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Abstract. We present our experience of combining, in a realistic set-
ting, a static analyzer with a statistical analysis. This combination is
in order to reduce the inevitable false alarms from a domain-unaware
static analyzer. Our analyzer named Airac(Array Index Range Analyzer
for C) collects all the true buffer-overrun points in ANSI C programs.
The soundness is maintained, and the analysis’ cost-accuracy improve-
ment is achieved by techniques that static analysis community has long
accumulated. For still inevitable false alarms (e.g. Airac raised 970 buffer-
overrun alarms in commercial C programs of 5.3 million lines and 737
among the 970 alarms were false), which are always apt for particular
C programs, we use a statistical post analysis. The statistical analysis,
given the analysis results (alarms), sifts out probable false alarms and
prioritizes true alarms. It estimates the probability of each alarm being
true. The probabilities are used in two ways: 1) only the alarms that
have true-alarm probabilities higher than a threshold are reported to the
user; 2) the alarms are sorted by the probability before reporting, so that
the user can check highly probable errors first. In our experiments with
Linux kernel sources, if we set the risk of missing true error is about 3
times greater than false alarming, 74.83% of false alarms could be fil-
tered; only 15.17% of false alarms were mixed up until the user observes
50% of the true alarms.

1 Introduction

When one company’s software quality assurance department started working
with us to build a static analyzer that automatically detect buffer overruns1 in
� This work was supported by Brain Korea 21 Project of Korea Ministry of Education

and Human Resources, by IT Leading R&D Support Project of Korea Ministry of
Information and Communication, by Korea Research Foundation grant KRF-2003-
041-D00528, and by National Security Research Institute.

1 Buffer overruns happen when an index value is out of the target buffer size. They are
common bugs in C programs and are main sources of security vulnerability. From
1/2[2] to 2/3[1] of security holes are due to buffer overruns.
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their C softwares, they challenged us with three goals: they hoped the analyzer
1) to be sound, detecting all possible buffer overruns; 2) to have a reasonable
cost-accuracy balance; and 3) not to assume a particular set of programming
style about the input C programs because they handle a wide spectrum of
C softwares to be embedded in various electronic devices. Building a realistic
C buffer-overrun analyzer that satisfies all the three requirements was a hard
challenge. In the literature, we have seen impressive static analyzers yet their
application targets seem to allow them to drop one of the three requirements
[7,4,13,9]. The major challenge is how to reduce the number of inevitable false
alarms from a realistic, sound static analyzer that cannot assume a particular
style for the input C programs.

In respond to the challenge, we decided to try the following path: design a
sound static analysis whose accuracy is stretched to a point where the analy-
sis cost remains acceptable, then use a statistical post analysis in order to sift
out alarms that are probable to be false. The analyzer named Airac(Array In-
dex Range Analyzer for C) collects all the true buffer-overrun points in ANSI
C programs. The soundness is maintained, and the analysis’ cost-accuracy bal-
ance is stroke with techniques that static analysis community has long accumu-
lated. Now for still inevitable false alarms, which are always apt for particular C
programs, we use a statistical post analysis. The statistical analysis, given the
analysis results (alarms), sifts out some alarms that are probable to be false. It
estimates the probability of each alarm being true. The probabilities are used
in two ways: 1) only the alarms that have true-alarm probabilities higher than
a threshold are reported to the user. The threshold is determined by the user-
provided ratio of the risk of silencing true alarms to that of false alarming. 2)
By sorting the alarms to be reported in descending order, it allows the user to
examine highly probable alarms first.

Airac targets the full set of ANSI C constructs as indexing expressions: from
simple arithmetics to arbitrary expressions involving function calls, pointer arith-
metics, and aliases. Airac handles buffers that are dynamically allocated consec-
utive memory cells of dynamic lengths as well as static arrays. “buffer overrun”
happens when an index value denotes an address outside the target buffer area.
Striking a cost-accuracy balance of Airac is done by the following techniques: for
accuracy improvement we use narrowing after widening, flow-sensitivity, poly-
variance, context pruning (an instance of trace partitioning[11]) and static loop
unrolling. For cost reduction, we used stack obviation (removal of the stack from
our abstract state), selective memory join (point-wise join for abstract memory
is applied only to the changed entries), and wait-at-join (a work-list iteration
does not continue to pass a join point until all threads arrive). For commercial
C programs of 5.3 million LOC, Airac raises 970 buffer-overrun alarms, among
which 233 alarms are true. For some parts of the Linux kernel of 18,760 LOC,
Airac raises 26 alarms, among which 16 are true.

The statistical method aiming to sift out false alarms is designed by the
Bayesian data analysis framework[8], implemented by the Monte Carlo method
[12], and parameterized by a simple decision theory[3]. We define a conditional
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probability formula for an alarm to be true given the set of symptoms observed
for the alarm. This probability formula has parameter probabilities, whose dis-
tributions are determined by Bayesian analysis from the “training set” (or “past
experience knowledge”). The parameter probabilities are obtained by the Monte
Carlo method. The training set, which consists of alarms and their conditional
probabilities of having symptoms given that they are either true or false, is
obtained by running our analyzer for a set of Linux kernel, and textbook C
programs and manually classifying the alarms into either true or false. Having
computed the probability of each alarm being true, we report only the alarms
that have the true-alarm probabilities higher than a threshold. The threshold
is determined by the user-provided ratio of the risk of silencing true alarms to
that of raising false alarms. The ratio, for each alarm, determines the expected
risks of silencing it or alarming it. The action with a smaller risk is chosen. This
statistical engine’s effectiveness is promising. If the user set the risk of missing
true error is 3 times greater than false alarming, then 74.83% of false alarms
could be sifted out. Meanwhile, by ranking the alarms by higher probabilities
and examining from the top, the user encounters only 15.17% of false alarms
until he or she reaches 50% of the true ones.

2 Airac, the Analyzer

Airac is an abstract interpreter. To find out all possible buffer overruns in pro-
grams, Airac considers all states which may occur during programs executions. It
computes a sound approximation of dynamic program states occurring at each
program point and reports possible buffer overruns by examining the approxi-
mate states.

A concrete array block is abstracted as a triple that consists of abstract base
address, offset, and size. Abstract base address is one for each memory allocation
site in C programs. Abstract offset and size are integer intervals. For example,
for the following C code:

int p[5];
int *q = p + 3;
*(q+3) = 1;

The pointer p’s abstract value is 〈l, [0, 0], [5, 5]〉 where name l is the abstract
base address for the declared array. [0, 0] and [5, 5] are respectively the cur-
rent offset and size as intervals. After the pointer arithmetic, q is initialized as
〈l, [3, 3], [5, 5]〉; then the value of q+3 is 〈l, [6, 6], [5, 5]〉 whose offset exceeds its
size, where our analyzer raises a buffer overrun alarm.

2.1 Semantics and Its Abstraction

C program’s collecting semantics is defined as the set of transition sequences
of machine states. A machine state is a tuple of a program point, data stack,
environment, memory, and control stack (dump). A C program’s semantics is the
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least fixed point of the following function that transforms the machine transition
traces:

F : 2Machineω → 2Machineω

F(X) = {m0} ∪ {t ↪→ mn+1 | t let= · · · ↪→ mn ∈ X, mn ↪→ mn+1}
where Machine = Edge × State, the program points Edge = Lab × Lab are the
set of edges between two program labels, and m0 is the initial machine state.
Labels are uniquely assigned to all the expressions and commands of the input
C program.

We approximate the collecting semantics by T ∈ Edge → ̂State that maps
each program point to an abstract state

̂State = ̂Stack × ̂Mem × ̂Dump

The abstract state at each program point approximates all the states occurring
at the point in all the concrete transition sequences. The map is defined as the
least fixed point of the following function:

̂F : (Edge → ̂State) → (Edge → ̂State)
̂F(T ) = λ〈l, l′〉.s where 〈l, ⊔{s′|p ∈ pred(l), T 〈p, l〉 = s′}〉 ↪→# 〈l′, s〉

where pred(l) is the set of predecessors of label l in the transition sequences and
↪→# is an abstraction of the concrete transition relation ↪→.

2.2 Fixpoint Algorithm

The fixpoint algorithm is a chaotic working set algorithm. The working set con-
sists of labels of expressions whose abstract state has to be re-computed. When
a computed machine state for T 〈l, l′〉 is changed, we add l′ to the working set,
to re-compute the states of the edges from l′. The working set is a stack, hence
each abstract transition step follows the program’s execution flow in a depth-first
order of the flow graph. When the next program points to evaluate are multiple
(as when we compute conditional expressions), those two points are grouped to-
gether and pushed as a single unit to the working set stack. This grouping adds
a flavor of breadth-first traversal of the flow graph. The working set algorithm
selectively applies the widening and narrowing operations at the heads of flow
cycles.

2.3 Accuracy Improvement

We use some techniques to improve the analysis accuracy: 1) we use widening and
narrowing for interval domain[5]; 2) we use destructive assignment to achieve flow
sensitive analysis except for within cyclic call chains; 3) we use context pruning
to confine interval values; 4) we use function-inlining for polyvariant analysis;
5) we use static loop unrolling. Though each technique is independent of others,
using all the techniques in combination results in a synergy for improving the
analysis accuracy.
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Table 1. Experiment result of cost reduction techniques

Version Timea(s) Speed-Up Timeb(s) Speed-Up

none 18317.55 0% 16253.18 0%

selective join 16055.58 12.35% 14286.72 12.1%

wait-at-join 19317.67 -5.45% 13153.43 19.98%

stack obviation 3717.06 79.71% 3247.79 81.02%

all 3461.57 81.11% 2320.58 85.73%

a the sum of analysis time for 43 Linux kernel programs.
b same as a except one program that wait-at-join has bad influ-

ence upon work list algorithm.

2.4 Cost Reduction

We used three techniques for cost reduction of Airac. They are stack obviation,
selective join and wait-at-join. From experiment results on parts of the Linux
kernel, we could observe that stack obviation is a very powerful technique for
cost reduction. The wait-at-join technique works well for most programs with
some exceptions.

Stack Obviation. Comparing(�) and joining(�) abstract states, which take
most of the analysis time, involves applying the operations to the abstract stack
component. If the abstract stack component is always reflected in other com-
ponents of the machine states then we can skip applying the operations to the
stack component.

Before analysis begins, Airac transforms the input program to have all stack
variations of each transition be reflected on the memory. For example, conditional
expression

(x > 0) ? 1 : 2

is transformed to

{ var tmp; if (x > 0) tmp = 1; else tmp = 2; tmp; }

Note that the original expression’s branches are to push different values to the
stack component. Hence estimating the final value must join the stack compo-
nents from the branches. On the other hand, for the transformed expression, we
don’t have to consider joining the stack components because the state difference
of the two branches are to be reflected by the memory component because of
the assignments to the temporary variable tmp. This transformation costs only
one more location in the abstract memory, while it avoids scanning the abstract
stack component. This technique reduced our analysis time by 79.71%.

Selective Memory Join. Airac keeps track of information that indicates
changed entries in abstract memory. Join operation is applied only to those
changed values. Comparing with pre-state, Airac reduces size of the information
by removing unchanged entries. This technique, which was also mentioned in [4],
reduced our analysis time by 12.35%.
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Wait-at-Join. For program points where many control-flows join, Airac delays
the computation for current point until all computations for the incoming edges
are done. By this, Airac can reduce redundant computations after the junction
point. However, it is very costly to decide whether all threads have reached
current point or not. So Airac chooses a simple strategy which waits until the
working stack becomes empty. This technique is very effective for C programs
that have a many junction points, e.g., large switch statements. This technique
reduced our analysis time by 19.98% for most programs.

2.5 Airac’s Cost, Accuracy and Scalability

We implemented Airac using nML2 and analyzed various softwares from toy
C programs to serious ones such as GNU softwares, Linux kernel sources and
commercial softwares. All these commercial softwares are embedded softwares3.
Airac found some fatal bugs in these softwares which were under development.
Table 2.5 shows the result of our experiment.

“#Lines” is the number of lines of the C source files before preprocessing
them. “Time” is the user CPU time in seconds. “#Buffers” is the number of
buffers that may be overrun. “#Accesses” is the number of buffer-access expres-
sions that may overrun. “#Real Bugs” is the number of buffer accesses that are
confirmed to be able to cause real overruns. Two graphs in Figure 1 show Airac’s
scalability behavior. X axis is the size (number of lines) of the input program
to analyze and Y axis is the analysis time in seconds. (b) is a microscopic view
of (a)’s lower left corner. Experiment was done on a Linux system with a single
Pentium4 3.2GHz CPU and 4GB of RAM.
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Fig. 1. Airac’s scalability

Airac is scalable enough to analyze real world softwares. Airac can analyze
programs of up to about 10,000 lines at once. GNU softwares such as grep, gzip
and sed were analyzed as a whole. And these analyses took less than an hour to
finish.
2 Korean dialect of ML programming language. http://ropas.snu.ac.kr/n
3 Their real names cannot be disclosed due to the contract.
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Table 2. Analysis speed and accuracy of Airac

Time #Airac Alarms #Real
Software #Lines

(sec) #Buffers #Accesses bugs

GNU S/W tar-1.13 20,258 576.79s 24 66 1
bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

3 Statistical Taming of False Alarms

Reducing the number of false alarms is the key issue in sound analyses. Sound
analyzers that cannot assume a particular style for the input programs can of-
ten have a high false-alarm rate. Controlling the abstraction level of the analysis
will work but not very effectively. It is clear that by using less abstract domains
we can distinguish more concrete values, but practically, relying solely on this
approach will soon hit an unacceptable cost. Furthermore, if the analyzer must
handle unlimited set of input programs, there can always be some programs that
fool the analyzer. User annotation in source codes can be a powerful method [7]
yet is always less desirable than being fully automatic. And, that the analyzer
blindly repair its accuracy based on the annotations makes the approach vulner-
able to annotation bugs. Heuristics can be applied to classify alarms into true
and false ones[10]. However, unless heuristics have a strong basis, we can hardly
be confident with their classifications. Heuristics can be used even during the
analysis itself and may tempt us to give up the soundness and claim that such
sacrifice is inevitable in order to increase the analysis precision. But, if possi-
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ble with a comparable price, it is always better to know all possible bugs than
knowing only some of them.

Without giving up its soundness, Airac handles the inevitable false alarms
by using statistical post analysis built on top of a firm theoretical basis. The
statistical analysis, given the analysis results (alarms), estimates the probability
of each alarm being true. Only the alarms that have true-alarm probabilities
higher than a threshold are reported to the user. Though the statistical analysis
phase still has the risk of sifting out true alarms, it can reduce the risk at the
user’s desire. Because the underlying analyzer is sound, if the user is willing to,
(s)he can receive a report that contain all the real alarms.

3.1 Bayesian Analysis

We use Bayesian statistics[8] to compute the probability of an alarm being true.
Let ⊕ denote the event an alarm raised is true, and let 	 denote it is false.
Si denotes that a single symptom is observed in the raised alarm and S is a
vector of such symptoms. The set of symptoms that we used for Airac will be
presented in 3.4. P (E) denotes the probability of an event E, and P (A | B) is
the conditional probability of A given B. We call the probability P (⊕ | S) of an
alarm being true given its symptoms as the trueness of the alarm.

Bayes’ theorem is used to predict the probability of a new event from prior
knowledge. To set up such knowledge base we classify alarms into true and
false manually and count occurrences of each symptom in true and false alarms
respectively. From this knowledge we are able to compute the trueness of new
alarms using their symptoms. Using Bayes’ theorem, the trueness P (⊕ | S) can
be computed as the following:

P (⊕ | S) =
P (S | ⊕)P (⊕)

P (S)
=

P (S | ⊕)P (⊕)
P (S | ⊕)P (⊕) + P (S | 	)P (	)

.

By assuming each symptom in S occurs independently under each class, we have

P (S | c) =
∏

Si∈S

P (Si | c) where c ∈ {⊕,	}.

Here, P (Si | ⊕) is estimated by ψ̂ using Bayesian analysis of our empirical
data. We assume prior distributions are uniform on [0, 1]. Let p be the estimator
of the ratio P (⊕) of true alarms to all raised alarms. Each P (Si | ⊕) and P (Si |
	) is estimated by θi and ηi respectively. Assuming that each Si are independent
in each class, the posterior distribution of P (⊕ | S) taking our empirical data
into account is established as following:

ψ̂j =
(
∏

Si∈S θi) · p
(
∏

Si∈S θi) · p+ (
∏

Si∈S ηi) · (1 − p)
(1)

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(	, Si) + 1, N(	,¬Si) + 1)
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and N(E) is the number of events E counted from our empirical data. Now the
estimation of p, θi,ηi are done by Monte Carlo method. We randomly generate
pi, θij , ηij values N times from the beta distributions and compute N instances
of ψj . Then the 100(1− 2α)% credible set of ψ̂ is (ψjα·N , ψj(1−α)·N ) where ψj1 <

ψj2 < · · · < ψjN . We take the upper bound ψj(1−α)·N for ψ̂, since the maximal
probability being true is our concern as seen later.

3.2 Sifting Out False Alarms

We can use the estimated trueness for sifting out false alarms systematically.
To decide whether we should sift out an alarm or not, we need a threshold
to compare with the estimated ψ̂ with 100(1 − 2α)% credibility. To choose a
reasonable threshold, the user supplies two parameters defining the magnitude
of risk: rm for missing true alarms and rf for reporting false alarms. Only their
ratio, not their absolute values matter.

⊕ 	
risk of reporting 0 rf

risk of not reporting rm 0

Given an alarm whose trueness is ψ, the expectation of risk when we raise an
alarm is rf · (1 − ψ), and rm · ψ when we don’t. To minimize the risk, we must
choose the smaller side. Hence, the threshold of trueness to report the alarm can
be chosen as:

rm · ψ ≥ rf · (1 − ψ) ⇐⇒ ψ ≥ rf
rm + rf

.

If the trueness of an alarm can be greater than or equal to such threshold, i.e.
if the upper bound of trueness ψ̂ is greater than such threshold, then the alarm
should be raised with 100(1−2α)% credibility. For example, the user can supply
rm = 3, rf = 1 if he or she believes that not alarming for true errors have risk
3 times greater than raising false alarms. Then the threshold for the probability
being true to report becomes 1/4 = 0.25 and whenever the estimated trueness
of an alarm is greater than 0.25, we should report it.

We have done some experiments with our samples of programs and alarms.
Some parts of the Linux kernel and programs that demonstrate classical al-
gorithms were used for the experiment. For a single experiment, samples were
first divided into learning set and testing set. 50% of the alarms were randomly
selected as learning set, and the others for testing set. Each symptom in the
learning set were counted according to whether the alarm was true or false.
With these pre-calculated numbers, ψ̂ for each alarm in the testing set was es-
timated using the 90% credible set constructed by Monte Carlo method. Using
Equation (1), we computed 2000 ψj ’s from 2000 p’s and θi’s and ηi’s, all ran-
domly generated from their distributions. We can view alarms in the testing set
as alarms from new programs, since their symptoms didn’t contribute to the
numbers used for the estimation of ψ̂.



212 Y. Jung et al.

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

nu
m

be
r 

of
 a

la
rm

s

trueness of alarm

true alarms
false alarms

Fig. 2. Frequency of trueness in true and false alarms. False alarms are counted in

negative numbers. 74.83% of false alarms have trueness less than 0.25.

The histogram in Figure 2 was constructed from the data generated by re-
peating the experiment 15 times. Dark bars indicate true alarms and lighter ones
are false. 74.83% (≈ 1504/2010) of false alarms have trueness less than 0.25, so
that they can be sifted out. For users who consider the risk of missing true error
is 3 times greater than false alarming, almost three quarters of false alarms could
be sifted out, or preferably just deferred.

For a sound analysis, it is considered much riskier to miss a true alarm than
to report a false one, so it is recommended to choose the two risk values rm � rf
to keep more soundness. For the experiment result Figure 2 presents, 31.40% (≈
146/465) of true alarms had trueness less than or equal to 0.25, and were also
sifted out with false alarms. Although we do not miss any true alarm by lowering
the threshold down to 0.07 (rm/rf ≈ 13) for this case, it does not guarantee any
kind of soundness in general. However, to obtain a sound analysis result, one
can always set rf = 0, i.e. allowing none of the alarms to be sifted out.

3.3 Ranking False Alarms

We can rank alarms by their trueness to give effective results to the user. This
ranking can be used both with and without the previous sifting-out technique.
By ordering alarms, we let the user handle more probable errors first. Although
the trueness of true alarms are scattered over 0 through 1, we can see that most
of the false alarms have small trueness. Hence, sorting by trueness and showing
in decreasing order will effectively give true alarms first to the user. Figure 3
shows the cumulative percentage of observed alarms starting from trueness 1 and
down using the same data in Figure 2. When the user inspects alarms having
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Fig. 3. Cumulative percentage of observed alarms starting from trueness 1 and down.

Only 15.17% of false alarms get mixed up until 50% of the trues are observed.

high trueness first, only 15.17% (=305/2010) of false alarms gets mixed up until
50% of the true alarms are observed, where the trueness equals 0.3357.

3.4 Symptoms

We use both syntactic and semantic symptoms that may influence the analysis
accuracy. The symptoms can be classified into three types: 1) syntactic context of
the alarmed expressions; 2) general factors that influence the analysis accuracy;
and 3) properties of the analysis results(estimated array indices).

Syntactic Context. Syntactic symptoms describe the syntactic context around
the alarmed expressions. For a given alarmed expression we gather the following
symptoms from the function body that contains the alarmed expression:

AfterLoop AfterBranch
AfterReturn InNestedLoopBodyN
InNestedBranchBodyN InLoopCond
InBranchCond InFunParam
InNestedFunParam InRightOfAnd

AfterLoop and AfterBranch are respectively turned on when loops and branches
appear before the alarmed expressions. These symptoms are for false alarms;
loop and branch can decrease analysis accuracy due to the join operations at
their flow-join points. AfterReturn is on when a return statement precedes the
alarmed expression. This symptom is for false alarms; while the return state-
ments in the middle of function body are often for exiting on erroneous cases
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static analysis can blindly propagate such erroneous cases to independent yet
later array access expressions. InNestedLoopBodyN and InNestedBranchBodyN
are for true alarms because programmer are easy to mistake inside nested loops
and branches. Since we found that simple nested structures were common in both
true and false alarms we refined symptoms by their nesting depth N = 1, 2, 3, or
>3. InLoopCond and InBranchCond are on when alarms are inside the condition
expressions, and InFuncParam and InNestedFuncParam are on when alarms are
inside function’s actual argument expressions. These four symptoms are for true
alarms because it is likely that expressions in those contexts are more carefully
checked by programmers than expressions in other contexts. InRightOfAnd is for
alarms in the right hand side of the logical-and && operator. This symptom is
for false alarms because C’s short-circuit semantics can skip executing the &&
operator’s rhs expressions.

General Accuracy Factors. Symptoms that can be detected only during the
analysis can be useful indicators. Following symptoms are collected during the
fixed point iterations:

JoinN Pruned
Narrowed PassedVal InStructure

The number of program points where the join operation occurs affects the anal-
ysis accuracy. This situation is captured by symptom JoinN . N is the number of
such program points before an alarmed expression. N ranges over {1, . . . , 10, >
10}. The context pruning and the narrowing operations too are influencing fac-
tors for the analysis accuracy. Pruned and Narrowed are on when those operations
are successful. PassedValue is on when array index values are passed as argu-
ments, and InStructure is on when the target arrays are pointed to from some
data structures (e.g. record fields). These two symptoms are for true alarms
because such complicated use of the target arrays and indices are likely to be
confused.

Properties of Estimated Array Indices. The analysis results themselves
are used as symptoms too:

TopIndex HalfInfiniteIndex FiniteIndex

If an estimated array index is the whole integer interval it is likely to be a false
alarm (TopIndex). HalfInfiniteIndex is on when an index interval is half-infinite
like [1,∞]. Conversely, array indices with exact boundaries(FiniteIndex) strongly
suggest true alarms.

4 Related Work

Reducing false alarms has always been a critical problem in static analysis. Ex-
isting tools have addressed the false alarm problem by 1) giving up the soundness



Taming False Alarms from a Domain-Unaware C Analyzer 215

of analysis (e.g. SPLINT[14], ARCHER[13]); 2) depending on user annotations
(e.g. CSSV[7], SPLINT[14]); 3) limiting the target programs (e.g. ASTRÉE[4,6]);
4) heuristically classifying the alarms into either true ones or false ones (e.g. Z-
ranking[10]).

Airac differs from existing tools in that it uses Bayesian statistical analysis
to classify the alarms by their probabilities being true. Our Bayesian approach
can be orthogonally used with the user annotation approach. As of the analysis
itself, it is sound, does not rely on user annotations, covers the full set of ANSI
C constructs, and scale up to several 10K LOC.

CSSV[7] and SPLINT[14] rely on user annotations to reduce the false alarms.
With imprecise or null user annotation, these tools have rapidly increasing false-
alarm rate. ARCHER[13] is not sound, having a low detection-rate for bugs.
ASTRÉE[4,6] is a static program analyzer aiming at verifying the absence of
run time errors in a limited number of avionics controller programs in C. This
analyzer reports zero or very few false alarm. It excludes several C features
(e.g. union types, dynamic memory allocation, and unbounded recursive function
calls).

The one most directly related to our Bayesian approach is Z-ranking[10]. It
ranks alarms by heuristics. It first partitions successes (e.g. safe buffer accesses)
and failures (e.g. buffer overrun alarms) into groups. In each group, using a three
heuristics, it computes “z-score” for each alarm being true. Alarms in decreasing
order of z-scores are presented to the user. This approach has two drawbacks.
The heuristics are only about the relative numbers of successes and failures in
each group and they do not mention about any systematic method on how to
partition the alarms. Thus if the partitioning happen to group alarms about
which the heuristics fail to reflect the reality, Z-ranking can be ineffective. In
comparison, our statistical approach is more robust. Our method has no arbitrary
parameter like the “partitioning” in Z-ranking; it’s competence does not rely on
a particular factor of the method because the set of symptoms, which correspond
to our method’s heuristics, are extensive covering both the analyzer’s internal
behaviors and the input programs’ syntactic characteristics; and lastly, thanks
to the Bayesian framework’s learning capability, our method’s competence will
improve as the analysis results are accumulated.

5 Conclusion and Discussion

We present that combining, in a realistic setting, a domain-unaware static ana-
lyzer with a Bayesian analysis can be a viable approach to handle false alarms.
Our analyzer Airac, which collects all the true buffer-overrun points in ANSI C
programs, is sound and its cost-accuracy improvement is achieved by techniques
that static analysis community has long accumulated. For still inevitable false
alarms we design a Bayesian post analysis. The statistical analysis, given the
analysis results (alarms), estimates the probability of each alarm being true.
The probabilities are used to sift out probable false alarms and prioritize true
alarms. Only the alarms that have trueness higher than a threshold are reported
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to the user, and the alarms are sorted by the probability before reporting, so that
the user can check highly probable errors first. In our experiments with Linux
kernel sources and some textbook programs, if the user set the risk of missing
true error is about 3 times greater than false alarming, 74.83% of false alarms
could be filtered; and only 15.17% of false alarms were mixed up until the user
observes 50% of the true alarms.

The Bayesian analysis’ competence heavily depends on how we define symp-
toms. Since the inference framework is known to work well, better symptoms and
feasible size of pre-classified alarms is the key of this approach. We think promis-
ing symptoms are tightly coupled with analysis’ weakness and/or its preciseness,
and some fair insight into the analysis is required to define them. However, since
general symptoms, such as syntactic ones, are tend to reflect the programming
style, and such patterns are well practiced within organizations, we believe local
construction and use of the knowledge base of such simple symptoms will still
be effective. Furthermore, we see this approach easily adaptable to possibly any
kind of static analysis.

Another approach to handling false alarms is to equip the analyzer with all
possible techniques for accuracy improvement and let the user choose a right
combination of the techniques for her/his programs to analyze. The library of
techniques must be extensive enough to specialize the analyzer for as wide spec-
trum of the input programs as possible. This approach lets the user decide how
to control false alarms, while our Bayesian approach lets the analysis designer
decide by choosing the symptoms based on the knowledge about the weakness
and strength of his/her analyzer. We see no reason we cannot combine the two
approaches.
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