
Efficient Handling of Positional Predicates
Within XML Query Processing

Zografoula Vagena1, Nick Koudas2, Divesh Srivastava3, and Vassilis J. Tsotras1

1 UC Riverside
{foula,tsotras}@cs.ucr.edu

2 University of Toronto
koudas@cs.toronto.edu
3 AT&T Labs-Research

divesh@research.att.com

Abstract. The inherent order within the XML document-centric data
model is typically exposed through positional predicates defined over
the XPath navigation axes. Although processing algorithms for each axis
have already been proposed, the incorporation of positional predicates
in them has received very little attention. In this paper, we present tech-
niques that leverage the power of existing, state of the art methods, to
efficiently support positional predicates as well. Our preliminary experi-
mental comparisons with alternative approaches reveal the performance
benefits of the proposed techniques.

1 Introduction

XML is gradually becoming the standard for data sharing and information ex-
change among B2B and other applications over the Internet. Thanks to standard
specifications for web services (such as SOAP, WSDL, etc.), user programs can
receive requests for data (specified in XML) and return their answers tagged in
XML. In addition, via the use of specific query languages such as XPath [6] or
XQuery [7], users and applications can compose declarative specifications of their
interests, as well as filter and transform data items represented in XML. This
widespread acceptance and employment of XML, calls for novel data processing
techniques, pertaining to XML’s effective storage and retrieval. One key issue
in XML query processing is the effective support of the ordered model for data
and document representation that the language employs. Order is particularly
important in the document-centric view of the language as it enables expos-
ing the logical structure of the document. Popular XML query languages (e.g.,
XQuery [7] and XPath [6]) express order sensitive queries through the ability to
address parts of a document in a navigational fashion, based on the sequence of
nodes in the document tree.

Consider, for example, an XML database of journal articles. For each article
entry, the order in which its authors and its sections are listed is relevant. Infor-
mation extraction tools can take into consideration the tree structure and the
positional node order to extract the first two authors of each article, with the
following query:
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//article/child::author[position()<=2]

Similarly, the section of an article immediately following the Related Work
section of the article can be extracted using the query:

//article/child::section[./child::title =
‘Related Work’]/following-sibling::section[1]

Supporting such ordered predicates is thus an important requirement for
XML query processing. In the current work we focus on the efficient processing
of positional predicates within the various XPath navigation axes.

Initial efforts [11, 14] investigated the extent to which relational database
technology can support order-based queries. These efforts have concluded that
although a relational database performs well in general, in many cases it needs to
be extended (i.e. new processing algorithms should be devised) to efficiently sup-
port general order-based queries. Although processing techniques that employ
direct navigation of the XML tree structure can be trivially adapted to identify
nodes that satisfy any positional predicate, recent works have shown that, in the
absence of those predicates, such navigational techniques are outperformed by
set-based approaches [4, 8, 16]. As a result, it would be beneficial if the latter
techniques could be extended to support positional predicates as well.

Set-based solutions transform axes predicates to value conditions and thus
reduce the navigation problem to a relational join computation (with the ad-
ditional requirement of producing the final output in a specific order). Such
techniques were originally proposed for queries where navigation is restricted to
the child or descendant axes ([4]). Very recently, set-based methods that take
into consideration other navigation axes have appeared ([12, 13, 15]). Moreover,
holistic solutions (i.e., where multiple steps are grouped and computed as a sin-
gle operator), have been shown to outperform step-by-step processing, as they
avoid unnecessary computations of intermediate results that do not participate
in the final answer of the query [8, 9, 15]. All these works introduce new, tree-
aware operators to speed up tree traversal, however, none of them considers the
existence of positional predicates.

Taking into consideration the abundance and efficiency of processing tech-
niques for the ordered axes, the aim of this paper is to investigate whether such
techniques can be modified or extended so as to handle positional predicates as
well. In the process, we came to the conclusion that, contrary to common belief,
efficient support of positional predicates is non-trivial. Furthermore, not all of
the above techniques are applicable when positional predicates are present.

Consider, for example, the Staircase Join [12] family of algorithms. Their
efficiency is attributed to the fact that while processing queries with navigation,
not all context nodes are needed in order to identify the result nodes. Con-
sider the document in Figure 1.a and assume that the descendant axis query:
a/descendant::* is invoked over this document (which finds all descendants of
context nodes a). Since the descendants of a particular document node x are also
descendants of any ancestor of x in the same document, only the context nodes
that do not have other context nodes as ancestors are necessary for answering
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Fig. 1. Inapplicability of Staircase Join in the Presence of Positional Predicates

this descendant axis query. In terms of the particular example, only the first
and third (in document order) context nodes that are labeled a are necessary,
while the second a can be safely discarded. Similar observations can be made for
the other axes as well (e.g. following, following-sibling etc).

By discarding unnecessary context nodes, one can save matching time from
the duplicate results that would otherwise be produced and subsequently be dis-
carded as superfluous. In Figure 1.a(i), if the second a node is not discarded,
the g and h nodes are produced twice. Instead, the Staircase Join involves a
first phase, where it prunes unnecessary context nodes, before performing the
actual matching with the appropriate input descendant streams. Figure 1.a(ii)
illustrates the matching process after the pruning phase (the result nodes are de-
picted in gray). Note that for the pruning process, the algorithm only considers:
(i) which is the axis involved in the query, and, (ii) the set of context nodes.

Assume now that the positional predicate [position() = 2] is added to the
descendant axis of the previous example. That is, the query requests only the
second descendants under the context nodes. In this case the pruning performed
by the Staircase Join is not applicable as it would result in false negatives. By
discarding the second a node in the first phase, one cannot identify the h node
that belongs to the result, as the second descendant of this a node. Preserving
only the first a node is not enough because h is not the second descendant of this
a. The situation is illustrated in Figure 1.b. While unnecessary context nodes
can still be pruned, to identify them, the actual matching over the input streams
has to be performed anyways. As a result, the optimization introduced by the
Staircase Join is inapplicable when positional predicates are present.
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In fact, there is a straightforward technique so that positional predicates can
be answered as well. In particular, we can: (a) identify all the matching com-
binations of context and result nodes that satisfy the axis predicate (using any
applicable processing algorithm), (b) group on the context nodes and sort each
such group on the result nodes, (c) filter from each group the pairs that satisfy
the numeric predicate while preserving the result nodes, and, (d) take the union
of the result nodes. However this straightforward solution, although acceptable,
might lead to unnecessary computation, as it incurs the overhead of identifying
context nodes that do not have any matching counterpart that also satisfies the
positional predicates. For example, assume the query a/child::b[4], where the
fourth b child of a nodes is requested. If in the document no a node has more
than three children, then this approach will incur a lot of unnecessary overhead.
The question is whether the ”useful” context nodes can be identified, prior to
performing all possible matchings. In this paper we will present algorithms that
can identify such useful context nodes by effectively maintaining appropriate
states of the computation. The contributions of this paper are summarized as:

1. We investigate the problem of supporting queries with positional predicates
over XML data. We extend existing state of the art processing algorithms
for each of the proposed navigation axes so as to effectively handle positional
predicates. To the best of our knowledge, this is the first work that provides
a complete, scalable, XML model-aware solution.

2. We target branched queries that may contain any number of axes of the
same type as well as their backward counterparts (e.g., descendant and
ancestor, or following-sibling and preceding-sibling etc.)

3. We present a preliminary comparison with (i) the naive solution which checks
positional predicates as a post-processing step, (ii) previous techniques that
leverage the relational engines to efficiently support tree shaped XML data,
and (iii) DOM based XPath query processors. The experimental evaluation
reveals the performance advantages of our solutions.

We proceed with Section 2 that provides necessary background while our
methods are described in Section 3. In Section 4 we experimentally investigate
the performance of the proposed solutions. Finally, Section 5 concludes the pa-
per.

2 Background

Ordered Model. In the data model employed by popular XML query languages
[6, 7], a document is represented as an ordered tree, where each node has a unique
ID. The document order is defined over all nodes and corresponds to the sequence
in which nodes occur within the pre-order traversal of the ordered tree [10].

Order Based Predicates. Positional predicates appear in XML query lan-
guages in the form of numeric predicates. A predicate, filters a sequence of
nodes with respect to an axis to produce a new sequence of the nodes for which
the predicate evaluates to true. Numeric predicates specifically take order into
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account and are of the form: position() op n, where position() returns the
position of the node within the axis node set, op is one of the operators =, <, >,
<=, >=, ! = and n is an integer. If a predicate expression evaluates to a number,
the result will be true if the number is equal to the context position, otherwise
it is false. Thus, a location path para[3] is equivalent to para[position()=3].
For ease of presentation we describe our techniques in terms of the = operator
while pointing out the necessary changes to support the other operators.

Document Representation. The approaches we are going to discuss in this
paper project the document into sequences of nodes (we call them element
lists from now on). There is one sequence per document tag, which maintains
all nodes with the same tag. Each node is augmented with information that
identifies its position within the XML tree. The position of a node is represented
with the triplet: (left, right, pright) where: (a) left and right are gen-
erated by counting tags from the beginning of the document until the start and
the end tags of the node are visited, respectively, and, (c) pright is the right
value of its parent node. Using this scheme, the relative positions between any
two nodes can be identified in constant time. A node y is a child of a node x
if the right value of x is equal to the pright value of y. Similarly, a node y is
following-sibling of a node x if the right value of x is smaller than the left
value of y and the pright value of x is equal to the pright value of y.

3 Algorithmic Approaches

We proceed with the description of our algorithms for supporting XML queries
with positional predicates. For the discussion we focus on the child and the
following-sibling axes, and their backward counterparts. The remaining axes
can be supported with trivial modifications to the proposed methods. For sim-
plicity we restrict the comparison operator to equality. Moreover, while our
algorithms follow a set-based evaluation, the results can be easily returned in
document order (or any other desired order) providing list-based semantics.

3.1 One-Step Queries

Such queries have the form: a/child::b[n] or a/following-sibling::b[n],
where n is a numerical value. The former query identifies the nth b child of
each a document node, while the latter query identifies the nth b sibling of each
a document node, which resides after that a in document order.

Child Axis. The optimal processing technique for one-step queries with child
axis (‘structural joins’) was presented in [4]. The input is provided in the form
of element lists (i.e. the element list of the a nodes and the element list of the
b nodes). Each list is sorted on the left value of the nodes it contains. The lists
for a, b are joined in a merge-like fashion. A stack Sa is employed to maintain
those a nodes that have been visited and whose descendants (and their children)
are currently being accessed. At all times during the execution of the algorithm,
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Fig. 2. Processing of positional predicates within one-step queries

each node in Sa is a descendant of the nodes below it in the stack. When a b
node is visited, the parent-child relationship, if any, is determined between that
node and the current top of Sa. If the accessed b node is not a descendant of the
current top of the stack, then it is guaranteed that the top of the stack will not
produce further matchings and can thus safely be removed from Sa. The process
is then resumed with the new top of the stack.

From the previous discussion it is obvious that in the absence of positional
predicates, the relationship between a specific pair of a and b nodes can be deter-
mined based solely on their node numberings; the stacks are useful to efficiently
identify relationships between sets of a and b nodes. When dealing with posi-
tional predicates, however, node numberings do not suffice to determine whether
a specific pair of a and b nodes satisfy a/child::b[3], for example. Additional
state needs to be maintained while processing the sets of a and b nodes to make
this inference.

For addressing positional predicates, we note that when a b node is accessed,
its a parent (if any) resides in the top of the stack. Moreover, a node a is
maintained in Sa until all its children are visited. Since such children are accessed
from their element list in document order, the stack provides the appropriate
means to keep track of the children nodes for each of the a nodes residing in Sa.
In order to achieve that, for each a element already in the stack, we maintain a
(child) counter. Each time a new b element is accessed and is determined to be
child of the current top of the stack, the corresponding counter is incremented.
The new value of the counter determines the participation of the b node in
the result. In particular, if this value equals to the numerical value n of the
positional predicate, the node participates in the result and is joined; otherwise
it is discarded. Figure 2.a illustrates the stack state after having accessed node
b5. At this point in the execution, the third child of node a1 and the second child
of node a2 have been accessed so far.

Following-Sibling Axis. An advantage of the child axis algorithm is that it
can perform the join in a single pass over the two input element lists. Very
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recently, novel merge-like algorithms with the same one-pass property over the
input element lists have been independently proposed for the following-sibling
axis as well [13, 15]. Here we extend the ideas summarized in [15] so as to support
positional predicates as well.

An important observation is that since the input is visited in document order,
the following-siblings for some a node occur after all its descendants have been
encountered. Equivalently, an a node has to be buffered until the following-
siblings of its descendants have been processed first. Moreover, an a node may
have other a nodes as following siblings. We call the a nodes that share the same
parent as “context-siblings”. Context-sibling nodes conceptually form a linked-
list, called the Context-Sibling List, or CSL in short, which is associated to
the parent node of the context-siblings. For example, Figure 2.b shows snapshots
of two CSLs, associated with parent nodes p, b1. New a nodes that are context-
siblings are appended at the end of their parent’s CSL. CSLs provide an effective
way to capture the following-sibling predicate: If a b node becomes a following-
sibling to the node at the end of a context-sibling list, it is also a following-sibling
to all other nodes currently in that list. There can be many CSLs at a given time
(up to the depth of the currently accessed context node in the document tree).

A stack keeps track of the existing CSLs. Each node in the stack is the
common parent of the nodes within the corresponding CSL. Moreover it is a
descendant of the nodes below it. When a node is removed from the top of
the stack (i.e. when all its children have been accessed), its corresponding CSL
(if any) is erased. One important point to note here is that although a stack
is employed for the processing of both the child and the following-sibling
axis, the contents of the stacks are very different for each algorithm. In particular
in the case of the child axis, stack entries are from the list of the context
nodes, while for the following-sibling axis stack entries represent parents of
the context nodes. The latter is possible because of the pright value that is
maintained in the positional representation of each document node.

When the following-sibling query contains a positional predicate, only those
following-siblings with position that satisfies the predicate should be joined.
Our solution is built on the properties: (i) a context element is accessed before
any of its following-siblings, (ii) it is maintained within its CSL, and (iii) its
following-siblings are accessed in document order. Therefore, a counter could be
maintained for each context element in a CSL, that keeps track of the number of
following-siblings that have already been identified with respect to this node. In
this case whenever a new following-sibling is accessed, the counters of all context
elements currently within the corresponding CSL would be incremented and only
those pairs (if any) that satisfy the numerical predicate would be returned.

Although the previous way of updating the counters is correct, it is not
optimal. For example, if there are N a’s and b’s that are all siblings of each
other, then this approach would take time O(N2) in the worst case for answer-
ing a/following-sibling::b[1], even though the output is only O(N). In order
to achieve optimality we propose a more complex way of updating the counters,
which divides the nodes that reside within a particular CSL into several parti-
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tions. We call those partitions predicate groups or PGs from now on. Each
PG maintains all the nodes whose counters have the same value (i.e. a nodes for
which the same number of following-sibling b nodes have been accessed). More-
over each PG is associated with a counter, which is the value of the counter of
each node within this PG. The values of those counters from the beginning to
the end of a particular CSL list follow a strictly descending order. Furthermore,
there exists a pointer from a PG pg1 to the PG whose counter has the largest
value that is smaller than the counter associated with pg1. Each such pointer
is associated with a value, which represents the difference of the values of the
counters associated with the two connected PGs. An example of this data struc-
ture is represented in Figure 2.b, which captures the state of the algorithm, after
node b4 has been accessed.

Using the above structure, only a constant number of actions have to be
performed for counter updates. In particular, when an a node is visited it is
appended within the PG that resides at the end of a’s associated CSL. When
a node b that is associated with a particular CSL is visited, the value of the
counter associated with the PG at the beginning of this CSL (we call this PG
pg1) is incremented by one. If no empty PG exists at the end of the CSL, a
new empty PG (pg2) is created at the end of this CSL and the PG that was
previously at the end of the CSL is set to point to pg2, with an associated value
of 1. If an empty PG pg3 exists in the end of the CSL, the value associated
with the pointer that points to this pg3 is incremented by one. Subsequently,
if the value of the counter associated with pg1 does not match the value of the
predicate the algorithm resumes with the next document node. Otherwise, the
node b is matched with the nodes in pg1 and the results are returned. At this
point the nodes of pg1 can be discarded as they are not going to create any
future results. The counter of the PG referenced by pg1 is set to the value of the
counter of PG minus the associated difference. The following theorem holds for
the correctness and performance of processing positional predicates for one step
queries (the pseudocode is provided in the appendix):

Theorem 1. Given a one step query T with an equality positional predicate,
a/axis::b[n], where axis can be following-sibling or child, which is in-
voked over a database D, the proposed processing of the intermediate state for
each algorithm correctly identifies all nodes that participate in answers for T
in D. Moreover, they have worst-case I/O and CPU time complexities linear to
the sum of the sizes of the input lists. Furthermore, the maximum space used is
O(h ∗ f), where h is the height of the XML data tree, and f is the maximum
fanout at any data tree node. ��
For the one step queries of the theorem, output size is bounded by the sum of the
sizes of the input lists. This is not the case for other operators like position() > 2.
In such cases, our algorithms can be modified to yield correct results with worst-
case I/O and CPU time complexities linear to the sum of the sizes of the input
lists and the output.

Similar buffering (of context nodes) can be performed for each of the re-
maining forward axes and hence the functionality of the counters can be easily
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realized for all forward axes. We thus proceed with our discussion of multi-step
queries by focusing on the following-sibling axis.

3.2 Multiple Step Queries with Following-Sibling Axes

Multiple-step queries involve many query nodes. Each node qi, may be connected
with zero or more other nodes through following-sibling axes. We call each
qi that is connected to one or more other nodes a step-parent from now on.
Such queries can be represented with tree structures whose vertices correspond
to query nodes and the edges correspond to the connecting following-sibling
axes.

One straightforward way to compute a multi-step query with positional pred-
icates, is to divide it into individual steps and use the techniques described in
Section 3.1. Nevertheless, this may lead to unnecessary processing of intermedi-
ate results. When no positional predicates are present, a more efficient approach
is to regard the whole query as a single operant and holistically compute the
results with a single pass over the input. The proposed algorithm traverses the
input in document order and attempts to identify the nodes that satisfy all the
predicates of the query at once.

Fig. 3. Processing of positional predicates within multiple-step queries

An important observation that the algorithm utilizes is that any result in-
stance involves only sibling nodes (i.e. nodes that have the same parent). For
each such sibling group a state structure is maintained, which encodes all partial
and total results that can be produced from this group with size proportional
to the size of the sibling group. The state structure consists of one CSL per step
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parent. The role of a CSL is similar with that in Section 3.1, i.e. to hold context-
siblings in document order. An element y within a CSL, maintains a reference
(the step-pointer) to the latest (in document order) element within the CSL
that corresponds to its query parent, with which y is matched. All elements from
the beginning of this CSL until the node referenced by the step-pointer of y
can be matched with y. At each point during the execution of the algorithm
multiple sibling groups (up to the height of the document tree) can be active
(i.e. some but not necessarily all of their nodes have been accessed). A stack is
utilized to keep track of all active sibling groups. An example of the state struc-
ture that is maintained is illustrated in Figure 3.a, where the state structure
after node d3 has been accessed is presented.

When positional predicates exist within the multi-step query, counters as-
sociated with context nodes within CSLs are also maintained. These counters
enable tracking of the following-siblings that have already been seen. PGs are
utilized to enable efficient update of those counters in a similar way as described
in Section 3.1. The only difference is that when the positional predicate is sat-
isfied, the PG with the matching nodes cannot be discarded until the actual
matching takes place. As a result, an additional pointer needs to be maintained
pointing to the PG whose counter is updated at each point. To be able to identify
the PGs with the matching nodes when total results are produced, the element
y maintains two step-pointers, one at the first and one at the last PG. All the
PGs in between those references contain nodes that can potentially be matched
with y. Figure 3.b shows the state structure for the multi-step query of Figure
3.a where positional predicates have been added. The computation is depicted
right after node d3 has been accessed.

3.3 Backward Axes

When the multiple-step query contains both following-sibling and preceding-
sibling axes, an adaptation of the method proposed in [5] can convert the query
into one with only following-sibling axes [15]. The resulting query can be rep-
resented with a DAG structure whose vertexes correspond to the query nodes
and edges to following-sibling axes. In the absence of positional predicates,
the additional issue (when compared to the queries in Section 3.2) that needs
to be addressed is that a query node may have multiple parents. We call such
query nodes as join nodes from now on. Our multiple-step algorithm can be
easily extended to check those additional predicates. More precisely, a document
node y that becomes a join node must have at least one corresponding sibling
within each of the CSLs of its query parents, before it is inserted within its cor-
responding CSL, or it triggers the production of results (if y corresponds to a
leaf query node).

When considering positional predicates we differentiate whether they are
specified on a forward or a backward axis in the original query. If one (or more)
of the edges of the DAG that corresponds to a following-sibling axis in the
original query is associated with a positional predicate, the counters described in
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Fig. 4. Integration of positional predicates with backward axes

Section 3.2 provide the necessary means to identify the nodes that satisfy those
numeric predicates.

If, on the other hand, the positional predicate is on an edge e that corresponds
to a preceding-sibling axis in the original query, then the following necessary
condition is needed so as a document node y that corresponds to the destination
node of e, participates into a result. In particular, there must exist a document
node x that corresponds to the source node of e that is the nth preceding sibling
of y in reverse document order. Nevertheless, such a predicate is easy to check,
because our algorithm will have already buffered all the necessary preceding-
siblings of y within their associated CSL. As a result, we only need to check
whether there exist n elements within this CSL (starting however from the end
of the list). If such an x element exists, it is the only matching for the y element
under consideration. A reference from y to x is then maintained and will be
used later in the result production phase. In order to identify those x elements
efficiently we utilize the same method as in the case of the forward axes, and
we partition the nodes within each CSL into PGs. In the case of the backward
axis, however, each PG will contain at most one node and as a result, there is
no need to maintain pointers between PGs. Furthermore, in this case it is also
unnecessary to maintain the differences between the PG counter values, as those
are always equal to 1.

As an example, consider the query in Figure 4, where two positional predi-
cates exist, one on a following-sibling and one on a preceding-sibling axis. The
figure also presents the intermediate state after node b3 has been accessed.

4 Experimental Evaluation

In order to investigate the effectiveness of our techniques, we performed a number
of experiments over synthetic, benchmark and real data.
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Fig. 5. (a) Comparison with late filtering, (b) Comparison with an RDBMS

4.1 Experimental Setup

We implemented all the algorithms in C++ on top of a native storage manager.
All the experiments were conducted on a 2.6 GHz Pentium 4 with 512MB of
main memory running RedHat Linux 9. The code was compiled with the GNU
compiler version 3.2.2.

To evaluate join performance we measure total execution time for each al-
gorithm. The times with hot cache are reported. We used 8K pages and a 100
block buffer cache.

For the purposes of this section, we refer to our proposed algorithms under
the name EPPP (for Effective Positional Predicate Processing). We begin by
investigating the importance of early identification of nodes that satisfy the
positional predicates. We also compare the performance of EPPP with a relational
DBMS. Finally, we investigate the behavior of EPPP with regard to existing main
memory XPath processors (Xalan and Saxon, available in [3] and [1]).

4.2 Importance of Early Filtering

This group of experiments investigates whether it is advantageous to identify
the context nodes that satisfy the positional predicates before performing the
matching process. For this experiment we assumed the simple one-step query
a/following-sibling::b[position() <= n] and generated a large synthetic in-
put dataset (around 100,000 a nodes and around 1 million b nodes). Without
any positional predicate the participation of input nodes in the result is 100%.

We first considered the query where no positional predicates exist and com-
pared EPPP with the ”positional predicate oblivious” processing algorithm for
the following-sibling axes (we call it the naive algorithm from now on). Subse-
quently, we begun changing the value of n, so that at each time only a proportion
of the previous results, satisfies the query. For each case we measured the time
to completion of each algorithm. For the naive algorithm we identify all the
results and then filter out the ones that do not satisfy the predicates.

Figure 5.a presents the results. Clearly, when no positional predicates ex-
ist, the two algorithms perform very similar. Hence the overhead introduced in



80 Zografoula Vagena et al.

EPPP is very small. This is because the examination of predicate satisfaction has
been integrated within the original processing algorithm by introducing simple
computations (like counter incrementing or simple boolean expression checking)
only among objects that the naive algorithm would also access. However, when
positional predicates are present, EPPP is becoming more efficient. In particular,
the more selective the predicates, the larger the performance gap between the
two methods. This is due to the fact that EPPP can discard unnecessary nodes
early and before performing the actual matching, while the naive algorithm
has to incur the overhead of creating all answers, and discard them in a later,
post-processing step.

It should be noted that the time differences are expected to be much larger
for multiple step queries. This is because the overhead of creating the results is
higher (due to the recursive traversal of the CSL through the step pointers). As
a result, the performance gain of EPPP will become even more prominent.

4.3 Comparison with an RDBMS

The next set of experiments compares the performance of the EPPP techniques
with a commercial relational DBMS, so as to compare against a pure relational
approach, that translates the query into SQL. In particular, we followed an
approach that combines ideas from [14] and [16]. We first created one table for
each of the input streams, where we stored the positional representation of each
stream node indexed on left and right. The dataset used was the 1G (text)
database generated by the XMark benchmark, with 825043 incategory nodes,
217500 mailbox nodes, and 217500 location nodes. We used the following-
sibling axis queries shown in Table 1(a). Query Q1 is a single-step query, while
Q2 and Q3 are multi-step queries.

Table 1. Queries for (a) XMark and (b) real data

Q1 : incategory/following-sibling::mailbox[2]
Q2 : location/following-sibling::incategory/following-sibling::mailbox[2]
Q3 : location[./following-sibling::incategory]/following-sibling::mailbox[2]

Q4 : LINE/following-sibling::STAGEDIR[2]
Q5 : TITLE/following::STAGEDIR[2]
Q6 : PERSONAE[/descendant::PGROUP[2]]/descendant::TITLE

To produce the SQL code, we followed the technique described in [14] and
used the Rank() function to produce the results. The relational query was pre-
optimized, and in order to decrease the overheads of the logging and recovery
subsystems, the query (being the only user query running in the system at the
time of the experiment) was evaluated in ’READ UNCOMMITED’ access mode.

The results are presented in Figure 5.b; clearly, the relational DBMS ap-
proach performs worse than EPPP. As also mentioned in [12, 14], this is because
the RDBMS is agnostic to the tree shape of the data and cannot take advan-
tage of it. Moreover, when the number of steps increases, the generated SQL
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becomes increasingly complex, which is more prone to optimization errors. Our
results confirm the observation that new operators must be added for a relational
DBMS to efficiently support XML data retrieval (even more so when positional
predicates are present).

4.4 Comparison with XPath Engines

We then compared EPPP with two commonly used XPath engines, namely Xalan
[3] and Saxon [1]. Their use is limited to main memory data. For these exper-
iments we utilized real data sets, namely Shakespeare’s plays [2]. Each of the
documents is small enough to be held in main memory. We evaluated queries
Q4, Q5 and Q6 shown in table 1(b) and present the average execution time.

Table 2. Comparison with Xalan and Saxon

Xalan Saxon EPPP

with w/o with w/o with w/o

Q4 0.20 0.21 0.20 0.12 0.08 0.05
Q5 0.41 0.41 0.18 0.14 0.05 0.07
Q6 0.22 0.21 0.21 0.11 0.04 0.04

The results appear in Table 2. For each query, we report the time with the
positional predicate and the time without it. These results show that the EPPP
techniques are also efficient when the data is in main memory. These results are
very encouraging as they reveal that the EPPP techniques are typically better
than specialized XML processors. Moreover, they scale to large datasets and can
be easily integrated into general purpose repositories.

4.5 Discussion

We introduced new techniques (EPPP) that provide a general and efficient solu-
tion to support positional predicates within navigation axes XPath queries. Our
techniques can take advantage of the positional predicates and avoid computa-
tion that straightforward approaches, which check the positional predicates as
a post-processing step, would entail. An important characteristic of the EPPP
techniques is that they identify nodes that participate in the result early in the
processing phase of the associated axis. Our preliminary experimental evaluation
gives strong evidence that the proposed solutions show more robust performance
when compared with pure relational approaches and main-memory specialized
XPath engines.

5 Conclusion

We studied the problem of supporting the ordered, tree shaped model of XML
data. We proposed efficient methods that extend state of the art processing
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techniques for any of the navigation axes, so as the latters can efficiently support
positional predicates as well. Most importantly, we showed that the intermediate
state (i.e. buffering of nodes) that is maintained by those algorithms provides
the necessary means to identify the nodes that satisfy any positional predicate.
To the best of our knowledge, this is the first approach that addresses positional
predicates in a complete, scalable, XML model-aware fashion.

As future work we intend to investigate query processing techniques that
will target heterogeneous queries (i.e. queries where interleaving of any axes is
possible). Moreover, we plan to develop methods to support combined efficient
evaluation of structural and value-based predicates.
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A Appendix

A.1 Pseudocode for One-Pair Queries

In what follows we provide the pseudocode for one-pair queries of the form:
a/following-sibling::b[n]. The algorithm takes as parameters the element
lists that correspond to the a and b query nodes, sorted on the left position of
each node.

Algorithm 1 FSwPosPredicate(EL a, EL b, PREDICATE n)
1: while !eof(a) AND !eof(b) do
2: la = nextLeft(a) {left position of next node in a list}
3: lb = nextLeft(b)
4: if la LESSTHAN lb then
5: na = next(a) {retrieve next node from a list}
6: clearStack(la) {also discard CSLs corresponding to popped pright values}
7: if emptyStack() OR (topStack() NOT EQUALS prna) then
8: pushStack(prna) {pr returns pright value of node}
9: end if{append a node to the PG at the end of corresponding CSL}

10: appendToCSL(na, CSL(topStack()))
11: else
12: nb = next(b)
13: clearStack(lb)
14: if !emptyStack() AND (topStack() EQUALS prnb) then
15: ++Counter(FIRST-PG(CSL(prnb)))
16: if NOT-EXISTS-EMPTY-PG-AT-THE-END() then
17: pg = createEmptyPG()
18: appendPG(CSL(prnb), pg)
19: Difference(pg) = 1
20: else
21: ++Difference(LAST-PG(CSL(prnb)))
22: end if
23: if Counter(FIRST-PG(CSL(prnb))) == n then
24: OutputMatches() {identify PG referenced by first PG in CSL}
25: NextPG = NEXT-PG(FIRST-PG(CSL(prnb)))
26: Counter(NextPG)=Counter(FIRST-PG(CSL(prnb)))-

Difference(NextPG)
27: DISCARD-PG(FIRST-PG(CSL(prnb)))
28: end if
29: end if
30: end if
31: end while
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