
Finding Basic Block and Variable Correspondence

Iman Narasamdya and Andrei Voronkov

University of Manchester
{in, voronkov}@cs.man.ac.uk

Abstract. Having in mind the ultimate goal of translation validation for opti-
mizing compilers, we propose a new algorithm for solving the problem of find-
ing basic block and variable correspondence between two (low-level) programs
generated by a compiler from the same source using different optimizations. The
essence of our technique is interpretation of the two programs on random inputs
and comparing the histories of value changes for variables. We describe an ar-
chitecture of a system for finding basic block and variable correspondence and
provide experimental evidence of its usefulness.

1 Introduction

Verifying the optimizing phase of a compiler has become crucial as developers have
been relying on this phase to produce high performance code. However, proving the
correctness of the optimizing phase is infeasible due to its size, its sophisticated algo-
rithms and data structures, as well as ongoing evolution and modification. Translation
validation [7] is an alternative but feasible approach to compiler correctness, which
can be applied to the optimizing phase [6,10,8]. The idea of translation validation is as
follows: instead of proving the correctness of the optimizing phase for every possible
program, prove for a single program that the program and its optimized version are
semantically equivalent.

In this paper we take the following view of translation validation. We have two
programs P and P ′, and each of them is a result of compiling the same source program,
but unlike P , the compilation of P ′ involves the optimizing phase. Both programs are
written in the same intermediate language. We call the program P the original program,
and the program P ′ the optimized program.

Knowing that a variable in P corresponds to a variable in P ′ gives us a valuable
information that can be used to prove the equivalence of P and P ′ automatically. In-
tuitively, a variable x1 in the original programs corresponds to a variable x2 in the
optimized program if they have the same values at some control blocks for all possible
runs of the two programs on the same input values. We shall formulate the right notion
of correspondence in a formal way later.

In this paper block is a sequence of instructions that is always entered at the be-
ginning and exited at the end. With this definition, we consider a program point as a
block consisting of one instruction. A block is called a basic block if the sequence of
instructions is maximal.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 251–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 I. Narasamdya and A. Voronkov

Consider the following simple programs:

P :
w1 := n;
while w1 > 0 do

w2 := w1 − 1;
w1 := w2 − 1;
call f(w1)

od

P ′ :
x1 := n;
while x1 > 0 do

x1 := x1 − 2;
call f(x1)

od

In these programs n is an argument and w1, w2, x1 are local variables. Suppose that
the function f does not have any side effect. If we can establish that the variable w1 in
P corresponds to the variable x1 in P ′, then we can verify that the two programs are
equivalent without generating loop invariants. Indeed, using this information we can
check that the two programs will perform the same sequence of calls of f(. . .) by the
following kind of reasoning. First, the values of w1 and x1 coincide at the entries of the
two loops. Second, if they coincide at some iteration of the loops, they also coincide
at the next iteration. Third, if they coincide at some iteration of the loops, the function
f will be called with the same arguments in both programs. Finally, if the loop exit
condition w1 ≤ 0 is satisfied in P , the loop exit condition x1 ≤ 0 is also satisfied in P ′.

Note that this reasoning also proves that w1 in P and x1 in P ′ correspond to each
other. However, before performing this reasoning we must in some way guess that w1

in the original program corresponds to x1 in the optimized program. Moreover, we also
have to establish some correspondence between control blocks in the two programs:
blocks in which the corresponding variables always have the same values. This paper
deals with “guessing” a basic block and variable correspondence. We do not yet con-
sider the VC generation from a given correspondence or proving the VCs.

By only knowing that one program is an optimized version of the other, it is not triv-
ial to construct automatically a basic block and variable correspondence. Optimizations
can change the structure of a program, for instance, while-do loops are transformed to
do-while loops to be able to move loop invariants. Optimizations might also include
eliminating existing branches and introducing new branches to the program. In this pa-
per we do not try to address any reordering transformation, that is any transformation
that changes the order of execution of code, without adding or deleting any executions
of any statement [5].

This paper proposes a new technique in constructing a basic block and variable
correspondence between P and P ′. The idea of this new technique is to execute P
and P ′ separately with the same initial store, also called a memory state here. The
values stored in the memory are generated randomly upon demand. For example, when
a program accesses an uninitialized memory location, we can create a new piece of
memory and fill it with a random value. Furthermore, while executing the programs,
the values assigned to each variable and the blocks in which these assignments occur
are recorded. If the sequences of value changes of two variables are the same, then the
variables probably correspond to each other, and the block in which the changes occur
might also correspond to each other.

The problem of finding a basic block and variable correspondence between P and
P ′ is a hard problem. No single technique is able to cover all possible optimizations

Finding Basic Block and Variable Correspondence 253

applied to the source program. The emphasis of our work here is to develop a cheap
technique that could help to find a basic block and variable correspondence. This cor-
respondence in turn can help us generate a verification condition which is sufficient to
prove the equivalence of P and P ′. Our technique is considerably cheap for the follow-
ing reasons. First, our technique amounts to building an interpreter to perform program
executions. As the language in which P and P ′ are written is usually simple, the in-
terpreter is easy to develop. Moreover, it does not take a sophisticated algorithm to
determine the sameness of value changes between two records. Another advantage of
our new technique is that it needs only the code of the original and the optimized pro-
grams but no further information from the optimizing phase. Therefore, it can be applied
to verify the optimizing phase of different compilers without instrumenting them any
further.

The remainder of this paper is organized as follows. Section 2 gives an overview
of some recent existing techniques in constructing basic block and variable correspon-
dences. Section 3 states formally the problem of finding basic block and variable corre-
spondence. In Section 4 the idea of the new technique is discussed. Afterwards, in Sec-
tion 5, we discuss the syntax and semantics of an intermediate language used throughout
this paper . Section 6 discusses a randomized interpreter used to evaluate programs writ-
ten in the intermediate language. Finally, section 7 describes some experimental results.
An extended version of this paper is available at http://www.cs.man.ac.uk/
˜voronkov/sas fullpaper.ps.

2 Related Work

One technique related to translation validation is Necula’s technique [6]. In this tech-
nique, each of the original and the optimized programs is firstly evaluated symbolically
into a series of mutually recursive function definitions. A basic block and variable cor-
respondence is inferred by a scanning algorithm that traverses the function definitions.
For example, when the scanning algorithm visits a branch condition e in the original
program, it determines whether e is eliminated due to the optimizations. If it is elimi-
nated, then the information collected is either e = 0 or ¬e = 0, depending on which
branch of e is preserved in the optimized program. If e is not eliminated, then it cor-
responds to another branch condition e′ in the optimized program. The information
collected is either e = e′ or e = ¬e′, depending on the correspondence of e’s and
e′’s branches. This shows that, besides symbolic evaluation, Necula’s technique has to
solve some equalities to determine which branches are eliminated and also to determine
the correspondence between branches in the two programs. Moreover, to find a basic
block correspondence Necula’s technique uses some heuristics which are specific to the
GNU C compiler. This limits the applicability of Necula’s technique to verifying other
compilers.

Another translation validation technique is VOC [11]. We overview VOC for struc-
ture preserving transformations only. Such transformations admit a mapping between
some program points in P and P ′. In VOC a basic block and variable correspondence
is represented by a mapping from some blocks in P ′ to some blocks in P , and also by
a data abstraction. The domain and range of the block mapping form sets of control

http://www.cs.man.ac.uk/~voronkov/sas_fullpaper.ps
http://www.cs.man.ac.uk/~voronkov/sas_fullpaper.ps

254 I. Narasamdya and A. Voronkov

blocks. VOC chooses the first block of each loop body as a control block. The data
abstraction is constructed as follows. For each block Bi in P ′, and for every path from
block Bj leading to Bi, a set of equalities v = V is computed, where v and V are vari-
ables in P and P ′ respectively. The equalities are implied by invariants reaching Bj ,
transition system representing the path from Bj to Bi and its counterpart in P , and the
current constructed data abstraction. This requires the implementation of VOC to use a
prover to generate a data abstraction. Moreover, an implementation of VOC for Intel’s
ORC compiler, VOC-64, tries the variable equalities for every pair of variables except
for the temporaries introduced by the compiler. This trial is performed by scanning the
symbol table produced by the compiler [2]. However, not every compiler provides the
symbol table as a result of compilation, thus this limits the applicability of VOC-64.

A quite recent translation validation technique is Rival’s technique [9]. The tech-
nique provides a unifying framework for the certification of compilation and of com-
piled programs. Similarly to Necula’s technique, the framework is based on a symbolic
representation of the semantics of the programs. Rival’s technique extracts basic block
and variable correspondence from the standard debugging information if no optimiza-
tions are applied. However, when some optimizations are involved in the compilation,
the optimizing phase has to be instrumented further to debug the optimized code and
generate the correspondence between the original and the optimized programs. One
technique to automatically generate such a correspondence is due to Jaramillo et. al [4].
In this technique, the optimized programs initially starts as an identical copy of the orig-
inal one, so that the mapping starts as an identity. As each transformation is applied, the
mapping is changed to reflect the effects of the transformation. Thus, in this technique,
one needs to know what and in which order the transformations are applied by the
optimizing phase.

3 Basic Block and Variable Correspondence

In this section we formalize the problem we are trying to solve. We will only be dealing
with programs divided into blocks. A concrete notion of program will be defined later
in Section 5. We assume that every program defines a transition relation with two kinds
of transition: (i) transitions (β1, σ1) → (β2, σ2); (ii) transitions (β1, σ1) → σ2, where
β1, β2 are blocks and σ1, σ2 are stores. Intuitively, the second kind of transition brings
the program to a terminal state. The run of such a program is either an infinite sequence
(β0, σ0), (β1, σ1), . . . or a finite sequence (β0, σ0), (β1, σ1), . . . , (βn, σn), σn+1. Here
β0, β1, . . . is the sequence of blocks visited in this run and σi is the store when the run
reaches βi.

Let b̄ be a sequence of distinct blocks in P and R be a run. Denote by R|b̄ the
subsequence of R consisting of the blocks occurring in b̄.

Let P and P ′ be two programs, b̄ = b1, . . . , bk be a sequence of distinct blocks in P
and b̄′ = b′1, . . . , b

′
k be a sequence of distinct blocks in P ′ of the same length. Let also

x̄ = x1, . . . , xm be a sequence of variables1 in P and x̄′ = x′
1, . . . , x

′
m be a sequence

of variables in P ′, also of the same length. In the sequel we will refer to b̄ and b̄′ as
control blocks and to x̄ and x̄′ as control variables.

1 For simplicity, we consider variables as memory locations.

Finding Basic Block and Variable Correspondence 255

We say that there is a block and variable correspondence between (b̄; x̄) and (b̄′; x̄′)
if, for every pair of runs R = (β0, σ0), (β1, σ1), . . . and R′ = (β′

0, σ
′
0), (β

′
1, σ

′
1), . . . of

the programs P and P ′, respectively, on the same inputs and the same initial store, (that
is, β0 = β′

0 and σ0 = σ′
0) the following conditions hold. Let

R|b̄ = (βi0 , σi0), (βi1 , σi1), . . . R′|b̄′ = (β′
j0

, σ′
j0

), (β′
j1

, σ′
j1

), . . .

Then R|b̄ and R′|b̄′ have the same length and for every non-negative integer n the
following conditions hold:

1. βin = b� if and only if β′
jn

= b′�, for all �;
2. σin(x1) = σ′

jn
(x1), . . . , σin(xm) = σ′

jn
(xm);

3. σin+1(x1) = σ′
jn+1

(x1), . . . , σin+1(xm) = σ′
jn+1(xm).

That is, in R and R′ the control blocks are visited in the same order, and the values of
the control variables at the entries and exits of the visited control blocks are the same.

Our main goal is to find, in a fully automatic way, a correspondence between pro-
gram points and variables of P and P ′. Note that we always have a correspondence
when b̄ is an empty sequence. Likewise, we always have a correspondence when x̄ is
an empty sequence. As a consequence, there is no largest correspondence. However,
we are interested in correspondences in which b̄ is “as large as possible”, and similarly
for x̄.

The definition of basic block and variable correspondence above allows us to trade
variable correspondence for block correspondence and vice versa. Consider the follow-
ing programs with n as their arguments:

Program P :
b0 : if n ≤ 0 then

b2 : x1 := n
x2 := 0

else
b3 : x1 := n

x2 := 1
b4 : x1 := n

x3 := x2

Program P ′:
b′0 : if n > 0 then

b′2 : x′
2 := 1

else
b′3 : x′

2 := 0
b′4 : x′

1 := n
x′

3 := x′
2

The program P ′ can be obtained by applying dead code elimination to P . If we can
establish that x1, x2, and x3 in P correspond to their primed counterparts in P ′, we
could only construct a block correspondence between b0 and b′0, and also between b4

and b′4. The block b2 does not correspond to the block b′3 since the values of x1 and
x′

1 after executing these blocks are different. When we sacrifice the correspondence
between x1 and x′

1, we obtain a larger block correspondence, that is between b2 and b′3,
and also between b3 and b′2. The resulting block correspondence is crucial if we have to
establish a branch correspondence.

We can introduce variations on the basic block and variable correspondence prob-
lem. For example, if a variable is initialized inside a block, we can restrict the definition
to its value at the block exit only. We can change the definition so that a single block
in one of the programs will correspond to several blocks in another program. This will
help us to cope with such optimizations as loop invariant hoisting. Likewise, we can

256 I. Narasamdya and A. Voronkov

consider the single static assignment (or SSA) [1] form of programs in which a variable
may change its value only inside a single basic block. The technique we discuss in this
paper is equally applicable to these modifications.

4 Random Interpretation

In this section we introduce the technique of random interpretation that allows one
to address the block and variable correspondence problem. The idea of the technique
is to evaluate both the original program and its optimized version separately with the
same initial randomly generated memory state. A memory state can be thought of as
a function mapping memory locations to the content of the memory at these locations.
While evaluating each program, we record the values assigned to each variable and the
program points at which the assignments occur. This record forms a history of values
assigned to a variable. Let us define the notion of history formally.

As usual, we say that a block b defines a variable x if b contains an assignment to
x. Consider a run R of a program P and let x be a variable occurring in P . Let b̄ be the
set of all blocks in P defining x and R|b̄ = (β0, σ0), (β1, σ1), Then β0, β1, . . . are
the only blocks in this run which may change the value of x. We call the history of x in
R the sequence of pairs

(v0, β0), (v1, β1), . . . (1)

where each vi is the value of x at the exit of βi. Now, given the history hx of x in R of
the form (1) we call the value change sequence of x in R any subsequence of (1)

(vj0 , βj0), (vj1 , βj1), . . .

that can be obtained from (1) by repeated applications of the following transformation:
if the sequence contains two consecutive pairs with the same value:

. . . , (v, βi), (v, βi+1), . . . ,

then remove either (v, βi) or (v, βi+1) from it. This transformation is applied until there
are no such pairs.

Let h = (v0, β0), . . . and h′ = (v′0, β
′
0), . . . be two sequences of value changes. We

write h � h′ if the sequence of values v0, v1, . . . is a prefix of v′0, v
′
1, In other words,

the length of h is smaller than or equal to the length of h′ and for all k such that (vk, βk)
occur in h we have vk = v′k. We write h � �h′ if h � h′ and h′ � h. We will use the same
notation for histories. Let h and h′ be two histories. Then we write h � h′ if the relation
� holds on the sequences of value changes corresponding to h and h′, and similar for
�� in place of �. For example if the history of a variable x in a run R is

h = (1, b1), (2, b2), (2, b′2), (3, b3), (4, b4), (5, b5),

then there are two value change sequences of x in R:

h1 = (1, b1), (2, b2), (3, b3), (4, b4), (5, b5) and
h2 = (1, b1), (2, b′2), (3, b3), (4, b4), (5, b5).

Finding Basic Block and Variable Correspondence 257

Obviously h � �h1 and h � �h2 (the relation �� always holds between a history and the
value change sequence obtained from this history).

Consider another example. Assume that the histories of variables x and x′ in runs
of P and x′ in P ′ with the same initial store are, respectively

h = (1, b1), (2, b2), (3, b3), (4, b4), (5, b5), and
h′ = (1, b′1), (2, b′2,1), (2, b′2,2), (3, b′3), (4, b′4), (5, b′5).

Then we have h � �h′. This suggests that there may be a correspondence between
(b1, b2, b3, b4, b5; x) and (b′1, b

′
2,1, b

′
3, b

′
4, b

′
5; x

′) and also between (b1, b2, b3, b4, b5; x)
and (b′1, b′2,2, b

′
3, b

′
4, b

′
5; x′).

We are going to use the notions of history and sequence of value changes in trans-
lation validation as follows:

1. Run an interpreter several times on P and P ′ on a randomly generated store, record
histories of variables and guess a block and variable correspondence using the cor-
responding histories.

2. Prove that the guessed correspondence is, indeed, a correspondence;
3. Using this correspondence, prove the equivalence of P and P ′.

This paper is only concerned with the first part of this process. Note that in the first part
we only guess a correspondence, verification of this correspondence is not described
here. Since we only guess a correspondence, we will refer to it in the sequel as a guessed
correspondence.

On interpreting a program, if the content of a memory location is used without any
prior initialization, then that memory location is initialized with a random value. This
is the reason for calling this technique random interpretation. Moreover, since there is
no guarantee that random interpretation terminates, we abort it after some number of
steps.

We guess a correspondence by making several runs of the two programs and mem-
orizing histories of variables. These histories are then compared using the relation ��
for terminated runs and � for aborted ones.

Of course, after guessing a correspondence the verification may fail, after which
we can try to guess another correspondence. We think that our technique can nicely
complement other existing techniques for the following reasons.

(i) The notion of correspondence (as formalized here, or similar notions) seems
to be fundamental in all approaches to translation validation. If one wants to im-
plement a validating compiler, then the compiler should produce a correspondence.
However, translation validation of third-party compilers requires some way of find-
ing a correspondence. (ii) Our technique for guessing a correspondence does not
use symbolic evaluation or proofs and is, therefore, cheap. Moreover, the space
of all possible correspondences is huge, while our techique normally guesses a
reasonably-sized correspondence after a small number of runs. (iii) Other tech-
niques can be combined with ours. For example, if each of the two programs con-
tains a single copy of a call of the same function, we can require that every corre-
spondence includes the blocks with the function calls. In general, one can combine
random interpretation with a symbolic interpretation.

258 I. Narasamdya and A. Voronkov

One can argue that the relationship between histories of variables and correspon-
dences is loose. For example, one might argue that the same variable in the optimized
program may correspond to several variables in the original one. To tackle this problem,
the original program P and the optimized program P ′ are transformed into their SSA
forms prior to interpreting them. In SSA form a block in which a variable can changes
its value is uniquely identified by this variable, therefore the notion of correspondence
can be simplified by using only sequences of variables. Moreover, in SSA form, instead
of using value change sequences, we can simply consider the histories of variables to
guess a variable correspondence.

5 The Intermediate Language IL and the Memory Model

The Syntax of IL. The original program and its optimized version are written in the
same low-level intermediate language, which is subsequently called IL. This section
discussed the syntax and semantics of this language.

Figure 1 describes the syntax of IL. Instructions consist of move instruction, jump
instruction, conditional jump instruction, and return instruction. Every instruction has
a unique label l1, and all of them but jump have the label l2 of the next instruction.
We sometimes denote an instruction by its label. At this early stage, the IL language
does not include function calls. Expressions in the IL language are of the following
forms: integer constant, register2, global variable, escaping memory location3, binary
arithmetic operation, and relational operation.

The Chunk Memory Model. Hitherto, a memory has usually been modelled as an
infinitely long array. In this model its is assumed that memory locations for global
variables do not overlap with each other and with other memory locations. Similarly to
memory locations for registers. Moreover, each stack frame is represented by a finite
sub-array of the infinitely long array.

To prove program equivalences, we sometimes have to provide evidence that up-
dating a variable does not change the values of other variables. For instance, updating
a global variable does not affect the values of other global variables, that is two global
variables g1 and g2 never refer to the same memory location. In the IL language global
variables g1 and g2 are written as [g1] and [g2], where g1 and g2 are memory addresses.
In the above memory model, to provide evidence that the memory locations do not
overlap, we have to show that there exist integers g1 and g2 such that for every integer
n, g1 + n �= g2. This statement is obviously false.

In this section a new memory model is proposed. One may think of this model as
corresponding to the memory model of C. The model describes a memory as a col-
lection of chunks. A chunk is a finite, contiguously allocated set of objects. In this
memory model a register can be considered as a chunk of size one. Thus, there is no
difference between registers and ordinary memory pieces. The values stored in chunks
can either be constants or references to some chunks. Furthermore, in this paper we

2 In this paper the notions of register and temporary are used interchangeably.
3 An escaping memory location is a memory location whose address can be taken.

Finding Basic Block and Variable Correspondence 259

Instruction i ::= l1 : mi l2 | l1 : jump(o) | l1 : cjump(rel, l) l2
| l1 : ret

Move Instruction mi ::= lval ← e
Left Value lval ::= r | [a]
Return ret ::= return | return r
Expression e ::= o | rel
Relational Operation rel ::= o1 rel o2

Relational Operator rop ::= >|≥|<|≤|=|�=| . . .
Arithmetic Operation arith ::= o1 bop o2

Arithmetic Operator bop ::= + | − | ∗ | / | . . .
Operand o ::= n | r | g | [a] | arith
Address a ::= r | g | a + ao | ao + a | a− ao
Address Offset ao ::= r | n | ao1 bop ao2

Integer Constant n ::= Z
Register r ::= r1 | r2 | . . .
Global Name g ::= 〈identifiers〉
Label l ::= N

Fig. 1. The intermediate Language IL

b0

r0 ← [FP + 8]
r17 ← r0
r17 = 0

b1

return 0

b2

r0 ← [r0 + 4]
r17 ← r0
r17 �= 0

f

t f
t

Fig. 2. The linked list traversal program of Exam-
ple 1

cFP csf

r �
r + 8

· · ·

· · ·

· · ·

r1

r2

r3

r1 + 4

r2 + 4

�

�

�· · ·

c1

c2

Fig. 3. The chunk-based mem-
ory after interpreting the pro-
gram in Figure 2

focus on intra-procedural optimizations, and thus there is one chunk dedicated to rep-
resenting the current stack frame. Memory locations on this particular chunk are often
called stack memory locations. The new memory model is called the chunk memory
model. This model can be used to provide evidence that some variables never refer to
the same location. For example, such information can be provided by a language stan-
dard (pointers to two incompatible types cannot coincide, memory allocation operator
always returns a new piece of memory etc.).

Example 1. Consider the program in Figure 2. Here, FP denotes the frame pointer. In a
higher-level language the program can be viewed as a program that walks over a linked
list. With this understanding, the memory selection [r0 + 4] denotes the next element
of a node in the linked list.

260 I. Narasamdya and A. Voronkov

The memory after interpreting the program is depicted in Figure 3. The chunk cFP
represents the frame pointer, and the chunk csf is the one dedicated to representing the
current stack frame. The length of the chained chunks depends on

– the random initial value r1 assigned to the chunk csf at the address r + 8, where
r is the random initial value for the frame pointer FP and r1 is a reference to the
chunk c1; and

– the random initial value ri+1 assigned to the chunk ci at address ri +4, where ri+1

is a reference to the chunk ci+1, for i > 1.

Formal Semantics of IL. First we introduce a notion of values. Evaluation of an
expression results in a value, which can either be an integer constant or a reference to a
chunk. The following definition describes values formally:

Value v ::= n | ref ; Reference ref ::= (c, n); Chunk c ::= c1 | c2 | . . .

A reference is a pair (c, n), where c denotes the chunk to which the reference points
and n denotes an index of the chunk. References are considered as memory location.

To describe the semantics, we introduce two operations on memory states. Denote
by M , R, and V the sets of all memory states, references, and values, respectively. The
functions

sel : M ×R→ V and upd : M ×R× V →M

access (respectively, update) memory states. The value sel(m, r) is the content of the
memory state m at the address r, where r is a reference. The memory state upd(m, r, v)
is obtained from the memory state m by updating m at the address r with the value v.

To define the dynamic semantics of IL, we consider registers and names of global
variables as references (c, 0) for some chunk c. The association between them and such
references is formalized using the notion of static environment. The environment con-
sists of two partial injective functions: Envn, which maps names of global variables
and registers to references; and Env l, which maps integers to instructions.

The dynamic semantics of IL is specified in terms of operational semantics given
by a simultaneous inductive definition of the following relations:

Instruction interpretation : (m, i) �→ (m′, i′);
Expression interpretation : (m, e) �→ v.

The instruction interpretation (m, i) �→ (m′, i′) means the following: interpreting the
instruction i with the memory state m yields a new memory state m′, and the inter-
pretation is followed by interpreting the instruction i′ with the new memory state m′.
Likewise for the expression interpretation, but the evaluation does not change the mem-
ory state.

Due to lack of space, we only show some rules in the inductive definition. First,
memory can only be accessed through references. In Example 1 the evaluation of FP+8
in [FP + 8] must result in a reference. The following rule describes this situations:

(m, a) �→ ref sel(m, ref) = v

(m, [a]) �→ v

Finding Basic Block and Variable Correspondence 261

Arithmetic operations on references are only applied to the index. Adding two refer-
ences and subtracting a reference from a constant do not make any sense. Thus, the
rules describing binary operations have to distinguish the evaluation results of their
operands, for example:

(m, o1) �→ (c, n1) (m, o2) �→ n2

(m, o1 + o2) �→ (c, n1 + n2)
(m, o1) �→ (c, n1) (m, o2) �→ (c, n2)

(m, o1 − o2) �→ n1 − n2

The right-hand side rule above specifies that subtracting a reference from another refer-
ence is allowed as long as both references point to the same chunk.

Rules for instructions can be described similarly. For example, assigning a value to
a register is described by the following rule for move instructions:

Envn(r) = ref (m, e) �→ v Env l(l2) = i

(m, l1 : r← e l2) �→ (upd(m, ref, v), i)

The memory location where the value is stored is obtained by looking up Envn.

6 Randomized Interpreter

This section discussed a randomized interpreter that imitates the work of the interpreter
except that the memory state is generated using random number generator.

The Algorithm of the Randomized Interpreter. Consider again the program in Fig-
ure 2. The content of memory location denoted by FP+ 8 is used but without any prior
initialization, so the value of evaluating [FP + 8] for the first time is not known. To
denote the unknown value resulting from expression evaluation, we extend the set of
values by introducing an undefined value •. Initially, when the randomized interpreter
evaluates a program, every location in the memory state contains •. The behavior of the
randomized interpreter can be defined by extending the semantics of IL to work with
the undefined value. However, the extension is not so straightforward for two reasons.
First, reading a location containing • results in a change of memory since the location
will be filled with a random generated value. Second, IL has no type information, so
the randomized interpreter does not know if the location should be initialized with a
constant or a reference.

The first problem is solved by changing the relation of expression evaluation to
allow updating memory states, that is (m, e) �→r (m′, v). To solve the second problem,
we introduce a new kind of value called conditional value. This kind of value is denoted
by (ref1 ? n : ref2), which means that the definite value is n if the content of ref1

was firstly initialized to a reference, or otherwise ref2. Both n and ref2 are often called
the definite forms of the conditional value. Furthermore, we also introduce a function
rand that generates random pairs (ref, n), where ref is a reference to a new chunk.
The content of a newly created chunk is • everywhere.

A conditional value might become definite at some point during an interpretation.
For example, multiplication can only be applied to integer operands. Thus, in multiply-
ing a conditional value (ref ? n1 : ref1) with an integer n2, the conditional value gets

262 I. Narasamdya and A. Voronkov

definite to the integer n1, and the content of ref is known to be firstly initialized with a
reference. To capture this, we introduce a new operation on memory:

def : M ×R× {0, 1} →M.

The operation def(m, ref, b) returns a new memory state m′ obtained from m by up-
dating with a definite value defv every reference ref ′ in m at which sel(m, ref ′) is
(ref ? defv1 : defv2) for some definite values defv1 and defv2, such that, if b is one,
then defv is equal to defv1, otherwise defv2.

Due to lack of space, we only show some rules describing the algorithm of the
randomized interpreter. Suppose, on evaluating [a] with a memory state m, a evaluates
to a reference va, but the memory selection sel(m, va) yields the undefined value. The
interpreter then generates a random conditional value as described by the following
rule:

(m, a) �→r (m′, refa) sel(m′, refa) = • rand() = (ref, n)
(m, [a]) �→r (upd(m′, refa, (refa ? ref : n)), (refa ? ref : n))

If va is a conditional value, then at least one of its definite forms is a reference, and
in turn, va becomes definite to one of its definite references, as shown in the following
rule:

(m, a) �→r (m′, (ref ′ ? refa : na)) sel(def(m′, ref ′, 1), refa) = v v �= •
(m, [a]) �→r (def(m′, ref ′, 1), v)

In the case that both definite forms are references, the interpreter has to make a ran-
dom choice, which can easily described by non-deterministic rules. For instructions,
the following rule describes the algorithm for interpreting move instructions:

(m, a) �→r (m′, va) (m, e) �→r (m′′, v) (m′′, a) �→r (m′′, ref) Env l(l2) = i

(m, l1 : [a]← e l2) �→r (upd(m′′, ref, v), i)

The address a of [a] above is evaluated twice in order to make the order of interpretation
irrelevant.

Again, due to limited space, we omit the proofs of soundness and completeness of
the interpreter with respect to the IL semantics.

Escaping Memory Locations in SSA. In order to preserve SSA property we have
to ensure that each memory word is written only once. In many compiler textbooks,
memory is considered as a “variable”. We assume to have two new expressions to the
IL syntax, one is store expression for creating a new value (of the entire memory), and
the other is load which is similar to sel but occurs in the syntactic level.

Consider an excerpt of a program below and its SSA form:

r1 ← [r2]⇒ r1 ← load(M0, r2)
[r2]← r1 ⇒M1 ← store(M0, r2, r1)

This SSA form does not conform to the IL semantics. Recall that in the chunk mem-
ory model registers are part of the memory. Thus, the first instruction above updates
memory M0, but the second instruction uses the old M0 as an argument of store.

Finding Basic Block and Variable Correspondence 263

An alternative solution to this problem is to leave the assignment [a]← e intact, but
dynamically create and evaluate a new temporary t and an assignment t← e whenever
the former assignment is evaluated. In detail, for every assignment [a] ← e, suppose a
and e evaluate to ref and v respectively, we create an assignment of v to some chunk.
The chunk is associated with ref and the point where [a]← e occurs.

First, we introduce a new environment Envp which maps pairs of references and
instruction labels (program points) to references. The resulting reference is said to be
associated with the pair of reference and label given as arguments to Envp. The fol-
lowing rule describes formally the above solution to the SSA problem:

(m, a) �→ ref (m, e) �→ v Env l(l′) = i′ Envp(ref, l) = ref ′

m, l1 : [a]← e l2 �→ (upd(upd(m, ref, v), ref ′, v), i′)

Note that, for the sake of clarity, the above rule assumes that we do not deal with any
conditional value.

Introducing a new temporary for every escaping variable yields many histories to
be analyzed. To reduce the number of histories, first we do not record values stored in
memory locations of the current stack frame. These memory locations represent vari-
ables in the program. Since we dynamically create a new temporary every time we write
to a stack memory location, the resulting temporaries are the SSA form of the variables
represented by these memory locations. This condition also holds when a stack memory
location represents more than one variable in the program.

Second, it is not necessary to create a new temporary if the escaping memory lo-
cation is not represented by any stack memory location. That is, for any instruction
l1 : [a] ← e l2 where a evaluates to (c, n) for some index n, but chunk c does not rep-
resent the stack, we do not create a new temporary. Again, for simplicity, the following
definition assumes that we do not deal with any conditional value:

(m, a) �→ ref ref = (csf , n) (m, e) �→ v Env l(l2) = i′ Envp(ref, l1) = ref ′

m, l1 : [a]← e l2 �→ (upd(upd(m, ref, v), ref ′, v), i′)

(m, a) �→ ref ref = (c, n) c �= csf (m, e) �→ v Env l(l2) = i′

m, l1 : [a]← e l2 �→ (upd(m,ref, v), i′)

The chunk csf is the chunk representing the current stack frame.
Third, recall that writing to a memory location like (c, n) above gives rise to a

program’s side-effect. To be equal, the original program P and the optimized program
P ′ must have the same side-effects. That is, for every instruction l1 : [a] ← e l2 in
P there is a corresponding instruction l′1 : [a′] ← e′ l′2 in P ′ such that evaluations
of a and a′ yield the same sequence of references, and also evaluations of e and e′

yield the same sequence of values. For this purpose, we statically add a new instruction
l0 : r ← a l1 before the instruction l1, and a new instruction l′0 : r′ ← a′ l′1 before the
instruction l′1, where r and r′ are new registers. Thus, in order to be equivalent, r and
r′ must correspond to each other. Moreover, having r and r′, we do not have to create
histories for the memory locations referred by a and a′ above. Hence, the number of
histories to be analyzed decreases.

The data produced by the randomized interpreter are then processed by an analyzer.
The analyzer implements an algorithm for examining the value change sequences of all

264 I. Narasamdya and A. Voronkov

variables, and guessing a basic block and variable correspondence. A full description
of the analyzer is given in the extended version of this paper.

7 Experimental Results

This section describes the results of some experiments that have been conducted. The
compiler used in the experiments is the GNU C compiler (GCC) 3.3.3. In every compi-
lation, the compiler is instructed to dump the RTL, which is the intermediate represen-
tation used by the GCC, after performing the machine dependent reorganization. Then,
the RTL dump is translated into the IL language, which in turn is interpreted by the
randomized interpreter.

More precisely, in each experiment, programs are compiled twice, the first compi-
lation is performed without any optimization (O0), and the second one with the (O3)-
level optimization. The latter optimizations typically include constant folding, copy and
constant propagation, dead code and unreachable code elimination, algebraic simpli-
fication, local and global common subexpression elimination followed by jump opti-
mization, partial redundancy elimination, loop invariant hoisting, induction variable
elimination and strength reduction, branch optimization, loop inversion, loop reversal,
and loop unrolling.

For more extensive experiments we ran the randomized interpreter on the source
code of GCC 3.3.3. The interpreter is developed incrementally, and the current im-
plementation only supports 4-byte integer mode. The interpreter at the moment could
interpret 299 functions out of 5, 714 functions which comprise the core of GCC. We
are still developing the interpreter further to make it able to interpret all functions in the
source of GCC. Most of the GCC functions that can be interpreted by the randomized
interpreter are small functions; in average 25 lines of code.

Table 1 shows the result of running the interpreter on the source of GCC. We divide
the table into several columns based on the size of the functions. Information that we
obtain from the experiments is the number of points and variables in the correspon-
dence, the number of visited variables during the interpretations, percentage of code
coverage, visited branches, and time statistics. In the experiments the interpreter is set
to execute at most 10, 000 lines of code.

For small functions whose sizes are less than 10 lines of code, the original and the
optimized versions are almost the same. Table 1 shows that the interpreter could cover
almost all code and visit all branches in these functions. Thus, the analyzer could pro-
duce a high percentage of block correspondence. For functions whose sizes are greater
than 10 but less than 50 lines of code, the interpreter could still cover a large portion
of the functions and also visit most of their branches. The code coverage is important
since more lines of code that can be covered, the clearer the behaviors of the functions
can be described, and the more block correspondence can be produced. Moreover, most
of control variables are those used in the conditional expressions in the branches, so the
more branches are visited the more point correspondence can be produced.

For functions, whose sizes are greater than 50 lines of code, the interpreter has
problem with covering all code in these functions. Table 1 shows that more than 80% of
code is not covered. This causes the percentage of point correspondence small. The code

Finding Basic Block and Variable Correspondence 265

Table 1. The result of running the randomized interpreter and the analyzer on the source of GCC

loc ≤ 10 10 < loc ≤ 25 25 < loc ≤ 50
P P ′ P P ′ P P ′

Blocks in correspondence 83.77% 81.92% 35.05% 29.56% 17.92% 20.43%

Variables in correspondence 91.97% 93.16% 76.55% 73.72% 87.90% 86.04%

Number of visited variables 12.28 10.46 26.2 18.61 19.33 20.4

Code coverage 90.16% 88.82% 50.37% 51.58% 30.71% 24.65%

Visited branches 97.74% 96.62% 72.66% 75.99% 41.21% 43.33%

Interpretation time 0.056s 0.022s 0.170s 0.090s% 0.155s 0.046s

Analysis time 0.110s 0.102s 0.579s 0.617s 1.083s 0.653s

50 < loc ≤ 100 loc > 100
P P ′ P P ′

Blocks in correspondence 11.24% 9.06% 8.06% 6.03%

Variables in correspondence 90.04% 67.01% 95.23% 67.08%

Number of visited variables 19.0 18.5 21.0 20.0

Code coverage 14.61% 15.81% 8.83% 10.67%

Visited branches 23.81% 25.25% 14.34% 17.34%

Interpretation time 0.004s 0.002s 0.004s 0.001s

Analysis time 0.001s 0.002s 0.002s 0.001s

coverage problem has long been known in program testing, that is to produce test cases
that could cover all code in the function. We plan to tackle this problem by interpreting
the function and its optimized version from points that are known to correspond to
each other, and also combining our technique with symbolic interpretation to produce
random inputs that can cover all code in these functions.

8 Discussion and Conclusion

Compared to the technique proposed in other papers, our technique is cheap since it
requires no theorem proving or symbolic evaluation. Moreover, our technique can give
reasonable results even in cases where other techniques do not work. For example, in
the case of the loop reversal optimization our technique can still find correspondence
between variables before and after the loop. But the price to pay is that the guessed
correspondence has to be verified by a theorem prover. In most examples we studied
such a verification was trivial. However, to get a full understanding of the technique,
our system has to be combined with a VC generator and VC checker.

There are also examples when our technique may not be appropriate. For example,
using random values may be inappropriate when one of the branches is “hard” to reach.
Gulwani and Necula [3] propose a very interesting technique, also based on random
inputs, for solving this problem, but it is only applicable to a very special class of
programs. We believe that our technique can be improved both by “correcting” random
values as in [3] and also by mixing symbolic interpretation with the random one.

266 I. Narasamdya and A. Voronkov

The definition of basic block and variable correspondences in Section 3 does not
capture some optimizing transformations. For example, consider the following
programs:

P :
x1 := 0;
do

i := i + 1;
x1 := 1;
x2 := i + x1;

while i < n
x3 := x1;

P ′ :
x1 := 1;
do

i := i + 1;
x2 := i + x1;

while i < n
x3 := x1;

P ′ is obtained by applying loop invariant hoisting and dead code elimination to P . The
loop bodies of the two programs correspond to each other. Moreover, the loop body of
P also corresponds to the assignment x1 := 1 in P ′ since an instance of this assign-
ment is executed many times in P . However, our definition of correspondence does not
capture this case. Indeed, it is hard to give a simple but general formal definition of
basic block and variable correspondence that can capture all existing optimizing trans-
formations. Our definition can be extended further to capture more transformations. For
example, by adding some properties into the definition to allow a block to correspond
to more than one other block in the runs will capture the correspondence of the above
programs. Although our definition of correspondence does not capture the above case,
in the SSA form, the randomized interpreter and the analyzer can produce the corre-
spondence of the loop body of P and the assignment x1 := 1 in P ′.

We are still improving the definition of correspondence. The definition we provide
in this paper is considerably simple and easy-to-understand, but nonetheless captures
the notion of correspondence needed to prove the equivalence of two programs. Partic-
ularly in the above example, without the correspondence of x1, but as long as we can
establish the correspondence of variables i, n, x2, and x3, the equivalence of P and P ′

can easily be proved. Indeed, the randomized interpreter and the analyzer can establish
such a correspondence.

References

1. B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables in programs. In
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages (POPL 1988), pages 1–11, 1988.

2. Yi Fang. Personal communication over emails, 2005.
3. S. Gulwani and G.C. Necula. Global value numbering using random interpretation. In N.D.

Jones and X. Leroy, editors, Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL), pages 342–352. ACM Press, 2004.

4. Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. Capturing the effects of code improving
transformations. In IEEE PACT, pages 118–123, 1998.

5. Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

Finding Basic Block and Variable Correspondence 267

6. George C. Necula. Translation validation for an optimizing compiler. In Proceedings of the
ACM SIGPLAN Conference on Principles of Programming Languages Design and Imple-
mentation (PLDI), pages 83–95, June 2000.

7. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. LNCS, 1384, 1998.
8. Amir Pnueli, Lenore Zuck, Yi Fang, Benjamin Goldberg, and Ying Hu. Translation and

run-time validation of optimized code. ENTCS, 70(4):1–22, 2002.
9. Xavier Rival. Symbolic transfer function-based approaches to certified compilation. In Pro-

ceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 1–13. ACM Press, 2004.

10. Robert van Engelen, David B. Whalley, and Xin Yuan. Automatic validation of code-
improving transformations. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, pages 206–210. Springer-Verlag, 2001.

11. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: A methodology for the translation
validation of optimizing compilers. j-jucs, 9(3):223–247, March 2003.

	Introduction
	Related Work
	Basic Block and Variable Correspondence
	Random Interpretation
	The Intermediate Language IL and the Memory Model
	Randomized Interpreter
	Experimental Results
	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

