Memory Usage Verification for OO Programs

Wei-Ngan Chin'-2, Huu Hai Nguyen', Shengchao Qin?, and Martin Rinard*

1 Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University of Singapore
3 Department of Computer Science, University of Durham
4 Laboratory for Computer Science, Massachusetts Institute of Technology
{chinwn, nguyenh?2 }@comp .nus.edu.sg
shengchao.gin@durham.ac.uk, rinard@lcs.mit.edu

Abstract. We present a new type system for an object-oriented (OO) language
that characterizes the sizes of data structures and the amount of heap memory
required to successfully execute methods that operate on these data structures.
Key components of this type system include type assertions that use symbolic
Presburger arithmetic expressions to capture data structure sizes, the effect of
methods on the data structures that they manipulate, and the amount of memory
that methods allocate and deallocate. For each method, we conservatively capture
the amount of memory required to execute the method as a function of the sizes
of the method’s inputs. The safety guarantee is that the method will never attempt
to use more memory than its type expressions specify. We have implemented a
type checker to verify memory usages of OO programs. Our experience is that
the type system can precisely and effectively capture memory bounds for a wide
range of programs.

1 Introduction

Memory management is a key concern for many applications. Over the years researchers
have developed a range of memory management approaches; examples include explicit
allocation and deallocation, copying garbage collection, and region-based memory al-
location. However, an important aspect that has been largely ignored in past work is
the safe estimation of memory space required for program execution. Overallocation of
memory may cause inefficiency, while underallocation may cause software failure. In
this paper, we attempt to make memory usage more predictable by static verification on
the memory usage of each program.

We present a new type system, based on dependent type[21], that characterizes the
amount of memory required to execute each program component. The key components
of this type system include:

— Data Structure Sizes and Size Constraints: The type of each data structure in-
cludes index parameters to characterize its size properties, which are expressed in
terms of the sizes of data structures that it contains. In many cases the sizes of these
data structures are correlated; our approach uses size constraints expressed using
symbolic Presburger arithmetic terms to precisely capture these correlations.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 70-84, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Memory Usage Verification for OO Programs 71

— Heap Recovery: Our type system captures the distinction between shared and un-
aliased objects and supports explicit deallocation of unaliased objects.

— Preconditions and Postconditions: Each method comes with a precondition that
captures both the expected sizes of the data structures on which it operates and any
correlations between these sizes. The method’s postcondition expresses the new
size and correlations of these data structures after the method executes as a function
of the original sizes when the method was invoked.

— Heap Usage Effects: Each method comes with two memory effects. These effects
use symbolic values (present in method precondition) to capture (i) memory re-
quirement which specify the maximum heap space that the method may consume,
(ii) memory release which specify the minimum heap space that the method will
recover. Heap effects are expressed at the granularity of classes and can capture the
net change in the number of instances of each class.

Our paper makes several new technical contributions. Firstly, we design a formal
verification system in the form of a type system, that can formally and statically capture
memory usage for the object-oriented (OO) paradigm. We believe that ours is the first
such formal type system for OO paradigm. Secondly, we advocate for explicit heap re-
covery to provide more timely reclamation of dead objects in support of tighter bounds
on memory usage. We show how such recovery commands may be automatically in-
serted. Thirdly, we have proven the soundness of our type checking rules. Each well-
typed program is guaranteed to meet its memory usage specification, and will never
fail due to insufficient memory whenever its memory precondition is met. Lastly, we
have implemented a type checker (with an inference mechanism) and have shown that
it is fairly precise and can handle a reasonably large class of programs. Runtime stack
space to hold methods’ parameters and local variables is another aspect of memory
needed. For simplicity, we omit its consideration in this paper.

2 Overview

Memory usage occurs primarily in the heap to hold dynamically created objects. In our
model, heap space is consumed via the new operation for newly created objects, while
unused objects may be recovered via an explicit deallocation primitive, called dispose.
Memory usage (based on consumption and recovery) should be calculated over the
entire computation of each program. This calculation is done in a safe manner to help
identify the high watermark on memory space needed. We achieve this through the use
of a conservative upper bound on memory consumed, and a conservative lower bound
on memory recovered for each expression (and method).

To safely predict the memory usage of each program, we propose a size-polymorphic
type system for object-oriented programs with support for interprocedural size analysis.
In this type system, size properties of both user-defined types and primitive types are
captured. In the case of primitive integer type int(v), the size variable v captures its in-
teger value, while for boolean type bool(b), the size variable b is either 0 or 1 denoting
false or true, respectively. (Note that size variables capture some integer-based prop-
erties of the data structure. For simple types, the values are directly captured.) For user-
defined class types, we use c¢(ni, ..., n,) where ¢ ; ¢; with size variables n1,...,n, to

72 W.-N. Chin et al.

denote size properties that are defined in size relation ¢, and invariant constraint ¢;. As
an example, consider a user-defined stack class, that is implemented with a linked list,
and a binary tree class as shown below.

class List(n) where n=m-+1; n>0 { Object()@S val; List(m)@U next;---}

class Stack(n) where n=m ; n>0{ List(m)@Uhead; - - }

class BTree(s, d) where s=1+s1+saAd=1+max(d1, d2) ; s>0Nd>0 {
Object()@S val; BTree(s1,d;)@U left; BTree(ss, d2)@U right;--- }

List(n) denotes a linked-list data structure of size n, and similarly for Stack(n). The
size relations n=m+1 and n=m define some size properties of the objects in terms of
the sizes of their components, while the constraint n>0 signifies an invariant associated
with the class type. Class BTree(s, d) represents a binary tree with size variables s and
d denoting the total number of nodes and the depth of the tree, respectively. Due to
the need to track the states of mutable objects, our type system requires the support of
alias controls of the form A=U|S|R|L. We use U and S to mark each reference that
is (definitely) unaliased and (possibly) shared, respectively. We use R to mark read-
only fields which must never be updated after object initialization. We use L to mark
unique references that are temporarily borrowed by a parameter for the duration of
its method’s execution. Our alias annotation mechanism are adapted from [5, 8, 1] and
reported in [9]. Briefly, they allow us to track unique objects from mutable fields, as
well as shareable objects from read-only fields.

To specify memory usage, we decorate each method with the following declaration:

t mn(t1vi, . .., tnUn) where @pr; Gpo; €c; €r {€}

where ¢,, and ¢,, denote the precondition and postcondition of the method, expressed
in terms of constraints/formulae on the size variables of the method’s parameters and
result. Precondition ¢,, denotes an applicability condition of the method in terms of
the sizes of its parameters. Postcondition ¢,, can provide a precise size relation for the
parameters and result of the declared method. The memory effect is captured by e. and
e-. Note that e¢. denotes memory requirement, i.e., the maximum memory space that
may be consumed, while ¢, denotes net release, i.e., the minimum memory space that
will be recovered at the end of method invocation. Memory effects (consumption and
recovery) are expressed using a bag notation of the form {(c;, «;)}i~,, where ¢; denotes
a class type, while «; denotes its symbolic count.

class Stack(n) where n=m ; n>0 { List(m)@U head;
L | void()@S push(Object()@S o) where true;n’'=n+1; {(List, 1)}; {}
{ List()@U tmp=this.head; thlS head=new List(o, tmp)}
L | void()@S pop() where n>0; n'=n—1; {}; {(List, 1)}
{List()@U t1 = this.head; List()@U t2 = tl.next; t1.dispose(); this.head = t2}
L | bool(b)@S isEmpty() where n>0; n'=n A (n=0Ab=1V n>0Ab=0); {}; {}
{List()@U t = this.head; bool()@S v = isNull(t); this.head = t;v}
L | void()@S emptyStack() where n>0Ad=n; n'=0; {}; {(List,d)}
{ bool()@S v = this.isEmpty(); if v then () else {this.pop(); this.emptyStack()}}
L | void()@S push3pop2(Object()@S o) where true;n'=n+1;{(List, 2)}; {(List, 1)}
{ this.push(o); this.push(o); this.pop(); this.push(o); this.pop()}}

Fig. 1. Methods for the Stack Class

Memory Usage Verification for OO Programs 73

Examples of method declarations for the Stack class are given in Fig 1. The nota-
tion (A |) prior to each method captures the alias annotation of the current this param-
eter. Note our use of the primed notation, advocated in [13, 17], to capture imperative
changes on size properties. For the push method, n’=n-+1 captures the fact that the size
of the stack object has increased by 1; similarly, the postcondition for the pop method,
n'=n—1, denotes that the size of the stack is decreased by 1 after the operation. The
memory requirement for the push method, e,={(List, 1)}, captures the fact that one
List node will be consumed. For the pop method, ¢,.={(List, 1)} indicates that one
List node will be recovered.

For the isEmpty method,
et n'=n captures the fact that
Mem.{ } Release the size of the receiver ob-

| | | | | | ject (this) is not changed by

ime the method. Furthermore, its

output of type bool(b)@S is
related to the object’s size
through a disjunctive con-
straint n=0Ab=1Vn>0Ab=0.
Primitive types are annotated with alias S because their values are immutable and can
be freely shared and yet remain trackable. The emptyStack method releases all List
nodes of the Stack object. For push3pop2 method, the memory consumed (or required)
from the heap is {(List, 2)}, while the net release is {(List, 1)}, as illustrated in Fig. 2.

Size variables and their constraints are specified at method boundary, and need not
be specified for local variables. Hence, we may use bool()@s instead of bool(v)@s for
the type of a local variable.

Req.

push push pop push pop

Fig. 2. push3pop2: Heap Consumption and Recovery

3 Language and Annotations

We focus on a core object-oriented language, called MEMJ, with size, alias, and mem-
ory annotations in Fig 3. MEMJ is designed to be an intermediate language for Java
with either supplied or inferred annotations. A suffix notation y* denotes a list of zero
or more distinct syntactic terms that are suitably separated. For example, (¢ v)* denotes
(t1 v1,...,tn vo) Where n>0. Local variable declarations are supported by block struc-
ture of the form: (¢ v = e1;e2) with e> denoting the result. We assume a call-by-value
semantics for MEMJ, where values (primitives or references) are passed as arguments
to parameters of methods. For simplicity, we do not allow the parameters to be updated
(or re-assigned) with different values. There is no loss of generality, as we can always
copy such parameters to local variables for updating.

The MEMJ language is deliberately kept simple to facilitate the formulation of static
and dynamic semantics. Typical language constructs, such as multi-declaration block,
sequence, calls with complex arguments, efc. can be automatically translated to con-
structs in MEMJ. Also, loops can be viewed as syntactic abbreviations for tail-recursive
methods, and are supported by our analysis. Several other language features, includ-
ing downcast and a field-binding construct are also supported in our implementation.
For simplicity, we omit them in this paper, as they play supporting roles and are not

74 W.-N. Chin et al.

P ::= def* meth”
def ::= class c1(n;.,) [extends ca(n;.q) [where ¢ ; ¢ {fd* (A | meth)™ }
meth ::=t mn((t v)") where @pr; Ppo; €c; €r {€}
fd:=1t f t:=T1(n")eA A:=U|L|S|R
Tu=c | pr wi=v | v.f pr:=int | bool | void
ex=(c)null | k | w | w=e| tv=e1;es | newc(v”)
| v.mn(v™) | mn(v*) | if v then e; else ex | v.dispose()
e={(c,)"} (Memory Space Abstraction)
pe F (Presburger Size Constraint)
s= b d1 NG| g1 V2| nh|In-d|Vn-¢
b € BExp (Boolean Expression)
= true | false |ai =2 | 1 <as | a1 <an
a € AExp (Arithmetic Expression)
s=kT 0 | B s o | antas | —af max(on,ae) | min(an,on)
where k™ € Z is an integer constant; n € SV is a size variable

f € Fdis a field name; v € Var is an object variable

Fig. 3. Syntax for the MEMJ Language

core to the main ideas proposed here. The interested reader may refer to our companion
technical report[10] for more information.

To support sized typing, our programs are augmented with size variables and con-
straints. For size constraints, we restrict to Presburger form, as decidable (and practical)
constraint solvers exist, e.g. [19]. We are primarily interested in tracking size properties
of objects.We therefore restrict the relation ¢ in each class declaration of ¢i (n1, .., np)
which extends c2(ni, .., ng) to the form A7_ . | ni=a; whereby V(a;) N {n1,..,np} = 0.
Note that V(«;) returns the set of size variables that appeared in «;. This restricts size
properties to depend solely on the components of their objects.

Note that each class declaration has a set of instance methods whose main purpose
is to manipulate objects of the declared class. For convenience, we also provide a set
of static methods with the same syntax as instance methods, except for its access to the
this object. One important feature of MEMJ is that memory recovery is done safely
(without creating dangling references) through a v.dispose() primitive.

4 Heap Usage Specification

To allow memory usage to be precisely specified, we propose a bag abstraction of
the form {(c;, a;)}i=; where ¢; denotes its classification, while «; is its cardinality. In
this paper, we shall use ¢; € CN where CN denotes all class types. For instance, 77 =
{(c1,2), (¢c2,4), (c3,x + 3)} denotes a bag with ¢; occurring twice, ¢, four times and c3
x + 3 times. We provide the following two basic operations for bag abstraction to cap-
ture both the domain and the count of its element, as follows:

Memory Usage Verification for OO Programs 75

if (,n)eT

n?
dom(Y) =ar {c | (¢c,n) €T} YO =t {) perwise

We define union, difference, exclusion over bags as:

11T =df {(C, 11 (C)+TQ(C)) | c e dOm(T1) U dom(Tg)}
T1 — TQ =df {(C, T1 (C)*TQ(C)) | [AS dOm(T1) U dom(Tg)}
T\X =4 {(c,T(c)) | c€dom(T)— X}

To check for adequacy of memory, we provide a bag comparator operation under a
size constraint A, as follows:

AR O7s =4 (A= (Vee Z-11(c) > T2(c))) where Z = dom(Y1) U dom(Ys)

The bag abstraction notation for memory is quite general and can be made more
precise by refining its operations. For example, some class types are of the same size
and could replace each other to increase memory reuse. To achieve this we can use a
bag abstraction that is grouped by size(c;) instead of class type c;.

4.1 Heap Consumption

Heap space is consumed when objects are created by the new primitive, and also by
method calls, except that the latter is aggregated to include recovery prior to consump-
tion. Our aggregation (of recovery prior to consumption) is designed to identify a high
watermark of maximum memory needed for safe program execution. For each expres-
sion, we predict a conservative upper bound on the memory that the expression may
consume, and also a conservative lower bound on the memory that the expression will
release. If the expression releases some memory before consumption, we will use the
released memory to obtain a lower memory requirement. Such aggregated calculations
on both consumption and recovery can help capture both a net change in the level of
memory, as well as the high watermark of memory needed for safe execution.

For example, consider a recursive function which does p pops from one stack object,
followed by the same number of pushes on another stack.

void()@S moverec(Stack(a)@L s, Stack(b)@L t, int(p)@S i)
where a>p>0; a'=a—pAb'=b+p; {};{}
{if i<1 then ()
else {Object()@S o = s.top(); s.pop(); moverec(s, t,i—1); t.push(o)} }

Due to aggregation (involving recovery before consumption), the heap space that
may be consumed is zero. For each recursive call, the space for a List node is released
by s.pop() before it is reused by t.push(o). Aggregated over the recursive calls, we will
have p number of List nodes that have been released before the same number of nodes
are consumed. Hence, no new heap space is needed. Such aggregation is sensitive to
the order of the operations.

Consider now a different function which performs p pushes on t, followed by the
same number of pops from s.

void()@S moverec2(Stack(a)@L s, Stack(b)@L t, int(p)@S i)
where a>p>0; a'=a—pAb'=b+p;{(List,p)};{(List,p)}
{if i<1 then ()
else {Object()@S o = s.top(); t.push(o); moverec2(s,t,i—1); s.pop()} }

76 W.-N. Chin et al.

Though the net change in memory usage is also zero, the memory effect for this
function is different as we require p number of List nodes to be consumed on entry,
before the same number of List nodes are recovered. This new memory effect has the
potential to push up the high watermark of memory needed by p List nodes.

4.2 Heap Recovery

Explicit heap space recovery via dispose has several advantages. It facilitates the timely
recovery of dead objects, which allows memory usage to be predicted more accurately
(with tighter bounds). It also permits the use of more efficient custom allocators[4],
where desired. Moreover, we shall provide an automatic technique to insert dispose
primitives with the help of alias annotation. With such a technique, we only need to
ensure that objects that are being disposed are non-null. This non-nullness property can
be captured by a non-nullness analyser, such as [12]. This property is required as we
always recover memory space for each dispose primitive.

Memory recovery via dispose should occur when unique references that are still
alive (not in dead-set) are being discarded. This could occur at four places' : (i) end
of local block, (ii) end of method block, (iii) prior to assignment operation, and (iv)
at conditional expression. We would like to recover the memory space for each non-
null reference that is about to become dead. For example, consider the pop method’s
definition:

L | void()@S pop() where --- { List()@U t1 = this.head; head = tl.next}

The object pointed to by head is about to become dead prior to the operation,
head = t1.next. To recover this dead object, we insert a dispose command to obtain
head = (tl.next <;head.dispose()) where e1<;e2=(t v = e1;e2;v). Consider the defi-
nition of the destroy method which calls emptyStack with an L-mode parameter.

void()@S destroy(Stack(n)@U s) where - -- {emptyStack(s)}

A unique s object is about to become dead at the end of the destroy method. To
recover this space, we can insert s.dispose() prior to the method’s exit.

Let us formalise an automatic technique for the explicit recovery of dead objects
that are known at compile-time. Given an expression e, we utilize the alias annotation
to obtain a new expression e; where suitable explicit heap dispose operations have been
safely inserted. This is achieved by a translation below with I" to denote a type environ-
ment mapping program variables to their annotated types, and ©(0,) to denote the set
of dead references (of the form v or v. f) before (after) the evaluation of expression e.

F;@l—e;ma Zit,@1

Most rules are structure-preserving (or identity) rewritings, except for four rules given
in Fig 4. A sequence of disposals can be effected through dispose(D), with D containing
a set of variable/field references that are about to be dead at the end of expression e.

For the assignment rule [H:Ass1eN], we add w to the disposal set if it is unique and
is not yet in dead-set using D = {w | ann(t)=U}—©O,. The function isParam(w) returns

! Note that unique reference cannot escape through e; in eq; e as we require e; to be of the
void type.

Memory Usage Verification for OO Programs 77

[H:ASSIGN] [m:1F]
—isParam(w) I'(w)=t I'(v) = bool(b)es
D = {w|ann(t) =U} — O, I':0OkFe —pé;t,0; i=1,2
F;@"@‘—>H€1 : t1,@1 t:msst(t1,t2) O3 =61 UE,
Fit <t D, = O3—-6; i:1,2
e2 = (e1 A D=0 1> e1<;dispose(D)) E; = (& < D;=0 1> é;<;dispose(D)) i = 1,2
IOFw=e<—py ;0 F if v then e else ez —y
w = ez :: void@S, O1\w if v then F; else s :: t,03
[H:METH] [H:LOCAL]
F1:F+{1)1 ::t1,..,vp::tp} F;9F81‘—>H63::t1,91
I';0Fe—pye =:t,0 Ft<:t
Ft<:to ann(to) #L ann(t) & {L,R}
Viel..p-(ann(ti):L)ﬁ(Vf-vi.fg@) F+{'U :Z t}; O1Fex —peq: ta, O
D={w]|(w:t)€ I,ann(t)=U}—O D= {v|ann(t) =T} — Oy
ez = (e1 A D=0 > e1<; dispose(D)) es = (ea << D=0 1> es<; dispose(D))
r |—meﬂ, to mn((tl 1}7;)1‘;1”;,){6} F; O+ (t v =e€ ;62) —H
—p to mn((tl 1}7;)1‘;1,,;,) {62} (t vV = €3, 65) o tg, 92\1}

Fig. 4. Automatic Insertion of dispose operation

true if w is a parameter variable, otherwise it returns false (for fields and local vari-
ables). The function ann extracts the alias of an annotated type, ann(r{v*)@A) = A. A
51, lf b;

conditional is expressed as &1 <1 b > & =g { £, otherwise
2, .

Furthermore, we have:
O\v =g¢r O — {v,v.f"} O\v.f =4 © — {v.f}

For the method declaration rule [u:meTH], we add to the disposal set those parame-
ters which are unique but not yet dead using {w | (w :: t) € I'1,ann(t) = U} — 6. For the
local declaration rule [a:LocaL], we add v to the disposal set if it is unique but not yet
dead using {v | ann(t) = U} — O,. For the [u:1F] rule, the uniqueness that are consumed
in one branch may have their heap spaces recovered in the other branch. This is cap-
tured by D; = ©5—6; ,i = 1, 2. Notice that msst(¢1, t2) returns the minimal supertype of
both ¢1 and t», as follows:

T1 <! T T2 <:T VT3-(7'1,T2 <! T3=>T <Z7'3)
A1<aA A2<sA VAsz - (A1,A2<,A3=A<,A3)
msst(T1@A1, T2@A2) =4 T@GA
Note that 1 <: 72 denotes the subtype relation for underlying types (without anno-

tations). Alias subtyping rules (shown below) allow unique references to be passed to
shared and lent-once locations (in addition to other unique locations), but not vice-versa.

A<.A U<aL U<.S

In the rest of this paper, we shall present a new static type system for verifying
memory heap usage, followed by a set of safety theorems on the type rules.

78 W.-N. Chin et al.

5 Rules for Memory Checking

We present type judgements for expressions, method declarations, class declarations
and programs to check for adequacy of memory, using relations of the form:

ATRest, A1 I e meth Fclass def FP

Note that I" is the type environment as explained earlier; A(A;) denotes the size
constraint, which holds for the size variables associated with I" (I" and t) for expression
e before (after) its evaluation; ¢ is an annotated type. Also, 7°(71) is used to denote the
available memory space in terms of bag abstraction before (after) the evaluation.

We present a few key syntax-directed type rules in Fig 5, with the rest of the rules in
the technical report. Before that, let us describe some notations used by the type rules.

[assiGN] . . [NEwl » ,
ATRe 1, A7 T'Rw it o, Y fciLft(c(n)= (Etl fl) =1 @)
r* = fresh() t; = prime(I'(v;))
Fai<it,p X=V(t1)UV(t) A=3X-(Aioypd) Ft <:[R Sﬁz‘,pi i€l.p
I AT Fw=e::void()@S, Ay, 1y p=[n"—r Ul pi
[DISPOSE] AFY 3{(e, 1)} X =", V(ts)
I'(v) =c(n")et 11 =T {(c,1)} A = ANEX p¢) 1 =T—{(c,1)}
I'; A; T Fv.dispose() : void()@S, A, Yy I3 A;7 Fnewc(vr.p) : ¢{r)@U, A1, 11
[1F] [OVERRIDE]
I'(v) = bool(b)es methy, = t mn((¢; vi)i:1..p) where
DiAANY =1, Fep i ty, AL,y Dpris Ppoys €kms €kn {-}H k=12
T;ANY =0;7 Feg it ta, A, 1o Dpri=>Pprg Ppog=>Dpoy
(t, T3, Ag) = unify(t1, t2, T1,T2, A1, AQ) ¢p,-1 = 61m262m ¢pr1 [EQngqn
I'; A;T - if vthene; elsees i t, Az, 13 F OverridesOK (meth , meths)
[1Mi]

F (AT mn((L; 9:)i:1..p) Where @pr; dpo; €c; €r{e})Ec(n™)
t =fresh(t) to=c(n™@A I'(v;))=t; i€0.p +Ft; <t p;i i€l.p
pp=Ul_ pi A1 FT3e p=rename(i, t)UppUprime(pp)
Arzy(pry 3V(ee)UV(er)-p gpr A1 = Ao 3Y - p($prAdpo)
N =T—-ede, X =U_ V(i) Y =XUprime(X) L=V ,V(t:)
I A7 Fowgmn(vr.p) = t, A, T

[METH]
=T U{vst1, .0 by} A=naX(D)AgpAinv(I) Abe. 20
N AecbFent, Ay, ¢ AAMEYY D6 Abe, 30 Ft<:i,p
(s sNi) = Vseu(ts),i€lp Y=UL,Ni (3 prime(Y)-A1)=p(¢po)
T e £ mn((£; v:)i:1..p) where @pr; dpo; s € {€}

Fig. 5. Some Type Rules for Memory Checking

Memory Usage Verification for OO Programs 79

5.1 Notations

We use function V to return size variables of a formula, e.g. V(z'=z+1Ay=2)={z',y, 2}
We extend it to annotated type, type environment, and memory specification, e.g.,
V(r(n*yeA)={n"}, V({(, 4xd+8)})={d}. The function prime takes a set of size vari-

ables and returns their primed version, e.g. prime({s1,. .., sn})={sl,..., s, }. Note that
prime operation is idempotent, namely (v')'=v". We extend this to (annotated) type, type
environment,and even substitution. For example, prime(7(n1,...,ng)) = 7(nl, ..., n}),

and prime([z—a, y—b]) = [z'—ad’,y'—b']. Often, we need to express a no-change con-
dition on a set of size variables. We define a naX operation as follows which returns a
formula for which the original and primed variables are made equal.

noX ({}) =4 true noX ({xYUX) =4 (z'=x)AnoX (X)

We extend this function to annotated types (and type environments), as follows:
noX (t) =4 noX (V(t)). Also, we use n* = fresh() to generate new size variables n*. We
extend it to annotated type, so that = fresh(t) will return a new type ¢ with the same
underlying type as ¢ but with fresh size variables instead. Function rename(t1, t2) returns
an equality substitution, e.g. rename(Int(r), Int(s’))=[r—s’]. The operator U combines
two domain disjoint substitutions into one.

The function fdList is used to retrieve a full list of fields for a given class, together
with its size relation. The function inv is used to retrieve the size invariant that is asso-
ciated with each type. This function shall also be extended to type environment and list
of types. The function V.. classifies size variables from each field into three groups :
(i) immutable, (ii) mutable but unique, (iii) otherwise (non-trackable).

To effect a change ¢ to an existing poststate A, we provide an operator, oy, with
Y = {s"} to denote the set of size variables that is to be updated, as follows:

Aoy ¢ =ar 37110 - p2(A) A p1(¢)
where Y = {s1,...,8n}; {r1,...,rn} =fresh(); p1 = [si — mili=1 ; p2 = [si —)iz

5.2 Assignment

The [Ass1GN] rule captures imperative updates (to object fields and variables) by mod-
ifying the current size constraint to a new updated state with changes to the imperative
size variables from the LHS. From the rule, note that I" - w :: ¢, ¢, Y is to identify Y as a
set of imperative size variables and also to gather a constraint ¢ for this set. The subtype
relation - ¢1 <: t, p will return a substitution that maps the size variables of supertype
to that of the subtype. This mapping ignores all non-trackable size variables that may
be globally aliased, but immutable and unique mutable size variables are captured.

5.3 Memory Operations

The heap space is directly changed by the new and dispose primitives. Their corre-
sponding type rules, [NEW] and [DISPOSE], would ensure that sufficient memory is
available for consumption by new and will credit back space relinquished by dispose.
The memory effect is accumulated according to the flow of computation. Consider:

80 W.-N. Chin et al.

ARY{(List, 1)} A1:Ao{$}m’:m+1
I'; A; 7+ x = new List(o, x) :: void()@S, A,V —{(List, 1)}
=(r—{(List,1)})w{(List, 1)}
I'; Ay; T—{(List, 1)} F y.dispose() :: void()@S, A, 11
I'; A; T+ x = new List(o, x); y.dispose() :: void()@S, A1,T

The new operation consumes a List node, while the dispose operation releases
back a List node. The net effect is that available memory 7 is unchanged. However,
due to the order of the two operations, we require A-7"J{(List, 1)} which affects the
maximum memory required.

Another rule which has a direct effect on memory is the method invocation rule
[1v1]. Sufficient memory must be available for consumption prior to each call (as spec-
ified by A; F TJe.), with the net memory release added back in the end (as specified
by 71 = T —edve,.). Each method precondition must be met by the pre-state of its caller.
This is checked by A=y IV(e.)UV(er)-p ¢pr Which uses a relation ~> x, defined as:

Ar>x ¢ =4 (A= pp), where p = [s1+— 81,..,80 — sh] A V(@) NX = {s1,.., 80}

Note that V, returns size variables in unprimed form, e.g. V,(z'=z+1Ay=2)
={z,y,2}.
5.4 Conditional

Our type rule for conditional [1IF] is able to track both the size-constraints and mem-
ory usages in a path-sensitive manner. Path-sensitivity is encoded by adding b'=1 and
b'=0 to the pre-states of the two branches, respectively. We achieve path-sensitivity for
memory usage specification by integrating it with relational size constraints derived.
Take note that the unify operation merges the post-state constraints and memory us-
ages from the two branches via a disjunction, a formal definition and an example can
be found in our report [10]. Path-sensitivity makes our analysis more accurate and is
critical for analysing the memory requirement of recursive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definition is consistent with the mem-
ory usage specification given in its declaration header by the [METH] rule. The initial
memory is e.. The final available memory of the method body e is 73 which must not
be less than the declared net memory release (as specified by ¢,,AA1 11 Jer).

Function subtyping for the OO paradigm is used to support method overriding. This
is captured by the [OVERRIDE] rule in Fig 5. Each method which overrides another
is expected to be contravariant on its precondition (and memory consumption) and
covariant on its postcondition (and memory releases).

6 Soundness of Type System

We have proposed a small-step operational semantics (denoted by < transitions) instru-
mented with alias and size notations[10], and have also formalised two safety theorems

Memory Usage Verification for OO Programs 81

for our type rules. The first theorem states that each well-typed expression preserves
its type under reduction with a runtime environment /7 and a store w that are consistent
with the compile-time counterparts, I" (type environment) and X (store typing). Also,
final size constraint is consistent with the value obtained on termination.

Theorem 1 (Preservation).

(a) (Expression)If [';X,4;0;TFe:t,Ar,01,T1 I'; 2 A;,0;7 E (I, w,0)
<H7w70> [6} — (U1,W1,O’1> [61}
then there exist Xo, O X, I'n, Aw, On, and T, such that

I' — diff(e,e1) = I'n — diff(e1,) ;X0 A0;O0; 0 e i t, A,01, 11
I'n; Yoy Aa; O0; Yo E (I, w1,01) .

(b) (Value) If I';X;A;0;7 F (A,6) = t,A,01; 1 ;X2 A0,0;7 E (Il,w,0)
then the following hold:

6 =6 I'+{z:thX; A0, E (I +{x— (A,0)},w,0)
where x = fresh() , Az = [v— V'] ev@) Ar.

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. O

The second safety theorem on progress captures the fact that well-typed programs
cannot go wrong. Specifically, this theorem guarantees that no memory adequacy errors
are ever encountered for well-typed MEMJ programs, as follows:

Theorem 2 (Progress). If I'; ¥; A; ©; Te :: t, Ay, 01,01 and I'; X,A0;0;7 | (I, w,0),
then either e is a value, or (II,w, o) [e] — Err-Null, or there exist II,,w1,01,e1 such
that (II,w, o) le] — (I11,w1,01) [e1].

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. O

7 Implementation

We have constructed a type checker for MEMJ, and have also built a preprocessor to
allow a more expressive language to be accepted. The entire prototype was built using
a Haskell compiler[18] where we have added a library (based on [19]) for Presburger
arithmetic constraint-solving.

The main objective of our initial experiments is to show that our memory usage
specification mechanism is expressive and that such an advanced form of type checking
is viable. We converted to MEMIJ a set of programs from the Java version of the Olden
benchmark suite [7] and another set of smaller programs from the ReglJava bench-
mark[11], before subjecting them to memory adequacy checking. Our initial experi-
mental results are encouraging; however this is a proof-of-concept implementation and
there is scope for optimization and more exhaustive experimentation.

82 W.-N. Chin et al.

Figure 6 summarises the statis-

P Size (li Checki i .) Verified . .
rograms Size (lines) ecking (in sec.) Verifie tics obtained for cach program

Source Ann. Alias Memory Methods

bisort 340 7 0.01 256 6/6 that we have verified via our type
em3d 462 19 0.05 1.14 20/20 checker. Column 3 illustrates the
health 562 22 0.05 6.37 15/15 size and memory annotation over-
mst 473 31 0.02 1.26 22/22 heads which must be made in
power 765 24 0.06 4.28 19/19 the header declarations of each
treeadd 195 6 0.02 0.32 4/4 class and method. Columns 4 and
tsp 545 10 0.02 354 919 5 highlight the CPU times used
perimeter 745 12 0.02 21.81 8/8 (in seconds) for alias and mem-

n-body 1128 31 0.60 1.25 22/22
Voronoi 1000 45 0.03 3.51 39/40
stack 122 12 0.01 0.08 10/10

ory checking, respectively. Our ex-
periments were done under Red-
hat Linux 9.0 platform on Pen-

sieve 88 7 0.01 0.09 6/6 . . .
m-sort 183 13 0.01 0.36 12/12 tium 2.4 GHz with 768MB.mam
life 164 9 0.02 2.95 717 memory. Except for the perimeter
Mandelbrot 194 11 0.01 1.72 10/10 program (which has more condi-
Reynolds3 98 6 001 0.18 4/4 tionals from using a quadtree data
structure), all programs take under
Fig. 6. Type Checking Experimental Results 10 seconds to verify, despite them

being medium-sized programs and
the high complexity of Presburger solving. We attribute this to the fact that memory
declarations are verified in a summary-based fashion for each method definition.The
last column highlights the number of methods that have been successfully verified as
using memory spaces that are bounded by symbolic Presburger formulae.All methods’
heap usage could be statically bounded, except® for a method in Voronoi that has an
allocation inside a loop, with a complex termination condition.

Program Input Size Prediction (a) Actual (b) Allocation (c) Reuse (b/c) Accuracy (b/a)

sieve 10000 10000 9999 10000 0.9999 0.9999
m-sort 10000 20000 20000 287232 0.0696 1.0000
life 1000 2 2 1000 0.0020 1.0000
Mandelbrot 100 4 4 83692 0.00005 1.0000
Reynolds 10000 20014 20014 40000 0.5004 1.0000

Fig.7. Experimental Results on Memory Prediction and Recovery

We have also conducted a set of experimental results to evaluate on the effective-
ness of memory inference, in conjunction with our explicit memory recovery scheme.
We modified IBM’s Jikes RVM[2, 16] to provide support for explicit dispose operation
and instrumented its memory system to capture total allocation (c) and actual high wa-
termark (b). We then compare it against the predicted memory requirement (a) from our
memory inference. We count the number of objects created and reused. As can be seen
in Fig 7, our memory inference is accurate for the RegJava benchmark. Except for sieve,

2 For Olden programs which built tree-like data structure, we make a minor change to take total
nodes rather than heights as parameters. This avoids exponential formulae.

Memory Usage Verification for OO Programs 83

most of the programs have high degree of memory reuse which were facilitated by our
use of the dispose operation for memory recovery.

8 Related Work

Past research on memory models for object-oriented paradigm have focused largely on
efficiencyand safety. We are unaware of any prior type-based work on analysing heap
memory usage by OO programs for the purpose of checking for memory adequacy. The
closest related work on memory adequacy are based on first-order functional paradigm,
where data structures are mostly immutable and thus easier to handle.

Hughes and Pareto [15] proposed a type and effect system on space usage estimation
for a first-order functional language, extended with region language constructs of Tofte
and Talpin’s[20].The use of region model facilitates recovery of heap space. However,
as each region is only deleted when all its objects become dead, more memory than
necessary may be used, as reported by [4].

Hofmann and Jost [14] proposed a solution to obtain linear bounds on the heap
space usage of first-order functional programs. A key feature of their solution is the use
of linear typing which allows the space of each last-use data constructor (or record) to
be directly recycled by a matching allocation. With this approach, memory recovery can
be supported within each function, but not across functions in general. Moreover, their
model does not track the symbolic sizes of data structures. Nevertheless,one significant
advance of their work is an inference mechanism through linear programming (LP)
technique.The main advantage of LP technique is that no fix-point analysis is required,
but it restricts the memory effects to a linear form without disjunction.

Apart from the above memory analysis work on high level languages, Aspinall and
Compagnoni [3] presented a first-order linearly typed assembly language to allow safe
reuse of heap space.Their system is a target for the compilation of a functional pro-
gramming language with a similar type systems (e.g. Hofmann’s LFPL). More recently,
Cachera et. al. [6] proposed a constraint-based memory analysis for Java Bytecode-like
languages. For a given program their loop-detecting algorithm can detect methods and
instructions that execute an unbounded number of times, thus can be used to check
whether the memory usage is bounded or not. However, their analysis cannot check
whether a given amount of memory is adequate or not, while our system does.

9 Concluding Remarks

We have proposed a memory usage type system for a non-trivial object-oriented core
language. We have designed a flexible specification mechanism to allow memory needs
of user programs to be declared abstractly, and then verifies if memory adequacy prop-
erty holds for the given definitions. Our approach requires heap space to be explicitly
deallocated, which can be handled automatically. We have also built a prototype type
checker to confirm the viability and practicality of our approach. We envision our frame-
work to be useful for embedded system, where memory is considered to be a critical
resource. We also envision the synergy of predicable memory bounds with region-based

84 W.-N. Chin et al.

memory management systems. In particular, bounded memory regions can result in bet-
ter performance. Synergistically, region-based system can provide timely recovery for
shared objects that are dead, providing us with tighter memory bounds.

Acknowledgement. The authors would like to acknowledge the invaluable help of
Florin Craciun with the evaluation of a set of the benchmark programs.

References

1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotation for Program Understanding.
In ACM OOPSLA, Seattle, Washington, November 2002.

2. B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber, M. Mergen,
T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeno in Java. In ACM OOPSLA,
Denver, Colorado, November 1999.

3. D. Aspinall and A. Compagnoni. Heap bounded assembly language. Journal of Automated
Reasoning, 31:261-302, 2003.

4. E. D. Berger, B. G. Zorn, and K. S. Mckinley. Reconsidering Custom Memory Allocation.
In ACM OOPSLA, November 2002.

5. J.Boyland, J. Noble, and W. Retert. Capabilities for Sharing: A Generalization of Uniqueness
and Read-Only. In ECOOP, Budapest, Hungary, June 2001.

6. D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified Memory Usage Analysis.
In 13th International Symposium of Formal Methods Europe (FM’05), July 2005.

7. M. C. Carlisle and A. Rogers. Software caching and computation migration in Olden. In 4tk
Principles and Practice of Parallel Programming, Santa Barbara, California, May 1993.

8. E. C. Chan, J. Boyland, and W. L. Scherlis. Promises: Limited Specifications for Analysis
and Manipulation. In Proceedings of the International Conference on Software Engineering,
pages 167-176, Kyoto, Japan, April 1998.

9. W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen. Verifying Safety Policies
with Size Properties and Alias Controls. In 27th International Conference on Software En-
gineering (ICSE0S5), St. Louis, Missouri, May 2005.

10. W.N. Chin, H.H. Nguyen, S.C. Qin, and M. Rinard. Predictable Memory Usage for Object-
Oriented Programs. Technical report, SoC, Natl Univ. of Singapore, November 2004. avail.
at http://www.dur.ac.uk/shengchao.qin/papers/memj.ps.gz.

11. M. V. Christiansen and P. Velschow. Region-Based Memory Management in Java. Master’s
Thesis, Department of Computer Science (DIKU), University of Copenhagen, 1998.

12. M. Fahndrich and R. Leino. Declaring and checking non-null types in an object-oriented
language. In ACM OOPSLA, Anaheim, CA, October 2003.

13. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

14. M. Hofmann and S. Jost. Static prediction of heap space usage for first order functional
programs. In ACM POPL, New Orleans, Louisiana, January 2003.

15. J. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in Bounded Space: To-
wards Embedded ML Programming. In Proceedings of the International Conference on
Functional Programming (ICFP ’99), September 1999.

16. IBM. Jikes™ Research Virtual Machine (RVM). http://www-124.ibm.com/developerworks/
oss/jikesrvm/.

17. L. Lamport. The temporal logic of actions. ACM Trans. on Programming Languages and
Systems, 16(3):872-923, May 1994.

18. S Peyton-Jones and et al. Glasgow Haskell Compiler. http://www.haskell.org/ghc.

Memory Usage Verification for OO Programs 85

19. W. Pugh. The Omega Test: A fast practical integer programming algorithm for dependence
analysis. Communications of the ACM, 8:102—-114, 1992.

20. M. Tofte and J. Talpin. Region-based memory management. Information and Computation,
132(2), 1997.

21. H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In ACM
PLDI. ACM Press, June 1998.

A Alias Checking

We introduce four alias control mechanisms U | S |R | L adopted from [5, 8, 1]. These
alias mechanisms shall be used to support precise size tracking in the presence of mu-
table objects, and also for the automatic recovery of dead unique objects. For size-
tracking, we introduce R-mode fields to allow size-immutable properties to be accu-
rately tracked for all objects. For example, an alternative class declaration for the list
data type is given below, where its next field is marked as read-only (or immutable).
Note that the val field remains mutable.

class RList(n) where n=m+1; n>0{ Object()@S val; RList(m)@R next; --- }

The size property of such an RList type can be analysed at compile-time, while
allowing its objects to be freely shared. However, this comes at the cost of losing both
mutability and uniqueness.

We make use of L-mode parameters, with the limited unique (or lent-once) property
[8], to capture unique references that are temporarily lent out to method calls. They
allow the preservation of uniqueness together with precise size-tracking across methods.
Consider the following method with two List parameters.

void()@S join(List(m)@L x, List(n)@QU y) where n > 0;m'=n+m;- -

{ if isNull(x.next) then x.next = y else join(x.next,y) }

The first parameter is annotated as lent-once and can thus be tracked for size proper-
ties without loss of uniqueness. However, the second parameter is marked unique as its
reference escapes the method body (into the tail of the List from the first parameter). In
other words, the parameter y can have its uniqueness consumed but not x, as reflected
in the body of the above method declaration. Given two unique lists, a and b, the call
join(a,b) would consume the uniqueness of b but not that of a. Our lent-once policy is
more restrictive than normal lending [1] as we require each lent-once parameter to be
unaliased within the scope of its method. For example, join(a, a) is allowed by the type
rules of [1], but disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferredfrom one location (variable,
field or parameter) to another location. Consider a type environment {x::0bject()@U,
y::0bject()@U, z::0bject()@S} where variables x and y are unique, while z is shared. In
the following code, {x = y;z = x}, the uniqueness of y is first transferred to location x,
followed by the consumption of uniqueness of x that is lost to the shared variable z. In
our type judgement, we track variables/fields that have become dead using:

Ieke:t,6;

86 W.-N. Chin et al.

Here, each dead-set ©(6,) captures the set of references with consumed uniqueness
before(after) the evaluation of expression e. I" is a type enviroment which maps vari-
ables to their annotated types. Other type judgements for methods, classes and programs
have the following forms.

I Fen meth Far def bpdefy, , methii g

The full set of alias checking rules are givenin our technical report [10]).

	Introduction
	Overview
	Language and Annotations
	Heap Usage Specification
	Heap Consumption
	Heap Recovery

	Rules for Memory Checking
	Notations
	Assignment
	Memory Operations
	Conditional
	Method Declaration

	Soundness of Type System
	Implementation
	Related Work
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

