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Abstract. Soft errors, a form of transient errors that cause bit flips in memory
and other hardware components, are a growing concern for embedded systems
as technology scales down. While hardware-based approaches to detect/correct
soft errors are important, software-based techniques can be much more flexible.
One simple software-based strategy would be full duplication of computations
and data, and comparing the results of the corresponding original and duplicate
computations. However, while the performance overhead of this strategy can be
hidden during execution if there are idle hardware resources, the memory demand
increase due to data duplication can be dramatic, particularly for array-based ap-
plications that process large amounts of data.

Focusing on array-based embedded computing, this paper presents a mem-
ory space conscious loop iteration duplication approach that can reduce mem-
ory requirements of full duplication (of array data), without decreasing the level
of reliability the latter provides. Our “in-place duplication” approach reuses the
memory locations from the same array to store the duplicates of the elements of
a given array. Consequently, the memory overhead brought by the duplicates can
be reduced. Further, we extend this approach to incorporate “global duplication”,
which reuses memory locations from other arrays to store duplicates of the ele-
ments of a given array. This paper also discusses how our approach operates un-
der a memory size constraint. The experimental results from our implementation
show that the proposed approach is successful in reducing memory requirements
of the full duplication scheme for twelve array-based applications.

1 Introduction

Soft errors, a certain type of transient errors, generally result from random electric dis-
charges caused by background radiation, including alpha particles, cosmic rays, and
nearby human sources [18,25]. The impact of a soft error on a computer system is a
bit flip in memory components and computational logic. With the scaling of technology
down into the deep-submicron range, digital circuits are even more susceptible to ran-
dom failure than previous generations. If not addressed properly, soft errors can lead to
dramatic problems in embedded applications from a variety of domains. For example,
in safety-critical applications, unpredictable reliability can result in significant cost in
terms of human and equipment loss. Similarly, in commercial consumer applications
where high-volume, low-margin production is the norm, high levels of product failures

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 52–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 53

may necessitate the costly management of warranty support or expensive field mainte-
nance, eventually affecting brand reputation.

Recent research has focused on the soft error problem from both architecture and
software perspectives. We will discuss the related efforts in Section 6. One of the tech-
niques that have been proposed is based on executing duplicates of instructions and
comparing the results of the primary copy and duplicate to check correctness. It must
be observed, however, that embedded environments typically operate under multiple
constraints such as power consumption, memory size, performance and mean time to
failure, and maintaining a required level of reliability against soft errors should be care-
fully balanced with other constraints. More specifically, one needs to consider the extra
memory consumption, execution cycles, and power consumption due to duplicated in-
structions and data. In particular, limiting extra memory space demand of an application
due to enhanced reliability is extremely important in many embedded environments. In
embedded environments that execute a single application, the memory demand of the
application directly determines the size of the memory to be employed, which means
that an increase in memory demands can increase the overall cost of the embedded sys-
tem and its area (form factor). Also, in multi-programmed embedded environments, in-
creasing memory consumption of an application can reduce the number of applications
that can execute simultaneously, thereby impacting overall performance of the system.
Therefore, when increasing the number of instructions and size of data for reliability
reasons, one must be careful in limiting the required extra memory space.

Motivated by this observation, this paper presents a memory space conscious loop
iteration duplication scheme for reliability. The idea is to execute a copy (duplicate) of
an original loop iteration (along with the original) and compare their results for cor-
rectness. In storing the results of the duplicates, we try to reuse some of the memory
locations that originally store the data manipulated by the program. In other words, we
recycle the memory locations as much as possible to reduce the extra memory demand
due to duplicate executions. This is expected to bring two benefits. First, memory space
consumption is reduced, which is very important for memory-constrained systems. Sec-
ond, performance can be improved due to improved data cache behavior. Targeting
array-intensive embedded applications, this paper makes the following contributions:

• We present a compiler-based approach to memory conscious loop iteration duplica-
tion. Our “in-place duplication” approach reuses memory locations from the same
array to store the duplicates of its elements. Specifically, it reuses the locations of
dead array elements to store the duplicates of the actively-used array elements. As
a result, the memory overhead brought by duplicates is reduced.

• We discuss a “global duplication” scheme, which allows us reuse memory locations
from other arrays to store the duplicates of the elements of a given array.

• We present experimental evidence demonstrating the effectiveness of the proposed
approaches. Both in-place duplication and global duplication are automated within
an optimizing compiler. We test our approaches using twelve array-based applica-
tions and show that in-place duplication can reduce the extra memory consumption
of a duplication based scheme that does not consider memory space consumption
by about 33.2%, and that the global duplication scheme brings up this figure to
42.1%.



54 G. Chen, M. Kandemir, and M. Karakoy

• We demonstrate how our approach can be made to work when a limited extra mem-
ory consumption is permissible. In this scenario, our approach tries to reuse as many
memory locations as possible under the specified memory constraint.

It must be emphasized that array-based codes are very important for embedded sys-
tems. This is because many embedded image and video processing programs/applicat-
ions are array intensive [4], and they are usually in the form of loop nests operating on
arrays of signal data.

There are several reasons why our approach is better than a hardware-based scheme,
e.g., a combination of redundant instruction execution and ECC memory (i.e., memory
protected by error correction code). First, if some applications (or some portions of an
application) require greater reliability than others, software will be able to selectively
apply duplication, instead of incurring the fixed ECC overhead on all of the memory
accesses. Second, if an application needs a high level of reliability on existing hardware
without ECC, a software technique would be needed. Third, our scheme can use what-
ever memory is available to increase reliability, i.e., we are able to decrease failure rate
under a given memory space constraint.

The rest of this paper is structured as follows. In Section 1, we describe the repre-
sentation used for loop iterations and array data. Section 3 discusses our assumptions,
and presents our approach to in-place duplication. In the same section, we discuss our
approach to duplication under a memory constraint as well. Section 4 discusses ex-
tensions to our base approach when some of our assumptions are relaxed. Section 5

Table 1. Notations

n Number of enclosing loops for an array reference.
w Number of arrays in a loop nest.
I Iteration space.
I = [i1 i2 · · · in]T . An iteration point.
I+ = I + [0 0 · · · 0 1]T .
� I � J means I is lexically less than or equal to J .
Xk An array.
Mk Number of read references to Xk .
Dk Number of dimensions of Xk .
Nk,i Size of the ith dimension of Xk .
Nk = [Nk,1 Nk,2 · · · Nk,Dk

]T . Size of Xk .
x Index of an array element.
Fk,l(I) lth reference to Xk . Fk,l(I) = Fk,l · I + fk,l .
R Set of all read references in the loop body.
Gk(R) Right hand side of the kth statement.
dk,l Dependence distance from Xk(Fk,0(I)) to

Xk(Fk,l(I)); that is, Xk(Fk,0(I)) =
Xk(Fk,l(I + dk,l))

dk,lmax max1≤l≤Mk
dk,l ; that is, the maximum reuse

distance (in terms of lexicographical order) from
Xk(Fk,0(I)) to Xk(Fk,l(I)).

Lk Iteration offset for duplicates. The duplicate of
Xk(Fk,0(I)) is stored in Xk(Fk,0(I + Lk)).

Pk = [pk,1 pk,2 · · · pk,Dk
]T . Space offset for

duplicates. The duplicate of Xk(x) is stored in
Xk(x + Pk).

|pk,i| Absolute value of pk,i .
INCk Array size expansion of Xk .

gives our experimental results that
show memory savings when using
our approaches. In Section 6, we de-
scribe related work. Finally, in Sec-
tion 7, we draw conclusions.

2 Representation for Loop
Iterations, Data Space,
and Array Accesses

Table 1 presents the notation used
in this paper. The domain of our
approach is the set of sequential
array-intensive embedded programs
consisting of nested loops. We as-
sume that the loop bounds and
the array indices (subscript func-
tions) are affine functions of enclos-
ing loop indices and loop-invariant
constants. We handle other con-
structs such as non-affine array ac-
cesses and conditional statements
conservatively.
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for i = 0,N-1
for j = 1,N-1

A(i,j) = 2*A(i,j-1) + 1;

Fig. 1. An example nested loop

In a given loop nest with n loops, iterators surrounding any statement can be rep-
resented as an n-entry vector I = [i1 i2 · · · in]T . The iteration space I consists of
all the iterations of a loop nest. We use I+ as a shorthand for I + [0 0 · · · 0 1]T .
The index domain of an m-dimensional array Xk is a rectilinear polyhedron, in which
each element can be represented as an m-entry vector xk = [a1 a2 · · · am]T . We
use Fk,l(I) to represent the access function of the lth reference to array Xk. Fk,l(I)
can also be defined in a matrix/vector form as: Fk,l(I) = Fk,l · I + fk,l, where Fk,l is
an m × n matrix and fk,l is an m-entry vector. As an example, for the two references
shown in Fig. 1, we have:

F1,0(I) =
[
1 0
0 1

] [
i
j

]
+

[
0
0

]
and F1,1(I) =

[
1 0
0 1

] [
i
j

]
+

[
0

−1

]
.

A data reuse is said to exist from an array reference Fk,l1 to an array reference Fk,l2

if: ∃I1∈I, I2∈I : I1 � I2 and Fk,l1(I1)=Fk,l2(I2). In this case, I2−I1 is defined
as the reuse distance between Fk,l1 and Fk,l2 . For example, in Fig. 1, data reuse exists
from Fk,0 to Fk,1 since Fk,0(I) = Fk,1(I+), and the reuse distance between them is
[0 1]T .

3 Array Duplication

A simple approach to enhance reliability is to create a duplicated copy for each array,
duplicate the execution of each iteration, and compare the result of the primary with that
of the duplicate. We refer to this approach as full duplication in this paper. An impor-
tant problem with this approach is that it doubles the memory space consumption (as
each array is duplicated). Our objective is to improve the reliability of the computation
in the loop, and keep the incurred memory cost at minimum. We achieve this by not
duplicating the array fully, but reusing some memory locations (that are used to store
other elements) for duplicates.

3.1 Assumptions

Our algorithm works on a per-loop basis. We assume that all the loops are normalized,
i.e., the loop index variable of each loop nest increases by 1 at each step. Loop normal-
ization [1] is a standard code modification technique that can be used to ensure this. In
this section, we consider “in-place duplication”, which means reusing array elements
(i.e., their memory locations) for storing the duplicates of the elements of the same ar-
ray. That is, for an array element, its duplicate can be stored only within the same array.
In Section 4.2 we present the algorithm that allows “global duplication”, i.e., reusing
array locations for storing the duplicates of the elements from other arrays. Our algo-
rithm operates on one array at a time. For an array Xk to be considered as a candidate
by our algorithm, the following assumptions must be satisfied:
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• Assumption 1: For every pair of array references to Xk, the reuse distance be-
tween them is a constant vector. Note that if two array references do not have any
data reuse between them, they are also assumed to have a constant reuse distance
vector. Most existing compiler optimizations for array-based codes operate under
this assumption.

• Assumption 2: If an array element of Xk is written in the loop nest, all the reads to
this array element retrieve the value stored by some write reference in the loop nest
(that is, none of the reads to this element retrieves a value stored before the loop
nest).

• Assumption 3: There is only one write reference to Xk in the loop body.

Whether an array satisfies Assumption 1 and Assumption 2 can be checked using
data reuse analysis [23] and value dependence test [11]. Checking Assumption 3 is
straightforward. In Section 4, we discuss the cases where we relax these assumptions.
In in-place duplication, if an array does not satisfy all of the above assumptions, we fall
back to the full duplication strategy for that array. For now, let us assume that all the
arrays in the loop satisfy these assumptions. Based on the assumptions above, a loop
body with w arrays can be represented as:

X1(F1,0(I)) = G1(R);
X2(F2,0(I)) = G2(R);

...
Xw(Fw,0(I)) = Gw(R).

R is the set of all read array references in the loop body, and Gi (1 ≤ i ≤ w) represents
a function of these read references. In mathematical terms:

R = { X1(F1,1(I)), X1(F1,2(I)), · · · , X1(F1,M1(I)),
X2(F2,1(I)), X2(F2,2(I)), · · · , X2(F2,M2(I)),

...
Xw(Fw,1(I)),Xw(Fw,2(I)), · · · , Xw(Fw,Mw (I)) }.

Fk,0 is the write reference to array Xk, and Mk is the number of read references to Xk.
Based on these assumptions, we can determine that there is a reuse from Fk,0 to

each read reference Fk,l , and the corresponding reuse distance is a constant vector,
which we denote using dk,l. This means that the array element Xk(Fk,0(I)), which is
written at iteration I , will be used at iterations I +dk,1, I +dk,2, . . . , I +dk,Mk . This
can be also expressed as:

Fk,l(I + dk,l) = Fk,0(I).

Let us assume that Fk,lmax is the one with the maximum reuse distance (in terms of
lexicographical order) from Fk,0; that is, dk,lmax = max1≤l≤Mk

(dk,l). Therefore,
Xk(Fk,0(I)) written at iteration I is last-used at iteration I + dk,lmax by array refer-
ence Fk,lmax .

3.2 In-place Duplication

Approach and Algorithm. For the execution of a statement to be reliable, we need to
duplicate its input data, duplicate its execution, and compare the results of the original
and duplicated executions. For example, the reliable version of a statement “A(i)=
“A(i-1)+1;” would be:
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A(i) = A(i-1) + 1;
A’(i) = A’(i-1) + 1;
if A(i) != A’(i)
error();

We assume that, A’ is a duplicate for array A in the above statement. In this section,
we discuss how we reduce the memory space overhead brought by duplicates without
compromising reliability.

A memory location can be in two different states: active or inactive. At a given
time, a memory location is “active” if the value stored in it will be used in the future.
On the other hand, a memory location is “inactive” if there is not any future read op-
eration on it, or its value is updated before any read operation on it takes place. As an
example, Fig. 2 gives the states of three variables, a, b and c, at different points of time
during execution. At any given time, we need to provide a duplicate for an active array
element, so that any soft error that occurs in its location can be detected by comparing
this array element and its duplicate. It is to be noted that, we can modify the value in
an inactive location without affecting the correctness of the program. Therefore, the
inactive memory locations are good candidates for storing the duplicates of the active
memory locations. For example, in Fig. 2, we can use variable c to store the duplicate of
a, because variable c is inactive from t1 to t2 and from t4 to t6, during which a is active,
and needs to be duplicated if it is to be protected against soft errors. In this section, we
focus on “in-place duplication”, which means reusing inactive array elements (i.e., their
locations) for storing the duplicates of the elements of the same array.

Let us consider an array Xk. Fig. 3 illustrates a scenario for selecting the loca-
tion to store the duplicate for an element updated at loop iteration I . At iteration I ,
Xk(Fk,0(I)) is updated, and the same array element is last-used at iteration J . Conse-
quently, the array element Xk(Fk,0(I)) is active between iterations I and J , and we
need to keep a duplicate for it during this period. To save memory space, we want to find
an element in Xk, which is inactive during this period. Recall that Assumption 2 pre-
sented in Section 3.1 says that all the read references to an array element are executed
after the corresponding write reference (if such a write reference exists). Therefore, if
an element is written in some loop iteration, it is inactive before that iteration. Con-
sequently, if an array element is written after iteration J , the last iteration at which

a

b

c

Memory

Time

write
read

active
inactive

t1 t2 t3 t4 t5 t6 t7 t8

))(( 0,
+JX kk
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))(( 0, IX kk
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J
r

+J
r
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read
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r

Fig. 2. States of memory locations during Fig. 3. Determining a memory location to store
execution the duplicate for element Xk(Fk,0(I))
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Xk(Fk,0(I)) is used, this element can be used to store the duplicate of Xk(Fk,0(I)),
since it is inactive between I and J . Our approach uses the array element written at
iteration J + Vk, which is Fk,0(J + Vk), to store the duplicate of the array element
written at iteration I . Here, Vk is a constant vector and [0 0 · · · 0 0]T ≺ Vk so
that iteration J + Vk is executed after iteration J . A possible choice for Vk will be
discussed shortly.

Based on the discussion in Section 3.1, we know that J = I +dk,lmax . We use Lk

to represent the distance between I and J + Vk. Hence, we have:

Lk = J + Vk − I = dk,lmax + Vk .

Thus, the duplicate of Xk(Fk,0(I)) is stored in Xk(Fk,0(I + Lk)). Consequently,
the memory space distance between these two elements, denoted as Pk, can be calcu-
lated as:

Pk = Fk,0(I + Lk) − Fk,0(I)
= (Fk,0 · (I + Lk) + fk,0) − (Fk,0 · I + fk,0)
= Fk,0 · (I + Lk) − Fk,0 · I
= Fk,0 · Lk .

Note that Pk is a constant vector since both Fk,0 and Lk are constant vectors. Conse-
quently, for an arbitrary array element Xk(x), its duplicate can reside in Xk(x + Pk),
and this process can be carried out for every array used in the loop nest.

It should be observed that if x is near the array boundary, x + Pk may exceed
the original array boundary. In this case, we need to expand array Xk so that x + Pk

remains within the boundary. Assuming that Pk = [pk,1 pk,2 · · · pk,Dk
]T and that

the original size of the ith dimension of Xk is Nk,i, the ith dimension of Xk needs
to be expanded by |pk,i|, units (i.e., array elements) to Nk,i + |pk,i| (we use |pk,i| to
denote the absolute value of pk,i). Therefore, the total memory expansion for array Xk,
denoted as INCk, can be calculated as:

INCk =

Dk∏
i=1

(Nk,i + |pk,i|) −
Dk∏
i=1

Nk,i (1)

Note that we expect INCk to be much smaller than
∏Dk

i=1 Nk,i, the total size of the
array. Let us now look at the problem of how to select a suitable Vk. Since our objective
is to minimize the memory consumption due to duplication, we want to select a Vk so
that INCk can be minimized. Although an optimum Vk can be calculated by exhaustive
enumeration or other sophisticated methods, we use a simple heuristic here that sets Vk

to [0 0 · · · 0 1]T . The rationale behind this choice is that by minimizing Vk, we can
minimize Pk, and, thus, we can minimize INCk. More specifically, in this case, we
obtain:

Lk = dk,lmax + [0 0 · · · 0 1]T = dk,lmax

+.

A potential problem is that pk,i could be negative for some i, which means that xi +pk,i

can be a negative number, where xi is the array index of the original array reference for
the ith dimension. Such a case can arise if the array is accessed from upper to lower
index along the ith dimension. If this is the case, we use “(xi +pk,i +Nk,i) mod Nk,i”
as the array index for this dimension. That is, we use the additional (upper) elements
for placeholders of the duplicates of the lower elements.

Our algorithm for in-place duplication is given in Fig. 4. Assume that there are K
arrays in the loop body, the average number of references to each array is M , the average
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Algorithm I:

foreach array Xk do
check the following three assumptions:

there is only one write reference to Xk ;
each read reference has a data reuse from the write

reference;
the reuse distances are constant vectors;

if all assumptions are satisfied
dk,lmax = max1≤l≤Mk

dk,l;

Lk = dk,lmax + [0 0 · · · 0 1]T

Pk = Fk,0 · Lk;
foreach dimension i of array Xk do

Nk,i += |pk,i|;
endfor
foreach reference Xk(Fk,l(I)) do

its duplicate is stored in
Xk(Fk,l(I) + Pk);

endfor
else use full duplication for Xk;
endif

endfor

Fig. 4. Algorithm I: The algorithm for in-place
duplication

Algorithm II:

foreach array Xk do
calculate INCk;

endfor
sort the arrays as Xk1 , Xk2 , . . . , Xkw ,
so that INCk1 ≤ INCk2 ≤ · · · ≤ INCkw ;
h = 1;
Mem = 0;
while h ≤ w do

if (Mem + INCkh
) ≤ U do

Mem += INCkh
;

h++;
else goto LoopExit;
endif

endwhile
LoopExit:
h = h - 1;
for i = 1, h do

duplicate Xki
;

endfor

Fig. 5. Algorithm II: The algorithm for
selecting the arrays to duplicate under memory
constraint (U )

int A(N);
for i=0,N-2

A(i+1)=A(i)+a;

(a) Original program

int A(N),A’(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A’(i+1)=A’(i)+a;
if A(i+1)!=A’(i+1)
error();

}

(b) Full duplication

int A(N+2);
for i=0,N-2 {

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
}

(c) In-place duplication

Fig. 6. Example application of in-place duplication

number of dimensions of each array is D, and the number of enclosing loops is n. Apart
from checking our three assumptions, for each array Xk, the time to calculate dk,l and
dk,lmax is O(MD). It takes O(nD) time to calculate Pk. Therefore, the complexity
of our algorithm, without taking into account the complexity of checking assumptions,
is O((M + n)DK). The time for checking our three assumptions is determined by the
algorithm used for value dependence testing.

Example. We now discuss an example to illustrate our in-place duplication algorithm.
Fig. 6 gives the example for our algorithm written in a pseudo-language syntax. In this
figure, a and N are constants. In Fig. 6, we have:

F1,0 = [1]; F1,0(I) = i + 1; F1,1 = [1]; F1,1(I) = i.

It is easy to determine that array A satisfies the three assumptions in Algorithm I, and
we have d1,1 = [1]. Therefore, we can obtain d1,lmax as:

d1,lmax = d1,1 = [1].

Based on this, we can calculate L1 and P1 as follows:

L1 = d1,lmax + [1] = [2] and P1 = F1,0 · L1 = [2].



60 G. Chen, M. Kandemir, and M. Karakoy

Thus, we determine that we need to expand the original memory space allocated for
array A by 2 elements. As a result, the duplicate of A(i+1) is in A(i+1+2), which
is A(i+3), and the duplicate of A(i) is in A(i+2). Using full duplication shown in
Fig. 6(b), the total size of memory is increased by 100% over the original case with
no duplication. In comparison, using our in-place duplication version in Fig. 6(c), the
percentage memory increase over the original case is 2/N, which is less than 2% when
N > 100.

3.3 Duplication Under Memory Constraint

Approach and Algorithm. There exist cases where one may want to limit the memory
consumption brought by duplication to a certain value. In this part, we discuss how our
approach can be made to work under such a memory size constraint.

We assume that all the array elements are of equal importance (as far as improving
reliability against soft errors is concerned), and our objective is to have duplicates for
as many array elements as possible. Let us assume that we cannot reserve more than
U units (array elements) of memory space to store duplicates. From Algorithm I and
Equation (1), we can calculate the memory expansion for arrays that can make use of
in-place duplication. On the other hand, for an array that needs to be fully duplicated,
the incurred extra memory expansion is equal to its original size. In either case, we
are able to determine INCk for each array Xk. Next, we sort our arrays according to
non-decreasing INCk values, that is:

Xk1 , Xk2 , . . . , Xkw , where INCk1 ≤ INCk2 ≤ · · · ≤ INCkw.

After that, we determine a maximum h such that h ≤ w and
∑h

i=1 INCki ≤ U .
That is, we choose the candidate arrays for duplication in the increasing order of INCk,
until all the arrays are duplicated or duplicating more arrays would exceed the allowable
memory size constraint. Here, h is the number of arrays that we choose during this
process. Fig. 5 (on page 59) gives the algorithm (named Algorithm II) that selects the
arrays to duplicate. After the selection is performed, we use the algorithm in Fig. 4 to
duplicate the selected arrays.

Example. An example of duplication under memory constraint is shown in Fig. 7.
By checking array A and array B, in Fig. 7(a) against our assumptions, we can deter-
mine that A can use in-place duplication and B needs to be fully duplicated. If there is
no memory constraint, the original program could be transformed to the one given in

int A(100),B(100);
for i=0,98

A(i+1)=A(i)+a;
B(i+1)=B(i+1)+B(i);

(a) Original program

int A(102),B(100),B’(100);
for i=0,98

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)
error();

B(i+1)=B(i+1)+B(i);
B’(i+1)=B’(i+1)+B’(i);
if B(i+1)!=B’(i+1);
error();

(b) Without memory constraint

int A(102),B(100);
for i=0,98

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
B(i+1)=B(i+1)+B(i);

(c) With an allowable increase
of 10 array locations

Fig. 7. Example for duplication under memory constraint
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Fig. 7(b). Now let us assume that we impose a memory constraint such that we cannot
use more than 10 extra array locations for storing the duplicates. We use X1 to represent
array A and X2 to represent array B. To determine the memory expansion due to array
A, we proceed as follows:

F1,0 = [1]; F1,0(I) = i + 1; F1,1 = [1]; F1,1(I) = i; d1,1 = [1]; d1,lmax = d1,1 = [1];
L1 = d1,lmax + [1] = [2]; P1 = F1,0 · L1 = [2]; INC1 = (100 + 2) − 100 = 2.

On the other hand, B needs to be fully duplicated. Thus, we have INC2 = 100. Since
INC1 < INC2, we first consider duplicating A, which is possible since INC1 <
10. However, we cannot add B to the list of arrays to be duplicated since INC1 +
INC2 > 10. To sum up, A is duplicated, whereas B is not duplicated. Fig. 7(c) gives
the transformed code.

4 Extensions

Recall that, in Section 3.1, we listed three assumptions so that our in-place duplication
could be used. In this section, we discuss the needed extensions to our base approach if
some of these assumptions are to be relaxed. Note that Assumption 1 cannot be relaxed,
since our approach would not work on an array that does not satisfy this assumption
(i.e., if this assumption fails, we cannot put an upper bound on the extra memory space
required). On the other hand, our approach can be extended to work on arrays that do
not satisfy Assumption 2 or Assumption 3 (instead of just using full duplication for
them).

4.1 Relaxing Assumption 3

Assumption 3 presented in Section 3.1 requires that there is only one write reference to
the array being considered. Let us now consider the case where there are two write ref-
erences, Fk,0 and Fk,1, for the array Xk being considered, and Xk satisfies Assumption
1 and Assumption 2. In this case, there are two possible scenarios for these two write
references: either there is a data reuse between them, or there is no data reuse between
them.

If there is a data reuse between these two write references, our algorithm can deal
with this case with little modification. Without loss of generality, we assume that there is
a data reuse from Fk,0 to Fk,1, and the reuse distance vector is dk,1. That is, Fk,1(I +
dk,1) = Fk,0(I) (dk,1 � [0 0 · · · 0]T ). This scenario is illustrated in Fig. 8.
Comparing Fig. 2 and Fig. 8, we see that one can use the same strategy in determining
the location to store the duplicate for Xk(Fk,0(I)). In fact, we can treat Fk,1 the same
way as we treat read references. This is because we are certain that Xk(Fk,0(J+)) is
not touched in the original loop until iteration J+ executes.

On the other hand, if there is no data reuse between these two write references, one
can treat them as two different arrays. In this case, the references to Xk can be divided
into two groups, based on to which write reference they have data reuse:

F1
k,0, F1

k,1, . . . , F1
k,M1

k
;

F2
k,0, F2

k,1, . . . , F2
k,M2

k
.
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Fig. 8. Determining the memory location to Fig. 9. Determining the memory location
store the duplicate for Xk(Fk,0(I)) when to store the duplicate for Xk(Fk,0(I)) in
there are two write references to Xk another array Xh

int A(N),B(N);
for i=0,N-2

A(i+1)=A(i)+a;
B(i+1)=A(i+1)+B(i);
A(i)=B(i+1)/2;

(a) Original program

int A(N),A’(N),B(N),B’(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A’(i+1)=A’(i)+a;
if A(i+1)!=A’(i+1)
error();

B(i+1)=A(i+1)+B(i);
B’(i+1)=A’(i+1)+B’(i);
if B(i+1)!=B’(i+1)
error();

A(i)=B(i+1)/2;
A’(i)=B’(i+1)/2;
if A(i)!=A’(i)
error();

}

(b) Full duplication

int A(N+2),B(N+2);
for i=0,N-2 {
A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
B(i+1)=A(i+1)+B(i);
B(i+3)=A(i+3)+B(i+2);
if B(i+1)!=B(i+3)

error();
A(i)=B(i+1)/2;
A(i+2)=B(i+3)/2;
if A(i)!=A(i+2)

error();

(c) In-place duplication

Fig. 10. Example for multiple write references to the same array

Notice that there is a data reuse from F i
k,0 to F i

k,l for i = 1, 2. The array elements
accessed by these two groups do not overlap (since, otherwise, F1

k,0 and F2
k,0 would

have data reuse); therefore, choosing an array element within one group as the loca-
tion of a duplicate does not affect any access in the other group. This essentially means
that we can treat the two groups as two different arrays, and select the locations for
duplicates independently. The only modification to Algorithm I would be combining
the array expansion results from these two groups together. For example, if our ap-
proach requires expanding the ith dimension of Xk by |p1

k,i| for the first group, and
by |p2

k,i| for the second group, the final result is that the ith dimension is expanded by
max(|p1

k,i|, |p2
k,i|).

If there are more than two write references to array Xk in the loop, we can deal with
them in a similar fashion. Specifically, we first divide the references into groups such
that the references (in the same group) have data reuses between them, and the refer-
ences in different groups are independent from each other. Then, we process each group
separately as if it is a different array. Specifically, for each group X i

k, we determine the
write reference that have data reuse to all other references in its group and the reuse
distances are non-negative. We represent such write reference as F i

k,0. This can also be
expressed as ∀0 ≤ l ≤ M i

k : F i
k,l(I + di

k,l) = F i
k,0(I) and dk,l � [0 0 · · · 0]T .

After this, we can process this group using Algorithm I. Fig. 10 gives an example of
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how in-place duplication works when there are two write references in the same loop
to the same array. There are two different arrays accessed in the code. Fig. 10(b) gives
the full duplication version. Assume that X1 represents A and X2 represents B. Array
B satisfies all the assumptions, and we can apply in-place duplication to it using Algo-
rithm I. On the other hand, Array A satisfies Assumption 1 and Assumption 2, but does
not satisfy Assumption 3 since there are two write references to it (A(i+1) and A(i)).
Consequently, we need to use the strategy discussed above for in-place duplication for
array A.

For the two write references to array A, namely, A(i+1) and A(i), we can deter-
mine that A(i) has data reuse with A(i+1) based on data reuse analysis. Therefore,
we represent A(i+1) as X1(F1,0(I)). Now, we can apply Algorithm I to A:

F1,0 = [1]; F1,0(I) = i + 1; F1,1 = [1]; F1,1(I) = i; F1,2 = [1]; F1,2(I) = i + 1;
F1,3 = [1]; F1,3(I) = i; d1,1 = [1]; d1,2 = [0]; d1,3 = [1];

d1,lmax = max(d1,1, d1,2, d1,3) = d1,1 = [1].

Based on this, we can calculate L1 and P1 as follows:

L1 = d1,lmax + [1] = [2] and P1 = F1,0 · L1 = [2].

Therefore, we find that the duplicate of A(i+1) is stored in A(i+3), and the duplicate
of A(i) is stored in A(i+2). Fig. 10(c) gives the transformed code when both A and
B are duplicated using in-place duplication.

4.2 Relaxing Assumption 2: Global Duplication

If an array Xk does not satisfy Assumption 2, this means that there exist some array
elements that are used before they are written in the loop. Such locations need to be
considered active from the beginning of the loop, and we cannot use them as duplicates
for other array elements. Therefore, we are not able to use in-place duplication for such
an array. However, as long as Xk satisfies Assumption 1, it is still possible to avoid
full duplication using a different approach, which we discuss in this subsection. This
approach reuses the locations in some other array (Xh) to store the duplicates for Xk,
and is referred to as “global duplication”.

For an array Xh to be used to store the duplicates for Xk, it needs to satisfy the
following two conditions:
1. Xh should have the same number of dimensions as Xk.
2. Xh should satisfy all the three assumptions listed in Section 3.1.

Note that such an array Xh itself can benefit from in-place duplication, and in our
approach, we always apply in-place duplication first. Therefore, when we try to use
the locations in Xh to store duplicates of the elements of Xk, we need to take Xh’s
in-place duplication into account as well. Fig. 9 illustrates an example scenario. After
Xh’s in-place duplication, the references to Xh are doubled due to references to dupli-
cates. We use Fnew

h,l to denote both the original references and the references created by
duplication. We have:

Fh,l(I) + Ph = Fnew
h,l (I), for duplicated references;

Fh,l(I) = Fnew
h,l+Mh

(I), for original references;
Mnew

h = 2Mh.
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int A(N),B(N);
for i=0,N-2

A(i+1)=A(i)+a;
B(i+1)=B(i+1)+B(i);

(a) Original program

int A(N+2),B(N),B’(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)
error();

B(i+1)=B(i+1)+B(i);
B’(i+1)=B’(i+1)+B’(i);
if B(i+1)!=B’(i+1)
error();

}

(b) In-place duplication

int A(N+4),B(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
B(i+1)=B(i+1)+B(i);
A(i+5)=A(i+5)+A(i+4);
if B(i+1)!=A(i+5)

error();
}

(c) Global duplication

Fig. 11. Example application of global duplication

For simplicity, we assume that all references to Xk have data reuses with each other.
(if this assumption is not satisfied, we use the strategy discussed in Section 4.1 by
dividing references into groups). In this case, we can find a reference, denoted as Fk,0,
from which all other Xk references have data reuses. We follow the approach described
in Algorithm I to calculate dk,lmax and Lk. We know at this point that the array element
Xk(Fk,0(I)) will not be used from iteration I+Lk onwards. Therefore, we can use the
Xh array element Xh(Fnew

h,0 (I +Lk)), which is written at iteration I +Lk for the first
time in the loop, to store the duplicate for Xk(Fk,0(I)). To calculate the location of the
duplicate for Xk(Fk,i(I)), we first represent it as Xk(Fk,0(I − dk,i)). Therefore, the
duplicate of Xk(Fk,i(I)) is stored in Xh(Fnew

h,0 (I − dk,i + Lk)).
In order to determine how much Xh needs to be expanded, we calculate Pk, i.e.,

the difference between Fnew
h,0 (I + Lk) and Fnew

h,0 (I):

Pk = Fnew
h,0 (I + Lk) − Fnew

h,0 (I) = F new
h,0 · Lk .

Assuming that Pk = [pk,1 pk,2 · · · pk,Dk
]T and the original size of the ith dimension

of Xk is Nk,i, the ith dimension of Xk needs to be expanded by |pk,i| units to Nk,i +
|pk,i|.

Fig. 11 gives an example application of global duplication. In this example, we use
in-place duplication for array A. Without the use of global duplication, array B needs to
be fully duplicated as shown in Fig. 11(b). In the case of global duplication, array B uses
the available space in array A to store its duplicates, and Fig. 11(c) gives the transformed
code. If N = 100, by using in-place duplication, we can reduce the extra memory space
from 100% (in the full duplication case) to 51%. By using global duplication, on the
other hand, this number is further reduced to 2%.

5 Experimental Evaluation

5.1 Setup

In this section, we present an experimental evaluation of the approach discussed in
this paper. To evaluate the effectiveness of our approach, we implemented it within an
optimizing compiler [22] and performed experiments with several array based bench-
marks. The average increase due to our approach in compilation times of the original
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Table 2. Benchmarks used in this study

SpecFP2000
Benchmark Brief Description Input
171.swim Shallow Water Modeling Ref. Input
172.grid Multi-Grid Solver Ref. Input
177.mesa 3D Graphic Library Ref. Input
179.art Image Recognition/Neural Networks Ref. Input
183.equake Seismic Wave Propagation Simulation Ref. Input
188.ammp Computational Chemistry Ref. Input

Embedded Applications
Benchmark Brief Description Input
atr Network Address Translation 1.47MB
bss Signal Deconvolution 3.07MB
encr Digital Signature for Security 1.88MB
img-seg6 Embedded Image Segregation 2.61MB
usonic Feature-Based Area Estimation 4.36MB
wood04 Color-Based Surface Inspection 5.28MB

programs was about 220%. Table 2 lists the benchmarks used in this study. Our bench-
marks are divided into two groups. The first group contains the C benchmarks from
the SpecFP2000 suite [17] (plus two FORTRAN benchmarks, of which we were able
to generate the C versions by hand), whereas the second group are representative ap-
plications from the domain of embedded computing. We collected the applications in
the second group from different sources. For each group of benchmarks in Table 2, the
second column gives a brief description of each benchmark and the last column shows
the size of the total data manipulated by each benchmark.

5.2 Results
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Fig. 12. Memory requirements of our duplication schemes

Fig. 12 shows the effective-
ness of in-place and global
duplication in reducing the
memory requirements due
to enhanced reliability. Each
bar in this figure represents
the extra memory demand of
the corresponding approach
(in-place or global), as a
fraction of the extra mem-
ory demand of a scheme that
duplicates all the array data
in the application (i.e., full
duplication). As can be seen
from this bar-chart, our ap-
proaches save significant memory space with respect to the full duplication of all ar-
ray data. The average savings brought by the in-place duplication scheme are 30.2%
and 36.4% for the SpecFP2000 benchmarks and the embedded applications, respec-
tively. The corresponding savings with the global duplication scheme are 39.3% and
44.2%. We see that, except for two benchmarks (177.mesa and atr), the global duplica-
tion scheme brings savings over the in-place duplication scheme, as the former has the
flexibility of using other arrays for creating duplicates of the elements of a given array.

Note that, in the results presented above, all array elements have been duplicated
(some recycling the memory locations of the elements that passed their last uses). Our
next set of experiments measure the success of the in-place duplication approach that
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operates with memory constraints (see Section 3.3). The results are given in Fig. 13 with
different memory constraints. Specifically, each point on the x-axis gives the maximum
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Fig. 13. Duplication under memory constraints

allowable increase in the size of the
data manipulated by the original pro-
grams. The y-axis, on the other hand,
gives the percentage of array ele-
ments duplicated by our approach.
We see from these results that, our ap-
proach is successful in utilizing avail-
able extra memory space for duplica-
tion. In fact, even with an extra 5%
memory space, it is able to dupli-
cate about 16% of the array elements
on the average. When we increase
the extra available memory space re-
served for duplicates to 40%, the av-
erage percentage of duplication be-
comes 76%.

Although our focus in this paper is on memory space savings and reliability, it is
also important to consider the impact of our approach on execution cycles. To determine
the execution cycles taken by our approach, we simulated the benchmark codes using
SimpleScalar [15]. The simulated architecture is a two-issue embedded processors with
16KB instruction and data caches. The access latencies for both the caches are 1 cycle,
and a miss penalty of 100 cycles is assumed. The graph in Fig. 14 gives execution cycles
for our two schemes as a fraction of the execution cycles taken by the full duplication
strategy. Note that the full duplication scheme almost doubles the execution cycles of
the original codes (i.e., those without any protection). Two observations can be made
from this graph. First, both the schemes perform better than the full duplication based
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Fig. 14. Performance of our duplication schemes

approach in terms of execu-
tion cycles. The main reason
for this is that the reduction
in data space requirements re-
duces capacity misses and this
in turn reduces execution cy-
cles. Second, the difference
between our two schemes is
less than one would expect,
given the fact that global
can reuse (and save) more
memory space than in-place.
The reason for the small dif-
ference between the two is
the increased number of con-
flict misses with the global
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scheme, due to the additional irregularity created by reusing different locations in the
same loop iteration.

6 Related Work

6.1 Memory Reuse

There exist several prior studies that reduce the memory footprint of array-based pro-
grams. Wolfe [24] presented a technique called array contraction to optimize programs
for a vector architecture. Lefebvre and Feautrier [8] proposed a method for reducing
the memory overhead brought by full data expansion in automatic parallelization of
loop-based static control programs. Song et al [16] proposed an algorithm that com-
bines loop shifting, loop fusion, and array contraction to reduce memory usage and
improve data locality. Wilde and Rajopadhye [21] studied memory reuse using a poly-
hedral model that performs static lifetime computations of variables. Strout et al [19]
presented a schedule-independent storage mapping technique that reduces data space
consumption but introduces no dependences other than those implied by flow depen-
dences. Unnikrishnan et al [20] used a loop-based program transformation technique
to reduce lifetimes of array elements. Their objective is to reduce the cases where the
lifetimes of array elements overlap so that the storage requirement can be reduced. The
common point between our approach and these prior studies is that all of them exploit
variable lifetime information extracted by the compiler. The main difference is that we
use this information for reducing the additional memory space demand due to enhanced
reliability against soft errors, rather than reducing the original memory demand of the
application. Also, most of these prior studies optimize for a single array at a time and
operate under some additional constraints such as maintaining a certain degree of par-
allelism. In comparison, our global duplication scheme can reuse the space available in
other arrays for storing the duplicates of the elements of a given array.

6.2 Software Approach to Transient/Permanent Errors

Software techniques for fault detection and recovery have been studied by prior re-
search. Huang and Abraham [7] proposed Algorithm-Based Fault Tolerance (ABFT) to
ensure the reliability of matrix operations. Roy-Chowdhury [13] extended the ABFT
framework to a parallel processing environment. Oh and McCluskey [10] proposed Se-
lective Procedure Call Duplication (SPCD) to improve system reliability. SPCD ana-
lyzes the procedure-call behavior of the program, and determines whether to duplicate
the statements of a procedure or duplicate the procedure call. Rebaudengo et al [12]
and Nicolescu et al [9] proposed systematic approaches for introducing redundancy into
programs to detect errors in both data and code. Their approach demonstrated good er-
ror detection capabilities, but it also introduced considerable memory overheads due to
full duplication for all variables. Our approach, in contrast, tries to minimize the mem-
ory overhead and retains the same degree of reliability that would be provided by full
duplication. Audet et al [2] presented an approach for reducing a program’s sensitivity
to transient errors by modifying the program structure, without introducing redundancy
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into the program. Although this approach introduces almost no extra memory overhead,
it cannot provide the same degree of reliability that would be provided by full duplica-
tion. Benso et al [3] presented a similar work that improves the reliability of a C code by
code reordering. They do not consider memory optimization through array reuse. Shir-
vani et al [14] used software-implemented error detection and correction (EDAC) code
to provide protection against transient errors. Several prior studies targeted at specific
platforms. Gong et al [5,6] proposed a compiler-assisted approach to fault detection in
regular loops for distributed-memory systems. Their approach focuses on performance
issues, and does not consider memory consumption. In comparison, our objective in
this work is to reduce memory overheads.

7 Concluding Remarks

Many embedded systems operate under multiple constraints such as limited memory
size, limited battery power, real-time performance, reliability, and security.
Consequently, in optimizing for one constraint, one should be very careful in controlling
the impact of doing so on other constraints. Motivated by this observation, this paper
presents a memory space conscious compiler-based approach that targets improving re-
liability of array-based programs against soft errors, a form of transient errors. The idea
is to reuse the memory locations of inactive array elements (i.e., the elements that have
reached their last uses) as placeholders for the duplicates of the actively used array
elements. We present two specific algorithms based on this idea, and test their effec-
tiveness using a set of twelve array-based applications. Our experimental evaluation
demonstrates that our approach is successful in reducing the extra memory demand due
to improved reliability.
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