
Abstraction Refinement for Termination

Byron Cook1, Andreas Podelski2, and Andrey Rybalchenko2

1 Microsoft Research, Cambridge
2 Max-Planck-Institut für Informatik, Saarbrücken

Abstract. Abstraction can often lead to spurious counter-
examples. Counterexample-guided abstraction refinement is a method
of strengthening abstractions based on the analysis of these spurious
counterexamples. For invariance properties, a counterexample is a finite
trace that violates the invariant; it is spurious if it is possible in the ab-
straction but not in the original system. When proving termination or
other liveness properties of infinite-state systems, a useful notion of spu-
rious counterexamples has remained an open problem. For this reason,
no counterexample-guided abstraction refinement algorithm was known
for termination. In this paper, we address this problem and present the
first known automatic counterexample-guided abstraction refinement al-
gorithm for termination proofs. We exploit recent results on transition in-
variants and transition predicate abstraction. We identify two reasons for
spuriousness: abstractions that are too coarse, and candidate transition
invariants that are too strong. Our counterexample-guided abstraction
refinement algorithm successively weakens candidate transition invari-
ants and refines the abstraction.

1 Introduction

The correctness argument for a program can sometimes be based on a small
fraction of the original program code. However, it is often hard to extract this
core automatically if the program is large and complex.

Automated abstraction refinement [6,19] is designed to solve precisely this
problem. It automatically extracts just the information that is needed to prove
the correctness property. Such algorithms are known for safety and invariance
properties [2,5,6,13,14,15,16,17,19]. However, no such algorithm is known for
termination proofs of infinite-state systems.

Abstraction refinement is based on the notion of spurious counterexamples.
For invariance properties, a counterexample is a finite trace that violates the
invariant. The counterexample is spurious if the trace is possible in the abstract
system, but infeasible in the concrete system. The proof of the infeasibility of
the trace provides guidance for adding more precision to the abstraction (and
thus refining it).

For termination and liveness properties of infinite-state programs, a useful
notion of spurious counterexamples has been an open problem. In this paper,
we address this problem and present the first known counterexample-guided
abstraction refinement algorithm for termination.
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We follow a recent approach to temporal verification of infinite-state sys-
tems that is based on transition invariants [21] and transition predicate abstrac-
tion [22]. This approach is a promising starting point for the development of our
refinement method because of its connection with abstraction methods [11]. Let
T be the transition relation of the infinite-state system. Transition invariant is
the least fixed point of an operator F (defined as F(Q) = Q ◦ T ), or rather its
abstraction wrt. a set of transition predicates. The least fixed point construc-
tion is in analogy with abstract proofs for invariance properties, but the analogy
stops here. Let us explain this point in detail.

Let I be an invariant and F be an operator such that

F (X) = {s′ | s ∈ X and (s, s′) ∈ T } .

To prove that the invariant I holds we can search for an abstraction F#
P

based on a set of predicates P such that the least fixed point of F#
P is contained

in I:

∃P. lfp(F#
P ) ⊆ I .

The termination property does not come with an a priori fixed transition
invariant. Any transition invariant is sufficient. Again, let F be F(Q) = Q ◦ T .
In addition to finding an abstraction F#

P of F , we need to find a transition
invariant R such that the least fixed point of F#

P is contained in R:

∃R ∃P . lfp(F#
P ) ⊆ R . (1)

The existence of the transition invariant R implies termination if R satisfies an
additional property that we will explain later.

Thus, an automated termination checker that implements counterexample-
guided abstraction refinement must not only construct an appropriate set of
transition predicates P , but also an assertion R that is an appropriate transition
invariant. When the inclusion (1) does not hold, we do not know whether the
left side is too big or the right side is not big enough. Thus, our refinement
algorithm analyzes the reason why lfp(F#

P ) is not included in R. Then, it chooses
accordingly one of two possible actions. Either it decides that the abstraction is
too coarse and it refines the abstraction by adding more transition predicates to
P and thus makes lfp(F#

P ) smaller, or it decides that the candidate transition
invariant R is too strong and weakens it.

This leads to a notion of counterexample that reflects both aspects of spuri-
ousness: A counterexample is spurious if either the abstraction is too coarse or
the candidate transition invariant is too strong. It is this new notion of spurious
counterexamples that leads to the first known counterexample-guided abstrac-
tion refinement for the automation of termination proofs.

2 Related Work

Our work builds upon and benefits from the previous research on abstrac-
tion refinement (e.g. [2,5,6,13,14,15,16,17,19]) and automatic termination proofs
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(e.g [4,8,10,12,20]) for infinite-state systems. A short way to distinguish our work
from the existing literature in those two research areas is that we are the first to
discover a method of abstraction refinement for termination analysis of infinite-
state systems.

For the comparison with existing abstraction refinement tools: none of those
tools can automatically prove termination, except for in trivial cases. This limi-
tation is inherent to predicate abstraction (see [22] for an explanation).

The approach in [1] is to encode ranking functions into fairness assumptions
for a finite model obtained by predicate abstraction; in contrast with our work,
the actual termination arguments are ranking functions (which are found man-
ually or by the above-mentioned tools without abstraction refinement).

The work in [22] presents an algorithm that, for a given set of transition
predicates, constructs an abstraction of a program for the verification of liveness
properties. This work does not, however, provide any guidance on how to refine
the abstraction if it fails to prove the property.

Other proof methods for liveness properties have been proposed that are
limited to only finite-state systems. For example the work in [3] exploits the fact
that a non-terminating finite-state system must visit the same state infinitely
many times.

3 Preliminaries

Programs. Following [18], we abstract away from the syntax of a concrete pro-
gramming language such as C and represent a program P by a set of transitions.
Each transition τ (to be thought of as the label of a program statement) refers
to a transition constraint ρτ , which is an assertion over the program variables
and their primed versions.

We use V and V ′ to represent the set of variables of the program and the set
of their primed versions, respectively. The intended semantics of V ′ is to refer
to the values of the variables V after executing a transition. The set V includes
the variable pc (the program counter) which ranges over the program locations.

Each transition τ refers to a pair (�, �′) of pre and post locations, respectively.
These locations appear in the transition constraint ρτ in the form of the con-
juncts pc = � and pc′ = �′. The program has an initial location �0 and an initial
condition Θ, which is an assertion over program variables. The initial location
�0 appears in Θ as the conjunct of the form pc = �0.

We assume that the program P is fixed from now on.

Program Semantics. A program state s is a valuation of the program vari-
ables, including the program counter pc.

We identify an assertion over program variables with the set of states that it
denotes. For example, Θ is the the set of initial states. We also identify an asser-
tion over primed and unprimed program variables with the set of pairs of states
that it denotes. For example, ρτ is the transition relation of the transition τ .

A computation s0, s1, s2, . . . is a possibly infinite sequence of states that starts
in an initial state (s0 ∈ Θ) and that is consecutive, i.e., each pair of successive
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states belongs to the transition relation of some transition. Formally, for each
i ≥ 0 there exists a transition τ such that (si, si+1) ∈ ρτ .

Paths and Cyclic Paths. A path π = τ1 . . . τn is a (finite) sequence of tran-
sitions with consecutive locations (the post location of τi is the pre location of
τi+1). A cyclic path π = τ1 . . . τn is a special case of a path with the same start
and end location (the pre location of its first transition τ1 is equal to the post
location of its last transition τn).1

We define the composition of relations ρ1 ◦ ρ2 as usual:

ρ1 ◦ ρ2 ≡ {(s, s′) | (s, s′′) ∈ ρ1 and (s′′, s′) ∈ ρ2} .

It can be implemented by logical operations over transition constraints.
A path π denotes a transition relation ρπ that is naturally obtained by com-

posing the transition relations of the transitions along the path. Formally, for a
path π = τ1 . . . τn we have:

ρπ ≡ ρτ1 ◦ · · · ◦ ρτn .

Termination. A program is terminating if it does not admit any infinite com-
putation. A binary relation R is well-founded if there exists no infinite se-
quence s0, s1, s2, . . . that is consecutive wrt. R (formally, for each i ≥ 0 we
have (si, si+1) ∈ R).

The following fact is a consequence of Theorem 1 in [21] (by the fact that the
transition relation of each path π with different start and end locations � and �′

is contained in the well-founded relation R�,�′ ≡ pc = � ∧ pc′ = �′).

Theorem 1 (Termination Condition [21]). The program is terminating if
there exists a finite set of well-founded relations R = {R1, . . . , Rm} such that
the transition relation ρπ of each cyclic path π = τ1 . . . τn is included in one of
the relations from R.

The termination condition in the theorem above is formally:

for each cyclic path π = τ1 . . . τn : ρπ ⊆ R1 or . . . or ρπ ⊆ Rm . (2)

Transition Predicates. We use transition predicate abstraction [22] in order to
obtain a termination condition that is stronger than (2), and that can be checked
effectively. A transition predicate p is an assertion over program variables and
their primed version, i.e., p is a binary relation over states. In contrast, a (plain)
predicate is an assertion over program variables, i.e., a set of states. We use P
to refer to a finite set of transition predicates. Transition predicate abstraction
is similar to predicate abstraction if one replaces the set of program variables V
by the set V ∪ V ′.
1 Note that a cyclic path with end location � may have numerous other steps that

pass through �.
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An abstraction function αP maps a binary relation ρ over states to a superset
expressed by a conjunction of transition predicates. We assume that one can
automatically construct the abstraction function αP for a given finite set of
transition predicates P . A possible definition is the abstraction of a relation ρ
by the conjunction of all transition predicates p ∈ P weaker than ρ (and test
the ‘weaker-than’ relation ρ |= p with a theorem prover).

For our formal treatment in Theorem 3, we will use one basic fact about
the abstraction function αP : the abstraction of a relation ρ is the relation itself
(i.e. there is no loss of precision during abstraction) if ρ can be expressed by a
conjunction of transition predicates (see Theorem 13 in [9]). Formally,

αP(ρ) = ρ if ρ = p1 ∧ . . . ∧ pn for p1, . . . , pn ∈ P . (3)

Abstraction of Paths. We can construct an abstraction α̂P(π) for each path
π = τ1 . . . τn according to the following inductive definition.

α̂P (τ1 . . . τn) ≡ αP(ρτ1 ◦ ρ) where ρ = α̂P(τ2 . . . τn)
α̂P(τn) ≡ αP(ρτn)

The abstraction of the path π is always a superset of the transition relation of π,
formally

ρπ ⊆ α̂P(π) .

We obtain a termination condition that is effective in the sense that one can
compute an abstraction α̂P(π) of each possible (cyclic) path π.

Theorem 2 (Termination Condition with Abstraction [22]). The pro-
gram is terminating if there exists a finite set of well-founded relations R =
{R1, . . . , Rm} such that the abstraction αP(π) of the transition relation of each
cyclic path π = τ1 . . . τn is included in one of the relations from R.

This ‘effective’ termination condition is formally:

for each cyclic path π = τ1 . . . τn : α̂P(π) ⊆ R1 or . . . or α̂P(π) ⊆ Rm . (4)

For notational convenience, we overload the symbol αP . We will use αP not only
as a function on relations ρ, but also as a function α̂P over paths π. We need to
distinguish the two functions. The abstraction of the transition relation ρπ is in
general a subset of the abstraction of the path π, formally,

αP(ρπ) ⊆ αP(π) .

For example, given the transition relations

ρτ1 ≡ x′ = x − 2,

ρτ2 ≡ x′ = x + 1,

and a singleton set of transition predicates

P = {x′ ≤ x} ,
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we have
αP(ρτ1τ2) = αP(ρτ1 ◦ ρτ2)

= αP(x′ = x − 1)
= x′ ≤ x ,

whereas

αP(τ1τ2) = αP(ρτ1 ◦ αP(τ2))
= αP(ρτ1 ◦ true)
= αP(true)
= true .

Thus, we have αP(ρτ1τ2) � αP (τ1τ2).

4 Refinement for Termination

The termination condition (4) suggests that, given a set of well-founded rela-
tions R = {R1, . . . , Rm}, the problem of refinement is to find the ‘right’ set of
transition predicates P . The set P is ‘right’ if the induced abstraction αP is
sufficiently precise to infer an inclusion of the form αP(π) ⊆ Rj for every cyclic
path π, see (4).

Our algorithm must, however, also find the ‘right’ set of well-founded rela-
tions R = {R1, . . . , Rm}. The set R is ‘right’ if the inclusion ρπ ⊆ Rj holds ‘in
the concrete’ for every path π, see (2).

Counterexamples. Distinction between the two cases above complicates the
notion of a spurious counterexample. Namely, if the abstract check (4) does not
succeed for a cyclic path π, then this may be spurious for one of two reasons:
either the set of transition predicates P was not yet ‘right’ or the set of well-
founded relations R was not yet ‘right’.

Definition 1 (Spurious Counterexample). Given a set of transition pred-
icates P and a set of well-founded relations R = {R1, . . . , Rm}, a cyclic path
π = τ1 . . . τn is a counterexample wrt. P and R if its abstraction αP(π) is not
contained in any relation in R. Formally,

αP(π) 
⊆ Rj for each j ∈ {1, . . . , m} .

The counterexample π is spurious if either its relation ρπ is contained in some
relation Rj of R or its relation ρπ is well-founded. Formally,

ρπ ⊆ Rj for some j ∈ {1, . . . , m} or ρπ well-founded.

The Algorithm. Figure 1 shows our counterexample-guided abstraction refine-
ment for termination. For each new set of well-founded relations R and for each
new set of transition predicates P , the algorithm checks whether there exists a
counterexample wrt. R and P . It does so by going through all cyclic paths π until
no more new abstract values αP(π) can be computed. Although the number of
cyclic paths is infinite, the search converges because the range of the abstraction
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1 input
2 Program P
3 begin
4 R := ∅ (∗ set of well-founded relations ∗)
5 P := ∅ (∗ set of transition predicates ∗)
6 repeat
7 if exists π = τ1 . . . τn s.t. αP (π) �⊆ R for any R ∈ R then
8 if exists R ∈ R such that ρπ ⊆ R then
9 (∗ refinement step ∗)
10 Ppath :=

⋃

i∈1..n Preds(ρτi ◦ · · · ◦ ρτn)
11 Ploop := Preds(R) ∪ ⋃

i∈1..n Preds(ρτi ◦ · · · ◦ ρτn ◦ R)
12 P := P ∪ Ppath ∪ Ploop

13 else
14 if π is well-founded by the ranking relation R then
15 (∗ weakening step ∗)
16 R := R∪ {R}
17 else
18 return “Counterexample cyclic path τ1 . . . τn”
19 else
20 return “Program P terminates”
21 end.

Fig. 1. Counterexample-guided abstraction refinement for termination. In line 7, we

investigate abstractions αP (π) of cyclic paths by exploring the paths in a breadth-

first way. The exploration converges since the range of the abstraction function αP is

finite. In line 10, Preds(T ) symbolically evaluates T and then extracts the set of atomic

formulas from the reduced expression.

function αP is finite (and determined by the number of transition predicates
in P).

If the algorithm finds no counterexample, it has succeeded in proving the
termination property and it stops. If the algorithm finds a counterexample π,
there are three possibilities.

1. The counterexample π is spurious because the set of transition predicates
was not yet ‘right’. Formally, the inclusion between ρπ and some R ∈ R does
not hold in the abstract, i.e. αP(π) 
⊆ R, but it does hold in the concrete,
i.e. ρπ ⊆ R. The refinement step adds a set of transition predicates Ppath

from the transition relation of every suffix of the path π = τ1 . . . τn to the
set P . These predicates will eliminate this particular counterexample in the
next iteration of the algorithm. The set of predicates Ploop guarantees that
the refinement will not get ‘stuck in a loop’ discovering an infinite sequence
of counterexamples π, ππ, . . . , πi, . . . . We will provide a formal statement
describing the progress of refinement in Theorem 3.

2. The counterexample π is spurious because the set of well-founded relations
R was not yet ‘right’. This means that for any R ∈ R the inclusion ρπ ⊆ R
does not hold neither in the abstract nor in the concrete, but the transi-
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tion relation ρπ of the cyclic path π is well-founded. This means that the
candidate set R is not yet ‘right’. In that case a well-founded relation R
containing ρπ is added to R. In the next iteration of the algorithm, the same
counterexample π may be found again, but then we will be in Case 1.

3. The counterexample π is not spurious: the transition relation ρπ of the cyclic
path π is not well-founded. In that case, the algorithm has failed to prove the
termination property and it stops. In this case πω may be a feasible infinite
trace.

Well-Foundedness and Ranking Relations. A ranking function for a (ter-
minating) program is defined by an expression rank over the program variables.
Its value for each reachable program state is a non-negative integer that decreases
during each computation step.

We write rank(V ) for the expression in the program variables and rank(V ′)
for the expression in the primed version of the program variables. A ranking
function defined by the expression rank induces a well-founded relation (a ranking
relation) R in the following way:

R ≡ rank(V ) ≥ 0 ∧ rank(V ′) ≤ rank(V ) − 1 .

We note the following observation.

Remark 1. A ranking relation R is transitive. Formally,

R ◦ R ⊆ R .

A cyclic path π = τ1 . . . τn defines a program fragment of a very specific
form: it consists of one program location � and one transition from � to � with
the transition relation ρπ. There exist several automatic methods and tools for
the computation of ranking functions for such programs, e.g. [4,7,20,24]. These
tools can be used for implementing line 14 of the algorithm.

Progress of Refinement. A newly detected spurious counterexample gives rise
to a new refinement step and a new iteration of the algorithm. The refinement
algorithm makes progress if for each newly detected spurious counterexample
π the cyclic path π is no longer a counterexample after the next iteration or
the next two iterations of the algorithm. Our algorithm enjoys the property of
eliminating the infinite set of spurious counterexamples π, ππ, . . . in a single step.
We formalize this property in Theorem 3.

Theorem 3 (Progress of Refinement). If π is a spurious counterexample
wrt. the sets R and P, then none of the cyclic paths π1, π2, . . . obtained by con-
catenating π with itself repeatedly (π1 = π, π2 = ππ, etc.) is a counterexample
wrt. the sets R′ and P ′ obtained by refinement in one or possibly two more
iterations of the algorithm in Figure 1.

Proof. Given a spurious counterexample π = τ1 . . . τn, there are two cases that
we need to consider. In the first case, the relation ρπ is included in some R ∈ R
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(at line 8 on Figure 1). Hence, the refinement step (at lines 10, 11, and 12)
updates the abstraction function. Now we consider the next iteration of the
algorithm. Let P ′ be the current set of transition predicates, which define the
abstraction function.

We prove that αP′(πj) ⊆ R by induction over j.2 For the base case j = 1, we
prove αP′(π) ⊆ R. By Theorem 13 in [9], an abstraction function is precise for
some input if the input is expressible by the predicates defining the abstraction.
Hence, for each i ∈ {1, . . . , n} we have αP′(τi . . . τn) = ρτi ◦ · · · ◦ ρτn . Thus, we
have αP′(π) ⊆ R.

For the induction step, we assume αP′(πj) ⊆ R for some j > 1. By Theo-
rem 13 in [9], we have αP′(τi . . . τnπj) ⊆ ρτi ◦ · · ·◦ρτn ◦R for each i ∈ {1, . . . , n}.
Hence, we have αP(ππj) = ρπ ◦R. Since ρπ ⊆ R and by the assumption that R
is a transitive relation, we have αP(πj+1) ⊆ R ◦ R ⊆ R.

If ρπ is not contained in any R ∈ R, then after the weakening step at line 16
using a ranking relation R we have ρπ ⊆ R, and the above case applies. ��

5 Example

In this section we execute the algorithm contained in Figure 1 on a sample
program fragment. Refer to left-hand side of Figure 2 for the example program.
We represent the program as a control-flow graph on the right-hand side, where
each node is the start of a basic-block, and each transition (labeled τ1, τ1, and
τ3) is decorated with a relation that represents the conditions and assignments
of the basic block. We have the following transition relations ρτi :

ρτ1 ≡ x ≥ 0 ∧ x′ = x + 1 ∧ y′ = 1 ∧ pc = �0 ∧ pc′ = �1 ,

ρτ2 ≡ y > x ∧ x′ = x − 2 ∧ y′ = y ∧ pc = �1 ∧ pc′ = �0 ,

ρτ3 ≡ y ≤ x ∧ x′ = x ∧ y′ = y + 1 ∧ pc = �1 ∧ pc′ = �1 .

To simplify the presentation, we assume an implicit treatment of the program
counter. This means that we do not show any predicates involving pc in the
exposition below.

We summarize the intermediate steps of our example execution in Table 1,
and give a detailed explanation below. Line numbers refer to the algorithm shown
on Figure 1.

Step I/Line 4 and 5: We start with the empty set of well-founded relations
R = ∅ and the empty set of transition predicates P = ∅.
Step II/Lines 7, 8, 10, 11, and 12: We start enumerating cyclic paths and
computing their abstractions. Because R is empty, we find that for the cyclic
path π = τ1τ2 the abstract relation αP(π) does not entail any relations in R.
This means that π is a counterexample. We do not know yet whether it is
spurious. We therefore move to line 8. For the same reason there does not
2 Note that we abstract wrt. a refined set of transition predicates P ′.
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Fragment of program text Control-flow graph representation

�0 : while x ≥ 0 begin
x := x + 1
y := 1

�1 : while y ≤ x begin
y := y + 1

end
x := x − 2

end

�0 �1

τ1

x ≥ 0
x′ = x + 1

y′ = 1

τ2

y > x
x′ = x − 2

y′ = y

τ3

y ≤ x
x′ = x

y′ = y + 1

Fig. 2. Example program fragment with nested loops

Table 1. The states of the algorithm in Figure 1 while analyzing the example in

Figure 2

Step Path π ∀R ∈ R Action

I - - Initialization with R = ∅ and P = ∅
II τ1τ2 ρπ �⊆ R Weakening with

R1 = false
III τ1τ2 αP(π) �⊆ R Refinement by

Preds(ρτ2) = {y > x, x′ = x − 2, y′ = y},
Preds(ρτ1 ◦ ρτ2) = ∅,
Preds(. . . R1) = ∅.

IV τ3 ρπ �⊆ R Weakening with
R2 = x − y ≥ 0 ∧ x′ − y′ ≤ x − y − 1

V τ3 αP(π) �⊆ R Refinement by
Preds(ρτ3) = {y ≤ x, x′ = x, y′ = y + 1},
Preds(R2) = {x − y ≥ 0, x′ − y′ ≤ x − y − 1},
Preds(ρτ3 ◦ R2) = {y ≤ x − 1, x′ − y′ ≤ x − y − 2}.

VI τ2τ1 ρπ �⊆ R Weakening with
R3 = x ≥ 2 ∧ x′ ≤ x − 1

VII τ2τ1 αP(π) �⊆ R Refinement by
Preds(ρτ1) = {x ≥ 0, x′ = x + 1, y′ = 1},
Preds(ρτ2 ◦ ρτ1) = {y > x, x ≥ 2, x′ = x − 1, y′ = 1},
Preds(R2) = {x ≥ 2, x′ ≤ x − 1},
Preds(ρτ1 ◦ R2) = {x ≥ 1, x′ ≤ x},
Preds(ρτ2 ◦ ρτ1 ◦ R2) = {y > x, x ≥ 3, x′ ≤ x − 3}.

VIII τ1τ3τ2 ρπ �⊆ R Weakening with
R4 = x ≥ 0 ∧ x′ ≤ x − 1
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exist a relation R in R such that ρπ ⊆ R. We therefore move to line 14. The
composition ρτ1 ◦ ρτ2 equals

ρτ1 ◦ ρτ2 = ∃x′′. x ≥ 0 ∧ x′′ = x + 1 ∧ y′′ = 1 ∧
y′′ > x′′ ∧ x′ = x′′ − 2 ∧ y′ = y′′

= x ≥ 0 ∧ 1 > x + 1 ∧ x′ = x − 1 ∧ y′ = 1
= x ≥ 0 ∧ 1 > x + 1
= x ≥ 0 ∧ 0 > x

= false .

Since false is well-founded, the counterexample π is spurious because the can-
didate set R is too strong. The ranking relation that provides the evidence of
ρπ’s well-foundedness is the empty relation. Hence, we go to line 16, and add
the empty relation R1 ≡ ∅ to R.

Step III/Lines 7, 8, 10, 11, and 12: We observe that the cyclic path π =
τ1τ2 is still a spurious counterexample, since

αP(π) = αP(ρτ1 ◦ αP(τ2))
= αP(ρτ1 ◦ αP(y > x ∧ x′ = x − 2 ∧ y′ = y))
= αP(ρτ1 ◦ true)
= αP(true)
= true ,

and because true does not entail R1. We go to line 8. Recall that ρτ1 ◦ ρτ2 =
false. Because false ⊆ R1, we detect that the counterexample π is spurious due
to imprecise abstraction. Hence, we go to line 10, and we collect the sets of
predicates Preds(ρτ2) and Preds(ρτ1 ◦ ρτ2), see Table 1. The later set is empty,
since ρτ1 ◦ρτ2 = false. The set of predicates collected at line 11 is empty because
R1 is empty. Therefore, we finish this step with the following set of transition
predicates:

P = {y > x, x′ = x − 2, y′ = y} .

Step IV/Lines 7, 8, 14, and 16: We note that τ1τ2 is no longer a counterex-
ample, because αP(τ1τ2) ⊆ R1. We find that for the cyclic path π = τ3 the ab-
stract relation αP(π) does not entail any relations in R. This means that π is a
counterexample. We do not know yet whether it is spurious. We therefore move
to line 8. There does not exist a relation R in R such that ρπ ⊆ R. We therefore
move to line 14. Recall that ρτ3 ≡ y ≤ x ∧ x′ = x ∧ y′ = y + 1. Using the
techniques described in [20], we prove that ρτ3 is well-founded. We also compute
a witness of ρτ3 ’s well-foundedness. The witness is a ranking relation R2 such
that ρτ3 ⊆ R2. We have

R2 ≡ x − y ≥ 0 ∧ x′ − y′ ≤ x − y − 1 .

Hence, π is a spurious counterexample. We weaken R by adding R2, at line 16.
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Step V/Lines 7, 8, 10, 11, and 12: For π = τ3 we have αP(π) = true.
Therefore αP(π) does not entail R2. We know that ρπ ⊆ R2 (see Step IV).
This means that τ3 is still a (spurious) counterexample wrt. the current ab-
straction. We refine the abstraction. The condition at line 8 succeeds, and we
move to line 10. We collect the predicates from Preds(ρτ3). At line 11, we collect
the predicates from Preds(R2), and Preds(ρτ3 ◦ R2). After executing line 11, we
have

P = {y > x, x′ = x − 2, y′ = y, y ≤ x, x′ = x, y′ = y + 1,

x′ − y′ ≤ x − y − 1, y ≤ x − 1, x′ − y′ ≤ x − y − 2} .

Step VI/Lines 7, 8, 14, and 16: We observe that τ3 is no longer a coun-
terexample, since αP(τ3) ⊆ R2. We consider the abstraction of the cyclic path
π = τ2τ1. We have that αP(π) does not entail neither R1 nor R2. The relation
ρπ such that

ρπ = y > x ∧ x ≥ 2 ∧ x′ = x − 1 ∧ y′ = 1

is well-founded, but is not contained in any R ∈ R. Hence, π is a spurious
counterexample. Therefore we execute lines 14, and 16 of the algorithm, which
weaken R. A witness to the well-foundedness of ρπ is a ranking relation R3 such
that

R3 ≡ x ≥ 2 ∧ x′ ≤ x − 1 .

After executing line 16, we have R = {R1, R2, R3}.
Step VII/Lines 7, 8, 10, 11, and 12: Although ρτ2 ◦ ρτ1 ⊆ R3 we have
αP (τ2◦τ1) 
⊆ R3. This means that the abstraction is too coarse. Therefore, we ex-
ecute lines 10, 11, and 12. At line 10, we collect the sets of predicates Preds(ρτ1)
and Preds(ρτ2 ◦ ρτ1). At line 11, we collect the sets Preds(R3), Preds(ρτ1 ◦ R3),
and Preds(ρτ2 ◦ ρτ1 ◦ R3).

Step VIII/Lines 7, 8, 14, and 16: We observe that τ2τ1 is no longer a (spu-
rious) counterexample. We discover that the relation ρπ corresponding to the
cyclic path π=τ1τ3τ2 is well-founded, but is not contained in any relation R∈R:

ρτ1 ◦ ρτ3 ◦ ρτ2 = x = 0 ∧ x′ = x − 1 ∧ y′ = 2 .

This means that we found another spurious counterexample. Therefore we exe-
cute lines 8, 14 and 16. The ranking relation R4 such that

R4 ≡ x ≥ 0 ∧ x′ ≤ x − 1

is a witness to the well-foundedness of ρτ1 ◦ ρτ3 ◦ ρτ2 . After executing line 14,
we have R = {R1, R2, R3, R4}.
Final Result: For the abstraction αP(π) of every cyclic path π there exists a
relation R in R = {R1, R2, R3, R4} such that αP(π) entails R. Therefore, the
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algorithm terminates with R = {R1, R2, R3, R4} and the set of predicates P
where

R1 = false ,
R2 = x − y ≥ 0 ∧ x′ − y′ ≤ x − y − 1 ,
R3 = x ≥ 2 ∧ x′ ≤ x − 1 ,
R4 = x ≥ 0 ∧ x′ ≤ x − 1 ,

and
P = { x ≥ 0, x ≥ 1, x ≥ 2, x ≥ 3,

y ≤ x, y ≤ x − 1, y > x,
x′ = x + 1, x′ = x, x′ = x − 1, x′ = x − 2,
x′ ≤ x, x′ ≤ x − 1, x′ ≤ x − 3
x′ − y′ ≤ x − y − 1, x′ − y′ ≤ x − y − 2,
y′ = y + 1, y′ = y, y′ = 1} .

6 Conclusion

Counterexample-guided abstraction refinement allows us to automatically ex-
tract just the information that is needed to prove the property. The crux of
our abstraction refinement procedure for termination is the notion of a coun-
terexample, and the different possible root causes when counterexamples are
spurious.

We presented the first known counterexample-guided abstraction refinement
algorithm for the proof of termination. We exploit recent results on transition
invariants and transition predicate abstraction. Our counterexample-guided ab-
straction refinement algorithm successively weakens candidate transition invari-
ants and successively refines abstractions.

Future work. We are working on an implementation of this algorithm in Slam.
Possible extensions of the algorithm presented here concern a wider class of
properties (liveness with fairness assumptions) and a wider class of programs
(concurrent and recursive programs); here the techniques described in [22] and
in [23] can be useful.

Acknowledgment. We thank Tom Ball, Aaron Bradley, and Lenore Zuck for
discussions.
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