
MemBeR: A Micro-benchmark Repository
for XQuery

Loredana Afanasiev1,�, Ioana Manolescu2,��, and Philippe Michiels3,���

1 University of Amsterdam, The Netherlands
lafanasi@science.uva.nl

2 INRIA Futurs & LRI, France
ioana.manolescu@inria.fr

3 University of Antwerp, Belgium
philippe.michiels@uia.ua.ac.be

Abstract. XQuery is a feature-rich language with complex semantics.
This makes it hard to come up with a benchmark suite which covers all
performance-critical features of the language, and at the same time allows
one to individually validate XQuery evaluation techniques. This paper
presents MemBeR, a micro-benchmark repository, allowing the evalua-
tion of an XQuery implementation with respect to precise evaluation
techniques. We take the view that a fixed set of queries is probably in-
sufficient to allow testing for various performance aspects, thus, the users
of the repository must be able to add new data sets and/or queries for
specific performance assessment tasks. We present our methodology for
constructing the micro-benchmark repository, and illustrate with some
sample micro-benchmarks.

1 Introduction

The development of XML query engines is currently being held back by a lack
of systematic tools and methodology for evaluating algorithms and optimization
techniques. The essential role of benchmark tools in the development of XML
query engines, or any type of data management systems for that matter, is well
established. Benchmarks allow one to assess a system’s capabilities and help
determine its strengths or potential bottlenecks.

Since the introduction of XML query languages like XPath 1.0 [6], XPath
2.0 [9] and XQuery [3], many benchmark suites have been developed. Most of
them, including XMark [24], XMach-1 [4], X007 [5] and XBench [25], fall into the
category of application benchmarks. Application benchmarks are used to eval-
uate the overall performance of a database system by testing as many query

� Loredana Afanasiev is supported by the Netherlands Organization for Science and
Research (NWO), grant number 017.001.190.

�� Ioana Manolescu is partly supported by the ACIMD Tralala (Transformations,
logics and languages for XML).

��� Philippe Michiels is supported by IWT – Institute for the Encouragement of Inno-
vation by Science and Technology Flanders, grant nr. 31016.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 144–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

MemBeR: A Micro-benchmark Repository for XQuery 145

language features as possible, using only a limited set of queries. The XML data
sets and the queries are typically chosen to reflect a particular user scenario. The
influence of different system components on their overall performance is, how-
ever, difficult to analyze from performance figures collected for complex queries.
The evaluation of such queries routinely combines a few dozen execution and
optimization techniques, which in turn depend on numerous parameters. Never-
theless, due to a lack of better tools, application benchmarks have been used for
tasks they are not suited for, such as the assessment of a particular XML join
or optimization technique.

Micro-benchmarks, as opposed to application benchmarks, test individual
performance-critical features of the language, allowing database researchers to
evaluate their query evaluation technique (e.g. query optimization, storage and
indexing schemes etc.) in isolation. Micro-benchmarks provide better insight
in how XQuery implementations address specific performance problems. They
allow developers to compare performance with and without the technique being
tested, while reducing to a minimum the interaction with other techniques or
implementation issues.

To the authors’ knowledge, the Michigan benchmark [23] is the only existing
micro-benchmark suite for XML. It proposes a large set of queries, allowing
one to assess an engine’s performance for a variety of elementary operations.
These queries are used on a parametrically generated XML data set. However,
this micro-benchmark suffers from some restrictions. For instance, the maximum
document depth is fixed in advance to 16, and there are only two distinct element
names. Furthermore, the query classes identified in [23] are closely connected to
a particular evaluation strategy1. The queries of [23] are very comprehensive on
some aspects, such as downward XPath navigation and ignore others, such as
other XPath axes, or complex element creation.

The Need for Micro-benchmarks and Associated Methodology. The
first problem we are facing is the lack of micro-benchmarks allowing system
designers and researchers to get precise and comprehensive evaluations of XML
query processing systems and prototypes. An evaluation is precise if it allows
one to study language features in isolation, to understand which parameters
impact a system’s behavior on that feature, without “noise” in the experimental
results due to processing other features. The need for precision, which is a general
aspect of scientific experiments, leads to the choice of micro-benchmarks, one for
each feature to study. For an evaluation to be comprehensive, several conditions
must be met. For every interesting feature, there must be a micro-benchmark
allowing to test that feature. When studying a given feature, all parameters
which may impact the system’s behavior in the presence of that feature must
be described, and it must be possible to vary their values in a controlled way.
Finally, all interesting aspects of the system’s behavior during a given measure
must be documented. For instance, a performance micro-benchmark should be

1 Evaluating path expressions by an n-way structural join, where n is the total number
of path steps. The query classification criteria are no longer appropriate e.g., if a
structural index is used.

146 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

accompanied by information regarding the memory or disk consumption of that
measure.

Second, a micro-benchmark user methodology is needed, explaining how to
choose appropriate micro-benchmarks for a given evaluation, why the micro-
benchmark parameters are likely to be important, and how to choose value
combinations for these parameters. Such a methodology will bring many ben-
efits. It will ease the task of assessing a new implementation technique. It will
facilitate comprehension of system behavior, and reduce the time to write down
and disseminate research results. And, it will ease the task of reviewers assessing
“Experiments” sections of XML querying papers, and help unify the authors’
standards with the reviewers’ expectations.
Our Approach: Micro-benchmark Repository and Methodology. We
are currently building a repository of micro-benchmarks for XQuery and its
fragments, which will provide for precise and comprehensive evaluation. We en-
dow micro-benchmarks with precise guidelines, easing their usage and reducing
the risks of mis-use.

Given the wide range of interesting XQuery features, and the presence of
interesting ongoing developments (such as extensions for text search [7], and for
XML updates [8]), a fixed set of micro-benchmarks devised today is unlikely to
be sufficient forever. Thus, we intend to develop our repository as a continuing,
open-ended community effort:

◦ users can contribute to the repository by creating, or enhancing an existing
micro-benchmark;

◦ additions to the repository will be subject to peer review from the other
contributors, checking if the feature targeted by the addition was not already
covered and if the addition adheres to the micro-benchmark principles, and
ensuring the quality of the benchmark’s presentation.

Such a repository will allow consolidating the experience of many individual
researchers having spent time and effort in “carving out” micro-queries from
existing application benchmarks unfit for the task. It will be open to the addi-
tion of new performance challenges, coming from applications and architectures
perhaps not yet available today. This way, the micro-benchmarks will be con-
tinuously improved, and, we hope, widely used in the XML data management
community. The repository is hosted on the Web and freely accessible. This
should further simplify the task of setting up experimental studies, given that
individual micro-benchmarks will be available at specific URLs.

This paper describes our approach. Section 2 formalizes the concepts behind
the micro-benchmarks repository, and Section 4 illustrates them with several
examples. Section 3 outlines a preliminary micro-benchmark classification and
delves into more details of performance-oriented micro-benchmarks. Section 5
describes the test documents in the repository. Section 6 briefly describes the
repository’s Web interface, and concludes with some perspectives.

MemBeR: A Micro-benchmark Repository for XQuery 147

Document

XMLSchema

consistsOf

1..N 0..1

Parameter

Name
Value
Unit

1..N

1..N

1..N0..1

1..N

0..1

1..N 1..N

0..1

1..N

DocGen

Name produces producedBy

QueryGen
Name

Generator
QueryLang.

characterizedBy

characterizedBy resultsFrom
ID

Query

Body

1..N

1..N

1..N

1..1

Measure

ID

Schema

0..1

1..N
characterizedBy

involves

validates

involvesName

1..N

1..1ResultSet
obtainedFor1..1 0..N

characterizedBy 1..N

1..N

Micro−benchmark

Guidelines
ID

Fig. 1. Entity-Relationship diagram of the micro-benchmark repository contents.

2 Our Approach: A Micro-benchmark Repository

Our goal is to build a repository of micro-benchmarks for studying the perfor-
mance, resource consumption, correctness and completeness of XQuery imple-
mentations techniques.
Performance: how well does the system perform, e.g., in terms of completion

time, or query throughput? The primary advantage of a data management
system, when compared with an ad-hoc solution, should be its efficiency.

Resource consumption: performance should be naturally evaluated against the
system’s resource needs, such as the size of a disk-resident XML store, with
or without associated indexes, or the maximum memory needs of a streaming
system.

Completeness: are all relevant language features supported by the system? Some
aspects of XQuery, such as its type system, or its functional character, have
been perceived as complex. Correspondingly, many sub-dialects have been
carved out [16, 20, 22]. Implementations aiming at completeness could use a
yardstick to compare against.

Correctness: does the output of the system comply with the query language
specifications? For a complex query language such as XQuery, and even its
fragments, correctness is also a valid target of benchmarking.

In this paper we will mainly focus on performance and resource consump-
tion micro-benchmarks. Nevertheless, we stress the importance of correctness
for interpreting performance results. In devising correctness and completeness
benchmarks, we expect to draw inspiration from the use cases and examples
used in the W3C XQuery specifications and from existing benchmarks, like [12].

We intend our benchmark repository mainly for system designers, to help
them analyze and optimize their system.
Micro-benchmarking Design Principles. We adopt the following design
principles:

There should be a minimal number of micro-benchmarks for every language
feature, and we will usually strive to keep this number to 1. However, if a new
example provides a very different perspective, and the current ones cannot be
extended to simulate it, then it will be included in the repository.

148 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

A micro-benchmark should explicitly list, and provide value ranges for all
data, query and resource parameters which may impact the results. This is a
crucial condition for benchmark results to be reproducible, interpretable, and
trustworthy. In this way a micro-benchmark will contain well-documented and
thorough measures.

The above implies that for any micro-benchmark measure, and any data
parameter likely to impact the measure’s result, at least one data set can be
constructed by controlling the value of that parameter in its interesting range.
This will have an impact on our choice of data sets (see Section 5).

A micro-benchmark should reduce to a minimum the influence of all but the
tested language feature. Thus, if the purpose is to test path expressions navi-
gating downward, the queries should not use sibling navigation, and vice versa.
An important consequence is the following. The presence of an XML Schema
for the input document enables a large number of optimizations, at the level
of an XML store, XML index, XQuery rewriting and optimization, automata-
based execution etc. In any micro-benchmark measure where the focus is not
on schema-driven optimizations, one should use documents without a schema.
Otherwise, schema-driven optimizations might effect the system’s performance
in a non-transparent manner and make results uninterpretable.

Measure (also) individual query processing steps. To get a precise evaluation,
often is needed to measure individual processing steps, such as: query normal-
ization, query rewriting, query optimization, data access, (structural) join pro-
cessing, output construction etc. For instance, XPath micro-benchmarks may
measure the time to locate the elements which must be returned (this often
means finding their IDs). Measuring such processing steps requires hooks into
the execution engine. We consider it worth the trouble, as even if queries are
chosen with care, query execution times may still reflect the impact of too many
factors.

A micro-benchmark should be extensible. A micro-benchmark should aim to
remain useful even when systems will achieve much higher performance. The pa-
rameters should therefore allow for a wide enough range. The micro-benchmarks
should also be regularly updated to reflect new performance standards.

From these principles, we derive the following micro-benchmark repository struc-
ture (Fig. 1):

◦ XML documents. A document may have an XML Schema or not. It is char-
acterized by a number of parameters, which we model as name-value pairs.
Benchmarks typically benefit from using collections of documents similar in
some aspects, but characterized by different parameters. For synthetic data
sets, a document generator is also provided.

◦ Queries. Each query aims at testing exactly one feature. Queries can also be
characterized by parameters, such as: number of steps in a path expression
query, numbers of query nesting levels, selectivity of a value selection predi-
cate etc. Similar queries make up a query set, for which a query generator is
provided.

MemBeR: A Micro-benchmark Repository for XQuery 149

◦ Measures: a measure is one individual experiment, from which experimental
results is gathered. We model an experimental result also as a parameter,
having a name and a value. A measure may involve a document, or none;
XML fragments are legal XQuery expressions, and thus an XML query may
carry “its own data” (see micro-benchmark µB4 in Section 4). A measure
may involve zero, one, or more queries; the latter case is reserved to multi-
query scenarios, such as, for instance, XML publish/subscribe. Intuitively,
one measure yields “one point on a curve in a graph”. We will provide ex-
amples shortly.

◦ Micro-benchmarks. A micro-benchmark is a collection of measures, studying
a given (performance, consumption, correctness or completeness) aspect of a
XML data management and querying. Intuitively, a micro-benchmark yields
a set of points, which can be presented as “one or several curves or graphs”,
depending on how many parameters vary, in the documents and queries
considered. A micro-benchmark includes guidelines, explaining which data
and/or query parameters may impact the results and why, and suggesting
ranges for these parameters. Measure methodologies may also specify the
scenario(s) for which the measure is proposed, including (but not limited to):
persistent database scenario, streaming query evaluation, publish/subscribe
etc.

◦ Micro-benchmark result sets, contributed by users. A result set consists of
a set of points corresponding to each of the micro-benchmark’s prescribed
measures, and of a set of parameters characterizing the measure enactment.
Commonly used parameters describe hardware and software configurations.
Other important parameters are the technique(s) and optimization(s) em-
ployed. For instance, a result set may specify the particular XML index used,
or the fact that the query automaton was lazily constructed etc.

Micro-benchmark Usage Methodology. Even a carefully designed (micro-)
benchmark can be misused. As an attempt to limit this, we require micro-
benchmark results to adhere to the following usage principles:

Always declare the language and/or dialect supported by the system, even
for features not used by the micro-benchmark. Many efficient evaluation tech-
niques are conditioned by some underlying language simplifications, such as:
unordered semantics, simplified atomic types set, unsupported navigation axes,
unsupported typing mechanism etc. Such simplifications, if any, should be clearly
stated next to performance figures. In relational query processing research, the
precise SQL or Datalog dialect considered is always clearly stated. XQuery not
being simpler than SQL, at least the same level of precision is needed.

Micro-benchmark results which vary less parameters than specified by the
micro-benchmark are only meaningful if they are accompanied by a short ex-
planation as to why the simplifications are justified. Omitting this explanation
ruins the effort spent in identifying useful parameters, and compromises the
comprehensive aspect of the evaluation.

Extra values for a parameter may always be used in results. Range changes or
restrictions should be justified. In some special situations, new parameter values

150 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

may be needed. In such cases, a revision of the micro-benchmark should be
considered.

When presenting micro-benchmark results, parameters should vary one at a
time, while keeping the other parameters constant. This will typically yield a
family of curves where the varying parameter values are on the x axis, and the
measure result on the y axis. For space reasons, some curves may be omitted
from the presentation. In this case, however, the measure points for all end-
of-range parameter values should be provided. Trying the measure with these
values may give the system designer early feedback, by exposing possible system
shortcomings. And, when performance is robust on such values, a convincing
case has been made for the system’s performance.

3 Preliminary Taxonomy of Measures
and Micro-benchmarks

In this section, we outline a general classification of measures (and thus, of
micro-benchmarks). This classification guides a user looking for a specific micro-
benchmark, and serves as a road map for our ongoing micro-benchmark design
work.

A first micro-benchmark classification criterion, introduced in Section 2,
distinguishes between performance, consumption, correctness and completeness
benchmarks.

We furthermore classify micro-benchmarks according to the following other
criteria:

◦ The result metric: it may be execution time, query normalization or opti-
mization time, query throughput, memory occupancy, disk occupancy etc. It
may also be a simple boolean value, in the case of correctness measures.

◦ Benchmarks may test data scalability (fixed query on increasingly larger
documents) or query scalability (increasing-size queries on fixed documents).

◦ Whether or not a micro-benchmark uses an XMLSchema, and the particular
schema used.

◦ The query processing scenarios to which a micro-benchmark applies, such as:
persistent database (store the document once, query it many times), stream-
ing (process the query in a single pass over the document), or programming
language-based (the document is manipulated as an object in some program-
ming language).

◦ The query language and perhaps dialect which must be supported in order
to run the micro-benchmark.

◦ The language feature being tested in a micro-benchmark is a precise classifi-
cation criteria. We strive to provide exactly one micro-benchmark for each
interesting feature.

The next section contains several micro-benchmark examples together with
their classification and methodology.

MemBeR: A Micro-benchmark Repository for XQuery 151

4 Examples of Micro-benchmarks for XPath and XQuery

We start by a very simple micro-benchmark, involving a basic XPath operation.

Example 1 (Micro-benchmark µB1: simple node location). In a persistent XML
database scenario, we are interested in the time needed to locate elements of
a given tag in a stored document. We study this time on increasingly large
and complex documents (data scalability measure). We are not concerned with
schema optimizations, thus, we will use schema-less documents. We measure the
time to locate the elements, not to return their subtrees.

Let Q1 be the query //a1. Let n, t, d and f be some positive integers, and p
be a real number between 0 and 1. Let D1(n, t, d, f, p) be a document whose n
elements are labeled a1, a2, . . ., at, having the depth d, the fan-out (maximum
number of children of an element) f , and such that exactly p ∗ n elements are
labeled a1. Elements may nest freely, that is, the parent of an element labeled
ai can have any aj label, 1 ≤ i, j ≤ t.

The measure M1(h, b) involves Q1 and a document D1(n, t, d, f, p), for some
n, t, d, f ∈ N and p ∈ [0, 1]. The parameter h may take values in {true, false}
and specifies whether the measure is taken with a hot cache (h = true) or with a
cold cache (h = false). The parameter b is the size of the memory buffer in KB.
For any pair of (h, b) values, M1(h, b) results in an execution time for locating the
persistent identifiers of the elements in Q1’s result, in document D1(n, t, d, f, p).
A M1 measure is characterized by a (h, b, n, t, d, f, p) tuple.

The micro-benchmark µB1 consists of applying M1 on a subset of
{true, false} × N × N × N × N × N × [0, 1], such as, for instance:

h ∈ {true, false} b ∈ {50, 200, 1000} n ∈ {106, 109, 1012} d ∈ {10, 20, 50}
f ∈ {2, 10, 20} t ∈ {1, 5, 20} p ∈ {0.001, 0.01, 0.1, 0.5, 0.8, 1.0}

Parameters n and p impact the number of retrieved elements. Parameter
t determines the document’s structural complexity, which may impact perfor-
mance if the evaluation relies on a path or structural index. Together, d and
f determine whether the document is deep or shallow; this may impact perfor-
mance for strategies based on navigation or structural pattern matching. Such
strategies are also affected by n, even when n ∗ p is constant. Varying h and b
allows to capture the impact of the system’s memory cache and memory buffer
size on the evaluation times.

µB1 results in several thousand points, all of which are not needed in all
circumstances. If the system implements M1 by a lookup in a tag index as
in [17], d, f and t may make little difference, thus µB1 may be reduced to only
60 individual measures. As another example, if M1 is implemented by CAML-
based pattern matching as in [2], then all evaluation takes place in memory and
b is irrelevant.

Example 2 (Micro-benchmark µB2: simple node location in the presence of a
schema). Important performance gains can be realized on a query like Q1 if

152 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

schema information is available. µB2 aims at quantifying such gains. Let D2,l(n, t,
f, d, p, Σl) be a document satisfying the same conditions as D1(n, t, f, d, p) from
µB1, but furthermore valid with respect to an XML Schema Σl, specifying that
a1 elements can only occur as children of elements labeled a1, a2, ... al.
Σl prescribes a maximum number of f children for any element, and does not
constrain the structure of D2,l in any other way.

Measure M2(n, t, f, d, p, l) records the running time of query Q1 on D2,l(n, t,
f, d, p, Σl). We choose not to include h and b here, since µB2 is only concerned
with the impact of the schema, orthogonal to cache and buffer concerns.

The micro-benchmark µB2 consists of running M2 for some fixed n, t, f , d
and p, and for all l = 1, 2, . . . , t. A set of suggested values is: n = 106, t = 15,
f = 10, d = 10, p = 1/t.

An efficient system would use Σl to narrow the search scope for a1 elements.
This can take many forms. A fragmented storage, or a structural index, may
make a distinction between elements a1, . . ., al and the others, making it easier
to locate a1s. A streaming processor may skip over subtrees rooted in a(l + 1),
. . ., at elements etc.

Example 3 (Micro-benchmark µB3: returning subtrees, no schema). This micro-
benchmark is meant for the persistent database scenario. It captures the per-
formance of sending to the output sub-trees from the original document. This
operation, also known as serialization, or reconstruction, is challenging in many
respects: systems whose storage is fragmented (e.g. over several relational tables)
will have to make an effort to reconstruct the input; systems using a persistent
tree will have to follow disk-based pointers, thus they depend on the quality of
node clustering etc.

We aim at measuring the cost of reconstruction alone, not the cumulated
cost of locating some nodes and then reconstructing them. Thus, we choose the
query Q2: /*, and will apply it on the root of some input document.

Document depth, fan-out, and size, all impact reconstruction performance.
Furthermore, document leaves (in a schema-less context, interpreted as strings)
also may have an impact. Some storage models separate all strings from their
parents, others inline them, others inline only short strings and separate longer
ones etc.

We vary string size according to a normal distribution ssd(sa, sv), of average
sa and variance sv. We vary the number of text children of a node according
to another (normal) distribution tcd(ca, cv) of average ca and variance cv. Let
D3(n, t, d, f, tcd, ssd) be an XML document having n elements labeled a1, a2,
. . . at, of depth d and fanout f , such that the number of text children of given
element is obtained from tcd, and the number of characters in each individual
text child is given by ssd. As in D1, elements nest arbitrarily. The actual string
content does not matter, and is made of randomly chosen characters.

Measure M3(n, t, d, f, sa, sv, ca, cv) consists of measuring the execution time
of Q2 on D3(n, t, d, f, tcd(ca, cv), ssd(sa, sv)). Micro-benchmark µB3 consists of
M3 measures for:

MemBeR: A Micro-benchmark Repository for XQuery 153

for $x1 in document("d1.xml")/root/a1,
 $x2 in document("d2.xml")/root/a2,
 ...
 $xn in document("dn.xml")/root/an
return <out>
 {$x1} {$x2} ... {$xw}
 <out> {$x(w+1)} {$x(w+2)} ...
 <out> {$x(2w+1)} {$x(2w+2)} ... {$x(3w)}
 <out> ...
 ...
 </out>
 </out>
 </out>
 </out>

Q 4
n,h,w

4
1

1 1D (4,4,2,tcd ,ssd)

a1 a1a1
a1

a1 a1a1
a1

a1 a1a1
a1

a1 a1a1
a1

root

a(2w)

a(hw−w+1)

2
4 22D (3,5,3,tcd ,ssd)

root

a2 a2

a2a2

a2

a2 a2

a2a2

a2

a2a2

a2

a2a2

w

h

out

a(w+1)a(w+2)

a1 a2 ... aw out

a(hw−w+2) a(hw)...

...

out

...
out

Fig. 2. Documents and queries involved in the micro-benchmark µB5.

n ∈ {103, 106, 109} t ∈ {2, 20} d ∈ {5, 20, 50} f ∈ {5, 10}
(ca, cv) ∈ {(2, 1), (5, 2), (10, 5)} (sa, sv) ∈ {(5, 2), (100, 50), (1000, 500)}

Example 4 (Micro-benchmark µB4: XPath duplicate elimination). This micro-
benchmark is taken from [15]. The purpose is to assess the processor’s perfor-
mance in the presence of potential duplicates. Let Qi

3 be the query:
<a>/b/parent::a/b/parent::a . . . /b/parent::a

where the sequence of steps /b/parent::a is repeated i times. Any Qi
3 returns

exactly one a element. An evaluation following directly the XPath [9] speci-
fication requires eliminating duplicates after every path step, which may hurt
performance. Alternatively, duplicates may be eliminated only once, after evalu-
ating all path expression steps. However, in the case of Qi, this entails building
intermediary results of increasing size: 2 after evaluating /b/parent::a, 22 after
evaluating /b/parent::a/b/parent::a etc., up to 2i before the final duplicate
elimination. Large intermediary results may eat up available memory and hurt
performance.

M4(i) measures the running time of Qi
3; it does not need a document. The

micro-benchmark µB4 consists of the measures M4(i), for i ∈ {1, 5, 10, 20}.

Example 5 (Micro-benchmark µB5: element creation). This micro-benchmark
targets the performance of new element construction, an important feature in
XQuery.

The size, depth, and fanout of the copied input subtrees, as well as the
text nodes therein, clearly impact performance. Another important factor is the
complexity of the constructed XML output. Thus, we consider a set of documents
Di

4(fri, ni, di, tcdi, ssdi), as follows:
◦ Di

4’s root element is labeled root. All other elements in Di
4 are labeled ai.

◦ The root of any Di
4 document has exactly fri children elements.

154 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

◦ Any sub-tree rooted in an ai child of the root is a tree of depth di consisting
of ni elements.

◦ Root elements do not have text children. The number, and size, of text
children of ai elements is dictated by the text child distribution tcdi and
the text length distribution ssdi. These are normal distributions, as in the
micro-benchmark µB3 previously described.

For instance, D1
4(4, 4, 2, tcd1, ssd1) and D2

4(3, 5, 3, tcd2, ssd2) are outlined in the
upper part of Fig. 2, for some unspecified distributions. Text nodes are omitted
for readability.

To vary the complexity of result construction, we consider a family of queries
Qn,h,w

4 , where: n is the number of input documents from which subtrees are
extracted, h is the “stacking height” of such sub-trees in the output, and w is
the “stitching width” of the sub-trees in the output, where h ∗ w must be at
most n. This is better understood by looking at Qn,h,w

4 , pictured in the lower
part of Fig. 2, together with the outline of an element it produces. The shaded
triangular shapes represent (deep copies of) the subtrees rooted in the ai input
elements. This query uses very simple navigation paths in the for clause, in
order to minimize the noise introduced in the measure by the effort spent in
locating these subtrees. Two sample instances of Qn,h,w

4 are shown in Fig. 3.
Measure M5 records the execution time of query Qn,h,w

4 for some n, h and w
values, on n input documents D1

4, D2
4 , . . ., Dn

4 . M5 is characterized by numerous
input parameters, including those describing each Di

4.
Choosing the recommended parameters ranges for µB5 without blowing up

the number of measures is quite delicate. Without loss of generality, we restrict
ourselves to the distributions:
◦ tcdlow with average 2 and variance 1, ssdlow with average 10 and variance

5; these correspond to a mostly data-centric document.
◦ tcdhigh with average 10 and variance 2, ssdhigh with average 1000 and vari-

ance 200; these correspond to a text-rich document.
To measure scale up with w, the following set of parameter ranges are rec-

ommended:

n ∈ {1, 2, 5, 10, 20} w = n h = 1

fr1 = 105, choose a combination of fr2, . . ., frn values such that Πn
i=1fri = 108

For any n and i ∈ {1, . . . , n}, (tcdi, ssdi) = (tcdhigh, ssdhigh), di = 5, and ni = 100

In the above, the values of related parameters, such as fri, are part of the
micro-benchmark specification. To measure scale up with h, set w = 1, h = n,
and proceed as above.

To measure scale up with the output size, set n = 12, w = 4, h = 3, set all
distributions, first, to (tcdhigh, ssdhigh) and second, to (tcdlow, ssdlow), choose
some fri such that Πn

i=1fri = 106, and let each ni take values in {1, 10, 25}. An
output tree will thus contain between 12+3 = 15 and 12∗25+3 = 303 elements.

All these five micro-benchmarks are performance-oriented. µB1 and µB2

measure node location time, while µB3, µB4 and µB5 measure query execution

MemBeR: A Micro-benchmark Repository for XQuery 155

Q3,1,3
4 Q3,3,1

4

for $x1 in document(‘‘d1.xml’’)/root/a1
$x2 in document(‘‘d2.xml’’)/root/a2
$x3 in document(‘‘d3.xml’’)/root/a3

return <out>
{$x1} {$x2} {$x3}
</out>

for $x1 in document(‘‘d1.xml’’)/root/a1
$x2 in document(‘‘d2.xml’’)/root/a2
$x3 in document(‘‘d3.xml’’)/root/a3

return <out>
{$x1} <out>

{$x2} <out> {$x3} </out>
</out>

</out>

Fig. 3. Sample queries from the micro-benchmark µB5.

Table 1. XPath performance micro-benchmarks (not an exhaustive list).

µB5 (dq) Simple linear path expressions of the form /a1/a2/. . ./ak.
µB6 (dq) Path expressions of the form //a1//a2//. . ./ak.
µB7 (dq) Path expressions of the form /a1/*/*/. . ./a2, where the number of * varies.
µB8 (d) For each XPath axis [9], one path expression including a step on that axis.

Interestingly, some node labeling schemes such as ORDPATH [21] allow
“navigating” along several axes, such as parent, but also child, preceding-
sibling etc. directly on the element label.

µB9 (dq) Path expressions with a selection predicate, of the form
/a1/a2/. . ./ak[text()=c], where c is some constant.

µB10 (dq) Path expressions with inequality comparisons.
µB11 (d) Path expressions with positional predicates of the form /a1[n],

where n ∈ N.
µB12 (d) Path expressions with positional predicates, such as

/a1[position()=last()].
µB13 (dq) Path expressions with increasingly many branches, of the form

//a1[p1]//. . .//ak[pk], where each pi is a simple path expression.
µB14 (dq) Path expressions involving several positional predicates, of the form

//a1[n1]//. . .//ak[nk], where each ni ∈ N.
µB15 (d) Aggregates such as count, sum etc. over the result of path expressions.

time. µB1, µB2, µB3 and µB4 require downward XPath, while µB4 requires
XQuery node creation. Only µB3 uses a schema. µB1, µB2 and µB3 test data
scalability; µB4 tests query scalability.

In Table 1 and Table 2 we outline some other interesting XPath and XQuery
performance-oriented micro-benchmarks; the list is clearly not exhaustive. We
mark by (d) and (q) micro-benchmarks where data scalability (respectively query
scalability) should be tested.

Other XQuery micro-benchmarks should target feature such as: explicit sort-
ing; recursive functions; atomic value type conversions implied by comparison
predicates; explicit type conversion to and from complex types; repeated sub-
expressions etc. Two ongoing XQuery extension directions will require specific
micro-benchmarks: full-text search [7], and updates [8].

5 Data Sets for the Micro-benchmark Repository

Precise performance evaluation requires carefully characterizing the test docu-
ments. Some document characteristics were already considered in [23, 24]:

156 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

Qk
5

for $x1 in document(‘‘doc.xml’’)//a1
$x2 in $x1//a2
. . .
$xk in $x1//ak

return {$x1, $x2, . . . $xk}

Qk
6

for $x in document(‘‘doc.xml’’)//a1
return <res>

{$x//a1} {$x//a2} . . . {$x//ak}
</res>

Qk
7

for $x1 in document(‘‘doc.xml’’)//a1
$x2 in document(‘‘doc.xml’’)//a2

where $x1/text() θ $x2/text()
return {$x1, $x2}

Fig. 4. Queries involved in the micro-benchmark µB16, µB17 and µB18.

Table 2. XQuery performance micro-benchmarks (not an exhaustive list).

µB16 (dq) The time needed to locate the elements to which are bound the for

variables of a query. These variables can be seen as organized in a tree pattern of varying
width and depth. For instance, width k and depth 2 yield the simple query Qk

5 (Fig. 4).
This task is different from similar XPath queries, such as //a1[//a2]. . .[//ak], or
//a1[//a2]. . .[//a(i−1)][//a(i+1)]. . .[//ak]//ai, since unlike these XPath queries,
all tuples of bindings for Qk

5 variables must be retained in the result.

µB17 (dq) measures the time to locate the roots of the sub-trees to be copied in the
output of query Qk

6 , shown in Fig. 4. Qk
6 will return some a1 elements lacking some

ai, while Qk
5 discards them. Thus, an evaluation technique using frequency estimations

of ai elements to reduce intermediary results will improve performance for Qk
5 , and it

would not affect Qk
6 .

µB18 (d) measures the time needed to: locate the elements corresponding to $x1 and
$x2 in the query Qk

7 , shown in Fig. 4, as well as its total evaluation time. In the query,
θ stands for a comparison operator such as =, <, ≤ etc. When θ is =, separate micro-
benchmarks should address: (i) the schema-less case, with the exact query above; then,
replacing the condition with $x/@y1=$x2/@y2, (ii) the schema-less case, and (iii) the
case when an XML schema specifies that the y1 and y2 attributes are in a key-foreign
key relationship.
The time to locate the elements will show whether an efficient technique such as an
index-based join is used to retrieve e.g. only those $x2 elements with matching $x1

elements. Measuring the total query evaluation time, especially for non-equality joins,
exposes the join’s performance, and how it interacts with serialization: If a $x1 sub-tree
must appear n times in the result, is it fully copied n times, or are some operations
factorized ? The results of the micro-benchmarks based on Qk

7 should also be interpreted
in conjunction with the results of µB5 described in the previous section.

◦ Document size is the most obvious parameter for data scalability measures.
It is also one of the most mis-used. For instance, some studies use queries
addressing the category hierarchy of a “500 Mb XMark document”. If the
fact that the category hierarchy makes up at most 3% of XMark documents
is omitted, document size is probably misleading.

◦ Document tree depth has an impact on document size, and determines
the maximum length of downward path queries with non-empty results.

◦ Fan-out is the maximum number of children of a node. It has an impact on
document size; it may also impact some storage strategies, and thus query
performance.

MemBeR: A Micro-benchmark Repository for XQuery 157

Size, depth and fan-out, however, are insufficient to account for all interest-
ing characteristics of a document. We identify the following important data set
characteristics:
Presence of Schemas and Constraints. A DTD or XML Schema may be
exploited for optimization purposes. More generally, one could envision XML
query processors taking advantage of other classes of constraints, such as dif-
ferent type systems [2], or a-posteriori schemas extracted from schema-less data
sets [13, 14]. A performance-oriented benchmark should state which constraints
are used, if any. Proper type handling is one aspect of correctness.
Text-Centric vs. Data-Centric. Different XML data sets exhibit different
ratios between the complexity of the XML structure tree, and the weight of the
leaves (text). Both extremes are useful in different applications, and real-life data
sets are in-between; the tree-to-text ratio may impact query performance. Mixed
contents elements, frequent in text-centric documents, may raise correctness
issues, as some systems do not support them.
Atomic Value Types. The XQuery data model provides a rich set of atomic
value types. However, most existing value-based XML indexing techniques pro-
posed so far ignore these types and XQuery’s many value coercions [10, 11];
meshing a value index with coercion-based semantics is quite complex [18].
Frequency of Recursion. Data recursion is an interesting feature, encountered
in real-life XML documents [19], and affecting many evaluation techniques. Thus,
precise evaluations must specify whether recursive elements were absent, rare,
or frequent in the input.
Tag Distribution. In some documents, each tag may appear on only one path;
in some others, numerous paths may lead to elements having the same name,
maybe due to recursion, maybe not. For instance, in some (but not all) systems,
the XMark-inspired query //item//keywordwould be evaluated by a structural
join of all item and all keyword element IDs, even though many keywords do
not appear under items.
Values. The actual values found in the document’s text nodes must also be
described for measures using queries with conditions on values. Value distribu-
tion controlled in synthetic data sets [23]. Value domain, size distribution, and
contents also impact query evaluation.
Partitioning of Data in Documents. The XML and XQuery specifications
give an important place to the notion of document, which can be seen as a
physical segment of an XML data set. XQueries may combine information from
several documents. Thus, it is important to understand how processors cope with
input being fragmented over several documents.

Coming up with one unified data set, even a parametric one, on which all
the above aspects can be varied at will, is hardly feasible. Notice that some
parameters are inter-related and thus cannot be independently controlled, such
as size, depth, and fan-out. We thus include in the benchmark repository two
broad classes of synthetic documents. Documents in the first class are on pur-
pose schema-less, and allow full control over the above mentioned parameters.

158 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

Documents in the second class are schema-driven; we rely on ToXGene [1] to
generate those documents. We briefly describe each class of documents next.

Schema-Less Parametric Data Set. This data set is produced by a data
generator we implemented. It allows controlling: the maximum node fanout,
maximum depth, total tree size (number of elements), document size (disk oc-
cupancy), the number of distinct element names in the document, and the dis-
tribution of tags inside the document. Required parameters are: either tree size
or document size; and, either depth or fan-out. The number of distinct element
names is 1 by default; elements are named a1, a2 etc.

The distribution of tags within elements can be controlled in two ways. Global
control allows tuning the overall frequency of element named a1, a2, ..., an.
Labels may nest arbitrarily. Uniform and normal distributions are available.
Per-tag control allows specifying, for every element name ai, the minimum and
maximum level at which ai can appear may be set; furthermore, the relative
frequency of ai elements at that level can be specified as a number between 0.0
and 1.02. Global distributions allow generating trees where any ai may appear
at any level. Close to this situation, for instance, is the Treebank data set3,
corresponding to annotated natural language; tags represent parts of speech
and can nest quite freely. Per-tag distributions produce more strictly structured
documents, whereas e.g., some names only appear at level 3, such as article
and inproceedings in the DBLP data set4, other elements appear only below
level 7, such as keywords in XMark etc.

Fan-out, depth and tag distribution impact: the disk occupancy of many
XML storage and structural indexing schemes; the complexity and precision of
XML statistical synopses; the size of in-memory structures needed by an XML
stream processor; and, the performance of path expression evaluation for many
evaluation strategies. Thus, we will rely on this data set, and devise measures
varying all these parameters, for assessing such aspects.

The number and size of text values follow uniform or normal distributions, as
illustrated in µB3 in Section 4. Values can be either filled with random charac-
ters, or taken from the Wikipedia text corpus (72 Mb of natural language text,
in several languages). The latter is essential in order to run full-text queries;
neither XMark nor MBench consider this issue.

Schema-Derived Data Sets. The ToXGene [1] XML generator produces XML
documents conforming to a type description expressed in a subset of XML
Schema. Furthermore, ToXGene provides hooks for controlling: the frequency
of a given element type, the simple values found in leaf nodes, the sharing of
values in several nodes (thus, the size of various join results), the specific values
to fill in specific places in the document etc. Thus, we adopt ToXGene as a useful
tool for controlled generation of schema-endowed documents.

2 The generator checks the frequencies of several ais at a given level for consistency.
3 Available at http://www.cs.washington.edu/research/xml/datasets.
4 Available at http://dblp.uni-trier.de/xml.

MemBeR: A Micro-benchmark Repository for XQuery 159

Fig. 5. Sample snapshot of Member’s Web interface.

6 Conclusion and Perspectives

We have described a micro-benchmark repository approach for evaluating
XQuery processing techniques. Micro-benchmarks provide the proper tools for
systematically evaluating approaches to XML query evaluation. We have de-
scribed the design principles underlying our repository and we have given several
examples of micro-benchmarks and their applications.

We have started implementing our repository over a Web interface, avail-
able at http://ilps.science.uva.nl/Resources/MemBeR/. For now, it con-
tains some micro-benchmarks, with their categorization criteria, targets, scenar-
ios etc. A sample snapshot corresponding to the page of micro-benchmark µB4

is depicted in Figure 5.
We are currently adding to the repository several other micro-benchmarks,

including those mentioned in Section 3. We plan to extract candidate features
from the XQuery specification itself, and also from XML query processing ar-
ticles recently published in major database conferences. These may also yield
inspiration for micro-benchmark queries, although our methodology is more rig-
orous. In parallel, we are inviting researchers and system designers to send us
suggestions of features, measures, or micro-benchmarks they deem interesting,
or even better, contribute some benchmarks and become a micro-benchmark
reviewers.

The need for precise and meaningful assessment of XML query processors
is becoming stringent for research to advance, and for communicating results.
Micro-benchmarks as a step forward; we started MemBeR to develop compre-
hensive, well-documented ones.

160 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

References

1. D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene: a template-
based data generator for XML. In WebDB, 2002.

2. V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for
XML query processing. In PADL, pages 235–252, 2005.

3. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0 An XML Query Language, W3C Working Draft, April 2005.
http://www.w3.org/TR/xquery.

4. Timo Böhme and Erhard Rahm. Xmach-1: A benchmark for XML data manage-
ment. In Proceedings of BTW2001, Oldenburg, 7.-9. März, Springer, Berlin, March
2001.

5. S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, U. Nambiar, and B. Wadhwa.
X007: Applying 007 benchmark to XML query processing tool. In CIKM, pages
167–174. ACM, 2001.

6. World Wide Web Consortium. XML path language (XPath) version 1.0 – W3C
Recommendation, 2000. http://www.w3.org/TR/xpath.html.

7. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text – W3C Work-
ing Draft, July 2004. http://www.w3.org/TR/xquery-full-text/.

8. World Wide Web Consortium. W3C XQuery Update Requirements – W3C Work-
ing Draft, 2005. http://www.w3.org/TR/xquery-update-requirements/.

9. World Wide Web Consortium. XML path language (XPath) version 2.0 – W3C
Working Draft, 2005. http://www.w3.org/TR/xpath20/.

10. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Formal Semantics –
W3C Working Drafts, 2005. http://www.w3.org/TR/xquery-semantics/.

11. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators,
2005. http://www.w3.org/TR/xpath-functions/.

12. M. Francescet. XPathMark: an XPath benchmark for the XMark Generated Data.
In XSym, 2005.

13. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: Learn-
ing document type descriptors from XML document collections. Data Min. Knowl.
Discov., 1(7):23–56, 2003.

14. R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In VLDB, pages 436–445, 1997.

15. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In PODS, pages 179–190, 2003.

16. J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A light but formal
introduction to XQuery. In XSym, pages 5–20, 2004.

17. H .V. Jagadish, S. Al-Khalifa, A. Chapman, L. V.S. Lakshmanan, A. Nierman,
S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, , and C. Yu.
Timber: a native XML database. VLDB Journal, 11(4), 2002.

18. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Query optimiza-
tion for semistructured data, 1998. Tech. report.

19. L. Mignet, D. Barbosa, and P. Veltri. The XML web: A first study. In WWW
Conference, 2003.

20. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
In PODS, 2002.

21. P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In SIGMOD, pages 903–908, 2004.

MemBeR: A Micro-benchmark Repository for XQuery 161

22. S. Paparizos, Y. Wu, L. Lakshmanan, and H. Jagadish. Tree logical classes for
efficient evaluation of XQuery. In SIGMOD, 2004.

23. K. Runapongsa, J. Patel, H.V. Jagadish, Y. Chen, and S. Al-Khalifa. The Michigan
benchmark: Towards XML query performance, 2001.
http://www.eecs.umich.edu/db/mbench.

24. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, M. J. Carey, I. Manolescu,
and R. Busse. Why and How to Benchmark XML Databases. SIGMOD Record,
3(30):27–32, 2001.

25. B. Yao, T. Özsu, and N. Khandelwal. XBench benchmark and performance testing
of XML DBMSs. In ICDE, pages 621–633. IEEE Computer Society, 2004.

	MemBeR: A Micro-benchmark Repository for XQuery
	1 Introduction
	2 Our Approach: A Micro-benchmark Repository
	3 Preliminary Taxonomy of Measures and Micro-benchmarks
	4 Examples of Micro-benchmarks for XPath and XQuery
	5 Data Sets for the Micro-benchmark Repository
	6 Conclusion and Perspectives
	References

