
Checking Functional Dependency Satisfaction
in XML

Millist W. Vincent and Jixue Liu

School of Computer and Information Science
University of South Australia

{millist.vincent,jixue.liu}@unisa.edu.au

Abstract. Recently, the issue of functional dependencies in XML
(XFDs) have been investigated. In this paper we consider the problem of
checking the satisfaction of an XFD in an XML document. We present
an efficient algorithm for the problem that is linear in the size of the
XML document and linear in the number of XFDs to be checked. Also,
our technique can be easily extended to efficiently incrementally check
XFD satisfaction.

1 Introduction

The eXtensible Markup Language (XML) [5] has recently emerged as a stan-
dard for data representation and interchange on the Internet. While providing
syntactic flexibility, XML provides little semantic content and as a result several
papers have addressed the topic of how to improve the semantic expressiveness of
XML. Among the most important of these approaches has been that of defining
integrity constraints in XML [7]. Several different classes of integrity constraints
for XML have been defined including key constraints [6], path constraints [8],
and inclusion constraints [10, 11] and properties such as axiomatization and sat-
isfiability have been investigated for these constraints. However, one topic that
has been identified as an open problem in XML research [16] and which has
been little investigated is how to extend the oldest and most well studied in-
tegrity constraint in relational databases, namely a functional dependency (FD),
to XML and then how to develop a normalization theory for XML. This problem
is not of just theoretical interest. The theory of FDs and normalization forms
the cornerstone of practical relational database design and the development of a
similar theory for XML will similarly lay the foundation for understanding how
to design XML documents.

Recently, two approaches have been given for defining functional dependen-
cies in XML (called XFDs). The first [1–3], proposed a definition based on the
notion of a ‘tree tuple’ which in turn is based on the total unnesting of a relation
[4]. More recently, we have proposed an alternative ‘closest node’ definition [14],
which is based on paths and path instances that has similarity with the approach
in [6] to defining keys in XML. This relationship between keys as defined in [6]
and XFDs as defined in [14] extends further, as it was shown in [14] that in the

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 4–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Checking Functional Dependency Satisfaction in XML 5

case of simple paths, keys in XML are a special case of XFDs in the same way
that keys in relational databases are a special case of FDs.

In general, the two approaches to defining XFDs are not comparable since
they treat missing information in the XML document differently and the ap-
proach in [1–3] assumes the existence of a DTD whereas the approach in [14]
does not. Howevever, we have recently shown that [15], in spite of the very differ-
ent approaches used in [1–3] and [14], the two aproaches coincide for a large class
of XML documents. In particular, we have shown that the definitions coincide
for XML documents with no missing information conforming to a nonrecursve,
disjunction free DTD. This class includes XML documents derived from com-
plete relational databases using any ‘non pathological’ mapping. It has also been
shown that in this situation, for mappings from a relation to an XML document
defined by first mapping to a nested relation via an arbitrary sequence of nest
and unnest operations, then followed my a direct mapping to XML, FDs in re-
lations map to XFDs in XML. Hence there is a natural correspondence between
FDs and XFDs.

In this paper we address the problem of developing an efficient algorithm for
checking whether an XML document satisfies a set of XFDs as defined in [14].
We develop an algorithm which requires only one pass of the XML document
and whose running time is linear in the size of the XML document and linear
in the size of the number of XFDs. The algorithm uses an innovative method
based on a multi level extension of extendible hashing. We also investigate the
effect of the size on the number of paths on the l.h.s. of the XFD and show that
the running time is both linear in the number of paths and also increases quite
slowly with the number of paths.

Although the issue of developing checking the satisfaction of ‘tree tuple’
XFDs was not addressed in [1–3], testing satisfaction using the definitions in
[1–3] directly is likely to be quite expensive. This is because there are three
steps involved in the approach of [1–3]. The first is to generate a set of tuples
from the total unnesting of an XML document. This set is likely to be much
larger than the original XML document since unnesting generates all possible
combinations amongst elements. The second step is to generate the set of tree
tuples, since not all tuples generated from the total unnesting are ‘tree tuples’.
This is done by generating a special XML tree (document) from a tuple and
checking if the document so generated is subsumed by the original XML tree
(document). Once again this is likely to be an expensive procedure since it may
require that the number of times the XML document is scanned is the same as
the number of tuples in the total unnesting. In contrast, our method requires
only one scan of the XML document. Finally, the definition in [1–3] requires
scanning the set of tree tuples to check for satisfaction in a manner similar to
ordinary FD satisfaction. This last step is common also to our approach.

The rest of this paper is organized as follows. Section 2 contains some pre-
liminary definitions that we need before defining XFDs. We model an XML
document as a tree as follows. In Section 3 the definition of an XFD is presented
and the essential ideas of our algorithm are presented. Section 4 contains details



6 Millist W. Vincent and Jixue Liu

of experiments that were performed to assess the efficiency of our approach and
Section 5 contains concluding comments.

2 Preliminary Definitions

Definition 1. Assume a countably infinite set E of element labels (tags), a
countably infinite set A of attribute names and a symbol S indicating text. An
XML tree is defined to be T = (V, lab, ele, att, val, vr) where:

1. V is a finite set of nodes;
2. lab is a total function from V to E ∪A ∪ {S};
3. ele is a partial function from V to a sequence of nodes in V such that for

any v ∈ V , if ele(v) is defined then lab(v) ∈ E;
4. att is a partial function from V ×A to V such that for any v ∈ V and a ∈ A,

if att(v, a) = v1 then lab(v) ∈ E and lab(v1) = a;
5. val is a function such that for any node in v ∈ V, val(v) = v if lab(v) ∈ E

and val(v) is a string if either lab(v) = S or lab(v) ∈ A;
6. We extend the definition of val to sets of nodes and if V1 ⊆ V , then val(V1)

is the set defined by val(V1) = {val(v)|v ∈ V1};
7. vr is a distinguished node in V called the root of T ;
8. The parent-child edge relation on V , {(v1, v2)|v2 occurs in ele(v1) or v2 =

att(v1, a) for some a ∈ A} is required to form a tree rooted at vr;

Also, the set of ancestors of a node v ∈ V is denoted by ancestor(v) and the
parent of a node v by parent(v).

We now give some preliminary definitions related to paths.

Definition 2. A path is an expression of the form l1. · · · .ln, n ≥ 1, where li ∈ E
for 1 <= i <= n−1 and ln ∈ E∪A∪{S} and l1 = root. If p is the path l1. · · · .ln
then Last(p) = ln.

For instance, if E = {root, Dept, Section, Emp} and A = {Project} then
root, root.Dept and root.Dept.Section are all paths.

Definition 3. Let p denote the path l1. · · · .ln. The function Parent(p) is the
path l1. · · · .ln−1. Let p denote the path l1. · · · .ln and let q denote the path q1. · · · .
qm. The path p is said to be a prefix of the path q, denoted by p ⊆ q, if n ≤ m
and l1 = q1, . . . , ln = qn. Two paths p and q are equal, denoted by p = q, if p is
a prefix of q and q is a prefix of p. The path p is said to be a strict prefix of q,
denoted by p ⊂ q, if p is a prefix of q and p �= q. We also define the intersection
of two paths p1 and p2, denoted but p1 ∩ p2, to be the maximal common prefix of
both paths. It is clear that the intersection of two paths is also a path.

For instance, if E = {root, Dept, Section, Emp} and A = {Project} then
root.Dept is a strict prefix of
root.Dept.Section and root.Dept.Section.Emp ∩

root. Dept.Section.Project = root.Dept.Section.



Checking Functional Dependency Satisfaction in XML 7

Definition 4. A path instance in an XML tree T = (V, lab, ele, att, val, vr) is
a sequence v1. · · · .vn such that v1 = vr and for all vi, 1 < i ≤ n,vi ∈ V and
vi is a child of vi−1. A path instance v1. · · · .vn is said to be defined over the
path l1. · · · .ln if for all vi, 1 ≤ i ≤ n, lab(vi) = li. Two path instances v1. · · · .vn

and v′1. · · · .v′n are said to be distinct if vi �= v′i for some i, 1 ≤ i ≤ n. The path
instance v1. · · · .vn is said to be a prefix of v′1. · · · .v′m if n ≤ m and vi = v′i for all
i, 1 ≤ i ≤ n. The path instance v1. · · · .vn is said to be a strict prefix of v′1. · · · .v′m
if n < m and vi = v′i for all i, 1 ≤ i ≤ n. The set of path instances over a path
p in a tree T is denoted by Paths(p).

For example, in Figure 1, vr.v1.v3 is a path instance defined over the path
root.Dept.Section and vr.v1.v3 is a strict prefix of vr.v1.v3.v4

We now assume the existence of a finite set of legal paths P for an XML
application. Essentially, P defines the semantics of an XML application in the
same way that a set of relational schema define the semantics of a relational
application. P may be derived from the DTD, if one exists, or P be derived
from some other source which understands the semantics of the application if no
DTD exists. In a sense we are assuming that XFDs and DTDs are orthogonal,
in a similar fashion to that used in [6] where keys and DTDs are assumed to
be orthogonal. We note that because of the restriction that P is finite, if P is
derived from a DTD then the DTD must be non recursive. Next, we place the
following restriction on the set of paths.

Definition 5. A set P of paths is downward closed if for any path p ∈ P , if
p1 ⊂ p then p1 ∈ P .

This is natural restriction on the set of paths and any set of paths that is
generated from a DTD will be downward closed.

We now define the notion of an XML tree conforming to a set of paths P .

Definition 6. Let P be a downward closed set of paths and let T be an XML
tree. Then T is said to conform to P if every path instance in T is a path instance
over a path in P .

We note that if the set of paths is derived from a DTD, then requiring that
the XML document conform to the set of paths is a much weaker condition than
requiring that it conform to the DTD.

The next issue that arises in developing the machinery to define XFDs is the
issue of missing information. This is addressed in [14] where missing nodes are
considered and XFDs are defined using an extension of the strong satisfaction
approach used in defining FD satisfaction in incomplete relations [4]. However,
in this paper we take the simplifying assumption that there is no missing infor-
mation in the XML tree. More precisely, we have the following definition.

Definition 7. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . Then T is defined to be complete if whenever there exist
paths p1 and p2 in P such that p1 ⊂ p2 and there exists a path instance v1. · · · .vn

defined over p1, in T , then there exists a path instance v′1. · · · .v′m defined over
p2 in T such that v1. · · · .vn is a prefix of the instance v′1. · · · .v′m.



8 Millist W. Vincent and Jixue Liu

Fig. 1. A complete XML tree

For example, if we take P to be {root, root.Dept,
root.Dept.Section, root.Dept.Section.Emp,

root.Dept.Section.Emp.S root.Dept.Section.Project} then the tree in Fig-
ure 1 conforms to P and is complete.

One important comment to make on completeness is that if the set of paths
is derived from a DTD and if we consider trees that conform to the DTD, and
not just to P , then complete trees correspond only to disjunction free DTDs as
shown in [3].

The next function returns all the final nodes of the path instances of a path
p in T .

Definition 8. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . The function N(p), where p ∈ P , is the set of nodes defined
by N(p) = {v|v1. · · · .vn ∈ Paths(p) ∧ v = vn}.

For example, in Figure 1, N(root.Dept) = {v1, v2}.
We now need to define a function that returns a node and its ancestors.

Definition 9. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . The function AAncestor(v), where v ∈ V , is the set of nodes
in T defined by AAncestor(v) = v ∪ Ancestor(v).

For example in Figure 1, AAncestor(v3) = {vr, v1, v3}. The next function re-
turns all nodes that are the final nodes of path instances of p and are descendants
of v.

Definition 10. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . The function Nodes(v, p), where v ∈ V and p ∈ P , is the
set of nodes in T defined by Nodes(v, p) = {x|x ∈ N(p) ∧ v ∈ AAncestor(x)}

For example, in Figure 1, Nodes(v1, root.Dept.Section.Emp) = {v4, v5}.



Checking Functional Dependency Satisfaction in XML 9

3 Checking XFDs

We firstly recall the definition of an XFD from [14], restricted to the situation
where the XML document is complete.

Definition 11. Let P be a set of downward closed paths and let T be a com-
plete XML tree that conforms to P . An XML functional dependency (XFD) is a
statement of the form: p1, . . . , pk → q, k ≥ 1, where p1, . . . , pk and q are paths in
P . T satisfies the XFD if there exists pi, for some i, 1 ≤ i ≤ k, such that pi = q
or whenever there exists two distinct path instances v1. · · · .vn and v′1. · · · .v′n de-
fined over q in T such that val(vn) �= val(v′n), then ∃i, 1 ≤ i ≤ k, such that
val(Nodes(xi, pi))∩val(Nodes(yi, pi)) = ∅, where: xi = {v|v ∈ AAncestor(vn)∧
v ∈ N(pi ∩ q)} and yi = {v|v ∈ AAncestor(v′n) ∧ v ∈ N(pi ∩ q)}.

We now illustrate the definition by an example.

Example 1. Consider the XFD
root.publication.publisher.S → root.publication.title in Figure 2.
Then v4∈N(root.publication.title) and v6∈N(root.publication.title)
and val(v4)="t1" �=val(v6)="t2".
So root.publication.title∩ root.publication.publisher.S =
root.publication and so N(root.publication) = {v1, v2}. Thus x11 = v1

and y11 = v2 and so Nodes(x11 , root.publication.publisher.S) = v17 and
thus val(Nodes(x11 , root.publication.publisher.S)) = {"p1"}. Also,
Nodes(y11 , root.publication.publisher.S) = v19 and so
val(Nodes(y11 , root.publication.publisher.S)) = {"p1"} and so the XFD
root.publication.publisher.S → root.publication.title is violated be-
cause val(Nodes(x11 , root.publication.publisher.S))
∩ val(Nodes(y11 , root.publication.publisher.S)) �= ∅. We note that if the
val of node v4 was changed to "t2" then the XFD would be satisfied.

Consider next the XFD root.publication.title →
root.publication.publisher.S. The only nodes in
N(root.publication.publisher.S) are v17 and v19 and val(v17) = "p1" and
val(v19) = "p1" and so the XFD root.publication.title →
root.publication.publisher.S is satisfied.

We now present an algorithm for checking whether an XML document sat-
isfies a set of XFDs. The algorithm has two major steps. The first step is to
produce what we call tuples. The second step is to hash the tuples to check if
the document satisfies the XFDs.

3.1 Tuple Generation

We start with the definition of some terms.

Definition 12 (Relevant Path). Given a set Σ of FDs {f1, . . . , fm} we use
relev(Σ), called the set of relevant paths, to denote the list of distinct paths
defined as the following:



10 Millist W. Vincent and Jixue Liu

Fig. 2. An XML tree

– all paths involved in Σ, including those on the LHS of the XFDs and also
those on the RHS;

– if p1, p2 ∈ relev(Σ) then p1 ∩ p2 ∈ relev(Σ);
– the order of the paths and path intersections in the list agrees with the order

of their appearances in documents.

Consider the example in Figure 3.
Let Σ = {root.A, root.A.B → root.A.G.C, root.A.G.C, root.A.G.D → root.A.B}.
Then relev(Σ) = [A, B, G, C, D]. Note that for simplicity, we abbreviate paths
by their end labels, which will not introduce confusion in the presentation.

We further use pathroot(Σ), called the path root, to mean the shortest path in
relev(Σ). We call a subtree rooted at a node labelled by pathroot(Σ) a relevant
tree. We call the nodes in a relevant tree labelled by the end labels of the paths
in relev(Σ) relevant nodes. Given a relevant node v, path(v) is the path on the
path instance reaching v. Given a path p ∈ relev(Σ), posi(p) is the sequential
number of p in relev(p) and if p is the first element in relev(Σ), then posi(p)
is 1.

In Figure 3, pathroot(Σ) = root.A. The subtree rooted at v1 is relevant tree.
All nodes labelled by A, B, C, D, G are relevant nodes. posi(root.A.G.D) = 5
and posi(root.A) = 1, path(v4) = root.A.G.

The concept tuple defined following is an important construct used to model
the result of document parsing.

Definition 13 (Tuple). Given a set Σ of XFDs and a relevant tree bT , a tuple
t of bT over relev(Σ) is defined as t =< val1, ..., valn > where n is the number of
paths in relev(Σ) and for each i in [1, ..., n], pi ∈ relev(Σ)∧vali = val(vu)∧vu ∈
bT ∧ lab(vu) = last(pi).

We define the following terms to be used to indicate the directions of parsing
in relation to the paths in relev(Σ).



Checking Functional Dependency Satisfaction in XML 11

Fig. 3. An XML tree and its tuples

Definition 14. Let vl be the last visited relevant node and v be the current
visited node. Then:

– v is called a down node if posi(path(v)) > posi(path(vl));

– v is called a up node if posi(path(v)) < posi(path(vl));

– v is called a across node if posi(path(v)) =

posi(path(vl)).

Note that in this definition, the directions, down, up, and across, are defined
relative to the order in relev(Σ), not the directional positions in a tree. This
is important because during parsing, we do not care about irrelevant nodes but
only concentrate on relevant nodes.

We now propose the parsing algorithm. The algorithm reads text from a
document and generates the tuples for a set of XFDs. After a line of text is read,
the algorithm tokenizes the line into tokens of tags and text strings. If a token is
a tag of a relevant path, then the parsing direction is determined. If the direction
is downward, content of the element will be read and put into the current tuple.
If it is across, new tuples are created. In the algorithm, there are two variables
openTuple and oldOpenTuple used to deal with multiple occurrences of a node.
For example in Figure 3, there are multiple B nodes. Multiple tuples need to be
created so that each occurrence can be combined with values from other relevant
nodes like C nodes and D nodes. In the algorithm, we discuss only elements but
not attributes. Attributes are only specially cases of elements when parsed and
the algorithm can be easily adapted to attributes.



12 Millist W. Vincent and Jixue Liu

Algorithm 1
INPUT: An XML document T and relev(Σ)
OUTPUT: a set of tuples

Let lastPosi = 1, curPosi = 1,
openTuple = 1, lastOpenTuple = 1

Let reading will read and tokenize input to one of the

following tokens: start tags, closing tags, and texts

Foreach token in T in order,

if token is text: set token as value to the

position curPosi of the last openTuple
of tuples

let curPosi = posi(tag)
if curPosi = 0 (NOT relevant): next token

if token is a closing tag

if current is the last in relev(Σ)
openTuple = oldOpenTuple = 1

next noken;

if curPosi > lastPosi (down)

lastOpenTuple = openTuple
lastPosi = curPosi, next token

if curPosi = lastPosi (across)

create oldOpenTuple new tuples

copy the first lastPosi − 1 values from

the previosu tuple to the new tuples

openTuple = openTuple + lastOpenTuple
next token

if curPosi < lastPosi (up)

lastPosi = curPosi, next token

end foreach

Observation 1: The time for the above algorithm to generate tuples is linear
in the size of the document.

3.2 Hashing and Adaption

Once we get the tuples, we use hashing to check if the XFDs are satisfied by
the document which is now represented by the tuples. Hashing is done for each
XFD. In other words, if there are m XFDs, m hash tables will be used. Let Tup
be the tuples generated by Algorithm 1. We project tuples in Tup onto the paths
of an XFD f := {p1, ..., pn} → q to get a projected bag of tuples denoted by
Tup(f). For each tuple t in Tup(f), f(p) denotes the projection t[p1, ..., pn] and
f(q) denotes t[q]. Then a hash table is created for each XFD as follows.

The hash key of each hash table is f(p) and the hash value is f(q). When
two tuples with the same f(p) but different f(q)s are hashed into a bucket, the
XFD is violated. This criteria corresponds exactly to the definition of an XFD
but with the condition that there is no collision.



Checking Functional Dependency Satisfaction in XML 13

We define a collision to be the situation where two tuples get the same hash
code which puts the two tuples in the same bucket. Based on the criteria above,
this means that the two tuples make the XFD violated but in fact they do
not. For example, if the two tuples for < f(p), f(q) > are < 10...0, 1 > and
< 20...0, 2 > where ‘...’ represent 1000 zeros. If a hash function is the modular
operator with the modular being 1 million indicating there are 1 million buckets
in the hash table, then the two tuples will be put into the same bucket of the hash
table which indicate that the XFD is not satisfied based on the criteria presented
above. However, the tuples satisfy the XFD. With normal extendible hashing the
traditional solution to this problem is to double the size of the hash table, but
this means that memory space can be quickly doubled while the two tuple are
still colliding. In fact with only two tuples that collide, we can exhaust memory,
no matter how large, if there is no appropriate collision handling mechanism.

With our implementation, we use two types of collision handling mechanisms.
The first one is doubling the size of the hash table. As discussed above, this only
works for a limited number of cases. The second technique is used if the table
size cannot be doubled. The second method involves the use of overflow buckets
and is illustrated in Figure 4.

Fig. 4. Bucket structure of hash table

In the figure, a bucket has a section, denoted by bask(q), to store f(q) and
a downward list, denoted by bask(p), to store f(p)’s if there are multiple tuples
having the same f(q) but different f(p)’s because of a collision. It is also possible
that multiple tuples having different f(q)’s come into the same bucket, as we
discussed before, because of a collision. In this case, these tuples are stored, based
on their f(q) values, in the extended buckets which are also buckets connected
to the main bucket horizontally.

With this extension, the following algorithm is used to check if the XFDs is
satisfied.

The performance of the algorithm is basically linear. There is a cost to run
the “bucket loop” in the algorithm. However, the cost really depends on the
number of collisions. From our experiments, we observed that collision occurred,
but the number of buckets involved in collisions is very low. At the same time,
more collisions means a higher probability of violating the XFDs.



14 Millist W. Vincent and Jixue Liu

Algorithm 2
INPUT: A set Tup(f) of tuple for XFD f
OUTPUT: true or false

Set the hash table size to the maximum allowed by

the computer memory

Foreach t in Tup(f)
let code = hashFunction(f(p))
set current bucket to bucket code
bucket loop

if bask(q) = f(q), insert f(p) in to

bask(p) else if it is not in it

exit the bucket loop

if bask(q)! = f(q), check to see if

f(p) is in bask(p),
if yes, exit algorithm with false,

if not, let the current bucket be

the next extended bucket

go to the beginning of the

bucket loop

end bucket loop

end foreach

return true

4 Experiments

In this section we report on experiments with the algorithms presented in the
previous section. All the experiments were run on 1.5GHz Pentium 4 machine
with 256MB memory. We used the DTD given in Example 5 and artificially
generated XML documents of various sizes in which the XFD was satisfied, the
worst case situation for running time as in such a case all the tuples need to
be checked. When documents were generated, multiple occurrences of the nodes
with the same labels at all levels were considered. Also, the XFDs were defined
involving paths at many levels and at deep levels.

In the first experiment, we checked the satisfaction of one XFD and fixed the
number of paths on the left hand side of the XFD to 3. We varied the size of the
XML document and recorded the CPU time required to check the document for
the satisfaction of one XFD. The results of this experiment are shown in Figure
6. These results indicate that the running time of the algorithm is essentially
linear in the number of tuples. This is to be expected as the time to perform
the checking of an XFD is basically the time required to read and parse the
XML document once, which is linear in the size of the document and to hash
the tuples into the hash table which again is linear.

In the second experiment, we limited ourselves to only one XFD, fixed the
number of tuples in the XML document to 100,000 (and so the size of the
document was also fixed), but varied the number of paths on the left hand side
of the XFD. The results are shown in Figure 7. The figure shows that again the
time is linear in relation to the number of paths. This is also to be expected



Checking Functional Dependency Satisfaction in XML 15

Fig. 5. Implementation DTD

Fig. 6. The number of tuples vs checking time (in seconds)

because the number of paths in a XFD only increases the length of a tuple, but
does not require any change to other control structures of the algorithm and
therefore the times for reading, parsing, and checking are all kept linear. It is
the increase of tuple length that caused the slight increase in processing time
and this increase is slow and linear.

In the third experiment, we fixed the number of paths on the left hand side
of a XFD to 3 and also fixed the file size and the number of tuples, but varied
the number of XFDs to be checked. The result is shown in Figure 8. This result
shows that the time is linear in the number of XFDs to be checked, but the
increase is steeper than that of Figure 7. This is caused by the way we do the
checking. In the previous section, we said that for each XFD, we create a hash
table. However, for a very large number of XFDs this requires too much memory



16 Millist W. Vincent and Jixue Liu

Fig. 7. Number of paths in the left and side of an XFD vs checking time

Fig. 8. Number of XFDs to be checked vs checking time

so in this experiment, we created one hash table, checked one XFD, and then
used the same hash table to check the second XFD. Thus the time consumed is
the addition of the times for checking these XFDs separately. The benefit of this
algorithm is that parsing time is saved. Parsing time, based on our experience,
is a little more than the time for hashing. Furthermore, the performance of the
third experiment can be improved if a computer with bigger memory is used.

5 Conclusions

In this paper we have addressed the problem of developing an efficient algorithm
for checking the satisfaction of XFDs, a new type of XML constraint that has
recently been introduced [14]. We have developed a novel hash based algorithm
that requires only one scan of the XML document and its running time is linear
in the size of the XML document and linear in the number of XFDs. Also, our
algorithms can be used to efficiently incrementally check an XML document.

There are several are other extensions to the work in this paper that we
intend to conduct in the future. The first is to extend the algorithm to the case
where there is missing information in the XML document as defined in [14]. The
second is to extend the approach to the checking of multivalued dependencies in
XML, another new XML constraint that has recently been introduced [12, 13].



Checking Functional Dependency Satisfaction in XML 17

References

1. M. Arenas and L. Libkin. A normal form for XML documents. In Proc. ACM
PODS Conference, pages 85–96, 2002.

2. M. Arenas and L. Libkin. An information-theoretic approach to normal forms for
relational and XML data. In Proc. ACM PODS Conference, pages 15–26, 2003.

3. M. Arenas and L. Libkin. A normal form for XML documents. TODS, 29(1):195
– 232, 2004.

4. P. Atzeni and V. DeAntonellis. Foundations of databases. Benjamin Cummings,
1993.

5. T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible markup language
(XML) 1.0. Technical report, http://www.w3.org/Tr/1998/REC-XML-19980819,
1998.

6. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about keys
for XML. Information Systems, 28(8):1037–1063, 2003.

7. P. Buneman, W. Fan, J. Simeon, and S. Weinstein. Constraints for semistructured
data and XML. ACM SIGMOD Record, 30(1):45–47, 2001.

8. P. Buneman, W. Fan, and S. Weinstein. Path constraints on structured and
semistructured data. In Proc. ACM PODS Conference, pages 129 – 138, 1998.

9. Y. Chen, S. Davidson, and Y. Zheng. Xkvalidator: a constraint validator for xml.
In CIKM, pages 446–452, 2002.

10. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.
Journal of the ACM, 49(3):368 – 406, 2002.

11. W. Fan and J. Simeon. Integrity constraints for XML. Journal of Computer and
System Sciences, 66(1):254–291, 2003.

12. M.W. Vincent and J. Liu. Multivalued dependencies and a 4NF for XML. In 15th
International Conference on Advanced Information Systems Engineering (CAISE),
pages 14–29. Lecture Notes in Computer Science 2681 Springer, 2003.

13. M.W. Vincent, J. Liu, and C. Liu. Multivalued dependencies and a redundancy free
4NF for XML. In International XML database symposium (Xsym), pages 254–266.
Lecture Notes in Computer Science 2824 Springer, 2003.

14. M.W. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their
application to normal forms in XML. ACM Transactions on Database Systems,
29(3):445–462, 2004.

15. M.W. Vincent, J. Liu, C. Liu, and M.Mohania. On the definition of functional
dependencies in XML. In submitted to ACM Transactions on Internet Technology,
2004.

16. J. Widom. Data management for XML - research directions. IEEE data Engineer-
ing Bulletin, 22(3):44–52, 1999.


	Checking Functional Dependency Satisfaction in XML
	1 Introduction
	2 Preliminary Definitions 
	3 Checking XFDs
	3.1 Tuple Generation
	3.2 Hashing and Adaption

	4 Experiments
	5 Conclusions
	References




