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Abstract. Pair-sharing analysis of object-oriented programs determines
those pairs of program variables bound at run-time to overlapping data
structures. This information is useful for program parallelisation and
analysis. We follow a similar construction for logic programming and
formalise the property, or abstract domain, Sh of pair-sharing. We prove
that Sh induces a Galois insertion w.r.t. the concrete domain of pro-
gram states. We define a compositional abstract semantics for the static
analysis over Sh, and prove it correct.

1 Introduction

Static analysis determines, at compile-time, properties about the run-time be-
haviour of computer programs, in order to verify, debug and optimise the code.
Abstract interpretation [7, 8] is a framework for defining static analyses from
the property of interest (the abstract domain), and prove their correctness.

In object-oriented languages such as Java, program variables are bound to
data structures, stored in a sharable memory, which might hence overlap. Con-
sider for instance the method clone in Figure 1 which performs a shallow copy
of a StudentList. Its Java-like syntax is defined in Section 3. Variables out
and ttail are local to clone, and out holds its return value. If variables sl1
and sl2 have type StudentList, an assignment sl1 :=sl2 .clone() makes them
share the Students of sl2 , which become reachable from sl1 . Without the line
out .head :=this .head in Figure 1, variables sl1 and sl2 would not share anymore.

Possible sharing (or, equivalently, definite non-sharing) has many applica-
tions. Namely, assume that sl1 and sl2 do not share. Then

– We can execute the calls sl1 .tail.clone(); and sl2 .clone() on different pro-
cessors with disjoint memories. Hence sharing analysis can be used for auto-
matic program parallelisation or distribution;

– An assignment such as sl1 .head := new Person does not affect the class of
sl2 .head. Hence sharing analysis improves a given class analysis, which de-
termines at compile-time the run-time class of the objects bound to the
expressions [17];

– If sl2 is a non-cyclic list then an assignment sl1 .tail :=sl2 makes sl1 non-
cyclic. This is not necessarily true if sl1 and sl2 share: if sl1 points to a
node of sl2 , the previous assignment builds a cycle. Hence sharing is useful
for non-cyclicity analysis.
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class Object {}

class Person extends Object { int age; }

class Student extends Person {}

class Car extends Object { int cost; }

class StudentList extends Object {

Student head; StudentList tail;

StudentList clone() with ttail:StudentList is {

out := new StudentList;

out.head := this.head;

ttail := this.tail;

if (ttail = null) then {} else out.tail := ttail.clone()

}

}

Fig. 1. Our running example: a method that performs a shallow copy of a list

In all examples above, alias information [5, 16] is not enough to reach the same
conclusions. Namely, to express the sharing of sl1 and sl2 (of type StudentList)
through aliasing, we must check if sl1 and sl2 are aliases, or sl1.head and
sl2.head, or sl1.tail and sl2.tail, or sl1.tail.head and sl2.tail.head and so
on. Thus sharing cannot be finitely computed from aliasing, which is a special
case of sharing. Nevertheless, sharing is an abstraction of graph-based repre-
sentations of the memory used by some alias analyses [5, 16]. Graphs are also
used in the only sharing analysis for object-oriented programs we are aware
of [13]. However, our goal is to follow previous constructions for logic program-
ming [6, 10, 11, 12] and define a more abstract domain Sh for sharing analysis
than graphs. Its elements contain the unordered pairs of program variables al-
lowed to share. We prove that a Galois insertion exists between Sh and the
concrete domain of program states i.e., Sh is not redundant. This is not easy
in a strongly-typed language such as Java, compared to untyped logic program-
ming. We provide correct abstract operations over Sh in order to implement a
static analysis. We use a denotational semantics, and abstract denotations are
mappings over Sh which we can implement through efficient binary decision di-
agrams [3], by identifying each pair of program variables with a distinct binary
variable. Moreover, denotational semantics yields a compositional analysis [18].

We preferred pair-sharing to full sharing [10], which determines the sets of
variables which share a given data-structure. Our choice is motivated by the
fact that abstract domains for pair-sharing should be simpler and smaller than
abstract domains for full sharing [1]. There has been some discussion on the
redundancy of sharing w.r.t. pair-sharing in logic programs [1, 4], whose conclu-
sions, however, do not extend immediately beyond the logic programming realm.
In any case, our construction can be easily rephrased for full sharing.

The rest of the paper is organised as follows. Section 2 contains the prelim-
inaries. Section 3 shows our simple language. Section 4 defines the abstract do-
main Sh and proves the Galois insertion property. Section 5 defines an abstract
semantics (analyser) over Sh and states its correctness. Section 6 concludes.
Proofs are in [14].
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2 Preliminaries

A total (partial) function f is denoted by �→ (→). The domain (codomain)
of f is dom(f) (rng(f)). We denote by [v1 �→ t1, . . . , vn �→ tn] the function f
where dom(f) = {v1, . . . , vn} and f(vi) = ti for i = 1, . . . , n. Its update is
f [w1 �→ d1, . . . , wm �→ dm], where the domain may be enlarged. By f |s (f |−s)
we denote the restriction of f to s ⊆ dom(f) (to dom(f) \ s). If f(x) = x then
x is a fixpoint of f . The composition f ◦ g of functions f and g is such that
(f ◦ g)(x) = g(f(x)) so that we often denote it as gf . The two components of
a pair are separated by �. A definition of S such as S = a � b, with a and b
meta-variables, silently defines the pair selectors s.a and s.b for s ∈ S.

A poset S �≤ is a set S with a reflexive, transitive and antisymmetric relation
≤. If s ∈ S then ↓s = {s′ ∈ S | s′ ≤ s}. An upper (respectively, lower) bound
of S′ ⊆ S is an element u ∈ S such that u′ ≤ u (respectively, u′ ≥ u) for every
u′ ∈ S′. A complete lattice is a poset C �≤ where least upper bounds (lub, 	)
and greatest lower bounds (glb, 
) always exist. If C �≤ and A �� are posets,
f : C �→ A is (co-)additive if it preserves lub’s (glb’s).

Let C �≤ and A �� be two posets (the concrete and the abstract domain).
A Galois connection [7, 8] is a pair of monotonic maps α : C �→ A and γ :
A �→ C such that γα is extensive and αγ is reductive. It is a Galois insertion
when αγ is the identity map i.e., when the abstract domain does not contain
useless elements. This is equivalent to α being onto, or γ one-to-one. If C and A
are complete lattices and α is additive (respectively, γ is co-additive), it is the
abstraction map (respectively, concretisation map) of a Galois connection. An
abstract operator f̂ : An �→ A is correct w.r.t. f : Cn → C if αfγ � f̂ .

3 The Language

We describe here our simple Java-like object-oriented language.

Syntax. Variables have a type and contain values. We do not consider primitive
types since their values cannot be shared but only copied.

Definition 1. Each program in the language has a set of variables (or identi-
fiers) V (including res, out , this) and a finite set of classes (or types) K ordered
by a subclass relation ≤ such that K �≤ is a poset. A type environment de-
scribes a finite set of variables with associated class. It is any element of the set
TypEnv = {τ : V → K | dom(τ) is finite}. In the following, τ will stand for a
type environment. Type environments describe the variables in scope in a given
program point. Moreover, we write F (κ) for the type environment that maps the
fields of the class κ ∈ K to their type.

Example 2. In Figure 1, K = {Object, Person, Student, Car, StudentList},
where Object is the top of the hierarchy and Student ≤ Person. Since we are not
interested in primitive types, we have F (Object) = F (Student) = F (Person) =
F (Car) = [] and F (StudentList) = [head �→ Student, tail �→ StudentList].
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Our expressions and commands are normalised versions of those of Java. For in-
stance, only distinct variables can be the actual parameters of a method call; left-
values in assignments can only be a variable or the field of a variable; conditional
can only test for equality or nullness of variables; loops must be implemented
through recursion. These simplifying assumptions can be relaxed without affect-
ing subsequent results. Instead, it is significant that we allow downwards casts,
since our notion of reachability (Definition 11) depends from their presence.

Definition 3. Our simple language is made of expressions1 and commands

exp ::= null κ | new κ | v | v .f | (κ)v | v .m(v1, . . . , vn)
com ::= v:=exp | v.f :=exp | {com ; · · · ;com}

| if v = w then com else com | if v = null then com else com

where κ ∈ K and v, w, v1, . . . , vn ∈ V are distinct.
Each method κ.m is defined inside class κ with a statement like

κ0 m(w1 :κ1, . . . , wn :κn) with wn+1 :κn+1, . . . , wn+m :κn+m is com

where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct and are not res nor this
nor out. Their declared types are κ1, . . . , κn, κn+1, . . . , κn+m ∈ K, respectively.
Variables w1, . . . , wn are the formal parameters of the method, wn+1, . . . , wn+m

are its local variables. The method can also use a variable out of type κ0 which
holds its return value. We define body(κ.m) = com, returnType(κ.m) = κ0,
input(κ.m) = [this �→ κ, w1 �→ κ1, . . . , wn �→ κn], output(κ.m) = [out �→ κ0],
locals(κ.m) = [wn+1 �→ κn+1, . . . , wn+m �→ wn+m] and scope(κ.m) = input(κ.m)∪
output(κ.m) ∪ locals(κ.m).

Example 4. Consider StudentList.clone (just clone later) i.e., the method
clone of StudentList in Figure 1. Then input(clone) = [this �→ StudentList],
output(clone)=[out �→StudentList] and locals(clone)=[ttail �→StudentList].

Our language is strongly typed i.e., expressions exp have a static (compile-time)
type typeτ (exp) in τ , consistent with their run-time values (see [14]).

Semantics. We describe here the state of the computation and how the lan-
guage constructs modify it. We use a denotational semantics, hence composi-
tional, in the style of [18]. However, we use a more complex notion of state,
to account for dynamically-allocated and sharable data-structures. By using a
denotational semantics, our states contain only a single frame, rather than an
activation stack of frames. A method call is hence resolved by plugging the in-
terpretation of the method (Definition 9) in its calling context. This is standard
in denotational semantics and has been used for years in logic programming [2].

A frame binds variables (identifiers) to locations or null . A memory binds
such locations to objects, which contain a class tag and the frame for their fields.

1 The null constant is decorated with the class κ induced by its context, as in
v:= null κ, where κ is the type of v. This way we avoid introducing a distinguished
type for null. You can assume this decoration to be provided by the compiler.
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Fig. 2. A state (frame φ and memory µ) for τ = [c �→ Car, sl1 �→ StudentList, sl2 �→
StudentList, p �→ Person, s1 �→ Student, s2 �→ Student]

Definition 5. Let Loc be an infinite set of locations. We define frames, objects
and memories as Frameτ = {φ | φ ∈ dom(τ) �→ Loc ∪ {null}}, Obj = {κ �φ |
κ ∈ K, φ ∈ FrameF (κ)} and Memory = {µ ∈ Loc → Obj | dom(µ) is finite}. A
new object of class κ is new(κ) = κ �φ, with φ(v) = null for each v ∈ F (κ).

Example 6. Figure 2 shows a frame φ (with 6 variables) and a memory µ. Dif-
ferent occurrences of the same location are linked by arrows. For instance, s1 is
bound to a location l3 and µ(l3) is a Student object. Objects are represented as
boxes in µ with a class tag and a local frame mapping fields to locations or null .

Type correctness φ�µ : τ guarantees that in φ and in the objects in µ there
are no dangling pointers and that variables and fields may only be bound to
locations which contain objects allowed by τ or by the type environment for the
fields of the objects (Definition 1). This is a sensible constraint for the memory
allocated by strongly-typed languages, such as Java. For its formal definition,
see [14]. We can now define the states as type correct pairs φ�µ.

Definition 7. Let τ be the type environment at a given program point p. The
set of possible states at p is Στ = {φ�µ | φ ∈ Frameτ , µ ∈ Memory , φ � µ : τ}.
Example 8. Consider Figure 2. The variables in φ are bound to null or to objects
of a class allowed by τ . The tail fields of the objects in µ are bound to null or to
a StudentList, consistently with F (StudentList) (Example 2). The head fields
are bound to a Student, consistently with F (StudentList). Hence φ� µ : τ and
φ� µ ∈ Στ .

Each method is denoted by a partial function from input to output states. A
collection of such functions, one for each method, is an interpretation.

Definition 9. An interpretation I maps methods to partial functions on states,
such that I(κ.m) : Σinput(κ.m) → Σoutput(κ.m) for each method κ.m.
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Definition 10 builds interpretations from the denotations of commands and
expressions. These denotations are in [14]. Below, we discuss them informally.

Expressions in our language have side-effects and return a value. Hence their
denotations are partial maps from an initial to a final state. The latter contains
a distinguished variable res holding the value of the expression: EI

τ [[ ]] : exp �→
(Στ → Στ+exp), where τ + exp = τ [res �→ typeτ (exp)]. Namely, given an input
state φ� µ, the denotation of null κ binds res to null in φ. The denotation
of new κ binds res to a new location bound to a new object of class κ. The
denotation of v copies v into res . The denotation of v.f accesses the object
o = µ(φ(v)) bound to v (provided φ(v) = null) and then copies the field f of o
(i.e., o.φ(f)) into res . The denotation of (κ)v copies v into res , but only if the
cast is satisfied. The denotation of method call uses the dynamic class of the
receiver to fetch the denotation of the method from the current interpretation.
It plugs that denotation in the calling context, by building a starting state σ†,
whose formal parameters (including this) are bound to the actual parameters.

The denotation of a command is a partial map from an initial to a final state:
CI

τ [[ ]] : com �→ (Στ → Στ ). Given an initial state φ� µ, the denotation of v:=exp
uses the denotation of exp to get a state whose variable res holds exp’s value.
Then it copies res into v, and removes res. Similarly for v.f :=exp, but res is
copied into the field f of the object µφ(v) bound to v, provided φ(v) = null .
The denotation of the conditionals checks their guard in φ� µ and then uses the
denotation of then or the denotation of else. The denotation of a sequence of
commands is the functional composition of their denotations.

By using CI
τ [[ ]], we define a transformer on interpretations, which evaluates

the bodies of the methods in I, by using an input state where local variables
are bound to null . At the end, the final state is restricted to the variable out , so
that Definition 9 is respected. This corresponds to the immediate consequence
operator used in logic programming [2].

Definition 10. The following transformer on interpretations tranforms an in-
terpretation I into a new interpretation I ′ such that

I ′(κ.m) =(λφ� µ ∈ Σinput(κ.m).φ[out �→ null , wn+1 �→ null , . . . , wn+m �→ null ] �µ)

◦ CI
scope(κ.m)[[body(κ.m)]] ◦ (λφ� µ ∈ Σscope(κ.m).(φ|out �µ)).

The denotational semantics of a program is the least fixpoint of this transformer
on interpretations.

4 An Abstract Domain for Pair-Sharing

We formalise here when two variables share and define our abstract domain Sh.
We need a notion of reachability for locations. A location is reachable if it is
bound to a variable or to a field of an object stored at a reachable location.

Definition 11. Let φ� µ ∈ Στ and v ∈ dom(τ). We define the set of locations
reachable from v in φ�µ as Lτ (φ� µ)(v) = ∪{Li

τ (φ� µ)(v) | i ≥ 0}, where
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L0
τ (φ� µ)(v) = {φ(v)} ∩ Loc and Li+1

τ (φ� µ)(v) = ∪{rng(µ(l).φ) ∩ Loc | l ∈
Li

τ (φ� µ)(v)}. Two variables v1, v2 ∈ dom(τ) share in φ�µ if there is a location
which is reachable from both i.e., if Lτ (φ�µ)(v1) ∩ Lτ (φ� µ)(v2) = ∅.
Note, in Definition 11, that if an object o = µ(l) is stored in a reachable location
l, then also the locations rng(µ(l).φ) ∩ Loc of all o’s fields are reachable. This
reflects the fact that we consider a language with (checked) casts (Section 3),
which allow all fields of the objects to be accessed in a program.

Example 12. Consider the state σ = φ�µ in Figure 2. For every i ≥ 0 we have

L0
τ (σ)(c) = {l0} Li+1

τ (σ)(c) = ∅ Li
τ (σ)(sl1 ) = ∅

L0
τ (σ)(sl2 ) = {l2} L1

τ (σ)(sl2 ) = {l1, l3} L2
τ (σ)(sl2 ) = {l4} Li+3

τ (σ)(sl2 )=∅
L0

τ (σ)(p) = {l3} Li+1
τ (σ)(p) = ∅ L0

τ (σ)(s1 ) = {l3} Li+1
τ (σ)(s1 )=∅

L0
τ (σ)(s2 ) = {l4} Li+1

τ (σ)(s2 ) = ∅.
We conclude that Lτ (σ)(c) = {l0}, Lτ (σ)(sl1 ) = ∅, Lτ (σ)(sl2 ) = {l1, l2, l3, l4},
Lτ (σ)(p) = {l3}, Lτ (σ)(s1 ) = {l3} and Lτ (σ)(s2 ) = {l4}. Hence, in σ, variable
sl2 shares with sl2 , p, s1 , s2 ; variable p does not share with s2 ; c shares only
with c; sl1 does not share with any variable, not even with itself.

By using reachability, we refine Definition 9 by requiring that a method does
not write into the locations L of the input state which are not reachable from
the formal parameters, nor read them, so that for instance no location in L is
reachable from the method’s return value. Programming languages such as Java
and that of Section 3 satisfy these constraints. They let us prove the correctness
of the abstract counterpart of method call that we define later (Figure 3).

Definition 13. We refine Definition 9 by requiring that if I(κ.m)(φ� µ) = (φ′ � µ′)
and L = dom(µ) \ (∪{Linput(κ.m)(φ� µ)(v) | v ∈ dom(input(κ.m))}) then µ|L =
µ′|L, φ′(out) ∈ L and ∪{rng(µ′(l)) ∩ L | l ∈ dom(µ′|−L)} = ∅.

As a first attempt, our abstract domain is the powerset of the unordered
pairs of variables in dom(τ). The concretisation map says that if (v1, v2) belongs
to an abstract domain element sh, then sh allows v1 and v2 to share.

Definition 14. Let sh ∈ ℘(dom(τ) × dom(τ)). We define

γτ (sh) =
{

σ ∈ Στ

∣∣∣∣ for every v1, v2 ∈ dom(τ)
if Lτ (σ)(v1) ∩ Lτ (σ)(v2) = ∅ then (v1, v2) ∈ sh

}
.

It must be observed, however, that two variables might never be able to share
if their static types do not let them be bound to overlapping data structures.

Example 15. In the state in Figure 2, variable c does not share with any of the
other variables (Example 12). This is not specific to that state. There is no state
in Στ where c shares with anything but itself. This is because (Figure 1) a Car
is not a Person nor a Student nor a StudentList nor vice versa. Moreover, it
is not possible to reach a shared object from a Car and a Person (or a Student
or a StudentList) because these classes have no field of the same type.
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Example 15 must be taken into account if we are looking for a Galois insertion,
rather than a Galois connection, between ℘(Στ ) and the abstract domain. The
abstract domain must include only pairs of variables whose static types share.
As in Definition 11, we first need a notion of reachability for classes.

Definition 16. The set of classes reachable in τ from a variable v is Cτ (v) =
∪{Ci

τ (v) | i ≥ 0}, where C0
τ (v) = ↓τ(v) and Ci+1

τ (v) = ↓(∪{rng(F (κ)) | κ ∈
Ci

τ (v)}). The set of pairs of variables in τ whose static types share is

SVτ = {(v1, v2) ∈ dom(τ) × dom(τ) | Cτ (v1) ∩ Cτ (v2) = ∅}.
In Definition 16, if a class κ is reachable, then all its subclasses ↓κ are considered
reachable. This reflects the fact that we consider a language with (checked) casts.

Example 17. Consider τ as in Figure 2. For every i ≥ 0 we have C0
τ (c) = {Car},

Ci+1
τ (c) = ∅, C0

τ (sl1 ) = {StudentList}, Ci+1
τ (sl1 ) = {StudentList, Student},

C0
τ (sl2 ) = {StudentList}, Ci+1

τ (sl2 ) = {StudentList, Student}, C0
τ (p) =

{Student, Person}, Ci+1
τ (p) = ∅, C0

τ (s1 ) = {Student}, Ci+1
τ (s1 ) = ∅, C0

τ (s2 ) =
{Student} and Ci+1

τ (s2 ) = ∅. Hence Cτ (c) = {Car}, Cτ (sl1 ) = Cτ (sl2 ) =
{StudentList, Student}, Cτ (p) = {Student, Person} and Cτ (s1 ) = Cτ (s2 ) =
{Student}. So SVτ = (dom(τ)×dom(τ))\{(c, sl1 ), (c, sl2 ), (c, p), (c, s1 ), (c, s2 )}
i.e., c can only share with c; all other variables can share with each other.

Abstract domain elements should only include pairs in SVτ , since the others
cannot share. A further observation shows that if v1 and v2 share, then they are
not null . Thus v1 shares with v1 and v2 shares with v2. Also this constraint is
needed to prove the Galois insertion property (Proposition 20).

Definition 18. The abstract domain for pair-sharing is

Shτ = {sh ⊆ SVτ | if (v1, v2) ∈ sh then (v1, v1) ∈ sh and (v2, v2) ∈ sh}
ordered by set-inclusion. From now on, by γτ we mean the restriction to Shτ of
the map γτ of Definition 14.

Example 19. Let τ be as in Figure 2. Then sh1 = {(c, sl1 ), (c, c), (sl1 , sl1 )} ∈ Shτ

since (c, sl1 ) ∈ SVτ (Example 17); sh2 = {(sl1 , sl2 ), (sl1 , sl1 )} ∈ Shτ since
(sl1 , sl2 )∈sh2 but (sl2 , sl2 ) ∈sh2; sh3 = {(sl1 , sl2 ), (sl1 , sl1 ), (sl2 , sl2 )} ∈ Shτ .

Proposition 20. The map γτ of Definition 18 is the concretisation map of a
Galois insertion from ℘(Στ ) to Shτ .

In a Galois insertion, the concretisation map induces the abstraction map. Its
explicit definition, below, states that the abstraction of a set of concrete states
S is the set of pairs of variables which share in at least one σ ∈ S.

Proposition 21. The abstraction map induced by the concretisation map of
Definition 14 (restricted to Shτ ) is such that, for every S ⊆ Στ ,

ατ (S) =
{

(v1, v2) ∈ dom(τ) × dom(τ)
∣∣∣∣ there exists σ ∈ S such that
Lτ (σ)(v1) ∩ Lτ (σ)(v2) = ∅

}
.
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Example 22. Consider the state φ�µ in Figure 2. Its reachability information is
given in Example 12 so that (remember that pairs are unordered) ατ ({φ�µ}) =
{(c, c), (sl2 , sl2 ), (sl2 , p), (sl2 , s1 ), (sl2 , s2 ), (p, p), (p, s1 ), (s1 , s1 ), (s2 , s2 )}.

5 An Abstract Semantics on Sh.

The domain Shτ of Section 4 induces an abstract version of the semantics of
Section 3, which we make explicit here. This semantics is an actual static analyser
for pair-sharing which can be implemented inside generic engines such as our Julia
analyser [15].

We start with the abstract counterpart of the interpretations of Definition 9.
The idea is to map the approximation over Shτ of some input states into the
approximation of the corresponding output states.

Definition 23. A sharing interpretation I maps methods into total functions
such that I(κ.m) : Shinput(κ.m) �→ Shoutput(κ.m) for each method κ.m.

Example 24. Consider the method clone in Figure 1. We have Shinput(clone) =
{∅, {(this, this)}} and Shoutput(clone) = {∅, {(out, out)}}. A sharing interpre-
tation, consistent with the concrete semantics of the method, is I = [∅ �→
∅, {(this, this)} �→ {(out , out)}] i.e., in the input, this shares with this if and
only if, in the output, out shares with out .

Our goal now is to compute the interpretation of Example 24 automatically.

5.1 Abstract Denotation for the Expressions

The concrete semantics of Section 3 specifies how each expression exp transforms
an initial state into a final state, where res holds the value of exp. To mimic
this behaviour on the abstract domain, we specify how exp transforms input
abstract states sh into final abstract states sh ′ where res refers to exp’s value. For
correctness (Section 2), sh ′ must include the pairs of variables which share in the
concrete states σ′ obtained by evaluating exp from a concrete state σ ∈ γτ (sh).

The concrete semantics of null κ stores null in the variable res of σ′, which
otherwise coincides with σ. Hence, in σ′, variable res does not share. The other
variables share exactly as they do in σ. Consequently, we let sh′ = sh.

The concrete semantics of new κ stores in res a reference to a new object o,
whose fields are null . The other variables do not change. Since o is only reachable
from res , variable res shares with itself only. Then we let sh′ = sh ∪{(res , res)}.

The concrete semantics of v obtains σ′ from σ by copying v into res. Hence,
in σ′, variable res shares with v and all those variable that v used to share
with in σ. Since the other variables are unchanged, we let sh ′ = sh ∪ (sh[v �→
res ]) ∪ {(v, res)}. By sh[v �→ res ] we mean sh where v is renamed into res. We
improve this approximation for the case when (v, v) ∈ sh i.e., when v is definitely
null so that variable v does not occur in sh (Definition 18) and sh[v �→ res ] = sh.
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Moreover, in such a case, v and res are null in σ′ and do not share. Hence, in
this case we let sh′ = sh.

When it is defined, the cast (κ)v stores in res the value of v. Hence the above
approximation for v is also correct for (κ)v.

The concrete semantics of v.f stores in res the value of the field f of v,
provided v is not null . When (v, v) ∈ sh, variable v is null in σ, v.f never yields
a final state and the best approximation of the resulting, empty set of final states
is ∅. If instead (v, v) ∈ sh, variable res shares in σ′ with a variable, say w, only if v
shares in σ with w: from v one reaches v.f which is an alias of res . Moreover, v and
res share in σ′. Thus we should let sh′ = sh∪(sh [v �→ res ])∪{(v, res)}. However,
Example 25 shows that sh′ might contain pairs not in SV (Definition 16) and
hence in general sh′ ∈ Sh (Definition 18).

Example 25. Let every Student be paired with its Car in the list:

class StudentCarList extends StudentList { Car car; }

Let τ = [v �→ StudentCarList, w �→ Student] and sh = {(v, w), (v, v), (w, w)} ∈
Shτ , so that (res , w) ∈ sh ′. But a Car cannot share with a Student (Figure 1)
i.e., (res , w) ∈ SVτ+v.car and sh ′ ∈ Shτ+v.car.

We solve this problem by removing spurious pairs such as (res , w) in Example 25.
Namely, we define sh ′ = sh ∪ [(sh[v �→ res]) ∩ SVτ+v.f] ∪ {(v, res)}.

The concrete semantics of the method call v.m(v1, . . . , vn) builds an input
state σ† = [this �→ φ(v), w1 �→ φ(v1), . . . , wn �→ φ(vn)] � µ for the callee i.e., it
restricts φ to pars = {v, v1, . . . , vn} and renames v into this and each vi into wi.
We mimic this by restriction and renaming on the abstract domain.

Definition 26. Let sh ∈ Shτ and V ⊆ dom(τ). We define sh|V ∈ Shτ as sh|V =
{(v1, v2) ∈ sh | v1 ∈ V and v2 ∈ V }. Moreover, we define sh|−V = sh|dom(τ)\V .

Let hence sh† = sh|pars [v �→ this , v1 �→ w1, . . . , vn �→ wn] approximate σ†. The
abstract domain contains no information on the run-time class of v. Hence we
conservatively assume that every method m in a subclass of the static type of v
might be called [9] i.e., we use sh‡ = ∪{I(κ.m)(sh†) | κ ≤ τ(v)}[out �→ res ] as
an approximation for the result of the call. We rename out into res since, from
the point of view of the caller, the returned value of the callee (out) is the value
of the method call expression (res).

We must determine the effects of the call on the variables of the caller. We do
it here in a relatively imprecise way. Subsection 5.4 shows how to improve this
approximation. We use the fact that a method call can only modify (and access)
input locations which are reachable from the actual arguments (Definition 13).
Hence we let res share with every parameter which was not null at call-time.
Formally, we build the approximation sh� = sh‡∪{(res , p) | (res , res) ∈ sh‡, p ∈
pars and (p, p) ∈ sh}. Then we close transitively the sharing pairs w.r.t. the
parameters, by computing the star-closure (sh ∪ sh�)∗pars .

Definition 27. Let sh∈Shτ and V⊆dom(τ). The star-closure of sh w.r.t. V is
sh∗

V = sh ∪ ({(v1, v2) | v′, v′′ ∈ V, (v1, v
′) ∈ sh and (v2, v

′′) ∈ sh} ∩ SVτ

)
.

In Definition 27 we use SVτ to discard pairs of variables which cannot share.
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SEI
τ [[null κ]](sh) = sh SEI

τ [[new κ]](sh) = sh ∪ {(res , res)}

SEI
τ [[v]](sh) = SEI

τ [[(κ)v]](sh) =

{
sh ∪ (sh [v �→ res ]) ∪ {(v, res)} if (v, v) ∈ sh

sh otherwise

SEI
τ [[v.f]](sh) =

{
sh ∪ {(v, res)} ∪ (sh[v �→ res ] ∩ SVτ+v.f) if (v, v) ∈ sh

∅ otherwise

SEI
τ [[v.m(v1, . . . , vn)]](sh) =

{
(sh ∪ sh�)∗pars if (v, v) ∈ sh

∅ otherwise

where pars = {v, v1, . . . , vn}, sh† = sh|pars [v �→ this, v1 �→ w1, . . . , vn �→ wn], sh‡ =
∪{I(κ.m)(sh†) | κ ≤ τ (v)}[out �→ res ] and sh� = sh‡ ∪ {(res , p) | (res , res) ∈ sh‡, p ∈
pars and (p, p) ∈ sh}.

Fig. 3. The sharing interpretation for expressions

Definition 28. Let τ describe the variables in scope and I be a sharing interpre-
tation. Figure 3 defines the sharing denotation SEI

τ [[ ]] : exp �→ (Shτ �→ Shτ+exp).

Example 29. Let τ = scope(clone) = [out �→StudentList, this �→StudentList,
ttail �→ StudentList] describe the variables in scope in the clone method of
Figure 1. Let I be the sharing interpretation of Example 24. Then

SEI
τ [[new StudentList]]({(this , this)}) = {(res, res), (this , this)}

SEI
τ [[this .head]]

({
(out , out),
(this , this)

})
=

{
(out , out), (res , res),
(this , res), (this , this)

}

SEI
τ [[this .tail]]

⎛
⎝

⎧⎨
⎩

(out , out),
(this , out),
(this , this)

⎫⎬
⎭

⎞
⎠ =

{
(out , out), (res , out), (res , res),

(res , this), (this , out), (this , this)

}
.

Consider now sh = {(out , out), (this , out), (this , this), (ttail , this), (ttail , out),
(ttail , ttail)}. Let us compute SEI

τ [[ttail .clone()]](sh). We have pars = {ttail}
and sh† = {(this , this)}. If we assume that clone is not overridden, then sh‡ =
(I(clone)({(this , this)}))[out �→ res ] = {(res, res)}, sh� = {(res, res), (res , ttail)}
and (sh∪sh�)∗{ttail} = ({(out , out), (this , out), (this , this), (ttail , this), (ttail , out),
(ttail , ttail)} ∪ {(res , res), (res , ttail)})∗{ttail}. This introduces the pairs (out , res)
and (res , this) yielding {(out , out), (out , res), (res , res), (res , this), (res , ttail),
(this , out), (this , this), (ttail , out), (ttail , this), (ttail , ttail)}.

5.2 Abstract Denotation for the Commands

In the concrete semantics, each command c transforms an initial state into a final
state. On the abstract domain, it transforms an initial state sh into an abstract
state sh ′ which, for correctness (Section 2), includes the pairs of variables which
share in the concrete states σ′ obtained by evaluating c from each σ ∈ γτ (sh).
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SCI
τ [[v:=exp]] = SEI

τ [[exp ]] ◦ setVar v
τ+exp

where setVar v
τ =λsh ∈ Shτ .sh |−v[res �→ v]

SCI
τ [[v.f :=exp]] = SEI

τ [[exp ]] ◦ setFieldv.f
τ+exp

where setFieldv.f
τ =λsh ∈ Shτ .

{
(((sh ∪ {(v, res)})∗res)|−res)

∗
v if (v, v) ∈ sh

∅ otherwise

SCI
τ

⎡
⎣
⎡
⎣ if v = w
then com1

else com2

⎤
⎦
⎤
⎦ (sh) = SCI

τ [[com1]](sh) ∪ SCI
τ [[com2]](sh)

SCI
τ

⎡
⎣
⎡
⎣ if v = null

then com1

else com2

⎤
⎦
⎤
⎦ (sh) =

{
SCI

τ [[com1]](sh |−v) ∪ SCI
τ [[com2]](sh) if (v, v) ∈ sh

SCI
τ [[com1]](sh |−v) otherwise

SCI
τ [[{com1; . . . ; comp}]] = (λsh ∈ Shτ .sh) ◦ SCI

τ [[com1]] ◦ · · · ◦ SCI
τ [[comp]].

The identity map λsh ∈ Shτ .sh for the sequence of commands is needed when p = 0.

Fig. 4. The sharing interpretation for commands

The concrete evaluation of v:=exp evaluates exp and stores its result into
v. Thus we define sh′ as the functional composition of SEI

τ [[exp]] with the map
setVarv

τ (sh)=sh|−v[res �→v] which renames res into v (v’s original value is lost).
Similarly, for v.f :=exp we use a setField map. Its definition has two cases.

When (v, v) ∈ sh, we know that v is null and hence there is no final state. The
best approximation of the empty set of final states is ∅. Otherwise, its definition
reflects the fact that after assigning exp to v.f, variable v might share with every
variable w which shares with the value of exp. This means that we must perform
a star-closure w.r.t. res (Definition 27) and remove res . Moreover if, before this
assignment, a variable v′ shares with v, then the assignment might also affect
v′, so we conservatively assume that v′ and w might share. This means that we
must compute a star-closure w.r.t. v. In conclusion, in this second case we let
setFieldv.f

τ (sh) = (((sh ∪ {(v, res)})∗res)|−res)∗v.
A correct approximation of the conditionals of Definition 3 considers them

non-deterministic, so that their denotation is SCI
τ [[com1]] ∪ SCI

τ [[com2]]. But we
can do better. Namely, if (v, v) ∈ sh then v is definitely null in σ, and the guard
v = null is true. Vice versa, in the then branch we can assume that the guard
is true. When the guard is v = null, this means that v can be removed from
the input approximation sh.

The composition of commands is denoted by functional composition over Sh.

Definition 30. Let τ describe the variables in scope, I be a sharing interpre-
tation. Figure 4 shows the sharing denotation for commands SCI

τ [[ ]] : com �→
(Shτ �→Shτ ).

Example 31. Let τ = scope(clone) = [out �→StudentList, this �→StudentList,
ttail �→ StudentList] describe the variables in scope in the clone method of
Figure 1. Let I be the sharing interpretation ofExample 24. We want to com-
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pute the abstract state sh5 at the end of clone assuming that we run clone
from sh1 = {(this , this)}. We use Definition 30 and we write {shi}c{shi+1} for
SCI

τ [[c]](sh i) = shi+1 i.e., we decorate each program point p with the abstract ap-
proximation at p. For the right-hand side of assignments, we use the denotations
that we already computed in Example 29. We have

sh1 = {(this , this)}
out := new StudentList

sh2 = {(out , out), (this , this)}
out .head := this .head

sh3 = {(out , out), (this , out), (this , this)}
ttail := this .tail

sh4 = {(out , out), (this , out), (this , this), (ttail , out), (ttail , this), (ttail , ttail)}
if ttail = null then {} else out .tail := ttail .clone()

sh5 = sh4.

Let us consider in detail how sh5 is computed from sh4. Since (ttail , ttail) ∈ sh4,

sh5 = SCI
τ [[if . . .ttail .clone()]](sh4)

= SCI
τ [[{}]](sh4|−ttail ) ∪ SCI

τ [[out .tail := ttail .clone()]](sh4)

= sh4|−ttail ∪ (setFieldout.tail
τ+ttail .clone()(SEI

τ [[ttail .clone()]](sh4)))

(Ex. 29) = sh4|−ttail ∪

⎛
⎜⎜⎜⎜⎝

setFieldout.tail
τ+ttail.clone()( ⎧⎨

⎩
(out , res), (out , out), (res , this), (this, out),

(this, this), (ttail , this), (ttail , out), (ttail , ttail),
(res , res), (res , ttail)

⎫⎬
⎭

︸ ︷︷ ︸
sh

)
⎞
⎟⎟⎟⎟⎠

= sh4|−ttail ∪ (((sh ∪ {(out , res)})∗res)|−res)∗out

= sh4|−ttail ∪
({

(out , out), (this , out), (this , this),
(ttail , this), (ttail , out), (ttail , ttail)

})∗

out

= sh4|−ttail ∪
({

(out , out), (this , out), (this , this),
(ttail , this), (ttail , out), (ttail , ttail)

})
= sh4.

The approximation sh5 in Example 31 lets out (clone’s return value) share with
itself (i.e., it might be non-null), with this (clone performs a shallow clone of
the StudentList this , by sharing the Students) and with ttail (because of the
recursive call). You cannot drop any single pair from sh5 without breaking the
correctness of the analysis. Instead, (out , ttail) is redundant in sh4. It is there
since out .head := this .head makes out share with this and ttail := this .tail
makes ttail share with this and hence, (too) conservatively, with out .

5.3 Correctness

The first result of correctness states that the abstract denotations are correct
(Section 2) w.r.t. the concrete denotations.

Proposition 32. The abstract denotations of Definitions 28 and 30 are correct.
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The concrete transformer on interpretations (Definition 10) induces an abstract
transformer on sharing interpretations.

Definition 33. Given a sharing interpretation I, we define a new sharing inter-
pretation I ′ such that I ′(κ.m) = SCI

scope(κ.m)[[body(κ.m)]]◦(λsh ∈ Σscope(κ.m).sh|out).
The sharing denotational semantics of a program is the least fixpoint of this
transformer on sharing interpretations.

The following result follows from Proposition 32.

Proposition 34. The transformer on sharing interpretations of Definition 33 is
correct w.r.t. that on concrete interpretations of Definition 10. Hence, the sharing
denotational semantics is a safe approximation of the denotational semantics.
Example 35. Let us use, in Definition 33, the denotation of Example 31. We get
an interpretation I ′ = I, hence a fixpoint of the transformer of Definition 33.
We can actually construct I (Example 24) as the limit of a Kleene sequence of
approximations, as usual in denotational abstract interpretation [7, 8]. Hence it
is the least fixpoint i.e., clone’s sharing denotational semantics.

5.4 Improving the Precision of Method Calls

The denotation for method calls of Definition 28 can be very imprecise.

Example 36. Let us remove the line out .head := this .head from Figure 1. The
method clone builds now a StudentList, as long as this , but whose Students
are null . Hence, at the end of clone, variable out does not share with this . Let us
verify if our analysis captures that, by re-executing what we did in Example 31.

sh1 = {(this , this)}
out := new StudentList

sh2 = {(out , out), (this , this)}
ttail := this.tail

sh3 = {(out , out), (this , this), (this , ttail), (ttail , ttail)}
if ttail = null then {} else out.tail := ttail.clone()

sh4 = {(out , out), (out , this), (this , this), (out , ttail), (this , ttail), (ttail , ttail)}.
Since (out , this) ∈ sh4, our analysis is not able to guarantee that this does not
share with the result of clone.

In Example 36, the problem is that, in order to approximate the recursive call
ttail .clone(), we use a set sh� (Definition 28) which lets the parameters of the
call share with its result, if they are not definitely null . In our example, sh�

contains the spurious pair (res , ttail), which by star-closure introduces further
imprecisions, until (out , this) is put in the approximation.

We can improve the precision of the analysis with explicit information on
which actual parameters of a method call share with the return value. Hence we
enlarge the set of the variables in the final states of the interpretations (Defi-
nitions 9 and 23). While output(κ.m) provides information on out only (Defini-
tion 3), we use output(κ.m)∪ input ′(κ.m) instead, where input ′(κ.m) are new local
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primed variables holding copies of the actual parameters of κ.m. These variables
are never modified, so that at the end they provide information on which actual
parameters share with out , by renaming primed variables into unprimed ones:
sh� = sh‡[v′ �→ v] for the primed variables v′.

Example 37. Let us re-execute the analysis of Example 36 with a primed variable
this ′. We use an interpretation I such that I(clone)({(this , this)}) = {(out , out),
(this ′, this ′)} i.e., at the end of clone the actual parameter passed for this does
not share with the result of the method. We want to verify that this interpreta-
tion is a fixpoint of our semantics. We have

sh1 = {(this , this)}
this′ := this // this ′ is initially aliased to this

sh2 = {(this , this), (this , this ′), (this ′, this ′)}
out := new StudentList

sh3 = {(out , out), (this , this), (this , this ′), (this ′, this ′)}
ttail := this.tail

sh4 =
{

(out , out), (this , this), (this , this ′), (this ′, this ′),
(ttail , this), (ttail , this ′), (ttail , ttail)

}

if ttail = null then {} else out.tail := ttail.clone()
sh5 = sh4.

We have (out , this) ∈ sh5 i.e., our analysis guarantees now that this does not
share with the result of clone. Note that sh5|{out,this′} = {(out , out), (this ′, this ′)}
i.e., I is a fixpoint of the transformer of Definition 33.

6 Conclusions

We have equipped our new abstract domain Sh for pair-sharing analysis with
abstract operations which allow us to show a simple example of analysis (Ex-
ample 31). We know that some of these operations are not optimal, so there is
space for improvement. Moreover, we still miss an implementation and, hence, an
actual evaluation. We plan to implement Sh as an abstract domain for the Julia
analyser [15], for which we already implemented 8 other abstract domains. We
will use binary decision diagrams [3] to represent the denotational transfer func-
tions over Sh of Figures 3 and 4. Exceptions are automatically transformed by
Julia into branches in the program’s control-flow, so they can be easily embedded
in our sharing analysis as we already did for other static analyses.
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