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Abstract. Programmers increasingly implement plugin architectures in
type-safe object-oriented languages such as Java. A virtual machine can
dynamically load class files containing plugins, and a JIT compiler can
do optimisations such as method inlining. Until now, the best known
approach to type-safe method inlining in the presence of dynamic class
loading is based on Class Hierarchy Analysis. Flow analyses that are
more powerful than Class Hierarchy Analysis lead to more inlining but
are more time consuming and not known to be type safe. In this paper
we present and justify a new approach to type-safe method inlining in
the presence of dynamic class loading. First we present experimental
results that show that there are major advantages to analysing all locally
available plugins at start-up time. If we analyse the locally available
plugins at start-up time, then flow analysis is only needed at start-up
time and when downloading plugins from the Internet, that is, when
long pauses are expected anyway. Second, inspired by the experimental
results, we design a new framework for type-safe method inlining which
is based on a new type system and an existing flow analysis. In the
new type system, a type is a pair of Java types, one from the original
program and one that reflects the flow analysis. We prove that method
inlining preserves typability, and the experimental results show that the
new approach inlines considerably more call sites than Class Hierarchy
Analysis.

1 Introduction

In a rapidly changing world, software has a better chance of success when it
is extensible. Rather than having a fixed set of features, extensible software
allows new features to be added on the fly. For example, modern browsers such
as Firefox, Konqueror, Mozilla, and Viola [25] allow downloading of plug-ins
that enable the browser to display new types of content. Using plugins can
also help keep the core of the software smaller and make large projects more
manageable thanks to the resulting modularisation. Plugin architectures have
become a common approach to achieving extensibility and include well-known
software such as Eclipse and Jedit.
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While good news for users, plug-ins architectures are challenging for optimis-
ing compilers. This paper investigates the optimisation of software that has a
plug-in architecture and that is written in a type-safe object-oriented language.
Our focus is on method inlining, one of the most important and most studied
optimisations for object-oriented languages.

Consider the following typical snippet of Java code for loading and running
a plugin.

String className = ...;
Class c = Class.forName(className);
Object o = c.newInstance();
Runnable p = (Runnable) o;
p.run();

The first line gets from somewhere the name of a plugin class. The list of plugins
is typically supplied in the system configuration and loaded using I/O, preventing
the compiler from doing a data-flow analysis to determine all possible plugins.
The second line loads a plugin class with the given name. The third line creates
an instance of the plugin class, which is subsequently cast to an interface and
used.

In the presence of this dynamic loading, a compiler has two choices: either
treat dynamic-loading points very conservatively or make speculative optimisa-
tions based on currently loaded classes only. The former can pollute the analysis
of much of the program, potentially leading to little optimisation. The latter
can potentially lead to more optimisation, but dynamically-loaded code might
invalidate earlier optimisation decisions, and thus require the compiler to undo
the optimisations. When a method inlining is invalidated by class loading, the
run-time must revirtualise the call, that is, replace the inlined code with a virtual
call. The observation that invalidations can happen easily in a system that uses
plugins leads to the question:

Question: If an optimising compiler for a plug-in architecture inlines
aggressively, will it have to revirtualise frequently?

This paper presents experimental results for Eclipse and Jedit that quan-
tify the potential invalidations and suggest how to significantly decrease the
number of invalidations. We count which sites are likely candidates for future
invalidation, which sites are unlikely to require invalidation, and which sites
are guaranteed to stay inlined forever. These numbers suggest that speculative
optimisation is beneficial and that invalidation can be kept manageable.

In addition to the goal of inlining more and revirtualising less, we want
method inlining to preserve typability. This paper shows how to do inlining
and revirtualisation in a way that preserves typability of the intermediate repre-
sentation. The quest for preserving typability stems from the success of several
compilers that use typed intermediate languages [9,15,16,17,26] to give debug-
ging and optimisation benefits [16,24]. A bug in a compiler that discards type
information might result in a run-time error, such as a segmentation violation,
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that should be impossible in a typed language. On the other hand, if optimi-
sations are type preserving, bugs can be found automatically by verifying that
the compiler generates an intermediate respresentation that type checks. Ad-
ditionally, preserving the types in the intermediate code may help guide other
optimisations. So it is desirable to write optimisations so that they preserve
typability.

Most of the compilers that use typed intermediate languages are “ahead-of-
time” compilers. Similar benefits are desired for “just-in-time” (JIT) compilers.
A step towards that goal was taken by the Jikes Research Virtual Machine [1]
for Java, whose JIT compilers preserve and exploit Java’s static types in the
intermediate representations, chiefly for optimisation purposes. However, those
intermediate representations are not typed in the usual sense—there is no type
checker that guarantees type soundness (David Grove, personal communication,
2004). In two previous papers we presented algorithms for type-safe method
inlining. The first paper [11] handles a setting without dynamic class loading,
and the second paper [10] handles a setting with dynamic class loading, but
with the least-precise flow analysis possible (CHA). In this paper we improve
significantly on the second paper by presenting a new transformation and type
system that together can handle a similar class of flow analyses as in the first
paper.

Our Results. We make two contributions. Our first contribution is to present
experimental numbers for inlining and invalidation. These numbers show that
if a compiler analyses all plugins that are locally available, then dynamically
loading from these plugins will lead to a miniscule number of invalidations. In
contrast, when dynamically loading an unanalysed plugin, the run-time will have
to consider a significantly larger number of invalidations. In order to ensure that
loading unanalzed plugins happens less frequently, the compiler should anal-
yse all of the local plugins using the most powerful technique available. That
observation motivates our second contribution, which is a new framework for
type-safe method inlining. The new framework handles dynamic class loading
and a wide range of flow analyses. The main technical innovation is a technique
for changing type annotations both at speculative devirtualisation time and at
revirtualisation time, solving the key issue that we identified but side stepped in
our previous paper [10]. As in both our previous papers, we prove a formalisa-
tion of the optimisation correct and type preserving. Using the most-precise flow
analysis in the permitted class, our new framework achieves precision comparable
to 0-CFA [18,21].

2 An Experiment

Using the plugin architectures Eclipse and Jedit as our benchmark, we have
conducted an experiment that addresses the following questions:

– How many call sites can be inlined?
– How many inlinings remain valid and how many can be invalidated?
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– How much can be gained by preanalysing the plugins that are statically
available?

Preanalysing plugins can be beneficial. Consider the code in Figure 1. The anal-
ysis can see that the plugin calls method m in Main and passes it an Main.B2;
since main also calls m with a Main.B1, it is probably not a good idea to inline
the a.n() call in m as it will be invalidated by loading the plugin. The analysis
can also see which methods are overridden by the plugin, in this case only run of
Runnable is. The analysis must still be conservative in some places, for example
at the instantiation inside of the for loop, as this statement could load any plu-
gin. But the analysis can gather much more information about the program and
make decisions based on likely invalidations by dynamically loading the known
plugins.

Being able to apply the inlining optimisation in the first place still depends
on the flow analysis being powerful enough to establish the unique target. Thus,
the answer to each of the three questions depends on the static analysis that is
used to determine which call sites have a unique target. We have experimented
with four different interprocedural flow analyses, all implemented for Java byte-
code, here listed in order of increasing precision (the first three support type
preservation, the last one does not):

– Class Hierarchy Analysis (CHA, [7,8])
– Rapid Type Analysis (RTA, [2,3])
– subset-based, context-insensitive, flow-insensitive flow analysis for type-pre-

serving method inlining (TSMI, [11]) and
– subset-based, context-insensitive, flow-insensitive flow analysis (0-CFA,

[18,21]).

In order to show that deoptimisation is a necessity for optimising compilers
for plugin architectures, we also give the results for a simple intraprocedural flow
analysis (“local”) which corresponds to the number of inlinings that will never
have to be deoptimised, even if arbitrary new code is added to the system. The
“local” analysis essentially makes conservative assumptions about all arguments,
including the possibility of being passed new types that are not known to the
analysis. A run-time system that cannot perform deoptimisation is limited to
the optimisations found by “local” if loading arbitrary plugins is to be allowed.

The implementations of the five analyses share as much code as possible; our
goal was to create the fairest comparison, not to optimise the analysis time. All
of our experiments were run with at most 1.8 GB of memory. (1.8 GB is the
maximum total process memory for the Hotspot Java Virtual Machine running
on OS X as reported by top and also the memory limit specified at the command
line using the -Xmx option.)

We use two benchmarks in our experiments:

Jedit 4.2pre13. A free programmer’s text editor which can be extended with
plugins from http://jedit.org/, 865 classes; analysed with GNU classpath
0.09, from http://www.classpath.org, 2706 classes.
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class Main {

static Main main;

public static void main(String[] args) throws Exception {

main = new Main();

for (int i=0;i<args.length;i++) {

Class c = Class.forName(args[i]);

Runnable p = (Runnable) c.newInstance();

p.run(); // virtual if loaded plugins define multiple run methods

}

main.m(new B1()); // can stay optimised for given Plugin

}

void m(A a) { a.n(); // needs to be virtual for given Plugin }

static abstract class A {

abstract void n();

}

static class B1 extends A {

void n() { }

}

static class B2 extends Main.A {

void n() { }

}

}

class Plugin implements Runnable {

public void run() { new Main().m(new Main.B2()); }

}

Fig. 1. Example code loading a known plugin. The Plugin does not modify Main.main,

which ensures that the call to main.m() can remain inlined. If only Plugin is loaded,

p.run() can also be inlined. Pre-analysing Plugin reveals that a.n() should be virtual,

even if the flow analysis of the code without Plugin may say otherwise.

Eclipse 3.0.1. An open extensible Integrated Development Environment from
http://www.eclipse.org/, 22858 classes from the platform and the CDT, JDT,
PDE and SDK components; analysed with Sun JDK 1.4.2 for Linux, 10277 classes
(using the JARs dnsns, rt, sunrsasign, jsse, jce, charsets, sunjce provider, ldapsec
and localedata).

While we have “only” two benchmarks, note that the combined size of
SPECjvm98 and SPECjbb2000 is merely 11% of the size of Eclipse. Furthermore,
these are the only freely available large Java systems with plugin architectures
that we are aware of. Analysing benchmarks, such as the SPEC benchmarks, that
do not have plugins is pointless. We are not aware of any previously published
results on 0-CFA for benchmarks of this size.

We will use app to denote the core application together with the plugins
that are available for ahead-of-time analysis. Automatically drawing a clear line
between plugins and the main application is difficult considering that parts of
the “core” may only be reachable from certain plugins.

Usually, flow analyses are implemented with a form of reachability built in,
and more powerful powerful analyses are better at reachability. To further ensure
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Jedit Can be inlined Cannot be inlined Total

Remain valid Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib

Local 682 297 0 0 0 0 20252 7808 20934 8105

CHA 682 297 69 7 18720 6178 1463 1623 20934 8105

RTA 682 297 97 51 18723 6178 1432 1579 20934 8105

TSMI 682 297 99 59 19449 7091 704 658 20934 8105

0-CFA 682 297 103 83 19592 7191 557 534 20934 8105

Eclipse Can be inlined Cannot be inlined Total

Remain valid Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib

Local 15497 472 0 0 0 0 481939 26512 497436 26984

CHA 15497 472 4105 61 366114 20796 111720 5655 497436 26984

RTA 15497 472 9024 169 366169 20797 106746 5546 497436 26984

TSMI 15497 472 11479 439 420029 23097 50431 2976 497436 26984

0-CFA 15497 472 9921 46 428944 23971 43074 2495 497436 26984

Fig. 2. Experimental results; each number is a count of virtual call sites

a fair comparison of the analyses, reachability is first done once in the same way
for all analyses. Then each of the analyses is run with reachability disabled. The
initial reachability analysis is based on RTA and assumes that all of app is live,
in particular, all local plugins are treated as roots for reachability. The analysis
determines the part of the library (classpath, JDK) which is live, denoted lib,
and then we remove the remainder of the library.

The combination app + lib is the “closed world” that is available to the
ahead-of-time compiler, in contrast to all of the code that could theoretically be
dynamically loaded from the “open world”. We use the abbreviations:

DLCW = Dynamic Loading from Closed World
DLOW = Dynamic Loading from Open World.

In other words, DLCW means loading a local plugin, whereas DLOW means
loading a plugin from, say, the Internet.

Figure 2 shows the static number of virtual call sites that can be inlined
under the respective circumstances. The numbers show that loading from the
local set of plugins results in an extremely small number of possible invalidations
(DLCW). The numbers also show that preanalyzing plugins is about 50% more
effective for 0-CFA than for CHA: the number of additional devirtualisations is
respectively 57% and 49% higher for 0-CFA after compensating for the higher
number of devirtualisations of 0-CFA. When loading arbitrary code from the



Type-Safe Optimisation of Plugin Architectures 141

open world (DLOW), the compiler has to consider almost all devirtualised call
sites for invalidation. Only a tiny fraction of all virtual calls can be guaranteed
to never require revirtualisation in a setting with dynamic loading—a compiler
that cannot revirtualise calls can only perform a fraction of the possible inlining
optimisations.

The data also shows that TSMI and 0-CFA are quite close in terms of pre-
cision, which is good news since this means it is possible to use the type-safe
variant without loosing many opportunities for optimisation. As expected, using
0-CFA or TSMI instead of CHA or RTA cuts in half the number of virtual calls
left in the code after optimisation. Notice that for Eclipse, in the column for call
sites that can be inlined and invalidated by DLCW, 0-CFA has a smaller number
than TSMI. This is not an anomaly; on the contrary, it shows that 0-CFA is so
good that it both identifies 7357 more call sites in app for inlining than TSMI
and determines that many call sites cannot be invalidated by DLCW.

The closest related work to our experiment is the extant analysis of Sreedhar,
Burke, and Choi [22] which determines whether a variable can only contain
objects of classes from the closed world. They did not consider the more detailed
question of whether inlining can be invalidated due to DLCW or only due to
DLOW. Their largest benchmark was jess which has 112 classes.

3 Overview of Our Framework

Our framework uses a simple construct called dynnew which abbreviates the
Java expression Class.forName(...).newInstance(), that is, an operation
that loads some class and immediately instantiates it. Using this construct means
that we do not need to model the result of Class.forName(...) and deal with
objects that reify classes, simplifying the operational semantics.

A New Type System. In later sections we will prove that TSMI supports type-
safe method inlining for a setting with dynamic class loading. We use a new type
system for the intermediate representation: each type is a pair of Java types. In
this section we explain the main problem that lead us to the new type system.
Our running example is an extended version of one from our paper on TSMI [11].

class B { // code snippet 1:
B m() { return this; } B x = new C(); // x is a field

} x = x.m();
x = ((B)new C()).m();

class C extends B {
C f; // code snippet 2:
B m() { B y; // y is a field
return this.f; if (...) { y = new C(); }

} else { y = (B)dynnew; }
} y = y.m();
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The two code snippets contain three method calls, each to a receiver object of
type B. CHA will for each method call determine that there are two possible
target methods, namely B.m and C.m, so CHA will lead to inlining of none of
the three call sites.

In snippet 1, which does not have dynamic loading, both of the calls have
unique targets that are small code fragments, so it makes sense to inline these
calls:

x = x.f; // does not type check
x = ((B)new C()).f // does not type check

These two assignments do not type check because while this in class C has static
type C, both x and (B)new C() have static type B. Since B has no f field, both
field selections fail the type checker. As explained in our previous paper [11],
we remedy this problem by changing static type information to reflect the more
accurate information the flow analysis has. In particular, the flow analysis has
determined that x and the cast expression only evaluate to objects of type C, and
so we transform the static type information to produce the following well-typed
code snippet:

C x = new C();
x = x.f; // type checks
x = ((C)new C()).f; // type checks

To understand the problems introduced by dynamic class loading, let us consider
code snippet 2. The method call y.m() has a unique target method at least until
the next dynamic class loading. So it makes sense to inline the call, even though
that decision may be invalidated later. To see how this may be achieved, the key
question is:

Question: What is the flow set for dynnew ?

With CHA, the answer is given by the static type of dynnew, which is Object,
and so the flow set is “all classes in the program”. Since dynnew has no impact
on the execution until the next dynamic class loading, we could assign dynnew
the empty flow set! We extend TSMI to dynamic loading in this way. However,
this idea runs into a difficulty quickly, as we explain next.

For code snippet 2, our previous approach transforms the types in a way that
preserves well-typedness:

C y; // the type of y is changed to C
if (...) { y = new C(); }

else { y = (C)dynnew; } // the type cast is changed to C
y = y.m();

Let us now suppose that control reaches dynnew and that it loads and instantiates
a class D which extends class B and is otherwise unrelated to class C. In the
original code snippet 2, the cast of dynnew is to B, so it succeeds. However,
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in the transformed code snippet, the cast of dynnew is to C, so it fails. Thus,
if we transform the types in the style of our previous paper [11] and we do
not transform the types again at the time of evaluating dynnew, we change the
meaning of the program!

The source of the difficulty is that a type cast can viewed as doing double
duty: it does a run-time check and it helps the type checker. Our solution is to
change the cast into a form that uses a pair of types. In code snippet 2, we would
change the cast of dynnew to (B,C)dynnew. We say that B is the original type
and that C is the current type. The current type is based on the flow analysis.
The original type is used to do the run-time check while the current type is used
to help the type checker. In fact, we need to change the entire type system and
use pairs of types everywhere, not just in casts. Note, to be sound, the current
type must be a subtype of the original type.

Armed with the idea of using pairs of types, we can now state the type of
dynnew. The original type continues to be Object and the current type is derived
from the flow set which is the empty set. The empty set corresponds to a type
which is a subtype of all other types. To reflect that, we introduce a type Null
and give dynnew the type (Object, Null). This has the pleasant side effect that
we can remove an artificial requirement from the original formulation of TSMI,
namely that all flow sets have to be nonempty.

Returning to code snippet 2, our approach will first transform the snippet
into:

(B,C) y; // the type of y is changed to (B,C)

if (...) { y = new C(); }

else { y = (B,C)dynnew; } // the type cast is changed to (B,C)

y = y.m();

Next, evaluating dynnew and thereby loading and instantiating a class D can be
modeled as replacing dynnew with new D() as well as a new flow analysis of the
program. The new analysis changes the current types, resulting in the following
type-correct code:

(B,B) y;
if (...) { y = new C(); }

else { y = (B,D)new D(); }
y = y.m();

Notice that the current type of y was B initially, then the TSMI-based optimi-
sation changed it to the more specific type C, and then the dynamic loading of
class D changed the current type of y back to B.

In summary, the new ideas are:

– A type is a pair of Java types in which the second Java type is a subtype of
the first Java type.

– The Null type is used to type dynnew.
– A type cast uses the first Java type in the pair.
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Our main theorem is that with a type system based on those three ideas, TSMI-
based devirtualisation and revirtualisation is type preserving. As our experi-
ments in the previous section show, the new approach will lead to considerably
more inlining than the previously best approach, namely CHA. Later we for-
malise our ideas and prove the main theorem. First we clarify how revirtualisa-
tion is done and how we formalise it, and clarify how we do our proofs.

Patch Construct. Until now we have not said much about how a virtual machine
revirtualises a method invocation. The main problem with revirtualisation is that
an invalidated method inlining may be in a currently executing method, requiring
a nontrivial update of the program state. We focus on a technique for doing
this update called patching, used by some virtual machines (for example [14]
and ORP [5,6]). Patching is a form of in-place code modification for reverting to
unoptimised code, and does not require any update of the stack or recompilation
of methods. The basic idea is to compile the call x.m() to the following code:

label l1: [Inline x.C::m()]
label l3: ...
label l2: x.m(); [out of line]

jump l3;

(Where out of line means after the end of the function being compiled.) Then
if a class is loaded that invalidates the inlining, the virtual machine writes a
jump l2; instruction at address l1. There are important low-level details that
we abstract (these and techniques other than patching are described in our
previous paper [10]).

To formalise this idea in a small language, we need an expression of the
form e1 patchto� e2 where � is a label. Additionally, program states will have
a component, called the patch set, that is a set of labels of patches that have
been applied. If � is in this set then the above expression acts like e2, if not it
acts like e1. This idea models what the assembly sequence above does.

Note that, as in previous papers, we concentrate on devirtualisation, the
first step of method inlining, as the other step is straightforward. Given this
focus, a general patch construct is not needed. Instead we use a construct of
the form e.[C::]�m(), which can be though of as e.C::m() patchto� e.m()
where e.C::m() invokes C’s implementation of m on e, and ultimately should be
thought of as the code above.

The correctness of speculative inlining with patching is far less obvious than
the correctness of inlining for whole programs. We use a proof framework devel-
oped in our previous paper [10]. Note that we do devirtualisation of both the
initial program and of dynamically loaded classes. Furthermore, the patching
operation, which is part of the optimisation, is a runtime operation. The usual
formalisation methods do not suffice, and instead we formalise the optimisation
as a second semantics. This semantics includes the transformation that does de-
virtualisation and the patching operation as part of the semantics of dynnew.
To prove correctness of the optimisation we show that the optimising semantics
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gives the same meaning to a program as a standard semantics does. To prove
type preservation, we prove the optimising semantics type safe.

4 Dynamic Loading Language

This section begins the formal development of our results. It defines a simple
language with dynamic class loading that is the source language for the op-
timisation. The language is a variant of Featherweight Java (FJ [13]), adding
just one new expression form for dynamically loading a new class. Due to space
limitations we omit many standard or obvious details (readers can refer to the
original FJ paper or our previous dynamic loading paper). The optimised code
will use a slightly different syntax (see the following section), here is the common
syntax:

Expressions e ::= x� | new C�(e) | e.f� | e.m�(e) | (t)�e | dynnew�

Method Declarations M ::= t� m(t x�) { return e; }
Class Declarations CD ::= class C1 extends C2 { t f

�
; M }

And here is the standard syntax:

Types t ::= C
Program State P ::= (CD;e)

We use standard metavariables and the bar notation from the FJ paper.
To simplify matters, we assume that field names are unique, that all x� ex-

pressions have the same label as the binder of x, and that all labels of this in a
class have the same label. These restrictions mean that lab(f) identifies a unique
label for each field declared in a program, and that in the given scope lab(x)
identifies a unique label for each variable in that scope.

Some auxiliary definitions that are used in the rest of the paper appear in
appendix A. The standard operation semantics is similar to FJ extended with a
rule for dynnew:

CD = class C extends · · · { · · · }
(CD;X〈dynnew�〉) CD,e,�′�→s (CD, CD;X〈new C�′(e)〉)

(1)

Here X ranges over evaluation contexts. To keep the semantics deterministic, we
explicitly label the reduction with a label of the form (CD, e, �), where CD is the
newly loaded class, e are the initialiser expressions, and � is the label to use on
the new object.

The typing rules are those of Featherweight Java extended with a rule for
dynnew; they can be recovered from the more general rules in Figure 4 by ignoring
the right type in the type pairs. The type system is sound as can be proven by
standard techniques.
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poly(P, φ) = {� | e.[C::]�
m(e) ∈ P,∃D ∈ φ(lab(e)) : impl(P, D, m) �= C::m}
fields(CD, C) = t f;

(CD;S;X〈new C�1(e).f
�2
i 〉) �→o (CD;S;X〈ei〉)

(2)

mbody(CD, C, m) = (x, e, �)

(CD;S;X〈new C�1(e).m�2(d)〉) �→o (CD;S;X〈e{this, x := new C�1(e), d}〉) (3)

CD � C <: D

(CD;S;X〈((D,E))�′new C�(e)〉) �→o (CD;S;X〈new C�(e)〉) (4)

CD = class C extends · · · { · · · } P = (CD, CD;S;X〈new C�(e)〉) φ = fa(P)

CD′ = retype(CD, φ) X′ = retype(X, φ) CD′ = [[retype(CD, φ)]]CD,CD,φ

e′ = [[retype(e, φ)]]CD,CD,φ
S′ = S ∪ poly(P, φ)

(CD;S;X〈dynnew�〉) CD,e,�′�→o (CD′, CD′;S′;X′〈new C�′(e′)〉)
(5)

mbody(CD,

{
C �2 ∈ S

D �2 /∈ S

}
, m) = (x, e, �)

(CD;S;X〈new C�1(e).[D::]�2m(d)〉) �→o (CD;S;X〈e{this, x := new C�1(e), d}〉) (6)

Fig. 3. Optimised Operational Semantics

5 Devirtualisation Optimisation

This section formalises speculative devirtualisation with patching for revirtuali-
sation as a second semantics, called the optimising semantics , for the language
of the previous section. The additional constructs required are described next,
following by the actual transformation, and finally the semantics and the type
system.

Syntax. The optimised semantics needs a patching construct and an associated
patch set in the program states, and two types in each static typing annotation—
the original and the current type. The modified syntax is:

Types t ::= (C1,C2)
Expressions e ::= · · · | e.[C::]�m(e)
Program States P ::= (CD;S;e)

Here S, called the patch set , is the set of labels of the patch constructs that had
to be revirtualised. A patch construct has the form e.[C::]�m(e). If � is in the
patch set S then this expression acts like a normal virtual method invocation
e.m�(e). Otherwise it acts like a nonvirtual method invocation—it invokes C’s
version of m on object e with arguments e. Types are now pairs where the left
class name is the original type from the unoptimised code, and the right class
name is the current type based on the current flow analysis.
Transformation. The transformation of code is based on a flow that assigns
sets of class names, called flow sets , to expressions, fields, method parameters,
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and method returns. The set should include all classes in the current program
state that the expression might evaluate to. A flow analysis takes a program
state and returns a flow for it, and it should ignore the current types. Before
applying the transformation, the static type information must be transformed
so that the current types reflect the flow used. The retype function achieves
this change. Its definition is in Appendix A, as the only interesting clause
is: retype((C1,C2)

�, φ) = (C1, � φ(�)). The transformation takes an expres-
sion, method declaration, or class declaration and changes monomorphic virtual
method invocations into patchable nonvirtual method invocations. It appears in
Appendix A as the only interesting clause is:

[[e.m�(e)]]CD,φ
= [[e]]CD,φ

.[C::]�m([[e]]CD,φ
) if ∀D ∈ φ(lab(e)) : impl(CD, D, m) = C::m

Optimised Semantics. The optimised semantics is parameterised by a flow anal-
ysis fa (that is, a function that takes an optimised-syntax program state and re-
turns a flow for it). A standard syntax program (CD;e) starts in the optimised se-
mantics state ([[retype(CD, φ)]]CD,φ

;∅;[[retype(e, φ)]]CD,φ
) where φ = fa(CD;∅;e).

In other words a flow analysis is performed on the initial program and used to
transform it to form the initial state along with an empty patch set.

The reduction rules for the optimised semantics appear in Figure 3. The
rules are similar to the standard semantics with the following modifications.
The rule for cast uses the original type in the cast rather than the current type
to determine if the cast should succeed. The rule for dynamic new is the most
complex. It performs a flow analysis on the unoptimised new program state.
Then it uses this flow analysis to retype the program state and to transform the
new class declaration and initialiser expressions. Finally, it adds to the patch
set the labels of patch constructs that are no longer monomorphic. The rule for
the patch construct is similar to the rule for method invocation except in how
it finds the method body. If the label is in the patch set, then the construct is
“patched” and should act like a virtual method invocation. In this case it uses
the object’s class to lookup the body as in the rule for method invocation. If the
label is not in the patch set, then the construct acts like a nonvirtual invocation,
and uses the class in the construct, D, to lookup the method body.

Type System. The typing rules appear in Figure 4. The rules are fairly straight-
forward. They essentially are checking the original and current typing in parallel.
To look up field or method types, since these are the same whether we look in
the superclass or subclass, we simply use the original type. Two rules treat the
current and original types differently. For dynamic new, the current is Null as it
is always retyped before it is replaced by an actual object, but its original type
must be Object. For the patching construct, if not currently patched then the
object must be in the type E being dispatched to, so we require the current type
to be a subtype of this.

Except for the details of subtyping, the rules are deterministic, and for a
program state P, there is a unique t and derivation of � P ∈ t. Therefore, given
a program and an occurrence of a label in it, there is a uniquely determined type
associated with that occurrence: either the type of the expression it labels, or
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CD � Null <: Object CD � Object <: Object
(7)

class C extends D { · · · } ∈ CD

CD � Null <: C CD � C <: C CD � C <: D
(8)

CD � C <: D CD � D <: E

CD � C <: E
(9)

CD � C2 <: C1

CD � (C1,C2)
(10)

CD � C1 <: D1 CD � C2 <: D2

CD � (C1,C2) <: (D1,D2)
(11)

CD; S; Γ � x ∈ Γ (x)
(12)

fields(CD, C) = t f; CD; S; Γ � e ∈ t′ CD � t′ <: t

CD; S; Γ � new C�(e) ∈ (C,C)
(13)

CD; S; Γ � e ∈ (C,D) fields(CD, C) = t f;

CD; S; Γ � e.f�
i ∈ ti

(14)

CD; S; Γ � e ∈ (C,D) mtype(CD, C, m) = t → t CD; S; Γ � e ∈ t′ CD � t′ <: t

CD; S; Γ � e.m�(e) ∈ t
(15)

CD; S; Γ � e ∈ t′ CD � t

CD; S; Γ � (t)�e ∈ t
(16)

CD; S; Γ � dynnew� ∈ (Object,Null)
(17)

CD; S; Γ � e ∈ (C,D)

mtype(CD, C, m) = t → t

CD; S; Γ � e ∈ t′

CD � t′ <: t

mtype(CD, E, m) is defined
� /∈ S ⇒ CD � D <: E

CD; S; Γ � e.[E::]�m(e) ∈ t
(18)

CD � t CD � t

CD; S; this : (C,C), x : t � e ∈ t′ CD � t′ <: t

can-declare(CD, C, m, t → t)

CD; S � t� m(t x�) { return e; } in C
(19)

CD � t CD; S � M in C

CD; S � class C extends D { t f
�
; M }

(20)

CD; S � CD CD; S; · � e ∈ t

� (CD;S;e) ∈ t
(21)

Fig. 4. Typing Rules for the Optimised Syntax

the field, return, or parameter type that it labels. A flow φ for a program is type
respecting if and only if for each label � in the program, each class C in φ(�), and
each original type D associated with �, C is a subtype of D.



Type-Safe Optimisation of Plugin Architectures 149

6 Correctness

In this section we prove the optimisation correct, that is, that it preserves typa-
bility and operational semantics. The optimisation is correct, however, only for
certain flow analyses—the ones that respect the typing rules and approximate
the operational semantics. A flow φ for a program P is acceptable exactly when
it satisfies the conditions in Figure 5. A flow analysis fa is correct if fa(P) is an
acceptable and type-respecting flow for P whenever � P ∈ t for some t. We prove
the optimisation correct when it is based on a correct flow analysis.

Typability Preservation. Since the optimisation is stated as a second semantics
for the language, typability preservation means that a well-typed standard syn-
tax program does not get stuck in the optimised semantics. However, it is not
enough that the original program type checks, all dynamically loaded classes
must type check as well. We say that (CD, e, �) type checks with respect to
program (CD;S;e) exactly when CD, CD; S � CD and CD, CD; S; · � e ∈ t where
CD = class C extends · · · { · · · } and fields(CD, CD, C) = t f;. We say that
a reduction sequence type checks exactly when the initial program state type
checks and all the labels in the reduction sequence type check with respect to
the program state that precedes them.

Theorem 1 (Typability Preservation). If P is a well-typed standard-syntax
program, then any well-typed reduction sequence in the optimised semantics,
which starts from a state corresponding to P and is based on a correct flow
analysis, does not end in a stuck state.

The proof is given in the full version of the paper, which is available from the
webpage http://www.cs.ucla.edu/~palsberg/publications.html. The key
to proving the theorem is proving that at each point in the reduction sequence
the program state type checks and there is an acceptable and type-respecting
flow for the program state. Formally, we define � (P, φ) good to mean � P ∈ t for
some t, φ is an acceptable and type-respecting flow for P, and the current type
of every static typing annotation in P is �φ(�) where � is the label associated
with the annotation. As with standard type soundness arguments, we show that
reduction preserves goodness (rather than typability), and that typable (a subset
of good) states are not stuck.

Operational Correctness. We prove that the optimisation preserves semantics,
specifically that the optimised semantics simulates the standard semantics and
vice versa. To state the result we need a correspondence relation correspondsφ

(P, P′). This relation generalises the transformation slightly to reflect the fact
that the transformation is applied at consecutive loading points rather than all
at once. Its definition appears in the full version of the paper. Essentially, where
the left program has a virtual dispatch the right program may have one of two
expressions. It can have a corresponding virtual dispatch. It can also have an
equivalent patch construct if the virtual dispatch is monomorphic in the current
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– For each new C�(e) in P where fields(CD, C) = t f;:

φ(lab(e)) ⊆ φ(lab(f)) (22)

C ∈ φ(�) (23)

– For each e.f� in P:
φ(lab(f)) = φ(�) (24)

– For each e.m�(e) in P where e has type (C1,C2) and mbody(P, C1, m) = (x, e′, �′):

φ(lab(e)) ⊆ φ(lab(x)) (25)

φ(�′) = φ(�) (26)

And for each D ∈ φ(lab(e)), impl(P, D, m) = E::m, and �′ labels this in E:

φ(lab(e)) ⊆ φ(�′) (27)

– For each ((C,D))�e in P:

φ(lab(e)) ∩ subclasses(P, C) ⊆ φ(�) (28)

– For each dynnew� in P:

φ(�) = ∅ (29)

– For each e.[C::]�m(e) in P where e has type (C1,C2) and mbody(P, C1, m) =
(x, e′, �′):

φ(lab(e)) ⊆ φ(lab(x)) (30)

φ(�′) = φ(�) (31)

And if � ∈ S where P = ( · · · ;S; · · · ) then for each D ∈ φ(lab(e)), impl(P, D, m) =
E::m, and �′ labels this in E:

φ(lab(e)) ⊆ φ(�′) (32)

And if � /∈ S then the following where impl(P, C, m) = E::m and �′ labels this in E:

φ(lab(e)) ⊆ φ(�′) (33)

– For each class C in P with label � for C’s this occurrences:

C ∈ φ(�) (34)

– For each method t� m(t x�) { return e; } in P:

φ(lab(e)) ⊆ φ(�) (35)

– If t�1 m(t x�1
1 ) { return e1; } overrides t�2 m(t x�2

2 ) { return e2; } in P then:

φ(�1) = φ(�2) (36)

φ(�1) = φ(�2) (37)

Fig. 5. The Conditions for an Acceptable Flow Analysis
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program (the subscripts CD and φ on the relation) or if the patch label is in the
current patch set (the subscript S on the relation).

Given the correspondence relation, two facts are true. First, if P′ is the initial
state in the optimised semantics for program P then correspondsφ(P, P′) where
φ is the flow analysis used to compute the initial state. Second, the optimised
semantics simulates the standard semantics and vice versa, as stated in the
following theorem.

Theorem 2 (Operational Correctness).
If correspondsφ1

(P1, P′1) and the flow-analysis is correct then:

– If P1
L�→s P2 then P′1

L�→o P′2 and correspondsφ2
(P2, P′2) for some P′2 and φ2.

– If P′1
L�→o P′2 then P1

L�→s P2 and correspondsφ2
(P2, P′2) for some P2 and φ2.

The proof of both these facts is very similar to the proof in our previous pa-
per [10].

7 Conclusion

We presented a new type system and theorem that shows that TSMI is type pre-
serving in the presence of dynamic class loading. Our experimental results show
that TSMI leads to considerably more inlining than the current best approach,
namely CHA. Our experimental results also show the value of analyzing all lo-
cal plugins at start-up time: only few inlinings will be invalidated when loading
a local plugin. The flow analysis has to be recomputed only when a plugin is
loaded from non-local sources. Since such remote operations involve considerable
delay anyway, the extra delay from redoing the flow analysis is unlikely to be
noticable.

Researchers have recently developed many new ideas for efficiently doing flow
analysis, virtualisation, and devirtualisation in JIT compilers [4,12,19,20]. Our
results can form the basis of a new generation of typed intermediate representa-
tions used by powerful, type-preserving JIT compilers.

In future work we would like to go beyond the static counts of virtual call
sites. We would like to count how many times each call site is executed, and count
how many call sites turn out to be monomorphic at run time. Researchers might
also explore how our results fit with recent work on dynamic code updates [23].
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Appendix A: Details of the Formalisation

The function fields(CD, C) returns C’s fields (declared and inherited) and their
types; mtype(CD, C, m) returns the signature of m in C, it has the form t → t
where t are the argument types and t is the return type; mbody(CD, C, m) returns
the implementation of m in C, it has the form (x, e, �) where e is the expression
to evaluate, x are the parameters, and � is the label of the method return;
impl(CD, C, m) returns the class from which C inherits m (this could be C itself), it
has the form D::m where D is the class; can-declare(CD, C, m, t → t) checks that C
is allowed to declare m with signature t → t—this would not be the case if one
of C’s ancestors in the class hierarchy also declared m with a different signature.

Field Lookup, Method Information and Inheritance Checking

fields(CD, Object) = ·
CD(C) = class C extends D { t f

�
; M } fields(CD, D) = t′ f′;

fields(CD, C) = t′ f′;t f;
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CD(C) = class C extends D { t f
�
; M } t� m(t x�) { return e; } ∈ M

mtype(CD, C, m) = T → t

mbody(CD, C, m) = (x, e, �)
impl(CD, C, m) = C::m

CD(C) = class C extends D { t f
�
; M } m not defined in M

mtype(CD, C, m) = mtype(CD, D, m)
mbody(CD, C, m) = mbody(CD, D, m)

impl(CD, C, m) = impl(CD, D, m)

CD(C) = class C extends D { · · · } mtype(CD, D, m) = t′ → t′ implies t = t′ ∧ t = t′

can-declare(CD, C, m, t → t)

The Retyping Function and the Transformation

retype((C1,C2)
�, φ) = (C1, � φ(�))

retype(x�, φ) = x�

retype(new C�(e), φ) = new C�(retype(e, φ))
retype(e.f�, φ) = retype(e, φ).f�

retype(e.m�(e), φ) = retype(e, φ).m�(retype(e, φ))

retype((t)�e, φ) = (retype(t�, φ))�retype(e, φ)
retype(dynnew�, φ) = dynnew�

retype(e.[C::]�m(e), φ) = retype(e, φ).[C::]�m(retype(e, φ))

retype(t� m(t x�) { return e; }, φ) = retype(t�, φ)� m(retype(t�, φ) x�)

{ return retype(e, φ); }
retype(class C1 extends C2 { t f

�
; M }, φ) = class C1 extends C2

{ retype(t�, φ) f
�
; retype(M, φ) }

[[x�]]CD,φ
= x�

[[new C�(e)]]CD,φ
= new C�([[e]]CD,φ

)

[[e.f�]]CD,φ
= [[e]]CD,φ

.f�

[[e.m�(e)]]
CD,φ

= [[e]]
CD,φ

.[C::]�m([[e]]
CD,φ

)

if ∀D ∈ φ(lab(e)) : impl(CD, D, m) = C::m

[[e.m�(e)]]CD,φ
= [[e]]CD,φ

.m�([[e]]CD,φ
)

otherwise

[[(t)�e]]CD,φ
= (t)�[[e]]CD,φ

[[dynnew�]]CD,φ
= dynnew�

[[e.[C::]�m(e)]]CD,φ
= [[e]]CD,φ

.[C::]�m([[e]]CD,φ
)

[[t� m(t x�) { return e; }]]CD,φ
= t� m(t x�) { return [[e]]CD,φ

; }
[[class C1 extends C2 { t f

�
; M }]]CD,φ

= class C1 extends C2 { t f
�
; [[M]]CD,φ

}


	Introduction
	An Experiment
	Overview of Our Framework
	Dynamic Loading Language
	Devirtualisation Optimisation
	Correctness
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




