
On a Collaborative Caching in a Peer-to-Peer

Network for Push-Based Broadcast

Kazuhiko Maeda1, Wataru Uchida2, Takahiro Hara1, and Shojiro Nishio1

1 Graduate School of Information Science and Tech., Osaka University
2 Network Lab., NTT DoCoMo, Inc.

{k.maeda, hara, nishio}@ist.osaka-u.ac.jp
uchida@netlab.nttdocomo.co.jp

Abstract. In this paper, we propose a new collaborative caching strat-
egy in a push-based broadcast environment where clients construct a
peer-to-peer network by connecting with each other. In the proposed
strategy, a client takes into account its own access probabilities and in-
formation on queries issued by other clients, and caches data items with
large benefits of the response time. We confirm that the proposed strat-
egy reduces the average response time by simulation experiments.

1 Introduction

Recently, there has been an increasing interest in research of a push-based broad-
cast system where a server delivers various data to clients, and they do not send
any requests to the server but wait for the data to be broadcast. A key advan-
tage of the push-based broadcast system is a higher throughput for data access
from many clients. The push-based broadcast system is used for services where
information with high publicity, such as movies, sounds, news, and charts. How-
ever, the server has to broadcast many kinds of data in order to satisfy clients’
requests. This causes each client to wait data to be broadcast for a long time. To
shorten the response time, several strategies for caching broadcast data at clients
have been proposed [1,2]. These strategies calculate the benefit of response time
from the client’s access probability and the time factor (eg, broadcast cycle)
of each data item, and cache data items with large benefits. These researches
assume that clients have two ways to access data; access their own cache and
listen broadcast data.

Today, there has been also an interest in a new type of information sharing
called P2P systems [7,8]. In a P2P system, terminals called peers construct a
logical network (P2P network) by connecting with each other. If a peer which
wants a certain data item sends an access request (query) to its adjacent peers
in the P2P network, the query be propagated until the query reaches a peer that
holds the requested data item. Then, the data item is delivered to the peer that
issued the query. Since each peer behaves in autonomous and distributed ways,
this system has high scalability.

In a push-based broadcast system, it is expected that the average response
time for data access could be further reduced if clients construct a P2P network

K.V. Andersen, J. Debenham, and R. Wagner (Eds.): DEXA 2005, LNCS 3588, pp. 879–889, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

880 K. Maeda et al.

and they access requested data not only from the broadcast server and their
own cache but also from the P2P network , i.e., other clients’ cache. To the best
our knowledge there is no conventional work that addresses caching strategies
of broadcast data using a P2P network. In this paper, we assume that many
clients that receive the push-based broadcast service construct the P2P network,
and propose a new caching strategy by which clients collaboratively cache the
broadcast data. In the proposed strategy, each client replaces its cache by taking
into account not only its own access probabilities but also queries from other
clients in order to reduce the average response time in the whole system.

The reminder is organized as follows. We introduce conventional caching
strategies in section 2 and describe the system model in section 3. We propose
a collaborative caching strategy in section 4, and evaluate it using simulation
experiments in section 5. We show some related works in section 6. Finally, in
section 7, we summarize this paper.

2 Conventional Caching Strategies

In PIX [1] and PT [2] strategies, it is assumed that clients can access data items
from only their own cache or broadcast channel. When a client requests for a
certain data item, it checks whether it caches the requested data item. If it does,
it can access the item immediately. If not, it waits for the broadcast data item.
The response time is the time interval until the data item is broadcast next.

PIX strategy
The algorithm of the PIX strategy is as follows.

1. The PIX value, K(j) = pj · yj , is calculated by each client for each data
item j (1 ≤ j ≤ M). Here, M is the total number of data items which are
broadcast by the server, pj is the probability that the client accesses data
item j, and yj is the broadcast period of data item j.

2. The client caches γ data items which have the γ highest K(j). Here, γ is the
number of data items that the client can cache.

The PIX strategy reduces the response time of data access by caching items
which have high access probabilities and long broadcast periods.

PT strategy
The algorithm of the PT strategy is as follow.

1. Every time when each data item, k, is broadcast, the PT values are calculated
by each client for data items in the client’s cache and data item k. The PT
value, Lj , of data item j is calculated by Lj = pj · (uj(Q) − Q). Here, Q is
the current time and uj(Q) is the time when data item j is broadcast next.

2. If a data item in the cache gives a lower PT value than Lk, data item j
whose PT value is the lowest is replaced by k.

The PT value, Lj , represents the expected value of increase in response time
if the client does not have data item j in its cache. The PT strategy compares
the increases in response time of data items if they are discarded from the cache,
and prefetches data items with larger gains in response time.

On a Collaborative Caching in a P2P Network for Push-Based Broadcast 881

3 System Model

Figure 1 shows a system model assumed in this paper. In this system model, peers
(clients) can send/receive data items to/from other peers in the P2P network.
Each peer can cache a limited number of data items. When a peer wants to
access a data item, it chooses a way that gives the shortest response time among
the three access methods: accessing the item stored in its own cache, receiving
the item from the broadcast, and receiving the item from another peer’s cache.

ServerServer

CacheCache

P2P network composed of clients (peers)P2P network composed of clients (peers)

Broadcast

Fig. 1. Assumed environment

In this paper, it is assumed that the response time when accessing an item in
its own cache is 0. Thus, if a request issuing peer holds the item in its own cache,
it always accesses the cached item. If the peer does not hold, it compares the
time remaining until the item is broadcast next with the time that is required to
receive the item from another peer in the P2P network. If the former is shorter,
the peer waits until the item is broadcast next. The response time when receiving
a requested item from the broadcast is the time until the data item is broadcast
next. If the latter is shorter, the peer checks whether another peer holds the
requested item by using flooding [10]. In flooding, a peer issues a query with a
certain TTL (Time To Live), and broadcasts the query to all its adjacent peers.
If an adjacent peer does not hold the requested item, it re-broadcasts the query
to all its adjacent peers, and this repeats until the query reaches a peer that holds
the requested item or the logical hop count from the request issuing peer exceeds
the TTL. If a peer that holds the requested item is found (in the following, it
is denoted that the query “hits”), the peer sends a reply message to the request
issuing peer. This message is sent to the request issuing peer through peers that
relayed the query on the reverse direction. If the request issuing peer receives
some reply messages, it receives the requested data item from the peer with the
lowest logical hops. This data transmission is directly performed between the two
peers using the physical network. If the query does not hit, the request issuing
peer waits until the data item is broadcast next.

882 K. Maeda et al.

We also put the following assumptions:

– The system has a single broadcast server, and peers do not send any access
requests to the server, i.e., pure push-based broadcast.

– All data items are of the same size and not updated. It takes one unit of
time (one time slot) to broadcast one data item.

– Each peer knows the broadcast program. It can be realized by several ways,
e.g., the server periodically broadcasts the program information.

– The delay of query propagation and the time to process a query is ignorable.
– The time to transmit a data item between every pair of peers is the same. We

put this assumption for simplicity, but our proposed strategy can be easily
extended to adapt an environment where transmission delays differ among
peers.

4 Collaborative Caching Strategy

In this section, we propose a new collaborative caching strategy using a P2P
network. In order to collaboratively cache data items, peers should know what
data items are already cached by other peers and what data items are frequently
accessed. However, since there are a huge number of peers in a push-based broad-
cast system, it is impractical that peers precisely know this information. Our
main idea is that each peer guesses this information only using queries from
other peers, e.g., arrival rate of query and results of data lookup. The proposed
strategy shortens the average response time by determining cache replacement
from this guessed information and its own access probabilities. This approach
is reasonable because a query propagates only within a certain area determined
by the TTL and thus the information guessed from queries indicates what items
are cached and frequently accessed by neighboring peers within the TTL.

4.1 Query Information from Other Peers

To guess the above information, in the proposed strategy, each peer classifies
queries that the peer issued or received from its neighbors. When a query arrives
at a peer, the peer counts the query as one of the following three categories based
on the result of looking up. Each of the three categories is counted for each data
items.

– F (Failure) query: The query that did not hit, i.e., neither the peer nor
further peers that the query propagated had the requested data item.

– S (Success) query: The query that hit, i.e., among the peer and further peers
that the query propagated, at least one peer had the requested data item.

– C (Connected) query: The query that hit at the peer and the requested item
was downloaded, i.e., the peer had the requested item and actually sent it
to the query issuing peer.

Let us suppose a situation in which peer a is adjacent to peers b, c, and d as
shown in Figure 2 and only peer d caches data item i. When a query requesting

On a Collaborative Caching in a P2P Network for Push-Based Broadcast 883

QueryQuery

Peer: aPeer: a

Adjacent peer: bAdjacent peer: b

Adjacent peer: dAdjacent peer: dAdjacent peer: cAdjacent peer: c

Fig. 2. Query propagation

item i propagates from peer b to peer a, the query is further broadcast to adjacent
peers c and d since a does not have i in its own cache. Since only peer d caches
item i, it sends a reply message to the query issuing peer via the path dab. From
the reply message, peers a and b know that they are on the propagation path of
the query that found data item i, and thus, a, b, and d count the query as an S
query. If the query issuing peer received data item i from peer d, peer d counts
the query as a C query instead of S query.

Here, it should be noted that a query is counted only once even if the same
query or its results reached through multiple routes. The priority is given in the
order of C, S, and F queries. For example, in the above case, if peer a receives the
same query via another route and the TTL of the query is 0, the query cannot
reach peer d and thus cannot find a peer that has the requested data item. In
this case, while the query can be categorized to both S and F queries at peer a,
only S query is counted according to the priority mentioned above.

By categorizing and counting queries, the following facts can be found.

– If a peer counts many F queries for a data item, it is shown that the data
item is frequently requested by its neighboring peers including itself, but
there is no neighboring peer that caches it.

– If a peer counts many S queries for a data item, it is shown that the data
item is frequently requested by its neighboring peers including itself and
some peers or itself cache it.

– If a peer counts many C queries for a data item, it is shown that the data
item is frequently requested by its neighbors and the item cached by the
peer is actually sent to the neighbors.

Increasing rates of the three categories dynamically change every time when
a peer replaces its cache. For example, when data item i that is cached by no
neighboring peers is frequently requested, many F queries are counted for item
i. However, if one of the neighboring peers caches item i, many S queries will be
counted at the peers, whereas many F queries had been counted until now.

4.2 Proposed Strategy

The collaborative caching strategy proposed in this paper extends the PIX strat-
egy to take into account data accesses from other peers in the P2P network. The

884 K. Maeda et al.

proposed strategy, C-PIX (Collaborative PIX), calculates the benefits of the ex-
pected response time in the entire system when a peer replaces one of the cached
data items with the broadcast data item. Based on the calculation, the C-PIX
strategy determines the cache replacement.

For data item j in a peer’s cache, the expected value of increase in response
time in the entire system when the peer discards j from its cache is defined by
the following equation:

Uj = Pj · yj/2 + Cj · (yj/2 − l). (1)

We call this the C-PIX value. Here, l denotes the time required for sending a
data item between two peers, Pj denotes the access probability of item i per unit
time, and Fj , Sj, Cj denote the arrival rates of F, S, C queries per unit time.

For broadcast data item k which is not in the peer’s cache, the expected value
of decrease in response time in the entire P2P network when the peer caches k
is defined as the k’s C-PIX value, Uk. If Sk = 0 at peer A, it is likely that A’s
neighboring peers do not cache data item k, and peer A and its neighbors have to
access k from the broadcast channel. Therefore, for peer A and its neighbors, the
expected response time of accessing k is yk/2. On the other hand, if Sk > 0 at
peer A, at least one neighboring peer caches data item k and peer A can receive
the data item from the peer. Thus, the expected response time of accessing k is
l. From the above discussions, Uk is expressed by the following equation:

Uk =
{

Pk · yk/2 + Fk · αk · (yk/2 − l) (Sk = 0)
Pk · l + Fk · αk · (yk/2 − l) (Sk > 0). (2)

Here, αk denotes the forecast ratio of F queries that will change to C queries
when the peer caches data item k.

When a peer discards data item i from its cache, άi is set as the value of αi,
and then, αi is changed by the following equation:

αi = x · άi + (1 − x) · Ci/ {Fi + Ci} . (3)

Here, x (0 ≤ x ≤ 1) is the parameter that determines how much the new αi is
influenced by the former one. When x is set to an unnecessary large value, the
system cannot sensitively adapt to changes of the environment. It is important
to determine an appropriate value of x considering the feature of the system.

In the C-PIX strategy, each peer calculates the C-PIX values for all data items
stored in its cache and finds the minimum one, Um, among them. If Um is smaller
than Uk, item m is replaced with broadcast item k. If the cache replacement
occurs, the query counts of F, S, and C queries for the item discarded from the
cache and the newly cached item are set to 0.

Now, we define the warmup time, T , that represents the time necessary for
receiving enough queries for calculating the C-PIX value after caching a new data
item. Until T units of time passes after caching data item i, Ui is calculated not
by equation (1) but by the following equation:

Ui = Pi · yi/2 + F́i · (yi/2 − l) (4)

Here, F́i denotes the value of Fi before caching data item i.

On a Collaborative Caching in a P2P Network for Push-Based Broadcast 885

5 Performance Evaluation

5.1 Simulation Environment

It is known that an unstructured P2P network constructed on the Internet fol-
lows the power-law [6]. Based on this fact, we determined the degree of peer
j, dj , which is the number of j’s adjacent peers in the P2P network, by the
following equation:

dj =
⌊
wmax · rRj

⌋
. (R < 0) (5)

Here, rj denotes the rank of peer j, which is its index in the descending or-
der of outdegree (number of adjacent peers), and wmax denotes the maximum
number of adjacent peers. For simplicity, we assume rj = j. A network which is
constructed by connecting peers at random according to the power-law is called
a PLRG (Power-law Random Graph). In our simulations, the number of peers
was set to 500 and we used a PLRG network, where (wmax,R) is (240,−0.8) as
many conventional works did [6]. Here, it is known that R of the real network
is approximately −0.8.

The access probability at each peer was determined based on the Zipf distri-
bution [14], where the following two different distributions were used:

Access distribution 1 (A. D. 1)F
The smaller the identifier of each data item is, the higher the probability that
the data item is accessed. The order of access probabilities of data items is the
same at all peers. However, the values of the access probability of each data item
are not the same among peers but vary a little. Specifically, access probability
pji of item i at peer j was given by the following equation:

pji =
i−θj∑M

k=1 k−θj

. (6)

Here, θj is called a Zipf coefficient, and if this is set to a large value, a small
number of data items are accessed frequently. In our simulations, θj was also
determined based on the Zipf distribution by the following equation:

θj =
j−0.8∑MAX PEER

k=1 k−0.8
. (7)

Here, MAX PEER denotes the total number of peers.

Access distribution 2 (A. D. 2)F
Every peer has different orders of access probabilities of items. Access probability
pji of item i at peer j was given by the following equation:

pji =
{(i − hj + 1) mod M}−0.5∑M

k=1 k−0.5
. (8)

886 K. Maeda et al.

Table 1. Average response time varying x and T (A. D. 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100 36.7 33.8 31.9 31.5 34.6 42.6 56.8 88.4 168.4
200 29.9 38.0 51.4 69.7 94.4 128.1 180.6 258.8 306.7
300 38.2 53.1 73.0 97.2 129.0 173.1 222.4 259.7 280.0
400 50.5 69.3 93.1 123.0 162.0 193.2 209.9 220.8 218.8
500 48.8 64.2 83.1 106.0 119.9 128.1 132.4 134.9 136.5
600 63.8 91.8 122.1 106.3 205.2 231.6 249.2 263.0 265.2
700 51.7 68.2 89.5 112.9 138.2 165.9 186.9 197.6 193.4
800 44.6 56.7 72.1 88.5 108.9 134.4 161.0 167.3 159.3
900 42.7 53.7 66.8 84.2 106.2 127.1 142.8 144.5 135.5

1000 83.7 92.3 98.2 100.7 101.0 103.2 102.5 102.8 104.7

T
(Time slot)

x

Here, hj denotes the item which peer j accesses most frequently. The probability
that peer j accesses data item i most frequently (namely, hj = i) was also
determined based on the Zipf distribution by the following equation:

qi =
i−0.8∑M

k=1 k−0.8
. (9)

The probability that each peer issues an access request at each time slot
was set to 0.1. Therefore, the access frequency of data item i at peer j becomes
Pji = pji × 0.1.

We assumed that the server broadcasts all data items periodically. Initially,
data items were cached at each peer according to the PIX strategy. The initial
value of αi for each data item at each peer was set to 1. The total number of
data items was set to 1,000, the TTL of each query was set to 3. The download
time l of a data item from the P2P network was set to 10 time slots.

Based on the above simulation environment, we evaluated the average re-
sponse time of the proposed strategy during 300,000 time slots. For the purpose
of comparison, we also evaluated the average response times in the cases where
peers can receive data items from the P2P network and determine the cache
replacement based on the PIX and PT strategies.

5.2 Impact of x and T

In order to determine appropriate values of x and T , we evaluated the average
response times of the proposed strategy where x varies from 0.1 to 0.9 and T
varies from 100 to 1,000. The maximum number of data items which a peer can
cache (cache size) was fixed to 100, and the access probability of each peer was
given according to A. D. 1. Table 1 shows the result. A gray part in both tables
indicates the minimum value of average response time for each value of T .

From this result, it is shown that two parameters, x and T , are correlated. As
T gets smaller, x that gives the shortest average response time gets higher. This
is because the proposed strategy determines the cache replacement by guessing
what items neighboring peers cache based on received queries and their results.
If T is too small, C queries cannot be counted sufficiently since there is not

On a Collaborative Caching in a P2P Network for Push-Based Broadcast 887

enough time to collect the query information. Therefore, items which are in fact
needed from neighboring peers may be judged to be unnecessary, and thus, are
discarded from the cache. Moreover, if C queries are not counted sufficiently, αi

decreases as shown in equation (3), and thus, the cached item is discarded in a
short time. We can solve this problem by setting x large (see equation (3)).

The shortest response time is given where x = 0.1 and T = 200 in the simu-
lation environment. Therefore, we use these values in the following simulations.

5.3 Impact of Cache Size

Fig.3 and Fig.4 show the average response times of the proposed strategy and
the other two strategies where the cache size varies from 0 to 1000. We applied
A. D. 1 in Fig.3, and A. D. 2 in Fig.4.

From these results, the C-PIX always gives the shortest average response
time. Moreover the difference in performance is larger when using A. D. 1 than
using A. D. 2. When A. D. 1 is used, all peers have the similar access charac-
teristics, and thus, in the PIX and PT strategies, they cache the same items.
As a result, they can hardly find requested items in the P2P network. On the
contrary, in the C-PIX strategy, each peer determines the cache items by taking
into account items cached by neighboring peers. Even when the cache size of
each peer is small, this strategy can improve the hit ratio of queries and shorten
the average response time.

6 Related Works

P2P systems are classified into two categories; structured [11,13] and unstruc-
tured [3]. Structured systems have precise control over the network topology and
locations of data items in the whole network, while unstructured ones do not.
Since blind methods such as flooding are used to look up requested data items in
unstructured one, they also have a disadvantage that network traffic and look-
ing up delay are larger than structured ones. Instead, unstructured ones have an
advantage of being built easily and flexibly. This is because most P2P systems
currently in service use unstructured networks for data looking up [7,8]. In this
paper, we assumed an unstructured system.

There are many conventional works that address collaborative caching in
some research fields such as web caching [5], distributed file systems [4,12], and
adhoc network [9]. For example, in the research field of web caching, several
strategies in which proxy servers collaboratively cache Web contents. These
strategies aim to reduce the network traffic and balance the processing load
of Web servers which hold original contents. In one of strategies [5], proxies are
hierarchically coupled like DNS (Domain Name System), where the root of the
hierarchy is the server which holds original contents. When a client requests con-
tents, it first asks whether the proxy which is responsible to its domain caches
them. If not, the request is forwarded to proxies of higher level in the hierarchy.
These approaches are similar to structured P2P systems since proxies are hier-
archically coupled and data requests are routed based on particular rules, and
thus, contrary to our approach.

888 K. Maeda et al.

0

100

200

300

400

500

600

0 200 400 600 800 1000
cache size

av
er

ag
e

re
sp

on
se

 ti
m

e

PIX

PT

C-PIX

Fig. 3. Cache size vs. average response time (A. D. 1)

0

100

200

300

400

500

600

0 200 400 600 800 1000
cache size

av
er

ag
e

re
sp

on
se

 ti
m

e

PIX

PT

C-PIX

Fig. 4. Cache size vs. average response time (A. D. 2)

7 Conclusion

In this paper, we propose a new caching strategy in a push-based broadcast
system where clients compose a P2P network. To reduce the average response
time in the entire system, in the proposed strategy, each client autonomously
determines cache replacement by taking into account not only its own access
probabilities to data items but also queries issued from other peers. From the
results of simulation experiments, we confirmed that the proposed strategy, C-
PIX, gives better performance than the conventional caching strategies.

The C-PIX strategy is an extension of the PIX strategy which is a typical
caching strategy in a push-based broadcast system. We also plan to consider
another collaborative caching strategy that is based on the PT strategy.

Acknowledgements

This research was supported by The 21st Century Center of Excellence Program
“New Information Technologies for Building a Networked Symbiotic Environ-

On a Collaborative Caching in a P2P Network for Push-Based Broadcast 889

ment” and Grant-in-Aid for Scientific Research on Priority Areas (16016260) of
the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

1. Acharya, S., Alonso, R., Franklin, M., and Zdonik, S.: Broadcast Disks: Data Man-
agement for Asymmetric Communication Environments, Proc. ACM SIGMOD’95,
pp. 199–210 (1995).

2. Acharya, S., Franklin, M., and Zdonik, S.: Prefetching from a Broadcast Disk,
Proc. ICDE’96, pp. 276–285 (1996).

3. Cohen, E., and Shenker, S.: Replication Strategies in Unstructured Peer-to-Peer
Networks, Proc. ACM SIGCOMM’02, pp. 177–190 (2002).

4. Dahlin, M., Wang, R., Anderson, T., and Patterson, D.: Cooperative Caching:
Using Remote Client Memory to Improve File System Performance, Proc. Symp.
on Operating Systems Design and Implementation, pp. 267–280 (1994).

5. Fan, L., Cao, P., Almeida, J., and Broder, A.: Summary Cache: A Scalable Wide-
area Web Cache Sharing Protocol, Proc. ACM SIGCOMM’98, pp. 254–265 (1998).

6. Faloutsos, M., Faloutsos, P., and Faloutsos, C.: On Power-Law Relationships of the
Internet Topology, Proc. ACM SIGCOMM’99, pp. 251–262 (1999).

7. FreeNet, <URL:http://freenet.sourceforge.net>.
8. Gnutella, <URL:http://gnutella.wego.com>.
9. Hara, T.: Cooperative Caching by Mobile Clients in Push-based Information Sys-

tems, Proc. ACM CIKM’02, pp. 186–193 (2002).
10. Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S.: Search and Replication in

Unstructured Peer-to-Peer Networks, Proc. Int’l Conf. on Supercomputing, pp.
84–95 (2002).

11. Ratnasamy, S., Francis, P., Handley, M., and Karp, R.: A Scalable Content-
Addressable Network, Proc. ACM SIGCOMM’01, pp. 161–172 (2001).

12. Sarkar, P., and Hartman, J.: Efficient Cooperative Caching Using Hints, Proc.
Symp. on Operating Systems Design and Implementation, pp. 35–46 (1996).

13. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan. H.: Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, Proc. ACM SIG-
COMM’01, pp.149–160 (2001).

14. Zipf, G. K.: Human Behavior and the Principle of Least Effort, Addison-Wesley
(1949).

	Introduction
	Conventional Caching Strategies
	System Model
	Collaborative Caching Strategy
	Query Information from Other Peers
	Proposed Strategy

	Performance Evaluation
	Simulation Environment
	Impact of x and T
	Impact of Cache Size

	Related Works
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

