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Abstract. Traditional database systems assume that clients always con-
sume the results of queries from the beginning. In various new applica-
tions especially in WWW, however, clients frequently need a small part
of the result from the middle, e.g. retrieving a page in a bulletin board
in WWW. To process this partial retrieval, traditional database systems
should find all the records and discard unnecessary ones. Although sev-
eral algorithms for top-k queries have been proposed, there has been no
research effort for partial retrieving from the middle of an ordered result.
In this paper, we define a mid-(k,n) query, which retrieves n records from
the kth record of an ordered result. We also propose an efficient algorithm
for mid-(k,n) queries using a slightly modified B+-Tree, named the B+c-
Tree. We provide the theoretical analysis and the experimental results
that the proposed technique evaluates mid-(k,n) queries efficiently.

1 Introduction

In various new applications such as WWW, the results of users’ queries are
generally huge. It is because users in these applications do not prefer to specify
appropriate predicates or they just want to look over all the data to find useful
information.

For example, a lot of web sites provide online bulletin boards or archives of
articles. In many cases, those bulletin boards are so huge that they have millions
of articles which have been archived for years. Since they cannot display all
articles in one web page, they display only several of the articles as a page, and
provide links to access other pages. With these links, users can directly access any
page they want. From the viewpoint of a server, all pages are randomly requested
because there are numerous requests from users simultaneously and the WWW
uses a connectionless protocol. Therefore, retrieving the kth record efficiently
becomes important and essential especially in the WWW environments. Näıve or
tricky solutions are commonly used for this problem at present, such as retrieving
all and skipping unnecessary part, or using complicated subqueries.

Although there are several works on top-k queries, there has been no research
effort for this partial retrieval from the middle of an ordered result, as far as we
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know. In this paper, we define a mid-(k, n) query as a query for retrieving n
records from the kth record of an ordered result. In addition, we propose an
efficient processing algorithm for mid-(k, n) queries using a slightly modified
B+-Tree[1], named the B+c-Tree. Each pointer of an internal node of a B+c-Tree
keeps the number of leaf records in its subtree. Using this additional information,
the B+c-Tree evaluates mid-(k, n) queries efficiently. We present the theoreti-
cal analysis of the cost of the B+c-Tree and the experimental results that the
proposed technique outperforms the B+-Tree.

The rest of this paper is organized as follows: In Section 2, we review related
work. Section 3 defines mid-(k, n) queries and näıve solutions. In Section 4,
we propose the B+c-Tree for the efficient processing of mid-(k, n) queries. We
analyze the cost of the B+c-Tree in Section 5. Section 6 presents the experimental
results to compare our technique with the B+-Tree. Finally, Section 7 concludes
the paper.

2 Related Work

As far as we know, there has been no research effort for mid-(k, n) queries. Top-
k queries and quantile queries are possible candidates that can be available for
processing mid-(k, n) queries. In this section, we review evaluation techniques
for these two types of queries, and present the problems of these techniques for
using mid-(k, n) queries.

2.1 Top-k Queries

There are several research work for top-k queries. Carey and Kossmann [2]
present a method to limit the cardinality of a query result by adding the ‘STOP
AFTER’ clause to a simple SQL, and propose efficient processing strategies for
‘STOP AFTER’ queries. Donjerkovic and Ramakrishnan [3] propose a proba-
bilistic approach to optimize the top-k query processing. Chaudhuri and Gravano
[4] propose a technique that translate a top-k query into a single range query us-
ing multi-dimensional histograms. Chen and Ling [5] propose a sampling-based
method to translate a top-k query to a range query. However, all these tech-
niques cannot be adopted for mid-(k, n) queries directly. The only näıve way is
retrieving all the result of a top-k query which includes all the result of a mid-(k,
n) query, and skipping all the unnecessary records from the beginning, which is
greatly inefficient unless k is very small.

2.2 Quantile Queries

Theoretically, A quantile query, which is the problem of selecting selecting the
ith order statistic from N elements, can be solved in O(N) time bound in aver-
age case [6]. There are also several research works [7,8] for quantile queries for
database systems. However, quantile queries are different from general mid-(k,
n) queries, because mid-(k, n) queries have to retrieve a set of records from the
kth to the (k + n − 1)th instead of retrieving the kth record only. Of course, the
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algorithms for quantile queries can be used for mid-(k, n) queries with a little
extension. However, the algorithms for quantile queries need to read all data
at least once, since they are designed for the case of no-index. Therefore, they
are not efficient for large volumes of data. Our proposed algorithm can evaluate
mid-(k, n) queries more efficiently because it uses an index on the data.

3 Mid-(k, n) Queries

We define a mid-(k, n) query as a query that retrieves n records from the
kth. The semantic of mid-(k, n) queries can be expressed by using the ‘LIMIT
n OFFSET k’ clause, which are supported in PostgreSQL 7.4.7.

For example, the following query is for accessing pageNo page directly in an
online bulletin board, where one page has pageSize articles.

SELECT * FROM BULLETIN1 ORDER BY wdate DESC
LIMIT pageSize OFFSET (pageNo-1) × pageSize

A näıve way to process mid-(k, n) queries is to sort all the records and to skip
unnecessary records from the beginning until the kth. One possible alternative
way is that a system executes a top-(k + n) query instead of a mid-(k,n) query
and discards the first k − 1 records. However, it is greatly inefficient unless k
and n are small. In general cases, there is no efficient way to process mid-(k, n)
queries.

In this paper, therefore, we propose an efficient algorithm for mid-(k, n)
queries with some restrictions as follows: (1) There is an index on the columns
which are used in the ‘ORDER BY’ clause. (2) Only the columns used in the
’ORDER BY’ clause can appear in the ’WHERE’ clause. As we mentioned in
Section 1, many web applications often use only one sorting order. For this case,
the first restriction is quite reasonable as a way of tuning the performance. In
addition, the second restriction is also very common because users do not specify
any search predicates in most cases. Therefore, our approach is useful for various
applications especially in WWW.

4 B+c-Tree

In this section, we give the detailed description about our proposed technique,
the B+c-Tree. The main difference between the B+c-Tree and the B+-Tree is
that the B+c-Tree keeps an additional count information with each pointer in
the internal nodes. In the original B+-Tree, an internal node has m child pointers
and m − 1 keys. In the B+c-Tree, as depicted in Figure 1, each pointer has the
number of records in the leaf nodes of its subtree. For example, since the first
leaf node has 2 records, the pointer pointing to the leaf node has a record count
of 2. The first pointer of the root node has a record count of 7 because its subtree
has 7 records in its leaf nodes. This record count can be maintained during an
insertion and a deletion of a record. From now on, we will use PTR, KEY and
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Fig. 1. An example of the B+c-Tree

CNT to represent a pointer, a key and a record count, respectively. The range
query is processed in the same way in both of the trees. By using the CNT
values, the B+c-Tree performs mid-(k, n) query more efficiently.

Now, we will present the algorithms for the mid-(k, n) query and the insertion
and deletion of a record in the B+c-Tree.

4.1 Algorithm for Mid-(k, n) Queries

For the convenience of the explanation, we divide mid-(k, n) queries into two
classes.

– queries without search predicate
– queries with search predicates

For simplicity, we first describe two examples for each query class, and then
present the detailed algorithm. Suppose there are the B+-Tree and the B+c-Tree
with increasing order on the data records.

Example 1. Suppose a mid-(9,1) query is given. To find out the 9th record from
the ordered result, the B+-Tree has to start to find from the first lead without
any traversal from the root. Since the 9th record is located in the 4th leaf node,
the B+-Tree follows the pointers to a next leaf nodes until it reaches the 4th leaf
node. Therefore, it needs 4 disk accesses.

The B+c-Tree, as depicted in Figure 1, can utilize the CNT values to find the
9th record. By looking at the first entry of the root node, the B+c-Tree can guess
that there are 7 records in the first subtree of the root node. Therefore, there is
no need to go to the first subtree. The B+c-Tree follows the second pointer, and
then examines the CNT values in that node. Since the CNT value for the first
pointer is 2, the B+c-Tree knows that the 9th record is in the first child of the
node. Therefore, after following the first pointer to get to the leaf, The B+c-Tree
can find the 9th record. It requires 3 disk accesses. We can save 1 disk access in
this case.

Example 2. Suppose there is a search predicate given with mid-(5,1) query. Let
the search predicate as ’D≤ key ≤T’.

Since the query is to find the 5th record with a range predicate, we cannot
use the CNT values in the B+c-Tree directly. We first should know the position
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Algorithm 1: Mid-(k, n) query
Function Mid-(k, n) (range, start, limit)
begin

pos← GetPosition (range)
Result← ∅, S ← 0, N ← the root node of the B+c-Tree
while N is an internal node do

find the first entry ei that satisfies S +
∑i

n=0 CNTn >= start− pos

S ← S +
∑i−1

n=0 CNTn

N ← child node pointed to by PTRi

endw
R← (start− pos− S)th record of N
while |Result| < limit and R in range do

Result← Result ∪ R
R← next record

endw
return Result;

end

Algorithm 2: Getting the poisition of the lower bound predicate
Function GetPosition (range)
begin

if range has lower bound then
Rf ← the smallest record in the range
pos← position of Rf in the ordered result of all the records

else
pos← 0

endif
return pos

end

of D. During the original key lookup process in the B+-Tree, the B+c-Tree can
calculate the number of records whose key is less than D. In this example, we
can find out that there is 3 records whose key is less than D. Therefore, in this
case, we have to find 8th record as the same way as in Example 1.

The algorithm for mid-(k, n) queries is described in detail in Algorithm 1.
Note that if there is no search predicate or no lower bound in a search predicate,
we can directly go to the record at the desired position like Example 1. If there
is a search predicate, first we have to find the position of the lower bound of the
predicate.

If there is a search predicate and it has lower bound, the B+c-Tree always
have to traverse the tree twice from the root to a leaf. On the contrast, the
B+-Tree should retrieve not only all nodes in a path from the root to a leaf, but
also all the leaf nodes from the leaf to the leaf node where the kth records is
located.

Algorithm 2 is for finding the position of the lower bound record in this case.
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Table 1. Notation

symbol meaning

α the average fill-factor of a node

h the height of a tree

Spage, Sheader,
Srecord, Skey ,
Spointer, Scount

the size of a disk page, a header of a node, a record, a key (KEY), a
pointer (PTR), and a record count (CNT), respectively

nrecord the number of records in a leaf node

Mint, Mleaf the maximum number of pointers in an internal node, and records in
a leaf node, respectively

Cinsert, Cdelete,
Csearch, Cmid−k

the number of disk access for an insert query (in case of no overflow),
for a delete query (in case of no underflow), for an exact matching
query, and for a mid-k query, respectively

4.2 Algorithm for Inserting and Deleting a Record

In this section, we describe the algorithms of the insertion and deletion for the
B+c-Tree.

To insert a record, we should choose a leaf node N where the search key
value would appear. To keep correct CNT values, we should increase each CNT
in the path from the root to N by one during the insertion. If a node is full, we
should split it into two nodes. After the splitting, we should adjust the CNT
value of each PTR in the parent node.

Deleting a record can be performed in the similar way of the insertion, except
that we decrease each CNT values in the path from the root to the leaf where
the deleted key exists by one. If we should merge two nodes, we can add up the
CNT values of the pointers to the two nodes being merged.

5 Analysis

We now analyze the cost of the B+-Tree and the B+c-Tree in terms of the number
of disk accesses. The notation used in this section is summarized in Table 1.

5.1 Cost of the B+-Tree

Lemma 1. The maximum cardinalities of an internal node and a leaf node of
a B+-Tree are as follows:

Mint = � (Spage − Sheader + Skey)
(Skey + Spointer)

�

Mleaf = � (Spage − Sheader − Spointer)
Srecord

�

Proof. An internal node in a B+-Tree consists of a header, Mint pointers, and
(Mint − 1) keys. If a node is to be stored in a disk page, the size of a node
cannot be bigger than the size of a disk page. Therefore Sheader + (Mint −
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1) · Skey + Mint · Spointer ≤ Spage . From this, Mint ≤ (Spage−Sheader+Skey)
(Skey+Spointer) .

Since Mint is the maximum integer value that satisfy the previous equation,
Mint = � (Spage−Sheader+Skey)

(Skey+Spointer) �.
A leaf node consists of a header, Mleaf records and a pointer to the following

leaf node. Therefore, as the same manner, Mleaf is � (Spage−Sheader−Spointer)
Srecord

�.

Lemma 2. The height of a B+-Tree is as follows:

h = log(α·Mint)(�
nrecord

α · Mleaf
�)

Proof. If the average fill-factor of a node is α, a leaf node has the average α·Mleaf

data records. Therefore the B+-Tree has � nrecord

α·Mleaf
� leaf nodes. An internal node

has the average α · Mint pointers. Therefore, from these values, the height of a
B+-Tree is log(α·Mint)(� nrecord

α·Mleaf
�).

Theorem 1. If there is no overflow during the insertion and no underflow dur-
ing the deletion, cost of the B+-Tree are as follows:

Cinsert = h + 1, Cdelete = h + 1, Csearch = h, Cmid−k = h + � k

α · Mleaf
�

Proof. To insert a record, we first find the leaf node that the inserted item can
be stored. For this, it is necessary to read h disk pages. Then, it needs to 1 disk
page for storing the item in the leaf. Therefore, Cinsert is h + 1. Cdelete is the
same as Cinsert. To process a exact matching query, it needs to read h disk pages
from the root to a leaf. Therefore, Csearch is h. Finally, to process a mid-(k, n)
query, we first perform 1 exact matching query if a low bound is specified, and
then read k records sequentially. Since k records is stored in � k

α·Mleaf
� disk pages,

Cmid−k is h + � k
α·Mleaf

�.

5.2 Cost of the B+c-Tree

With the similar way to the B+-Tree, cost of the B+c-Tree is as follows:

Lemma 3. The maximum cardinalities of an internal node and a leaf node of
a B+c-Tree are as follows:

Mint = � (Spage − Sheader + Skey)
(Skey + Spointer + Scount)

�

Mleaf = � (Spage − Sheader − Spointer)
Srecord

�

Lemma 4. The height of a B+c-Tree is as follows:

h = log(α·Mint)(�
nrecord

α · Mleaf
�)
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Theorem 2. If there is no overflow during the insertion and no underflow dur-
ing the deletion, cost of the B+c-Tree are as follows:

Cinsert = 2h, Cdelete = 2h, Csearch = h, Cmid−k = 2h

Proof. For the insertion, the B+c-Tree finds a leaf node and writes the inserted
record into the leaf, same as the B+-Tree. Then, since the counters in the internal
nodes from the leaf to the root should be adjusted, it needs additional h−1 disk
writes. Therefore, Cinsert is (h+1)+(h−1) = 2h. Cdelete is the same as Cinsert.
The algorithm for exact matching queries of the B+c-Tree is the same as that of
the B+-Tree. Therefore, Csearch is h. Finally, to process a mid-(k, n) query, one
traversal from the root to a leaf as same as the B+-Tree is required if a lower
bound is specified. Then, we need one more traversal from the root to a leaf in
order to find the kth records. Therefore, Cmid−k is h + h = 2h.

Note that the buffering effect of a disk cache is ignored in this analysis. If we
ignore the buffering effect, we can say that the performance of the B+-Tree for
a mid-(k, n) query can be better than that of the B+c-Tree when � k

α·Mleaf
� < h,

which means k is very small. With disk caches, however, the cost of the second
traversal is ignorable because most of the accessed disk pages in the second
traversal are the same as those in the first traversal. Therefore, the cost of the
B+c-Tree for mid-(k, n) queries is almost same as that of the B+-Tree even in
case of small k, like the experimental result shown in Section 6. For the same
reason, the cost of insertions or deletions of the B+c-Tree is almost same as that
of the B+-Tree when disk caches are used.

6 Experiments

In this section, we present the result of an experimental study to show the validity
and the effectiveness of our approach. We have implemented a disk based B+-
Tree and B+c-Tree on a 1GHz linux machine with 768MB main memory.

In the implementation, we directly managed the LRU buffer. We used 4KB
disk pages for buffer cache. Each key and pointer occupy 4 bytes respectively.
CNT size is 4 bytes. Therefore in the B+-Tree, an internal node can contain
about 510 pointers and in the B+c-Tree, it can contain about 340 pointers.

Since the distribution of data does not affect our experiment, we used uni-
formly distributed data for the key values. We generated 1,000,000 data records
for both of the trees. From now on, if there is no mention on the buffer cache size,
we used 100 4KB-buffer pages which is about 5% of the total nodes in B+-Tree.

6.1 Overheads of the B+c-Tree

In this experiment, we inserted varying number of data records into both trees
and compared the total disk I/Os. As shown in Figure 2(a), without the buffer
cache, the B+c-Tree requires about 1.5 times more disk accesses than B+-Tree.
However, as shown in Figure 2(b), if the buffer cache is used, there is almost
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Fig. 2. Insertion cost with varying number of records
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Fig. 3. Mid-(k, n) query cost with varying k

no difference between the two trees. It is because top level nodes are almost
always in the cache which decreases the overhead of the B+c-Tree as described
in Section 5. Like the result of the insertion cost with the buffer cache, there is
also no difference between the range query costs of the two trees. From these
experimental results, we showed that the overhead of the B+c-Tree is ignorable
in spite of the additional record counts with the buffer cache.

6.2 Cost for Mid-(k, n) Queries

In this experiment, we performed mid-(k, 20) queries with a non-clustered index
and a clustered index. The reason why we used a clustered index here is that it
is common to use a strong-clustered index in real applications as mentioned in
Section 1. In the non-clustered index used in this experiment, a leaf node has
4-byte keys and 4-byte pointers. For the clustered index, we assumed a leaf node
has a number of 4-byte keys and 100-byte sized tuples. We varied k from 0 to
1,000 in both experiments.

In Figure 3(a), the performance gap between the B+-Tree and the B+c-Tree
grows larger from the point where k is about 300. Note that 300 is very small
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compared to the total number of records in the tree, which is 1,000,000 in this
experiment. In the clustered index as in Figure 3(b), the performance of the
B+c-Tree is much better from the beginning. Since the B+c-Tree is not affected
by k as shown in Figure 3(b), the proposed technique is highly scalable so that
it is appropriate for WWW applications.

Due to the buffering effect, the performance of the B+c-Tree is almost same
as that of the B+-Tree in small k, as mentioned in Section 5.

7 Conclusion

Various new applications of database systems such as WWW have brought new
needs of different kinds of queries which were not taken any notice in traditional
database systems. One of those new kinds of queries is the mid-(k,n) query, which
retrieves n records from the kth record of an ordered result. In this paper, we
have addressed the problem of mid-(k, n) queries and have proposed an efficient
algorithm for processing mid-(k, n) queries using a slightly modified B+-Tree,
named the B+c-Tree. We also presented the theoretical analysis of the cost of
the proposed method and provided experimental evidence that our approach
outperforms the B+-Tree. Future work includes extending this technique for
supporting more complex cases of mid-(k, n) queries with several predicates.
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