
XPathMark: An XPath Benchmark
for the XMark Generated Data

Massimo Franceschet1,2

1 Informatics Institute, University of Amsterdam
Kruislaan 403 – 1098 SJ Amsterdam, The Netherlands

2 Dipartimento di Scienze, Università “Gabriele D’Annunzio”
Viale Pindaro, 42 – 65127 Pescara, Italy

Abstract. We propose XPathMark, an XPath benchmark on top of
the XMark generated data. It consists of a set of queries which covers
the main aspects of the language XPath 1.0. These queries have been
designed for XML documents generated under XMark, a popular bench-
mark for XML data management. We suggest a methodology to evaluate
the XPathMark on a given XML engine and, by way of example, we eval-
uate two popular XML engines using the proposed benchmark.

1 Introduction

XMark [1] is a well-known benchmark for XML data management. It consists
of a scalable document database modelling an Internet auction website and a
concise and comprehensive set of XQuery queries which covers the major aspects
of XML query processing.

XQuery [2] is much larger than XPath [3], and the list of queries provided in
the XMark benchmark mostly focuses on XQuery features (joins, construction
of complex results, grouping) and provides little insight about XPath character-
istics. In particular, only child and descendant XPath axes are exploited. In
this paper, we propose XPathMark [4], an XPath 1.0 benchmark for the XMark
document database. We have developed a set of XPath queries which covers
the major aspects of the XPath language including different axes, node tests,
Boolean operators, references, and functions. The queries are concise, easy to
read and to understand. They have a natural interpretation with respect to the
semantics of XMark generated XML documents. Moreover, we have thought
most of the queries in such a way that the sizes of the intermediate and final re-
sults they compute, and hence the response times as well, increase as the size of
the document grows. XMark comes with an XML generator that produces XML
documents according to a numeric scaling factor proportional to the document
size.

The targets of XPathMark are:

– functional completeness, that is, the ability to support the features offered
by XPath;

– correctness, that is, the ability to correctly implement the features offered
by XPath;

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 129–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 Massimo Franceschet

– efficiency, that is, the ability to efficiently process XPath queries;
– data scalability, that is, the ability to efficiently process XPath queries on

documents of increasing sizes.

Since XPath is the core retrieval language for XSLT [5], XPointer [6] and
XQuery [2], we think that the proposed benchmark can help vendors, develop-
ers, and users to evaluate these targets on XML engines implementing these
technologies.

Our contribution is as follows. In Section 2 we describe the proposed XPath
benchmark. In Section 3, we suggest how to evaluate the XPath benchmark on a
given XML engine and, by way of example, we evaluate, using XPathMark, two
popular XML engines, namely Saxon [7] and Galax [8]. Finally, in Section 4, we
outline future work.

2 XPathMark: An XPath Benchmark
for the XMark Generated Data

XPathMark has been designed in XML and is available at the XPathMark web-
site [4]. In this section we describe a selection of the benchmark queries.

We first motivate our choice of developing the benchmark as XML data. This
solution has all the advantages of XML [9]. In particular:

– the benchmark can be easily read, shipped, and modified;
– the benchmark can be queried with any XML query language;
– it is easier to write a benchmark checker, that is an application that auto-

matically checks the benchmark against a given XML engine, that computes
performance indexes, and that shapes the performance outcomes in different
formats (plain text, XML, HTML, Gnuplot).

Figure 1 contains the Document Type Definition (DTD) for the XML docu-
ment containing the benchmark. The root element is named benchmark and has
the attributes targets (the targets of the benchmark, for instance, functional
completeness), language (the language for which the benchmark has been writ-
ten, for instance XPath 1.0), and authors (the authors of the benchmark). The
benchmark element is composed of a sequence of document elements followed
by a sequence of query elements. Each document element is identified by an
attribute called id of type ID and contains, enclosed into a Character Data
(CDATA) section, a possible target XML document for the benchmark queries.
Each query element is identified by an attribute called id of type ID and has
an attribute called against of type IDREF that refers to the document against
which the query must be evaluated. Moreover, each query element contains the
following child elements:

– type, containing the category of the query;
– description, containing a description of the query in English;
– syntax, containing the query formula in the benchmark language syntax;

XPathMark: An XPath Benchmark for the XMark Generated Data 131

<!ELEMENT benchmark (document*,query*)>

<!ELEMENT document (#PCDATA)>

<!ELEMENT query (type,description,syntax,answer)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT syntax (#PCDATA)>

<!ELEMENT answer (#PCDATA)>

<!ATTLIST benchmark targets CDATA #REQUIRED

language CDATA #REQUIRED

authors CDATA #REQUIRED>

<!ATTLIST document id ID #REQUIRED>

<!ATTLIST query id ID #REQUIRED

against IDREF #REQUIRED>

Fig. 1. The benchmark DTD

– answer, containing the result of the evaluation of the query against the
pointed document, enclosed within a CDATA section. The result is always
a sequence of XML elements with no separator between two consecutive
elements (not even a whitespace).

We have included in the benchmark two target documents. The first doc-
ument corresponds to the XMark document generated with a scaling factor of
0.0005. A document type definition is included in this document. The set of
queries that have been evaluated on this document are divided into the follow-
ing 5 categories: axes, node tests, Boolean operators, references, and functions.
In the following, for each category, we give a selection of the corresponding
benchmark queries (see [4] for the whole query set). See [1] for the XMark DTD.

Axes. These queries focus on the navigational features of XPath, that is on the
different kinds of axes that may be exploited to browse the XML document tree.
In particular, we have the following sub-categories.

Child Axis. One short query (Q1) with a possibly large answer set, and a
deeper one (Q2) with a smaller result. Only the child axis is exploited in both
the queries.

Q1 All the items

/site/regions/*/item

Q2 The keywords in annotations of closed auctions

/site/closed auctions/closed auction/annotation/
description/parlist/listitem/text/keyword

Descendant Axes. The tag keywordmay be arbitrarily nested in the document
tree and hence the following queries can not be rewritten in terms of child axis.
Notice that listitem elements may be nested in the document. During the

132 Massimo Franceschet

processing of query Q4 an XPath processor should avoid to search the same
subtree twice.

Q3 All the keywords

//keyword

Q4 The keywords in a paragraph item

/descendant-or-self::listitem/descendant-or-self::keyword

Parent Axis. Elements named item are children of the world region they belong
to. Since XPath does not allow disjunction at axis step level, one way to retrieve
all the items belonging to either North or South America is to combine the
parent axis with disjunction at filter level (another solution is query Q22 that
uses disjunction at the query level).

Q5 The (either North or South) American items

/site/regions/*/item[parent::namerica or parent::samerica]

Ancestor Axes. Elements named keyword may be arbitrarily deep in the doc-
ument tree hence the ancestor operator in the following queries may have to
ascend the tree of an arbitrarily number of levels.

Q6 The paragraph items containing a keyword

//keyword/ancestor::listitem

Q7 The mails containing a keyword

//keyword/ancestor-or-self::mail

Sibling Axes. Children named bidder of a given open auction are siblings,
and the XPath sibling axes may be exploited to explore them. As for query Q4
above, during the processing of query Q9, the XPath processor should take care
to visit each bidder only once.

Q8 The open auctions in which a certain person issued a bid before another
person

/site/open auctions/open auction[bidder[personref/@person=
’person0’]/following-sibling::bidder[personref/@person=’person1’]]

Q9 The past bidders of a given open auction

/site/open auctions/open auction[@id=’open auction0’]
/bidder/preceding-sibling::bidder

Following and Preceding Axes. following and preceding are powerful axes
since they may potentially traverse all the document in document or reverse
document order. In particular, following and preceding generally explore more
than following-sibling and preceding-sibling. Compare query Q8 with

XPathMark: An XPath Benchmark for the XMark Generated Data 133

query Q11: while in Q8 only sibling bidders are searched, in Q11 also bidders of
different auctions are accessed.

Q10 The items that follow, in document order, a given item

/site/regions/*/item[@id=’item0’]/following::item

Q11 The bids issued by a certain person that precedes, in document order, the
last bid in document order of another person

/site/open auctions/open auction/bidder[personref/
@person=’person1’]/preceding::bidder[personref/@person=’person0’]

Node Tests. The queries in this category focus on node tests, which are ways
to filter the result of a query according to the node type of the resulting nodes.

Q18 The children nodes of the root that are comments

/comment()

Q21 The text nodes that are contained in the keywords of the description element
of a given item

/site/regions/*/item[@id=’item0’]/description//keyword/text()

Boolean operators. Queries may be disjuncted with the | operator, while filters
may be arbitrarily combined with conjunction, disjunction, and negation. This
calls for the implementation of intersection, union, and set difference on context
sets. These operations might be expensive if the XPath engine does not maintain
the context sets (document) sorted.

Q22 The (either North or South) American items

/site/regions/namerica/item | /site/regions/samerica/item

Q23 People having an address and either a phone or a homepage

/site/people/person[address and (phone or homepage)]

Q24 People having no homepage

/site/people/person[not(homepage)]

References. References turns the data model of XML documents from trees into
graphs. A reference may potentially point to any node in the document having
an attribute of type ID. Chasing references implies the ability of coping with
arbitrary jumps in the document tree. References are crucial to avoid redundancy
in the XML database and to implement joins in the query language. In summary,
references provide data and query flexibility and they pose new challenges to the
query processors.

Reference chasing is implemented in XPath with the function id() and may
be static, like in query Q25, or dynamic, like in queries Q26-Q29. The id()
function may be nested (like in query Q27) and its result may be filtered (like

134 Massimo Franceschet

in query Q28). The id() function may also be used inside filters (like in query
Q29).

Q25 The name of a given person

id(’person0’)/name

Q26 The open auctions that a given person is watching

id(/site/people/person[@id=’person1’]/watches/watch/@open auction)

Q27 The sellers of the open auctions that a given person is watching

id(id(/site/people/person[@id=’person1’]
/watches/watch/@open auction)/seller/@person)

Q28 The American items bought by a given person

id(/site/closed auctions/closed auction[buyer/@person=’person4’]
/itemref/@item)[parent::namerica or parent::samerica]

Q29 The items sold by Alassane Hogan

id(/site/closed auctions/closed auction
[id(seller/@person)/name=’Alassane Hogan’]/itemref/@item)

Functions. XPath defines many built-in functions for use in XPath expressions.
The following queries focus on some of those.

Q30 The initial and last bidder of all open auctions

/site/open auctions/open auction
/bidder[position()=1 and position()=last()]

Q31 The open auctions having more than 5 bidders

/site/open auctions/open auction[count(bidder)>5]

Q36 The items whose description contains the word ‘gold’

/site/regions/*/item[contains(description,’gold’)]

Q39 Mails sent in September

/site/regions/*/item/mailbox/mail
[substring-before(substring-after(date,’/’),’/’)=’09’]

Q44 Open auctions with a total increase greater or equal to 70

/site/open auctions/open auction[floor(sum(bidder/increase))>=70]

XMark documents do not contain any comment or processing instruction. More-
over, they do no declare namespaces and language attributes. Although we have
used these features in the first part of the benchmark, the corresponding queries
do not give interesting insights when evaluated on XMark documents, since their
answer sets are trivial. Therefore, we included in the benchmark a second docu-
ment and a different set of queries in order to test these features only. For space

XPathMark: An XPath Benchmark for the XMark Generated Data 135

reasons, we do not describe this part of the benchmark here and we invite the
interested reader to consult the XPathMark website [4].

3 Evaluation of XML Engines

In this section we suggest how to evaluate XPathMark on a given XML engine.
Moreover, by way of example, we evaluate, using XPathMark, two popular XML
engines, namely Saxon [7] and Galax [8].

3.1 Evaluation Methodology

XPathMark can be checked on a set of XML processors and conclusions about
the performances of the processors can be drawn. In this section, we suggest a
method to do this evaluation.

We describe a set of performance indexes that might help the evaluation
and the comparison of different XML processors that have been checked with
XPathMark. We say that a query is supported by an engine if the engine pro-
cesses the query without giving an error. A supported query is correct with
respect to an engine if it returns the correct answer for the query. We define the
completeness index as the number of supported queries divided by the number
of benchmark queries, and the correctness index as the number of supported and
correct queries divided by the number of supported queries. The completeness
index gives an indication of how much of the benchmark language (XPath in our
case) is supported by the engine, while the correctness index reveals the portion
of the benchmark language that is correctly implemented by the engine.

XMark offers a document generator that generates XML documents of differ-
ent sizes according to a numeric scaling factor. The document size grows linearly
with respect to the scaling factor. For instance, factor 0.01 corresponds to a doc-
ument of (about) 1,16 MB and factor 0.1 corresponds to a document of (about)
11,6 MB. Given an XMark document and a benchmark query, we can measure
the time that the XML engine takes to evaluate the queries on the document.
The query response time is the time taken by the engine to give the answer for
the query on the document, including parsing of the document, parsing, opti-
mization, and processing of the query, and serialization of the results. It might
be interesting to evaluate the query processing time as well, which is the frac-
tion of the query response time that the engine takes to process the query only,
excluding the parsing of the document and the serialization of the results. We
define the query response speed as the size of the document divided by the query
response time. The measure unit is, for instance, MB/sec.

We may run the query against a documents series of documents of increasing
sizes. In this case, we have a speed sequence for the query. The average query
response speed is the average of the query response speeds over the document
series. Moving from one document (size) to another, the engine may show either
a positive or a negative acceleration in its response speed, or the speed may
remain constant.

136 Massimo Franceschet

The concept of speed acceleration is intimately connected to that of data
scalability. Consider two documents d1 of size s1 and d2 of size s2 in the document
series with s1 < s2, and a query q. Let t1 and t2 be the response times for query
q on documents d1 and d2, respectively. Let v1 = s1/t1 be the speed of q over d1

and v2 = s2/t2 be the speed of q over d2. The data scalability factor for query q
is defined as:

v1

v2
=

t2 · s1

t1 · s2

If the scalability factor is lower than 1, that is v1 < v2, then we have a positive
speed acceleration when moving from document d1 to document d2. In this case,
we say that the scalability is sub-linear. If the scalability factor is higher than
1, that is v1 > v2, then we have a negative speed acceleration when moving
from document d1 to document d2. In this case, we say that the scalability is
super-linear. Finally, if the scalability factor is equal to 1, that is v1 = v2, then
the speed is constant when moving from document d1 to document d2. In this
case, we say that the scalability is linear. A sub-linear scalability means that the
response time grows less than linearly, while a super-linear scalability means that
the response time grows more than linearly. A linear scalability indicates that
the response time grows linearly. For instance, if s2 = 2 · s1 and t2 = 4 · t1, then
the scalability factor is 2 and the time grows quadratically on the considered
segment.

Once again, we may run query q against series of documents of increasing
sizes and generate a data scalability sequence for query q. The average data
scalability factor for query q is the average of the data scalability factors for
query q over the document series.

All these indexes can be computed for a single query or for an arbitrary subset
of the benchmark. Of particular interest is the case when the whole benchmark
is considered. Given a document d, we define the average benchmark response
time for d as the average of the response times of all the benchmark queries on
document d. Moreover, the benchmark response speed for d is defined as the size
of d divided by the average benchmark response time. Notice that the bench-
mark response speed is different from the average of the response speeds for all
the benchmark queries. Finally, the data scalability factor for the benchmark is
defined as above in terms of the benchmark response speed. If we take the aver-
age of the benchmark response speed (respectively, data scalability factor for the
benchmark) over a document series we get the average benchmark response speed
(respectively, average data scalability factor for the benchmark). The former in-
dicates how fast the engine processes XPath, while the latter reveals how well
the engine scales-up with respect to XPath when the document size increases.

The outcomes of the evaluation for a specific XML engine should be formatted
in XML. In Figure 2 we suggest a DTD for this purpose. The document root
is named benchmark. The engine under evaluation and its version are specified
as attributes of the element benchmark. The benchmark element has an index
child and zero or more query children.

The index element contains the performance indexes of the engine and has
attributes describing the testing environment. The testing environment contains

XPathMark: An XPath Benchmark for the XMark Generated Data 137

<!ELEMENT benchmark (indexes,query*)>

<!ELEMENT indexes (completeness,correctness,times?,speeds?,

scalas?,avgspeed?,avgscala?)>

<!ELEMENT completeness (#PCDATA)>

<!ELEMENT correctness (#PCDATA)>

<!ELEMENT times (time+)>

<!ELEMENT speeds (speed+)>

<!ELEMENT scalas (scala+)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT speed (#PCDATA)>

<!ELEMENT scala (#PCDATA)>

<!ELEMENT avgspeed (#PCDATA)>

<!ELEMENT avgscala (#PCDATA)>

<!ELEMENT query (type,description,syntax,supported,error?,

correct,given_answer?,expected_answer?,

times?,speeds?,scalas?,avgspeed?,avgscala?)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT syntax (#PCDATA)>

<!ELEMENT supported EMPTY>

<!ELEMENT error (#PCDATA)>

<!ELEMENT correct EMPTY>

<!ELEMENT given_answer (#PCDATA)>

<!ELEMENT expected_answer (#PCDATA)>

<!ATTLIST benchmark engine CDATA #REQUIRED

version CDATA #REQUIRED>

<!ATTLIST query id ID #REQUIRED>

<!ATTLIST indexes cpu CDATA #IMPLIED

memory CDATA #IMPLIED

os CDATA #IMPLIED

time_unit (msec | csec | dsec | sec) #IMPLIED

time_type (response | processing) #IMPLIED>

<!ATTLIST supported value (yes | no) #REQUIRED>

<!ATTLIST correct value (yes | no | undef) #REQUIRED>

<!ATTLIST time factor CDATA #REQUIRED>

<!ATTLIST speed factor CDATA #REQUIRED>

<!ATTLIST scala factor1 CDATA #REQUIRED

factor2 CDATA #REQUIRED>

Fig. 2. The DTD for a benchmark outcome

information about the processor (cpu), the main memory (memory), the op-
erating system (os), the time unit (time unit), and the time type, that is,
either response or processing time (time type). The performance indexes are:
the completeness index (completeness), the correctness index (correctness),
a sequence of average benchmark response times for a document series (times,

138 Massimo Franceschet

a sequence of time elements), a sequence of benchmark response speeds for a
document series (speeds, a sequence of speed elements), a sequence of data
scalability factors for the benchmark for a document series (scalas, a sequence
of scala elements), the average benchmark response speed (avgspeed), and the
average data scalability factor for the benchmark (avgscala). Each element of
type time and speed has an attribute called factor indicating the factor of
the XMark document on which it has been computed. Moreover, each element
of type scala has two attributes called factor1 and factor2 indicating the
factors of the two XMark documents on which it has been computed.

Each query element contains information about the single query and is iden-
tified by an attribute called id of type ID. In particular, it includes the category
of the query (type), a description in English (description), the XPath syntax
(syntax), whether or not the query is supported by the benchmarked engine
(supported, it must be either yes or no), the possible error message (error,
only if the query is not supported), whether or not the query is correctly im-
plemented by the benchmarked engine (correct, it must be either yes, no, or
undef. The latter is used whenever the query is not supported), the given and
expected query answers (given answer and expected answer. They are used
for comparison only if the query is not correct), a sequence of query response
times for a document series (times, as above), a sequence of query response
speeds for a document series (speeds, as above), a sequence of data scalability
factors for the query for a document series (scalas, as above), the average query
response speed (avgspeed), and the average data scalability factor for the query
(avgscala).

The solution of composing the results in XML format has a number of ad-
vantages. First, the outcomes are easier to extend with different evaluation pa-
rameters. More importantly, the outcomes can be queried to extract relevant
information and to compute performance indexes. For instance, the following
XPath query retrieves the benchmark queries that are supported but not cor-
rectly implemented:

/benchmark/query[supported="yes" and correct="no"]/syntax

Moreover, the following XQuery computes the completeness and correctness
indexes:

let $x := doc("outcome_engine.xml")/benchmark/query
let $y := $x[supported="yes"]
let $z := $x[correct="yes"]
return <indexes>

<completeness> {count($y) div count($x)} </completeness>
<correctness> {count($z) div count($y)} </correctness>

</indexes>

Finally, the following XQuery computes the average query response time of
queries over the axes category when evaluated on the XMark document with
scaling factor 0.1:

XPathMark: An XPath Benchmark for the XMark Generated Data 139

let $x := doc("outcome_engine.xml")/
benchmark/query[type="axes" and correct="yes"]

let $y := sum($x/times/time[@factor="0.1"])
let $z := count($x)
return <average_time> {$y div $z} </average_time>

More generally, one can easily program a benchmark checker that automati-
cally tests and evaluates different XML engines with respect to XPathMark.

3.2 Evaluating Saxon and Galax

We ran the XPathMark benchmark on two state-of-the-art XML engines, namely
Saxon [7] and Galax [8]. Saxon technology is available in two versions: the basic
edition Saxon-B, available as an open-source product, and the schema-aware
edition Saxon-SA available on a commercial license. We tested Saxon-B 8.4,
with Java 2 Platform, Standard Edition 5.0. Galax is the most popular native
XQuery engine available in open-source and it is considered a reference system
in the database community for its completeness and adherence to the standards.
We tested version 0.5. We ran all the tests on a 3.20 GHz Intel Pentium 4 with
2GB of main memory under Linux version 2.6.9-1.667 (Red Hat 3.4.2-6.fc3). All
the times are response CPU times in seconds. For each engine, we ran all the
supported queries on XMark documents of increasing sizes. The document series
is the following (XMark factors):

(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1)

corresponding to the following sizes (in MB):

(0.116, 0.212, 0.468, 0.909, 1.891, 3.751, 7.303, 15.044, 29.887, 59.489, 116.517)

It is worth noticing that in the computation of the completeness index we did not
consider queries using the namespace axis, since this axis is no more supported
in XQuery [2].

The whole evaluation outcomes can be accessed from the XPathMark web-
site [4]. This includes the outcomes in XML for both the engines and some plots
illustrating the behaviour of the performance indexes we have defined in this
paper. In order to compare efficiency and scalability of the two engines, we also
evaluated the subset of the benchmark corresponding to the intersection of the
query sets supported by the two engines (which are different). This common
base is the query set {Q1-Q9,Q12,Q13,Q15-Q24,Q30-Q47} of cardinality 39. In
the following we report about our findings.

1. Completeness and Correctness. The completeness and the correctness
indexes for Saxon are both 1, meaning that Saxon supports all the queries
in the benchmark (excluding queries using the namespace axis, which are
not counted) and all supported queries give the correct answer. The com-
pleteness index for Galax is 0.85. In particular, the axes following and
preceding (which are in fact optional in XQuery) and the id() function

140 Massimo Franceschet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

po
ns

e
tim

e
(s

ec
)

Size of XML (MB)

Galax
Saxon

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(s

ec
)

Size of XML (MB)

Galax
Saxon

Fig. 3. Average benchmark response times

are not supported by Galax. However, all the supported queries give correct
answers, hence the correctness index for Galax is 1.

2. Efficiency. On the common query set, the average benchmark response
speed for Saxon is 2.80 MB/sec and that for Galax is 2.50 MB/sec. This
indicates that Saxon is faster than Galax to process the (checked subset of
the) benchmark. The average response time for a query in the benchmark,
varying the document size, is depicted in Figure 3 (left side is from factor
0.001 to factor 0.032 and right side is from factor 0.032 to factor 1). Inter-
estingly enough, Galax outperforms Saxon in the first track, corresponding
to small documents (up to 3.7 MB), but Saxon catches up in the second
track, corresponding to bigger documents. This trend is confirmed by the
behaviour of the benchmark response speeds (see Figure 4 corresponding to
the same segments of the document series).

3. Scalability. On the common query set, the average data scalability factor
for the checked benchmark is 0.80 in the case of Saxon and it is 0.98 in the
case of Galax. This indicates that Saxon scalas-up better than Galax as the
size of the XML document increases. Figure 5 compares the data scalability
factors for the two engines. Notice that Saxon’s scalability is sub-linear up to
XMark factor 0.256 (29.9 MB), and it is super-linear for bigger files. Galax’s
scalability is sub-linear up to XMark factor 0.032 (3.7 MB), and it is super-
linear for bigger documents. This trend is confirmed by the behaviour of the
benchmark response speeds (Figure 4). In particular, notice that Saxon’s
response speed increases (with a decreasing derivative) up to XMark factor
0.256, and then it decreases, while Galax has a positive acceleration up to
XMark factor 0.032, and then the acceleration becomes negative. From this
analysis, we conclude that, under our testing environment, Saxon is well
performing up to a break point corresponding to an XML documents of size
29.9 MB, while the break point for Galax corresponds to a smaller file of 3.7
MB.

Finally, Figures 6 and 7 depict, for each query, the average response speeds
and the average data scalability factors over the document series. Interestingly,
the qualitative behaviour of the response speeds is the same for both the engines,

XPathMark: An XPath Benchmark for the XMark Generated Data 141

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

po
ns

e
sp

ee
d

(M
B

/s
ec

)

Size of XML (MB)

Galax
Saxon

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 20 40 60 80 100 120

R
es

po
ns

e
sp

ee
d

(M
B

/s
ec

)

Size of XML (MB)

Galax
Saxon

Fig. 4. Benchmark response speeds

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

D
at

a
sc

al
ab

ili
ty

 fa
ct

or

Pair of consecutive XML documents

Galax
Saxon

Linear scalability

Fig. 5. Data scalability factors for the benchmark

with Saxon outperforming Galax in all the queries but Q35 (The elements written
in Italian language: //*[lang(’it’)]). This might indicate that the two engines
implement a similar algorithm to evaluate XPath queries. The data scalability
factor for Galax is almost constant for all the queries, and it is less but close
to linear scalability. The data scalability factor for Saxon is less stable. It is far
below linear scalability for all the queries but the problematic Q35. In particular,
the scalability factor for Q35 is higher than 3 in the last segment of the document
series, indicating that the response time for Q35 grows more then quadratically
(probably Saxon doesn’t understand Italian very well!). Notice that Q35 is not
problematic in Galax.

4 Future Work

We intend to improve XPathMark in different directions by: (i) enlarging the
benchmark query set. In particular, we are developing a benchmark to test query
scalability, that is the ability of an XML engine to process queries of increas-

142 Massimo Franceschet

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Q47Q46Q45Q44Q43Q42Q41Q40Q39Q38Q37Q36Q35Q34Q33Q32Q31Q30Q24Q23Q22Q21Q20Q19Q18Q17Q16Q15Q13Q12Q9Q8Q7Q6Q5Q4Q3Q2Q1

R
es

po
ns

e
sp

ee
d

(M
B

/s
ec

)

Query

Galax
Saxon

Fig. 6. Average query response speeds

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Q47Q46Q45Q44Q43Q42Q41Q40Q39Q38Q37Q36Q35Q34Q33Q32Q31Q30Q24Q23Q22Q21Q20Q19Q18Q17Q16Q15Q13Q12Q9Q8Q7Q6Q5Q4Q3Q2Q1

D
at

a
sc

al
ab

ili
ty

 fa
ct

or

Query

Galax
Saxon

Linear scalability

Fig. 7. Average data scalability factors for queries

ing lengths; (ii) studying different performance indexes to better evaluate and
compare XML engines; (iii) implementing a benchmark checker in order to au-
tomatically compare the performance of different query processors with respect
to XPathMark.

XPathMark can also be regarded as a benchmark for testing the navigational
fragment of the XQuery language in isolation. Indeed, XQuery crucially uses
XPath to navigate XML trees, saving the retrieved node sequences into variables
that may be further elaborated by, e.g., joining, sorting, and filtering. In this
respect, XPathMark can be considered as a fragment of a new version of the
XMark benchmark or as a part of a bigger benchmark evaluation project for
XQuery (e.g., the micro-benchmark repository for XQuery proposed in [10]).

References

1. Schmidt, A.R., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A Benchmark for XML Data Management. In: Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB). (2002) 974–985
http://monetdb.cwi.nl/xml/.

XPathMark: An XPath Benchmark for the XMark Generated Data 143

2. World Wide Web Consortium: XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery (2005)

3. World Wide Web Consortium: XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath (1999)

4. M. Franceschet: XPathMark: An XPath benchmark for XMark.
http://www.science.uva.nl/∼francesc/xpathmark (2005)

5. World Wide Web Consortium: XSL Transformations (XSLT).
http://www.w3.org/TR/xslt (1999)

6. World Wide Web Consortium: XML Pointer Language (XPointer).
http://www.w3.org/TR/xptr (2002)

7. Kay, M.H.: Saxon. An XSLT and XQuery processor.
http://saxon.sourceforge.net (2005)

8. Fernández, M., Siméon, J., Chen, C., Choi, B., Gapeyev, V., Marian, A., Michiels,
P., Onose, N., Petkanics, D., Ré, C., Stark, M., Sur, G., Vyas, A., Wadler, P.:
Galax. The XQuery implementation for discriminating hackers.
http://www.galaxquery.org (2005)

9. Harold, E.R., Means, W.S.: XML in a Nutshell. 3rd edn. O’Reilly (2004)
10. Afanasiev, L., Manolescu, I., Michiels, P.: MemBeR: a micro-benchmark repository

for XQuery project description. In: Proceedings of the International XML Database
Symposium (XSym). (2005)

	XPathMark: An XPath Benchmark for the XMark Generated Data
	1 Introduction
	2 XPathMark: An XPath Benchmark for the XMark Generated Data
	3 Evaluation of XML Engines
	3.1 Evaluation Methodology
	3.2 Evaluating Saxon and Galax

	4 Future Work
	References

