
A Path-Based Labeling Scheme
for Efficient Structural Join

Hanyu Li, Mong Li Lee, and Wynne Hsu

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

{lihanyu,leeml,whsu}@comp.nus.edu.sg

Abstract. The structural join has become a core operation in XML
query processing. This work examines how path information in XML
can be utilized to speed up the structural join operation. We introduce
a novel approach to pre-filter path expressions and identify a minimal
set of candidate elements for the structural join. The proposed solu-
tion comprises of a path-based node labeling scheme and a path join
algorithm. The former associates every node in an XML document with
its path type, while the latter greatly reduces the cost of subsequent
element node join by filtering out elements with irrelevant path types.
Comparative experiments with the state-of-the-art holistic join algorithm
clearly demonstrate that the proposed approach is efficient and scalable
for queries ranging from simple paths to complex branch queries.

1 Introduction

Standard XML query languages such as XQuery and XPath support queries
that specify element structure patterns and value predicates imposed on these
elements. For example, the query “//dept[/name=‘CS’]//professor” retrieves
all the professors from the CS department. It comprises of a value predicate
“name=‘CS’ ” and two structural relations “dept//professor” and “dept/name”
where ‘/’ and “//” denote the child and descendant relationships respectively.

Traditional relational database access methods such as the B+-tree can be
easily extended to process value predicates in XML queries. Hence, the support of
tree structured relationships becomes the key to efficient XML query processing.

Various node labeling schemes have been developed to allow the containment
relationship between any two XML elements to be determined quickly by exam-
ining their labels or node ids. [4] identifies the structural join as a core operation
for XML query pattern matching and develops a structural join algorithm called
Stack-Tree which utilizes the interval-based node labeling scheme to evaluate
the containment relationship of XML elements. Index-based methods such as
B+-tree [7], XR-tree [11], and XB-tree [5] speed up the structural join operation
by reducing the number of elements involved in the node join.

In this work, we design a novel path-based approach to further expedite the
structural join operation. The idea is to associate path information with the
element nodes in an XML document so that we can filter out nodes that clearly

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 34–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Path-Based Labeling Scheme for Efficient Structural Join 35

do not match the query, and identify a minimal set of nodes for the regular node
join. The proposed approach has the following unique features and contributions:

1. Path Labeling Scheme. We design a path-based labeling scheme that assigns
a path id to every element to indicate the type of path on which a node
occurs. The scheme is compact, and the path ids have a much smaller size
requirement compared to the node ids (see Section 5 on space requirement).

2. Containment of Path Ids. The well-known node containment concept allows
the structural relationship between any two nodes in an XML document to
be determined by their node labels. Here, we introduce the notion of path
id containment and show how the path labeling scheme makes it easy to
distinguish between parent-child and ancestor-descendant relationships.

3. Path Join. We design a path join algorithm as a preprocessing step before
regular node join to filter out irrelevant paths. The path join algorithm as-
sociates a set of relevant path ids to every node in the query pattern, thus
identifying the candidate elements for the subsequent node join. Experi-
mental results indicate that the relatively inexpensive path join can greatly
reduce the number of elements involved in the node join.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related work. Section 3 presents the path-based labeling scheme. Section 4 de-
scribes the query evaluation. Finally, Section 5 presents the experimental results,
and we conclude in Section 6.

2 Related Work

There has been a long stream of research in XML query evaluation. Early works
develop various path index solutions such as DataGuides [10] and 1-Index [14]
to summarize the raw paths starting from the root node in an XML document.
These index structures do not support branch queries and XML queries involving
wildcards and ancestor-descendant relationships efficiently. Index Fabric [9] uti-
lizes the index structure Patricia Trie to organize all the raw paths, and provides
support for the “refined paths” which frequently occur in the query workload.

The work in BLAS [6] also utilizes path information (p-labeling) to pre-
filter out unnecessary elements. BLAS employs integer intervals to represent
all the possible paths, regardless of whether or not they occur in the XML
dataset. Hence, BLAS will perform best for suffix queries, i.e., queries that start
with optional descendant axis followed by child axes. In contrast, the proposed
path encoding scheme utilizes bit sequences to denote the paths that actually
occur in the XML datasets. Therefore, the proposed solution will yield optimal
performance for simple queries, which are a superset of suffix queries.

The structural join is a core operation in many XML query optimization
methods [4, 5, 7, 11–13]. [13] uses a sort-merge or a nested-loop approach to
process the structural join. This method may scan the same element sets multiple
times if the XML elements are recursive. Stack-Tree [4] solves this problem by
applying an internal stack to store the subset of elements that is likely to be

36 Hanyu Li, Mong Li Lee, and Wynne Hsu

used later. Index-based binary structural join solutions such as B+-tree [7], one
dimensional R-tree [7], XB-tree [5] and XR-tree [11] employ different ways to
“skip” elements involved in the query pattern without missing any matches.
Holistic twig join methods such as XB-tree based TwigStack [5] and XR-tree
based TSGeneric [12] are designed to process XML queries involving more than
two nodes.

Sequence based approaches such as ViST [16] and PRIX [15] apply different
ways to transform both the XML documents and queries into sequences. Query
evaluation is carried out using sub-sequence matching. However, ViST may pro-
duce false alarms in the results, and PRIX requires a substantial amount of
post-processing to guarantee the accuracy of the query results.

3 Path-Based Labeling Scheme

We design a path-based labeling scheme that assigns a path id to every element
node in an XML document to indicate the type of path on which the node occurs.
Each element node is now identified by a pair of (path id, node id). The node
id can be assigned using any existing node labeling scheme, e.g., interval-based
[13], prefix [8], prime number [17]. Text nodes are labeled with node ids only.

A path id is composed of a sequence of bits. We first omit the text nodes
from an XML document. Then we find distinct root-to-leaf paths in the XML
document by considering only the tag names of the elements on the paths. We
use an integer to encode each distinct root-to-leaf path in an XML document.
The number of bits in the path id is given by the number of the distinct root-to-
leaf element sequences of the tag names that occur in the XML document. Path
ids are assigned to element nodes in a bottom-up manner as follows.

1. After omitting the text nodes in an XML document, let the number of dis-
tinct root-to-leaf paths in the XML document be k. Then the path id of an
element node has k bits. These bits are initially set to 0.

2. The path id of every leaf element node is given by setting the ith bit (from
the left) to 1, where i denotes the encoding of the root-to-leaf path on which
the leaf node occurs.

3. The path id of every non-leaf element node is given by a bit-or operation on
the path ids of all its element child nodes.

Consider the XML instance in Figure 1(a) where the node ids have been
assigned using a pre-order traversal. Figure 1(b) shows the integer encodings of
each root-to-leaf paths in the XML instance. Since there are 6 unique root-to-leaf
paths, 6 bits are used for the path ids.

The path id of the element leaf node F (node id = 7) is 010000 since the
encoding of the path Root/A/B/C/D/F on which F occurs is 2. The path id
of the non-leaf node A (node id = 3) is obtained by a bit-or operation on the
path ids of its child nodes B and C, whose path ids are 010000 and 001000
respectively. Therefore, the path id of A is 011000. Note that each text node is
only labeled by a node id.

A Path-Based Labeling Scheme for Efficient Structural Join 37

Encoding Table Storage Structure

B

.......

(a) (b) (c)

Node List for APath Lists

A

.......

page

011000

010110

100000

Path idPath list

Text "2004" (15)
Text "1997" (8)

Encoding

Root/B

Root/A/B/C

Root/A/B/D/E

Root/A/C

Root/A/B/C/D/F

Root/A

6

5

4

2

3

1

Root−to−leaf Path

(000010,18)

(000100,17)
E

(010000,14)
F

(010000,13)
D

(010000,12)

(001000,9)

(010000,7)

(010000,6)

(010000,5)

D

(010000,4) (000001,19)
B

CDC

B (010110,11)

A(100000,20)(010110,10)AA(011000,3)A(100000,2)

C

F

(111111,1)Root

C

B

(000100,16)

Fig. 1. Path-Based Labeling Scheme and Its Storage Structure

3.1 Storage Structure
In order to facilitate the direct retrieval of elements with a specified path id, we
design the following storage structure:

1. All the path ids of one element tag comprise the path id list of this element.
2. All the node ids of one element tag comprise the node id list of this element.

The node list is first clustered by element path ids, and then sorted on the
node ids.

3. Each path id in the path id list points to the first element with this path id.

Figure 1(c) shows how the example XML document in Figure 1(a) is stored.
Tag A has four occurrences with three distinct path ids. There are two occur-
rences corresponding to the first path id (100000) and one each corresponding
to the other two (011000 and 010110).

3.2 Containment of Path IDs
In this section, we introduce the notion of path id containment that is based
on the proposed path labeling scheme and examine the relationship of path id
containment with node containment.

Definition (Path ID Containment): Let PidA and PidB be the path ids of
nodes A and B respectively. If all the bits with value 1 in PidA cover all the
bits with value 1 at corresponding positions in PidB, then we say PidA contains
PidB.

The containment relationship between the path ids can simply be determined
with a bit-and operation. That is, if (PidA & PidB) = PidB where & denotes
the “bit-and” operation, then PidA contains PidB. For example, in Figure 1,
the path id of A(010110,10) contains the path id of C(010000,12).

Definition (Strict Path ID Containment): Let PidA and PidB be the path
ids of nodes A and B respectively. If PidA contains PidB and PidA �= PidB,
then we say PidA strictly contains PidB.

38 Hanyu Li, Mong Li Lee, and Wynne Hsu

In Figure 1, the path id of A (010110,10) strictly contains the path id of C
(010000,12).

The node containment between nodes can be deduced from path id contain-
ment relationship. Theorem 1 introduces this.

Theorem 1: Let PidA and PidD be the path ids for elements with tags A and
D respectively. If PidA strictly contains PidD, then each A with PidA must
have at least one descendant D with PidD.

Proof: Since PidA strictly contains PidD, then all the bits with value 1 in PidD

must occur in PidA at the same positions. Further, PidA will have at least one
bit with value 1 such that the corresponding bit (at the same position) in PidD

is 0. Consequently, elements with tag A will occur in the same root-to-leaf paths
as the elements with tag D, and there will exist at least one root-to-leaf path
such that elements with tag A occur, and elements with tag D do not occur.
As a result, all the elements with tag A must have elements with tag D as
descendants. �

Consider again Figure 1. The path id 010110 for node B strictly contains the
path id 010000 for node C. Therefore, each node B (node id=11) with path id
010110 must be the ancestor of at least one node C (node id=12) with path id
010000.

In the case where there are two sets of nodes with the same path ids, we
need to check their corresponding root-to-leaf paths to determine their structural
relationship. For example, the nodes A and B (node ids are 10 and 11) in Figure 1
have the same path id 010110. We can decompose the path id 010110 into 3 root-
to-leaf paths with the encodings 2, 4 and 5 since the bits in the corresponding
positions are 1. Thus, by looking up any of these paths (in the encoding table)
where nodes A and B occur, we know that all the nodes A with path id 010110
have B descendants with this path id.

Similarly, the encoding table can help us to determine the exact containment
relationship between any two sets of nodes, that is, parent-child, grandparent-
grandchild, etc. For example, given the path id 010110 for nodes B and the
path id 010000 for nodes C, we know that all the B nodes have C descendants.
Further, from the root-to-leaf path with value 2, we also know that the B nodes
are parents of the corresponding C nodes.

In other words, if PidA and PidD are the path ids of two sets of nodes A
and D respectively, then we can determine the exact relationship (parent-child,
grandparent-grandchild..) between these two sets of nodes from the encoding
table, provided that a tag name occurs no more than once in any path. For
example, suppose nodes A and D have the same path ids, and their corresponding
root-to-leaf path is “A/D/A/D”. In this case, the structural relationship between
A and D can only be determined by examining their node labels (node ids).

4 Evaluation of Structural Join

The structural join operation evaluates the containment relationship between
nodes in given XML queries. Our path-based approach processes structural join

A Path-Based Labeling Scheme for Efficient Structural Join 39

in two steps: (1) path join, and (2) node join. The algorithms for carrying out
these two steps are called PJoin and NJoin respectively.

4.1 PJoin

The PJoin algorithm (Algorithm 1) aims to eliminate as many unnecessary
path types as possible, thus minimizing the elements involved in the subsequent
NJoin.

Given an XML query modelled using a tree structure T , PJoin will retrieve
the set of path ids for every element node in T . Starting from element leaf nodes
in T , PJoin will perform a binary path join between each pair of parent-child
nodes. This process is carried out in a bottom-up manner until the root node is
reached. After that, a top-down binary path join is performed to further remove
unnecessary path ids.

A binary path join takes as input two lists of path ids, one for the parent
node and the other for the child node. A nested loop is used to find the matching
pairs of path ids based on the path id containment property. Any path id that
does not satisfy the path id containment relationship is removed from the lists
of path ids of both parent and child nodes.

Algorithm 1 PJoin (T)
Input: T - An XML Query.
Output: Path ids for the nodes in T .

1. Associate every node in T with its path ids.
2. Perform a bottom-up binary path join on T .
3. Perform a top-down binary path join on T .

{ c1, c3 }

B

C D

E { e3, e4, e5 }

{ d2, d3, d4 }

(a) XML Query T1

{ b3 }

{ c1, c3 }

B

C D

E

{ d3 }

{ e3, e4 }

(b) Result of Bottom−Up Path Join

{ b1, b2, b3, b4 } { b3 }

{ c3 }

B

C D

E { e3 }

{ d3 }

(c) Result of Bottom−Up Path Join

Followed by Top−Down Path Join

Fig. 2. Example of PJoin

Consider the XML query T 1 in Figure 2(a) where the lists of path ids have
been associated with the corresponding nodes. We assume that the path ids
with the same subscripts satisfy the path id containment relationship, that is,
b1 contains c1, b3 contains d3 and e3, etc.

The PJoin algorithm evaluates the query T 1 by first joining the path ids of
node B with that of node C. The path id c1 and c3 are contained in the path id
b1 and b3 respectively. Thus, we remove b2 and b4 from the set of path ids of B.

40 Hanyu Li, Mong Li Lee, and Wynne Hsu

Next, the algorithm joins the set of path ids of D with that of E. This is
followed by a join between the sets of path ids of B and D. The result of the
bottom-up path join is shown in Figure 2(b).

Finally, the algorithm carries out a top-down path join on T 1 starting from
the root node B. Figure 2(c) shows the final sets of path ids that are associated
with each node in T 1. Compared to the initial set of path ids associated with
each node in Figure 2(a), the PJoin algorithm has greatly reduced the number of
elements involved in the query. The subsequent node join is now almost optimal.

Note that omitting either the bottom-up or top-down tree traversal will not
be able to achieve this optimal result. This is because a single tree traversal
cannot project the result of each binary path join to the nodes which have been
processed earlier. In Figure 2(b), elements C and E contains unnecessary path
ids c1 and e4 compared to the final optimal results.

4.2 NJoin

The output of PJoin algorithm is a set of path ids for the element nodes in a
given query tree. Elements with these path ids are retrieved for a node join to
obtain the result of the query. Algorithm 2 shows the details of NJoin.

We modify the holistic structural join developed in [5] to perform the node
join. The element nodes are retrieved according to the path ids obtained from the
PJoin, while all the value (text) nodes are retrieved directly. Finally, a holistic
structural join is carried out on all the lists obtained.

Algorithm 2 NJoin(T)
Input: T - An XML Query.
Output: All occurrences of nodes in T .

1. Retrieve the elements according to the path ids associated with nodes in T
2. Retrieve the values imposed on the element nodes.
3. Perform holistic structural join on T .

We observe that the structural join in Line 3 of Algorithm 2 requires that
the input stream for every node in the query must be an ordered list of node ids.
However, Line 1 of Algorithm 2 produces a set of ordered sublists, each of which
is associated with a path id obtained in the PJoin. Therefore, when performing
the structural join, we will need to examine these multiple sublists of node ids
for an element tag to find the smallest node id to be processed next.

4.3 Discussion

The path join is designed to reduce the number of elements involved in the
subsequent node join. In this section, we analyze the effectiveness of the proposed
path join.

A Path-Based Labeling Scheme for Efficient Structural Join 41

Definition (Exact Pid Set): Let P be a set of path ids obtained for a node
n in an XML query T . P is an exact Pid set with respect to T and n if the
following conditions hold:

1. for each path id pi ∈ P , the element with tag n and path id pi is a result for
T , and

2. for each path id pj /∈ P , the element with tag n and path id pj is not a result
for T .

Definition (Super Pid Set): Let P be a set of path ids obtained for a node n
in an XML query T . P is a super Pid set with respect to T and n if each element
with a tag n in the final result (after node join) is associated with a path id pi

such that pi ∈ P .
Clearly, each element node is associated with its super Pid set after the path

join. The result is optimal when these super Pid sets are also the exact Pid sets.
Next, we examine the situations where path join will yield exact Pid sets.

We assume that the XML elements are non-recursive.

Simple Path Queries. Suppose query T is a simple path query without value
predicates. Then each node in T will have an exact Pid set after the path join.
This is because all the path ids that satisfy the path id containment property are
reserved in the adjacent nodes of T . Since this containment property is transitive,
all the path ids of a node n in T will contain the path ids of its descendant nodes,
and vice versa. Moreover, the encoding table for the paths can identify the ex-
act containment relationship (parent-child or ancestor-descendant) between the
nodes in T . Therefore, given a simple path XML query without value predicates,
the path join will eliminate all the elements (path ids) that do not appear in the
final result sets.

Branch Queries. If a query T is a branch query, then we cannot guarantee
that the nodes on the branch path have exact Pid sets because of the manner
in which the path ids are assigned to the elements. In other words, the path
id is designed to capture the containment relationship, but not the relationship
between sibling nodes.

Consider the query in Figure 3(a) which is issued on the XML instance in Fig-
ure 1. After the path join, node F will be associated with a path id 010000. How-
ever, we see that only F(010000,14) is an answer to this query while F(010000,7)
is not. This is because we can only detect 010000 (path id of F) is contained
by 010110 (path id of B), but do not know whether an F element with path id
010000 will have sibling E. Finally, note that the path id set of B in Figure 3(a)
is guaranteed to be an exact Pid set since B has no sibling nodes.

Queries with Value Predicates. Figure 3(b) shows an XML query with
value predicates that will lead to super Pid sets after a path join. The node
D (010000,13) and F (010000,14) in Figure 1 are not answers to the query al-
though the path id 010000 occurs in the path id sets of D and F respectively
after the path join. This is because we do not assign path information to value

42 Hanyu Li, Mong Li Lee, and Wynne Hsu

B { 010110 }

F
{ 010000 }

{ 010000 }

Text "1997"

(b) value predicate(a) branch query

{ 000100 }{ 010000 }

F

D

E

Fig. 3. Examples of Super Pid Set

nodes. Therefore, the element nodes with the matching path id can only satisfy
the structural relationship, and not the value constraints. As a result, if an XML
query has value predicates, the path id set of each node in the query pattern
may not be the exact Pid set.

To summarize, for non-recursive XML data, the exact Pid sets will be asso-
ciated with the element nodes in simple XML query patterns after the path join,
while only the super Pid sets (which are much less than the full path id sets of
elements as shown in our experimental section) can be guaranteed for the nodes
in branch queries and queries with value predicates.

5 Experiments

This section presents the results of experiments to evaluate the performance of
proposed path-based approach. We compare the path-based approach with the
state-of-the-art XB-tree based TwigStack [5]. Both solutions are implemented
in C++. All experiments are carried out on a Pentium IV 2.4 GHz CPU with 1
GB RAM. The operating system is Linux 2.4. The page size is set to be 4 KB.

Table 1 shows the characteristics of the experimental datasets which include
Shakespeare’s Plays (SSPlays) [1], DBLP [2] and XMark benchmark [3]. At-
tributes are omitted for simplicity.

Table 1. Characteristics of Datasets

Datasets Size �(Distinct Elements) �(Elements)

SSPlays 7.5 MB 21 179,690

DBLP 60.7 MB 32 1,534,453

XMark 61.4 MB 74 959,495

5.1 Storage Requirements

We first compare the space requirement of the path-based approach with the
XB-tree [5]. Our implementation of the XB-tree bulkloads the data and keeps
every node half full except for the root node. The page occupancy for the node
lists in the path-based approach is also kept at 50%. To be consistent with the
XB-tree, the path-based solution also utilizes the interval-based node labeling
scheme to assign the node ids. The storage requirements are shown in Table 2.

A Path-Based Labeling Scheme for Efficient Structural Join 43

It can be observed that the sizes of encoding tables are very small (0.24K,
0.38K and 2.9K respectively), and hence we load them into memory in our
experiments. The space required by the path lists is determined by the degree of
regularity of the structures of the XML documents (see Table 3). The real-world
datasets typically have a regular structure, and thus have fewer distinct paths
(40 distinct paths in SSPlays and 69 in DBLP) compared to the 344 distinct
paths in the synthetic XMark dataset. Since the number of bits in the path id is
given by the number of distinct paths, the path ids for the SSPlays and DBLP
are only 5 and 9 bytes respectively. In contrast, the irregular structure in XMark
needs 43 bytes for the path id.

Table 2. Space Requirements

Datasets XB Path
Encoding Table Path Lists Node Lists

SSPlays 8.0MB 0.24KB 5.9KB 6.5MB

DBLP 69.6MB 0.38KB 9.1 KB 57.2MB

XMark 40.4MB 2.90KB 884.2KB 32.3MB

Table 3. Storage for Path Ids

Datasets �(Distinct Path) Path Id Size(Bytes)

SSPlays 40 5

DBLP 69 9

XMark 344 43

We also observe that the size of the path lists is relatively small compared
with that of node lists. Even for the most irregular structure dataset XMark,
the size of path lists takes only 2.7% of its node lists size (884K and 32M re-
spectively). This feature fundamentally guarantees the low cost of path join.

5.2 Query Performance
Next, we investigate the query performance of the path-based approach and
compare it with the XB-tree based holistic join [5]. Table 4 shows the query
workload for the various datasets. The query workload comprises short simple
queries, long path queries and branch queries (Q1-Q8). To examine the effect of
parent-child relationship, we replace some ancestor-descendant edges in queries
Q1, Q3 and Q8 with parent-child relationship. Moreover, value constraints are
imposed on queries Q1, Q2, Q5 and Q6 respectively to test the influence of value
predicates.

Effectiveness of Path Join. In this set of experiments, we demonstrate the
effectiveness of the path join algorithm in filtering out elements that are not
relevant for the subsequent node join.

A metric called “Filtering Efficiency” is first defined to measure the filtering
ability of path join. This metric gives the ratio of the number of nodes after a

44 Hanyu Li, Mong Li Lee, and Wynne Hsu

Table 4. Query Workload

Query Dataset � Nodes
in Result

Q1 //PLAY//TITLE SSPlays 1068

Q2 //PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR SSPlays 2259

Q3 //SCENE//STAGEDIR SSPlays 6974

Q4 //proceedings/booktitle DBLP 3314

Q5 //proceedings[/url]/year DBLP 5526

Q6 //people/person/profile[/age]/education XMark 7933

Q7 //closed auction/annotation[//emph]//keyword XMark 13759

Q8 //regions/australia/item//keyword[//bold]//emph XMark 74

Q1pc //PLAY/TITLE SSPlays 74

Q3pc //SCENE/STAGEDIR SSPlays 5010

Q8pc //regions/australia/item//keyword[/bold]/emph XMark 74

Q1v //PLAY//TITLE=“ACT II” SSPlays 111

Q2v //PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR=“Aside” SSPlays 1044

Q5v //proceedings[/url]//year=“1995” DBLP 432

Q6v //people/person[/age=“18”]/profile/education XMark 2336

path join over the total number of nodes involved in the query. That is, given a
query Q, we have

Filtering Efficiency =
∑ |Np

i |∑ |Ni|
where |Np

i | denotes the number of instances for node Ni after a path join and
|Ni| denotes the total number of instances for Ni in the query.

We also define “Query Selectivity” to reflect the percentage of nodes in the
result set compared to the original number of nodes involved in the query. Given
a query Q, we have

Query Selectivity =
∑ |Nn

i |∑ |Ni|
where |Nn

i | denotes the number of instances for node Ni in the result set after
a node join and |Ni| is the same as above.

The effectiveness of path join can be measured by comparing the values of
its Filtering Efficiency and Query Selectivity. Based on the definitions of these
two metrics, we can see the closer the two values are, the more effective the path
join is for the query. The optimal case is achieved when the Filtering Efficiency
is equivalent to the Query Selectivity, indicating that path join has effectively
filtered out all irrelevant elements for the subsequent node join.

Figures 4(a) compares the Filtering Efficiency with Query Selectivity for
queries Q1 to Q8 whose Query Selectivity values are in ascending order. Except
for queries Q6, Q7 and Q8, the rest queries have the same values for two metrics.
This shows that path join has effectively removed all irrelevant elements for the
node join.

Queries Q6, Q7 and Q8 have higher Filtering Efficiency values compared to
their Query Selectivity. This indicates that the path join algorithm does not
produce exact Pid sets for the subsequent node join for these queries. As we

A Path-Based Labeling Scheme for Efficient Structural Join 45

(a) Filtering Efficiency Vs Query Selectiv-
ity

(b) PJoin and NJoin (I/O cost)

Fig. 4. Effectiveness of Path Join

have analyzed in Section 4.3, the Pid sets associated with nodes after the path
join may not be the exact Pid sets for branch queries. Since Q6, Q7 and Q8
are all branch queries, this result is expected. Note that path join still remains
efficient in eliminating unnecessary path types even for branch queries, which
can be seen from the close values of filtering efficiency and query selectivity of
queries Q5, Q6, Q7 and Q8 (all are branch queries, and the two values are same
for Q5).

Figure 4(b) compares the I/O cost of path join and node join. The graph
shows that the cost of path join is very marginal for the majority of the queries
compared to that of node join. This is because the size of path lists involved in
the query is much smaller than that of node lists (recall Table 2).

The costs of path join for queries Q1 to Q5 are negligible because of the
regular structures of SSPlays and DBLP. The path join is more expensive for
the queries over XMark dataset (Q6 to Q8) due to its irregular structure, which
results in a larger number of path types and longer path ids. Among these queries
on synthetic dataset (Q6 to Q8), query Q8 is the only one where the cost of path
join is greater than the node join. This can be explained by the low selectivity
of Q8 (74 nodes in result, Table 4), which directly contributes to the low cost of
node join. Finally, the result in Figure 4(a) clearly demonstrates that the path
join remains effective in filtering out a large number of elements for queries even
with the influence of irregularity in synthetic dataset.

Efficiency of Approach. In this set of experiments, we compare the perfor-
mance of path-based approach with XB-tree based holistic join [5]. The metrics
used are the total number of elements accessed and I/O cost. Figure 5 shows
that the path-based approach performs significantly better than the XB-tree
based holistic join. This is because path join is able to greatly reduce the actual
number of elements retrieved.

We observe that the underlying data storage structure of path-based ap-
proach has an direct effect on the query performance. For queries Q4 and Q5,
the I/O costs are smaller than the number of elements accessed in path-based

46 Hanyu Li, Mong Li Lee, and Wynne Hsu

(a) Elements Accessed (b) I/O Cost

Fig. 5. Queries with Structural Patterns Only

approach (see Figure5(a) and (b)). This is because the path-based approach
clusters the node records based on their paths. This further reduces the I/O cost
during data retrieval. In contrast, the I/O cost for XB-tree is determined by
the storage distribution of matching data. In the worst case, the elements to be
accessed are scattered over the entire list, leading to high I/O costs.

Effect of Parent-Child Relationships. We examine the effect of parent-child
relationship on query performance by replacing some ancestor-descendant edges
in queries Q1, Q3 and Q8 with parent-child edges. Figure 6 shows the results.

(a) Elements Accessed (b) I/O Cost

Fig. 6. Parent-Child Queries

The XB-tree based holistic join utilizes the same method to evaluate the
parent-child queries and ancestor-descendant queries. Therefore, XB-tree based
holistic join has the same evaluation performance for parent-child and ancestor-
descendant queries. To avoid incorrect result, each parent-child edge is (inexpen-
sively) verified before it is output.

In contrast, the proposed path-based approach checks for parent-child edges
during the path join. This task is achieved by looking up the encoding table (see
Figure 1(b)). In the case where the results of parent-child queries are subsets

A Path-Based Labeling Scheme for Efficient Structural Join 47

of the ancestor-descendant counterparts, the cost to evaluate queries may be
further reduced since fewer elements are involved in the node join. For example,
queries Q1pc and Q3pc have smaller result sets compared to Q1 and Q3 (see
Table 4) respectively. Thus Q1pc and Q3pc show better performance in Figure 6.

Effect of Value Predicates. Finally, we investigate how the proposed approach
and XB-tree perform for queries involving value predicates. We add value con-
straints on queries Q1, Q2, Q5 and Q6 respectively. The results are shown in
Figure 7.

(a) Elements Accessed (b) I/O Cost

Fig. 7. Queries with Value Predicates

When evaluating XML queries involving value predicates, the path-based
solution first carries out a path join to process the structural aspects of the
queries. To determine the final set of results, the subsequent node join will re-
trieve the value nodes and element nodes obtained by path join. Therefore, the
path-based solution needs to access more nodes to evaluate the value predicates
in the queries compared to the corresponding queries without value predicates.
This can be observed in Figure 7.

The XB-tree based holistic join solution treats value nodes the same way as
element nodes. The additional value predicates will incur more costs during the
retrieval of nodes. However, the value constraints may reduce the total number
of element nodes accessed. This is because the XB-tree approach employs the
XB-tree index to search for the matching nodes. Thus, it may skip some element
nodes that match the structural query pattern but not the value predicates.
Figure 7 shows that the addition of value predicates have different effects on
performances of Q5 and Q6.

Overall, the evaluation of structural patterns still dominates the query per-
formance even for queries involving value predicates. This is shown clearly in
Figure 7.

48 Hanyu Li, Mong Li Lee, and Wynne Hsu

6 Conclusion

In this paper, we have presented a new paradigm for processing structural join.
The proposed solution includes a path-based labeling scheme and a path join
algorithm that is able to compute the minimal sets of elements required for
the subsequent node join. Experimental results clearly show that the proposed
approach outperforms existing structural join methods for the following reasons:

1. The path join filters out nodes with path types that are not relevant to the
subsequent node join;

2. The cost of path join is marginal compared to node join in the majority of
the queries;

3. The element records are clustered according to the path types, which further
reduces the I/O cost during element retrieval.

References

1. http://www.ibiblio.org/xml/examples/shakespeare.
2. http://www.informatik.uni-trier.de/˜ley/db/.
3. http://monetdb.cwi.nl/.
4. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivas-

tava. Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In
Proceedings of ICDE, USA, 2002.

5. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML Pat-
tern Matching. In Proceedings of SIGMOD, USA, 2002.

6. Y. Chen, S. B. Davidson, and Y. Zheng. BLAS: An Efficient XPath Processing
System. In Proceedings of SIGMOD, France, 2004.

7. S-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient Structural
Joins on Indexed XML Documents. In Proceedings of VLDB, China, 2002.

8. E. Cohen, H. Kaplan, and T. Milo. Labelling Dynamic XML Tree. In Proceedings
of PODS, USA, 2002.

9. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast
Index for Semistructured Data. In Proceedings of VLDB, Italy, 2001.

10. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proceedings of VLDB, Greece, 1997.

11. H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing XML Data for
Efficient Structural Joins. In Proceedings of ICDE, India, 2003.

12. H. Jiang, W. Wang, and H. Lu. Holistic Twig Joins on Indexed XML Documents.
In Proceedings of VLDB, Germany, 2003.

13. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of VLDB, Italy, 2001.

14. T. Milo and D. Suciu. Index Structures for Path Expressions. In Proceedings of
ICDT, Israel, 1999.

15. P. Rao and B. Moon. PRIX: Indexing and Querying XML Using Prüfer Sequences.
In Proceedings of ICDE, USA, 2004.

16. H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures. In Proceedings of SIGMOD, USA, 2003.

17. X. Wu, M. Lee, and W. Hsu. A Prime Number Labelling Scheme for Dynamic
Ordered XML Trees. In Proceedings of ICDE, USA, 2004.

	A Path-Based Labeling Scheme for Efficient Structural Join
	1 Introduction
	2 Related Work
	3 Path-Based Labeling Scheme
	3.1 Storage Structure
	3.2 Containment of Path IDs

	4 Evaluation of Structural Join
	4.1 PJoin
	4.2 NJoin
	4.3 Discussion

	5 Experiments
	5.1 Storage Requirements
	5.2 Query Performance

	6 Conclusion
	References

