
Interprocedural Shape Analysis
for Cutpoint-Free Programs

Noam Rinetzky1,�, Mooly Sagiv1, and Eran Yahav2

1 Tel Aviv University
{maon, msagiv}@tau.ac.il
2 IBM T.J. Watson Research Center

eyahav@us.ibm.com

Abstract. We present a framework for interprocedural shape analysis, which is
context- and flow-sensitive with the ability to perform destructive pointer updates.
We limit our attention to cutpoint-free programs—programs in which reasoning
on a procedure call only requires consideration of context reachable from the
actual parameters. For such programs, we show that our framework is able to
perform an efficient modular analysis. Technically, our analysis computes proce-
dure summaries as transformers from inputs to outputs while ignoring parts of
the heap not relevant to the procedure. This makes the analysis modular in the
heap and thus allows reusing the effect of a procedure at different call-sites and
even between different contexts occurring at the same call-site. We have imple-
mented a prototype of our framework and used it to verify interesting properties
of cutpoint-free programs, including partial correctness of a recursive quicksort
implementation.

1 Introduction

Shape-analysis algorithms statically analyze a program to determine information about
the heap-allocated data structures that the program manipulates. The algorithms are
conservative (sound), i.e., the discovered information is true for every input. Handling
the heap in a precise manner requires strong pointer updates [6]. However, performing
strong pointer updates requires flow-sensitive context-sensitive analysis and expensive
heap abstractions that may be doubly-exponential in the program size [36]. The pres-
ence of procedures escalates the problem because of interactions between the program
stack and the heap [34] and because recursive calls may introduce exponential factors
in the analysis. This makes interprocedural shape analysis a challenging problem.

This paper introduces a new approach for shape analysis for a class of imperative
programs. The main idea is to restrict the “sharing patterns” occurring in procedure
calls. This allows procedures to be analyzed ignoring the part of the heap not reachable
from actual parameters. Moreover, shape analysis can conservatively detect violations
of the above restrictions, thus allowing to treat existing programs. A prototype of this
approach was implemented and used to verify properties that could not be automat-
ically verified before, including the partial correctness of a recursive quicksort [16]
implementation (i.e., show that it returns an ordered permutation of its input).

� This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No 304/03).

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 284–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Interprocedural Shape Analysis for Cutpoint-Free Programs 285

Our restriction on programs is inspired by [33]. There, Rinetzky et. al. present a
non-standard semantics for arbitrary programs in which procedures operate on local
heaps containing only the objects reachable from actual parameters. The most complex
aspect of [33] is the treatment of sharing between the local heap and the rest of the
heap. The problem is that the local heap can be accessed via access paths which bypass
actual parameters. Therefore, objects in the local heap are treated differently when they
separate the local heap (that can be accessed by a procedure) from the rest of the heap
(which—from the viewpoint of that procedure—is non-accessible and immutable). We
call these objects cutpoints [33]. We refer to an invocation in which no such cutpoint
object exists as a cutpoint-free invocation. We refer to an execution of a program in
which all invocations are cutpoint-free as a cutpoint-free execution, and to a program
in which all executions are cutpoint-free as a cutpoint-free program. (We define these
notions more formally in the following sections).

While many programs are not cutpoint-free, we observe that a reasonable number
of programs, including all examples used in [13, 34, 19] are cutpoint-free, as well as
many of the programs in [12, 37]. One of the key observations in this paper, is that we
can exploit cutpoint-freedom to construct an interprocedural shape analysis algorithm
that efficiently reuses procedure summaries.

In this paper, we present LCPF , an operational semantics that efficiently handles
cutpoint-free programs. This semantics is interesting because procedures operate on
local heaps, thus supporting the notion of heap-modularity while permitting the usage
of a global heap and destructive updates. Moreover, the absence of cutpoints drastically
simplifies the meaning of procedure calls. LCPF checks that a program execution is
indeed cutpoint-free and halts otherwise. As a result, it is applicable to any arbitrary
program, and does not require an a priori classification of a program as cutpoint-free.
We show that for cutpoint-free programs, LCPF is observationally equivalent to the
standard global-heap semantics.

LCPF gives rise to an efficient interprocedural shape-analysis for cutpoint-free
programs. Our interprocedural shape-analysis is a functional interprocedural analy-
sis [10, 38, 20, 29, 11, 19, 2]. It tabulates abstractions of memory states before and after
procedure calls. However, memory states are represented in a non-standard way ignor-
ing parts of the heap not relevant to the procedure. This reduces the complexity of the
analysis because the analysis of procedures does not represent information on refer-
ences and on the heap from calling contexts. Indeed, this makes the analysis modular
in the heap and thus allows reusing the summarized effect of a procedure at different
calling contexts. Finally, this reduces the asymptotic complexity of the interprocedural
shape analysis. For programs without global variables, the worst case time complex-
ity of the analysis is doubly-exponential in the maximum number of local variables
in a procedure, instead of being doubly-exponential in the total number of local vari-
ables [34].

Technically, our algorithm is built on top of the 3-valued logical framework for pro-
gram analysis of [23, 36]. Thus, it is parametric in the heap abstraction and in the con-
crete effects of program statements, allowing to experiment with different instances of
interprocedural shape analyzers. For example, we can employ different abstractions for

286 N. Rinetzky, M. Sagiv, and E. Yahav

singly-, doubly-linked lists, and trees. Also, a combination of theorems in [35] and [36]
guarantees that every instance of our interprocedural framework is sound (see Sec. 3).

This paper also provides an initial empirical evaluation of our algorithm. Our em-
pirical evaluation indicates that the analysis is precise enough to prove properties such
as the absence of null dereferences, preservation of data structure invariants such as
list-ness, tree-ness, and sorted-ness for iterative and recursive programs with deep ref-
erences into the heap and destructive updates. We observe that the cost of analyzing
recursive procedures is comparable to the cost of analyzing their iterative counterparts.
Moreover, the cost of analyzing a program with procedures is smaller than the cost of
analyzing the same program with procedure bodies inlined.

public class List{
List n = null;
int data;
public List(int d){

this.data = d;
}
static public List create3(int k) {

List t1 = new List(k), t2 = new List(k+1), t3 = new List(k+2);
t1.n = t2; t2.n = t3;
return t1;

}
public static List splice(List p, List q) {

List w = q;
if (p != null) {

List pn = p.n;
p.n = null;
p.n = splice(q, pn);
w = p;

}
return w;

}
public static void main(String[] argv) {

List x = create3(1), y = create3(4), z = create3(7);
List t = splice(x, y);
List s = splice(y, z);

}
}

Fig. 1. A Java program recursively splicing three singly-linked lists using destructive updates

1.1 Main Results

The contributions of this paper can be summarized as follows:

1. We define the notion of cutpoint-free programs, in which reasoning about a proce-
dure allows ignoring the context not reachable from its actual parameters.

2. We show that interesting cutpoint-free programs can be written naturally, e.g., pro-
grams manipulating unshared trees and a recursive implementation of quicksort.
We also show that some interesting existing programs are cutpoint-free, e.g., all
programs verified using shape analysis in [13,34,19], and many of those in [12,37].

3. We define an operational semantics for arbitrary Java-like programs that verifies
that a program execution is cutpoint free. In this semantics, procedures operate on

Interprocedural Shape Analysis for Cutpoint-Free Programs 287

local heaps, thus supporting the notion of heap-modularity while permitting the
usage of a global heap and destructive updates.

4. We present an interprocedural shape analysis for cutpoint-free programs. Our anal-
ysis is modular in the heap and thus allows reusing the effect of a procedure at dif-
ferent calling contexts and at different call-sites. Our analysis goes beyond the lim-
its of existing approaches and was used to verify a recursive quicksort
implementation.

5. We implemented a prototype of our approach. Preliminary experimental results in-
dicate that: (i) the cost of analyzing recursive procedures is similar to the cost of
analyzing their iterative versions; (ii) our analysis benefits from procedural abstrac-
tion; (iii) our approach compares favorably with [34, 19].

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

3

6

9

2

5

8

1

4

7

x

y

z n n

n n

n n 3

6

2

5

1

4

p

q n n

n n 3

6

2

5

1

4

p,w

q n n
n n n

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

(Sc

2) (Se

2) (Sx

2) (Sr

2)

Fig. 2. Concrete states for the invocation t = splice(x, y) in the running example

1.2 Motivating Example

Fig. 1 shows a simple Java program that splices three unshared, disjoint, acyclic singly-
linked lists using a recursive splice procedure. This program serves as a running
example in this paper.

For each invocation of splice, our analyzer verifies that the returned list is acyclic
and not heap-shared;1 that the first parameter is aliased with the returned reference; and
that the second parameter points to the second element in the returned list.

For this example, our algorithm effectively reuses procedure summaries, and only
analyzes splice(p,q) once for every possible abstract input. As shown in Sec. 3.3,
this means that splice(p,q) will be only analyzed a total number of 9 times. This
should be contrasted with [34], in which no summaries are computed, and the procedure
is analyzed 66 times. Compared to [19], our algorithm can summarize procedures in a
more compact way (see Sec. 5).

1.3 Local Heaps, Relevant Objects, Cutpoints, and Cutpoint-Freedom

In our semantics, procedures operate on local heaps. The local heap contains only the
part of the program’s heap accessible to the procedure. Thus, procedures are invoked on
local heaps containing only objects reachable from actual parameters. We refer to these
objects as the relevant objects for the invocation.

1 An object is heap-shared if it is pointed-to by a field of more than one object.

288 N. Rinetzky, M. Sagiv, and E. Yahav

Example 1. Fig. 2 shows the concrete memory states that occur at the call t=splice
(x,y). Sc

2 shows the state at the point of the call, and Se
2 shows the state on entry

to splice. Here, splice is invoked on local heap containing the (relevant) objects
reachable from either x or y.

The fact that the local heap of the invocation t=splice(x,y) contains only the
lists referenced by x and y, guarantees that destructive updates performed by splice
can only affect access paths that pass through an object referenced by either x or y.
Similarly, the invocation s=splice(y,z) in the concrete memory state Sc

3, shown
in Fig. 3(a), can only affect access paths that pass through an object referenced by
either y or z.

call splice(y,z) return s=splice(y,z) call splice(t,z) return s=splice(t,z)

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4

x,t

s,y
n

n
n n n

987z
n nn

3

6

2

5

1

4

x,t

y n n
n n n

987z n n

3

6

2

5

1

4y n
n

987z
nn

x,s,
n

n

n

n

t

(Sc

3) (Sr

3) (S
ccp

3) (S
rcp

3)

(a) (b)

Fig. 3. Concrete states for: (a) the invocation s=splice(y,z) in the program of Fig. 1;
(b) a variant of this program with an invocation s=splice(t,z)

Obviously, this is not always the case. For example, consider a variant of the exam-
ple program in which the second call s=splice(y,z) is replaced by a call
s=splice(t,z). Sccp

3 and S
rcp

3 , depicted in Fig. 3(b), show the concrete states when
s=splice(t,z) is invoked and when it returns, respectively. As shown in the figure,
the destructive updates of the splice procedure change not only paths from t and z,
but also change the access paths from y.

A cutpoint for an invocation is an object which is: (i) reachable from an actual
parameter, (ii) not pointed-to by an actual parameter, and (iii) reachable without going
through an object which is pointed-to by an actual parameter (that is, it is either pointed-
to by a variable or by an object not reachable from the parameters). In other words,
a cutpoint is a relevant object that separates the part of the heap which is passed to
the callee from the rest of the heap, but which is not pointed-to by a parameter. The
object pointed-to by y at the call s=splice(t,z) (Fig. 3(b)) is a cutpoint, and this
invocation is not cutpoint-free. In contrast, the call t=splice(x,y) (Fig. 2) does not
have any cutpoints and is therefore cutpoint-free. In fact, all invocations in the program
of Fig. 1, including recursive ones, are cutpoint-free, and the program is a cutpoint-free
program.

Our analyzer verifies that the running example is a cutpoint-free program. It also
detects that in the variant of our running example, the call s=splice(t,z) is not a
cutpoint-free invocation.

Interprocedural Shape Analysis for Cutpoint-Free Programs 289

1.4 Outline

The rest of the paper is organized as follows. Sec. 2 defines our local heap concrete
semantics. Sec. 3 conservatively abstracts this semantics, providing a heap-modular
interprocedural shape analysis algorithm. Sec. 4 describes our implementation and ex-
perimental results. Sec. 5 describes related work, and Sec. 6 concludes. Due to space
limitations, formal details and more experimental results appear in [35].

2 Concrete Semantics

In this section, we present LCPF , a large-step concrete semantics that serves as the ba-
sis for our abstraction. In LCPF , an invoked procedure is passed only relevant objects.
LCPF has two novel aspects: (i) it verifies that the execution is cutpoint-free; (ii) it
has a simple rule for procedure calls that exploits (the verified) cutpoint-freedom. Nev-
ertheless, in [35], we show that for cutpoint-free programs LCPF is observationally
equivalent to a standard store-based global-heap semantics. For simplicity, LCPF only
keeps track of pointer-valued variables and fields.

Table 1. Predicates used in the concrete semantics

Predicate Intended Meaning

T (v) v is an object of type T

f(v1, v2) the f-field of object v1 points to object v2

eq(v1, v2) v1 and v2 are the same object

x(v) reference variable x points to the object v

inUc(v) v originates from the caller’s memory state at the call site

inUx(v) v originated from the callee’s memory state at the exit site

2.1 Concrete Memory States

We represent memory states using 2-valued logical structures. A 2-valued logical struc-
ture over a set of predicates P is a pair S = 〈US , ιS〉 where:

– US is the universe of the 2-valued structure. Each individual in US represents a
heap-allocated object.

– ιS is an interpretation function mapping predicates to their truth-value in the struc-

ture: for every predicate p ∈ P of arity k, ιS(p) : USk → {0, 1}. Predicates
correspond to tracked properties of heap-allocated objects.

The set of 2-valued logical structures is denoted by 2Struct .
In the rest of the paper, we assume to be working with a fixed arbitrary program P .

The program P consists of a collection of types, denoted by TypeId�. The set of all
reference fields defined in P is denoted by FieldId �. For a procedure p, Vp denotes
the set of its local reference variables, including its formal parameters. The set of all
the local (reference) variables in P is denoted by Local�. For simplicity, we assume

290 N. Rinetzky, M. Sagiv, and E. Yahav

formal parameters are not assigned and that p always returns a value using a designated
variable retp ∈ Vp. For example, retsplice = w.

Tab. 1 shows the core predicates used in this paper. A unary predicate T (v) holds for
heap-allocated objects of type T ∈ TypeId�. A binary predicate f(v1, v2) holds when
the f ∈ FieldId� field of v1 points-to v2. The designated binary predicate eq(v1, v2)
is the equality predicate recording equality between v1 and v2. A unary predicate x(v)
holds for an object that is pointed-to by the reference variable x ∈ Local� of the current
procedure.2 The role of the predicates inUc and inUx is explained in Sec. 2.2.

2-valued logical structures are depicted as directed graphs. We draw individuals as
boxes. We depict the value of a pointer variable x by drawing an edge from x to the
individual that represent the object that x points-to. For all other unary predicates p,
we draw p inside a node u when ιS(p)(u) = 1; conversely, when ιS(p)(u) = 0 we do
not draw p in u. A directed edge between nodes u1 and u2 that is labeled with a binary
predicate symbol p indicates that ιS(p)(u1, u2) = 1. For clarity, we do not draw the
unary List predicate, and the binary equality predicate eq .

Example 2. The structure Sc
2 of Fig. 2 shows a 2-valued logical structure that repre-

sents the memory state of the program at the call t=splice(x, y). The depicted
numerical values are only shown for presentation reasons, and have no meaning in the
logical representation.

2.2 Inference Rules

The meaning of statements is described by a transition relation
lcpf� ⊆ (2Struct × st)×

2Struct that specifies how a statement st transforms an incoming logical structure into
an outgoing logical structure. For assignments, this is done primarily by defining the
values of the predicates in the outgoing structure using first-order logic formulae with
transitive closure over the incoming structure [36]. The inference rules for assignments
are rather straightforward and can be found in [35]. For control statements, we use the
standard rules of natural semantics, e.g., see [26].

Our treatment of procedure call and return could be briefly described as follows:
(i) the call rule is applied, first checking that the invocation is cutpoint-free (by evaluat-
ing the side condition), and (ii) proceeding to construct the memory state at the callee’s
entry site (Se) if the side condition holds; (iii) the caller’s memory state at the call site
(Sc) and the callee’s memory state at the exit site (Sx) are used to construct the caller’s
memory state at the return site (Sr). We now formally define and explain these steps.

Fig. 4 specifies the procedure call rule for an arbitrary call statement y = p(x1, . . . ,
xk) by an arbitrary function q. The rule is instantiated for each call statement in the
program.

Verifying Cutpoint-Freedom. The semantics uses the side condition of the procedure
call rule to ensure that the execution is cutpoint-free. The side condition asserts that no
object is a cutpoint. This is achieved by verifying that the formula isCPq,{x1,...,xk}(v),

2 For simplicity, we use the same set of predicates for all procedures. Thus, our semantics en-
sures that ιS(x) = λu.0 for every local variable x that does not belong to the current call.

Interprocedural Shape Analysis for Cutpoint-Free Programs 291

defined in Tab. 2, does not hold for any object at Sc, the memory state that arises when
p(x1, . . . , xk) is invoked by q.

The formula isCP q,{x1,...,xk}(v), holding when v is a cutpoint object, is comprised
of three conjuncts. The first conjunct, requires that v be reachable from an actual param-
eter. The second conjunct, requires that v not be pointed-to by an actual parameter. The
third conjunct, requires that v be an entry point into p’s local heap, i.e., is pointed-to by
a local variable of q (the caller procedure) or by a field of an object not passed to p.

Example 3. The structure Sc
2 of Fig. 2 depicts the memory state at the point of the call t

= splice(x, y). In this state, the formula isCPmain,{x,y}(v) does not hold for any
object. On the other hand, when s = splice(t, z) is invoked at S

ccp

3 of Fig. 3(b),
the object pointed-to by y is a cutpoint. Note, that the formula isCPmain,{t,z}(v) eval-
uates to 1 when v is bound to this object: the formula R{t,z}(v) holds for every object
in t’s list. In particular, it holds for the second object which is pointed-to by a local
variable (y) but not by an actual parameter (t, z).

Note that LCPF considers only the values of variables that belong to the current
call when it detects cutpoints. This is possible because all pending calls are cutpoint-
free. This greatly simplifies the cutpoint detection compared to [33].

Computing the Memory State at the Entry Site. Se, the memory state at the entry
site to p, represents the local heap passed to p. It contains only these individuals in Sc

that represent objects that are relevant for the invocation. The formal parameters are
initialized by updCally=p(x1,...,xk)

q , defined in Fig. 5(a). The latter, specifies the value
of the predicates in Se using a predicate-update formulae evaluated over Sc. We use
the convention that the updated value of x is denoted by x′. Predicates whose update
formula is not specified, are assumed to be unchanged, i.e., x′(v1, . . .) = x(v1, . . .).
Note that only the predicates that represent variable values are modified. In particular,
field values, represented by binary predicates, remain in p’s local heap as in Sc.

Table 2. Formulae shorthands and their intended meaning

Shorthand Formula Intended Meaning
F (v1, v2)

∨
f∈FieldId�

P
f(v1, v2) v1 has a field that points to v2

ϕ∗(v1, v2) eq(v1, v2) ∨ the reflexive transitive closure of ϕ
(TC w1, w2 : ϕ(w1, w2))(v1, v2)

R{x1,...,xk}(v)
∨

x∈{x1,...,xk} ∃v1 : x(v1) ∧ F ∗(v1, v)v is reachable from x1 or . . . or xk

isCPq,{x1,...,xk}(v)R{x1,...,xk}(v) ∧ v is a cutpoint
(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧
(
∨

y∈Vq
y(v) ∨

∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v))

Example 4. The structure Se
2 of Fig. 2 depicts the memory state at the entry site to

splice when t = splice(x, y) is invoked at the memory state Sc
2. Note that

the list referenced by z is not passed to splice. Also note that the element which
was referenced by x is now referenced by p. This is the result of applying the update
formula p′(v) = x(v) for the predicate p in this call. Similarly, the element which was
referenced by y is now referenced by q.

292 N. Rinetzky, M. Sagiv, and E. Yahav

〈body of p, Se〉 lcpf� Sx

〈y = p(x1, . . . , xk), Sc〉 lcpf� Sr

Sc |= ∀v : ¬isCPq,{x1,...,xk}(v)

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u)}
ιe = updCally=p(x1,...,xk)

q (Sc)

Sr = 〈Ur, ιr〉 where
Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P .

⎧
⎨

⎩

ιc[inUc 	→ λv.1](p)(u1, . . . , um) : u1 =w1.c, . . . , um =wm.c
ιx[inUx 	→ λv.1](p)(u1, . . . , um) : u1 =w1.x, . . . , um =wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 �|= inUc(u) ∧ R{x1,...,xk}(u)}
ιr = updRety=p(x1,...,xk)

q (〈U ′, ι′〉)

Fig. 4. The inference rule for a procedure call y = p(x1, . . . , xk) by a procedure q. The functions
updCally=p(x1,...,xk)

q and updRety=p(x1,...,xk)
q are defined in Fig. 5.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ Local� \ {h1, . . . , hk}
b. Predicate update formulae for updRety=p(x1,...,xk)

q

z′(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}
∃v1 : z(v1) ∧ match{〈h1,x1〉,...,〈hk,xk〉}(v1, v)

0 : z ∈ Local� \ Vq

f ′(v1, v2) = inUx (v1) ∧ inUx(v2) ∧ f(v1, v2) ∨
inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx(v2) ∧ ∃vsep : f(v1, vsep) ∧ match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2)

inUc′(v) = inUx ′(v) = 0

Fig. 5. Predicate-update formulae for the core predicates used in the procedure call rule. We
assume that the p’s formal parameters are h1, . . . , hk. There is a separate update formula for
every local variable z ∈ Local� and for every field f ∈ FieldId�.

Computing the Memory State at the Return Site. The memory state at the return-site
(Sr) is constructed as a combination of the memory state in which p was invoked (Sc)
and the memory state at p’s exit-site (Sx). Informally, Sc provides the information about
the (unmodified) irrelevant objects and Sx contributes the information about the de-
structive updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at
the call-site to the corresponding objects at the return site. The fact that the invocation

Interprocedural Shape Analysis for Cutpoint-Free Programs 293

is cutpoint-free guarantees that the only references into the local heap are references to
objects referenced by an actual parameter. This allows us to reflect the effect of p into
the local heap of q by: (i) replacing the relevant objects in Sc with Sx, the local heap
at the exit from p; (ii) redirecting all references to an object referenced by an actual
parameter to the object referenced by the corresponding formal parameter in Sx.

Technically, Sc and Sx are combined into an intermediate structure 〈U ′, ι′〉. The
latter contains a copy of the memory states at the call site and at the exit site. To dis-
tinguish between the copies, the auxiliary predicates inUc and inUx are set to hold for
individuals that originate from Sc and Sx, respectively. Pointer redirection is specified
by means of predicate update formulae, as defined in Fig. 5(b). The most interesting as-
pect of these update-formulae is the formula match{〈h1,x1〉,...,〈hk,xk〉}, defined below:

match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
def=

k∨

i=1

inUc(v1) ∧ xi(v1) ∧ inUx (v2) ∧ hi(v2)

This formula matches an individual that represents an object which is referenced by an
actual parameter at the call-site, with the individual that represents the object which is
referenced by the corresponding formal parameter at the exit-site. Our assumption that
formal parameters are not modified allows us to match these two individuals as repre-
senting the same object. Once pointer redirection is complete, all individuals originat-
ing from Sc and representing relevant objects are removed, resulting with the updated
memory state of the caller.

Example 5. Sc
2 and Sx

2, shown in Fig. 2, represent the memory states at the call-site and
at the exit-site of the invocation t=splice(x,y), respectively. Their combination
according to the procedure call rule is Sr

2, which represents the memory state at the
return site. Note that the lists of x and y from the call-site were replaced by the lists
referenced by p and q. The list referenced by z was taken as is from the call-site.

Table 3. The instrumentation predicates used in this paper

Predicate Intended Meaning Defining Formula

robj (v1, v2) v2 is reachable from v1 by some field path F ∗(v1, v2)

ils(v) v is locally shared. i.e., v is pointed-to by ∃v1, v2 : ¬eq(v1, v2) ∧
a field of more than one object in the local-heap F (v1, v) ∧ F (v2, v)

c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)

rx(v) v is reachable from variable x ∃vx : x(vx) ∧ F ∗(vx, v)

3 Abstract Semantics

In this section, we present LCPF#, a conservative abstract semantics abstracting
LCPF .

294 N. Rinetzky, M. Sagiv, and E. Yahav

3.1 Abstract Memory States

We conservatively represent multiple concrete memory states using a single logical
structure with an extra truth-value 1/2 which denotes values which may be 1 and which
may be 0. The information partial order on the set {0, 1/2, 1} is defined as 0 � 1/2 � 1,
and 0 	 1 = 1/2.

An abstract state is a 3-valued logical structure S�=〈US�

, ιS
�〉 where:

– US�

is the universe of the structure. Each individual in US�

possibly represents
many heap-allocated objects.

– ιS
�

is an interpretation function mapping predicates to their truth-value in the struc-

ture, i.e., for every predicate p ∈ P of arity k, ιS(p) : US�k → {0, 1/2, 1}.
The set of 3-valued logical structures is denoted by 3Struct .

Instrumentation Predicates. Instrumentation predicates record derived properties of in-
dividuals, and are defined using a logical formula over core predicates. Instrumentation
predicates are stored in the logical structures like core predicates. They are used to
refine the abstract semantics, as we shall shortly see. Tab. 3 lists the instrumentation
predicates used in this paper.

Canonical Abstraction. We now formally define how concrete memory states are repre-
sented using abstract memory states. The idea is that each individual from the (concrete)
state is mapped into an individual in the abstract state. An abstract memory state may in-
clude summary nodes, i.e., an individual which corresponds to one or more individuals
in a concrete state represented by that abstract state.

A 3-valued logical structure S� is a canonical abstraction of a 2-valued logical
structure S if there exists a surjective function f : US → US�

satisfying the following
conditions: (i) For all u1, u2 ∈ US , f(u1) = f(u2) iff for all unary predicates p ∈ P ,
ιS(p)(u1) = ιS(p)(u2), and (ii) For all predicates p ∈ P of arity k and for all k-tuples
u�

1, u
�
2, . . . , u

�
k ∈ US�

,

ιS
�

(p)(u�
1, u

�
2, . . . , u

�
k) =

⊔

u1,...,uk∈Us

f(ui)=u�
i

ιS(p)(u1, u2, . . . , uk).

The set of concrete memory states such that S� is their canonical abstraction is
denoted by γ(S�). Finally, we say that a node u� ∈ US�

represents node u ∈ U , when
f(u) = u�. Note that only for a summary node u, ιS

�

(eq)(u, u) = 1/2.
3-valued logical structures are also drawn as directed graphs. Definite values

(0 and 1) are drawn as for 2-valued structures. Binary indefinite predicate values (1/2)
are drawn as dotted directed edges. Summary nodes are depicted by a double frame.

Example 6. Fig. 6 shows the abstract states (as 3-valued logical structures) representing
the concrete states of Fig. 2. Note that only the local variables p and q are represented
inside the call to splice(p,q). Representing only the local variables inside a call
ensures that the number of unary predicates to be considered when analyzing the proce-
dure is proportional to the number of its local variables. This reduces the overall com-

Interprocedural Shape Analysis for Cutpoint-Free Programs 295

splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)

x

y

z

rx

ry

rz

n

n

n rx

ry

rz

n

n

n

p

q

rp

rq
n

n

rq

n

n

rp p,w

q

rp

rp n

n
rw

n

rq

rp rw
rq

rw x,t

y

z

rx

ry

rz

n

n

rt

rz

n

n

rx rt
ry

rx rt

(Sc#

6) (Se#

6) (Sx#

6) (Sr#

6)

Fig. 6. Abstract states for the invocation t = splice(x, y); in the running example

plexity of our algorithm to be worst-case doubly-exponential in the maximal number of
local variables rather than doubly-exponential in their total number (as in e.g., [34]).

The Importance of Reachability. Recording derived properties by means of instrumen-
tation predicates may provide additional information that would have been otherwise
lost under abstraction. In particular, because canonical abstraction is directed by unary
predicates, adding unary instrumentation predicates may further refine the abstraction.
This is called the instrumentation principle in [36]. In our framework, the predicates
that record reachability from variables plays a central role. They enable us to identify
the individuals representing objects that are reachable from actual parameters. For ex-
ample, in the 3-valued logical structure Sc#

6 depicted in Fig. 6, we can detect that the
top two lists represent objects that are reachable from the actual parameters because
either rx or ry holds for these individuals. None of these predicates holds for the indi-
viduals at the (irrelevant) list referenced by z. We believe that these predicates should
be incorporated in any instance of our framework.

3.2 Inference Rules

The meaning of statements is described by a transition relation
lcpf #

� ⊆ (3Struct×st)×
3Struct . Because our framework is based on [36], the specification of the concrete op-
erational semantics for program statements (as transformers of 2-valued structures) in
Sec. 2, also defines the corresponding abstract semantics (as transformers of 3-valued
structures). This abstract semantics is obtained by reinterpreting logical formulae us-
ing a 3-valued logic semantics and serves as the basis for an abstract interpretation. In
particular, reinterpreting the side condition of the procedure call rule conservatively,
verifies that the program is cutpoint free. In this paper, we directly utilize the imple-
mentation of these ideas available in TVLA [23].

In principle, the effect of a statement on the values of the instrumentation predi-
cates can be evaluated using their defining formulae and the update formulae for the
core predicates. In practice, this may lead to imprecise results in the analysis. It is far
better to supply the update formula for the instrumentation predicates too. In this paper,
we manually provide the update formulae of the instrumentation predicates (as done
e.g., in [36, 22, 34]). Automatic derivation of update formulae for the instrumentation

296 N. Rinetzky, M. Sagiv, and E. Yahav

enter splice(p,q) exit splice(p,q)

p qrp rq
nn rq

n n

rp p,w

q
rp rq

nnrw

n
rp rw

rq

rp rw

p qrp rq
n rq

n

p,w

q
rp rq

nnrw

n
rp rw

rq

rp rw

q rq
n rq

n

q,w rq
nrw

n

rq rw

Fig. 7. Partial tabulation of abstract states for the splice procedure

predicates [30] is currently not implemented in our framework. We note that update for-
mulae are provided at the level of the programming language, and are thus applicable to
arbitrary procedures and programs. Predicate update-formulae for the instrumentation
predicates are provided in [35].

The soundness of our abstract semantics is guaranteed by the combination of the
theorems in [35] and [36]:

– In [35], we show that for cutpoint-free programs LCPF is observationally equiva-
lent to a standard store-based global-heap semantics.

– In [36], it is shown that every program-analyzer which is an instance of their frame-
work is sound with respect to the concrete semantics it is based on.

3.3 Interprocedural Functional Analysis via Tabulation of Abstract Local Heaps

Our algorithm computes procedure summaries by tabulating input abstract memory-
states to output abstract memory-states. The tabulation is restricted to abstract memory-
states that occur in the analyzed program. The tabulated abstract memory-states repre-
sent local heaps, and are therefore independent of the context in which a procedure is
invoked. As a result, the summary computed for a procedure could be used at different
calling contexts and at different call-sites.

Our interprocedural analysis algorithm is a variant of the IFDS-framework [29]
adapted to work with local-heaps. The main difference between our framework and [29]
is in the way return statements are handled: In [29], the dataflow facts that reach a
return-site come either from the call-site (for information pertaining to local variables)
or from the exit-site (for information pertaining to global variables). In our case, the
information about the heap is obtained by combining pair-wise the abstract memory
states at the call-site with their counterparts at the exit-site. A detailed description of
our tabulation algorithm can be found in [35].

Example 7. Fig. 7 shows a partial tabulation of abstract local heaps for the splice
procedure of the running example. The figure shows 3 possible input states of the list

Interprocedural Shape Analysis for Cutpoint-Free Programs 297

pointed-to by p. Identical possible input states of the list pointed-to by q, and their
combinations are not shown. As mentioned in Sec. 1, the splice procedure is only ana-
lyzed 9 times before its tabulation is complete, producing a summary that is then reused
whenever the effect of splice(p, q) is needed.

4 Prototype Implementation

We have implemented a prototype of our framework using TVLA [23]. The framework
is parametric in the heap-abstraction and in the operational semantics. We have instanti-
ated the framework to produce a shape-analysis algorithm for analyzing Java programs
that manipulate (sorted) singly-linked lists and unshared trees.

The join operator in our framework can be either set-union or a more “aggressive”
partial-join operation [24]. The former ensures that the analysis is fully-context sensi-
tive. The latter exploits the fact that our abstract domain has a Hoare order and returns
an upper approximation of the set-union operator. Our experiments were conducted
with the partial-join operator.

Our analysis was able to verify that all the tested programs are cutpoint-free and
clean, i.e., do not perform null-dereference and do not leak memory. For singly-linked-
list-manipulating programs (Tab. 4.a), we also verified that the invoked procedures pre-
serve list acyclicity. The analysis of the tree-manipulating programs (Tab. 4.b) verified
that the tree invariants hold after the procedure terminates. For these programs we as-
sume (and verify) that the trees are unshared. The analysis of the sorting programs
(Tab. 4.c) verified that the sorting procedure returns a sorted permutation of its input
list. To prove this property we adapted the abstraction used in [22]. We note that prior
attempts to verify the partial correctness of quicksort using TVLA were not suc-
cessful. For more details, see [35].

For two of our example programs (quicksort and reverse8), cutpoints were
created as a result of objects pointed-to by a dead variable or a dead field at the point of
a call. We manually rewrote these programs to eliminate these (false) cutpoints.

Tab. 4a-c compares the cost of analysis for iterative and recursive implementations
of a given program.3 For these programs, we found that the cost of analyzing recursive
procedures and iterative procedures is comparable in most cases. We note that our tests
were of client programs and not a single procedure, i.e., in all tests, the program also
allocates the data structure that it manipulates.

Tab. 4.d shows that our approach compares favorably with existing TVLA-based
interprocedural shape analyzers [34,19]. The experiments measure the cost of analyzing
4 recursive procedures that manipulate singly linked lists. For fair comparison with [33]
and [18], we follow them and do not measure the cost of list allocation in these tests.
All analyzers successfully verified that these (correct) procedures are clean and preserve
list acyclicity. [19] was able to prove that reverse reverses the list and to pinpoint the
location in the list that delete removed an element from. However, the cost of analysis
for insert and delete in [19] was higher than the cost in [34] and in our analysis.

3 revApp is a recursive procedure. We analyzed it once with an iterative append procedure and
once with a recursive append. Tail sort is a recursive procedure. We analyzed it once with an
iterative insert procedure and once with a recursive insert.

298 N. Rinetzky, M. Sagiv, and E. Yahav

Table 4. Experimental results. Time is measured in seconds. Space is measured in megabytes.
Experiments performed on a machine with a 1.5 Ghz Pentium M processor and 1 Gb memory.

Iterative vs. Recursive Programs
Implementation Iterative Recursive

a. List manipulating programs SpaceTime Space Time
create creates a list 2.5 11.5 2.3 9.3
find searches an element in a list 3.2 23.7 3.6 37.1
insert inserts an element into a sorted list 5.1 50.1 5.4 46.8
delete removes an element from a sorted list 3.7 41.7 3.9 35.8
append appends two lists 3.7 18.4 3.9 22.5
reverse destructive list-reversal 3.6 26.9 3.4 21.0
revApp reverses a list by appending its head to its reversed tail 4.3 43.6 4.3 41.7
merge merges two sorted lists 12.5585.1 5.4 87.1
splice splices two lists 4.9 76.5 4.8 33.6
running the running example 5.2 80.5 5.0 36.5

b. Tree manipulating programs SpaceTime Space Time
create creates a full tree - - 2.6 14.3
insert inserts a node 5.4 98.1 5.6 49.6
remove removes a node using removeRoot and spliceLeft 9.6480.3 6.6 167.5
find finds a node with a given key 4.9 53.4 6.5 105.7
height returns the tree’s height - - 5.4 76.1
spliceLeft a tree as the leftmost child of another tree 5.3 51.6 5.3 35.7
removeRoot removes the root of a tree 6.1107.8 6.1 73.9
rotate rotates the left and right children of every node - - 4.9 57.1

c. Sorting programs SpaceTime Space Time
IinsertionSort moves the list elements into a sorted list 8.6449.8 7.3 392.2
TailSort inserts the list head to its (recursively) sorted tail 4.9101.6 4.9 103.4
QuickSort quicksorts a list - - 13.51017.1

d. [34] (Call String) vs. [19] (Relational) vs.
our method

Method Call String Relational Our method
ProcedureSpaceTimeSpaceTime Space Time
insert 1.8 20.8 6.3 122.9 3.5 20.0
delete 1.7 16.4 6.8 145.7 2.8 14.9
reverse 1.8 13.9 4.0 6.4 2.8 7.5
reverse8 2.7123.8 9.1 14.8 2.8 21.7

e. Inline vs. Procedural Abstraction
Inline Proc. Call

ProgramSpaceTimeSpace Time
crt1x3 2.5 5.1 2.5 6.0
crt2x3 4.5 12.5 2.8 7.3
crt3x3 6.4 22.6 3.1 8.6
crt4x3 8.1 38.6 3.3 9.9
crt8x3 17.3133.4 4.0 15.6

Procedure reverse8 reverses the same list 8 times. The cost of its analysis indicates
that our approach, as well as [19], profits from being able to reuse the summary of
reverse, while [34] cannot.

In addition, we examined whether our analysis benefits from reuse of procedure
summaries. Tab. 4.e shows the cost of the analysis of programs that allocate several
lists. Program crtYx3 allocates Y lists. The table compares the cost of the analysis of
programs that allocate a list by invoking create3 (right column) to that of programs
that inline create3’s body. The results are encouraging as they indicate (at least in
these simple examples) that our analysis benefits from procedural abstraction.

Interprocedural Shape Analysis for Cutpoint-Free Programs 299

5 Related Work

Interprocedural shape analysis has been studied in [34, 19, 7, 33, 15].
[34] explicitly represents the runtime stack and abstracts it as a linked-list. In this

approach, the entire heap, and the runtime stack are represented at every program point.
As a result, the abstraction may lose information about properties of the heap, for parts
of the heap that cannot be affected by the procedure at all.

[19] considers procedures as transformers from the (entire) heap before the call, to
the (entire) heap after the call. Irrelevant objects are summarized into a single summary
node. Relevant objects are summarized using a two-store vocabulary. One vocabulary
records the current properties of the object. The other vocabulary encodes the proper-
ties that the object had when the procedure was invoked. The latter vocabulary allows
to match objects at the call-site and at the exit-site. Note that this scheme never sum-
marizes together objects that were not summarized together when the procedure was
invoked. For cutpoint-free programs, these may lead to needlessly large summaries.
Consider for example a procedure that operates on several lists and nondeterministi-
cally replaces elements between the list tails. The method of [19] will not summarize
list elements that originated from different input lists. Thus, it will generate exponen-
tially more mappings in the procedure summary, than the ones produced by our method.

[33] presents a heap-modular interprocedural shape-analysis for programs manipu-
lating singly linked lists (without implementation). The algorithm explicitly records cut-
point objects in the local heap, and may become imprecise when there is more than one
cutpoint. Our algorithm can be seen as a specialization of [33] for handling cutpoint-
free programs and as its generalization for handling trees and sorting programs. In ad-
dition, because we restricted our attention to cutpoint-free programs, our semantics and
analysis are much simpler than the ones in [33].

[15] exploits a staged analysis to obtain a relatively scalable interprocedural shape
analysis. This approach uses a scalable imprecise pointer-analysis to decompose the
heap into a collection of independent locations. The precision of this approach might be
limited as it relies on pointer-expressions appearing in the program’s text. Its tabulation
operates on global heaps, potentially leading to a low reuse of procedure summaries.

For the special case of singly-linked lists, another approach for modular shape anal-
ysis is presented in [7] without an implementation. The main idea there is to record
for every object both its current properties and the properties it had at that time the
procedure was invoked.

A heap modular interprocedural may-alias analysis is given in [12]. The key obser-
vation there is that a procedure operates uniformly on all aliasing relationships involving
variables of pending calls. This method applies to programs with cutpoints. However,
the lack of must-alias information may lead to a loss of precision in the analysis of de-
structive updates. For more details on the relation between [12] and local-heap shape
analysis see [32, Sec. 5.1].

Local reasoning [18, 31] provides a way of proving properties of a procedure inde-
pendent of its calling contexts by using the “frame rule”. In some sense, the approach
used in this paper is in the spirit of local reasoning. Our semantics resembles the frame
rule in the sense that the effect of a procedure call on a large heap can be obtained from
its effect on a subheap. Local reasoning allows for an arbitrary partitioning of the heap

300 N. Rinetzky, M. Sagiv, and E. Yahav

based on user-supplied specifications. In contrast, in our work, the partitioning of the
heap is built into the concrete semantics, and abstract interpretation is used to establish
properties in the absence of user-supplied specifications.

Another relevant body of work is that concerning encapsulation (also known as
confinement or ownership) [1,3,4,5,8,9,14,17,21,25,28]. These works allow modular
reasoning about heap-manipulating (object-oriented) programs. The common aspect of
these works, as described in [27], is that they all place various restrictions on the sharing
in the heap while pointers from the stack are generally left unrestricted. In our work,
the semantics allows for arbitrary heap sharing within the same procedure, but restricts
both the heap sharing and the stack sharing across procedure calls.

6 Conclusions and Future Work

In this paper, we presented an interprocedural shape analysis for cutpoint-free programs.
Our analysis is modular in the heap and thus allows reusing the effect of a procedure at
different calling contexts. In the future, we plan to utilize liveness analysis to automati-
cally remove false cutpoints.

Acknowledgments. We are grateful for the helpful comments of N. Dor, S. Fink,
T. Lev-Ami, R. Manevich, R. Shaham, G. Yorsh, and the anonymous referees.

References

1. P. S. Almeida. Balloon types: Controlling sharing of state in data types. In European Con-
ference on Object-Oriented Programming (ESOP), 1997.

2. T. Ball and S.K. Rajamani. Bebop: A path-sensitive interprocedural dataflow engine. In
Workshop on Program Analysis for Software Tools and Engineering (PASTE), 2001.

3. A. Banerjee and D. A. Naumann. Representation independence, confinement, and access
control. In Symp. on Princ. of Prog. Lang. (POPL), 2002.

4. B. Bokowski and J. Vitek. Confined types. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), 1999.

5. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In Symp.
on Princ. of Prog. Lang. (POPL), 2003.

6. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Conf. on
Prog. Lang. Design and Impl. (PLDI), 1990.

7. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data structures. In
International Static Analysis Symposium (SAS), 2003.

8. D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment. In Euro-
pean Conference on Object-Oriented Programming (ESOP), 2001.

9. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), 1998.

10. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts, (IFIP WG 2.2, St.
Andrews, Canada, August 1977), pages 237–277. North-Holland, 1978.

11. M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in polynomial
time. In Conf. on Prog. Lang. Design and Impl. (PLDI), 2002.

Interprocedural Shape Analysis for Cutpoint-Free Programs 301

12. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In Conf. on
Prog. Lang. Design and Impl. (PLDI), 1994.

13. N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In International Static
Analysis Symposium (SAS), 2000.

14. C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types. In Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
2001.

15. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In Symp. on
Princ. of Prog. Lang. (POPL), 2005.

16. C. A. R. Hoare. Algorithm 64: Quicksort. Comm. of the ACM (CACM), 4(7):321, 1961.
17. J. Hogg. Islands: Aliasing protection in object-oriented languages. In Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA), 1991.
18. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In

Symp. on Princ. of Prog. Lang. (POPL), 2001.
19. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural

shape analysis. In International Static Analysis Symposium (SAS), 2004.
20. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Int. Conf. on Comp.

Construct. (CC), 1992.
21. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and check

side effects. In Conf. on Prog. Lang. Design and Impl. (PLDI), 2002.
22. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifica-

tion: A case study. In Int. Symp. on Software Testing and Analysis (ISSTA), 2000.
23. T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static analysis. In Interna-

tional Static Analysis Symposium (SAS), 2000. Available at http://www.math.tau.ac.il/∼ tvla.
24. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.

In International Static Analysis Symposium (SAS), 2004.
25. P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency con-

trol. Technical Report 279, Fernuniversität Hagen, 2001.
26. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
27. J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a model of encap-

sulation. In The First International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (IWACO), 2003.

28. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In European Conference on Object-
Oriented Programming (ESOP), 1998.

29. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reach-
ability. In Symp. on Princ. of Prog. Lang. (POPL), 1995.

30. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.
In European Symposium on Programming Languages (ESOP), 2003.

31. J. Reynolds. Separation logic: a logic for shared mutable data structures. In Symp. on Logic
in Computer Science (LICS), 2002.

32. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure
local heaps and its abstractions. Tech. Rep. 1, AVACS, September 2004. Available at
“http://www.avacs.org”.

33. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure local
heaps and its abstractions. In Symp. on Princ. of Prog. Lang. (POPL), 2005.

34. N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs. In Int.
Conf. on Comp. Construct. (CC), 2001.

35. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. Tech. Rep. 104/05, Tel Aviv Uni., April 2005. Available at
“http://www.math.tau.ac.il/∼maon”.

302 N. Rinetzky, M. Sagiv, and E. Yahav

36. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst. (TOPLAS), 24(3):217–298, 2002.

37. R. Shaham, E. Yahav, E.K. Kolodner, and M. Sagiv. Establishing local temporal heap safety
properties with applications to compile-time memory management. In International Static
Analysis Symposium (SAS), 2003.

38. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Much-
nick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

	Introduction
	Main Results
	Motivating Example
	Local Heaps, Relevant Objects, Cutpoints, and Cutpoint-Freedom
	Outline

	Concrete Semantics
	Concrete Memory States
	Inference Rules

	Abstract Semantics
	Abstract Memory States
	Inference Rules
	Interprocedural Functional Analysis via Tabulation of Abstract Local Heaps

	Prototype Implementation
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

