
An Efficient Location Encoding Method Based

on Hierarchical Administrative District�

SangYoon Lee1, Sanghyun Park1, Woo-Cheol Kim1, and Dongwon Lee2

1 Department of Computer Science,
Yonsei University, Korea

{sylee, sanghyun, twelvepp}@cs.yonsei.ac.kr
2 School of Information Sciences and Technology,

Penn State University, USA
dongwon@psu.edu

Abstract. Due to the rapid development in mobile communication tech-
nologies, the usage of mobile devices such as cell phone or PDA becomes
increasingly popular. As different devices require different applications,
various new services are being developed to satisfy the needs. One of
the popular services under heavy demand is the Location-based Service
(LBS) that exploits the spatial information of moving objects per tem-
poral changes. In order to support LBS efficiently, it is necessary to be
able to index and query well a large amount of spatio-temporal infor-
mation of moving objects. Therefore, in this paper, we investigate how
such location information of moving objects can be efficiently stored and
indexed. In particular, we propose a novel location encoding method
based on hierarchical administrative district information. Our proposal
is different from conventional approaches where moving objects are often
expressed as geometric points in two dimensional space, (x, y). Instead,
in ours, moving objects are encoded as one dimensional points by both
administrative district as well as road information. Our method is espe-
cially useful for monitoring traffic situation or tracing location of moving
objects through approximate spatial queries.

Keywords: Location-Based Service, Road network, Moving object,
Indexing.

1 Introduction

Due to the recent development in mobile communication technologies, the usage
of mobile devices such as cell phone or PDA becomes increasingly popular, and
novel services are being developed to serve various needs. One of the popular
services for mobile devices is the Location-based Service (LBS) that exploits the
location information of moving objects (i.e., mobile devices). For instance, the
following queries are utilizing the “location” of moving objects: “Find the loca-
tion of a person with a phone number X.”, “What is the nearest Thai restaurant
� This work was partially supported by Korea Research Foundation Grant (KRF-2004-

003-D00302 and KRF-2005-206-D00015).

K.V. Andersen, J. Debenham, and R. Wagner (Eds.): DEXA 2005, LNCS 3588, pp. 890–899, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Location Encoding Method 891

to a hotel Y?”, or “Where is the delivery truck, shipping the TV that I purchased
over the Internet?”, etc.

The LBS is the service that keeps track of the location information of mov-
ing objects per time unit, stores them into databases, and handles users’ queries
based on the stored location information. The queries used in the LBS can be cat-
egorized as spatial (i.e., finding moving objects within some spatial constraints),
trajectory (i.e., finding moving paths of objects per some time units), and hybrid
(i.e., both spatial and trajectory) queries [9].

In particular, moving objects in the context of LBS have the following chal-
lenges: (1) they have high update cost since databases have to update location
information as time passes; (2) they have high storage cost since location infor-
mation is typically multi-dimensional (i.e., object, time, location, etc.); (3) data
to handle are large-scale since databases need to maintain temporal data (i.e.,
past and present); (4) they have high retrieval cost due to the large amount
of data. Therefore, it is important to devise an indexing and query processing
technique that can handle such a large-scale multi-dimensional spatio-temporal
data efficiently.

In this paper, we investigate a data encoding method to enable effective in-
dexing and query processing for such a setting. In conventional approaches (e.g.,
3DR-tree [11], HR-tree [5], STR-tree [8], TB-tree [9], and MV3R-tree [10]), the
location information of moving objects were expressed as a geometric coordi-
nate (x,y) in two dimensional space. However, instead, we propose to express
location information using both hierarchical administrative district and road
network [3][7] in one dimensional space that, we believe, fits better the real
world. For instance, if a moving object is in a building with a coordinate of
latitude=125.58 and longitude=-37.34, then it can be expressed as a set of fields
according to an administrative district such as city, road-name, road-block (e.g.,
Seoul, Main road, 165). Furthermore, by converting the fields into a binary string
that has efficient ways to process queries, we overcome the aforementioned chal-
lenges of the LBS.

Our proposed scheme has at least three advantages: (1) it reduces the storage
cost and dimensions of index by expressing location information in one dimen-
sional space, instead of two dimensional space. This results in the improved query
processing. (2) In real world, moving objects can only follow along the “roads”.
However, if one expresses location information as geometric coordinates, then
one may include spaces where moving objects can never move into, so called
dead space, incurring storage waste. (3) Since location information is based on
the information of the administrative district, the results can be easily converted
into address formats that are easier, as answers, for human users to interpret.

2 Proposed Encoding Method of Location Information

In many countries, addresses are often represented as a set of fields such as
district name, road name, and location on the road. For example, the address of
the City Hall of Seoul, Korea is represented as a triplet of (Seoul, Eulji road, 31).

892 S. Lee et al.

Similarly, the address of the Natural History Museum of England is (London,
Cornwell Road, -), where the third field is null. Exploiting this addressing scheme,
one can easily encode the location of a moving object as a one-dimensional binary
string. By adding more fields, it is trivial to extend the scheme to be able to
support more general addresses. From here forward, to keep the presentation
simple, we only focus on the triplet scheme, (district, road, location on road), to
represent addresses within a specific country.

The procedure to encode the location of a moving object consists of three
steps as follows: (1) obtain the address of the place at which the moving object
is located and express it as a triplet, (2) transform each field of the triplet into a
binary string, and (3) concatenate the three binary strings into a single binary
string. The first and third steps are trivial, and thus we elaborate on the second
step.

We first discuss the way to encode districts. For easier illustration, let us
consider an imaginary country with 4 counties (A, B, C, D) as a whole and 8
cities (a, b, ..., g) in each county - a total of 32 districts to encode. The simplest
encoding method is to use their lexicographical orders. That is, by using 2 bits
for county names and 3 bits for city names, one can encode a district as a 5-
bit string whose first two bits represent the lexicographical order of its county
name and the remaining three bits represent the lexicographical order of its city
name. For example, one can express the district “A county a city” as “00 000”,
the district “A county b city” as “00 001” and “B county a city” as “01 000”.

Although this encoding scheme is simple to implement, it does not provide the
information about the relative position of districts. For example, let us consider
two moving objects, one located at the district “00 000” and the other at the
district “00 001”. Comparing these two binary strings, one can deduce that the
two objects be in the same county but in different city. These two binary strings,
however, do not provide any clue as to the relative positions of the two objects.

To overcome these limitation, we propose to use a mapping technique based
on space-filling curves such as Z-ordering [6], R-ordering [1], and H-ordering [2].
A space-filling curve is a one-dimensional curve which visits every point within a
multi-dimensional space. In order to represent the relative locations of districts
more efficiently, we choose Z-ordering among various space-filling curves and
modify it to start from the upper left corner rather than the lower left corner
as in the original Z-ordering. The detailed algorithm to encode the districts
contained in a region is given in Algorithm 1, and an illustrative example is
shown in Fig.1.

Compared to the encoding method based on lexicographical orders, the pro-
posed encoding method produces more informative binary strings. Let us con-
sider the two moving objects again, one located at the district “00 000” and the
other at the district “00 001”. In addition to the facts that the two objects are
in the same county but are in different city, we can infer more facts: (1) since
the first two bits for cities are all “00”, the cities are located at northwest area
of the county, and (2) since the last bits for cities are different, the city where
the first object is located is north of the city where the second object is located.

An Efficient Location Encoding Method 893

Algorithm 1: Mapping administrative districts into binary strings.

1 Compute the central point of each district.
2 Divide the region into two sub-regions, north and south, so that the numbers

of central points in both north and south are similar.
3 If region north has more than one central point, divide it into two sub-regions,

north east and north west, so that the numbers of central points in both
north east and north west are similar.

4 Do the same for region south symmetrically.
5 For each sub-region obtained from Steps 3 and 4, if it contains more than one

central point, repeat Steps 2 - 4.
6 Considering the division process undergone, map the central point of each

district onto a two-dimensional space.
7 Using a modified Z-ordering, assign a binary string to each district.

Fig. 1. An example which illustrates how Algorithm 1 works on A county

Fig. 2. A road which is partitioned into 2n − 1 units of the same size

The algorithm to encode the roads within a district is not much different from
Algorithm 1. The changes needed to be made on Algorithm 1 are as follows: (1)
every instance of word “district” is to be replaced with word “road”, and (2)
every instance of word “region” is to be replaced with word “district”.

Now let us consider the way to encode the location on road. We first partition
the road into 2n −1 units of the same size, and then represent each boundary as
an n-bit binary string as shown in Fig.2. Lastly, we choose the boundary nearest
from an object and use its binary string as the location of the object on road.

894 S. Lee et al.

The proposed encoding scheme has the following characteristics: (1) one can
find out the lowest common administrative district by extracting the longest
common prefix of a given set of binary strings, and (2) a district containing a set
of lower districts can be represented by the range of binary strings; for example,
county “A” in Fig.1 is represented by the range [00000, 00111].

3 System Organization

As shown in Fig.3, our LBS implementation consists of two sub-systems for
population and query processing. The population sub-system is responsible for
collecting the information of moving objects and storing it into databases, and
the query processing sub-system is in charge of answering to the queries about
the moving objects. To support the proposed encoding scheme, in addition, the
LBS system needs three conversion modules, XY2BS, AD2BS and BS2AD.

Fig. 3. LBS system which uses the proposed location encoding scheme

Module XY2BS converts a two dimensional coordinate denoting the location
of a moving object into the equivalent binary string. To expedite the conversion
process, XY2BS maintains an R-tree built from the roads in administrative dis-
tricts. For a given road R, let bitstring(R) and rectangle(R) denote the binary
string of R and the rectangle for the two end points of R, respectively. For each
road R in districts, then, the R-tree stores rectangle(R) and bitstring(R) in one
of its leaf nodes. Algorithm 2 describes how XY2BS makes use of the R-tree to
quickly convert two dimensional points to corresponding binary strings.

It is much more intuitive for users to ask queries using real-life address
such as “Seoul, Main road, 100” than using coordinates such as “longitude=-
65, latitude=+45”. Similarly, it is also preferable to use such real-life address
in the query results. Therefore, in our prototype, we assume that both users’
queries and query results are in the real address format. Module AD2BS con-
verts this real-life addresses into equivalent binary string representations, and

An Efficient Location Encoding Method 895

Algorithm 2: Utilizing an R-tree to quickly convert a two dimensional point,
(x, y), into the equivalent binary string.

1 Generate the rectangle uMBR by expanding x to its left and right by uR, and
expanding y up and down by uR. uMBR is then expressed as ([x − uR, x +
uR], [y − uR, y + uR]). Here, uR is a system parameter used for determining
the nearness of roads from a two dimensional point.

2 Search the R-tree for the roads whose MBRs overlap uMBR.
3 From the roads obtained in Step 2, select the road R whose Euclidean distance

to (x, y) is the smallest.
4 Project (x, y) onto the road R. Let (x’, y’) denote the coordinate of (x, y) after

the projection.
5 Using the relative position of (x’, y’) on the road R, calculate the binary string

for (x’, y’).
6 Concatenate bitstring(R) and the binary string for (x’, y’).

module BS2AD converts binary strings back to equivalent real-life addresses. For
rapid conversion to binary strings, AD2BS maintains a B-tree where district and
road names are used as a key and binary strings are stored at leaf nodes. For fast
conversion to real-life addresses, BS2AD also maintains a B-tree where binary
strings are used as a key, and district and road names are stored at leaf nodes.

4 Query Processing

This section describes how our LBS implementation processes typical LBS range
and trajectory queries.

4.1 Range Query Processing

Range queries are to find the moving objects within a specific region during a
given time interval or to find a set of time intervals during which a specific moving
object was within a given region. Let us consider an example query: “Find all
cell phone users who have been in b city of A county during the time interval
[10 pm, 11 pm]”. To answer this query, the system first calls module AD2BS to
convert the district name (i.e., “A county, b city”) to the corresponding binary
string. Since there are likely to be more than a single road in the given district,
the district name is expressed as a range of binary strings. The system then
searches the database using the range of binary strings and the time interval
(i.e. [10 pm, 11 pm]) as a query predicate.

4.2 Trajectory Query Processing

Trajectory queries are to retrieve the path on which a moving object has tra-
versed during a given time interval. Let us consider an example query: “Between
the time interval [10 pm, 11 pm], where has Sam been moving around?”. If the
system represents the locations of moving objects as two dimensional geometric
points, the answer to such a query consists of a set of line segments and thus can

896 S. Lee et al.

Fig. 4. An example of trajectory query procesing

be meaningfully displayed only on electronic maps. However the answers from
the proposed LBS system can be easily converted to real-life addresses and thus
can be delivered to users in text or voice format (in addition to being useful on
electronic maps as well).

To process trajectory queries, the system first searches the database using the
object and time interval information, and then sort the result in ascending order
of time as shown in Fig.4. The system then calls module BS2AD to convert
the binary strings in the result into the corresponding administrative district
addresses, and finally sends out the result in text or voice format to users. When
showing the result to users, the system may represent a set of adjacent rows as
a single row by extracting their common prefixes. That is, it is feasible that the
result is displayed in the unit of ‘county’ first and, whenever necessary, in the
unit of ‘city’ (similar to the drill-down of OLAP applications)

5 Experiment

To evaluate the effectiveness of the proposed location encoding scheme, we per-
formed experiments with real district and road data of a specific region in Seoul,
Korea. The region we used for experiments consists of 2 counties (actually ‘gu’ in
Korea), 46 cities (actually ‘dong’ in Korea), and 387 roads. We created synthetic
moving objects within this region and let them follow the roads in a random fash-
ion for 500 minutes. We then observed their locations every 1 minute. At first the
collected data were stored in 3DR-tree as a triplet of (timestamp, x-coordinate,
y-coordinate) and then stored in 2DR-tree as a pair of (timestamp, binary string
representation of location). Identifiers of moving objects were used as a key and
thus stored in leaf nodes of 3DR-tree or 2DR-tree.

We evaluate the effectiveness of the proposed encoding scheme by comparing
the 3DR-tree with the 2DR-tree in terms of index size and query processing time.

An Efficient Location Encoding Method 897

The machine for the experiments was a personal computer with a Pentium-IV
2.6 GHz CPU, the main memory of 512 MB, and the operating system of Linux
Fedora core 3.

5.1 Index Size

While increasing the number of moving objects from 400 to 2,000, we measured
the sizes of the 2DR-tree and the 3DR-tree. Since 500 location data were col-
lected from each object, the total number of records stored in the indexes was
200,000 when there were 400 objects and 1 million when there were 2,000 objects.
As shown in Table 1, the 2DR-tree which stores the locations in binary string
representation consumed about 58% of the storage space spent by the 3DR-tree.
Therefore, the reduction ratio of the index size was approximately 42% and this
reduction ratio increased slightly when the number of moving objects became
2,000.

Table 1. Sizes of 2DR-tree and 3DR-tree

of moving objects Size of 3DR-Tree Size of 2DR-Tree Reduction ratio
(Tuples) (KB) (KB) (%)

400 (200,000) 10,973 6,393 41.7
800 (400,000) 22,467 12,779 43.1
1200 (600,000) 34,342 19,329 43.7
1600 (800,000) 46,221 25,906 44.0
2000 (1,000,000) 58,218 32,565 44.1

5.2 Query Processing Time

While increasing the number of moving objects from 400 to 2,000, we observed
how long it takes for the 2DR-tree and the 3DR-tree to process range queries and
trajectory queries. We generated 1,000 queries for each query type and measured
the time elapsed to process all the 1,000 queries.

We first performed the two types of range queries: “Find a set of time intervals
during which a specific object was in a given city” (type 1) and “Find a set of
time intervals during which a specific object was in a given county” (type 2). As
shown in Fig.5, the query processing times of both the 2DR-tree and the 3DR-
tree increase linearly as the number of moving objects grows, but the increase
ratio of the 2DR-tree is smaller than that of the 3DR-tree. Compared to the
3DR-tree, the 2DR-tree achieved about 98% performance improvement for the
queries in type 1 and 67% to 69% improvement for the queries in type 2. Such
an improvement seems to be achievable because the proposed scheme reduces
the index size significantly and makes search regions become one-dimensional
ranges rather than two-dimensional rectangles.

We then performed another two types of range queries: “Find the moving ob-
jects which were within a given city at any time in the first 250 minutes” (type
3) and “Find the moving objects which were within a given county at any time
in the first 250 minutes” (type 4). To process these types of range queries, we
have to search the index using the rectangles representing the time and location

898 S. Lee et al.

 0

 100

 200

 300

 400

 500

 2000 1600 1200 800 400

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(s

ec
)

of moving objects

2DR-tree for query type 1
2DR-tree for query type 2
3DR-tree for query type 1
3DR-tree for query type 2

Fig. 5. Elapsed time to process type 1 and
type 2 queries

 0

 50

 100

 150

 200

 250

 300

 2000 1600 1200 800 400

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(s

ec
)

of moving objects

2DR-tree for query type 3
2DR-tree for query type 4
3DR-tree for query type 3
3DR-tree for query type 4

Fig. 6. Elapsed time to process type 3 and
type 4 queries

constraints. Remember that the 2DR-tree and the 3DR-tree express locations
as one-dimensional binary strings and two-dimensional geometric points, respec-
tively. Therefore, the search regions for the 2DR-tree become two dimensional
while the search regions for the 3DR-tree become three dimensional. As shown in
Fig.6, the performance improvement of the 2DR-tree becomes larger as the num-
ber of moving objects increases. As a result, the 2DR-tree achieved improvement
up to 98% for the queries in type 3, and up to 64% for the queries in type 4.

We lastly performed a trajectory query: “Where has a specific object been
moving around for the first 250 minutes?” (type 5). To process such a query,
we have to traverse down the index using the time constraint. Since traversing
the 2DR-tree is more effective than traversing the 3DR-tree in terms of CPU
and I/O cost, the 2DR-tree achieved about 44% performance improvement when
there were 400 objects and about 41% when there were 2,000 objects.

 0

 50

 100

 150

 200

 250

 2000 1600 1200 800 400

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(s

ec
)

of moving objects

2DR-tree for query type 5
3DR-tree for query type 5

Fig. 7. Elapsed time to process type 5 queries

An Efficient Location Encoding Method 899

6 Conclusion

In this paper, we have proposed an effective location encoding method that uses
the information in the hierarchical administrative district and the road network
of real world. Our method captures moving objects as binary strings in one
dimensional space instead of conventional (x, y) coordinates in two dimensional
space, and thus can reduce storage cost by upto 44% while improving query
processing by 64% to 98%. The benefits of our proposal include: (1) it improves
upon previous indexing and query processing algorithms by exploiting binary
strings; (2) it is easy to drill-down or roll-up query results in a hierarchical
administrative district; (3) since it uses the ontologies of administrative district
that are intuitive to human users, it is suitable to display query results as text
or voice even without electronic maps.

One of the obstacles of the Location-based Service (LBS) is how to reduce the
rapidly increasing spatio-temporal data without sacrificing query performance.
To address this problem, we plan to exploit the property that when two binary
strings of location information share the same prefix, two corresponding moving
objects on the road network must be located in the same administrative district.
That is, the location information of moving objects can be further compressed
per administrative district by using common prefixes.

References

1. C. Faloutsos, “Gray Codes for Partial Match and Range Queries”, IEEE Trans. on
Software Engineering, 14(10), pp. 1381-1393, 1988.

2. C. Faloutsos and S. Roseman, “Fractals for Secondary Key Retrieval”, In Proc.
ACM PODS, pp. 247-252, 1989.

3. S. Gupta, S. Kopparty, and C. Ravishankar, “Roads, Codes, and Spatiotemporal
Queries”, In Proc. ACM PODS, pp. 115-124, 2004.

4. A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching”, In Proc.
ACM SIGMOD, pp. 47-54, 1984.

5. M. A. Nascimento and J. R. O. Silva, “Towards Historical R-trees”, In Proc. ACM
Symposium on Applied Computing, pp. 235-240, 1998.

6. J. A. Orenstein and T. H. Merrett, “A Class of Data Structures for Associa-
tive Searching”, In Proc. ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pp.181-190, 1984.

7. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query Processing in Spatial
Network Databases”, In Proc. VLDB Conference, pp. 802-813, 2003.

8. D. Pfoser, Y. Theodoridis, and C. S. Jensen, “Indexing Trajectories in Query Pro-
cessing for Moving Objects”, Chorochronos Technical Report, CH-99-3, 1999.

9. D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel Approaches in Query Process-
ing for Moving Objects”, In Proc. VLDB Conference, pp. 395-406, 2000.

10. Y. Tao and D. Papadias, “MV3R-Tree: A Spatio-Temporal Access Method for
Timestamp and Interval Queries”, In Proc. VLDB Conference, pp. 431-440, 2001.

11. Y. Theodoridis, M. Vazirgiannis, and T. K. Sellis, “Spatio-Temporal Indexing for
Large Multimedia Applications”, In Proc. IEEE International Conference on Mul-
timedia Computing and Systems, pp. 441-448, 1996.

	Introduction
	Proposed Encoding Method of Location Information
	System Organization
	Query Processing
	Range Query Processing
	Trajectory Query Processing

	Experiment
	Index Size
	Query Processing Time

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

