
Using Dependent Types to Certify the Safety

of Assembly Code�

Matthew Harren and George C. Necula

Computer Science Division, University of California
Berkeley, CA, USA 94720-1776

{matth, necula}@cs.berkeley.edu

Abstract. There are many source-level analyses or instrumentation
tools that enforce various safety properties. In this paper we present an
infrastructure that can be used to check independently that the assem-
bly output of such tools has the desired safety properties. By working at
assembly level we avoid the complications with unavailability of source
code, with source-level parsing, and we certify the code that is actually
deployed.

The novel feature of the framework is an extensible dependently-typed
framework that supports type inference and mutation of dependent val-
ues in memory. The type system can be extended with new types as
needed for the source-level tool that is certified. Using these dependent
types, we are able to express the invariants enforced by CCured, a source-
level instrumentation tool that guarantees type safety in legacy C pro-
grams. We can therefore check that the x86 assembly code resulting from
compilation with CCured is in fact type-safe.

1 Introduction

There are numerous ongoing efforts to design static analyses or instrumentation
tools to ensure various safety and security properties of programs. In most cases,
there is no independent way to ensure that the analysis or instrumentation tool
was actually run on a given program. Since most of today’s software security
tools operate only on source code, a concerned user must obtain the source for
the program in question, must run the tool himself, and is forced to trust that
the tool and the compiler are working as advertised. In this paper, we describe
our efforts to develop an independent verification strategy for static analyses
and instrumentation tools.

A well-known example of the strategy that we advocate is the verification
of type safety in Java and .NET bytecode. A compiler verifies that the origi-
nal source code is type-safe, and uses this typing information to generate typed

� This research was supported in part by the National Science Foundation under grant
number CCR-00225610. Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 155–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 M. Harren and G.C. Necula

bytecode. The bytecode can then be checked for safety independently from the
source code. We want to push this strategy to lower-level languages, such as
assembly, and to allow more language-based enforcement tools to make use of it.
Working at the assembly-language level makes our technique fit well in the cur-
rent standard object-code distribution process. Furthermore, it does not require
the program source code, is applicable to more source languages, and eliminates
the compiler from the trusted computing base.

An additional goal of our work is to make it relatively easy for tool writers
to customize a generic certification infrastructure with the rules and invariants
that should hold in the processed code. To this end, the certification infrastruc-
ture performs many operations that are likely to be needed across a variety of
enforcement tools.

1.1 Motivation

This work was initially motivated by requests from CCured users to have inde-
pendent verification that libraries or object files have been processed by CCured.
CCured [1] is a source-to-source translator that guarantees type safety for legacy
C code by inserting run-time checks before potentially unsafe operations. Where
necessary, it modifies data structures to accommodate metadata such as array-
bound information. CCured performs extensive static analysis to minimize the
changes to data structures and the number of run-time checks necessary. CCured
also has many different kinds of run-time checks, for arrays, pointers on the stack,
or type hierarchies. A framework that can keep up with CCured’s analysis and
run-time checks would be suitable for certifying the result of simpler tools such
as Cqual [2] and Stackguard [3]. We believe our framework is general enough to
be used with languages other than C and safety policies other than type safety.

We cannot use standard Typed Assembly Languages [4] to encode the out-
put of CCured for two main reasons. First, the instrumentation scheme used
by CCured requires dependent types to encode, for example, that a field in
a structure is a pointer to a memory area whose length is stored in another
field. The DTAL [5] language is dependently-typed and is at the assembly-
language level, but does not allow mutation of dependently-typed records. The
ability to overwrite dependent memory locations is crucial for CCured, because
most C programs store pointer values in memory. We propose in this paper a
new dependently-typed language that allows mutable records, by allowing the
dependent-type invariants to be temporarily broken inside a basic block.

The other major obstacle in using one of the existing typed assembly lan-
guages is that it would require a special compiler that produces the desired lan-
guage. Instead, we want to apply this strategy even to source-to-source trans-
formations, in which the output of the tool is compiled using an off-the-shelf
compiler. The challenge posed by an external compiler is that register allocation
and other optimizations will cause us to lose the correspondence between local
variables in our source code and registers in the compiled code.

Our framework relies on (untrusted) annotations for function signatures and
types of global variables. These annotations are generated by the source-level

Using Dependent Types to Certify the Safety of Assembly Code 157

tool whose policy we enforce. We decided against using such annotations for
individual program points inside of a function’s body, in order to reduce sensi-
tivity to optimizations or compilation details. Instead, we use type inference to
rediscover the types of the registers and stack slots in assembly code. Our use of
abstract interpretation for type inference is similar to that used in bytecode ver-
ifiers, or to that described described by Chang et al. for compiler debugging [6].
For space reasons, we do not discuss type inference in this paper.

The contributions of this paper include:

– An expressive yet practical dependent type system for low-level code that
supports mutable records. We describe in Section 2 the mechanism used for
customizing the type system to new policies, and present the type system
itself in Section 3.

– A description of the typechecking algorithm for this type system.
– An encoding of the safety constraints of CCured in this type system, with

support for arrays, dynamic typing, and stack-allocated variables whose ad-
dress is taken (Section 4). We describe in Section 5 our experience using a
prototype verifier that can check the CCured output for type safety.

2 Type Policies

Our type system is parameterized by a type policy that describes the invariants
enforced by the safety tool you wish to use (CCured, for example). Factoring
our type system in this way provides modularity and allows us to support ex-
tension to different safety tools. Furthermore, it lets us focus this paper on the
specific contributions of our framework, such as mutable dependent types and
the infrastructure for type checking.

A type policy consists of the following:

– A finite set T of type constructors C. These constructors are used to build
policy-specific types for word-sized values, as described below.

– A subtyping relation IsSubtype : τ → τ → Bool for the types generated by
these constructors, and the associated upper bound function TJoin : τ →
τ → τ that returns a supertype of its arguments.

– An operation ArithType : τ → op → τ → τ that assigns a type to the
result of binary operators given the type of the operands, and an operation
ConstType : const → τ that gives a type to each constant.

– A Constrain operation that refines a typing context after a certain boolean
expression has been tested to be true.

For example, a type policy could define a type constructor “Int” for integers
that will fit in a machine word, and a constructor “MaybeNullPtr σ” for possibly-
NULL pointers to records with type σ. We’ll see below that the framework defines
the “Ptr σ” type to describe pointers to σ. Then the policy will likely define both
IsSubtype(Ptr σ, MaybeNullPtr σ) and IsSubtype(MaybeNullPtr σ, Int) to be
true. Additionally, the policy might define ArithType(Ptr σ, “-”, Ptr σ) to be

158 M. Harren and G.C. Necula

Int. Finally, the definition of Constrain for this policy may promote one or more
values of type MaybeNullPtr σ to Ptr σ following an appropriate NULL-check.

We defer the more detailed discussion of the IsSubtype, TJoin, ArithType,
and Constrain operators until the presentation of our typechecking algorithm
in Section 3.1.

Although we currently trust the soundness of the type policy, our implemen-
tation is designed to facilitate formal proofs of the soundness of verification. Such
a proof would rely on lemmas that the operators of the type policy are sound
with respect to the definition of the type constructors.

3 Our Type System

We describe in this section our framework for dependent types, and show how a
program can be typechecked with respect to a given type policy.

Figure 1 shows the language of memory types in our framework. Field types
t describe the contents of a word in memory or in a register whereas σ types
describe a mutable record consisting of a sequence of related fields.

field types t ::= C(d1, . . . dn) | Ptr σ
dependencies d ::= c | s.i | s
record types σ ::= Recs.〈0 : t0; . . . ; n − 1 : tn−1〉

constants c
type constructors C ∈ T

Fig. 1. The types that are assigned to registers and memory locations

The type of a word-sized location is either the instantiation of a type con-
structor C (given by the type policy) or a pointer to a mutable record. We saw
above a few examples of nullary constructors for non-dependent types; construc-
tors for dependent types are parameterized on one or more values. We distin-
guish the pointer type in our system so that we can give generic typing rules for
memory reads and writes.

The notation Recs.〈0 : t0; . . . ; n − 1 : tn−1〉 denotes a very-dependent [7]
record type with n mutable fields, each of whose types may depend on the
runtime values of other fields. For simplicity, fields are labeled with their index
in the record. The dependent type constructor “Recs” binds a variable s that
can be thought of as the “self pointer” for the record. We use s to encode
dependencies among the fields of the record: the special expression s.i refers to
the value stored in the ith word of the current record, where i is a constant. We
say that a field type C(d1, . . . dn) refers to field i iff at least one expression dj is
“s.i”. A record type σ = Recs.〈0 : t0; . . . ; n− 1 : tn−1〉 is well-formed if for all
terms s.j referring to a field, we have 0 ≤ j < n. In other words, dependencies
must refer to fields that actually exist. We require that all types used in this
framework be well-formed.

Using Dependent Types to Certify the Safety of Assembly Code 159

For example, a type policy may define the singleton type constructor Sin-
gle(e), and then can define a dependent record containing two identical integers
as

Recs.〈0 : Int; 1 : Single(s.0)〉
If we define the type constructor “Array(len)” to be the type of a pointer to an
array of Ints with length len, then a record containing an array pointer and the
length of that array has the type

Recs.〈0 : Array(s.1); 1 : Int〉
Field types can even refer directly to the self pointer s. Recs.〈0 : Single(s)〉 is a
one-word object that contains a pointer to itself. Circular dependencies are also
allowed, so

Recs.〈0 : Single(s.1); 1 : Single(s.0)〉
is another valid definition for our record containing two identical integers.

We therefore have two kinds of memory locations in the language. Dependent
fields have types that refer to the self pointer or other fields, or are referred to
by the types of sibling fields. Non-dependent fields have types of the form C
(or C(c1, . . . cn), where each ci is a constant) that do not refer to, and are not
referred to by, any other field. We must be careful when a dependent field is
updated, to ensure that the dependencies are respected. However, we can modify
non-dependent fields in place without additional checking.

We also support dependent function types, including function pointers.
Checking dependent functions is very similar to checking that dependent records
are used correctly, and we do not discuss them further here.

3.1 Type Checking

We describe here the process of typechecking assembly code when the start of
each basic block has been annotated with an invariant, as is done in TAL [8]. For
space reasons, we do not discuss in this paper our inference system for generating
such invariants.

Figure 2 shows the simple MIPS-like assembly language that we will be type-
checking. A basic block is a sequence of instructions whose entry is denoted by
some label, and whose exit is a branch or a jump. Note that in this paper, we omit
details relating to stack handling or the calling convention [9]. Our implementa-
tion uses the stack analysis engine written for the Open Verifier project [10].

We must track the memory state explicitly in order to reason about writes
to dependent fields. “upd(m, e1, e2)” denotes the memory state that results from
modifying memory state m by writing value e2 at location e1, while “sel(m, e)”
is the result of reading address e in memory state m. We define “ValidMem” to be
the type of a memory heap that is in a consistent state: one where all allocated
locations contain a value that adheres to the type that the location was assigned
when it was allocated. Consistency may be temporarily broken when we write
a dependent field, since in general we will have to write to all of the fields in a
dependent group before we can conclude that the group is consistent. But we
will check that consistency holds at basic block boundaries.

160 M. Harren and G.C. Necula

instructions I ::= mov rdest, c | mov rdest, L | alu rdest, rs1, rs2

| load rdest, ra | store rsrc, ra

arithmetic alu ::= add | mult | xor | slt | . . .
labels L
jumps J ::= beq rc, L | jump L | jr r

basic blocks B ::= I, B | J
functions F ::= 〈L1 : B1, . . . , Lm : Bm〉

Fig. 2. The target assembly language

states S ::= 〈∆, Γ, m〉
register states ∆ ::= r1 = e1, . . . , rk = ek

type states Γ ::= v1 �→ τ1, v2 �→ τ2, . . .
memory states m ::= upd(m, e1, e2) | v
abstract values v

register types τ ::= C(e1, . . . en) | Ptr σ
symbolic expressions e ::= c | v | L | sel(m, e) | e1 op e2

binary operations op ::= +| × | xor | < | . . .

Fig. 3. The states of our symbolic execution algorithm for typechecking

Our typechecker performs symbolic evaluation on one basic block at a time,
using abstract values v for any unknown values. As seen in Figure 3, a state
in our checker is 〈∆, Γ, m〉, where ∆ is a mapping from registers to symbolic
expressions, Γ is a mapping from abstract values to types, and m is the current
memory state. We could represent a checker state in which r2 was known to
equal r1 + 1 as 〈∆0, Γ0, vmem0〉, where:

∆0 = {r1 = v; r2 = v + 1}
Γ0 = {v �→ Int; vmem0 �→ ValidMem}

This state can be considered syntactic sugar for the following logical formula:

∃v ∈ Int . ∃vmem0 ∈ ValidMem . (r1 = v) ∧ (r2 = v + 1)

Typing Expressions. We give here the rules for assigning types to symbolic
expressions. The judgment Γ 	 e : τ means that expression e has type τ in
context Γ. Most of the this work is done by the type policies through the func-
tions ConstType, IsSubtype, and ArithType, while the framework maintains
the types of abstract variables and handles the typing of memory operations.

Γ 	 v : Γ(v)
[Abstract]

τ = ConstType(c)

Γ 	 c : τ
[Const]

Γ 	 e : τ ′ IsSubtype(τ ′, τ)

Γ 	 e : τ
[Subsumption]

Using Dependent Types to Certify the Safety of Assembly Code 161

Γ 	 e1 : τ1 Γ 	 e2 : τ2 τ = ArithType(τ1, op, τ2)

Γ 	 e1 op e2 : τ
[Arith]

Type policies that do not care about arithmetic can say that ArithType(τ1,
op, τ2) is Int for all inputs, but policies such as CCured will derive a more precise
type for some inputs to ArithType.

The final form of expression is a read from memory. When reading a depen-
dent field with type C(s.j), we must replace dependency s.j with a symbolic
expression that explicitly encodes the current value of the jth field. Consider a
record that contains an array pointer and its length, and suppose we read the
array field into r1 and the length field into r2: 1

∆ = {r1 = sel(m0, v); r2 = sel(m0, v + 1)}
Γ = {v �→ Ptr Recs.〈0 : Array(s.1); 1 : Int〉}

The value in r1 should have type “Array(sel(m0, v + 1)),” to reflect the fact
that the length of the array is located at address v + 1 in memory state m0. We
can now use r2 as the length of array r1. Even if memory is later changed, for
example by updating this record with a new array and different length, we will
still be able to use r2 as the length of r1 since we remember that they were read
from the same memory state m0.

We generalize the above intuition into the following rule:

Γ 	 e : Ptr Recs.〈0 : t0; . . . ; n − 1 : tn−1〉
τ = ti[e�s][sel(m, e + 0)

�s.0] · · · [sel(m, e + n − 1)
�s.(n − 1)]

Γ 	 m : ValidMem
Γ 	 sel(m, e + i) : τ

[Read]

The binding step τ = ti[e�s][sel(m, e + 0)
�s.0] · · · [sel(m, e + n)

�s.n] will,
for example, convert the field type Array(s.1) from the previous example to the
register type Array (sel(m, v+1)). The requirement Γ 	 m : ValidMem ensures
that we are not in the middle of a dependent update.

Memory Updates. After writing a value to memory, we must see whether
Γ 	 m : ValidMem for the resulting memory state m. If the store wrote to a
dependent field, then other fields in the record may have to be updated as well
in order for the record to be internally consistent once again. For simplicity, our
framework requires that all the relevant dependent fields of a record be mutated
in the same basic block, with no other intervening writes to the heap. However,
it would not be hard to extend the type system to allow invalid memory states
that span basic block boundaries.

The rule for stores is below. Starting from a consistent state m, a basic block
can perform a series of writes to some object that starts at address ea. The
notation upd(·, ea +ci, ei) represents the result of storing ei into the object’s ci

th

1 Throughout this paper we assume that memory is addressed by words, not bytes.

162 M. Harren and G.C. Necula

field; we check that each ci is in bounds while typechecking the corresponding
store statement. We ignore duplicate writes to the same field. Regardless of
which fields have been overwritten, we can reestablish consistency for this object
by checking whether every field ea +i in memory state m′ has the type it should.
First, we define a function that computes a canonical form for the result of a
memory read using standard axioms for memory:

Read(m, ea + i) =

⎧
⎨

⎩

e if m = upd(m′, ea + i, e)
Read(m′, ea + i) if m = upd(m′, ea + j, e) and i
= j
sel(vmem, ea + i) if m = vmem

With this function we can write the axiom for validating a sequence of writes
to the same record:

m′ = upd((. . . upd(m, ea + c1, e1) . . .), ea + cj , ej)
Γ � ea : Ptr Recs.〈0 : t0; . . . ; n − 1 : tn−1〉
∀0 ≤ i < n . Γ � Read(m′, ea + i) : τi

where τi = ti[
ea�s][Read(m′, ea + 0)�s.0] · · · [Read(m′, ea + n)�s.n]

Γ � m : ValidMem

Γ � m′ : ValidMem
[Update]

For example, consider a record that contains an array reference, its length,
and one other field of type Foo. Suppose r2 contains an array pointer and that
r3 contains its length:

∆ = {r1 = vptr; r2 = v2; r3 = v3}
Γ = {vptr �→ Ptr Recs.〈0 : Array(s.1); 1 : Int; 2 : Foo〉;

v2 �→ Array(v3); v3 �→ Int; vmem0 �→ ValidMem}
Now we update the memory state vmem0 writing v2 at address r1 and v3 at

address r1+1, therefore mutating both the array and length fields of the record.
These two store instructions produce the memory state

m′ = upd(upd(vmem0, vptr, v2), vptr + 1, v3)

The intermediate memory state upd(vmem0, vptr, v2) is not consistent, and in
general it must not be used for load instructions. But m′ is consistent. Observe
that we get

Read(m′, vptr + 0) = v2

Read(m′, vptr + 1) = v3

Read(m′, vptr + 2) = sel(vmem0, vptr + 2)

Each of these three fields has the correct type. v2 has type

Array(v3) = Array(sel(m′, vptr + 1))

= Array(s.1)[Read(m′, vptr + 1)
�s.1]

while v3 has type Int. Location vptr + 2 was not modified, so we rely on the
fact that “Γ 	 vmem0 : ValidMem” holds to ensure that sel(m′, vptr + 2) =
sel(vmem0, vptr + 2) has a value of type Foo.

Using Dependent Types to Certify the Safety of Assembly Code 163

Checking Basic Blocks. Now we can put these rules together to create a
complete algorithm for typechecking a basic block according to the type policy.

The transition function for symbolic evaluation is straightforward. The effect
of each instruction on a state 〈∆, Γ, m〉 is as follows:2

〈∆, Γ, m〉 	 mov rdest, c ⇓ 〈∆[rdest �→ c], Γ, m〉
〈∆, Γ, m〉 	 load rdest, ra ⇓ 〈∆[rdest �→ sel(m, ∆(ra))], Γ, m〉
〈∆, Γ, m〉 	 store rsrc, ra ⇓ 〈∆, Γ, upd(m, ∆(ra), ∆(rsrc)〉
〈∆, Γ, m〉 	 add rdest, rs1, rs2 ⇓ 〈∆[rdest �→ ∆(rs1) + ∆(rs2)], Γ, m〉

The other ALU operations have rules similar to add. In addition to updating
the state, we check that ra contains a valid pointer in each load and store
operation (Γ 	 ∆(ra) : Ptr σ).

We assume that each basic block is annotated with an invariant in the form of
a typechecker state 〈∆0, Γ0, m0〉, which we use as the initial state of our symbolic
evaluation for the block. Evaluation then proceeds according to the transition
rules above until we reach the end of the block. At this point we must check that
the current state satisfies the invariant that is attached to the successor block(s).

One interesting case here is branches. The branch “beq r1, Lj” at the end
of block Bk means that control will jump to block Bj if r1 = 0, or fall through
to Bk+1 if r1
= 0. A branch may be a dynamic check of some fact that is
interesting to the type policy. So each type policy can define an operation
Constrain : 〈∆, Γ, m〉 → e → 〈∆, Γ, m〉 that transforms a state to account
for any relevant information in a branch condition. For example, suppose we
have a state in which r1 and r2 hold the same possibly-NULL pointer to σ:

∆1 = {r1 = v1, r2 = v1}
Γ1 = {v1 �→ MaybeNullPtr σ}

Then a typical type policy would define

Constrain(〈∆1, Γ1, m1〉, r1 = 0) = 〈{r1 = 0, r2 = 0}, { }, m1〉
Constrain(〈∆1, Γ1, m1〉, r1
= 0) = 〈{r1 = v1, r2 = v1}, {v1 �→ Ptr σ}, m1〉
We must check now that Constrain(〈∆1, Γ1, m1〉, r1 =0) implies the invariant

of Bj , and that Constrain(〈∆1, Γ1, m1〉, r1
=0) implies the invariant of Bk+1.

4 Dependent Types for CCured

We have built a prototype checker and inference system for the CCured type
system. CCured enforces type safety for legacy C code by classifying pointers
according to their usage. Depending on a pointer’s classification, or kind, CCured
changes the pointer to a “fat” pointer structure that stores metadata such as ar-
ray bounds and run-time type information. Figure 4 shows two such fat pointers
that we support in our prototype implementation: RTTI pointers, which hold
2 Changes to the program counter are omitted.

164 M. Harren and G.C. Necula

Fig. 4. Two “fat” pointer kinds used by CCured: (a) a pointer with run-time type

information, and (b) a sequence pointer (array). The current targets of the pointers

are shown with stripes, and the metadata added by the CCured code transformation

is in grey.

Run-Time Type Information specifying the dynamic type of the object being
pointed to, and Sequence pointers, which are used for arrays. The metadata is
used to support run-time checks that CCured inserts when the pointer is deref-
erenced (for SEQ) or cast (for RTTI). When we want to update a pointer in
memory, we may have to update all of the fields in the fat pointer.

4.1 RTTI Pointers

Figure 4(a) shows a two-word pointer that refers to a structure in memory and
has a type tag specifying the run-time type of the object being pointed to.
CCured stores the tag alongside the pointer instead of with the object itself for
the sake of a less invasive transformation: the striped location could be in the
middle of an array or a struct, and changing its representation to accommodate
a type tag would mean transforming all accesses to the base type as well.

RTTI pointers are governed both by a static type (T in Figure 4) and the
dynamic type specified by the tag (T′), which must be a subtype of the static
type. Before casting this pointer to a different type T′′, a program must check
that the tag represents a subtype of T′′. CCured implements these checks using
a global table that relates tag values to types.

The assembly-level definition of an RTTI pointer is given in Figure 5. The
Rttiσ(x) type constructor defines a possibly-NULL pointer that has the static
type “pointer to σ” but that also has the type denoted by tag x. We use the
function typeof here to encode the tags-to-types relation for each program.

Our prototype does not yet handle CCured’s tagged unions or variable-
argument functions, which require reasoning similar to RTTI pointers.

4.2 Sequence Pointers

CCured uses Sequence pointers to support arrays and pointer arithmetic in C. A
Sequence pointer is a three-word fat pointer, as shown in Figure 4(b), consisting
of the actual pointer and pointers to the two ends of the array.

The assembly-level encoding of these pointers is shown in Figure 5. The def-
inition of Seqσ directly follows the invariants that CCured maintains for its

Using Dependent Types to Certify the Safety of Assembly Code 165

RTTI pointer to σ = Recs.〈0 : Rttiσ(s.1); 1 : Int〉
Sequence pointer to σ = Recs.〈0 : Seqσ(s.1, s.2); 1 : Int; 2 : Int〉

where

Rttiσ(t) � {p | (p = 0 ∨ p isPtr σ) ∧ (p = 0 ∨ p isPtr typeof(s.1))

Seqσ(b, e) � {p | (b < e) ∧ (e − b) mod sizeof(σ) = 0

∧ (p − b) mod sizeof(σ) = 0

∧ ∀i.(b ≤ (p+i·sizeof(σ)) < e) ⇒ ((p + i · sizeof(σ)) isPtr σ)}

Fig. 5. The meanings of the Rtti and Seq type constructors used by CCured. We use

the set comprehension notation {x| . . .} to show the meanings of the types constructors,

where “e isPtr σ” means that value e is a pointer to a record with type σ. The < and

≤ operators used here are unsigned comparisons.

Sequence pointers: sequence is non-empty and both the end pointer and the ac-
tual pointer are aligned on multiples of the element size, although the pointer
itself may be out of bounds. We can dereference a Seqσ pointer p and treat it
as an ordinary σ pointer if it is within its bounds b and e. Moreover, we can
apply pointer arithmetic to this value, so long as the quantity being added is a
multiple of the element size. If the new value is within the bounds, it too can be
dereferenced.

To encode Sequence pointers in a type policy for our framework, we define a
type constructor Seqσ(b, e) for each base type σ used by the program. We also
define a constructor CheckedSeqσ(b, e) that represents a sequence pointer after
a bounds check:

CheckedSeqσ (b, e) �
{p | (b<e) ∧ (e − b) mod sizeof(σ)=0 ∧ (p − b) mod sizeof(σ)=0

∧ ∀i.(b ≤ (p+i·sizeof(σ)) < e) ⇒ ((p + i · sizeof(σ)) isPtr σ)
∧ b ≤ p < e}

CheckedSeqσ has all of the properties of Seqσ, meaning that we can do pointer
arithmetic on it, as well as the property that the current value of the pointer is in
bounds and can be dereferenced immediately. In the subtyping relationship used
by IsSubtype and TJoin, CheckedSeqσ(eb, ee) is a subtype of both Seqσ(eb, ee)
and Ptr σ.

Whenever our typechecker sees a bounds-checking branch instruction3 for a
value vp that has type Seqσ(eb, ee), the Constrain operation refines the type of v
into CheckedSeqσ(eb, ee). Now the value vp can be dereferenced: the requirement
in rules [Read] and [Update] that vp have a pointer type is satisfied by the rule
[Subsumption] and the fact IsSubtype(CheckedSeqσ(eb, ee), Ptr σ).

3 CCured checks both the lower and upper bounds of a sequence pointer in one branch
instruction, by using the unsigned comparison (pointer − base) < (end − base).

166 M. Harren and G.C. Necula

For pointer arithmetic, we can define a type constructor MultipleOf(e) for
the integers that are multiples of some value e, and we use the rules

ArithType(Single(c), ×, Int), (where c is a power of two4) = MultipleOf(c)
ArithType(Seqσ(eb, ee), +, MultipleOf(sizeof(σ))) = Seqσ(eb, ee)
ArithType(CheckedSeqσ(eb, ee), +, MultipleOf(sizeof(σ))) = Seqσ(eb, ee)

These rules let us assign the correct type Seqσ(eb, ee) to “p + 4x”, where p has
type CheckedSeqσ(eb, ee) and σ is 4 words long.

4.3 Other Features

Besides Rtti and Seq, our type system for CCured uses the basic type con-
structors you would expect for C code, such as MaybeNullPtr and Int. For each
struct or base type defined in the source code, we create a record type σ.

Initialization. Allocation in C programs is done via calls to malloc or a related
function. It is important to check that the newly-allocated data is initialized
correctly. When allocating a record type that contains only non-dependent Ints,
no initialization is needed since even garbage values are well-typed. But if the
record contains pointer or dependent fields, those fields must be initialized to
NULL. (By design, NULL is a valid value for every field type in CCured.)

Stack-allocated data. To support a common C programming idiom, we allow
programs to take the address of locations on the stack and pass these pointers
to other functions. Typically, this is done to achieve call-by-reference behavior.
We require, however, that programs not store such pointers into heap locations or
return them from functions. This restriction ensures that when the stack frame
is deallocated, there are no dangling pointers into that stack frame. CCured’s
inference engine can tell us which arguments may be pointers to stack-allocated
memory; the verifier needs simply to check that these pointers are not allowed
to “escape” through the heap or a return value.

5 Implementation

We have implemented a prototype verifier for the output of CCured using the
design in this paper. We use CCured to instrument C programs for type safety,
and gcc 3.3.3 to optimize and compile the code to x86 assembly. Our verifier
uses abstract interpretation over the domain of symbolic expressions to infer
register types and ensure that every instruction preserves memory safety. Our
implementation can handle Sequence and RTTI pointers and their associated
dependencies. We also implement pointers to stack-allocated data.

The CCured code transformer will generate annotations for each program
that serve as a partial witness of the program’s correctness, but these annota-
tions need not be trusted. Incorrect annotations will result in failed verification
4 When c is not a power of two, we need a branch instruction to check the result of

the multiplication for overflow before assuming that the product is a multiple of c.

Using Dependent Types to Certify the Safety of Assembly Code 167

rather than unsoundness, just as incorrect type information in Java bytecode
will result in failed typechecking. The annotations encode: (1) the type of ev-
ery global variable; (2) the global table of RTTI tags; (3) for each function, the
types of its arguments and return value, and the types and stack location of
any local variables that will have their address taken; and (4) for every call to
malloc, the type that will be applied to the resulting pointer (e.g. “T*” if the
source instruction is “T* var = (T*) malloc(e)”). Annotations are expressed
in inline assembly so that GCC will pass them from the instrumented source
code down to the verifier. Only the annotations for malloc appear in the middle
of a function, ensuring that this inline assembly will impose minimal constraints
on the optimizer. Other annotation strategies would also be feasible.

These annotations give us all the information we need to know about the
structure of the heap. All that remains is to infer types for registers and check
each instruction for memory safety.

Considerable engineering work needs to be done before our verifier will be
able to support all of the features of C. The prototype does not yet support
variable-argument functions, tagged unions, floating point operations, or func-
tion pointers. We have not implemented any fat pointer kinds other than Se-
quence and RTTI, although most other kinds (such as “forward-sequence” and
kinds that combine RTTI with bounds information) will be straightforward. We
also do not support casts between Sequence pointer types that have different
base types. Such casts are rare, and we may need CCured to annotate them so
that they can be verified.

In order to facilitate joins, our abstract interpreter limits the form of symbolic
expressions that are used for pointer arithmetic. Pointer offsets may be either
constants or multiples of the base type size. This works well for one-dimensional
arrays, but not for nested arrays. We are currently examining how to support
more general indexing expressions without losing precision in our join algorithm.

We treat calls to malloc and other allocation functions specially, and deal
with initialization as described in Section 4.3. CCured uses the Boehm-Demers-
Weiser garbage collector [11], which we trust, so calling free has no effect.

5.1 Experiments

As an initial test, we used our prototype on the go program in the Spec95 bench-
mark suite. Of the Spec95 programs, we chose go because it makes extensive use
of arrays while avoiding floating-point instructions, which our x86 parser does
not yet handle. We used the -O2 optimizer flag while compiling the program.

Of the 378 functions in the 29,321 LOC program, we can successfully verify
316 of them(84%). The most common reason for failure was that array indexing
expressions of nested arrays are too complicated for our abstract domain. We di-
rected CCured to flatten two-dimensional arrays into single-dimensional arrays,
but in general there is no way to do this for arrays of structs that themselves
contain arrays. Other failures were due to the unimplemented C features men-
tioned earlier. We are currently working to improve the implementation so that
we can verify all of the Spec95 suite.

168 M. Harren and G.C. Necula

Verifying the program takes 194 seconds on a 2.4 GHz Pentium 4 with 1
GB of RAM. While testing our system, we discovered several soundness bugs
in CCured: the instrumentation did not safely handle NULL return values from
malloc, and CCured’s optimizer incorrectly removed bounds checks based on
the faulty assumption that two pointers couldn’t alias. This experience shows
the importance of independent verification of safety tools.

6 Related Work

Certified object code. There has been much work done to certify that binary code
adheres to various safety properties. Colby et al. [12] survey several approaches,
such as TAL and PCC, and describe the general problem of certifying mobile
code, including how such certifications can be communicated to the end user.

Typed Assembly Language [8,4] is used as a compilation target for Popcorn,
a subset of C. TAL includes many useful features, including flow-sensitive types
for registers so that register types can change from one instruction to the next;
typechecking that is done one basic block at a time; existential types; and sup-
port for stack-based compilation schemes [9]. But TAL does not support the
dependent types that we need for CCured, and it assumes that assembly code
is generated by a specially-written, type-preserving compiler.

Proof-Carrying Code [13,14] packages object code with a checkable proof of
safety. The original implementations of PCC targeted specific type policies, such
as Java’s type system [14]. Recent projects such as LTT [15] and work by Shao
et al. [16] seek a general type system for certified code that is not tied to any one
source language. A low-level type system permits use of a wide variety of proofs
and proof techniques, and it allows code from multiple source languages to be
combined safely. But these two systems do not yet target imperative languages,
making them impractical for the applications we are considering.

Producing checkable proofs is a goal for our type system as well. Our approach
will follow work done by the Open Verifier group to design an extensible system
for foundational verification [17]. Currently, our implementation uses the Open
Verifier’s code for checking that stacks and function calls are handled correctly.

Balakrishnan and Reps [18] present a system for analyzing memory accesses
in x86 code. They do not require annotations from the compiler, but in exchange
they trade off some precision and soundness.

Dependent types. The Xanadu language [19] provides an expressive dependent
type system for an imperative, source-level language. Xanadu supports depen-
dencies between different objects, which lets the language express more interest-
ing properties about heap structures than ours can.

Xanadu can be compiled to DTAL, a dependently-typed assembly language
[5]. DTAL focuses largely on array types and array-bound check elimination.
Basic blocks are annotated with invariants to reduce the need for type inference,
and a type-preserving compiler is used. DTAL does not support modification of
dependently-typed locations in the heap.

Using Dependent Types to Certify the Safety of Assembly Code 169

Our restricted form of dependent types is similar to Hickey’s very dependent
function types [7]. Hickey encodes immutable records as functions from labels
to values. By using very dependent types for these functions, one can impose
dependencies among the object’s fields. Hickey uses these types to formalize a
theory of objects, including methods and inheritance. Our type system has a
similar focus on dependencies among fields and function arguments, but in the
context of a low-level imperative language with mutable structures.

Grossman [20] discusses the difficulty in supporting destructive updates in
a language with existential types; this is the same difficulty that our system
addresses for dependent types.

7 Discussion

We have described a dependently typed assembly language that supports destruc-
tive updates of dependent values that are stored in the heap. We can express in
this framework the invariants enforced by CCured in the instrumented programs
it outputs, and we can check statically that they are maintained. Our prototype
verifier for CCured demonstrates that our approach can be used in practice.

Future work on this project will proceed in three main directions. First,
we will apply our framework to type policies other than CCured. Already we
have created an extension for Cqual [2], an interprocedural static analysis tool
that infers type qualifiers for C programs and has been used to check several
important security properties [21,22].

The second direction is to generalize our system of dependent types. Our
types work well for dependencies between two local variables or two fields of the
same object, but they cannot encode dependencies between two memory loca-
tions that are not stored in the same object. Removing this limitation will allow
us to encode all or nearly all invariants of the source languages we are dealing
with, including downcasts in object-oriented code and null-terminated strings.

The third direction of future work is to produce a proof of type safety for
each program. Currently, the verifier and type policy are treated as part of the
trusted computing base. Through the Open Verifier project [10], we plan to
produce “foundational” proofs that can be checked by end users who would not
need to trust our type inference or the implementation of the type policy.

References

1. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems 27 (2005)

2. Foster, J.S., Terauchi, T., Aiken, A.: Flow-Sensitive Type Qualifiers. In: Proceed-
ings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation, Berlin, Germany (2002) 1–12

3. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In: Proc. 7th USENIX Security Conference, San
Antonio, Texas (1998) 63–78

170 M. Harren and G.C. Necula

4. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems 21 (1999)

5. Xi, H., Harper, R.: Dependently Typed Assembly Language. In: The Sixth ACM
SIGPLAN Int’l Conference on Functional Programming, Florence (2001) 169–180

6. Chang, B.Y.E., Chlipala, A., Necula, G., Schneck, R.: Type-based verification of
assembly language for compiler debugging. In: The 2nd ACM SIGPLAN Workshop
on Types in Language Design and Implementation. (2005) 91–102

7. Hickey, J.: Formal objects in type theory using very dependent types. In: Pro-
ceedings of the 3rd International Workshop on Foundations of Object-Oriented
Languages. (1996)

8. Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S., Zdancewic, S.: TALx86: A realistic typed assembly language.
In: Proceedings of the 1999 ACM SIGPLAN Workshop on Compiler Support for
System Software. (1999) 25–35

9. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly lan-
guage. In: Proceedings of the Second International Workshop on Types in Compi-
lation, Springer-Verlag (1998) 28–52

10. Schneck, R.R.: Extensible Untrusted Code Verification. PhD thesis, University of
California, Berkeley (2004)

11. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment.
Software—Practice and Experience (1988) 807–820

12. Colby, C., Crary, K., Harper, R., Lee, P., Pfenning, F.: Automated techniques for
provably safe mobile code. Theor. Comput. Sci. 290 (2003) 1175–1199

13. Necula, G.C.: Proof-carrying code. In: The 24th Annual ACM Symposium on
Principles of Programming Languages, ACM (1997) 106–119

14. Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A certifying
compiler for java. In: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, ACM Press (2000) 95–107

15. Crary, K., Vanderwaart, J.C.: An expressive, scalable type theory for certified
code. In: Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, ACM Press (2002) 191–205

16. Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified
binaries. In: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, ACM Press (2002) 217–232

17. Chang, B.Y.E., Chlipala, A., Necula, G.C., Schneck, R.R.: The Open Verifier
framework for foundational verifiers. In: The 2nd ACM SIGPLAN Workshop on
Types in Language Design and Implementation. (2005) 1–12

18. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 binary executables.
In: Proc. Compiler Construction (LNCS 2985), Springer Verlag (2004) 5–23

19. Xi, H.: Imperative programming with dependent types. In: Proceedings of 15th
IEEE Symposium on Logic in Computer Science, Santa Barbara (2000) 375–387

20. Grossman, D.: Existential types for imperative languages. In: Proceedings of the
11th European Symposium on Programming Languages and Systems. (2002) 21–35

21. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting Format String Vul-
nerabilities with Type Qualifiers. In: Proceedings of the 10th Usenix Security
Symposium, Washington, D.C. (2001)

22. Johnson, R., Wagner, D.: Finding user/kernel pointer bugs with type inference.
In: Proceedings of the 13th USENIX Security Symposium. (2004)

	Introduction
	Motivation

	Type Policies
	Our Type System
	Type Checking

	Dependent Types for CCured
	RTTI Pointers
	Sequence Pointers
	Other Features

	Implementation
	Experiments

	Related Work
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

