2004)

[18] Senko, M. E., Altman, E. B., Astrahan, M. M., and Fehder, P. L.: Data Structures and
Accessing in Data Base Systems. IBM Systems Journal 12(1): 30-93 (1973)

[19] Tatarinov, I. et al.: Storing and Querying Ordered XML Using a Relational Database
System. Proc. ACM SIGMOD, Madison, Wisconsin, USA, 204-215 (2002)

[20] Weikum, G., Mönkeberg, A., Hasse, C., and Zabback, P.: Self-tuning Database
Technology and Information Services: from Wishful Thinking to Viable Engineering.
VLDB 2002: 20-31

[21] W3C Recommendations. http://www.w3c.org (2004)

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 17 – 28, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Usable Recursive Queries

Tomasz Pieciukiewicz1, Krzysztof Stencel2, and Kazimierz Subieta1, 3

1 Polish-Japanese Institute of Information Technology, Warsaw, Poland
2 Institute of Informatics, Warsaw University, Warsaw, Poland

3 Institute of Computer Science PAS, Warsaw, Poland
pietia@pjwstk.edu.pl, stencel@mimuw.edu.pl,

subieta@ipipan.waw.pl

Abstract. Recursive queries are required for many tasks of database
applications. Among them we can mention Bill-Of-Material (BOM), various
kinds of networks (transportation, telecommunication, etc.), processing semi-
structured data (XML, RDF), and so on. The support for recursive queries in
current query languages is limited. In particular, this concerns corresponding
extensions of SQL in Oracle and DB2 systems. In this paper we present
recursive query processing capabilities for the object-oriented Stack-Based
Query Language (SBQL). SBQL offers very powerful and flexible recursive
querying capabilities due to the fact that recursive processing operators are fully
orthogonal to other capabilities of this language. The presented features aim at
the ease of recursive programming in databases and not at building new
theoretical foundations. This paper discusses novel SBQL constructs, such as
transitive closures, fixed point equations and recursive procedures/views. Their
main advantage is that they are seamlessly integrated with object-oriented
facilities, computer environment and databases.

1 Introduction

There are many important tasks which require recursive processing. The most widely
known is Bill-Of-Material (BOM) which is a part of Materials Requirements Planning
(MRP) systems. BOM acts on a recursive data structure representing a hierarchy of
parts and subparts of some complex material products. Typical MRP software
processes such structures by proprietary routines and applications implemented in a
programming language. However, frequently users need to issue ad hoc queries
addressing such structures. In such cases they need special recursive user-friendly
facilities of a query language. Similar problems concern computations on genealogic
trees, stock market dependencies, various types of networks (transportation,
telecommunication, electricity, gas, water, and so on), etc. The recursion is also
necessary for internal purposes of computer systems, such as processing recursive
metadata structures (e.g. CORBA Interface Repository), configuration management
repositories, hierarchical structures of XML or RDF files, and so on.

In many cases recursion can be substituted by iteration, but this implies much
lower abstraction level and less elegant problem specification. The iteration may also
cause higher cost of program maintenance, since it implies a clumsy code, more
difficult to debug and change.

18 T. Pieciukiewicz, K. Stencel, and K. Subieta

Despite importance, recursion is not supported in SQL standards (SQL-89 and
SQL-92). Beyond the standards, it is implemented (differently) in relational DBMSs,
in particular, in Oracle and DB2, in the form of transitive closures and linear
recursion. Newer SQL standards SQL-99 (aka SQL-3) and SQL 2003 introduce both
transitive closure and deductive rules a la Datalog. Unfortunately these standards are
very huge and eclectic, thus many database professionals doubt if they will ever be
fully implemented. The ODMG standard for object-oriented databases and its query
language OQL do not mention any corresponding facilities. Recursion is considered a
desirable feature of XML-oriented and RDF-oriented query languages, but current
proposals and implementations do not introduce corresponding features or introduce
them with many limitations.

The possibility of recursive processing has been highlighted in the field of
deductive databases, notably Datalog. The paradigm has roots in logic programming
and has several variants. Some time ago it was advocated as a true successor of
relational databases, as an opposition to the emerging wave of object-oriented
databases. Datalog as it has been proposed has sound theoretical foundations (see e.g.
[2] and thousands of papers which cannot be cited here). However, it seems that
Datalog falls short of the software engineering perspective. It has several recognized
disadvantages, in particular: flat structure of programs, limited data structures to be
processed, no powerful programming abstraction capabilities, impedance mismatch
during conceptual modeling of applications, poor integration with typical software
environment (e.g. class/procedure libraries) and poor performance. Thus practical
mission-critical Datalog applications are till now unknown. Nevertheless, the idea of
Datalog semantics based on fixpoint equations seems to be very attractive to
formulate complex recursive tasks. Note however that fixpoint equations can be
added not only to languages based on logic programming, but to any query language,
including SQL, OQL and XQuery.

Besides transitive closures and fixpoint equations there are classical facilities for
recursive processing known from programming languages, namely recursive
functions (procedures, methods). In the database domain a similar concept is known
as recursive views. Integration of recursive functions or recursive views with a query
language requires generalizations beyond the solutions known from typical
programming languages or databases. First, functions have to be prepared to return
bulk types that a corresponding query language deals with, i.e. a function output
should be compatible with the output of queries. Second, both functions and views
should possess parameters, which could be bulk types compatible with query output
too. Currently very few existing query languages have such possibilities, thus using
recursive functions or views in a query language is practically unexplored.

This paper discusses three different approaches to recursive querying:

• transitive closure operators,
• least fixed point equation systems (fixpoint equations, for short),
• recursive procedures and views.

For the first time, we describe all three approaches to recursive processing within a
unified framework: the Stack Based Approach (SBA) to object-oriented
query/programming languages [5, 6, 7]. SBA treats a query language as a kind of
programming languages and therefore, queries are evaluated using mechanisms which

 Usable Recursive Queries 19

are common in programming languages. SBA introduces an own query language
Stack-Based Query Language (SBQL) based on abstract, compositional syntax and
formal operational semantics. SBQL is equipped with a strong type system.

We have implemented all these three recursive facilities within the framework of
SBA and smoothly integrated them with object-oriented ideas, computer environment
and databases. The research has been done within the currently developed object-
oriented database platform ODRA devoted to Web and grid applications. In this
report we compare the approaches on sufficiently complex examples showing their
strengths and weakness with respect to problems from database application
programming.

The paper is organized as follows. Section 2 presents the Stack-Based Approach
and its query language SBQL. Section 3 is devoted to the transitive closure in SBQL.
Section 4 describes fixpoint equations in SBQL. Section 5 deals with recursive
procedures and views. Section 6 discusses the future work. Section 7 concludes.

2 Stack Based Approach and Stack Based Query Language

2.1 Data Store Models

In the Stack Based Approach four data store models are defined, with increasing
functionality and complexity. The M0 model described in [6] is the simplest data
store model. In M0 objects can be nested (with no limitations on nesting levels) and
can be connected with other objects by links. M0 covers relational and XML-oriented
structures. It can be easily extended [7] to comply with more complex models which
include classes and static inheritance (M1), dynamic object roles and dynamic
inheritance (M2), encapsulation (M3) and other features of object-oriented databases.

In SBA an object has the following properties: internal object identifier (OID)
which cannot be used in queries nor printed, external name, which is used in the
application code to access objects, and object content which can be a value, a link, or
a set of objects. An SBA store consists of the structure of such objects/subobjects and
the set of identifiers of root objects, i.e., starting points for queries.

2.2 Name Binding and Environment Stack

SBA is based on the programming languages’ naming-scoping-binding principle.
Each name occurring in a query/program is bound to a proper run-time
database/program entity according to the name scope. Scopes for names are managed
by means of the Environment Stack (ES). ES consists of sections which contain
entities called binders. Binders relate names with run-time objects and are used during
binding names. A binder is a pair (n, v), written as n(v), where n is an external name
used in queries and v is a value (most often it is an object identifier).

New sections on ES are built by means of a special function nested which returns
the content of an object (in case of complex objects) and the pointed object (in case of
link objects).

Binding name n occurring in a query is an action of the query interpreter which
searches ES for the binder named n that is closest to the top of ES. Binding respects
static scoping rules which mean that some sections of ES are invisible during the

20 T. Pieciukiewicz, K. Stencel, and K. Subieta

binding (e.g. sections related to local environments of procedures). The name binding
can return multiple binders and this way we handle collections of objects.

2.3 Stack-Based Query Language (SBQL)

Stack-Based Query Language [6, 7] is based on the principle of compositionality, i.e.
semantics of a complex query is recursively built from semantics of its components.
SBQL queries are defined as follows:

1. A name or a literal is a query; e.g., 2, “Niklaus Wirth”, Book, author.
2. σ q, where σ is an unary operator and q is a query, is a query; e.g.,

count(Book), sin(x).
3. q1 τ q2, where τ is a binary operator, is a query; e.g., 2+2, Book.title,

Customer where <condition>.

In SBQL each binary operator is either algebraic or non-algebraic. If Δ is an
algebraic operator, then in the query q1 Δ q2 the order of evaluation of queries q1 and
q2 is inessential. Queries are evaluated independently and their results are combined
into the final result depending on Δ. Examples of algebraic operators are numerical
and string operators and comparisons, aggregate functions, union, and others.

Non-algebraic operators are the core of the SBA. In a query q1 θ q2 with a non-
algebraic operator θ the second subquery is evaluated in context determined by the
first subquery. Thus the order of evaluation of queries q1 and q2 is significant. Query
q1 θ q2 is evaluated as follows. First q1 is evaluated. Then q2 is evaluated for each
element r of the result returned by q1. Before each such evaluation ES is augmented
with a new scope determined by nested(r). After evaluation the stack is popped to the
previous state. A partial result of the evaluation is a combination of r and the result
returned by q2 for this value. The method of the combination depends on θ.
Eventually, these partial results are merged into the final result depending on the
semantics of operator θ. Examples of non-algebraic operators are selection (where),
projection/navigation (the dot), join, quantifiers (∃, ∀), and transitive closures.

3 Transitive Closures in SBQL

A transitive closure in SBQL is a non-algebraic operator having the following syntax:

q1 close by q2

Both q1 and q2 are queries. The query is evaluated as follows. Let final_result be the
final result of the query and ∪ the bag union. Below we present the pseudo-code
accomplishing abstract implementation of q1 close by q2:

final_result := result_of (q1);
for each r ∈ final_result do:

o push nested(r) at top of ES.
o final_result := final_result ∪ result_of (q2);
o pop ES;

 Usable Recursive Queries 21

Note that each element r added to final_result by q2 is subsequently processed by the
for each command. The above operational semantic can be described in the
denotational setting as the least fixed point equation (started from final_result = ∅
and continued till fixpoint):

final_result = q1 ∪ final_result. q2

where dot is identical with the dot operator in SBQL. Similarly, the semantics can be
expressed by iteration (continued till result_of (q2) = ∅):

final_result = q1 ∪ q1.q2 ∪ q1.q2.q2 ∪ q1.q2.q2.q2 ∪

Naive implementation of the close by operator is as easy as the implementation of the
dot operator. Note that if q2 returns a previously processed element, an infinite loop
will occur. Checking for such situations in queries is sometimes troublesome and may
introduce unnecessary complexity into the queries. Another operator close unique by
has been introduced to avoid infinite loops due to duplicates returned by q2.

As q1 and q2 can be any queries, simple or complex, the relation between elements
which is used for transitive closure is calculated on the fly during the query
evaluation; thus the relation needs not to be explicitly stored in the database.

In Fig.1 we depict a simple data schema used in our examples. It is a description of
parts, similar to descriptions used in Bill of Material (BOM) applications. Each Part
has name and kind. If kind is “detail”, the part has also detailCost and detailMass (the
cost and mass of this part) and has no assemblyCost, assemblyMass attributes. If kind
is “aggregate”, the part has no detailCost and detailMass, but it has assemblyCost and
assemblyMass. The attributes represent the cost of assembling this part and mass
added to the mass of the components as the result of the assembly process.
Aggregates have one or more Component sub-objects. Each Component has the
amount attribute (number of components of specific type in a part), and a pointer
object leadsTo, showing the part used to construct this part.

Part[0..*
nam
kind
detailCost[0..
detailMass[0..
assemblyCost[0.
assemblyMass[0.

Component[0..
amoun
leadsT

Part[0..*
nam
kind
detailCost[0..
detailMass[0..
assemblyCost[0.
assemblyMass[0.

Component[0..
amoun
leadsT

Fig. 1. A sample data schema

22 T. Pieciukiewicz, K. Stencel, and K. Subieta

The simplest transitive closure SBQL query over this schema finds all components
of a part named “engine”.

(Part where name = ”engine”) close by (Component.leadsTo.Part)

This query first selects parts having name attribute equal to “engine”. The transitive
closure relation is described by the subquery (Component.leadsTo.Part). It returns all
Part objects which are reached by the leadsTo pointer from already selected objects.

One of the basic BOM problems, i.e. “find all components of a specific part, along
with their amount required to make this part”, may be formulated using the transitive
closure as follows:

((Part where name=”engine”), (1 as howMany))
close by (Component.((leadsTo.Part), (howMany*amount) as howMany))

The query uses a named value in order to calculate the number of components. The
number of parts the user wants to assemble (in this case 1) is named howMany and
paired with the found part. In subsequent iterations the howMany value from parent
object is used to calculate the required amount of child elements. It is also named
howMany and paired with the child object.

The above query does not sum up amounts of identical sub-parts from different
branches of the BOM lattice. Below we present a modified query which returns
aggregated data – sums of distinct components from all branches of the BOM tree:

((((Part where name=”engine”) as x, (1 as howMany))
close by (x.Component.((leadsTo.Part) as x, (howMany*amount) as
howMany))

) group as allEngineParts
).
((distinct(allEngineParts.x) as y).(y, sum((allEngineParts where x=y).howMany)))

This query uses grouping in order to divide the problem into two parts. First, all the
components named x, along with their amounts named howMany are found. The pairs
are then grouped and named allEngineParts. The grouped pairs are further processed,
by finding all distinct elements and summing the amounts for each distinct element.

This query could be further refined, in order to remove all aggregate parts (so only
the detail parts will be returned). There are many ways to accomplish this goal. On of
them is to use the operator leaves by in place of close by. The operator leaves by
returns only leaf objects, i.e. objects which do not result in adding any further objects
to the result set:

((((Part where name=”engine”) as x, (1 as howMany))
leaves by(x.Component.((leadsTo.Part) as x, (howMany*amount) as
howMany))

) group as allEngineParts
).
((distinct(allEngineParts.x) as y).(y, sum((allEngineParts where x=y).howMany)))

Such a typical BOM task cannot be formulated in any variant of SQL as a single
query. Although the complexity of the SBQL solution is still high, SBQL supports
facilities to manage the complexity. In this case the grouping operator allows us to
decompose the problem into easier subproblems.

 Usable Recursive Queries 23

SBQL queries may be used to perform even more complex tasks. The query below
calculates the cost and mass of the part named “engine”, taking into account cost and
mass of each engine part, amount of engine parts and cost and mass increment
connected with assembly. This task has been used in [1] as an example of lack of
power and flexibility of currently used query languages. In SBQL the task can be
formulated with no essential problems:

((((Part where name=”engine”) as x, (1 as howMany))
close by x.Component.((leadsTo.Part) as x, (amount*howMany) as
howMany)

) group as allEngineParts
).
(allEngineParts.(

if x.kind=”detail” then
((howMany * x.detailCost) as c, (howMany * x.detailMass) as m)

else
((howMany * x.assemblyCost) as c, (howMany* x.assemblyMass) as m)

)
) group as CostMassIncrease).
(sum(CostMassIncrease.c) as engineCost, sum(CostMassIncrease.m) as engineMass)

Due to the full orthogonality (including orthogonal persistence) SBQL can perform
calculations without referring to the database; e.g. 2+2 is a regular query. It is
impossible in some SQL variants. The query below calculates an approximation the
square root of a, using the fixpoint equation x = (a/x + x)/2.

((1 as x, 1 as counter)
close by (((a/x + x)/2 as x, counter +1 as counter) where counter ≤ 5)

).(x where counter = 5)

Cycles in the queried graph can be easily dealt with by means of another variant of
the close by operator – close unique by. This variant removes duplicates after each
closure iteration, thus cycles do not imply infinite loops. Another variant of the close
by operator is the leaves unique by operator. It is a combination of the two previous
variants. It returns only leaf objects, while preventing problems with graph cycles.

4 Fixpoint Systems in SBQL

SBQL supports many different programming paradigms. Among others, SBQL
provides querying capabilities similar to those of Datalog. The currently proposed
solution is based on fixpoint systems, i.e. queries of the form x = q(x), where x is a
variable, q is an arbitrary SBQL query dependent on x. A system of such equations
can have arbitrary number of variables. Such fixpoint systems in comparison to
Datalog seem to have essential differences, in particular the following:

• Datalog is used to deduce facts, using other facts and rules. SBQL fixpoint systems
are used to find objects or (complex) values which satisfy some conditions.

• Datalog is based on logic, thus some authors expect that it would be possible to
prove mathematically some properties of a Datalog program and its results. SBQL

24 T. Pieciukiewicz, K. Stencel, and K. Subieta

theoretical foundations lie elsewhere, and the possibility of proving anything is not
among the concerns of the SBQL design.

• The equations in SBQL fixpoint systems (which can be thought of as equivalent to
Datalog rules) may use any valid SBQL query;

• SBQL puts no constraints on the negation operator and assumes neither
stratification nor CWA. However, negation is not the only operation which may
result in a query causing an infinite loop; for instance, another such operator is
function sinus. SBQL assumes that the programmer takes appropriate care.

In our opinion these differences concern mainly some specific rhetoric, ideological
assumptions, terminology, and superficial notions. From the pragmatic point of view
SBQL fixpoint systems are syntactically very similar to Datalog programs. Moreover,
they can be used in the same situations and can solve the same tasks. For these
reasons we consider SBQL fixpoint systems as a direct counterpart of Datalog
programs. Taking in account all options, SBQL has the power of universal
programming languages thus is incomparably more powerful than Datalog.

The syntax of an SBQL fixpoint system is as follows:

fixpoint(xi1, xi2,…, xin) {x1 :- q1; x2 :- q2;… xm :- qm;}

where:

• x1, x2,…, xm are names of variables in this equation system,
• xi1, xi2,…, xin are returned variables, {xi1, xi2,…, xin} ⊆ {x1, x2,…, xm},
• q1, q2,…, qm are SBQL queries with free variables x1, x2,…, xm;

The semantics of this language construct is the following:

1. Variables x1, x2,…, xm are initialized to empty bags.
2. Queries q1, q2,…, qm are evaluated.
3. If the results of q1, q2,…, qm are equal to the values of x1, x2,…, xm, then stop

(the fixpoint is reached). Otherwise assign the results of q1, q2,…, qm to the
values of x1, x2,…, xm and go to step 2.

4. The values of xi1, xi2,…, xin are returned as the result of the fixpoint query.

As queries q1, q2,…, qm can reference variables x1, x2,…, xm, the fixpoint system
provides recursive capabilities.

The simplest use of a fixpoint system in a query is the calculation of transitive
closure. The query below uses a fixpoint system to find all subcomponents of the part
named “engine” (the query addresses the schema shown in Fig.1):

fixpoint (parts){
parts :- (Part where name=”engine”) union (parts.Component.leadsTo.Part);

}

Fixpoint systems are regular SBQL queries, and as such may be used as parts of other
SBQL queries. The query below uses a fixpoint system as a part of a SBQL query, in
order to find all unique engine elements:

distinct(fixpoint (parts){
parts :- (Part where name=”engine”) union (parts.Component.leadsTo.Part);

})

 Usable Recursive Queries 25

A fixpoint system may use some variables as a way to break down the problem into
smaller, more manageable parts. The query below does that in order to calculate the
number of different parts in the part named “engine”:

fixpoint (final) {
engine :- ((Part where name=”engine”) as x, 1 as howMany);
engineParts :- engine union engineParts.Component.

((leadsTo.Part) as x, (amount*howMany) as howMany);
final :- (distinct(engineParts.x) as y).(y, sum(engineParts where x=y).howMany);

}

Only variable final is returned as the fixpoint result. The other two variables are used
only to perform calculations, as their final values are inessential to the user. Variable
engine is used to find the top element of the hierarchy (the “engine” part), while
engineParts is the variable in which the results of recursive calculations are stored.
Variables final and engine do not have to be calculated recursively.

The same principle is used in the next example. The query calculates the total cost
and mass of the engine:

fixpoint (cost, mass){
engine :- ((Part where name=”engine”) as x, 1 as howMany);
engineParts :- engine union engineParts.Component.((leadsTo.Part) as x,

(amount*howMany) as howMany);
detailsMass :- sum((engineParts where x.kind = ”detail”).

(howMany*x.detailMass));
detailsCost :- sum((engineParts where x.kind = ”detail”).

(howMany*x.detailCost));
addedMass :- sum((engineParts where x.kind = ”aggregate”).

(howMany*x.assemblyMass));
addedCost:- sum((engineParts where x.kind = ”aggregate”).

(howMany*x.assemblyCost));
cost :- detailsCost + addedCost;
mass :- detailsMass + addedMass;

}

Fixpoints, unlike transitive closures, are capable of evaluating more than one
recursive problem in each step, in a manner similar to the Datalog. This topic may be
an interesting area for further research, although most of the practical recursive
problems we are aware of can be solved using only a single recursion.

Similarly to transitive closures, fixpoint systems may be used to perform recursive
calculations without referring to the database. The example below shows a fixpoint
system version of example calculating the square root of a:

fixpoint(x){
y :- (1 as r, 1 as c) union (y.(a/r + r)/2 as r, c+1 as c) where c ≤ 5;
x :- (y where c = 5).r;

}

Fixpoint systems in SBQL fit well with the rest of the language. As they are based on
a powerful and flexible approach, they are free from many drawbacks present in
Datalog, such as the difficulty with formulating queries based on complex objects.

26 T. Pieciukiewicz, K. Stencel, and K. Subieta

When compared with transitive closures, fixpoint systems seem to be more readable,
as decomposition of the problem is easier.

5 Recursive Procedures and Views in SBQL

SBQL philosophy allows for seamless integration of imperative language constructs,
including recursive procedures and functions with query operators. This allows
utilizing the most popular recursive processing technique, without sacrificing any of
the benefits of query language. In contrast to popular programming languages the new
quality of SBQL concerns types of parameters and types of functions output. The
basic assumption is that parameters are any SBQL queries and the output from
functional procedures is compatible with query output. Thus SBQL procedures and
functions are fully and seamlessly integrated with SBQL queries.

Statements in SBQL procedures use SBQL queries. An SBQL query preceded by
an imperative operator is a statement. Statements such as if, while, for each, etc. can
be more complex, see [7]. SBQL includes many such imperative operators (object
creation, flow control statements, loops, etc.).

Below we present a recursive procedure which finds all components of a specific
part, along with their amount required to make this part. It consists of a single return
statement. The returned value is an empty collection or the result from recursive
invocation of the same procedure. For simplicity in the examples we skip typing.

procedure SubPartsHowMany(myPartsHowMany){
return

if not exists(myPartsHowMany) then bag()
else bag(myPartsHowMany,

SubPartsHowMany(myPartsHowMany.c.Component.
((leadsTo.Part) as c, howMany * amount) as howMany))

)
}

The procedure takes a structure or a collection of structures as the parameter
(myPartsHowMany). Each structure contains c (a reference to a part) and howMany
(the amount of parts). An example procedure call is the following:

SubPartsHowMany(((Part where name=”engine”) as c, (1 as howMany))

An advantage of recursive procedures is simplicity of the problem decomposition.

A recursive task can be easily distributed among several procedures (some of which
may be reused in other tasks). A procedure calculating the cost and mass of a part
illustrating this possibility is shown below. The procedure utilizes the previously
defined SubPartsHowMany procedure in order to perform the recursive processing
and then performs calculations, on local variables (introduced by create local).

procedure CostAndMass(myPartsHowMany) {
if not exists(myPartsHowMany) then return bag();
create local SubPartsHowMany(myPartsHowMany) as parts;
create local (parts where c.kind=”detail”) as details;

 Usable Recursive Queries 27

create local (parts where c.kind=”aggregate”) as aggregates;
create local sum(details.(howMany*c.detailMass)) as detailsMass;
create local sum(details.(howMany*c.detailCost)) as detailsCost;
create local sum(aggregates.(howMany*c.assemblyMass)) as addedMass;
create local sum(aggregates.(howMany*c.assemblyCost)) as addedCost;
return ((addedCost+detailsCost) as cost, (addedMass+detailsMass) as mass);

}

Recursive procedures in SBQL offer many advantages when compared to stored
procedures in relational DBMSs. Most of them are consequences of the fact that
procedures in SBQL are a natural extension of the SBA, working on the same
principles and evaluated by the same evaluation engine, while in relational systems
stored procedures are an add-on to the system evaluated separately from SQL queries.
SBQL queries are valid as expressions, procedure parameters, etc. The type system is
the same and there is no impedance mismatch between queries and programs.

SBQL updateable views are based on procedures and as such can be recursive and
can utilize any other SBQL option, in particular parameters. Note that recursion
without parameters makes little sense, thus if one assumes that views can be recursive
then they must have parameters too. Recursive parameterized views are not available
in any query language but SBQL. A simple read-only view, returning all subparts of
parts which names are passed as a parameter, is shown below.

create view EnginePartsDef {
virtual objects EngineParts (whichParts){
 if not exists(whichParts) then return bag();
 create local (Part where Name in whichParts) as p;

return (p union EngineParts(p.Component.leadsTo.Part.name)) as b;
}
on retrieve do return b;

}

An example view invocation:

EngineParts(“pacer”) where kind = “detail”

SBQL updateable views are discussed in detail in several publications, e.g. in [4, 7].

6 Future Work

A query language implementation without optimization is hardly accepted by the
users due to bad performance. The amount of information stored in current databases
would make the evaluation time of most queries unacceptable. The problem is even
bigger in the case of recursive queries, as the evaluation cost of such queries is
usually higher than in the case of non-recursive ones. It makes query optimization
research a high priority task. Clearly defined semantics of SBQL allows for a
systematic and disciplined approach to this problem. The adaptation of well-known
techniques is possible. Query rewriting optimizations for SBQL are described e.g. in
[3] and [7]. The techniques useful for transitive closure queries are also presented
there. Other optimization techniques, however, have not been researched in detail yet.
This applies to various index-based techniques, fixpoint system optimizations using
semi-naïve evaluation and magic set techniques ([8]).

28 T. Pieciukiewicz, K. Stencel, and K. Subieta

7 Conclusions

We have presented recursive query processing capabilities for the object-oriented
Stack-Based Query Language (SBQL). SBQL offers very powerful and flexible
recursive querying capabilities.

The transitive closure allow formulating queries more powerful and easily readable
than SQL queries when compared with Oracle and DB2 SQL variants of transitive
closure operators. Combined with the ease of semi-structured data handling in SBQL
this may make XML data processing a much easier task.

Fixpoint systems provide SBQL with recursive capabilities similar to deductive
query languages. However SQBL offers much more freedom, as there are no
restrictions on operators which may be used within the queries. SBQL is also much
better prepared to handle structured and semi-structured data than Datalog and its
variants. This freedom, however comes at a cost, because the programmer must make
sure that the query does not start an infinite evaluation loop.

Recursive procedures and views provided by SBQL allow to solve complex
problems easily through problem decomposition, code reuse and other facilities
typical for imperative programming languages. They are seamlessly integrated with
the querying capabilities and allow the programmer to fully benefit from all the query
language options and DBMS properties, i.e. macroscopic statements, handling of bulk
data, persistent storage and optimization for queries used within procedures.

With the recent rise of interest in recursive processing due to the emergence of
XML, RDF and other similar standards the SBQL seems to provide an interesting and
universal alternative to other query languages.

References

1. Atkinson, M. P., Buneman, P.: Types and Persistence in Database Programming Languages.
ACM Computing Surveys 19(2), (1987) 105-190

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley 1995
3. Płodzie , J., Subieta, K.: Applying Low-Level Query Optimization Techniques by

Rewriting, Proc. DEXA Conf., Springer LNCS 2113, (2001) 867-876
4. Kozankiewicz, H., Subieta, K.: SBQL Views –Prototype of Updateable Views. Local Proc.

of 8th East-European Conference on Advances in Databases and Information Systems
(ADBIS), September 2004, Budapest, Hungary.

5. Subieta, K., Beeri, C., Matthes, F., Schmidt, J. W.: A Stack-Based Approach to Query
Languages. Proc. East-West Database Workshop, 1994, Springer Workshops in Computing,
(1995) 159-180

6. Subieta, K., Kambayashi, Y., Leszczyłowski, J.: Procedures in Object-Oriented Query
Languages. Proc. VLDB Conf., Morgan Kaufmann, (1995) 182-193

7. Subieta, K.: Theory and Construction of Object-Oriented Query Languages. Polish-Japanese
Institute of Information Technology Editors, Warsaw (2004)

8. Ullman, J. D.: Principles of Database and Knowledge-Base Systems, volume II, ch. 13, W H
Freeman (1990)

Relation-Collapse: An Optimisation Technique
for the Similarity Algebra SA

Thomas Herstel and Ingo Schmitt

Fakultät für Informatik, Universität Magdeburg,
PF 4120, D-39016 Magdeburg

{herstel, schmitt}@iti.cs.uni-magdeburg.de

Abstract. Query systems of multimedia database systems should sup-
port similarity queries as well as user preferences like query term weight-
ing. The graphical query language WS-QBE integrates these concepts and
is a user-friendly query language. For evaluation purposes WS-QBE queries
are translated into similarity algebra SA expressions. Expressions pro-
duced by the generation algorithm are very complex and thus need sim-
plification and optimisation. One technique aiming at expression simpli-
fication is the relation-collapse technique. This technique, which is
focus of this work, drastically reduces the number of basis relation scans
and thus promises a more efficient query evaluation. Further, we discuss
employing special, efficient implementations for algebra operations.

1 Introduction

The success of classical relational database systems in efficiently managing large
amount of data leads to employing such systems to new application scenarios.
Most convincing advantages are an integrated and consistent handling of data
and declarative query facilities.

New database applications often deal with non-classical media types, such as
for images, videos and audio data. These extensions to database systems also de-
mand new query system mechanisms. For example, classical Boolean comparison
operators of relational query languages (<, >, =, . . .) are insufficient for image
retrieval query formulation. Rather, new operators are needed which determine
the similarity of an object to a given one. E.g., similarity between images can be
based on comparing the dominating colours, and songs or music can be compared
on containing the same melody. Depending on the media type and application
there are diverse different similarity operators imaginable or demanded.

One problem when employing similarity operators in queries concerns the
judgement of database objects according to their similarity to a query object.
The degree to which every database object is similar w.r.t. a given query ob-
ject has to be evaluated during query processing and expressed within result
presentation. As those comparison operators, rather than deciding in a Boolean
true/false manner, determine the degree to which a certain feature is fulfilled,
also fuzzy values [24] must be considered. These values stem from the interval
[0, 1] and represent the extent of measured similarity. Utilizing fuzzy values also

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 29–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 T. Herstel and I. Schmitt

implies a change in the semantics of result sets: sets from relational algebra are
replaced by fuzzy sets, where to every set item a membership value is assigned
which denotes the degree of membership to this set.

Combining similarity values in the manner of conjunction and disjunction is
supported in fuzzy logic by employing so called t-norms and t-conorms respec-
tively. Widely used and thus most prominent functions are ‘min’ and ‘max’.

A query language that supports querying media objects like images, videos
and audio data adequately has to provide similarity query facilities as well as
query term weighting concepts and features to express user preferences. For
example, when querying an image database which contains landscape pictures
a user may prioritize the presence of a scenic sunset over the originating artist.
Combining weighs with junctors can be done for instance by applying the well-
known Fagin’s weighting schema [9].

A graphical multimedia query language that allows a declarative query for-
mulation including similarity, weighting, and user preferences is WS-QBE [20,19].
However, a graphical and declarative language is not appropriate for efficient
query processing. Thus, queries in WS-QBE are translated into an algebra. This
similarity algebra SA [18] like relational algebra is a procedural language and
thus prescribes query processing steps. Unfortunately, the translation of WS-QBE
queries into similarity algebra expressions following Codd’s reduction algorithm
results in rather complex expressions.

The problem we focus on here, however, is not specific to relational similarity
calculus and algebra, but results from the demand of safe expressions. To ensure
safety of variable evaluation variables must be bound to evaluable, i.e. finite
domains. When conditions on variables are specified in the calculus expression,
their values are calculated in the algebra by exploring their actual values in the
database relation. These evaluations are connected to the rest of the algebra
expression via joins. For example, in a system storing paintings and information
about the artists the query

‘Give me all IDs of paintings similar to a given one.’

is expressed in WS-QBE by simply filling in the similarity condition and indicating
the output via the ’P.’ symbol:

painting id photo painter title technique

P. ∼

In a calculus expression the condition on the attribute photo is (implicitly) con-
junctively combined with the evaluation of relation variables. Thus, the query
corresponds to the expression:

{Xid | ∃Xphoto(∃Xpainter(∃Xtitle(∃Xtechnique(
painting(Xid, Xphoto, Xpainter , Xtitle, Xtechnique) ∧
(Xphoto ∼ C�)))))}.

Relation-Collapse: An Optimisation Technique 31

Following Codd’s reduction algorithm, to ensure integrity of variable eval-
uation such conjunctions produce joins in algebra expressions. Reducing the
calculus expression to an algebra expression results in1:

π#1((painting) �#2=#1 σ#1∼C�
(π#2(painting))).

In our example, the variable Xphoto in the similarity condition is evaluated by
a projection of the respective attribute in painting. Then, the similarity condition
is applied followed by a join with relation painting.

From the optimisation point of view these generated expressions, though
correct, are comparatively inefficient to compute. There is no need here to intro-
duce joins. Rather, the selection could have been applied directly to the relation
and the join can be neglected, i.e. in our example π#1(σ#2∼C�

(painting)) is
more efficient. The problem gets even worse with increasing number of attribute
conditions, since for every attribute condition potentially unnecessary joins are
introduced and thus computational complexity rises unjustifiably. Assuming util-
ising nested loop joins the computational effort for self joining a relation with
n tuples is O(n ∗ n) compared to linear effort for selection. With every addi-
tional attribute condition the effort increases by factor n. In other words, for m
conditions the computational effort is O(nm+1) instead of O(n).

Therefore, the generated expressions must be simplified, i.e. optimised for
query processing needs. One optimisation problem, which we will further dis-
cuss in this work is for example to reduce the number of generated table access
operations and applied joins. The technique called relation-collapse intro-
duced here reduces the number of access operations by far and thus enables an
efficient query processing.

Since the early seventies when Codd proposed his relational calculus and al-
gebra [2,3,4,5] they were aspect of optimisation considerations. Surveys can be
found for example in [15,10,14]. The latter two concentrate mainly on physical
aspects, particularly [10] contains a comprehensive overview of operator algo-
rithms and behaviour, e.g. for hashing, aggregation, and joins. In our work, we
do not concentrate on physical aspects of query optimisation. Rather, we first
focus on logical optimisation which must be considered before efficient imple-
mentations can be chosen.

Besides, diverse algebra optimisation techniques have been studied. Selections
of optimisation rules and heuristics to apply them can be found in almost every
database textbook, like [7,6,16]. However, these rules cannot be simply adopted
to similarity algebra, mainly for two reasons: They (1) do not cover introduced
operators for query term weighting and user preferences, and (2) do not consider
integration and treatment of similarity values within operators. While the first
is rather obvious, the latter is more subtle. Basically, when evaluating similarity
algebra expressions the tuple’s membership values are updated subsequently
1 For demonstration purposes distracting projections, e.g. originating from existential

quantifiers are neglected here. Hash symbols ’#’ denote attribute positions and the
tilde symbol ’∼’ in the selection condition stands for the similarity function. For
further details of SA, please refer to Section 3.

32 T. Herstel and I. Schmitt

by every applied operation. An optimisation technique has to guarantee the
same result tuples and respective membership values are returned regardless to
a chosen query plan. Yu and Meng discuss optimisation techniques for advanced
databases in [23]. However, the chapter on fuzzy databases which are related to
our work explores adapting techniques to unnest queries, but does not discuss
algebraic equivalences w.r.t. membership values.

The remainder of this work is organised as follows. In the next section we
sketch the graphical multimedia language WS-QBE which is the source language
for the algebra expressions we are optimising. Then, the similarity algebra is
introduced in Section 3. Possible optimisation rules are then discussed in Sec-
tion 4. Therein, we will especially focus on the relation-collapse technique.
Finally, Section 5 concludes our work and an outlook to future research is given.

2 The WS-QBE Query Language

WS-QBE is a graphical, declarative and user-friendly query language for multime-
dia queries. It extends the well-known query language QBE by weighting and
similarity query concepts. Here, WS-QBE serves as source language for optimising
generated algebra expressions. As we will focus on these algebra expressions,
WS-QBE is only sketched. For a detailed discussion please refer to [20,19].

The main principle in QBE query formulation is to specify table skeletons,
which are filled with example data. We adopted this concept and added the op-
portunity to specify a weighting table where query term relevance weights are
specified and a condition tree that allows to formulate complex query condi-
tions. Additionally to the ‘standard’ predicates for attribute value conditions
like <, =, > we introduce similarity operators. Of course, similarity predicates
are application and user dependent. Thus, we allow the user to arbitrarily define
operators and their behaviour. Further, in WS-QBE output constraints may be
specified in a temporal or spatial condition table or frame, respectively. Alto-
gether, WS-QBE supports (1) declarative similarity query formulation, (2) query
term weighting, and (3) output parameterisation.

An exemplary query in a multimedia system managing paintings and some
additional data, might be:

‘Find all IDs of oil paintings that originate from a Dutch painter and are
similar to the picture taken with my digital camera.’

In WS-QBE this query is specified as follows:

painting id photo painter title technique artist aid name native country

P. ∼ aid oil aid The Netherlands

In the table skeletons, specifying a ‘P.’ for an attribute states this particular
attribute belonging to the query output. Matching of attribute values to some
constants is specified by simply simply filling in these constant into the respec-
tive attribute column. Operators other than equality, e.g. the image similarity
operator ‘∼’, are entered together with the appropriate constant, for example

Relation-Collapse: An Optimisation Technique 33

an image. Joins can be expressed by filling in variables (‘ aid’ here), which for
every occurrence must be equal on evaluation.

When this query is translated into the target language SA, a complex algebra
expression is generated. The transformation result is shown in Figure 2.

3 The Similarity Algebra SA
This section informally introduces key operations of the similarity algebra SA.
In order to only show the most important operations relevant to this work, it is
only briefly introduced here. For a more detailed and formal description we refer
to the works [18,20].

The similarity algebra SA extends every tuple of a relation by a membership
value from the interval [0, 1] which expresses its membership to the relation. For
example, if the user asks for database objects where the image is similar to a
given picture, each tuple within the respective relation is tested against the given
image. The result of a tuple’s similarity test is a corresponding value from the
interval [0, 1]. In order to reflect the degree of membership to the result set, the
similarity results are integrated into the membership value of a tuple. For this
purpose, every tuple reserves the attribute position zero to hold its membership
value, i.e. classical relations are extended by an artificial attribute.

Obviously, the boolean junctors conjunction and disjunction cannot be em-
ployed. Rather, junctors from fuzzy logic, i.e. t-norms and t-conorms [24] are
utilized. Additionally our algebra allows weighting of set operations like inter-
section and union. For our purpose we employed and adopted the weighting
scheme developed by Fagin and Wimmers [9] as described in [21].

In the following we briefly present the most important operations of the
similarity algebra SA together with their formal semantics. The semantics of
an algebra expression E is given by its interpretation I∗. Interpretation of ex-
pressions utilises a function I, which, e.g. assigns values to constant identifiers
and relations to relation names. Further, similarity function names, t-norms and
t-conorms are replaced by their actual counterparts.

– Relation R is a 0-ary operation for accessing a classical database relation.
I∗(R) = {(1, v1, v2, . . . , vn)|(v1, v2, . . . , vn) ∈ I(R)} where A1, A2, . . . , An are
attributes in R.
All tuples obtain membership value 1, as they are considered true facts.
For processing, the original relation is automatically extended by a leading
attribute at position 0, which holds the membership value for every tuple.

– R+ is a 0-ary operation to access an extended relation. This relation already
has an attribute at position 0 that holds the membership value. Such rela-
tions for example can be the result of an SA query.
I∗(R+) = I(R+) where A1, A2, . . . , An are attributes in R+ and v0 is a
similarity value from interval [0, 1].

– π#p1 ,#p2 ,...,#pn
(E) performs a projection of an algebra expression E where

#p1 , #p2 , . . . ,#pn are the positions of the projection attributes.

34 T. Herstel and I. Schmitt

Let v01 , . . . , v0l
be all similarity values of a list of attribute values

vp1 , . . . , vpn of tuples (v0i , v1, . . . , vm) ∈ I∗(E) with accordingly identical
values pi = j ⇒ vpi = vj for i = 1, . . . , n. Then I∗(π#p1 ,#p2 ,...,#pn

(E)) =
{(u0, vp1 , vp2 , . . . , vpn)|(v0i , v1, . . . , vm) ∈ I∗(E)} holds, where u0 is deter-
mined by:

u0 =
{

I(∨)(v01 , . . . , v0l
) if l > 1

v01 if l = 1 .

The necessary duplicate removal on projections is performed by employing
the t-conorm on the similarity values of those tuples that share the same
values in projected attributes.

– σyiδyj (E) denotes the selection. Note, that the selection predicate can in-
clude similarity conditions.
I∗(σyiδyj (E)) = {(u0, v1, . . . , vn)|(v0, v1, . . . , vn) ∈ I∗(E) ∧ u0 =
I(∧)(v0, I(δ)(ŷi, ŷj)) ∧ I(δ)(ŷi, ŷj) > 0}. Attributes and constants are re-
placed by their values:

ŷi =
{

vi if yi denotes an attribute
I(yi) if yi denotes a constant.

ŷj =
{

vj if yj denotes an attribute
I(yj) if yj denotes a constant.

The utilised function I assigns concrete semantics to each specified similarity
function δ, e.g. image similarity calculation or matching character strings.
The selection, for each tuple, executes the similarity test on the specified
attributes and constants, respectively. The obtained similarity value is then
combined with the tuple’s prior similarity value employing the t-norm.

– (Ea ∩ Eb), (Ea

→
∩θ Eb), (Ea

←
∩θ Eb) are three variants of intersection oper-

ators, where the expressions Ea and Eb must be union compatible. Corre-
sponding tuples are combined in a conjunctive (t-norm) manner. The oper-
ations (Ea

→
∩θ Eb) and (Ea

←
∩θ Eb) are weighted variants, where the former

denotes a stronger weighting to the left and the latter a stronger weighting
to the right, respectively. A weighted conjunction according to the weighting
schema from [9] is utilized.
• Intersection (Ea ∩ Eb) :

I∗((Ea ∩ Eb)) = {(u0, v1, . . . , vk)|(v0, v1, . . . , vk) ∈ I∗(Ea) ∧
(w0, v1, . . . , vk) ∈ I∗(Eb) ∧ u0 = I(∧)(v0, w0) > 0}.
Only tuples that originate from both expressions Ea and Eb are retained.
Their similarity values are combined by t-norm.

• Weighted intersection (Ea

→
∩θ Eb) :

I∗((Ea

→
∩θ Eb)) = {(u0, v1, . . . , vk)|(v0, v1, . . . , vk) ∈ I∗(Ea) ∧

(w0, v1, . . . , vk) ∈ I∗(Eb) ∧ u0 > 0}∪ {(u0, v1, . . . , vk)|(w0, v1, . . . , vk) ∈
I∗(Eb) ∧ ∀v0.(v0, v1, . . . , vk) /∈ I∗(Ea) ∧ u0 > 0} where u0 is deter-
mined by:

u0 =

{
I(

→
∧θ)(I(θ), v0, w0) case 1

I(
→
∧θ)(I(θ), 0, w0) case 2

.

Relation-Collapse: An Optimisation Technique 35

The semantics of (Ea

←
∩θ Eb) is given analogously.

Please note, that contrary to ‘classic’ intersection weighted intersections
allow tuples in the result set which originate from only one of the ex-
pressions. This behavior is induced by weighted conjunction, which may
produce values greater than zero even if one operand is zero.

– The three set union variants (Ea ∪ Eb), (Ea

→
∪θ Eb), (Ea

←
∪θ Eb) are analo-

gously defined to their intersection counterparts.
– The Cartesian product (Ea × Eb) is analogously defined to the respective

relational operations. However, the membership values are combined using
conjunctions.

– (Ea ��#i1=#j1 ,...,#im=#jm
Eb) denotes the join operation, where the seman-

tics is given by:
I∗(Ea ��#a1=#b1 ,...,#an=#bn

Eb) =
{(u0, v1, . . . , vk, w1, . . . , wl|(v0, v1, . . . , vk) ∈ I∗(Ea) ∧ (w0, w1, . . . , wl)
∈ I∗(Eb)∧ ∀i ∈ {1, . . . , n}.vai = wbi ∧ u0 = I(∧)(v0, w0)}.
Join extends Cartesian product by matching of attribute values. A join with-
out specified equality condition behaves like Cartesian product.

Please note, that operations within our algebra only result in tuples, whose
similarity values are greater than zero.

4 Optimisation of SA Expressions

Algebraic optimisation bases on semantic equivalence of syntactically different
algebraic expressions. In addition to relational algebra semantic equivalence in
SA means equality of calculated similarity values. The aim of optimisation is to
transform a given algebra expression into an equivalent one, whose evaluation
takes minimal computational effort. Often, heuristics are applied to find such
expressions.

Due to the special concepts of the SA language w.r.t. similarity semantics op-
timisation rules cannot be easily adopted. For example, duplicate removal in SA
projection means to disjunctively combine the corresponding similarity values,
which has to be considered. In [13] optimisation limitations regarding commuta-
tivity of operators and projection are discussed. They occur, if underlying t-norm
and t-conorm lack mutual distributivity. Furthermore, missing associativity of
weighted operators [21] result in additional restrictions regarding optimisation.

The SA expressions are a result of two consecutive steps. First WS-QBE queries
are transformed into the similarity domain calculus [20]. The expressions in SDC
are then transformed into SA expressions, c.f. [18]. Often, this transformation
results in rather complex expressions with much optimisation potential.

In the following we present a theorem, that allows a recursive simplification
of complex expressions and, thus, promises higher evaluation efficiency.

36 T. Herstel and I. Schmitt

Theorem 1. Within similarity algebra SA the equivalence shown in Figure 1
holds, given that

– I(∧)(v0, p) = v0 is true for all similarity values v0 from S and
– π#i(S) ⊆ π#j(R) holds.

R is a relation and S an arbitrary algebra expression. The projection π#j(R)
aggregates membership values of tuples in R sharing a value at attribute position
#j. The value p is the aggregated value of a projection tuple, which due to join
operation is combined with the corresponding similarity value v0 from S.

��#i=#1

R S

S σ#1δC

π#j σ#iδC

π#1,...,#k,#i

Fig. 1. Optimisation rule relation-collapse

Proof. The left side of optimisation rule according to join definition produces
the following:

{(u0, v1, . . . , vk, w1)|(v0, . . . , vk) ∈ S ∧ (w0, w1) ∈ σ#1δC (π#j(R)) ∧ vi = w1

∧u0 = I(∧)(v0, w0)} .

Considering equality vi = w1 all occurrences of w1 are set to vi. Furthermore,
the projection can be put outside:

π#1,...,#k,#i ({(u0, v1, . . . , vk)|(v0, . . . , vk) ∈ S ∧ (w0, vi) ∈ σ#1δC (π#j (R))
∧ u0 = I(∧)(v0, w0)}) .

The requirement (w0, vi) ∈ σ#1δC (π#j (R)) according to definition of selection
can be replaced by w0 = I(∧)(p, viδC)2 and viδC > 0. The value p is computed
in the projection, where the similarity values pi1 , . . . , pil

of the vi-tuples are
disjunctively combined, i.e. p = I(∨)(pi1 , . . . , pil

). Thus, we get:

π#1,...,#k,#i ({(u0, v1, . . . , vk)|(v0, . . . , vk) ∈ S ∧ viδC > 0∧
u0 = I(∧)(v0, I(∧)(p, viδC))}) .

Associativity of t-norm leads to:

I(∧)(v0, I(∧)(p, viδC)) = I(∧)(I(∧)(v0 , p), viδC).

2 For sake of simplicity, we use viδC here instead of I(δ)(ŷi, ŷj).

Relation-Collapse: An Optimisation Technique 37

π#1

��#3=#1,#6=#2

��#8=#1 σ#1=#2

π#1#2#3#4#5#6#7#8 σ#1=CDutch ×

��#5=#1 π#3 π#3 π#1

π#1#2#3#4#5#6#7#8σ#1=COilArtist Painting Artist

��#2=#1 π#5

× σ#1δsim� Painting

π#1#2#3#4#5 π#1#2#3 π#2

Painting Artist Painting

Fig. 2. Generated SA expression

Together with condition I(∧)(v0, p) = v0 we get:

π#1,...,#k,#i ({(u0, v1, . . . , vk)|(v0, . . . , vk) ∈ S ∧ viδC > 0∧
u0 = I(∧)(v0, viδC)}) .

The definition of selection allows to rewrite the whole expression as follows:

π#1,...,#k,#i (σ#iδC(S)) �

Please note, that this optimisation rule is even applicable, when the database
relation R is replaced by a similarity relation R+. Furthermore, this theorem can
be adapted easily to selections, where two variables are compared. Theorem 1
induces a question, when the constraint

I(∧)(v0, p) = v0

is satisfied. This condition particularly holds, when min and max are used for
conjunction and disjunction and additionally constraint v0 ≤ p holds. The value p
emerges from projection on similarity values on relation R, i.e. they are combined
using disjunction. Thus, the value of p compared to each similarity value in R
can only be higher.

Further, if within expression S similarity values originating from R are only
combined to values v0 using conjunction but not disjunction, they can only
decrease and condition v0 ≤ p is guaranteed. E.g., such operations with con-
junctions in S are selections or Cartesian products. When a projection does not
discard any attributes, e.g. they are duplicated or reordered, the tuples’ similar-
ity values remain unchanged.

38 T. Herstel and I. Schmitt

π#1

×

σ#5=COil

σ#8=CDutch

σ#2δsim�

σ#3=#6

ArtistPainting

Fig. 3. Simplified SA expression

π#1

��#3=#1

σ#5=COil
σ#3=CDutch

σ#2δsim� Artist

Painting

Fig. 4. Optimised algebra expression

The following example demonstrates application of our theorem 1. May the
generated expression from Figure 2 be given. Applying the theorem recursively,
and additionally removing projections where all attributes are listed, we get the
simplified expression shown in Figure 3.

This expression can be further simplified by applying optimisation rules
known in database theory:

– The order of subsequent selections may be arbitrarily changed. This directly
follows from associativity and commutativity of t-norms.

– The Cartesian product and selection are commutative. Both are defined over
t-norm and due to its associativity and commutativity the operations can
be swapped.

– A selection with equality condition between two attributes of different re-
lations and a Cartesian product can be substituted by a join. This directly
follows from respective definitions.

Applying these rules to our example we finally get the algebra expression shown
in Figure 4.

Relation-Collapse: An Optimisation Technique 39

ω

π#1

��#3=#1

σ#5=COil
σ#3=CDutch

σ#2δsim� Artist

Painting

Fig. 5. Initial query evaluation plan

Besides algebraic optimisation in a subsequent step a physical optimisation
is needed. Subject of physical optimisation is usually a query evaluation plan.
A query evaluation plan discards the set semantics silently implied by algebra.
For example, a query evaluation plan considers the tuples’ order whereas the
concept of order is meaningless in set theory. Further, an algebra operator can
have more than one realisation. The query term states chosen implementations
and may additionally introduce new operators.

Often, a user expects the result of a similarity query to be sorted according
to the similarity values. However, queries, where all database tuples are more or
less relevant can easily occur. Obviously, in such a scenario it is quite unhandy
to block result presentation until the last result tuple is determined. In order
to circumvent delays, results are determined stepwise upon successive requests.
Compared with classic databases queries, this characteristic has to be considered
particularly. Here, the well-known pipeline technique, where result objects are
passed through different operators can be utilised. This is particularly reason-
able, if the number of presented object is known in advance and relatively small
compared to the number of result objects.

We therefore, for physical optimisation introduce a sort operator, that ar-
ranges tuples in decreasing order according to their similarity values. Considering
semantics of similarity queries this operator is introduced between result evalu-
ation and presentation, i.e. at the root of the query plan tree. Figure 5. tree. An
early sort according to similarity values may have the following advantages:

1. Ranker: If a similarity test concerning a relation’s media attribute precedes
sort operation a so called ranker algorithm can be employed. These algo-
rithms realise an index regarding similarity and provide nearest neighbor
determination. Rankers present their result in a stream like fashion, i.e. re-
sult objects are shown on subsequent requests. For example, rankers can be
based on the VA-file [22] approach or the AV-method [1].

2. Combiner: If two object streams which are sorted by their similarity val-
ues must be merged by a binary operation in SA, special combiner al-

40 T. Herstel and I. Schmitt

gorithms [8,11,17] can be employed. A good survey on different combiner
algorithms is given in [12].

3. Projection: Projection combines similarity values of duplicates using dis-
junction. This is very efficient on streams of result object, which are sorted
according to their similarity values. In [12] such an algorithm is suggested
and named transferer.

Applying these three techniques is exemplarily shown in Figure 6.

π#1

��#3=#1

σ#5=COil
σ#3=CDutch

ω Artist

σ#2δsim�

Painting

Transferer

Combiner

Ranker

Fig. 6. Query evaluation plan

Our example also demonstrates, that sorting by similarity values as early as
possible is not always optimal. For example, in Figure 6 the ranker algorithm
must examine all paintings in order to find the most similar one. If however, the
succeeding test regarding the painting technique (σ#5=COil

) has high selectivity,
e.g. only five of one million paintings show oil technique, this selection should be
executed before the similarity test (σ#2δsim

). This, on the other hand, precludes
employing a ranking algorithm. But in view of the very few number of objects
this can be considered negligible.

In order to get satisfactorily and reliable assumptions on how early a selection
regarding similarity values fits best, respective statistics on data and knowledge
about similarity semantics are vital. A cost model for similarity queries helps to
find an optimal query evaluation plan.

5 Conclusion

This work shortly introduces the similarity language SA, which basically ex-
tends relational algebra by similarity, weighting and user preferences. The al-
gebra is not considered as a user language but rather is a target language of

Relation-Collapse: An Optimisation Technique 41

a graphical, user-friendly, and calculus based language called WS-QBE . For an
efficient evaluation in query processing, optimisation of algebra expressions is
inevitable. An important principle therein is to reduce the number of relation
scans. As shown, this can be achieved by the applying an optimisation rule called
relation-collapse. Correctness of this rule was formally shown. Furthermore,
some more aspects and limits of optimisation were discussed.

Often optimisation rules without a cost based analysis is not applicable. In
the future we will develop an appropriate cost based model for evaluation effort
estimation.

As the similarity algebra is an extension of relational algebra, some expres-
sions can be expressed directly in SQL-2003. This benefits from advantages
coming with technologically mature SQL databases. We consider this aspect
and work on harmonising both, optimisation techniques outside and inside of
database systems with each other.

References

1. Balko, S., Schmitt, I., Saake, G.: The Active Vertice Method: A Performant Fil-
tering Approach to High-Dimensional Indexing. Data and Knowledge Engineering
(2004) 51(3):369–397

2. Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM (1970) 13(6):377–387

3. Codd, E. F.: A Database Sublanguage Founded on the Relational Calculus. In
ACM SIGFIDET Workshop on Data Description, Access and Control (1971) 35–61

4. Codd, E. F.: Relational Completeness of Data Base Sublanguages. In R. Rustin,
editor, Data Base Systems, volume 6, Prentice Hall, Englewood Cliffs, NJ (1972)
65–98

5. Codd, E. F.: Relational Database: A Practical Foundation for Productivity. Com-
munications of the ACM (1982) 25(2):109–117

6. Date, C., J.: An Introduction to Database Systems. Addison-Wesley, 8th edition
(2003)

7. Elmasri, R., Navathe, S. B.: Fundamentals of Database Systems. Ben-
jamin/Cummings, Redwood City, CA, 4th edition (2004)

8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences (2003) 66(4):614–656

9. Fagin, R., Wimmers, E. L.: A Formula for Incorporating Weights into Scoring
Rules. Special Issue of Theoretical Computer Science (2000)

10. Graefe, G.: Query Evaluation Techniques For Large Databases. ACM Computing
Surveys (1993) 25(2):73–170

11. Güntzer, U., Balke, W. T., Kießling, W.: Optimizing Multi-Feature Queries for
Image Databases. In A. El Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N.
Kamel, G. Schlageter, and K.-Y. Whang, editors, VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt, Morgan Kaufmann (2000) 419–428

12. Henrich, A., Robbert, G.: Ein Ansatz zur Übertragung von Rangordnungen bei
der Suche auf strukturierten Daten. In G. Weikum, H. Schöning, and E. Rahm,
editors, Datenbanksysteme in Business, Technologie und Web, BTW’03, 10. GI-
Fachtagung, Leipzig, Februar 2003, Lecture Notes in Informatics (LNI) Volume
P-26, Bonn, Gesellschaft für Informatik. (2003) 167–186

42 T. Herstel and I. Schmitt

13. Herstel, T., Schmitt, I.: Optimierung von Ausdrücken der Ähnlichkeitsalgebra SA.
In Peter Dadam and Manfred Reichert, editors, INFORMATIK 2004 - Informatik
verbindet – Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V. (GI),
Band 2, 20.-24. September 2004, Ulm, Germany, volume P-51 of Lecture Notes in
Informatics (LNI), Bonn . Gesellschaft für Informatik, Köllen Druck+Verlag GmbH
(2004) 49–53

14. Ioannidis, Y. E.: Query optimization. ACM Computing Surveys (1996) 28(1):121–
123

15. Jarke, M., Koch, J.: Query Optimization in Database Systems. ACM Computing
Surveys (1984) 16(2):111–152

16. Kifer, M., Bernstein, A., Lewis, P. M.: Database Systems: An Application-Oriented
Approach, Introductory Version. Addison-Wesley, 2nd edition (2004)

17. Nepal, S., Ramakrishna, M. V.: Query Processing Issues in Image(multimedia)
Databases. In M. Kitsuregawa, editor, Proc. of the 15th IEEE Int. Conf. on Data
Engineering, ICDE’99, Sydney, Australia, March, Los Alamitos, CA, 1999. IEEE
Computer Society Press (1999) 22–29

18. Schmitt, I., Schulz, N.: Similarity Relational Calculus and its Reduction to a Sim-
ilarity Algebra. In Dietmar Seipel and J. M. Turull-Torres, editors, Third Intern.
Symposium on Foundations of Information and Knowledge Systems (FoIKS’04),
Austria, February 17-20, volume 2942 of lncs Springer-Verlag Berlin Heidelberg
(2004) 252–272

19. Schmitt, I., Schulz, N., Herstel, T.: WS-QBE: A QBE-like Query Language for
Complex Multimedia Queries. In Yi-Ping Phoebe Chen, editor, Proceedings of the
11th International Multimedia Modelling Conference (MMM’05), Melbourne, Aus-
tralia, January 12-14, 2005, Los Alamitos, CA, jan 2005. IEEE Computer Society
Press (2005) 222–229

20. Schulz, N.: Formulierung von Nutzerpräferenzen in Multimedia-Retrieval-
Systemen. Dissertation, Otto-von-Guericke-Universität Magdeburg, Fakultät für
Informatik (2004)

21. Schulz, N., Schmitt, I.: Relevanzwichtung in komplexen Ähnlichkeitsanfragen. In
G. Weikum, H. Schöning, and E. Rahm, editors, Datenbanksysteme in Business,
Technologie und Web, BTW’03, 10. GI-Fachtagung, Leipzig, Februar 2003, Lecture
Notes in Informatics (LNI) Volume P-26. Gesellschaft für Informatik (2003) 187–
196

22. Weber, R., Schek, H. J., Blott, S.: A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In A. Gupta,
O. Shmueli, and J. Widom, editors, Proc. of the 24th Int. Conf. on Very Large
Data Bases (VLDB’98), Ney York City, August 24–27, 1998, San Francisco, CA.
Morgan Kaufmann Publishers (1998) 194–205

23. Yu, C. T., Meng, W.: Principles of Database Query Processing for Advanced
Applications. Morgan Kaufmann Publishers, San Francisko, CA (1998)

24. Zadeh, L. A.: Fuzzy Logic. IEEE Computer (1988) 21(4):83–93

On Modal Deductive Databases

Linh Anh Nguyen

Institute of Informatics, University of Warsaw,
ul. Banacha 2, 02-097 Warsaw, Poland

Abstract. We present a query language called MDatalog, which is an
extension of Datalog for multimodal deductive databases. We define
modal relational algebras and give the seminaive evaluation algorithm
and the magic-set transformation for MDatalog queries. Results of this
paper are proved for the multimodal logics of belief KDI4s5, KDI45,
KD4s5s, KD45(m), which are extensions of the monomodal logic KD45.
We show that MDatalog has PTIME data complexity in these logics.

1 Introduction

Deductive databases are very useful for practical applications. In deductive
databases, intentional relations are defined using extentional relations and logi-
cal rules, and users can thus create sophisticated relations from basic ones. The
field of deductive databases is mature and there are well-developed techniques
for computing queries in such databases (see, e.g., [1]). Deductive databases
continuously receive attention from researchers; see, e.g., recent works [2,4].

Modal and temporal logics are used to reason about knowledge, belief, ac-
tions, changes, etc. It is desirable to study modal and temporal extensions of
deductive databases. For example, if we treat belief as a kind of uncertainty,
then modal deductive databases using multi-degree belief have potential appli-
cations. The field of temporal deductive databases has received a lot of attentions
from researchers (see, e.g., the survey [3]). On the other hand, the term “modal
deductive databases” is hard to find in the literature of computer science.

In [8], we proposed a modal query language MDatalog, which extends Dat-
alog with modal operators. The computational method proposed in that work
is based on building a least L-model for a modal deductive database, where L
is the base modal logic. The technique used in [8] has the good property that it
also works for the logics KD4 and S4 but has a disadvantage that it does not
fully address advanced techniques of Datalog like the relational algebra or the
magic-set transformation. In [9,10], we developed a modal logic programming
language called MProlog and gave fixpoint semantics and SLD-resolution calculi
for MProlog in basic serial monomodal logics and useful multimodal logics of
belief. (An implementation of MProlog was reported in [11].) We used a special
structure called a model generator to represent a Kripke model. A model gen-
erator is a set of ground modal atoms, which may contain labelled existential
modal operators. The direct consequence operator of the fixpoint semantics is a
function that maps a model generator to another one. With that feature, we are

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 43–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

44 L.A. Nguyen

able to group atoms in a model generator by predicate symbols and this is a key
to develop modal relational algebras, which is done in this work.

In this work, we extend the query language MDatalog for multimodal deduc-
tive databases. Basing on the existing techniques of Datalog, we define modal
relational algebras and give the seminaive evaluation algorithm and the magic-set
transformation for MDatalog queries. The language MDatalog is a sublanguage
of MProlog and our computational methods for MDatalog are based on the fix-
point semantics of MProlog programs. Results of this paper are proved for the
multimodal logics KDI4s5, KDI45, KD4s5s, KD45(m), which are multimodal
extensions of the monomodal logic KD45. The logics KDI4s5 and KDI45 are
intended for reasoning about multi-degree belief, while KD4s5s can be used for
distributed systems of belief, and KD45(m) can be used for reasoning about
epistemic states of agents. We show that MDatalog has PTIME data complexity
in these logics.

The rest of this work is organized as follows. In Section 2, we give basic
definitions for multimodal logics and define the multimodal logic programming
language MProlog. In Section 3, we provide fixpoint semantics for MProlog pro-
grams in the multimodal logics KDI4s5, KDI45, KD4s5s, KD45(m). In Sec-
tion 4, we define the MDatalog language and give definitions for multimodal
deductive databases. We also show that MDatalog has PTIME data complexity
in KDI4s5, KDI45, KD4s5s, KD45(m). In Section 5, we define the L-SPCU
algebra, which is an extension of the relational algebra SPCU for a multimodal
logic L, and show that nonrecursive MDatalog queries in L can be simulated by
L-SPCU queries. In Section 6, we present the seminaive evaluation algorithm and
the magic-set transformation for MDatalog queries. Finally, Section 7 contains
concluding remarks.

2 Preliminaries

2.1 Syntax and Semantics of Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of a language of
classical first-order logic with modal operators �i and �i, for 1 ≤ i ≤ m (where
m is fixed). The modal operators �i and �i can take various meanings. For
example, �i can stand for “the agent i believes” and �i for “it is considered
possible by agent i”. The operators �i are called universal modal operators,
while �i are called existential modal operators.

Terms and formulas are defined in the usual way, with the addition that if ϕ
is a formula then �iϕ and �iϕ are also formulas. The modal depth of a formula is
the maximal nesting depth of modalities in the formula. The Herbrand universe
U and the Herbrand base B (for a fixed language) are defined as usual.

A Kripke frame is a tuple 〈W, τ, R1, . . . , Rm〉, where W is a nonempty set of
possible worlds, τ ∈ W is the actual world, and Ri is a binary relation on W ,
called the accessibility relation for the modal operators �i, �i. If Ri(w, u) holds
then we say that the world u is accessible from the world w via Ri.

On Modal Deductive Databases 45

A fixed-domain Kripke model with rigid terms, hereafter simply called a
Kripke model or just a model, is a tuple M = 〈D, W, τ, R1, . . . , Rm, π〉, where
D is a set called the domain, 〈W, τ, R1, . . . , Rm〉 is a Kripke frame, and π is an
interpretation of constant symbols, function symbols and predicate symbols. For
a constant symbol a, π(a) is an element of D. For an n-ary function symbol f ,
π(f) is a function from Dn to D. For an n-ary predicate symbol p and a world
w ∈ W , π(w)(p) is an n-ary relation on D.

A variable assignment V w.r.t. a Kripke model M is a function that maps
each variable to an element of the domain of M . The value of tM [V] for a term
t is defined as usual.

Given a Kripke model M = 〈D, W, τ, R1, . . . , Rm, π〉, a variable assignment
V , and a world w ∈ W , the satisfaction relation M, V, w � ϕ for a formula ϕ is
defined as follows:

M, V, w � p(t1, . . . , tn) iff (tM1 [V], . . . , tMn [V]) ∈ π(w)(p);
M, V, w � ϕ ∧ ψ iff M, V, w � ϕ and M, V, w � ψ;
M, V, w � �iϕ iff for all v ∈ W such that Ri(w, v), M, V, v � ϕ;
M, V, w � ∀xϕ iff for all a ∈ D, (M, V ′, w � ϕ),

where V ′(x) = a and V ′(y) = V (y) for y �= x;

and as usual for other cases (treating �iϕ as ¬�i¬ϕ, and ∃xϕ as ¬∀x¬ϕ). We
write M, w � ϕ to denote that M, V, w � ϕ for every V . We say that M satisfies
ϕ, or ϕ is true in M , and write M � ϕ, if M, τ � ϕ. For a set Γ of formulas, we
call M a model of Γ and write M � Γ if M � α for every α ∈ Γ .

If as the class of admissible interpretations we take the class of all Kripke
models (with no restrictions on the accessibility relations) then we obtain a
quantified multimodal logic which has a standard Hilbert-style axiomatisation
denoted by K(m). Other normal (multi)modal logics are obtained by adding
certain axioms to K(m).

For a normal modal logic L whose class of admissible interpretations can be
characterized by classical first-order formulas using the accessibility relations,
we call such formulas L-frame restrictions, and call frames with such properties
L-frames. We call a model M with an L-frame an L-model. We say that ϕ is L-
satisfiable if there exists an L-model of ϕ, i.e. an L-model satisfying ϕ. A formula
ϕ is said to be L-valid and called an L-tautology if ϕ is true in every L-model.
For a set Γ of formulas, we write Γ �L ϕ and call ϕ a logical consequence of Γ
in L if ϕ is true in every L-model of Γ .

2.2 Multimodal Logics About Belief

To reflect properties of belief, one can extend the system K(m) with some of
the following axioms, where axiom (D) states that belief is consistent, axiom (I)
states that subscripts indicate degrees of belief, axiom (4) (resp. (4s)) states that
belief satisfies (strong) positive introspection, and axiom (5) (resp. (5s)) states
that belief satisfies (strong) negative introspection.

46 L.A. Nguyen

Name Schema Corresponding Condition
(D) �iϕ → ¬�i¬ϕ ∀u ∃v Ri(u, v)
(I) �iϕ → �jϕ if i > j Rj ⊆ Ri if i > j
(4) �iϕ → �i�iϕ ∀u, v, w (Ri(u, v) ∧Ri(v, w) → Ri(u, w))
(4s) �iϕ → �j�iϕ ∀u, v, w (Rj(u, v) ∧Ri(v, w) → Ri(u, w))
(5) ¬�iϕ → �i¬�iϕ ∀u, v, w (Ri(u, v) ∧Ri(u, w) → Ri(w, v))
(5s) ¬�iϕ → �j¬�iϕ ∀u, v, w (Rj(u, v) ∧Ri(u, w) → Ri(v, w))

The following logics are intended for reasoning about multi-degree belief:

KDI4s5 = K(m) + (D) + (I) + (4s) + (5)
KDI45 = K(m) + (D) + (I) + (4) + (5)

Note that axiom (5s) is derivable in KDI4s5. Axiom (I) gives �iϕ the mean-
ing “ϕ is believed up to degree i”, and �iϕ can be read as “it is possible weakly
at degree i that ϕ”.

For multi-agent systems, subscripts beside � and � stand for agents. For
distributed systems of belief we can use KD4s5s = K(m) + (D) + (4s) + (5s).
In this system, agents have full access to belief bases of each other. They are
members of a united system and viewed as “friends”. In another kind of multi-
agent systems, agents are “opponents” and they play against each other. Each
agent tries to simulate epistemic states of the others. To write a program for
an agent one may need to use modal operators of other agents. One of suitable
logics for this problem is KD45(m) = K(m) + (D) + (4) + (5).

For further reading on modal logics, see, e.g., [6,7].

2.3 Multimodal Logic Programs

We use E and F to denote classical atoms, and � to denote a sequence of
universal modal operators, which may be empty. By ∀(ϕ) we denote the universal
closure of ϕ. Similarly as in classical logic programming, we use the clausal form
�(ϕ ← ψ1, . . . , ψn) for ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)).

A program clause is a formula of the form �(A ← B1, . . . , Bn), where n ≥ 0
and A, B1, . . . , Bn are formulas of the form E, �iE, or �iE. � is called the
modal context, A the head, and B1, . . . , Bn the body of the program clause.

An MProlog program is a finite set of program clauses.
When the base logic is intended for reasoning about multi-degree belief, it

has little sense to write a program clause in the form �i�jϕ. Besides, in the
logics KDI4s5 and KD4s5s we have the tautology ∇∇′ϕ ≡ ∇′ϕ, where ∇
and ∇′ are modal operators. For these reasons, we introduce a restriction for
MProlog programs in these logics: For L ∈ {KDI4s5, KDI45, KD4s5s}, an
MProlog program is called an L-MProlog program if its program clauses have
modal context with length bounded by 1.

In the logic KD45(m), we have the tautology �i�iϕ ≡ �iϕ. So, we introduce
a restriction for MProlog programs in KD45(m): An MProlog program is called
a KD45(m)-MProlog program if the modal contexts of its program clauses do
not contain subsequences of the form �i�i.

On Modal Deductive Databases 47

It is shown in [10] that the MProlog language (with goals) has the same ex-
pressiveness power as the general Horn fragment in normal modal logics. More-
over, the above restrictions do not reduce expressiveness of the language [10].

3 Fixpoint Semantics of MProlog Programs

In this section, we instantiate our framework given in [10] to provide fixpoint
semantics for L-MProlog programs, where L ∈ {KDI4s5, KDI45, KD4s5s,
KD45(m)}. Let L be one of these logics and P be an L-MProlog program.

When applying the “direct consequence operator” TL,P , if we obtain an
“atom” of the form �iE, then to simplify the task we label the modal operator
�i. Labelling allows us to address the chosen world(s) in which this particular
E must hold. A natural way is to label �i by E to obtain 〈E〉i.

Throughout this work, we will use the following notations:

– ∇ : �i, �i, or 〈E〉i, called a modal operator;
– � : a (possibly empty) sequence of modal operators, called a modality;
– A, B : formulas of the form E or ∇E, called simple atoms;
– α, β : formulas of the form �E, called atoms;
– ϕ, ψ : (labelled) formulas, i.e. formulas that may contain 〈E〉i.

A ground modality is a modality without variables.
Recall that a simple subscript like i beside �, �, or 〈E〉 indicates the kind

(i.e. degree/agent number) of the modal operator. We use such subscripts be-
side ∇ for the same aim. To distinguish a number of modal operators we use
superscripts of the form (i), e.g. �(1), �(2), ∇(i).

Define that a modality ∇(1)
i1

. . .∇(k)
ik

is in L-normal form if

– case L ∈ {KDI4s5, KD4s5s}: k ≤ 1,
– case L = KD45(m): ij �= ij+1 for all 1 ≤ j < k,
– case L = KDI45: i1 > . . . > ik.

A modality is in L-normal labelled form if it is in L-normal form and does not
contain1 �i. An atom is in L-normal (labelled) form if it is of the form �E with
� in L-normal (labelled) form. An atom is in almost L-normal labelled form if
it is of the form �A with � in L-normal labelled form.

We define �L to be the least reflexive and transitive binary relation between
modal operators such that �i �L 〈E〉i �L �i, and if L ∈ {KDI4s5, KDI45}
and i ≤ j then �i �L �j and �j �L �i. A ground modality � = ∇(1) . . .∇(n)

is called an L-instance of a ground modality �′ = ∇(1′) . . .∇(n′) if ∇(i) �L ∇(i′)

for every 1 ≤ i ≤ n. In that case we say that �′ is equal to or more general in
L than � (hereby we define a pre-order between ground modalities). If � is an
L-instance of �′ then we call �E an L-instance of the atom �′E. For example,
�1�2E is a KDI4s5-instance of �2〈F 〉1E.
1 In [10], we exclude also 〈�〉i, but 〈�〉i and � are not used in this work, as we will

omit details of the construction of standard L-models of L-model generators.

48 L.A. Nguyen

A model generator is a set of ground atoms not containing �i. An L-normal
model generator is a model generator consisting of atoms in L-normal labelled
form. An L-normal model generator I is expected to represent an L-model, which
is defined in [10] and called the standard L-model of I. It is shown in [10] that
“the standard L-model of an L-normal model generator I is a least L-model of I”.

Given an L-normal model generator I, how can TL,P (I) be defined? Basing
on the axioms of L, I is first extended to the L-saturation of I, denoted by
SatL(I), which is a set of atoms. Next, L-instances of program clauses of P
are applied to the atoms of SatL(I). This is done by the operator T0L,P . The set
T0L,P (SatL(I)) is a model generator but not necessary in L-normal form. Finally,
the normalization operator NFL converts T0L,P (SatL(I)) to an L-normal model
generator. TL,P (I) is defined as NFL(T0L,P (SatL(I))).

The saturation operator SatL is specified by the following rules, in which
formulas in both sides are required to be in almost L-normal labelled form:

L = KDI4s5 : �iE → �jE if i > j
�iE → �m�iE
〈F 〉iE → �m�iE

L = KD4s5s : �iE → �j�iE
〈F 〉iE → �j�iE

L = KD45(m) : ��iE →��i�iE
�〈F 〉iE →��i�iE

L = KDI45 : ��iα →��jα if i > j
��iα →��i�jα if i > j
��i�jα →��jα if i > j
��iE →��i�iE
�∇E →��i�iE if �i �L ∇
��i∇jE →��jE if i > j
�〈F 〉i∇jE → ��iE if i > j

Given an L-normal model generator I, SatL(I) is the least extension of I that
contains all ground atoms in almost L-normal labelled form that are derivable
from some atom in I using the rules specifying SatL. As an example, for L =
KDI4s5, we have SatL({�2p(a)}) = {�2p(a), �1p(a), �m�2p(a), �m�1p(a)}.

Let � be a universal modality in L-normal form, �
′ a modal context of an

L-MProlog program clause, ϕ and ϕ′ be program clauses with an empty modal
context. We say that � is an L-context instance of �

′ if �
′ψ → �ψ is L-valid

(for every ψ), and that �ϕ is an L-instance of (a program clause) �
′ϕ′ if � is

an L-context instance of �
′ and there exists a substitution θ such that ϕ = ϕ′θ.

It is easily seen that � is an L-context instance of �
′ iff one of the following

condition holds: a) L ∈ {KD45(m), KD4s5s} and � = �
′; b) L = KDI4s5 and

� is an L-instance of �
′; c) L = KDI45, �

′ = �i, � is not empty, and every
modal operator �j of � satisfies j ≤ i.

On Modal Deductive Databases 49

The operator T0L,P is defined as follows: for a set I of ground atoms in almost
L-normal labelled form, T0L,P (I) is the least (w.r.t. ⊆) model generator such that
if �(A ← B1, . . . , Bn) is a ground L-instance of some program clause of P and
� is a maximally general ground modality in L-normal labelled form such that
� is an L-instance of � and �Bi is an L-instance of some atom of I (for every
1 ≤ i ≤ n), then the forward labelled form of �A belongs to T0L,P (I), where the
forward labelled form of an atom α is the atom α′ such that if α is of the form
�′�iE then α′ = �′〈E〉iE, else α′ = α.

For example, if P consists of the only clause �2(�1p(x) ← q(x), r(x), �1s(x),
�2t(x)) and I = {〈q(a)〉1q(a), 〈q(a)〉1r(a), �2�2s(a), �2〈t(a)〉1t(a)} and L =
KDI4s5, then T0L,P (I) = {〈q(a)〉1〈p(a)〉1p(a)}.

The normalization operator NFL is specified by the following rules, in which
formulas in both sides are required to be in almost L-normal labelled form and
∇i is �i or 〈E〉i:

L ∈ {KDI4s5, KD4s5s} : ∇′
j∇iE → ∇iE

L = KD45(m) : �∇′
i∇iE →�∇iE

L = KDI45 : �∇′
j∇iE →�∇iE if j ≤ i

Given a model generator I, NFL(I) is the set of all ground atoms in L-
normal labelled form that are derivable from some atom of I using the rules
specifying NFL. For example, NFKDI4s5({〈q(a)〉1〈p(a)〉1p(a)}) = {〈p(a)〉1p(a)}.

Define TL,P (I) = NFL(T0L,P (SatL(I))). By definition, the operators SatL,
T0L,P , and NFL are all increasingly monotonic and compact. Hence the operator
TL,P is monotonic and continuous. By the Kleene theorem, it follows that TL,P

has the least fixpoint TL,P ↑ω =
⋃ω

n=0 TL,P ↑n, where TL,P ↑0 = ∅ and TL,P ↑n
= TL,P (TL,P ↑(n− 1)) for n > 0. Denote the least fixpoint TL,P ↑ω by IL,P and
the standard L-model of IL,P by ML,P .

It is proved in [10] that “P �L IL,P and ML,P is a least L-model of P”.

Example 1. Consider the following program P in L = KDI4s5:

�1 s(a) ← �1(q(x) ← r(x), s(x))
�1(�1r(x) ← s(x)) �2(p(x) ← �2q(x))

We have IL,P = {〈s(a)〉1 s(a), �1r(a), 〈s(a)〉1 q(a), �2p(a), �1p(a)}.

4 MDatalog and Modal Deductive Databases

In this section, we give definitions for modal deductive databases and define a
query language called MDatalog for such databases. We also show that the data
complexity of MDatalog in the logics KDI4s5, KDI45, KD4s5s, KD45(m) is
in PTIME. Let L be one of these logics.

We first define the L-MDatalog language. An MProlog program clause with-
out function symbols is allowed if every variable occurring in the head also occurs
in the body. An L-MDatalog program is an L-MProlog program free from func-
tion symbols and containing only allowed clauses.

50 L.A. Nguyen

An n-ary L-tuple is an ordered pair (�, t), where t is a classical n-ary tuple
of constant symbols and � is a ground modality in almost L-normal labelled
form. An n-ary L-relation is a set of n-ary L-tuples. An L-relation is an n-ary
L-relation for some n. An L-relation is said to be in L-normal form if each of its
tuples is of the form (�, t) with � in L-normal labelled form.

A modal deductive database in L consists of an instance I of extentional
L-relations (edb) and an L-MDatalog program P for defining intentional rela-
tions (idb).

If (�, t) is a tuple in an L-relation of a predicate p then we also treat it as the
atom �p(t). Let R be a set of predicate symbols. An instance I of L-relations
of R will be also treated as a set of atoms of predicates of R. Conversely, a
set I of ground atoms of predicates of R which are in almost L-normal labelled
form will be also treated as an instance of L-relations of R. If I is an instance of
L-relations of R and p is a predicate symbol of R, then by I(p) we denote the
instance of the L-relation p contained in I.

An L-MDatalog program P can be treated as the function PL that maps an
instance of edb L-relations to an instance of idb L-relations such that PL(I) is
the least (w.r.t. ⊆) L-model generator J such that TL,P (I ∪ J) = J . Let TL,P,I

be the operator defined by TL,P,I(J) = TL,P (I ∪ J). Then TL,P,I is monotonic
and continuous, and PL(I) is the least fixpoint of TL,P,I specified by TL,P,I ↑ω =⋃

0≤k≤ω TL,P,I ↑k, where TL,P,I ↑k is defined in a similar way as TL,P ↑k.
We define an L-MDatalog query to be a pair (P, ϕ), where P is an L-MDatalog

program and ϕ = �(query(x1, . . . , xk) ← B1, . . . , Bh) is an L-MDatalog clause
(i.e. an allowed program clause not containing function symbols) such that: query
is a special predicate symbol not occurring in P and the body of ϕ, the variables
x1, . . . , xk are different, and k ≥ 1. An L-MDatalog query (P, ϕ) takes as input an
instance I of edb L-relations and returns as output the L-relation P ′

L(I)(query),
where P ′ = P ∪ {ϕ}.

One can show that the (fixpoint) semantics of L-MDatalog queries is com-
patible with the least model semantics of L-MProlog programs [10].

Example 2. Let us consider the situation when a company has some branches
and a central database. Each of the branches can access and update the database,
and suppose that the company wants to distinguish data and knowledge coming
from different branches. Also assume that data coming from branches can contain
noises and statements expressed by a branch may not be highly recognised by
other branches. This means that data and statements expressed by branches
are treated as “belief” rather than “knowledge”. In this case, we can use the
multimodal logic KD4s5s, where each modal index represent a branch of the
company, also called an agent. Recall that in this logic each agent has a full
access to the belief bases of the other agents. Data put by agent i are of the
form �iE (agent i believes in E) or �iE (agent i considers that E is possible).
A statement expressed by agent i is a clause of the form �i(A ← B1, . . . , Bn),
where A is an atom of the form E, �iE, or �iE, and B1, . . . , Bn are simple modal
atoms that may contain modal operators of the other agents. For communicating
with normal users, the central database may contain rules with the empty modal
context, i.e. in the form E ← B1, . . . , Bn, which hide sources of information. As

On Modal Deductive Databases 51

a concrete example, consider the following program/database in KD4s5s:

agent 1:
�1(�1likes(x,Coca) ← likes(x, Pepsi)) (1)
�1(�1likes(x,Pepsi) ← likes(x,Coca)) (2)
�1likes(Tom,Coca) ← (3)
�1likes(Peter,Pepsi) ← (4)
agent 2:
�2(likes(x,Coca) ← likes(x, Pepsi)) (5)
�2(likes(x,Pepsi) ← likes(x,Coca)) (6)
�2likes(Tom,Pepsi) ← (7)
�2likes(Peter,Coca) ← (8)
�2likes(Peter, beer) ← (9)
agent 3:
�3(very much likes(x, y) ← likes(x, y),�1likes(x, y),�2likes(x, y)) (10)
�3likes(Tom,Coca) ← (11)
�3likes(Peter, Pepsi) ← (12)
�3likes(Peter, beer) ← (13)
for communicating with users:
very much likes(x, y) ← �3very much likes(x, y) (14)
likes(x, y) ← �3very much likes(x, y) (15)
possibly likes(x, y) ← �ilikes(x, y) (for i ∈ {1, 2, 3}) (16)

Theorem 1. For L ∈ {KDI4s5, KDI45, KD4s5s, KD45(m)}, the data com-
plexity of L-MDatalog is in PTIME.

Proof. Let (P0, ϕ) be an L-MDatalog query, and I0 an input to (P0, ϕ). Let
P = P0 ∪{ϕ}, c be the size of P , and n the size of P ∪ I0. It is sufficient to show
that the complexity of computing PL(I0) is bounded by a polynomial of n.

Fix some k ≥ 1 and let I = TL,P,I0 ↑k and α ∈ I. Then the modal depth of
α is bounded by 1 for L ∈ {KDI4s5, KD4s5s}, by m for L = KDI45, and by
the modal depth of P for L = KD45(m). Denote this bounce by d.

The key of this proof is that modal depths of atoms appearing in TL,P,I0 ↑ω
are bounded by d. Also observe that for any atom β, the sets SatL({β}) and
NFL({β}) can be computed in a finitely bounded number of steps.

The number of classical atoms that may occur in (the atoms of) I is of
rank O(nc). Hence the size of I is of rank O(nc(d+1)). It follows that the size
of SatL(I0 ∪ I) and the number of steps needed for computing SatL(I0 ∪ I)
from I0 and I are also of rank O(nc(d+1)). The number of steps needed for
computing T0L,P (SatL(I0 ∪ I)) from SatL(I0 ∪ I) is of rank O(nc.c.(d+1)). The
size of T0L,P (SatL(I0 ∪ I)) can be estimated in a similar way as the size of I and
is of rank O(nc(d+2)). The number of steps need for computing TL,P,I0 ↑ (k + 1)
from T0L,P (SatL(I0 ∪ I)) is of the same rank as the size of T0L,P (SatL(I0 ∪ I)).
Therefore the number of steps needed to compute TL,P,I0 ↑(k+1) from TL,P,I0 ↑k
is bounded by a polynomial of n. The size of TL,P,I0 ↑ω can be estimated in the
same way as the size of I and is of rank O(nc(d+1)). Hence the number of steps
needed to compute TL,P,I0 ↑ω is bounded by a polynomial of n.

52 L.A. Nguyen

5 Modal Relational Algebras

Let L be one of the multimodal logics KDI4s5, KDI45, KD4s5s, KD45(m). In
this section, we first define a modal relational algebra in L, called the L-SPCU
algebra. These algebras extend the classical SPCU algebra (see, e.g., [1]) with
some operators involving with modalities. We then compare L-SPCU algebra
queries with nonrecursive L-MDatalog programs (defined later).

The L-SPCU algebra is formed by the following operators:

Selection. The two primitive forms are σj=c and σj=k, where j, k are positive
integers and c is a constant symbol. The operator σj=c takes as input any
L-relation I with arity ≥ j and returns as output an L-relation of the same
arity. In particular, σj=c(I) = {(�, t) | (�, t) ∈ I and t(j) = c}. The operator
σj=k is defined analogously for inputs with arity ≥ max{j, k}.

Projection. The general form of this operator is πj1,...,jn , where j1, . . . , jn is a
sequence of positive integers, possibly with repeats. This operator takes as
input any L-relation with arity ≥ max{j1, . . . , jn} and returns an L-relation
with arity n. In particular, πj1,...,jn(I) = {(�, 〈c1, . . . , cn〉) | (�, t) ∈ I for
some t with t(ji) = ci for 1 ≤ i ≤ n}.

Cross-product. This operator, denoted by ×, takes as input a pair of L-
relations in L-normal form having arbitrary arities k and h and returns an
L-relation with arity k + h. In particular, if arity(I) = k and arity(J) = h,
then I×J = {(�, 〈t(1), . . . , t(k), s(1), . . . , s(h)〉) | there exist�′ and�′′ such
that (�′, t) ∈ I, (�′′, s) ∈ J , and � is a maximal L-instance in L-normal
labelled form of �′ and �′′}.

Union. This operator, denoted by ∪, takes as input a pair of L-relations with
the same arity and returns an L-relation with the same arity that is the
union of the input relations.

Context-shrink. The two primitive forms are �i and �i, where 1 ≤ i ≤ m.
These operators take as input any L-relation I and return as output an
L-relation of the same arity. In particular, �i(I) = {(�, t) | there exists
(�∇, t) ∈ I such that �i �L ∇}. The operator �i is defined analogously.

Context-stretch. The two primitive forms are �←
i and �←

i , where 1 ≤ i ≤
m. These operators take as input any L-relation I in L-normal form and
return as output an L-relation of the same arity. In particular, �←

i (I) =
{(��i, t) | (�, t) ∈ I} and �←

i (I) = {(��i, t) | (�, t) ∈ I}.
Context-selection. The general form of this operator is σ�, where � is the

modal context of an L-MDatalog program clause. This operator takes as
input any L-relation I in L-normal form and returns as output an L-relation
of the same arity. In particular, σ�(I) = {(�, t) | there exist (�′, t) ∈ I and
a universal modality �

′ being an L-context instance of � such that � is a
maximal L-instance in L-normal labelled form of �′ and �

′}.
Saturation. This operator, denoted by SatL, takes as input any L-relation I

in L-normal form and returns as output an L-relation of the same arity. In
particular, SatL(I) = {(�, t) | there exists �′ such that (�′, t) ∈ I and
�E ∈ SatL({�′E}) for some E}, where the latter operator SatL acts on
model generators as defined in Section 3.

On Modal Deductive Databases 53

Labelling. The general form of this operator is Labelp, where p is an n-ary
predicate symbol. This operator takes as input any L-relation I with ar-
ity n and returns as output an L-relation of the same arity. In particu-
lar, Labelp(I) = {(�, t) | (�, t) ∈ I and � is not of the form �′�i} ∪
{(�〈p(c1, . . . , cn)〉i, 〈c1, . . . , cn〉) | (��i, 〈c1, . . . , cn〉) ∈ I}.

Normalization. This operator, denoted by NFL, takes as input any L-relation
I and returns as output an L-relation in L-normal form and of the same
arity. In particular, NFL(I) = {(�, t) | there exists �′ such that (�′, t) ∈ I
and �E ∈ NFL({�′E}) for some E}, where the latter operator NFL acts
on model generators as defined in Section 3.

Note that the operators ×, �i, �i, and σ� are dependent on the base logic L.
However, for simplicity we do not attach the index L to these operators.

Observe that if input consists of finite L-relations, then the above given
operations can be effectively computed and they return a finite L-relation (for
L ∈ {KDI4s5, KDI45, KD4s5s, KD45(m)}).

L-SPCU (algebra) queries are built from input L-relations and unary constant
relations Ic

L = {(�, 〈c〉) | � is a universal modality in L-normal labelled form},
where c is a constant symbol, using the L-SPCU algebra operators.

A predicate p directly depends on a predicate q in an L-MDatalog program
P if there exists a program clause ϕ of P containing p in the head and q in the
body. Define the relation “depends” to be the transitive closure of the relation
“directly depends”. An L-MDatalog program P is nonrecursive if none of its
predicates depends on itself.

Theorem 2. Every L-MDatalog query (P, ϕ), where L ∈ {KDI4s5, KDI45,
KD4s5s, KD45(m)} and P is a nonrecursive L-MDatalog program, is equivalent
to an L-SPCU query.

Proof. We give only a sketch for this proof. Since the L-SPCU algebra contains
the union operator, it is sufficient to show that every L-relation ans defined by
a nonrecursive L-MDatalog program clause is equivalent to an L-SPCU query.
For simplicity, we show this using the following representative example

�(�ians(x, x, z, a) ← �jR(x, b), �kS(x, y), T (z))

Let Q = π1(σ1=3(�j(SatL(σ2=b(R))) ×�k(SatL(S)))). Then ans is equiv-
alent to

NFL(Labelans(�←
i (σ�(σ1=2(Q×Q)× SatL(T)× Ia

L))))

The conversion of the above theorem does not hold because the operators
SatL, �←

i and �←
i may return relations which are not in L-normal form.

An additional operator that deserves for consideration is the redundant elimi-
nation operator REL(I) = {(�, t) ∈ I | there is no (�′, t) ∈ I such that �′ �= �
and � is an L-instance of �′}. We believe that this operator has a good be-
haviour when used in L-SPCU queries.

54 L.A. Nguyen

6 Evaluation of MDatalog

In this section, we extend evaluation techniques of Datalog (see, e.g., [1]) for
MDatalog. We concentrate on bottom-up techniques, in particular, the seminaive
evaluation and the magic-set transformation. Specific results of this section are
formulated for the logics KDI4s5, KDI45, KD4s5s, KD45(m). In this section,
let L denote one of these logics.

6.1 The Seminaive Evaluation

Let P be an L-MDatalog program and I an instance of edb L-relations. We first
give a naive algorithm for computing PL(I). Since PL(I) = TL,P,I ↑ ω, we can
obtain PL(I) by computing TL,P,I ↑ k for increasing values of k until a fixpoint
TL,P,I ↑k = TL,P,I ↑ (k − 1) is reached. Suppose that we have already computed
TL,P,I ↑k and the content of a relation p in TL,P,I ↑k is stored in pk. Let Jk consist
of such relations pk. Then to compute TL,P,I ↑(k+1) consider the program Pk+1

obtained from P by replacing every predicate p in bodies of the clauses of P by
pk. Pk+1 is a nonrecursive MDatalog program, and hence Pk+1(I ∪ Jk) can be
computed using the L-SPCU algebra operators. The results of Pk+1(I ∪ Jk) are
then assigned to relations pk+1 to start the next round (if necessary).

In the naive algorithm, a considerable amount of redundant computation is
done, as TL,P,I ↑k ⊆ TL,P,I ↑ (k + 1) and each round recomputes all elements of
the previous round. To avoid this situation we can apply the seminaive evalua-
tion technique in a similar way as for Datalog programs. Let P ′

k+1, for k ≥ 1, be
the program constructed as follows: for each clause �(A ← B1, . . . , Bn) of P and
each 1 ≤ i ≤ n, add to P ′

k+1 the clause �(A ← B′
1, . . . , B

′
i−1, B

∗
i , B′′

i+1, . . . , B
′′
n),

where B′
j (resp. B′′

j) is obtained from Bj by replacing the predicate of Bj , de-
noted by p, by pk (resp. pk−1), and B∗

i is obtained from Bi by replacing the
predicate of Bi, denoted by q, by the predicate defined by (qk − qk−1). The key
in this evaluation is B∗

i , which contains only new atoms that are derived at round
k. Then the seminaive algorithm is the modification of the naive algorithm with
Pk replaced by P ′

k for k ≥ 2. It is straightforward to prove that the seminaive al-
gorithm produces TL,P,I ↑k at round k. This means that the seminaive algorithm
is correct.

6.2 The Magic-Set Transformation Technique

We now consider the magic-set transformation technique for MDatalog queries.
In logic programming, SLD-resolution is a top-down procedure for computing
answers. In SLD-derivations, constant symbols may be push from goals to sub-
goals through unification, and in this way the search space is restricted. The
magic-set technique simulates that kind of search restriction for bottom-up eval-
uation. It rewrites a given query to another equivalent one that is more effective
when used with the seminaive evaluation.

An adornment γ for an n-ary predicate p is a sequence of n letters ‘b’ or
‘f ’, and p adorned by γ is denoted by pγ . For A = �p(t1, . . . , tn), where p is

On Modal Deductive Databases 55

an idb predicate, we use Aγ to denote �pγ(t1, . . . , tn) and say that a variable
x is bound in Aγ if there exists 1 ≤ j ≤ n such that tj = x and γ(j) = ‘b’,
otherwise x is free in Aγ . If A = �p(t1, . . . , tn) and p is an edb predicate, then
Aγ denotes the atom A itself (this means that we do not use adornments for edb
predicates). Given a clause ϕ = �(A ← B1, . . . , Bk) and an adornment γ for
the predicate in A, the adorned version of ϕ w.r.t. γ is �(Aγ ← Bγ1

1 , . . . , Bγk

k),
where γi is specified as follows: if Bi is of the form �p(t1, . . . , tn) and tj is a
constant symbol or a variable bound in Aγ or occurring in B1, . . . , Bj−1 then
γi(j) = ‘b’, else γi(j) = ‘f ’.

Let (P0, ϕ) be an L-MDatalog query. Let ψ be the adorned version of ϕ
w.r.t. the adornment containing only ‘f ’ with the modification that the head
is written without adornment. Let P = P0 ∪ {ϕ} and P ad be the program
consisting of all adorned versions of all clauses of P0 plus ψ. We call P ad the
adorned program corresponding to the query (P0, ϕ).

We proceed by giving a further transformation for P ad. We start with aux-
iliary notations. For an atom A of the form �pγ(t1, . . . , tn), where |�| ≤ 1
and i1, . . . , ik are all the indexes such that γ(ij) = ‘b’ for 1 ≤ j ≤ k : by
input A we denote the atom �input pγ(ti1 , . . . , tik

); by input blf A we denote2

�ip
γ(ti1 , . . . , tik

) if � = �i, and input A otherwise. Note that we do not write
adornment for query but it is implicitly the one that contains only ‘f ’. For
an adorned clause ϕi = �(A ← B1, . . . , Bk) and 1 ≤ j ≤ k, let Supi

j be the
atom of predicate supi

j whose arguments are the variables that occur both in
input A, B1, . . . , Bj−1 and Bj , . . . , Bk, A.

Let (P0, ϕ) be an L-MDatalog query and P ad the corresponding adorned
program. We construct Pm as follows: At the beginning let Pm contain only the
clause �

′(input query ←), where �
′ is the modal context of ϕ. Then for each

clause ϕi = �(A ← B1, . . . , Bk) of P ad with the property that query depends
on the predicate of A :

– If no idb predicate occurs in B1, . . . , Bk then add to Pm the clause

�(A ← input A, B1, . . . , Bk) (s i.1)

– Otherwise, let i1, . . . , ih be all the indexes such that for each 1 ≤ j ≤ h, Bij

is an atom of an idb predicate. Then add to Pm the following clauses:

�(Supi
i1
← input A, B1, . . . , Bi1−1) (s i.1)

�(Supi
ij
← Supi

ij−1
, Bij−1 , . . . , Bij−1) for every 1 < j ≤ h (s i.j)

�(A ← Supi
ih

, Bih
, . . . , Bk) (s i.(h + 1))

�(input blf B ij ← Supi
ij

) for every 1 ≤ j ≤ h (i i.j)

In the last clause given above, we use input blf B ij instead of input B ij be-
cause that, in serial modal logics we have that �(�iE → �iE), hence we should
accept �(�iinput E → �iinput E).

Among the clauses of Pm there is exactly one clause defining query. Denote
that clause by ϕm. Then (Pm, ϕm) is the L-MDatalog query obtained from
(P0, ϕ) by the magic-set transformation.
2 blf stands for “�-lifting form”

56 L.A. Nguyen

In order to compare (Pm, ϕm) with (P0, ϕ) and obtain an equivalence we
need a modification for the operator SatL. The problem is that if �E → �′E
is an instance of a rule specifying SatL or NFL then we should accept also
�′ input E → �input E. We extend the primary set of rules specifying SatL
with the following rules:

– case L ∈ {KDI4s5, KDI45} : �input E → �m input E if |�| ≥ 1;
– case L = KD4s5s : �∇i input E → �i input E;
– case L = KD45(m) : �∇i�′ input E →��i�′ input E and

�∇i∇′
i input E →��i input E.

We also need the modification that if α is of the form ��i pγ(t1, . . . , tn)
then the forward labelled form of α is �〈p(t1, . . . , tn)〉i pγ(t1, . . . , tn) instead of
�〈pγ(t1, . . . , tn)〉i pγ(t1, . . . , tn). The following theorem states that the magic-set
transformation for L-MDatalog is correct. See [10] for its proof.

Theorem 3. Let L ∈ {KDI4s5, KDI45, KD4s5s, KD45(m)}, (P0, ϕ) be
an L-MDatalog query, P = P0 ∪ {ϕ}, (Pm, ϕm) be the result of the magic-
set transformation for (P0, ϕ), and I an edb instance. Then every atom
�query(c1, . . . , ck) ∈ Pm

L (I) is an L-instance of some atom of PL(I), and every
atom �query(c1, . . . , ck) ∈ PL(I) is an L-instance of some atom of Pm

L (I). This
means that REL(Pm

L (I)(query)) = REL(PL(I)(query)).

Given an L-MDatalog query (P0, ϕ), to evaluate it we can first transform it
into (Pm, ϕm) using the magic-set transformation, and then apply the seminaive
evaluation for the new query.

7 Conclusions

In this work, we have presented the modal query language MDatalog and devel-
oped modal relational algebras and evaluation methods for MDatalog queries. We
have applied our methods for the multimodal logics of belief KDI4s5, KDI45,
KD4s5s, KD45(m) and shown that MDatalog has PTIME data complexity in
these logics.

Our methods are applicable for other modal logics. In particular, they can
be applied for the serial modal logics KD, T, KDB, B, KD5, S5, and extended
for the almost serial modal logics KB, K5, K45, and KB5, as fixpoint semantics
for MProlog programs in these logics have been developed in [9].

Looking from the view of modal logic programming, the ability of adopting
the fixpoint semantics of MProlog programs for computing MDatalog queries
is an evidence for the usefulness of the direct approach used for modal logic
programming [9,10]. The translational approaches [5,12] used in modal logic
programming are not suitable for modal deductive databases, because they in-
troduce Skolem function symbols and can make clauses not allowed.

In the field of deductive databases, apart from bottom-up methods like the
seminaive evaluation or the magic-set transformation, there are also top-down

On Modal Deductive Databases 57

methods. It is known that, for Datalog, the magic-set transformation method
is “equivalent” to the top-down QSQ method (see, e.g., [1]). For MDatalog, we
did not give any top-down method for evaluation. This remains as an interesting
problem for further investigation, at least from the theoretical point of view.
There are also other problems deserving for investigation, e.g., behaviours of
the redundant elimination operator, efficient representation of edb databases, or
further optimisations for bottom-up evaluation methods.

This work and our previous work [8] are pioneer works on modal deductive
databases. Despite that this work does not cover all problems involving with
modal deductive databases, it establishes a fundamental basis for the subject.

Because multimodal logics can be used to reason about multi-degree belief
(a kind of uncertainty) and epistemic states of agents, we believe that modal
deductive databases will have potential applications.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

2. Behrend, A., Manthey, R.: Update propagation in deductive databases using soft
stratification. In G. Gottlob, A.A. Benczúr, and J. Demetrovics, editors, Proceed-
ings of ADBIS’04, LNCS 3255, Springer (2004) 22–36

3. Chomicki, J.: Temporal query languages: A survey. In D.M. Gabbay and H.J.
Ohlbach, editors, Temporal Logic: ICTL’94, volume 827, Springer-Verlag (1994)
506–534

4. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the magic-set method for
disjunctive datalog programs. In B. Demoen and V. Lifschitz, editors, Proceedings
of ICLP’04, LNCS 3132, Springer (2004) 371–385

5. Debart, F., Enjalbert, P., Lescot, M.: Multimodal logic programming using equa-
tional and order-sorted logic. Theoretical Computer Science (1992) 105:141–166

6. Fitting, M., Mendelsohn, R. L.: First-Order Modal Logic. Springer (1998)
7. Halpern, J. Y., Moses, Y.: A guide to completeness and complexity for modal

logics of knowledge and belief. Artif. Intell. (1992) 54(2):319–379
8. Nguyen, L. A.: The modal query language MDatalog. Fundamenta Informaticae

(2001) 46(4):315–342
9. Nguyen, L. A.: A fixpoint semantics and an SLD-resolution calculus for modal

logic programs. Fundamenta Informaticae (2003) 55(1):63–100
10. Nguyen, L. A.: Multimodal logic programming and its applications to modal de-

ductive databases. Manuscript (served as a technical report), available on Internet
at http://www.mimuw.edu.pl/ nguyen/papers.html (2003)

11. Nguyen, L. A.: The modal logic programming system MProlog. In J.J. Alferes
and J.A. Leite, editors, Proceedings of JELIA 2004, LNCS 3229, Springer (2004)
266–278

12. Nonnengart, A.: How to use modalities and sorts in Prolog. In C. MacNish,
D. Pearce, and L.M. Pereira, editors, Proceedings of JELIA’94, LNCS 838, Springer
(1994) 365–378

Declarative Data Fusion –
Syntax, Semantics, and Implementation

Jens Bleiholder and Felix Naumann

Humboldt-Universität zu Berlin,
Unter den Linden 6, D-10099 Berlin, Germany
{bleiho, naumann}@informatik.hu-berlin.de

Abstract. In today’s integrating information systems data fusion, i.e.,
the merging of multiple tuples about the same real-world object into a
single tuple, is left to ETL tools and other specialized software. While
much attention has been paid to architecture, query languages, and query
execution, the final step of actually fusing data from multiple sources into
a consistent and homogeneous set is often ignored.

This paper states the formal problem of data fusion in relational
databases and discusses which parts of the problem can already be solved
with standard Sql. To bridge the final gap, we propose the SQL Fuse By
statement and define its syntax and semantics. A first implementation
of the statement in a prototypical database system shows the usefulness
and feasibility of the new operator.

1 Data Fusion

Integrated (relational) information systems provide users with only one uniform
view to different (relational) data sources. Querying the underlying different
data sources, combining the results, and presenting it to the user is done by the
integration system.

In this paper we want to present our work on how to do the Data Fusion step
in the data integration process. We rely on relational data where conflicts on the
schema level already have been solved, but conflicts on the data level remain.
Data Fusion is then the process of combining data about the same object from
different sources by resolving occurring data conflicts. We assume object identity,
that means, it is possible to distinguish between different real-world objects by
a globally unique and consistent identifier. In most domains, such an identifier
is already present or can easily be created, e.g., by duplicate detection methods.

Figure 1 shows three tables. The first two each represent data of a data
source. In the example we talk about real persons (students), identified by their
first name. We assume a domain in which these names are unique, consistent
and unambiguously identify the students.

The tables overlap intensionally, as well as extensionally. They partially
contain the same information about the same objects, but also complement
one another: Column Car is contained in table EE Students but not in table

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 58–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Declarative Data Fusion – Syntax, Semantics, and Implementation 59

EE Students

Name Age Student Car

Peter ⊥ no Ford
Alice 22 yes ⊥
Bob ⊥ yes VW

Charly 25 yes Pontiac
Paul 26 yes Chevy
Paul ⊥ yes Chevy

CS Students

Name Age Student Phone

Alice ⊥ yes 555 1234
Bob 27 ⊥ 555 4321

Charly 24 yes ⊥
Alice 21 no 555 9876
Mary 24 yes ⊥
Mary 24 yes ⊥

Data fusion result of EE - and CS Students

Name Age Student Car Phone

Peter ⊥ no Ford ⊥
Alice 22 yes ⊥ 555 9876
Bob 27 yes VW 555 4321

Charly 25 yes Pontiac ⊥
Paul 26 yes Chevy ⊥
Mary 24 yes ⊥ ⊥

Fig. 1. Two data sources with conflicting data and the result of data fusion; ⊥ deter-
mines null values

CS Students, column Phone is solely contained in table CS Students. When in-
tegrating data from both tables, inter-group conflicts (e.g., Bob and Charly) and
intra-group conflicts (e.g., Paul) on the data level can occur. We distinguish be-
tween two kinds of conflicts: a) ‘uncertainty’ about the value, caused by missing
information, aka. null values in the table, and b) ‘contradictions’. An example
for the former would be the age of Bob, one for the latter the age of Charly.

When fusing data from the two source tables into one single table, one has to
decide on how to handle these conflicts. This problem has been first mentioned
by Dayal [2]. Since then, a couple of approaches and techniques have emerged,
many of them trying to “avoid” the conflicts by resolving only the uncertainty
of missing values. Anyhow, there is no system so far and no relational technique
that is able to produce a result, such as the one given in Fig. 1 at the bottom.
Therefore we propose an extension of Sql, the Fuse By statement, which not
only resolves uncertainties, but also fuses tables by resolving occurring data
conflicts.

Contributions. The main contributions of this paper are an extension of the
Sql syntax to support data fusion operations. We provide formal semantics of
data fusion in the relational model and demonstrate its feasibility in a prototyp-
ical implementation.

Structure of this paper. First, we review related work on data fusion, paying
attention both to data integration systems and to individual relational operators
enabling data fusion (Sec. 2). Combining the advantages of several approaches,
we next define syntax and semantics of our Fuse By statement (Sec. 3). We have
implemented the Fuse By statement in a prototypical RDBMS and provide

60 J. Bleiholder and F. Naumann

some initial insights in query processing for data fusion (Sec. 4). Finally, we
conclude and point out future directions (Sec. 5).

2 Complete and Concise Data Integration

Data integration has two broad goals: Increasing completeness and increasing
conciseness of the data that is available to users and applications. An increase
in completeness is achieved by adding more information sources to the system.
An increase in conciseness is achieved by fusing duplicate entries and merging
common attributes into one. After defining both notions, we analyze conven-
tional and extended relational operators with respect to their ability to achieve
complete and concise answers. Thus, the second part of this section covers the
related work on data fusion.

2.1 Completeness

Completeness of a data set, such as a query result, measures the amount of data
in that set both in terms of the number of tuples (extension) and the number
of attributes (intension). Extensional completeness is the number of tuples in a
data set in relation to the overall number of available tuples in the integrated
system. Increase is achieved by adding more tuples using union-type operators.

Extensional
completeness

Intensional completeness

s1 u1 Ø1

j1 f12 j2

u2Ø2 s2

Common attributes

Common
objects

Fig. 2. Extensional and intensional com-
pleteness

Intensional completeness is the num-
ber of attributes in a data set in re-
lation to the overall number of at-
tributes available in the integrated
system. Increase is achieved by in-
tegrating sources that supply addi-
tional, yet unseen attributes to the re-
lation using join-type operators. This
distinction is along the lines of related
work [7,9,14].

To illustrate, Fig. 2 labels the dif-
ferent parts of a data set that is inte-
grated from two sources. The gener-
alization to more than two sources is
trivial. The data of data source S1 comprises areas s1, u1, j1, and f12. The data
of source S2 comprises the areas s2, u2, j2, and f12. Areas ∅1 and ∅2 contain
only null values. We use the figure to describe what kind of data is produced
by different operators.

2.2 Conciseness

Without knowledge of common attributes and common objects, the best that an
integrating system can do is produce a result as seen in Fig. 3(a). While this result
has a high completeness it is not concise. Knowledge about common attributes,

Declarative Data Fusion – Syntax, Semantics, and Implementation 61

i.e., knowledge about which attribute in one source semantically corresponds
to which attribute in the other source, allows results of the shape as seen in
Fig. 3(b). Incidentally, this shape is the result of an outer union operation on
the two source relations (assuming semantically corresponding attributes are
given the same name). We call such results intensionally concise: No real-world
property is represented by more than one attribute.

s1

s2

s1 u1

u2 s2

s1

j1 j2

s2
ID

s1 u1

j1 f12 j2

u2 s2

(a) (b)

(c) (d)

Ø2 Ø2

Ø2Ø2

Ø1

Ø1 Ø1

Ø1

Fig. 3. Four degrees of integration

Knowledge about common ob-
jects, e.g., using a globally consistent
ID, such as the ISBN for books, or
using duplicate detection methods, al-
lows results as seen in Fig. 3(c). Here,
the only known common attribute is
the ID. This result can be formed us-
ing the full outer join operation on the
IDs of the two source relations. We
call such results extensionally concise:
No real-world object is represented by
more than one tuple.

Finally, Fig. 3(d) shows the result
after identifying common attributes
and common objects. The main fea-
ture of this result is that it contains
only one row per represented real-world object and each row has only one value
per represented attribute. This result is the ultimate goal of data fusion. No
common relational operator can express this result in the presence of conflicting
data. The motivation of this paper is to find a way to declaratively express this
result using the Sql language and some extension.

2.3 Relational Operators

In the following paragraphs we analyze standard and advanced relational opera-
tors that somehow perform data integration. In particular we discuss their ability
to achieve complete and concise results. Tab. 1 summarizes the discussion.

The union join produces results of the shape of Fig. 3(a), the most inconcise
result conceivable and merely of theoretical interest. The result of the union (∪)
operator is more concise, in that it combines tuples from two union-compatible
relations and removes exact duplicates. The outer union (�) operator alle-
viates the problem of union-compatibility by adding missing attributes to both
relations and padding them with null values [4]. Outer union increases both ex-
tensional and intensional completeness, as represented in Fig. 3(b). Conciseness
is as for the union operator. The minimum union operator (⊕) is defined by
Galindo-Legaria as an outer union followed by a removal of subsumed tuples [4].
Thus, minimum union takes one step towards increased extensional conciseness:
Uncertainties caused by subsumed tuples are resolved but tuples representing
the same real-world objects with contradictory data remain.

62 J. Bleiholder and F. Naumann

Join operators assume at least one common attribute, the join attribute.
The natural join (��) and key join (��id=id) are not well-suited to fuse tables,
because the result contains only objects present in both source tables (low ex-
tensional completeness). This disadvantage is removed by the use of the outer
join operations (�̊�), which also retains all tuples of either one or both relations
(left, right and full outer join). Figure 3(c) shows this result. If the join attribute
is a globally consistent ID, the full outer join achieves full extensional concise-
ness: each real-world object is identified by that ID and appears only once in
the result. However, common attributes cannot be combined as long as there are
conflicts among the attribute values. Thus, intensional conciseness is low.

Yang and Özsu describe the match join operator used in the AURORA
system [18]. It can be rewritten as an outer join of all attribute value combi-
nations. The corresponding value of the key attribute is used to perform the
join resulting in one large table. Tuples are chosen from this table according to
different parameters. Extensional conciseness depends on these parameters and
can reach the same level as the full outer join. The operator is able to resolve
uncertainties but not conflicts. Based on the match join, Greco et al. define the
merge (�) and prioritized merge (�) operators [6]. They are rewritten as
the union of two outer joins and thus increase intensional completeness. The use
of the Sql function Coalesce with the join increases intensional conciseness
by resolving uncertainties. Contradictions remain and the use of union increases
extensional completeness but does not increase extensional conciseness.

The notions of increasing extensional and intensional conciseness are nat-
urally reflected by the concepts of grouping and aggregation. Even though
they are standard features of most DBMS, they cannot be readily used for data
fusion: There is seldom a globally consistent ID, so grouping must be based on
some form of duplicate detecting similarity function instead of equality. More
importantly though, most DBMS restrict aggregation functions to the few nu-
meric functions specified in the Sql standard, i.e., Count, Min, Max, Sum,
Avg, and sometimes Stddev and Variance which are not sufficient to resolve
most arising conflicts.

Several projects have sought to overcome this restriction. For instance, Wang
and Zaniolo introduce the AXL system to define aggregate functions in DBMS [17].
While their rewriting is already a step forward, aggregate functions allow only
one input parameter, namely the column name. However, there are many cases
where conflicts should be resolved by taking other data into account as well. The
FraQL language and system, developed by Sattler et al., allows user-defined
aggregates with more than one parameter [13]. They define four 2-parameter
aggregation functions, each of which aggregates one column depending on the
values of another column. These functions may be used to implement different
conflict resolution strategies, for instance choosing values from a specific source
(conflict avoidance), choosing the most recent value, or choosing all possible
values (and let the user decide).

Declarative Data Fusion – Syntax, Semantics, and Implementation 63

Table 1. Summary of operations, compared to the ideal result of data fusion (+ marks
satisfactory behaviour, − indicates weaknesses)

Completeness Conciseness
Operation int. ext. int. ext. Notes

Union-Join + + − −
Union + + + − assuming union-compatibility

Outer Union + + + −
Minimum union + + + +/−

Natural join + − + +
Key join + − − +

Outer natural-join + + + + no intra-source duplicates
Outer key-join + + − + no intra-source duplicates

Match join + +/− − +/− depending on parametrization
Prioritized Merge + + + −

User-defined group- only on single table,
ing and aggregation n/a + n/a + thus no effect on intension

Data Fusion + + + + all duplicates

We summarize in Tab. 1 how the different data fusion operations behave
concerning completeness and conciseness. A “+” marks satisfactory behavior,
whereas a “−” indicates weaknesses.

2.4 Data Fusion Systems

There are several integrating information systems that achieve data fusion to cer-
tain degrees: TSIMMIS integrates semi-structured data from multiple sources [5].
Using a rule-based language, developers of mediators can define how data is
fused [10]. Special constructs specify favored data sources in case of conflicts.
Values for that attribute are taken only from the favored source. Thus, without
looking at other data sources, the system may not even become aware of a data
conflict and so avoids conflicts. The Hermes system also integrates data in the
mediator by pre-defined rules [16]. The authors explicitly name five different
strategies to resolve conflicts during integration: choosing the newest data, two
different strategies to choose a value depending on its source, choosing the value
of numerical data, e.g., always the minimum, and choosing the value of the more
reliable source.

Fusionplex performs data fusion by allowing advanced conflict resolution
techniques [8]. Metadata, such as timestamp, cost, accuracy, availability, and
clearance, is used to choose the most recent, most accurate, or cheapest data
among all available data from different sources. Using this kind of source meta-
data reduces conflict resolution to favoring a source given some data quality
criteria and therefore to conflict avoidance as in TSIMMIS. Using the additional
metadata is possible only after extending all relational operators. As in group-
ing and aggregation, the value chosen for an attribute is independent of other
attribute values.

64 J. Bleiholder and F. Naumann

Data cleansing systems are less focused on fusing data but on cleansing
an existing single table. They provide simple data scrubbing methods, duplicate
detection algorithms, and let users specify how duplicates are to be merged.
However, typical data cleansing procedures as Potter’s Wheel [11] or Ajax [3]
are implemented as separate systems and do not provide declarative data fusion
operators.

3 The FUSE BY Statement

The Fuse By statement represents a simple way of expressing queries that
fuse multiple tuples describing the same object into one tuple while resolving
uncertainties and contradictions. It is based on the standard Sql syntax and
resembles in syntax and semantics the Group By statement.

3.1 Syntax

The syntax diagram of the Fuse By statement is shown in Fig. 4. Tuples go-
ing into the fusion process are from the tables given in the FROM clause. Join
conditions may apply and are possible, as are subselects. FUSE FROM indicates
combining the given tables by outer union instead of cross product, saving com-
plex subselects in most cases as can be seen further on. Please note that when
using FUSE FROM tuples are ordered in the order of the tables specified. (In FUSE
FROM t1, t2 all tuples from t1 are considered before the tuples from t2.)

,

SELECT colref
RESOLVE (colref)
RESOLVE (colref, function)

*,
FUSE FROM tableref

where-clause

, ,
FUSE BY (colref) ON ORDER colref

having-clause

order-by-clause

Fig. 4. Syntax diagram of the Fuse By statement

Similar to the GROUP BY clause, the FUSE BY clause defines which objects are
considered as the same real world objects, and are therefore fused into one single
tuple. The attributes given here serve as identifier. ON ORDER influences the order

Declarative Data Fusion – Syntax, Semantics, and Implementation 65

in which tuples are considered when resolving conflicts. All attributes that do not
appear in the FUSE BY clause may contain data conflicts. The keyword RESOLVE
in the SELECT clause marks these columns and also serves to specify a conflict
resolution function (function) to resolve conflicts in this column. The wildcard
’*’ or not specifying a conflict resolution function results in a default conflict
resolution behavior.

Keep in mind that both the HAVING-clause and ORDER BY clause can be used
additionally and keep its original meaning. A small example for a Fuse By
statement is:

SELECT Name, RESOLVE(Age, max)
FUSE FROM EE_Student, CS_Students
FUSE BY (Name)

This fuses the data on EE- and CS-Students, leaving just one tuple per student.
Students are identified by their name and conflicting age values are resolved by
taking the higher age (assuming people only get older. . .).

3.2 Semantics

The overall idea behind Fuse By is the idea of fusion by grouping and aggre-
gation. Ideally, FUSE FROM and the outer union operator is used. Possible data
conflicts are resolved in each group separately.

Fuse By statements possess an intuitive and beneficiary default behavior: If
there is no information of how to group objects, only exact duplicates and sub-
sumed tuples are removed. If there is no information on how to resolve conflicts,
known non-null values in the tuples are preferred to null values.

Fusion process. The fusion process consists of two phases. First, all the tuples
from all the sources involved are combined to form just one single table (Step 1).
This increases completeness. In a second phase conciseness is being increased by
grouping together tuples representing the same real world object and resolving
conflicts (Step 2 through 4).

Step 1: Increasing completeness. To execute a Fuse By statement, the tu-
ples going into the fusion process are determined first by evaluating the FROM
clause as given in the statement and eventually applying an existing WHERE con-
dition to it. If FUSE FROM is used instead of FROM, the given tables are combined
by an outer union instead of cross product. Because there is no separate outer
union operator in Sql this operation needs to be rewritten (see Sec. 3.2).

Step 2: Identifying tuples to be fused. Second, all the tuples that describe
one and the same real world object are grouped together. This is done by doing a
grouping on the column(s) given in the FUSE BY clause. We hereby assume that
we are able to rely on a globally unique and consistent identifier that we can use
to do the grouping. This identifier may be produced by detecting duplicates and
assigning equal keys to the same real world objects or using multiple columns
as key. For this reason duplicate detection needs to be done in advance to the

66 J. Bleiholder and F. Naumann

fusion process. Using the WHERE clause, tuples may be filtered out before the
grouping.

Step 3: Increasing conciseness. Then, exact duplicates and subsumed tuples
are removed per group. A tuple t1 subsumes another tuple t2 if they are defined
on the same attributes, t2 has more ⊥ values than t1 and t1 coincides with t2
in all non-null attributes [4]. The removal of subsumed tuples is neither a
standard operation of the relational algebra, nor does there exist a specific Sql
statement. Rao et al. nevertheless show how subsumed tuples can be removed
from a single table [12]. However, removing subsumed tuples per group as needed
in our case does not yield the same result as removing subsumed tuples from the
entire table. Therefore the technique applied by [12] is not feasible in our case.
All the remaining tuples of one group are then fused together to just one tuple,
at the same time resolving inconsistencies and data conflicts. This is done by
applying conflict resolution functions to the columns as indicated in the RESOLVE
parts of the SELECT clause. More details on conflict resolution follow in Sec. 3.4.

Step 4: Shaping the result. Finally, only the desired columns as indicated in
the SELECT clause are projected to form the final result. Additional HAVING and
ORDER BY clauses are applied afterwards on this result.

Figure 5 shows the query that is used to produce the table in Fig. 1 from
the introduction. Please note that the order of the tables and the order by Age
influences the values chosen, e.g. the phone number of Alice.

SELECT Name, RESOLVE(Age, max), RESOLVE(Car),

RESOLVE(Student, vote), RESOLVE(Phone)

FUSE FROM EE_Students, CS_Students

FUSE BY (Name) ON ORDER Age

Fig. 5. Example query that produces the Data Fusion result from Fig. 1

Rewriting fusion queries. Parts of Fuse By can be rewritten by standard
Sql and therefore directly executed by any standard DBMS. This rewriting does
not include the conflict resolution functions (c.f. Sec. 3.4) and the grouping, as
we show in the following paragraphs. Please reconsider the example query from
Fig. 5. The rewriting of the query is shown in Fig. 6, the non-standard parts are
marked by italic font.

The outer union operation as needed by FUSE FROM, together with the neces-
sary order of the tuples by source table, can be rewritten as shown in lines 4 to 9.
For each input table there is a SELECT statement with all the attributes from all
tables. Attributes not present in a table are padded with null values. The data
from the two tables is combined by UNION ALL. Exact intra-source duplicates as
well as exact inter-source duplicates are removed by a DISTINCT in the enclosing
SELECT. The extension to more than two tables is straightforward, but increases
complexity of the rewritten statement.

Declarative Data Fusion – Syntax, Semantics, and Implementation 67

1: SELECT Name, max(Age), cr_coalesce(Car), cr_vote(Student),

2: cr_coalesce(Phone)

3: FROM (SELECT DISTINCT Name, Age, Car, Student, Phone

4: FROM (SELECT Name, Age, Car, Student, NULL as Phone, 1 as src

5: FROM EE_Students

6: UNION ALL

7: SELECT Name, Age, NULL as Car, Student, Phone, 2 as src

8: FROM CS_Students

9: ORDER BY src, Age

10:)

11:)

12: group by Name

Fig. 6. Example query producing the result from Fig. 1, rewritten by means of Sql

and using non standard aggregation functions

As Union is not order preserving, the order of the tuples by table (using an
additional column src) as required by Fuse By is guaranteed by the ORDER BY
in line 9, as well as the order implied by the ON ORDER clause of Fuse By.

To do the grouping and prepare for conflict resolution the result is grouped
by the attributes given in the FUSE BY clause of the statement (line 12). The
attributes with the needed conflict resolution are placed in the SELECT clause
(line 1 and 2).

Using GROUP BY in the rewriting requires the use of aggregation functions
with all the attributes not present in the GROUP BY clause. As our approach
allows the conflict resolution functions to be more general than aggregation
functions, this part cannot be further rewritten, simply because such conflict
resolution functions are not part of Sql.

As GROUP BY is not order preserving and we cannot influence the order in the
resulting groups, only conflict resolution functions that are not order dependant
can be used. As soon as order dependant conflict resolution functions are used,
an order preserving version of GROUP BY is needed (marked by an italic group

by). Also, GROUP BY does not allow for removing subsumed tuples in the groups.

Default behavior and wildcards. Wildcards, e.g., *, are replaced by all at-
tributes present as given by the FROM or FUSE FROM clause, if necessary accom-
panied by RESOLVE. If no explicit conflict resolution function is given, Coalesce
is used as default function. Coalesce is an n-ary function and returns its first
non-null parameter value. Using Coalesce as default, the order of the tuples
is important and directly influences the chosen value. If no attribute is given in
the FUSE BY clause, all tuples form one large group, performing removal of exact
duplicates and subsumed tuples on all tuples in this large group.

3.3 Examples - Describing Fusion Queries

Query 1 of Fig. 7(a) groups the tuples of one table S1 by the values in column
A. All other columns (replacing wildcard *) of table S1 may contain conflicting

68 J. Bleiholder and F. Naumann

data that is resolved by the default conflict resolution function Coalesce. This
way, the statement behaves like a GROUP BY with a Coalesce aggregation, addi-
tionally removing subsumed tuples per group. Fusion by more than one column
is possible, replacing A by all desired columns.

SELECT *

FROM S1

FUSE BY (A)

(a) Removing data
conflicts

SELECT *

FROM S1

FUSE BY ()

(b) Removing exact
duplicates and sub-
sumed tuples

SELECT *

FUSE FROM S1, S2

FUSE BY ()

(c) Fusing two tables
by minimum union

Fig. 7. Three simple Fuse By statements

In Query 2 in Fig. 7(b) there is no column present in the FUSE BY clause.
All tuples are treated equally as being in one large group. Exact duplicates and
subsumed tuples are removed. Conflicts are not resolved and this corresponds to
the result of a DISTINCT operator and the removal of subsumed tuples (indicated
as S1 ↓ by [4]).

Query 3 of Fig. 7(c) combines the two tables S1 and S2 by outer union. It com-
pletes missing values in columns by null values and removes exact duplicates
and subsumed tuples. Together with Coalesce as default conflict resolution
function this corresponds to the result of a Distinct operator and a minimum
union operator [4]. Examples with three or more tables look and behave simi-
larly.

3.4 Conflict Resolution

Different conflict resolution functions and strategies are required by different
domains, thus encapsulating expert knowledge to fuse data in a domain. Never-
theless, there are some conflict resolution functions that are applicable in a wide
variety of domains.

Conflict resolution functions. The concept of conflict resolution is more gen-
eral than the concept of aggregation, because the functions can be arbitrarily
complex and can take more data into account to compute a value. In the most
general case, they can use the information given by the query context. This
query context consists not only of the conflicting values themselves, but may
also consist of the corresponding tuples, all remaining column values or other
metadata (e.g. column or table name). This extension of aggregation functions
enables the author of a Fuse By statement to use many different and powerful
ways to resolve conflicts.

Table 2 shows a list of useful conflict resolution functions starting with the
standard aggregation functions followed by more complex functions. The column
containing all conflicting values is passed as a first parameter to all functions.
Depending on the function, additional parameters may be used, e.g., the source

Declarative Data Fusion – Syntax, Semantics, and Implementation 69

in function Choose. A Fuse By query using some of these functions to fuse
three movie database tables is presented later in Sec. 4.

Conflict Resolution Strategies. There are several simple strategies to resolve
conflicts that are repeatedly mentioned in the literature ([10,16,15]). With Fuse
By all these strategies can be applied in an easy and consistent way.
Preferring one source over others.The Fuse By statement explicitly orders
the tuples by sources as given in the FUSE FROM clause. Therefore, this strategy
can be applied by writing the preferred source first and using First as conflict
resolution function. Coalesce is used to fall back on values of other sources in
case the desired source does not provide a value for the attribute. Choose may
also be used.

Choosing the most common value. The intuition behind this strategy is
that correct values prevail over incorrect ones, given enough evidence. It is im-
plemented by applying the Vote function on a column.

Choosing the most recent value. This requires time information about the
recentness present in the tables as a separate attribute or by other means. This
strategy can then be applied by either ordering on this attribute and using
First/Coalesce or using a special function additionally using the time infor-
mation.

Take all, let the user decide. Using Group applies this strategy.

4 Implementation

We are implementing the Fuse By operator as part of an integrated information
system. We base our implementation on the XXL framework — a Java library
for building database systems [1]. The library builds on the cursor concept to
implement relational database operators. We used the library to implement ad-
ditional cursors for the outer union operator, the removal of subsumed tuples,
and the Fuse By operator, and to implement a selection of conflict resolution
functions. They are used in our experiments, which are currently all performed
in main memory.

Computing Fusion Queries. The implementation of the Fuse By cursor fol-
lows the definition of its semantics as described in Sec. 3.2. The implementation
of outer union simply concatenates all the input tuples adding null values if
necessary. Our first naive implementation of the removal of subsumed tuples
simply compares every tuple to all other tuples in the same group and tests for
subsumption.

Experiments. We conducted several experiments with three data sources of
the movie domain, kindly provided to us by the respective organizations: the
Internet Movie Database1 (I), a non-public movie collection (C) and a movie

1 http://www.imdb.com

70 J. Bleiholder and F. Naumann

Table 2. Conflict resolution functions

Function Description
Count Counts the number of distinct non-null values, i.e., the num-

ber of conflicting values. Only indicates conflicts, the actual data
values are lost.

Min / Max Returns the minimal/maximal input value with its obvious mean-
ing for numerical data. Lexicographical (or other) order is needed
for non numerical data.

Sum / Avg / Median Computes sum, average and median of all present non-null data
values. Only applicable to numerical data.

Variance / Stddev Returns variance and standard deviation of data values. Only
applicable to numerical data.

Random Randomly chooses one data value among all non-null data val-
ues.

Choose Returns the value supplied by a specific source.
Coalesce Takes the first non-null value appearing.
First / Last Takes the first/last value of all values, even if it is a null value
Vote Returns the value that appears most often among the present

values. Ties can be broken by a variety of strategies, e.g., choosing
randomly.

Group Returns a set of all conflicting values. Leaves resolution to the
user.

Shortest /
Longest

Chooses the value of minimum/maximum length according to a
length measure.

(Annotated) Con-
cat

Returns the concatenated values. May include annotations, such
as source of value.

Highest Quality Evaluates to the value of highest information quality, requiring
an underlying quality model.

Most Recent Takes the most recent value. Most recentness is evaluated with
the help of another attribute or other data about recentness of
tuples/values.

Most Active Returns the most often accessed or used value. Usage statistics
of the DBMS can be used in evaluating this function.

Choose Corre-
sponding

Chooses the value that belongs to the value chosen for another
column.

Most complete Returns the value from the source that contains the fewest null
values in the attribute in question.

Most distinguish-
ing

Returns the value that is the most distinguishing among all
present values in that column.

Highest informa-
tion value

According to an information measure this function returns the
value with the highest information value.

Most general /
specific concept

Using a taxonomy or ontology this function returns the most
general or specific value.

Declarative Data Fusion – Syntax, Semantics, and Implementation 71

collection frequently used in the collaborative filtering community, Movielens2

(M). We extracted nine different attributes out of all the movie data present
in these sources and built an artificial ID. The three sources have significant
intensional and small extensional overlap.

Figure 8 shows an example query from this movie domain. It illustrates the
application of conflict resolution functions from Table 2. In this query, movie data
is fused from the three sources (I, M, and C). Equal movies are identified by the
attribute ID and conflicts in all other attributes are resolved as follows: The value
for the attribute Director is chosen from source I, assuming source I to contain
the correct answer. Information about the production company (Prod Comp)
is taken from the source that contains the most information on production com-
panies. Taking the value for the production country (Prod Country) from the
same source assumes that if a source knows a lot about production companies it
also knows a lot about production countries, as these are two related aspects of
making a movie. The same applies to Release and Distributor. Worth men-
tioning is also the conflict resolution for the attribute Genre. Given a taxonomy
of different genre descriptions and given conflicting values, MostSpecific re-
turns the most specific of them in the taxonomy.

Conflict resolution for the remaining attributes is straight-forward.

SELECT ID,

RESOLVE (TITLE, Longest),

RESOLVE (YEAR, Vote),

RESOLVE (DIRECTOR, Choose(I)),

RESOLVE (PROD_COMP, MostComplete),

RESOLVE (PROD_COUNTYR, ChooseCorresponding(PROD_COMP)),

RESOLVE (GENRE, MostSpecific),

RESOLVE (RELEASE, Earliest),

RESOLVE (COLOR, Vote),

RESOLVE (DISTRIBUTOR, ChooseCorresponding(RELEASE))

FUSE FROM I,M,C FUSE BY (ID)

Fig. 8. Complex Fuse By example query, fusing data from three different movie data
sources (I, M and C). Data conflicts are resolved, showing the use of some of the
functions from Tab. 2.

Findings/Insights. The Fuse By operator scales well. In the movie domain
it is able to handle simple queries over at least 330,000 tuples using XXL and
our implementation. Dominating the runtime is the sort operation. As the ex-
tensional overlap in our test tables is not very high (1-3% of the total number
of tuples from the sources), the groups consist only of a few (approximately 1-
10) tuples (also accounting for fuzzy duplicates in single sources). Therefore the
nearly quadratic runtime of the removal of subsumed tuples hardly affects the
total runtime.
2 http://www.movielens.org

72 J. Bleiholder and F. Naumann

5 Conclusions

Simple, declarative, and almost automatic data integration is a pressing problem
of today’s large-scale information systems. This paper deals with the data fusion
step in the data integration process. In this step, several representations of same
real world objects, that may be scattered among several data sources, are fused to
a single representation. During this process completeness and conciseness of the
integration result are increased, while possible uncertainties and contradictions
in the data are resolved.

As no relational technique so far produces such a complete yet concise result,
we next propose the Fuse By extension of Sql, which allows to declaratively
specify how to fuse relational tables and thereby resolve data conflicts. Formal
syntax and semantics of this new Sql clause are given. A main feature of the
operator is the use of conflict resolution functions in the SELECT clause. We give
examples and describe how they relate to aggregation functions known from
conventional DBMS. Also, Fuse By has convenient default behavior, such as
the elimination of subsumed tuples, allowing sophisticated data fusion already
with very simple statements.

The new operator is successfully implemented as part of our research inte-
gration system. We are currently enhancing our data fusion DBMS in terms of
(i) scalability and optimization techniques, (ii) addition of conflict resolution
functions, and (iii) integration with a domain-independent duplicate detection
technique. Together with the optimizer already present in the XXL framework,
we will be able to support the full life cycle of a query: writing the query, optimiz-
ing the query and finally executing it. As more and more efficient functionality
is present, interesting optimization issues abound, particularly concerning the
execution of conflict resolution functions.

In summary, writing Sql queries using the Fuse By statement is as simple
as writing conventional grouping and aggregation queries, but has the added
value of a complete and concise result without contradictory data.

Acknowledgment. This research was supported by the German Research So-
ciety (DFG grant no. NA 432).

References

1. v. Bercken, J., Blohsfeld, B., Dittrich, J.-P., Krämer, J., Schäfer, T., Schneider, M.,
Seeger, B.: XXL - a library approach to supporting efficient implementations of
advanced database queries. In Proc. of VLDB (2001) 39–48

2. Dayal, U.: Processing queries over generalization hierarchies in a multidatabase
system. In Proc. of VLDB (1983) 342–353

3. Galhardas, H., Florescu, D., Shasha, D., Simon,E.: AJAX: An extensible data
cleaning tool. In Proc. of SIGMOD (2000) 590

4. Galindo-Legaria, C.: Outerjoins as disjunctions. In Proc. of SIGMOD (1994)
348–358

Declarative Data Fusion – Syntax, Semantics, and Implementation 73

5. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: Data
models and languages. J. Intell. Inf. Syst. (1997) 8(2):117–132

6. Greco, S., Pontieri, L., Zumpano, E.: Integrating and managing conflicting data.
In Revised Papers from the 4th Int. Andrei Ershov Memorial Conf. on Perspectives
of System Informatics (2001) 349–362

7. Motro, A.: Completeness information and its application to query processing. In
Proc. of VLDB Kyoto, Aug. (1986) 170–178

8. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the in-
tegration of heterogeneous information sources. Information Fusion, (2004) In
Press.

9. Naumann, F., Freytag, J.-C., Leser, U.: Completeness of integrated information
sources. Information Systems (2004) 29(7):583–615

10. Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator
systems. In Proc. of VLDB (1996) 413–424

11. Raman, V., Hellerstein, J.: Potter’s Wheel: An interactive data cleaning system.
In Proc. of VLDB (2001) 381–390

12. Rao, J., Pirahesh, H., Zuzarte,C.: Canonical abstraction for outerjoin optimization.
In Proc. of SIGMOD ACM Press (2004) 671–682

13. Sattler, K., Conrad, S., Saake, G.: Adding Conflict Resolution Features to a Query
Language for Database Federations. In Proc. 3rd Int. Workshop on Engineering
Federated Information Systems, EFIS (2000) 41–52

14. Scannapieco, M., Batini, C.: Completeness in the relational model: a comprehensive
framework. In Proceedings of the International Conference on Information Quality
(IQ), Cambridge, MA (2004) 333–345

15. Schallehn, E., Sattler, K.-U., Saake, G.: Efficient similarity-based operations for
data integration. Data Knowl. Eng. (2004) 48(3):361–387

16. Subrahmanian, V.S., Adali, S., Brink, A., Emery, R., Lu, J. L., Rajput, A.,
Rogers, T. J., Ross, R., Ward, C.: Hermes: A heterogeneous reasoning and mediator
system. Technical report, University of Maryland, (1995)

17. Wang, H., Zaniolo, C.: Using SQL to build new aggregates and extenders for
object- relational systems. In Proc of VLDB (2000) 166–175

18. Yan, L. L., Özsu, M.: Conflict tolerant queries in AURORA. In Proc. of CoopIS
(1999) 279

Non-destructive Integration of
Form-Based Views

Jan Hidders1, Jan Paredaens1, Philippe Thiran2,
Geert-Jan Houben2, and Kees van Hee2

1 University of Antwerp, Belgium
2 Eindhoven University of Technology, The Netherlands

Abstract. Form documents or screen forms bring essential information
on the data manipulated by an organization. They can be considered
as different but often overlapping views of its whole data. This paper
presents a non-destructive approach of their integration. The main idea
of our approach is to keep the original views intact and to specify con-
straints between overlapping structures. For reasoning over constraints,
we provide a set of inference rules that allows not only to infer implied
constraints but also to detect conflicts. These reasoning rules are proved
to be sound and complete. Although the form-based views are hierarchi-
cal structures, our constraints and reasoning rules can also be used in
non-hierarchical data models.

1 Introduction

In the design process for data-intensive applications the design of the global
data model is a crucial step. Often this step involves the integration of different
data models that each describe the information need of different groups of end
users. In the case of workflow and case management systems these data models
or views are usually defined as a form, hence form-based views and the tasks that
are managed by the system are typically manipulations of these forms. For large
and complex workflows the task of modeling the forms is often split according
to the different case types. The consequence is often that we obtain a set of
different data models that contain synonyms (different class names that refer to
the same class) and homonyms (the same class name is used in different models
with a different meaning).

A classical solution for resolving this problem is to integrate the different
views into a single global schema [1]. However, in this paper we will integrate
the different views by taking a disjoint union of them and adding constraints that
express semantical relationships between the classes and relations in the different
data models. Since the original views remain part of the global data model we
call this non-destructive integration. The fact that the original views remain part
of the global data model is important in the case of workflow systems because the
the views are part of the description of the execution of the workflow. However,
even for other types of data-intensive information systems such a design has

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 74–86, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Non-destructive Integration of Form-Based Views 75

benefits. Since the original class and relation names from the views are kept in
the global data model this will make communication easier with the end-users for
which the views described an information need. Moreover, since the relationships
between the different views are made explicit it will be easy to see how changes
to the global data model affect the different views and vice versa.

The main contribution of this paper is the presentation of a small but pow-
erful set of semantical relationships between classes and relations in different
views, and a sound and complete set of inference rules that allows us to derive
implied relationships and in particular whether there is a conflict in the resulting
global schema.

The paper is organized as follows. Section 2 develops a small example that
allows us to informally present our non-destructive approach of form-based view
integration. In Section 3, we formally specify the problem. The schema and their
instances are defined as well as the different constraints we consider. Sections 4
and 5 present different sets of inference rules for deriving constraints and detect-
ing conflicts. For each set, we prove their soundness and their completeness. In
Section 6, we discuss related works. We give our concluding remarks in Section 7.

2 Informal Problem Definition

We assume that the process of data integration starts with so-called form-based
views which are essentially hierarchical data structures that describe complex
values which can be roughly thought of as tree-shaped graphs. Three examples of
such views are given in Figure 1. Each view has the form of a tree which defines all
the data that is shown in the view. The nodes of these graphs can be interpreted
as classes that contain sets of objects, and the edges can be interpreted as binary
relationships between these classes. The root node indicates for which class the
view is defined as well as the name of the view. The nodes directly below a node
define the attributes of this class. For example, in the Patient view we see that
for a patient we have the patient’s names, diseases, rooms and treating doctors.
At the next level in the view we see that for a disease of a patient we have
its types and its names. For the purpose of this paper we will assume that all
attributes are set-valued, i.e., they can contain zero, one or more objects.

In the three views in the example we see that there is an overlap in the sense
that some objects such as those in the Doctor class in the Patient view and
those in the Doctor class in the Doctor view are in fact the same object. In a
similar fashion it holds that some of the pairs of the Department-Doctor-Manager
relationship in the Doctor view will also be pairs in the Department-Manager
relationship. This type of redundancy can be solved by integrating the views
into a single new schema, but we propose to leave the original views intact and
explicitly specifies such constraint between the different views as illustrated in
Figure 2.

There are 8 types of constraints that we will consider:

ISA The ISA constraint between classes is indicated by an edge that is labeled
with ⇒. An example is the edge between the Department class in the Doctor

76 J. Hidders et al.

Fig. 1. Three form-based views

view and the Department class in the Department view. The ISA constraint
indicates that the objects in one class must also be objects of the other class.

Relational ISA The relational ISA constraint between relationships is indi-
cated by an edge that is labeled with ⇒↓. An example is the edge between
the Department-Doctor-Manager relationship in the Doctor view and the
Department-Manager relationship in the Department view. This constraint
indicates that all pairs of the first relationship are also pairs of the second
relationship.

Inverse Relational ISA The inverse relational ISA constraint between rela-
tionships is indicated by an edge that is labeled with ⇒↑. An example is
the edge between the Patient-Doctor relationship in the Patient view and
the Doctor-Patient relationship in the Doctor view. This constraint indicates
that all the inverse pairs of the first relationship are also pairs of the second
relationship.

Disjointness The disjointness constraint between classes is indicated by an
edge that is labeled with �. An example is the edge between the Location
class in the Patient view and the Location class in the Department view.
This constraint indicates that the two classes cannot have common objects.

Relational Disjointness The relational disjointness constraint between rela-
tionships is indicated by an edge that is labeled with �↓. This constraint
indicates that the two relationships cannot have common pairs.

Inverse Relational Disjointness The inverse relational disjointness constraint
between relationships is indicated by an edge that is labeled with �↑. This
constraint indicates that there cannot be a pair in one relationship such that
the inverse pair is in the other relationship.

Non-destructive Integration of Form-Based Views 77

Fig. 2. Three integrated form-based views

Totalness The totalness constraint of a relationship r is indicated by a solid
dot at the beginning of the edge of r. It indicates that the relationship r is
total, i.e.,. that for every object o in the source class of r there is a pair of r
whose first component is o. For example, every patient has a name, a room
and a doctor, but probably has no disease.

Surjectivity constraint The surjectivity constraint of a relationship r is in-
dicated by a solid dot at the end of the edge of r. It indicates that the
relationship r is surjective, i.e., for every object o in the target class of r
there is a pair of r whose second component is o.

The schema of Figure 2 has a straightforward interpretation that is similar
to that of FDM [2], binary ORM [3] and the data models that are used in
descriptive logics. Note that in all these models the instances of a schema are
essentially graphs that somehow match the schema. Since the original views are
still present in the schema it is also clear that for each view we can define a
projection on the instances of this schema. Although this projection will usually
define a graph it can always be transformed into a forest by splitting nodes with
two incoming edges. This means that the general approach is here that of the
local as view (LAV) approach as defined in [4].

When the constraints are added to the views it is possible that conflicts
appear. For example, if there is an ISA constraint between the classes A and B
and at the same time a disjointness constraint between them then the class A
nor B can never be populated.

In the remainder of this paper, we discuss the problem of reasoning over
schemas with such constraints in order to infer implied such constraints and to
detect conflicts.

78 J. Hidders et al.

3 Formal Problem Definition

For formally specifying the form-based views, we use a graph representation
instead of a tree representation as presented in the previous section. We use this
simplified data representation since our aim is to provide some constraints that
can be used in a context broader than the forms. As such, we are now considering
these two types of data models:

– Frame: graph structure related to an original form-based view,
– Schema: graph structure related to the union of disjoint form-based views,

with constraints among them.

In the following paragraphs, we present these types by giving their schema
definition and their instance definition.

A frame is a multigraph where the nodes represent classes and the edges
relationships. More formally:

Definition 1 (Frame). A frame is a tuple F = (C, R, s, t) with C a set of
classes, R a set of relationships, s : R → C a function that indicates the source
class of a relationship, and t : R → C a function that indicates the target class
of a relationship.

Definition 2 (Instance). An instance of a frame F = (C, R, s, t) is a tuple
I = (O, [[·]]) with O a set of objects, and [[·]] the interpretation function that maps
classes c ∈ C to a subset of O, denoted as [[c]], and relationships r ∈ R to subsets
of O ×O, denoted as [[r]], such that, for all relationships r ∈ R, it holds that:

[[r]] ⊆ [[s(r)]] × [[t(r)]] (1)

A schema is a frame over which some constraints are specified.

Definition 3 (Constraint). Given a frame F = (C, R, s, t) a constraint is one
of the following:

subclass c1 ⇒ c2, r1 ⇒↓ r2, r1 ⇒↑ r2

cardinality r·, ·r
disjointness c1 � c2, r1 �↓ r2, r1 �↑ r2

with r, r1, r2 ∈ R and c1, c2 ∈ C. We let I � k denote that constraint k holds for
instance I = (O, [[·]]). Then we have:

I � c1 ⇒ c2 iff [[c1]] ⊆ [[c2]] (2)

I � r1 ⇒↓ r2 iff [[r1]] ⊆ [[r2]] (3)

I � r1 ⇒↑ r2 iff [[r1]]−1 ⊆ [[r2]] (4)
I � ·r iff [[s(r)]] = {o1 | (o1, o2) ∈ [[r]]} (5)
I � r· iff [[t(r)]] = {o2 | (o1, o2) ∈ [[r]]} (6)
I � c1 � c2 iff [[c1]] ∩ [[c2]] = ∅ (7)

I � r1 �↓ r2 iff [[r1]] ∩ [[r2]] = ∅ (8)

I � r1 �↑ r2 iff [[r1]]−1 ∩ [[r2]] = ∅ (9)

Non-destructive Integration of Form-Based Views 79

Definition 4 (Schema). A schema is a tuple S = (F, K) with F a frame and
K a finite set of constraints over F .

Definition 5 (Instance). An instance of schema S is an instance I of frame
F such that I � k for all constraints k ∈ K.

4 Inference Rules for Subclass and Cardinality
Constraints

In this section, we present the sets of inference rules M1 and M2 that only derive
constraints of the forms c1 ⇒ c2, r1 ⇒↓ r2, r1 ⇒↑ r2 and of the forms ·r and
r·, respectively. In Figure 3, we give the set of rules M1 and in Figure 4, we
give the set of rules M2. We assume that the inference rules are defined given
a frame F = (C, R, s, t) and variables c, c1, c2, . . . range over C and r, r1, r2, . . .
range over R. If for a relationship r ∈ R, it holds that s(r) = c1 and t(r) = c2

then this is denoted as c1
r→ c2. We will also assume that K∗ is the closure of

K under the rules in M1 ∪M2.

Refl
c ⇒ c

Trans
c1 ⇒ c2 c2 ⇒ c3

c1 ⇒ c3

RelRfl
r ⇒↓ r

RelTr1
r1 ⇒↓ r2 r2 ⇒↓ r3

r1 ⇒↓ r3

RelTr2
r1 ⇒↓ r2 r2 ⇒↑ r3

r1 ⇒↑ r3

RelTr3
r1 ⇒↑ r2 r2 ⇒↓ r3

r1 ⇒↑ r3

RelTr4
r1 ⇒↑ r2 r2 ⇒↑ r3

r1 ⇒↓ r3

IsaPr1

c1
r1→ c2 c3

r2→ c4

r1· r1 ⇒↓ r2

c2 ⇒ c4

IsaPr2

c1
r1→ c2 c3

r2→ c4

r1· r1 ⇒↑ r2

c2 ⇒ c3

IsaPr3

c1
r1→ c2 c3

r2→ c4

·r1 r1 ⇒↓ r2

c1 ⇒ c3

IsaPr4

c1
r1→ c2 c3

r2→ c4

·r1 r1 ⇒↑ r2

c1 ⇒ c4

Fig. 3. Set of inference rules M1

4.1 Instance Construction

For proving the completeness of inference rules in M1 ∪ M2, we construct the
instances Itot, Isurj given a schema S = (F, K) with ·r �∈ K∗ and r· �∈ K∗,
respectively. Informally, the instance Itot is constructed as follows. It is assumed
that ·r �∈ K∗. We introduce two objects, o1 and o2 where o1 is in only the
super-classes of s(r) and o2 is simply in all classes of the schema. Then we fill

80 J. Hidders et al.

RelPr1

c1
r1→ c2 c3

r2→ c4

c3 ⇒ c1 ·r1

r1 ⇒↓ r2

·r2

RelPr2

c1
r1→ c2 c3

r2→ c4

c4 ⇒ c1 ·r1

r1 ⇒↑ r2

r2·

RelPr3

c1
r1→ c2 c3

r2→ c4

c4 ⇒ c2 r1·
r1 ⇒↓ r2

r2·
RelPr4

c1
r1→ c2 c3

r2→ c4

c3 ⇒ c2 r1·
r1 ⇒↑ r2

·r2

Fig. 4. Set of inference rules M2

the relations with pairs that contain o1 to satisfy the surjectivity and totalness
constraints. The construction of Isurj is similar except we assume that r· �∈ K∗

and replace s(r) with t(r). This leads to the following formal definition.

Definition 6 (Instances Itot and Isurj). Given a schema S with ·r �∈ K∗,
we define Itot = (Otot, [[·]]tot) such that Otot = {o1, o2} and [[·]]tot the smallest
function3 that satisfies the following rules for all classes c:

o1 ∈ [[c]] if s(r) ⇒ c ∈ K∗ (10)
o2 ∈ [[c]] (11)

and the following rules for all relationships r:

(o1, o2) ∈ [[r]] if ·r1 ∈ K∗ ∧ s(r) ⇒ s(r1) ∈ K∗ ∧ r1 ⇒↓ r ∈ K∗ (12)
(o1, o2) ∈ [[r]] if r1· ∈ K∗ ∧ s(r) ⇒ t(r1) ∈ K∗ ∧ r1 ⇒↑ r ∈ K∗ (13)
(o2, o1) ∈ [[r]] if ·r1 ∈ K∗ ∧ s(r) ⇒ s(r1) ∈ K∗ ∧ r1 ⇒↑ r ∈ K∗ (14)
(o2, o1) ∈ [[r]] if r1· ∈ K∗ ∧ s(r) ⇒ t(r1) ∈ K∗ ∧ r1 ⇒↓ r ∈ K∗ (15)
(o2, o2) ∈ [[r]] (16)

The construction of Isurj is identical except that s(r) is replaced with t(r).

4.2 Soundness and Completeness of Rules

Theorem 1. Given a schema S = (F, K) with K containing only subclass con-
straints and cardinality constraints and K∗ the closure of K under the rules in
M1 ∪M2 then

1. c1 ⇒ c2 ∈ K∗ iff I � c1 ⇒ c2 for all instances I of S,
2. r1 ⇒↓ r2 ∈ K∗ iff I � r1 ⇒↓ r2 for all instances I of S,
3. r1 ⇒↑ r2 ∈ K∗ iff I � r1 ⇒↑ r2 for all instances I of S,
3 The ordering over set-valued functions over the same domain is defined such that f

is smaller than g iff f(x) ⊆ g(x) for all x in the domain.

Non-destructive Integration of Form-Based Views 81

4. ·r ∈ K∗ iff I � ·r for all instances I of S, and
5. r· ∈ K∗ iff I � r· for all instances I of S.

Proof. (Sketch) The only-if part of all the propositions is easily proved by ver-
ifying that all the inference rules in M1 ∪M2 are sound which follows from the
semantics of the constraints as defined in Definition 3.

The if part proceeds by showing that for all constraints it holds that if it
is not in K∗, then it does not hold in at least one of Itot and Isurj . It can also
be shown that Itot and Isurj are instances of S. Finally, it can be shown that if
·r �∈ K∗ (r· �∈ K∗) then this constraint is not satisfied by Itot (Isurj). �

5 Inference Rules for Deriving Disjointness Constraints

In this section we will also consider constraints of the forms c1 � c2, r1 �↓ r2

and r1 �↑ r3. We give three sets of these rules, namely M3 (Figure 5) and M4

(Figure 6). We will assume from now on that K∗ is the closure of K under the
rules in M1, . . . , M4.

With disjointness constraints it is possible to define schemas in which certain
classes and relations cannot be populated. To find such conflicts we introduce
the following syntactical notion of conflict.

Definition 7 (conflict). A conflict is a constraint of the form c � c or r �↓ r.
If a set of constraints K does not contain such a conflict then it is said to be
conflict-free.

Note that r �↑ r is not a conflict since there are non-empty relations for which
it holds.

5.1 Instance Construction

For proving the completeness of the inference rules in M1, . . . , M4, we construct
the instances Ibase, I�, I�

↑
and I�

↓
given a schema S = (F, K) with F =

(C, R, s, t).
Informally we can describe the construction of Ibase as follows. For each class

c we introduce a distinct object oc that is in c and all its super-classes. For each
relation r we introduce the objects o1

r (and o2
r) that are in the source (target)

class of r and all its (implied) super-classes. Next we add the pair (o1
r , o

2
r) to

relation r and all its super-relations, and the inverse to all its inverse super-
relations. Finally, to satisfy the totalness and surjectivity constraints we add for
relations q with such a constraint and each object o in a class c a pair with o
and either o1

q or o2
q to q and its inverse and normal sub-relations. This leads to

the following formal definition:

Definition 8 (Instance Ibase). Given a schema S = (F, K) with F = (C, R, s, t)
we define Ibase = (Obase, [[·]]base) such that Obase = {oc | c ∈ C}∪{o1

r, o
2
r | r ∈ R}

82 J. Hidders et al.

DsjSym
c1 � c2

c2 � c1

DsjDnSym
r1 �↓ r2

r2 �↓ r1

DsjUpSym
r1 �↑ r2

r2 �↑ r1

DsjInh
c1 � c2 c3 ⇒ c2

c1 � c3

DsjInh1
r1 �↓ r2 r3 ⇒↓ r2

r1 �↓ r3

DsjInh2
r1 �↓ r2 r3 ⇒↑ r2

r1 �↑ r3

DsjInh3
r1 �↑ r2 r3 ⇒↓ r2

r1 �↑ r3

DsjInh4
r1 �↑ r2 r3 ⇒↑ r2

r1 �↓ r3

DsjPr1

c1
r1→ c2 c3

r2→ c4

c2 � c4

r1 �↓ r2

DsjPr2

c1
r1→ c2 c3

r2→ c4

c2 � c3

r1 �↑ r2

DsjPr3

c1
r1→ c2 c3

r2→ c4

c1 � c3

r1 �↓ r2

DsjPr4

c1
r1→ c2 c3

r2→ c4

c1 � c4

r1 �↑ r2

Fig. 5. Set of inference rules M3

and the interpretation function is defined as the smallest interpretation function
that satisfies the following rules for all classes c:

od ∈ [[c]] if d ⇒ c ∈ K∗ (17)
o1

r ∈ [[c]] if r ⇒↓ q ∈ K∗ ∧ s(q) ⇒ c ∈ K∗ (18)
o1

r ∈ [[c]] if r ⇒↑ q ∈ K∗ ∧ t(q) ⇒ c ∈ K∗ (19)
o2

r ∈ [[c]] if r ⇒↓ q ∈ K∗ ∧ t(q) ⇒ c ∈ K∗ (20)
o2

r ∈ [[c]] if r ⇒↑ q ∈ K∗ ∧ s(q) ⇒ c ∈ K∗ (21)

and the following rules for all relationships r:

(o1
q, o

2
q) ∈ [[r]] if q ⇒↓ r ∈ K∗ (22)

(o2
q, o

1
q) ∈ [[r]] if q ⇒↑ r ∈ K∗ (23)

(o, o2
q) ∈ [[r]] if o ∈ [[s(q)]] ∧ q ⇒↓ r ∈ K∗ ∧ ·q ∈ K∗ (24)

(o1
q , o) ∈ [[r]] if o ∈ [[t(q)]] ∧ q ⇒↓ r ∈ K∗ ∧ q· ∈ K∗ (25)

(o, o1
q) ∈ [[r]] if o ∈ [[t(q)]] ∧ q ⇒↑ r ∈ K∗ ∧ q· ∈ K∗ (26)

(o2
q , o) ∈ [[r]] if o ∈ [[s(q)]] ∧ q ⇒↑ r ∈ K∗ ∧ ·q ∈ K∗ (27)

Lemma 1. Given a schema S = (F, K) such that K∗ is conflict-free, then the
corresponding Ibase is an instance of S.

Non-destructive Integration of Form-Based Views 83

CnflPr1

c1
r→ c2

r �↓ r ·r
c1 � c1

CnflPr2

c1
r→ c2

r �↓ r r·
c2 � c2

IsaCnfl
c1 � c1

c1 ⇒ c2

IsaDnCnfl
r1 �↓ r1

r1 ⇒↓ r2

IsaUpCnfl
r1 �↓ r1

r1 ⇒↑ r2

TotCnfl
c1

r→ c2 c1 � c1

·r

SurjCnfl
c1

r→ c2 c2 � c2

r·
DisjCnfl

c1 � c1

c1 � c2

DisjDnCnfl
r1 �↓ r1

r1 �↓ r2

DisjUpCnfl
r1 �↓ r1

r1 �↑ r2

Fig. 6. Set of inference rules M4

Proof. (Sketch) We first show that Ibase is an instance of F (i.e., the proposition
(1) holds). We then can show that all constraints in K will also hold for Ibase.
Finally we verify that the constraints from (2) to (9)) are satisfied. �

Informally we can describe the construction of I� as follows. We assume that
a � b �∈ K∗. Then we construct the instance as for Ibase except that we introduce
a special object oab that is placed both in class a and in class b and in all their
super-classes. This leads to the following formal definition:

Definition 9 (Instance I�). Given a schema S = (F, K) with F = (C, R, s, t)
and a � b �∈ K∗ we define I� = (O�, [[·]]�) such that O� = Obase ∪ {oab} and
the interpretation as for Ibase but with the following additional rule:

oab ∈ [[c]] if a ⇒ c ∈ K∗ ∨ b ⇒ c ∈ K∗ (28)

Lemma 2. Given a schema S = (F, K) such that K∗ is conflict-free and a �
b �∈ K∗, then the corresponding I� is an instance of S.

Proof. (Sketch) The proof proceeds similar to that of Lemma 1 except that for
some propositions we need to consider extra cases. �

Informally we can describe the construction of I�
↓

as follows. We assume
that p �↓ q �∈ K∗. Then we construct the instance as for Ibase except that we
introduce a special pair (o1

pq, o
2
pq) that is placed both in the relation p and in

the relation q and in all their super-relations, and the inverse is placed in all the
inverse super-relations. This leads to the following formal definition:

Definition 10 (Instance I�
↓
). Givena schemaS = (F, K)withF = (C, R, s, t)

and p �↓ q �∈ K∗ we define I�
↓

= (O�
↓
, [[·]]�↓

) such that O�
↓

= Obase∪{o1
pq, o

2
pq}

84 J. Hidders et al.

and the interpretation function as for Ibase but with the following additional rules
for all classes c:

o1
pq ∈ [[c]] if (p ⇒↓ r ∈ K∗ ∨ q ⇒↓ r ∈ K∗) ∧ s(r) ⇒ c ∈ K∗ (29)

o1
pq ∈ [[c]] if (p ⇒↑ r ∈ K∗ ∨ q ⇒↑ r ∈ K∗) ∧ t(r) ⇒ c ∈ K∗ (30)

o2
pq ∈ [[c]] if (p ⇒↓ r ∈ K∗ ∨ q ⇒↓ r ∈ K∗) ∧ t(r) ⇒ c ∈ K∗ (31)

o2
pq ∈ [[c]] if (p ⇒↑ r ∈ K∗ ∨ q ⇒↑ r ∈ K∗) ∧ s(r) ⇒ c ∈ K∗ (32)

and for all relationships r:

(o1
pq , o

2
pq) ∈ [[r]] if p ⇒↓ r ∈ K∗ ∨ q ⇒↓ r ∈ K∗ (33)

(o2
pq , o

1
pq) ∈ [[r]] if p ⇒↑ r ∈ K∗ ∨ q ⇒↑ r ∈ K∗ (34)

Informally we can describe (o1
pq , o

2
pq) as the typical pair that is both in the rela-

tionship p and q.

Lemma 3. Given a schema S = (F, K) such that K∗ is conflict-free and p �↓

q �∈ K∗, then the corresponding I�
↓

is an instance of S.

Proof. The proof proceeds similar to that of Lemma 2 and considers the extra
cases for Prop. (1), Constr. (7), Constr. (8) and Constr. (9) using the assumption
that p �↓ q �∈ K∗. �

Definition 11 (Instance I�
↑
). Given a schema S = (F, K) with F = (C, R, s, t)

and p �↑ q �∈ K∗ we define I�
↑

similar to I�
↓

but here we add a pair (o12
pq, o

21
pq)

such that it is in [[p]]�
↑

and its inverse, (o21
pq, o

12
pq), is in [[q]]�

↑
.

Lemma 4. Given a schema S = (F, K) such that K∗ is conflict-free and p �↑

q �∈ K∗, then the corresponding I�
↑

is an instance of S.

Proof. The proof proceeds similar to that of Lemma 3. �

5.2 Soundness and Completeness of Rules

Theorem 2. Given a schema S = (F, K) with K∗ the closure of K under the
rules in M1, . . . , M4 then

1. c1 ⇒ c2 ∈ K∗ iff I � c1 ⇒ c2 for all instances I of S,
2. r1 ⇒↓ r2 ∈ K∗ iff I � r1 ⇒↓ r2 for all instances I of S,
3. r1 ⇒↑ r2 ∈ K∗ iff I � r1 ⇒↑ r2 for all instances I of S,
4. ·r ∈ K∗ iff I � ·r for all instances I of S,
5. r· ∈ K∗ iff I � r· for all instances I of S,
6. c1 � c2 ∈ K∗ iff I � r1 � r2 for all instances I of S,
7. r1 �↓ r2 ∈ K∗ iff I � r1 �↓ r2 for all instances I of S, and
8. r1 �↑ r2 ∈ K∗ iff I � r1 �↑ r2 for all instances I of S.

Non-destructive Integration of Form-Based Views 85

Proof. (Sketch) The only-if part of all the propositions is easily proved by verify-
ing that all the inference rules in M1, . . . , M4 are sound, which follows straight-
forwardly from the semantics of the constraints as defined in Definition 3.

The if part is proven in two steps. We first show that for each type of con-
straint that if K∗ is conflict-free then it holds, and then we show that from this
it follows that it holds for any K. �

Corollary 1. The rules in M1, . . . , M3 are sufficient to detect if K∗ is conflict-
free.

Proof. From the preceding corollary it follows that if the closure of K under
M1, . . . , M3 does not contain a conflict then the closure under M1, . . . , M4 will
also not contain a conflict. It is also clear that if the first closure contains a
conflict then so does the second closure. Therefore the first closure contains a
conflict iff the second closure does. �

6 Related Work

There has already been a large amount of research on the topic of data inte-
gration [4] and reasoning about taxonomies in general [5] and database schemas
in particular [6]. As is argued in [7] the two subjects are closely linked together
since the ability to reason over the views can be used to check the representation
for inconsistencies and redundancies, and to maintain the system in response to
changes in the data needs. In particular, [8] presents a reasoning approach for
automating a significant part of the schema integration process and [9] relies on
a reasoning support to improve the quality of data.

Description Logics (DL) are a well-known family of knowledge representation
formalisms that descend from KL-ONE [10]. Long since, they have been applied
to data management [11] and information integration [12]. The basic idea is to
express database schemas as DL knowledge bases so that DL reasoning tech-
niques can be used to reason about the schema. Although this approach can be
restricted to useful fragments where reasoning is still tractable, e.g. [13] and [14],
it often already becomes intractable for relatively small fragments [15] and even
more so when the concept of inverse role is added [16]. It was to the best of
our knowledge not yet known that the fragment that is proposed in this paper,
which can express such inverse roles, has a relatively simple set of inference rules
that is sound and complete and allows tractable reasoning.

7 Conclusion

In this paper we have proposed a view integration method that leaves the origi-
nal views intact and allows their relationships to be defined by constraints that
explicitly express semantical relationships between the components of the differ-
ent views. Although the motivation of this approach comes from workflow and
case management systems where the original views are important for the descrip-
tion of the workflow, this approach can also be beneficial for data integration

86 J. Hidders et al.

in more general settings. To support the integration process we have proposed
a set of inference rules that allows us to derive implied semantical relationships
and especially whether there are conflicts in the integrated schema. We have
shown that these sets of rules are sound and complete for all proposed types of
constraints, and that subsets of these rules can be already complete for certain
subsets of the constraints. Finally it was shown that the inference rules provide
in all cases a tractable inference mechanism.

References

1. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Comput. Surv. 18 (1986) 323–364

2. Shipman, D.W.: The functional data model and the data language DAPLEX.
ACM Trans. Database Syst. 6 (1981) 140–173

3. Halpin, T.: Information modeling and relational databases: from conceptual analy-
sis to logical design. Morgan Kaufmann Publishers (2001)

4. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS. (2002) 233–
246

5. Bergamaschi, S., Sartori, C.: On taxonomic reasoning in conceptual design. ACM
Trans. Database Syst. 17 (1992) 385–422

6. Formica, A., Missikoff, M.: Inheritance processing and conflicts in structural gen-
eralization hierarchies. ACM Comput. Surv. 36 (2004) 263–290

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information
integration: Conceptual modeling and reasoning support. In: Proc. of the 6th Int.
Conf. on Cooperative Information Systems (CoopIS’98). (1998) 280–291

8. Kashyap, V., Sheth, A.P.: Semantic and schematic similarities between database
objects: A context-based approach. VLDB J. 5 (1996) 276–304

9. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Source inte-
gration in data warehousing. In: Proc. of the 9th Int. Workshop on Database and
Expert Systems Applications (DEXA’98), IEEE Computer Society Press (1998)
192–197

10. Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representation
system. Cognitive Science (1985) 171–216

11. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In
Knoblock, C., Levy, A., eds.: Information Gathering from Heterogeneous, Distrib-
uted Environments, Stanford University, Stanford, California (1995)

12. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: KR. (1998) 2–13

13. Brachman, R., Levesque, H.: The tractability of subsumption in frame-based de-
scription languages. In: AAAI-84, Austin, Texas (1984) 34–37

14. Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: a struc-
tural data model for objects. In: Proc. of the ACM SIGMOD International Con-
ference on Management of Data, Portland, Oregon (1989) 58–67

15. Nutt, W., Donini, F.M., Lenzerini, M., Nardi, D.: The complexity of concept
languages. Inf. Comput. 134 (1997) 1–58

16. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation 9 (1999) 385–410

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 87 – 96, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Multi-version Data Model and Semantic-Based
Transaction Processing Protocol

Alexander Yakovlev

Department of Computer Science, Saint-Petersburg State University,
Universitetsky prospekt, 28, Peterhof, St. Petersburg, Russia, 198504

yakki@mail.ru

Abstract. Data processing delays are becoming one of the most serious
problems in a mobile environment. A not-the-latest version of data item cannot
be inserted because of data fluctuation in subsequent versions. In this paper
there is presented a multi-version data model capable of preserving full version
history. Such a model allows updates not ordered chronologically. It is obtained
by using semantics received from applications. The version of data item is
defined by operation with a set of attributes and acceptance timestamp.
Consistency requirements “by demand” allow non-conflict commutative
versions defined by commutative operations. Transaction protocol to be used
with data model presented is also described.

1 Introduction

Advances in mobile services are increasing now very high. We can meet mobile
applications in GIS, navigation and others. One can see problem of unstable channels
in distributed mobile systems. Other problem is low passing ability of wireless
channels.

Some of mobile applications need to process data modification operations initiated
by mobile hosts. If some mobile hosts are in disconnected mode - hasn’t connection
with remaining part of system- the problem of transaction delays appears. Transaction
restrictions, like consistency and others and non-commutative data modification
operations order that there are no processed transactions without connection to other
hosts. So they will not be committed or aborted until reinstatement of connection, if
using distributed database with multiple replicas of data.

The objective of this paper is to introduce a multi-version data model that store
semantic operations on data items and version vitality time bounds. This model may
allow committing of outdated transactions and decrease network traffic. Introduced
transaction model doesn’t fully satisfy the consistency property of ACID properties
[15] –it has relaxed.

The main advantage of such data model is the possibility of data history
modification. This can be achieved by using semantic of modification operations. In
this paper data domains with supported operation list are used for mining semantic
information. In experimental part of this research there are counts of committed
transactions with different conflict rates done by discussed model.

88 A. Yakovlev

2 Related Works

Classical approach on the transaction management is not applicable for a mobile
environment [16]. Pessimistic concurrency control systems leads to blocking
transactions, since mobile host can’t update any cached objects while it is
disconnected. There are a lot of approaches that includes specifics of mobile
environment. One part of the works on mobile transactions cover the design of
efficient concurrency control protocols [2, 11]. Other aims in enable working with
replicated database fragment in disconnected mode [5, 6, 9, 13].

Pessimistic approaches don’t support replication and disconnected operations and
cannot serve successfully in mobile environment [6]. Optimistic approach where the
commitment is processed on local replica is proposed in [4].

Different notions of consistency can be maintained by systems with architecture
like GLOMAR [11] – middleware layer for distributed systems that allows
development specific consistency models in scope of environmental constraints.

A multi-version data broadcasting method is introduced at first to resolve the
problem of reading inconsistent data values for read-only transactions [13]. In this
method all the previous versions within the time frame need to be broadcast as well
further to the most updated version. Mobile transactions can use stale data versions
since they are allowed to read this version by the relative consistency. Transaction
defined in [13] by quintuple of values: transaction type; the set of operations of
transaction; the transaction deadline; the partial order of operations. Every version of
data item has validity time bounds, the lower one is defined by timestamp of
inserting/updating this item, when the upper one by committing new version of item.

Various techniques, such as absolute and relative consistency, have been proposed
to define correctness of temporal data items [9]. Some of them use external
consistency based on the definition of absolute validity interval (AVI). This interval is
defined for each temporal data item related to maximum rate of changes. If the
difference exceeds predefined tolerance limit or AVI is exceeded, then the system
becomes externally inconsistent. Relative consistency defines the consistency for data
items that are accessed by the same transaction. Due to this requirement data items
have to be valid at the same time point.

 Other type of algorithms aims in early detecting conflicts on mobile host site with
decreasing communication between mobile host and stationary network. Data
dependencies are used in [18] for this aims –the clients receive from the server
dependency information, from which they build partial serialization graph.
Dependency information there can be fully calculated on server side and then
broadcasts to clients. Using dynamic adjustment of timestamp ordering and partial
validation on mobile clients is presented in [22]. This transaction processing
algorithm aims in early detecting conflicts within update transactions on mobile
clients and resolving them based on timestamps.

TCOT one phase protocol is based on timeouts calculation and tries to make
transaction decision - commit or abort – with help of calculated value of timeout. It
reduces communication between sites [19].

Semantic based transaction processing models used to increase concurrency by
using commutative operations [2]. In optimistic concurrency control systems cached
objects stored on mobile hosts can be updated without any coordination. But all the

 A Multi-version Data Model and Semantic-Based Transaction Processing Protocol 89

updates need to be validated for the commitment of transaction. If checking updates
validity is failed then transaction that corresponds to this update rollbacks by this
scheme.

Weak and strict operations on data items have been proposed for mobile computing
in [3]. Strict operations have semantics same with the normal read and write
operations. The weak ones are local operations, processed only on mobile host
without any exchanging with external environment within a process.

3 System Model

Distributed mobile database system consists of mobile hosts (MH), fixed hosts (FH)
and mobile support stations (MSS) [16]. Every mobile host has wireless connection to
the network. A high-speed fixed network connects fixed hosts to each other. Wireless
connection speed is much smaller then in a fixed network. Mobile hosts can
communicate with fixed hosts only through the mobile support stations. The database
is distributed on MH and FH. MH or FH may maintain primary copy of fragment and
there are cashed secondary copies on MH and FH. We always have backup copy of
data items that have primary copies situated on MH, if it is possible.

4 Data Model

Database consists of simple data items, unbound between them. For storing semantic
information data domains with sets of acceptable operations are used – updates are
available via data domain operations only. Attributes of operation are kept with
operation ids to make possible recalculation process. In lifetime information part
version vitality bounds and version real create timestamp are kept. This model
suggests each data item to be associated with the following structure (Fig. 1):

Definition 1. anchor timestamp is time-
stamp that indicates moment from that
one can make new versions. It is defined
by last fixed version upper life-bound
timestamp or another timestamp if it is
required.

The application defines the fixing
history strategy(for example tax need to
be calculated at the end of year and we
need to fix all accounts, on that tax
applies).

Fig. 1. Multi-version data item structure

Each data item as multi-version one has its change history stored. It is starting from
the initialization timestamp. On the data item initialization the starting value is always
specified, there are default values for each data domain. That value is used for
computations of all the later data item version’s values.

Header: Initial value.
Information about lifetime.
Last fixed version reference.

…
…
…

Version 1(Operation Id, Attr1...AttrN,
lifetime information, insert timestamp)

Version M(Operation Id, Attr1...AttrN,
lifetime information, insert timestamp)

90 A. Yakovlev

The database is updated with new operations applied to the data item as the newer
versions appear. If there is a data item fixation necessary for the time moment <t>, the
versions of the data item becomes to be fixed until <t>. Because of fixing, values of
the versions can be computed by applying operations taking place until <t>.

Data domains that are considered in this paper can be not-numerical, have complex
structure and contain information about non-conflict operations in special
commutative table of a special format that contains information about all
requirements to avoid conflicts. Some of these tables pointed in [17, 21] are useful for
improving concurrency.

5 Accumulators and External Functions

In [21] concept of accumulators is introduced. Accumulators store operations applied
to some initial value of simple type like described below data model.

Definition 2. External function is used to get additional information about the
accumulator. External function may depend not only on one accumulator, its base
value and operations history, but possibly on other accumulators and other different
parameters.

Definition 3. An external function depends on the period of time if it depends on
operations that have been applied during this period.

External functions can be used on application layer for wide area of aims. Value of
version stored in accumulator can be returned by external function. A lot of mobile
service provider billing system functions can be wrapped into external function, for
example balance request by mobile station. Another application is in different kinds
of aggregate functions – average or maximum value in case of numeric domain etc.

There are two concepts of accumulators – list-accumulator and set-accumulator
types. List-accumulator stores versions in strong order of timestamps instead of Set-
accumulator, which stores versions without any order. In this work only List
accumulator type is considered.

Because of strictly defined order, each operation stored in the list-accumulator has
a context of other operations. (By the way, the list-accumulator may be applied as a
set, because each operation has its unique identifier, and the context may be ignored
in the application.) There are two kinds of list-accumulators: insert-only and insert-
and-remove list-accumulators. Inserting or removing the new operations in such
accumulator occurs as inserting or removing the element in the set. The replaying
strategies for the list-accumulator follow.

Definition 4. An insert-only list-accumulator supports only one way for replaying:
insertion of a compensational operation and insertion of the new operation.

There are following cases related to time-dependency of the external functions and
the commutativity of the defined operations:

Case 1. There are some time-dependent external functions in the accumulator
• If all operations in the accumulator commutate with each other, inserting

of the compensational and new operations occurs according tothe rules of
detection of the ETS.

 A Multi-version Data Model and Semantic-Based Transaction Processing Protocol 91

• Else, if some operations in accumulator do not commutate with each
other, inserting of the compensational and new operations occurs
according to the rules of detection of the ETS. Because the operations do
not commutate, the application should warrant the semantic correctness
of the replaying.

Case 2. All external functions are time-independent

• If some operations in accumulator do not commutate with each other,
inserting of the new element in any place of the list does not damage the
rules of detection of the ETS because all external functions are time
independent. Thus, there are several cases to replay the operations:

o Insertion of the compensational operation and the new operation
just after the old operation

o Insertion of the compensational operation just after the old
operation and inserting the new operation according to its ETS

o Insertion of the compensational and the new operations
according to their ETS

The compensational operation and the method of replaying are defined by the
application. Purging of out-of-date operations is hardly needed to improve
performance, because number of operations stored in accumulator have tendency to
grow up. We will purge out-of-date version if there will be no external functions that
depends on lifetime of this version.

6 Timestamp Consistency

Absolute consistency constraints are defined on base items, when the relative
consistency ones on the set of base items and the set of items, derived from the set of
base items. A Transaction observes absolute consistency if all its accessed data items
truly reflect the status of the corresponding objects in the external environment.
Absolute consistency constraints can be applied to this kind of multi-version data
model as well, as relative consistency constraints.

Absolute consistency can be easily described by this definition: the value of data
item is outdated since a new update for this item is generated [15]. Relative
consistency guarantees that base and derived items in the transaction represents status
of data at the same point [13]. Because of restrictions of a mobile environment we
need to solve problems, caused by disconnection and network delays. We illustrate
this problem by the following scenario: transaction needs two data items, one of them
to be accessed by it, when another one may be transmitted only after a long delay.
During such a long transaction, an update of the previously accessed items may be
created. To maintain absolute consistency following the unapplied update, described
above, the transaction must to be restarted.

Absolute consistency requirements can be relaxed in order to reduce the number of
transaction restarts. The timestamps seem to be useful. Transaction may consider
accessed data items valid if all data items are valid by the time of a transaction
initialization. It can be useful because the timestamps that are stored with operations –

92 A. Yakovlev

their values can be restricted for all operations from this transaction by the value of
timestamp that indicates the transaction initialization.

Definition 5. Transaction fully satisfies timestamp consistency requirements if all
items, read by transaction, are relatively consistent at timestamp of transaction
initialization.

By this we don’t need to require any data item to be valid after initialization of
transaction and return all the requested data items.

7 Transaction Protocol

Transactions are presented in terms of operation sets, according to given data model.
Every reading operation has a time restrictions as a parameter, within the
requirements for versions that needed. Every writing operation creates a record that
contains operation identifier, attributes required for given operation, and timestamp of
version vitality lower bound.

For application specific tasks we need to support stronger requirements on
consistency. It can be aimed by using “strict” operations.

Definition 6. Operation is “strict” if it needs for fixing computed value for version of
data item that reads or creates.

Operations with this requirement will be prefixed by “Strict” (“StrictRead”,
”StrictWrite”) in this paper. “Strict” operation in transaction causes this transaction to
be strict. Every derived value is written by transaction as an operation. It must have
timestamp, which is equal to the moment of live connection to server. By this
durability of values that must be fixed is guaranteed – all derived new versions are
computed with fixed values if it needed by using “StrictRead”.

In our model we will maintain local copy by algorithm, described in [18], using
data dependency to decrease network using. Transaction coordinator will serve
information about versions that become to be stale, received by broadcasting channels
Processing of strict transactions is already described in a lot of works and uses
pessimistic approach. We will discuss just processing of non-strict transactions.

Definition 7. read_set - It is list of data items that are read by a transaction.

Definition 8. write_set - It is list of data items which are written by a transaction.
1. We check read_set:

• If we have all read_set values, then calculate all values from write_set
locally on mobile host, mark them by timestamp of last successful
connection to fixed network (successful means that we received all
information from coordinator and it is confirmed by coordinator).

• If we haven’t some values from read_set, then request values through
coordinator and after receiving all needed information calculate write_set
and so on.

2. Send results of work to coordinator, including (read_set, write_set)
• If coordinator finds in read set some stale versions, then restart

transaction because MH was in disconnected mode more time then
it is possible.

 A Multi-version Data Model and Semantic-Based Transaction Processing Protocol 93

• If write_set checking inside database management system is fault
because of some conflicts with Strict-transactions, then restart
transaction.

3. If we have no conflicts then make decision about commit of this transaction
and include versions from write_set into accumulator. Then send write_set
through all coordinators for excluding stale versions.

Fig. 2. Processing of non-strict transaction

This protocol relaxes the consistency property among ACID properties as the

fixing of values of data items can be required by the transaction, but it is unnecessary.
Also other properties are guaranteed in terms of operations: durability is reached

because of the absence to allow deleting any version of data item, atomicity can be
guaranteed checking procedure transaction processing and by fixed network services,
isolation is reached by using transaction management systems. The lasts are not aimed
in this paper.

8 Experiments and Optimization

In experimental part of this research count of committed transactions with different
conflict rates is obtained. Model of transaction flow with available merging for data
item versions is build. Aims of this work cause to check successful processing of

Request of all needed version values

Local
processing

Send results (read_set,
write_set) Checking write_Set, for avoid

conflicts with Strict Transactions

Commit or Abort

Send broadcast message about
versions that become to be stale Command to delete all

relative versions on mobile host

Communication

Receive of all needed version values

 Transaction
Coordinator

 Database Server Mobile host

94 A. Yakovlev

outdated transactions. For experimental needs we use numeric domain and arithmetic
operations on it. Actually there are two binary operations in numeric domain: adding
and multiplying.

For experimental realization of given algorithm Microsoft SQL Server 2000 SDK
chosen to be used.

Multi-version data model described above assumes necessity of calculation of data
item's values if reading operation occurs. There is possibility to minimize speed of
reading. It is in use of approach in case of storage of elements values in secondary
tables. In such a manner request for the data item's value of the certain version is
equivalent on speed to usual request to the table keeping only values of data items.
This approach is illustrated with the experimental system enclosed to the given job.
There are two different approaches in test system:

• Traditional system that work with SQL operations.
• Experimental system that work with defined above operations on data

items.

During experiments the set of operations above the data with the following
parameters are used: a degree of data history modifying conflicts is 50 %, all
operations - above numerical type of the data, binary. Fixing of a history is switched -
off. Operations of data reading are born in separate set. Commit process initiated
every 50 operations in thread. All tests executed on Intel Pentium 4-1700(256 Mb
RAM, one test database started only).

Experiment results are described in tables. For elimination of noise effects there are
1000 iterations of each test. 50% of writing operations aborted in traditional system
due to “data history modification” type of conflict.

0

5

10

15

20

25

1500 3000 4500 6000

Described model

Traditional select

.

Fig. 2.Time results for insert (create version) Fig. 3.Time results for select (get value)
Operations (horizontal-count of operations, operations (horizontal-count of operations,
vertical-time elapsed in seconds) vertical-time elapsed in seconds)

According to the executed experiments cost of operation of record increases on the
average in 2,28 times, cost of operation of reading in 1,44 times. The tendency is kept
at increase in amount of shorthanded operations.

0

2

4

6

8

10

12

14

16

18

20

1500 3000 4500 6000

Described model

Traditional inserts

 A Multi-version Data Model and Semantic-Based Transaction Processing Protocol 95

9 Performance Analyses

In this paper a multi-version data model is presented. It requires the values of data
items to be recalculated during each reading operation. In experiments cost of ability
of data history modification is shown properly. Reading operation speed increases in
1,3-1,5 times, writing operation speed – in 2,1-2,5 times. But a set of operations
includes half of aborted in traditional system parts. Then we have some other results
for writing operations – 4,2-5 times increasing of cost in speed.

In the following way using of suggested model enables data history modification,
but always it has cost – speed decreased.

10 Conclusions

In this paper, a data model and a transaction model for working with timestamp
consistency is proposed. Semantic information about operations on data items is used
to allow working with fragment of database in disconnected mode. Ability of
including work that done on disconnected host realized.

Transaction protocol presented in this paper allows for the commitment of data
item versions to be made not only in chronological order. Contrary to the traditional
transaction protocols data item version’s values can be recalculated upon the
commitment of older version of data.

Durability property from ACID transaction properties is achieved in sense of
durability of the operations performed on data items instead of data item version
values. Consistency property is relaxed to timestamp consistency that can restrict
history modification by timestamp, which is the lowest possible bound of updateable
version history.

References

1. Weikum, G., Vossen, G.: Transactional Information Systems – Theory, Algorithms and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers (2002)

2. Walborn, G. D., Chrysanthis, P. K.: Transaction Processing in Pro-Motion. In Proceedings
of ACM Symposium on Applied Computing (1999)

3. Pitoura, E., Bhargava, B.: Building Information Systems for Mobile Environments. In
Proceedings of 3rd International Conference on Information and Knowledge Managment
(1994) 371-378

4. Pitoura, E., Bhargava, B.: Data Consistency in Intermittently Connected Distributed
Systems. In Transactions on Knowledge and Data Engineering, (1999)

5. Madria, S. K., Bhargava, B.: System Defined Prewrites to Increase Concurrency in
Databases. In Proceedings of First East Europian Symposium on Advances in Databases
and Information Systems. St.-Petersburg (1997)

6. Madria, S. K., Bhargava, B.: A Transaction Model for Improving Data Availability in
Mobile Computing. In Distributed and Parallel Databases, 10(2) (2001)

7. Lu, Q., Satyanaraynan, M.: Improving Data Consistency in Mobile Computing Using
Isolation-Only Transactions. In Proceedings of The 5th Workshop on Hot Topics in
Operating Systems, Orcas Island, Washington (1995)

96 A. Yakovlev

8. Pitoura, E., Chrisanthis, P.: Scalable Processing of Read-Only Transactions in Broadcast
Push, IEEE International Conference on Distributed Computing Systems, Austin (1999)

9. Kao, B., Kam-Yiu, L., Adelberg, B., Cheng, R., Lee T.: Updates and View Maintenance in
Soft Real-Time Databases. In Proceedings of Conference on Information and Knowledge
Management, Kansas City (1999)

10. Eich, M. H., Helal, A.: A Mobile Transaction Model That Captures Both Data and
Movement Behaviour. ACM/Baltzer Journal on Special Topics on Mobile Networks and
Applications (1997)

11. Cuce, S., Zaslavsky, A.: Adaptable Consistency Control Mechanism for a Mobility
Enabled File System, Third International Conference on Mobile Data Management, MDM
2002, Singapore, IEEE CS Press (2002) 27-34

12. Dunham, M., Helal, A., Balakrishnan, S.: A mobile transaction model that captures both
the data and movement behavior. Mobile Networks and Applications, 2 (1997)

13. Kam-Yiu, L., GuoHui, L., Tei-Wei, K.: A Multi-Version Data Model for Executing Real-
time Transactions in a Mobile Environment. In Proceedings of MobiDe’2001 (2001)

14. Barbara, D.: Mobile Computing and Databases – A Survey. IEEE Transactions on
Knowledge and Data Engineering, Vol. 11, No.1 (1999)

15. Date, C.: An Introduction to Database Systems, 7th ed., Addison-Wesley (1999)
16. Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W.: XMIDDLE: A Data-Sharing

Middleware for Mobile Computing. Int. Journal on Personal and Wireless
Communications (2002)

17. Novikov, B., Proskurnin, O.: Towards collaborate video authoring. In Proc. of the
ADBIS’2003, Dresden, Germany (2003) 370-384

18. Chung, I. Y., Bhagava, B., Mahoui, M., Lilien, L.: Autonomous Transaction Processing
Using Data Dependency in Mobile Environments. In Proc. of the 9th IEEE Workshop on
Future Trends of Distributed Computing Systems.(FTDCS’03), San Juan, Puerto Rico
(2003) 138

19. Kumar, V., Prabhu, N., Dunham, M., Saydim, Y. A.: TCOT – a timeout-based mobile
transaction commitment protocol, IEEE Transaction on Computers, vol. 51 (2002)

20. Demers, A. J., Petersen, K., Spreitzer, M. J., Terry, D. B., Theimer, M. M., Welch, B. B.:
The Bayou architecture: Support for data sharing among mobile users. In IEEE Workshop
of Mobile Computing Systems and Applications (WMCSA), Santa Cruz, California, USA
(1994)

21. Kozlova, A., Kochnev, D., Novikov, B.: The Middleware Support for Consistency in
Distributed Mobile Applications, In Proc. of BalticDBIS’2004 (2004)

22. Victor, C. S., Lee, Lam, S., K. W., Son, S. H., Chan E. Y. M.: On Transaction Processing
with Partial Validation and Timestamp Ordering in Mobile Broadcast Environments, IEEE
Transaction on Computers, vol. 51, No.10 (2002) 1196-1211

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 97 – 108, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Managing Schema Versions in Object-Oriented
Databases

Xian Liu, David Nelson, Simon Stobart, and Sue Stirk

School of Computing and Technology, The Sir Tom Cowie Campus at St. Peter’s,
University of Sunderland, Sunderland, SR6 0DD UK

{xian.liu, david.nelson, simon.stobart,
sue.stirk}@sunderland.ac.uk

Abstract. The schemas of object-oriented databases are frequently changed in
advanced applications such as Computer-Aided Design. This generates many
schema versions that are used to model the evolving structure of a real world
entity. Thus, there exists a need for an adequate method of managing the
schema versions effectively, so that the user can trace the history of the chang-
ing schema with ease. In this paper, we propose a nested matrix model for the
management of schema versions in object-oriented databases. The model main-
tains a semantic set of relationships between the schema versions. The advan-
tages of our work include the provision of a logical representation for schema
versions that are not addressed sufficiently in exiting models and the develop-
ment of a graphic querying interface.

1 Introduction

Advanced applications such as Computer-Aided Design rely on object-oriented data-
bases to facilitate the design process of artifacts that have a complex data structure [1,
2]. As a result of incremental design, the structure of the objects modeled is frequently
modified. This gives rise to schema changes. There are two general approaches to
schema changes: schema evolution and schema versioning. The former allows the data-
base to be updated to the new schema without any loss of data [3], while the latter re-
tains all versions (both current and past) of the schema and the data associated with
them [4]. This forms a complete history of the evolution of the database.

The schema versioning approach is often preferred, in that it enables the user to go
back to previous versions of the schema. This is essentially important in advanced
applications like engineering design. However, existing models of schema versioning
have limited capabilities. For example, most of them can only handle situations where
a schema version is derived from another one; merging schema versions is not con-
sidered. The logical representation of schema versions is not addressed sufficiently.
Some models are not implemented to validate its correctness.

In this paper, we propose a nested matrix model of schema versioning, which sup-
ports a richer set of relationships between schema versions by introducing the merg-
ing type. We present a logical representation of schema versions designed to increase
the modeling power of the model. We discuss our prototype implementation of the
model including a graphic querying interface which enables a casual user to access
schema versions with ease.

98 X. Liu et al.

The remainder of the paper is organized as follows. Section 2 introduces the model
formally. Section 3 describes the prototype implementation of the model and its
graphic querying interface features. Section 4 is an overview of related work. Section
5 concludes the paper.

2 Nested Matrix Model

In this section, we first introduce the basic concepts of the model using a simplified
example of the structural evolution of a design object. The formal definitions of the
model are given later.

2.1 Basic Concepts

The schema of an object-oriented database is a set of classes. A class consists of at-
tributes and methods that represent the state and behavior of the objects modeled.
Each attribute has a unique name in the scope of the class and a type (either a system-
defined type such as character and number or a user defined type). Each method also
has a name. It may receive a set of parameters and does or does not return a value.
The combination of the name and parameters, called the signature of the method,
must be unique within the class. In addition to defining its own attributes and meth-
ods, a class may inherit those of another class. Thus, the schema can be seen as a set
of class inheritance hierarchies as shown in Figure 1.

Fig. 1. Schema Graph – Showing Class Inheritance

The schema evolves when one or more of its classes are changed. The changes are
the results of adding, deleting and/or updating the classes in terms of their superclass,
attributes and methods. We have defined a set of primitive change types as listed
below. They describe all possible changes to the schema based on the definition in the
preceding paragraph.

Changes to the structure of the tree graph:

• add a class to the schema,
• delete a class from the schema,
• assign a class as the superclass of another class if it does not have one,
• remove its superclass from a class (but not from the schema),
• replace the superclass of a class.

Legend:

class

inheritance

schema

 Managing Schema Versions in Object-Oriented Databases 99

Changes to a node of the tree graph:

• rename a class,
• add an attribute to a class,
• delete an attribute from a class,
• rename an attribute of a class,
• add a method to a class,
• delete a method from a class,
• rename a method of a class.

 (a) (b) (c)

Fig. 2. Types of Relationship of Schema Versions

A versioned schema is a collection of snapshots (called versions) of the schema
over time that describe the history of changes in the structure of the objects modeled.
A new version is always created from one or more existing versions. There are six
types of relationship between versions as shown in Figure 2. Firstly, the derivation
type means that the new version is derived from a single existing version (Figure
2(a)). Secondly, a version may derive more than one version as alternatives, and out
of them, one is selected and the rest, rejected. That is, the rejected versions stop being
involved in the evolutionary process of the schema and are not allowed to create other
versions (Figure 2(b)). To represent these semantics, we create a new version Vd and
a set of selected/rejected relationships. Physically, Vd has an identical set of class
definitions with Vb. However, logically, they are not the same, in that different se-
mantics are represented: Vb is an alternative to Vc in parallel, while Vd is the result of
a selection from Vb and Vc. Vd can continue to evolve by creating new versions, but
Vb and Vc can not, since they have been replaced by Vd. Selecting the best one from
multiple alternatives is an important step forward, for example, in engineering design
applications, and therefore is considered in the model using a logical version Vd.
Thirdly, versions originating from the same version can be merged as components to
form a new version (Figure 2(c)).

To provide a logical representation for a versioned schema, a root version is auto-
matically created as the start of its evolution as shown in Figure 2(a). The alternative
and component versions that always originate from one version Va and end at another
one Vd are enclosed in a logical container called version matrix. We add between Va
and Vd an alternative (A) / component (C) relationship to represent the semantics that
Va evolves into Vd indirectly through an alternative / component version matrix. A

D D

 S R

D: derivation

S: selected

R: rejected

A: alternative

M: merging

C: component

 D

V

Vb

Va

Vb Vc

Vd

 A

D D

 M M

Va

Vb Vc

Vd

 C Va

 Droot version

version matrixversion matrix

100 X. Liu et al.

version matrix may host other lower level version matrices. Thus, we have a multiple
level organization of version matrices. The first level is the main evolutionary path of
a linear feature. The version matrices that are associated with it form the second level,
and those nested in the second level in turn form the third level, and so on. We use a
simplified example below to illustrate these concepts.

Figure 3 illustrates the structural evolution/development of a bicycle design. The
design undergoes 3 main stages: frame Va, wheels Vg, and crank Vh, the order of
which must be preserved, in that each stage serves a base for the next one. In the sec-
ond stage, the front wheel Vb and the back wheel Vc plus the associated sprockets Vf
are designed separately and then put together by a merging operation. The sprockets
have two possible solutions: multi-speed Vd or single-speed Ve. They are designed for
experiments, and the former is selected. The logical representation of the versioned
schema in Figure 3 clearly shows the evolutionary history of the structure of the bicy-
cle design: at the first level are the main changes. Relationship C indicates that Vg is
indirectly created from Va through a merging subprocess, while relationship A shows
that Vc evolves into Vf by a selection subprocess.

Fig. 3. Bicycle Design Modeled as Versioned Schema

As shown in Figure 3, a schema version is always associated with a set of class
definitions except for the root version. The same set of class definitions may be
shared by two or more schema versions. This is consistent with real world situations.
For example, in engineering design, parts of the same type/structure are often used in
more than one place of a product. This feature gives rise to the concept that there are

 C A

 D

 D

 R

Bicycle

frame;

Bicycle

frame;

back_wheel;

Bicycle

frame;

front_wheel;

Bicycle

frame;

back_wheel;

m_sprockets;

Bicycle

frame;

back_wheel;

s_sprockets;

Bicycle

frame;

back_wheel;

m_sprockets;

front_wheel;

Bicycle

frame;

back_wheel;

m_sprockets;

front_wheel;

crank;

Vb Vc

Va

Vg

Vf

Ve

 D

alternative matrix

M

First Level Second Level Third Level

Vh

component matrix

 S

Vd

 D

V

root version

 class definitions of schema version
(physical)

 representation of schema version
(logical)

 Legend:

 Managing Schema Versions in Object-Oriented Databases 101

two facets of a schema version: a physical one and a logical one. The user works with
the logical facet, and the system is responsible for transparently providing the physi-
cal facet, i.e., the associated class definitions.

2.2 Definitions of the Model

A versioned schema is represented by a DAG graph extended to accommodate ver-
sion matrices. We define the DAG graph and the version matrix, respectively.

The DAG is defined as G = (V, E, l), where V = { va, vb, …, vn } is a set of nodes
representing the versions of the schema; E is a set of edges of the nodes labeled D, S,
R, A, M, or C indicating the relationship types between the versions; and l is a func-
tion for retrieving the label of an edge, that is, the relationship type of the two ver-
sions concerned: l (vi, vj) t {D, S, R, A, M, C, N}, where N means that there
does not exist an edge from vi to vj.

To define version matrices, we must first introduce the concept of matrix paths. A
matrix path is a sequence of all adjacent edges, (vi+1, vi+2), (vi+2, vi+3), …, (vi+n-1,
vi+n), such that the number of outgoing edges of ve is equal to the number of incom-

ing edges of ve+1, where e = i+1, i+2, …, i+n-1. If edges (vi, vi+1) and (vi+n, vj)
such that the number of outgoing edges of vi is not equal to the number of incoming
edges of vi+1 and that the number of outgoing edges of vi+n is not equal to the number
of incoming edges of vj, then vi and vj are called the starting version and the ending
version of the matrix path, respectively. A version matrix is/contains a set of matrix
paths that share the same starting and ending versions.

Fig. 4. Use of the Class Definitions of a Version in a Version Matrix

A version matrix is used to describe the way that a version evolves into another
one through a set of alternative or component versions. Thus, there should be only
two versions associated with it: its starting and ending versions. To be in compliance
with this, we specify that the existing versions for a selection or merging operation
must be leaf versions and that when the version matrix is formed upon completion of

 R

D D

Vg Vh

Vb

Ve

Vd Vc

Vf

Vi

D

M M

S
component matrix 1

component matrix 2

Vd class definitions of Vd

C C D

Vj

Va

102 X. Liu et al.

the operation, it is closed, that is, no version may logically be created from the ver-
sions inside it. However, the user can still take advantage of the class definitions as-
sociated with them using the sharing mechanism. Consider Figure 4. Suppose that Vi
needs to merge the class definitions of Vd and Vg after component matrix 1 is formed
and closed. Since Vd can not create new versions, Vh is created which shares the set
of class definitions of Vd. The directed edge from Vf to Vh represents the logical rela-
tionship between them, that is, Vf has outdated and been replaced with Vh. The set of
class definitions of Vh is not necessarily obtained by modifying those of Vf. It may be
created from scratch or use those of an existing version. This is similar to the case of
object versioning [5].

To manipulate the versioned schema in the graph, we have defined four operations
as explained below.

The D operation creates from an existing version vi a new version vj and an edge
(vi, vj) labeled D by applying a set of primitive changes c = { ca, cb, …, cn } to vi, or
by using the class definitions of another existing version ve, or by defining a set of
class definitions d from scratch. Thus, it has three forms:

1. D (vi, c, n=‘vj’) vj + D(vi, vj), n is the name given to the new version, D(vi, vj)
represents an edge (vi, vj) labeled D;

2. D (vi, ve, n=‘vj’) vj + D(vi, vj);
3. D (vi, d, n=‘vj’) vj + D(vi, vj), d is a set of class definitions.

The S operation creates a new schema version vj by selecting one vi from a set of
existing schema versions v = { va, vb, …, vn }. It also creates a set of edges: (vi, vj)
labeled S representing that vi is selected (i.e., vj is associated with the set of class
definitions of vi), and (ve, vj) labeled R, e = a, b, …, n and e i, indicating that the
rest ve is rejected. S (v, vi, n=‘vj’) vj + S(vi, vj) + R(ve, vj).

The M operation creates a new schema version vj by merging a set of existing
schema versions v = { va, vb, …, vn }. It also creates a set of edges: (ve, vj) labeled M,
e = a, b, …, n. M (v, n=‘vj’) vj + M(ve, vj), e = 1, 2, …, n.

The Del operation deletes an existing schema version vi: Del (vi) V, vi V,
where V is the set of nodes representing all versions of the schema.

To maintain consistency of schema versions, we specify a set of rules for the above
operations as follows:

• The names of schema versions must be unique in the scope of the versioned
schema, since they are used as identifiers.

• For the D operation, the existing schema version that the new schema version is
created from can not already be contained in a version matrix.

• For the M and S operations, the existing schema versions to be merged or selected
from must be leaf versions, that is, no versions are already created from them, and
the matrix paths associated with them have the same starting version.

• If attributes/methods with the same name/signature are encountered in a class when
merging schema versions, the user must delete or rename some of them to guaran-

 Managing Schema Versions in Object-Oriented Databases 103

tee that the merged class does not have any attributes/methods with the same
name/signature.

• For the Del operation, the existing schema version to be deleted must be a leaf
version.

3 Implementation

In this section, we present a prototype implementation of the model. We first discuss
its architecture in Subsection 3.1. Its schema version management unit is described in
Subsection 3.2, followed by discussions on the graphic querying interface in Subsec-
tion 3.3. Finally, in Subsection 3.4, we address the physical organization issue.

3.1 Architecture

The implementation adopts a two-layer architecture (Figure 5). The first layer is a
schema version management unit. It implements the concepts and rules defined in the
model by creating a set of objects that represent schema versions and their relation-
ships. The second layer is to make the objects persistent using an ODMG compliant
object-oriented database system, so that the user can retrieve and manipulate the
schema versions beyond the program sessions that create them. The main advantage
of the architecture is that the implementation is portable, that is, it can be transferred
to any object-oriented database system that meets the ODMD standards.

Fig. 5. Architecture of the Implementation

3.2 Schema Version Management Unit

As shown in Figure 6, the schema version management unit consists of a number of
modules for performing various tasks of managing schema versions and a graphic user
interface (GUI) that provides a convenient means of communications with the user.

The top part of the GUI, titled Schema, is used to manipulate versioned schemas as
a whole. When the New button is selected, the Schema module is called that creates a
new versioned schema with the name given in the Name field by the user. It also
creates a Root version for the schema automatically as specified in the model. The
Open button is to retrieve an existing versioned schema and display its logical repre-
sentation, that is, a DAG graph with version matrices, in the Display area in the mid-
dle part of the GUI. We explain how to use the graph to access schema versions in the
next subsection. The last button, DelSch, removes from the system the versioned
schema named in the Name field. If errors occur during the above operations, for

schema version
management unit

first layer second layer user

object-oriented
database

objects represent-
ing schema versions schema versions

104 X. Liu et al.

Fig. 6. Graphic User Interface

example, trying to delete a nonexistent schema, message windows pop up to give the
reasons for the failure.

The bottom part of the GUI is for manipulating schema versions of the versioned
schema opened. The four buttons on the left perform derivation, merge, selection and
deletion operations, respectively. When interactions with the user are needed, various
windows pop up for confirmation or input purposes. For example, in merging schema
versions, if two attributes with the same name are encountered in a class, a window is
opened to show these attributes, and the user must delete or rename one of them be-
fore the merging operation continues. The Result area on the right bottom corner of
the GUI reports the results of each step of the performed operation, so that problems
that may arise can easily be identified.

3.3 Graphic Querying Interface of Schema Versions

We have designed a graphic querying interface for easy access to schema versions.
When a versioned schema is opened, its logical representation is shown in the Display
part of the GUI (Figure 7). Initially, only the schema versions at the main (first) level
are displayed. If there is an edge labeled C or A, this means that a version matrix is
nested between the two associated schema versions. Thus, the user can click on the
edge to have the nested matrix at the second level displayed. If it also hosts other
version matrices, he or she can access them by clicking on the corresponding C or A
edges. The Main button brings back the schema versions at the main level, that is,

Display

Version
Derive Source:

Merge OK

Select Result:

Delete

New:

Schema
New Name:

Open OK

Delete Result:

Main

Schema module

DelSch module

Open module

Derive module

Merge module

Select module

DelVer module

 Managing Schema Versions in Object-Oriented Databases 105

Fig. 7. Graphic Querying Interface

Fig. 8. Access to Schema Versions

returning to the starting point of the graphic navigation. In this way, schema versions
at any level can be reached by simply clicking on edges.

To access a particular schema version, the user clicks on the node labeled its name
in the graph (Figure 8). This pops up a window that shows all class definitions of the
schema version. The Detail button on the window is used to trace the historical infor-
mation on how it was created, such as its source schema version and the class changes
made.

3.4 Physical Organization

A versioned schema consists of a number of schema versions, and each schema ver-
sion is always associated with a set of class definitions. Thus, there arises a need to
maintain these class definition sets physically. We use the file management facilities
provided by the underlying operating system to do this.

When a versioned schema is initialized, a home directory is created for it. This di-
rectory is used to hold a database for storing the logical representations of its schema
versions and some subdirectories. Each subdirectory in turn holds a set of class defini-
tions that is associated with one or more schema versions (in a sharing case, see Sec-
tion 2) and a database to store the objects created under the schema versions. Thus,
when the user (or a program) needs to access objects of a schema version, the system
transparently opens the database in the subdirectory associated with it.

Display

Main

Va

Vd

Vb Vc
click

Version: Vc

Class Bicycle

 String name;

 String ID;

Detail

Source of Vc: Va

Class Bicycle

 String name;

click

Changes to Va

Class Bicycle

 Add attribute:

 String ID;

click

on Main

Display

Main

D

Va

Vd

D

M

Vc

Display

click

on C

 version matrix

M

Main

D

Root

Va

C
Vd

Vb

106 X. Liu et al.

4 Related Work

Research into schema versioning in object-oriented databases began in the mid 1980’s
when advanced applications such as CAD required objects stored in the database to be
changeable both in their value and structure [6, 7, 8]. Most schema versioning models
in the literature are defined by extending the concepts of object versioning, since the
two related fields have many similar requirements. However, in comparison with that
of object versioning, work on schema versioning is limited.

One approach to schema versioning is to create a new version from an existing one
by applying a set of primitive changes and then establishing a derivation link between
them. This forms a version derivation hierarchy, or more precisely, a tree structure [9,
10, 11, 12, 13]. However, the user may want to take advantage of two or more exist-
ing versions. Thus, the system needs to have the ability to merge versions.

Another approach is based around the concept of view. Most view models allow
modifications of the structure of objects by generating different views of a global
schema [14, 15]; [16] can also derive a new view from an existing one and merge
views by renaming classes with the same names from different sources. The main
drawback of the view approach is that the derivation and merging relationships be-
tween views that describe the way of evolution of the schema are not maintained. In
other words, all views are derived from the global schema. Thus, the user has no
means to trace the evolutionary history of the schema.
Some models use class versioning to handle schema changes [17, 18, 19], in which a
new class version is created when changes are made to an existing version of a class.
All versions of the class form a version hierarchy, that is, a tree structure. In general,
the database schema consists of more than one class in the form of a set of class in-
heritance hierarchies. Thus, a configuration mechanism of existing class versions is
needed. One proposed configuration method is to use a logical container such as that
in [20]. However, at the schema level, the containers of class versions that represent
schema versions are related only with derivation links. The merging of schema ver-
sions is not supported.

More recently, progress on temporal object-oriented databases has brought a new
approach to schema versioning in which each schema version is assigned a timestamp
corresponding to its valid and/or transaction time [21, 22, 23]. However, due to the
linear nature of time, temporal models allow only one version at one point of time in a
given dimension, while multiple current versions as alternatives are required in appli-
cations such as CAD.

5 Conclusions and Future Work

We have proposed a nested matrix model for schema versioning in object-oriented
databases and develop a prototype implementation. The model consists of a structure
of schema versions and a set of rules. The structure, defined in a formal way, is a
DAG extended to accommodate version matrices: the nodes represent schema ver-
sions; the labeled edges indicate the relationship types between schema versions; and
the matrices organize related schema versions in a meaningful way. The rules are
used to guarantee consistency of schema versions. The advantages of the model in-

 Managing Schema Versions in Object-Oriented Databases 107

clude its increased modeling capabilities that provide a richer set of relationships (i.e.,
derivation, component, merging, alternative, selection, rejection) between schema
versions than existing models and a logical representation of the versioned schema
that can be decomposed into different levels. Unlike many models in the literature,
this model is validated with a prototype implementation. A distinct feature of the
implementation is the development of a graphic querying facility, which enables a
casual user to access schema versions with ease.

The concepts of the model may be extended to accommodate object versioning.
Thus, the system is able to provide both schema versioning and object versioning
capabilities in a unified way. Another direction of the future work is to design a set of
handlers like those in [17] to enable programs that are written for a schema version to
access objects created under other schema versions.

References

1. Ketabchi, M.: Object-oriented data models and management of CAD databases. In: Pro-
ceedings of the 1986 international workshop on object-oriented database systems. Pacific
Grove, California, United States (1986) 223-224

2. Hong, B., Lee, S.: CAD Data management using object-oriented paradigms. In: Proceed-
ings of the first international conference on industrial and engineering applications of arti-
ficial intelligence and expert systems. Volume 2. Tullahoma, Tennessee, United States
(1988) 1044-048

3. Peters, R., et al.: An axiomatic model of dynamic schema evolution in objectbase systems.
In: ACM Transactions on Database Systems. 22(1) (1997) 75–114

4. Roddick, J.: A survey of schema versioning issues for database systems. Information and
Software Technology, Volume 37, Issue 7 (1995) 383-393.

5. Katz, R.: Toward a unified framework for version modeling in engineering databases. In:
ACM Computing Surveys. Volume 22 , Issue 4 (1990) 375-409

6. Dittrich, K., R. Lorie, R.: Version support for engineering database system. IBM Research
Report: RJ4769. California, USA (1985)

7. Katz, R., et al.: Version modeling concepts for computer-aided design databases. In: Pro-
ceedings of the 1986 ACM SIGMOD international conference on management of data.
Washington, D.C., USA (1986) 379-386

8. Banerjee, J., et al.: Semantics and implementation of schema evolution in object-oriented
databases. In: ACM SIGMOD Record, Vol. 16, Issue 3 (1987) 311-322.

9. Kim, W., Chou, T.: Versions of schema for object-oriented databases. In: Proceedings of
the 14th VLDB Conference. Los Angeles, USA (1988)

10. Biliris, A.: Database support for evolving design objects. In: Proceedings of the 26th ACM
conference on design automation. Las Vegas, USA (1989) 258-263

11. Cheval, J.: A version model for object-oriented databases. In: Proceedings of the 8th Brit-
ish national conference on databases. York, UK (1990)

12. Oussalah, C., Urtado, C.: Complex object versioning. In: Proceedings of the 9th confer-
ence on advanced information systems engineering. Barcelona, Spain (1997) 259-272

13. Lautemann, S.: Schema versions in object-oriented systems. In: Proceedings of the 5th in-
ternational conference on database systems for advanced applications. Melbourne, Austra-
lia (1997)

14. Santos, C., et al.: Virtual Schemas and Bases. In: Proceedings of the 4th international con-
ference on extending database technology. Cambridge (1994) 81-94

108 X. Liu et al.

15. Bertino, E., Guerrini, G.: Viewpoints in object database systems. In: Proceedings of the
second international software architecture workshop. San Francisco, USA (1996) 289-293

16. Jones, M., Rundensteiner, E.: View materialization techniques for complex hierarchical
objects. in: Proceedings of the sixth international conference on Information and knowl-
edge management. Las Vegas, USA (1997) 222-229

17. Monk, S., Sommerville, I.: A model for versioning of classes in object-oriented databases.
In: Proceedings of the 10th British national conference on databases. Aberdeen, UK (1992)
42-58

18. Li, X., Tari, Z.: Class versioning for the schema evolution. Internet: http://citeseer.
ist.psu.edu/360381.html (1998)

19. Nacer, M., Estublier, J.: Schema evolution in software engineering databases: a new ap-
proach in Adele environment. In: Computers and Artificial Intelligence, Volume 19 (2000)

20. Gancarski, S., Jomier, G.: A framework for programming multiversion databases. In: Data
& Knowledge Engineering, Volume 36 (2001) 29-53.

21. Iqbal, A., et al.: A temporal approach to managing schema evolution in object database
systems. In: Data & Knowledge Engineering, 28(1) (1998) 73-105

22. Rodríguez, L., et al.: TVOO: A temporal versioned object-oriented data model. In: Infor-
mation Science, Volume 114, No. 1-4 (1999) 281-300

23. Grandi, F., et al.: A formal model for temporal schema versioning in object-oriented data-
bases. In: Data & Knowledge Engineering, 46(2) (2003) 123-167

Efficient Integrity Checking
for Databases with Recursive Views

Davide Martinenghi and Henning Christiansen

Roskilde University, Computer Science Dept.,
P.O.Box 260, DK-4000 Roskilde, Denmark

{dm, henning}@ruc.dk

Abstract. Efficient and incremental maintenance of integrity constraints
involving recursive views is a difficult issue that has received some atten-
tion in the past years, but for which no widely accepted solution exists
yet. In this paper a technique is proposed for compiling such integrity
constraints into incremental and optimized tests specialized for given
update patterns. These tests may involve the introduction of new views,
but for relevant cases of recursion, simplified integrity constraints are
obtained that can be checked more efficiently than the original ones and
without auxiliary views. Notably, these simplified tests are derived at de-
sign time and can be executed before the particular database update is
made and without simulating the updated state. In this way all overhead
due to optimization or execution of compensative actions at run time is
avoided. It is argued that, in the recursive case, earlier approaches have
not achieved comparable optimization with the same level of generality.

1 Introduction

Recursive views are generally regarded as a welcome extension to relational
databases, as they allow a large class of query problems to be formulated within
a declarative query language. To this end, we can mention flexible query answer-
ing based on taxonomies stored in the database, and various kinds of path-finding
problems, such as network routing and travel planning. The introduction of re-
cursion (since 1999 in the SQL standard [13] as stratified linear recursion based
on fixpoint semantics) naturally raises a need for a satisfactory treatment of
recursion in integrity constraints (ICs) which, in real-world applications, usu-
ally include complex data dependencies and “business logic”. In this respect,
database management systems should provide means to automatically verify, in
an efficient way, that database updates do not introduce any violation of in-
tegrity. Maintaining compliance of data with respect to ICs is a crucial database
issue, as, if data consistency is not guaranteed, then query answers cannot be
trusted.

ICs are properties that must hold throughout the existence of a database
for it to represent a meaningful set of data. While a complete check of integrity
is prohibitive in any realistic case, it gives good sense to search for incremental

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 109–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 D. Martinenghi and H. Christiansen

strategies checking only the consequences of a database update, based on the hy-
pothesis that the database was consistent before the update itself. This principle,
called simplification, has been studied at least since [24], both for relational and
deductive databases. The majority of existing methods either disregard recur-
sion completely or disallow recursively defined relations to occur in ICs. Earlier
approaches to simplification produce constraints that need to be checked in the
updated database. We emphasize, however, that it is possible to decide, in the
current state, whether a proposed update will introduce inconsistency (i.e., if it
were executed). The framework we propose can handle a very general class of
updates specified with a rule-based language that allows one to express para-
metric update patterns. Such patterns are used on the ICs at design time, when
only the schema exists and not yet any database state, in order to generate sim-
plified parametric constraints. Later, at runtime, the parametric constraints are
instantiated with the specific update values and tested in the actual state.

The main contributions of this paper are as follows. (i) We formalize the
general problem of finding simplified, incremental integrity checks for databases
with recursive views, based on our previous contribution for the non-recursive
case [6]. (ii) We develop a terminating procedure, based on the identification
of specific recursive patterns, that generates efficient simplified tests that are
necessary and sufficient conditions for integrity of the updated database. The
method allows more general updates and provides finer results than previous
approaches. The procedure takes in input a parametric update pattern and a set
of ICs and produces, as output, a set of optimized ICs.

The paper is organized as follows. The simplification framework is shown in
section 2 and refined for recursion in section 3; its ability to handle recursive cases
is demonstrated through a series of examples in section 4. A detailed comparison
of methods that handle recursion is given in section 5, followed by experimental
evaluation in section 6. Concluding remarks are provided in section 7.

2 A Framework for Simplification of Integrity Constraints

2.1 Basic Notions

For simplicity, we apply notation and concepts from deductive databases, more
specifically Datalog programs with stratified negation [10], but we stress that
our results are also applicable in a relational setting, since translation techniques
from Datalog to SQL are available [7]. In particular, we assume familiarity with
the notions of predicates (p, q, . . .), constants (a, b, . . .), variables (x, y, . . .),
function-free terms, atoms, literals, logical formulas, substitutions, renaming, in-
stances of formulas and subsumption. Sequences of terms are indicated by vector
notation, e.g., �t. Substitutions are written as {�x/�t} in order to indicate which
variables are mapped to which terms. A clause is a formula A ← L1 ∧ · · · ∧ Ln

where A is an atom and L1, . . . , Ln are literals and with the usual understand-
ing of variables being implicitly universally quantified; A is called the head and
L1 ∧ · · · ∧Ln the body of the clause. If the head is missing (understood as false)
the clause is called a denial ; if the body is missing (understood as true) it is a

Efficient Integrity Checking for Databases with Recursive Views 111

fact ; all other clauses are called rules. Clauses are assumed to be range restricted,
i.e., all clause variables must occur in a positive database literal in the body.

As stressed in the introduction, ICs need to be specialized for update patterns
rather than for specific updates. In order to integrate this in our framework, a
special category of symbols called parameters is introduced. Parameters are writ-
ten in boldface (a,b, . . .) and can appear anywhere in a formula where a constant
is expected. Parameters behave like variables that are universally quantified at
a metalevel; they are not expected to be part of any actual database nor of
any query or update actually given to a database, but we may have parametric
expressions of these categories.

Unique name axioms are assumed for (non-parametric) constants, i.e., dis-
tinct constants denote distinct values. A parameter substitution is a mapping
from parameters to constants. Whenever E is an expression containing param-
eters �a, and π is a parameter substitution of the form {�a/�c}, Eπ denotes the
expression that arises from E when each occurrence of a parameter is replaced
by its value specified by π; Eπ is called a parametric instance of E.

Definition 1 (Database). A (database) schema consists of disjoint sets of
extensional and intensional predicates (collectively called database predicates)
and a pair 〈IDB, IC〉, where IDB is a finite set of range restricted rules defining
intensional predicates and IC a finite set of denials called a constraint theory.
A database with schema 〈IDB, IC〉 is a triple 〈IDB, IC,EDB〉, where EDB is a
finite set of facts of extensional predicates.

When the schema is understood, the database may be identified with EDB . By
virtue of the one-to-one correspondence between these logical notions and rela-
tional databases, we will use interchangeably the notions of intensional predicate
and view, extensional predicate and relation, fact and tuple.

Definition 2 (Recursion). For two predicates p and q, p derives q (written
p ↪→ q) if p occurs in the body of a rule whose head predicate is q. Let ↪→+ be
the transitive closure of ↪→. A predicate p is recursive iff p ↪→+ p.

As in [4], we can limit our attention to bilinear systems (those whose rules
have at most two predicates mutually recursive with the head predicate), as any
stratified program can be rewritten as an equivalent bilinear program. We only
focus on stratified databases [1], that do not allow mixing negation and recursion.
We refer to the semantics of the standard model, and write D |= φ, where D is
a (stratified) database and φ is a closed formula, to indicate that φ holds in
D’s standard model. The notation A |= B is extended to parametric expressions
with the meaning that it holds for all its parametric instances; similarly for ≡
and “iff”. We view satisfaction of ICs by entailment [10].

Definition 3. A database D = 〈IDB, IC,EDB〉 is consistent whenever D |= IC.

Definition 4 (Defining formula). Given an IDB and an intensional predicate
p defined in it by the rules {p(�t1) ← F1, . . . , p(�tn) ← Fn}, where the �ti’s are
sequences of terms and the Fi’s are conjunctions of literals, the defining formula

112 D. Martinenghi and H. Christiansen

of p is (F1∧�x = �t1)ρ1∨. . .∨(Fn∧�x = �tn)ρn, where �x is a sequence of new distinct
variables and each ρi is a renaming giving fresh new names to the variables of
Fi not in �x. The variables in �x are the distinguished variables of the defining
formula; all other variables in it are the non-distinguished variables.

Example 1. Let D be a database representing an acyclic directed graph and let
S be its schema 〈IDB , Γ 〉, where

IDB = { p(x, y) ← e(x, y),
p(x, y) ← e(x, z) ∧ p(z, y)}.

and Γ = {← p(x, x)}. Direct connection of nodes is stored in relation e/2.
Directed paths are expressed by p/2. Acyclicity of the graph is imposed by Γ .
The defining formula of p is e(x, y)∨(e(x, z)∧p(z, y)), where x, y are distinguished
variables and z is a non-distinguished variable.

For convenience, we include queries in intensional predicates; when no ambiguity
arises, a given query may be indicated by means of its defining formula.

Definition 5 (Update). A predicate update for an extensional predicate p is
an expression of the form p(�x) ⇐ p′(�x) where ⇐ p′(�x) is a query; p is said
to be affected by the update. A (database) update is a set of predicate updates
for distinct predicates. For a given database D and an update U , the updated
database DU is as D, but for every extensional predicate p affected by a predicate
update p(�x) ⇐ p′(�x) in U , the subset {p(�t) | D |= p(�t)} of EDB is replaced by
the set {p(�t) | D |= p′(�t)}.

This definition subsumes others that separately specify the added and deleted
parts of a predicate. As mentioned, updates can be parametric as input to the
transformations to follow.

Example 2. Update U1 = {p(x) ⇐ p(x) ∨ x = a} describes the addition of fact
p(a), whereas U2 = {r(x, y) ⇐ (r(x, y)∧x �= a)∨(r(a, y)∧x = b)} is parametric
and means “change any r(a, x) into r(b, x)”. If a and b are instantiated to the
same constant, U2 is immaterial.

In order to simplify the notation for tuple additions and deletions, we write
in the following p(�a) as a shorthand for p(�x) ⇐ p(�x) ∨ �x = �a and ¬p(�a) for
p(�x) ⇐ p(�x) ∧ �x �= �a.

2.2 Weakest Preconditions

In order to capture the effect of an update U on a constraint theory Γ we
introduce the After operator below, which returns a formula that evaluates, in the
present state, in the same way as Γ would evaluate in the updated state. In order
to make the definition precise, we need to make use of unfolding to repeatedly
replace every non-recursive intensional predicate by its defining formula until
only extensional or recursive predicates appear in the constraint theory.

Efficient Integrity Checking for Databases with Recursive Views 113

Definition 6 (Unfolding). Let Γ be a formula and IDB a set of rules defining
predicates p1, . . . , pn. Let Fi(�xi, �yi) be the defining formula of pi in IDB, where
�xi are the distinguished and �yi the non-distinguished variables. UnfoldIDB(Γ) is
the formula obtained by replacing as long as possible, in Γ , each occurrence of
an atom of the form pi(�t) by (∃�yiFi(�t, �yi)), for each non-recursive predicate pi

defined in IDB.

Definition 7. Let U be an update, IDB a set of rules of a schema S and Γ a
constraint theory.

– Let us indicate with Γ U a copy of Γ in which any atom p(�t) whose predicate is
affected by a predicate update p(�x) ⇐ pU (�x) in U is simultaneously replaced
by the expression pU (�t) and every intensional predicate q is replaced by a
new predicate qU .

– Similarly, let us indicate with IDBU a copy of IDB in which the same re-
placements are simultaneously made.

We define AfterUS (Γ) = UnfoldIDB∪IDBU (Γ U).

Without including details, it may be assumed that After performs standard
rewriting in order to have the resulting formula in denial form. The subscript S
is always omitted when clear from the context1.

Example 3. Consider the updates of example 2. Let Γ1 be {← p(x) ∧ q(x)} (p
and q are mutually exclusive). We have, then:

AfterU1(Γ1) = { ← p(x) ∧ q(x),
← q(a) }.

For Γ2 = {← r(c, x) ∧ q(x)}, we have:

AfterU2(Γ2) = { ← r(c, x) ∧ c �= a ∧ q(x),
← r(a, x) ∧ c = b ∧ q(x) }.

Note that these (non)equalities cannot be evaluated; if both parameters are in-
stantiated to the same constant, the result collapses to Γ2 (the update is neutral).

The characteristic property of the After transformation is captured by the
notion of weakest precondition, i.e., a test that can be checked in the present
state but indicating properties of the new state.

Definition 8 (Weakest precondition). Let Γ and Γ ′ be constraint theories
referring to the same schema S, and U an update. Then Γ ′ is a weakest precon-
dition (WP) of Γ wrt U whenever D |= Γ ′ iff DU |= Γ for any database state
D with schema S.
1 Note, however, that, in the body of the resulting formula, some of the conjuncts

might be expressions of the form ¬∃�x[. . .], with nested levels of existentially quan-
tified variables. Although the framework can be adapted to these cases, for reasons
of space we will focus on standard denials.

114 D. Martinenghi and H. Christiansen

Proposition 1. For any constraint theory Γ and update U , AfterU (Γ) is a WP
of Γ wrt U ; for any other Ψ which is a WP of Γ wrt U , we have Ψ ≡ AfterU (Γ).

To simplify means then to optimize a WP based on the invariant that the con-
straint theory holds in the present state.

Definition 9 (Conditional WP). Let Γ and Γ ′ be constraint theories refer-
ring to the same schema S, and U an update. Then Γ ′ is a conditional weakest
precondition (CWP) of Γ wrt U whenever D |= Γ ′ iff DU |= Γ for any database
state D consistent with Γ .

A WP is also a CWP but not necessarily the other way round. For instance,
{← q(a)} is a CWP (but not a WP) of Γ1 wrt U1 of example 3.

2.3 Optimizing Transformations on Integrity Constraints

An essential step in the simplification process is the achievement of constraints
that are easier to evaluate than the original ICs. Several measures of the eval-
uation cost exist: the checking space [26] (the tuples to be accessed in order to
evaluate the constraint), the “weakness” of the constraint theory [26], the num-
ber of literals in it [5], its level of instantiation [7]. However, all these criteria are
only estimates of the effort that is needed to evaluate an IC, as the actual execu-
tion time will also depend on the database state as well as on the physical data
structure. Furthermore, due to theoretical limitations, no procedure can produce
an optimal constraint theory in all cases (for any of the above measures).

In order to remove as many unnecessary checks as possible from After’s out-
put, such as redundant denials and sub-formulas, we define a transformation
Optimize that simplifies a given constraint theory using a set of trusted hypothe-
ses. Typically, the input to Optimize is After’s output theory and the hypotheses
are After’s input theory. Optimize applies sound and terminating rewrite rules
to remove from the input theory all denials and literals that can be proved re-
dundant. Reduction [11] is used to eliminate redundancies within a single denial.

Definition 10 (Reduction). For a denial φ, the reduction φ− of φ is the result
of applying on φ the following rules as long as possible, where c1, c2 are distinct
constants, a is a parameter, t a term, A an atom, C, D (possibly empty) con-
junctions of literals, vars indicates the set of variables occurring in its argument
and dom the set of variables in a substitution domain.

← c1 = c2 ∧ C ⇒ true
← c1 �= c2 ∧ C ⇒ ← C
← t �= t ∧C ⇒ true
← t = t ∧C ⇒ ← C
← x = t ∧ C ⇒ ← C{x/t}
← x �= t ∧ C ⇒ ← C if {x, t} ∩ vars(C) = ∅ and t is not x
← a = c2 ∧ C ⇒ ← a = c2 ∧ C{a/c2}2

← A ∧ ¬A ∧ C ⇒ true
← C ∧D ⇒ ← D if ∃σ s.t. Cσ subclause of D and dom(σ) ∩ vars(D) = ∅
2 We assume that each equality is only processed once.

Efficient Integrity Checking for Databases with Recursive Views 115

Obviously, for any denial φ we have φ− ≡ φ. The last rule (subsumption fac-
toring [9]) includes the elimination of duplicate literals. The expansion [10] of a
clause, indicated with a “+” superscript, replaces every constant in a database
predicate (or variable already occurring elsewhere in database predicates) by a
new variable, and equals it to the replacing item.

Example 4. Let φ = ← p(x, a, x). Then φ+ = ← p(x, y, z) ∧ y = a ∧ z = x.

For some classes of constraints, such as sets of Horn clauses3, a resolution-based
procedure limiting the size of resolvents to the size of the biggest denial is known
to be refutation-complete4, i.e., it derives false iff the set is unsatisfiable. We refer
to [27] for the resolution principle and other related notions.

Definition 11. For a constraint theory Γ , the notation Γ �R φ indicates that
there is a resolution derivation of a denial ψ from Γ+ such that in each resolution
step the resolvent has at most n literals and ψ− subsumes φ, where n is the
number of literals of the largest denial in Γ+.

The boundedness we have imposed guarantees termination, as Γ is function-free.

Proposition 2. �R is sound and terminates on any input.

Definition 12. Given two constraint theories Δ and Γ , OptimizeΔ(Γ) is the
result of applying the following rewrite rules on Γ as long as possible; φ, ψ are
denials, Γ ′ is a constraint theory, is disjoint union.

{φ} Γ ′ ⇒ Γ ′ if φ− = true
{φ} Γ ′ ⇒ Γ ′ if (Γ ′ ∪Δ) �R φ
{φ} Γ ′ ⇒ {φ−} ∪ Γ ′ if φ �= φ−

{φ} Γ ′ ⇒ {ψ−} ∪ Γ ′ if ({φ} Γ ′ ∪Δ) �R ψ and ψ− strictly subsumes φ

The last rewrite rule allows the removal of literals from a denial; the other rules
are self-explanatory.

Proposition 3 (Correctness of Optimize). OptimizeΔ(Γ) terminates for any
Γ , Δ and D |= Γ iff D |= OptimizeΔ(Γ) in any database D consistent with Δ.

Definition 13. For a schema S = 〈IDB, Γ 〉 and an update U ,
let Δ = UnfoldIDB(Γ). We define SimpU

S (Γ) = OptimizeΔ(AfterUS (Γ)).

¿From the previous results we get immediately the following.

Proposition 4. Let S = 〈IDB, Γ 〉 be a schema and U an update. Then SimpU
S (Γ)

is a CWP of Γ wrt U .

Example 5. With Γ1 and U1 from example 2, we have SimpU1(Γ1) = {← q(a)}.
3 Here denials with at most one negative literal.
4 With factoring, paramodulation for inequalities and the reflexivity axiom [16].

116 D. Martinenghi and H. Christiansen

Each step in Optimize reduces the number of literals or instantiates them. Simp
is indeed guaranteed to reach a minimal result (by the subsumption theorem
[25]) for all constraint classes for which �R is refutation complete5. The high
complexity of Simp (subsumption alone is in general NP-complete [15]) does not
affect the quality of the approach, as simplification takes place at design time
(runtime simplification could indeed outweigh the optimization gained), which
is justified by the following property.

Proposition 5. Let Γ be a constraint theory, U an update, and π a parametric
substitution. Then (SimpU (Γ))π ≡ SimpUπ(Γπ).
The present technique is based on an a priori knowledge of the update patterns
allowed by a database designer. However, if such patterns are not given in ad-
vance, the method is still applicable. We may, e.g., generate all simplifications
corresponding to single additions or deletions of any database relation and, thus,
obtain optimized behavior for these cases.

3 Refinements for Ordered Linear Recursion

In Simp, recursive predicates in ICs are replaced by new recursive predicates. For
an important class of linear recursion that embraces some of the most commonly
used recursive patterns (such as left- and right-linear recursion [23]), known as
ordered linear recursion (OLR) [29], the simplification process can be refined,
by possibly eliminating the introduction of new recursive views.

Definition 14. A predicate r is an OLR predicate if it is defined as follows

{ r(�x, �y) ← q(�x, �y)
r(�x, �y) ← p(�x, �z) ∧ r(�z, �y) }, (1)

where p and q are predicates on which r does not depend and �x, �y, �z are disjoint
sequences of distinct variables. The first rule is the exit rule, while the other is
the recursive rule.

There may in principle be several exit rules and recursive rules for the same
OLR predicate r; however, these can always be reduced to one single exit rule
and recursive rule by introducing suitable new views. Note thus that p and q
need not be base predicates.

We first transform the definition of r as to decompose it in two parts: a
nonrecursive definition and a transitive closure definition (rp below). If p and q
are the same predicate, then no transformation is needed, as the definition of
r is already the transitive closure of p. Otherwise we replace r’s definition with
the following, equivalent set of rules:

{ r(�x, �y) ← q(�x, �y)
r(�x, �y) ← rp(�x, �z) ∧ q(�z, �y)
rp(�x, �y) ← p(�x, �y)
rp(�x, �y) ← p(�x, �z) ∧ rp(�z, �y) }.

(2)

5 Outside these classes, there are (practically unlikely) cases where the simplification
may contain some redundancies.

Efficient Integrity Checking for Databases with Recursive Views 117

Note that the argument is perfectly symmetric when r’s recursive rule is of the
form r(�x, �y) ← r(�x, �z) ∧ p(�z, �y). In this case the second rule in (2) becomes
r(�x, �y) ← q(�x, �z) ∧ rp(�z, �y) and rp is defined as before.

All occurrences of r in a constraint theory can now be unfolded wrt the first
two rules in (2), which introduce q and rp, the latter being the transitive closure
of p. Intuitively, it is easy to characterize the set of tuples that are added to rp

upon addition of a p-tuple, as rp can be thought of as a representation of paths
of a directed graph of p-edges. Suppose that update U is the addition of tuple
〈�a, �b〉 to p, then all added rp paths are those that pass by the new p-arc and
that were not there before the update. If δ+

U rp(�x, �y) indicates that there is a new
path from �x to �y after update U , this can be expressed as:

δ+
U rp(�x, �y) ← (rp(�x,�a) ∨ �x = �a)) ∧ (rp(�b, �y) ∨ �y = �b)) ∧ ¬rp(�x, �y),

However, U is not necessarily a single tuple update, so δ+
U rp needs, in general,

to be characterized in terms of rp in the updated state.

Definition 15. Let U be an update and rp the transitive closure of non-recursive
predicate p in schema S = 〈IDB, Γ 〉; let rU

p , pU , IDBU be defined as to obtain
AfterUS (Γ) in definition 7. Let OLR(rp, S) be the following set of rules:

{rU
p (�x, �y) ← (rp(�x, �y) ∧ ¬δ−U rU

p (�x, �y)) ∨ δ+
U rU

p (�x, �y),
δ+
U rp(�x, �y) ← (rU

p (�x, �w1) ∨ �x = �w1) ∧ (rU
p (�w2, �y) ∨ �y = �w2)∧

δ+
U p(�w1, �w2) ∧ ¬rp(�x, �y),

δ−U rp(�x, �y) ← (rp(�x, �w1) ∨ �x = �w1) ∧ (rp(�w2, �y) ∨ �y = �w2)∧
δ−U p(�w1, �w2) ∧ ¬rU

p (�x, �y),
δ+
U p(�x) ← pU (�x) ∧ ¬p(�x),

δ−U p(�x) ← ¬pU (�x) ∧ p(�x)}

If, in OLR(rp, S), δ+
U p(�w1, �w2) ≡ �w1 = �c1∧ �w2 = �c2∧A, where A is a conjunction

of literals and c1, c2 are constants, then the second rule is replaced by

δ+
U rp(�x, �y) ← (rp(�x,�c1) ∨ �x = �c1) ∧ (rp(�c2, �y) ∨ �y = �c2)∧

�w1 = �c1 ∧ �w2 = �c2 ∧A ∧ ¬rp(�x, �y). (3)

The notation OLR(S) indicates the rules obtained from IDB∪IDBU by replacing
the clauses defining each transitive closure predicate rU

p with OLR(rU
p , S).

Definition 16. Let U be an update, S = 〈IDB, Γ 〉 a schema and Γ U be defined
as in definition 7. Let S∗ be the same as S but in which, for all OLR predi-
cate r, its definition (1) is replaced as in (2). Then AfterRecU

S (Γ) is defined as
UnfoldOLR(S∗)(Γ U).

Proposition 6. For any constraint theory Γ and update U , AfterRecU
S (Γ) is a

WP of Γ wrt U .

118 D. Martinenghi and H. Christiansen

OptimizeRec is as Optimize, but for any transitive closure predicate rp, it also
considers that rp(�t1,�t2) subsumes rp(�t1, �x) ∧ rp(�x,�t2) if �x does not occur else-
where6. SimpRecU

S (Γ) is defined as OptimizeRecΔ(AfterRecU
S (Γ)), where Δ con-

tains UnfoldS(Γ) plus the set of all transitive closure rules in S rewritten as de-
nials, e.g., for a predicate rp defined as in (2) the constraints are ← ¬rp(�x, �y) ∧
p(�x, �y) and ← ¬rp(�x, �y) ∧ p(�x, �z) ∧ rp(�z, �y). Proposition 4 extends to SimpRec.

The characterization of δ−U rp given in proposition 6 requires the evaluation
of ¬rU

p . However, in many interesting cases δ−U rp is going to be simplified away.
The new views introduced by AfterRec can be completely disregarded if rU

p does
not occur in the simplified constraints. If both the new and the old state are
available, as in some trigger implementations, rU

p can be evaluated as “rp in the
new state”. However, these are precisely the cases where the simplification was,
to some extent, unsuccessful, as accessing or simulating the new state clearly
requires extra work.

4 Examples

We first observe that many important problems can be reduced to OLR.

Example 6. In [22] the following recursive predicate b is described:

{ b(x, y) ← k(x, z) ∧ b(z, y) ∧ c(y),
b(x, y) ← d(x, y) },

where b stands for “buys”, k for “knows”, c for “cheap” and d for “definitely
buys”. These definitions can be rewritten [14] as:

{ b′(x, y) ← k(x, z) ∧ b′(z, y),
b′(x, y) ← k(x, z) ∧ d(z, y) ∧ c(y),
b(x, y) ← b′(x, y),
b(x, y) ← d(x, y) }.

Replacing the body of b′’s exit rule with a new view e, makes b′ OLR:

{ b′(x, y) ← k(x, z) ∧ b′(z, y),
b′(x, y) ← e(x, y),
e(x, y) ← k(x, z) ∧ d(z, y) ∧ c(y),
b(x, y) ← b′(x, y),
b(x, y) ← d(x, y) }.

The next example will be used in section 5 to compare the present work with
previous methods.

Example 7. Consider the database from example 1. Let U = {e(a,b)} be an
update pattern that adds an arc. We have

AfterRecU
S (Γ) ≡ { ← (p(x, x) ∧ ¬δ−U p(x, x)) ∨ δ+

U p(x, x)}
≡ { ← p(x, x) ∧ ¬δ−U p(x, x),

← δ+
U p(x, x)}.

6 It also subsumes p(�t1, �x) ∧ rp(�x,�t2) and rp(�t1, �x) ∧ p(�x,�t2).

Efficient Integrity Checking for Databases with Recursive Views 119

When OptimizeRec is applied to AfterRecU
S (Γ), every unfolding of the first con-

straint is removed (it is subsumed by the original constraint in Γ). Furthermore,
δ+
U e(x, y) bounds both x and y, as δ+

U e(x, y) ≡ ¬e(a,b)∧x = a∧y = b. Therefore
we can replace δ+

U p as in (3)

δ+
U p(x, y) ≡ (p(x,a) ∨ x = a) ∧ (p(b, y) ∨ y = b) ∧ ¬e(a,b) ∧ ¬p(x, y),

which unfolds in the remaining ← δ+
U p(x, x) expression as follows:

{ ← p(x,a) ∧ p(b, x) ∧ ¬e(a,b) ∧ ¬p(x, x),
← p(b,a) ∧ ¬e(a,b) ∧ ¬p(b,b),
← p(b,a) ∧ ¬e(a,b) ∧ ¬p(b,b),
← a = b ∧ ¬e(a,b) ∧ ¬p(a,a) }.

The second and third constraints are identical, and therefore either can be re-
moved. The ¬p(−,−) literals are removed in OptimizeRec via resolution with
the constraint in Γ . Similarly, the ¬e(a,b) literals, in all constraints but the
first one, can be removed by reduction and resolution via the intermediate �R -
derivations of ← e(x, x) and ← e(x, z) ∧ p(z, x). Finally, the first IC is removed
as p(b,a) subsumes p(b, x) ∧ p(x,a).

SimpRecU
S (Γ) = { ← p(b, a),

← a = b }.

Note that SimpRecU
S (Γ) is a much simpler test than Γ as it basically requires to

check whether there exists a path between two given nodes, whereas Γ implies
testing the existence of a cyclic path for all the nodes in the graph.

A straightforward SQL translation of this simplified result (with p defined as
a WITH view with columns c1 and c2) is, e.g., the following query

SELECT "ko" FROM p WHERE (p.c1=$B AND p.c2=$A) OR $A=$B

in which $A and $B are replaced by the corresponding parameter values and an
empty answer indicates consistency, whereas ko indicates inconsistency.

Example 8. [6 continued] Consider a schema S defining the IDB of example 6
and a scenario in which a given person p does not want to buy cheap products,
expressed by Γ = {← b(p, x) ∧ c(x)}. Suppose that a person meets another
person who is definitely going to buy something. This event can be represented
by the update U = {k(a,b), d(b, c)}. We have 7:

SimpRecU
S (Γ) = { ← c(c) ∧ [p = a ∨ p = b ∨ k′(p, a) ∨ k′(p,b)],

← c(x) ∧ [p = a ∨ k′(p, a)] ∧ {d(b, x) ∨ [k′(b, z) ∧ d(z, x)]}},
where k′ is the transitive closure of k. The result indicates that U introduces an
inconsistency whenever:

– c is cheap, and p is or (in)directly knows a or b, or
– p is or (in)directly knows a, and b definitely buys (or (in)directly knows

someone who does) something cheap.
7 For readability, the resulting formula is presented with disjunctions and rearranged

via other trivial, cosmetic steps. Calculations are not shown due to space constraints.

120 D. Martinenghi and H. Christiansen

5 Related Works

Several authors have provided results directly related to integrity checking. Most
methods have been explicitly designed for relational databases with no views or
disallow recursion in ICs; we refer to the survey [21] for references falling under
these categories. We also point out that integrity checking is often regarded as
an instance of materialized view maintenance: ICs are defined as views that must
always remain empty for the database to be consistent. The database literature
is rich in methods that deal with relational view/integrity maintenance; the book
[12] and the survey [8] provide insightful discussion on the subject.

We now compare our approach with the methods that apply to recursive
databases and show that our results have wider applicability and are at least as
good. We discuss example 7 and use constants a, b instead of parameters a, b
for compatibility with these methods.

The technique described in [19] requires the calculation of two sets, P and
N , that represent the positive and, respectively, negative potential updates gen-
erated by a given update. A set Θ is then computed, which contains all the mgus
of the atoms in P and N with the atoms of corresponding sign in the IC. For
example 7, we have P = {e(a, b), p(x, y)}, N = ∅ and Θ = {y/x}. The updated
database is consistent iff every condition Γθ holds in it, for all θ ∈ Θ, Γ be-
ing the original constraint theory. Unlike our method, in this case the obtained
condition is identical to Γ and therefore there is no simplification.

In [17], the authors determine low-cost pre-tests which are sufficient con-
ditions that guarantee the integrity of the database. If the pre-tests fail, then
integrity needs to be checked with an exact method, such as ours. A set of lit-
eral/condition pairs, called relevant set, is calculated. If the update in question
unifies with any of the literals in the relevant set and the attached condition suc-
ceeds, then the pre-test fails; otherwise we are sure that the update cannot falsify
the ICs. For example 7 the relevant set is {p(x, x)/true, e(x, x)/true, e(x, z)/true,
p(z, x)/eN(x, z)} (eN refers to e in the updated state). The update e(a, b) unifies
with e(x, z), whose associated condition trivially succeeds, therefore the pre-test
fails and an exact test needs to be executed.

In [18] partial evaluation of a meta-interpreter is used to produce logic pro-
grams that correspond to simplified constraints. The partial evaluator is given
a meta-interpreter that constitutes a general integrity checker and produces as
output a version of the meta-interpreter specialized to specific update patterns
to be checked in the updated state (and employing the hypothesis that integrity
holds before the update). The method could work for recursive databases, if
a perfect partial evaluator were at disposal, but a loop check needs to be in-
cluded in the program to ensure termination. This does not partially evaluate
satisfactorily, resulting in an explosion of (possibly unreachable) alternatives.

With the method described in [5], which is based on the notion of partial
subsumption, database rules are annotated with residues to capture the relevant
parts that are concerned by the ICs. When doing semantic query optimization,
such parts can often allow faster query evaluation times. However, when it comes
to integrity checking, the method typically leaves things unchanged in the pres-

Efficient Integrity Checking for Databases with Recursive Views 121

ence of recursive rules. In example 7 we need to calculate the residue of the
constraint in Γ associated with the extensional relation e. The partial subsump-
tion algorithm stops immediately, as no resolution step is possible, thus resulting
in no simplification at all.

Seljée’s inconsistency indicators (IIs) [29] are based on incremental expres-
sions for OLR. We have improved on his method as follows. Firstly, our update
language is more general, allowing compound updates and any kind of bulk
operation expressible with rules (IIs cannot handle example 8). Secondly, the
simplified constraints produced by SimpRec only need to consult the present
database state, whereas IIs require, in general, the availability of both the old
and the new state, even in the non-recursive case. For the treatment of recursion
IIs impose a number of restrictions on the language (no negation, no existentially
quantified variables) that we do not need. For example 7 the II, to be checked
after the update, is ← (p(b, x) ∨ b = x) ∧ (p(x, a) ∨ a = x). We evaluate the
performance of this result in section 6.

In [3], integrity checking is regarded as an instance of update propagation,
i.e., the problem of determining the effect of an update on a set of rules. The
method extends the database with rules that express the incremental evaluation
of the new state and the ICs themselves are defined by rules. A soft consequence
operator [2] is then used to compute the model of this augmented database.
Instead of a symbolic simplification of the original constraints, this method rather
provides an efficient way for evaluating the new state. In this respect, it can
be seen as orthogonal to ours, at least when our method does not eliminate
references to the new state.

6 Experiments

In order to demonstrate the effectiveness of the simplification procedure, we
have tested it on random update sets for example 7. Our tests were run on a
machine with a 2 GHz processor, 1 GB of RAM and 80 GB of hard disk, using
DES 1.1 [28], which is a Datalog system featuring full recursive evaluation and
stratified negation. DES is implemented on top of Prolog; we could therefore
program our tests in Prolog and simulate insertions by means of assert and
deletions by retract. The DES query engine is optimized with memoization
techniques for answering queries based on previous answers. In this context we
always pose the same query ← p(x, x) to check whether the graph is acyclic,
and therefore answers can be reused for subsequent queries. Our method greatly
improves performance even in the presence of an already optimized system.

Average execution times are indicated in milliseconds (within a time frame
of 50 seconds) and the number of attempted insertions of edge facts is indicated
on the x-axis. Each figure reports the execution times needed to update the
database and check its consistency according to:

– The un-optimized IC (diamonds).
– The II produced by Seljée’s method [29] (squares).
– The formula← p(b, a) (II∗), produced by improving the II manually (crosses).

122 D. Martinenghi and H. Christiansen

– The simplification obtained with Simp (triangles). Note that in this case
consistency is checked before the update.

The third curve (a “perfect” post-test), although not generated by any known
method, was included for comparison with the test-before-update strategy. In
particular, in figure 1 we randomly generated 1500 arcs between 1000 different
nodes, whereas in figure 2 we only used 50 different nodes. In the former case
the formation of cycles is less likely and the times are generally better. In the
latter, however, updates are much more likely to be rejected (44% of the up-
dates were rejected in total, while only 12% in the former case); Simp in this
case performs significantly better, with improvements around 20% even wrt the
manually produced formula. The interpretation of these results is in accordance
with the following observations:

– The comparison between the performance of the optimized and un-optimized
checks shows that the optimized version is always more efficient than the
original one.

– In both the un-optimized and II methods many more paths need to be com-
puted, which is an expensive operation.

– The gain of early detection of inconsistency, which is a distinctive feature
of our approach, is unquestionable in the case of illegal updates. In such
a case, with our optimized strategy, the simplified constraint immediately
reports an integrity violation wrt the proposed update, which is therefore
not executed. On the other hand, the other methods require to execute the
update, perform a consistency test and then roll back the update.

Note that the extra burden due to the execution and subsequent rollback of
an illegal update is even more evident for compound updates, such as those
of example 8; in these cases the benefits of a pretest wrt a post-test are even
greater. We observe that the above comparisons did not take into account the
time spent to produce the optimized constraints8, as these can be generated at
schema design time and thus do not interfere with run time performance.

7 Conclusion and Future Work

We have described a simplification framework for integrity checking in databases
with recursive views. A general methodology based on the introduction of new
recursive views has been described. This allows checking in the state before the
update whether the database will be consistent in the updated state. While for
recursive problems we cannot guarantee, in general, that the resulting test will
be more efficient than the original one, this is indeed the case for the important
class of OLR problems, for which differential expressions can be easily derived
that indicate the incremental variations of the recursive predicate.

8 All symbolic simplifications in this paper were obtained with an experimental im-
plementation of the simplification procedure [20].

Efficient Integrity Checking for Databases with Recursive Views 123

0

10000

20000

30000

40000

50000

60000

50 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

10
50

11
50

12
50

13
50

14
50

updates

m
s

original
II*
Simp
II

Fig. 1. Sparse data

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

33 11
6

21
6

31
6

41
6

51
6

61
6

71
6

81
6

91
6

10
16

11
16

12
16

13
16

14
16

updates

m
s

original
II*
Simp
II

Fig. 2. Dense data

The simplified ICs can be regarded as queries and can therefore make use of
all known traditional query optimization methods, including specific techniques
for recursive queries evaluation, such as, e.g., magic sets.

There are numerous ways to extend this work. First of all, more cases for
which useful differential expressions exist could be identified; regular-chain pro-
grams are a likely candidate. The literature is rich in decidable rewriting tech-
niques that reduce recursive problems to easier ones; these could be integrated
in the framework.

References

1. Apt, K. R., Blair, H. A., Walker, A.: Towards a theory of declarative knowledge. In
Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann
(1988) 89–148

2. Behrend, A.: Soft stratification for magic set based query evaluation in deductive
databases. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM Press (2003) 102–110

3. Behrend, A.: Soft Stratification for Transformation-Based Approaches to Deductive
Databases. PhD thesis, University of Bonn (2004)

4. Catarci, T., Cruz, I. F.: On expressing stratified datalog. In 2nd ICLP Workshop
on Deductive Databases and Logic Programming (1994) 85–100

5. Chakravarthy, U. S., Grant, J., J. Minker, J.: Logic-based approach to seman-
tic query optimization. ACM Transactions on Database Systems (TODS) (1990)
15(2):162–207

6. Christiansen, H., Martinenghi, D.: Simplification of database integrity constraints
revisited: A transformational approach. In LOPSTR’03, volume 3018 of LNCS
Springer (2004) 178–197

7. Decker, H.: Translating advanced integrity checking technology to sql. In Database
integrity: challenges and solutions. Idea Group Publishing (2002) 203–249

8. Dong, G., Su, J.: Incremental Maintenance of Recursive Views Using Relational
Calculus/SQL. SIGMOD Record (2000) 29(1):44–51

9. Eisinger, N., Ohlbach, H. J.: Deduction systems based on resolution. In Hand-
book of Logic in Artificial Intelligence and Logic Programming - Vol 1: Logical
Foundations., Clarendon Press, Oxford (1993) 183–271

124 D. Martinenghi and H. Christiansen

10. Godfrey, P., Grant, J., Gryz, J., Minker, J.: Integrity constraints: Semantics and
applications. In Logics for Databases and Information Systems (1998) 265–306

11. Grant, J., Minker, J.: Integrity constraints in knowledge based systems. In Knowl-
edge Engineering Vol II, Applications. McGraw-Hill (1990) 1–25

12. Gupta, A., and I. S. Mumick, I. S. editors.: Materialized views: techniques, imple-
mentations, and applications. MIT Press (1999)

13. INCITS. Information technology - Database languages - SQL - Part 2: Foundation
(SQL/Foundation) - INCITS/ISO/IEC 9075-2-1999 (1999)

14. Ioannidis, Y. E., Wong, E.: Towards an algebraic theory of recursion. J. ACM
(1991) 38(2):329–381

15. Kapur, D., Narendran, P.: Np-completeness of the set unification and matching
problems. In CADE (1986) 489–495

16. Knuth, D., Bendix, P.: Simple word problems in universal algebras. Computational
Problems in Abstract Algebras (1970) 263–297

17. Lee, S. Y., Ling, T. W.: Further improvements on integrity constraint checking for
stratifiable deductive databases. In VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, Morgan Kaufmann (1996) 495–505

18. Leuschel, M., de Schreye, D.: Creating specialised integrity checks through partial
evaluation of meta-interpreters. JLP (1998) 36(2):149–193

19. Lloyd, J. W., Sonenberg, L., Topor, R. W.: Integrity constraint checking in strat-
ified databases. JLP (1987) 4(4):331–343

20. Martinenghi, D.: A simplification procedure for integrity constraints.
http://www.dat.ruc.dk/ dm/spic/index.html (2004)

21. Mayol, E., Teniente, E.: A survey of current methods for integrity constraint
maintenance and view updating. In Advances in Conceptual Modeling: ER ’99
Workshops, volume 1727 of LNCS, Springer (1999) 62–73

22. Naughton, J. F.: Minimizing function-free recursive inference rules. J. ACM (1989)
36(1):69–91

23. Naughton, J. F., Ramakrishnan, R., Sagiv, Y., Ullman, J. D.: Efficient evalu-
ation of right-, left-, and mult-lineare rules. In J. Clifford, B. G. Lindsay, and
D. Maier, editors, Proceedings of the 1989 ACM SIGMOD International Confer-
ence on Management of Data, Portland, Oregon, May 31 - June 2, 1989. ACM
Press (1989) 235–242

24. Nicolas, J. M.: Logic for improving integrity checking in relational data bases. Acta
Informatica (1982) 18:227–253

25. Nienhuys-Cheng, S. H., de Wolf, R.: The equivalence of the subsumption theorem
and the refutation-completeness for unconstrained resolution. In ASIAN (1995)
269–285

26. Qian, X.: An effective method for integrity constraint simplification. In Proceed-
ings of the Fourth International Conference on Data Engineering, IEEE Computer
Society (1988) 338–345

27. Robinson, J. A.: A machine-oriented logic based on the resolution principle. J.
ACM (1965) 12(1):23–41

28. Sáenz-Pérez, F.: Datalog educational system v1.1. user’s manual. Techni-
cal Report 139-04, Faculty of Computer Science, UCM (2004) Available from
http://www.fdi.ucm.es/profesor/fernan/DES/.

29. Seljée, R.: A Fact Integrity Constraint Checking System for the Validation of
Semantic Integrity Constraints after Updating Consistent Deductive Databases.
PhD thesis, Tilburg University (1997)

A Formal Model for the Problem
of View Selection for Aggregate Queries

Jingni Li1, Zohreh Asgharzadeh Talebi1,
Rada Chirkova2,�, and Yahya Fathi1,��

1 Operations Research Program, NC State University, Raleigh, NC 27695
{jli, zasghar, fathi}@ncsu.edu

2 Computer Science Department, NC State University, Raleigh, NC 27695
chirkova@csc.ncsu.edu

Abstract. We present a formal analysis of the following view-selection
problem: Given a set of queries and a database, return definitions of views
that, when materialized in the database, would reduce the evaluation
costs of the queries. Optimizing the layout of stored data using view
selection has a direct impact on the performance of the entire database
system. At the same time, the optimization problem is intractable, even
under natural restrictions on the types of queries of interest. In this paper
we use an integer-programming model to obtain optimal solutions to the
problem of view selection for aggregate queries on data warehouses. We
also report the results of the post-optimality analysis that we performed
to determine/observe the impact of changing certain input characteristics
on the optimal solution.

1 Introduction

As relational databases and data warehouses keep growing in size, evaluating
many common queries — such as aggregate queries — by database-management
systems (DBMS) may require significant transformations of large volumes of
stored data. As a result, the requirement of good overall performance of frequent
and important user queries necessitates optimal DBMS choices in choosing and
executing query plans. A significant aspect of query performance is the choice
of auxiliary data used in query answering, such as which indexes are used in
a query plan to access a given stored relation. In modern commercial database
systems, another common type of auxiliary data is materialized views — rela-
tions that were computed by answering certain queries on the (original) stored
data in the database and that can be used to provide, without time-consuming
runtime transformations, “precompiled” information relevant to the user query
in question. We give an example of using materialized views to answer select-
project-join queries with aggregation in a star-schema [21] data warehouse.
� This author’s work is partially supported by the National Science Foundation under

Grant No. 0321635.
�� This author’s work on this material has been supported by the National Science

Foundation under Grant No. 0307072.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 125–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 J. Li et al.

Example 1. Consider a data warehouse with three stored relations:

Sales(CID,DateID,QtySold,Discount)

Customer(CID,CustName,Address,City,State)

Time(DateID,Day,Week,Month,Year)

Sales is the fact table, and Customer and Time are dimension tables.
Let the query workload of interest have two aggregate queries, Q1 and Q2,

expressed here in SQL. Query Q1 asks for the total quantity of products sold
per customer in the last quarter of the year 2004. Q2 asks for the total product
quantity sold per year for all years after 1999 to customers in North Carolina.

Q1: SELECT c.CID, SUM(QtySold) Q2: SELECT t.Year, SUM(QtySold)

FROM Sales s, Time t, Customer c FROM Sales s, Time t, Customer c

WHERE s.DateID=t.DateID WHERE s.DateID=t.DateID

AND s.CID=c.CID AND Year=2004 AND s.CID=c.CID

AND Month >= 10 AND Month <= 12 AND Year > 1999 AND State = ‘NC’

GROUP BY c.CID; GROUP BY t.Year;

We can use techniques from [19] to show that the following view V can be
used to give exact answers to each of Q1 and Q2.

V: SELECT s.CID, Year, Month, State, SUM(QtySold) AS SumQS

FROM Sales s, Time t, Customer c

WHERE s.DateID = t.DateID AND s.CID = c.CID

GROUP BY s.CID, Year, Month, State;

That is, suppose the view V is materialized in the data warehouse, which
means that the answer to the query V on the database is precomputed and
stored as a new relation V1 alongside Sales, Customer, and Time. Then the
answer to each of Q1 and Q2 can be computed by accessing just the data in the
materialized view V. For instance, the query Q1 can be evaluated as

Q1: SELECT CID, SUM(SumQS) FROM V

WHERE Year=2004 AND Month >= 10 AND Month <= 12 GROUP BY CID;

Note that evaluating Q1 using the view V is likely to be more efficient than
evaluating Q1 using its original definition, as using V allows the DBMS to avoid
taking an expensive join of Sales, Customer, and Time and also — because V is
an aggregate view — may save some time in the grouping/aggregation step.

In this paper we consider the following view-selection problem: Given a set of
queries, a database, and a set of constraints on derived data (e.g., a storage limit
on the amount of disk space that can be used to store materialized views), return
definitions of views that, when materialized in the database, would satisfy the
constraints and reduce the evaluation costs of the queries. As automated design
of materialized views to answer queries is an important component of query
processing in data warehouses [5,19,32] and of automated query-performance

1 We follow the tradition of using the same name for a view query and its answer.

A Formal Model for the Problem of View Selection for Aggregate Queries 127

tuning [20,26,28], the problems of selecting views and of answering queries using
materialized views have been studied thoroughly in the literature.

Generally, spending more time on designing materialized views for a given
query workload tends to pay off, as greater improvement can thereby be achieved
in the performance of the queries using the resulting stored derived data. As the
number of potentially beneficial views or indexes tends to be prohibitive even
for simple query workloads [3,11,19], in many cases it is not practical to use
exhaustive enumeration to obtain derived data that would globally minimize
query-evaluation costs. Several approaches (see, e.g., [3,17,19,29]) have been
proposed to design good-quality sets of derived data for evaluating SQL queries,
without spending an inordinate amount of time on the design. We continue the
work of [17,19] of studying view-selection algorithms that are competitive, that
is, algorithms that provide optimality guarantees on their outputs without nec-
essarily exploring the entire search space of views. In this paper we present a
formal model of the view-selection problem for queries on star-schema data ware-
houses and explore competitive techniques for designing and using materialized
views in this context. Our techniques and results are applicable to a practically
important class of range-aggregate queries on star-schema data warehouses.

Our contributions are as follows:

– we model view selection as an integer-programming (IP) problem and give
references to similar IP structures in the literature,

– we use standard IP-solver software to solve optimally several realistic-size
instances of the problem on the popular TPC-H benchmark [33], and

– we perform a post-optimality analysis to determine/observe the impact of
changing certain input characteristics on the optimal solution.

After outlining related work, in Section 3 we provide the background and
formal definitions. Section 4 introduces our IP model of the view-selection prob-
lem. Section 5 describes our framework for analysis and experimentation. We
report our experimental results in Section 6 and conclude in Section 7.

2 Related Work

Designing and using derived data to improve query performance has long been a
direction of research and practical efforts in data-intensive systems. Over time,
a wealth of theoretical results (see [18] for a survey) and some practical solu-
tions [4,8,10] have been accumulated on using views and indexes in query answer-
ing. The problem of answering aggregate queries using views has been considered
in relation to data warehouses and data cubes [2,7,15,34]; results on answering
each query using a single view are presented in [16,31]. Recent work [1,12] has
considered the problem of rewriting aggregate queries using multiple views.

Considerable work has been done on efficiently selecting views and indexes for
general SQL queries [3,9] and in particular for aggregate queries (e.g., [1,17,19,29]).
[35] proposes algorithms, including an IP approach, for selectingmaterializedviews
to minimize the sum cost of processing the given queries and of maintaining all the

128 J. Li et al.

views. [3,4] have introduced an end-to-end approach and a system architecture
for designing and using materialized views and indexes to answer queries. In this
paper we study the problem of selecting views for aggregate queries on star-
schema data warehouses. The setting and assumptions we use are similar to
those in [17,19] (rather than to those in [35]) — that is, we seek to minimize
the total execution costs of the given queries under a storage-limit constraint.
At the same time, the novelty of our work is in obtaining efficiently optimal
solutions for problem instances of realistic sizes, or competitive heuristics using
lower-bound relaxation for larger problem instances.

3 Preliminaries and Problem Specification

The setting and assumptions we use are similar to those in [17,19]. We consider
select-project-join queries with equality-based joins and with aggregation sum,
count, max, or min. Our approach is applicable to queries with inequality com-
parisons, including the important class of range-aggregate queries. (We consider
comparisons of the form A θ c, where A is an attribute in a relation, c is a
constant, and θ is one of >,≥, <,≤, =, �=.) We study workloads of parameterized
queries: The parameterized version of a query with constants has placeholders
instead of all the constants. In this paper we concentrate on the special case of
star-schema queries: We assume that the database schema is a star schema [21],
with a fact table and dimension tables. Further, in each star-schema query, each
join is a natural join of the fact table with a dimension table.

To measure query-evaluation performance in presence of views, our cost
model is as follows. We consider the costs of answering queries using unindexed
materialized views, such that each query can be evaluated by processing just one
view relation and no other data, as in Example 1. (This setting is the same as
in [19].) Thus, the cost of evaluating each query is proportional to the size of the
view chosen for the evaluation. We use two metrics for view sizes: (1) the number
of rows in the view relations (this is a common assumption in the literature on
view selection), and (2) the number of bytes in the view relation. In Section 6 we
will see that these metrics give us different experimental results. Finally, given
a query workload Q and a set of views V that have been precomputed on a
database D, the total cost of evaluating Q using V is the sum of the costs of
evaluating all the queries in Q, such that each query is evaluated using a view
in V . The sum can be weighted to reflect the relative frequency or importance of
individual workload queries. Similarly to [19], we assume that a view resulting
from joining all the base relations in the star schema — we call this view the
raw data — is always part of the available set V of materialized views.

We consider the following view-selection problem: Our goal is to minimize the
evaluation costs of a given workload of parameterized aggregate queries defined
on a star schema, by selecting and precomputing materialized views that can
be used in answering the queries. (We consider only equivalent rewritings of the
queries in Q using the set V , i.e., we require that exact answers to all the queries
in Q can be computed using V .) We consider this minimization problem under a

A Formal Model for the Problem of View Selection for Aggregate Queries 129

storage-space limit, which is an upper bound on the amount of disk space that
can be allocated for the materialized views. Thus, our problem inputs are of the
form I = (D,Q, b), where D is a database, Q is a workload of parameterized
queries, and b is the (positive integer) value of the storage limit.

For any parameterized query in the given workload, our goal is to design
views that can be used in evaluating any instance of the query. Thus, similarly
to [17,19] we consider only views without comparisons with constants. We use
the following definitions of solutions and of the optimal viewset problem (OVP):

Definition 1. (Admissible viewset/solution) Let I = (D,Q, b) be a problem in-
put. A set of views V is an admissible viewset for I if (1) each query in Q can
be rewritten equivalently using V, and (2) V satisfies the storage limit b.

Definition 2. (Optimal viewset/solution) For a problem input I = (D,Q, b),
an optimal viewset is a set of views V defined on D, such that (1) V is an
admissible viewset for I, and (2) V minimizes the cost of evaluating Q on the
database DV , among all admissible viewsets for I. Here, DV is the database that
results from adding to D the relations for all the views in V computed on D.

Definition 3. (Optimal viewset problem, OVP) For a given problem input I =
(D,Q, b), find an optimal viewset. A solution for a given instance of OVP con-
sists of a collection of materialized views V (which includes the raw data on
D [19] and all additional views that we choose to materialize) and an associa-
tion between each element of Q and its corresponding element of V.

4 The Formal Model

In this section we propose an integer programming (IP) model for the optimal
viewset problem (OVP) and discuss methodologies for solving this IP model. We
use the following notation to represent the input I = (D,Q, b) in this model:

ai : Size of the view i, for all i ε IV ,
where IV is the index set for all possible views;

b : storage limit;
cij : evaluation cost of answering query j by using view i,

for all i ε IV and j ε Q.

We let cij = +∞ if view i cannot be used to answer query j. We further
define the following decision variables for the IP model.

xi =
{

1 if view i is materialized
0 otherwise for all i ε IV

and

yij =
{

1 if we use view i to answer query j
0 otherwise for all i ε IV and j ε Q

The optimal viewset problem can now be stated as the following IP model.

Minimize
∑

i ε IV

∑
j ε Q cijyij (OV IP)

130 J. Li et al.

subject to
∑

i ε IV aixi ≤ b (1)∑
i ε IV yij = 1 for all j (2)

yij ≤ xi for all i, j such that cij �= +∞ (3)
x1 = 1 (4)
xi, yij ε {0, 1} for all i, j

Constraint (1) limits the size of the materialized views to be no more than
the available storage space b. Constraint (2) states that each query is answered
by exactly one view in the set of materialized views. Constraint (3) guarantees
that query j can be answered by view i only if view i is already materialized.
Constraint (4) states that the raw data table is always materialized, and the
remaining constraints are simply the binary requirements for xi and yij . It is
noteworthy that the binary requirement for yij can be replaced by a simple non-
negativity restriction without affecting the corresponding optimal solution for
this model. This modification, however, has a significant impact in reducing the
overall computational effort required to solve this IP model.

The structure of this IP model is similar to those for the uncapacitated facility
location problem (UFL) and the k-median problem. These two problems are well
studied in the open literature, and it is reported that relatively large instances
of the corresponding IP models can be solved within reasonable time. Several
heuristic approaches for solving these problems have also been reported. See [13]
and [22] for the facility location problem and [24] for the k-median problem.

We can also employ the linear programing (LP) relaxation or the Lagrangean
relaxation of this IP model to develop lower bounds for the optimum value of the
objective function. In [30] it is observed that the LP relaxation of the IP model
for the facility location problem can provide strong lower bounds for it, and
in [25] it is shown that the Lagrangean relaxation of this IP model can provide
even stronger lower bounds. Due to the similarity of the structure of OVIP with
these models we expect that similarly strong lower bounds for OVIP can also
be obtained. These lower bounds are typically obtained with modest amount of
computational effort, hence they can be used to devise exact algorithms (such as
a branch and bound algorithm) for solving this problem. We can also employ the
lower bound for each instance to evaluate the solution obtained via an inexact
algorithm (i.e., a heuristic procedure) for that instance, hence providing an upper
bound on the performance ratio of the algorithm in that instance.

5 Our Framework

In the experimental results reported in this paper we consider view design for
star-schema queries. To design aggregate views for a workload of star-schema
queries, we use a data structure — view lattice — that was introduced in [19].
A view lattice is a representation of the search space of views for the workload,
where nodes represent views and directed edges between the views denote which
view can be evaluated using another view. For any view we choose to materialize
from the view lattice, if the view is usable in evaluating some query in the given
query workload, then the answer to the view is the only relation needed in the

A Formal Model for the Problem of View Selection for Aggregate Queries 131

evaluation. That is, our view-selection procedures determine joinless rewritings
of queries. In addition to joinless rewritings, we plan to consider rewritings that
are computed via joins of aggregate views with other relations [1,12].

To define an instance of the problem and to construct input data for our
IP formalism, we start out by selecting a query workload, that is, frequent and
important queries whose evaluation costs we want to reduce by materializing
views. We then construct for the query workload a view lattice using the ap-
proach of [19]. In constructing the view lattice, we associate each query in our
query workload with a node in the lattice. More specifically, we construct from
the query workload a set of grouping and aggregated attributes of interest —
these are all the attributes mentioned in the queries, except the attributes in
the join conditions. We then use these attributes to construct a view lattice as
described in [19]. For instance, suppose we select queries Q1 and Q2 in Exam-
ple 1 to be our workload queries. We then use attributes mentioned in the two
queries to construct two sets of attributes of interest for us — grouping and ag-
gregated attributes. Attributes CID, Year, Month, and State are our grouping
attributes in Example 1, and attribute QtySold is the aggregated attribute.

Once we have constructed a view lattice, we calculate the sizes of the answers
to all the views in the lattice. We can estimate the sizes by using methods
mentioned in [19], for instance by using sampling. Finally, to complete the input
data, we specify a storage limit.

Fig. 1. Lattice example
with space costs [19]

To illustrate, we present the following numer-
ical example adopted from [19]. Figure 1 shows a
part of the view lattice for this example that con-
sists of the raw data (source node a) and a col-
lection of views {b, c, d, e, f, g, h} as indicated. The
space requirement for each node in the lattice is
given next to that node, and the edges represent
the relationship between views as discussed above.
In this example we assume that the query work-
load consists of all nodes in the lattice, and the
problem is to determine a collection of at most three additional views to ma-
terialize (in addition to the raw data a) so that the total cost of answering all
the workload queries is minimized. Note that in this example, in order to be
consistent with the example given in [19] we restrict the number of views, rather
than their corresponding storage space requirement as we stated earlier.

The IP model (OVIP1) for this example can be written as follows.

Minimize
∑8

i=1

∑8
j=1 cijyij (OV IP1)

subject to
∑8

i=1 xi ≤ 4∑8
i=1 yij = 1 for all j = 1 to 8

yij ≤ xi for all i, j such that cij �= +∞
x1 = 1
xi, yij ε {0, 1} for all i, j = 1 to 8

132 J. Li et al.

The matrix of objective-function coefficients cij for the model OVIP1 is the
following matrix, where nodes a, b, c, d, e, f, g, and h correspond to the rows (and
columns) 1 through 8, respectively.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 100 100 100 100 100 100 100
∞ 50 ∞ 50 50 ∞ 50 50
∞ ∞ 75 ∞ 75 75 75 75
∞ ∞ ∞ 20 ∞ ∞ 20 ∞
∞ ∞ ∞ ∞ 30 ∞ 30 30
∞ ∞ ∞ ∞ ∞ 40 ∞ 40
∞ ∞ ∞ ∞ ∞ ∞ 1 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The model OVIP1 has 8 binary variables and 64 continuous variables. We
solved this problem using the IP solver CPLEX [27] with an AMPL interface [14]
and obtained the following optimal solution: x1 = x2 = x4 = x6 = 1 (corre-
sponding to nodes a, b, d, and f in the lattice), y11 = y22 = y13 = y44 = y25 =
y66 = y47 = y68 = 1, with all remaining variables equal to zero. The total cost
associated with this solution is 420. Incidentally, this solution is identical to the
solution obtained using the heuristic procedure reported in [19].

In order to represent the lattice associated with a large data set (for a realistic
instance of the view-selection problem), we use a table format. Each row in this
table corresponds to a node in the lattice; in each row, we have two entries
representing the view ID and the view size for that node, respectively. Thus, this
table has two columns and as many rows as the number of nodes in the lattice.

In each row (i.e., node of the lattice) the view size is represented in units that
we choose for our analysis (e.g., number of rows in the view, number of bytes of
stored data in the view, etc.), and the view ID is a binary (0 and 1) vector of
size K. The ith element in this vector corresponds to the ith grouping attribute
in the database, and K represents the total number of grouping attributes. For
each view, an entry of 1 in the ith position of its view ID implies that the
corresponding attribute is used to group the associated rows in the database (to
form this view), and an entry of 0 means otherwise. In other words, a 1 entry in
the ith position of the view ID for a node (view) implies that this node (view)
can be used to answer a query that requires the ith attribute, and a 0 entry in
the ith position implies otherwise. We give SQL examples in Section 6.

It follows that the dependency relationship among views (nodes) can be de-
rived expressively from their corresponding view IDs. A query e in the lattice
can be computed directly from a view f (i.e., f is an ancestor of e in the lattice)
if the set of positions with entry 1 in the view ID for e is a subset of the set of
positions with similar entry in the view ID for f (e.g., f = {1, 1, 0, 0, 1} is an
ancestor for e = {0, 1, 0, 0, 1}, but it is not an ancestor for e′ = {0, 1, 0, 1, 0}).
Note that the number of nodes in the lattice is 2K and increases exponentially
as the number of attributes K increases. For this reason, in order to keep the
size of the IP model as small as possible, it is important that in each instance
we only maintain those rows of the table (nodes of the lattice) that are potential
ancestors to at least one of the queries in our query workload for that instance.

A Formal Model for the Problem of View Selection for Aggregate Queries 133

The evaluation cost of a query e using a view f is taken to be the storage cost
of the view f if e can be answered by f , and is set equal to infinity otherwise.
Following the above criteria, the cost matrix to answer a query workload can be
easily computed and transformed to the input of the IP model.

6 Implementation and Experimental Evaluation

We have conducted experiments to evaluate the IP model and framework pre-
sented in Sections 4 and 5. All experiments were run on a machine with a 3GHz
Intel P4 processor, 1GB RAM, and a 80GB hard drive running Windows XP
SP2 and CPLEX/AMPL 9.0. The experimental results show the following:

– relatively large instances of the view-selection problem, including instances
of practically important sizes, can be solved optimally;

– our LP relaxation of the IP model provides very strong lower bounds for
each optimal value;

– we can get different optimal solutions depending on whether we measure
query costs and view sizes in rows or bytes.

Region
Nation2
Nation1
Orders
Customer
PartSupp
Supplier
Part

Lineitem

396
2,103
2,103

482,877,440
244,883,456

5,830,541
14,188,544

1,193,906
2,147,483,647
Size (bytes)Name

TPC-H Tables

Fig. 2. Sizes of TPC-H
tables (in bytes)

We give here just a brief summary of the ex-
periments; a detailed account of the experimental
setup and results can be found in [23]. The goal of
the experiments was to obtain optimal solutions
and lower bounds on problem instances of real-
istic sizes. We did the experiments on a TPC-H
database benchmark [33]; the sizes of the stored
tables are shown in Figure 2. The size estimates
for the nodes in the view lattices were obtained by
running the queries for all possible lattice views on
the TPC-H stored data with scale factor of 0.1 and
by extrapolating the sizes of the answers to the queries to the sizes of the stored
data used to evaluate the workload queries and their rewritings.

For the experiments we used three datasets — raw data with 7, 13, and 15
attributes. (To obtain some raw tables for the experiments, we used joins of
TPC-H tables.) The numbers of nodes in the view lattices for these datasets are
128, 8192, and 32768, respectively.

For each raw table we constructed the IP model for several instances of the
problem, each instance with a different query workload and different storage
limit b. For each instance, given the corresponding lattice, query workload, and
storage limit, we constructed the input files for the IP model, as described in
Section 5. We solved each instance using the software package CPLEX/AMPL as
described earlier, and in each instance we were able to find an optimal solution.
For illustrative purposes, in Table 1 we give detailed characteristics of three
different instances in our experiment. (We have solved many more instances
of the problem for each view lattice, but due to space constraints we cannot
give here the details; these three instances are typical). Each row of this table

134 J. Li et al.

Table 1. Description of three problem instances in the experiments

Ins. View Maximum Query Capacity No. of No. of No. of
ID lattice no. nodes workload no. rows nodes xj ’s yij ’s
1 7 128 { 5, 7, 17, 69, 702,709 60 60 60 × 7

81, 88, 112 }
2 13 8,192 { 88, 112, 593, 912, 1,264,194 4,104 4,104 4,104 × 8

2050, 2368, 6656, 7936 }
3 15 32,768 { 152, 224, 2848, 3201, 1,522,810 17,464 17,464 17,464 × 8

8194, 8832, 26624, 31232 }

corresponds to one instance and gives the view lattice (raw data) and query
workload corresponding to that instance. The maximum number of nodes in each
instance is 2K , where K is the number of attributes in the view lattice. Note
that in our IP model we only include those nodes that could be used as potential
ancestors for one or more queries in the query workload for that instance. Thus,
the number of nodes we included in the IP model is in fact smaller than 2K , as
stated in the table. For each instance we also give the number of variables in the
corresponding IP model.

2 4 6 8 10 12 14 16

13

14

15

16

17

18

19

20

21

22

 Optimal Cost
 LP lower bound

X10
5

X10
5

C
os

t

Storage Limit, b

Fig. 3. Sensitivity analysis and LP lower
bound for the view-7 instance

The execution time for CPLEX
/AMPL to solve the three in-
stances in Table 1 was 0.05 sec-
onds, 3.04 seconds, and 18.64 sec-
onds, respectively. The execution
time is expected to grow at an
exponential rate with the size of
the instance; hence we do not ex-
pect it to be practical to solve
much larger instances of this IP
model using CPLEX/AMPL. At
the same time, the instances that
we are able to solve are of realis-
tic sizes in practice, as exemplified
in the three instances described in
Table 1. This demonstrates that we can use a standard IP solver to solve prac-
tical instances of our proposed IP model.

We have performed a post-optimality analysis to observe the impact of chang-
ing the storage limit b on the optimal value of the objective cost function. In
realistic view-selection scenarios, the total space available to store the materi-
alized views is usually smaller than the total size of the input query workload;
otherwise we can precompute all the queries in advance and store them on disk,
which would be a globally optimal solution to the view-selection problem. At
the same time, the storage limit has to be at least as large as the size of the raw
data table [19]. Hence, to explore the tradeoff between the amount of available
storage space and the resulting total query costs, in our experiments we varied
the value of storage space b between one and five times the size of the raw data.

A Formal Model for the Problem of View Selection for Aggregate Queries 135

Figures 3 and 4 show the results for two instances of Table 1, with 7 and 13
attributes respectively. In each instance and for each value of b we also solved
the corresponding LP problem to obtain the associated lower bound; the lower
bounds are also shown on the graphs. (The step curves in Figures 3 and 4 give
the optimal cost value, whereas the smooth curves show the lower bounds.) Intu-
itively, in optimal solutions, the only possible change as the value of b increases
is to add another materialized view to the solution. Note that if we have limited
space that can only store the raw data, then each query would be computed
directly from the raw data; as the number of materialized views increases with
the increase in the value of b, the optimal query costs decrease. Finally, our
experiments show that the LP lower bound is very close to the optimal value
of the IP problem most of the time: Linear-programming relaxation provided a
good lower bound in all the instances, and the ratio of the lower bound to the
optimum varied between 0.92 and 0.99.

2 4 6 8 10 12 14 16

12

14

16

18

20

22

24

 Optimal Cost
 LP lower bound

X10
5

X105

C
os

t

Storage Limit, b

Fig. 4. Sensitivity analysis and LP lower
bound for the view-13 instance

In another set of experiments
we used bytes, rather than rows,
to measure view sizes. In the liter-
ature, view sizes and query costs
are typically measured in units
of rows (see, e.g., [17,19,29]). At
the same time, the units of bytes
are the actual measure of stor-
age requirements and query costs
in query processing in database-
management systems, because the
cost of answering a given query us-
ing a given view is proportional to
the number of disk blocks occu-
pied by the view. Thus, in some
of our experiments we expressed in bytes both the storage requirements for the
views and the costs of answering queries using those views. Note that if we state
the problem this way for units of bytes, we do not need to change the formulation
(equalities and constraints) of our IP model in Section 4.

In our experiments, for some problem instances we obtain identical optimal
solutions when view sizes and query costs are measured in rows and bytes; for
other instances, we obtained different results. In Table 2 we report some results
where we obtained different optimal solutions for units of rows and for units of
bytes. The table shows experimental results for two problem instances on the
view lattice for seven grouping attributes (instance IDs 1 and 2), and for two
problem instances on the view lattice for thirteen grouping attributes (instance
IDs 3 and 4); the raw data for both lattices come from the TPC-H dataset [33].
For each instance we report the index of the root node of the lattice; the root
node is the raw data, which is (similarly to [19]) always required to be part of
the viewsets we output as solutions for the problem instances.

136 J. Li et al.

Table 2. Solving the problem for units of rows and bytes

Inst- No. of Root Query Units of rows Units of bytes
ance grouping node workload storage optimal storage optimal
ID attrib. index (query indexes) limit viewset limit viewset
1 7 127 { 55, 59, 899,418 { 55, 126, 4,487,825 { 55, 127 }

125, 126 } 127 }
2 7 127 { 1, 7, 53, 1,084,770 { 1, 53, 76, 5,412,766 { 1, 7, 76,

76, 111, 115 } 127 } 127 }
3 13 8,191 { 1792, 3013, 900,541 { 1792, 5392, 6,889,391 { 5392, 6096,

5392, 6096, 8191 } 8191 }
7063 }

4 13 8,191 { 1185, 5224, 836,835 { 6401, 6672, 6,402,022 { 6929, 8191 }
6401, 6672 } 8191 }

For each of the four problem instances we did two experiments — one for a
storage limit, b, and all view sizes measured in rows, and the other for a storage
limit and view sizes measured in bytes. For example, the second row of Table 2
gives results for two experiments for instance ID 2 — that is, for query workload
{1, 7, 53, 76, 111, 115}. One experiment was done for the value of storage limit b
= 1,084,770 rows, and the other was done for a storage limit b = 5,412,766 bytes.
(We set the value of b in units of rows and in units of bytes in such a manner
that the instances are comparable.)

Our main observation on the results reported in Table 2 is that regardless
of the units of measurement employed (rows or bytes), the IP model that we
propose can be used to obtain an optimal solution for the problem within a
reasonable amount of execution time (less than 20 seconds for the instances
reported earlier), and using the units of bytes in this context does not impose
any additional computational burden for solving the IP model. Further, the
two optimal solutions obtained when we use these units of measurement are
not necessarily identical. As units of bytes (instead of rows) is a more realistic
measure in the context of view selection, we posit that bytes should be employed
as the primary units of measurement in problem inputs.

7 Conclusions and Future Work

In this paper we considered the following view-selection problem: Given a set of
queries, a database, and a storage limit on the amount of disk space that can be
used to store materialized views, return definitions of views that, when materi-
alized in the database, would satisfy the constraints and reduce the evaluation
costs of the queries. We focused on practically important range-aggregate queries
on star-schema data warehouses. We described our approach to obtaining glob-
ally optimal sets of views. The approach is an IP model that allows us to obtain
optimal solutions without having to exhaustively enumerate all possible candi-
date solutions. We presented the formulation of the IP model and introduced an

A Formal Model for the Problem of View Selection for Aggregate Queries 137

LP relaxation. We reported our experimental results that show the practicality
of our approach for problem instances of realistic sizes.

Our experiments show that the computational requirements of solving the
OVIP problem (see Section 4) become prohibitive once the size of the problem
exceeds certain limits. Hence, to solve larger instances of OVIP, we are investigat-
ing techniques for designing and developing an algorithm (and the corresponding
software) that takes advantage of the special structure of the problem. Further,
solving even larger instances of the problem using exact methods might prove to
be altogether too time consuming; thus, we may have to employ an appropriate
heuristic procedure that exploits the structure of OVIP, such as a Lagrangean
heuristic. Such heuristic procedures have been developed for the facility location
problem [6] and for the k-median problem [24], and the computational results
show that these procedures obtain good solutions with a modest amount of com-
putational effort. We expect that similar heuristic procedures can be developed
for solving the view-selection problem OVP as well.

In addition to designing competitive heuristics for selecting views, we are
extending our approach to selecting indexes alongside views (see, e.g., the setting
of [17]). We plan to apply and extend our results to generalizations of range-
aggregate queries, where queries can be answered using joins of views [1,12]. We
are also interested in studying the view-and index-selection problems under the
maintenance-cost constraint on materialized views and indexes.

References

1. Afrati, F., Chirkova, R.: Selecting and using views to compute aggregate queries.
In Proceedings of the International Conference on Database Theory (ICDT) (2005)

2. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J. F., Ramakrish-
nan, R., S. Sarawagi, S.: On the computation of multidimensional aggregates. In
Proceedings of VLDB (1996) 506–521

3. Agrawal, S., Chaudhuri, S., Narasayya, V. R.: Automated selection of materialized
views and indexes in SQL databases. In Proc. VLDB (2000) 496–505

4. Agrawal, S., Chaudhuri, S., Narasayya, V. R.: Materialized view and index selection
tool for Microsoft SQL Server 2000. In Proc. ACM SIGMOD (2001)

5. Baralis, E., Paraboschi, S., Teniente, E.: Materialized view selection in a multidi-
mensional database. In Proc. VLDB (1997) 156–165

6. Barcelo, J., Casanovas, J.: A heuristic lagrangean algorithm for the capacitated
plant location problem. European J. Operations Research (1984) 15:212–226

7. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Record (1997) 26(1):65–74

8. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries
with materialized views. In Proceedings of ICDE (1995) 190–200

9. Chaudhuri, S., Narasayya, V. R.: An efficient cost-driven index selection tool for
Microsoft SQL server. In Proceedings of VLDB (1997) 146–155

10. Chaudhuri, S., Narasayya, V. R.: AutoAdmin ’What-if’ index analysis utility. In
Proceedings of ACM SIGMOD (1998) 367–378

11. Chirkova, R., Halevy, A. Y., Suciu, D.: A formal perspective on the view selection
problem. VLDB Journal (2002) 11(3):216–237

138 J. Li et al.

12. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In
Proceedings of PODS (1999) 155–166

13. Cornuejols, G., Nemhauser, G. L., Wolsey, L.A.: The uncapacitated facility location
problem. Technical Report 605, Operations Research and Industrial Engineering,
Cornell University (1984)

14. Fourer, R., Gay, D. M., Kernighan, B. W.: AMPL: A Modeling Language for
Mathematical Programming. Boyd and Fraser, Danvers, Mass. (2002)

15. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.:
Data cube: A relational aggregation operator generalizing Group-by, Cross-Tab,
and Sub Totals. Data Mining and Knowledge Discovery (1997) 1(1):29–53

16. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data ware-
housing environments. In Proceedings of VLDB (1995) 358–369

17. Gupta, H.,, Harinarayan, V., Rajaraman, A., Ullman, J. D.: Index selection for
OLAP. In Proceedings of ICDE (1997) 208–219

18. Halevy, A. Y.: Answering queries using views: A survey. VLDB Journal (2001)
10(4):270–294

19. Harinarayan, V., Rajaraman, A., Ullman, J. D.: Implementing data cubes effi-
ciently. In Proceedings of ACM SIGMOD (1996) 205–216

20. IBM. Autonomic Computing. http://www.research.ibm.com/autonomic/
21. Kimball, R., Ross, M.: The Data Warehouse Toolkit (second edition). Wiley

Computer Publishing (2002)
22. Krarup, J., Pruzan, P. M.: The simple plant location problem: Survey and synthe-

sis. European Journal of Operations Research (1983) 12:36–81
23. Li, J., Chirkova, R., and Fathi, V.: An IP Model for the View Selection Problem.

Technical report, NC State University (2005)
24. Mulvey, J. M., Crowder, H. P.: Cluster analysis: An application of lagrangian

relaxation. Management Science (1979) 25:329–340
25. Parker, R. G., Rardin, R. L.: Discrete Optimization. Academic Press (1988)
26. Microsoft Research AutoAdmin Project. Self-Tuning and Self-Administering Data-

bases. http://research.microsoft.com/dmx/autoadmin/default.asp
27. ILOG S.A. CPLEX 7.0 software package. http://www.ilog.com (2000)
28. Shasha, D., Bonnet, P.: Database Tuning: Principles, Experiments, and Trou-

bleshooting Techniques. Morgan Kaufmann (2002)
29. Shukla, A., Deshpande, P., Naughton, J. F.: Materialized view selection for multi-

dimensional datasets. In Proceedings of VLDB (1998) 488–499
30. Spielberg, K.: Algorithms for the simple plant location problem with some side

constraints. Operations Research (1969) 17:85–111
31. Srivastava, D., Dar, S., H.V. Jagadish, H. V., Levy, A. Y.: Answering queries with

aggregation using views. In Proceedings of VLDB (1996) 318–329
32. Theodoratos, D., Sellis, T.: Data warehouse configuration. In Proceedings of VLDB

(1997) 126–135
33. TPC-H:. TPC Benchmark H (Decision Support). Available from http://www.tpc.

org/tpch/spec/tpch2.1.0.pdf
34. Widom, J.: Research problems in data warehousing. In Proc. CIKM (1995)
35. Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data

warehousing environment. In Proceedings of VLDB (1997) 136–145

Efficient Main-Memory Algorithms for Set
Containment Join Using Inverted Lists

Dmitry Shaporenkov

University of Saint-Petersburg, Russia
dsha@acm.org

Abstract. We present two algorithms for set containment joins based on inverted
lists. The first algorithm scans the left relation and determines for each tuple all
the qualifying tuples by querying the inverted file for the right relation. The sec-
ond algorithm employs the common inverted file for both relations. We focus on
improving performance of algorithms in main memory by reducing number of
L2 cache misses which is achieved by applying such techniques as partitioning
and compression. We study algorithms analytically and experimentally and de-
termine which one is better depending on parameters of the input relations. We
also demonstrate that both algorithms are superior to some other known methods
for set containment joins.

1 Introduction

Set-valued attributes have become more important in recent years with growing dis-
tribution of object-relational database systems (ORDBMS) and rapid development of
such application areas as information retrieval and data mining. In practice it is often
required to evaluate join queries on set-valued attributes. In such cases the join predi-
cate is a set predicate, such as set containment or intersection. Many real-world queries
can be naturally expressed as set containment and intersection joins. For example, a
query that finds appropriate candidates among job seekers includes a condition that the
set of candidate’s skills contains the set of skills required for the job as a subset. If we
are interested in retrieving all documents containing the specified set of terms from the
collection, this again can be considered a set containment query. A relation People that
includes a set-valued attribute Hobbies poses the problem of finding all pairs of people
sharing common hobbies that can be formulated as a set intersection self-join.

Set-valued attributes are not directly supported in a traditional relational DMBS,
since already the first normal form explicitly requires an attribute be atomic, i.e. forbids
the value of an attribute to be a set. However, set-valued attributes in a relational DBMS
can be simulated using unnested external representation ([3]) that creates an auxiliary
relation connected to the original relation by a foreign key, thus representing one-to-
many relationship between a record of the original relation and the elements of the
value of its set-valued attribute. It can be easily noticed ([7]) that many complex joins
on atomic attributes that arise in relational DMBS in fact hide set predicates behind so-
phisticated expressions involving aggregation. However, as study [3] shows, relational
query optimizers are generally unable to deal with such queries in an efficient manner,

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 139–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 D. Shaporenkov

since set predicates are unknown for them. Nested-loops algorithm is the most common
way to handle joins with complex predicates. In case of joins with set predicates, how-
ever, nested loops algorithm falls short because of its poor performance ([2]), so better
methods are required.

Main-memory DBMS (MMDBMS) have attracted much attention during recent
decade. A MMDBMS stores all the data and support structures (such as indexes) in
RAM of the database server. Constantly growing amount of memory in modern database
servers already enables to store small and medium-size databases directly in main mem-
ory. It has been shown that MMDMBS provide huge performance gain over traditional,
disk-based DBMS, since retrieving the necessary data in MMDBMS usually does not
involve disk access at all. Slow disk device is used only for logging and recovery. Many
researchers ([12,1,15,9]) have recognized that the crucial factor for performance of a
MMDBMS is CPU cache utilization, that is, how many cache misses database opera-
tions incur. If the number of cache misses is high, CPU will spend most of time waiting
the data to be fetched from RAM (so-called CPU stall).

In this paper we present two efficient algorithms based on inverted files for set-
containment joins in main memory. Inverted files are well-known and widely used tool
for indexing text documents. The first algorithm employs the inverted file SA

IF built
for the right relation S to find all qualifying tuples for each tuple of the left relation
R. The second algorithm scans the common inverted file RSA

IF built on the set-valued
attribute A for R and S and processes the inverted lists in such a way that the resulting
structure is exactly a set of (tR, tS1 , ..., tSk

) lists where tR.A ⊆ tSi .A, i = 1, .., k. Both
algorithms are based on simple ideas, and we focus our study on tailoring the algorithms
for MMDBMS by improving CPU cache utilization. We try to achieve this by applying
such optimizations as partitioning algorithms into stages and compressing intermediate
results. We present experimental study showing that our optimizations give significant
effect as compared with straightforward implementations. We also demonstrate that
both algorithms are superior to some other algorithms for set-containment joins.

The structure of the paper is as follows. The section 2 presents a survey of related
work in the area of algorithms for joins with set predicates. In the section 3 we first
describe the basic versions of both algorithms, and then discuss various performance
optimizations. The section 4 shows the results of experimental evaluation of the algo-
rithms. The section 5 concludes the paper and outlines directions for future work.

2 Related Work

Helmer and Moerkotte ([2]) seem to be the first researchers who addressed specifically
set containment joins. They evaluated several algorithms for set containment join in
main memory. The first group of algorithms includes variations of nested-loops join
which differ in how the set comparison is implemented. Several implementations of set
comparison were considered, and a method that uses signatures turned out to be the
best one. The second algorithm employs signature-based approach by hashing all the
signatures of the relation R (assuming that the join condition is tR.A ⊆ tS .A, tR ∈
R, tS ∈ S), enumerating subsets of each set of the relation S, and matching each subset
with hashed signatures of R.

Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists 141

Melnik and Garcia-Molina ([7]) describe two algorithms for set containment joins.
Both algorithms, Adaptive Pick-and-Sweep Join (that extends Pick-and-Sweep Join
proposed in [8]) and Adaptive Divide-and-Conquer Join exploit essentially the same
idea, namely, partitioning the relations being joined in such a way that the join result
can be computed by joining only sets from each pair of corresponding partitions and
then merging results. Algorithms use sophisticated methods for constructing the set of
partitions (details can be found in [7]).

Mamoulis ([4]) considers several algorithms for set containment, intersection and
overlap join (two sets s1 and s2 are said to k-overlap if they have at least k elements
in common). He proposes Block Nested-Loops algorithm (BNL) that uses inverted
file SIF built on the relation S. The SIF is partitioned into blocks each of which can fit
into the main memory. The BNL algorithm proceeds by reading each block of SIF and
scanning the relation R to find qualifing tuples. Mamoulis also discusses the algorithm
that joins two inverted files RIF and SIF (IFJ), but rejects this algorithm as inefficient.
Mamoulis’ BNL and IFJ algorithms are based on the same principles as our algorithms.
However, we consider our algorithms in a context of MMDBMS, and estimate their
performance from the viewpoint of L2 cache efficiency, not I/O. This allows us to apply
hashing to intermediate results where Mamoulis had to use the sort/merge approach.
Moreover, we discuss a technique for improving locality of hashing with the aim to
better utilize the L2 CPU cache.

During the last decade, many algorithms commonly used in DBMS in the course
of many years were reconsidered from the viewpoint of their optimality for main-
memory DBMS ([12,9,15,6]). [12] was one of the first works concerning this problem.
It suggests cache-conscious versions of several well-known database algorithms such
as hash-join, and also demonstrates some fundamental techniques that can be used for
improving performance of main-memory algorithms. This and other works have made
great contribution by increasing researchers’ and developers’ awareness of cache per-
formance issues.

3 Algorithms

Both our algorithms employ so-called inverted files. Inverted files are well-known tool
for document indexing that is widely used in the information retrieval area. We apply in-
verted files in a slightly different environment, but the general idea remains unchanged.
We drop the requirement of the relational first normal form that an attribute should be
atomic and allow set-valued attributes. We consider two relations R and S with the
common set-valued attribute A. Domain(A) stands for the domain from which ele-
ments of values of A in tuples of R and S are drawn. We assume that tuples of relations
are identified by record ID (RID), and we denote the value of an attribute P in the tuple
t t.P . An inverted file RIF maps an element v of the Domain(A) into the list of RIDs
t1.rid, ..., tk.rid where t1, ..., tk are the tuples of R such that (for the sake of brevity
we will speak that a tuple tj contains an element v if the condition (1) is satisfied)

v ∈ tj .A, 1 ≤ j ≤ k. (1)

One of our algorithms exploits the idea of join indexes ([13,10]) that has been long
known in the database research community. Join indexes essentially precompute the

142 D. Shaporenkov

join result thereby allowing very fast join processing. Our join index has the form of a
common inverted file. Instead of building two separate inverted files RIF and SIF we
construct one inverted file RSIF that maps an element v of the Domain(A) into two
lists of the RIDs, lvR and lvS , where lvR and lvS consist of all RIDs of tuples from R and
S, respectively, each of which meets the condition (1). This enables us to find all tuples
from R and S containing the given element using only single lookup in the inverted
file. As noticed in [10], this property comes at the cost of some loss in efficiency in case
if RSIF is used in role of either RIF or SIF (that is, if RSIF is used for finding all
tuples from either R or S containing an element). How big is the loss depends on the
implementation of the inverted file. In the implementation we used it is quite affordable.
On the positive side, combining two inverted files into one gives us a very efficient way
for traversing all elements of the Domain(A) and their corresponding inverted lists in
both relations without using index lookup.

We have to make a note about handling the case when t.A = ∅, t is a tuple of
R. For any such t all the tuples of S match, but the inverted files RIF and RSIF

originally do not contain information about t. Therefore any join algorithm based solely
on inverted files will miss all pairs (t, t′), where t′ is a tuple of S. One approach to this
problem is to produce all such pairs in an additional pass over the left relation. Another
approach would be to incorporate information about t into the inverted file, for instance,
by introducing a special fake value vfake and mapping it into a list of all tuples. Thus
we virtually increase each set by adding the fake element vfake and eliminating empty
sets, so they no longer need special care. Either of methods has its own advantages and
disadvantages. In the following we will tacitly assume that one of these techniques is
used, and the case of empty sets does not require special handling.

To analyse performance of the algorithms analytically, we introduce the following
definitions. We need to estimate the average length of lists in inverted file. Let |V | be
the number of different values in the inverted file RIF , |R| - cardinality of the relation
R, and |r| - average cardinality of t.A, where t is a tuple of R. Assuming that the values
are uniformly distributed accross tuples, the probability for a tuple t to have a value v
among the elements of the set t.A is equal to Pv∈t.A = 1 − (1 − 1

|V |)
|r|. Hence for

the average length of the inverted list in the inverted file RIF we get |lR| = |R|Pv∈t.A.
If the inverted lists are implemented as arrays of integers, their average length in bytes
equals to |lR|sizeof(int). As we dicuss below, techniques for compressing an increas-
ing sequence of integers enable to significantly reduce this value. Let also CacheSize
be the size of the L2 cache in bytes, CacheLine be the size of the L2 cache line in
bytes, and size(o) - the size of an object o in bytes, where the object o is any object
occupying a contiguous region of memory. For cost estimation, we will also need the
join selectivity φ(R, S), and the average number of qualifying tuples of S for a tuple t
of R in the result L(R, S) = φ(R, S)|S|.

It has been recognized ([9,6]) that number of L2 cache misses is an important perfor-
mance metrics for main-memory database algorithms like number of I/O for traditional
databases. Therefore, our cost model should take into account not only computational
cost (which is proportional to the number of primitive operations) but also number of
L2 cache misses. When describing algorithms we use prefix ↑ for distinguishing point-

Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists 143

ers from objects; our intention is to clarify all points in an algorithm where memory
accesses (and thus cache misses) happen.

Our cost model includes several basic operations, so the cost of an algorithm can
be obtained by properly combining the cost of these operations. For each operation its
cumulative cost (T otalCost) consists of the computational cost (CompCost) plus the
L2 cache misses cost (CacheCost), all costs are in abstract time units. The operations
include:

1. Inverted file lookup: IFLookup(ifile, v) →↑ l. This operation retrieves a pointer
to the inverted list l corresponding to the given element v ∈ Domain(A) in the
inverted file ifile. We will assume that the inverted file ifile is implemented in
the form of hash table. Hence if the hash function is good enough, the computa-
tional cost of the lookup can treated as a constant. Since for large relations inverted
files cannot fit into the L2 cache, an arbitrary lookup involves a L2 cache miss,
unless the required data have already been loaded into the L2 cache and still can be
found there (they might have been evicted from the cache and replaced with some
other data). So in the worst case the cost of the lookup can be estimated as follows:
T otalCost(IFLookup(ifile, v)) = C1 + Cmiss, where C1 is a fixed computa-
tional cost of hash table lookup and Cmiss is the time wasted because of the cache
miss.

2. Intersecton of inverted lists: Intersect(↑ l1, ↑ l2) →↑ l. This operation computes
an inverted list l that contains common elements from two inverted lists l1 and l2
and returns a pointer to the resulting list. Since inverted lists are kept in ascending
order, this operation can be efficiently implemented as synchronous traversal of
both inverted lists. Its computational cost is Ccomp(|l1| + |l2|), where Ccomp is a
constant accounting for integer comparison. The operation generally incurs number
of cache misses that is equal to size(l1)+size(l2)

CacheLine .
3. Workmap lookup: WorkmapLookup(workmap, rid) →↑ o. This operation re-

turns a pointer to an object o associated with the given RID rid using the map
workmap (which we call working map). A natural way to implement such a work-
ing map is a hash table, because we are not interested in preserving the order of
keys. An array would be even better, but since the set of keys is not guaranteed
to fit into a limited integer range, array may waste large amount of space. We can
apply the same reasoning as for the inverted file lookup, moreover, in this case a
good hash function definitely exists. Hence we have
T otalCost(WorkmapLookup(workmap, rid)) = C2 + Cmiss, where C2 is the
cost of lookup into the working map.

3.1 Algorithm Using Inverted File for the Right Relation

This algorithm is similar to the traditional index join on atomic attributes. We traverse
the left relation, and for each tuple issue a set-containment query that finds all qualifying
tuples of the right relation. The algorithm which we call IndexJoin is depicted in the
Figure 1

The cost of the algorithm can be estimated as follows. Obviously, the computation
cost is

CompCost = |R|
(
|r|CompCost(IFLookup) + (|r| − 1)CompCost(Intersect)

)
.

144 D. Shaporenkov

foreach (RID t.rid in R)
{
let t.A = {v}

⋃
(t.A)rest; // separate one element of the set t.A

l : ↑ list of RID;
l = IFLookup(SIF , v);
foreach (v ∈ (t.A)rest)
{

l′ : ↑ list of RID;
l′ = IFLookup(SIF , v);
l = Intersect(l, l′);

}
foreach (RID s.rid in l) add (t.rid, s.rid) to the result;

}

Fig. 1. Algorithm using inverted file for the right relation

For simplicity we ignore the fact that l shrinks in the inner loop, and assume that
|l| = L(R, S) = φ(R, S)|S|. The cache misses estimation is more difficult, since
both IFLookup and Intersect may benefit from the data previously loaded into the
cache. This happens if an inverted list lvR has been loaded into the cache during a pre-
vious iteration of the outer loop and has not been evicted yet. The inverted list lvR was
loaded at the time the IFLookup(v) was previously performed. Under the assump-
tion that values of the Domain(A) are distributed uniformly across tuples, IFLookup
has been performed |V | times since that moment, and each IFLookup transferred
size(l) bytes into the cache. Let us assume that the L2 cache is fully-associative,
i.e. a block of memory can be loaded into any cache line. Then the probablity for
lvR to reside entirely in the cache between two subsequent calls to IFLookup(v) is
Phit = (1− size(l)

CacheSize)|V |, since the probability of replacing a cache line holding data
from lvR is size(l)/CacheSize.

It is therefore evident that with grow of |V | Phit is decreasing fast, and the number
of cache misses caused by Intersect grows. However, if |S| is fixed, |l| and hence
size(l) grow with decrease of |V |, and Phit is also decreasing. So the algorithm exhibits
poor temporal (because the probability of reusing cache lines is low due to relatively
large interval between subsequent access to the same data) and spatial (because any part
of SIF can be accessed on each iteration) locality and is suboptimal in main memory.

The locality of the algorithm can be improved by breaking the algorithm into stages
so that only a part of SIF is accessed on each stage. A simple way to do this is to
order all values in the SIF and split the resulting sequence of values into the given
number of intervals [v1, v2)...[vn−1, vn] so that each interval contains approximately
the same number of values from SIF . On the stage k of the modified algorithm (we
call it Staged index join, or IndexJoin(s), where s is the number of stages), only val-
ues that fit in the interval [vk, vk+1) are considered. The modified algorithm main-
tains a list of WorkEntry structures (eash is associated with a tuple t of R) which
to the beginning of the stage k contain a t.rid, the ordered values of t.A and the list
of RIDs of tuples t′1, ..., t′lt such that v ∈ t.A ⇒ v ∈ t′m(A), m = 1, ..., lt, where
v ∈ [v1, v2)...[vk−1, vk). This way WorkEntry contains a list of RIDs of tuples of

Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists 145

S which are currently considered qualifying the containment predicate for the tuple t.
This list shrinks as the algorithm proceeds.

The modified algorithm should exhibit better cache behavior than the original one,
since the likelyhood of reusing the lvR in cache is increased due to better locality. There
is, however, extra overhead in the modified version caused by necessity to find the
values of t(A) to be processed on the current stage. To speed up this search, values of
t(A) in the WorkEntry are kept ordered.

3.2 Algorithm Using Common Inverted File

Using common inverted file enables us to avoid IFLookup altogether. Indeed, simul-
taneous traversal of inverted lists lvR and lvS gives us an information about tuples from
R and S which have intersecting values of A. Repeating this procedure for all values
of v ∈ t(A) (t - tuple of R) and intersecting the resulting sets of tuples of S produces
all tuples of S matching the containment predicate for t. The basic algorithm (called
Inverted File Join or IFJ) is presented in the Figure 2:

Workmap : map : RID -> ↑ list of RID;
foreach (Value v in RSIF)
{
let lvR, lvS - inverted lists corresponding to v in RSIF;
foreach (tR.rid in lvR)
{

Lt : ↑ list of RID;
Lt = WorkmapLookup(Workmap, tR.rid);
if (Lt = NULL)

Lt = lvS;
else

Lt = Intersect(Lt, l
v
S);

Put Lt into the Workmap with the key tR.rid;
}

}

Fig. 2. Basic algorithm using common inverted file

The computational cost of this algorithm is similar to that of the algorithm based on
inverted file for the right relation:

CompCost = |R|
(
|r|CompCost(WorkmapLookup)+(|r|−1)CompCost(Intersect)

)
.

There is a difference in cache behavior of algorithms, since IndexJoin repeatedly
loads into the cache inverted lists of SIF , and the size of these inverted lists does not
change as the algorithm proceeds. In the IFJ , on the contrary, most heavy processing is
concentrated on the lists Lt, which shrink in size as more RIDs are discarded as a result
of intersection. To estimate number of cache misses, we nevertheless treat |Lt| as a con-
stant. Applying the same reasoning as for the IndexJoin, for the probability of reusing
cache lines previously loaded by data from Lt we get: Phit = (1 − size(L′)

CacheSize)|R|.

146 D. Shaporenkov

Here size(L′) is normally much smaller than size(l) in the corresponding formula
for the IndexJoin, however, |R| is expected to be much greater than |V |. So the cache
behavior of the IFJ is again suboptimal. To improve it, we apply the same technique
as in the case of IndexJoin. This time we split the algorithm into stages so that only
a part of Workmap is accessed on each stage. All RIDs of tuples of RID are ordered
and split into a number of intervals each of which contains approximately the same
number of RIDs. On each stage only the RIDs that fit into the corresponding interval are
considered, other RIDs are discarded. Since lvR is already kept ordered in the inverted
file, the relevant RIDs can be selected quite efficiently.

The modified version of the IFJ (called IFJ(s), where s is again the number
of stages) suffers much fewer cache misses, since only a small part of Workmap is
accessed on each stage. As in the case of IndexJoin(s) there exists an additional
overhead for selecting the relevant RIDs for processing.

The number of stages can be estimated as follows. Since it is desirable that all Lt

fit into the cache, the number of tuples to be processed on each stage should not exceed
|CacheSize|

size(Lt)
, and hence the number of stages should be the minimal number that is

greater than |R|size(Lt)
CacheSize . |Lt| decreases as the algorithm proceeds, but its average value

remains in the bounds [L(R, S), lS], where L(R, S) and lS are the average number
of qualifying tuples of S for a tuple of R, and average length of inverted lists lvS in
RSIF , respectively. This observation enables to get an upper and a lower bounds for
the number of stages, but the interval between them can be quite large. So in practice,
the number of stages needs to be carefully tuned.

Note that both algorithms have much in common, since the values of Domain(A)
in the IFJ play the role of RIDs in the IndexJoin and vice versa. Another important
note concerns the staged versions of the algorithms. Though we use the term ’stage’ to
denote the effect of the partitioned processing, there is no real data dependency between
subsequent stages in both cases. This means that both algorithms can be easily paral-
lelized by putting each stage on a separate processor or server. Examination of parallel
versions of the algorithms is beyond the scope of the paper.

4 Experimental Study

We have implemented both algorithms in Memphis. Memphis (a brief description can
be found in [11]) is a framework for experiments on main-memory algorithms and index
structures. Implementations are written in the C# programming language ([16]) and run
under the .NET framework. For inverted files we used a custom hash table implementa-
tion. However, for hash function we reused the standard .NET GetHashCode method
that for integers simply returns the value of the integer. Hash table implementation is
based on linear hashing.

All experiments were conducted on a laptop with Intel P4 2.8 GHz CPU and 1 Gb
RAM running under Windows XP. This machine features Intel Pentium 4 Mobile pro-
cessor with 2-level on-chip cache. The size of the L2 cache is 512 Kb, and the size of the
L2 cache line is 128 bytes (these parameters were measured using Stefan Manegold’s
Calibrator tool [5]). For measuring the number of L2 cache misses we used the Intel
VTune Performance Analyser ([17]) that provides a graphical user interface to various

Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists 147

CPU counters. All reported times were estimated using QueryPerformanceCounter /
QueryPerformanceFrequency Windows API that give a programmatic access to the
high-resolution hardware performance counter. To reduce level of noise in measure-
ments, we present average times based on results of several runs.

For our experiments we used synthetic datasets. These datasets were generated by a
program that takes desired characteristics of the dataset (relations cardinalities, average
set cardinality, distributions of set cardinalities and set elements, size of the element
domain etc.) as input and produces the resulting dataset in the form of a text file. Unless
mentioned explicitly we do not include the time necessary for constructing the inverted
files into the response time of a join algorithm. The reason is that in a practical situation
it is expected that inverted files have already been built prior to computing the join.

4.1 Case Study 1: Tuning Number of Stages for IFJ(n)

In this case study, we use a dataset containing two relations, each of which consists of
two attributes - the first is used as a primary key, and the second is a set-valued attribute.
The characteristics of relations are: |r| = |s| = 5, |V | = 5000, |R| = 150000, |S| =
300000, the join selectivity is 5007

|R||S| = 1.2∗10−7. The results are presented in the Table
1 and on the Figure 3. It is evident that the best performance is achieved with 2-staged
processing, 2 stages provide a balance between reduced number of cache misses and
extra overhead of the multi-staged algorithm.

Table 1. Dependency of join time and number of L2 cache misses on n for IFJ(n)

Stages Time, sec Cache Misses (∗106)
1 9.3 60
2 8.4 55
3 8.6 54
5 8.7 53
9 8.9 52

At the same time we observed that IndexJoin(n) does not benefit from partitioning
- the execution time grows steadily with increasing number of stages. We attribute this
effect to the large cost of selecting relevant values in case of IndexJoin(n). In the
IndexJoin(n) this operation is performed for each tuple of R on each stage, or, in
other words, n ∗ |R| times. In the IFJ(n) this selection of relevant tuples is necessary
for each value, so its cost is proportional to n ∗ |V |. Given that normally |V | # |R|,
this seems to be a plausible explanation for inefficiency of staging for IndexJoin. In
the further discussion we will assume that n = 1 for IndexJoin(n).

4.2 Case Study 2: Comparing Performance of IndexJoin and IFJ

It might seem from the previous experiment that IFJ is dominated by IndexJoin, but
this is not indeed the case. To demonstrate this, we take relations with the following pa-
rameters: |r| = 17, |s| = 25, |R| = 250000 and vary |S|. The results of IndexJoin(1)

148 D. Shaporenkov

Fig. 3. Dependency of join time on number of stages for IFJ

Table 2. Comparing performance of IndexJoin and IFJ

Time, sec Cache misses
|S|(∗105) IndexJoin(1) IFJ(3) IndexJoin(1) IFJ (3)
1 1.2 2.3 42 ∗ 106 60 ∗ 106

3 6 9 1, 3 ∗ 107 1 ∗ 107

5 10 11 - -
7 19 18 - -

and IFJ(3) (it has been observed that 3 stages provide the best result in the case) are
presented in the Table 2 and on the Figure 4.3.

The explanation for the fact that IFJ(3) eventually outperforms IndexJoin(1)
is that with approximately equal computational cost IFJ exhibits better locality than
IndexJoin(1), and importance of this factor increases with |S|. This is also confirmed
by our measurements of number of cache misses in the Table 2 (some cells are omit-
ted because the program ran out of memory and crashed when VTune profiling was
enabled).

4.3 Case Study 3: Effect of Compression

Compression of increasing sequence of integers is a compelling technique that enables
to reduce the size of inverted lists and increase both cache utilization and cardinality of
relations that can be joined in memory without trashing. In our implementation we used
well-known Gamma-encoding ([14]). In this experiment the cardinalities of relations
are kept fixed: |R| = 100000, |S| = 250000. The dependency among running time, to-
tal memory used by the program (to retrieve this value, the code was instrumented by a
call to the GC.GetT otalMemory function from the .NET standard library. This func-
tion performs garbage collection before calculating the size of the heap), the average
lengths of inverted lists and the cardinality of the result |Result| are illustrated in the
Table 3. The table shows results for both versions of the IFJ , with and without com-

Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists 149

Fig. 4. Dependency of join time on |S| for IndexJoin and IFJ

Table 3. Effect of compression on IFJ

Uncompressed Compressed
|lR| |lS| |Result| Time, sec Mem. Usage, Mb Time, sec Mem. Usage, Mb
20 50 137 1.5 110 3.2 113
75 188 1759 1.8 113 3.9 90
3000 7500 0 73 144 115 146
500 2250 50 ∗ 106 - 300 151 91

pression. One cell is missed because the algorithm was not able to finish due to exhaus-
tion of all the available memory. This experiment was not performed for IndexJoin
but we suspect that it would show similar results.

From the presented results it becomes clear that more compact inverted lists in the
‘compressed’ version, though reducing the number of compulsory L2 cache misses, do
not pay off the increase in the cost of intersection operation. So the most important effect
of using compression is smaller memory footprint. As the third and the fourth rows of
the table demonstrate this effect is achieved only when all lR, lS and |Result| are large
enough. This fact quite matches the intuitive expectations, since the less the cardinality
of the result (in the extreme case of the third row the result is empty), the shorter inverted
lists in the intermediate results, and the less benefits we obtain compressing them.

4.4 Case Study 4: Comparison with Other Algorithms

To demonstrate the efficiency of the proposed methods in comparison with other known
algorithms for set-containment joins, we have also implemented signature nested-loops
join (SNL, [2]) and partitioned set join (PSJ , [8]). We consider the single relation
with fixed parameters |r| = 5, |V | = 10000. The relation is joined with itself. For the
PSJ and SNL we tuned such parameters as signature size and number of partitions ac-
cording to recommendations in respective papers and our own experiments. The results
are depicted in the Table 4 (for the IndexJoin and IFJ we include the time spent in

150 D. Shaporenkov

Table 4. Comparison with other algorithms, large |V |

|R| |Result| SNL, sec PSJ, sec IFJ, sec IndexJoin, sec
20000 20019 53 45 0.23 0.3
75000 75000 - 70 1.11 1.17
150000 150000 - 140 2.43 2.37

Table 5. Comparison with other algorithms, decreasing |V |

|V | |Result| PSJ, sec IFJ, sec IndexJoin, sec
1000 15727 10 0.21 0.23
500 15727 10.8 0.22 0.26
250 26537 10.9 0.31 0.34
100 26537 15 0.7 0.78
50 339421 32 1.6 1.45
25 1544713 71 4.7 4.2
10 - 282 49 45

constructing the inverted files in the reported time). SNL has been quickly recognized
as a dominated algorithm, so we gave up experiments with it.

Since the performance of IndexJoin and IFJ heavily depends on the average
length of inverted lists in SIF and RSIF , one might expect that it deteriorates fast with
decrease of |V |. To verify this hypothesis, we performed another experiment under
the same conditions as the previous one except for the |R| = 15000 is fixed, and |V | is
decreasing. The results are given in the Table 5 and illustrated by the chart on the Figure
5 (one cell is missing because in all cases the program ran out of memory). As these
measurements and the curves on the Figure 5 show, IndexJoin and IFJ are indeed
more sensitive to decreasing |V | than PSJ (decreasing |V | from 1000 to 10 resulted in
≈ 28 times slowdown of PSJ and ≈ 200 times slowdown of IFJ and IndexJoin).
However, in all cases inverted files-based algorithms still demonstrated much better
performance than PSJ .

Fig. 5. Dependency of join time on |V | for PSJ (left) and IFJ (right)

Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists 151

5 Conclusion

We presented two algorithms for set-containment join based on inverted files. We ex-
amined a technique for improving cache behavior of algorithms that splits an algorithm
into stages so that only a small part of data is accessed on each stage. It turned out that
this technique is quite efficient for the second algorithm, IFJ , but does not benefit the
first algorithm, IndexJoin, because in the case of IndexJoin it does not pay off the
extra overhead caused by selecting relevant values for processing on each stage.

Both algorithms provide competitive performance. Our experiments reveal that gen-
erally speaking IndexJoin is more effective for relations of small and medium cardi-
nalities and if the average cardinality of the set-valued attribute is not large. IFJ is
better suited for relations of large cardinalities, since it better scales with grow of |S|.
We also discovered that compression of the inverted lists may provide large savings of
memory space if the length of inverted lists and result cardinality are large enough. At
the same time compression achieves better cache utilization at too expensive cost of
extra computations required to unpack the compressed data.

Future research may focus on improving cache behavior of IndexJoin, since our
current approach has turned out ineffective. Both algorithms discussed in this paper can
be easily parallelized, and studying the paralled and distributed versions of algorithms is
an interesting unexplored problem. Another research direction is development of main-
memory variants of algorithms for other set predicates like intersection or overlap.

References

1. Boncz, P. A., Manegold, S., Kersten, M. L.: Database Architecture Optimized for the New
Bottleneck: Memory Access. In Proceedings of the 25th VLDB Conference (1999) 54–65

2. Helmer, S., Moerkotte, G.: Evaluation of main memory join algorithms for joins with set
comparison join predicates. In Proceedings of the 23rd VLDB Conference (1997) 386–395

3. Helmer, S., Moerkotte, G.: Compiling away set containment and intersection joins (technical
report) (2002)

4. Mamoulis, N.: Efficient processing of joins on set-valued attributes. In Proceedings of the
SIGMOD 2003 Conference (2003) 157–168

5. Manegold, S.: The Calibrator, a Cache-Memory and TLB Calibration Tool.
http://homepages.cwi.nl/˜manegold/Calibrator/

6. Manegold, S., Boncz, P., Nes, N., Kersten, M.: Cache-conscious radix-decluster projections.
In Proceeding of the SIGMOD 2004 Conference (2004)

7. Melnik, S., Garcia-Molina, H.: Adaptive Algorithms for Set Containment Joins. ACM Trans-
actions on Database Systems (2003) 28:56–99

8. Ramasamy, K. et al.: Set containment joins: The good, the bad and the ugly. In Proceedings
of the 26th VLDB Conference (2000) 351–362

9. Rao, J., Ross, K. A.: Making B+-Trees Cache-Conscious in Main Memory. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data (2000) 475–486

10. Shaporenkov, D.: Multi-indices - a tool for optimizing join processing in main memory. In
Proceedings of the Baltic DBIS 2004 Conference (2004)

11. Shaporenkov, D.: Performance comparison of main-memory algorithms for set containment
joins. In Proceedings of the SYRCoDIS’04 (2004)

12. Shatdal, A., Kant, C., Naughton, J. F.: Cache Conscious Algorithms for Relational Query
Processing. In Proceedings of the 20th VLDB Conference (1994) 510–521

152 D. Shaporenkov

13. Valduriez, P.: Join Indices. ACM Transactions on Database Systems (1987) 12:218–246
14. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes : Compressing and Indexing Documents

and Images. Morgan Kaufmann publishers, second edition (1999)
15. Zhou, J., Ross, K. A.: Buffering Accesses to Memory-Resident Index Structures. In Pro-

ceedings of the 29th VLDB Conference (2003)
16. C# Language Specification. ECMA-334 International Standard (2001)
17. Intel VTune Performance Analyzer. http://www.intel.com/software/products/vtune

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 153 – 166, 2005.
© Springer-Verlag Berlin Heidelberg 2005

VA-Files vs. R*-Trees in Distance Join Queries*

Antonio Corral1, Alejandro D’Ermiliis1, Yannis Manolopoulos2,
and Michael Vassilakopoulos3

1 Department of Languages and Computing, University of Almeria, 04120 Almeria, Spain
{acorral, sandro}@ual.es

2 Department of Informatics, Aristotle University, GR-54124 Thessaloniki, Greece
manolopo@csd.auth.gr

3 Department of Informatics, Technological Educational Institute of Thessaloniki,
P.O. BOX 141, GR-57400, Thessaloniki, Greece

vasilako@it.teithe.gr

Abstract. In modern database applications the similarity of complex objects is
examined by performing distance-based queries (e.g. nearest neighbour search)
on data of high dimensionality. Most multidimensional indexing methods have
failed to efficiently support these queries in arbitrary high-dimensional datasets
(due to the dimensionality curse). Similarity join queries and K closest pairs
queries are the most representative distance join queries, where two high-
dimensional datasets are combined. These queries are very expensive in terms
of response time and I/O activity in case of high-dimensional spaces. On the
other hand, the filtering-based approach, as applied by the VA-file, has turned
out to be a very promising alternative for nearest neighbour search. In general,
the filtering-based approach represents vectors as compact approximations,
whereas by first scanning these approximations, only a small fraction of the real
vectors is visited. Here, we elaborate on VA-files and develop VA-file based
algorithms for answering similarity join and K closest pairs queries on high-
dimensional data. Also, performance-wise we compare the use of VA-files and
R*-trees (a structure that has been proven to be of robust nature) for answering
these queries. The results of the comparison do not lead to a clear winner.

1 Introduction

Large sets of complex objects are used in modern applications (e.g. multimedia
databases [11], medical images databases [15], etc.). To examine the similarity of
these objects, high-dimensional feature vectors (i.e. points in the high-dimensional
spaces) are extracted from them and organized in multidimensional indexes. Then,
distance-based queries (e.g. nearest neighbour, similarity join, K closest pairs, etc.)
are applied on the high-dimensional points. The most representative high-dimensional
distance join queries (DJQ), where two datasets are involved, are the similarity join

* Supported by the ARCHIMEDES project 2.2.14, «Management of Moving Objects and the

WWW», of the Technological Educational Institute of Thessaloniki (EPEAEK II), co-funded
by the Greek Ministry of Education and Religious Affairs and the European Union,
INDALOG TIC2002-03968 project «A Database Language Based on Functional Logic
Programming» of the Spanish Ministry of Science and Technology under FEDER funds, and
the framework of the Greek-Serbian bilateral protocol.

154 A. Corral et al.

query (SJ) and the K closest pairs query (K-CPQ). The SJ query discovers all pairs of
points from two different point datasets, where the distance does not exceed a
distance threshold δ. The K-CPQ discovers K>0 distinct pairs of points formed from
two different point datasets that have the K smallest distances between them. The
former does not take into account the cardinality and order of the final result (but only
the user-defined distance threshold δ), whereas the latter does not consider any
distance bound (but only the user-defined final result cardinality K). Note that these
queries have been successfully applied in data mining algorithms (e.g. clustering
algorithms based on similarity join [3] and closest pairs [16]).

Here, we focus on performing DJQ using a filtering-based approach that has
proven to outperform a sequential scan for high dimensionalities, when a tree index
fails to process a K nearest neighbour query (K-NNQ) efficiently (dimensionality
curse). The VA-file (vector-approximation file) is the most representative access
method of this category [20]. Instead of partitioning, the VA-file constructs the index
file by compressing each feature vector. With respect to query processing, the
compact vector approximations are sequentially scanned and filtered in the first stage
so that a small fraction of them remains to be visited in the second stage. The
improvement for K-NNQ arises due to the reduced I/O accesses (as the index file size
is small) and due to the smaller response time (because of the fewer distance
computations).

The main goal of this paper is to develop VA-file based algorithms for DJQ
involving two sets of high-dimensional data. More specifically, we develop
algorithms for SJs and K-CPQs in high-dimensional spaces, where both point datasets
are indexed by VA-files. To achieve this goal, we propose new bounds on the
distance between pairs of points and new pruning conditions. Moreover, we present
experimental results comparing the performance of these algorithms with analogous
algorithms that make use of R*-trees [1], in terms of the I/O activity and the response
time. Based on these results, we draw conclusions about the behaviour of the
algorithms that use VA-files for DJQ in high-dimensional spaces.

The paper is organized as follows. In Section 2, we review the related literature and
motivate the research reported here. In Section 3, a brief description of the VA-file
structure, definitions of the most representative DJQ, approximation-based distance
functions and pruning conditions are presented. In Section 4, algorithms based on
distance bounds and pruning conditions over VA-files for K-CPQ and SJ are
examined. In Section 5, a comparative performance study of these algorithms is
reported. Finally, in Section 6, conclusions on the contribution of this paper and
future work are summarized.

2 Related Work and Motivation

Numerous algorithms have been proposed for satisfying DJQ in high-dimensional
environments. For similarity joins on high-dimensional point datasets, the most
representative papers are [18, 14, 10, 4]. In [18] an index structure (ε-kdB tree) and an
algorithm for similarity self-join on high-dimensional points was presented. The basic
idea is to partition the dataset perpendicularly to a selected dimension into stripes of
the width ε to restrict the join algorithm to pairs of subsequent stripes. In [14] the

 VA-Files vs. R*-Trees in Distance Join Queries 155

problem of computing high-dimensional similarity joins between two high-
dimensional point datasets, where neither input is indexed (Multidimensional Spatial
Join, MSJ), was investigated. The basic idea of this access method is to partition the
dataset into level-files, each of which contains the points of a level in the order of
their Hilbert values. In [10] a new algorithm (Generic External Space Sweep, GESS),
which introduces a rate of data replication to reduce the number of distance
computations as an enhancement of MSJ, was proposed. In [4], a complex and
interesting index architecture (Multipage Index, MuX) and join algorithm (MuX-
join), which allows a separate optimization CPU time and I/O time, were presented.
On the other hand, the K-CPQ has not been studied in-depth for high-dimensionality
data. In [8], DFS-based approximate algorithms for the K-CPQ using R-trees [13]
have been proposed (in order to get suboptimal results in reasonable time). One of the
main objectives of this work was to examine the influence of the approximate
parameters on the trade-off between accuracy and efficiency of such algorithms.

Many approaches have been proposed to overcome the curse of dimensionality in
the context of K-NNQ. They are usually classified into five major categories: (1) tree
index structures by partitioning the data space or data-partitioning; (2) space-filling
curves, (3) dimensionality reduction approaches; (4) approximate algorithms and (5)
filtering-based (i.e. approximation) approaches. In this paper, we are going to focus
on the last category. The filtering-based approach overcomes the dimensionality curse
by filtering the points so that only a small fraction of them must be visited during a
search. In this respect, the most representative access method is the VA-file [20],
which divides the data space into 2b rectangular cells, where b denotes a user-
specified number of bits. The VA-file allocates a unique bit-string of length b to each
cell and approximates data points that fall into a cell by that bit-string. In general, the
VA-file itself is simply an array on disk of these compact approximations of points.

Following the ideas of the VA-file, many variants have proposed to improve the
performance of K-NNQ. The VA+-file [12] combines a linear decorrelation using
KLT (Karhunen-Loève Transformation) along with a variance specific quantization
scheme using the VA-file principles. The LPC-file [6] enhances the VA-file by
adding polar coordinate information of the point (vector) to approximation, increasing
the discriminatory power. The GC-tree [5] pursues a hybrid strategy which
incorporates a quad-tree-like hierarchical space partitioning with bit-encoded clusters
and a point approximation based on local polar coordinates on the leaf nodes. In the
IQ-tree [2], all points are globally approximated according to one fixed grid (like the
VA-file) and it also maintains a flat directory containing the minimum bounding
rectangles (MBRs) of the approximate data representations. The A-tree [17] combines
hierarchical indexing and local approximation by quantization. The MBRs of point
clusters are approximated by quantization in so-called virtual bounding rectangles
(VBRs). And recently, the SA-tree [9] was proposed, which combines data clustering
and compression (i.e. it employs the characteristics of each cluster to adaptively
compress points to bit-string) to speed up processing of high-dimensional K-NNQ.

All the previous efforts have been mainly focused on enhancing the VA-file to
improve the performance during the K-NNQ (a query applied on a single set of high-
dimensional data). The main objective of this paper is to investigate the behaviour of
VA-files on DJQ involving pairs of high-dimensional data sets (SJs and K-CPQs). For

156 A. Corral et al.

this reason, we propose new bounds of the distance between pairs of points, new
pruning conditions and lead to algorithms for these DJQ using VA-files.

3 Distance Join Queries for VA-Files

3.1 Distance Join Queries

Let us consider points in the dim-dimensional data space (Ddim = ℜdim) and a distance
function for a pair of these points. A general distance function is the Lt-distance (dt) or
Minkowski distance between two points pi and qj from two different datasets (P = {pi:
0≤i≤|P|–1} and Q = {qj: 0≤j≤|Q|–1}, respectively) in Ddim (pi = (pi[0], pi[1],…, pi[dim-
1]) and qj = (qj[0], qj[1],…, qj[dim-1])), where pi[d] (qj[d]) is the coordinate value of
pi (qj) in dimension d, that is defined by:

() ∞<≤−=
−

=

tifdqdpqpd
t

d
jijit 1 ,][][,

1
1dim

0

, and ()][][max,
1dim0

dqdpqpd ji
d

ji −=
−≤≤∞

For t = 2 and t = 1 we have the Euclidean and the Manhattan distances. They are
the most known Lt-distances. Often, the Euclidean distance is used as a distance
function, but, depending on the application, other distance functions may be more
appropriate. The dim-dimensional Euclidean space (metric space), Edim, is the pair
(Ddim, d2). In the following, we will use dist instead of d2. The most representative
DJQ in Edim are the following:

Definition. Similarity Join (SJ). Let P and Q be two point datasets (P≠∅ and Q≠∅) in
Edim and δ a real number δ≥0. Then, the result of the Similarity Join is the set
SJ(P,Q,δ) ⊆ P×Q containing all possible pairs of points of P×Q that can be formed by
choosing one point of P and one point of Q, having a distance smaller than or equal to
δ: SJ(P, Q, δ) = {(pi,qj) ∈ P×Q: dist(pi,qj) ≤ δ}.

Definition. K closest pairs query (K-CPQ). Let P and Q be two point datasets (P≠∅
and Q≠∅) in Edim and K an integer number in the range 1≤K≤|P|·|Q|. Then, the result
of the K closest pairs query is the set K-CPQ(P,Q,K) ⊆ P×Q containing all the
ordered sequences of K different pairs of points of P×Q with the K smallest distances
between all possible pairs of points that can be formed by choosing one point of P and
one point of Q: K-CPQ(P,Q,K) = {((p1,q1), (p2,q2), ..., (pK,qK)) ∈ (P×Q)K: p1, p2, ...,
pK ∈ P, q1, q2, ..., qK ∈ Q, (pi,qi) ≠ (pj,qj) i≠j 1≤i,j≤K, ∀(pi,qj) ∈ P×Q – {(p1,q1),
(p2,q2), ..., (pK,qK)} and dist(p1,q1) ≤ dist(p2,q2) ≤ … ≤ dist(pK,qK) ≤ dist(pi,qj)}.

For SJ, if the sets P and Q coincide, then the DJQ is called similarity self-join
(widely studied in [18, 14, 10, 4]). Fig. 1 illustrates these DJQs, where the points of P
and Q are represented by starts (*) and crosses (+), respectively. In the left part of Fig.
1, we can observe that SJ(P,Q,δ) = {(p3,q1), (p4,q6), (p6,q6), (p8,q8), (p8,q9), (p8,q10),
(p11,q9), (p11,q10)} where δ = 0.8. If we want to obtain the four closest pairs (K = 4) of
the two data-sets depicted in the right part of Fig. 1, the result is K-CPQ(P,Q,K) =
{(p8,q8), (p11,q10), (p4,q6), (p8,q9)}.

 VA-Files vs. R*-Trees in Distance Join Queries 157

1

+q6

+ q7

+ q10
q8 + + q9

+q1

+ q4
+q3

+ q5

X

Y

(0, 0)

 p1
*

X (0, 0)

*p2

*p4

 p1

*

 p6

*

* p7

*p5 * p9

 p8

*

*p11 * p10

* p12

p3
* +q2

Y

2

3
4

+q6

+ q7

+ q10

q8 + + q9

+q1

+ q4 +q3

+ q5

*p2

*p4

 p6
*

* p7
*p5 * p9

 p8
*

*p11 * p10

* p12

p3
* +q2

Fig. 1. Examples of SJ and K-CPQ using 2-dimensional points

3.2 The VA-File (Vector-Approximation File)

The VA-file [20] does not partition the data, but the data space is partitioned into
rectangular cells which are used to generate bit-encoded approximations of the points.
Therefore, the VA-file consists of two files: one contains an approximation of the
feature representation of each point (approximation file), whereas the other one the
exact representation of each point (vector file). They are connected by indexes, since
they are simple arrays on disk. The quantization is obtained by laying a grid over the
data space and approximating the points by their surrounding cells (see left part of
Fig. 2). The grid has db2 intervals along dimension d (0≤d≤dim–1), where b = dbd is
the number of bits per approximation, bd is the number of bits for dimension d and
dim the dimensionality of the data space. In Fig. 2, bd = 2 and dim = 2 (a realistic bd
value for nearest neighbour search would be between 6 and 8 according to [20]). The
intervals of this grid are numbered from 0 to db2 – 1 (see left part of Fig. 2), and the
partition points m[d, 0], m[d, 1], …, m[d, db2] bound them. That is, m[d, k] represents
the k-th partition point in dimension d; and in total, there are db2 + 1 partition points

dist
uBnd

data space

00 01 10 11

11

10

01

00

m[1,4]

m[1,3]

m[1,2]

m[1,1]

m[1,0]

m[0,0] m[0,1] m[0,2] m[0,3] m[0,4]

VA-file

*

+

-

* 0001

+ 1011

- 1100

vector file

* 0.1 0.4

+ 0.6 0.8

- 0.9 0.1

m[d, id(pi)+1]

m[d, id(pi)]

c(pi)

* pi

m[d, id(qj)+1]

m[d, id(qj)]
c(qj)

+ qj

lBnd

approximation file

0

1

2

0

1

2

Fig. 2. Structure of the VA-file and, distances between points and cells

158 A. Corral et al.

and db2 intervals. These partition points are determined so that each interval contains
the same number of vectors. Given a point pi, id(pi) denotes the interval in dimension
d that pi falls into, i.e. it is the approximation of a point pi (P = {pi: 0≤i≤|P|–1}) in
dimension d and id(pi) ∈ {0,1,…, db2 – 1}. Thus, the following expression holds (pi[d]
is the value of pi in dimension d): m[d, id(pi)] ≤ pi[d] < m[d, id(pi)+1], ∀d: 0≤d≤dim–1.

A bit-string of length b = dbd (0≤d≤dim–1) represents each cell. Such a bit-string
is the concatenation of the bit-strings of the interval numbers of the cell (for example,
the point (+) falls into the cell with the bit-string 1011). Thus, the approximation of pi
is the bit-string of the cell (represented by c(pi)) that contains pi and it is denoted by
a(pi) (i.e. elements of approximation file). Thus, the approximation file is simply an
array of these approximations. Intuitively, a(pi) contains sufficient information to
determine the cell c(pi) in which pi lies. Notice that for large dim values, the volume
of a cell is so small that it is highly unlikely the two points lie in the same cell.

3.3 Distance Bounds Between Cells and Pruning Conditions

Next, we are going to show how pairs of cells can be used to derive (lower and upper)
bounds between pairs of points. Given two points from two different points datasets pi
∈ P and qj ∈ Q, the minimum (maximum) distance between their cells (c(pi) and c(qj),
respectively) is a lower (upper) bound of its distance. Thus, given the cells of two
points from two different datasets, we can bound from below and above their distance
(dist(pi,qj)) as follows (according to the terminology of [20]): lBnd(c(pi), c(qj)) ≤
dist(pi, qj) ≤ uBnd(c(pi), c(qj)).

The lower bound, lBnd(c(pi), c(qj)), is the smallest distance between the cells of pi
and qj. Obviously, lBnd(c(pi),c(qj),d) ≤ lBnd(c(pi),c(qj)), ∀d: 0≤d≤dim–1 [7].
Analogously, we can obtain the upper bound, uBnd(c(pi), c(qj)). The right part of the
Fig. 2 shows these distance bounds and its relation with dist(pi, qj).

()
()
()−

=

+>+−

+>+−

=
1dim

0

2

2

 ,0

]1)(,[])(,[,]1)(,[])(,[

]1)(,[])(,[,]1)(,[])(,[

)(),(
d

idjdidjd

jdidjdid

ji

otherwise

pidmqidmpidmqidm

qidmpidmqidmpidm

qcpclBnd

()
()
()

()
()

−

=

−+

−+

+>−+

+>−+

=
1dim

0

2

2

2

2

 ,
])(,[]1)(,[

,])(,[]1)(,[
max

]1)(,[])(,[,])(,[]1)(,[

]1)(,[])(,[,])(,[]1)(,[

)(),(
d

idjd

jdid

idjdidjd

jdidjdid

ji

otherwise
pidmqidm

qidmpidm

pidmqidmpidmqidm

qidmpidmqidmpidm

qcpcuBnd

In order to design efficient algorithms for DJQ using the VA-file structure, pruning
conditions need to be defined.

Pruning Condition 1. If lBnd(c(pi),c(qj)) > z, then the pair of points (pi,qj) will be
discarded from the final result, where z is the δ distance threshold for SJ, or the

 VA-Files vs. R*-Trees in Distance Join Queries 159

distance value of the K-th closest pair that has been found so far (K-cpdist(p,q)) for K-
CPQ. lBnd(c(pi), c(qj)) ≤ δ (pi, qj) ∈ SJ(P, Q, δ) and lBnd(c(pi), c(qj)) ≤ K-cpdist(p,
q) (pi, qj) ∈ KCPQ(P, Q, K)

Pruning Condition 2. If lBnd(c(pi),c(qj)) > y, then the pair of points (pi, qj) will be
discarded from the final result, where y is the δ distance threshold for SJ, or the
distance value of the K-th largest upper bound encountered so far (K-cpuBnd(c(p),
c(q))) for K-CPQ. lBnd(c(pi), c(qj)) > δ (pi, qj) ∉ SJ(P, Q, δ) and lBnd(c(pi), c(qj))
> K-cpuBnd(c(p), c(q)) (pi, qj) ∉ KCPQ(P, Q, K). Note that in the case of SJ the two
pruning conditions are the same.

4 Algorithms for Distance Join Queries Using VA-Files

The previous distance bounds between cells and pruning conditions can be embedded
into search algorithms for VA-files and obtain the result of DJQ. In this section we
describe additional data structures needed for DJQ, a distance-based sweeping
technique for fast pruning, and two search algorithms using VA-files as in [20].

4.1 Data Structures for the Result and Distance-Based Sweep Technique

In order to design algorithms for processing K-CPQ in a non-incremental way (K
must be fixed in advance) [7], an extra data structure that holds the K closest pairs
(result of K-CPQ) is needed. This data structure is organized as a maximum binary
heap, called Kheap [8]. The closest pair with the largest distance (K-cpdist(p,q)) resides
on top of the Kheap (the root), and it will be used in pruning condition 1. Notice that
this data structure will also be used to calculate K-cpuBnd(c(p),c(q)), used in pruning
condition 2. On the other hand, the result of the SJ must not be ordered, and the
Kheap is not needed. Therefore, the data structure that holds the result set is (instead
of Kheap) a file of records (resultFile) of three fields, where the first field will be the
distance, whereas the second and the third ones will be the pair of points (pi,qj). To
accelerate the performance of SJs, a page buffer is used in main memory to hold the
records as they are computed and as soon as it gets full, we add a new page to the
result file.

Since the approximation file itself is simply a flat array on disk of all the
approximations of points (approximation file), we can adapt the distance-based plane-
sweep technique [7] for the high-dimensional space to avoid processing all possible
combinations of pairs from two approximations files. In general, this technique
consists of choosing a sweeping dimension and sorting the approximations on this
dimension in increasing order (if both files are sorted already on a common
dimension, no sorting is necessary). First, the sweeping dimension (0≤sd≤dim–1) is
established (e.g. sd = 0 or X-axis). After that, two pointers are maintained initially
pointing to the first entry of each sorted approximation file. Let pivot be the entry of
the smallest value of the approximation over the sweeping dimension pointed by one
of these two pointers, e.g. pivot = a(p0) {a(pi): 0≤i≤|P|–1}. The cell of the pivot must
be paired up with the cells determined by the approximations stored in the other
approximation file {a(qj): 0≤j≤|Q|–1} from left to right that satisfy lBnd(c(pivot),

160 A. Corral et al.

c(qj),sd) ≤ z (where z is a pruning distance, e.g. z = δ for SJs), obtaining a set of
candidate pairs of approximations where the element pivot is fixed. After all possible
pairs of approximations that contain pivot have been found, the pointer of the pivot is
increased to the next entry, pivot is updated with the approximation of the next
smallest value of the approximation over the sweeping dimension pointed by one of
the two pointers and the process is repeated until one of the approximation file is
completely scanned.

Notice that we apply lBnd(c(pi),c(qj),sd) because in this technique, the sweeping
takes place only over one dimension. Moreover, the search is only restricted to the
closest cells (obtained from approximations of points) with respect to the cell of the
pivot entry according to the current z value. No duplicated pairs are obtained, since
the cells are always scanned over sorted approximation files.

4.2 Distance-Based Sweep Algorithm (VA-DBSA)

The general schema for search algorithms using the VA-file structure has two phases.
In the first phase (filtering step), the approximations of points (approximation file) are
scanned to determine lower bounds on the distance of cells pairs, and pairs of points
are pruned according to the distance-based sweep technique and the pruning
conditions. In the second phase (refinement step), the filtered points (vector file) are
visited and the pairs of points that satisfy the distance condition (SJ or K-CPQ) are
chosen for the final result. Notice that the performance of this algorithm depends
upon the ordering of the approximations and points. The algorithm for processing the
K-CPQ is described by the following steps (z = K-cpdist(p,q); at the beginning z = ∞):

− Filtering step: Apply the distance-based sweep technique over the two
approximation files, according to lBnd(c(pi),c(qj),sd). Then, from these filtered
pairs of approximations (a(pi),a(qj)) select only those that satisfy the pruning
condition 1, i.e. lBnd(c(pi),c(qj)) ≤ z.

− Refinement step: From the final candidates of the filtering step, select only those
pairs of points from vector files having dist(pi,qj) ≤ z. Insert all of them into Kheap
until it gets full. Then remove the root of the Kheap and insert the new pair of
points (pi,qj), updating this data structure and z = K-cpdist(p,q).

The adaptation of this algorithm (VA-DBSA) from K-CPQ to the SJ is very simple.
In the filtering and refinement steps, replace z with δ. Notice that Kheap is now
unnecessary and the final result is stored in resultFile.

4.3 Near Optimal Distance-Based Sweep Algorithm (VA-NODBSA)

In [20] a near optimal algorithm for K-NNQ which minimizes the number of vectors
visited was proposed. Here, we present a version of near optimal algorithm for DJQ,
although it is more complex, time-consuming and has memory-overhead. It has also
two phases. (1) During the filtering step the approximations are scanned, the distance-
based sweep technique is applied and, the lBnd and uBnd are computed for each pair
of approximations. Assuming that K-cpuBnd(c(p),c(q)) is also calculated using a
Kheap, if a pair of approximations is encountered such that lBnd(c(pi),c(qj)) > K-
cpuBnd(c(p),c(q)), then the pair of points (pi,qj) can be discarded. The selected pairs of

 VA-Files vs. R*-Trees in Distance Join Queries 161

approximations and their lBnd are organized as a minimum binary heap, called Nheap
[7]. The size of Nheap could be very large with the increase of dim and the cardinality
of the datasets, and a hybrid memory/disk scheme and techniques based on range
partitioning could be needed [8]. (2) During the refinement step the pairs stored in
Nheap are visited in increasing order of lBnd to determine the final answer set. Not all
these candidate pairs of points are visited, but this phase ends when lBnd(c(pi),c(qj)) >
K-cpdist(p,q), (recall that K-cpdist(p,q) is also calculated using a Kheap). The algorithm
for K-CPQ is described by the following steps (z = K-cpdist(p,q) and y = K-
cpuBnd(c(p),c(q)), at the beginning z = ∞ and y = –∞):

− Filtering step: Create Nheap, and a Kheap structure based on uBnd, called
KheapU. Apply the distance-based sweep technique over the two approximation
files, according to lBnd(c(pi),c(qj),sd). Then, from these pairs of approximations
(a(pi), a(qj)) select only those that satisfy the pruning condition 2, i.e.
lBnd(c(pi),c(qj)) ≤ y, and store them in Nheap. y = K-cpuBnd(c(p), c(q)) is computed
using KheapU.

− Refinement step: Process Nheap from these pairs of approximations (a(pi), a(qj))
while lBnd(c(pi),c(qj)) ≤ z, i.e. using the pruning condition 1. z = K-cpdist(p,q) is
computed using a Kheap structure based on dist, called KheapD. Moreover, select
only those pairs of points from vector files having dist(pi, qj) ≤ z, and insert all of
them into KheapD until it gets full. Then remove the root of the KheapD and insert
the new pair of points (pi, qj), updating this data structure and z = K-cpdist(p,q).

The adaptation of this algorithm (VA-NODBSA) from K-CPQ to the SJ is analogous
to the adaptation of VA-DBSA for both phases (filtering and refinement).

5 Experimental Results

In this section, we have evaluated the performance of our algorithms over real high-
dimensional datasets of image features (unlike [20] where uniform data have been
used) extracted from a Corel image collection (http://corel.digitalriver.com/),
available from [21]. We have chosen two datasets of features based on the colour
histogram (CH) and colour histogram layout (HL). Each real dataset contains 68,040
feature vectors of dim = 32. From each 32-dimensional vector, we have chosen the
first 4, 8, 12, 16 and 32 dimensions, giving rise to pairs of points datasets with
different dimensionalities and the same cardinality (68,040). These pairs of datasets
are used in K-CPQ and SJ.

All experiments were performed on an Intel/Linux workstation with a Pentium IV
2.5 GHz processor, 1 GByte of main memory, and several GBytes of secondary
storage, using the gcc compiler. The index page size was 8 Kb, and the number of
items sharing the same disk page decreased as the dimensionality increased. All the
elements were fetched directly from the disk without caching. The performance
measurements are mainly: (a) the elapsed time (wall-clock time) reported in seconds
and (b) the number of page accesses. For comparison purposes, we have also
implemented distance join algorithms using nested loops over the vector files and R-
tree-based distance join algorithms [8], applying in both cases the distance-based

162 A. Corral et al.

sweep technique described previously. Besides, the index construction was not taken
into account for the total elapsed time.

Our first experiment seeks the most appropriate number of bits per dimension (bd)
for VA-files that will be used in the next experiments. The suggested value in [20] for
bd was 8, although here we have obtained (after many experiments) that bd = 10
reports better results for DJQ. For higher values of bd the size of the approximation
file can be larger than the size of the vector file, and the filtering power is seriously
affected, since the vectors themselves are used without being approximated. We have
also observed that VA-NODBSA minimizes the number of vectors visited, although it
is time-consuming (slower than VA-DBSA), because in the filtering step it is
necessary to maintain two auxiliary structures Nheap and KheapU (variable sizes).

0

35

70

105

140

175

15000 30000 45000 68040

Cardinality of the datasets

E
la

ps
ed

 T
im

e
(s

ec
.)

VA-DBSA VA-NODBSA

0

170

340

510

680

850

15000 30000 45000 68040

Cardinality of the datasets

V
ec

to
r

A
cc

es
se

s

VA-DBSA VA-NODBSA

Fig. 3. Performance of VA-files algorithms for K-CPQ with respect to the dataset sizes

In the second experiment, we have studied the behaviour of the VA-file-based
algorithms for K-CPQ when the cardinality of the datasets varies. We have the
following configuration: dim = 16, |P| = |Q| = 15,000, 30,000, 45,000 and 68,040, K =
100 and bd = 10. Fig. 3 shows that VA-DBSA is faster than VA-NODBSA, although
it requires a smaller number of vector accesses (in the refinement step). In addition,
we can also observe the effect of the increase of the size of the datasets for VA-
NODBSA. This results to the increase of the consumed time and the increase of the
memory-overhead, since more items have to be combined in the filtering step.

In the third experiment, we compare the performance of the VA-file-based
algorithms (VA-DBSA = DB and VA-NODBSA = NO) with a nested loops algorithm
only using vector files (NL) and with an R*-tree distance join algorithm (Rtree),
varying the dimensionality (dim = 4, 8, 12, 16 and 32). Fig. 4 shows the performance
measurements for the following configuration: |P| = |Q| = 68,040, K=100, bd = 10 and,
the maximum branching factors for R*-trees were 227, 120, 81, 62 and 31 for each
dim value, using a node size of 8 Kb. When comparing the results of the K-CPQ
algorithms with respect to the I/O activity and the elapsed time, we observe that this
query becomes more expensive as the dimensionality grows, in particular for values
larger than 16. Notice, also, that the huge number of pages accesses (the sum of the
number of approximation and vector accesses in the VA-file structure) in all
algorithms is due to the absence of global buffering. The R-tree version was the
fastest in all cases (e.g. 5 times faster than NL for dim = 2), although for low and

 VA-Files vs. R*-Trees in Distance Join Queries 163

medium dimensions it needed many page accesses. NL is also an interesting
alternative with respect to the total elapsed time because the expensive filtering step is
avoided, but for dim = 32 it obtained the largest value of page accesses. DB is better
than NO for these two performance metrics, but the latter gets the minimum number
of vector accesses after an expensive filtering phase over the two approximation files.
For example, for dim = 32 the total number of vector accesses was 277 for NO and
2,811 for DB, whereas the number of approximation accesses was 17,227,051 and
8,255,818, respectively.

1

10

100

1000

10000

100000

4 8 12 16 32

Dimensions (dim)

E
la

ps
ed

 T
im

e
(s

ec
.)

DB NO NL Rtree

1000

10000

100000

1000000

10000000

100000000

4 8 12 16 32

Dimensions (dim)

P
ag

e
A

cc
es

se
s

DB NO NL Rtree

Fig. 4. Performance of distance-join algorithms where the dimensionality is increased

The forth experiment compares the performance of the VA-file-based algorithms
(DB and NO) with NL and Rtree, varying K from 1 to 100,000. Fig. 5 illustrates the
performance measurements for the configuration: dim = 16, |P| = |Q| = 68,040, bd = 10
and the maximum branching factor for R*-trees was 62. In the left chart, we see that
the slowest was NO, due to its time and memory consumption, although it needs the
minimum number of vector accesses (e.g. K = 100,000, it was 83,033). The DB
obtains interesting results for the total number of page accesses, when we have large
K values. NL reports very good results since it avoids the filtering step and only
works over the vector files using the distance-based sweep technique. For example, it
was the fastest and the cheapest in terms of I/O activity for small K values (1 and 10).
Finally, the results of the K-CPQ algorithm over R*-trees are very interesting as well,
since it is the fastest for large K values and it obtains a small number of page
accesses, mainly due to the high pruning in the internal nodes on the R*-trees, the use
of distance-based sweep technique and the use of large fan-outs of the R-tree nodes.

The last experiment studies the performance of the best VA-file-based algorithm
(VA-DBSA), NL and the Rtree variant, for similarity join (SJ) using different δ
values (0.001, 0.003, 0.005, 0.008, 0.01, 0.03 and 0.05). Fig. 6 illustrates the
performance measurements for the configuration: dim = 16, |P| = |Q| = 68,040, bd = 10
and the maximum branching factor for R*-trees was 62. We can deduce that the R-
tree distance join algorithm using distance-based sweep technique is the best
alternative. For example, it was 10.7 times faster than NL for δ = 0.001 (in the result,
each point has an average of 7.1 join mates) and 8.1 times for δ = 0.05 (141.8 join
mates per point). NL (the filtering step is not performed) is slightly faster than

164 A. Corral et al.

1

10

100

1000

10000

1 10 10^2 10^3 10^4 10^5

Cardinality of the result of KCPQ

E
la

ps
ed

 T
im

e
(s

ec
.)

DB NO NL Rtree

10000

100000

1000000

10000000

1 10 10^2 10^3 10^4 10^5

Cardinality of the result of KCPQ

P
ag

e
A

cc
es

se
s

DB NO NL Rtree

Fig. 5. Performance of K-CPQ when K is varied from 1 to 100,000

VA-DBSA, but it needs more page accesses. An interesting behaviour of the R-tree
variant is that from δ = 0.01 to δ = 0.05, it needed 3.3 times more page accesses than
for δ = 0.001, whereas for VA-DBSA this was of 17.5 times.

From the previous performance comparison for real high-dimensional datasets, the
most important conclusions are the following: (1) the filtering power of VA-file-based
algorithms for DJQ is reduced when the dimensionality, cardinality of the datasets, K
and δ are increased. (2) VA-NODBSA minimizes the number of vector accesses at the
expense of time consumption and memory-overhead. (3) Including the distance-based
sweep technique in the R-tree distance join algorithm improves notably its
performance mainly with respect to the CPU cost. (4) And finally, the most important
conclusion is that for DJQ where two real high-dimensional datasets are involved, the
use of hierarchical multidimensional access methods (as R*-trees) with optimization
techniques (like distance-based sweep) to the processing of index nodes (controlling
the trade-off between I/O and CPU cost with respect to the page size [KoS01]) is the
best alternative since its filtering power is increased, when K and δ are not very large
(in this case the nested loops is the best alternative because it has no additional index
overhead).

10

100

1000

10000

0.001 0.005 0.010 0.050

Distance threshold for SJ

E
la

ps
ed

 T
im

e
(s

ec
.)

VA-DBSA NL Rtree

100000

1000000

10000000

100000000

0.001 0.005 0.010 0.050

Distance threshold for SJ

P
ag

e
A

cc
es

se
s

VA-DBSA NL Rtree

Fig. 6. Performance of SJ when δ is varied

 VA-Files vs. R*-Trees in Distance Join Queries 165

6 Conclusions and Future Work

The contribution of this paper is twofold. (1) It reports the first development of
algorithms for DJQ on pairs of high-dimensional data sets using VA-files. For this
purpose, special bounds and pruning conditions have been proposed and employed.
(2) It reports a detailed performance comparison of VA-files vs. R*-trees with respect
to DJQ using real data. More specifically, for K-NNQs and distance range queries,
where one real high-dimensional dataset and one query point are involved, one of the
best alternatives to overcome the dimensionality curse is the use of VA-files (a
filtering-based approach). For K-CPQs and SJs, where two real high-dimensional
datasets are combined, this is not the best alternative with respect to the CPU cost,
because the filtering step is overloaded, while it is competitive with respect to the I/O
cost. The use of efficient hierarchical multi-dimensional access methods with
optimization techniques in the processing of index nodes is a very interesting choice
(since the filtering power can be improved notably). Future research may include the
use of approximation techniques on VA-files [19, 8], the cost estimation of VA-file-
based DJQ [19] and the study of the buffering impact over these DJQs, as in [4].

References

1. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B.: “The R*-tree: an Efficient and
Robust Access Method for Points and Rectangles”, Proc. SIGMOD Conf. (1990) 322-331

2. Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H. P., Sander, J.: “Independent
Quantization: an Index Compression Technique for High-Dimensional Data Spaces”, Proc.
ICDE Conf. (2000) 577-588

3. Böhm, C., Braunmuller, B., Breuning, M. M., Kriegel, H. P.: “High Performance
Clustering based on Similarity Join”, Proc. CIKM Conf. (2000) 298-305

4. Böhm, C., Kriegel, H. P.: “A Cost Model and Index Architecture for the Similarity Join”,
Proc. ICDE Conf. (2001) 411-420

5. Cha, G. H., Chung, C. W.: “The GC-tree: a High-Dimensional Index Structure for
Similarity Search in Image Databases”, Transactions on Multimedia, Vol. 4, No. 2 (2002)
235-247

6. Cha, G. H., Zhu, X., Petkovic, D, Chung, C.W.: “An Efficient Indexing Method for
Nearest Neighbor Searches in High-Dimensional Image Databases”, Transactions on
Multimedia, Vol. 4, No. 1 (2002) 76-87

7. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: “Algorithms for
Processing K-Closest-Pair Queries in Spatial Databases”, Data and Knowledge
Engineering Journal, Vol. 49, No. 1 (2004) 67-104

8. Corral, A., Vassilakopoulos, M.: “On Approximate Algorithms for Distance-Based
Queries using R-trees”, The Computer Journal, Vol. 48, No. 2 (2005) 220-238

9. Cui, B., Hu, J., Shen, H., Yu, C.: “Adaptive Quantization of the High-Dimensional Data
for Efficient KNN Processing”, Proc. DASFAA Conf. (2004) 302-313

10. Dittrich, J. P., Seeger, B.: “GESS: a Scalable Similarity-Join Algorithm for Mining Large
Data Sets in High Dimensional Spaces”, Proc. SIGKDD Conf. (2001) 47-56

11. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.:
“Efficient and Effective Querying by Image Content”, Journal of Intelligent Information
System, Vol.3, No.3-4 (1994) 231-262

166 A. Corral et al.

12. Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A. E.: “Vector Approximation
Based Indexing for Non-Uniform High Dimensional Data Sets”, Proc. CIKM Conf. (2000)
202-209

13. Guttman, A.: “R-trees: a Dynamic Index Structure for Spatial Searching”, Proc. SIGMOD
Conf. (1984) 47-57

14. Koudas, N., Sevcik, K. C.: “High Dimensional Similarity Joins: Algorithms and
Performance Evaluation”, Transactions on Knowledge and Data Engineering, Vol. 12, No.
1 (2000) 3-18

15. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, C., Protopapas, Z.: “Fast Nearest
Neighbor Search in Medical Images Databases”, Proc. VLDB Conf. (1996) 215-226

16. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: “C2P: Clustering based on Closest
Pairs”, Proc. VLDB Conf. (2001) 331-340

17. Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: “The A-tree: an Index Structure for
High-Dimensional Spaces using Relative Approximation”, Proc. VLDB Conf. (2000) 516-
526

18. Shim, K., Srikant, R., Agrawal, R.: “High-Dimensional Similarity Joins”, Proc. of ICDE
Conf. (1997) 301-311

19. Weber, R., Böhm, K.: “Trading Quality for Time with Nearest Neighbor Search”, Proc.
EDBT Conf. (2000) 21-35

20. Weber, R., Schek, H. J., Blott, S.: “A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces”, Proc. VLDB Conf. (1998) 194-
205

21. Web site: http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

The Expressivity of Constraint Query Languages
with Boolean Algebra Linear Cardinality

Constraints�

Peter Revesz

Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

revesz@cse.unl.edu

Abstract. Constraint query languages with Boolean algebra linear car-
dinality constraints were introduced recently and shown to be evaluable
using a quantifier elimination method in [22]. However, the expressive
power of constraint query languages with linear cardinality constraints
is still poorly understood in comparison with other cases of constraint
query languages. This paper makes several contributions to the anal-
ysis of their expressive power. Several problems that were previously
provably impossible to express even in FO + POLY are shown to be
expressible using first-order query languages with linear cardinality con-
straints FO + BALC. We also show that all monadic Datalog queries
are expressible in FO + BALC. Finally, we also show a new results for
FO+LINEAR by expressing in it the problem of finding the time when
two linearly moving point objects are closest to each other.

1 Introduction

An important question for constraint databases [13] is their expressive power,
that is, to know what problems they can or cannot express [17,20]. Since con-
straint databases generalize relational databases with the extension of a tuple to
constraint tuples, which are conjunctions of constraints, it seems intuitive that
constraint databases can express more types of problems. However, the fact is
that most results regarding the expressive power of constraint query languages
are negative. Consider the following problems:

Definition 1. [MAJORITY] The input has two unary relations R1 and R2. The
output is true if and only if R1 ⊆ R2 and |R2| ≤ 2|R1|.

Definition 2. [TRANSITIVE CLOSURE] The input is a binary relation R. The
output is a binary relation that is the transitive closure of R, that is, all pairs
(a0, an) such that there are elements (a0, a1),. . . ,(an−1, an) in R.

� This work was supported in part by USA National Science Foundation grant EIA-
0091530 and a NASA Space and EPSCoR grant.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 167–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 P. Revesz

One very powerful-looking first-order query language is Relational Calculus
with polynomial constraints over the real numbers. We call this language FO +
POLY . The following is a surprising theorem:

Theorem 1 (Benedikt et al. [3]). MAJORITY and TRANSITIVE CLOSURE are
not expressible in FO + POLY .

Recently, Revesz [22] presented a first-order language with Boolean algebras
and linear cardinality constraints. We call this language FO + BALC. In this
paper we show the following:

Theorem 2. MAJORITYand TRANSITIVECLOSUREare expressible in FO+BALC.

There are some known expressibility results also for first-order queries with
linear constraints over the rational numbers, which we denote as FO+LINEAR.
Afrati et al. [1] show that FO+LINEAR can express a query that returns true if
and only if the database consists of exactly c parallel lines where c is a constant.
Similarly, they show that FO+LINEAR can also express the query that returns
true if and only if the database consists of two lines intersecting at a point.

In this paper we move beyond just static spatial objects and consider moving
point objects. There is a growing interest in representing moving objects. For
example, Cai et al. [4,23], Chomicki et al. [6,7,8], Güting et al. [11], Kollios
et al. [14], Saltenis et al. [24], and Wolfson et al. [26] describe moving object
data models and techniques to query moving objects. Constraint databases are
a natural representation of moving objects. A natural query on moving objects
is the following.

Definition 3. [TIME CLOSEST] Given two moving points that move along two
different lines with uniform speed, find the time when they are closest to each
other.

In this paper we show the following:

Theorem 3. TIME CLOSEST is expressible in FO + LINEAR.

While in this paper we focus on first-order query languages, there are also
some interesting expressibility results for recursive query languages. For exam-
ple, Kuijpers and Smits [15] show that if the constraint database input is a
binary relation R(x, y) that describes a polynomial spatial relation, i.e., rela-
tions expressible using quantifier-free real polynomial constraints, then there is
no Datalog query with linear constraints that returns true if and only if R is
topologically connected.

We only consider in this paper the class of monadic Datalog queries, i.e.,
those queries in which each defined relation (in the head of the rules) is a unary
relation. We show the following theorem for monadic Datalog queries:

The Expressivity of Constraint Query Languages 169

Theorem 4. Any monadic Datalog query is expressible in FO + BALC.

The rest of the paper is organized as follows. Section 2 is a brief review
of basic concepts. Section 3 proves Theorem 2. This section also shows that
several other graph problems, such as SAME COLOR and MAXIMAL CLIQUE as well
as the N-QUEENS problem are also expressible in FO + BALC. Section 4 proves
Theorem 4. Section 5 proves Theorem 3. Section 6 discusses related work. Finally,
Section 7 gives some conclusions.

2 Constraint Databases

Constraint databases [13] and constraint logic programming [12] both represent
input information as a set of constraint tuples. For example, to describe a graph
with vertices V = {1, 2, 3, 4} and edges E = {(1, 2), (2, 3), (1, 4)}, a constraint
database over the Boolean algebras of sets of subsets of the integers could be
the following, where comma means “and”:

Edge

X Y
X Y X = {1}, Y = {2}
X Y X = {2}, Y = {3}
X Y X = {1}, Y = {4}

We will use this type of representation for several graph problems in Section 3.
The intended meaning of a constraint tuple is that any instantiation of the
variables that satisfies the constraint belongs to the relation. In the above ex-
ample the satisfying instantiations are obvious, but they are less obvious when
the constraints are more complex. In particular, we allow besides the equality
constraints above any linear cardinality constraint [22] of the form:

c1|t1|+ . . . + ck|tk| θ b

where each ti for 1 ≤ i ≤ k is a Boolean term –composed of set constants or
variables, and the intersection, union, and set complement with respect to the
whole set of integers–, each ci for 1 ≤ i ≤ k and b are integer constants and θ is:

= for the equality relation,
≥ for the greater than or equal comparison operator,
≤ for the less than or equal comparison operator, or
≡n for the congruence relation modulus some positive integer constant n.

Note: Boolean cardinality constraints can express other common constraints
over sets. For example, the constraint that t1 is a subset of t2, denoted

t1 ⊆ t2 is equivalent to |t1 ∧ t2| = 0

170 P. Revesz

where t1 and t2 are Boolean terms and t2 is the complement of t2. For the sake
of greater readability, in the following we will use ⊆ constraints, because readers
are more familiar with it.

In this paper we consider first-order languages FO with existential ∃ and
universal ∀ quantifiers, and the connectives logical and ∧, or ∨, and not ¬, and
variables and constants with the usual composition.

We also consider Datalog, which is a rule-based language that is related to
Prolog. Each Datalog query contains a Datalog program and an input database.
We divide the set of relation names R into defined relation names and input
relation names. Each Datalog query consists of a finite set of rules of the form:

R0(x1, . . . , xk) :— R1(x1,1, . . . , x1,k1), . . . Rn(xn,1, . . . , xn,kn), C1, . . . , Cm.

where each Ri is either an input relation name or a defined relation name, and
the xs are either variables or constants, and each Ci is a constraint. The relation
names R0, . . . , Rn are not necessarily distinct. For a good introduction of Datalog
queries and examples see [17,20].

3 Problems Expressible in FO + BALC

In this section, we study the expressive power of FO + BALC. This language
seems to be a natural language to express a variety of problems. including
MAJORITY, several graph problems, and the N-QUEENS problem, which is a fa-
miliar search problem in AI.

3.1 The MAJORITY Problem

To express the MAJORITY query in FO + BALC we assume that the two input
relations R1(X) and R2(Y) each contain one equality constraint that sets the
value of X and Y equal to a set of numbers. Then the FO + BALC query:

∃X, Y R1(X) ∧ R2(Y) ∧ X ⊆ Y ∧ 2|X | − |Y | ≥ 0.

correctly expresses MAJORITY. The simplicity of the above formula suggests
that FO + BALC is a natural language to express this and similar queries.

3.2 The TRANSITIVE CLOSURE Problem

To express transitive closure, we at first introduce the following definition.

Definition 4. Let S and X be any two set variables. Then,

S[X] =def |X | = 1 ∧ X ⊆ S.

The above definition says that S[X] is true if and only if X is a singleton
set, which is a subset of S. Using this definition, it becomes easier to express
transitive closure. We express it as follows:

φTC(Z1, Z2) = ∀S (S[Z1] ∧ ∀X, Y S[X] ∧R(X, Y) → S[Y]) → S[Z2].

The Expressivity of Constraint Query Languages 171

The φTC(Z1, Z2) is a formula with two free variables, namely Z1 and Z2.
Let us consider any substitution for these two variables. Suppose that Z1 is
substituted by a0 and Z2 is substituted by an, such that, there are elements
(a0, a1),. . . ,(an−1, an) in R.

The substituted formula φTC(a0, an) says that for all S if (a0 ∈ S, and if
every time the first argument of R is in S, then the second argument of R is
also in S), then an ∈ S. Since we assumed that there is a sequence of elements
(a0, a1),. . . ,(an−1, an) in R, the condition of the main implication within φ is true
if and only if a0, . . . , an ∈ S. Then clearly an ∈ S, hence the then clause is also
true. Therefore, the main implication of φ is true, and (a0, an) is a substitution
into φTC that makes it true.

Conversely, if there is no sequence of elements of the form (a0, a1), . . . ,
(an−1, an) in R, then there must exist an S which has in it a0 and only those
which are “reachable” by a sequence of elements from a0. Then the condition
of the main implication in φTC is true, but since an is not “reachable” from a0

the then clause is false. That makes the main implication false, showing that
(a0, an) is not a satisfying substitution in this case. This shows that Theorem 2
holds.

3.3 The SAME COLOR Problem

Given an undirected graph that is 2-colorable, we would like to know which pairs
of vertices can be colored the same color. Suppose that the colors we consider
are blue and red. The following expresses that Z1 and Z2 can be both colored blue.

φB = ∃B B[Z1] ∧ B[Z2]

where each vertex which is in set B is assumed to be colored blue, and each
vertex not in B is assumed to be colored red. The following formula expresses
that the vertices that are connected to a blue vertex are red.

φB−Neighbor = ∀X, Y B[X] ∧ Edge(X, Y) → ¬B[Y].

Similarly, the following asserts that the vertices connected to a red vertex
are blue.

φR−Neighbor = ∀X, Y ¬B[X] ∧ Edge(X, Y) → B[Y].

Then the formula:

φSC = φB ∧ φB−Neighbor ∧ φR−Neighbor

expresses the SAME COLOR problem.

3.4 The MAXIMAL CLIQUE Problem

In an undirected graph, a clique is a subgraph in which every vertex is connected
with every other vertex. The size of a clique is the number of vertices it contains.

172 P. Revesz

We represent an undirected graph by a binary relation Edge where Edge is sym-
metric, that is, it represents an undirected edge between X and Y by containing
both (X, Y) and (Y, X) as two elements.

Given an undirected graph and an integer constant k, the MAXIMAL CLIQUE
problem asks whether the size of the maximum clique in the graph is k. To
express MAXIMAL CLIQUE, at first we express that a graph has a clique with k
vertices as follows:

φk = ∃S |S| = k ∧ ∀X, Y (S[X] ∧ S[Y] ∧X �= Y) → Edge(X, Y).

In the above, S contains the vertices that belong to a clique. Clearly, if the
maximal clique has size k, then the graph has a clique of size k but does not
have a clique of size k + 1. That is,

φMC = φk ∧ ¬φk+1.

3.5 The N-QUEENS Problem

Given a chess-board of size n × n for some integer n, the N-QUEENS problem
asks to place n queens on the chess-board so that no two queens are in the same
row, column, or diagonal. The N-QUEENS problem is a quite challenging search
problem that is not easy to implement in a procedural language like C++. We
give a high-level declarative solution to this problem.

While the following solution can be generalized to any n, let us assume for
the sake of simplicity that n = 5. Then let’s count the squares on the chess-board
in the usual way, that is, from left to right in each row, and from the top row to
the bottom row, as shown below.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Then let variables Ri for 1 ≤ i ≤ 5 be those locations in the ith row that
contain a queen. We know the following:

φR = R1 ⊆ {1, 2, 3, 4, 5} ∧ . . . ∧ R5 ⊆ {21, 22, 23, 24, 25}.

Similarly, let variables Ci for 1 ≤ i ≤ 5 be those locations in the ith column
that contain a queen. We know that:

φC = C1 ⊆ {1, 6, 11, 16, 21} ∧ . . . ∧ C5 ⊆ {5, 10, 15, 20, 25}.

Further, let variables Di for 1 ≤ i ≤ 7 be the set of locations of queens on the
diagonals that run downwards from left to right and have at least two squares.
We know that:

φD = D1 ⊆ {4, 10} ∧ . . . ∧ D7 ⊆ {16, 22}.

The Expressivity of Constraint Query Languages 173

The symmetric case is the variables Li for 1 ≤ i ≤ 7 that contain the set of
locations of queens on the diagonals that run downwards from right to left and
have at least two squares. For those we have:

φL = L1 ⊆ {2, 6} ∧ . . . ∧ L7 ⊆ {20, 24}.

Since no row or column can have more than one queen, there must be exactly
one queen in each row and in each column. Further, on each diagonal there may
be at most one queen. Therefore, the formula:

φR ∧ φC ∧ φD ∧ φL ∧ (
∧
i

|Ri| = 1) ∧ (
∧
i

|Ci| = 1) ∧ (
∧
i

|Di| ≤ 1) ∧ (
∧
i

|Li| ≤ 1)

correctly expresses the N-QUEENS problem.

4 Monadic Datalog is Expressible in FO + BALC

The problems expressed in Section 3 give interesting examples that can be ex-
pressed in FO+BALC. In this section, instead of giving just examples, we show
that an entire class of Datalog programs, namely the class of monadic Datalog
programs, is expressible in FO + BALC.

In a monadic Datalog program P the defined relations are monadic, that is,
have arity one. Without loss of generality we assume that the variables range
over the integers and the defined (or intensional) relations are S1, . . . , Sm and
the input (or extensional) relations are R1, . . . , Rn.

For each rule rj of P with the form:

A0 :— A1, . . . , Ak.

where each Ai for 1 ≤ i ≤ k is an atom (i.e., a relation name with variables from
the set X1, . . . , Xl), we write the following expression:

φj = ∀X1, . . . , Xl B1 ∧ . . . ∧Bk → B0.

where Bi is Ai if Ai contains an input relation name, and Bi is Sj [X] if Ai is
Sj(X) for some defined relation name Sj and X is either one of the variables
X1, . . . , Xl or a concrete set of integer constants. Note that φj may contain only
S1, . . . , Sm as free variables ranging over the subsets of the integers. Clearly, the
essential difference between the monadic Datalog program and the conjunction:∧

j

φj

is that for the monadic Datalog program the least model is returned while the
conjunction can have many models. The intersection of all the models of the
conjunction is the least model of the monadic Datalog program. To select the

174 P. Revesz

least model, we have to add an assertion that the model returned must be the
minimal model. We can do that by writing the following expression:

φMoD =

⎛
⎝∧

j

φj

⎞
⎠ ∧

⎛
⎝∀S+

1 . . . , S+
k

⎛
⎝∧

j

φ+
j

⎞
⎠ →

(∧
i

Si ⊆ S+
i

)⎞
⎠

where φ+
j is like φj with Si replaced by S+

i . Then φMoD expresses what we
need. Each monadic Datalog program has a least model S1, . . . , Sk, which is the
output database, i.e., the assignment to S1, . . . , Sk returned by an evaluation of
the program on an input database. Clearly, φMoD enforces that S1, . . . , Sk is a
minimal model by constraining all other models S+

1 . . . , S+
k to be bigger or equal

to it. Let us see a concrete example.

Example 1. Consider the following monadic Datalog program P .

S(X) :— Start(X).
S(Y) :— S(X), Edge(X, Y).

Here program P finds the vertices that are reachable from the start vertices
contained in the input relation Start. The first rule can be expressed by:

φ1 = ∀X Start(X) → S[X].

The second rule can be expressed by:

φ2 = ∀X, Y S[X] ∧ Edge(X, Y) → S[Y].

Then P can be expressed in FO + BALC as:

φP = (φ1 ∧ φ2) ∧
(
∀S+ (φ+

1 ∧ φ+
2) → S ⊆ S+

)
.

Since S is a model of the rules of P , and for any other model S+ of the rules
of P we have S ⊆ S+, it follows that S must be the least model.

5 The TIME CLOSEST Problem in FO + LINEAR

Suppose that two cars, which both move linearly in the plane, want to radio-
communicate with each other. What is the best time to attempt the radio com-
munication? Intuitively, the best time would be when the two cars are closest
to each other, hence that time instance needs to be found. We show that it
can be found using only linear constraints, which is surprising, because at first
glance the problem seems to require the Euclidean distance function, which is a
quadratic polynomial constraint.

The two cars can be represented by two constraint database relations P1(x, y, t)
and P2(x, y, t). For example, an input database instance could be the following
(see also Figure 1):

P1(x, y, t) :— x = t, y = 2t + 4.
P2(x, y, t) :— x = 3t, y = 4t.

The Expressivity of Constraint Query Languages 175

7

6

5

4

3

8

13

12

11

10

9

2

1

14

4

3

2

1

0

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(3t, 4t)

(t, 2t+4)

8

7

6

0

19

18

17

16

15

20 5

4

3

2

1

0

Fig. 1. Two cars moving in the plane

Suppose that we would like to find the time instance t when the two cars are
closest to each other. We can define first the difference between the two cars at
any time t as follows:

ΔP (x, y, t) = ∃x1, x2, y1, y2 P1(x1, y1, t) ∧ P2(x2, y2, t) ∧ x = x2 − x1∧
y = y2 − y1.

ΔP is also a moving point in the plane as shown in Figure 2. The difference
between the two cars is exactly the difference between ΔP and the origin at any
time t. Therefore, the two cars are closest to each other when ΔP is closest to
the origin. Now the projection of ΔP onto the plane is a line, which is the path
along which ΔP travels. We can find this by:

ΔPline(x, y) = ∃t ΔP (x, y, t).

Let us now take the line which goes through the origin and is perpendicular
to ΔPline. If (x1, y1) and (x2, y2) are two points on ΔPline, then the slope of
ΔPline is:

y2 − y1

x2 − x1
.

The perpendicular line will have a negative reciprocal slope and will go through
the origin. Hence its line equation is:

y = −x2 − x1

y2 − y1
x (1)

176 P. Revesz

4

3

2

1

5

10

9

8

7

6

11

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

(2t, 2t-4)

7

9

-4

-3

-2

-1

10

6

16

15

14

13

12

0

5

4

3

2

1

Fig. 2. The ΔP moving point

Now we can chose any two distinct points on the line ΔPline for expressing
the line equation. Let us choose (x1, y1) to be the intersection point of ΔPline
and the line perpendicular to it and going through the origin. Further, let us
chose the second point (x2, y2) such that

y2 = x1 + y1. (2)

Clearly, this is always possible to do when the line is not vertical. Now what
is the intersection point? It will satisfy Equations (1) and (2), that is:

y1 = −x2 − x1

y2 − y1
x1

x1 = y2 − y1. (3)

The above can be simplified to:

y1 = x1 − x2

x1 = y2 − y1. (4)

Therefore, if ΔPline is not vertical, that is, x1 �= x2, then the point of
ΔPline that is closest to the origin is exactly the intersection point, hence:

Closest Point(x1, y1) = ∃x2, y2 ΔPline(x1, y1) ∧ ΔPline(x2, y2) ∧
y1 = x1 − x2 ∧ x1 = y2 − y1 ∧ x1 �= x2.

The Expressivity of Constraint Query Languages 177

Otherwise, if ΔPline is vertical, that is, for any two different points x1 = x2,
then the closest point is:

Closest Point(x1, y1) = ∃x2, y2 ΔPline(x1, y1) ∧ ΔPline(x2, y2) ∧
y1 = 0 ∧ x1 = x2 ∧ y2 �= 0.

Hence putting the above two cases together, we have:

Closest Point(x1, y1) = ∃x2, y2 ΔPline(x1, y1) ∧ ΔPline(x2, y2) ∧
((y1 = x1 − x2 ∧ x1 = y2 − y1 ∧ x1 �= x2) ∨
(y1 = 0 ∧ x1 = x2 ∧ y2 �= 0)).

The time when the two cars are closest to each other is:

Closest T ime(t) = ∃x, y ΔP (x, y, t) ∧ Closest Point(x, y).

Clearly, the above formula is in FO + LINEAR, which shows Theorem 3.

Example 2. Let us look at what will happen when we have the input database
instance P1 and P2 as given above. In that case, we obtain:

ΔP (x, y, t) :— x = 2t, y = 2t− 4.

ΔP line(x, y) :— x = y + 4.

For Closest Point, we get after simplifications:

Closest Point(x1, y1) = ∃x2, y2 x1 = y1 + 4 ∧ x2 = y2 + 4 ∧
y1 = x1 − x2 ∧ x1 = y2 − y1 ∧ x1 �= x2.

Eliminating x2 and y2 we get:

Closest Point(x1, y1) = x1 = 2 ∧ y1 = −2.

Finally, the closest time is calculated as:

Closest T ime(t) = ∃x, y x = 2t ∧ y = 2t− 4 ∧ x = 2 ∧ y = −2.

Eliminating x and y we get:

Closest T ime(1).

Therefore, the two cars are closest at time 1. It is at that time that the two cars
should attempt to radio-communicate with each other.

6 Related Work

The present work extends the author’s earlier work that presented a quantifier
elimination for the first-order theory of atomic Boolean algebras of sets with
linear cardinality constraints [21,22] but did not examine its expressive power.

178 P. Revesz

Feferman and Vaught (see Theorem 8.1 in [10]) proved the decidability of
the first-order theory of atomic Boolean algebras of sets with set-theoretical
equivalence which are also commonly called today equicardinality constraints.
Let us denote this logic by FO + EC. An equicardinality constraint between
sets A and B, denoted A ∼ B, simply means that sets A and B have the
same cardinality and can be easily expressed by the linear cardinality constraint
|A| − |B| = 0. Hence obviously FO + BALC includes FO + EC. Interestingly,
however, the two logics have the same expressive power, because FO + EC can
express any linear cardinality constraint. For example, the FO+BALC formula:

∃X 2|X | − |Y | = 0

can be expressed by the FO + EC formula:

∃X, Z X ∩ Z ∼ ∅ ∧ X ∼ Z ∧ X ∪ Z ∼ Y

where ∅ is the symbol for the empty set. The formula says that there exist sets
X and Z that do not intersect, have an equal cardinality, and whose union has
an equal cardinality with Y .

Although equal in expressive power, FO+EC has some limitations, because
while we can eliminate the variable from the first formula and obtain:

|Y | ≡2 0

we cannot eliminate the variables from the second formula and get a quantifier-
free formula with only equicardinality constraints. This shows that:

Theorem 5. FO + EC does not admit quantifier elimination.

Now let’s try to consider a multi-sorted logic, that is, one where each of the
variables and quantifiers ranges either over the integers (this is not allowed in
FO + BALC) or the subsets of the integers. This kind of multi-sorted logic was
first considered by Zarba [27], who gave a quantifier elimination method for the
fragment that contains only quantifiers ranging over the integers and conjectured
the whole logic to be undecidable. Kuncak et al. [16] showed this logic, which
they called Boolean algebra with Presburger arithmetic and can be denoted by
FO + BAPA, to be decidable and admitting quantifier elimination.

Obviously FO + BAPA includes FO + BALC. However, in this case too,
it can be shown that FO + BAPA and FO + BALC have the same expressive
power. The proof reduces any FO + BAPA formula to a logically equivalent
FO + BALC formula as follows.

An integer variable can occur in a FO + BAPA formula only within the
Presburger arithmetic constraints of addition of the form x + y = z, comparison
of the form x ≥ y, and congruence of the form x ≡n b, where x, y and z are integer
variables and b is an integer constant. For every integer variable x introduce a
new set variable X . Then translate every addition constraint of the above form
into:

|X |+ |Y | − |Z| = 0 (5)

The Expressivity of Constraint Query Languages 179

every comparison constraint of the above form into:

|X | − |Y | ≥ 0 (6)

and every congruence constraint of the above form into:

|X | ≡n b. (7)

Clearly, the Presburger addition (comparison and congruence) constraint is true
for some assignment of integer constants c1, c2, and c3 to x, y, and z if and
only if Equation (5) (respectively, Equation (6) and Equation (7)) is true for
any arbitrary assignment of set constants C1, C2, and C3 for X , Y , and Z with
the only restriction that |C1| = c1, |C2| = c2, and |C3| = c3.

The above gives a reduction of FO+BAPA formulas to FO+BALC formu-
las. Further, it is obvious that from any solution of the FO + BALC formula, it
is easy to generate a solution of the FO + BAPA formula by simply taking the
cardinalities of those set variables that were introduced in the reduction from
FO + BAPA to FO + BALC. (Remember that the set variables introduced in
the conversion into FO + BALC are simply integer variables in FO + BAPA.)
Hence we have:

Theorem 6. FO + BALC and FO + BAPA and FO + EC have the same
expressive power.

Besides expressive power another important consideration for the above re-
lated logics is their computational complexities which turns out to be reducible
to cases of Presburger arithmetic. Recall that any formula can be easily put into
a prenex normal form where all the quantifiers precede the rest of the formula.

When read left to right, the quantifiers at the beginning of the prenex for-
mula show a certain pattern of alternations between sequences of existential and
sequences of universal quantifiers. The number of alternations turns out to be
complexity-wise important as shown by the following theorem.

Theorem 7 (Reddy and Loveland [18]). The validity of a Presburger arith-
metic sentence with n quantifiers, length O(n), and m quantifier alternations
can be decided in 2nO(m)

space.

Revesz [21,22] noted the following.

Theorem 8 (Revesz [21,22]). Quantifier elimination of any FO + BALC
formula with n quantifiers and length O(n) and m quantifier alternations reduces
to a quantifier elimination of a Presburger arithmetic formula with 2n quantifiers
and length 2O(n) and m or m + 1 quantifier alternations.

The reason for the above is that the quantifier-elimination in [21,22] is based
on a reduction of a FO + BALC formula into a Presburger arithmetic formula
by introducing into the prenex part of the formula a single sequence of 2n exis-
tentially quantified integer variables. Kuncak et al. [16] use a similar reduction
together with Theorem 7, which allows them to show that:

180 P. Revesz

Theorem 9 (Kuncak et al [16]). The validity of a FO + BAPA sentence
with n quantifiers, length O(n) and m quantifier alternations can be decided in
2nO(mn)

space.

Similarly, Theorems 7 and 8 can be combined to show that:

Theorem 10. The validity of a FO+BALC sentence with n quantifiers, length
O(n) and m quantifier alternations can be decided in 2nO(mn)

space.

In summary, FO+BALC, FO+BAPA and FO+EC are closely related log-
ics that have the same expressive power and computational complexity. There-
fore, the choice among these three logics is only a stylistic preference as far
as decision problems are concerned. However, when considering constraint query
languages, where the constraint query evaluation requires quantifier elimination,
then only FO + BALC and FO + BAPA can be considered.

Although all three logics assume the domain of variables to be atomic Boolean
algebras (which are isomorphic to Boolean algebras of subsets of the integers),
some mention must be made of the case when the domain is an atomless Boolean
algebra. For example, consider the atomless Boolean algebra where the variables
denote areas in the real plane, and the operators are interpreted as intersection
and union of areas, and area complement with respect to the real plane. In this
logic it is possible to introduce polynomial constraints such as |A|2 > |B ∩ C|3,
which expresses that the square of the area A is greater than the cube of the
area that is the intersection of B and C. Note that here |A| is the measure of the
area of an element of the atomless Boolean algebra and not the cardinality of
an element of an atomic Boolean algebra. Formulas with polynomial constraints
over areas, abbreviated FO+POLY A, can be reduced to FO+POLY similarly
to the reduction of FO+BALC to Presburger arithmetic. In particular, a FO+
POLY A formula with n area variables will be reduced to a FO+POLY formula
with 2n real number variables. Each real number variable will represent one of
the 2n areas that are obtained by considering the intersections of the n area
variables or their complements.

For example, if we have only the three area variables A, B, and C, then we
need to consider eight areas A∩B∩C,. . . , A∩B∩C. Note that any polynomial
constraint over the measures of Boolean terms over A, B, and C is expressible
as a polynomial constraint over the measures of the eight areas. For instance,
|A|2 > |B ∩ C|3 can be expressed by:

(|A∩B∩C|+|A∩B∩C|+|A∩B∩C|+|A∩B∩C|)2 > (|A∩B∩C|+|A∩B∩C|)3.

The measures of the eight areas are independent of each other. Hence the
validity of a FO+POLY A formula can be tested by considering a FO+POLY
formula where each of the eight measures are replaced by a unique real number
variable and the three Boolean variables A, B, and C are replaced by real number
variables that are constrained to be equal to a linear combination of the eight
independent variables. Therefore, we have that:

The Expressivity of Constraint Query Languages 181

Theorem 11. The validity of a FO + POLY A sentence with n quantifiers,
length O(n), and m quantifier alternations can be reduced to deciding the validity
of a FO+POLY sentence of length 2O(n) with m or m+1 quantifier alternations.

Since FO + POLY formulas admit quantifier elimination, we also can show:

Theorem 12. FO + POLY A admits quantifier elimination.

Tarski [25] gave the first decision procedure and quantifier elimination algorithm
for the real closed fields, but more efficient algorithms include [2,5,9,19].

7 Conclusions

We gave several positive results about the expressivity of constraint queries.
There are many interesting open questions regarding expressivity. For example,
can we express some more graph problems using constraint queries, such as, the
chromatic number of a graph? Some earlier negative results gave the impression
that constraint queries are not too useful. However, it is still currently being
discovered what are the best application areas for various constraint queries.
For the problems that we considered, the solutions found are simpler than the
procedural language solutions. This suggests that by providing high-level declar-
ative query languages, constraint database systems could be beneficial for users
in practice on problems related to the ones presented in this paper.

References

1. Afrati, F., Andronikos, T., Kavalieros, T.: On the expressiveness of query languages
with linear constraints: Capturing desirable spatial properties. In Proc. Workshop
on Constraint Databases and Their Applications, volume 1191 of Lecture Notes in
Computer Science. Springer-Verlag (1997) 105–115

2. Basu, S.: New results on quantifier elimination over real closed fields and applica-
tions to constraint databases. Journal of the ACM (1999) 46(4):537–55

3. Benedikt, M., Dong, G., Libkin, L., Wong, L.: Relational expressive power of
constraint query languages. Journal of the ACM (1998) 45(1):1–34

4. Cai, M., Keshwani, D., Revesz. P.: Parametric rectangles: A model for querying
and animating spatiotemporal databases. In Proc. 7th International Conference
on Extending Database Technology, volume 1777 of Lecture Notes in Computer
Science. Springer-Verlag (2000) 430–440

5. Caviness, B. F., J. R. Johnson, J. R.: editors. Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Springer-Verlag (1998)

6. Chomicki, J., Haesevoets, S., Kuijpers, B., Revesz, P.: Classes of spatiotemporal
objects and their closure properties. Annals of Mathematics and Artificial Intelli-
gence (2003) 39(4):431–461

7. Chomicki, J., Revesz, P.: Constraint-based interoperability of spatiotemporal
databases. Geoinformatica (1999) 3(3):211–43

8. Chomicki, J., Revesz, P.: A geometric framework for specifying spatiotemporal
objects. In Proc. International Workshop on Time Representation and Reasoning
(1999) 41–6

182 P. Revesz

9. Collins, G. E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In H. Brakhage, editor, Automata Theory and Formal Languages,
volume 33 of Lecture Notes in Computer Science, Springer (1975) 134–83

10. Feferman, S., Vaught, R. L.: The first-order properties of products of algebraic
systems. Fundamenta Mathematicae (1959) 47:57–103

11. Güting, R. H., Böhlen, M. H., Erwig, M., Jenssen, C. C., Lorentzos, N. A., Schnei-
der, M., Vazirgiannis, M.: A foundation for representing and querying moving
objects. ACM Transactions on Database Systems, 25 (2000)

12. Jaffar, J., Lassez, J. L.: Constraint logic programming. In Proc. 14th ACM Sym-
posium on Principles of Programming Languages (1987) 111–9

13. Kanellakis, P. C., Kuper, G. M., Revesz, P.: Constraint query languages. Journal
of Computer and System Sciences (1995) 51(1):26–52

14. Kollios, G., Gunopulos, D., Tsotras, V. J.: On indexing mobile objects. In Proc.
ACM Symposium on Principles of Database Systems (1999) 261–72

15. Kuijpers, B., Smits, M.: On expressing topological connectivity in spatial Datalog.
In Proc. Workshop on Constraint Databases and Their Applications, volume 1191
of Lecture Notes in Computer Science, Springer-Verlag (1997) 116–33

16. Kuncak, V., Nguyen, H. H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with Presburger arithmetic. In Proc. 20th International Conference on
Automated Deduction, Lecture Notes in Computer Science. Springer-Verlag (2005)

17. Kuper, G. M., Libkin, L., Paredaens, J.: editors. Constraint Databases. Springer-
Verlag (2000)

18. Reddy, C. R., Loveland, D. W.: Presburger arithmetic with bounded quantifier
alternation. In Proc. ACM Symp. on Theory of Comp. (1978) 320–325

19. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. Journal of Symbolic Computation (1992) 13(3):255–352

20. Revesz, P.: Introduction to Constraint Databases. Springer-Verlag, New York
(2002)

21. Revesz, P.: Cardinality constraint databases. In Manuscript submitted to 23rd
ACM Symposium on Principles of Database Systems (2003)

22. Revesz, P.: Quantifier-elimination for the first-order theory of Boolean algebras
with linear cardinality constraints. In Proc. 8th East European Conference on
Advances in Databases and Information Systems, volume 3255 of Lecture Notes in
Computer Science, Springer-Verlag (2004) 1–21

23. Revesz, P., Cai, M.: Efficient querying of periodic spatio-temporal databases. An-
nals of Mathematics and Artificial Intelligence (2002) 36(4):437–457

24. Saltenis, S., Jensen, C. S., Leutenegger, S. T., Lopez, M. A.: Indexing the positions
of continuously moving objects. In Proc. ACM SIGMOD International Conference
on Management of Data (2000) 331–42

25. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (1951)

26. Wolfson, O., Sistla, A., Xu, B., Zhou, J., Chamberlain, S.: DOMINO: Databases
for moving objects tracking. In Proc. ACM SIGMOD International Conference on
Management of Data (1999) 547–9

27. Zarba, C. G.: A quantifier elimination algorithm for a fragment of set theory
involving the cardinality operator. In 18th Int. Workshop on Unification (2004)

Extensible Canonical Process Model Synthesis
Applying Formal Interpretation

Leonid Kalinichenko, Sergey Stupnikov, and Nikolay Zemtsov

Institute of Informatics Problems, Russian Academy of Science
{leonidk, ssa, nazem}@ipi.ac.ru

Abstract. The current period of IT development is characterized by an
explosive growth of diverse information representation languages. Ap-
plying integration and composition of heterogeneous information compo-
nents it is required to develop the canonical information model serving
for adequate expression of semantics of various information models used
in the environment encompassing required heterogeneous components.
Basic principles of the canonical model synthesis include fixing of its
kernel, constructing the kernel extensions for each specific information
model of the environment so that this extension together with the kernel
could be refined by this information model, and forming the canonical
model as a union of all such extensions. Previously these principles have
been successfully applied to the synthesis of structural and object canon-
ical models. This paper1 applies this technique to synthesis of the process
canonical model. The method proposed is based on interpretation of pro-
cess model semantics in logics, and specifically, in the Abstract Machine
Notation that made possible to construct provable refinements of process
specifications. This method has been applied to the environment of pro-
cess models defined by workflow patterns classified by W.M.P. van der
Aalst. Thus the canonical process model synthesized possesses a prop-
erty of completeness with respect to broad class of process models used
in various Workflow Management Systems as well as the languages used
for process composition of Web services.

1 Introduction

The present period of IT development is characterized by the process of ex-
plosive growth of various information representation models. This development
takes place in frame of specific distributed infrastructures (such as OMG archi-
tectures (in particular, the model driven architecture (MDA)), semantic Web and
Web services architectures, digital library architectures as collective memories of
information in various subject domains, architectures of the information grid),
as well as in the standards of languages and data models (such as, for example,
ODMG, SQL, UML, XML and RDF stacks of data models), process models and

1 This research has been partially supported by the grant N 05-07-90413 of the Russian
Foundation for Basic Research as well as by the Program of Basic Research of the
Department of Information Technologies and Computing Systems of RAS.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 183–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

workflow models, semantic models (including ontological models and models of
metadata), models of digital repositories of data and knowledge in particular
scientific domains (e.g., virtual observatories in astronomy).

This process is accompanied by another trend — the accumulation of based
on such models information components and services, the number of which grows
exponentially. This growth causes the accelerating need for integration of compo-
nents and services represented in heterogeneous models in various applications,
as well as their reuse and composition implementing new information systems.
The indicated trends are contradictory: the more variety of used models we meet
in various components and services, the more complex become problems of their
integration and composition. These trends are not new, but with time, the di-
versity of various models and their complexity grow together with the increasing
need for integration and composition of components and tools represented in
different models. Scale of these phenomena, determining possibilities of design-
ing of distributed information systems in various domains, reusing, trading and
compositions of components, reaching their semantic interoperability, integra-
tion of heterogeneous information sources, is sufficient motivation for research
and development of adequate methods for manipulation of various information
representation models.

The basis of these methods is constituted by the concept of the canonical
information model serving as the common language, ”Esperanto”, for adequate
expression of semantics of various information models, surrounding us. To prove
that a definition in a language can be substituted with a definition in another one,
formal specification facilities and commutative model mappings are provided.

Initially ideas of mapping structured data models and canonical model con-
struction for them were developed. The basic definitions of equivalence of database
states, database schemas and data models were introduced to preserve opera-
tions and information while constructing of mappings of various structured data
models into the canonical one [11,12]. According to this approach, each data
model was defined by syntax and semantics of two languages – data definition
language (DDL) and data manipulation language (DML). The main principle of
mapping of an arbitrary source data model into the target one (the canonical
model) constituted the principle of commutative data model mapping . Accord-
ing to it preserving of operations and information of a source data model while
mapping it into the canonical one could be reached under the condition, that
the diagram of DDL (schemas) mapping and diagram of DML (operators) map-
ping are commutative [12]. At that time in the process of data model mappings
construction the denotational semantics was used as a formalism (metamodel),
allowing to prove a commutativity of the diagrams mentioned [12]. Such a proof
had to be carried out manually.

Later, for the object data models, the method of data model mapping and
canonical models constructions was modified as follows. As a formalism (meta-
model) of the method the Abstract Machine Notation (AMN) was used instead
of the denotational semantics. It allowed to define the model-theoretic specifi-
cations in the first order logics and to prove the fact of specification refinement

Extensible Canonical Process Model Synthesis 185

[3,4]. The theory of refinement provided for developing of fundamental defini-
tions of relationships between data types, data schemas, data models so that
instead of equivalence of respective specifications, it could be possible to reason
on their refinement [14]. It is said that specification A refines specification D ,
if it is possible to use A instead of D so that the user of D does not notice
this substitution. Existence of special tools for AMN (B-technology)provides for
conducting proofs of commutativity of mappings semi-automatically: theorems
required for the proof of refinement are generated by B automatically, and their
proof is (generally) conducted with the human assistance.

The main principle of canonical model synthesis is that its extensibility is
required for semantic integration and information interoperability in heteroge-
neous environment, including various models. A kernel of the canonical model
is fixed. For each specific information model M of the environment an extension
of the kernel is defined so that this extension together with the kernel is refined
by M . Such refining transformation of models should be provably correct. The
canonical model for the environment is synthesized as the union of extensions,
constructed for models M of the environment.

Applying similar principles, this paper deals with process models, required
for describing activities of various organizations for solving of their tasks. For
example, virtual organization models are based on composition of processes of
real organizations involved in sphere of activity of the virtual organization. An-
other example is trading of processes and composition of processes implementing
a required process (this is one of well-known tasks in semantic Web or in mobile
systems). The processes are implemented in workflows in various Workflow Man-
agement Systems (WfMS). For the process languages they apply various concepts
and paradigms incompatible for various WfMS. Irrespective of the model used,
workflow specification is a complex construction, integrated with specifications
of other types (usually, object-oriented).

While mapping processes at synthesis of their canonical model, it is required
to preserve the semantics of concurrency. The main problem of such synthe-
sis is that there is no general theory of concurrency. The early research has
shown [15], that process algebras do not possess sufficient expressive power to
serve as a kernel of the canonical process model. At the same time combining
of two requirements – completeness of the canonical process model ability of
interpretation of various workflow models with an ability to prove of correct-
ness of arbitrary process model interpretation in the canonical process model –
remained hard-reachable for quite a long time period . The possibility of interpre-
tation of concurrent events, typical for process models, in logics, and specifically,
in the Abstract Machine Notation has been discovered recently [8,19,17]. Algo-
rithms of process specifications mappings into AMN were constructed [7,18].
This approach allows to construct provable refinements of process specifications,
applying the B-technology. This achievement is the necessary prerequisite for
commutative mapping of process models. Simultaneously it was succeeded to
classify and describe the diversity of workflow models by means of workflow pat-
terns [1]. Due to these two events, the possibility of choice of a canonical process

186 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

model kernel and construction of its extensions, refined by various workflow pat-
terns, became possible. Thus, the way to the canonical process model synthesis
has been opened, and such synthesis has been developed [16] in the context of
the work reported here.

The text of the paper is organized as follows. In section 2 an approach to
the synthesis of extensible canonical process model is described. In section 3 the
technique of construction of refining extensions for process model is considered.
In conclusion the results are summarized, and perspectives of application of the
methods described are discussed.

2 Construction of Canonical Process Model

The analysis of large number of WfMS process models [1] resulted in 20 workflow
patterns – process constructions being typical in practice.

The set of the patterns mentioned is complete; it has appeared to be enough
for representation of process models of various WfMS. This result allows to
select the workflow patterns as the source process models for synthesis of the
canonical process model. Thus it is possible to combine process completeness of
the selected set of constructions with a possibility to interpret with this set an
arbitrary process, expressed in process models of various WfMS’s.

2.1 Definition of the Kernel of Canonical Process Model

According to the principles of the canonical model synthesis, the canonical pro-
cess model is developed as a kernel, including basic primitives of process speci-
fications, and extensions of the kernel.

A subset of scripts of the SYNTHESIS language [13,15] was selected as the
canonical process model kernel. Its capabilities are close to the colored Petri nets
[10]. The kernel has the following properties.

1. It is based on the well-known model of Petri nets.
2. It embeds Petri nets in the object environment. As a result the control flow

and the data flow are combined by means of tokens – objects of certain types
having unique identifiers.

3. It provides for binding of Petri net transitions with functions, which should
be called at firing of these transitions. The rules of binding input and output
tokens of a transition with input and output parameters of the respective
function can be defined. Such bindings are necessary for modeling of infor-
mation system as a whole, what is not taken into account in more abstract
models [10,2].

The declaration of any entity in the SYNTHESIS language (for example,
types, classes, functions) syntactically is given by means of a frame. Generally
frame may be considered as a structured symbolic model of some entity or con-
cept, used to represent their instances. Syntactically a frame is separated with
braces. The slot names and their values are separated by a colon. The values

Extensible Canonical Process Model Synthesis 187

of a slot are separated by commas. Atomic value, frame, collection of formulae
of object calculus, set of values may be used as slot values. Different slots in a
frame are separated by semicolons.

Scripts are defined applying a generic script type in the SYNTHESIS lan-
guage. They form a subtyping hierarchy. Each instance of a script type corre-
sponds to an execution of the process, defined by the script. An example of script
specification is given in the following section.

2.2 Generic Types as Extensions of the Canonical Model Kernel

Extensions of the canonical process model kernel were constructed [16] for work-
flow patterns defined in [1]. Here we consider the extension technique of the
canonical model kernel for the discriminator pattern as an example.

This pattern describes a situation when a completion of one of (concurrent)
branches is expected. After that the subsequent transition is activated, and all
remaining branches are cancelled.

In canonical model each pattern corresponds to a generic script type, treated
as an extension of the kernel. This type defines rules, according to which process
control flow is organized. Various script elements (such as functions and data
types) can be used as parameters of the type.

Graphically scripts are represented by a bipartite graph with two sorts of
nodes – places (represented by circles) and transitions (represented by squares).
Nodes of different sorts are connected by the incidence relation (arrows). Places
can accumulate tokens of various types. Transitions may fire when a certain
conditions are met, consuming tokens from input places of a transition and
producing tokens in its output places.

The discriminator pattern is represented in the canonical model with the
generic script type discriminator (fig. 1). Without loss of generality we consider
the pattern to be a junction of two branches. In the figure the Trunk transition
is connected with a dashed line to a dashed rectangle with rounded corners. This
graphically denotes that at firing of the transition Trunk all tokens are to be
removed from the marked area. In this way the cancellation of the remaining
(concurrent) branches is realized.

Fig. 1. The discriminator pattern

188 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

{ discriminator; in: script;

params: {branch1/function, branch2/function, trunk/function,

entrance1TokenType/type, entrance2TokenType/type,

auxPlaceTokenType/type, exitTokenType/type };

Here discriminator – is a name of the script type. The formal parameters
of a type are set in the optional params slot. So, each transition (for exam-
ple, Trunk) is parameterized with the function type (in this case – trunk),
which is called at transition firing. Each place (for example, entrance1) is
parameterized with the token type, admissible for the given place
(here – entrance1TokenType).

states:

{entrance1; token: entrance1TokenType},

{entrance2; token: entrance2TokenType},

{auxPlace1; token: auxPlaceTokenType},

{auxPlace2; token: auxPlaceTokenType},

{exit; token: exitTokenType};

The states slot defines the set of places of a specific net. Each place is
characterized by a name and an admissible token type.

transitions:

{ Branch1;

from: entrance1; bind_from: {entrance1, in};

to: auxPlace1; bind_to: {auxPlace1, out};

activity: {in: function;

params: {+ in/entrance1TokenType, -out/auxPlaceTokenType};

{{branch1(in,out)}};

}

}

In the transitions slot a set of transitions of a specific net is defined. Each
transition is characterized by name (for example, Branch1), list of input places
(from), list of output places (to), optional list of conditions (conditions), func-
tion, which is called at firing of the transition (activity), and also binding lists
of input and output parameters of this function (bind_from, bind_to). The
body of the function for transition Branch1 consists of respective function call
with a correct set of parameters (branch1(in,out)). The given script frag-
ment works as follows. A token of type entrance1TokenType is selected in place
entrance1. If a token is found, the transition fires – the token is passed into the
input parameter in of the branch1 function (according to the slot bind_from).
A token at the output of the function (out parameter) is passed into auxPlace1
place by virtue of the binding, defined in bind_to slot.

The specification for Branch2 transition looks similarly. Transition Trunk
concludes specification of the generic script type.

Extensible Canonical Process Model Synthesis 189

{ Trunk;

from: auxPlace1, auxPlace2;

bind_from: {auxPlace1, in}, {auxPlace2, in};

to: exit;

bind_to: {exit, out};

activity: {in: function;

params: {+ in/auxPlaceTokenType, -out/exitTokenType};

{{

trunk (in, out) &

isempty (entrance1’) & isempty (entrance2’) &

isempty (auxPlace1’) & isempty (auxPlace2’)

}};

}

}

A function, substituted as a script parameter (for example, trunk), should
have, besides other, certain number of input and output parameters of definite
types (in our case these are two input parameters of types auxPlace1TokenType
and auxPlace2TokenType, and one output parameter of a type exitTokenType).
Primed state names denote post-states of operations. The body of the function
also contains formula, according to which certain places are cleared of tokens.

In this work we use the following notation. Input and output places of a pat-
tern are named as entrance and exit, respectively (with addition of index if re-
quired). Additional places are named auxPlace1,auxPlace2, etc. Transitions are
named either Trans, or, if the pattern deals with branching, ”trunk” transition
is named Trunk, and transitions in branches as Branch. If required, an additional
indexing can be added. Such notational agreement is not impose any limitations
on the way patterns are used or implemented. They are introduced for readability.

2.3 Semantics of the Canonical Process Model in AMN

The synthesis of the extensible canonical process model is realized on the basis
of the formal system (Abstract Machine Notation (AMN)) [3,4]. In this section
we consider a part of the semantics of the kernel and semantics of the extension,
required for understanding of the example below.

AMN, as a model-theoretic notation, allows to consider specifications of state
space and behavior (defined by operations on states) in an integrated way . The
specification of a machine state is introduced by state variables together with
invariants – constraints, which should always be satisfied. Operations are defined
on the basis of the extended formalism of the Dijkstra’s guarded commands [9].

The refinement as a key concept of AMN, provides for correlation of sys-
tem specifications of various levels of abstraction. A refining specification can
be significantly more detailed, than a refined one. The refining specification is
constructed on the basis of the algorithmic and data refinement [3]. The refine-
ment is formalized in AMN by formulation of a number of theorems of special
sort, so-called proof obligations. Such theorems are formulated automatically by
tools supporting B-technology (e.g., B-Toolkit, AntelierB) on the basis of gluing
invariants – the invariants, correlating states of refined and refining systems.

190 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

The theorems can be proved with the help of tools supporting automatic and
(or) interactive proof.

Due to [7,18,19,8,17,5], common understanding of how one should interpret
process models in AMN has been formed. This understanding, in its turn, has
allowed to develop a method of script model mapping into AMN.

The main idea of mapping scripts into AMN consists in modeling of system
state (i.e. places of a script) as variables of AMN, and modeling of transitions
through AMN operations bodies of which are expressed in guarded substitutions.
Such idea is characteristic for all approaches of representation of process models
in AMN.

The discriminator script described above is represented in AMN as RE-
FINEMENT with a name DiscriminatorScript.

REFINEMENT DiscriminatorScript
SETS Obj
CONSTANTS ext entrance1TokenType, ext auxState1TokenType, . . .
PROPERTIES

ext entrance1TokenType ∈ P(Obj) ∧
ext auxState1TokenType ∈ P(Obj) ∧ . . .

VARIABLES entrance1, auxState1, . . .
INVARIANT

entrance1 ∈ P(ext entrance1TokenType) ∧
auxState1 ∈ P(ext auxState1TokenType) ∧ . . .

INITIALISATION entrance1 := ∅ || auxState1 := ∅ || . . .
OPERATIONS . . .

REFINEMENT is the most universal AMN construction, since it can be used
both as refined and as refining construction. Therefore this construction is most
preferable for homogeneous representation of scripts in AMN.

In AMN specifications we shall represent types as extents, which are defined
in the section of constants. For example, an extent ext entrance1TokenType is
introduced for place entrance1. Then in the section of properties the types are
represented as subsets of the deferred set Obj , which is interpreted as the union
of extents of all object types. Each place of the script, defined in states slot, is
represented in AMN as an individual variable which is typed in the INVARIANT
section appropriately. In the INITIALISATION section variables are initialised
with empty sets, corresponding to initial absence of tokens in the script places.

Each transition of the script, defined in transitions slot, is represented in
AMN by an operation of the machine DiscriminatorScript .

The operations of abstract machines are based on the generalized substitu-
tions. We shall use operations of sort

op = S

Here op is an operation name, S – substitution, defining the effect of the oper-
ation on the state space.

Extensible Canonical Process Model Synthesis 191

The Generalized Substitution Language (GSL) provides for description of
transitions between system states. Each generalized substitution S defines a
Predicate transformer, linking some postcondition R with its weakest precondi-
tion [S]R. This guarantees preservation of R after the operation execution. In
such case we say that S establishes R. We shall use substitutions given in the
table 1. Here S ,T ,S1,S2 stand for substitutions, x , y, t are variables, E ,F de-
note expressions, G, G1, G2, P are predicates, P{x → E} denotes predicate P
having all free occurrences of variable x replaced by E .

Table 1. The Generalized substitutions and their semantics

The generalized substitution S [S]P
X := E P{x → E}
X := E || y := F [x , y := E ,F]P
SELECT G1 THEN T1 (G1 ⇒ [T1]P) ∧
WHEN G2 THEN T2 END (G2 ⇒ [T2]P)
ANY t WHERE G THEN T END ∀ t • (G ⇒ [T]P)
S ; T [S][T]P

Now we proceed to the OPERATIONS section of the machine.
The SELECT substitution, with guarding predicate representing a condition

of the transition firing, taken from bindings of the slot bind_from, constitutes
the body of the script operation. For example, for operation Branch1 such con-
dition requires an occurrence of some token t in place entrance1. For operation
Trunk the condition requires an occurrence of a token in one of the input places
auxState1, auxState2, and absence of tokens in the others.

Branch1 =
SELECT
∃ t • (t ∈ entrance1)

THEN
ANY t WHERE t ∈ entrance1
THEN

entrance1 := entrance1− {t} ||
ANY r WHERE r ∈ ext auxState1TokenType
THEN

SELECT TRUE = TRUE
THEN auxState1 := auxState1 ∪ {r}
END

END
END

END

If the conditions of transition firing are met, appropriate tokens are taken
from places defined by bindings of the slot bind_from. These tokens are passed

192 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

as input parameters to the transition function. Selected tokens are removed
from the input places. For operation branch1 a token t from place entrance1 is
removed: entrance1 := entrance1−{t}. For operation trunk a token t, satisfying
the guarding predicate of substitution SELECT, is removed from the place
it occupied. Simultaneously (that is specified by simultaneous substitution ||)
another substitution is executed, consisting of sequential composition of two
substitutions. The first of them represents the transition function, the second
represents correct allocation of an output token of the transition. In our example
the transition functions are absent, since we consider the generic type, so the
sequential composition is degenerated. In case of operation branch1 only token
allocation is interpreted: with the help of ANY substitution a token r is selected
from the extension of a type auxState1TokenType. This token is passed into
place auxState1, an output place for the transition. In case of operation trunk
an allocation of a token r of admissible type exitTokenType in an exit place of
the transition is interpreted. After that with the help of sequential substitution
〈 ; 〉 a cancellation of concurrent branches is realized so that tokens are removed
from the respective script places.

Trunk =
SELECT

∃ t1 • (t1 ∈ auxState1 ∧ auxState2 = ∅) ∨
∃ t2 • (t2 ∈ auxState2 ∧ auxState1 = ∅)

THEN
ANY t WHERE t ∈ Obj ∧

(t ∈ auxState1 ∧ auxState2 = ∅ ∨
t ∈ auxState2 ∧ auxState1 = ∅)

THEN
auxState1 := auxState1− {t} || auxState2 := auxState2− {t} ||
ANY r WHERE r ∈ ext exitTokenType
THEN

SELECT TRUE = TRUE THEN exit := exit ∪ {r} END
END ;
(entrance1 := ∅ || entrance2 := ∅ ||
auxState1 := ∅ || auxState2 := ∅)

END
END

3 Construction of Refining Extensions of the Canonical
Process Model Kernel

Two process models, source and target, are required for the refining extensions
construction technique. The canonical model stands for the target model. In
section 2 it was shown how extensions of the canonical model kernel are specified
by means of generic types for workflow patterns (for the discriminator example).
Constructing an extension, it is necessary to show, that the extension of the

Extensible Canonical Process Model Synthesis 193

kernel is refined by the source workflow pattern model. Here it is convenient
to use the source models of workflow patterns given in YAWL (Yet Another
Workflow Language) [2]. This language has constructions sufficient for expression
of all workflow patterns [1]. At construction of the extension of the process model
kernel it is necessary to prove that the source model refines the target one. In
this section we show this for the discriminator pattern.

The workflow process specification in YAWL is a set of the Extended Work-
flow Nets (EWF-nets) [2], forming a tree-like structure. In this paper for sim-
plicity we shall not go beyond YAWL facilities sufficient for description of the
the discriminator pattern example. The specification will be given as a single
EWF-net.

In general a data model mapping requires to construct 1) mapping of a source
model Mj into an extension of a target model Mi ; 2) AMN semantics for Mj ;
3) AMN semantics for extended Mi . After that the B technology is applied to
prove a) state-based properties of the mapping (commutativity of the data type
state mapping diagrams); b) behavioral properties of the mapping for all types,
defined for the source data model. This leads to a proof that Mj is a refinement
of the extension of Mi .

Thus, for our example nothing else left but to construct AMN semantics of
the discriminator pattern defined in YAWL.

The discriminator as the EWF-net is defined as the following 8-tuple:

Discriminator = 〈C , i , o,T ,F , join, split , rem〉

C = {enter1, enter2, auxState1, auxState2, exit}
T = {branch1, branch2, trunk}
F = {enter1 %→ branch1, enter2 %→ branch2,

branch1 %→ auxSatate1, branch2 %→ auxSatate2,
auxSatate1 %→ trunk , auxSatate2 %→ trunk ,
trunk %→ exit}

join = {trunk %→ XOR}
split = ∅
rem = {trunk %→ {enter1, enter2, auxState1, auxState2, branch1, branch2}}

Here C is a set of places (in Petri nets terminology). T is a set of tasks. For
the purpose of this paper it is sufficient to consider a task as a subnet showed in
the Fig. 2.

Fig. 2. EWF-net task structure

194 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

If the place exect contains a token then t is said to be executed.
F is an incidence relation, i.e. a set of the ordered pairs of nodes. Such pairs

define a possibility of moving tokens through the net. join is a function de-
scribing a mode of consuming tokens by a transition. There are three possible
modes: XOR (only one token is consumed from all input places), AND (one to-
ken is consumed from each of the input places) and OR (one token is consumed
from each of the several input places). If a transition has more than one input
place (for example, incidence relation has two pairs related to trunk transition:
auxSatate1 %→ trunk ,AuxSatate2 %→ trunk), we should define join-behavior (in
ur case as trunk %→ XOR). split is a function describing split-behaviour of transi-
tions, i.e. a mode of token appearance in output places of the transitions at their
firing. This function is reciprocal to the function join and is described similarly.
rem is the function associating transitions with places, which should additionally
be removed of tokens at firing of these transitions (thus cancellation is realized).
In our case firing of the trunk transition leads to removing tokens from enter1,
enter2, auxState1, auxState2, branch1, branch2 places.

Such net is represented in AMN by a construction

REFINEMENT Discriminator
SETS States = {state enter1, state enter2,

state auxState1, state auxState2, state exit}
VARIABLES States ,Exec branch1, exec branch2, exec trunk
INVARIANT states ∈ States → NAT ∧ exec branch1 ∈ NAT ∧

exec branch2 ∈ NAT ∧ exec trunk ∈ NAT
INITIALISATION

ANY states1 WHERE
states1 ∈ States → NAT ∧ ∀ st • (st ∈ dom (states1) ⇒ states1(st) = 0)

THEN
States := states1

END ||
exec branch1 := 0 || exec branch2 := 0 || exec trunk := 0

OPERATIONS . . .

In the SETS section the States set is defined, which represents the set of
a string constants conforming to names of places. In general, each task ti ∈
T is represented in AMN with the two operations enter ti , exit ti , and with
a variable exec ti of the respective machine. Variable exec ti is typed in the
INVARIANT section by the type of natural numbers. A natural number stored
in states(state ci) reflects the number of tokens contained in the ci place. The
variable states and all variables corresponding to places are initialised in the
INITIALISATION section as zero values, so that in the initial moment the net
had no tokens.

In the OPERATIONS section an arbitrary operation enter ti is defined as
follows, where a kind of predicate Penter and a kind of substitution Senter depend
on join-behavior of task ti (value of join(ti)):

Extensible Canonical Process Model Synthesis 195

enter ti =
SELECT exec ti = 0 ∧ Penter

THEN Senter || exec ti = exec ti + 1
END

For example, for operation enter trunk of task trunk , Penter looks as follows
(what is characteristic for the XOR-join behavior):

(states(state auxState1) > 0 ∧ states(state auxState2) = 0 ∨
(states(state auxState1) = 0 ∧ states(state auxState2) > 0)

For the same operation a substitution Senter realizes consumption of a single
token from one input place.

IF states(state auxState1) > 0
THEN

states(state auxState1) := states(state auxState1)− 1
ELSIF states(state auxState2) > 0
THEN

states(state auxState2) := states(state auxState2)− 1
END

An arbitrary operation exit ti is defined so that a kind of substitution Sexit

depends on split-behavior of task ti (of the value of split(ti)).

exit ti =
SELECT exec ti > 0
THEN (Sexit || exec ti = exec ti − 1); Rexit

END

For example, for the operation exit trunk the Sexit is defined as State exit :=
state exit + 1. Rexit for the same operation looks as follows.

states :=
States �−{st %→ num | num = 0 ∧

st ∈ {state enter1, state enter2,
state auxState1, state auxState2}} ||

exec branch1 := 0 || exec branch2 := 0

Here tokens are removed from places enter1, enter2, auxState1, auxState2
(respective variables are set to zero) and execution of tasks branch1, branch2 is
cancelled. r1 �−r2 denotes a relation r1 overridden by a relation r2.

196 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

The extension of the canonical process model for the Discriminator pattern
has been defined by means of the generic script type described in the previous
section.

The last stage of the proof, that the extension of the canonical model by the
generic script type is correct, consists in applying of the automation facilities of
B-Technology to prove that machine DiscriminatorScript is refined by machine
Discriminator. For this purpose it is necessary to conform machines Discrimina-
torScript and Discriminator. The conformance process consists of the following
steps:

– point the refinement direction adding the REFINES section in the Discrim-
inator machine.

REFINES DiscriminatorScript

– conform operation names in refined and refining machines: for each transi-
tion t of the script rename the respective operation t of DiscriminatorScript
machine into the operation exit t ; add the empty operation enter t to Dis-
criminatorScript machine.

enter t = skip;

– add of a refinement invariant in section INVARIANT of Discriminator ma-
chine. The invariant should describe a relationship between states of refined
and refining machines.

card (entrance1) = states(state entrance1) + exec branch1 ∧
card (entrance2) = states(state entrance2) + exec branch2 ∧
(card (auxState1) = states(state auxState1) + exec trunk ∧
card (auxState2) = states(state auxState2) ∨
card (auxState2) = states(state auxState2) + exec trunk ∧
card (auxState1) = states(state auxState1)) ∧
card (exit) = states(state exit)

card (s) denotes a cardinality of a state s as a set.

At the end of the conformance process the tool for the automated AMN
refinement proof has been applied (B-Toolkit 5.1.4). It had automatically for-
mulated 65 theorems, expressing the fact that machine DiscriminatorScript is
refined by machine Discriminator. Large number of theorems is explained by au-
tomatically subdividing complex theorems by the tool into simpler ones to prove
them independently. For example, the theorem of initialisation refinement was
subdivided into 6 theorems. 38 theorems were proved automatically by the tool,
the others were proved interactively. In the table 2 total number of theorems
formulated and number of theorems automatically proved are shown.

Extensible Canonical Process Model Synthesis 197

Table 2. The number of theorems

Number of Number of
theorems automatically

proved theorems
The theorem of the unified state non-emptines 1 0
Theorems of the initialisation refinement 6 6
Theorems of refinement for operation enter branch1 7 5
Theorems of refinement for operation exit branch1 7 4
Theorems of refinement for operation enter branch2 7 5
Theorems of refinement for operation exit branch2 8 5
Theorems of refinement for operation enter trunk 16 11
Theorems of refinement for operation exit trunk 13 2
Total number of theorems 65 38

4 Conclusion

The provable synthesis of the canonical process model shown here appeared to
be feasible due to: 1) the recently discovered possibility of interpretation of con-
current events, characteristic for process models, in logics and 2) the reduction of
the workflow models diversity to a relatively small number of workflow patterns.
These premises have served as necessary precondition for the canonical process
model synthesis, following the principles proclaimed earlier. The methods de-
veloped constitute necessary basis for reaching semantic interoperability, reuse
and composition of heterogeneous process components in distributed information
systems.

At the same time, due to the exploding growth of number and variety of
information representation models, it is difficult to cope with such variety of
information models manually preserving the basic principles of mapping and
synthesis of canonical models applying the refinement techniques. Therefore the
methods developed should be supplemented with a compositional approach to
the canonical models synthesis. This approach in general consists in registering
of data types of each source data model in the canonical model so that they could
serve as refinements of types or compositions of types already included into the
canonical model. If there are no appropriate types in the current canonical model,
we should construct its extension. Specifications of components (data types) of
the canonical and source models are stored in a repository. Special tools are
needed to discover necessary components, to match them, to eliminate structural
and behavioral discrepancies of components, to form their compositions, and
to prove commutativity of the resulting mappings. This idea is planned to be
developed on the basis of the existing approach for compositional development
of information systems [6].

198 L. Kalinichenko, S. Stupnikov, and N. Zemtsov

References

1. van der Aalst, W. M. P. et al.: Workflow Patterns. – Distributed and Parallel
Databases (2003) 14(3):5-51

2. van der Aalst, W. M. P., ter Hofstede, A. H. M.: YAWL: Yet Another Workflow
Language (Revised version). – QUT Technical report, FIT-TR-2003-04. Brisbane
(2003)

3. Abrial J.-R.: B-Technology. Technical overview. – BP International Ltd. (1992)
4. Abrial, J. R.: The B-Book. – Cambridge University Press (1996)
5. Abrial, J. R.: B# : Toward a synthesis between Z and B. – In Proc. of the Inter-

national Conference of Z and B Users ZB’2003. Springer (2003)
6. Briukhov, D., Kalinichenko, L.: Component-based information systems develop-

ment tool supporting the SYNTHESIS design method. – In Proc. of the Second
East European Conference ADBIS’1998. Springer (1998)

7. Butler, M.: csp2B: A Practical Approach to Combining CSP and B. – Formal
Aspects of Computing, Vol. 12 (2000)

8. Butler, M., Snook, C.: Verifying Dynamic Properties of UML Models by Trans-
lation to the B Language and Toolkit. – In Proc. of the UML 2000 Workshop
Dynamic Behaviour in UML Models: Semantic Questions.

9. Edsger, W., Dijkstra, E.W.: A discipline of programming. – Prentice Hall (1976)
10. Jensen, K.: Coloured Petri Nets: a High Level Language for System Design and

Analysis. – Springer (1991)
11. Kalinichenko, L. A.: Data model transformation method based on axiomatic data

model extension. – Proc. of the 4th International Conference on Very Large Data
Bases (1978)

12. Kalinichenko, L. A.: Methods and tools for equivalent data model mapping con-
struction. – Proc. of the International Conference on Extending Database Tech-
nology EDBT’90. Springer (1990)

13. Kalinichenko, L. A.: SYNTHESIS: the language for desription, design and pro-
gramming of the heterogeneous interoperable information resource environment. –
Moscow (1995)

14. Kalinichenko, L. A.: Method for Data Models Integration in the Common
Paradigm. – In Proc. of the First East-European Conference, ADBIS’97.
St.Petersburg (1997)

15. Kalinichenko, L. A.: Workflow Reuse and Semantic Interoperation Issues. –
Advances in workflow management systems and interoperability; A.Dogac,
L.Kalinichenko, M.T. Ozsu, A.Sheth (Eds.). NATO Advanced Study Institute
(1997)

16. Kalinichenko, L. A., Stupnikov, S. A., Zemtsov, N. A.: Canonical models synthesis
for heterogeneous information sources integration. – Moscow (2005)

17. Ledang, H., Souquieres, J.: Contributions for Modeling UML State-Charts In B.
– In Proc. of the Third International Conference on Integrated Formal Methods
IFM 2002. Springer (2002)

18. Stupnikov, S. A., Kalinichenko, L. A., Dong, J. S.: Applying CSP-like Workflow
Process Specifications for their Refinement in AMN by Pre- existing Workflows.
– In Proc. of the Sixth East-European Conference on Advances in Databases and
Information Systems ADBIS’2002. Slovak University of Technology (2000)

19. Treharne, H., Schneider, S.: How to Drive a B machine. – In Proc. of the First
International Conference of Z and B Users ZB’2000. Springer (2000)

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 199 – 208, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Location Awareness of Information Agents

Merik Meriste, Jüri Helekivi, Tõnis Kelder, Andres Marandi1,

Leo Mõtus, and Jürgo Preden2

1 Tartu University Institute of Technology, Estonia
merik.meriste@ut.ee

2 Tallinn Technical University, Estonia
leo.motus@dcc.ttu.ee

Abstract. This paper discusses the use of generic geospatial agents (provided
by agent development environment KRATT) for collecting and processing
location aware information. The approach is essentially based on agent-based
digital map processing software that is capable of handling raster or vector
maps, and maps with different colour schemes, with different packing methods,
with different systems of signs, etc. Each application can be configured and
reconfigured dynamically. Agents, and the applications that use services
provided by agents, are not in one-to-one relationship; one agent can
simultaneously work with many applications. Also, an agent may use services
from different agents in different situations. The approach is illustrated by pilot
applications, such as participatory GIS, tracking of active objects, information
collection and navigation in a sensor network with beacons.

1 Introduction

Steadily increasing number of computer applications exhibit location aware
behaviour. Location- and time-awareness is often a crucial non-functional
requirement for new applications. As the need for spatial and real-time data increases,
and access to that data improves, the need for appropriate software tools becomes
urgent. A prevailing trend in developing such systems is the wide use of autonomous,
interactive software entities [1] – supported by component-based development, agent-
based technologies, innovations in software modelling and analysis methods, and
respective tools. The architecture of those systems should be dynamically modifiable
(or, preferably, able to evolve by itself due to proactive behaviour of components).

Two concepts are today considered reasonable for addressing the development of
such systems – web services and autonomous agents. Geospatial technology
developers are embracing web services as a mechanism for providing spatial and
time-aware capabilities in enterprise applications. The Open Geospatial Consortium
[4, 5] tackles the challenge of developing tools to support the integration of spatial
capabilities into applications that do not depend on a full-featured Geographic
Information Systems (GIS). The major problem is that of embedding location- and
time-aware autonomous components into information systems and other applications.

This paper discusses the use of generic geospatial agents (provided by agent
development environment KRATT) for collecting and processing location- and time-

200 M. Meriste et al.

aware information. The approach relies essentially on agent-based digital map
processing software that is capable of handling raster or vector maps, and maps with
different colour schemes, with different packing methods, with different systems of
signs, etc. Each application can be configured and reconfigured dynamically, i.e.
forms a community of location- and time-aware agents. Agents, and the applications
that use services provided by agents, are not necessarily in one-to-one relationship;
one agent can simultaneously work with many applications. Also, an agent may use
services from different agents in different situations. A community of agents has a
distinctive property that is not common in artificial systems – the complete list of
interacting components and the structure of their interactions cannot be fixed
completely at the specification and design stage.

The more sophisticated computations and the more context-sensitive (i.e.
depending on location and time of processed information) interactions are, the larger
will be the share of emergent behaviour in the overall behaviour of systems.
Consequently, the more difficult its is to satisfy the requirements imposed on quality
of service of the future systems during the operation of implemented systems. The
issues of engineering agents and, especially multi-agents, have received rather scanty
attention - current interests of agent-based systems are mostly focused on agents’
intelligence related issues.

This paper illustrates the use of a prototype for an agent development environment
KRATT [6], for building generic geospatial agents. The conceptual line of
development as well as some typical geospatial tasks with appropriate pilot
applications is superficially described, and the obtained experience discussed in
section 2. Basic collection of geospatial agents is introduced in section 3. A short
overview of further developments, work-in-progress and open problems will conclude
the presentation.

2 Spatial Agents

Agents exist and interact in a multi-agent system that is distributed across a set of, not
necessarily homogeneous, networks. Some agents can exist completely in a virtual
world – interacting only with the other agents, or also interacting with non-agent
components of the system, some other agents may be essentially related to their
physical body. A multi-agent system, as an application, consists of administrative
agents, and application agents. All the agents are generated from pre-specified classes
and form together a community of agents. The class of an agent determines its
capabilities and lists related components that are to be applied when generating an
instance of this agent. Majority of agents, i.e. application agents carry out their
autonomous (and maybe proactive) tasks. Administrative agents are specific in a
sense that they store and execute the rules for the community of agents, and provide
common services, as required for dependable operation of application agents. Agents,
and the applications that use services provided by agents are not in one-to-one
relation; one agent can simultaneously work with many applications. Also, an
application may use services from different agents in different situations. An
application is configured dynamically, depending on which agents are active and
accessible at this particular moment.

 Location Awareness of Information Agents 201

A spatial multi-agent system acquires the information from different GIS, IS and
DB, as well as represents and manages the information supplied by agents involved.
The acquired information is processed and used to update the required databases, or to
satisfy other requests from a particular client. A multi-agent system comprises
following types of autonomous agents:

• configurable information agent implements queries and management of databases
interacting with particular DB agents;

• map agents search, pre-process, and deliver fragments of the base map;
• spatial agents manage the vector information for images or situations activated

on the user’s view of the map;
related information agents manage the map objects related information, e.g. record of
a lot related information, historic or environmental information, etc. ;
location agents, that periodically transmit position of active objects (GPS devices,
radio beacons, motes etc.).

This set of types for agent classes forms the basis of any multi-agent system
applied to digital map processing. The set of types is easily extendable and depends
on tasks required by the customer, types of digital base-maps, additional databases to
be used, and on other factors. Each agent is to be programmed as required by the
specific application. However, many agents have generic features that facilitate their
usage in a variety of applications with minimal modifications. The first experience
shows that dynamic compilation of agents’ intermediated map frames offers a
reasonable processing speed, better than that of typical fixed menu of web services of
a traditional GIS.

3 Agent-Based Solutions to Geospatial Tasks

Agent based digital map software can display different areas from a variety of digital
maps (raster or vector based maps, maps with different colour schemes, maps with
different packing methods, maps with different systems of conventional signs, etc).
Reasonably short response time of the agent-based map system is achieved due to
carefully designed network usage, combined with caching and parallel processing of
source maps and databases in the servers.

The prototype software development is carried out in C# and .NET since this
platform appears to be the most suitable for controlling multiple simultaneous threads
needed in agents. The customer’s computer must have a web browser, and sufficient
memory space for automatically downloaded active map object together with some
other active objects, necessary to solve the particular task stated by the customer.

The map-specific part of the web browser’s page in a customer’s computer is
map_object (presented as ActiveX component). The other parts of the page depend on
the specific requirements of the application and are usually based on JavaScript, cater
for dynamic support of the page, and for interactions between the map_object, the
customer, and web-servers. The whole page or parts of it are typically generated by a
web-server based application (see Figure 1). The main operational response and
support to the queries from the map_object and the web-server application comes
from a dedicated multi-agent system.

202 M. Meriste et al.

Web-browser

of a customer

A web page

(HTML + JavaScript)

A map frame

Map component

(ActiveX)

Queries

(HTTP)

Web server

Web pages

(HTML + scripting)

Agents in one or many

networked computers

AMS

Specific

queries

(HTTP)

responses

(XML)

Interacting map, object

and information agents

Databases

Fig. 1. A multi-agent digital map application cooperates with web-server

3.1 Participatory GIS

Participatory GIS for regional planning and management was tested as one of the pilot
applications. The aim of this application is to view and update the information
distributed in a variety of proprietary databases — e.g. technological communications
(water, sewerage, electricity, etc.) built for Tartu City. The proprietary information is
presented as a dynamic collection of spatial and information frames integrated into
one application. The task comes from the city government, who needs the information
of different infrastructures (gas-, water-, sewerage-, heating pipelines, power lines and
phone lines) for planning and coordinating daily maintenance and construction
activities. In reality, the infrastructure is maintained by different organizations and the
information, therefore, is also kept in different GIS and databases.

The prototype of the participatory GIS for the tasks described above is
implemented as a community of agents (see also Figure 2). This multi-agent system
provides the updated information from different information sources as well as
represents and manages the information supplied by agents involved. The collection
consists of following types of agents:

• configurable information agent implements queries and management of databases
that interact with particular DB agents;

• map agents that search, pre-process, and send fragments of a digital base-map,
requested by the map_object

• spatial agents for searching, processing, and sending the vector information for
the image or situation that has been activated in the map_object

• information agents that manage, search, and forward the map objects related
information, f.e. records of lot related information, pipeline data etc. Map related
information is known to map and spatial agents, it is requested by the web-server
or the map_object depending on user’s or agents’ activities.

 Location Awareness of Information Agents 203

Fig. 2. Participatory GIS

The user can select one main theme and compare it with different sub-themes.
Borders of a lot and map positioning by address can additionally be applied.

The number of base maps and different data categories used in an application
depends on maps and data which are available to users. As a result, the users can have
overview of the existing infrastructure in the area they are interested of, e.g. the
location of pipelines, availability of gas line, or central heating system etc.

3.2 Using GPS for Tracking Active Objects

To include active or mobile objects in the framework of geospatial agents, a prototype
for tracking vehicles was developed. As usually, a GPS module, which is attached to
the moving object, receives the signal from satellites and transmits the coordinates
with the unique ID of object to operator agent. The agents provide the map
application with coordinates of the particular mobile object. The map application
(Figure 3) displays moving objects as icons on the map, each icon is labelled with
additional information (precise coordinates, time value, speed and azimuth, etc).

The tracking multi-agent is a community of agents comprising following types of
agents:

• agents processing fragments of the map;
• agents searching, processing, and sending the vector information for the image or

situation that has been activated in the map object.
• GPS agents, that periodically transmit to other agents the position of active

objects equipped with standard GPS device.
• agents to manage, search, and forward information related to active objects.

204 M. Meriste et al.

Fig. 3. Tracking active objects

3.3 Tracking Active Objects Without GPS

In many applications the GPS services are not available – for instance in buildings,
caves, or for many other reasons. Such applications are typically related to monitoring
and surveillance of the environment, remote monitoring and maintenance of technical
devices, operational situations in rescue, police and security services. In such cases
the navigation, tracking, and displaying functions are based on information collected
from ad hoc sensor networks, extended with beacons, or in some cases with
identifiable landmarks with known position. It is highly recommendable that
applications could be built from basically the same set of components as described
above in this paper, independently of the availability of GPS.

Ad hoc sensor networks form a subclass of multi-hop ad hoc networks (MANET) –
that usually are with dynamically changing topology and highly irregular traffic load,
and are built on heterogeneous hard- and software platforms [3]. Ideologically they
are quite close to agent technology – like interacting autonomous agents, the nodes in
a multi-hop sensor network exhibit proactive behaviour and may behave differently in
different communication acts [7].

The recently started, and ongoing pilot project (Hopadhoc) for experimenting with
map agents without GPS support starts by building an artificial environment with a
number of fixed beacons with known coordinates, installing a number of stationary

 Location Awareness of Information Agents 205

sensors (with unknown coordinates), introducing a number of mobile platforms
equipped with necessary sensors, signal processors, plus other devices and software
necessary for autonomous proactive behaviour.

The digitized schema of this artificial environment is used as a conventional digital
map, processed by the above described community of (may be slightly modified) map
agents. The mobile platforms compute their coordinates in the environment (relying
on signals from the beacons), based on their computed location coordinates the
mobile platforms reason about their next destination and tasks to be performed. The
reasoning is supported by regularly improved digital schema of the environment –
available for mobile platforms from an agent that is responsible for collecting
information sent from the mobile platforms and fitting the incoming information with
the already existing information.

A heterogeneous computer network (combined from the regular internet, WiFi and
radio-frequency sensor network) serves as a communication infrastructure for the
artificial environment. The sensor network is based on “Berkeley motes”. Motes are
small computing devices that have three key capabilities: computing, sensing, and
(radio)communication capabilities. Sufficient memory to store and in some cases pre-
process collected data locally is a feature that increases the number of possible
applications. Motes are battery powered to enable their autonomous operation. Each
mote can have a diverse set of sensors, for example the sensor boards used in
Hopadhoc project have light, temperature, microphone, sounder, tone detection, 2-
axis accelerometer and 2-axis magnetometer sensors. Each mote is able to
communicate with any other mote in the ad hoc sensor network. The network can also
be connected to a PC, or to a wired or WiFi network.

The use of motes is increasing rapidly in military, as well as civilian applications:
monitoring wildlife, monitoring applications in agriculture, monitoring and
maintaining huge civil constructions (the Golden Gate Bridge, and the new Hong
Kong bridges are equipped with tens of thousand sensors and actuators).

However the data provided by motes has little value without time and location
identifiers. One option for solving the location problem is to hand-place the motes at
known locations, providing each mote with some ID and location identifiers (as it was
done for the Hong Kong Bridge). This is essentially using the motes in a way very
similar to how we are using conventional (wired) sensors – each sensor is in a fixed
position and the output of that sensor serves as a predefined input to our control or
monitoring system. It cannot be expected in every application that each mote will be
carefully hand-placed and that there is an opportunity, will or means to identify the
mote’s locations during the placement of the mote.

The second solution for solving the sensor localization task is to determine the
mote’s location after the mote has been deployed. Again there are several options: to
equip each mote with some localization hardware or to determine the mote’s location
after its deployment and then either store the coordinates in the mote or in some
central database. Adding some localization hardware to each mote is quite costly.

 Naturally the approach where each mote’s position is not predetermined is more
attractive for most applications. As an indoor solution we suggest to use Cricket
motes that provide means for solving the indoor localization task. For instance,
Cricket beacons are fixed in the ceiling of the room and each Cricket beacon sends
out radio and ultrasonic pulses. The radio packet contains data on the beacon’s

206 M. Meriste et al.

coordinates (predefined) and the beacon’s identifier. The Cricket receivers listen to
the radio pulses and after receiving the first bits of the radio pulse the receiver starts
to listen to the ultrasonic pulse. Based on the time difference of the arrival of these
two pulses the distance to the specific beacon can be determined. Obviously one
beacon is not enough to determine the receiver’s location. But with three beacons it is
possible to calculate the receiver’s location based on the coordinates of the beacons
(provided by the beacons) and the distance to each beacon.

The above-described map agent solution (KRATT) provides the basic ideology that
can be extended for application on mobile & thin platforms. The first step in
developing a location-aware computing platform is recursive updating of the map by
positioning the mobile node on a map in a master map server for this environment.

Sensor motes are placed randomly in an area for which there is a map in the
KRATT system. A mobile robot navigates in the area and communicates with sensor
motes. Once communication with a mote is initiated the mobile robot makes a rough
estimation on the mote’s location (using the sounder and the tone detection circuit on
the mote). The mobile robot can communicate the mote’s location estimation to the
mote (which will then be stored locally at the mote) and all further sensor data
originated from the mote will have a location identifier associated with it. Such an
approach assumes stationary motes. If there are several mobile agents then the mote’s
location can be gradually improved, until the reasonable precision is achieved.

Once a mobile node is aware of its location with respect to the beacons, the context
awareness issues can be addressed directly. This includes, for instance, context
awareness in terms of positioning the mobile platform on the map in relation to the
other static objects on the map (walls, doors, etc) and in relation to the other mobile
platforms. The location data can be used for better analysis and processing of sensor
data (if advanced algorithms are used then for example sound waves reflecting from a
nearby wall can be filtered out if necessary, etc). Also a mobile node can query
nearby stationary motes and or mobile nodes for additional sensor data to improve its
own perception of the environment.

Based on the additional information collected, a mobile robot can improve its
reasoning processes -- such as, to better assess its performance, to better plan future
activities, to improve its understanding of the environment and about the intentions of
other actors in the environment. This leads to step-by-step improvement of
independent navigational capabilities of any mobile node using a collectively updated
map. This includes route planning, sub-goal selection, considering the potential
intentions of other mobile and non-mobile nodes (if the node is aware of those
intentions), and of course executing the plan by following the selected route. In a long
run, a whole range of new topics can be stated, researched, and hopefully resolved –
cooperation, competition, self-organization, and others.

4 Conclusions

A clear increase of interest can be observed on applying agents, and multi-agent
systems in situations that require location-awareness, and time-awareness. This could
be caused by the successful practice of component-based systems, combined with the
fact that autonomous and proactive components are being used increasingly. An

 Location Awareness of Information Agents 207

obvious demand for appropriate active components is initiated by the high level GIS
community needs. The theory of modelling of a family of agents with complex time
sensitive and location sensitive interactions among its members remains today a
fundamental problem in artificial intelligence and computer science. On the other
hand, the evolution of computer science is gradually reaching the understanding that
interactive systems represent a new paradigm in computation that cannot be modelled
using traditional tools [2, 8]. The basis for this empirical computer science research
relies on two contradictive concepts – inside-view in order to prescribe the behaviour
of an agent (i.e. programming), and outside-view in order to design and analyse (i.e.
modelling).

To develop applications in this context requires an approach to software
architecture that helps developers evolve their solutions in flexible ways. A prevailing
trend in developing such systems is the wide use of autonomous, interactive software
entities – supported by component-based development, agent-based technologies,
innovations in software modelling and analysis methods, and respective tools. The
architecture of those systems should be dynamically modifiable (or, preferably, able
to evolve by itself due to proactive behaviour of components). Two concepts are
considered reasonable today – web services and agents. The major problem is also
that of embedding location- and time-aware autonomous components (i.e. proactive
context-aware agents) into information systems and other applications.

Some aspects of implementation of generic geospatial agents in a prototype agent
development environment KRATT were presented in this paper. A collection of
geospatial agents as well as conceptual line of development, and the first experience
were superficially described. Agents can display different areas from a variety of
digital maps (raster or vector based maps, maps with different colour schemes, maps
with different packing methods, maps with different systems of conventional signs,
etc). Reasonably short response time of the agent-based map system is achieved due
to carefully designed network usage, combined with caching and parallel processing
of source maps and databases in the servers.

The developed collection of agent classes forms the basis of any multi-agent
system applied to digital map processing. The collection is easily extendable and
depends on tasks required by the customer, types of digital base-maps, additional
databases to be used, and on other factors. Each agent is to be programmed as
required by the specific application. However, many agents have generic features that
facilitate their usage in a variety of applications with minimal modifications. The first
experience shows that dynamic compilation of agents’ intermediated map frames
offers a reasonable processing speed, better than that of typical fixed menu of web
services of a traditional GIS.

The above-described map agent solution (KRATT) provides the basic ideology that
can be extended for application on mobile & thin platforms. The first step in
developing a location-aware computing platform is recursive updating of the map by
positioning the mobile node on a map in a master map server for this environment.
Further experiments and developments of the instrumental software and particular
types of geospatial agents are needed, certainly in pair with carefully selected
application areas.

208 M. Meriste et al.

This paper is based on interim results of an ongoing larger project on time-aware
and location aware agents, carried out in the Estonian Centre for Dependable
Computing (CDC) – a joint venture of Tallinn Technical University and Tartu
University.

Acknowledgment

The partial financial support provided by ETF grant 4860 and grants nr 0140237s98,
0250556s98 from Estonian Ministry of Education is acknowledged.

References

1. Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Mills, W. N., Diao, Y.: ABLE: A toolkit for
building multi-agent autonomic systems. IBM Systems Journal, vol. 41, no. 3 (2002) 350–
371

2. Blass, A., Gurevich, Y.: Algorithms: A quest for absolute definitions. Bulletin of European
Association for Theoretical Computer Science. no. 81 (2003)

3. Chlamtac, I., Conti, M., Liu, J. J.-N.: Mobile ad hoc networking: imperatives and
challenges, Ad Hoc Networks, Volume 1, Issue 1 (2003) 13–64

4. McKee, L.: The Importance of Going “Open”. Open Geospatial Consortium. (2003)
www.opengis.org

5. McKee, L.: The Spatial Web. Open Geospatial Consortium. (2003) www.opengis.org
6. Motus, L., Meriste, M., Kelder, T., Helekivi, J.: An Architecture for a Multi-agent System

Test-bed. Proc. of the 15th IFAC World Congress, vol. L (2002)
7. Tschudin, C., Gunningberg, P., Lundgren,. H., Nordström, E.: Lessons from experimental

MANET research, Ad Hoc Networks, Volume 3, Issue 2 (2005) 221–233
8. Wegner, P.: Interactive foundations of computing. Theor. Computer Science, vol. 192

(1998) 315–351

Algebraic Semantics of XML Schema

Leonid Novak1 and Alexandre Zamulin2,�

1 Institute of System Programming, Russian Academy of Sciences,
25, B. Kommunisticheskaia str., Moscow 109104, Russia

novak@ispras.ru
2 A.P. Ershov Institute of Informatics Systems,

Siberian Branch of Russian Academy of Sciences,Novosibirsk 630090, Russia
zam@iis.nsk.su

Abstract. The semantics of the core features of XML Schema in terms
of the XQuery 1.0 and XPath 2.0 data model algebraically defined is
given. The database state is represented as a many-sorted algebra whose
sorts are sets of data type values and different kinds of nodes and whose
operations are data type operations and node accessors. It is shown that
a document can be easily mapped to its implementation in terms of nodes
and accessors defined on them.

1 Introduction

In this paper, we present a formalization of some core ideas of XML Schema
[11,12] (which is nowadays a widely used standard of XML databases) by means
of algebraic techniques. The benefits of a formal description are well known: it
is both concise and precise [1]. This paper is not the first attempt to formalize
an XML language. A detailed review of related work is given in Section 9. It is
sufficient to mention at the moment that in all previous work an XML document
rather than an XML database is practically formalized. For this reason, one
cannot easily map a document to its implementation in terms of nodes and
accessors defined on them. Moreover, any operation of an XML algebra should
be defined as a function on the underlining sets. Therefore an algebraic model
of the XML database is needed for definition of such operations.

A data model [13] is designed to support the query language XQuery [14]
and any other specification that references it. Since XML Schema is designed for
defining databases that may be searched by XQuery (in fact, the type system of
XQuery is based on XML Schema), it is natural to use this model as semantics
of XML Schema. For this purpose, we need to define formally the model and
map syntactic constructs of XML Schema to the components of the model. As
a result, we can get an abstract implementation of XML Schema, which may be
helpful both in the concise description of XML Schema and the understanding
of its implementation.

To save space, we define only the semantics of a representative part of XML
Schema, simplifying many of its constructions. In this way, we consider only the
most important document components: elements and attributes, other compo-
� The work of this author is supported in part by Russian Foundation for Basic Re-

search under Grant 04-01-00272.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 209–222, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 L. Novak and A. Zamulin

nents such as comments, namespaces, and processing instructions can be easily
added to the presented model without its redefinition.

It is assumed that the reader is familiar with XML [10] and some docu-
ment type definition language like DTD. The familiarity with XML Schema is
desirable, but not mandatory.

The rest of the paper is organized as follows. The abstract syntax of element
declarations and type definitions in XML Schema is presented in Section 2, and
the abstract syntax of the document schema is given in Section 3. Basic types of
XML Schema are listed in Section 4. Base classes of the data model are described
in Section 5. The database itself is defined in Section 6, and the document order
is defined in Section 7. It is shown in Section 8 that an XML document can
be converted into a database tree and vice versa. A review of related work is
presented in Section 9, and concluding remarks are given in Section 10.

2 Element Declarations and Type Definitions

In this section we present an abstract syntax of element declarations and type
definitions in XML Schema. The syntax is given in terms of syntactic types rep-
resenting syntactic domains and the following type constructors:

Seq(T) — type of ordered sets of values of type T (empty set included).
FM(T1, T2) — type of ordered sets (empty set included) of pairs of values of

types T1 and T2 defining final mappings from T1 to T2.
Union(T1, ..., Tn) — type of the disjoint union of values of types T1, ..., Tn.
Enumeration — enumeration type constructor.
Pair(T1, T2) — type of pairs of values of types T1 and T2.
Interleave(T1, T2) — type of two-item sets of values of types T1 and T2 (if a and

b are values of respective types T1 and T2, then both a&b and b&a are
instances of this type).

Tuple(T1, ..., Tn) — type of tuples of values of types T1, ..., Tn.

The presentation is supplied with examples written in the XML Schema lan-
guage. The correspondence between abstract syntax constructions and their
XML representations is straightforward.

There is a predefined syntactic type, Name, whose elements are used for
denoting different document entities. Depending on the context where this type
is used, we denote it either by ElemName or AttrName or SimpleTypeName
or ComplexTypeName.

ElementDeclaration =
Tuple(ElemName, Type, RepetitionFactor, NillOption)

RepetitionFactor = Pair(Minimum, Maximum)
Minimum = NaturalNumber
Maximum = Union(NaturalNumber, {unbounded})
NillOption = Boolean

The RepetitionFactor indicates here how many element information items with
this ElemName a document may have. The NillOption indicates whether the

Algebraic Semantics of XML Schema 211

element may have the nil value. NaturalNumber and Boolean are conventional
natural number and Boolean values.

Example 1:
<xsd:element name="annotation" type="xsd:string" nillable="true"/>

<xsd:element name="Book" type="Book-type" minOccurs="1"

maxOccurs="unbounded"/>

<xsd:element name="A">

<xsd:complexType>

...

</xsd:complexType>

</xsd:element>

Three element declarations are presented in the example. The RepetitionFactor
is indicated by the pair (minOccurs, maxOccurs); in the first and third element
declarations the default value (1, 1) is used, in the second declaration the value
is set explicitly. An anonymous complex type is used in the third declaration.
NillOption is set to false by default in the second and third declarations. Thus
only the first element may have the nil value.

GroupDefinition = Tuple(Seq(LocalGroupDefinition),
CombinationFactor, RepetitionFactor)

LocalGroupDefinition = Union(ElementDeclaration, GroupDefinition)
CombinationFactor = Enumeration(sequence, choice)

A group definition consists of a sequence of local group definitions, which are
either element declarations or group definitions. The CombinationFactor indi-
cates whether the group defines a sequence or choice. The definition has the
empty content if the sequence of local group definitions is empty. A nested group
definition is presented in Example 2.

Example 2:
<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="work" type="xsd:string"/>
<xsd:element name="eat" type="xsd:string"/>

</xsd: sequence>
<xsd:choice>

<xsd:element name="work" type="xsd:string"/>
<xsd:element name="play" type="xsd:string"/>

</xsd:choice>
<xsd:element name="sleep" type="xsd:string"/>

</xsd:sequence>

Type = Union(TypeName, AnonymousTypeDefinition)

A type may be defined inline in an element declaration (third declaration in
Example 1) or supplied with a name in a type definition (Example 7). Some
type names are predefined, they denote primitive simple types (for instance, the

212 L. Novak and A. Zamulin

type xsd:string in the above examples).

TypeName = Union(SimpleTypeName, ComplexTypeName)

A simple type in an element declaration means the definition of zero or more tree
leaves. A complex type in an element declaration means, as a rule, the definition
of zero or more intermediate nodes of a tree. We consider in the sequel that all
simple types are predefined and have a name.

AllOptionDefinition =
FM(ElemName, Tuple(Type, OptionFactor, NillOption))

OptionFactor = {0, 1}
This is the declaration of a special group containing the declared elements in any
order. This group may not consist of nested groups. An element of the group
is optional in a document if the value of the OptionFactor is 0, and it must
be present if the value is 1. The declaration has the empty content if the final
mapping is empty.

Example 3:
<xsd:all>

<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>

</xsd:all>

In the above example the OptionFactor has the default value 1 (each element
must be present in a document).

AttributeDeclarations = FM(AttrName, SimpleTypeName)

AttributeDeclarations introduce a number of attributes with different names.
The type of an attribute is always a simple type. For simplicity, we do not indi-
cate properties (REQUIRED, PROHIBITED, OPTIONAL) and default values.

Example 4:
<xsd:attribute name="InStock" type="xsd:boolean"/>
<xsd:attribute name="Reviewer" type="xsd:string"/>

AnonymousTypeDefinition =
Union(SimpleContentDefinition, ComplexContentDefinition)

SimpleContentDefinition = Pair(SimpleTypeName, AttributeDeclarations)
ComplexContentDefinition=Pair(MixedOption, ComplexTypeContent)
ComplexTypeContent =

Union(LocalElementDeclarations, AttributeDeclarations,
Pair(LocalElementDeclarations, AttributeDeclarations))

MixedOption = Boolean
LocalElementDeclarations=Union(AllOptionDefinition, GroupDefinition)

Algebraic Semantics of XML Schema 213

A complex type may have either a simple content or a complex content. In
the first case, a simple type is extended by attribute definitions. In the sec-
ond case, the definition of a complex type typically consists of (local) ele-
ment declarations or attribute declarations or both. If the MixedOption in the
ComplexContentDefinition is set to true, then a document may contain text
nodes in between element nodes of the corresponding group.

Example 5:
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:decimal">

<xsd:attribute name="currency" type="xsd:string"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

A complex type with a simple content is defined. An element of this type may
have a decimal value and an attribute.

Example 6:
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="Book" minOccurs=0 maxOccurs="1000">

<xsd:complexType>
<xsd:all>

<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="InStock" type="xsd:boolean"/>
<xsd:attribute name="Reviewer" type="xsd:string"/>

</xsd:complexType>

A complex type with complex content is defined. The MixedOption of the outer
type indicates that Book elements can be interleaved by texts.

3 Document Schema

In this model we permit only one element information item as a child of the doc-
ument information item. This model is more restrictive than the one specified in
[13] (where several element information items may be children of the document
information item), but it strictly follows the model specified in [11].

214 L. Novak and A. Zamulin

DocumentSchema =
Interleave(ComplexTypeDefinitionSet, GlobElementDeclaration)

ComplexTypeDefinitionSet =
FM(ComplexTypeName, AnonymousTypeDefinition)

GlobElementDeclaration = Tuple(ElemName, Type, NillOption)

Thus, a document schema defines a set of documents each having a root element
with the same name. The schema may contain a number of complex type def-
initions preceding or following GlobElementDeclaration and introducing type
names used within GlobElementDeclaration and ComplexTypeDefinitionSet3.
For any type T used in a document schema with the complex type defini-
tion set ctd, the following requirement on type usage must be satisfied: T ∈
SimpleTypeName or T ∈ AnonymousTypeDefinition or T ∈ dom(ctd)4

Example 7:
<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.books.org"
xmlns="http://www.books.org"
elementFormDefault="qualified">

<xsd:complexType name="BookPublication">
<xsd:sequence>

<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="BookStore">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Book" type="BookPublication"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

A named and an anonymous data type are defined in the example.

3 In fact, the document schema may also contain a number of other element decla-
rations and attribute declarations. However, attributes are always part of complex
types and may be declared inline. Multiple global element declarations may also be
considered as a kind of syntactic sugar permitting one either to combine several doc-
ument schemas in one schema or save space by referencing an element declaration
from within several complex types.

4 Here and in the sequel, dom(f) denotes the domain of a finite mapping f .

Algebraic Semantics of XML Schema 215

4 Basic Types

We consider that the data model contains all primitive types listed in [12]. These
are string, boolean, decimal, float, double, duration, dateTime, time, date, gYear,
gYearMonth, gYearDay, gDay, gMonth, hexBinary, base64Binary, anyURI, and
QName. An atomic type is a primitive type or a type derived by restriction from
another atomic type [12]. A simple type is an atomic type or list type or union
type or a type derived by restriction from another simple type.

Simple types create a type hierarchy resembling that of object-oriented lan-
guages. The type xs:anyType is at the top of the hierarchy (i.e., it is the base
type of all types). The type xs:anySimpleType is a subtype of xs:anyType and
is the base type of all simple types. The type xdt:anyAtomicType is a subtype
of xs:anySimpleType and is the base type for all the primitive atomic types,
and xdt:untypedAtomic is its subtype not including some specific atomic types
such as xs:integer, xs:string, and xdt:dayTimeDuration [14].

In this paper, we additionally use the type constructor Seq(T) defining the
set of all sequences (ordered sets) of elements of type T . Any sequence type
possesses the following operations among the others: |s| returns the length of
the sequence s, s1 + s2 attaches the sequence s2 to the sequence s1, and s[i]
returns the i-th element of the sequence s.

5 Base Classes

The data model defined in [13] has a flavor of an object-oriented model [5] in
the sense that its main building entities are unique nodes possessing the state
that can be viewed by a number of accessor functions. There are several disjoint
classes of nodes (elements, attributes, etc.) representing different document in-
formation items. All of these classes may be considered as subclasses of the base
class Node. Therefore, the following class hierarchy may be designed:

Node: base class with the following accessors:
base-uri: Seq(anyURI) (empty or one-element sequence),
node-kind: string,
node-name: Seq(QName) (empty or one-element sequence),
parent: Seq(Node) (empty or one-element sequence),
string-value: string,
typed-value: Seq(anyAtomicType) (sequence of zero or more atomic values)5,
type: Seq(QName) (empty or one-element sequence),
children: Seq(Node) (sequence of zero or more nodes),
attributes: Seq(Node) (sequence of zero or more nodes),
nilled: Seq(boolean) (empty or one-element sequence).

Document: a subclass of the class Node with three extra accessors not consid-
ered in this paper.
5 Because of complex rules of computing this value for different kinds of nodes, we do

not consider this accessor in the sequel.

216 L. Novak and A. Zamulin

Element: a subclass of the class Node without extra accessors.
Attribute: a subclass of the class Node without extra accessors.
Text: a subclass of the class Node without extra accessors.

Instances of these classes serve for representing document information items,
element information items, attributes and texts, respectively.

6 Database

6.1 State Algebra

Because of frequent insertion of new documents, updating existing documents
and deleting obsolete documents, a database evolves through different database
states. Each state can be formally represented as a many-sorted algebra called
a state algebra in the sequel (algebra components are written in the true type
font). Each class C is supplied in a state algebra A with a set of node identifiers
AC in such a way that the sets of identifiers ADocument, AElement, AAttribute, AText,
etc. are disjoint and the set ANode is the union of the above sets. In the sequel, the
node identifier is meant each time a node is mentioned (in the same way as an
object identifier, or reference, represents an object in object-oriented languages
and databases, see [5] for a formal definition of an object-oriented model).

Each simple data type T is supplied in A with a set of values AT and a set of
meaningful operations. One of these operations, denoted by the type name and
called constructor, converts a string value into an atomic value of this type.

The following node accessor values are set in any state algebra A:

– for each nd ∈ ADocument: node-kind(nd) = ‘‘document’’, node-name(nd),
parent(nd), type(nd), attributes(nd), and nilled(nd) are set to empty
sequences;

– for each nd ∈ AElement: node-kind(nd) = ‘‘element’’;
– for each nd ∈ AAttribute: node-kind(nd) = ‘‘attribute’’, children(nd),

attributes(nd), and nilled(nd) are set to empty sequences;
– for each nd ∈ AText: node-kind(nd) = ‘‘text’’, node-name(nd),

children(nd),attributes(nd),andnilled(nd)are set to empty sequences.

A state algebra A sets values of the other accessors. The following variables
are used in the definition of the state algebra:

el, el1, el2, ... — element names,
eld — element declaration,
leds — local element declarations,
ctd — set of complex type definitions,
atds — attribute declarations,
gd, gd1, gd2, ... — group definitions,
gds — sequence of group definitions,
T, T1, T2, ... — data types,
cf — combination factor,

Algebraic Semantics of XML Schema 217

min1, min2, ... — minimum number of occurrences of an element or group,
max1, max2, ... — maximum number of occurrences of an element or group,
mix — mixed content option,
nid — nil option.

The state algebra extensively uses trees of nodes. A parent node in such a tree
is either a document node or an element node. The children of a particular
parent node are those nodes that are indicated by the accessors children and/or
attributes. Formally:

– a node nd is a tree with the root nd;
– if s is a tree with root nd and s1, ..., sn are trees with roots nd1, ..., ndn such

that children(nd) = (nd1, ..., ndn), then 〈s, (s1, ..., sn)〉 is a tree with the
root nd;

– if s is a tree with root nd and nd1, ..., ndn are nodes such that attributes(nd)
= (nd1, ..., ndn), then 〈s, (nd1, ..., ndn)〉 is a tree with the root nd.

The set of these trees constitute the set of values of the data type Tree. The
function root : Tree → Node applied to a tree yields its root node and the
function roots : Seq(Tree) → Seq(Node) applied to a sequence of trees yields
the sequence of their root nodes.

6.2 Document Tree

A document schema S = (eld, ctd) or S = (ctd, eld), where eld = (el, T, nid) is
an element declaration and ctd a set of complex type definitions, is mapped in a
state algebra A to zero or more trees of nodes. Denote such a tree by s. It must
satisfy the following requirements:

1. nd = root(s) ∈ ADocument, base-uri(nd)∈ AanyUri, and string-value(nd)
= string-value((children(nd)). Thus, the string value of the document node
is the string value of its single child.

2. A node end ∈ s is associated with the element declaration eld = (el, T, nid)
so that:

3. end ∈ AElement, parent(end) = nd, children(nd) = (end) (i.e., a document
node has only one child, an element node, it is the node with name "BookStore"
in a tree associated with the Example 9 schema); and

4. node-name(end) = el, base-uri (end) = base-uri(parent(end)),
type(end) = T if T is a type name, type(end) = “xs:anyType” if T is an
anonymous type definition, and string-value(end) and typed-value(end)
are computed according to the algorithms described in [13], Section 6.2.2.

5. If nid = false (i.e., the element may not have the nil value), then
nilled(end) = false, and

5.1. If T is a simple type, then:
5.1.1. There is in s a node tnd ∈ AText such that parent(tnd) = end,

type(tnd) = “xdt:untypedAtomic”, string-value(tnd) ∈ AString,
base-uri(tnd) = base-uri(end), and children(end) = (tnd).

For instance, a text node is associated with each of the element nodes with
names Title, Author, Date, ISBN, and Publisher in a tree associated with
the Example 7 schema.

218 L. Novak and A. Zamulin

5.2. If T is a complex type with simple content (T ′, atds), where atds =
{at1 �→ T1, ..., atu �→ Tu} (attributes are declared), then items 5.1.1 and 5.3.1
hold. For instance, a text node and attribute node will be associated with an
element declared with the type presented in Example 5.

5.3. If T is a complex type with complex content (mix, leds, atds) or
(mix, atds), where atds = {at1 �→ T1, ..., atu �→ Tu} (attributes are declared),
then

5.3.1. s contains a sequence of leaf nodes as = (and1, ..., andu) such that
attributes(end) = as (the sequence consists of two nodes for the attribute
declarations of Example 4) and, having an automorphism σ on {1, ..., u} (we
need it because the sequence of nodes may be different from the sequence of the
corresponding attribute declarations), it holds for each andj ∈ as:
andj ∈ AAttribute, parent(andj) = end, base-uri(andj) = base-uri(end),
node-name(andj) = atσ(j), type(andj) = Tσ(j), string-value(andj) ∈ AString,
typed-value(andj) = Tσ(j)(string-value(andj)).
5.4. If T is a complex type with complex content (mix, leds, atds) or (mix, leds)
(subelements are declared), then:

5.4.1. If leds is empty (i.e., the type has the empty content), then
5.4.1.1. If mix = true (mixed type definition), then

– children(end) = () or
– children(end) = (tnd) where tnd is a text node (tnd ∈ AText) with the fol-

lowing accessor values: parent(tnd)=end, base-uri(tnd)=base-uri(end),
type(tnd)=“xdt:untypedAtomic”, and string-value(tnd) ∈ AString.

Thus, only a text node may be attached to an element node if it has no element
child. For instance, an element node corresponding to the element declared with
the type presented in Example 6 may have only one text node as child if there
are no subordinated "Book" elements.

5.4.1.2. If mix = false (no text node is allowed), then children(end) = ().
5.4.2. If leds is not empty, then there is in s a sequence of trees ss such that,

for each rnd ∈ roots(ss), it holds: parent(rnd) = end and rnd ∈ AElement. For
instance, a sequence of trees may be associated with a BookStore element node
(roots of these trees are children of the BookStore node) and a sequence of trees
may be associated with a Book element node (roots of these trees are children
of the Book node) in a tree associated with the Example 7 schema.

5.4.2.1. If mix = false (intermediate text nodes are not allowed),
then children(end) = roots(ss).

5.4.2.2 If mix = true (mixed type definition), then

– there is in s a sequence of text nodes ts, such that, for each tnd ∈ ts, it
holds: tnd ∈ AText, parent(tnd) = end, base-uri(tnd) = base-uri(end),
type(tnd) = “xdt : untypedAtomic”, string-value(tnd) ∈ AString, and
typed-value(tnd) = xdt : untypedAtomic(string-value(tnd)),

– children(end) = sss, where the sequence of nodes sss involves all the nodes
of the sequences roots(ss) and ts in such a way that ∀i ∈ {1, ..., |sss| − 1}

Algebraic Semantics of XML Schema 219

there do not exist nodes sss[i] and sss[i+ 1] such that sss[i] ∈ AText and
sss[i+ 1] ∈ AText (there are no adjacent text nodes). Thus, Book nodes of
Example 6 may be interleaved with text nodes (note that the children nodes
of a Book node may not).

5.4.2.3. If leds is an AllOptionDefinition {el1 �→ (T1, min1, nid1), ..., elu �→
(Tu, minu, nidu)}, then ss is a sequence of q trees (1 ≤ q ≤ u) so that zero or
one tree is associated with the element declaration elj �→ (Tj, minj , nidj), j =
1, ..., u, if minj = 0 and exactly one tree if minj = 1, and each endi ∈ roots(ss)
satisfies the requirements starting from item 4, assuming that end = endi, el =
elσ(i), T = Tσ(i), and nid = nidσ(i), where σ : {1, ..., q} → {1, ..., u} and i =
1, ..., q. For instance, an ss associated with the group definition of Example 3 is
a sequence of five trees whose root nodes are element nodes with the declared
names sequenced in any order.

5.4.2.4. If leds is a GroupDefinition (gds, cf, (m, n)), then ss consists of k
(m ≤ k ≤ n) subsequences of trees ss1, ..., ssk (multiple occurrences of complex
type values)6 and it holds for a subsequence ssj, j = 1, ..., k:

– if gds = (gds1, ..., gdsu) and cf = sequence, then ssj consists of u subse-
quences (one for each group definition)7 of trees ssjq, q = 1, ..., u, and
• if gdsq is an element declaration (elq, Tq, (minq, maxq), nidq), then ssjq

is a sequence of v (minq ≤ v ≤ maxq) trees such that (if ssjq is not
empty) each end ∈ roots(ssjq) satisfies the requirements starting from
item 4, assuming that el = elq, T = Tq, and nid = nidq (for instance,
ssjq is a sequence consisting of one tree for the declaration of the element
with the name sleep in the group definition presented in Example 2);

• if gdsq is a group definition (for instance, the first or second inner group
definition in Example 2), then ssjq satisfies the requirements starting
from item 5.4.2.4, assuming that leds = gdsq and ss = ssjq.

– if gds = (gds1, ..., gdsu) and cf = union, then ssj is associated with a gdsq,
q ∈ {1, ..., u} (for instance, ssj is associated either with the declaration of
the element work or with the declaration of the element play in the second
inner group definition in Example 2), and
• if gdsq is an element declaration (elq, Tq, (minq, maxq), nidq), then ssj is

a sequence of v (minq ≤ vmaxq) trees (exactly one tree for any element
declaration in the second inner group definition in Example 2) such that
(if ssj is not empty) each end ∈ roots(ssj) satisfies the requirements
starting from item 4, assuming that el = elq, T = Tq, and nid = nidq;

• if gdsq is a group definition, then ssj satisfies the requirements starting
from item 5.4.2.4, assuming that leds = gdsq and ss = ssj.

6 For instance, an ss associated with the group definition presented in Example 2 may
be empty or consist of any number of such subsequences. The same refers to the first
inner group definition of this example. The second inner group definition may result
only in an ss consisting of one tree.

7 For instance, each ssj that is part of an ss associated with the group definition
presented in Example 2 consists of three such subsequences.

220 L. Novak and A. Zamulin

6. If nid = true (i.e., the element may have the nil value), then:
6.1. If T is a simple type, then either children(end) = () and nilled(end) =

true or nilled(end) = false and item 5.1.1 holds.
6.2. If T is a complex type with simple content (T1, atds), where atds = {at1 �→

T1, ..., atu �→ Tu}, then either children(end) = () and nilled(end) = true and
item 5.3.1 holds or nilled(end) = false and items 5.1.1 and 5.3.1 hold.

6.3. If T is a complex type with complex content, then either children(end)
= () and nilled(end) = true and item 5.3 holds or nilled(end) = false and
items 5.3 and 5.4 hold.

7. There are no other nodes in s.

7 Document Order

The ordering of nodes in the tree s defines the document order, which is used in
some operations of XQuery [14] and other XML query languages. As in XQuery,
the notation nd1 << nd2 means in this paper that the node nd1 occurs in s
before the node nd2 and the notation tree(nd1) << tree(nd2) means that any
node in the tree with the root node nd1 occurs in s before any node in the tree
with the root node nd2. The relation << is a total order. Recall that the root
node in s is the document node nd. The tree s is ordered as follows:

– let children(nd) = (end), then nd << end;
– for any element node end ∈ s, let attributes(end) = (and1, ..., andk) and

children(end) = (end1, ..., endm), then end << and1, andi << andi+1, i =
1, ..., k-1, andk << end1, and tree(endj) << tree(endj+1), j = 1, ..., m-1.

8 XML-Document vs. Document Tree

In this section, we address the issue of expressive power and correctness of the
data model presented in the paper. In order to do this, we formulate the propo-
sition of the existence of a mapping between XML-documents and document
trees that preserves the document validity and content. We respectively write
S-document and S-tree for an XML-document and document tree valid with
respect to the document schema S.

First, we introduce an equivalence relation on the set of XML-documents
that is based on the document content - content equality denoted by =c. The
relation is an important basis for formalization of one of the basic notions of the
paper, the XML-document. Second we state and prove the following theorem:

Theorem. For any document schema S, there is a function f that maps a set
of S-documents to a set of S-trees and a function g that serializes an S-tree to
an S-document such that g(f(X)) =c X .
The proof of the theorem can be found in [8].

Algebraic Semantics of XML Schema 221

9 Related Work

There are very few papers devoted to formal foundation of XML Schema or
another document definition language. More popular subjects are, to our knowl-
edge, validation of a document against a schema [6,7] and development of an
algebra for an XML query language [3,4].

The paper [1] is a work that directly concerns the problem of formal semantics
of XML Schema. Like our paper, it formalizes some core ideas of XML Schema.
Model Schema Language (MSL) is designed for this purpose. It is described with
an inference rule notation originally developed by logicians. These inference rules
show in what cases a document validates against a document schema. Thus, the
main difference between this paper and our paper is in the fact that this paper
does not suggest any internal model of the document schema. As a result, such
important aspects as node identity constraints and mappings from XML Schema
syntax into internal model components are not touched in the paper. The authors
have mentioned that they had begun to work on these topics, but we have not
managed to find a paper presenting such a work.

Inference rules are also used in defining the semantics of another popular
XML schema language, RELAX NG [2]. The way of defining the semantics in
this work resembles that of [1] in the sense that the semantics of a schema
consists of the specification of what XML documents are valid with respect to
that schema. Like the work [1], this work has the same shortcomings and the
same differences with our work.

Formal semantics of values, types, and named typing in XML Schema are
defined in [9]. We have not touched these problems, considering that they are
successfully solved in that paper.

The representation of an XML document as a data tree is also described in
[4]. However, the work is not related with both XML Schema and XQuery 1.0
Data Model. For this reason, the tree consists only of element nodes, the node
does not possess an identifier, the majority of node accessors are not defined, etc.
In contrast to this work, our document tree is much closer to the tree informally
specified in [13].

10 Conclusion

We have presented the semantics of the core features of XML Schema in terms of
the XQuery 1.0 and XPath 2.0 data model algebraically defined. The database
state is represented as a many-sorted algebra whose sorts are sets of data type
values and different kinds of nodes and whose operations are data type operations
and node accessors. The values of some node accessors, such as parent, children
and attributes, define a document tree with a definite order of nodes. The
values of other node accessors help to make difference between kinds of nodes,
learn the names, types and values associated with the corresponding document
entities, etc., i.e., provide primitive facilities for a query language. As a result,
a document can be easily mapped to its implementation in terms of nodes and
accessors defined on them. The main theorem of the paper proves this.

222 L. Novak and A. Zamulin

It is worth to note that, with this kind of semantics, the XQuery 1.0 and XPath
2.0 data model may be considered as an abstract implementation of XML Schema.
Hence,XMLSchema and theXQuery 1.0 andXPath 2.0 datamodel become tightly
related, which may serve as a significant help for the XML Schema implementor.

Finally, the presented semantics may serve as a base of an XML algebra
supporting a query language such as XQuery. We are proceeding with this work.

References

1. Brown, A., Fuchs, M., Robie, J., Wadler, P.: MSL: A model for W3C XML Schema.
Proc. 10th Int’l World Wide Web Conf., Hong Kong (2001) 191–200

2. Clarke, C., Makoto, M.: RELAX NG specification. Oasis (2001) http://www.
relaxng.org/spec-20011203.html

3. Fernandez, M., Siméon, J., Wadler, P.: An Algebra for XML Query. FST TCS,
Delhi (2000) 11–45

4. Jagodish, H. V., Lakshmanan, V. S., Srivastatva, D., Thompson, K.: Tax: A Tree
Algebra for XML. Proc. Intl. Workshop on databases and Programming Languages,
Marino, Italy (2001)

5. Lellahi, K., Zamulin, A.: An object-oriented database as a dynamic system with
implicit state. A. Caplinskas and J. Eder (eds.). Advances in Databases and Infor-
mation Systems (Proceedings of the 5th East European Conference, ADBIS 2001,
Vilnus, Lithuania, September 2001), LNCS, vol. 2151, (2001) 239–252

6. Murata, M., Lee, D., Mani. M.: Taxonomy of XML Schema Languages using Formal
Language Theory. Extreme Markup Languages, Montreal, Canada (2001)

7. Novak, L., Kuznetsov, S.: Canonical Forms of XML Schemas. Programming and
Computer Software, No. 5 (2003) 65–80

8. Novak, L., Zamulin, A.: Algebraic Semantics of XML Schema. Preprint No. 117,
Institute of Informatics Systems of the Siberian Branch of the Russian Academy
of Sciences (2004) http://www.iis.nsk.su/persons/zamulin/zam-preprint117.ps.

9. Siméon, J., Wadler, P.: The Essence of XML. POPL’03, January 15-17, New Or-
lean, Loisiana, USA (2003)

10. Extensible Markup Language (XML) 1.0 (Third Edition). W3C Working Draft
(2004) http://www.w3.org/TR/2004/REC-xml-20040204

11. XML Schema Part 1: Structures Second Edition, W3C Working Draft (2004)
http://www.w3.org/TR/xmlschema-1

12. XML Schema Part 2: Datatypes Second Edition. W3C Working Draft (2004)
http://www.w3.org/TR/xmlschema-2

13. XQuery 1.0 and XPath 2.0 Data Model, W3C Working Draft (2005) http://www.
w3.org/TR/xpath-datamodel

14. XQuery 1.0: An XML Query Language. W3C Working Draft (2005) http://www.
w3.org/TR/xquery

15. XML Information Set, W3C Working Draft (2004) http://www.w3.org/TR/xml-
infoset

Efficient XPath Evaluation

Bing Wang1, Ling Feng2, and Yun Shen1

1 Department of Computer Science, University of Hull,
Hull, HU6 7RX, United Kingdom

{B.Wang, Y.Shen}@dcs.hull.ac.uk
2 Department of Computer Science, University of Twente,

PO Box 217, 7500 Enschede The Netherlands
ling@cs.utwente.nl

Abstract. Inspired by the best querying performance of ViST among
the rest of the approaches in the literature, and meanwhile to overcome
its shortcomings, in this paper, we present another efficient and novel
geometric sequence mechanism, which transforms XML documents and
XPath queries into the corresponding geometric data/query sequences.
XML querying is thus converted to finding non-contiguous geometric sub-
sequence matches. Our approach ensures correct (i.e., without semantic
false) and fast (i.e., without the costly post-processing phase) evaluation
of XPath queries, while at the same time guaranteeing the linear space
complexity. We demonstrate the significant performance improvement of
our approach through a set of experiments on both synthetic and real-life
data.

1 Introduction

With the advent of XML as a standard for data representation and exchange on
the Web, indexing and querying XML documents becomes increasingly impor-
tant for current and future data-centric applications. Substantial research efforts
[4,7,5,11] have been conducted to structurally index and retrieve data from XML
documents.

The first problem of retrieving data from XML documents is how to deal with
specific queries containing constraints related to the content of the documents.
Providing a uniform index structure [15] for both the structure and content
information of an XML document is thereupon desirable. More importantly, the
mechanism should be preferably implemented using some well-supported DBMS
data structures like B+Tree.

The second problem is that a query compatible to XPath is modeled as a tree,
referred to as a twig, and can be complicated [6] when wildcards ”*” and self-or-
descendent axis(”//”) are presented (for example, Q5 in Table 3). To match such
a complex query against a document tree without corresponding preprocessing
mechanism is equivalent to the tree inclusion problem and has been proved to
be NP-complete [1].

Previous research efforts have been devoted to twig pattern matching for
several years. XISS [10] is the first to break twig pattern query into binary twigs,

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 223–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

224 B. Wang, L. Fenga, and Y. Shen

and ”stitch” the binary twigs (i.e. two nodes with parent-child relationship)
together to obtain the final results. State-of-the-art mechanisms, i.e. structural
join [3], holistic twig join [12], have been proposed to stitch root-to-node paths
together by using specially designed stacks. Additionally, some index structures,
such as XR-Tree [8] and XB-Tree [12], have been proposed to optimize the above
twig join operations. However, the performance of all the above mechanisms is
suffered from the time-consuming join operations.

Wang et al. proposed a novel ViST mechanism [15], which transforms both
XML documents and XPath queries into structure-encoded sequences so that
the twig pattern matching problem is converted to subsequence matching prob-
lem. The advantage of this approach is that it does not need to break down a
twig pattern into root-to-leaf paths and process them individually, thus avoiding
the heavy join operations to join intermediate results. This method improves all
the previous searching mechanisms significantly. However, ViST has three major
shortcomings. First, its structure-encoded sequence model can cause the seman-
tic false problem. That is, an XML fragment which semantically matches a query
may not be returned. Second, ViST may lead to false answers (false alarms) be-
cause its encoding method can not fully sustain the structures of XML data trees.
Time-consuming refinement phase or post-processing phase has to be called to
eliminate the false answers. Although Wang et al. [14] further proposed a way
to eliminate the post-processing phase with O(n2) total size complexity (where
n is the total node number in a data tree), it depends on specialized trie + path
link structure to find sibling-cover in the trie and remove the false answers, in
which the semantic false still exists. Third, ViST can not guarantee the linear
size complexity of structure-encoded sequence. In the worst case, the total size
of structure-encoded sequence is O(n2) when a document is a unary tree.

To overcome the above three problems, in this paper, we present another
encoding mechanism to transform XML documents and XML queries into geo-
metric sequences. Our objective is to ensure correct (i.e. without semantic false)
and fast (i.e. without the post-processing phase) evaluation of XPath queries,
while at the same time guaranteeing the linear size complexity of the sequence.
This approach enables us to achieve better storage and query performance than
ViST.

2 The Problems with ViST

As proposed in [15], a structure-encoded sequence is derived from a prefix traver-
sal of an XML document, in format of a sequence of (symbol, prefix) pairs, (a1,
p1), (a2, p2), ..., (an, pn), where ai represents a node in the XML document
tree (a1a2...an is the pre-order sequence) and pi is the encoded path from root
to ai. In the same spirit, XML queries are converted into structure-encoded
query sequences in which ”*” and ”//” are explicitly encoded. Querying XML is
equivalent to finding non-continuous subsequence matches in ViST. The corre-
sponding structure-encoded sequence of the XML document example in Figure
1 is illustrated in Figure 2. Let TStr denote the structure encode sequence.

Efficient XPath Evaluation 225

A

B

D E F

B

D K

J

v1: "indexing" v2: "and" v3: "querying" v4: "XML" v5: "doc um ents"

v6: "CIKM"

Fig. 1. An Example of XML Document in Tree Structure

TStr = (A, ε) (B, A) (D, AB) (v1, ABD) (E, AB) (v2, ABE) (F, AB) (v3,
ABF) (B, A) (D, AB) (v4, ABD) (K, AB) (v5, ABK) (J, A) (v6, AJ)

Fig. 2. Structure-Encoded Sequence of the XML Document in ViST Approach

The problem of false answers (a.k.a false alarms) arises immediately in ViST
in which an XML document is represented by a structure-encoded sequence. For
example, given a query Q2: /A/B[./E][./K], its tree structure is shown in Figure
8(b), and its corresponding structure-encoded query sequence is shown in Figure
3. The underlined non-continuous subsequence in TStr marks a result (matching).
However, it is a false answer since the structure expressed in Q2 does not exist
in the XML document example. We call this kind of queries non-existence false.

Q2Str = (A, ε) (B, A) (E, AB) (K, AB)

Fig. 3. Structure-Encoded Sequence of Q2

Consider, for another example, Q3 shown in Figure 8(c), its structure-encoded
sequence is shown in Figure 4. In ViST, Q2 and Q3 may return the same re-
sults because Q2 is a subsequence of Q3. We call this kind of query pairs non-
equivalence false. It implies that refinement phase or post-processing phase has to
be called to eliminate the false answers in these two cases. However, the process
may not be always trivial.

Moreover, ViST has a serious semantic flaw in transforming XPath queries
into structure-encoded sequences. Suppose we have an XML fragment:

< A >< B >< K >< C >< /C >< /K >< /B >< /A >

and its corresponding structure-encoded sequence:

FragStr =< A, ε >< B, A >< K, AB >< C, ABK >

If Q: /A[./B//C][//K] is transformed into a structure-encoded query sequence
and evaluated against this fragment:

QStr =< A, ε >< B, A >< C, AB// >< K, A// >

226 B. Wang, L. Fenga, and Y. Shen

Q3Str = (A, ε) (B, A) (E, AB) (B, A) (K, AB)

Fig. 4. structure-encoded Sequence of Q3

we can see that there is no such subsequence matching of QStr in Fragstr since K
appear after C in ViST, as shown in Figure 5. However, Q semantically matches
the fragment. This flaw can hardly be fixed since the order among the items in a
structure-encoded sequence is indispensable in ViST. We call this semantic flaw
of ViST semantic false.

A

B K

C

An XPath Query

A

B

K

C

An XML Doc um ent

Fig. 5. A Semantic False Query Evaluation in ViST

3 Proposed Method

To overcome the shortcomings of ViST, in this section, we present a geometric-
encoding mechanism, which transforms XML documents/queries into geometric
data/query sequences. Further enhancement to our geometric encoding approach
is also described.

3.1 Mapping XML Documents into Geometric Data Sequences

We firstly model XML as an ordered, node labeled, rooted tree. More formally,
consider a graph T = (VG, VT, vr, EG, labelnode, nid,

∑
T). VG is the set

of element nodes and VT is the set of text nodes. ∀v ∈ VT , v has no outgoing
edge. vr is the root of the XML data tree, where there exists a path from vr to
v, ∀v ∈ VG ∪ VT . Moreover, it implies that vr has no incoming edge. Each node
v ∈ VG ∪VT is labeled through the function labelnode over the set of terms,

∑
T .

The label of a node v ∈ VG is referred to as the tag name. The label of v ∈ VT

is referred to as a distinct keyword contained in the corresponding text. We use
quotation mark in future figures to distinguish the label in VT .

Each edge e, e ∈ EG, is a parent-child edge, denoting the parent-child re-
lationship. The parent node is denoted as vep , and the child node is denoted
as vec . A path is a sequence of edges starting from the node vi to the node vj ,
denoted as ei, ei+1, ..., ej . A node vi is ancestor of vj iff a path to vj goes
through vi. The order among the sibling nodes is distinguished. Each node is

Efficient XPath Evaluation 227

assigned a unique nid number for indexing and querying purpose. We refer Tvi

as the subtree induced by node vi. Figure 1 shows an example of our data model.
The solid edges represent EG. The dashed edge denotes a edge e, vep ∈ VG, and
vec ∈ VT . The quoted string represents a label of a node v ∈ VT .

We secondly transform an XML document into a sequence by pre-order
traversing the above XML data tree, recording a node’s parent when back-
tracking. For the example in Figure 1, its sequence representation is shown in
Figure 6.

ABDv1DBEv2EBFv3FBABDv4DBKv5KBAJv6JA

Fig. 6. A Sequence Representation of the Example XML Document

To clearly represent a sequence, we slightly modify the above sequence to
indicate the start (s), intermediate(i), end (e) positions of a specific node which
appears multiple times in the sequence. The modified sequence representation
is shown in Figure 7. Let TGeo denote the modified sequence, and f : T → TGeo.
Easily we can see f is a bijection between TGeo and T . In the rest of the paper,
we call the modified sequence geometric sequence. We later show in Section 4
that those extra symboli and symbole require trivial processing in both indexing
and querying process.

TGeo=AsBsDsv1DeBiEsv2EeBiFsv3FeBeAiBsDsv4DeBiKsv5KeBeAi Jsv6JeAe

Fig. 7. A Geometric Sequence Representation of the Example XML Document

A

KE

BB

(c)

A

KE

B

(b)

A

B K

D

(a)

Q3Q2Q1

Fig. 8. Example of Query Sequences in Tree Form

3.2 Transforming XPath Query into Geometric Query Sequence

A query compatible to XPath is modeled as a tree, as shown in Figure 8. The core
of evaluating an XPath query at an XML document is finding all the answers
of such a twig pattern matching the constraints (axes, nested structure, terms
etc.) of the query. Moreover, a query can be complicated when wildcards ”*” and
self-or-descendent axis(”//”) are presented. When we transform an XPath query

228 B. Wang, L. Fenga, and Y. Shen

Table 1. List of Q1, Q2, and Q3 in Geometric Query Sequences

Path Expression Geometric Query Sequence
Q1: /A[B/D][//K] Q1Geo: As Bs Ds De

p Be
p Ai

u Ks Ke Ae

Q2: /A/B[./E][./K] Q2Geo: As Bs Es Ee
p Bi Ks Ke

p Be
p Ae

Q3: /A/B[E]/following-sibling::B/KQ3Geo: As Bs Es Ee
p Be

p Ai Bs Ks Ke
p Be

p Ae

into a geometric query sequence in a similar way of mapping XML documents
into geometric sequences, we ensure that all the information in the XPath query
is preserved. We show this by using example queries Q1, Q2, and Q3 in Table
1. Their tree structures are shown in Figure 8.

Consider the example query Q2: /A/B[./E][./K], its tree structure is shown
in Figure 8(b). When we transform it into a geometric query sequence, we must
preserve: (1) A is parent of B, and (2) B is parent of both E and K. In this
paper, Q2 is transformed into a geometric query sequence: As Bs Es Ee

p Bi Ks

Ke
p Be

p Ae, where p implies that the upcoming item is parent of the current
item. As we can observe, any internal node is followed by its parente or parenti
in the geometric sequence. However, a Ee may be followed by Bi in real data
sequence not Be. This issue can be easily solve by defining Bi equals to Be when
determining the parent relationship. If p is not explicitly stated, the relationship
is ancestor-descendant (”//”) by default.

Similarly, for query Q1: /A[B/D][//K], its tree structure is shown in Figure
8(a). When we transform it into geometric sequence, we must preserve: (1) D is
a child node of B which, in turn, a child node of A and (2) K is a descendant
of A. As we state in previous section, ViST may incur semantic false when
transforming Q1 into structure-encoded query sequence since there is no explicit
information of the relationship between K and B (D) stated. In this case, we add
”u” to a specific node which has at least two child nodes and meanwhile ”//” is
involved. Q1 is transformed into a geometric sequence: As Bs Ds De

p Be
p Ai

u

Ks Ke Ae as shown in Table 1, where u signifies that semantic uncertainty may
occur in the upcoming item.

After an XPath Query is transformed into a geometric query sequence, query-
ing XML documents is equivalent to finding (under the guidance of flag ’p’
and/or ’u’) non-contiguous subsequence matches in the corresponding geomet-
ric data sequences. For query Q1, the underlined non-contiguous subsequence
matching in Figure 7 marks a correct matching (i.e. the example document sat-
isfies the query).

Revert to the semantic false problem presented in ViST, as illustrated in
Section 2. Let’s see how our geometric encoding mechanism avoids the problem.
The geometric data/query sequence of the XML fragment and the query (Figure
5)is as follows:

FragGeo = AsBsKsCsCeKeBeAe

QGeo = AsBsCsC
p
e Bp

eAu
i KsKeAe

Efficient XPath Evaluation 229

To match QGeo against FragGeo, when we evaluate Au
i , we resume the range

information of As.It implies that we will search for Ke in FragGeo within the
range of As instead of Be, starting with which, we can find Ks, Ke and Ae.
Section 4 will introduce an elegant stack mechanism to implement the method.

3.3 Numbered Geometric Sequence

Furthermore, consider the fact that in an XML document, the same element
names may appear several times. Given the data tree in Figure 1 and query Q2
in Figure 8(b), Q2 should return no result. However, in Table 1, Q2Geo does not
provide enough information to eliminate the second Be, which implies that a
result would be returned if the second Be is included.

TGeonum = A1sB1sD1sv1D1eB1iE1sv2E1eB1iF1sv3F1eB1eA1i

B2sD2sv4D2eB2iK1s v5K1eB2eA1iJ1sv6J1eA1e

Fig. 9. Numbered Geometric Sequence Representation of XML Document

To tackle this problem, we enhance the basic geometric-encoding data se-
quence by numbering each (repeated) item, so that a geometric sequence is
sequence of symbolnumber(s|i|e) . Figure 9 gives a numbered geometric data se-
quence. Note that we do not number the geometric query sequence. We can see
that there is no such subsequence matching in TGeonum . Additionally, for each
query sequence having symboli, we only choose the first one in TGeo on the basis
of the fact that the rest symboli is redundant in querying process. Moreover, for
queries having the same child nodes in branches, it is equal to find all the non-
decreasing subsequence matching in geometric sequence for all the nodes with
the same names. ”*” is handled as a range query as the same to ViST. If p is
not explicitly stated in geometric sequence model, ”//” is then default and not
instanced on the basis of the fact that ”//” only represents ancestor-descendant
relationship. By contrasting to ViST’s instance step, resource-consuming prefix
checking and range query steps connected with ”//” are eliminated in our geo-
metric sequence model. Due to lack of space, the correctness of querying XML
through numbered geometric data/query sequence matching is not provided.

4 Holistic Sequence Matching

To acclerate XPath evaluation, the challenge of our geometric model is to (i)
avoid the semantic false problem, (ii) eliminate the false answers without re-
finement or post-processing phases, and (iii) provide a linear storage complexity
mechanism to reduce the size of index. In section 3, we show that the total size
of numbered geometric sequence is O(n). In this section, we demonstrate our
subsequence matching can find all the correct answers without refinement or
post-processing phase which is inevitable in ViST.

230 B. Wang, L. Fenga, and Y. Shen

Table 2. List of Q1, Q2, and Q3 in Optimized Geometric Query Sequences

Path Expression Geometric Sequence
Q1: /A[B/D][//K] Q1OptGeo: As De

p Be
p Ai

u Ke Ae

Q2: /A/B[./E][./K] Q2OptGeo: Ee
p Bi Ke

p Be
p Ae

Q3: /A/B[E]/following-sibling::B/K Q3OptGeo: Ee
p Be

p Ai Bs Ke
p Be

p Ae

4.1 Index Structure

We adopt a hierarchical indexing structure similar to ViST with some modifica-
tions. Each item in a geometric data sequence is in form of (symbolnumber(s|i|e)).
Items in a geometric sequence are first put into a trie-like structure. Then each
node in the trie is assigned two extra elements ”preorder” and ”size”, where
”preoder” is the pre-order traversal position of the node in the data tree, and
”size” is used for dynamic scope allocation purpose, whose detail study can be
found in the [13]. To build the index structure, each node in the trie, in format
of (symbolnumber(s|i|e) , preorder, size), is firstly inserted into a sequence B+Tree
index (i.e. SB-Index) using its symbol(s|i|e) as the key. For all the nodes with
the same symbol(s|i|e), they are inserted into a position B+Tree (i.e. PB-Index)
using its preorder as the key. Figure 10 illustrates the index structure used.

C i

B
i

SB
-I

n
d

ex

(7, 100, 300)

(1, 20, 80)

PB
-I

n
d

ex

(5, 25, 75)

(13, 30, 40)

Key: symbol.(s|i|e) Key: preorder

1
13

7
5

PB
-I

n
d

ex

preorder

s ize

num ber

Fig. 10. Index Structure: SB-Index and PB-Index

4.2 Bottom-Up XPath Evaluation

Observing that the performance of evaluating XPath queries over XML docu-
ments is significantly affected by the lengths of geometric query sequences, we
improve our subsequence matching algorithm on the basis of optimized geomet-
ric query sequence transformation. The rational behind is that instead of keeping
pairs of nodes like Bs and Be in a query sequence, we can actually remove one
of them without loss of semantics while performing subsequence matching.

Here, we propose a geometric query sequence transformation rule, with an
aim to minimize the length of the query sequence. That is: removing all the

Efficient XPath Evaluation 231

symbols unless it connects with a symbolui . 3 Examples of the optimized XPath
query sequences after transformation are listed in Table 2.

Interestingly, the transformed query subsequences enable us to perform query
evaluation in a bottom-up manner, since we start our subsequence matching from
a symbole. For example, given the query Q2 : /A/B/[./E][./K] in Figure 8 and
its optimized geometric query sequence: Ep

e Bi Kp
e Bp

e Ae, we start the evaluation
process from Ee instead of As. In comparison, the matching algorithm described
in ViST exhibits the top-down flavor.

To facilitate the optimized geometric subsequence matching, we improve our
stack mechanism accordingly, where only one set of stacks called symbol stacks
are involved. We use Stacksymbol to denote the stack which accommodates items
having symbol.

Given an optimized geometric query sequence ql1
1v1

ql2
2v2

. . . qlm
mvm

and a ge-
ometric data sequence d1num1,V1

d2num2,V2
. . . dnnumn,Vn

, where (m ≤ n), ∀x(1 ≤
x ≤ m) (vx = s|i|e) ∧ (lx = u|p|), and ∀y(1 ≤ y ≤ n) (Vy = s|i|e). Starting with
the empty stacks, we scan across the two sequences from left to right. When two
equal symbols encounter (i.e., qx = dy and vx = Vy) in qlx

xvx
and dynumy,Vy

, we
consider the following situations.

[Case 1] (vx = Vy = s)
We push dynumy,s into the symbol stack Stackdy .

[Case 2] (vx = Vy = e)
There exist two possibilities. 1) When the top item of Stackdy has a subscript
intermediate flag i, we check whether dynumy,i has the same numy as this
top item. If they are the same, we push dynumy,i into Stackdy ; otherwise a
mismatch happens and we start our backtracking process. That is, we pop
all those candidate items, which lie between dynumy,e and the top item in
Stackdy , out of the corresponding symbol stacks including this top item,
and continue to re-search these candidate items in the data sequence.
2) When the top item of Stackdy has a subscript end flag e, we check whether
dynumy,i has the same numy as this top item. If they are not the same, we
push dynumy,i into Stackdy ; otherwise a mismatch happens and we start the
above backtracking process.

[Case 3] (vx = Vy = i)
We check whether dynumy,i has the same numy as the top item in Stackdy . If
they are the same, we push it into Stackdy ; otherwise, a mismatch happens,
and we start our backtracking process.
Note that when we encounter qu

xi
in the query sequence, we need to shift

the search pointer in the data sequence backward to dynumy,s to avoid the
semantic false problem (as specified in Section 3).

To illustrate our optimized geometric subsequence matching procedure, let’s
take query Q2 as the example. A snapshot of the symbol stacks is given in Fig-
ure 11. Detailed algorithmic description can be found in the Algorithm 1(pc
3 Recall in Section 4, symbolus signifies that we need to resume the range information

of symbols so as to cope with the semantic false problem.

232 B. Wang, L. Fenga, and Y. Shen

E1e B1i K1e

B2e

mis match in g

s tac kE s tac kB s tac kK

1
2 3

4

Fig. 11. Stack Status Avoiding Non-existence Query in OptGeoMatching

denotes parent-child relationship and ad denotes ancestor-descendant relation-
ship). Firstly, E1e is pushed into StackE (Step 1). Since p is in Ep

e in the query
sequence, the only item in Figure 9 that satisfies the parent-child constraint is
B1i, and is thus pushed into StackB (Step 2). K1e is further pushed into StackK

(Step 3). As p is in Kp
e , B2e is the only possible parent item. However, its num-

ber 2 does not conform to the number 1 of the top item B1i in StackB (Step
4). Thus B2e cannot be pushed into StackB, and a mismatch happens. We need
to backtrack to Bi and re-start the searching in the data sequence from B2i,
returning no satisfactory query answer in the end.

5 Experimental Results

We implement our proposed sequence matching mechanism, OptGeoMatching,
in C++. We also implemented ViST, and a classical indexing and querying
mechanism, XISS [10], for comparison purpose. XISS breaks down the queries
into binary twigs and ”stitches” them together to obtain the final results. ViST
treats both XML documents and XML queries as sequences and obtains the
final results by using subsequence matching phase to get preliminary results and
post-processing phase to eliminate false answers. We encode the string as they
are in ViST and use substring matching algorithm to detect the prefix matching.

We use the B+Tree library in Berkeley DB provided by Sleepycat software.
All the experiments are carried out on a Pentium III 750MHZ machine with
512MB main memory. We use disk pages of 8k for Berkeley B+Tree index. To
evaluate both the efficiency and scalability of the proposed method, we perform
the experiments on both real-world datasets and synthetic datasets.

Experiments on Real-World Datasets
Data Sets
For our experiments, we use public XML databases DBLP [9] and the public

XML benchmark XMARK [2].
– DBLP is popularly used in benchmarking XML indexing methods. In the

version we used in this study, it has 3,332,130 elements and 404,276 at-
tributes, totally 130,726KB data. The maximum depth of DBLP is 6. The
average length of geometric sequence is 39.

– XMARK is widely used in benchmarking XML indexing mechanism with
complex nesting structure. In this version we used in this study, it has
1,666,315 elements and 381,878 attributes, totally 115,775KB. The maxi-
mum depth of XMARK is 12.

Efficient XPath Evaluation 233

input: SB-Index: index of symbol names; PB-Index: index of (preorder,
size) labels; QGeo = QGeo1 , ..., QGeolen : XML query in geometric sequence
format; j: the jth point in QGeo; range: in format of (preorder, size); len:
length of XPath query sequence.
output: all the matchings of QGeo in the XML data
if j ≤ len then

if u is in QGeoj then
resume range of corresponding symbols, say (n’, size’);
OptGeoMatching(n′, size′, j + 1);

else
T ← All the matchings of QGeoj in SB-Index;
R ← All the matchings of T in PB-Index satisfying range;
for each rk ∈ R do

if stacksymbol.isempty() or s is in QGeoj then
stacksymbol.push(rk);

else
if rk.number = stacksymbol.top().number and i is in QGeoj

then
stacksymbol.push(rk);

if rk.number = stacksymbol.top().number and e is in QGeoj

and i is in stacksymbol.top() then
stacksymbol.push(rk);

if rk.number != stacksymbol.top().number and e is in QGeoj

and e is in stacksymbol.top() then
stacksymbol.push(rk);

if rk = stacksymbol.top() then
Assume range of rk is (n’, size’);
if size’ ≥ len - j then

if p is in QGeoj and parent constraint is satisfied then
if i is in QGeoj+1 then

OptGeoMatching(n′, size′, j + 1) //pc;
else

OptGeoMatching(n′, size′, j + 1) //ad;

else
OptGeoMatching(n′, size′, j + 1);
if i or e is in QGeoj then

skip to rh, where rh.n ≥ (rk.n + rk.size)

stacksymbol.pop();

else
output a matching of QGeo;

Algorithm 1: OptGeoMatching

234 B. Wang, L. Fenga, and Y. Shen

Table 3. List of XPath Queries

T: title; A: article; AU: author; I: inproceedings; N: namerica; P: payment; PE: person-
ref; PER: person; O: open auction; C: closed auctions; CA: closed auction; B: bidder;
BU: buyer;

XPath Queries Data Sets
Q1: //T[text()=”On views and XML”] DBLP
Q2: //A[./AU[text()=”Dan Suciu”]][./AU[text()=”Tan”]] DBLP
Q3: /*//I/AU[text()=”Peter Buneman”]/following-sibling::AU DBLP
Q4: //N/*/P[text()=”Cash”] XMARK
Q5: //*/O[./B/PE[@PER=”person0”]][./B/PE[@PER=”person23”]] XMARK
Q6: //C/CA/BU[@PER=”person11”]/following-silbing::BU XMARK

Performance of Query Processing
We used 6 queries on the DBLP and XMARK, and compared the proposed
method with ViST and XISS. Table 3 lists 6 different queries for DBLP and
XMARK, respectively. The experimental results of using the proposed method,
ViST and XISS are shown in Table 4.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

24

26

28

Query Length

T
im

e
(s

)

Dataset1: 12,000 Documents

Geo
ViST

2 4 6 8 10 12 14
5

10

15

20

25

30

Query Length

T
im

e
(s

)

Dataset2: 5,000 Documents

Geo
ViST

2 4 6 8 10 12 14
0

5

10

15

20

25

30

Query Length

T
im

e
(s

)

Dataset3: 4,000 Documents

Geo
ViST

2 4 6 8 10 12 14
5

10

15

20

25

30

35

40

Query Length

T
im

e
(s

)

Dataset4: 9,000 Documents

Geo
ViST

Fig. 12. Queries over Synthetic Data

Q1 is a simple query, ”find all the titles with ’On views and XML’”. We
find out our geometric sequence model performs slightly better that ViST cause
there is no instantiation step in geometric sequence model which is inevitable in
ViST. Q2 and Q3 are relatively complex queries, respectively, ”find all the arti-
cles written by ’Dan Suciu’ and ’Tan’” and ”find the authors co-writting inpro-
ceeding papers with ’Peter Buneman’”. This time, our geometric sequence model

Efficient XPath Evaluation 235

outperforms ViST because (1) we do not need to perform substring matching
in validating and instancing structure-encoded query sequences. The substring
matching increases the disk I/O since enormous data is retrieved from the in-
dex; (2) there exists no post-processing phase in our proposed method; (3) most
importantly, we performs bottom-up query evaluation strategy. Since the num-
ber of the nodes with specific authors’ names are comparatively small and their
ranges are narrow, we can thereupon achieve significant evaluation performance.
Q6 is a query which should return no result since there exists only one buyer
in one closed auction. The structure expressed by Q6 is a kind of false alarm.
Again, without exception, our geometric sequence model is significantly faster
than ViST because there is no answer during the subsequence matching in our
proposed method. We can confidently say that there is no such structure exist-
ing in XMARK file, while time-consuming refinement phase has to be called by
ViST to eliminate enormous false answers.

0 3 5 6 7 8 9 10 12 14
0

2000

4000

6000

8000

10000

12000
Dataset1: 12,000 Documents

Query Length

I/O
 P

ag
es

Geo
ViST

0 3 5 6 7 8 9 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Dataset2: 5000 Documents

Query Length

I/O
 P

ag
es

Geo
ViST

0 3 5 6 7 8 9 10 12 14
0

2000

4000

6000

8000

10000

12000
Dataset3: 4,000 Documents

Query Length

I/O
 P

ag
es

Geo
ViST

0 3 5 6 7 8 9 10 12 14
0

2000

4000

6000

8000

10000

12000
Dataset4: 9,000 Documents

Query Length

I/O
 P

ag
es

Geo
ViST

Fig. 13. I/O Performance: Geo vs. ViST

Experiments on Synthetic Data
Datasets
To evaluate the extensibility of the proposed method, we generate our own

synthetic datasets. In our experimental environment, there are totally 30,000
documents with 20 different symbols. The maximum depth of our datasets is
16, and maximum fan-out of a node is set to 4. We still use 8KB disk page for
B+Tree index and 8-byte integer for pre-order number. We generate geometric
sequences directly instead of generating documents.

236 B. Wang, L. Fenga, and Y. Shen

Table 4. Proposed Method vs. ViST and XISS

Query Our Method (s) ViST (s) XISS (s)
Q1 2.81 2.94 7.22
Q2 7.14 13.33 319.28
Q3 17.49 69.82 612.13
Q4 7.86 9.12 467.26
Q5 12.27 18.13 392.85
Q6 9.73 39.20 729.21

Performance of Query Processing
We set the length of queries to 3, 5, 6, 7, 8, 9, 10, 12, and 14 respectively. All
the queries are non-existence queries. To focus on the impact of refinement or
post-processing phase in ViST, we do not use queries with content constraints
since our bottom-up OptGeoMatching is naturally more superior than top-down
ViST. We also do not use queries related to semantic false since ViST can not
handle these queries at all. In the scalability test, We found out that the perfor-
mance of ViST depends on distribution of nodes which are chosen as ancestors or
descendants in the queries, referred to as selectivity. The high selectivity of both
ancestors and descendants generates a considerable number of false answers in
ViST if non-existence queries or non-equivalence queries are executed, implying
that the query performance of ViST degrades in these cases.

In order to demonstrate the extensibility and stability of our proposed
method, we divide the above 30,000 documents into 4 different categories on
the basis of the distribution of nodes chosen as ancestors or descendants in the
queries.

– Dataset1 (12,000 documents): low selectivity of ancestors and descendants
– Dataset2 (5,000 documents): high selectivity of ancestors and low selectivity

of descendants
– Dataset3 (4,000 documents): low selectivity of ancestors and high selectivity

of descendants
– Dataset4 (9,000 documents): high selectivity of ancestors and descendants

The results are shown in Figure 12 and Figure 13. We find out that our
proposed method performs better than ViST in Dataset1 because the post-
processing phase is trivial in dataset1. However, for the rest of the three datasets,
our proposed method performs significantly better than ViST since refinement
phase requires enormous efforts to eliminate the false answer. Contrasting to
ViST, our proposed method performs stably in these three datasets. We notice
that even content constraint is not involved in our synthetic data experiments,
we can see that OptGeoMatching demonstrates significant disk I/O performance
comparing with ViST since top-down ViST is uncertain of its descendants and
has to search its full range for correct answers. In contrasting to top-down ViST,
OptGeoMatching performs a bottom-up subsequence matching and only needs
to search a more specific range where an ancestor node may exist.

Efficient XPath Evaluation 237

6 Conclusion

In this paper, we report an efficient mechanism for accelerating XPath eval-
uation steps based on the proposed geometric sequence. A bottom-up holistic
subsequence matching algorithm is proposed on the basis of a novel geometric
sequence model for XML documents. We demonstrate that our proposed mech-
anism can significantly improve the current best approach ViST, finding all the
correct answers without refinement or post-processing phase with linear size
complexity of geometric sequence and guaranteeing the completeness of XPath
evaluation without semantic false.

References

1. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Busse, R., Carey, M., Florescu, D., Kersten, M., Manolescu, I.,
Schmidt, A., Florian Waas, F.: Xmark an xml benchmark project (2001)
http://monetdb.cwi.nl/xml/index.html

3. Chien, S. Y., Tsotras, V. J., Zaniolo, C., Zhang, D.: Efficient complex query support
for multiversion XML documents. In EDBT (2002) 161–178

4. Cooper, B., Sample, N., Franklin, M. J., Hjaltason, G. R., Shadmon, M.: A fast
index for semistructured data. In The VLDB Conference (2001) 341–350

5. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In VLDB, Springer-Verlag (1997) 436 – 445

6. Gottlob, G., Koch, C., Pichler, R.: The complexity of xpath query evaluation. In
PODS, ACM (2003) 179–190

7. Grust, T.: Accelerating xpath location steps. In SIGMOD, ACM Press (2002)
109–120

8. Jiang, H., Lu, H., Wang, W.: Xr-tree: Indexing xml data for efficient structural
joins. In 19th International Conference on Data Engineering (2003) 253–264

9. Ley, M.: Dblp bibliography (2004) http://www.informatik.uni-trier.de/ ley/db
10. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.

In The VLDB Journal (2001) 361–370
11. Milo, T., Suciu, D.: Index structures for path expressions. In Proceedings of the

8th International Conference on Database Theory (1999) 277–295
12. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Optimal xml pattern

matching. In ACM SIGMOD (2002)
13. Shen, Y., Feng, L., Shen, T., Wang, B.: A self-adaptive scope allocation scheme

for labeling dynamic xml documents. In DEXA (2004) 811–821
14. Wang, H.: On the sequencing of tree structures for xml indexing (technical report)

(2004) http://magna.cs.ucla.edu/ hxwang/publications/xmlrpt.pdf
15. Wang, H., Park, S., Fan, W., Yu, P. S.: Vist: a dynamic index method for querying

xml data by tree structures. In SIGMOD, ACM Press (2003) 110–121

A Prototype for Translating XQuery
Expressions into XSLT Stylesheets

Niklas Klein1, Sven Groppe1, Stefan Böttcher1, and Le Gruenwald2

1 University of Paderborn, Faculty 5,
Fürstenallee 11,

D-33102 Paderborn, Germany
{niklask, sg, stb}@uni-paderborn.de

2 University of Oklahoma,
School of Computer Science,

Norman, Oklahoma 73019, U.S.A
ggruenwald@ou.edu

Abstract. The need for a user-friendly query language becomes increas-
ingly important since the introduction of XML. The W3C developed
XQuery for the purpose of querying XML data, but XQuery is not avail-
able in every tool. Because of historical reasons, many tools only support
processing XSLT stylesheets. It is desirable to use tools with XQuery, the
design goals of which are, among other goals, to be more human readable
and to be less error-prone than XSLT. Instead of implementing XQuery
support for every tool, we propose to use an XQuery to XSLT translator.
Following this idea, XQuery will be available for all tools, which currently
support XSLT stylesheets. In this paper, we propose a translator which
transforms XQuery expressions into XSLT stylesheets and we analyze
the performance of the translation and XSLT processing in comparison
to native XQuery processing.

1 Introduction

1.1 Problem Definition and Motivation

With the wide-spread use of the Extensible Markup Language (XML) accompa-
nied with increasing document sizes, there is an increasing need for user-friendly
XML query languages. While the Extensible Stylesheet Language Transforma-
tions (XSLT) [11], which also can be used as a query language, is established in
the market for years, XQuery [12] is relatively new.

Whereas XSLT is conceived as a transformation language, XQuery was aimed
to be an easy human readable query language. Furthermore, both languages are
used to grab, filter and associate data from XML-documents. There exists al-
ready a large repository of tools, especially commercial products, for supporting
XSLT, but not the XQuery language. Examples of such products are BizTalk
[8], Cocoon [1] and Xalan [2]. Whenever an application based on these tools is
required to use XQuery as the XML query language, it is a big advantage to

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 238–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 239

have a translation from XQuery expressions to XSLT stylesheets such that the
XQuery language can be used.

Although both languages were developed with different aims, their applica-
tion possibilities and expressive power are similar. Both languages use XPath
as the path-language for retrieving XML node sets, and both languages have
corresponding language constructs for the iteration on an XML node set, the
definition of variables, XML node constructors and the definition and call of
user-defined functions. However there are some differences between the two lan-
guages which we will discuss in Section 2.3.

In this paper, we propose a translation tool from XQuery expressions into
XSLT stylesheets that covers the XQuery language except for a few exceptions.

The rest of this paper is organized as follows. Section 2 provides a compari-
son of XQuery and XSLT. Section 3 describes how we would translate XQuery
expressions into XSLT stylesheets. Section 4 presents experimental results com-
paring the execution times of XSLT stylesheets translated by our approach with
the execution times of direct executed XQuery expressions. Finally, Section 5
concludes the paper.

1.2 Related Work

There exists works that compare the languages XSLT and XQuery. [7] shows
that many XQuery constructs are easily mappable to XSLT, but presents only
examples of mappings and does not provide an algorithm for translating XQuery
expressions into XSLT stylesheets. [6] introduces an algorithmic approach of
translating XQuery expressions into XSLT stylesheets, but includes neither a
detailed algorithm for a subset of XQuery nor a report on experimental results.

Saxon [5] is a processor for both, XQuery expressions and XSLT stylesheets.
First, Saxon translates an XQuery expression or an XSLT stylesheet into an
object model, where most but not all components are common for XQuery and
XSLT. After that, Saxon executes the objects of the object model in order to
retrieve the results, but does not provide a source to source translation so that
XQuery can be used in XSLT tools.

In this paper we describe a detailed algorithm for translating a subset of
XQuery expressions into XSLT stylesheets. Furthermore, we give a detailed per-
formance analysis of the execution of the original XQuery expession compared
to the execution of the translated XSLT stylesheet.

2 Comparison of XQuery and XSLT Features

2.1 XQuery Essentials

XQuery is a functional language,which means that expressions can be nested with
full generality. XQuery is also a strongly-typed language in which the
operands of various expressions, operators, and functions must conform to the
expected types.

240 N. Klein et al.

XQuery embeds XPath as the path language to locate XML nodes in XML
structures. An XPath expression itself is a simple XQuery expression. Further-
more, the XQuery language extends the XPath language by constructors for
XML structures like elements and attributes, by FLWOR expressions, which
can combine and restructure information from XML documents, by user-defined
functions and many more language elements.

FLWOR is an acronym, standing for the first letters of the clauses that may
occur in an FLWOR expression:

– for clauses associate one or more variables to expressions, creating a tuple
stream in which each tuple binds a given variable to one of the items to
which its associated expression evaluates. There can be an arbitrary amount
of for clauses.

– let clauses bind variables to the entire result of an expression. There can be
an arbitrary number of let clauses, but there must be at least one let or
for clause.

– where clauses filter tuples, retaining only those tuples that satisfy a condi-
tion. The where clause is optional.

– order by clauses sort the tuples in a tuple stream. The order by clause is
optional.

– return clauses build the result of the FLWOR expression for a given tuple.
The return clause is required in every FLWOR expression.

2.2 XSLT Essentials

The W3C developed the declarative language XSLT, which describes the trans-
formation of XML documents into a document formulated in XML, HTML,
PDF or text by template rules. An XSLT stylesheet itself is an XML docu-
ment with the root element <xsl:stylesheet>. The xsl namespace is used to
distinguish XSLT elements from other elements. Template rules are expressed
by an <xsl:template> element. Its match attribute contains a pattern in form
of an XPath expression. Whenever a current input XML node fulfills the pat-
tern of the match attribute, the template is executed. An XSLT processor starts
the transformation of an input XML document with the current input XML
node assigned to the document root. Using a short form, the output of the
executed template is the XML nodes, which are not XSLT instructions, and
the text inside the executed template. This output can also be described by
a long form with the XSLT instructions <xsl:element> for generating XML
elements, <xsl:attribute> for generating attributes of an XML element and
<xsl:text> for generating text. Output is also described by the XSLT instruc-
tion <xsl:value-of>, which converts the result of an XPath expression to a
string. The XSLT instruction <xsl:apply-templates> recursively applies the
templates to all XML nodes in the result node set of the XPath expression given
by its select attribute. We refer to [11] for a complete list of XSLT instructions.

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 241

2.3 Comparison of the XQuery and the XSLT Data Model and
Language Constructs

XSLT 2.0 and XQuery 1.0 are both based on the XPath data model [3] and both
embed XPath as the path language for determining XML node sets. Therefore,
a majority of the XQuery language constructs can be translated into XSLT lan-
guage constructs and vice versa. For example, xsl:for each has similar func-
tionality as for, xsl:if has similar functionality as where, and xsl:sort has
similar functionality as order by. However there are some differences between
the two languages which we will discuss here.

Differences in handling intermediate results: XQuery and XSLT handle
intermediate results differently.

– Whereas XQuery expressions can be nested with full generality, most XSLT
expressions cannot be nested. Therefore, nested XQuery expressions must
be translated into a construct, where the intermediate results of the nested
XQuery expression are first stored in an intermediate variable using the
xsl:variable XSLT instruction. After that the intermediate variable is re-
ferred for the results of the nested XQuery expression. XSLT variables, which
are defined by xsl:variable, can only store element nodes. In particular,
XSLT variables cannot store attribute nodes, comment nodes and text nodes.
Whenever the translated XSLT stylesheets have to store other XML nodes
besides element nodes, the translation process can use the work-around pre-
sented in Section 2.4.

– Both XQuery and XSLT embed XPath 2.0, which contains the is opera-
tor. This operator compares the two nodes identities. In the underlying data
model of XQuery and XSLT, each node has its own identity. XQuery expres-
sions never copy XML nodes, but always refer to the original XML nodes.
Contrary to XQuery expressions, XSLT expressions can only refer in vari-
ables to original XML nodes, which can be described by an XPath expression
XP and when using the <xsl:variable select="XP"> instruction. While
computing the result of more complex XSLT expressions, which contain func-
tionality outside the possibilities of XPath like iterating in a sorted node set
XP by <xsl:for-each select="XP"><xsl:sort/>...</xsl:for-each>,
XSLT expressions have to copy XML nodes by using xsl:copy or
xsl:copy-of, where the copied XML nodes get new identities different from
those of the original XML nodes or other copied XML nodes. Therefore,
whenever an XQuery expression uses the is operator and variables store a
node set that cannot be expressed by an XPath expression, the translation
process must offer a work-around, which ensures that the identities of XML
nodes in the translated XSLT stylesheet to be considered in the same way
as the identities of XML nodes in the original XQuery expression. Section
2.5 describes such a work-around.

Differences in language constructs: The translation process must consider
the following differences in the language constructs of XQuery and XSLT:

242 N. Klein et al.

– Whereas XQuery binds parameters in function calls by order of appearance,
XSLT binds parameters of calls of functions and of named templates by
parameter names.

– The order by construct of XQuery corresponds to xsl:sort. XQuery sup-
ports four order modifiers: ascending, descending, empty greatest and
empty least. XSLT supports only ascending and descending. Therefore,
empty greatest and empty least can not be translated yet. Furthermore
xsl:sort has to be the first child of the surrounding xsl:for-each XSLT
instruction. The order by clause can contain a variable $v, which is de-
fined after the for expression. Therefore, the translated variable definition
of $v occurs after the xsl:sort instruction, which must be the first child
of xsl:for-each, but translation of $v is defined later in the translated
XSLT stylesheet and cannot be used in the xsl:sort instruction. In the
special case where the variable $v is defined by an XPath expression XP, we
can replace the reference to the translation of $v in the xsl:sort XSLT in-
struction by XP. Furthermore, nested variables in XP must be already defined
before the xsl:for-each XSLT instruction or, again, must be defined by an
XPath expression such that the nested variables can be replaced in XP. In all
other cases, the order by clause cannot be translated into equivalent XSLT
instructions.

2.4 The Transforming XML Nodes to Element Nodes Approach

Whenever XML nodes, which are not element nodes, must be stored as inter-
mediate results, a preprocessing step of the original XML document is needed
to transform these XML nodes into element nodes as only element nodes can be
stored in XSLT variables of the translated XSLT stylesheet. We use a namespace
t in order to identify element nodes, which are transformed from not element
nodes. Tests on XML nodes, which are not element nodes, are translated into
tests on the corresponding element nodes (see Figure 1). As the result of the
translated XSLT stylesheet contains copied element nodes, which are not ele-
ment nodes of the original document, a postprocessing step must be applied to
the result of the XSLT stylesheet, which then transforms these element nodes
back to the corresponding XML nodes.

site/people/person/@name

is translated into

site/people/person/t:name

Fig. 1. Translating tests on attribute nodes

2.5 The Node Identifier Insertion Approach

In the following, we summarize the work-around presented in [6], which ensures
that the identities of XML nodes in the translated XSLT stylesheet are consid-
ered in the same way as the identities of XML nodes in the original XQuery
expression.

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 243

Whenever the is operator occurs in the XQuery expression, it is necessary to
preprocess the source-document in order to add a new attribute t:id containing
an unambiguous identifier to every XML element and postprocess the result of
the XSLT stylesheet in order to remove the attribute t:id. Then the is operator
can be translated into the = operator evaluated on the attribute t:id.

When elements are created as intermediate results, the translated XSLT
stylesheet does not provide a mechism to set the t:id attributes of these el-
ements. Using the is operator would work in these cases (see Figure 2). In order
to consider both, the case that we have to consider the identity of XML nodes
of the input XML document and of intermediate results, we will translate the
is operator into two operations concatenated with the or operator (see Figure
3). One operation compares the t:id attributes the result of which is false in
the case that there are no t:id attributes. The other operation uses the t:is
operator the result of which is false if two copied XML nodes are compared.

The result of

let $a:= <z/>

return $a is $a

is ”true”, but the result of the wrong translation

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’ version="2.0">
<xsl:template match="/">

<xsl:variable name=’let0a’>
<xsl:element name=’z’/>

</xsl:variable>
<xsl:copy-of select="$let0a/@t:id = $let0a/@t:id"/>

</xsl:template>
</xsl:stylesheet>

is ”false”.

Fig. 2. Problems when translating the is operator in the case that elements are created
as intermediate results

. is /site[last()]

is translated into

(./@t:id = /site[last()]/@t:id) or (. is /site[last()])

Fig. 3. Translating the is operator

2.6 Optimization

Our proposed translation algorithm checks

– whether non-element nodes must be stored as intermediate results and, only
then, applies the transforming XML nodes to element nodes approach dis-
cussed in Section 2.4, and, otherwise, optimizes by avoiding the processing
of this approach.

244 N. Klein et al.

– whether the is operator is used and, only then, applies the node identifier
insertion approach discussed in Section 2.5, and, otherwise, optimizes by
avoiding the processing of this approach.

Furthermore, if necessary, both the preprocessing steps and postprocessing steps
presented in the transforming XML nodes to element nodes approach and in the
node identifier insertion approach can be applied in one step.

2.7 Handling Intermediate Results and Function Calls

XQuery supports closure by allowing nesting XQuery expressions with full gen-
erality. Due to the lack of closure in XSLT, query results must be stored in XSLT
variables. The results can then be referenced by the names of the variables (see
Figure 4).

for $i in doc("auction.xml")/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

is translated into

<?xml version="1.0"?>
<xsl:stylesheet version="2.0"
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>

<xsl:variable name=’rootVar1’>
<xsl:copy-of select=’document("auction.xml")’/>

</xsl:variable>
<xsl:template match="/">

<xsl:variable name="for0_aux">
<xsl:copy-of select=’$rootVar1/site/closed_auctions/closed_auction’/>

</xsl:variable>
<xsl:for-each select="$for0_aux/*">

<xsl:variable name="for0i" select="."/>
<xsl:if test=’$for0i/price/text()>=40’>

<xsl:copy-of select="$for0i/price"/>
</xsl:if>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Fig. 4. Translating a query with intermediate results

While translating a function, we store the function name, the names of its
parameters and their order in a global data structure. Whenever we translate
a function call, we access this global data structure in order to retrieve the
necessary information of the names and the order of the parameters. Then the
problem of parameter binding can be solved by mapping the names in the order
of their appearance in the function call to the corresponding xsl:param tags
(see Figure 5).

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 245

declare function local:mult($y, $x){ $y * $x };
local:mult(10, 10)

is translated into

<xsl:template name=’mult’>
<xsl:param name=’y’/>
<xsl:param name=’x’/>
<xsl:copy-of select=’$y*$x’/>

</xsl:template>
<xsl:template match="/">

<xsl:call-template name=’mult’>
<xsl:with-param name=’y’ select=’10’/>
<xsl:with-param name=’x’ select=’10’/>

</xsl:call-template>
</xsl:template>

Fig. 5. Translating a function

3 Translating XQuery Expressions into XSLT Stylesheets

In this section, we describe the algorithm to translate XQuery expressions into
XSLT stylesheets.

3.1 Translation of an XQuery Expression

The translation from an XQuery expression into an XSLT stylesheet is done
in two phases. In phase one, we parse the XQuery expression in order to gen-
erate the abstract syntax tree of the XQuery expression. For an example, see
the XQuery expression in Figure 4 and its abstract syntax tree in Figure 6.
In phase two, we evaluate the attribute grammar, which we do not present
here due to space limitations. After evaluating the attribute grammar, a DOM
[4] representation of the translated XSLT stylesheet is stored in the attribute
MainModul.docFrag (see Figure 6). Figure 6 presents the evaluation of attributes
for every node in the abstract syntax tree of the XQuery expression in Figure 4.
Figure 4 presents also the final results of the translation process.

3.2 Processing of the Translated XSLT Stylesheet

See Figure 7 for an example of the entire translation process (step 1) and trans-
formation process, which consists of the preprocessing step of the input XML
document (step 2), the execution of the translated XSLT stylesheet (step 3) and
the postprocessing step (step 4) of the results of the XSLT stylesheet.

If we can optimize according to what we have discussed in Section 2.6, then we
will avoid the preprocessing step (step 2) and the postprocessing step (step 4).

4 Performance Analysis

This section describes the experiments that we have conducted to compare the
execution time of translated XQuery expressions (i.e. XSLT stylesheets) in-

246 N. Klein et al.

Fig. 6. The abstract syntax tree including computed attributes showing the translation
of the XQuery expression in Figure 4

cluding the translation time with the time for executing the original XQuery
expression.

4.1 Experimental Environment

We have used the XMark benchmark [10] for all our experiments. This bench-
mark consists of 20 XQuery queries and an XML data generator. This generator
generates XML documents, the size of which can be scaled, containing auction
data. The XMark developers chose the 20 XQuery queries that cover many as-
pects of XQuery. Furthermore, XMark is one of the most used benchmarks for
XQuery in research. We have used documents of size 0.317 MB, 0.558 MB, 1.2
MB, 1.7 MB, 2.3 MB, 2.8 MB, 5.5 MB and 12 MB for the experiments.

We have used three different query evaluators: Saxon [5], Xalan [2] and Qexo
[9]. Saxon has the capability to evaluate both XQuery expressions and XSLT

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 247

Fig. 7. The transformation process

stylesheets. Whereas Xalan is an XSLT evaluator, which is integrated in the
Sun Java Development Kit, Qexo is an XQuery evaluator. Qexo is one of the
few XQuery evaluators developed in Java, which implements most language con-
structs of the current XQuery specifications.

We present the average execution times of 20 executions for every XMark
query in combination with every query evaluator.

248 N. Klein et al.

We have run the experiments on an AMD Athlon 2 Gigahertz with 1 Gi-
gabytes main memory, where 800 Megabytes are assigned to the Java virtual
machine. The system runs a Linux kernel 2.6.4 and Java version 1.4.2.

4.2 Analysis of Experimental Results

We present the average execution times of twenty experiments of all 20 XMark
queries and their translated XSLT stylesheets for a fixed document file size of 5.5
Megabytes in Figure 14. For the XSLT stylesheets in Figure 14 we have used op-
timized evaluation (i.e. without the pre- and postprocessing step) except for the
unoptimized XSLT stylesheet of query 10, which cannot be optimized because
query 10 uses the is operator. Saxon processes the XQuery queries 22 % faster
on average compared to evaluateing the translated XSLT stylesheets. When we
only consider queries without joins, i.e. all queries except the queries 8, 9 and
10, Saxon evaluates the XQuery queries 12 % faster on average. Figure 14 shows
that Saxon evaluates the translated XSLT stylesheets of the queries 8, 9 and
10 up to 132 times slower compared to evaluating the original XQuery queries,
which shows that Saxon does not optimize the execution of the translated XSLT
stylesheets of the queries 8, 9 and 10 with joins. The execution of the translated
XSLT stylesheets of the Xalan XSLT processor is 0.8 % faster on average com-
pared to the execution of the Qexo XQuery evaluator of the XMark queries. Note
that Xalan and Qexo can not evaluate all queries because they do not implement
all used XPath functions. Furthermore, the evaluation time of the Qexo XQuery
evaluator is large when evaluating queries containing joins. In fact, Qexo eval-
uates query 9 (containing two joins) over 7000 times slower than query 1 (no
join). The translation needs linear time in the size of the input XQuery query,
which is under 7 msec in all cases and can be neglected.

Optimized processing is on average 13 % faster than processing with the
preprocessing step and postprocessing step. Only the XMark query 10 cannot
be optimized (because it uses the is operator), such that the preprocessing step
and the postprocessing step must be performed.

Furthermore, we present the average results of twenty experiments of six
queries (XMark query 1, 2, 3, 8, 9 and 18) where we vary the document file
sizes: Figure 8 shows the execution times of query 1, where the Saxon XQuery
evaluator is 18 % faster on average compared to the Saxon XSLT processor
with optimization (about 6 sec in the slowest case) and 33 % faster than Saxon
XSLT without optimization. Using Xalan XSLT (optimized) is faster than Saxon
XQuery for document sizes less than 10 MB, the Xalan XSLT processor is 32 %
faster on average compared to Saxon XQuery. The Qexo XQuery evaluator is
again 58 % faster than Xalan.

We have retrieved similar results for query 2 (see Figure 9), query 3 (see
Figure 10) and query 18 (see Figure 13) compared to query 1. Note that Qexo
cannot evaluate query 3 and query 18.

XMark Query 8 contains one join and XMark query 9 contains two joins. The
execution times of query 8 (see Figure 11) and the execution times of query 9 (see
Figure 12) show that XSLT processors evaluate the translated XSLT stylesheets

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 249

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
1

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 8. Execution times (y-axis) of XMark Query 1 and of its translated XSLT
stylesheet depending on the file size (x-axis)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
2

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 9. Execution times (y-axis) of XMark Query 2 and of its translated XSLT
stylesheet depending on the file size (x-axis)

250 N. Klein et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
3

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization

Fig. 10. Execution times (y-axis) of XMark Query 3 and of its translated XSLT
stylesheet depending on the file size (x-axis)

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
8

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 11. Execution times (y-axis) of XMark Query 8 and of its translated XSLT
stylesheet depending on the file size (x-axis)

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 251

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.5 1 1.5 2 2.5 3

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
9

(s
ec

on
ds

)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization
Qexo

Fig. 12. Execution times (y-axis) of XMark Query 9 and of its translated XSLT
stylesheet depending on the file size (x-axis)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

ex
ec

ut
io

n
tim

es
 o

f X
M

ar
k

qu
er

y
18

 (
se

co
nd

s)

file size (megabytes)

Saxon XQuery
Saxon XSLT

Saxon XSLT no optimization
Xalan

Xalan no optimization

Fig. 13. Execution times (y-axis) of XMark Query 18 and of its translated XSLT
stylesheet depending on the file size (x-axis)

252 N. Klein et al.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

se
c)

XMark Query

Saxon XQuery
Saxon XSLT

Xalan
Qexo

Fig. 14. The execution time of all XMark queries for a file size of 5.5 Megabytes

of queries containing joins much slower compared to the execution of XQuery
evaluators of the XQuery queries.

The Saxon XQuery evaluator processes both queries much faster, 80 % for
query 8 and 98 % for query 9, compared to the execution of the optimized trans-
lated XSLT stylesheets of the Saxon XSLT processor. Contrary, the evaluation
of the translated queries of the Saxon XSLT processor is 85 % faster for query
8 and 90 % faster for query 9 compared to the Qexo XQuery evaluator.

5 Summary and Conclusions

We have presented an approach for translating XQuery expressions into XSLT
stylesheets. We described the algorithm for the translation process in terms of
an attribute grammar, which we do not present here due to space limitations.
In general, there must be a preprocessing step for the original XML document
before executing the translated XSLT stylesheet and a postprocessing step for
the result of the translated XSLT stylesheet.

The experiments considering the XMark queries showed that executing the
translated XSLT stylesheet is 12 % slower than native XQuery processing (except
queries containing joins). We show that in most cases, but at least for all XMark
queries except one XMark query, we can optimize and avoid the preprocessing

A Prototype for Translating XQuery Expressions into XSLT Stylesheets 253

step and the postprocessing step. Optimized processing is on average 13 % faster
than processing with the preprocessing step and postprocessing step. Therefore,
we have achieved the goal to make XQuery practically useable for the broad field
of XSLT tools.

References

1. apache.org. Cocoon (2004) http://cocoon.apache.org
2. apache.org. Xalan (2004) http://xml.apache.org/xalan-j
3. Fernandez, M., Robie, J. (Eds): “XQuery 1.0 and XPath 2.0 Data Model”. W3C

Working Draft, June (2001) http://www.w3.org/TR/2001/WD-query-datamodel/
4. Hors, A. L., Hegaret, P. L., Nicol, G., Robie, J., Champion, M., Byrne, S. (Eds):

“Document Object Model (DOM) Level 2 Core Specification Version 1.0”. W3C
Recommendation, Nov. (2000) http://www.w3.org/TR/DOM-Level-2-Core/

5. Kay, M. H.: Saxon (2004) http://saxon.sourceforge.net
6. Lechner, S., Preuner, G., Schrefl, M.: Translating XQueryinto XSLT. In Revised

Papers from the HUMACS, DASWIS, ECOMO, and DAMA on ER 2001 Work-
shops, Springer-Verlag (2002) 239–252

7. Lenz, E.: XQuery: Reinventing the Wheel? (2004)
http://www.xmlportfolio.com/xquery.html

8. Microsoft. Biztalk (2004) http://www.biztalk.org/
9. qexo.org. Qexo (2004) http://www.gnu.org/software/qexo

10. Schmidt, A., Waas, F., Manolescu, I., Kersten, M., Carey, M. J., Busse, B.: XMark:
A benchmark for XML data management. In Proc. of the 28th International
Conference on Very Large Data Bases (VLDB 2002), Hong Kong, China, July 02
(2002)

11. W3C. XSL Transformations (XSLT) (2003) http://www.w3.org/TR/xslt
12. W3C. XML Query (2004) http://www.w3.org/XML/Query

Combining Tree Structure Indexes with
Structural Indexes in Query Evaluation on

XML Data

Attila Kiss and Vu Le Anh

Department of Information systems, ELTE University
kiss@ullman.inf.elte.hu, leanhvu@inf.elte.hu

Abstract. There are a variety of structural indexes which have been
proposed to speed up path expression queries over XML data. They usu-
ally work by partitioning nodes in the data graph into equivalence classes
and storing equivalence classes as index nodes. The size of a structural
index is never larger than the size of the data graph. In the literature it is
not always mentioned that the basic structure of XML document is tree-
structure. In prior work [1], we introduce and describe a new improved
approach for query evaluation on XML data. We consider the data graph
of an XML data as the union of the basic tree and the link graph. The
basic tree is indexed, that improves the query evaluation more efficiently.
In this paper, we introduce and describe a new approach combining two
technics: structural- and tree structure indexes. The data graph is sim-
ulated by a strong 1-index, in which the basic tree structure remains.
Moreover, tree structure index can be built on the new structural index
in linear complexity with efficient algorithms. Our experiments show that
the new combinational approach is more efficient than we just apply tree
structure or structural indexes separately.

1 Introduction

In recent years, the XML has become the dominant standard for exchanging and
querying documents over the Internet. The basic structure of an XML document,
which comprises hierarchically nested collection of tagged elements, can be repre-
sented by an ordered labelled tree, in which each element can be only atomic or
contains subelements. In general, when a reference can be made from one element
to another using ID/IDREF pair, an XML document can be represented by a
rooted directed labelled graph. There is a variety of query languages proposed to
query XML: UnQL [2,3], Lorel [4,5], XML-QL [6], XPath [15], XQuery [16], etc.
Path expressions are the basic building blocks of XML queries. To summarize
the structure of XML data and speed up path expression evaluation, structural
indexes have been proposed [7,8,9,10]. One of the most popular ones is the 1-
index [7], based on the notion of graph bisimilarity. Evaluating regular queries
on the 1-index graph, which is never larger than the data graph, is precise and
often cheaper than on the naive data graph. However, in most of structural in-
dexes, the data graph model is the general model used for any semi structured
data. The basic tree structure of XML data is not mentioned.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 254–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Combining Tree Structure Indexes with Structural Indexes 255

In the prior work [1] we introduce a new approach for regular query evalua-
tion on XML data. The data graph is considered as the union of two components:
the basic tree and the link graph. The result of a regular query on the data graph
can be considered as the union and concatenation of two sub-results of this query
on the link graph and the basic tree. The sizes of the link graph, the number
of nodes and edges, are linear functions of the number of reference edges, which
is smaller compare to the number of the data graph edges. With the index on
the basic tree and the the size of the link graph is small, our algorithm is more
efficient than the naive algorithm.

In our work, we use the bulk semantic evaluation with input-, output node
sets concepts [3]. It brings us several following advantages: easy implementation
in traditional database systems; the evaluation can be parallel executed; adap-
tive and efficient query decomposition, so that we can support complex queries:
tree structured queries, value based select queries, etc. The complexity of this
evaluation can be reduced by using graph simulation with structural indexes.

Our Contribution. In this paper, we introduce and describe the new approach,
in which the data graph is simulated by the strong 1-index graph and the effi-
ciency of the query evaluation is improved by using tree structure index on the
strong 1-index. We also introduce and describe algorithms for constructing the
tree structure indexes in linear complexity. Our experiments show that the new
approach is more efficient than the old approaches, when we apply tree structure
index or structural structure index separately.

Organization. The remainder of the paper is organized as follows. Section 2 is
the preliminary and the prior work. We introduce basic concepts and definitions,
we also talk about the naive algorithm by using bulk sematic evaluation, and
the improved algorithm in our prior work. In section 3, we talk about structural
indexes. We introduce and describe the naive algorithm using naive 1-index
and our new algorithm which is based on the strong 1-index and tree structure
index. In section 4, we introduce and describe algorithms using for our indexes
construction. In section 5, we represent our experiments. We discuss the related
works in section 6. Section 7 concludes the paper.

2 Preliminary and Prior Work

2.1 Data- and Query Graphs

Data model. In this paper, we model XML as a rooted directed labelled graph
G = (V, E, Σ, r). V is the set of nodes, representing XML nodes. E = Eb ∪ Ef

is the set of edges, representing relationships between nodes. Eb is the set of
basic tree edges, representing element-subelement relationship; Ef is the set of
reference edges, representing IDREF relationship. Each edge is labelled by a
value in the finite set of label values Σ. r is the single root of the graph, with
no incoming edges. An example of XML document under this model is shown in
Figure 1, where basic tree edges are solid lines, and reference edges are dotted
lines.

256 A. Kiss and V. Le Anh

0

1

CS Department

2 3

ProfessorsPhD students

4 5 6

student

student
student

7 8

professor professor

9 10 11 12 13 14 15 16

name name
namename

name

paperspapers papers

18 19

paper

consultant

paper

paper

author

Title

21

author

22 23

Title

24

author 20

paper

25

Title

consulant

Papers

17

paper

Fig. 1. An Example of data model for XML

Let a ∈ Σ, and @a be a new label value. We denote u
a→ v, iff there exists

an edge from u to v labelled by a; in the case this edge is a basic edge, we
denote u

a
⇁ v; and in the case this edge is a reference edge, we denote u

@a
⇁ v.

Σ′ = Σ ∪ {@a|a ∈ Σ} is denoted as the extension set of label values of G.
Data graph, union of basic tree and link graph. We consider the data graph

G as the union of the basic tree T and the link graph L. The basic tree is the
remainder when we delete all reference edges. The link graph L = (VL, EL) is a
labelled directed graph, in which between two nodes there may exist more than
one edge, and each edge is labelled by a sequence of label values. VL = SL∪DL,
the set of the nodes in L, is the union of the set of the source nodes of the
reference edges, SL, and the set of the destination nodes of the reference edges,
DL. EL = Ef ∪ Esym, the set of the edges in L, is the union of the set of the
reference edges, Ef , and the set of symbol edges, Esym. We add a symbol edge
e from u to v (u, v ∈ VL), if there exists a basic path (contains only basic tree
edges) from u to v, which does not contain another node in VL except u and
v. The symbol edge e is labelled by the label path of the basic path. The link
graph of the data graph in Figure 1 is shown in Figure 2.

The size of a link graph is linear function of the number of the reference edges
[1]. More precisely, if k denotes the number reference edges, then |VL| ≤ 2k and
|EL| ≤ 3k − 1. In practice, the number of the reference edges is often small
compared with the number of the edges of the data graph, so the size of the link
graph is often small compared with the size of the data graph.

Combining Tree Structure Indexes with Structural Indexes 257

85

76

consulant

consulant

19

17

papers

papers.paper
author

15

papers

paper

20

paper

Fig. 2. Link graph of the data graph in Figure 1

Regular queries. A regular expression over Σ alphabet is defined as follows:

R = ε| a | R1.R2 | R1|R2 | R∗
1

where ε is the empty word; a ∈ Σ is a letter; R1, R2, R are regular expressions;
(.), (|), (∗) are the concatenation-, the alternation-, and the iteration opera-
tions respectively. Each regular query is defined by a regular expression, and
each regular expression also defines a regular language over Σ, which contains
all words over Σ marching the regular expression. We call the rooted labelled
directed graph of the finite deterministic automata, which computes the regular
language defined by the regular expression, the query graph of the query.

2.2 Naive Query Evaluation Algorithm

The result of the regular query Q given by the regular expression R on the data
graph G with the input node set I, and the output node set O is defined as
follows: RI

O(G,Q) = {(x, y) ∈ I × O|x R−→ y}, where x
R−→ y, iff there exists a

path from x to y which matches the regular expression R. For example, let G be
the data graph shown in Figure 1. If Q is given by R = professor.name, and
I = {2, 3}, O = V (G), then RI

O(G,Q) = {(3, 14), (3, 16)}.
Naive regular query evaluation. We use G(dfrom, label, dto) and Q(qfrom,

label, qto) relations to represent all edges of the data graph G and the query
graph Q respectively; I(dnode), O(dnode) relations to represent the input- and
the output node set; q0, F (qnode) to represent the start state and the set of the
final states of Q; S(dfrom, qfrom, label, dto, qto) = G �

label
Q to represent all

edges of the state-data graph of the data graph G and the query graph Q [1];
T (dfrom, qfrom, dto, qto) to represent the transitive closure relation of S. The
naive regular query evaluation algorithm is shown as follows:

Naive-Algorithm

Input: G, Q, I , O, q0, F

Output: R

258 A. Kiss and V. Le Anh

1 S ← select dfrom, qfrom, label, dto, qto from G, Q

where G.label = Q.label

2 Compute T , transitive closure relation of S

3 T ← select dfrom, qfrom, dto, qto from T , I , O, F

where T.dfrom = I .dnode and T.qfrom = q0 and

T.dto = O.dnode and T.qto = F.qnode

4 return R ← select dfrom, dto from T

The proof for the correction of this algorithm can be found in [1].

2.3 Tree Structure Index Based Query Evaluation Algorithm

Query decomposition. In our scenario, the process evaluation is shown in Figure
3. The input query Q is given by a regular path expression and the input-, output
node sets. The input node set I contains only the root of the data graph. The
output node set O is a subset of the set nodes1.

Query Query Analyzer &

Evaluation OptimizerQ(I = {root}, O)

Optimal Execution Plan
Qi are simple queries
Q0(I0, O0), ..., Qk(Ik, Ok)

Simple Query
Exec. Engine

Component Result
R0, ..., Rk

Query result
Composition Engine

Result of Query
R

Fig. 3. Query Evaluation Process

We define the concatenation, the union-, and the iteration operations be-
tween regular queries [1], based on the operations between regular expressions.
The composed regular query can be evaluated based on its components [1].
In practice, simple queries are the most important regular queries: one-letter
query Q1 matching an arbitrary letter, universal query Q∞ matching an arbi-
trary word; and primary query Qα matching a given word α. We rewrite the
input query Q as an equivalent system of simple queries Qi(Ii, Oi), where Ii,
Oi are the input-, the output node set of Qi. The system {Qi(Ii, Oi)} satisfies
following conditions: (1) if Qi is concatenated by Qj then Oi = Ij ; (2) if Qi and
Qj is unified then Ii = Ij and Oi = Oj ; (3) if we want to evaluate Q∗

i then Ii,
Oi should be the set of data nodes. The execution plan as ordered sequence to
evaluate Qi strongly decide the cost of the query evaluation. The execution plan
can be top-down, bottom-up or hybrid (combining top-down and bottom-up)
approaches. However, in this paper, we mention on the question that evaluating
the primary queries with the input-, the output node set efficiently.

Tree structure index. Each node is indexed by three parameter (f, g, address),
where address ∈ Σ∗ is the label path of the unique basic path from the root
1 The output node set is the set of nodes, whose data satisfies the given selective

conditions

Combining Tree Structure Indexes with Structural Indexes 259

to the node; the pair (f, g) ∈ N × N system, called AD system, helps us to
check quickly the ancestor-descendant relationship on the basic tree T . (f, g) is
an AD system, iff it satisfies following properties: i. ∀u ∈ V : f(u) ≤ g(u); ii.
∀v, u ∈ V : u is an ancestor of v, iff f(u) < f(v) ≤ g(u). A simple AD system
can be constructed by choosing f as the position of the data node and g as the
position of the last descendent node of the data node in the pre-order sequence
of the basic tree.

Corollary 1. Let α ∈ Σ∗. In the basic tree T :

u
α→ v ⇔ f(u) ≤ f(v) ≤ g(u) ∧ address(u).α = address(v)

Improved algorithm. We divide all paths matching the word α into two classes:
basic paths (contain only basic tree edges) and complex paths (contain at least
one reference edge). The set of basic paths can be quickly determined by using
tree structure index (Corollary 1). With a complex path p from u to v, we cut it
into three sections as follows: the first section is from u to w ∈ SL, which is the
source node of the first reference edge of p; the second section from w to t ∈ DL,
which is the destination node of the last reference reference edge of p; the third
section is from t to v. Because the first and third sections are basic paths, and
their label path is the prefix (in the case of the first section) or suffix (in the case
of the third section) of α, so we can determine them by the tree structure index.
The second section can be determined by using the transitive closure relation of
the state data of the link graph L and the complex representation of query graph
Qα

2 [1].
We represent the nodes of the data graph by relation N(dnode, f, g, address);

the link source nodes and the link destination nodes by relations SL(dnode,
f, g, address) and DL(dnode, f, g, address) respectively; the edges of the link
graph by relation L(dfrom, slabel, dto); the complex representation of the query
Qα by relation Qc(qfrom, slabel, qto); the edges of the state data graph of the
link graph and the query graph by relation Sc(qfrom, dfrom, slabel, qto, dto);
the transitive closure relation of Sc by relation Tc(qfrom, dfrom, qto, dto); the
basic and complex paths from the input node set to the output nodes by rela-
tions R1(from, to), R2(from, to); the first, second, and third sections of complex
paths from the input node set to the output nodes by relations R′

1(dfrom, dto, qto),
R′

2(dfrom, dto, qfrom, qto) and R′
3(dfrom, dto, qfrom) respectively. We denote

0 as the start state and m as the final state of the automata of the primary query.
The Concat(st1, st2) function returns the concatenation string of two strings st1,
st2. The improved algorithm for primary queries is shown as follows:

Improved-Algorithm

Input: N , L, SL, DL, α = a1.a2....am, I , O

Output: R

1 I ′ ← select * from N

2 The complex representation of primary query Qα is the graph, whose has the same
nodes as Qα and there is an edge from u to v, iff there exists a path on Qα from u
to v; the edge is labelled by the label path of the associated path.

260 A. Kiss and V. Le Anh

where exists (select * from I where I .dnode = N.dnode)
1 O′ ← select * from N

where exists (select * from I where O.dnode = N.dnode)
2 R1 ← select I ′.dnode, O′.dnode from I ′, O′

where I ′.f ≤ O′.f ≤ I ′.g ∧ Concat(I ′.address,α) = O′.address

3 Compute Qc as the complex representation of Qα

4 Sc ← select qfrom, dfrom, slabel, qto, dto from L, Qc

where L.slabel = Qc.slabel

5 Compute Tc as the transitive relation of Sc

6 R′
1 ← select I ′.dnode, SL.dnode, Qc.qto

from I ′, SL, Qc

where Qc.qfrom = 0 ∧ (I ′.f ≤ SL.f ≤ I ′.g) ∧
SL.address = Concat(I ′.address,Qc.slabel)

7 R′
2 ← Tc

8 R′
3 ← select DL.dnode, O′.dnode, Qc.qfrom

from O′, DL, Qc

where Qc.qto = m ∧ (DL.f ≤ O′.f ≤ DL.g) ∧
O′.address = Concat(DL.address,Qc.slabel)

9 R2 ← select R′
1.dfrom, R′

3.dto from R′
1, R′

2 ,R′
3

where R′
1.(dto, qto) = R′

2.(dfrom, qfrom) ∧
R′

2.(dto, qto) = R′
3.(dfrom, qfrom)

10 return R ← (select * from R1) union (select * from R2)

In both two algorithms, the most complicated step is that when we compute
the transitive closure relations (step 2 in the naive algorithm, and step 5 in the
improved algorithm). In the improved algorithm we only have to compute the
state-data graph of the query graph and the link graph, which is smaller compare
to the data graph. There are several different modified algorithms proposed in
[1] to reduce the complexity in different scenarios.

3 Structural Indexes Based Query Evaluation Algorithms

Structural indexes. A structural index of the data graph G is a labelled directed
graph I(G) = (VI , EI , Σ), which is built by the following general procedure: (1)
partition the data nodes into classes according to some equivalence relation, (2)
make an index node for each equivalence class, with all data nodes in this class
being its extent, and (3) add an index edge from index node I to index node
J and labelled with a ∈ Σ if there is a data edge from some data node in the
extent of I to some data node in the extent of J , whose label is a. Two data
edges are equivalent with each other, if they have the same label value and their
source- and destination nodes are equivalent respectively. Two equivalent edges
are symbolized by the same index edge. We denote the symbol index node of data
node u by I(u), and the symbol index edge of data edge e by I(e). Certainly, the
size of a structural index is smaller than the size of the associated data graph.
Moreover, structural indexes are safe. It means if in the data graph u

R→ v then

Combining Tree Structure Indexes with Structural Indexes 261

in each structural index of the data graph we have I(u) R→ I(v), where R is a
path regular expression.

1-index. The 1-index is introduced and described by [7]. We denote A∞(G)
for the 1-index of the data graph G. In the 1-index, the equivalent relation
between nodes is bisimilarity relation.

Definition 1. The bisimilarity (≈) relation is a symmetric binary relation,
which satisfies following two conditions:

1. The root node is only equivalent with itself.
2. If u ≈ v then for any edge u′ a→ u there exists an edge v′ a→ v, such that

u′ ≈ v′

Paige and Tarjan [11] describe an O(m log n) time algorithm for computing ≈
on a unlabelled graph with n nodes and m edges, which can be easily adapted
to a O(m log m) algorithm for labelled graphs [12].

The 1-index graph is not only safe but also backward precise. It means for
all R ∈ Σ∗, if I

R→ J in A∞(G) then for all v ∈ J there exists u ∈ I, such that
u

R→ v. Hence, if the input node set is contained only root, and the output node
set is the set of all data nodes, the result of a regular query on 1-index coincides
with the result of this query on the data graph.

0

1
A

A
B

2 3 4

C C C

5 6 7

D D D

8 9 10

Data Graph

{0}
root root

{1}
A B

{2,3} {4}

D

C

C C

{5,6} {7}

D D

{8} {10}

Naive 1-index

{0}

{9}

DD

root

{1}
A B

{2,3} {4}
C C

{5}

C

{6}

C

{8}

D

{7}

{9} {10}

D
D

D

Strong 1-index

Fig. 4. An example for structural indexes

Strong 1-index. The 1-indexes are structural indexes based on strong bisim-
ilarity relations. The difference between the definition of strong bisimilarity re-
lations and bisimilarity relations is that we replace → relation by ⇁ relation
in second condition of Definition 1, and the set of label values is extended, Σ′.
As a result, the basic tree-structure remains in strong 1-indexes. Precisely, the
definition of strong bisimilarity relations is below:

Definition 2. The strong bisimilarity (') relation is a symmetric binary rela-
tion, which satisfies following two conditions:

1. The root node is only equivalent with itself.

262 A. Kiss and V. Le Anh

2. If u ' v and u′ a′
⇁ u then there exists v′, such that v′ a′

⇁ v and u′ ' v′

(a′ ∈ Σ′).

From definitions, we have:

Corollary 2. A strong bisimilarity relation is also a bisimilarity relation.

Corollary 2. shows that we can compute ' by Paige and Tarjan algorithm
with the complexity O(m log m) [11]. Moreover, if we already have the 1-index,
we can use it as the initial node partition to improve the constructor algorithm.

In the strong 1-indexes, we add a (basic/reference) index edge from index
node I to index node J and labelled with a if there is a (basic/reference) data
edge from some data node in the extent of I to some data node in the extent
of J , whose label is a. We can build strong 1-indexes similarly to 1-indexes, as
replacing Σ by Σ′.

Similar to the data graph, in the strong 1-indexes there are two kinds of edges:
basic edges and reference edges, and the basic edges also create a tree. The strong

1-indexes are strong backward precise, that if I0
a′
1⇁ I1

a′
2⇁ ...

a′
k⇁ Ik (a′

i ∈ Σ′) then

for all vk ∈ Ik there exists v0 ∈ I0, ..., vn−1 ∈ Ik−1 that v0
a′
1⇁ v1

a′
2⇁ ...

a′
k⇁ vk.

Proposition 1. Let A′
∞(G) be a strong 1-index of the data graph G. We have:

1. A′
∞(G) is strong backward precise and safe.

2. The basic edges of A′
∞(G) create a basic tree, denoted by TI , and the root

of this tree is the index node contains only the root of G.
3. All data nodes in an index node have the same address and equal to the

address of the index node.

Proof. A′∞(G) is safe as it is a structural index. Induction by k, we have if

I0
a′
1⇁ I1

a′
2⇁ ...

a′
k⇁ Ik (a′

i ∈ Σ′) then for all vk ∈ Ik there exists v0 ∈ I0, ...,

vn−1 ∈ Ik−1 that v0
a′
1⇁ v1

a′
2⇁ ...

a′
k⇁ vk. Hence, A′

∞(G) is strong backward precise.
Let I be an index node, u be a data node, such that u ∈ I. The basic path

from the root to u is u0.u1.uk, such that ui are data nodes, u0 is the root of G,
uk = u, and there exists a basic edge from ui to ui+1. Hence, there exists a basic
edge from extent(ui) to extent(ui+1), and extent(u0).extent(u1).extent(uk)
is a basic path from the root to I. If there exist two different basic paths from the
root of A′∞(G) to index node I then because A′∞(G) is strong backward precise,
so for all u ∈ I there exist two different basic paths from the root to u, which is
impossible. Hence, there is one and only one basic path from the root to every
index node. It follows that the basic edges of A′∞(G) create a basic tree. Finally,
two basic paths u0.u1.uk and extent(u0).extent(u1).extent(uk) have the
same label path, so all data nodes in an index node have the same address and
equal to the address of the index node.

Query Evaluation. In our scenario, after rewriting the input regular query Q we
evaluate the component primary queries Qi on a (strong) 1-index of the data
graph and combine them at the end of the execution. The result of the query Q is

Combining Tree Structure Indexes with Structural Indexes 263

the data nodes in the union of the extent of index nodes, matching the expression
path of the query on the (strong) 1-index. Because the (strong) 1-indexes are
backward precise, so the result is precise.

The structure of the strong 1-indexes is similar to the structure of the data
graph, so we suggest to build the tree structure index on the basic tree. The
query evaluation algorithm on the strong indexes is quite similar to the improved
algorithm. In the 1-indexes with no difference between reference edges and basic
edges, the query evaluation algorithm is similar to the naive algorithm.

4 Indexes Construction

4.1 Tree Structure Index Construction

We can choose the first parameter f as the position of the data node in the
pre-order sequence of the basic tree; the second parameter g as the position of
the last descendent node in the pre-order sequence; the third parameter address
can be computed from the address of the parent. The algorithm is shown below:

Tree Structure Index Constructor Algorithm

Input: T is a labelled tree
Output: A tree structure index on T
begin

1 curF ← 1
2 ADD(Root, ε)
end

ADD(I : IndexNode, curAdd : Σ∗)
begin

1 Let u be a data node in the extent of I

2 I .address ← curAdd

3 I .f ← curF

4 curF ← curF + 1
5 for all J ∈ Children(I) do ADD(J, Concat(curAdd, label(I, J)))

/* label(I, J) is the label of edge from I to J*/
6 I .g ← curF − 1
end

In practice, if we parse XML documents by the SAX (Simple API for XML),
where the the order sequence of parsing nodes is also the pre-order sequence of
the basic tree, then we can build the tree structure index on data graph while
parsing XML document. The complexity of the algorithm is O(n), where n is
the number of nodes.

4.2 Link Graph Construction

After building the tree structure, we can build the link graph in linear time of the
number of reference edges. Let VL = {n1, n2, ..., nt}, where ni are the destination

264 A. Kiss and V. Le Anh

nodes or the source nodes of the link edges. We assume that n1.f < n2.f < ... <
nt.f . We remark our reader that in the tree structure index constructor algorithm
the nodes are automatically sorted by f parameter. The reference edges of the
link graph can be easily determined. We use following corollary to determine the
symbol paths:

Corollary 3. There exists a symbol path from ni to nj, iff:
1. ni.f < nj .f ≤ nj .g ≤ ni.g
2. � ns : ni.f < ns.f < nj .f ≤ nj.g ≤ ns.g ≤ ni.g

The link graph constructor algorithm is shown as below:

Link Graph Constructor Algorithm

Input: G with tree structure index, VL = {n1, ..., nt} sorted by f parameter
Output: The link graph L = (VL, EL)
begin

1 insert into EL all reference edges of G
2 EmptyStack(S)
3 for i = t down to 1 do

4 begin

5 while NotEmpty(S) ∧ (ntop(S).f < ni.g) do

6 begin

7 insert into EL symbol edge from ni to ntop(S)

8 Pop(S)
9 end

10 Push(S, i)
11 end

end

Proposition 2. The link graph constructor algorithm is correct and the com-
plexity is O(k), where k is the number of reference edges.

Proof. We parse the vi from the right to the left and bottom-up direction. Hence,
if ntop(S).f < ni.g then ni is the nearest ancestor of ntop(S), so there exists an
symbol path from ni to ntop(S). With a given node ni there may exist only one
symbol edges, in which ni is the destination node. Moreover, if there exists the
symbol edge from ni to nj then i < j. Hence the algorithm find all symbol edges,
that follows the correction of the algorithm.

The complexity of step in line 1 is O(k). For each node, we push exactly one
time into stack S, and get out maximum one time. So totaly we t times push in
and get out maximum t times nodes. Because t ≤ 2k so the complexity of the
algorithm is O(k).

5 Experiments

We compare the performance between 4 algorithms: the naive algorithm (NA
algorithm), the naive algorithm on the 1-index (NI algorithm), the tree struc-
ture based improved algorithm (NT algorithm), and the tree structure based

Combining Tree Structure Indexes with Structural Indexes 265

improved algorithm on the strong 1-index (TI algorithm) on the same large
data sets. The experiments are performed on Celeron R (2.4 G.hz), platform
with MS-Windows XP and 512 MBytes of main memory. The Xerces Java SAX
parser 1 [14] and the xmlgen the The Benchmark Data Generator [13] are used
to parse and to generate XML data. We have implemented the 4 algorithms in
PL/SQL language and represented the data sets in ORACLE 9.i. The data sets
and the query workload are chosen as follows.

Data sets. Using the Benchmark Data Generator, we generated three data sets
D0, D1 and D2 with the sizes 17MB, 30MB and 47 MB respectively. The prop-
erties of 3 data sets are as below:

Data set No. of Nodes No. of Edges No. of ref. edges No. of Labels
D0 250732 296101 45370 76
D1 421006 497491 76486 76
D2 673241 796329 123089 76

For each data set we also built the 1-index and strong 1-index. The properties
of the index graphes are as below:

Data set 1-index strong 1-index
No. of Nodes No. of Edges No. of b. edges No. of r. edges

D0 113004 150353 123003 37350
D1 189461 252451 189460 62991
D2 302663 404432 302662 101770

Query Workload. We generated 144 primary queries above 3 data sets. The
lengths of queries are between 8 and 12. For the simplicity, we assume that the
input set contains only the root, I = {root}, and the output set is the whole set
of nodes, O = V . We used the top down approach for the query evaluation.

5.1 Performance Result

Cost model. Because there no standard storage scheme and query cost model
exists for graph structured data we adopt the same main-memory cost metric
similar to those used in [8,9]. The cost of the NI and NA algorithm is the number
of visited edges in step 2, when we compute the transitive closure relation of the
state data graph. The cost of the NT and TI algorithms with top-down approach
is the sum of following numbers: (1) The number of the records in relation R1

in step 2; (2) The number of the records in relation R′
1 (3) The number of the

visited edges of the link graph in relation R′
2 using R′

1 as the first rule [1] (4) The
number of the records in relation R′

3 as we use R′
2 as semi join precondition [1].

Note that we do not count the data nodes in the extents of index nodes in the
TI and NI algorithms, and the complexity in join operations are ignored.

With the above cost metric the average of the cost of the queries evaluation
with 4 algorithms is shown below.

266 A. Kiss and V. Le Anh

Data set Algorithms
N NI NT TI

D0 4780 2030 932 634
D1 8146 3401 1592 1077
D2 13088 5446 2544 1722

The average cost of the TI algorithm is about 13% of the N algorithm’s, about
36% of the NI algorithm’s and about 68% of the NT algorithm’s. The results
demonstrate the performance of the TI algorithm over other algorithms.

6 Related Work

Several more recent query languages and DBMS’s [2,3,4,5,6] have been con-
sidered for semi-structured data. Two of the most famous DBMS’s for semi-
structured data are: UnQL [2,3] and Lore [4,5]. Structural recursion is the basis
of the syntax and semantics of query languages for semi-structured data and
XML in UnQL. Queries are translated into structural recursion. The queries
evaluation optimization is based on the properties of structural recursion. Bulk
semantics of structural recursion is the spirit of our naive query evaluation al-
gorithm. Lore decomposes queries into simple path expressions. With two main
operators, Scan and Join, the problem of optimizing a path expression is similar
to the join ordering in relational databases. The basic tree structure of XML
data is not mentioned in both of Lore and UnQL since they are designed for
semi-structured data.

The most popular structural indexes are the 1-index [7], the A(k)-index [8],
the D(k)-index [9], the M(k)-index and the M∗(k)-index [10]. The 1-index is
based on the notion of bisimulation. All nodes in the same partition have the
same set of incoming label paths. We can evaluate accurately any path expression
on the 1-index. The A(k)-index is based on the notion of k-bisimilarity, which can
be considered as weakening of the bisimulation. All nodes in the same partition
have the same set of incoming label paths not longer than k. Thus, with the A(k)-
index all path expressions not longer than k can be evaluated accurately. The
D(k)−, the M(k)- and the M∗(k)-indexes are based on the notion of the dynamic
local similarity, which means different index nodes have different local similarity
requirements that can be tailored to support a given set of frequently used path
expressions. The values of k depend on the length of the path expressions and
they can be adjusted dynamically to adapt changing query load. All of these
structural indexes do not distinguishe between the tree structure of a document
and its link structure.

7 Conclusion

We have introduced and described a new approach for query evaluation on XML
data by combining tree structure- and structural indexes. We propose the strong

Combining Tree Structure Indexes with Structural Indexes 267

1-indexes to simulate data graph, which are safe and backward precise and the
basic tree is preserved in the strong 1-indexes. Building tree structure index on
the basic trees of the strong indexes improves the efficiency of the query bulk-
semantic evaluation. We also described and introduced efficient algorithms to
construct these indexes. Our experiments show that our new approach yields
the query evaluation higher effectiveness than just applying tree-structure or
structural indexes separately. By implementing all algorithms in PL/SQL (using
ORACLE 9i), we believe that our algorithms can be implemented for trade.

References

1. Kiss, A., Anh, V. L.: A solution for regular queries on XML Data. In
5th Joint Conference on Mathematics and Computer Science. Full paper at
http://people.inf.elte.hu/leanhvu/papers/macs-abs.pdf (2004)

2. Buneman, P., Davidson, S., Hillebrand, G., Suciu, D.: A query language and op-
timization techniques for unstructured data. In Proceedings of ACM-SIGMOD
International Conference on Management of Data (1996) 505-516

3. Buneman, P., Fernandez, M., Suciu, D.: UNQL: A query language and algebra for
semi-structured data based on structural recursion. In VLDB J.9, 1 (2000) 76-110

4. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: The Lorel query
language for semi-structured data. In International Journal on Digital Libraries
(1997) 68-88

5. McHugh, J., Widom, J.: Query optimization for xml. In In Proceedings of VLDB,
Edinburgh, UK, September (1999)

6. Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D. M.: A query language
for xml. In Proceedings of the Eights International World Wide Web Conference
(WWW8), Toronto (1999)

7. Milo, T., Suciu, D.: Index Structures for Path Expressions. In ICDT (1999)
8. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting Local Similarity for

Efficient Indexing of Paths in Graph Structured Data. In ICDE (2002)
9. Chen, Q., Lim, A., Ong, K. W.: D(K)-Index: An Adaptive structural Summary for

Graph-Structured Data. In ACM SIGMOD (2003)
10. He, H., Yang, J.: Multiresolution Indexing of XML for Frequent Queries. In Pro-

ceedings of the 20th International Conference on Data Engineering (2004)
11. R.Paige, R., Tarjan, R.: Three Partition Refinement Algorithms. In SIAM Journal

of Computing (1987) 16:973-988
12. Buneman, P., Davidson, S. B., Fernandez, M. F., Suciu, D.: 1997. Adding Struc-

ture to Unstructured Data. In Proceedings of the 6th International Conference on
Database Theory (1997) 336-350

13. XMark: The xml benmark project. http://monetdb.cwi.nl/xml/index.html
14. The apache xml project - Xerces Java Parsers. http://xml.apache.org/xerces-j/
15. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/, 04 April

(2005)
16. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/, 04 April

(2005)

A DataGuide-Based Concurrency Control
Protocol for Cooperation on XML Data�

Peter Pleshachkov1, Petr Chardin2, and Sergey Kuznetsov3

1 Institute for System Programming RAS, Russia
peter@ispras.ru

2 Moscow State University, Russia
pchardin@acm.org

3 Institute for System Programming RAS, Russia
kuzloc@ispras.ru

Abstract. Concurrency control has been a hot area for quite some time.
Today, when XML gains more and more attention, new concurrency con-
trol methods for accessing XML data are developed. There was proposed
a number of protocols suited for XML. Grabs et al. presented DGLOCK
locking protocol based on the DataGuide. This approach resulted in a
major concurrency increase for XML data.

In this paper, we propose a new XPath-based DataGuide locking pro-
tocol, which extends and generalizes on the hierarchical data locking
protocol. Our protocol (1) may be implemented on top of any existing
system, (2) provides a high degree of concurrency and (3) produces se-
rializable schedules. The protocol suites for XPath operations very well,
as it captures XPath navigational behaviour. Our method also takes into
account the semantics of update operations to increase concurrency. The
paper presents formal proof of correctness for the protocol.

1 Introduction

Whenever a user deals with a Database Management System (DBMS) he expects
it to behave as if he were the only person working with the system. Concurrent
operations executed by other users should not interfere with his work. Without
proper protection one may experience all kinds of problems, starting with reading
dirty or inconsistent data and ending with loosing up large data pieces. DBMS
should provide such protection for the users.

For this purpose, a number of concurrecy control protocols has been pro-
posed. Basically, concurrency control protocols use two ways to resolve a con-
flict. They can either block or rollback one of the conflicting transactions. And
since in the case of rollback we loose a lot of resources, already spent to process
a transaction, locking techniques are more popular.

Locking-based methods require a transaction to lock objects it is going to
work with. Transaction is allowed to proceed if the locks it requested on desired
objects are compatible with locks held by other transactions.
� This work was partially supported by the grant of the Russian Basic Research Foun-

dation (RBRF) N 05-07-90204.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 268–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A DataGuide-Based Concurrency Control Protocol 269

Today, when networking changes the face of computer systems, applications
require easy and well-structured way to exchange and describe data. eXtensible
Markup Language [1] was proposed to answer these needs.

Widespread usage of XML in digital libraries, scientific repositories and
across the web resulted in huge XML document collections, which are hard
to manage. The need of effective XML processing prompted the development of
concurrency control techniques suited specifically for XML.

Most of such methods provide node-level locking [2,3,5]. On the one hand,
these methods provide a high degree of concurrency. On the other hand, the
lock manager should manage a large number of locks to process large docu-
ments. It leads to significant increase of the lock manager’s table, which results
in the system performance loss. To alleviate this problem, lock escalation pro-
cedure should be employed. The procedure handles the conversion of many fine-
granularity locks into fewer carse-granularity locks. Unfortunately, this method
usually leads to a major concurrency decrease.

Experimental evaluation made by Grabs et al. [4] showed that utilizing of
the DataGuide structure allows to improve performance of concurrent queries
and updates of XML data. Besides, DataGuide approach significantly reduces
the lock manager’s memory requirements.

A DataGuide is a data structure that is essentially a compact representation
of the document tree. It is concise and accurate because DataGuide describes
every unique label path of a document exactly once, regardless of the number
of times it appears in that document, and encodes no label path that does
not appear in the document [6,7]. It serves as a dynamic schema and plays
an important role in query formulation, query optimization and indexing XML
documents.

Grabs et al. [4] proposed to extend the usage of this structure. In the
DGLOCK protocol, DataGuide also serves for locking. An important benefit
of this scheme is an ability to perform fine-grained locking without giving the
locking algorithm access to the XML documents themselves. This is quite useful
as the tree representation of the documents in some cases is not available to the
lock manager.

As it has been already mentioned, the main task of concurrency control sys-
tem is to protect concurrently executing transactions from each other. Usually,
we would like to check that transactions are serialized properly. Serializability [8]
requires that concurrent transactions produce the same result that we would get
if they were executed in a certain sequential order. This simple condition guar-
antees that we won’t get any problems because of concurrent execution.

In a short paper [9], we presented a research snapshot of XPath-based
DataGuide Locking protocol (XDGL). In this paper we give more formal de-
scription of the protocol and present a formal proof of correctness.

Our protocol ensures serializability and provides high degree of concurrency
within the same XML document. In the proposed method, we use a subset of
well-known XPath [10] language to access the document nodes and insert/delete
operators to modify document. In our locking method, we employ the DataGuide

270 P. Pleshachkov, P. Chardin, and S. Kuznetsov

structure for locking purposes rather than document itself. We use combination
of tree and node locks on DataGuide. We also take into account the semantics of
update operations to increase concurrency. Our locking method enforces strict
serializability and prevents appearance of phantoms [11]. We also present the
proof of correctness for XDGL.

The rest of the paper is organized as follows. The next section gives an
overview of related work, section 3 introduces some definitions, the XML query
and update languages, we refer through the paper. Section 4 presents the pro-
posed locking protocol. It is followed by a section devoted to the proof of cor-
rectness for XDGL. We make conclusions in the section 6.

2 Related Work

Various scheduling mechanisms have been developed to deal with XML data
effectively. In this section, we will discuss these techniques, their pitfalls and
benefits.

The first category of scheduling methods is based on existing technologies
originally developed for relational, hierarchical and object-oriented DBMSs. Some
of these methods use RDBMS’s internal locking mechanisms to provide concur-
rency control. Unfortunately, for all representations of XML data, these methods
usually tend to cause locks that are too restrictive. This is due to the fact that
RDBMS lock manager does not take into account the tree-like structure of the
document, stored in the tables. This results in a quite low concurrency level for
read and update operations. For a bit more detailed overview of these problems
see [5].

Another group of well-known methods adopted in order to deal with XML
consists of hierarchical and tree locking methods. One might think that these
methods should handle XML data rather well because of the hierarchical nature
of XML documents. However, these methods do not provide sufficient level of
concurrency at first, and do not suite well for XPath queries at second. Detailed
studies of these problems may be found in [5]. The problem with XPath queries
stems from the locking rules of these protocols. According to these protocols,
lock must be acquired top-down. That is, if one has locked a certain node, he
cannot lock a parent or sibling node. This retricts the usage of the parent,
following sibling and preceding sibling axes in XPath expressions. The third
problem, which is a common one for the majority proposed locking methods, is
the growth of the locking structures size. The size could be really huge for large
documents.

Now we will give an overview of concurrency control methods, specifically
tailored for XML data.

Several protocols [2,3] based on the DOM operations were proposed. The
protocols use different kinds of locks to latch nodes on different levels. Besides
Helmer et al.’s [3] method utilizes Document Type Definition (DTD) to reduce
the number of conflicts. These seem to work fine for DOM operations, but there
is no research done to see whether they could suite well the evaluation of path
expressions.

A DataGuide-Based Concurrency Control Protocol 271

The protocols developed in [5,12,13] rely on the fact that XML is usually ac-
cessed by means of XPath query language. They propose to use ”path locks” to
increase concurrency and provide the best results for XPath queries. But unfor-
tunately, these methods have a number of shortcomings. In [5], the authors deal
with too restrictive subset of XPath. The other works deal with more complex
XPath queries, but the conflict determination for them becomes too expensive.
Besides these methods are also quite ”memory-hungry”. If we have to deal with
huge documents, it becomes a major problem.

As it has been already mentioned, all previously considered methods tend
to request too many locks while working with large documents. Besides, many
of them require direct access to the XML document, which is not possible in
many cases. The solution to these problems was proposed by Grabs et al. in [4].
They developed a DGLOCK protocol, which utilizes a DataGuide for locking
purposes.

We consider this approach to be the most promising. However, the original
protocol has a number of serious drawbacks. At first, DGLOCK does not pre-
vent phantoms and does not guarantee for serializability of produced schedules.
These problems are the most serious. Another important disadvantage of Grabs’s
method is the fact that it does not support the use of the descendant axis, which
is very important for XPath query processing. The method presented in this
paper solves these problems.

3 Preliminaries

This section introduces the notions, which are of interest in this paper, and gives
an overview of query and update languages. Moreover, in the Fig. 1 we present
an example of XML document Gtree, its DTD and DataGuide. We will use Gtree
document in all examples throughout the paper.

doc

person

@age name addr child hobby

person

name addr hobby

n1

n2

n3 n4 n5 n6 n7

n8

n10 n11 n12

<doc>
<person age = '55'>
 <name>Peter</name>
 <addr>Old Street, 25</addr>
 <child>
 <person>
 <name>John</name>
 <addr>UStreet, 16</addr>
 <hobby>swimming</hobby>
 <hobby>cycling</hobby>
 </person>
 </child>
 <child>
 <person>
 <name>Robert</name>
 <addr>Old Street, 25</addr>
 </person>
 </child>
</person>
<person age='20'>
 <name>Mary</name>
 <addr>Quensway, 34</addr>
 <hobby>painting</hobby>
</person>
</doc>

<!ELEMENT doc (person)*>
<!ELEMENT person (name, addr, (hobby)*,
(child)*)>
<!ATTLIST person age CDATA #IMPLIED>
<!ELEMENT child person>
<!ELEMENT name #PCDATA>
<!ELEMENT addr #PCDATA>
<!ELEMENT hobby #PCDATA>

Fig. 1. An XML document GTree, its DataGuide and DTD

272 P. Pleshachkov, P. Chardin, and S. Kuznetsov

Definition 1. An action is a pair a(op, t); where op is one of the operations
defined in Sections 3.1, 3.2; t is a transaction identifier.

Definition 2. A transaction T is a finite list of actions that have the same
transaction identifier t and the last T’s operation is commit.

Definition 3. Commit (C for short) operation is one that terminates the exe-
cution of transaction. It releases all locks acquired by transaction and removes
DataGuide’s label paths which are not actually present in the document (see the
delete operation semantics for details).

3.1 XPath

The user can access the documents through XPath [10] queries. XPath provides
a restricted variation of regular path expressions. XPath is widely recognized in
the industry and used within XQuery [14] and XSLT [15]. In this paper, we focus
on XPath although our framework is applicable to any regular path expression.
We are based on a restricted version of XPath language. Its syntax is defined by
the following grammar:

locpath := ’/’ relpath | ’//’ relpath
relpath := locstep (’/’ | ’//’) locstep | locstep
locstep := axis ’::’ ntest (’[’ spred ’]’)?
axis := ’self’ | ’child’ | ’attribute’ | ’descendant’ |

’descendant-or-self’
ntest := NCName | ’@’ NCName | ’*’ | ’@’ ’*’
spred := ntest relop const
relop := ’=’ | ’!=’ | ’<’ | ’<=’ | ’>’ | ’>=’
const := number | string

The main syntactical construction in XPath is location path. A location path
consists of several location steps syntactically separated by ‘/’ or ‘//’. A location
step may optionally include a simple predicate enclosed in square brackets. At
last, ‘ntest’ denotes names labeling document nodes (elements or attributes) or
the wildcard ‘*’ that matches all nodes.

A location path evaluates from left to right. A sequence of context nodes pro-
vides the initial point from which each location step starts with. For each context
node a step generates a sequence of items and then filters the sequence by pred-
icate. A step returns a sequence of nodes in turn that are reachable from the
context node via specified axis. An axis defines the ‘direction of movement’ for
the step. A node test selects nodes based on their name. The resulting sequences
are unioned together to form the sequence of context nodes for a subsequent step,
if there are any. The final result of the location path is the result of the last loca-
tion step. Thus, the last location step defines the target nodes of location path.

Location path imposes two kinds of constraints on the desired nodes: (1)
structural constraints expressed via axes and node test, (2) value-based con-
straints expressed via predicates.

A DataGuide-Based Concurrency Control Protocol 273

The main branch of location path is the one that matches the target nodes
of location path. We will call other branches of location path, which impose
value-based predicate, additional branches.

Our grammar describes the unabbreviated and abbreviated syntax of location
paths, but in our examples we will follow an abbreviated syntax where it is
possible. An abbreviation Q denotes any query expressed in XPath.

Here we should note that though we restrict XPath for the ease of presen-
tation, there are no principal constraints which deny XDGL from dealing with
full set of XPath operations.

3.2 Update Language

Now we describe a set of update operations on XML documents. We define only
two kinds of primitive updates: insert and delete operators. It is obvious, that
any complex update operation may be expressed as a combination of inserts and
deletes.

update := ’InsertInto’ ’(’ constr1 ’,’ locpath ’)’ |
’InsertBefore’ ’(’ constr2 ’,’ locpath ’)’ |
’InsertAfter’ ’(’ constr2 ’,’ locpath ’)’ |
’Delete’ ’(’ locpath ’)’

constr1:= ’element’ ’{’ NCName ’}’ content |
’attribute’ ’{’ NCName ’}’ content

constr2 := ’element’ ’{’ NCName ’}’ content
content := ’{’ PCDATA ’}’ | ’{’ ’}’

The update operations take a set of parameters (constr1, constr2, and loc-
path). The constr1 or constr2 defines a new node to be inserted. It is possibly an
empty element (or attribute). The locpath matches target nodes to be updated.

– InsertInto(constr1, locpath): inserts new node (element or attribute) as the
last child for each target node. An attempt to insert an attribute with the
same name as an existing attribute fails.

– InsertBefore(constr2, locpath): inserts new node (only element, not attribute)
as the preceding sibling for each target node. InsertAfter(constr2, locpath)
is defined analogously.

– Delete(locpath): removes subtrees specified by target nodes. That is, our
delete operator uses the deep deletion semantics. There is an important
feature of the delete operator: if it removes all nodes in the document which
correspond to the label path in the DataGuide then this label path is not
deleted until the end of transaction.

Our update language is the subset of Tatarinov et al. proposal. For more
details see [16].

Below in this paper, we use II , IA, IB and D to denote InsertInto, InsertAfter,
InsertBefore and Delete operations (respectively). Besides, we use I∗ to denote
arbitrary insert operation.

274 P. Pleshachkov, P. Chardin, and S. Kuznetsov

4 Proposed Locking Method

In this section, we introduce granular locking protocol on DataGuide called
XDGL. It is based on the Grabs et al.’s work [4], which propose DataGuide-
based locking (DGLOCK) protocol.

XDGL requires transaction to follow the strict two-phase locking protocol (S2PL)[11].
According to S2PL, a transaction acquired a lock keeps it until the end.

As well as Grabs’s method, XDGL requires transaction to obtain intention
locks on ancestors of x before accessing a data item x. It ensures that there are
no locks in the conflicting mode on the coarser granules (containing x).

According to DGLOCK, a lock on a coarser granule x explicitly locks x and
implicitly locks all of x’s proper descendants, which are finer granules contained
in x. But this requirement is too restrictive for concurrent Q and I∗ XML oper-
ations. For details see example 1. However, due to the semantics of D operation
transaction must lock the entire subtree to remove it. For these reasons in XDGL
we use both (1) locks on the DataGuide’s nodes and (2) locks on the DataGuide’s
subtrees. The locks of the first and second type we will call node locks and tree
locks respectively.

Example 1. Let us suppose that transaction T1 has issued the query /doc/person/
name. It should be possible for transaction T2 to perform the InsertInto(element
{person} {}, /doc) operation concurrently. However, according to DGLOCK
locking rules, transactions T1 and T2 are in conflict since the intention shared
lock on n2 required by T1 is not compatible with the exclusive lock on n2 required
by T2 (see Fig. 1). Thus, T1 and T2 cannot be executed concurrently.

Like DGLOCK, XDGL takes into account both structural and value-based
constraints. In XDGL the node and tree locks have to cope with structural
constraints. To deal with value-based constraints, each lock has an annotated
value-based predicate (VBP).

Another issue, which should be carefully handled, is the phantoms problem
[11] that is not solved by DGLOCK. For example, the queries with descendant
axes may suffer from phantoms. The straightforward solution of this problem
is to lock coarser granules (usually the entire document). Obviously, in some
cases this solution is too restrictive. In XDGL, we employ special logical locks
to prevent phantoms.

Finally, we introduce some special node locks that prevent the document
order conflicts during the execution of concurrent I∗ operations. For example,
the document order conflict arises if one transaction inserts new node as the last
child into a node and at the same time another transaction also inserts new node
as the last child into the same node.

4.1 Node and Tree Locks

Below we describe a set of all node and tree locks used in XDGL.

– SI (shared into) lock. This node lock is used by II operation. It is set on the
DataGuide’s nodes which matches the target nodes of II . This lock prevents

A DataGuide-Based Concurrency Control Protocol 275

the deletion of II ’s target nodes and insertion of another nodes into the
target nodes by concurrent transactions. The SA (shared after) and SB
(shared before) locks are defined in a similar way.

– X (exclusive) lock. This node lock is used by I∗ operations. It is set on the
DataGuide’s node which matches the newly created node in the document.
This lock serves for preventing the reading and deletion of new node by
concurrent Q, I∗ and D operations of another transaction.

– ST (shared tree) lock. This tree lock is used by Q, I∗ and D operations. It
is set on the DataGuide’s node and implicitly locks all its descendants. That
is, ST lock prevents any updates inside the entire subtree.

– XT (exclusive tree) lock. This tree lock is used by D operations. It is set on
the DataGuide’s node which matches the target nodes of D operation. The
XT lock prevents any readings and updates inside the entire subtree defined
by target nodes. Note that D operation does not affect the DataGuide. This
is the responsibility of C operation to remove the DataGuide’s nodes, if all
nodes in the document related to them were deleted.

– IS (intention shared) lock. This node lock must be obtained on each ancestor
of the node, which is to be locked in one of the shared modes. It ensures for
lack of any locks on the coarser granules containing the node in the conflicting
mode. IX (intention exclusive) lock is defined in a similar way.

Each of these locks is annotated with VBPs which impose additional con-
straints on the node’s value in the document. IX and IS locks are always anno-
tated with #t (true) predicate. The XDGL’s compatibility matrix for node and
tree locks is shown in Fig. 2.

There are no strict incompatibilities in matrix. Symbol ’P’ in matrix means
that the requested lock is compatible with granted locks only if ∪iP

granted
i ∩

P requested = ø; where P granted
i (P requested) are the VBPs of granted (requested)

lock.

SI SA SB X ST XT IS IX

granted

requested

SI

SA

SB

X

ST

XT

IS

IX

P

P

P

P

+
P

+
+

+
+

+

+

+
+

P

P

P

+
+
+
P

P

P

P

P

P

P

P

+
P

+

+ +

P

+
+
+
P

P

+

+
+
+
+
P

+P
+
P

+

PP

++
P P P

P

+
+
+

+
+

+

Fig. 2. Lock Compatibility Matrix

276 P. Pleshachkov, P. Chardin, and S. Kuznetsov

Note, that IX and X locks are strictly compatible since IX lock on a node
only implies the intention to update the descendants of the node. But it does
not imply any updates on the node itself. For the same reasons, S and IX locks
are also compatible. SI (SA, SB) lock is not compatible with SI (SA, SB) lock,
which prevents concurrent II (IA, IB) operations upon the same node. Thus,
SI, SA and SB locks serve for preventing document order conflicts.

4.2 Logical Locks

Now we turn to the discussion of the logical locks, which are used to prevent
phantoms. Let us show how a phantom could appear. Suppose that transaction
T1 reads all of age attributes in GTree(i.e. T1 issued //@age query). In the
meantime transaction T2 inserts new age attribute into person element with
name ’John’ (see Fig. 1). The new age attribute is the phantom for transaction
T1. Generally speaking, phantoms can appear when (a) the I∗ operation extends
the DataGuide (adds new path to DataGuide) and (b) the insertion of new node
results in the changing of target nodes of previously executed operations.

Thus, we introduce two locks. The first lock is L (logical) lock, which must
be set on DataGuide’s node to protect the node’s subtrees in the document from
a phantom appearance. A logical lock specifies a set of properties. Essentially,
a property is a logical condition on nodes. This lock prohibits the insertion of
new nodes, which possess these properties. The second lock is IN (insert new
node) lock, which specifies the properties of new node. The I∗ operation, which
extends the DataGuide, should obtain the IN lock on each ancestor of the new
node.

Here we list all possible combinations of properties for L lock: (1) node-
name=’name1’ (e.g. //person), (2) node-name=’name1’, node-value relop ’val1’
(e.g. //name[.�=’John’]), (3) node-name=’name1’, child-name=’name2’, child-
value relop ’val1’ (e.g. //person[name �= ’John’]). Here relop is a comparison
operation (see XPath grammar in the section 3.1).

To check that the new node’s properties do not interfere with the L lock
properties, the IN lock should specify three properties of a new node: new-
node-parent-name, new-node-name, new-node-value.

Thus, L and IN locks are incompatible if one of the following conditions
holds:

– If IN ’s new-node-name equals to a node-name of L lock and L does not
contain any other properties (case (1) from the above).

– If IN ’s new-node-name and new-node-value both match appropriate values
of L lock consisting of two properties. That is, node-name=new-node-name
and new-node-value relop ’val1’ �= #f (case (2) from the above).

– If all IN ’s properties match three properties of L lock. That is node-name=new-
node-parent-name, child-name=new-node-name and new-node-value relop
’val1’ �= #f (case (3)).

If node’s name is a wildcard ’*’ then it equals to any node-name.

A DataGuide-Based Concurrency Control Protocol 277

4.3 XDGL Scheduler

Now we describe the XDGL scheduler steps for a new action a(opi, tj).

1. Extract the data-path-set DP of all label paths in DataGuide that lead to
data queried or updated by a(opi, tj).

2. Compute the node-predicate-set NP = {(nj , pj)}; where nj is the node of
DataGuide that matches any label path from DP and pj is the VBP on nj

extracted from opi.
3. Compute the phantom-set PH = {(nj , propertiesj)}; where nj defines the

DataGuide’s node where a phantom could appear, propertiesj specify the
properties of nodes to be logically locked.

4. If opi is an I∗ operation and it extends the DataGuide then compute the
propertiesi of new node.

5. Obtain the node and tree locks needed for opi

– Let opi be a Q operation. For each nj ∈ NP performs: (1) obtain (ST , pj)
lock on nj , (2) obtain (IS, #t) lock on nj’s ancestors.

– Let opi be an II operation. For each nj ∈ NP performs: (1) if nj matches
the target nodes of II then obtain (SI, pj) lock on nj and (IS, #t) lock
on its ancestors, (2) if nj matches the additional branches of II ’s location
path then obtain (ST , pj) lock on nj and (IS, #t) lock on its ancestors,
(3) if nj matches the new node inserted by II then obtain (X, pj) lock
on nj and (IX, #t) lock on its ancestors.

– Let opi be an IA or IB operation. Perform the steps similar to the pre-
vious point’s steps.

– Let opi be a D operation. For each nj ∈ NP performs: (1) if nj matches
the target nodes of D then obtain (XT , pj) lock on nj and (IX, #t) lock
on its ancestors, (2) if nj matches the additional branches of D’s location
path then obtain (ST , pj) lock on nj and (IS, #t) lock on its ancestors

6. For each nj ∈ PH set (L, propertiesj) lock on nj .
7. If opi is an I∗ operation and it extends the DataGuide then obtain (IN,

propertiesi) lock on ancestors of DataGuide’s node which matches the new
node inserted by I∗.

8. If two locks are not compatible then XDGL scheduler delays a(opi, tj).

Next we consider a couple of examples to illustrate the above points.

Example 2. Consider transactions T1={/doc/person[@age=‘55’]/name} and T2=
{InsertInto(/doc, element{person}{})} (see Fig. 1). We will show that XDGL
scheduler allows to run T1 and T2 concurrently.

Let us apply XDGL rules to T1: DP={/doc/person/@age, /doc/person/name},
NP={(n3, @age=’55’), (n4, #t)}, PH={}, n3:(ST, @age=’55’), n1, n2:(IS, #t),
n4: (ST, #t).

For T2 XDGL rules produce the following results: DP={/doc, /doc/person},
NP={(n1, #t), (n2, #t)}, PH={}, n1:(SI, #t), n2:(X, #t), n1: (IX, #t)

Since locks on n1 and n2, required by T1 and T2 are compatible, we conclude
that T1 and T2 can be executed concurrently.

278 P. Pleshachkov, P. Chardin, and S. Kuznetsov

Example 3. Now we will study XDGL behavior in processing transactions T1 =
{/doc/person[name=’Peter’]//@age[. �=10]} and T2 = {InsertInto(/doc/person/
child/person, attribute{age}{9})}. Let us show that XDGL scheduler prevents
the insertion of the phantom (age attribute). In other words if T1 starts before
T2 then T2 could only proceed when T1 has ended.

Here are results of XDGL rules, applied to T1: DP={/doc/person/name,
doc/person/@age}, NP={(n4, name = ‘Peter′), (n3, @age �= 10)}, PH={(n2,
(node-name=’age’, node-value �= 10))}, n4:(ST, name=’Peter’), n1, n2:(IS, #t),
n3:(ST, @age �= 10), n2:(L, (node-name=’age’, node-value �= 10)).

Now, let us apply XDGL rules to T2: DP={/doc/person/child/person, /doc/
person/child/person/@age}, NP={(n8, #t), (n9, @age=9)}; where n9 is the
identifier of the DataGuide’s new node; PH={}, n8:(SI, #t), n1, n2, n6:(IS, #t),
n9:(X, @age=9), n1, n2, n6, n8:(IX, #t). Since n9 is a new node in DataGuide
XDGL also requires the following locks: n8,n6,n2,n1:(IN, (new-node-parent-name
=’person’, new-node-name=’@age’, new-node-value=9)).

As the properties of L lock on n2 (obtained by T1) match the properties of
IN lock on the same node (requested by T2), XDGL delays the execution of T2.

5 Correctness of XDGL Scheduler

This section contains the proof of correctness for XDGL locking method. Here
we introduce required definitions and notions.

Definition 4. A schedule S is an interleaving of a set of transactions.

Definition 5. We say that a schedule S is a legal schedule if and only if at any
step i, a set of all obtained locks LS

i contains only compatible locks.

Definition 6. Schedules S and S′ are called equivalent, if (1) the first is a per-
mutation (preserving the order of actions within a transaction) of the second, (2)
the resulting document is in both cases the same, and (3) all the queries in the
first schedule return the same result as the corresponding queries in the second
schedule.

Definition 7. Schedule S is serializable, if it is equivalent to some serial schedule.

To prove that XDGL scheduler is correct, we have to prove that all schedules
it could produce are serializable. Our proof consists of two steps. First, we prove
some properties of XDGL’s schedules in lemmas 1, 2 and 3. Then, we prove that
any schedule with these properties is serializable.

We presume some ordering on the transaction identifiers used in S such that
ti < tj if the commit of tj follows commit of ti in S or there is a commit of ti
but there are no commit of tj in S. According to this order we will serialize the
schedule S generated by XDGL.

Let schedule S′ be a schedule resulted in swapping two consecutive actions
a(opi, ti) and a(opi+1, tj) in S (tj < ti). We use LS

i to denote the set of all locks
obtained by transactions after processing the i-th step of S. The lSi (opi) denotes

A DataGuide-Based Concurrency Control Protocol 279

a set of all locks acquired (or released) by opi in schedule S. DS
i denotes the

resulting document after the i-th step.

Lemma 1. If S is a legal schedule then S′ is also a legal schedule.

Proof. It is clear that S′ is a legal schedule if the following conditions hold: (1)
all locks in LS′

i are compatible, (2) LS′
i+1 ⊆ LS

i+1

– opi, opi+1 ∈ {Q, I∗, D}. Since Q, I∗ and D operations do not remove locks,
we have LS

i+1 = LS
i−1 ∪ lSi (opi) ∪ lSi+1(opi+1) and LS′

i = LS′
i−1 ∪ lS

′
i (opi+1) ∪

lS
′

i+1(opi).
Suppose opi, opi+1 ∈ {Q, D}. Since Q and D does not change the DataGuide,
it follows that lS

′
i+1(opi) = lSi (opi) and lS

′
i (opi+1) = lSi+1(opi+1).

If opi, opi+1 ∈ {Q, I∗, D}. The only case lS
′

i+1(opi) �= lSi (opi) (lS
′

i (opi+1) �=
lSi+1(opi)) when the target nodes of opi (opi+1) contains the nodes inserted by
opi+1 (opi) i.e. opi+1 ∈ I∗ (opi+1 ∈ I∗). Since each of locks ST , SI, SA, SB
and XT are not compatible with X lock (taking into account VBPs), we
have got a contradiction.
We have LS′

i = LS
i and LS′

i+1 = LS
i+1. Thus, we proved (1) and (2).

– opi+1 ∈ C (if opi ∈ C then the swapping is not needed). Since C removes
locks from the DataGuide it follows LS

i+1 = LS
i−1 ∪ lSi (opi) \ lSi+1(opi+1) and

LS′
i = LS′

i−1 \ lS
′

i (opi+1). Since lSi+1(opi+1) = lS
′

i (opi+1), we obtain LS′
i ⊆

LS
i+1. Therefore (1) is correct.

If LS′
i+1 �= LS

i+1, then the commit removes the nodes that are the target nodes
of opi. It is impossible as ST , SI, SA, SB and XT locks are not compatible
with XT lock (taking VBPs into account). �

Lemma 2. If S is a legal schedule and at least one of the operations opi or
opi+1 in S is a query then results of opi and opi+1 in S′ are the same.

Proof. Since query does not change the document, we only have to consider all
combinations of a query and update (non-query) operations.

– (I∗, Q) → (Q, I∗). If I∗ changes the result of Q then ST lock and X (or IX)
lock (taking VBPs into account) are obtained by different transactions on
the same node. We have got a contradiction. Thus, in this case the lemma’s
statement is correct.

– (Q, I∗) → (I∗, Q). If I∗ inserts new node, which matches the existing label
path in DataGuide, then the outcome of Q does not change with the same
reasons as in the previous point. So, we need to consider a situation, when
I∗ extends the DataGuide. In other words, the I∗ inserts the phantom. But
because of XDGL locking rules the Q is protected against phantoms by
means of L lock.

– (D, Q) → (Q, D). If D changes the outcome of the query then the query
needs ST lock which conflicts with XT (or IX) lock that D requires.

280 P. Pleshachkov, P. Chardin, and S. Kuznetsov

– (Q, D) → (D, Q). See previous point
– (Q, C) → (C, Q). Since C does not change the document (it only releases

locks and removes edges from DataGuide, if any) it cannot change the result
of the Q.

– (C, Q) → (Q, C). This permutation is not needed for reduction S to the
serial schedule. �

Lemma 3. If S is a legal schedule, then DS
i+1 = DS′

i+1

Proof. Since a query does not change the document, the documents are equal
when at least one opi (or opj) is a query.

– (II , II) → (II , II). There are two cases when two II operations do not com-
mute. (1) opi and opi+1 insert into the same node. Then swapping of two
operations resulted in the document order violation. (2) opi+1 inserts into
the node created by opi. Then, after swapping the target nodes of opi+1 will
be empty and opi+1 does not insert any nodes.
The first case is not possible since SI locks are not compatible with SI locks
(taking VBPs into account), and S is a legal schedule. The second one is
not possible because opi+1 requires SI locks on target nodes, but SI lock is
not compatible with X lock (taking VBPs into account) required by opi on
newly created node.
This way, we see that the swapping of (IA, IA) or (IB , IB) do not change
resulting document, when the first i + 1 actions of the schedules S and S′

are undertaken.
– (II , IA) → (IA, II). The only questionable situation about the document

order preservation arises when IA inserts the node nx as the last right sibling
of node ny and II inserts a new node nz into the parent of ny. But it is
obvious that such situation does not result to a problem.
Similarly, any other combinations of II , IA and IB also leaves the document
the same.

– (I∗, D) → (D, I∗) The only case when I∗ and D do not commute arises when
D deletes nodes inserted by I∗. But I∗ acquires X lock on the created node
(and IX on its ancestors); D must acquire XT on the same node (or its
ancestors). As locks required by I∗ and D are not compatible (taking VBPs
into account), such situation is not possible.

– (D, I∗) → (I∗, D). This case is similar to the previous one.
– (D, D) → (D, D). By definition, these operations commute.
– The permutations (C, I∗) → (I∗, C) and (C, D) → (D, C) are not needed for

reduction S to the serial schedule.
– (D, C) → (C, D), (I∗, C) → (C, I∗). There could be no problem with permu-

tation of these operations.

We have considered all possible combinations of two adjacent operations and
proved that the swapping of these operations does not change the document
after i + 1 step or in other words DS

i+1 = DS′
i+1. �

A DataGuide-Based Concurrency Control Protocol 281

Theorem 1. All schedules S generated by XDGL scheduler are serializable.

Proof. We will consequently reduce a legal schedule S to a serial schedule Sserial

by means of swapping two adjacent actions a(opi, ti) and a(opi+1, tj) where
(tj < ti). It is obvious, that the schedule is serial if there are no more such
pairs.

Taking into account lemmas 2 and 3, we obtain that schedules S and S′

are equivalent. Here S′ was produced from S by swapping of two consecutive
operations. In lemma 1 we proved that S′ is a legal schedule. Thus, swapping of
two consecutive operations in S′ also resultes in equivalent schedule S′′. Since
a schedule is a finite list of actions and two actions should be swapped at the
utmost only once, we conclude, that S can be reduced to Sserial by a finite
number of swaps. �

6 Conclusions

XML data is stored in many different ways today. Some methods rely on existing
relational or object-oriented technologies to store and process XML. Other pro-
posals prefer a Native XML approach. But any XML-processing system should
provide a good means of concurrency control.

In this paper, we have presented a new XPath-based concurrency control
protocol (XDGL), which might be implemented on top of any existing database
management system. The usage of the DataGuide structure for locking allows
to decrease memory requirements for the locking structures. Unlike previously
proposed solutions, our protocol ensures strict serilizability and combines pred-
icate and logical locks to provide protection from phantom appearance. It also
provides higher degree of concurrency then existing DataGuide-based solutions.
Finally, we have presented a formal proof of correctness for the XDGL.

References

1. Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler,E.: Exten-
sible Markup Language, W3C Recommendation, http://w3.org/TR/2004/REC-
xml-20040204, 4th February (2004)

2. Haustein, M., Harder, T.: taDOM: A Tailored Synchronization Concept with Tun-
able Lock Granularity for the DOM API. Proc. ADBIS , Dresden, Germany (2003)

3. Helmer, S., Kanne, C., Moerkotte, G.: Lock-based protocols for cooperation on
XML documents. Proc. of the 14th Int. Workshop on Database and Expert Systems
Applications (DEXA), Prague, Czech Republic.

4. Grabs, T., Bohm, K., Schek, H.–J.: XMLTM: efficient transaction management for
XML documents, Proc. ACM CIKM, McLean, Virginia, USA (2002)

5. Dekeyser, S., Hidders, J.: Conflict Scheduling of Transactions on XML Documents.
Proc. ADC, Dunedin, New Zealand (2004)

6. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured DataBases. Proc. VLDB, Athens, Greece (1997)

7. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A DataBase
Management System for Semistructured Data. SIGMOD Record Vol. 26(3) (1997)

282 P. Pleshachkov, P. Chardin, and S. Kuznetsov

8. Weikum, G., Vossen, G.: Transactional Information Systems, Morgan Kaufmann
(2002)

9. Pleshachkov, P., Chardin, P., Kuznetsov, S.: XDGL: XPath-Based Concurrency
Control Protocol for XML Data. Proc. BNCOD Sunderland, UK (2005)

10. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Ro-
bie, J., Simeon, J.: XML Path Language (XPath) 2.0. W3C Working Draft,
http://www.w3.org/TR/2005/WD-xpath20-20050211/, 11 February (2005)

11. Eswaran, K. P., Gray, J., Lorie, R., Traiger, I.: The notions of consistency and
predicate locks in a database systems. Comm of ACM, Vol. 19, No 11, November
(1976) 624-633

12. Hye Choi, E., Kanai, T.: XPath-based Concurrency Control for XML Data. Proc.
DEWS, Kaga city, Ishikawa, Japan (2003)

13. Jea, K., Chen, S., Wang, S.: Concurrency Control in XML Document DataBases:
XPath Locking Protocol. Proc. ICPADS 2002, Taiwan, ROC, IEEE (2002)

14. Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J.,
Simeon, J.: XQuery 1.0: An XML Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, 11 February (2005)

15. Kay, M.: XSL Transformations (XSLT) Version 2.0. W3C Working Draft,
http://www.w3.org/TR/2005/WD-xslt20-20050211/, 11 February (2005)

16. Tatarinov, I., Ives, Z., Halevy, A., Weld, D.: Updating XML. Proc. ACM SIGMOD,
Santa Barbara, California, USA (2001)

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 283 – 293, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mining Fuzzy Classification Rules Using an Artificial
Immune System with Boosting

Bilal Alatas and Erhan Akin

Department of Computer Engineering, Faculty of Engineering, Firat University, 23119,
Elazig, Turkey

{balatas, eakin}@firat.edu.tr

Abstract. In this study, a classification model including fuzzy system, artificial
immune system (AIS), and boosting is proposed. The model is mainly focused
on the clonal selection principle of biological immune system and evolves a
population of antibodies, where each antibody represents the antecedent of a
fuzzy classification rule while each antigen represents an instance. The fuzzy
classification rules are mined in an incremental fashion, in that the AIS
optimizes one rule at a time. The boosting mechanism that is used to increase
the accuracy rates of the rules reduces the weight of training instances that are
correctly classified by the new rule. Whenever AIS mines a rule, this rule is
added to the mined rule list and mining of next rule focuses on rules that
account for the currently uncovered or misclassified instances. The results
obtained by proposed approach are analyzed with respect to predictive accuracy
and simplicity and compared with C4.5Rules.

1 Introduction

Data mining is the extraction of implicit, valid, potentially useful, and comprehensible
knowledge from large volumes of raw data. The most common use of data mining is
in the area of classification that is the task of inducing a model that assigns instances
to their respective categories from an input data. The two most important evaluation
criteria used in classification techniques are predictive accuracy, i.e. generalization,
and comprehensibility, i.e. understandability by a human user. This classification
model is useful for serving as an explanatory tool to distinguish between objects of
different classes and determining the class label of unknown instances [1].

The vast majority of the classification models work within classic logic framework.
However, to cope with continuous attributes, fuzzy logic is a natural way.
Furthermore, fuzzy logic is a powerful, flexible method to cope with uncertainty and
improves the rule comprehensibility.

This work proposes an algorithm for mining fuzzy classification rules of the form
“IF (fuzzy conditions) THEN (class)” based on an AIS and boosting mechanism. AIS
is a relatively new computational system based on metaphors of the natural immune
system and designed to solve real-world problems [2]. Numerous immune algorithms
now exist, based on theoretical immunology and observed immune functions,
principles and models. The AIS used in this work is based on clonal selection
principle [3] that is a form of natural selection. Boosting is a general method of

284 B. Alatas and E. Akin

generating many simple classification rules and combining them into a single, highly
accurate rule [4]. In this proposed approach, the boosting mechanism adapts the
distribution of training instances in iterations, namely AIS pays more attention to the
previously misclassified or uncovered instances. Thereby, cooperation among fuzzy
rules is implicitly promoted.

One AIS for mining IF-THEN rules is proposed that is based on extending the
negative selection algorithm with a genetic algorithm [5]. However, this method has
some conceptual problems in the context of classification task, as discussed in [6].
The first AIS, called IFRAIS, is proposed for mining fuzzy classification rules in [7].
It starts with a full training set, creates a 'best' rule that covers a subset of the training
data, adds the best rule to its discovered rule list, removes the instances covered by
said rule from the training data, and starts again with a reduced training set. Namely,
IFRAIS uses a ‘separate-and-conquer’ approach. Rules mined in later stages are
unaware of the previously removed instances and therefore might be in conflict with
rules mined earlier. Unexpected interactions between rules can appear when an
instance is covered by several rules of different classes.

Let T rules of a class have been mined and we wish to mine the T+1 rule for the
same class. The information that the system has about the T rules, are the instances
from the training set that were not covered by them, but for the system is not known
as the T rules affect on the instances from other classes. Furthermore, when working
with fuzzy rules and instances, this problem increases since the instances are covered
by a rule in a degree. This can cause unexpected interaction between rules during the
inference process. That is why, in this study ‘separate-and-conquer’ approach is not
followed and a boosting mechanism is used instead.

This paper is organized as follows. Section 2 explains the details of the algorithm.
Section 3 briefly describes the used data set and discusses the experimental results.
Finally section 4 concludes the paper with future works.

2 The Proposed Method

The AIS used in this work is based on clonal selection principle that is a form of
natural selection. The antigen imposes a selective pressure on the antibody population
by allowing only those cells that specifically recognize the antigen to be selected for
proliferation and differentiation. The computational model of the clonal selection
principle, like many other artificial immune system models, borrows heavily from
immunological theory but is not an exact copy of the immune system’s behavior [2].

Attributes are fuzzified by user-specified membership functions as a pre-process.
Then AIS follows an iterative rule learning approach [8]. The overall architecture of
the proposed approach is shown in Fig. 1. The rules are mined in an incremental
fashion by repeatedly invoking AIS that identifies the fuzzy rule that best match and
correctly classify the instances of selected class in the set of training instances. The
boosting mechanism that will be repeated until no more rules are needed adapts the
distribution of training instances in a way that AIS pays more attention to the
previously misclassified or uncovered instances. Thereby, the boosting implicitly
promotes cooperation among fuzzy rules. When all rules for a class have been mined
the same process is repeated for the other classes.

 Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting 285

Rule set

AISClass selection

Boosting
Append rule to the

mined rule set Set all weights of
training instances to 1

Are more rules for this
class needed

Fuzzified training set

Yes No

All rules for each
class mined

Rule

Fig. 1. Architecture of the system

2.1 Mining of Rules

In the proposed algorithm, each antibody that is encoded by a string with n genes, where
n is the number of attributes represents the antecedent of a fuzzy classification rule
while each antigen represents an instance. Each gene of an antibody consists of two
elements; a value Vi that specifies the value or linguistic term of the i-th attribute in the
i-th rule condition, and a Boolean flag Bi indicating whether or not the i-th condition
occurs in the antecedent decoded from the antibody. The rule consequent is not evolved
and all the antibodies of a given AIS are run with the same rule consequent [7]. That is
why; the algorithm is run multiple times to mine rules predicting different classes. The
main steps of the proposed algorithm are described in Fig. 2.

The proposed algorithm starts by initializing the MinedRuleSet to the empty set,
and then it performs a loop over the classes to be predicted. For each class, the
algorithm initializes weights of all instances with 1; then iteratively finds the best
evolved rule, which is then stored in BestRule. Next the algorithm adds the BestRule
to the MinedRuleSet and weights the instances that have been correctly covered by the
BestRule with Boosting mechanism that will be explained later. An instance is
correctly covered by a rule if and only if the instance satisfies the rule antecedent and
the instance has the same class as predicted by the rule. In order to compute how
much an instance satisfies a rule antecedent, the affinity between the rule and the
instance is computed as follows.

Assume a training set of K instances D={(x1, c1), ..., (xK, cK)} where xk={xk
1, ..., x

k
N}

is an instance taken from some attribute space {X1, ..., Xn}, and ck∈{C1, ..., Cm} is the

286 B. Alatas and E. Akin

class label associated with xk. Upper indices k is used to denote the k-th training
instance, and lower indices n to denote the n-th attribute xk

n of a training instance xk.
Fuzzy rules are of the form Ri: if X1 is A1i and . . . XN is ANi then Y=ci in which Xn
denotes the n-th input variable, Ani the fuzzy set associated to Xn and ci∈{C1, ..., CM}
represents the class label of rule Ri. For a particular instance xk,

Affinity(Ab, Ag)=μRi(x
k) = μRi({xk

1, ..., x
k
n})= ()n

k
A

N

n
x

ni
μ

1
min

=
 (1)

describes the affinity between the rule (antibody) and the instance (antigen).

MinedRuleSet=φ

For Each class c
Weights of all training instances=1
While (Number of unweighted instances>MaxUnweigthInstances OR yielding
 a positive fitness)
Generate initial antibody population uniformly
Prune each rule antecedent
Compute fitness of each antibody
For i=1 to NumberOfGenerations
 Perform tournament selection T times, getting T winners to be

cloned
 For Each antibody to be cloned
 Generate C clones of the antibody
 For Each just-generated clone
 Mutate clone
 Prune each clone
 Compute fitness of the clone
 End For Each clone
 End For Each antibody
 Replace T worst antibodies in the population by the T

best clones
End For i
BestRule=The rule whose antecedent consists of the antibody with the
 best fitness among all antibodies produced in all generations
MinedRuleSet=MinedRuleSet∪ BestRule
Weight the instances that are correctly covered by the BestRule
End While

End For Each class

Fig. 2. Main steps of the proposed algorithm

The While loop is iteratively performed until the number of unweighted instances
is smaller than a user-specified threshold MaxUnweightInstances or fitness becomes
zero to mine as many rules as necessary to cover the vast majority of the training
instances.

Forming of best rules is started by generating an initial antibody population
uniformly. Initial population is distributed over antibody space using uniform
population (UP) method used for genetic algorithms in [9]. Random initial population
method has some drawbacks because it may be created in the infeasible region, or all
the antibodies in population may be in the nearest neighborhood and far away to
solution, thus search of solution may get a local solution that can not be get rid of.

 Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting 287

UP is a method to generate a population of high quality in order to overcome the
random method. For simplicity, let x = (x1, x2, ..., xs) be a row vector (antibody) and
xi ∈{0,1}, 1 ≤ i ≤ s. There is a dividing factor r for this method. If r=1, then initially,
an antibody is randomly created and then, inversion of this antibody is also selected as
another antibody. If r=2, then randomly created antibody is divided into two equal
parts: First, the inversion of the first part is taken and this yields another antibody.
Taking inversion of the second part will yield another antibody, and inversion of all
genes of randomly generated antibody is also another antibody. Therefore, three extra
antibodies are obtained from randomly created antibody. All these antibodies are
related to each other. For example, a population of size 4m is created from m
randomly created antibody (m is a positive integer) in case of r=2. Let a be a
randomly created antibody; and b, c, and d derived antibodies from a for r=2. Then,

),...,,(21 nxxxa =),...,,(21 nxxxb =

),...,,,...,(
1

22

21 nnn xxxxxc
+

=),...,,,...,,(
1

22

21 nnn xxxxxd
+

=

(2)

If there are r-dividing points selected in each randomly generated antibody, then
the number of derived antibodies from randomly generated antibody is 2r-1. Thus, the
number of antibodies in the initial population will be (the number of randomly
generated antibodies is m)

(2r-1)× m+m=m× 2r (3)

Taking inversion of parts for other encoding techniques can easily be formed. In
this study, inversion of flags is performed in this way while inversion of values is
performed by uniformly transforming one linguistic term to another in a cyclic order.

In the experiments, r was selected as 3, and 6 antibodies were randomly generated.
That is why 6 × 23=48 antibodies were used as initial population.

Each rule is pruned to reduce the overfitting of rules to the data and improve
comprehensibility of the rules and then fitness is computed. The basic idea of this rule
pruning is that the more information gain of a condition [10], the more likely the
condition will be removed from this rule. After rule pruning the second For loop
over a fixed number of generations is performed.

This For loop starts by performing T tournament selection [11] with tournament
size of 10 procedures, in order to select T winner antibodies that will be cloned in the
next step. Once T antibodies have been selected, the algorithm performs its core step,
which is inspired by the clonal selection principle. This step consists of several sub-
steps, as follows. First, for each of the T antibodies to be cloned, the algorithm
produces C clones. The value of C is proportional to the fitness of the antibody and is
computed as shown in Equation (4) [7], where fit(Ab) denotes the fitness of a given
antibody Ab that will be described later and MaxNumberOfClones denotes the
maximum number of clones for an antibody. The number of clones increases linearly
with the fitness when 0<fit(Ab)< 0.5, and any antibody with a fitness greater than or
equal to 0.5 will have MaxNumberOfClones clones. MaxNumberOfClones was set to
10 to prevent the clone population from being very large, which would not only be
inefficient but also possibly lead to overfitting of the rules to the data.

288 B. Alatas and E. Akin

otherwise

Abfitif

Abfitif

AbfitfClonesMaxNumberO
fClonesMaxNumberOC 5)(

0)(

5

)(

1

≥
≤

×
= (4)

Next, a hypermutation process is applied to each of the just-generated clones. The
lower the fitness of a clone (parent antibody), the higher its mutation rate. More
precisely, the mutation rate for a given clone cl, denoted mutrate(cl), is given by

() minminmax))(1()(mutratemutratemutrateclfitclmutrate +−×−= (5)

where minmutrate and maxmutrate are the smallest and greatest possible mutation

rates that have been set to 20% and 50% in the experiments respectively, and fit(cl) is
the fitness of clone cl. Once a clone has undergone hypermutation, its corresponding
rule antecedent is pruned and finally, the fitness of the clone is recomputed.

In the next step, the population is updated. More precisely, the T worst-fitness
antibodies in the current population (not including the clones created by the clonal
selection procedure) are replaced by the T best-fitness clones out of all clones
generated by the clonal selection procedure. The parameter T and the number of
generations were set to 10 and 50 respectively in the experiments.

Next, the best evolved rule consists of the rule antecedent represented by the
antibody with the best fitness, across all antibodies produced in all generations, and of
the rule consequent containing the class c, which was the class associated with all the
generated antibodies is added to the set of mined rules. Finally the boosting
mechanism that will be explained later is performed for weighting the training
instances.

2.2 Fitness Function

The fitness function, fitness of an antibody (fit(Ab)) used in the algorithm shows the
quality of a rule and consists of three parts. The first part considers sensitivity,
specificity, and accuracy criteria and can be defined as

aw

AccuracyawySpecificitySensitivit
Q

+
×+×=

1

'
1 (6)

FNTP

TP
ySensitivit

+
= (7)

FPTN

TN
ySpecificit

+
= (8)

FNFPTNTP

TNTP
Accuracy

+++
+= (9)

 Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting 289

Accuracy’=Accuracy when Accuracy>0.7 and Accuracy’=0 otherwise. aw is the
weight of the accuracy and is set to 0.01. This term of this part of fitness slightly
reinforces the fitness of high-accuracy rules.

In case of categorical attributes, sensitivity is the accuracy among positive
instances, and specificity is the accuracy among negative instances. TP is true
positives, the number of instances covered by the rule that have the same class label
as the rule; FP is false positives, the number of instances covered by the rule that have
a different class label from the rule; FN is false negatives, the number of instances
that are not covered by the rule but have the same class label as the rule, and TN is
true negatives, the number of instances that are not covered by the rule and do not
have the same class label as the rule. However, in this study fuzzy classification rules
are mined, and an instance can be covered by a rule antecedent to a certain degree in
the range [0…1], which corresponds to the membership degree of that instance in that
rule antecedent. Therefore, the system computes fuzzy values for TP, FP, FN, and
TN. Let p is the number of instances in the training data set and wk weight of the
instance specified by boosting mechanism. Then

()k
i

p

cck

k xRwTP
i

k

μ
=

=
|

 (10)

()()
≠

−=
p

cck

k
i

k

i
k

xRwTN
|

1 μ (11)

()k
i

p

cck

k xRwFP
i

k

μ
≠

=
|

 (12)

()()
=

−=
p

cck

k
i

k

i
k

xRwFN
|

1 μ (13)

The number of correctly and incorrectly classified instances irrespective of their
weight is a consistency criterion and is included in the fitness function as second part.
The rationale is to avoid that rules mined in later iterations make inaccurate
generalizations based on the few remaining instances with high weights, while ignoring
previously down-weighted instances. Part of the fitness for rule consistency of
unweighted instances is accordingly computed by considering the number of correctly
and incorrectly classified instances covered by the rule Ri and can be defined as

() ()
() ()

()
−

<

=

=

≠=

≠=

otherwise

0

|

||

||

2

ik

ikik

ikik

cck

k
i

cck

k
i

cck

k
i

cck

k
i

cck

k
i

xR

xRxR

xRxR

Q

μ

μμ

μμ

(14)

290 B. Alatas and E. Akin

Another criterion considered for fitness function, third part, is length of the rule.
This part of fitness rewards a concise rule and is computed as

20
13

rmsNumberOfTe
Q −= (15)

where NumberOfTerms is the number of terms in the antibody, namely the number of
flags having value of 1 in the genes of the antibody.

The final fitness function is weighted sum of these described criteria:

=

=
3

1

)(
i

iiQweightAbfit (16)

weight1, weight2, and weight3 were set to 1, 1, and 0.0005 respectively.

2.3 Boosting Mechanism

The boosting mechanism is performed as follows. Initially, all training instances are
weighted uniformly with the wk(t=0)=1. Each time a best rule for the selected class is

included in the list, weights of the instances covered by this rule, ()1+twk , are

changed according to the following formula [12]:

() ()
() ki

ki

kk

k
k

cc

cc

tw

tw
tw

≠
=

×
=+

,

,
1

χ
 (17)

()
()

()k
tR x

t

tk

RE

RE
μ

χ
−

=
1

 (18)

Here ()tRE is the error of the fuzzy rule Rt mined at iteration t. ()tRE of a fuzzy

rule Rt is weighted by the degree of matching ()k
t xRμ between the k-th training

instance (xk, ck) and the rule antecedent as well as its weight wk and can be defined as

()
()
()k

t
k

k

k
t

cck

k

t
xRw

xRw

RE ik

μ

μ
≠= | (19)

2.4 Classifying Test Instances

The rules mined from the training set are used to classify new instances in the test set.
Each possible classification Cm accumulates the affinity of fuzzy rules Ri with a
matching consequent ci=Cm. The instance xk is classified according to the class label

Cmax(x
k)=argmaxCm () ()

= mii

i

CcR

k
Rt xμχ/1log (20)

 Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting 291

that consists of the greatest value of the product of the affinity between the rule and
the instance by the fitness of the rule and the rule-weighting factor. Rule-weighting
factor allows the rules with small classification error, ()tRE , obtain a larger

weight. tχ value used in rule weighting factor ()tχ/1log is computed as

()
()t

t
t RE

RE

−
=

1
χ (21)

3 Experimental Results

Six data sets described in Table 1 available from the UCI ML repository were used
for the experiments. The first column gives the name of the data set, the second the
number attributes (excluding the conclusion attribute), the third the total number of
instances in the data set, and the last column gives the number of class labels. Three
of the data sets have binary class labels while the other three represent multi-class
domains. Continuous attributes are fuzzified using a set of linguistic terms that are
represented by triangular membership functions. Note that some of the number of
instances includes the missing valued instances. In this study, instances that had any
attribute with missing value were removed from the data sets.

Table 1. The used data sets

Data sets # Attributes # Instances # Classes
Breast W 9 699 2

Bupa 6 345 2
Diabetes 8 768 2

Glass 9 214 6
Iris 4 150 3

Wine 13 178 3

In the simulations, ten iterations of the whole ten-fold cross-validation (10-CV)
procedure were used for estimating predictive accuracy. Since the algorithm is based
on a stochastic process and the results produced therefore vary from one 10-CV to the
next, the same folds were used for each of the ten 10-CV tests. That is, the data set
was not re-shuffled and split into different subsets before each of the ten 10-CV runs.
This was done in order to test the deviation in the performance statistics arising from
the algorithm, and not due to any changes in the folds used.

Table 2 shows the average accuracy rates on test data and standard deviations for
this implementation and C4.5Rules [13]. In this table, this implementation has better
performance than C4.5Rules in terms of accuracy rates; the rules obtained by this
implementation have higher accuracy than the rules obtained by C4.5Rules in four out
of six data sets. However, the differences in accuracy rates are not so significant.
C4.5Rules found rules that have higher accuracy than this implementation in Bupa
and Glass data sets and the difference is not significant. Too simple rules mined by
this implementation that are underfitted to the data seem the reason of this situation.

292 B. Alatas and E. Akin

Table 2. Comparison of accuracy rates

Data sets This work C4.5Rules
Breast W 95.36 ± 0.89 94.0 ± 1.22

Bupa 65.3 ± 2.28 66.3 ± 1.50
Diabetes 75.8 ± 1.29 73.0 ± 0.89

Glass 78.8 ± 0.78 78.9 ± 1.2
Iris 94.9 ± 1.15 93.33 ± 5.92

Wine 96.82 ± 1.72 93.3 ± 1.03

Table 3. Comparison of simplicity

Rules #Terms
Datasets This work C4.5Rules This work C4.5Rules

Breast W 7.2 ± 0.21 8.1 ± 0.59 11.8 ± 0.12 19.8 ± 2.81
Bupa 8.3 ± 0.46 14.0 ± 0.96 17.1 ± 0.24 36.8 ± 4.04

Diabetes 11.8 ± 0.23 13.1 ± 1.29 24.5 ± 1.05 29.7 ± 1.71
Glass 13.9 ± 1.1 14.0 ± 2.19 28.0 ± 1.02 29.1 ± 2.01
Iris 4.9 ± 1.12 5.5 ± 0.4 8.6 ± 0.5 10.6 ± 0.9

Wine 5.3 ± 0.28 4.6 ± 0.52 12.5 ± 0.8 14.5 ± 1.45

The results of the simplicity of the mined rule set measured by the number of
mined rules and the average total number of terms in all mined rules of both this
implementation and C4.5Rules are shown in Table 3. This implementation mines
fewer rules with fewer numbers of terms than C4.5Rules in five out of all data sets.
This is mainly due to the fact that C4.5Rules starts with the unpruned C4.5 decision
tree that contains a large amount of superfluous rules and terms. This implementation
mined a slight more number of rules in Wine data set, however it mined simpler rules.

4 Conclusion

An AIS-based fuzzy classification rule mining that used a boosting mechanism was
presented and compared with C4.5Rules algorithm in six real-world data sets. AIS
was proposed as a search strategy to mine accurate and comprehensible knowledge
within databases which might be considered as search spaces. The mined rules were
presented in such a way that user could easily understand the concise set of
comprehensible rules. The appeal of AIS approach is that it provides an effective
mechanism for conducting a global search and can cope better with attribute
interaction than greedy rule induction algorithms. These results are promising since
C4.5Rules has been evolving from the research of decades in decision tree and rule
induction algorithms.

The strategy used in this study is different from ‘divide-and-conquer’ and
‘separate-and-conquer’ approaches used by decision trees and lists respectively. It
used a boosting mechanism to adapt the distribution of training instances in iterations,
namely AIS paid more attention to the previously misclassified or uncovered
instances. Thereby, cooperation among fuzzy rules was implicitly promoted.

 Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting 293

Automatically determining the membership function for each continuous attribute
is a future research that can improve the predictive accuracy. Another research
direction consists of simultaneously searching for intervals of continuous attributes
and mining of classification rules that these intervals conform to avoid from
conveying a loss of information. Further testing with more elaborated experiments by
using optimized parameters on various databases is also in progress to test the
robustness of the proposed method.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Academic Press (2001)

2. Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computation Intelligence
Approach. Springer-Verlag, Berlin (2002)

3. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection
Principle, IEEE Transaction on Evolutionary Computation, 6:3 (2002) 239-251.

4. Freund, Y., Schapire R. E.: Experiments with a New Boosting Algorithm. Proc. of the
13th Int. Conf. on Machine Learning ML-96 (1996) 148-156

5. Gonzales, F.A., Dasgupta, D.: An Immunogenetic Technique to Detect Anomalies in
Network Traffic. Proceedings of Genetic and Evolutionary Computation. Morgan
Kaufmann, San Mateo (2002) 1081-1088

6. Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: a
Problem Oriented Perspective. ICARIS 2003. LNCS, Vol. 2787. Springer-Verlag, Berlin
(2003) 229-241

7. Alves, R.T., Degado M. R., Lopes H.S., Freitas, A.A.: An Artificial Immune System for
Fuzzy-Rule Induction in Data Mining. In: Yao, X. et al. (eds) Parallel Problem Solving
from Nature - PPSN VIII, LNCS Vol. 3242 Springer-Verlag, Berlin (2004) 1011-1020

8. Gonzáles, A., Herrera, F.: Multi-Stage Genetic Fuzzy Systems based on the Iterative Rule
Learning Approach. Mathware & Soft Computing (1997) 233-249

9. Karcı, A.: Novelty in the Generation of Initial Population for Genetic Algorithms.
Knowledge-Based Intelligent Information and Engineering Systems. 8th International
Conference KES 2004 LNAI, Vol. 3214. Part II, Springer-Verlag, Berlin (2004) 268-276

10. Alata , B., Arslan, A.: Mining of Interesting Prediction Rules with Uniform Two-Level
Genetic Algorithm. International Journal of Computational Intelligence, 1:1 (2004) 65-70

11. Back, T., Fogel, D.B., and Michalewicz, T. (Eds.): Evolutionary Computation. Vol. 1. IoP
Publishing, Oxford, UK (2000)

12. del Jesus, M.J., Hoffman, F., Navacués, L.J., Sánches, L.: Induction of Fuzzy-Rule-Based
Classifiers with Evolutionary Boosting Algorithms. IEEE Transactions on Fuzzy Systems,
12:3 (2004) 296-308

13. Quinlan, J.R.: C4.5: Programs For Machine Learning. Morgan Kaufmann, San Mateo
(1993)

Continuous Trend-Based Classification
of Streaming Time Series

Maria Kontaki�, Apostolos N. Papadopoulos, and Yannis Manolopoulos

Department of Informatics, Aristotle University,
GR-54124 Thessaloniki, Greece

{kontaki, apostol, manolopo}@delab.csd.auth.gr

Abstract. Trend analysis of time series data is an important research
direction. In streaming time series the problem is more challenging, tak-
ing into account the fact that new values arrive for the series, probably
in very high rates. Therefore, effective and efficient methods are required
in order to classify a streaming time series based on its trend. Since new
values are continuously arrive for each stream, the classification is per-
formed by means of a sliding window which focuses on the last values of
each stream. Each streaming time series is transformed to a vector by
means of a Piecewise Linear Approximation (PLA) technique. The PLA
vector is a sequence of symbols denoting the trend of the series (either
UP or DOWN), and it is constructed incrementally. Efficient in-memory
methods are used in order to: 1) determine the class of each streaming
time series and 2) determine the streaming time series that comprise a
specific trend class. Performance evaluation based on real-life datasets
is performed, which shows the efficiency of the proposed approach both
with respect to classification time and storage requirements. The pro-
posed method can be used in order to continuously classify a set of
streaming time series according to their trends, to monitor the behavior
of a set of streams and to monitor the contents of a set of trend classes.

Keywords: data streams, time series, trend detection, classification,
data mining.

1 Introduction

The study of query processing and data mining techniques for data stream
processing has recently attracted the interest of the research community [2],
due to the fact that many applications deal with data that change very fre-
quently with respect to time. Examples of such application domains are network
monitoring, financial data analysis, sensor networks to name a few. The most
important property of data streams is that new values are continuously arrive,
and therefore efficient storage and processing techniques are required to cope
with the high update rate.

� This research is supported by the State Scholarships Foundation (I .K .Y .).

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 294–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Continuous Trend-Based Classification of Streaming Time Series 295

A streaming time series S is a sequence of real values s1, s2, ..., where new
values are continuously appended as time progresses. For example, a tempera-
ture sensor which monitors the environmental temperature every five minutes,
produces a streaming time series of temperature values. As another example,
consider a car equipped with a GPS device and a communication module, which
transmits its position to a server every ten minutes. A streaming time series of
two-dimensional points (the x and y coordinates of its position) is produced.
Note that, in a streaming time series data values are ordered with respect to the
arrival time. New values are appended at the end of the series.

A class of algorithms for stream processing focuses on the recent past of
data streams by applying a sliding window on the data stream [2,3]. In this way,
only the last W values of each streaming time series is considered for query
processing, whereas older values are considered obsolete and they are not taken
into account. As it is illustrated in Figure 1, streams that are non-similar for a
window of length W (left), may be similar if the window is shifted in the time
axis (right).

W

W t

tW

W

Stream 1

Stream 2

t

t
(a) non-similar streams (b) similar streams

Fig. 1. Similarity using a sliding window of length W

We use trends as a base to classify streaming time series for two reasons.
First, trend is an important characteristic of a streaming time series. In several
applications the way that stream values are modified is considered important,
since useful conclusions can be drawn. For example, in a stock data monitoring
system it is important to know which stocks have an increasing trend and which
ones have a decreasing trend. Second, trend-based representation of time series
is more close to the human intuition. In the literature, many papers [6,7] use
the values of the data streams and a distance function like Euclidean distance to
cluster streams. Although a distance can be large for a pair of streams, these two
streams can be intuitionally considered similar, if their plots are examined. Thus,
distance functions aren’t always good metrics to cluster or to classify objects.

In this paper, we focus on the problem of continuous time series classification
based on the trends of the series as time progresses. Evidently, we expect that the
same series will show different trend for different time intervals. The classification

296 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

is performed by considering the last W values of each stream (in a sliding window
manner). Again, two streaming time series that show similar trends for a specific
time interval may be totally dissimilar for another time interval. This effect is
illustrated in Figure 1, where the trends of the time series are represented by
dotted lines. We note also that two series which show similar trends may be
completely different with respect to the values they assume.

The rest of the article is organized as follows. In Section 2 we give significant
related work on the issue of trend analysis in streams. Section 3 discusses in detail
the proposed approach which is based on two important issues: 1) an effective
in-memory representation of the streams by means of an approximation and 2)
an efficient in-memory organization in order to quickly categorize a stream when
new values for that stream are available. Experimental results based on real-life
datasets are offered in Section 4, whereas Section 5 concludes the work and raises
some issues for further research in the area.

2 Related Work and Contribution

The last decade, mining time series has attracted the interest of the researchers.
Classification is a well-known data mining problem. Many papers have been
proposed to classify objects from different research domains as machine learning,
knowledge discovery and artificial intelligence.

The classification problem is more challenging in the case of streaming time
series due to the dynamic nature of the streaming case. In the recent past,
[1] proposed a classification system in which the training model adapts to the
changes of the data streams. The method is based on the micro-clusters, vectors
which contain simple statistics over a time period of a stream. Classification is
achieved by combining micro-clusters in different time instances (snapshots). The
method uses a periodically scheme to update the micro-clusters and reports the
classification on demand. Our method incrementally computes and continuously
reports the classification. Moreover the scheme, that was used, needs a training
set in opposition to our scheme that has a restricted number of classifiers and
the classifiers are a priori known. In [12] used info-fuzzy networks to address the
problem. Other approaches include one-pass mining algorithms [4,8], in which
the classification model is constructed in the beginning, and therefore do not
recognize possible changes in the underlying concept.

Piecewise linear approximation has been used to represent efficiently time
series in many topics as clustering, classification and indexing [16,17]. Many
variations have been proposed, among them are the piecewise aggregate approx-
imation (PAA) [11] that stores the mean value of equal-length segments and the
adaptive piecewise constant approximation (APCA) [10] that stores the mean
value and the right end-point of variable-length segments.

Trend analysis has been used to cluster time series in many domains such as
time series [18,13], bioinformatics [14] and ubiquitous computing [15]. Yoon et al
proposed six trend indicators. A time series is represented as a partial order of

Continuous Trend-Based Classification of Streaming Time Series 297

the indicators. A bitmap index is used to encode indicators into bit strings in
order to compute the distance between two time series with the XOR operator.
In [13,14] modifications of PLA are used to detect trends and three types of
them are used (up, down and steady) to cluster time series. These methods
study the clustering problem in time series. They do not use an incremental
way to compute the trend representation. Additionally the clustering algorithms
were proposed are not one-pass algorithms. So the methods are not appropriate
in a streaming case. In comparison with our method the trend representation
is incrementally computed and the classification is continuously reported using
an efficient in-memory access method. Recently, [16] proposed trend analysis
to address the problem of subsequence matching in financial data streams. The
Bollinger Band indicator (%b) is used to smooth time series and then the PLA is
applied. The %b indicator uses simple moving average and thus the whole sliding
window is required to compute next values of %b. So the pla representation is
not computed incrementally and in case of thousand of streams the memory
requisites are enormous.

The contribution of the work is summarized as follows:

– An incremental computation of the PLA approximation is presented, which
enables the continuous representation of the time series trends under the
sliding window paradigm.

– An efficient in-memory access method is proposed which facilitates funda-
mental operations such as: determine the class of a stream, insert a stream
into another class, delete a stream from an existing class.

– Continuous trend-based classification is supported, which enables the moni-
toring trend classes or the monitoring of data stream.

– The proposed technique can be applied even in the case where only a subset
of the data streams change their values at some time instance. Therefore, it
is not required to have stream values at every time instance for all streams.

3 Trend Representation and Classification

In data stream processing there are two important requirements posed by the
nature of the data. The first requirement states that processing must be very
efficient in order to allow continuous processing due to the large number of up-
dates. This suggests the use of the main memory in order to avoid costly I/O
operations. The second requirement states that random access to past stream
data is not supported. Therefore, any computations that must be performed
on the stream should be incremental, in order to avoid reading past stream
values. In order to be consistent with the previous requirements, we propose
a continuous classification scheme which requires small storage overhead and
performs the classification in an incremental manner, taking into consideration
the synopsis of each stream. Each stream synopsis requires significantly less
storage than the raw stream data, and therefore, better memory utilization is

298 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

Table 1. Basic notations used throughout the study

Symbol Description

S a streaming time series
S(t) the value of stream S at time t

N number of streaming time series
n length of a streaming time series
W sliding window length
p period of moving average (p ≤ W)
EMAip(t) the i-th exponential moving average of period p (t ≥ p)
TRIX(t) percentage differences of EMA3p(t) signal
PLA piecewise linear approximation
PLA(i) the i-th segment of the PLA
k the number of segments of the PLA
tlmin the minimum time instance of a bucket list
tlmax the maximum time instance of a bucket list
tbmin the minimum time instance of a bucket
tbmax the maximum time instance of a bucket

achieved. Before we describe the proposed method in detail we give the basic
symbols used throughout the study in Table 1.

3.1 Time Series Synopsis

In this section we study the problem of the incremental determination of each
stream synopsis, in order to reduce the required storage requirements and en-
able stream classification based on trend. Trend detection has been extensively
studied in statistics and related disciplines [5,9]. In fact, there are several indices
that can be used in order to determine trend in a time series. Among the vari-
ous approaches we choose to use the TRIX indicator [9] which is computed by
means of a triple moving average on the raw stream data. We note that before
trend analysis is performed, a smoothing process should be applied towards re-
moving noise and producing a smoother curve, revealing the time series trend
for a specific time interval. This smoothing is facilitated by means of the TRIX
indicator, which is based on a triple exponential moving average calculation of
the logarithm of the time series values. In the sequel, we first explain the use of
the exponential moving average and then we introduce the TRIX indicator.

Definition 1.
The exponential moving average of period p over a streaming time series S is
calculated by means of the following formula:

EMAp(t) = EMAp(t− 1) +
2

1 + p
· (S(t)− EMAp(t− 1)) (1)

Definition 2.
The TRIX indicator of period p over a streaming time series S is calculated by
means of the following formula:

Continuous Trend-Based Classification of Streaming Time Series 299

TRIX(t) = 100 · EMA3p(t)− EMA3p(t− 1)
EMA3p(t− 1)

(2)

where EMA3p is a signal generated by the application of a triple exponential
moving average of the input time series.

The signal TRIX(t) oscillates around the zero line. Whenever TRIX(t)
crosses the zero line, it is an indication of trend change. This is exactly what we
need in order to perform a trend representation of an input time series. Figure 2
illustrates an example. Note that the zero line is crossed by the TRIX(t) signal,
whenever there is a trend change in the input signal. Figure 2 also depicts the
smoothing achieved by the application of the exponential moving average.

-2

0

2

4

6

8

300 350 400 450 500 550

va
lu

e

time

real
ema

trix
zero

Fig. 2. Example of a time series and the corresponding TRIX(t) signal

Definition 3.
The PLA representation of a streaming time series S for a time interval of W
values is a sequence of at most W -1 pairs of the form (t, trend), where t defines
the left-point time of the segment and trend denotes the trend of the stream
(UP or DOWN) in the specified segment.

Each time a new value arrives, the PLA is updated. Three operations (ADD,
UPDATE, EXPIRE) are implemented to support incremental computation of
the PLA. The ADD operation is applied when a trend change detected and adds
a new PLA-point. The UPDATE operation is applied when the trend is stable
and updates the timestamp of the last PLA-point. The EXPIRE operation is
applied when the first segment of the PLA is expired and deletes the first PLA-
point. Notice that when the UPDATE operation is applied the class of the stream
does not change.

3.2 Continuous Classification

In this section we study the way continuous classification is performed. Tak-
ing into account that each PLA segment has an UP or DOWN direction, the

300 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

number of possible trend classes for a sliding window of length W is given by
CW = 2 · (W − 1) as it is illustrated by the following proposition.

Proposition.
The number of different classes CW of streaming time series is given by:

CW = 2 · (W − 1) (3)

where W is the sliding window length.

Proof.
To prove this proposition we use induction. Evidently, the proposition is true for
W=2 (note that W=2 is the smallest value for the sliding window length which
enables trend determination). We assume that the proposition is true for W=n,
and therefore Cn = 2 · (n-1). We will prove the proposition for W=n+1. The
values at positions n and n+1 define a straight line with either an increasing
trend (UP) or a decreasing trend (DOWN) (in the case where the TRIX indi-
cator is zero, we retain the previous trend). If the trend is UP and the trend of
the previous PLA segment is also UP, then the final result is UP. If the trend
is DOWN and the trend of the previous PLA segment is also DOWN, then
the final result is DOWN. If one of the above cases is true, then the (n+1)-th
stream value has no contribution at all. Now consider the case where the last
trend is UP and the previous trend is DOWN, or the case where the last trend is
DOWN and the previous trend is UP. If one of the aforementioned cases is true
then clearly, the (n+1)-th stream value contributes to another trend class. This
means that the (n+1)-th stream value can give two more trend classes. This
means that Cn+1 = Cn + 2. By the induction hypothesis we know that Cn =
2 · (n-1). Therefore, Cn+1 = 2 · (n-1) + 2 = 2 · n, and this completes the proof. �

Every time a new value for a streaming time series arrives, the corresponding
stream may change from a trend class to another. We illustrate the way contin-
uous classification can be achieved efficiently, by means of an in-memory access
method which organizes the streams according to the trend class they belong
and by taking into account time information to facilitate efficient search. During
continuous classification the following operations must be supported:

– We must quickly locate the class that the corresponding stream belongs to,
– We must delete (if necessary) the corresponding stream from the old class

and assign it to a new one, and
– We must report efficiently the stream identifiers that belong to a specific

trend class.

Each trend class is supported by several lists of buckets. The first bucket
of each list is the primary bucket whereas the other buckets are overflow buck-
ets. The overflow buckets are used only in the case where the stream must be
inserted in an existing list (step 2 of Algorithm Insert) and the primary bucket of

Continuous Trend-Based Classification of Streaming Time Series 301

the list is full (bucket size exceeded). Each bucket list is characterized by two
time instances tlmin and tlmax, denoting the minimum and the maximum time
instances which corresponds to the k − 1-th PLA point, where k is the number
of points contained in the PLA representation. We use the one before the last
PLA point as base to insert streams in bucket lists because is the last stable
point (the last point maybe changed if an update happens) and thus we have
to update the classification structure only when the stream changes class. Each
bucket is composed of a set of stream identifiers and two time instances tbmin

and tbmax. These time instances denote the time interval that each stream in
the bucket has been inserted.

In Figure 3 an example of the structure is depicted. The class DUD consists
of two bucket lists. The first list contains additionally an overflow bucket. For
the first list the tlmin is 10 and the tlmax is 15. This means that the streams
1,2,5,8 have the one before the last PLA point between time 10 and 15. For the
primary bucket of the first list the tbmin is 12 and the tbmax is 17 and contains
the streams 2,5 and 8. Therefore streams 2,5 and 8 were inserted in this class
between time 12 and 17. For the overflow bucket of the first list the tbmin is 18
and the tbmax is 18 and contains the stream 1. Stream 1 was inserted at time
instance 18. The description of the second list is the same.

We will explain how we use the bucket lists structure to continuous clas-
sify streams with an example. Assume the two bucket lists of the classes DUD
and DUDU of the Figure 3. The bucket size is 3 and the window size is 16.
At time instance 21 a new value for the stream 1 is arrived. The following
operations take place: a) we search the stream 1 in the bucket lists of class
DUD, b) we delete it, c) we update PLA and d) we insert it in the bucket lists
of class DUDU. The stream 1 has the one before last PLA point at time 14.
We search for the bucket list in which tlmin and tlmax enclose time 14 (step
1 of search algorithm). This is the first list. The first list contains an over-
flow bucket so we must find the insertion time of the stream 1 (insertion time
algorithm). The stream 1 was inserted in this class either when a new PLA-
point was added (PLA(k − 1)-point + 1) or when the first segment expired
(W + PLA(0)-point - 1). The maximum of these two times is the time that
the stream was inserted. Therefore the insertion time is 18. We search in the
list, a bucket in which tbmin and tbmax enclose time 18 (step 3 of search al-
gorithm). This is the overflow bucket (figure 8). We delete stream 1 and then
we delete the bucket because is empty (delete algorithm). Then we update the
PLA of the stream. The new class is the DUDU class. Now the one before
the last PLA point is at time 20. Since the bucket lists of this class is not
empty (step 1 of the insert algorithm) and since the tlmax of the one before
the last bucket list is smaller than 20 (step 2), we check if the last bucket
list is full (step 3). In the Figure 9 we can see that the primary bucket of
this list is not full. So we update the tlmax (step 3) and the tbmax and we
insert the stream in the primary bucket of this list (step 5). The algorithms for
insert, search and delete are given in Figure 4, Figure 5 and Figure 7
respectively.

302 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

tlmin
tlmax

tbmin

tbmax Primary Bucket

Overflow Bucket

Bucket List

18 - 18

1

20 - 20

4

10 - 15 16 - 18

12 - 17

2,5,8

13 - 13 14 - 17

16 - 16 15 - 19

6 3,7

Class DUD Class DUDU 3,D

10,U

14,D

18Expired

PLA of the stream 1 at
time instance 21

10,U

14,D

20,U

PLA of the stream 1 at
time instance 18

3,D 21

Fig. 3. Example of search algorithm with bucket size 3

Algorithm. Insert

/* Determine the list to insert the stream */
1. If the corresponding class is empty, then a new list is created and the values tlmin and tlmax

are set to the time instance tn−1 of the (n − 1)-th PLA point.
2. Otherwise, check if tn−1 is less than the tlmax value of the last list. If yes, then the stream

identifier is inserted into one of the existing bucket lists. The appropriate bucket list is the list in
which the tlmin and tlmax enclose the tn−1.

3. Otherwise, check if the primary bucket of the last list is full. If the primary bucket is not full then
the stream is inserted into that list by updating the corresponding value tlmax. If the primary
bucket is full, a new bucket list is generated and the values tlmin and tlmax are set to the time
instance tn−1 of the (n − 1)-th PLA point.
/* Determine the bucket to insert the stream */

4. If the primary bucket of the current list does not exist, then a primary bucket is created and the
stream is inserted. The tbmin and tbmax values are updated with the current time.

5. If the primary bucket of the current list is not full, then the stream is inserted into that bucket
and the tbmax value is updated with the current time.

6. Otherwise the stream is inserted into the last overflow bucket of the list, by updating
accordingly the tbmax value. If the last overflow bucket is full, a new overflow bucket is generated.

Fig. 4. Insertion algorithm

Algorithm. Search

1. Determine the bucket list by checking for the values of tlmin and tlmax

that enclose the time instance tn−1 of the stream.
2. If the list contains only a primary bucket, then the stream identifier is found into that bucket.
3. If the list contains a number of overflow buckets, then by using the time instance that

the stream has been inserted (Fig. 6), the corresponding overflow bucket which
contains the stream is easily detected.

Fig. 5. Search algorithm

4 Performance Study

The proposed trend-based classification scheme has been implemented in C++,
and the experimental evaluation has been performed on a Pentium IV machine

Continuous Trend-Based Classification of Streaming Time Series 303

Algorithm. Insertion Time

1. Compute the time that the last expiration has occurred. The time is given by lastEXP=W +
PLA(0)-point - 1.

2. Compute the time that the last ADD operation has occurred. The time is given by lastADD=
PLA(k − 1)-point + 1.

3. The time that the stream has been inserted is given by max(lastEXP ,lastADD).

Fig. 6. Insertion Time algorithm

Algorithm. Delete

1. Call algorithm Search in order to determine the position of the stream.
2. Remove the stream identifier from the bucket.
3. If the bucket is empty it is removed.
4. If the bucket list is empty it is removed.

Fig. 7. Deletion algorithm

with 1GByte RAM running Windows 2000. Two real-life datasets with different
characteristics have been used:

– STOCKS: is the daily stock prices obtained from http://finance.yahoo.com.
The data set consists of 93 time sequences, and the maximum length of each
one is set to 3,000.

– TAO: this dataset (Tropical Atmosphere Ocean) contains the wind speed of
65 sites on Pacific and Atlantic Ocean since 1974, obtained from the Pa-
cific Marine Environmental Laboratory (http://www.pmal.noaa.gov/tao).
We have used the highest data resolution (e.g. the sampling time inter-
val) that was available. About 12,000 streams form the data set, and the
maximum length of each one is set to 1,000.

In the sequel we give the performance results for different parameter values for
the sliding window length (W), the exponential moving average period (p), the
number of the streaming time series (N), the bucket size(B). The experiments
are divided into two categories. The first category studies the quality of the
clustering and the second studies the performance. We focus on two performance
measures: the computational cost required to perform continuous classification
and the memory requirements of the proposed approach because they are the
most important metrics in determining the effectiveness and the robustness of a
stream processing system. The CPU cost was measured in seconds. Finally, the
proposed method works both in cases where all the streams or part of them are
updated. For the experiments below, the first case was used.

4.1 Quality of PLA

The underlying idea of the approach is to cluster streams using an abstractive
representation of the streams that is closer to the ”human sense” despite using

304 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

the values of the streams and the Euclidean distance or others distance met-
rics. In this section we examined the conforming between the piecewise linear
approximation of a stream and the general shape of a stream without micro
changes.

Next, we give some classification examples. Figure 8 shows classification pat-
terns and a sample of streams that are associated with each one. For each stream,
both the raw data and the PLA are illustrated. The classification instances are
peaked after a random number of updates. Notice that if we are not contented
with the representation, we can choose a greater p for a more abstractive de-
scription of the stream, or a smaller p for a more comprehensive description.

Fig. 8. Classification examples

Additionally, Figure 9 shows the number of clusters for different values of p
with respect to W for the TAO and STOCKS data sets. The term CL raw is
used for the possible number of clusters that is entirely depended on the window
size W . It was expected the number of clusters, that is actually used, is reduced
as the p is increased because less details are represented by the PLA. Therefore
some streams are moved in classes with smaller number of segments.

4.2 Performance Evaluation

We first examine the performance of the method with respect to window length.
Figure 10 illustrates the total CPU cost (10a) and the CPU cost to compute
the PLA of all streams for all the updates (10b) for the TAO data set. Different
values for p are used. From Figure 10, the total CPU cost is determined from

Continuous Trend-Based Classification of Streaming Time Series 305

0

100

200

300

400

500

600

700

0 50 100 150 200 250

N
um

be
r

of
 C

lu
st

er
s

Window Size

CL_p1
CL_p5
CL_p9

CL_p13
CL_p17
CL_p21
CL_raw

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

N
um

be
r

of
 C

lu
st

er
s

Window Size

CL_p9
CL_p15
CL_p21
CL_p27
CL_p33
CL_p39
CL_raw

Fig. 9. Number of clusters vs window length for a) TAO and b) STOCKS data sets

0

5

10

15

20

25

0 50 100 150 200 250

T
ot

al
 C

P
U

Window Size

CPU_p1
CPU_p5
CPU_p9

CPU_p13
CPU_p17
CPU_p21

0

5

10

15

20

25

0 50 100 150 200 250

P
LA

 C
P

U

Window Size

CPU_p1
CPU_p5
CPU_p9

CPU_p13
CPU_p17
CPU_p21

Fig. 10. a) Total CPU cost and b) PLA CPU cost vs window length

the PLA CPU cost. The latter is independent from the window size due to the
use of the TRIX indicator.

Table 2 illustrates the total memory for the STOCKS data set and partial
memory prerequisites for the PLA representation and the classification structure.
Total memory is essentially affected by the PLA memory. The PLA memory is
increased as the window size increases.

Next we examine the performance of our method with respect to the number
of streams. Figure 11a depicts the CPU cost for all the streams (12145) and for
all the updates (about 700) for the TAO data set. The term TOTAL CPU is
used for the sum of the PLA and the classification CPU cost. The CPU cost
increases linearly with respect to the number of streams.

The memory prerequisites of the PLA per update for the TAO data set are
illustrated in Figure 11b. The term MEM raw is used for the memory prereq-
uisites of the raw data. Notice that the y-axis scales logarithmically. The PLA
memory increases steadily with respect to the number of streams but it is less
than the 10% of raw data memory.

To better understand the influence of the bucket size in the classification
method, Figure 3 shows the CPU cost and the memory prerequisites of the
classification method. Large bucket size reduces the memory prerequisites but
increases CPU cost, whereas a small bucket size has the opposite results. The
bucket size is a trade-off between memory resources and computation time.

306 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

Table 2. Total CPU and classification memory vs bucket size

Window Size Total Classification PLA
memory (KB) memory (%) memory (%)

128 13013.797 28.6% 71.4%
324 16065.762 25.9% 74.1%
520 19059.859 23.9% 76.1%
716 21772.871 21.4% 78.6%
912 24441.957 19.6% 80.4%
1108 27129.715 18.1% 81.9%
1304 29934.621 17.2% 82.8%
1500 32726.527 16.5% 83.5%

0

1

2

3

4

5

0 2000 4000 6000 8000 10000 12000

C
P

U
 c

os
t

Number of Streams

CPU_TOTAL
CPU_CLAS

CPU_PLA

0.01

0.1

1

10

100

0 2000 4000 6000 8000 10000 12000

P
LA

 M
em

or
y

(M
B

)

Number of Streams

MEM_pla
MEM_raw

Fig. 11. a) CPU cost and b) memory prerequisites of PLA vs number of streams for
TAO

Table 3. Total CPU and classification memory vs bucket size

Bucket Size Total CPU Classification
memory (MB)

50 3.745 25.061
100 3.7842 14.803
200 3.6836 8.573
300 3.73 6.082
400 3.801 4.764
500 3.9377 3.876
600 4.0029 3.286

5 Conclusions and Future Work

Trend analysis of time evolving data streams is a challenging problem due to the
fact that the trend of a time series changes with respect to time. In this paper
we studied the problem of continuous trend-based classification of streaming time

Continuous Trend-Based Classification of Streaming Time Series 307

series, by using a compact representation for each stream and an in-memory
access method to facilitate efficient search, insert and delete operations. A piece-
wise linear approximation (PLA) has been used in order to determine the trend
curve of each stream. The PLA representation has been applied on a smoothed
version of each stream. We have used the TRIX indicator for smoothing. More-
over, a continuous classification method has been presented which reassigns a
stream to new trend class if necessary. Performance evaluation results based on
real-life datasets have shown the feasibility and the efficiency of the proposed
approach.

In the near future we plan to extend the current work towards continuous
clustering of streaming time series, by taking into account the similarity between
trend classes.

References

1. Aggarwal, C. C., Han, J., Yu, P. S.: On Demand Classification of Data Streams,
Proceedings of the International Conference of Knowledge Discovery and Data
Mining(KDD), WA, USA (2004)

2. Babcock, B. Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in
Data Stream Systems, Proceedings ACM PODS, Madison, Wisconsin (2002) 1–16

3. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows, Proceedings of the 2002 Annual ACM-SIAM Symp. on Discrete
Algorithms (2002) 635–644

4. Domingos, P., Hulten, G.: Mining High-Speed Data Streams, Proceedings of ACM
SIGKDD Conference (2000)

5. Fung, G. P. C., Yu, J. X., Lam, W.: News Sensitive Stock Trend Prediction, In
PAKDD (2002) 481-493

6. Guha, S., Meyerson, A., Mishra, N., Motwani, R., OCallaghan, L.: Clustering Data
Streams: Theory and Practic, IEEE TKDE, Vol. 15, No. 3 (2003) 515-528

7. Guha, S., Mishra, N., Motwani, R.., OÆCallaghan, L.: Clustering data streams, In
Proc. of the 2000 Annual IEEE Symp. on Foundations of Computer Science (2000)
359–366

8. Hulten, G., Spencer, L., Domingos. P.: Mining Time Changing Data Streams, Pro-
ceedings of ACM KDD Conference (2001)

9. Hutson, J. K.: TRIX - Triple Exponential Smoothing Oscillator, Technical Analysis
of Stocks and Commodities (1983) 105–108

10. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally Dimensionality Re-
duction for Indexing Large Time Series Databases, Proceedings of ACM SIGMOD
Conference, California, USA (2001)

11. Keogh, E., Pazzani, M.: A simple dimensionality reduction technique for fast sim-
ilarity search in large time series databases, Proceedings of Pacific- Asia Conf. on
Knowledge Discovery and Data Mining (2000) 122-133

12. Last, M.: Online Classification of Nonstationary Data Streams, Intelligent Data
Analysis, Vol. 6, No. 2 (2002) 129-147

13. Ljubic, P., Todorovski, L., Lavrac, N., Bullas, J. C.: Time-series analysis of
UK traffic accident data, Proceedings of the Conference on Data Mining and
WareHouses (SiKDD), Ljubljana, Slovenia (2002)

308 M. Kontaki, A.N. Papadopoulos, and Y. Manolopoulos

14. Sacchi, L., Bellazzi, R., Larizza, C., Magni, P., Curk, T., U. Petrovic, U., Zupan, B.:
Clustering and Classifying Gene Expressions Data through Temporal Abstractions,
Proceedings of 8th Intelligence Data Analysis in Medicine and Pharmacology Work-
shop(IDAMAP 2003), Protaras, Cyprus (2003)

15. Takada, T., Kurihara, S., Hirotsu, T., Sugawara, T.: Proximity Mining: Finding
Proximity using sensor Data History, Proceedings of 5th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), CA, USA (2003)

16. Wu, H., Salzberg, B., Zhang, D.: Online Event-driven Subsequence Matching over
Financial Data Streams, Proceedings of ACM SIGMOD Conference, Paris, France
(2004)

17. Yi, B.-K., Faloutsos, C.: Fast Time Sequence Indexing for Arbitrary Lp Norms,
Proceedings of 26th International Conference on Very Large Databases (VLDB),
Cairo, Egypt (2000)

18. Yoon, J. P., Luo, Y., Nam, J.: A Bitmap Approach to Trend Clustering for Pre-
diction in Time-Series Databases, Proceedings of Data Mining and Knowledge
Discovery: Theory, Tools, and Technology II, Florida, USA (2001)

Conceptual Content Management
for Software Engineering Processes

Sebastian Bossung, Hans-Werner Sehring, Michael Skusa,
and Joachim W. Schmidt

Software Technology and Systems Institute (STS),
Hamburg University of Science and Technology (TUHH)

{sebastian.bossung, hw.sehring,
skusa,j.w.schmidt}@tu-harburg.de

Abstract. A major application area of information systems technology
and multimedia content management is that of support systems for engi-
neering processes. This includes the particularly important area of soft-
ware engineering. Effective support of software engineering processes re-
quires large amounts of content (texts, diagrams, code, data, executables
etc.) from different conceptual domains. The term “software crisis” dis-
appeared gradually when content modelling and management addressed
domains from application analysis and system design in addition to the
sheer computational code domain.

In this paper we introduce an innovative conceptual content model
and apply it in support of software engineering processes and their arte-
facts. We base our approach on the core model of the computational
domain which abstracts computational content (bodies of function code)
by the computational concept of signatures (lists of typed function pa-
rameters). We generalise this functional abstraction model beyond the
computational domain by introducing the notion of asset abstraction
which models entities domain-independently by general content-concept
pairs. We introduce an asset language and discuss the essentials of an
asset system implementation.

In the application part of the paper we argue that software engineering
can be substantially simplified by modelling SE entities from all the
domains involved in an SE process homogeneously in an asset-oriented
approach—entities ranging from application domains over intermediate
architectural and design domains down to the computational domain.
Furthermore, we discuss how the mappings between such domains can be
substantially supported by services based on asset-oriented information
systems.

1 Introduction: Content Management for Software
Engineering

Heavy demands for data modelling and content management support dominate
all kinds of engineering processes and are the major reasons for the ongoing com-
mercial and scientific success of database technology. A wide variety of domain-
specific data and content models has been developed and applied to computer-
aided engineering environments.

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 309–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 S. Bossung et al.

An engineering area of specific interest and challenge to computer scientists
is their home ground of software engineering (SE) (e.g., [26]). SE processes are
particularly demanding since they span a wide variety of domains ranging from
application entities in the analysis phase via intermediate entities required for
system design and architecture down to computational entities for software im-
plementation and execution.

The content models involved in SE processes usually include separate models
for texts, diagrams, code, data, executables etc. This heterogeneity of the mod-
els causes much of the complexity of SE processes. SE environments, instead
of providing homogeneous working support, are often subdivided into disparate
tool contexts for diverse domains and their preferred representations: texts for
analysis, diagrams for designs, code for executables, etc. This subdivision puts
severe limitations particularly on those process steps which have to span sev-
eral SE phases over various domains such as mapping steps, coherence tests or
simple search and navigation tasks. This situation is only partially improved by
approaches like those presented, e.g., in [4,27].

Consequently, we see a demand for a conceptual content model which can be
homogeneously applied to all the domains involved in SE processes: to entities
from application domains, to those in the intermediate architectural and design
area as well as to entities from the computational domain.

In this paper we introduce an innovative conceptual content model applicable
to a wide variety of domains and we apply that model to SE processes and their
artefacts.

In section 2 we base our content model on the core model of the compu-
tational domain which abstracts computational content by the computational
concept of signatures. This functional abstraction model is then generalised be-
yond the computational domain (section 3) by introducing the notion of asset
abstraction which models entities domain-independently. We introduce an asset
language and discuss the essentials of asset-based information system implemen-
tation. In the application part of the paper (section 4) we discuss how SE can
be substantially simplified by modelling all SE entities homogeneously in an
asset-oriented model. Furthermore, we argue that the mappings between such
domains and other domain-spanning tasks can be supported by services based on
asset-oriented information systems. The paper concludes with a short summary
and a task outlook in section 5.

2 Conceptual Modelling of Computational Entities

It is historically interesting to observe, how means of abstraction available in
programming languages evolved over time. In the assembly language of the
early days, the main abstraction was providing human-understandable names
(mnemonics) for operation codes. Later more and more abstraction mechanisms
were introduced, amongst them functional abstraction and typing (see, e.g., [14]
on the history of programming languages).

Conceptual Content Management for Software Engineering Processes 311

2.1 Functional Abstraction and Types

Most of even the smallest programs will exhibit near duplicate code if written
in a sequential fashion. Introducing the concept of functions to parameterise
and factor out this code has several benefits: (1) It makes understanding the
program easier as it is broken down into semantically self-contained pieces, (2)
it facilitates maintenance, as bugs only have to be fixed in a single place, and (3)
it reduces the program’s size. Functions usually consist of two important parts:
the signature (its formal parameters and its return type) and the function body
(the implementing code) [5].

The main power of functions thus lies in the introduction of an abstraction
layer that associates conceptual information (the signature) with the code body
of the function and hides implementational details. Right from the early days
functions had a strong formal foundation to build on: the λ-calculus [16], which
provides the theoretical basis for general function semantics: function definition
(abstraction) and function invocation (application) form central parts.

Essentially any program deals with data, which the computer handles in the
form of a particular internal representation. Generally speaking, any computer-
representable data can be see as a string of bits. Depending on its proper inter-
pretation, different operations are possible, for example addition, concatenation,
or execution. To support the programmer in making the appropriate assumptions
on the interpretation of data, programming languages introduced the concept of
types. Types have become a central part of most computer languages by allow-
ing the definition of appropriate computational entities and by formally checking
the correctness of their use.

2.2 On Function Signatures over Function Code

Conceptual information on a function is captured in the function’s signature
to provide enough information to anybody who wants to use the function. The
evolution of programming languages brought along new features that take the
mechanism of signatures to higher levels of abstraction. Signatures can be found
on function, class, and even component level, though the latter is still subject
to research [3].

Computational entities are usually modelled in a dualistic way as pairs of
code and signature, or, more generally speaking, of value and type. In section 3
we generalise this model to non-computational domains by means of content-
concept pairs.

2.3 Operational Support for Computational Model Coherence

Based on functional abstraction, coherence of collections of computational en-
tities can be supported by various technologies including compilers, linkers,
runtime bindings, and remote invocations across system boundaries. Compilers
make use of type abstractions as well as function signatures in, e.g., decorated
abstract syntax trees or symbol tables [1]. This enables important features of

312 S. Bossung et al.

compiler technology such as type checking, late binding or type coercion. In ad-
dition, by means of function signatures, functions themselves become first class
citizens. This allows the introduction of higher-order functions [10].

Function signatures and typing enable runtime systems to select and bind
computational entities. A common application is polymorphism.

A third field of application is that of cross system communication. Here sig-
natures are of primary importance, as the full implementation is usually not
available to a remote caller. Instead, calling programs are written against signa-
tures, which serve as a language of mutual understanding to both systems. In
the same context, named types allow the (un)marshalling of data to be commu-
nicated between the systems.

3 Conceptual Modelling of General Domain Entities

The concept of signatures (section 3.1) can be generalised to represent entities
of any domain (section 3.2). We introduce a conceptual content modelling lan-
guage (section 3.3) which drives the automatic generation of conceptual content
management system (CCMS) (section 3.4).

3.1 Functional Abstraction as Special Case of Entity Description

Insights into type systems and their achievements influenced the definition, im-
plementation and utilisation of a series of languages [18,19,10]. Starting from Pas-
cal/R and DBPL this led to the orthogonally persistent object systems Tycoon-1
and 2 (Typed Communicating Objects in Open Environments 2) [7].

Viewing functional abstraction from a content management perspective, the
code of a function body can be seen as well-formed content which is abstracted
by a signature for management purposes such as type checking, late binding,
information hiding etc. (see section 2.3).

In a series of application projects we applied the general idea—viewing code
as computational content and describing it by a signature as its computational
concept—to entity descriptions for arbitrary domains.

Often content is used to describe real-world entities—concrete or abstract
ones. Just like a piece of code can be used properly only if its signature is
known to the caller, content descriptions of the actual entities have to be paired
with a conceptual understanding of the entities’ nature. E.g., (John, Smith, 5000)
represents the customer John Smith whose balance is $5000 only if the conceptual
model [2] of a customer is clear to the viewer.

Therefore, entity descriptions in general consist of content coupled with a
conceptual model of the kind of entity it refers to. For such [content, concept]
pairs we use the notion of an asset as an indivisible union of perceivable content
and a set of expressions describing it abstractly. This notion is detailed in the
subsequent sections.

Managing entities from the computational domain can be understood as a
special case of general entity descriptions. Returning to the example of function

Conceptual Content Management for Software Engineering Processes 313

code, one can view source code as a specific kind of text which follows the
constraints of a certain programming language. Therefore, the existence of a
pair [text, Java program] augments a text to Java source code.

3.2 Assets: On Concept-Content-Oriented Modelling

The notion of an asset as introduced in the previous section has been developed
in projects carried out in cooperation with project partners from the human-
ities. One main source of insights is the project Warburg Electronic Library
(WEL) [21]. In this project we support art historians from the domain of polit-
ical iconography.

For general domain models much can be reclaimed from computational mod-
els: the pairing of content and concept, the subsumption of content of specific
concepts under more general concepts, the substitutability of content from sub
concepts of a given concept etc.

Nevertheless, in some respects the entity models we looked at are funda-
mentally different from computational models. There is a duality of structure
and domain semantics of assets. In the above example records with a structure
(first name, family name, balance) can describe domain entities of both the kinds
“debtor” as well as “creditor”, e.g., depending on the balance.

The most severe distinction between descriptions of computational entities
and entities in general is the subjectivity of the latter. For computational do-
mains there exists exactly one well-defined conception. However, in “soft sci-
ences” like the humanities there is no agreed-upon interpretation of contents
and thus no single asset class for entity descriptions. Not only does the con-
ceptual modelling of entities evolve over time as new findings lead to a better
understanding of a domain, interpretations furthermore coexist as personalised
views on entities.

Besides personalisation, there is an additional reason for coexisting asset
models. Typically, domains are defined by using assets from existing base do-
mains, which allows for reuse and also leaves asset definition to the experts of
the field. To be able to incorporate base domain models into (multidimensional)
derived domain models, inter-model relationships need to be established.

For both these reasons—subjective views and reuse—there is a demand for
openness and dynamics. We call a CCMS open if it allows users to define assets
according to their current information needs. Assets may change with time or
context of the user and can be adapted to personal views. Dynamics is the ability
of a system to follow redefinitions of assets at runtime without interrupting the
users’ work. Construction and dynamic evolution thus cannot be achieved with
a manual software development cycle. We therefore adopt a generative approach
to CCMS construction.

Just as content needs to be paired with a concept, open and dynamic systems
cannot be based on a data model alone. Data models are limited by technical
constraints of the target system (a database in most cases). To avoid such tech-
nical aspects in the domain model, a conceptual model is required. We briefly
introduce our asset language for specifying such a model.

314 S. Bossung et al.

3.3 The Asset Model and Asset Language

In this section we give a brief description of the asset language as far as it is
required for this paper. More details on the language can be found in [20,23,22].

A model consists of asset class definitions for entity descriptions. We refer to
the corresponding part of the language as the asset definition language. First of
all, it (intensionally) describes the structure of assets.

As an example, consider the following asset class definition:

class RegentImage {
content image : Image
concept characteristic title : String

characteristic epoch : Epoch
relationship regent : Regent
relationship artist : Artist
constraint epoch = artist.epoch

}

In the content compartment a list of handles for multimedia content objects
is given. Possible handle types are determined by a base language which is em-
bedded in the asset language. Currently, we use Java as such a base language.

The concept compartment consists of a set of conceptual attributes and
expressions. Characteristic attributes are ones that are inherent in an entity. In
the above example, every RegentImage has a title and an epoch in which it
was created. Just as for the content handles, possible values of characteristics are
determined by the base language. Relationships are established between assets
which describe autonomous entities. Here, each RegentImage has references to
the depicted Regent and to the Artist who created that image. Constraints
are imposed on assets of a class. In the above example it is required that the
epoch in which a RegentImage has been created is the same as that of the
associated artist.

While asset classes capture the structural aspects of assets, they can also be
defined extensionally by naming a set of asset instances:

class DeathOfTheRegent definedby a1, ..., an

Asset definitions are organised in models under the keyword model. As an
example for the incorporation of base models (see the previous section) consider
the sample models shown in fig. 1. One base model called Regents defines asset
classes for descriptions of regents like kings or emperors. Another base model,
Artists, likewise defines various classes of artists. Using these two domains as
base domains, a new third domain on political iconography can be defined. It
incorporates class definitions from the base models.

As can be seen in the example regent and artist information is reused in
the political iconography. From the iconography point of view regent and artist
information are objective so that one concrete model each is selected and used.
Users from the field of political iconography build on these (objective) research
findings in their (subjective) entity descriptions.

Conceptual Content Management for Software Engineering Processes 315

model Regents
class Regent
class Monarch refines Regent
class King refines Monarch
class Emperor refines Monarch
…

model Artists
class Artist {
concept
characteristic epoch : Epoch

}
class Painter refines Artist
class Sculptor refines Artist
…

model Political_Iconography
from Regents import Regent
from Artists import Artist,Painter,Sculptor
class RegentImage {
content image : Image
concept relationship regents : Regent*

relationship artist : Artist
}
class EquestrianImage refines RegentImage
class EquestrianPainting
refines EquestrianImage

{
concept relationship painter : Painter

constraint painter = artist
on violation modify self {

 artist := painter
 }
}
class EquestrianStatue
refines EquestrianImage

{
concept relationship sculptor : Sculptor

constraint sculptor = artist
on violation modify self {

 artist := sculptor
 }
}

model My_Political_Iconography
from Political_Iconography

import RegentImage
class RegentImage {
concept
characteristic epoch : Epoch
constraint epoch=artist.epoch

}

Fig. 1. Example of a model composed from base models

Subjectivity is possible because the openness property of the asset language
allows the redefinition of assets. As an example, a user can change RegentImage
by the definition shown in the model My Political Iconography in fig. 1.
In the example a user added an additional characteristic attribute epoch plus a
constraint. All content handles and conceptual definitions which are not named
remain unchanged in the redefined class.

3.4 Conceptual Content Management System Implementation

Openness and dynamics as required for entity descriptions are not covered by con-
temporary information systems (ISs). Since ISs are usually based on database
technology they share its typical constraints, the most crucial being that data-
bases rely on one static schema.

Our approach to open and dynamic CCMSs is based on our asset defini-
tion language (see previous section). From models given in the asset definition
language—by end-users—with little regard to implementation constraints open
dynamic systems are generated by a technology that resembles model-driven
architecture approaches [12]. It consists of a model compiler and a modularised
architecture for CCMSs.

A system consists of a set of components reflecting one model each. These
are broken down into modules. The model compiler creates modules, which are
the basis of a domain-specific software architecture suitable for dynamic system
generation [28]. The functionality of a component is defined by a component
configuration.

Substitutability of modules is achieved by a separation of concerns. For our
current purposes we identified five kinds of modules (see fig. 2):

316 S. Bossung et al.

server module

assets

data adapted assets

base assetslocal asset proxies

remote assets

unified view

view 1 view 2

external assets

internal assets
mediation module

distribution module

mapping module

client module

Fig. 2. Modules interface with each other in a layered architecture

– The description data of an asset (content, characteristics, and relationships)
is stored in third party systems, databases in most cases. Mapping asset
models to schemata of such systems is done by client modules.

– By use of distribution modules components can reside at different physi-
cal locations and communicate by exchanging data, e.g., XML documents
generated from the asset definitions (comparable to the approach of [24]).

– Components are accessed via server modules using standard protocols.
– A central building block of the architecture of most CCMS applications is

the mediator architecture [29]. In our approach it is implemented by modules
of two kinds. One are mediation modules which delegate requests to other
modules based on the request (operation and assets involved).

– The other kind of modules for the mediator architecture are mapping mod-
ules. By encapsulating mappings in such modules, rather than integrat-
ing this functionality into other modules, mappings can be added dynami-
cally [11].

According to the two ways of combining asset models—model interrelation
and personalisation—openness and dynamics in CCMSs happen along two di-
mensions: (1) the organisation and (2) the application structure [22]. Along the
organisation structure users can define their own views (by personalising content
and schema). Along the application structure, entity descriptions are shared and
reused across domains.

In our approach the architecture of the generated systems allows changes
along the organisation structure by its ability to enable dynamic system evolu-
tion through open redefinition of assets and dynamic invocation of the model
compiler [23].

The association of models is realised by component configurations. Follow-
ing the example from the previous section fig. 3 shows a configuration which
combines two domains—regent and artists descriptions—into the new domain of
political iconography. The component is accessed via mediation module mmed1.
It distributes requests according to the type of the assets on which operations
are invoked. If assets from one of the base domains Regents or Artists are af-
fected, requests are delegated to the mediation module mmed2. This mediation
module similarly delegates requests further to one of the components holding the-
ses models. These components are accessed via distribution modules mdistrib1

Conceptual Content Management for Software Engineering Processes 317

Fig. 3. Sample configuration of a system for a derived model

and mdistrib2. In the example of fig. 3 the components consist of client modules
mclient1 and mclient2 and the respective base system only. Requests to the de-
rived model Political Iconography are forwarded by mmed1 to the client module
mclient which manages the users’ assets from the political iconography.

As can be seen in fig. 3 the components for Regents and Artists are inte-
grated into the overall CCMS without modification. This way the cooperating
components remain unaffected, thus preserving their autonomy.

4 Asset Modelling and Software Engineering

The engineering processes of non-trivial software lead to a vast number of inter-
related, but not explicitly connected, artefacts (e.g., requirements texts, various
diagrams, code, tests, executables). In software development methodologies that
are common practice today, most of the relations between artefacts of different
type are not explicitly modelled. Instead, they are captured in the general knowl-
edge of the developers or by “obvious” choice of naming. Both approaches lead
to difficulties: The general knowledge of developers tends to diminish over time
and obvious naming is usually only obvious to the one who chose it [13]. Thus,
tool support for explicit modelling of such inter-dependencies is highly desirable.
In fact, these interrelations are right at the heart of software engineering, as the
transitions between development phases happen along them [9].

We therefore propose to model software artefacts by a domain independent
conceptual content model, which is based on the asset technology discussed in

318 S. Bossung et al.

section 3. This supports (1) retrieval of artefacts, (2) enforcement of their coher-
ence, (3) a common and concise representation, and (4) exchange due to built-in
interoperability.

4.1 On Content Linking and Selection

The asset modelling of computational entities aims to integrate content repre-
sentations across formats and standards. Due to the common conceptual model
a CCMS can work with all entities alike, regardless of the tool that supports
this particular content format. Note that assets therefore take a completely un-
intrusive approach to the content that allows for complete owner autonomy.
Developers can continue to use the traditional tools for creating and modifying
the respective artefacts.

Still, it is possible to guarantee the consistency of changes to system artefacts.
Such consistency checks can happen on the conceptual descriptions of the asset
model level and are implemented via constraint expressions (see section 3). As
an example, consider:

class SoftwareModel {
concept relationship classes : ClassDescription*

relationship objects : ObjectDescription*
relationship sequences : Sequence*
constraint sequences.objActs.msgs.name

<= classes.operations.name
and ...; matching signatures

...
}
class Sequence {

concept relationship objActs : ObjectActivation*

}
class ObjectActivation {

concept relationship obj : ObjectDescription
relationship msgs : Message*

}
...

The constraint on SoftwareModel checks whether all messages used in
sequence diagrams are available as operations in class diagrams. Of course, such
constraints can also model inter-phase relationships, e.g., that every class in the
conceptual model also needs to exist in the implementational one.

Violation of constraints can be reported for the system model as a whole, re-
sulting in an integrated issue-list for the complete system. Some types of changes
done by developers can result in violations of constraints (e.g., the renaming of
a class in the transition from conceptual to implementational class diagram).
This will show up in the issue list and can be clarified by the developer. The
clarification serves a double purpose: It resolves what seemed to be a violation,

Conceptual Content Management for Software Engineering Processes 319

Fig. 4. A CCMS configuration for a software engineering scenario

but it also creates a link between two entities whose connection the system could
not have detected automatically.

Fig. 4 shows a configuration for the management of SE entities with interre-
lationships. It is structurally similar to that of fig. 3. In the example there is a
database for every phase of a typical SE process. According to the architecture of
CCMSs there is a client module for each database. In conventional tool settings
users in each phase work with exactly one of the databases at a time. In the
example of fig. 4 this is the case for the analysts who store their results in the
DB of analysis results.

For later stages the shown configuration supports the linking of contents as
explained above. E.g., designers store their artefacts into the design database.
To additionally relate their results to those of the analysis phase they do not
work directly with the module Mc−design which exclusively accesses the design
database. Instead, they work with a mediation module through which they access
both the analysis and the design databases.

The intermediate mapping module mmap−analysis−design extends design as-
sets such that relations to analysis assets are added. This way, designers can
establish links between artefacts from analysis and design phases. These links
can later (see section 4.2) be exploited to support a variety of functions.

Mediation modules do not only bridge the gap between analysis and design.
They can also mediate between the other phases (see fig. 4). Programmers work
on capturing the results of the design phase in actual code. In traditional envi-

320 S. Bossung et al.

ronments, they would look at the design documents and then work exclusively
with the implementation database. This approach breaks the links between de-
sign and implementation artefacts. Again, by use of a mediation module, this
problem is resolved.

Testers need access to an even wider selection of data. They do not only
work on the test database, but on a mediation module that also accesses the
analysis and implementation phase components. This mediation module allows
for seamless navigation through all the artefacts along the preserved links.

Obviously, the asset model supports linking of content between the various
phases of the development process. Such links can be used to establish traceabil-
ity [8,15]. Thanks to the overarching conceptual modelling, content from different
phases is clearly connected along the lines of the corresponding concepts. These
links can explicitly be modelled (as in approaches like “GRIDS” [30]) in the
asset model (see section 3), but mostly this is not necessary, as the conceptual
information persists across phase boundaries. With this model-inherent support
of CCMSs it is possible to achieve concise semantic connections of content. This
was previously very difficult and thus usually not attempted [9].

4.2 Applications and Application Support

A CCMS like the one outlined in the previous section can be used to support
all aspects of the software development workflow. In this section, we will briefly
introduce some interesting use cases.

Navigation through conceptual linking of artefacts. Through mediation
modules that integrate various client modules, users are enabled to navigate
along any path, even if it spans across multiple phases. This is beneficial for
anybody taking part in software development to find artefacts that are related.
A prominent example are implementers, who can now easily access the docu-
mentation for the code at hand. The same mechanisms allows them to reach
back into design or even analysis to retrieve documents which concern the soft-
ware entity at hand. This way it is much easier to understand what the entity
does and why it is there. Especially the backwards links (“why do we need this
class?”) are not obvious in traditional software development. A CCMS is able
to give a detailed account of the requirements and design decisions that lead to
the existence of the entity in the implementation phase.

Custom perspectives for different roles. By means of personalised models
different user roles can be provided with customised views on the development
artefacts, e.g., to work on UML class diagrams with or without attributes shown.
This way, users have to deal only with data which is relevant to their task.

Cross-phase constraints. Maintaining consistency between the artefacts of
several development phases is a major problem in software development. Through

Conceptual Content Management for Software Engineering Processes 321

the conceptual links that are also used for navigation, one is able to write con-
straints which span phase boundaries. An example of this was given in the previ-
ous section, but further use cases are not difficult to imagine: Tracking of changes
from design to implementation (and the other way around), ensuring test cov-
erage of analysis requirements, or monitoring the degree of completion of the
implementation with respect to design documents.

Transparent distribution. Modern development happens in teams. This calls
for remote cooperation of all the members of a team. In particular, they need to
share a common information basis to ensure that the created artefacts are con-
sistent with each other. Moreover, all the functionality outlined above needs to
be available across several systems in a concurrent and transparent way. CCMSs
support this by means of distribution modules (see fig. 2). In combination with
the personalisation abilities, distribution in CCMSs goes beyond of what is tra-
ditionally used in software development. Through personalisation, users cannot
only work on a common data base in a distributed fashion, but are also per-
mitted to deviate from the community for some time and then remerge their
artefacts. This can e.g. be used for branching source code.

5 Summary and Task Outlook

In this paper we present our asset-oriented information model as a conceptual
content model gained by generalising the notion of functional abstraction pre-
dominant in the computational domain. Its safe and efficient use for the man-
agement of computational content is one of the fundamentals of state-of-the-art
software development tools.

The presented generalisation step towards domain-independent conceptual
content modelling makes CCMSs sound candidates for supporting the entire SE
process ranging from application domain entities via artefacts for software design
and architecture down to computational entities for system implementation and
execution, thereby improving the coherence of SE processes.

Future work will address the extension of asset-based models for SE processes.
This will include the development of models for the various development steps
and their associated activities. Essentially, we address two goals: First, process
portals can be built that collect examples of “best-practice” processes or parts
thereof [25] which sometimes are more easily judged than abstract descrip-
tions [17]. Second, making use of openness and dynamics allows the individuali-
sation of software development processes to better suit a project’s pragmatics [6].

Extending conceptual support beyond the traditional phases of software de-
velopment into runtime will make information about the development of the
system available during system execution. All sorts of services including debug-
gers and other inspection services will benefit from such extended information
that allows to trace entities back to, e.g., the analysis phase.

Obviously, integration of CCMSs with traditional software development en-
vironments is essential in practical use. We expect that due to the modular

322 S. Bossung et al.

architecture of CCMSs we will be able to create bridges to specific tools and rep-
resentations (such as XMI based ones) which partially automate the conceptual
modelling task of the developers. Also, with MDA [12] receiving much research
interest lately, we will investigate how (semi-) automatic transitions between
various development phases can benefit from the use of conceptual modelling.

References

1. Aho, A. V., Sethi, R., Ullman, J. D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

2. Brodie, M. L., Mylopoulos, J., Schmidt, J. W.: editors. On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases, and Programming Languages.
Topics in Information Systems. Springer-Verlag (1984)

3. de Alfaro, L., Henzinger, T. A.: Interface Theories for Component-based Design. In
Proceedings of the First International Workshop on Embedded Software, volume
2211 of LNCS, Springer-Verlag (2001) 148–165

4. Egyed, A., Medvidovic, N.: A Formal Approach to Heterogeneous Software Mod-
eling. In Proceedings of the Third International Conference on Fundamental Ap-
proaches to Software Engineering, volume 1783 of LNCS (2000) 178–192

5. Ehrig, H., Mahr, B., Cornelius, F., Groe-Rohde, M., Zeitz, P.: Mathematisch-
strukturelle Grundlagen der Informatik. Springer-Verlag, 2nd edition (2001)

6. Fowler, M.: UML Distilled. Addison-Wesley, 3rd edition (2003)
7. Gawecki, A., Wienberg, A.: Report on the Tycoon-2 Programming Language.

Version 1.0 (Draft). Technical report, Higher-Order GmbH, Hamburg, and Software
Technology and Systems Institute, Hamburg University of Science and Technology
(1998)

8. Gotel, O. C. Z., Finkelstein, A. C. W.: An Analysis of the Requirements Trace-
ability Problem. In First International Conference on Requirements Engineering
(ICRE), IEEE Computer Society Press (1994) 94–101

9. Duane Hybertson, D.: Strengthening the Modeling Foundation of the MDA. In
Workshop in Software Model Engineering (2002)

10. Matthes, F.: Higher-Order Persistent Polymorphic Programming in Tycoon. In
Fully Integrated Data Environments, ESPRIT Basic Research Series, Springer-
Verlag (2000) 13–59

11. Mezini, M., Seiter, L., Lieberherr, K.: Component integration with pluggable com-
posite adapters. In Software Architectures and Component Technology. Kluwer
(2000)

12. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. Technical Report omg/2003-06-
01, OMG (2003)

13. Musen. M. A.: Ontology-Oriented Design and Programming. In Knowledge Engi-
neering and Agent Technology. IOS Press (2000)

14. Pratt, T. W., Zelkowitz, M. V.: Programming Languages: Design and Implemen-
tation. Prentice-Hall, 3rd edition (1996)

15. Ramesh, B., Jarke, M.: Toward Reference Models of Requirements Traceability.
Software Engineering (2001) 27(1):58–93

16. Revesz, G.: Lambda-Calculus: Combinators, and Functional Programming. Num-
ber 4 in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press (1988)

Conceptual Content Management for Software Engineering Processes 323

17. Rose, T., Fünffinger, M., Knublauch, H., Rupprecht, C.: Prozessorientiertes Wis-
sensmanagement. Künstliche Intelligenz (2002) 16(1):19–24

18. Schmidt, J. W.: Some High Level Language Constructs for Data of Type Relation.
ACM Transactions on Database Systems, 2(3) (1977)

19. Schmidt, J. W., Matthes, F.: The Rationale behind DBPL. In 3rd Symposium on
Mathematical Fundamentals of Database and Knowledge Base Systems, volume
495 of LNCS. Springer-Verlag (1991)

20. Schmidt, J. W., Sehring, H. W.: Conceptual Content Modeling and Management:
The Rationale of an Asset Language. In Perspectives of System Informatics, volume
2890 of LNCS, Springer (2003) 469–493

21. Schmidt, J. W., Sehring, H. W., Skusa, M., Wienberg, A.: Subject-Oriented Work:
Lessons Learned from an Interdisciplinary Content Management Project. In Ad-
vances in Databases and Information Systems, volume 2151 of LNCS, Springer-
Verlag (2001) 3–26

22. Sehring, H. W.: Konzeptorientiertes Content Management: Modell, Systemar-
chitektur und Prototypen. PhD thesis, Hamburg University of Science and Tech-
nology (TUHH) (2004)

23. Sehring, H. W., Schmidt, J. W.: Beyond Databases: An Asset Language for Con-
ceptual Content Management. In Proceedings of the 8th East European Confer-
ence on Advances in Databases and Information Systems, volume 3255 of LNCS,
Springer-Verlag (2004) 99–112

24. Shegalov, G., Gillmann, M., Weikum, G.: XML-enabled work-flow management
for e-services across heterogeneous platforms. VLDB Journal (2001) 10(1):91–103

25. Simone, C., Divitini, M.: Ariadne: Supporting Coordination through a Flexible
Use of the Knowledge on Work Processes. Journal of Universal Computer Science
(1997) 3(8):865–898

26. Sommerville, I.: Software Engineering. Addison-Wesley (2000)
27. van der Straeten, R.: Semantic Links and Co-Evolution in Object-Oriented Soft-

ware Development. In Proc. 17th IEEE International Conference on Automated
Software Engineering, IEEE Computer Society (2002) 317

28. White, S., Lemus, C.: Architecture Reuse Through a Domain Specific Language
Generator. In Proceedings of the Eighth Workshop on Institutionalizing Software
Reuse (1997)

29. Wiederhold, G.: Mediators in the Architecture of Future Information Systems.
IEEE Computer (1992) 25:38–49

30. Zamperoni, A.: GRIDS – graph-based, integrated development of software: inte-
grating different perspectives of software engineering. In Proceedings of the 18th
International Conference on Software Engineering, IEEE Computer (1996) 48–59

Using Step-Wise Refinement to Build a Flexible
Lightweight Storage Manager

Thomas Leich, Sven Apel, and Gunter Saake

Department of Computer Science,
Otto-von-Guericke-University Magdeburg

{leich, apel, saake}@iti.cs.uni-magdeburg.de

Abstract. In recent years the deployment of embedded systems has
increased dramatically, e.g. in the domains of sensor networks or ubiqui-
tous computing. At the same time the amount of data that have to be
managed by embedded systems is growing rapidly. For this reason an ad-
equate data management support is urgently needed. Current database
technologies are not able to cope with the requirements specific to embed-
ded environments. Especially the extreme resource constraints and the
diversity of hardware plattforms and operating systems are challenging.
To overcome this tension we argue that embedded database functionality
has to be tailored to the application scenario as well as to the target plat-
form. This reduces the resource consumption and customizes the data
management to the characteristices of the plattform and the application
scenarion. We show that component techniques and feature-oriented pro-
gramming help to face the mentioned limitations without focusing on
special-purpose software. We present the design and the implementation
of a database storage manager family. We discuss how feature-oriented
domain analysis and feature-oriented programming help to do this task.
Our evaluation criteria are the number of features and the flexibility to
combine these features in different valid variants.

1 Introduction and Motivation

The domain of embedded systems is growing rapidly [15]. Approximately 98 % of
all computer devices are deployed as embedded systems [34]. It is expected that
pervasive and ubiquitous computing will push this trend in future [36]. Due to
the low cost of embedded hardware, software-development on embedded systems
is a hard challenge. The limitations on hardware, e.g. CPU-power, memory ca-
pacities or battery constraints make high demands on software-development. The
result of these limitations is that applications developed as special-purpose soft-
ware are tailored to a specific application scenario. Modern software-engineering
methods, known from other domains are rarely used. We argue that component
techniques, Feature-Oriented Programming (FOP) [8], and Mixin Layers [31]
can help to reduce the devoplement cost and the time-to-market. Moreover,
this software-engineering methods help to face the ressource restrictions with-
out focusing on special-purpose software. Several promising studies [5,1,4,12]

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 324–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 325

show that FOP and mixin layers are appropriate to implement such layered,
step-wise refined architectures. A further problem is the absence of standard
infrastructure, e.g., database services. This makes developing embedded system
applications more complicated. Due to the enormous number of variants of hard-
ware and operating systems, software developers are swamped with finding the
right vendor of infrastructure services. Since a few years the idea of product-lines
is discussed in this context. Product-lines are supposed to maximize the reuse
of existing components as well as to increase extensibility and customizability.
This paper focuses on product-line technology for embedded data management
infrastructure services.

In this contribution we present our first results towards a flexible, lightweight
storage manager for embedded systems. The key idea is to implement the storage
manager as a highly configurable program family [29]1. Different family mem-
bers (a.k.a configurations) satisfy the needs of different application scenarios:
e.g. several embedded sensors require different data management functionality
than data collectors or a mobile measurement unit in form of a PDA [37]. Fur-
thermore, the high degree of configurability as well as the well thought design
of the family allow to develop a highly portable storage manager. To implement
a highly configurable program family we utilize feature-oriented domain analy-
sis [22], feature-oriented programming [3] and mixin layers [31]. It is not obvious
how the combination of these methods, integrated into the domain engineering
process [16], leads to configurable, reusable and extensible data management
software.

The article is structured as follows: Section 2 introduces a sensor network
scenario and points to problems regarding embedded storage management func-
tionality. Section 3 reviews the relevant software engineering methods used here.
The subsequent sections present our storage manager architecture. In Section
5 we discuss our implementation results and review related work. Finally, we
conclude in Section 6.

2 An Application Scenario

This section sketches an application scenario for embedded data management.
Thereupon, we point out challenges of embedded data management.

2.1 A Sensor-Network Application Scenario

Due to the advances in wireless sensor-network technologies previous research
focused on in-network aggregation and query processing. Most existing sensor
applications rely on a centralized system for collecting data. Centralized data
collection and analysis should provide cheap sensor nodes and minimal resource
consumption. However, there are still a lot of problems: Sensor-networks are

1 Although there is a subtle difference between program and product families (see
[16]) we use these terms synonymously.

326 T. Leich, S. Apel, and G. Saake

often intended for long-term deployment. Therefore, they underlay extreme re-
source constraints. One consequence of limited resources is that they are highly
communication constrained and therefore data buffering on the sensor node is
required. Another problem is that pre-aggregation and centralized systems lack
flexibility because data are extracted in a predefined way. However, an pre-
aggregation of raw data on nodes is possible only if the features of interest are
known a priori. This is not often the case in practice. Thereby an lightweight and
efficient buffering and access on raw data is essential for an ad hoc aggregation
on sensor nodes.

The following example scenario is borrowed in parts from [37,19]. We focus
on sensor-networks used in scientific applications, e.g. micro-climate and habi-
tat monitoring. Low-end sensor nodes are detecting environmental parameters,
e.g. temperature or light intensity. These modern sensors do not only respond
to physical signals to produce data, they also embed computing capabilities for
independent activity. Data collectors are special nodes to gather data from affili-
ated sensors to provide data for in- and out-network analyses. The different node
types are ordered in a hierarchical way and have widely varying requirements
on storage management services. For our scenario we point out two different
categories of heterogeneous devices:

– The first category are simple sensor nodes that only need a data structure
to store data. Because of the hardware restrictions, all data are stored in the
main memory. The size of a data record is known. The data structure needs
only efficient insert, update, and lookup operations. Usually, sensor data are
measurements. Therefore simple integrity checks of data are needed.

– The second category are data collectors that collect and aggregate data of
different simple sensor nodes. To store data persistently the collector-node
uses a secondary storage device (an additional flash chip). To optimize the
processing of data a caching manager is required. Also complex integrity
checks are needed.

2.2 Problems Occurring

In the scenario introduced certain problems occur: Common database implemen-
tations cannot provide the full range of the required functions by attending the
strong resource limitations. The monolithic system structure prevents the reuse
of logical device-independent functionality. These general-purpose systems are
not scalable2 enough to satisfy the resource restrictions. The features of data-
base services are not tailorable in such a fine-grained sense. The main reason
is well known as crosscutting concerns. Special-purpose data management ser-
vices dealing with strong resource restrictions are not flexible enough to provide
services to all kinds of sensor-node types presented in the scenario. Application
developers have to choose the embedded database fitting best to their applica-
tion, hardware and software requirements. This is a difficult, time consuming

2 In the sense of scale their memory footprint.

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 327

and costly process, with lots of compromises. An adequate solution could be the
concept of program-family architecture that can be tailored and optimized to
the application scenario. Our goal are summarized as follows:

– systematic and detailed analysis of the domain of embedded data manage-
ment

– customizability, reusability and extensibility through fine-grained features
– lightweight and portable implementation
– seperating crosscutting concern

3 Software Engineering Background

This section introduces the software engineering methods that we have used
to analyze the domain of embedded storage management as well as to design
and implement a program family of storage management. Following this idea we
have used for the domain analysis feature-oriented domain analysis (FODA) [22].
Thereupon, we have designed a program family based on step-wise refinements
and feature-oriented programming (FOP) [31]. Mixin layers are used as imple-
mentation technique.

3.1 Feature-Oriented Domain Analysis

With the domain analysis feature modeling is an appropriate software engi-
neering method [22]. The goal of FODA is to analyze the considered target
application scenarios and to derive the required and optional features. Since the
focus of FODA is on a domain of applications the resulting features are cho-
sen with regard to a whole family of systems. The results of feature modeling
are feature models that describe the features, their relations, constraints, and
dependencies [16]. These models express variation points and commonalities of
the target-programs in an abstract and implementation independent way. Fea-
tures are organized in a hierarchical way (see Fig. 1). Features are mandatory

B

A

C
D

E F I KJG H

Fig. 1. Example feature tree

or optional stated by filled (e.g. feature B) and empty circles (e.g. feature C,D).
Moreover, they can be related in two ways: alternative (e.g. feature G,H), con-
nected by an empty arc and or (e.g. feature E,F), connected by a filled arc.
Feature models are one appropriate basis for designing and implementing pro-
gram families [16].

328 T. Leich, S. Apel, and G. Saake

3.2 Program Families and Step-Wise Refinements

Parnas [29] introduced program families first. The idea is to build software incre-
mentally, using minimal building blocks and starting from a minimal base. This
procedure is also known as step-wise refinement [31]. Exchanging, adding and
removing such building blocks, also called layers, yields reusability, extensibil-
ity, and customizability. Batory et al. have mapped this concept to the object-
oriented world [5,31]. They have observed that a new software feature often
extends or modifies numerous existing classes. Based on this observation, they
perceive features as collaborations of class/object fragments, also referred to as
roles. Figure 2 shows a stack of collaborations. Classes are arranged vertically

layers

classes

f1

f2

f3

c2 c31c

Fig. 2. Stack of collaborations

(c1 – c3). Collaborations are arranged horizontally and span several classes (f1

– f3). Several features of a software system result in a stack of collaborations.
In our context, examples of features are supported data types or caching strate-
gies. Collaborations with the same interfaces are easily exchangeable. They are
an instance of large-scale components [5]. In the sense of Feature-Oriented Pro-
gramming (FOP) [31], a collaboration of objects implements a feature and is
part of a layered stack.3

3.3 Mixin Layers

Mixin layers are one appropriate implementation technique to implement fea-
tures in form of collaborations [31]. A mixin layer is a static component encap-
sulating fragments of several different classes (mixins) so that all fragments are
composed consistently. Mixin layers are an approved implementation technique
for component-based layered designs. Advantages are the high degree of modu-
larity and the easy composition [31]. AHEAD (Algebraic Hierarchical Equations
for Application Design) is an architectural model for FOP and a basis for large-
scale compositional programming [7]. The AHEAD Tool Suite (ATS)4, including
the Jak language, implements AHEAD for Java.

3 We use the terms feature and layer as synonym for collaboration.
4 http://www.cs.utexas.edu/users/schwartz/Hello.html

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 329

3.4 Seperating Crosscuting Concerns

Pioneer work on software modularity was made by Dijkstra [17] and Parnas [29].
They have proposed the principle of separation of concerns. The idea is to sepa-
rate each concern of a software system in a separate modular unit. They argue
that this lead to maintainable, comprehensible software, which can be easily
reused, customized and extended. Since a few years Aspect-Oriented Program-
ming (AOP) and FOP are discussed as solutions of this problem. AOP was
introduced by Kiczales et al. [23]. The aim of AOP is to separate crosscutting
concerns. Common object-oriented methods fail in this context [23,16]. The idea
behind AOP is to implement so called orthogonal features as Aspects. This pre-
vents the known phenomena of code tangling and scattering. The core features
are implemented as components, as with common design and implementation
methods. Using join point specifications (pointcuts), an aspect weaver brings
aspects and components together.

There are several discussions of pros and contras on separating crosscutting
concerns using on AOP and FOP [25,24]. In this paper we are concentrating
on heterogeneous crosscutting concerns. Heterogeneous crosscuts are distributed
over several join points but apply varying code. That means different pieces of
code are added to lots of different places. Homogeneous crosscutting concerns
are distributed over several join points, but apply the same code fragments, e.g.
locking or logging. Therefore the same piece of code is added to lots of different
places. Current AOP languages focus on homogeneous concerns whereas FOP
languages deal with heterogeneous concerns.

4 Storage Manager Design and Implementation

This section presents the domain analysis, design and implementation of the
storage manager. Due to the limitations of space, we only focus on essential
characteristics that are related to the presented scenario (see Section 2).

4.1 FODA

Figure 3 shows a subset of the feature model as result of FODA that describes
the variability of our storage manager family.

The grey boxes symbolize features that have not displayed sub-features. This
is because of the space limitations. The storage manager is separated in four
mandatory features: (1) Data Type (DT) that represents the supported data
types, (2) a Buffer Manager (BM) for storage data in primary or secondary
memory, and managing the free space, (3) a Storage Organisation (SO) for struc-
turing and accessing data and (4) Records (Rec) which represents the data in
our database. Optional features are the Integrity Checks (IC) and supported File
Types (FT).

The overall feature-model of our small storage manager family has 93 fea-
tures. We have not investigated in special data types, transaction management,

330 T. Leich, S. Apel, and G. Saake

Storage Manager

Integrity Check

Storage Organisation

Array List ... Sequential Hash ...

Main Memory

Files

Index ...Data

Records

Fix Variable

Caching Physical Access Method

File Direct

Page Based Non Page Based

Buffer Manager

Data Type

Access Path

Primary Secondary

...LookupUpdateInsert Delete

Exact Range

B*-Tree ...

Freespace Mgr. Primary
Storage Mgr.

Secondary
Storage Mgr.

File

Integer String ...

Fig. 3. Feature model of the storage manager family

recovery or specialized data structures for highly restricted application scenar-
ios like smartcards [10]. An more extended analysis would produce hundreds of
additional features for a storage management system.

Table 1 depicts variable parameters, e.g. number of supported data types
(first two colums). The third column depicts the values for our experimental
evalutation, e.g. for calculation of the permitted variants of the storage man-
ager we assumed four different data types. Calculating the theoretical number
of variants (cf. Table 1), we have determined 8.164.800 possible configurations
(using a GenVoca grammar [6]).

#SM = (2f − 1)︸ ︷︷ ︸
FT

∗ (15)︸︷︷︸
BM

∗ (2n − 1)︸ ︷︷ ︸
DT

∗ ((m + s) ∗ (6 ∗ a ∗ (2o − 1)))︸ ︷︷ ︸
SO

∗ (2)︸︷︷︸
IC

∗ (2)︸︷︷︸
Rec

The high amount of amount of feature combinations reforces the diversity
of the database domain. The abstract description of variants and commonalities
can be exploited to build a highly configurable database program family. The
most combination differ only in a few details, e.g., the number of supported data
types. However, we argue that only this fine-grained design can lead to optimally
tailored database services.

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 331

Table 1. Adjustable parameters

parameter description # for caluculation
d data types 4
f file type 2
m main memory organisation 2
s data file structures 2
a access structure 2
o B∗ Tree 6

B−Tree Insert

File

File

File

FreeSpaceMgr SecStorageMgr

StorageManagerFile BufferManager PageFreeSpaceMgr SecStorageMgr

StorageManagerFile BufferManager PageFreeSpaceMgr SecStorageMgr

B−Tree Base

StorageManagerFile FreeSpaceMgrBufferManager Free List

FreeSpaceMgr

BufferManager Base

FreeSpace Management

Refinement Base ClassStorageManager Base

StorageManager

StorageManager

StorageManagerFile

Secondary Storage Management Base

Page Based Storage

StorageManagerFile BufferManager PageFreeSpaceMgr

StorageManagerFile BufferManager SecStorageMgr Page

SecStorageMgr

Storage Organinsation

Sequential File Organisation

File Base

Data Type

Record Base

Caching

None Refinement

Variable Record

Record Factory

StorageManagerFile BufferManager Page

StorageManager

Record

Record

B−Tree

Caching

Free List

Caching

Free List

Free List

Free List

Caching B−TreeFree List

Free List

Caching

Record

Fig. 4. Subset of implementes mixin layer

4.2 Design and Implementation

In order to evaluate our approach, we have implemented the storage manager,
using the AHEAD Tool Suite which supports FOP for Java. It is also feasible to
use the C++ template mechanism, nested classes and parameter-based inher-

332 T. Leich, S. Apel, and G. Saake

itance [1,31,2]. Because of missing tool support and several problem regarding
C++, we decided to utilize Java and AHEAD to prove our concept.

Figure 4 depicts a subset only. Mainly, the layers concerning the B∗-Tree
access structure are depicted in bottom up order. Starting from the basic layers,
which implement records, page storages and caching, the layer stack is refined to
the B∗-Tree structure and several operations (Fig. 4 depicts the insert-operation
only). The layer stack crosscuts about 26 classes and a couple of help-classes.
In average, we have refined 3 classes per layer. To implement for instance the
Page Based Storage, we had to refine three classes (File, FreeSpaceMgr, SecStor-
ageMgr) and added one new class (Page).

5 Results and Experiences

This section discusses our results and experiences in implementing the prototype.
Therefore, we use the scenario introduced in Section 2.

5.1 Configuration

The configuration process is easy.To convey the ease of the configuration proce-
dure and the flexibility of the implementation, we have derived several storage
managers:

Sensor Node. We have configured two different storage manager versions for
our sensor nodes. Both configurations use main memory management. The
main memory allocation is static, because of the fixed record length. The first
sensor node type uses only basic data types (integer, number) and a simple
array to store data. The resulting storage manager is step-wise refined by 11
layers. For the second category, we have configured a hash-map instead of
an array. Thus the update and lookup functionalities are efficient supported.
Furthermore, we have added an integrity check on the records. This storage
manager is created by 16 layer refinement.

Data Collector. Due the application scenario the functionality of the data col-
lector is more complex (cf. Sec. 2). Because of the availability of a secondary
storage device, we have configured a secondary storage manager using a file
oriented storing and an internal page based organisation. The file is sequen-
tially ordered and for the access path we have used a B∗-Tree. To improve
the performance we have chosen a cache management. The data record has
variable length. Due to the task of the data collector we integrated a special
integrity check on records. The total number of layers is 38 layers.

The correct syntactical composition of layers for a particular configuration is
determined by equation files. The semantic correctness is ensured by DRC. We
figured out that approximately 60 % of all possible configuration were excluded
using DRC. We omit a detailed discussion because that is out of scope of this
paper.

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 333

5.2 Discussions and Comparison to Related Approches

Incremental software development is an adequate process of building programs
from simple ones by successively adding programmatic details. We have used
these development methods to build tailored storage manager support for resource-
restricted devices. Our implementation has shown that decomposition of storage
manager into fine-grained components is possible. FODA, FOP and mixin lay-
ers are adequate software engineering methods to achieve highly scalable and
lightweight software.

Direct comparisons e.g. performance analysis, code metrics, to other database
solutions, e.g. COMET DBMS [26], Berkeley DB [28], are not meaningful at the
current state of the work for several reasons:

– The set of implemented features of our storage manager is different to other
approaches.

– We have not implemented any error-handling or logging functions, so that
an objective performance analysis would be adulterated. We are going to
implement this functions in future work.

– Our approach is implemented in Java. To the best of authors known, there
is no other approach focussing on such a fine-grained tailorability of compo-
nents by using Java implementing database functionalities.

For these several reasons we are comparing our approach to other solutions
only on the concept level. First we compare our approach to Berkeley DB as
known system in this area: Berkeley DB [28] is a common embedded database
system, which is implemented in C and Java. The Berkeley DB consists of the
following sub-systems: access methods, memory pool, transactions and locking.
Hence, Berkeley DB is configurable on the sub-system level. However the com-
ponents are coarser structured, as in our presented approach. An exchange of,
e.g., the access methods, is complex due to a high degree of dependency of the
sub-systems. This prevents an easy exchanging and extending of the database
system. This fact is also confirmed by Tesanovic et. al [33]. They investigated
on homogeneous crosscutting concerns in the Berkeley DB. With separating and
implementing failure detection and synchronisation through aspects a code re-
duction up to 57 % was showed. This fact proves that crosscutting concern in
Berkeley DB complicates tailorability and extensibility. Moreover Tesanovic et.
al showed that there is a trade-off between the tailorability and maintainability
of the system when aspects are used.

For the second comparison we choose COMET DBMS [26,32]. COMET
DBMS is a component-oriented DBMS for embedded real-time systems. The
research focuses on applying aspect-oriented and component-based software de-
velopment to real-time system development. COMET is decomposed into seven
basic components. These are: user interface component, transaction scheduler
component, locking component, indexing component recovery and logging com-
ponent, memory handling component, and transaction manager component. Fur-
thermore the system is decomposed in three types of aspect: run-time, composi-
tion, and application aspect. One of the application aspects is the concurrency

334 T. Leich, S. Apel, and G. Saake

control aspect. This aspect crosscuts four basic components, namely the user
interface component, transaction scheduler component, locking component, and
transaction manager component. A clean separation of this aspect helps recon-
figuring COMET to support locking or non-locking transaction execution. The
COMET-project has shown that especially in real-time scenarios a lot of code
is distributed as homogeneous crosscutting concern over several implementation
units. Our approach has shown that in very fine-grained decomposed storage
management systems heterogeneous concerns are challenging problems. Remain-
ing on the discussion in [25,24] both types of concerns are common in today’s
system. Consequently, our objective in future work is to enhance our prototype
with AOP features to deal with homogeneous crosscutting concern as well as
with heterogeneous crosscutting concerns.

Finally, we have a closer look to more generalized results of our work. Choos-
ing feature components in large scale database management software from a
program family the system complexity can be reduced. This helps to reduce
the maintenance overhead and new feature like automatic tuning can be easy
evaluated and included in less complex software [14].

5.3 Related Work

Extensibility, customizability and flexibility on database systems are a research
area that has been actively studied. An overview and classifications on exten-
sibility can be find in [18,20]. Prototype systems like GENESIS [9], STAR-
BURST [30], KIDS [21], EXODUS [13], etc, are commonly known in this re-
search area. The XXL-library [11]is another prominent approaches to achieve
extensibility and customizability based on using object-oriented design patterns.
A more specific overview on embedded systems and real-time data management
can found in Tesanovic et. al [32]. Olson points out in how to find the right data-
base systems for embedded system environments [27]. Typical special-purpose
database management solutions for embedded systems are e.g. GnatDB [35] for
digital right management or PICO DBMS [10] for data management support on
smartcards.

6 Conclusion and Further Research

Feature-oriented software methods and step-wise refinements advance the de-
sign and implementation of database functionality for embedded systems. In
this article we have proposed a combination of FODA, FOP and mixin layers as
feasible software engineering methods to implement a storage manager as a pro-
gram family. A subset of basic features of a storage manager has been analysed
and implemented, to show a high degree of flexibility and tailorability of our ap-
proach. Therefore we have presented an application adopted scenario from sen-
sor networks, which shows different requirements on storage management in this
area. Through an easy configuration process we derived three different variants
form our storage manager product family tailored to the different application
scenario.

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 335

As future work, we want to investigate and integrate more features. Our to-
kens of interests are special purpose algorithms resource restrict devices, transac-
tion management, real-time feature and query processor. Furthermore, we want
to investigate the performance and the memory footprint and how to encourage
the configuration process for data management through deriving information
from application scenario automatically. Furthermore we want to investigate
our new language FeatureC++ an extension to C++ that supports FOP [2].
Moreover FeatureC++ improve the problem of crosscutting modularity by
combining traditional FOP concepts with concepts of AOP.

References

1. Apel, S., Böhm, K.: Towards the Development of Ubiquitous Middleware Product
Lines. In Cecilia Mascolo and Thomas Gschwind, editors, Software Engineering and
Middleware Fourth International Workshop, SEM 2004, Linz, Austria, volume 3437
of Lecture Notes in Computer Science. Springer-Verlag, Berlin (2005) to appear.

2. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: FeatureC++: Feature-Oriented
and Aspect-Oriented Programming in C++. Technical Report Preprint Nr. 3,
Department of Computer Science, Otto-von-Guericke University, Magdeburg, Ger-
many (2005)

3. Batory, D.: Feature-Oriented Programming and the AHEAD Tool Suite. In Pro-
ceedings of the 26th International Conference on Software Engineering, IEEE Com-
puter Society (2004) 702–703

4. Batory, D., Coglianese, L., Goodwin, M., Shaver, S.: Creating Reference Architec-
tures: An Example from Avionics. In Symposium on Software Reusability (SSR),
Seattle Washington (1995)

5. Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM Transactions on Software Engineering
and Methodology, 1(4) (1992)

6. Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Software
Systems with reusable Components. ACM Transactions on Software Engineering
and Methodology (1992) 1(4):355–398

7. Batory, D., Sarvela, J. N., Rauschmayer, A.: Scaling Step-Wise Refinement. In
Proc. of the 25th Int. Conf. on Software Engineering (2003)

8. Batory, D., Sarvela, J. N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering, 30(6) (2004)

9. Batory, D. S., Barnett, J. R., Garza, J. F., Smith, K. P., Tsukuda, K.,
Twichell, B. C., Wise, T. E.: GENESIS: an Extensible Database Management
System. In Readings in object-oriented database systems. Morgan Kaufmann Pub-
lishers Inc. (1990) 500–518

10. Bobineau, C., Bouganim, L., Pucheral, P., Valduriez,P.: PicoDMBS: Scaling Down
Database Techniques for the Smartcard. In VLDB 2000, Proceedings of 26th In-
ternational 2000, Cairo, Egypt, Los Altos, CA 94022, USA. Morgan Kaufmann
Publishers. (2000) 11–20

11. Cammert, M., Heinz, C., Krämer, J., Schneider, M., Seeger, B.: ”a status report
on xxl - a software infrastructure for efficient query processing”. IEEE Data Eng.
Bull. (2003) 26(2):12–18

12. Cardone, R. et al.: Using Mixins to Build Flexible Widgets. In Proceedings of the
1st International Conference on Aspect-Oriented Software Development (2002)

336 T. Leich, S. Apel, and G. Saake

13. Carey, M. J., DeWitt, D. J., Frank, D., Graefe, G., Richardson, J. E., Shekita, E. J.,
Muralikrishna, M.: The architecture of the EXODUS extensible DBMS. In K. R.
Dittrich, U. Dayal, and A. P. Buchmann, editors, On Object-Oriented Database
Systems, Topics in Information Systems. Springer, (1991)

14. Chaudhuri, S., Weikum, G.: Rethinking database system architecture: Towards a
self-tuning RISC-style database system. In The VLDB Journal (2000) 1–10

15. Business Communications Company. Future of Embedded Systems Technology
(2000) BCC Press release on market study RG-229.

16. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley (2000)

17. Dijkstra, E. W.: A Discipline of Programming. Prentice Hall (1976)
18. Dittrich, K., Geppert, A.: Component Database Systems: Introduction, Foun-

dations, and Overview. In K. R. Dittrich and A. Geppert, editors, Component
Database Systems. dpunkt.verlag, San Francisco u.a. (2001) 1–28

19. Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., Heidemann,J.: An Eval-
uation of Multi-resolution Storage for Sensor Networks. In Proceedings of the ACM
SenSys Conference, Los Angeles, California, USA (2003) 89–102

20. Geppert, A.: Methodical Construction of Database Management Systems. GI
Datenbank Rundbrief (1994) 14:62

21. Geppert, A., Scherrer, S., Dittrich, K.: KIDS: Construction of Database Man-
agement Systems based on Reuse. ifi-97.01, Department of Computer Science,
University of Zurich (1997)

22. Kang, K. et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical report, cmu/sei-90-tr-21, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania (1990)

23. Kiczales, G. et al.: Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’97) (1997)

24. Lopez-Herrejon, R. E., Batory, D., Cook, W.: Evaluating support for features
in advanced modularization technologies. extended report. Technical Report CS-
TR-05-16, The University of Texas at Austin, Department of Computer Sciences
(2005)

25. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Pro-
gramming and Aspects. In SIGSOFT ’04/FSE-12: Proceedings of the 12th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(2004)

26. Nyström, D., Tešanović, A., Nolin, M., Norström, C., Hansson, J.: COMET: A
Component-Based Real-Time Database for Automotive Systems. In Proceedings
of the Workshop on Software Engineering for Automotive Systems at 26th Interna-
tional Conference on Software engineering (ICSE’04), Edinburgh, Scotland. IEEE
Computer Society Press (2004)

27. Olson, M. A.: Selecting and Implementing an Embedded Database System. IEEE
Computer (2000) 33(9):27–34

28. Olson, M. A., Bostic, K., Seltzer, M. I.: Berkeley DB. In USENIX Annual Technical
Conference, FREENIX Track. USENIX (1999) 183–191

29. Parnas, D. L.: Designing Software for Ease of Extension and Contraction. IEEE
Transactions On Software Engineering, SE-5(2) (1979)

30. Schwarz, P. M., Chang, W., Freytag, J., Lohman, G. M., McPherson, J., Mohan, C.,
Pirahesh, H.: Extensibility in the starburst database system. In Klaus R. Dittrich
and Umeshwar Dayal, editors, 1986 International Workshop on Object-Oriented
Database Systems, September 23-26, 1986, Asilomar Conference Center, Pacific
Grove, California, USA, Proceedings. IEEE Computer Society (1986) 85–92

Step-Wise Refinement to Build a Flexible Lightweight Storage Manager 337

31. Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions
on Software Engineering Methodology (TOSEM), 11(2) (2002)

32. Tesanovic, A., Nystrom, D., Hansson, J., Norstrom, C.: Embedded Databases for
Embedded Real-Time Systems: A Component-Based Approach. Technical report,
Linkoping University, Mlardalen University (2002)

33. Tešanović, A., Sheng, K., Hansson, J.: Application-Tailored Database Systems: a
Case of Aspects in an Embedded Database. In Proceedings of the 8th Interna-
tional Database Engineering and Applications Symposium (IDEAS’04), Coimbra,
Portugal, Computer Society Press (2004) IEEE

34. Turley, J.: The Two Percent Solution. Embedded Systems Programming (2002)
http://www.embedded.com/story/OEG20021217S0039.

35. Vingralek, R.: GnatDb: A Small-Footprint, Secure Database System. In VLDB
(2002) 884–893

36. Weiser, M.: Hot Topics: Ubiquitous Computing. IEEE Computer, 26(10) (1993)
37. Woo, A., Madden, S., Govindan, R.: Networking support for Query Processing in

Sensor Networks. Commun. ACM (2004) 47(6):47–52

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 338 – 348, 2005.
© Springer-Verlag Berlin Heidelberg 2005

BiChord: An Improved Approach for
Lookup Routing in Chord

Junjie Jiang1, Ruoyu Pan2, Changyong Liang2, and Weinong Wang3

1 Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai 200030, P.R. China

jiang-jj@cs.sjtu.edu.cn
2 Institute of Network and System,

Hefei University of Technology, Hefei 230009, P.R. China
pry@moe.edu.cn, cyliang@163.com

3 Network Center,
Shanghai Jiaotong University, Shanghai 200030, P.R. China

wnwang@sjtu.edu.cn

Abstract. Efficient resource lookup is essential for peer to peer networks and
DHT (Distributed Hash Table) provides an ideal solution for resource lookup in
distributed networks. Chord is a representative peer to peer lookup service
based on DHT. The topology of Chord is modeled as a directed graph. There is
a unidirectional link from a node to its every routing table entry node.

In this paper, we propose to model the topology of Chord as a bidirectional
graph. A reverse link is added for each original unidirectional link and such a
pair of symmetrical links is maintained by a single heart-beat message. Then
each node should maintain a finger table and a reverse finger table at very little
additional cost. However, such reverse fingers may help to improve the lookup
efficiency greatly. Theoretical analyses and experimental results both approve
such improvements.

1 Introduction

Peer to peer computing has become a popular distributed computing paradigm. Many
peer to peer systems, e.g. Napster [1] and Gnutella [2], have gained popularity
quickly. Efficient resource lookup is considered essential for such systems.

By now, most of the deployed peer to peer systems are unstructured. Napster is
based on a central directory while Gnutella and KaZaA [3] are decentralized and
unstructured. All these popular unstructured peer to peer systems suffer from unscal-
ability. Napster incurs the risk of a single point of failure and a performance bottle-
neck, because it completely depends on a single directory server. Gnutella uses a
flooding approach with a maximum search depth to lookup and location resource.
This approach can neither be scalable nor guarantee the perfectibility of a lookup.
Some desired resources existing in the network may not be found. KaZaA takes ad-
vantage of super peers to improve its scalability but it still bears the deficiencies of
unstructured peer to peer networks.

Fortunately, a new kind of peer to peer networks – that so called structured peer to
peer networks such as CAN [4] and Chord [5], was proposed. Structured peer to peer

 BiChord: An Improved Approach for Lookup Routing in Chord 339

networks are based on DHT (Distributed Hash Table) and DHT provides an ideal
solution for efficient resource lookup in a distributed environment.

Chord is a representative peer to peer lookup service based on DHT. The topology
of Chord is modeled as a directed graph. Each node maintains a finger table as its
routing table. There is a unidirectional link from a node to its every finger node. Due
to the dynamics of peer to peer networks, a heart-beat mechanism is required to per-
ceive such churn, and such heart-beat messages are considered to be the dominating
maintenance cost in Chord.

In this paper, we propose to model the topology of Chord as a bidirectional graph.
For each original unidirectional link, a reverse link is added and such a pair of sym-
metrical links is maintained by a single heart-beat message. So each node needs to
maintain a finger table and a reverse finger table at very little additional cost. How-
ever, such reverse fingers may help to improve the lookup efficiency greatly.

The rest of this paper is organized as follows. First of all, we show a brief overview
of Chord in Section 2. Then in Section 3, we propose our bidirectional link model –
BiChord and the BiChord lookup algorithm. We give some performance analyses of
BiChord in Section 4 and provide the results from simulation experiments in Section 5.
Finally, we survey the related work in Section 6 and conclude this paper in Section 7.

2 Chord Overview

In this section, we give a brief overview of Chord including its topology and lookup
algorithm, which will help us understand the matter of BiChord better. To see more
detailed description of Chord, please refer to the Chord paper [5].

2.1 Chord Overlay Network

In Chord, both data objects and nodes are assigned an m bits identifier by using a
consistent hashing such as SHA-1. A node’s identifier is obtained by hashing the
node’s IP address and service port number (or the user’s private key) while a data
object’s identifier is produced by hashing itself or its name. We will use the term
“node id” to refer to the identifier of a node and similarly the term “key” to refer to
the identifier of a data object. The node id of node x is denoted by id(x). Sometimes, a
node maybe denoted by its node id. Readers can distinguish such cases in context.
Consequently, Chord defines a name space as a sequence of m bits and arranges such

a name space on a scaled virtual ring modulo 2m , which is called the Chord ring.
All the identifiers including node ids and keys are ordered along the Chord ring.

Key k is assigned to the first node whose node id is equal to or follows k clockwise
along the Chord ring and the node is called the successor node of k, denoted by suc-
cessor(k). Also the successor node of a node x is the first node clockwise from id(x),
denoted by successor(x).

In Chord, each node maintains a routing table, called the finger table and each rout-
ing table entry is called a finger of the node. The ith finger of node x, denoted by
x.finger(i) contains the identity of the first node, s, that succeeds x by at least 2i-1
along the Chord ring clockwise, namely id(s) = id(successor(id(x) + 2i-1)) , 1 i m≤ ≤ .
The finger table of each node may contain at most m fingers and in fact, the size of

340 J. Jiang et al.

7

0

1

2

3

4

5

6

7

6

2

1

finger table is log2N with high probability, where N is the network size, i.e. the num-
ber of nodes in the network.

Figure 1 shows an example of a Chord ring with m = 3. There are four nodes in the
network: 0, 1, 3, and 6. Also, there are four data objects, whose keys are 1, 2, 6, and 7
respectively. According to the descriptions above, the four data objects are assigned
to their keys’ successor nodes, i.e. nodes 1, 3, 6 and 0 respectively. In other words, the
four data objects are located at nodes 1, 3, 6 and 0 respectively.

finger table of node 0

i node id of the ith finger

1 1

2 3

3 6

Fig. 1. An example of Chord ring consisting of four nodes 0, 1, 3 and 6. Four data objects with
keys 1, 2, 6, and 7 being located at the four nodes respectively. The numbers circled by a square
denote the keys of data objects. The finger table of node 0 is shown at the right.

Figure 1 also shows the finger table of node 0. Based on the definition of finger ta-
ble, the finger table of node 0 may contain at most 3 entries. The node id of the ith
finger of node 0, id(0.finger(i)) = id(successor(0 + 2i-1)), 1 3i≤ ≤ . Therefore, the
node ids of these fingers are 1, 3, and 6.

2.2 Lookup in Chord

As a representative peer-to-peer lookup protocol, Chord just provides one operation
that is lookup the node storing a given key’s value, i.e. the physical location of the
data object whose identifier equals to the given key.

The algorithm used for lookup through Chord is based on binary search. As stated
above, each node in Chord maintains a finger table consisting of at most m fingers. To
lookup a given key k, a node will check its finger table and forward a query message
to the one that is closest to but doesn’t overshoot k clockwise. Then the finger will do
such in a same manner. After several bouts, the query message will ultimately arrive
at the node immediately preceding key k and thereby the lookup is resolved. Accord-
ing to the construction of finger table, each forward will traverse 1/2 length of the
remaining path at least. So the search space is reduced by half at least during each
forward and it’s very similar to bisearch.

It’s easy to deduce that Chord can resolve a lookup within at most N2log hops,

where N is the number of nodes in the network. Obviously, in Chord, all the lookup
forward operations go clockwise along the Chord ring.

 BiChord: An Improved Approach for Lookup Routing in Chord 341

3 BiChord: Topology Model and Lookup Algorithm

As we have mentioned above, all the lookup routings in Chord go clockwise along the
Chord ring. We take it as the start of our work. In this section, we propose a bidirec-
tional link model that models the topology of Chord as a bidirectional graph. This
bidirectional link model will improve the lookup efficiency greatly without too many
changes to the simplicity of Chord. We also present the BiChord lookup algorithm.

3.1 Bidirectional Link Model

Two reasons inspire us to propose the bidirectional link model for Chord. The first is
that the heart-beat message between each pair of adjacent nodes can be used by the
two nodes to perceive the arrival or departure of each other. Such a single message
can be utilized to maintain not only the original directional link but also its reverse
link. The second is that in Chord, all the lookup go clockwise along the Chord ring
and we think it’s inefficient, because to lookup the keys being located near but pre-
ceding the node, the lookup has to traverse almost the whole Chord ring.

 link
 reverse link

Fig. 2. An example of BiChord. Node 0 is the 3rd finger of node 3 and the 1st and 2nd finger of
node 6.The reverse finger table of node 0 is shown at the right.

The bidirectional link model is rather simple. In the model, a node needs to main-
tain a so-called reverse finger table in addition to the finger table. If there is a link in
Chord, we will add a reverse link that links the same two nodes but at the reverse
direction. For example, if node A is a finger of node B in Chord, i.e. there is a link
from B to A, a reverse link from A to B will be added into the topology based on the
bidirectional link model. Then, B becomes a reverse finger of A. There are no
changes to the responsibility of data objects in Chord. All the data objects are still
located at the successor nodes of their keys.

Figure 2 shows an example of BiChord. This example is the BiChord version of
the Chord example in Figure 1. In Chord, node 0 is the 3rd finger of node 3 and the
1st and 2nd finger of node 6. So node 3 and node 6 become the reverse finger of node
0 and are included into the reverse finger table of node 0. The original directional
links between node 0 and node 3, node 6 are replaced by bidirectional links.

reverse finger table of node 0

node id of reverse finger

3

6

0

1

2

3

4

5

6

7

342 J. Jiang et al.

3.2 BiChord Lookup Algorithm

We take the finger table and the reverse finger table as a whole and call it the routing
table. In the routing table, all the entries are ordered. To lookup a given key k, a node
will check its routing table instead of only its finger table to find a certain table entry,
namely one of its fingers or reverse fingers, whose identifier is closest to the key k
among all these entries. Then the lookup message is forwarded to the node referred by
this entry. Finally, this lookup message will arrive at the node closest to the key k
among all the nodes in the network. Since we have not changed the responsibility of
data objects, this node must be the predecessor or successor node of the key k. If the
node is the successor node of k, the lookup is resolved. Or else, this node must be the
predecessor node of k, the lookup is resolved too.

// ask node n to find successor of k

n.find_successor(k){
 if (k ∈(id(predecessor), id(n)])
 return n;
 else
 if (k ∈(id(n), id(successor)])
 return successor;
 else{
 n’ = closest_node(k);
 return n’.find_successor(k);
 }
}
// search the local routing table for the closest node
to k, R denotes the routing table of node n

n.closest_node(k){
 m = 1;
 x = R(1);

 for i = 1 to
R

 if (|R(i)-k| < |x -k|){
 x = R(i);
 m = i;
 }
 return R(m);
}

Fig. 3. The pseudocode of BiChord lookup algorithm

The pseudocode of BiChord lookup algorithm is presented in Figure 3. Remote
calls and variable references are both preceded by the identifier of remote node, while
local variable references and procedure calls both omit the identifier of local node.
The mechanisms to deal with the joins and stabilization remain unchanged, which is
still same as that in Chord.

 BiChord: An Improved Approach for Lookup Routing in Chord 343

4 Performance Analysis

In this section, we will give some performance analysis on BiChord. The two main
performance metrics we discuss are routing table size and lookup path length. We will
give the precise proof on the routing table size and some intuitive analyses on the
lookup path length in BiChord.

Theorem 1. Each node maintains a finger table with at most m entries and with high
probability, the size of finger table is O(logN), where m is the length of identifier and
N is the number of nodes in the network.

Proof.
Since there are no changes between the construction of finger table in BiChord and in
Chord, the number of entries in the finger table of each node is also unchanged. So
the finger table size in BiChord is same as that in Chord. It follows that with high
probability, the finger table size in Chord is O(logN) and is m at most. [5] •

Theorem 2. With high probability, each node maintains a reverse finger table with
O(log2N) entries, and the expected reverse finger table size is O(logN), where N is
the number of nodes in the network.

Proof.
The expected distance between two successive nodes is 2m/N on the Chord ring, and
with high probability, the distance is L = O((2m/N)×logN)).

Consider a node n. With high probability, there are L continuous keys between
node n and its predecessor node p, i.e. with high probability, |id(n) – id(p)| = L.

If node n is a finger of node x, we will have id(n) = id(successor(id(x) + 2i-1)),
1 i m≤ ≤ . That is to say, id(x) + 2i-1 is in the range between id(n) and id(p). So id(x)
is in the range between id(n) – 2i-1 and id(p) – 2i-1. It’s clear that for a particular i,
id(x) locates in this range with probability |(id(n) – 2i-1) – (id(p) – 2i-1)|/2m, that is,
node n is a finger of node x with probability |id(n) – id(p)|/2m. As stated above, with
high probability, |id(n) – id(p)| = L = O((2m/N)×logN). Thus node n is a finger of node
x with probability O(logN/N) for any a node x and a particular i. And with high prob-
ability, for this particular i, there are O(logN) nodes that finger node n because there
are N nodes totally.

Since with high probability, a node has just O(logN) fingers (i.e. all the values of i
correspond to O(logN) fingers), there are O(log2N) unique nodes that finger node n
with high probability and so node n maintains a reverse finger table with O(log2N)
entries, with high probability.

As shown in Theorem 1, every node maintains a finger table with O(logN) entries,
with high probability. So the sum of the finger table size is O(N×logN) and on aver-
age, each node is a finger of O(logN) nodes. Then the expected reverse finger table
size is O(logN). •

In Chord, all the lookup routings go clockwise along the Chord ring. However in
BiChord, the lookup routings don’t go only in one way any longer. In BiChord, the
lookup routings may go clockwise or counter-clockwise alternately because at each
step, the BiChord lookup algorithm tries to find the closest routing table entry to the

344 J. Jiang et al.

desired key instead of the finger closest to but not overshooting the key. So if the
closest routing table entry overshoots the desired key clockwise, the routing must turn
back during remaining steps. Although the routing direction is not determinate, at
each step, the current lookup forward node is closer to the destination node than the
previous one.

The lookup efficiency is improved clearly. In Chord, each node maintains informa-
tion about a small number of other nodes and knows more about the nodes closely
following it along Chord ring than the nodes farther away. However in BiChord, each
node maintains not only such information but also the information about more nodes
(reverse fingers nodes). A node knows many about the nodes near it at both sides
instead of only the clockwise side. Intuitively, the fingers and reverse fingers of each
node partition the Chord ring finer and by these fingers and reverse fingers, a node
will locate the region of a desired key more accurately at each step. Thus the nodes
will resolve a lookup within fewer steps.

5 Experimental Evaluation

In this section, we evaluate the performance of BiChord by simulation. The simulator
is implemented in Java and each node is modeled as an object instance of the Node
class. The simulator uses the BiChord lookup algorithm shown in figure 3 and the
remote calls are replaced by the local message passing between Java objects. For the
comparison purpose, we also implement Chord lookup algorithm. We do implement
the successor list in neither BiChord nor Chord lookup algorithm because the succes-
sor list is just to guarantee the correctness of routing during the churn process.

5.1 Routing Table Size

The routing table size is an important performance metric of BiChord. Although the
reverse finger table brings very little additional maintenance cost, we still investigate
the reverse finger table size to evaluate BiChord thoroughly. The finger table size is
examined during the experiment too. From Theorem 1 and Theorem 2, with high
probability, the finger table and reverse finger table sizes are O(logN) and O(log2N)
respectively, and the expected finger table and reverse finger table sizes are both
O(logN), where N is the total number of nodes in the network.

To understand the routing table size in practice, we simulated a network with N =
2k nodes. We varied k from 3 to 14 and conducted an individual experiment for each
value of k. We measured the finger table and reverse finger table sizes of each node
during every experiment.

Figure 4(a) plots the average sizes of finger table and routing table as a function of
k. As expected, they both increase logarithmically as the number of nodes. Figure 4(b)
plots the PDF (probability density function) of the finger table and reverse finger table
sizes for a network with 212 nodes (k = 12).

Figure 4(a) confirms that in BiChord, the average finger table size is O(logN) and
the average routing table size is O(logN) too. Figure 4(b) shows that the distribution
of reverse finger table size is much more uniform than that of finger table. The finger

 BiChord: An Improved Approach for Lookup Routing in Chord 345

0

5

10

15

20

25

30

35

8 32 128 512 2048 8192
Number of Nodes

Finger Tab le

Rout ing Tab le

0

0. 1

0. 2

0. 3

0. 4

0. 5

0 12 24 36 48 60 72 84
Table Size

Finger Tab le
Reverse Fing er Tab le

Fig. 4. (a) The average finger table and routing table sizes of BiChord as a function of network
size. (b) The PDF of the finger table and reverse finger table sizes in the case of a 212 nodes
network.

table size of most peer nodes are around log N while the reverse finger table size of
most peer nodes is smaller.

5.2 Lookup Path Length

The routing performance of BiChord depends on the lookup path length mostly. We
also simulated a network with N = 2k nodes and 100×2k data objects here. We varied k
from 3 to 14 and conducted a separate experiment for each value of k. During every
experiment, each node picked up a random set of keys to lookup using Chord and
BiChord lookup algorithm respectively, and we measured each lookup path length of
the two algorithms.

Figure 5(a) plots the average lookup path length of the two lookup algorithms as a
function of k. Figure 5(b) plots the PDF of the lookup path length of the two algo-
rithms for a network with 212 nodes (k = 12).

346 J. Jiang et al.

Figure 5(a) indicates that BiChord has a great improvement over Chord in average
lookup path length. Figure 5(b) shows more expressly that the average lookup path
length in BiChord is shorter than that in Chord.

0
1
2
3
4
5
6
7
8

8 32 128 512 2048 8192
Number of Nodes

Chord

BiChord

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0 2 4 6 8 10 12
Lookup Path Length

Chord

BiChord

Fig. 5. (a) The average lookup path length of Chord and BiChord as a function of network size.
(b) The PDF of the lookup path length of Chord and BiChord in the case of a 212 nodes net-
work.

6 Related Work

By now, Chord has brought up many novel distributed application systems. We also
have implemented an experimental system for distributed text information retrieval
based on Chord lookup service [6]. However, there is still some space to improve for
the lookup efficiency in Chord.

There are two main ways to improve the lookup efficiency in Chord. One way is to
optimize the logical topology of Chord such as the denser finger technique [7]. The
other is to utilize the underlying network topology information such as geographic
layout and proximity neighbor selection (PNS) techniques [8].

 BiChord: An Improved Approach for Lookup Routing in Chord 347

The denser finger technique places fingers of node x at points id(successor(id(x) +
(1 + 1/d)i-1)) on the Chord ring, 1 i m≤ ≤ and d is a tunable integer parameter. The
number of fingers kept by each node is now d times of that in original Chord and the
maximum lookup path length is reduced to 1/(1 + log(1 + d)) of the original. How-
ever, the average lookup path length is logN / ((1 + d) log(1 + d) – d log(d)). As de-
clared, when d is larger, the improvement is less. In our another work, we present
ChordPlus lookup algorithm [9] which generalizes Chord lookup algorithm to M-ary
lookup. It also gets some improvements in lookup path length. There is some similar-
ity between ChordPlus and the denser finger technique but the approaches are rather
different in nature.

However, all the work remains to route lookup only in one way (clockwise) as in
Chord. S-Chord [10] proposes to using symmetry to improve lookup efficiency in
Chord. That is, each node maintains fingers at its both side and these fingers of node x
are placed at points id(successor(id(x) + 4i-1)) and id(predecessor(id(x) – 4i-1)),
1 i m≤ ≤ . S-Chord shows the improvements on routing performance by experiments.
BiChord is quite different from the idea of S-Chord. In S-Chord, each link is still
unidirectional like in Chord, but in BiChord, we add a reverse link to the topology
graph for each original link at very little additional maintenance cost and achieve
remarkable improvements on routing performance too.

Exploiting the underlying network topology information has been considered for
use in Chord too [11] and there some work is going on in this way.

7 Conclusion

Chord provides an efficient peer to peer lookup service based on DHT. The simplic-
ity, provable correctness, and provable performance make it an attractive substrate for
distributed applications. However there still remains some space to improve for its
lookup efficiency.

In this paper, we propose BiChord, an improved approach for lookup routing in
Chord. BiChord models the topology of Chord as a bidirectional graph and replaces
every original unidirectional link in Chord with a bidirectional link. In nature, it util-
izes the existing finger table in Chord and the heart-beat mechanism to construct a
reverse finger table. Such a reverse finger table can help to improve lookup perform-
ance in Chord greatly. The theoretical analyses and experiment results both confirm
such remarkable improvements. Another byproduct is that the fault-tolerance is en-
hanced due to more routing table entries and the relaxed routing selection policy.

References

1. Napster. http://www.napster.com
2. The Gnutella protocol specification v4.0. http://dss.clip2.com/GnutellaProtocol04.pdf
3. KaZaA website: http://www.kazaa.com
4. Ratnasamy, S., Francis, P., Handley, M. et al.: A scalable content-addressable network. In

Proceedings of ACM SIGCOMM 2001, San Diego, CA (2001) 161-172
5. Stoica, I., Morris, R., Liben-Nowell, D. et al.: Chord: a scalable peer-to-peer lookup proto-

col for Internet applications. IEEE/ACM Transactions on Networking, Vol. 11, No. 1
(2003) 11-32

348 J. Jiang et al.

6. Junjie, J., Wang, W.: Text-Based P2P Content Search Using a Hierarchical Architecture.
In Proceedings of the 7th International Conference of Asian Digital Libraries, Shanghai,
China, LNCS 3334 (2004) 429-439

7. Li, Z., Feng, Z.: Understanding Chord Performance and Topology-aware Overlay Con-
struction for Chord. http://www.cs.berkley.edu/~zl/doc/chord_perf.pdf, Project Report,
(2003)

8. Ratnasamy, S., Shenker, S. and Stoica, I.: 2002. Routing Algorithms for DHTs: Some
Open Questions. In Proceedings of the 1st International Workshop on Peer-to-Peer Sys-
tems, Cambridge, MA, USA, LNCS 2429 (2003) 45-52

9. Haihuan, B., Junjie, J., Wang, W.: ChordPlus: A Scalable, Decentralized Object Location
and Routing Algorithm. Journal of System Engineering and Electronics, to appear.

10. Mesaros, V., Carton, B., Van Roy, P.: S-Chord: Using Symmetry to Improve Lookup Effi-
ciency in Chord. In Proceedings of the International Conference on Parallel and Distrib-
uted Processing Techniques and Applications PDPTA'03, Las Vegas, Nevada, USA, Jun.
(2003)

11. Dabek, F., Kaashoek, M. F., Karger, D., Morris, R.: Wide-area Cooperative Storage with
CFS. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, Cha-
teau Lake Louise, Banff, Canada, Oct. (2001)

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 349 – 364, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Business Rules Automation: The BR-Centric IS
Development Framework

Irma Valatkaite and Olegas Vasilecas

Information Systems Scientific Laboratory, Vilnius Gediminas Technical University,
Sauletekio al. 11, Vilnius, Lithuania
{irma, olegas}@isl.vtu.lt

Abstract. The business rules (BR) approach in information systems (IS)
engineering responds to the need of business practitioners to maintain their ISs
efficiently in the volatile business environment. The important requirement is to
reduce effects to adapt IS to the changes in business environment. This problem
can be solved by the explicit use of enterprise knowledge in the form of BR
stored outside of the application logic. A number of BR-based systems,
methods, frameworks, and languages were proposed, but only few address
automatic BR implementation. In this paper we present the framework which
outlines the main components for BR-based IS development using BR
automation. In our approach we differentiate three abstraction layers where the
understanding, representation, and use of BR differ accordingly. We give the
definitions of the components, outline their role in the framework, and present
the results of a short case study as an example of the framework instantiation.

1 Introduction

In the research of the business information systems (IS) development the business
rules (BR) approach has achieved a lot of attention and already has a steady niche
with a strong motivation behind [4, 5, 10, 24, 12]. Knowledge management initiatives
drive enterprises to reveal their business knowledge and manage it as explicit asset.
For knowledge management purposes business rules are used by business
practitioners as the way to structure enterprise knowledge, i.e., to represent policies,
procedures and constraints regarding how the enterprise conducts its business. Thus
giving business rules the proper attention at enterprise management level enables
enterprise to manage itself by making visible the individual policies that the
organization puts in place as a guide to accomplish its goals. By manipulating the
business rules the organization enables to fine-tune itself to the ever changing
business environment thus becoming faster and more responsive than its competitors.

On the other hand, business information should support the ultimate goal of
enterprises to quickly respond to environment changes. The business rules approach to
IS development is intended to solve this task and enable IS developers to shorten the
development cycle from business requirements to the actual implementation and also
give the possibility to business users to maintain their business rules set by themselves
thus achieving the intended speed of responsiveness and adaptiveness. Since business
users are owners of the business rules it is a rather straightforward solution [12, 16]. The
benefits of explicitly dealing with business rules may be stated as follows:

350 I. Valatkaite and O. Vasilecas

1. From the enterprise management perspective: the explicit business rules model, the
elicitation and modelling activities reveal the implicit rules of running the business
and serve as the means to first check and then ensure consistency and uniformity of
those rules. The elicitation activity may have an additional positive “side-effect”:
uncovering of business rules is a learning activity and may be used as the auditing
process to ensure that every single business process is in line with the enterprise
strategic objectives. For example, if the enterprise strives to be customer-centric
organization, it is important to ensure the smooth processing of all types of
customer requests through the different departments. However, in large enterprises
the prioritisation of customer requests may be done based on different criteria
(depending on the localised targets of the departments).

2. From business rules enforcement perspective: explicit, consistent and uniform
business rules model ensures that operational systems do enforce the right rules in
the right way and conforms with the operating principles of the enterprise.
Moreover, not only IS supporting operational level business processes may be built
based on a single business rules model, but also the analytical level business IS
(enterprise management systems, performance management systems, etc.) aligned
with the same business rules model guarantee that the right measures are applied
through all enterprise levels.

3. From business IS development perspective: the business rules are inherent concept
of business itself adopted by IS engineering. Thus business rules elicitation and
modelling serves as the bridge between business practitioners and IS engineers as
the commonly understood language. If the selected business rules modelling
language is understood by both parties and no transformations of the model is
performed along the way, such modelling activity also secures that the right
business rules are captured in a consistent way.

The research on business rules approach and the resulting technologies (business
rules tools as well) may also be characterised by their intended purpose [13]:

1. Enterprise management: to provide an environment where business rules are
captured, documented, secured, distributed to the relevant parties within both the
business and technology organizations, and modified as the business evolves.

2. Enforcement: to integrate business rules into business application’s architecture,
but to hold business rules separately from the processing code.

3. Excavation or mining: mine through existing IS or enterprise documentation to
uncover business rules held within application code or textual documents with the
purpose to transform business rules uncovered from code into something that is
meaningful to business people.

The three purposes (or characteristics) of technologies and tools are separate
research topics, however, as technologies and tools evolve they are intermingled and
tools emerge that serve for two purposes simultaneously. Most often technologies and
tools are offered that are suitable for the first two tasks: enterprise management and
enforcement. This is because these two require the same basic component – the
business rules repository which serves as the central location of storing business rules
data and metadata. The business rules mining is a different activity: (1) enterprise
management and business rules enforcement are the activities that support daily

 On Business Rules Automation: The BR-Centric IS Development Framework 351

business, while mining is a rather one-time activity results of which should be used as
the input for the management and enforcement processes; (2) mining requires
completely different algorithms and implementation architectures than management
and / or enforcement technology. Thus it is not reasonable to combine business rules
mining with the other two. However, some tools successfully combine all three (e.g.,
Infrex [11]; the survey of tools is given below in Section 2).

In this paper we present the framework for business rules approach to business IS
development centred on business rules enforcement and enterprise management
activities, not covering the mining or elicitation processes. We provide definitions for
the components using three abstraction layers – that of business system, information
system, and program system – where the understanding, representation, and use of
business rules and associated framework components differ accordingly. The main
goal of the framework is to give the necessary components and their interrelations for
BR-based IS development with automatic business rules generation component.

The rest of the paper is organized as follows. The overview of the related work is
given in Section 2. The basic idea of the framework and the description of the
components are covered in Section 3, while the instantiation of the ideas are provided
in Section 4. The conclusions are drawn and the further research directions are given
in Section 5.

2 Related Work on Business Rules Approach

The business rules approach has drawn a lot of attention already and a number of
architectures, technologies, frameworks have been proposed and a number of tools
have been developed (both for research and commercial purposes).

The proposed BR-centric approaches are applicable for explicit work with business
rules at various phases of IS development cycle. However, there are just few results
reported on business rules automation. By business rules automation we assume the
automatic generation of executable business rules specification from the declarative
business rules statements or business rules model in some modelling language or
interchange format.

2.1 Business Rule Concept

A number of definitions for business rule were developed. Business rules definition
may be analysed from two perspectives: business perspective and IS development
perspective [4, 14]. From business perspective ('Zachman [19] row-2') business rule is
a statement that defines or constrains some aspect of the business; it is intended to
assert business structure, or to control or influence the behaviour of the business.
From IS perspective ('Zachman row-3') business rule is a statement which constrains
certain business aspect, defines business structure, and controls business processes
that are supported by enterprise information systems. In IS business rules may be
implemented as facts registration (as data) and constraints applied during registration
process. Von Halle in [23] summarizes the business rule definition problem as
follows: “depending on whom you ask, business rules may encompass some or all

352 I. Valatkaite and O. Vasilecas

relationship verbs, mathematical calculations, inference rules, step-by-step
instructions, database constraints, business goals and policies, and business
definitions”.

In our research we use the definition given above providing the concept in business
context – business rule defines the way of operating enterprise business (policies,
guidelines, behaviours, etc.). However, we require that enterprise business rules
model comprised only atomic business rules. Atomic business rules are such that
cannot be broken down or decomposed further into more detailed business rules
because, if reduced any further, there would be loss of important information about
the business. This limitation comes from the IS implementation perspective and is
reasonable because not-implementable business rules model can guarantee neither
consistency, nor unambiguity.

The various taxonomies of business rules discussed in details in [15, 22] show the
lack of standards in business rules community on types, classes and categories of
business rules. However, the surveys show that the taxonomies of business rules
presented by different authors depend on the intended purpose (for example,
enterprise management or implementation of business rules in IS, or implementation
of business rules in rules engines).

2.2 BR-Centric Frameworks

According to the survey of BR-centric frameworks, architectures and technologies
given in [25, 15, 2], the proposed ideas are rather diverse depending on perspective or
intended purpose and can be summarised as follows:

• From implementation perspective the proposed business rules approaches can be
classified into three broad types: rules implemented as application logic
components, rules implemented using active databases technologies, and rules
implemented in rules engines (enforcement, inference, etc).

• From architectural focus: different authors stress different IS development life
cycle phases – from elicitation to maintenance; accordingly their proposed
frameworks vary. Some concentrate on business objects definitions and modelling,
others go for automatic implementation frameworks and technologies.

• From modelling perspective: a lot of attention is paid to the modelling issues of
business rules. Some proposed modelling techniques, for example, by Ross [17],
are both modelling language and modelling method in one. Another approaches
stem from adapting popular modelling languages, such as UML and OCL, to
business rules modelling activity. However, none of the proposed languages or
methods are accepted as technology standard yet.

2.3 Business Rules Tools Available

There is a number of different business rule management and enforcement tools
available today. The common component of the majority of tools is the business rules
repository which is later used for different tasks. However, as it was mentioned
above, they employ different, sometimes very specific modelling languages. As for
the functionality that the tools offer – it is centred on the following tasks:

 On Business Rules Automation: The BR-Centric IS Development Framework 353

• Manage rules – components for rules input and modification (rule editors);
• Store rules – rules repository;
• Enforce rules – rules engines or similar mechanisms.

The rules enforcement components offer the reference (transparent for business
users) from declarative business rules statements stored in business rules repository to
the actual enforcement mechanism thus achieving the required automatic dependency
of the business rules implementation on declarative business rules statements.

Blaze Advisor [9] system offers the complete process for designing, running, and
maintaining e-business applications. Blaze Advisor consists of the following 5
components:

• Builder – a rule creating tool targeted for developers;
• Innovator – a rule management and maintenance tool targeted for business users;
• Rule Engine – a scalable processing engine that determines and executes the

control flow of rules, works together with the Rule Server;
• Rule Server – a dedicated rule server which supports rule execution, session

management, scheduling, and dynamic load balancing.

Blaze Advisor uses its unique Structured Rule Language for input of business
rules; decision trees and decision tables can be employed as well.

Infrex [11] is another type of tool – while Blaze Advisor is a totally stand alone
application, Infrex can be embedded into applications written in C/C++/Java/C#.
Infrex uses classes and variables of the application with the support for high level
operators for rules specification. Rule Translator component generates
C/C++/Java/C# code which is compiled and linked with the application to create an
executable. The executable has the rules to be called at run-time, through the engine.
Thus the adaptivity feature is achieved by the ability of the tool automatically create
executable code from the rules specification. However, the language for rules
specification is not suitable for business users because it directly operates with classes
and variables which are not exactly the business terms.

QuickRules [26] is a business rules management system which allows inserting and
editing business rules using the specific QuickRules Rules Mark-up Language. Rules
are stored in XML format and may be executed by Business Rules Engine
component.

ILOG rules are of ECA (Event, Condition, Action) type and consist of three parts:
header, condition and action specifications [1]. The rules can be defined using BAL
(Business Action Language), IF-THEN-ELSE rule format and TRL (Technical Rule
Language).

The above mentioned tools have their own business rules engines therefore it is
obligatory for enterprises to buy the respective product suit in order to be able to use
their offerings. The opposite solution would be to use a wide spread technology (e.g.,
of active database management systems [1]) for rules repository and as an
enforcement engine.

The Dulcian company (an Oracle consulting firm that specializes in data
warehousing, systems development and products that support the Oracle
environment) is working in this direction offering BRIM – Business Rules
Information Manager [8] which offers the rules editing, designing and implementation

354 I. Valatkaite and O. Vasilecas

functionality. The rules editing is done over two steps – analysis rules are entered
using weakly structured RuleSpeak language (proposed by Business Rules Solutions
[5]) and implementation rules are specified using UML [3] class and activity
diagrams. The mapping between analysis and implementation rules may be done by
business users manually associating rules with classes, states and diagrams. The
automatic code generation component creates text files that either creates triggers on
tables or alters the existing triggers on tables. The technology is completely Oracle-
centred.

The survey of the tools given above is by no means complete but it highlights the
trends within the field of interest. The lack of standards is obvious – for business rules
modelling languages, repositories format, architectures. It is not possible to exchange
business rules among different products or present to the business users more or less
standard rules language. However, the promising step in business rules repository is
the usage of XML as the business rules storage format which would enable the
business rules sharing and exchange.

3 The BR-Centric IS Development Framework

In this paper we propose the generic BR-centric IS development framework which
enables business rules automation. As the generic approach it does not require the
specific technology to be used, however, in the instantiated version we use active
database technology (namely, triggers) as the target business rules enforcement
technology (as described in details in Section 4).

The BR-centric IS development framework (presented in Fig. 1) has several
intended purposes:

• to describe the set of information objects and related modelling activities in the
process of BR-based IS development;

• to give the information objects flow through different abstraction layers coming
from the most abstract – business systems layer to the implementation layer;

• to give the information objects models flow through the same sequence of layers;
• to provide the possibility of tracing the flow of objects from business system down

to the implementation layer and backwards in order to ensure the consistency
between the concepts, especially traceability is required upon making any
modifications in any abstraction layer – the corresponding modifications must be
traced back to the modification origin.

3.1 Layers Description

During the process of the IS development and later in subsequent IS life cycle phases
the information objects from different abstraction layers must be dealt with. The IS
development cycle always starts from the elicitation or high level business analysis
phase when the business system objects are analyzed. Business system abstraction
layer represents the real objects – this is the business system itself which can be
defined as the closed world with the input and output channels to and from its

 On Business Rules Automation: The BR-Centric IS Development Framework 355

environment. The business objects under concern are those which must be mapped to
information system layer objects in order to simulate the natural information
processing with the mappings in information system objects.

Fig. 1. The BR-centric IS development framework

Information system abstraction layer represents the information flows among the
business objects. It deals with informational mappings of the business objects from
business system layer. Therefore it may be called the informational mapping of the
real business system. The type of objects in information system layer is information
processing objects. These objects are also models of the business objects because they
represent business objects only for their intended purpose. The information objects
models are later used in the third abstraction layer – information system
implementation layer where information objects are mapped to digital objects and
information flows among the objects are implemented using the specific technology
and architecture.

3.2 Objects and Models Flow

In Figure 1 the flow of the objects and corresponding models are shown through the
different abstraction layers. The objects are:

• Business objects – the business environment objects, such as the physical order
placed for the goods, etc. The purpose of having the business objects in the defined
business context is to draw the boundaries of the business system in scope. The

356 I. Valatkaite and O. Vasilecas

business objects definitions must be contained in the relevant business ontology.
The business context defines the type of the business ontology to use. However,
the business ontology also shapes the business context in the sense of being the
reference of the uniformity and completeness of the business context (if the
specific business ontology defines a set of concepts, the corresponding real life
objects must be present in the business system; if not, then the business system
boundaries may be set inappropriately).

The business processes defined in business context shape the activities carried
out by the business system. The logic and constraints of the business processes are
set by corresponding business rules. Both business processes and business rules
operate on business objects.

The related models are two: those of business processes and of business rules.
• Information objects are the information maps of the business objects in the

information system layer. Their intended purpose is to represent the relevant
informational properties of the business objects that are of importance to the
information flows described in information system.

Business processes are mapped to information processing processes, business
rules – to information processing rules accordingly, since the only activity in
information system is the processing of the information about the real life –
business systems objects.

Accordingly the information processes models and information processing rules
models are being created at information system layer. Here it is worth mentioning
the differences in the definitions of the concepts used to name the same abstraction
layer objects and models. The term “business rule” currently is used in very
disparate ways – to name the business rules in real business environment, to name
the information processing rule in information systems layer and even sometimes
to name the implementation layer objects corresponding to business rules. In this
paper we propose to distinguish among the mappings of the business systems layer
concepts and their mappings in subsequent layers. Thus we say that business rules
exist only in business system environment and they are mapped to information
processing rules in information system environment. That is, we do not have
“business” as such in information system layer – we have only mappings of the
business information processing and flow.

However, despite the differences in the concepts, the same modelling language
can be employed at different layers. For example, UML can be used for modelling
both business objects and information objects.

• In the third layer which can be regarded as the physical layer – information system
implementation as software components layer – the information objects are
mapped to digital objects and implemented as various software components. In our
framework we present BR-centric components, such as rules repository
(information processing rules are mapped to implemented rules) and rules
implementation (management and enforcement) components. In this layer we
avoid using the term “business” – either for processes, or for rules. The
implementation layer bears only the implementation of the information objects,
information processing processes and rules which can be also considered as
information layer map to executable specification.

 On Business Rules Automation: The BR-Centric IS Development Framework 357

4 Instantiation of the Framework

We have applied the framework using business system example. Since the framework
is too generic for the direct application, we have instantiated it using the specific
components instead of generic ones (where necessary):

1. The business context used: Production Ordering System;
2. The business ontology was not used for this phase of the instantiation, however,

specific business domains ontologies should be investigated as sources of
standardised set of business objects (entities) for modelling purposes;

3. Conceptual graphs were used for modelling both business system and information
system layers objects;

4. Rules repository was created in active database management system;
5. Rules automatic generation component was implemented for the rules enforcement

in active database as triggers;
6. The business processes modelling activity was omitted for the first application of

the framework, however, the business processes modelling is a compulsory activity
for traceability purposes. By traceability we mean the tracking of changes from
business system layer down to the implementation layer.
The diagram of the instantiated framework is given in Figure 2.

Fig. 2. The instantiated BR-centric IS development framework

In this paper we elaborate ideas presented in [22, 21]; and we are focused on the
generic framework; therefore the detailed motivation of the choices for the
instantiation is out of scope of this paper.

358 I. Valatkaite and O. Vasilecas

4.1 Automatic Implementation: Trigger Generation Component

In Figure 3 the flow of execution of the trigger generation component is presented:
the business rules model serves as the input for creating the repository which again
serves as the input for active database triggers generation.

In the current research as shown in Figure 3 we focus on the business rules model
represented in conceptual graphs [20] CGIF notation (Conceptual Graphs Interchange
Format, please refer to [6] for the draft standard of conceptual graphs and its notations
including CGIF). However, the architecture is not limited in that sense and the
extensions are possible (shown in Figure 3 on the left):

• Usage of another modeling language for business rules conceptual model;
• Usage of another underlying active database management system (because of

syntactic differences of trigger definition in different active database management
systems).

The XML based business rules representation thus is the central element which
allows adding flexible extensions and serves as the business rules repository.

Fig. 3. The trigger generation component: from CGIF to SQL

The component consists of the two processes:

1. Process CGIF2XML. The scope of the process is a transformation of business rules
representation from conceptual graphs model in CGIF format to the intermediate
business rules representation in XML. The latter can be used as the basis for the
business rules repository. In current implementation the input format is limited to
CGIF; the output format adheres to the rules representation using XML structure.

2. Process XML2SQL. The scope of the second process is a transformation of rules
contained in intermediate format of XML based structure to the actual

 On Business Rules Automation: The BR-Centric IS Development Framework 359

implementation representation – namely, active databases triggers. In the current
implementation the Microsoft SQL Server active database management system
trigger definition syntax is used.

4.2 Example of the Business Rule and the Resulting Trigger

To illustrate the flow of execution we present the example of the business rule, its
intermediate representation in XML, and the resulting MS SQL Server trigger:

1. Business rule in natural language: If manufacturing order is completed and it is not
an internal order (the identification number is greater than 17 which marks the
limit of the internal orders), its finishing date is set to today.

2. In conceptual graphs visual notation: The diagram in Figure 4 represents the
business rule using the standard conceptual graphs nodes – concepts (drawn as
rectangles), conceptual relations (as ovals), actors (as diamonds) and links (as
arrows connecting concepts with actors or conceptual relations).

Fig. 4. Business rule modeled in CGIF using business rule template

CG: business rule diagram:

CG: structure diagram:

360 I. Valatkaite and O. Vasilecas

The diagram is created using the conceptual graphs editor CharGer v3.0b [7]. The
current version offers functionality to draw conceptual graphs diagrams, get the
respective representation of the diagrams in CGIF and near natural English
language, export diagrams to various picture formats, etc. In our research we rely
on CharGer for generating CGIF representation of the diagrams.

While modeling the business rule we employ the following rule template:

Type Rule(*x) is T(?x) –
 <-(INIT)<-[Event:*y]
 ->(RESULT)->[If:*z[Then:*w]]

We have proposed the template to model business rules in [21] with the goal to
standardize the business rule representation in order to make the automatic
generation of the triggers possible.

3. In CGIF: the below presented CGIF representation of the business rule is generated
by CharGer tool. Comments are added manually in order to increase the readability
of the representation (comments begin by double slash ‘//’).

//Rule name:
 [Rule1:''
//Template begins:
 [Rule*a:'']
//Event part:
 [Event*n:''
 [Status*o:''][Update*p:''](obj?p?o)]
 (result?a?b)(init?a?n)]
//Conditional action part:
 [If*b:''
 [True*c:''][True*d:''][True*e:''][Number*f:'']
 [Number*g:'15'][Status*h:'']
 [Text*i:'Confirmed'][Id*j:''][Number*k:'2']
 [Then:''
 [Update*l:''][Finish_date*m:'today'](obj?l?m)]
 <equal?h?i|?e>
 <sum?j?k|?f>
 <greaterthan?g?f|?d>
 <and?d?e|?c>]

4. In XML: the XML representation generated using the above presented CGIF
representation is given below. Currently the unique XML structure created
specifically for this project is used. However, it is reasonable to adapt the XML
structure to the emerging standards, for example, rules markup language RuleML
by Rule Markup Initiative [18] or to provide transformation to and from RuleML
(the Initiative develops a modular RuleML specification and transformations from
and to other rule standards/systems).

<?xml version="1.0" encoding="iso-8859-1"?>
<CGIF>
//Entity definition (from structural part of the
model):
<Tables>
 <Table Name="ManufOrder">
 <Column Name="Status"/>

 On Business Rules Automation: The BR-Centric IS Development Framework 361

 <Column Name="Id"/>
 <Column Name="Finish_date"/>
 </Table>
</Tables>

//Rule name:
<Rule Name="Rule1">
//Event part:
<Event Column="Status" MainTable="ManufOrder"
Operation="Update">
 <Condition>
 <Actor Name="jkf" Type="sum">
 <In1 Name="" Type="Id" Value=""/>
 <In2 Name="" Type="Number" Value="2"/>
 <Out Name="" Type="Number" Value=""/>
 </Actor>
 <Actor Name="hie" Type="equal">
 <In1 Name="" Type="Status" Value=""/>
 <In2 Name="" Type="Text"
 Value="Confirmed"/>
 <Out Name="" Type="True" Value=""/>
 </Actor>
 <Actor Name="gfd" Type="greaterthan">
 <In1 Name="" Type="Number" Value="15"/>
 <In2 Name="jkf" Type="Number" Value=""/>
 <Out Name="" Type="True" Value=""/>
 </Actor>
 <Actor Name="dec" Type="and">
 <In1 Name="gfd" Type="True" Value=""/>
 <In2 Name="hie" Type="True" Value=""/>
 <Out Name="" Type="True" Value=""/>
 </Actor>
 </Condition>
</Event>
//Conditional action part:
<Action>
 <Block Column="Finish_date" Operation="Update"
 Value="today"/>
</Action>
</Rule>
</CGIF>

5. Resulting trigger: The resulting trigger implementing the business rule is shown
below. The trigger is generated using MS SQL Server trigger definition syntax.

CREATE trigger Rule1 ON ManufOrder
FOR UPDATE
AS
IF UPDATE(status)
BEGIN
 if((SELECT status FROM INSERTED)='Confirmed' and
(SELECT id FROM INSERTED)+2>15)
 BEGIN
 UPDATE ManufOrder

362 I. Valatkaite and O. Vasilecas

 SET Finish_date=getdate()
 WHERE id=(SELECT id FROM INSERTED)
 END
END

5 Conclusions and Future Research

In the research of the business information systems development the business rules
approach has achieved a lot of attention and already has a steady niche with a strong
motivation behind. The completed survey of current technologies and tools shows
that despite the work already done towards technology standards there is still a way
to go – the commercial products use their unique modelling languages for business
rules, most of their rules processing and enforcement engines are stand alone, even
the embedded ones use their unique rules representation format, the proposed
business rules approaches are rather diverse depending on perspective or intended
purpose.

We have presented a generic BR-based IS development framework which can be
instantiated based on available techniques, methods or languages. We have carried out
the experiment of framework application substituting the generic framework
components with specific ones – such as selecting the ADBMS technology for rules
repository implementation, conceptual graphs for business rules and information
processing rules modelling, etc.

The other motivation for this paper and the framework itself was to show the
diverse concepts depending on the abstraction level and the flow and mapping scheme
of the objects from layer to layer. We have differentiated three layers – that of
business system, information system and information system implementation – and
have shown how the business objects map to information objects and to executable
specifications.

The proposed BR-centric IS development framework enables business rules
automation activity as the integral part of the development cycle; the traceability
issues, although supported by the framework, were not elaborated in this paper and
remain one of the important future research directions.

The next step in our research should be further refinement of the objects mapping
and transformations in different abstractions layers and the full case study employing
the proposed concepts and ideas.

References

1. ACT-NET Consortium. The Active Database Management Systems Manifesto: A
Rulebase of ADBMS Features. ACM Sigmod Record, Vol. 25(30), 1996, pp. 40-49.

2. Bajec, M., Rupnik, R., Krisper, M. Using Business Rules Technologies To Bridge The
Gap Between Business And Business Applications. In Proceedings of the IFIP 16th World
Computer Congress 2000, Information Technology for Business Management (G Rechnu,
Ed), Beijing, China, 2000, pp. 77-85.

 On Business Rules Automation: The BR-Centric IS Development Framework 363

3. Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modelling Language User Guide.
Addison-Wesley, 2000.

4. Business Rules Group. Defining Business Rules ~ What Are They Really? (formerly
known as the “GUIDE Business Rules Project Final Report,” November 1995), Business
Rules Group, (3rd Ed.), 2000. (Also URL: http:// www.businessrulesgroup.org)

5. Business Rules Solutions homepage. http://www.brsolutions.com.
6. Conceptual Graphs Standard. Document type: International standard (Draft), Document

stage: (20) Preparation, reference number of working document: ISO/JTC1/SC
32/WG2 N 000. http://www.jfsowa.com/cg/cgstand.htm, 2001.

7. Delugach, H. CharGer Manual. http://www.cs.uah.edu/~delugach/CharGer/, 2003.
8. Dorsey, P. Business Rules Analysis in the Real World. Electronic Proceedings of Oracle

Development Tools User Group ODTUG 2003, http:// www.odtug.com/ 2003_papers.htm,
2003.

9. FairIsaac BlazeAdvisor: How it works? http://www.fairisaac.com/NR
/rdonlyres/C3817720-3C36-4B43-9F65-3300B0B9AA29/0/advisor_how.pdf, 2003.

10. Gottesdiener, E. Business RULES Show Power, Promise, Application Development
Trends, Volume 4, Number 31, 1997, http:// www.ebgconsulting.com/ publications.
html#business_rules.

11. Infrex. Product overview. http://www.tcs.com/0_products/infrex/index.htm, 2002.
12. Morgan, T. Business Rules and Information Systems: Aligning IT with Business Goals,

Addison-Wesley, 2002.
13. Moriarty, T. Business-Rule Stuff or Marketing Fluff? Intelligent Enterprise, Volume 3 -

Number 3. http:// www.intelligententerprise.com/ 000209/ metaprise.jhtml, February 9,
2000.

14. Object Management Group. Business Rules in Models: Request for Information. URL:
http://cgi.omg.org/cgi-bin/doc?ad/2002-9-13, 2002.

15. Rosca, D., Greenspan, S., Wild, C.: Enterprise Modelling and Decision-Support
for Automating the Business Rules Lifecycle, Automated Software Engineering,
v.9, n. 4, p. 361, 2002.

16. Ross, R.G. Principles of the Business Rule Approach. Addison-Wesley, 2003.
17. Ross, R.G., The Business Rule Book: Classifying, Defining and Modelling Rules,

Database Research Group, Boston, MA, 2nd edition, 1997.
18. Rule Markup Initiave official homepage. http://www.ruleml.org,
19. Sowa, F., Zachman, J.A. Extending and Formalising the Framework for Information

Systems Architecture. IBM Systems Journal, 31:3. IBM Publication G321-5488, 1992.
20. Sowa, J.F. Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks/Cole, Pasific Grove et al., 2000.
21. Valatkaite, I., Vasilecas, O. A Conceptual Graphs Approach for Business Rules

Modelling. In L. Kalinichenko, R. Manthey, B. Thalheim, U. Wloka (Eds.). Proc. of
Seventh East-European Conference on Advance in Databases and Information Systems
(ADBIS), September 3-6, 2003, Dresden, Germany. LNCS 2798, Springer-Verlag, 2003,
pp. 178-189.

22. Valatkaite, I., Vasilecas, O. On Business Rules Approach to the Information Systems
Development. In: H. Linger et al (Eds.). Proc. of Twelfth International Conference on
Information Systems Development. Constructing the Infrastructure for the Knowledge
Economy. Kluwer Academic/Plenum Publishers, 2004, p. 199–208.

23. Von Halle, B. Back to Business Rule Basics, Database Programming and Design, 1994,
pp. 15–18.

364 I. Valatkaite and O. Vasilecas

24. Von Halle, B. Business Rules Applied: Building Better Systems Using the Business Rules
Approach. John Wiley & Sons, 2002.

25. Wan Kadir, W.M.N., Loucopoulos P. Relating Evolving Business Rules to Software
Design. Journal of Systems Architecture 50, 2004, pp. 367-382.

26. Yasu Technologies. QuickRules Discovery Guide. http://www.yasutech.com/ products/
quickrules/datasheet.pdf, 2003.

CFP Taxonomy of the Approaches
for Dynamic Web Content Acceleration

Stavros Papastavrou1, George Samaras1, Paraskevas Evripidou1,
and Panos K. Chrysanthis2

1 University of Cyprus, Department of Computer Science,
P.O.Box.20537, CY-1678 Nicosia, Cyprus

{stavrosp, cssamara, skevos}@ucy.ac.cy
2 University of Pittsburgh, Department of Computer Science,

Pittsburgh, PA 15260, USA
panos@cs.pitt.edu

Abstract. Approximately a decade since it was first introduced, dy-
namic Web content technology has been gaining in popularity over sta-
tic means for content dissemination. Its rising demand for computational
and network resources has driven researchers into developing a plethora
of approaches toward efficient content generation and delivery. Motivated
by the lack of a comprehensive study on this research area, we introduce
a novel research-charting, semi-formal framework called the CFP Frame-
work, on which we survey and compare past and present approaches for
dynamic Web content acceleration. Our framework not only serves as
a reference map for researchers toward understanding the evolution of
research on this particular area, but also reveals research trends toward
developing the next generation of dynamic Web content middlewares.

1 Introduction

The Internet and the Web have become commonplace and their growth is un-
precedented. This led to a proliferation of technologies to improve its usefulness
and user satisfaction. Dynamic Web content (DWC) technologies facilitate (a)
the adaptation of content served to a particular group of people (i.e., people that
live within a certain time zone or Internet domain region), and (b) the person-
alization of content to meet an individual’s expectations and needs (i.e., Web
banking or e-commerce). According to [13], the above two categories of DWC
comprise the 20% of Internet traffic each. DWC enables a new order of Web
applications including online financial-related services, news sites, portals and
e-learning brokerage platforms.

DWC technology involves a variety of cooperating components that are largely
defined as content middleware systems. Arranged in an n-tier architecture, as
seen in Figure 1, they cooperate with the goal of delivering content on demand to
Web users. A Proxy server intercepts client requests to Web servers and delivers
cached content, if certain criteria hold. Otherwise, the request is forwarded to

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 365–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

366 S. Papastavrou et al.

the Web server that invokes the appropriate application server, which generates
the content by querying local and/or remote databases.

A dynamic Web page (DWP) consists of static and dynamic content junks
called fragments, typically arranged in a template file interleaved with static
HTML code. Dynamic fragments reside in templates in the form of script code
blocks that must be processed by the application server. This processing, as il-
lustrated in Figure 1, may require the execution of a significant number of script
lines for performing tasks such as database queries, image processing, complex
input Form generation, or even information retrieval and manipulation from re-
mote hosts. For instance, the template file of the PC customization dynamic Web
page of the www.higrade.com online computer retailer contains approximately
2000 lines of script code, having more than 20 database queries, distributed
across 6 dynamic fragments.

Since the generation and delivery of dynamic Web content requires increased
computational and network resources, especially during peak hours, various bot-
tlenecks occur. The study in [5] identifies the bottlenecks on three typical dy-
namic content Web applications. A significant number of research approaches
for accelerating DWC are proposed in the literature. As a result, state-of-the-
art content middleware technology is found today in many commercial products
that incorporate many of the proposed approaches, proving in this way the im-
portance and applicability of this particular research area.

DLLsDLLs

Local
Application

Content
DB

HTML
Template

.php .asp
.cfm

Script
Code

Blocks
SQL has

Remote
Data

Centers

xml

Javascript
Styles

Images

.js .css

Web Server

Application Server(s)

Parses

 Invokes

Cached Templates

Reuses

http requests

Proxy Server

DLLs

Fig. 1. The n-tier architecture and the process of generating dynamic Web Content

Motivated by the lack of a comprehensive study on this research area, we in-
troduce the CFP Framework, a novel semiformal framework that facilitates the

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 367

classification of existing research approaches based on their underlying method-
ologies and principles. We then attempt a complete literature review and concep-
tual comparison of the surveyed approaches on the CFP Framework. The purpose
of the framework is not to reveal the ‘best’ approach, but to be a handy tool
for researches toward understanding the evolution of research around DWC ac-
celeration. The framework also reveals research trends that can guide researches
into defining the next generation of dynamic Web content middlewares.

The next section introduces the CFP Framework and explains the reasoning
behind its metrics. Section 3 surveys research on dynamic Web content accel-
eration and classifies the approaches. In Section 4, we gather and compare the
surveyed approaches on the CFP Framework. We recap in Section 5.

2 The CFP Framework

Since a quantitative comparison (i.e., a performance comparison) between the
approaches that we survey in the next section is rather unfeasible due to realistic
and complexity constrains, we focused instead on establishing a theoretical, com-
parative semi-formal framework. We consider the fact that the majority of the
surveyed approaches employ and combine to some extend three common char-
acteristics or practices. Those are Caching, Fragmentation and Polymorphism
and comprise the three principles of the CFP Framework.

The principle of Caching suggests a multi-tier reuse of content on network
sites such as proxies, Web servers, application servers, or even at the client
browser. The principle of Fragmentation suggests the breaking of a dynamic
Web page down to computationally, but not necessarily semantically, distinct
parts. This principle enables (a) finer-grained Caching and (b) concurrency in
DWC generation. The notion of Polymorphism allows for a dynamic Web page
to be assembled in more than one way without the need to regenerate any con-
tent. More specifically, the layout of the DWC fragments is decided dynamically
according to, for example, the client’s preferences. Polymorphism, in this way,
enables another dimension of content dynamism by allowing the templates to
be dynamic themselves. In the CFP acronym, Caching precedes the other two
principles as the earlier to appear, and Polymorphism is the most recent.

The intuition behind the use of the CFP Framework is that the three prin-
ciples of the framework can be viewed as orthogonal dimensions along which
different research approaches can be classified. Thus, the framework can be rep-
resented as a cube as shown in Figure 2.

We make use of the CFP Framework by plotting a particular approach on
the cube, given its corresponding values for each principle. For that purpose,
we define value to be the extend of employment of a particular principle. Since
the three principles are rather qualitative and subjective than quantitative, this
evaluation requires assumptions and approximations in order to define the ap-
propriate metric for each principle. For readability, Figure 2 illustrates the basic
metrics only for the principles of Caching and Fragmentation.

The metric for the principle of Caching is the proximity of cached docu-
ments. Therefore, we state that an approach that supports Caching of dynamic

368 S. Papastavrou et al.

Fine-Grained
Client

Caching

Some support
for (Server-side)
Fragmentation

Server-side
Caching

Fine-Grained
Server-side

Caching

Proxy-side
Caching

Fine-Grained
Proxy Caching

& Active
Caching

Arbitrary
(Server-side)
Fragmentation

Client-side
Caching of

whole pages

Y

Fragmentation

Polymorphism

Caching

Server-side
Dynamic
arrangement of
fragments

Caching
document
fragments

at the client

Not
Applicable

Not
Applicable

X

Fig. 2. The CFP Framework and its Approximate Metrics

content closer to Web users is evaluated higher from others that cache content
closer to the Web server. Moreover, we state that an approach is fully employing
Fragmentation if it supports for an arbitrary number of fragments in a dynamic
Web page and of any computational type and size. Finally, an approach fully em-
ploys Polymorphism if it provides support for an arbitrary number of alternative
arrangements for a dynamic Web page. Since we realize the notion of Polymor-
phism in combination with Fragmentation, we assert that it cannot be employed
as a stand-alone principle or in combination only with Caching. Therefore, it
appears as ‘not applicable’ at the corresponding edges of the CFP framework.

For example, the approach ‘X’ plotted on the framework in Figure 2 refers
to an approach that (a) supports proxy-side Caching of DWC, and (b) fully
supports Fragmentation. In another example, approach ‘Y’ caches arbitrary
DWC fragments at the client-side and provides some basic support for differ-
ent arrangements of the fragments.

3 Taxonomy of Approaches

In this Section, we survey the proposed approaches for accelerating the genera-
tion and delivery of dynamic Web content. We present the taxonomies in a more
natural and reader-friendly way, rather than applying a strict technical order.
Due to the lack of space, we exclude early, assorted and hardware techniques
not directly related to the CFP framework.

3.1 Server-Side Fragmentation

The first class of approaches that we survey relate to the principle of Fragmen-
tation. An early form of Fragmentation is encountered in Server-Side Includes

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 369

(SSI) [2]. According to SSI, some simple dynamic parts of a page can be isolated
and regenerated every time the page is requested such as a counter, the time at
the server, and date last modified. [8] suggests a more general form a Fragmenta-
tion that allows the dissection of a dynamic page into distinct parts (fragments)
that are assembled according to a template file. A fresh version of a fragment
is generated every time its underlying data objects are modified, using database
triggers. With its fresh fragments in place, a dynamic page can be either im-
mediately delivered or cached (as discussed next). More recently, [21] proposes
a technique for accelerating template parsing and execution by processing the
dynamic fragments of the template in a concurrent fashion. This approach, how-
ever, achieves increased server throughput and lower client response times when
the system is not fully loaded. It is worth mentioning that the identification of
the fragments takes place at run time (during parsing) and requires no a-priori
compilation or special handling of the template.

3.2 Server-Side Caching

Content Caching boosts dynamic content generation by eliminating redundant
server load. There are many interesting approaches for server-side Caching that
vary mostly on the granularity and level of Caching. In [16] and [14], the Caching
of dynamic documents at the granularity of a page is proposed for early con-
tent middlewares such as CGI, FastCGI, ISAPI and NSAPI. Extending their
work in [14], the authors in [24] propose a Dynamic Content Caching Protocol
(DCCP) that can be implemented as an extension to HTTP. This protocol allows
for content middlewares, such CGI and Java Servlets, to specify full or partial
equivalence amongst different URIs (HTTP GET requests). The equivalence in-
formation is inserted by the content middleware into the HTTP response header
of a dynamically generated page, and stored at the Caching module along with
the cached page. For example, the URI http://www.server.com/LADriveTo.php
?DestCity=newyork instructs the content middleware to generate a page with
driving directions from Los Angeles to New York. Prior to transmitting the result
page, the middleware inserts the “cache-control:equivalent result=Dest=queens”
attribute in the HTTP response header. The Caching module will cache the page,
transmit it to the client, and store the cache-control directive for future use. A
subsequent client request for the same URL, but for a different DestinationCity
value, will be evaluated by the cache module for a possible mach with the value of
“queens” or “newyork”. If a much is found, then the cached page is transmitted
to the client.

3.3 Fine-Grained Server-Side Caching

To achieve greater reuse of cached content, across both time and multiple users,
Caching at finer granularities is proposed. The authors in [28] suggest the Caching
of static HTML fragments, XML fragments and database query results. This
approach, however, applies to Web applications that follow a strict declarative
definition and follow a certain implementation. In addition, Caching cannot be

370 S. Papastavrou et al.

applied to arbitrary parts of a DWP. A more general, flexible, and easier-to-
use method for fragment Caching is introduced later on in [10] and studied
more thoroughly in [9]. According to this method, Caching can be applied to
an arbitrary fragment of a template by first wrapping it around with the appro-
priate tags (explicit tagging). XCache [3], is a commercial product that installs
as a plug-in on popular dynamic content middlewares, and supports fragment
Caching of any type using explicit tagging. Also, the Cold Fusion content mid-
dleware provides tags for explicitly defining the fragment to be cached.

3.4 Caching at the Proxy Server

Proxy Caching is the most popular approach for faster delivery of reusable sta-
tic content such as static HTML pages and media files [26]. A Proxy degrades
bandwidth consumption by eliminating unnecessary traffic between clients and
servers, given that it is strategically located1 between them. Proxy servers are
found in many network points along the client/server path, with most popular
those that reside on an enterprise’s network boundaries. It has been identified
that the usual hit ratio for proxy caches is around 40% [27], while another 40%
of the traffic is redundant when proxies are employed [25].

A popular approach for Web sites to meet the growing demand on DWC de-
livery is to lease cache space on a service-based network of interconnected proxy
servers called Content Distribution Networks (CDN). A typical CDN employs a
set of proxy servers strategically arranged by geographical, or network location.
Client requests for content are routed to the closest proxy server of the CDN net-
work. The list of popular CDNs includes brand names such as Akamai, Yahoo,
Intel and Nortel. It is noteworthy that for a Web site to be registered and served
by a CDN network, an off-line procedure of tagging the source code (HTML
script files) of the Web site is required. A thorough survey on the procedures,
practices and performance of CDNs can be found in [17].

Despite the location of cached content, Server and Proxy Caching find their
major implementation difference on how data consistency between the cached
content and the underlying database objects is enforced. For the former, cache
consistency is easier to be enforced since the Caching module is local to the
content middleware (as seen in [8]). For the latter case, efficient cache invalidation
techniques are required as discussed later on.

With the evolution of dynamic content middlewares, proxy caches had to
adapt by providing support for dynamic documents. Early research conducted
in [24], proposes the Caching of dynamic content at the granularity of a page
by using the Dynamic Content Caching Protocol as previously discussed. The
Caching protocol is applicable for both server-side and proxy-based Caching,
and works by allowing the manipulating of HTTP header information and URL
query string parameters (GET variables).

Another interesting approach for Caching dynamic pages is found in [19].
Analogous to the Caching protocol approach discussed earlier, this one suggests

1 Closer in terms of network latency, topology or geographic location.

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 371

that the proxy server be allowed to examine the HTTP POST variables that are
submitted as part of a client HTTP request for a URI . In brief, the proxy server
attempts to reuse cached SQL query results by looking up on a predefined map-
ping called Query Template Info. This mapping establishes a relation between
(a) the HTML form fields that are submitted with a URI request, and (b) the
SQL query that uses those form fields as query parameters such as WHERE and
ORDER BY clauses. Two strong points of this work is that (a) the proxy ex-
tracts and reuses portions of cached query results, if necessary, to satisfy future
requests, and (b) it compliments a cached query result on demand by negotiat-
ing with the content middleware. Since the HTTP post variables are generated
from HTML form fields, this approach is called form-based. The manipulation of
cached content at the proxy server lies under the more general notion of Active
Caching as we discussed later on in 3.10.

Both the form-based and the protocol-based approaches discussed above do
not address the important issue of cache consistency. The authors in [6] pro-
pose an invalidation technique for cached dynamic pages, which uses a (triple)
mapping between (a) the database content, (b) the SQL queries and (c) the dy-
namical Web pages. This mapping explicitly identifies the database objects that
affect a set of queries which in turn are involved in generating a set of DWPs.
According to this technique, a cached page is invalidated once a database object
that relates to an SQL query which, in turn, is involved in generating that page
is updated. Extending their work in [6], the authors in [18] illustrate how this
triple-mapping invalidation approach is applied in a real world scenario when all
four the database server, the content middleware, the Web server and the proxy
cache are entirely independent Vendor products. Additionally, a technique for
cached content freshness based on parameters such as user request, database
content update rate and network latency is proposed.

3.5 Fine-Grained Proxy Caching

Caching at the granularity of a fragment is consequently proposed for proxy
caches. According to fine-grained proxy Caching, the template file is cached
at the proxy server whereas its dynamic fragments are either reused from the
proxy cache or fetched fresh from the Web server. Edge Side Includes (ESI) was
introduced as a standard for Caching page templates along with their fragments
on proxy servers [1]. According to ESI, the dynamic fragments of a page are
explicitly marked using tag-based macro-commands inside the page’s template
file. An ESI-compliant proxy server must provide support for parsing the cached
template file and executing macros that dictate whether a fragment should also
be retrieved from cache, or pulled from the original server. ESI macros have
access to a client’s HTTP request attributes (cookies, URL string, browser used)
in order to choose between fragment alternatives. An example of that would be
the identification of the client’s browser version or vendor in order to pick the
appropriate fragment that meets the browser capabilities. Endorses of the ESI
technology are leading CDN brands such as Akamai, database vendors such as
Oracle, and content management leader Vignette.

372 S. Papastavrou et al.

3.6 Client-Side (Fine-Grained) Caching

Surprisingly, the notion of assembling a dynamic page away from the original
content middleware was firstly introduced in [12] not for proxy caches, but for
client browsers. The proposed technique, called HPP (HTML pre-processing),
requires from the client browsers the extra functionality of Caching and process-
ing (parsing) a template file, containing blocks of macro-commands, prior to
rendering a dynamic page. Each macro-command block generates from scratch
a page fragment by manipulating local variables and strings. This idea can be
overview as the client-side equivalent to Server-Side Includes discussed earlier.

Extending their work in [12], the authors in [23] propose the Client-Side
Includes (CSI) by merging HPP and ESI. In order to provide support for CSI in
the Internet Explorer Web browser, the authors propose a generic downloadable
wrapper (plug-in) that uses JavaScript and ActiveX. The wrapper pulls and
caches at the client side the template and fragments that are associated with a
requested DWP, assembles them together according to the ESI directives in the
template, and finally renders the page. According to the authors, CSI is suitable
for ‘addressing the last mile’ along the client-server network path suitable for
low-bandwidth dial-up users, even in the absence of an edge server (i.e., a CDN).

3.7 Polymorphism: A Second Dimension of Content Dynamism

Caching at the fragment level requires the existence of a page layout/template
that dictates a strict arrangement for cached DWC fragments. If we loose up
this restriction, by allowing for more than one template per dynamic page, we
achieve Polymorphism (in Greek: the ability for something to show different
phases-morphs) in DWC Caching. It is, therefore, left to the content middleware
to pick the right template, according to the user’s preferences (e.g., the Yahoo!
Web site). A recent study in [11] proposes the use of multiple templates for
a specific dynamic page along with proxy-cached page fragments. Following a
client’s request for a dynamic page (e.g., www.server.com/page1.php?id=2), the
proxy server always routes the request to the origin content server and causes
the execution of the original script (for example homepage.php). This routing
is necessary for determining the desired template for page1.php at run time.
The selected template is then pushed to the proxy server where it is parsed for
identifying which fragments are reused from cache and which ones are requested
fresh from the server. After all the fragments are inserted into the template, the
complete assembled page is transmitted to the client. The performance analy-
sis conducted in [11] demonstrated solid bandwidth reductions when applying
fragment Caching, however, performance analysis for other critical metrics, such
as scalability and responsiveness, remains to be seen. We believe that both the
necessary routing of each request to the origin content server and the invoca-
tion of the original script can heart client response time and server scalability
respectively. Nevertheless, the techniques introduced in this approach are an ex-
cellent starting point for further research. Polymorphism is also supported by
the ESI technology in an indirect manner. Instead of choosing from a pool of
templates, basic ESI branching commands may reorganize the layout inside a
template according to client credentials (HTTP request header information).

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 373

3.8 Support for Inter-dependent Fragments

Caching of dynamic content at the fragment level, as employed today by proxy
servers, assumes that individual page fragments have independent Caching char-
acteristics. This assumption has simplified the design and deployment of proxy
caches based on either the Edge Side Includes or other proposals. There exist,
however, Web applications for which two or more fragments of the same dynamic
page are dependent to each other. An example is an online retailer’s Web page
that includes among others (a) a fragment containing script code for evaluat-
ing and regenerating an HTML form used for product customization, and (b)
a fragment with script code for calculating and rendering the shopping cart’s
total charge (including the value of the product being customized by the previ-
ous fragment). Upon client submission, the second fragment cannot execute to
calculate the total charge unless the previous fragment has evaluated the HTML
form input. In this case, the two fragments must execute in a sequential (ser-
ial) manner to ensure consistency between the total charge and the customized
product’s value.

The notion of fragment dependency in dynamic content generation has been
studied first in [8] and later on in [21]. In brief, the former study suggests the
construction of a separate Object Dependency Graph (ODG) where the objects
in this case are the fragments ids (generated fragments are stored as separate
files). Furthermore, a dynamic page is defined by a template file with references
to fragment files using include statements. In addition, database triggers are
installed to ensure that upon database content update, the affected fragments
(and their dependent ones) are regenerated in the right order. Client requests
for a particular page are fulfilled by inserting into the appropriate template the
already generated fragment files. Although the whole procedure requires a quite
complex setup, this approach is suitable for publishing heavily requested por-
tals and news sites with frequently updated content and less client interaction.
The latter study, suggests a simpler and more general approach for identifying
dependencies between page fragments. Instead of using an external fragment
dependency graph in conjunction with database triggers, the fragment depen-
dencies are defined at the beginning of each template file. For example, the
tag <dependency source fragment=3 target fragment=5> informs the content
middleware that the third fragment to be encountered during parsing must be
executed before the fifth fragment. This inline and immediate definition of frag-
ment dependencies ensures consistency between dependent fragments, since this
approach attempts to execute all the fragments of a template in a concurrent
fashion (see Section 3.1). As opposed to the former approach, this one is suitable
for more interactive Web applications i.e., an online retailer shop.

3.9 Caching with Delta Encoding

Delta encoding is a popular technique for efficiently compressing a file rela-
tively to another one called the ’base’ file [15]. This is achieved by computing
and storing the difference between the file being compressed and the base file.

374 S. Papastavrou et al.

Streaming media compression, displaying differences between files (the UNIX
diff command) and backing-up data are common applications of delta encoding.
Under the assumption that consecutive client requests for a specific URI would
generate a sequence of moderately different dynamic pages, Delta encoding can
be exploited as an alternative for Caching dynamic content. [22] proposes the
Caching of a base file for each group (also called Class) of correlated documents
i.e., pages that share a common layout. With the base file cached, the next client
request would force the content middleware to compute the Delta between the
new dynamic page that the client would normally receive and the base file.
The computed Delta is then transmitted from the content middleware to the
side where the base file is cached for computation of the new dynamic page.
Eventually, the result is transmitted to the client. An interesting feature of this
’class-based delta-encoding’ approach, is that the base file can be cached either
at the server-side, proxy-side, or even at the client browser itself as long as the
required infrastructure exists. In the latter case, Delta encoding benefits could
low-bandwidth users. [22] demonstrated solid bandwidth savings and reduced
client perceived latency, however, those performance gains reduce the average
system throughput to 75% due to increase the CPU overhead of computing the
deltas. Nevertheless, we consider Delta encoding for Caching DWC as an exciting
open topic of research.

3.10 Active Caching

The notion of Active Caching refers to the ability possessed by a Caching middle-
ware to manipulate cached content instead of requesting fresh content from the
server. The approach found in [7] piggybacks a Java object into a dynamically
generated document, which is then cached at the proxy. The proxy provides a
Java runtime environment in which that object executes in order to modify the
dynamic parts of the cached document according to a client’s preferences. Ex-
amples of document modifications include advertising banner rotation, logging
user requests, Server Side Includes execution and even Delta compression. Be-
sides these general types of modification, the Java object can personalize cached
documents by retrieving personal information from the Application Database
at the server side. Data chunks of personal information are kept by the object
for future reuse. Building up on this approach, a more general form of DWC
Caching with Active Caching is suggested in [20]. This one is very similar to
the ’form-based’ approach discussed earlier in the sense that the Java object
manipulates HTTP post variables (the Form input) for filling the dynamic parts
of the cached document. In general, those two Active Caching approaches dif-
fer from other approaches that support Caching and Fragmentation since the
dynamic parts (or fragments) are not decoupled (stored separately) from the
cached document (or template).

Active Caching of this form can be viewed as a means of content middle-
ware migration. Original executable code and data, both parts of the content
middleware, can be packed along with a mobile object (called Mobile Agent)
that dispatches to a destination where it can better serve the client (i.e., a proxy

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 375

server). This ambitious approach aims at alleviating the processing bottleneck
from the content middleware, while reducing unnecessary network traffic by em-
ploying Caching and proxy-side computation.

Since the notion of Active Caching is supported by mobile code or function
calls that accompanies relevant data, then an alternative or indirect form of
Active Caching can be achieved by employing Active XML (AXML) [4]. Doc-
uments written according to AXML contain data in XML and calls/references
to Web Services that fill-in on demand the missing (or dynamic) parts of the
documents. In extend, AXML documents can be cached and materialized prior
to transmission to Web users.

4 Conceptual Comparison of the Approaches

4.1 General Remarks

In this Section, we plot the surveyed approaches and technologies on the CFP
Framework cube (Figure 3). This allows for a high-level comparison of the ap-
proaches, as well as for identifying research trends. In addition to the three
dimensions/principles of Caching, Fragmentation and Polymorphism, we show
how recent an approach is by using a gray scale background. At the heart of the
framework, with null values for each principle, we place CGI as the primary dy-
namic content middleware. An immediate observation from Figure 3 is that the
trend in research is toward refining and extending the employment of the three
principles while attempting to combine them. In other words, dynamic content
tends to be cached closer to the client, at finer granularities, and under different
arrangements. This is crucial for modern Web applications that require content
personalization and support for low-bandwidth (mobile) users.

4.2 Detailed Comparison and Discussion

As we observe on the CFP Framework, the majority of early research in acceler-
ating DWC has focused on Caching whole pages (or slight variations of it). Page-
level Caching does not meet the fine-grained Caching requirements of modern
Web applications. However, within this group of page-level Caching approaches
the most recent one that employs Delta Encoding appears very promising in-
terms of performance, especially for low bandwidth users such as mobile users.
Therefore, we recommend an implementation that supports Fragmentation that
would encapsulate the Caching characteristics of modern Web applications.

Active Caching, as introduced in [7] and explored more in [20], combines the
advantages of proxy-side Caching while providing some support for Fragmen-
tation. Both approaches do not employ full Fragmentation since the fragments
are not decoupled from the template (are not stored separately), and therefore
cannot be cached and reused. For the same reasons, we assert that Server Side
Includes (SSI), as discussed in Subsection 3.6, provides the same level of Frag-
mentation. On the other hand, the references to XML services that the Active

376 S. Papastavrou et al.

 Fragmentation + Server-side Caching: [8]
Active XML: [4]

ESI, CDN: [1]

CSI: [23]

Active Caching: [7, 20]

HPP: [12]

other: [6, 18]

Form-based Caching: [19]

Delta: [22]

F

PC

Server-side DCCP: [24]

Proxy-side DCCP [24]

 Server-side Fragment Caching 2: [9, 10]

[11]

 Server-side Fragment Caching 1: [28]

CGI: pioneer
method with no
optimizations

Support by modern
scripting languages

(ASP, PHP, CFM)

SSI: [2]

C: Caching
F: Fragmentation
P: Polymorphism

Fragmentation: [21, XCache, Cold Fusion]

xxxxxx

more recent

Fig. 3. The CFP Framework with the plotted proposed approaches and technologies.
The numbers relate to the reference numbers in the bibliography

XML approach embeds within a template can be reused by other templates
allowing in this way for arbitrary Fragmentation.

The early publishing system proposed in [8] supports arbitrary Fragmenta-
tion of DWC, however, it provides server-side Caching only at the granularity of
page. The recent approach found in [21] supports arbitrary Fragmentation, inner-
fragment dependency, and immediate execution of fragments with no Caching.
The former approach is more suitable for less interactive Web applications such
as portals and news sites since the generation of content is data-driven (i.e.,
triggered by database changes). The later approach better suits interactive Web
applications, such as e-commerce, where fragment generation is user-driven.

The approach proposed in [28] provides server-side Caching but does not
employ full Fragmentation. This is because even though the fragments are de-
coupled from the template, the approach allows for only specific forms of con-
tent (such as XML and queries) to be isolated and cached. The more recent
approach found in [10] and [9] works around this problem by providing support
for Caching of any type of content, at any granularity, on the server. To the same
extend, scripting languages such as PHP, Cold Fusion, ASP and XCache provide
programming-level support for arbitrary server-side Caching. Edge Side Includes
extends [10] and [9] by moving arbitrary fragment Caching from servers to prox-
ies. Finally, [11] compliments ESI (with Polymorphism) by supporting dynamic
arrangements of the cached fragments at the proxy. The original Client Side
Includes approach, as proposed in [12], employs full Caching, and it targets low-
bandwidth clients. However, for the same reasons discussed in Active Caching
and Server Side Includes, the approach does not provide full Fragmentation since

CFP Taxonomy of the Approachesfor Dynamic Web Content Acceleration 377

it does not allow for arbitrary fragment Caching. The more recent and improved
version of Client Side Includes, as proposed in [23], supports full Fragmentation
by allowing arbitrary content fragments to be cached at the client browser.

5 Conclusion

In this paper, we surveyed and classified the research approaches and technolo-
gies for accelerated dynamic Web content generation and delivery. In order to
perform a structured conceptual comparison of the approaches, we introduced
the CFP Framework. We believe that our work can be used by researches not
only as a study for understanding dynamic Web content technology, but also
as point of reference toward developing the next generation of dynamic Web
content middlewares.

References

1. The edge-side includes initiative. http://www.esi.org.
2. Server-side includes. http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html.
3. Xcache: The cache management solution. http://www.xcache.com.
4. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active xml:

Peer-to-peer data and web services integration. In VLDB (2002)
5. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J.,

Rajamani, K., Zwaenepoel, W.: Specification and implementation of dynamic web
site benchmarks. In IEEE 5th Annual Workshop on Workload Characterization
(2002)

6. Candan, K. S., Li, W. S., Luo, Q., Hsiung, W. P., Agrawal, D.: Enabling dynamic
content caching for database-driven web sites. In SIGMOD Conference (2001)

7. Cao, P., Zhang, J., Beach, K.: Active cache: caching dynamic contents on the web.
In Distributed Systems Engineering 6(1) (1999) 43–50

8. Challenger, J., Iyengar, A., Witting, K., Ferstat, C., Reed, P.: A publishing system
for efficiently creating dynamic web content. In INFOCOM (2) (2000) 844–853

9. Datta, A., Dutta, K., Ramamritham, K., Thomas, H. M., VanderMeer, D. E.:
Dynamic content acceleration: A caching solution to enable scalable dynamic web
page generation. In SIGMOD Conference (2001)

10. Datta, A., Dutta, K., Thomas, H. M., VanderMeer, D. E., Ramamritham, K.,
Fishman, D.: A comparative study of alternative middle tier caching solutions to
support dynamic web content acceleration. In The VLDB Journal (2001) 667–670

11. Datta, A., Dutta, K., Thomas, H. M., VanderMeer, D. E., Suresha, K. Ramam-
ritham, K.: Proxy-based acceleration of dynamically generated content on the
world wide web: An approach and implementation. In SIGMOD Conference (2002)
97–108

12. Douglis, F., Haro, A., Rabinovich, M.: HPP: HTML macro-preprocessing to sup-
port dynamic document caching. In USENIX Symposium on Internet Technologies
and Systems (1997)

13. Feldmann, A., Caceres, R., Douglis, F., Glass, G., Rabinovich, M.: Performance of
web proxy caching in heterogeneous bandwidth environments. In INFOCOM (1)
(1999) 107–116

378 S. Papastavrou et al.

14. Holmedahl, V., Smith, B., Yang, T.: Cooperative caching of dynamic content on
a distributed web server. In IEEE International Symposium on High Performance
Distributed Computing (1998) 243

15. Hunt, J. J., Vo, K. P., Tichy, W. F.: Delta algorithms an empirical analysis. ACM
Transactions on Software Engineering and Methodology (1998) 7(2):192–214

16. Iyengar, A., Challenger, J.: Improving web server performance by caching dynamic
data. In USENIX Symposium on Internet Technologies and Systems (1997)

17. Krishnamurthy, B., Wills, C. E., Zhang, Y.: On the use and performance of content
distribution networks. In Internet Measurement Workshop (2001) 169–182

18. Li, W. S., Candan, K. S., Hsiung, W. P., Po, O., Agrawal, D.: Engineering high per-
formance database-driven e-commerce web sites through dynamic content caching.
In EC-Web (2001) 250–259

19. Luo, Q., Naughton, J. F.: Form-based proxy caching for database-backed web sites.
In The VLDB Journal (2001) 191–200

20. Luo, Q., Naughton, J. F., Krishnamurthy, R., Cao, P., Li, Y.: Active query caching
for database Web servers. (2000) 92–104

21. Papastavrou, S., Samaras, G., Evripidou, P., Chrysanthis, P. K.: Fine-grained
parallelism in dynamic web content generation: The parse dispatch and approach.
In CoopIS/DOA/ODBASE (2003) 573–588

22. Psounis, K.: Class-based delta-encoding: A scalable scheme for caching dynamic
web content. In ICDCS Workshops (2002) 799–805

23. Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C. R.: Moving edge-side includes
to the real edge - the clients. In USENIX Symposium on Internet Technologies
and Systems (2003)

24. Smith, B., Acharya, A., Yang, T., Zhu, H.: Exploiting result equivalence in caching
dynamic web content. In USENIX Symposium on Internet Technologies and Sys-
tems (1999)

25. Spring, N. T., Wetherall, D.: A protocol-independent technique for eliminating
redundant network traffic. In Proceedings of ACM SIGCOMM (2000)

26. Wang, J.: A survey of Web caching schemes for the Internet. ACM Computer
Communication Review (1999) 25(9):36–46

27. Wolman, A., Voelker, G. M., Sharma, N., Cardwell, N., Karlin, A. R., Levy, H. M.:
On the scale and performance of cooperative web proxy caching. In Symposium
on Operating Systems Principles (1999) 16–31

28. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P.: Caching strategies for data-
intensive web sites. In The VLDB Journal (2000) 188–199

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 379 – 391, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Long-Term Temporal Data Representation of
Personal Health Data

Tore Mallaug1,2 and Kjell Bratbergsengen2

1 Faculty of Informatics and e-Learning,
Sør-Trøndelag University College,

NO-7004 Trondheim, Norway
torem@aitel.hist.no

2 Department of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
{torem, kjellb}@idi.ntnu.no

Abstract. The demand for timely, accurate personal health data is continuously
growing. The increasing volume of generated health data from different sources
creates new needs for a national, or international, future intergraded personal
electronic health record (EHR). The database plays an important role in such a
future health system. All kinds of personal health data must be stored and repre-
sented for a very long-term access. For this purpose we are working on a tem-
poral object model in order to represent different versions of health data con-
tent, schemas and ontologies. Mappings between versions of these concepts are
used for a temporal search in the stored data. In this paper we are introducing
the use and purpose of the temporal model related to the examples of data and
schema updates. A contribution of this work is to solve the EHR-case by using
solutions from temporal databases, schema versioning and ontologies.

1 Introduction and Research Objectives

1.1 Introduction to the Personal Health Data Case

In a modern health care system the need for data exchange of personal health data is
increasing [1,2,3]. There are numerous reasons for this new demand. In a modern
society citizens move and travel more frequently, and then they need to have their
personal health data available where they stay or live at the moment. In Norway,
citizens have a legal right for a free choice of a hospital, and a right for inspection of
all their personal health data stored by different health care providers (today this is
difficult to achieve since the data are stored in different local databases all over the
country). A personal integrated EHR [4] makes it easier for citizens to collect, man-
age and control their own personal health data. These trends ask for national database
solutions, and in a longer perspective, international solutions. From a database point
of view, a future solution of a common integrated database is an alternative to mes-
sage passing between heterogeneous information systems. This scenario can include
database benefits, such as better data quality, better data availability, storage optimi-

380 T. Mallaug and K. Bratbergsengen

zation, back up and logging administration, and common access control. We are going
from a message passing system to a data sharing system.

Our research objectives can be summarized into two sub parts:

• To evaluate the future database solutions for a common integrated EHR –
Electronic Health Record [4].

• To explore the long-term temporal data representation of lifelong personal
health data and mappings of different versions of these data in a time
space.

The second part can be used in an implementation of the first part. The EHR is a
wider, extended definition of the Computer-based Patient Record (CPR) (e.g. [1,5])
that includes all kinds of personal health data and is not only limited to, for example,
treatment at a single hospital.

Our contribution is to look how future EHR can be stored and how the data can be
represented from a database point of view. We also focus on a long-term access of
historical health data, since personal EHR must be accessible at least for the whole
person’s life (100+ years). Both the storage technology and the data representation
will continuously change during such a long time period. This approach is different
from traditional work on CPR since we do not constrain ourselves to commercial
systems of today, by the situation of organizational problems in the health care sector
or by legal limitations. Thus, we hope to offer applicable future solutions.

1.2 Dynamic Temporal Data Representations

Our goal is not to suggest one particular language for generating, or representing all
possible elements of personal health data, since such a choice limits future ability, e.g.
for representing expressions. As far as we know, no single mapping method can han-
dle all possible mappings between heterogeneous data representations, and no onto-
logical language is optimal for representing all kinds of semantic knowledge (and
there is no common standard for representing ontologies today). However, the lan-
guages of today, like the XML-technology, can be used to demonstrate data represen-
tation that can work.

1.3 An Example of Data Updates and Update Causes

Changes, or updates, in the data content are caused by different reasons over time. A
simple example of data content and schema changes over time is the updates of a
citizen’s postal code. We can use the postal code example to illustrate different rea-
sons for updates. A citizen’s postal code is updated because of one of the following
causes:
Case 1: The citizen moved (geographically) to a new postal address, from postal

code 7873 to 7870 on the date of 20.01.1999, and back again 01.06.2002 (illustrated
in Fig. 1, case 1). This is an ordinary data update only concerning a particular entity in
the database, and is not caused by any structural or semantically changes.
Case 2: The postal code 7873 (from now simply denoted code 7873) is not in use

by the postal service for a given time period, so citizens having code 7873 are given
the (neighbor) code 7870 from 01.10.2000 to 01.10.2000, when the code 7873 is

 Long-Term Temporal Data Representation of Personal Health Data 381

reopened (Fig. 1, case 2). This is a temporal change which is not causing any schema
change.
Case 3: Say, in the year 2008, the code 7873 is replaced with a new code, 37873,

because of structural changes in the postal code system. This is a change causing
structural schema versioning (Fig. 1, case 3). Note that dates into the future used in
this example are only for the purpose of illustration. This is not a system for looking
into the future, so the changes in the postal system is just hypothetical for showing
possible schema changes.
Case 4: The code 37973 is replaced on 01.10.2010, and split into two possible

new codes, 7800 GR and 7700 SN (Fig. 1, case 4). This is a semantical, or ontologi-
cal change in the usage of the postal system. The update is causes a semantical
schema versioning.

Time

01.06.200220.01.1999

7873 Harran 7870 Grong (7873 Harran)
7870

7904

7760

7880

7873

Time

01.10.200201.10.2000

7873 Harran 7870 Grong
(7873 not in use)

7873 Harran
7870

7904

7760

7880

7873

case 1

case 2

Time

01.06.200220.01.1999

7873 Harran 7870 Grong (7873 Harran)
7870

7904

7760

7880

7873

Time

01.10.200201.10.2000

7873 Harran 7870 Grong
(7873 not in use)

7873 Harran
7870

7904

7760

7880

7873

case 1

case 2

Time

01.10.2008

7873 Harran 37873 Harran
(7873 not used anymore)

37870

37904

37760

37880

37873

7700 SN

7800 GR
Time

01.10.2010

37873 Harran 7800 GR / 7700 SN
(37873 not used anymore)

case 3

case 4

Time

01.10.2008

7873 Harran 37873 Harran
(7873 not used anymore)

37870

37904

37760

37880

37873

7700 SN

7800 GR
Time

01.10.2010

37873 Harran 7800 GR / 7700 SN
(37873 not used anymore)

case 3

case 4

Fig. 1. Examples of updates in a postal code

Only the case 1 above is totally distinct from the other cases. The distinction be-
tween cases 2 - 4 are not clear, e.g. all can be related to (temporal) changes in the
geographically borders of post blocks (a post block shows the geographically area
where a postal code is used on a map - Fig. 1 shows simple examples of maps), and
all these cases can be ontological if they are caused by the changes in the postal sys-
tem. By store, or represent, such causes of changes over time, interpreting historical
data in the temporal space is possible.

In the following, section 2 shortly mentions how our research relates to other work
on EHR, and common database research. Section 3 describes how our temporal object

382 T. Mallaug and K. Bratbergsengen

model can be used, including the postal code example. Section 4 shortly introduces
some usage of mapping objects, ontology objects and mapping rules in our model.
Section 5 applies our model to usage the EHR-case.

2 Related Works and Present Realities

2.1 Electronic Health Record Realities

The fully integrated database solution for personal health data has not yet been devel-
oped. It is a lack of interoperable EHR systems (e.g. [6]). Studies on an integrated
EHR [3,7,8,9] so far suggest message exchange solutions through a middle layer in
health data networks or Internet. A future personal “virtual health record” activated by
linking records on the Internet is mentioned by [2]. The middle layer in such health
networks offer standardized solutions to set up message passing between different
healthcare actors, and services for secure data communication. There are both national
and international projects on XML standards for electronic message exchange (e.g.
[10]) in health care. It is also a common suggestion that health networks can be used
for data integration, for example to establish data warehouses [7]. However, these
studies do not focus on a long-term data representation, and there is no database solu-
tion presented.

Data security issues are essential in the EHR context [8]. These include the identi-
fication of the end users by using a smart card or by biometrical solutions. We have
chosen not to focus on the security, since data security is being rapidly developed and
the situation will be different in, 10-15 years from now, when the EHR can start to be
a reality. However, we believe it is possible to implement support for security mecha-
nisms in our framework and database solution, such as a role-based access control
(RBAC) authorisation model [11].

2.2 Database Research Solutions

Temporal database solutions have been discussed for many years [12,13,14,15]. Their
use of temporal attributes and different time stamps along the time axes are quite
useful in our model. An EHR is a temporal database, which is used for storing both
system generated time stamps (like transaction time telling when the data was stored
in the database, and time stamps generated by measuring instruments) and diverse
user defined time stamps (like timestamps associated to a laboratory test result, in-
cluding for example, the time/date the sample was collected, and the time/date the
result was authorised by the clinical pathologist [7]).

Schema versioning [16] is supported if the database system allows the access to all
versions of data, both data which are represented by the present schema version, and
data represented by older schema versions. In our model we use schema versioning,
but we also add the possibility to store new data through old schemas in the temporal
space, which is not a requirement for schema versioning in general. Mappings be-
tween data representations, like methods for schema matching [17], are often related
to the creation of common (global) integrated schemas, like used by mediators (e.g.
[18]). Some of these mapping solutions are not “total” in the sense that they only map
subparts of the original data content in different local schemas.

 Long-Term Temporal Data Representation of Personal Health Data 383

Schema transformation can be useful in our model, since some transformation
techniques are generic across data models, for example [19]. Such generic methods
can be one solution in defining mapping rules between schema versions in our model;
however, research is needed to see if it is applicable in our case.

In the same way as our temporal framework supports versions of schemas, versions
of related ontologies can be considered. There are studies on Ontologies versioning
(e.g. [20]), and also in using ontologies to solve semantic heterogeneity (e.g. [21]).
However, how ontologies can be used in our case requires further investigation.

3 Temporal Data and Data Versioning

3.1 The Total System Architecture

We are working on a long-term temporal data representation of the health data. Below
we describe some of the design ideas for a framework, or a model for the data repre-
sentation. The model works on a middle layer in a 3-tier client/server information
system architecture (Fig. 2), containing the database, the middle layer and local appli-
cations. We call the middle layer the Data Representation Layer - DRL. The DRL
offers common services, or tools to heterogeneous client applications, such as a map-
ping generator tool, request validation and request (query) execution (called request
execution tool later in this paper), logging and access control. A local application is
implemented to read and write data through a view to the DRL. This view is called
‘XML View’ in the Fig. 2 and simply ‘VIEW’ in the Fig. 3 and Fig. 5 later.

The underlying database must be a read-only / log-only database (e.g. [22]), where
all updates is stored as new object versions. No deletion of stored data is allowed.

lokal
applikasjon 3

Local application

DBMS
DB

DRL
with schema versions

Query generatorResult generator

Log

Database mapping

XML View

Access control DB
Log

DB
backup

Autentication
(3th. part)

Access control

SQL SQL

GUI1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

11.
Security Modul

Health Network or Internet

local
application 2

Schema
v.0

Schema
v.1

Request executing

Schema

XML

XML

lokal
applikasjon 3

Local application

DBMS
DB

DRL
with schema versions

Query generatorResult generator

Log

Database mapping

XML View

Access control DB
Log

DB
backup

Autentication
(3th. part)

Access control

SQL SQL

GUI1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

11.
Security Modul

Health Network or Internet

local
application 2

Schema
v.0

Schema
v.1

Request executing

Schema

XML

XML

Fig. 2. The total information system architecture

3.2 Temporal Object Data Model

The goal of the data model is to represent data content and its metadata as objects in a
temporal environment for a long-term use. In this paper we use three different object

384 T. Mallaug and K. Bratbergsengen

types from the data model: Data object is an object (instance) containing data content.
Data content can be like elements in XML or part of a relational table. Schema object
is an object containing a given schema version. The schema itself can be represented
by a DDL (Data Definition Language) as standard (none-system related) SQL
CREATE TABLE, or by other well-known syntaxes, for example a DTD or a XML
Schema. Any syntax used here is assumed to be a well-known standard readable in
the future. Any data content in a data object must be represented according to a
schema in a schema object. Since both the data content and the corresponding schema
is stored in the database, the data content is semi-structural (self-describing) in the
sense that the schema is not implemented in the database, only represented in the
DRL. The last object type is, what we choose to call, mapping object, which is an
object representing data, or meta-data about a given mapping between two objects.
Mappings can be present both for (instances of) data objects and schema objects. In
Fig. 3 objects in the DRL are drawn as circles, ‘Data v.0’ is a data object, ‘Schema
v.0’ is a schema objects, while ‘map1’ denotes a mapping object. The data content in
‘Data v.0’ is represented according to the schema in ‘Schema v.0’. ‘map1’ is repre-
senting the mapping rules and metadata about the mapping between ‘Data v.0’ and
‘Data v.1’.

7873 Harran

Time

01.10.2008

37873 Harran

01.10.2010

Data
v.2

Data
v.4

Data
v.3

Schema
v.0

Local
App.

VIEW

Data representation layer (DRL)

7800 GR / 7700 SN

Schema
v.1

Schema
v.2

valid start
times (TS) for
data v.2 and
schema v.0

case 3

case 4
map4

map3
7873 Harran

Time

01.10.2008

37873 Harran

01.10.2010

Data
v.2

Data
v.4

Data
v.3

Schema
v.0

Local
App.

VIEW

Data representation layer (DRL)

7800 GR / 7700 SN

Schema
v.1

Schema
v.2

valid start
times (TS) for
data v.2 and
schema v.0

case 3

case 4
map4

map3

7873 Harran

Time

01.06.2002

20.01.1999

7870 Grong

7873 back in use
01.10.2002

01.10.2000

moved

moved back

7873 not in use

Data
v.0

Data
v.2

Data
v.1

Schema
v.0

valid start
times (TS) for
root versions

map1
Local
App.

VIEW

Data representation layer (DRL)

case 1

case 2

map2

7873 Harran

Time

01.06.2002

20.01.1999

7870 Grong

7873 back in use
01.10.2002

01.10.2000

moved

moved back

7873 not in use

Data
v.0

Data
v.2

Data
v.1

Schema
v.0

valid start
times (TS) for
root versions

map1
Local
App.

VIEW

Data representation layer (DRL)

case 1

case 2

map2

Fig. 3. Temporal object data model with example data-, schema- and mapping objects

 Long-Term Temporal Data Representation of Personal Health Data 385

All stored objects must be related to a set of time stamps (e.g. [13]). This set in-
cludes a fixed time stamp which stores the transaction start time (TS) when the new
object instance was inserted into the database. A given object version is identified by
its TS time stamp and a universal unique object identifier (OID). The model is bi-
temporal [12], since we store both valid-time and transaction-time. Valid time can be
used, for instance, to store / update historical data today. The model also supports user
defined time stamps [14].

If following a linear time axis, as in Fig. 3, a time stamp can be seen as an accurate
time line on this axis. The reader may then look at "the world" as it was expressed at
that given historical date. The basic philosophy is that any object must be seen and
interpreted according to its time stamps. This approach represents nearly unlimited
ways for local client applications to query and view data versions both forward and
backward in time.

3.3 Data and Schema Versioning

We can make a distinction between value mapping and schema mapping. A single
value mapping is between two values, or more precisely two instances of a value of
elements from two data object versions. A single schema mapping is between two
elements in two schema object versions. Both types of mapping can be used in gener-
ating results of historical search in the database. Some mappings between data objects
are value mappings only, without any schema changes involved, while others include
schema mappings as well.

We can use the postal code examples to illustrate differences in mappings. In case
2 (Fig. 1), by using the combination of the cause of the change and the value map-
ping, a historical change in the usage of postal blocks can be found by searching
postal code updates for the citizens’ of Harran. By checking the causes of the change,
we do not look at the citizens who have moved from 7873 Harran (case 1). In case 3
or 4, historical change in postal blocks, can be found by looking at schema versioning.

The causes of the changes in the four cases can be represented as functions at a
logical level (the numbers refer to the cases):

1: Cause(EntityUpdate) = True;
2: Cause(TemporalChange) = True;
3: Cause(StructSchemaChange) = True;
4: Cause(StructSchemaChange, SemSchemaChange) = True;

These causes must be linked to the data objects involved. The mappings can be
represented as follows:

1: no mappings
2: ValueMap(V0,V1) =

 ValueMap(‘7873’,’7870’);
3: ValueMap(V0,V1) =

 ValueMap(‘7873’,’37873’);
3: SchemaMap(S0.postcode,S1.postcode)

 =DomainScaleMap(char(4),char(5));
4: ValueMap(V0,V1) = ValueMap

386 T. Mallaug and K. Bratbergsengen

 ((ValueMap(‘37873’,’7800 GR’)) or
 (ValueMap(‘37873’,’7700 SN’)));
4: SchemaMap(S0.postcode,S1.postcode)= DomainSemMap

 (char(4), Concatenate(char(4), char(2)));

ValueMap represents a value mapping and SchemaMap represents a schema
mapping, and V0 and V1 represent the values (the instances) in two temporal data
objects. The schema mapping in the case 3 is a domain scale difference - the number
of digits arises from 4 to 5. The schema mapping in the case 4 is a domain semantic
difference, while the postal code in schema S1 is represented by two (sub) elements,
one number code plus one code of two letters.

All these functions can be represented and stored in a relational database, for ex-
ample, as shown in the Fig. 4. The M_OID attribute, in the tables of Fig. 4, is the
OIDs of the mapping objects. We use an additional integer attribute, called no, as part
of the primary key, since a mapping object can obtain several sub-causes and sub-
mappings related to one (total) mapping.

TempChange12

EntityUpdate11

StructSchema13

StructSchema14

SemSchema24

cause_type*noM_OID*

TempChange12

EntityUpdate11

StructSchema13

StructSchema14

SemSchema24

cause_type*noM_OID*

CauseUpdate

7800 GR78731:114

’7700 SN78731:124

3787378731:113

787078731:112

Vs VtVmap_type*noM_OID*

7800 GR78731:114

’7700 SN78731:124

3787378731:113

787078731:112

Vs VtVmap_type*noM_OID*

ValueMap

postcode

postcode

Et_name

char(4)

char(4)

Es_type

char(5)postcode1:113

postcode

Es_name

(char(4),
char(2))

1:114

Et_typeSmap_type*noM_OID*

postcode

postcode

Et_name

char(4)

char(4)

Es_type

char(5)postcode1:113

postcode

Es_name

(char(4),
char(2))

1:114

Et_typeSmap_type*noM_OID*

SchemaMap

UC01.10.2002now01.10.20022

UC20.01.1999now20.01.19991

UC01.10.2008now01.10.20083

01.10.2010

VS

now

VE

01.10.2010

TS

UC4

TEM_OID

UC01.10.2002now01.10.20022

UC20.01.1999now20.01.19991

UC01.10.2008now01.10.20083

01.10.2010

VS

now

VE

01.10.2010

TS

UC4

TEM_OID

MappingObject

Fig. 4. Tables for storing updates and related metadata

The table MappingObject is containing the temporal data about the mappings.
The temporal attributes in the table is inspired by [23]. Our temporal data model is bi-
temporal since it allowed both transaction-time and valid-time dimensions [12]. It is

 Long-Term Temporal Data Representation of Personal Health Data 387

a principle that any object has a temporal dimension. Note that the usage of dates as
time units in the example is just for illustration purpose. In an EHR the granularity of
the time and time intervals varies from milliseconds in monitoring, for example vital
functions, to years in preventive medicine [7]. This means a need for a flexible time
stamp representation in the implemented temporal model, for representing time-
varying from large time span to fine granularity.

4 Using Mapping Objects for Temporal Reads

4.1 Applications Usage of the Data Representations

Temporal data reads can be done both backward and forward in the temporal space,
by using time stamps on the time axes (as in Fig. 3). Such time stamps can be called
read times. There are two possible read time types; horizontal reads, which reads
the data versions that were present at a given time stamp, or date, on the time axes.
The other read time type is vertical reads, which is search in time, reading several
versions of one or many data objects in-between two read time stamps. Vertical
reads are also needed if an application needs to read the most current (most up-
dated) version of data object content. Then the request execution tool in the DRL
needs to read “forward” in time if the application ‘VIEW’ is older than the most
current version (as in Fig. 5), or “backward” in time if the ‘VIEW’ is newer than the
most current version. Fig. 5 shows one example for each read type, using the postal
code example as a case.

Time

01.10.2008

01.10.2010

Data
v.2

Data
v.4

Data
v.3

Schema
v.0 Local

App.

VIEW

Data representation layer (DRL)

Schema
v.1

Schema
v.2

Horizontal
read

Vertical
read

map4

map3

Time

01.10.2008

01.10.2010

Data
v.2

Data
v.4

Data
v.3

Schema
v.0 Local

App.

VIEW

Data representation layer (DRL)

Schema
v.1

Schema
v.2

Horizontal
read

Vertical
read

map4

map3

Fig. 5. Horizontal and vertical reads (searches) in the temporal space

4.2 Usage of Mapping Objects

Mapping objects are used to store mapping rules and possible metadata concerning
the mapping. In Fig. 5, the mapping object ‘map3’ between Schema v.0 and v.1 can
also be used to represent the mapping between Data v.2 and v.3, since data updates on
the data content here are forced by the schema versioning (Fig. 1, case 3).

388 T. Mallaug and K. Bratbergsengen

4.3 Mapping Rules

Mapping objects have to contain mapping rules for any schema (versioning) mapping.
A mapping rule handles a particular (sub-)mapping between two elements in one
direction. A mapping rule can be implemented as a function, which always returns the
same answer for involved elements. A formal representation of a mapping rule can be
stored in a functional programming syntax or XML. The rule must then be imple-
mented in Java, as an example. A hierarchy of different types (classes) of mapping
rules can be implemented related to the different reasons of data updates.

A total mapping for one object version is a set of (implemented) mapping rules in
both directions, so that there is a mapping solution for all elements in the object to one
or many newer objects versions (many if the version is split into several newer objects
). Such total mappings are required for some of the health data in an EHR, since we,
for instance, can not tolerate that any data in the case of emergency is missing due to
none-complete mappings.

A system user can use a semi-automatical mapping generator tool maintained by
the DRL for implementing a set of mapping rules for a total mapping. Some sub-
mappings can be found automatically by the tool, but many have to be discovered and
accepted by a system user.

For a schema mapping, between two schemas S0 and S1, the process of generating
sub-mappings has to consider the following 3 circumstances:

1. If S0 and S1 defined by the same schema standard or not, and if the two
standards using (build on) the same data model or not.

2. If a sub-mapping cardinality is a 1:1, 1:N, M:N or view-to-view mapping.
3. The (semantic) type of a sub-mapping, related to structural and/or seman-

tic conflicts between schema representations. All such conflicts can be on-
tological (e.g. [24,25]).

The request executing tool in the DRL can run queries that use the mapping rules
and the (meta-)data in mapping objects, and in the next turn generate results for local
applications. Queries can be defined in different languages, like SQL (relational query
languages), or XQuery (XML-technology). Optimalization of queries against the data
representations is left for future research.

4.4 Linking Mappings to Ontologies

In the same way as for schemas, ontologies can be represented in the DRL as own
objects, ontology objects. Changes in ontologies and their usage can also be one cause
of changes in data content or schemas.

A schema object can have a relationship to one or many ontology objects if the
schema elements are linked to the standardized (medical) concepts of ontologies. A
data object can be also related to ontologies for included metadata about the elements
/ attributes if such metadata is present. Even mapping objects can be related to ontol-
ogy objects if we have ontologies for describing mappings, or describing semantical
heterogeneity between data versions [21].

In the same manner as we are mapping between different schema versions and
schema standards, we can also map between different ontologies, or different versions

 Long-Term Temporal Data Representation of Personal Health Data 389

of an ontology. If each of two different schema versions are linked to two different
ontologies (the schemas are build on two slightly different understandings of reality,
where these understandings can be related to the temporal time where a schema was
created), a mapping between these two ontologies can help in interpreting replies to
the local applications. An own mapping ontology can also include concepts for repre-
senting ontology heterogeneity. Mapping rules can be linked to ontologies including
known medical domain ontologies (e.g. GALEN, UMLS, ON9, all shortly described
in [26]) for understanding differences in the data representation in the two object
versions. This shows some of the flexibilities of our framework for defining different
object types for data and metadata.

5 Usage in the EHR-Case

Below we discuss shortly how our temporal framework is suitable for the personal
electronic health record (EHR) case.

Grimson [7] mentions six major research issues for a future EHR. Among these she
notes the need to improve data quality, temporal support, and preserving access to the
record over time. We believe our solution matches these needs. In a longer run our
solution also gives a possibility for storage of generations of population’s EHR for
(post-research) historical searches.

In term of a national database solution for storing an integrated EHR for each citi-
zen, our idea is to have one common national database for the purpose. By using our
framework, we however set very few constrains on how the database system is real-
ized on the database layer, as long as it is possible to map data between the database
layer and the DRL. Our solution relies on a flexible and scalable database solution,
which can evolve over time.

The DRL and the database do not require any common standardization of health
data representation. If local applications use medical standards or protocols, such
standards can be represented as own schema objects and/or ontology objects in the
DRL. Our temporal approach gives a good support for evolving medical standards /
protocols. On the other hand, the DRL lets local applications store their data accord-
ing to local schema specifications. In such cases it is up to systems on the application
level. For example, a data warehouse can locally decide how to read, or to interpret,
the stored data.

For the integration of common data that is typically used by many local applica-
tions we can choose a “light” solution, where parts of the EHR are stored only once in
the database (though in different temporal versions). Such common health data can
be a personal profile including demographical data about the citizen, the owner, of the
EHR. Or a common set of data elements used for emergency, like data about the
blood type, allergies and chronic diseases. A person’s genome data (e.g. used by
post-genetic research on genes together with data about disease, treatment and
environment) is one more example of data that only needs to be stored in one
common place in the database. However, our solution can not guarantee any
normalized database, as long as we allow local applications to store everything in the
database, without any restrictions.

390 T. Mallaug and K. Bratbergsengen

6 Conclusion and Future Work

From a database point of view, the major problem for realization of our temporal data
object framework in a future EHR is the handling of all kinds of mappings between
versions of data content, schemas and possible ontologies. This paper presents general
ideas about how mappings can be used in our model, and different types of mappings
that have to be handled by mapping rules. However, more work has to be done by
classifying different mapping problems and possible solutions on such. Examples on
how to implement mappings in a conventional programming language, for example
Java, can be implemented. For the DRL we can implement a test tool that uses map-
pings both forward and backward in the temporal space when generating replies on
queries from client programs.

For the health care community, we must argue how a good database and related
data representation solution can influence the reality of a future EHR system, includ-
ing the data security aspect and the overall system functionality.

This paper provides some headlines of an ongoing work on using database tech-
niques in the realization of a future integrated Electronic Health Record. The back-
ground and inspiration to look at a long-term temporal data representation of an EHR
are presented. Linked to this is an examination of a possible temporal realization and
a mapping between data content and schema versions in a temporal space. A temporal
data object model is shortly described.

References

1. Dick, R.S, Steen, E.B, Detmer, D.E (Eds.).: The Computer-Based Patient Record - An Es-
sential Technology for Health Care, Revised ed., Institute Of Medicine, National Academy
Press (1997)

2. Fagan, L.M, Shortliffe, E.H.: The Future of Computer Applications in Health Care, Chap-
ter 20 in Medical Informatics - Computer Applications In Health Care and Biomedicine,
Springer-Verlag (2001)

3. Office of Health and the Information Highway Health Canada. Canada Health Infoway:
“Paths to Better Health”, Final Report of the Advisory Council on Health Infrastructure,
February (1999) http://www.hs-sc.gc.ca

4. Waegemann, C.P.: The five levels of electronic health records, in M.D. Computing, Vol.13
No.3 (1996)

5. van Bemmel, J.H., Musen, M.A. (ed.): Handbook of Medical Informatics, Springer (1997)
6. Berner et al.: Will the Wave Finally Break? A Brief View of the Adoption of Electronic

Medical Records in the United States, Journal of the American Medical Informatics
Association, Volume 12, Number 1 (2005)

7. Grimson, J.: Delivering the electronic healthcare record for the 21st century, in
International Journal of Medical Informatics 64 (2001).

8. Tsiknakis, Katehakis, Orphanoudakis: A health information infrastructure enabling secure
access to the life-long multimedia electronic health record, CARS 2004 / International
Congress Series 1268 Elsevier (2004)

9. Katehakis, Sfakianakis, Tsiknakis, Orphanoudakis: An Infrastructure for Integrated
Electronic Health Record Services: The Role of XML (Extensible Markup Language), The
Journal of Medical Internet Research, Volume 3 (2001) http://www.jmir.org

 Long-Term Temporal Data Representation of Personal Health Data 391

10. http://www.centc251.org
11. Ferraiolo, D. F. et al.: Proposed NIST standard for role-based access control, ACM Trans-

actions on Information and System Security 4 (2001)
12. Jensen et al.: A consensus glossery of temporal database concepts, SIGMOD record, 23(1)

(1994)
13. Snodgrass, R.: Temporal Databases, in Theories and Methods of Spatio-Temporal Reason-

ing in Geographic Space, Springer-Verlag, LNCS 639 (1992)
14. Clifford, Dyreson, Isakowitz, Jensen, Snodgrass: On the Semantics of ”now” in Databases.

ACM Transactions on Database Systems, Vol. 22, No.2 (1997)
15. Snodgrass, R.: The Temporal Query Language TQuel. ACM Transactions on Database

Systems, Vol.12, No.2 (1987)
16. Roddick, J.F.: A survey of schema versioning issues for database systems. Information and

Software Technology, Vol. 37, No. 7 (1995)
17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The

VLDB Journal 10 (2001)
18. Kalinichenko, L.A.: Integration of Heterogeneous Semistructured Data Models in the Ca-

nonical one http://citeseer.nj.nec.com/kalinichenko99integration.html
19. Prakash, N., Srivastava, S.: Engineering Schema Transformation Methods, EMSISE

(2003)
20. Noy, N. F., Musen, M. A.: Ontology Versioning as an Element of an Ontology-Evolution

Framework. IEEE Intelligent Systems (2003)
21. Hakimpour, F., Geppert, A.: Ontologies: an Approach to Resolve Semantic Heterogeneity

in Databases http://www.ifi.unizh.ch/dbtg/Projects/MIGI/ publication/ontoreport.pdf
22. Nørvåg, K.: VAGABOND The Design and Analysis of a Temporal Object Database Man-

agement System, Dr. ing. thesis, Norwegian University of Science and Technology, ISBN
82-7984-097-4

23. Wei, H-C, Elmasri, R.: Study and Comparison of Schema Versioning and Data Conversion
Techniques for Bi-temporal Databases, Sixth International Workshop on Temporal Repre-
sentation and Reasoning, Orlando, Florida (1999)

24. Sheth, A., Larson, J.: So far (schematically) yet so near (semantically). Interoperable
Database Systems, DS-5 (1993)

25. Vestenicky, V.: Schema Integration as View Cooperation. Charles University, Prague
(2003)

26. Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering, Springer
(2004)

Author Index

Akin, Erhan 283
Alatas, Bilal 283
Apel, Sven 324

Bleiholder, Jens 58
Bossung, Sebastian 309
Böttcher, Stefan 238
Bratbergsengen, Kjell 379

Chardin, Petr 268
Chirkova, Rada 125
Christiansen, Henning 109
Chrysanthis, Panos K. 365
Corral, Antonio 153

D’Ermiliis, Alejandro 153

Evripidou, Paraskevas 365

Fathi, Yahya 125
Feng, Ling 223

Groppe, Sven 238
Gruenwald, Le 238

Härder, Theo 1
Helekivi, Jüri 199
Herstel, Thomas 29
Hidders, Jan 74
Houben, Geert-Jan 74

Jiang, Junjie 338

Kalinichenko, Leonid 183
Kelder, Tõnis 199
Kiss, Attila 254
Klein, Niklas 238
Kontaki, Maria 294
Kuznetsov, Sergey 268

Le Anh, Vu 254
Leich, Thomas 324
Liang, Changyong 338
Li, Jingni 125
Liu, Xian 97

Mallaug, Tore 379
Manolopoulos, Yannis 153, 294
Marandi, Andres 199

Martinenghi, Davide 109
Meriste, Merik 199
Mõtus, Leo 199

Naumann, Felix 58
Nelson, David 97
Nguyen, Linh Anh 43
Novak, Leonid 209

Pan, Ruoyu 338
Papadopoulos, Apostolos N. 294
Papastavrou, Stavros 365
Paredaens, Jan 74
Pieciukiewicz, Tomasz 17
Pleshachkov, Peter 268
Preden, Jürgo 199

Revesz, Peter 167

Saake, Gunter 324
Samaras, George 365
Schmidt, Joachim W. 309
Schmitt, Ingo 29
Sehring, Hans-Werner 309
Shaporenkov, Dmitry 139
Shen, Yun 223
Skusa, Michael 309
Stencel, Krzysztof 17
Stirk, Sue 97
Stobart, Simon 97
Stupnikov, Sergey 183
Subieta, Kazimierz 17

Talebi, Zohreh Asgharzadeh 125
Thiran, Philippe 74

Valatkaite, Irma 349
van Hee, Kees 74
Vasilecas, Olegas 349
Vassilakopoulos, Michael 153

Wang, Bing 223
Wang, Weinong 338

Yakovlev, Alexander 87

Zamulin, Alexandre 209
Zemtsov, Nikolay 183

	Frontmatter
	Invited Paper
	XML Databases and Beyond-Plenty of Architectural Challenges Ahead

	Regular Papers Database Theory
	Usable Recursive Queries
	<Literal>Relation-Collapse</Literal>: An Optimisation Technique for the Similarity Algebra \mathcal{SA}
	On Modal Deductive Databases
	Declarative Data Fusion -- Syntax, Semantics, and Implementation
	Non-destructive Integration of Form-Based Views

	Database Modelling and Physical Database Design
	A Multi-version Data Model and Semantic-Based Transaction Processing Protocol
	Managing Schema Versions in Object-Oriented Databases
	Efficient Integrity Checking for Databases with Recursive Views
	A Formal Model for the Problem of View Selection for Aggregate Queries
	Efficient Main-Memory Algorithms for Set Containment Join Using Inverted Lists

	Query Processing
	VA-Files vs. R*-Trees in Distance Join Queries
	The Expressivity of Constraint Query Languages with Boolean Algebra Linear Cardinality Constraints

	Heterogeneous Databases and Interoperability
	Extensible Canonical Process Model Synthesis Applying Formal Interpretation
	Location Awareness of Information Agents

	XML and Databases
	Algebraic Semantics of XML Schema
	Efficient XPath Evaluation
	A Prototype for Translating XQuery Expressions into XSLT Stylesheets
	Combining Tree Structure Indexes with Structural Indexes in Query Evaluation on XML Data
	A DataGuide-Based Concurrency Control Protocol for Cooperation on XML Data

	Data Mining and Knowledge Discovery
	Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting
	Continuous Trend-Based Classification of Streaming Time Series

	Information Systems and Software Engineering
	Conceptual Content Management for Software Engineering Processes
	Using Step-Wise Refinement to Build a Flexible Lightweight Storage Manager
	BiChord: An Improved Approach for Lookup Routing in Chord

	Information Systems Development
	On Business Rules Automation: The BR-Centric IS Development Framework
	CFP Taxonomy of the Approaches for Dynamic Web Content Acceleration
	Long-Term Temporal Data Representation of Personal Health Data

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

