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Abstract. An increasing number of applications depend on efficient
storage and analysis features for XML data. Hence, query optimization
and efficient evaluation techniques for the emerging XQuery standard
become more and more important. Many XQuery queries require nested
expressions. Unnesting them often introduces binary grouping.
We introduce several algorithms implementing binary grouping and an-
alyze their time and space complexity. Experiments demonstrate their
performance.

1 Motivation

Optimization and efficient evaluation of queries over XML data becomes more
and more important because an increasing number of applications work with
XML data. In XQuery – the emerging standard query language for XML –
queries including restructuring or aggregation often require nested queries. For
example, the following query returns for each of the fifty richest persons of the
world the number of countries with smaller gross domestic product (GDP) than
the person’s total capital.

for $p in document("richest-fifty.xml")//person
return
<result>
<person> { $p/name } </person>
<count-richer> {

count(for $c in document("countries.xml")//country
where $p/capital gt $c/gdp
return $c) }

</count-richer>
</result>

This query combines data of two different documents and performs grouping
and aggregation over the XML data. Note that each country can contribute to
the count of multiple persons, and that a non-equality predicate is used to relate
items from both documents.
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Direct nested evaluation of this query is highly inefficient because for each
person the nested FLWR expression is evaluated, demanding a scan of the
countries document. Fortunately, the query can be unnested introducing bi-
nary grouping [17]. Moreover, optimizers can then apply algebraic equivalences
to further improve performance. However, efficient implementations for binary
grouping are not available yet. If they were, the optimizer could choose among
them, ensuring an efficient query evaluation. We fill this gap and present sev-
eral main-memory algorithms for implementing binary grouping. Further, we
analyze their time and space complexity. The different algorithms will require
different conditions to hold. Enumerating them then enables the query optimizer
to select the most efficient implementation of binary grouping for a given situa-
tion. Experiments demonstrate that performance can be improved by orders of
magnitude. Due to space constraints, we restrict ourselves to the formulation of
algorithms working on sets of tuples. However, an extension to bags or sequences
is not difficult (see [18]). Let us stress that binary grouping is useful not only
in the context of XQuery. It has also been successfully applied to unnest nested
OQL-queries [4, 20] and to evaluate complex OLAP queries [2].

The paper is structured as follows. Section 2 presents the definition of binary
grouping and surveys properties of predicates and aggregate functions. They
form the basis for the selection of an efficient implementation for the binary
grouping operator. The main contribution of this paper – Section 3 – introduces
several algorithms for binary grouping and analyzes their time and space com-
plexity. Exemplary performance results are given in Section 4. More detailed
experimental data is presented in [18]. Before concluding this paper, Section 5
reviews related work.

2 Preliminaries

2.1 The Algebra

We will only present the operators needed for our exposition. For an extensive
treatment of our algebra we refer to [4]. Our framework is extendible to sequences
as required in XQuery (cf. [17] for this algebra and related work).

The algebra works on sets of unordered tuples. Each tuple contains a set
of variable bindings representing the attributes of the tuple. Single tuples are
constructed by using the standard [·] brackets. The concatenation of tuples and
functions is denoted by ◦. The set of attributes defined for an expression e is
defined as A(e). The set of free variables of an expression e is defined as F(e).

For an expression e1 possibly containing free variables and a tuple t, e1(t)
denotes the result of evaluating e1 where bindings of free variables are taken
from variable bindings provided by t – this requires F(e1) ⊆ A(t). Note that
this can also be used for function application. We denote NULL values by .

The semantics of the binary grouping operator is defined by the map operator
(χ) and the selection (σ). If their input is the empty set (∅), their output is also
empty.

Let us briefly recall selection with predicate p defined as σp(e) := {x|x ∈
e, p(x)} and map defined as χa:e2(e1) := {y ◦ [a : e2(y)]|y ∈ e1}. The latter
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extends a given input tuple y ∈ e1 by a new attribute a whose value is computed
by evaluating e2(y).

Definition 1. We define the binary grouping operator as:

e1Γg;A1θA2;fe2 := χg:f(σA1θA2 (e2))(e1)

In this definition we call e1 grouping input and e2 aggregation input.

Note that the result of the binary grouping operator is empty if and only if the
grouping input evaluates to an empty set. When the aggregation input is empty
we assume that f(∅) is well-defined, and f(∅) is returned as the result. In many
cases f will be an aggregation function such as sum. We refer to [18] for examples
of applying these operators.

2.2 Properties of Predicates

To find the most efficient implementation for binary grouping, we take a closer
look at the properties of predicates. Therefore, we distinguish, for example,
symmetric, irreflexive predicates (�=) from antisymmetric, transitive predicates
(<,≤, >,≥).

2.3 Properties of Aggregate Functions

Aggregate functions can be decomposable and reversible [3]. These properties
help us to find the most efficient implementation for binary grouping. To make
the paper self-contained, we recall the definitions of these properties.

Let N be the codomain of a scalar aggregate function f : X → N over some
set X of tuples. In the definitions below, we will make use of (sub-) sets X , Y ,
and Z, with X = Y

.∪ Z and Y ∩ Z = ∅.
Definition 2. We say f : X → N is decomposable if there exist functions

α : X → N ′

β : N ′,N ′ → N ′

γ : N ′ → N
with f(X) = γ(β(α(Y ), α(Z)))

Decomposable aggregate functions allow us to aggregate on subsets of the whole
data and combine the results of these computations to the aggregate over the
whole data. Obviously, the common aggregate functions are decomposable.

Definition 3. A decomposable scalar function f : X → N is called reversible
if for β there exists a function β−1 : N ′,N ′ → N ′ with

f(Z) = γ(β−1(α(X), α(Y )))

for all X, Y , and Z with X = Y
.∪ Z and Y ∩ Z = ∅.
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α

A1 s c

1 5 2
2 9 2
3 0 0

14 4

(a) after matching

β−1

A2 s c

1 9 2
2 5 2
3 14 4

γ

A2 a

1 4.5
2 2.5
3 3.5

(b) �=-table

β

A2 a

1 14 4
2 9 2
3 0 0

γ

A2 a

1 3.5
2 4.5
3

(c) ≤-table

Fig. 1. Example of the reversible aggregate function avg

Reversible scalar aggregates allow us to compute the value of an aggregate
function over some subset by computing the aggregate function over some su-
perset. Using this result, we can use the inverse function β−1 to compute the
desired value for the subset. As examples sum, count, and avg are reversible,
min and max are not.

For function avg, we define α(X) = [s : sum(X), c : |X |] computing the sum
and cardinality of each group, β([s : s1, c : c1], [s : s2, c : c2]) = [s : s1 + s2, c :
c1 + c2], β−1([s : s1, c : c1], [s : s2, c : c2]) = [s : s1 − s2, c : c1 − c2] combining the
sums and counts of two groups, and γ([s : s1, c : c1]) = [a : s1/c1] yielding the
average for each group.

The θ-table proposed in [3] exploits the properties of decomposable and re-
versible aggregate functions. Conceptually, the θ-table is an array with an entry
for each group that stores data collected during aggregation. First, partial ag-
gregation for some subset of the matching data is done. Then the results of the
first step are combined to the final result for each group. The first step avoids
duplicate work and is the source of improved efficency, while the second step
benefits from the properties of the predicate and the aggregation function.

To make this more concrete, let us assume that after matching the grouping
input and aggregation input the θ-table contains the data shown in Figure 1(a).
In case of the �=-table, aggregation is done with data matched with = instead
of �=. In addition, the values for sum and count over the whole data set are
collected in an auxiliary entry shown in the last row of the table (c.f. Fig. 1(b)).
This auxiliary entry is used to obtain the sum and count values of each group
using function β−1. The final result is computed using function γ. For the first
row in Figure 1(b) we have β−1([14, 4], [5, 2]) = [14 − 5, 4 − 2] = [9, 2] and
γ([9, 2]) = 4.5.

With a ≤-table aggregation is only done on the closest matching group. The
final result of each group is computed in a walk backwards through the table,
incrementally combining the aggregated values of each group using function β.
Applying function γ to each group yields the final result for each group. For the
second row in Figure 1(c), we have β([0, 0], [9, 2]) = [9, 2] and γ([9, 2]) = 4.5.

3 Algorithms

3.1 Notation
The following notation will be used in the complexity formulas to describe the
time and space complexity of the various algorithms:
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f := duplication factor
g := storage space per group
α := load factor of the hash table
l := Θ(1 + α)
n := max(|e1|, |e2|)

The duplication factor as defined in [1] is the ratio of the number of tuples before
duplicate elimination to the number of tuples after duplicate elimination. Note
that α, the load factor of the hash table, changes while values are inserted into
the hash table. We will ignore this fact and use the load factor as an upper bound
after all values have been inserted into the hash table. Therefore, all complexity
formulas will represent upper bounds. For brevity reasons, we denote l = Θ(1+α)
as the time for a lookup in the hash table [5], and n as the maximum cardinality
of both inputs.

In the exposition of each alternative algorithm we will follow the same basic
structure: First, we state the assumptions on the predicate and the aggregate
function as introduced in Section 2. Then, we present the algorithm in pseudo
code and deduce the time and space complexity from the code. Finally, we ex-
plain implementation details. All operators are implemented as iterators [9] con-
sisting of an open function for initialization, a next function which returns
one result tuple of the operator for each call, and a close function that does
some deinitialization. The implementations in our experiments are set-based.
The pseudo code uses the following notations:

p(x, y) – returns the result of evaluating the predicate A1θA2, where
A1 ∈ A(e1), A2 ∈ A(e2), and θ a comparison as described in
Section 2

T – a tuple of either input
G – a tuple representing a group

GT – an auxiliary grouping tuple
ζα(G) – initializes a tuple G appropriately for α,

α(G, T ) – returns the result of evaluating function α on a group G with
tuple T from the aggregation input

β(G1, G2),
β−1(G1, G2)

– return the result of evaluating β and β−1 on groups G1 and G2

γ(G) – returns the result of γ on a group G

Figure 2 summarizes the algorithms we present in this paper. The left part of
the table contains the algorithms with their time and space complexity derived
from their code. The right part of the table surveys the assumptions for each
algorithm. Thus, this table can be used as a guide to the most efficient imple-
mentation. The assumptions are related to the inputs e1 and e2, the predicate
A1θA2, and the function f as used in Definition 1.

The last column indicates the ratio of improvement in execution time over the
direct nested evaluation of the nested query. For simplicity, we restrict ourselves
only to sorted input for both the grouping and aggregation input for an input size
that all algorithms were capable to evaluate. We use the algorithm NestedSort



Main Memory Implementations for Binary Grouping 167

Algorithm Assumptions
Name Time Space e1 e2 A1θA2 f ∆

Nested l
f
|e1||e2| g

f
|e1| - - - - 0.95-1.2

NLBinGroup l
f
|e1||e2| + (l + 1

f
)|e1| g

f
|e1| - - - - 0.65-0.75

HashBinGroup (l + 1
f
)|e1|+

O(( |e1|
f

+ |e2|) lg |e1|
f

)

(1+g)|e1|
f

- - ¬SY, T D 1300

TreeBinGroup |e1|
f

+ O((|e1| + |e2|) lg |e1|
f

) g
f
|e1| - - ¬SY, T D 1300

EQBinGroup l(|e1| + |e2|) + |e1|
f

g
f
|e1| - - ¬R, SY, ¬T RE 1850

NestedSort 1
f
|e1||e2| O(1) S - - - 1.0

SortBinGroup 1
f
|e1||e2| O(1) S - - - 1.1-1.2

LTSortBinGroup |e1| + |e2| O(1) S S ¬SY, T - 2100

S sorted R reflexive
SY symmetric
T transitive

D decomposable
RE reversible

Fig. 2. Assumptions and complexity for the implementations of the binary grouping
operator

as the basis defining it as ∆ = 1.0. For some algorithms ranges for ∆ are given
because they are applicable for different types of predicates. Values of ∆ >
1.0 indicate an improvement by a factor ∆. Obviously, algorithms with more
assumptions evaluate up to three orders of magnitude faster than the nested-
loops-based algorithms with fewer assumptions.

3.2 Direct Evaluation of Nested Query

Nested evaluation is most generally applicable and the basis of comparison for
implementations of the binary grouping operator.

In general, nested queries are implemented by calling the nested query for
each tuple given to the map operator. However, more efficient techniques were
proposed to evaluate nested queries [11]. The general idea is to memoize the
result of the nested query for each binding of the nested query’s free variables.
When the same combination of free variables is encountered, the result of the
previous computation is returned. In general, a hash table would be employed
for memoizing which demands linear space in the size of the grouping input.
For sorted grouping input, only the last result needs to be stored resulting in
constant space.

We have implemented both strategies, and we will refer to these strategies
by Nested and NestedSort. Because of its simplicity we omit the pseudo code
for the nested strategies and restrict ourselves to the analysis of the complexity
(cf. Fig. 2). Both strategies expose quadratic time complexity because the nested
query must be executed for each value combination of free variables generated
by the outer query. In absence of duplicates, this is also true when memoization
is used.
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3.3 Nested-Loop-Implementation of Binary Grouping

NLBinGroup. There are no assumptions on the predicate, the aggregate func-
tion, or the sortedness of any input.

Open

1 open e1

� detect groups
2 while T ← next e1

3 do G ← HT.Lookup(T )
4 if G does not exist
5 then G ← HT.Insert(T )

� initialize group
6 ζα(G)
7 close e1

� match aggregation input to groups
8 open e2

9 while T ← next e2

10 do for each group G
in the HT

11 do if p(G,T )
12 then G ← α(G, T )
13 close e2

14 htIter ← HT.Iterator

Next

� next group in the hash table
1 if G ← htIter .Next
2 then return γ(G)
3 else return

Close

1 HT.CleanUp

(a) NLBinGroup

Open

1 open e1

2 ζα(GT ) � initialize group tuple
3 while T ← next e1

4 do G ← HT.Lookup(T )
5 if G does not exist
6 then G ← HT.Insert(T )

� initialize group
7 ζα(G)
8 close e1

9 open e2

10 while T ← next e2

11 do G ← HT.Lookup(T )
12 if G exists
13 then G ← α(G ,T )
14 if predicate is �=
15 then GT ← α(GT, T )
16 close e2

17 htIter ← HT.Iterator

Next

1 if G ← htIter .Next
2 then if predicate is �=
3 then G ← β−1(G,GT )
4 return γ(G)
5 else return

Close

1 HT.CleanUp

(b) EQBinGroup

Fig. 3. Pseudo code of NLBinGroup and EQBinGroup

We call the naive nested-loops-based implementation proposed in [2, 9] NL-
BinGroup. The pseudo code for this algorithm is shown in Figure 3(a). Most
work is done in function open. First, the grouping input is scanned, and all
groups are detected and stored in a hash table (l|e1| time). Most of the following
algorithms will follow this pattern. Next, the aggregation input is scanned once
for each group in the hash table. The tuples from the aggregation input are
matched with the tuple of the current group using the predicate. This matching
phase is similar to a nested-loop join and requires O( l

f |e1||e2|) time. When a
match is found, function α is used for aggregation. After this matching phase a
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traversal through all groups in the hash table is done to execute function γ to
finalize the groups ( |e1|

f time). The complete complexity formulas can be found
in Figure 2.

From the complexity equations we see that this algorithm introduces some
overhead compared to the hash-based case of Nested because several passes
through the hash table are needed. Hence, the time complexity is slightly higher
then the direct nested evaluation. The following sections discuss more efficient
algorithms for restricted cases.

3.4 Implementation of Binary Grouping with = or �=-Predicate

EQBinGroup. If the predicate is not an equivalence relation, the aggregate
function must be decomposable and reversible.

We generalize the �=-Table defined in [3] for predicate �=. Instead of an array,
we use a hash table to store an arbitrary number of groups. When collision lists
do not degrade, the asymptotic runtime will not change, however. The algorithm
in Figure 3(b) extends NLBinGroup.

In function Open detecting all groups requires l|e1| time. In line 11 we do
matching with equality for both kinds of predicates. But in line 15 all tuples
are aggregated in a separate tuple GT using function α if the predicate is �=.
Alltogether matching requires l|e2| time.

When we return the result in a final sweep through the hash table ( |e1|
f time)

we have to apply the reverse function β−1 when the predicate is �= (cf. line 3
in Next). For that, we use the auxiliary grouping tuple GT and the group G
matched with = and compute the aggregation result for �=. For scalar aggregate
functions, this computation can be done in constant time and space. For both
types of predicates, groups are finalized using function γ.

Compared to the directly nested evaluation and hash-based grouping, the
time complexity can be improved to linear time and linear space complexity (cf.
Fig. 2).

Figure 4 shows how EQBinGroup implements the idea of the �=-table intro-
duced in Section 2. Figure 4(b) shows the content of the hash table after function
open. For each detected group, the tuple for attribute a stores the value of at-
tribute A1, the sum, and the count of all matching tuples of the group. The
additional tuple GT is added at the bottom of the table. Note that the group
with value 3 did not find any match, but a properly initialized tuple for it ex-
ists in the hash table. Applying function β−1 to each group and GT and then
function γ as described in Section 2 produces the final result (cf. Fig. 4(c)).

3.5 Implementation of Binary Grouping with ≤-Predicate

These algorithms are applicable if the predicate is antisymmetric, transitive,
and the aggregate function is decomposable; no assumptions are made on the
sortedness of any inputs.

In this paper we investigate a hash table and a balanced binary search tree to
implement the ≤-table proposed in [3]. The advantage of this approach compared
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R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(a) Input data

(R1)Γa;A1 �=A2;avg(B)(R2)

A1 a

1 〈[1, 5, 2]〉
2 〈[2, 9, 2]〉
3 〈[3, 0, 0]〉

GT 〈[ , 14, 4]〉

(b) After open

(R1)Γa;A1 �=A2;avg(B)(R2)

A1 a

1 〈[1, 4.5]〉
2 〈[2, 2.5]〉
3 〈[3, 3.5]〉

GT 〈[ , 14, 4]〉

(c) Final result

Fig. 4. Example of the evaluation of EQBinGroup

Open

1 open e1

2 for T ← next e1

3 do G ← HTl.Lookup(T )
4 if G does not exist
5 then G ← HT.Insert(T )

� initialize group
6 ζα(G)
7 close e1

8 sort groups by matching
predicate of e1

9 open e2

10 for T ← next e2

11 do G ← minimal group in
≤-Table ≥ T

12 G ← α(G, T )
13 close e2

14 htIter ← ≤-Table.Iterator

Next

� next group in the ≤-table
1 if G ← htIter .Next
2 then G ← β(G, successor(G))
3 return γ(G)
4 else return

Close

1 HT.Cleanup
2 ≤-Table.CleanUp

(a) HashBinGroup

Open

1 open e1

2 for T ← next e1

3 do if == RB-Tree.Lookup(T )
4 then G ← RB-Tree.Insert(T )

� initialize group G
5 ζα(G)
6 close e1

7 open e2

8 while T ← next e2

9 do G ← minimal group in
RB-Tree ≥ T

10 G ← α(G, T )
11 close e2

12 G ← RB-Tree.Maximum

Next

1 if G �= RB-Tree.Minimum
2 then G ← β(G,RB-Tree.Succ(G))
3 G′ ← γ(G)
4 G ← RB-Tree.Pred(G)
5 return G ′

6 else return

Close

1 RB-Tree.CleanUp

(b) TreeBinGroup

Fig. 5. Pseudo code of HashBinGroup and TreeBinGroup

to using an array is that no upper bound for the number of groups needs to be
known. Since the assumptions are the same for both alternatives, we will only
discuss implementation details.



Main Memory Implementations for Binary Grouping 171

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(a) Input data

(R1)Γa;A1≤A2;sum(B)(R2)

A1 a

1 〈[1, 5]〉
2 〈[2, 9]〉
3 〈[3, 0]〉

(R1)Γa;A1≤A2;sum(B)(R2)

A1 a

1 〈[1, 14]〉
2 〈[2, 9]〉
3 〈[3, 0]〉

(b) HashBinGroup

(R1)Γa;A1≤A2;sum(B)(R2)

〈[2, 9]〉

〈[1, 5]〉 〈[3, 0]〉

(R1)Γa;A1≤A2;sum(B)(R2)

〈[2, 9]〉

〈[1, 14]〉 〈[3, 0]〉

(c) TreeBinGroup

Fig. 6. Example for the evaluation of HashBinGroup and TreeBinGroup

HashBinGroup. This algorithm, outlined in Figure 5(a), extends the NL-
BinGroup operator. It is formulated in terms of predicate <.

First, all groups are identified using a hash table (l|e1| time). Before match-
ing the tuples from the aggregation input, these groups are sorted according
to the predicate (O( |e1|

f lg |e1|
f ) time). This can be done in a separate array in

which the items in the hash table are referenced. In the matching phase binary
search is employed to find the closest group that still matches with the predicate
(O(|e2| lg |e1|

f ) time). Aggregation is done using function α. To compute the final

result, one walk backwards through the array visits each group ( |e1|
f time). First,

the aggregated values of distinct groups are combined using function β. Then,
function γ computes the final result of the group. One must be careful not to
destroy the aggregated result of the previous group when applying function γ.
The overall complexity can be found in Fig. 2.

TreeBinGroup. In an alternative implementation shown in Figure 5(b), we use
a balanced search tree (e.g. a Red-Black-Tree) to identify all groups (O(|e1| lg |e1|

f )
time). The search tree structure implies the inclusion of groups. Thus, no sorting
is needed after this step. Matching of tuples is done by a lookup in the search
tree (O(|e2| lg |e1|

f ) time). When a group cannot be found, matching and aggre-
gation is done on the last node in the tree that was visited. As with the previous
algorithm, a backward traversal through the tree is done to aggregate the final
result for each group using function γ ( |e1|

f time). The resulting complexity is
summarized in Fig. 2.

Comparison of the Implementations. Figure 6 resumes with the example in Sec-
tion 2 to trace the evaluation of HashBinGroup and TreeBinGroup showing
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the state after open. Note that the groups must be sorted to find the closest
matching group for aggregation with function α. This is achieved either by sort-
ing the groups in the hash table or implicitly during insertion into the binary
search tree. Each tuple stores the value of the grouping attribute and the aggre-
gated result for the group. The result of the final walk backwards through the
≤-table computes the final result using function β and γ.

When we compare the complexity formulas we observe that sorting is dom-
inant in HashBinGroup, and insertion is dominant in TreeBinGroup. Note
that in both cases, we can remove duplicates during insertion. The hash-based
implementation removes duplicates before sorting. In contrast, lookup of all
items in e1 in the balanced search tree demands O(|e1| lg |e1|

f ) time. This gives
the hash-based implementation a potential advantage. On the other hand, the
hash-based implementation does not degrade nicely when the collision lists on
the hash table are not bounded by a constant any more. This can lead to linear
search time in the collision lists (l ∈ O(|e1|), where l is the size of the collision
list). Thus, the hash-based implementation depends on a good hash function.

3.6 Implementations of Binary Grouping on Sorted Input

When the grouping input or the aggregation input is sorted, we can improve the
algorithm NLBinGroup.

SortBinGroup. First, we assume that only the grouping input is sorted.
Figure 7(a) presents the pseudo code for this algorithm. With sorted grouping

input, groups can be detected efficiently because only subsequent tuples need to
be compared (line 1 in Next). This can be done in constant space.

Matching the tuples of the aggregation input can be done with an algorithm
similar to a 1:N sort-merge join, i.e. a sort-merge join algorithm that assumes
that no duplicates occur on the left input. In the general case of an arbitrary
predicate, the aggregation input needs to be scanned once for each group. This
is done in O( 1

f |e1||e2|) time. It is also the reason for having no assumptions on
the sortedness of the aggregation input.

Since the algorithm iterates through each group and matches all tuples from
the aggregation input, groups does not have to be combined. Thus, the aggre-
gation function need not be decomposable.

LTSortBinGroup. In addition to the assumptions of the previous algorithm,
we now assume a antisymmetric and transitive predicate (e.g. <, or ≥). Both
inputs need to be sorted. The direction of sorting depends on the predicate used.
For example, for predicates < and ≤ both inputs need to be sorted in descending
order, for > and ≥ in ascending order. No restrictions apply to the aggregation
function.

These assumptions allow us to scan both inputs only once resulting in a time
complexity of |e1| + |e2|. Each group resumes aggregation on the aggregated
result of the previous group. For aggregation, we always use function α. The
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Open

1 open e1

2 open e2

Next

1 if G ← next group in e1

2 then while T ← next e2

3 do if p(G, T )
4 then G ← α(G, T )
5 close e2

6 open e2

7 return γ(G)
8 else return

Close

1 close e1

2 close e2

(a) SortBinGroup

Open

1 open e1

2 open e2

3 ζα(GT ) � initialize group tuple

Next

1 if G ← next group in e1

2 then copy group attributes of

G into GT
3 while (T ← next e2 ) ∧

p(GT ,T )
4 do GT ← α(GT, T )

� keep aggregated result in GT
5 G ← γ(GT )
6 return G
7 else return

Close

1 close e1

2 close e2

(b) LTSortBinGroup

Fig. 7. Pseudo code of SortBinGroup and LTSortBinGroup

result of finalizing a group using function γ is stored in a separate tuple, so
that the current value of aggregation is not destroyed (cf. line 5 in Next). The
algorithm stated in Figure 7(b) is formulated in terms of < or ≤ as predicates.

4 Experiments

We have implemented all algorithms in a prototype run-time system using GCC
C++ version 3.3.4. All queries were executed on an Intel Pentium M with 1.4
GHz and 512MB RAM running Linux with 2.6.8 Kernel. In several experiments
the performance of each algorithm was evaluated for different distributions. For
space reasons we can only present a tiny fraction of the experimental data and
refer to [18] for the details of the benchmark and the complete set of experimental
results.

The cardinality of the input sequences e1 and e2 ranged between 128 and
8388608. The grouping input e1 and the aggregation input e2 were of equal size.
The largest data set contained 63MB of data. The input for a query was loaded
into main memory before executing the queries.

Figure 8 summarizes the most interesting results of our experiments. It shows
the elapsed time for sorted input for both the grouping input and aggregation
input for the predicate �= and >.

Figure 8(a) clearly shows that EQBinGroup is the most efficient algorithm
for predicate �=. It performs orders of magnitude faster than the nested-loops-
based algorithms Nested, NestedSort, NLBinGroup and SortBinGroup



174 Norman May and Guido Moerkotte

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100  1000  10000  100000  1e+06  1e+07

T
im

e 
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

(a) Predicate �=

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100  1000  10000  100000  1e+06  1e+07

T
im

e 
(s

)

Input (# Tuple)

NestedSort
Nested

NLBinGroup
HashBinGroup
TreeBinGroup
SortBinGroup

LTSortBinGroup

(b) Predicate >
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which are hard to distinguish in their query performance. However, since EQBin-
Group loads all detected groups into a main memory data structure, its per-
formance suffers when memory gets scarce. In our experiments, this happens for
more than 2 million groups.

Figure 8(b) presents the experimental results for predicate >. The most ef-
ficient algorithm is LTSortBinGroup which is suited best for sorted input.
When the input is not sorted, both HashBinGroup and TreeBinGroup are
efficient algorithms with similar performance. When they run out of memory,
both reveal the same weakness as EQBinGroup.

Among the nested-loop-based algorithms NLBinGroup is slowest. The in-
efficiency was caused by the iterator used for traversing the hash table. Only
SortBinGroup exposes slightly improved efficiency compared to direct nested
evaluation using memoization.

Summarizing, our experiments confirm the theoretical results from Section 3.
We refer to [18] for more experimental results and a more detailed analysis.

5 Related Work

To the best of our knowledge, this paper is the first to investigate efficient
implementations for binary grouping. Only one implementation corresponding
to the NLBinGroup was presented so far [2].

However, previous work justifies the importance of binary grouping. Slightly
different definitions of it can be found in [2, 3, 20]. Only [3] describes possible
implementations. These papers enumerate use cases for binary grouping. In this
paper we propose efficient implementations of binary grouping and evaluate their
efficiency.

In addition, implementation techniques known for other operators apply for
the binary grouping operator as well. The idea of merging the functionality
of different algebraic operators to gain efficiency is well known. In [21] query
patterns for OLAP queries are identified. One of these patterns – a sequence of
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grouping and equi-join – is similar to the implementation of the binary grouping
operator. Sharing hash tables among algebraic operators was proposed in [12].

Our work also relates to work comparing sort-based and hash-based imple-
mentations of algebraic operators [7, 9, 10, 13, 14, 19]. However, they concen-
trate on implementations of equijoins. Non-Equality joins have been studied first
in [8].

We presented main-memory implementations of the binary grouping opera-
tor. Implementation techniques that materialize data that does not fit into main
memory can be applied to the binary grouping operator. We refer to [1, 6, 9, 15,
16] for such proposals.

6 Conclusion and Future Work

Binary grouping is a powerful operator to evaluate analytic queries [2] or to
unnest nested queries [4, 17]. We have introduced, analyzed, and experimentally
evaluated main memory implementations for binary grouping. Further, we have
identified the conditions under which each algorithm is applicable.

The results show that query processing time can be improved by orders of
magnitude, compared to nested evaluation of the query. Hence, binary grouping
is a valuable building block for database systems that support grouping and
aggregation efficiently.

For space reasons we refer to [18] for extensions of our algorithms to data
models working on bags or sequences.
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