

K.V. Andersen, J. Debenham, and R. Wagner (Eds.): DEXA 2005, LNCS 3588, pp. 776 – 785, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improved Sequential Pattern Mining
Using an Extended Bitmap Representation

Chien-Liang Wu, Jia-Ling Koh, and Pao-Ying An

Department of Information and Computer Education,
National Taiwan Normal University,

Taipei, Taiwan 106, R.O.C.
jlkoh@ice.ntnu.edu.tw

Abstract. The main challenge of mining sequential patterns is the high
processing cost of support counting for large amount of candidate patterns. For
solving this problem, SPAM algorithm was proposed in SIGKDD’2002, which
utilized a depth-first traversal on the search space combined with a vertical
bitmap representation to provide efficient support counting. According to its
experimental results, SPAM outperformed the previous works SPADE and
PrefixSpan algorithms on large datasets. However, the SPAM algorithm is
efficient under the assumption that a huge amount of main memory is available
such that its practicability is in question. In this paper, an Improved-version of
SPAM algorithm, called I-SPAM, is proposed. By extending the structures of
data representation, several heuristic mechanisms are proposed to speed up the
efficiency of support counting further. Moreover, the required memory size for
storing temporal data during mining process of our method is less than the one
needed by SPAM. The experimental results show that I-SPAM can achieve the
same magnitude efficiency and even better than SPAM on execution time under
about half the maximum memory requirement of SPAM.

1 Introduction

The problem of mining sequential patterns was first introduced by Agrawal and
Srikant in [2]: Given a database of data-sequences, the problem is to find all
sequential patterns with a user-defined minimum support, also named frequent
sequential patterns. The main challenge of mining sequential patterns is the high
processing cost of support counting for large amount of candidate patterns.

Many studies have proposed methods for solving this problem [2, 3, 5, 6, 7].
Among the related works, Apriori-ALL[1], GSP[6], and SPADE[7] algorithms all
belong to Apriori-like algorithms. An Apriori-like method finds all frequent items first.
By adopting multi-pass approach, the candidate patterns with length l are generated
from the frequent patterns with length (l-1) in each iteration. Then the supports of these
candidate patterns are checked to discover frequent patterns with length l. The Apriori-
like sequential pattern mining methods suffer from the costs to handle a potentially
huge set of candidate patterns and scan the database repeatedly. For solving these
problems, PrefixSpan algorithm, originated from FreeSpan [4], was proposed in [5].
PrefixSpan was designed based on divide-and-conquer scheme. An elegant recursive
method was presented to create projected databases where each one has the same

Improved Sequential Pattern Mining Using an Extended Bitmap Representation 777

prefix subsequence. By growing local frequent prefix subsequences in each projected
database recursively, all the sequential patterns were discovered. Although PrefixSpan
prevented from generating unnecessary candidate patterns, the cost of constructing
projected databases recursively was a burden when processing large databases.

To further speed up the efficiency of support counting, SPAM algorithm was
proposed in [3]. In SPAM, a vertical bitmap representation was created for each item
to record its appearing information in a sequence. Then, a depth-first traversal
strategy was adopted for generating candidate patterns. By performing bitwise
operations on the bitmaps, the supports of candidate patterns were obtained quickly.
In addition, an effective pruning mechanism was employed in SPAM to reduce the
number of generated candidates. According to its experimental results, SPAM
outperformed not only SPADE but also PrefixSpan for large databases. However, the
SPAM algorithm is efficient under the assumption that a huge amount of main
memory is available such that its practicability is in question.

In this paper, an Improved-version of SPAM algorithm, called I-SPAM, is proposed
for mining frequent sequential patterns efficiently. By extending the structures of
bitmap data representation, an appearing sequence table is constructed additionally.
Based on the modified data representation, several heuristic mechanisms are proposed
to speed up the efficiency of support counting further. Moreover, the required memory
size for storing temporal data during performing depth-first traversal on the search
space is less than the one of SPAM. The experimental results show that I-SPAM can
achieve the same magnitude efficiency and even better than SPAM on execution time
under about half the maximum memory requirement of SPAM.

The remaining of this paper is organized as follows. We define the related terms
for the problem of mining sequential patterns in Section 2. The designed structures of
data representation are introduced in Section 3. Then I-SPAM algorithm is developed
in Section 4. In Section 5, the experimental results of performance evaluation by
comparing I-SPAM with SPAM are reported. Finally, we summarize the contribution
of the proposed method and discuss further research issues in Section 6.

2 Preliminaries

The problem of mining sequential patterns was originally proposed by [2]. The
following definitions refer to [2, 3, 5, 6].

Let I={i1, i2,…, in} be the set of all possible items in a specific domain. A subset of
I is called an itemset. A sequence α =<s1s2…sl> is an ordered list of itemsets, where sj
is an itemset. Each sj in a sequence is called an element of the sequence and denoted
as (x1x2…xm), where xk is an item. For brevity, the brackets are omitted if an element
has only one item, i.e., (x) is written as x. The number of instances of items in a
sequence α is called the length of the sequence and denoted as |α|. A sequence with
length l is called an l–sequence. A sequence α =<a1a2…an> is called a subsequence
of another sequence β=<b1b2…bm> and β a supersequence of α, denoted as α β, if
there exist integers 1≤j1<j2<…<jn≤m such that a1⊆bj1, a2⊆bj2, …, and an⊆bjn.

A sequence database S is a set of tuples, where each tuple: [sid, s] consists of a
sequence, s, and the identification of sequence, sid. A tuple [sid, s] is said to contain a
sequence α, if α is a subsequence of s. |S| denotes the number of sequences in

778 C.-L. Wu, J.-L. Koh, and P.-Y. An

sequence database S. The support of a sequence α in database S is the number of
tuples in the database containing α, denoted as supS(α). Given a positive integer,
min_sup, as the support threshold, a sequence α is called a frequent sequential
pattern in database S if supS(α)≥min_sup. Otherwise, the pattern is infrequent. The
problem of mining sequential patterns is to find all frequent sequential patterns from a
sequential database S.

3 Bit Sequence Representation

In our approach, for each sequence α in a sequence database S, a bit sequence table is
constructed. In the table, each item X contained in sequence α has a corresponding bit
sequence, denoted as BitX(α). The length of BitX(α) equals the number of elements in
α and the first bit of BitX(α) is the leftmost bit. If item X is in the j-th element of α, the
j-th bit of BitX(α) is set to be 1; otherwise, it is set to be 0. The bit sequence tables of
all the sequences in sequence database S collectively represent the contents of
sequences in the database.

 [Example 1]. Consider sequence s1=<a(cd)ad> shown in Fig. 1(a), which consists of
four elements: a, (cd), a, and d. Because item a appears in the 1st and the 3rd elements
of s1, the bit sequence of a in s1, denoted as Bita(s1), is 1010. Similarly, Bitc(s1)= 0100
and Bitd(s1)= 0101 are obtained. The bit sequence tables of all the five sequences in S
are constructed as shown in Fig. 1(c).

[Definition 1]. Given a sequence α=<a1a2…an>. If α is contained in a tuple [si, β] of the
sequence database where β=<b1b2…bm>, there must exist integers 1≤j1<j2<…<jn≤m
such that a1⊆bj1, a2⊆bj2, …, and an⊆bjn. The integer jn is named a sequential position of
α in sequence si. The first sequential position of α in si is defined to be the minimum
value among all the sequential positions of α in si. Otherwise, if α is not contained in
sequence si, the first sequential position of α in si is 0.

Fig. 1. (a) the sample database S, (b) the appearing sequence table of S, and (c) the bit sequence
structure of S

Item X AppearX FPX
a 11100 1,1,2,0,0
b 00111 0,0,4,1,1
c 11111 2,2,1,3,1
d 10101 2,0,3,0,1
e 01000 0,4,0,0,0

(b)

sid sequence
s1 <a(cd)ad>
s2 <acae>
s3 <cad(bcd)>
s4 <bbc>
s5 <(bcd)d>

(a)

sid s1 s2 s3 s4 s5

Item X BitX(s1)
a 1010
c 0100
d 0101

Item X BitX(s2)
a 1010
c 0100
e 0001

Item X BitX(s3)
a 0100
b 0001
c 1001
d 0011

(c)

Item X BitX(s4)
b 110
c 001

Item X BitX(s5)
b 10
c 10
d 11

Improved Sequential Pattern Mining Using an Extended Bitmap Representation 779

In order to reduce the cost of checking bit sequence tables, an appearing sequence
table is constructed in our approach, which is composed of three fields: item name,
appearing sequence, and first_position sequence. The appearing sequence of an
item X is a bit sequence with length |S|, denoted as AppearX, which is used to record
whether item X appears in the sequences of database S. If X appears in the i-th
sequence of S, the i-th bit in AppearX, denoted as AppearX(i), is set to be 1; otherwise,
it is set to be 0. The first bit is located at the far left of appearing sequence. In
addition, for each item X, an integer sequence called first_position sequence, is
constructed. The sequence is denoted as FPX, which consists of |S| nonnegative
integers, from left to right, used to record the first sequential positions of <X> in
every sequence of the database.

[Example 2]. Consider the example shown in Fig. 1(a). Item d appearing in sequences
s1, s3, and s5, thus, Appeard =“10101” and FPd = “2,0,3,0,1” are constructed. The
whole appearing sequence table of S is shown as Fig. 1(b).

The representation of appearing sequence and first position sequence are applicable
to represent the distribution of a sequential pattern contained in the database. For
example, pattern P=<ad> is contained in sequences s1 and s3. Therefore,
AppearP=“10100” and FPP=“2,0,3,0,0”. Accordingly, if the appearing sequence of a
pattern Q is known, the number of bits with 1 in AppearQ, denoted as
1_count(AppearQ), implies the support of Q.

4 I-SPAM Algorithm

In this section, based on the representations of appearing sequences, the strategy for
computing the supports of candidate patterns efficiently is introduced. Then the
mining process of the proposed I-SPAM algorithm is described.

4.1 Candidate Patterns Generation

According to the monotonic property of frequent patterns, a pattern is possible
frequent only if all its subsequences are frequent. Therefore, a candidate pattern is
generated by inserting a data item into a pre-known frequent pattern.

Given a data item T in the database, the S-extended method generates a candidate
sequence by appending a new element containing itemset {T} after the last element of
a sequence α. The generated pattern is named a S-extended sequence of α. On the
other hand, an I-extended sequence of α is obtained by inserting a data item T to the
last element X of α. These two patterns are named the S-extended and I-extended
sequences of α by T, respectively. For example, suppose sequence α=<aa> and b
denotes a data item. Then <aab> is the S-extended sequence and <a(ab)> is the I-
extended sequence of α by b.

4.2 Support Counting Strategies

The appearing and first_position sequences, introduced in the previous section, are
used to speed up the support counting of candidate patterns.

780 C.-L. Wu, J.-L. Koh, and P.-Y. An

1) Checking S-extended Sequences
Let β denote a S-extended sequence of α by appending a new element containing
itemset {T} to α. Suppose Appearα and FPα are given and the appearing sequence
table of the database is constructed. The appearing sequence of the new pattern β,
Appearβ, must have the properties that if bit j has value 1, then the corresponding
sequence sj must contain sequence α and {T}, and there exists α before T in the
sequence. After getting Appearβ, the support of β is obtained easily. The following
strategies are designed to get the appearing sequence of β efficiently by avoiding the
non-necessary checking on bit sequence tables as far as possible.

First, the approximation of Appearβ, denoted as A_Appearβ, is obtained by
performing an AND operation on Appearα and AppearT. Because 1_count(A_Appearβ)
is larger than or equal to 1_count(Appearβ), β is not possible a frequent pattern if
1_count(A_Appearβ) < min_sup and it is pruned without needing further checking.

On the other hand, if 1_count(A_Appearβ)≥min_sup, for those bits in A_Appearβ
with value 1, the corresponding sequences have to be checked whether they contain β
actually to get Appearβ. For each bit k in A_Appearβ, if its value is 0, both Appearβ(k)
and FPβ(k) are set to be 0. Otherwise, the values in FPα(k) and FPT(k) are compared. If
FPα(k) is less than FPT(k), it implies the first sequential position of sequence α
appearing is before all the occurring of item T in the k-th sequence. In other words,
the k-th sequence of S contains the new pattern β and FPT(k) is the first sequential
position that β occurring in this sequence. Therefore, Appearβ(k) is set to be 1 and
FPβ(k) is set to be FPT(k). Although, it is not necessary that β does not occur in the k-
th sequence if FPα(k) is larger than or equal to FPT(k). Therefore, the following
detailed checking on the bit sequence BitT(k) is executed.

A left-shift operation is performed on BitT(k) by FPα(k) bits. If the resultant
sequence is non-zero, it means there existing a position where item T located after the
first sequential position of α in the k-th sequence. That is, β is contained in the k-th
sequence. Let bit h denote the first bit in the resultant sequence with value 1, it
indicates the first sequential position of β in the sequence is located h positions after
the first sequential position of α. Therefore, Appearβ(k) is set to be 1 and FPβ(k) is set
to be FPα(k)+h. Otherwise, sequence β is not contained in the k-th sequence of S, and
both of Appearβ(k) and FPβ(k) are set to be 0.

The appearing sequence of β, Appearβ, is obtained after performing the checking
for all the bits in A_Appearβ with value 1. Finally, β is certified to be a frequent
pattern if 1_Count(Appearβ) is larger than or equal to min_sup.

2) Checking I-extended Sequences
Let sequence α be represented as <α’X>, where X denotes the last element of α.
Besides, let γ denote an I-extended sequence of α by inserting item T to the last
element of α. For the appearing sequence of γ, Appearγ, if its j-th bit has value 1,
sequence α and {T} must be contained in the corresponding sequence sj. Moreover,
there exists an element containing both X and {T}, which is located after α’ in the
sequence.

Similarly, the approximation of Appearγ, denoted as A_Appearγ, is obtained by
performing an AND operation on Appearα and AppearT. The candidate pattern γ is not
possible frequent if 1_count(A_Appearγ)<min_sup and it is pruned.

Improved Sequential Pattern Mining Using an Extended Bitmap Representation 781

On the other hand, if 1_count(A_Appearγ)≥min_sup, for those bits in A_Appearγ
with value 1, the corresponding sequences have to be checked whether they contain γ
actually to get Appearγ. For each bit k in A_Appearγ, if its value is 0, Appearγ is set to
be 0. Otherwise, the values in FPα(k) and FPT(k) are compared. If FPα(k) is equal to
FPT(k), it implies there exists an element within the k-th sequence which contains both
{T} and the last element X of α. Besides, the element is located after α’ because
FPα’(k) < FPα(k). In other words, the new pattern γ is contained in the k-th sequence of
S and FPα(k) is the first sequential position of γ in this sequence. Therefore,
Appearγ(k) is set to be 1 and FPγ(k) is set to be FPα(k).

However, it is not necessary that γ does not occur in the k-th sequence if FPα(k) is
larger or less than FPT(k). Therefore, the following detailed checking on the bit
sequences BitX(k) and BitT(k) is executed. First, BitX(k) is obtained by performing
AND operations on Bitx1(k), Bitx2(k), …, and Bitxi(k),where xi is an item in X.

Then, another AND operation is performed on BitX(k) and BitT(k) to get
Bit(X∪{T})(k). If the resultant sequence is non-zero, it indicates that both X and {T}
appear in certain element in the k-th sequence at the same time. To make sure there
existing such an element located after α’, the similar strategy adopted for checking S-
extended sequences is applied.

The first sequential position of α (i.e. <α’X>) in the k-th sequence is FPα(k). It
implies, after α’ appears, FPα(k) is the smallest sequential position of X in sequence k.
If γ is contained in the sequence, there must exist an element containing both X and
{T} whose sequential location is no less than FPα(k). Therefore, a left-shift operation
is performed on Bit(X∪{T})(k) by (FPα(k)-1) bits. If the resultant sequence is non-zero,
it implies that such an element exists which is located after α’. That is, γ is contained
in the k-th sequence. Let bit h denote the first bit in the resultant sequence with value
1, it indicates the first sequential position of γ in the sequence is located h positions
after position (FPα(k)-1). Therefore, Appearγ(k) is set to be 1 and FPγ(k) is set to be
(FPα(k)-1)+h. Otherwise, sequence γ is not contained in the k-th sequence of S, and
both of Appearγ(k) and FPγ(k) are set to be 0.

The appearing sequence of γ, Appearγ, is obtained after performing the checking
for all the bits in A_Appearγ with value 1. Finally, γ is certified to be a frequent
pattern if 1_Count(Appearγ) is larger or equal to min_sup.

[Example 3]. Following the running example shown in Fig. 1, suppose min_sup is set
to be 2. A sequence α=<ac> is given, and Appear<ac>=11100 and FP<ac>=“2,2,4,0,0”
are known. The process for checking whether the S-extended sequence <acd> and I-
extended sequence <a(cd)> of <ac> being frequent is described as following.
- Checking S-extended sequence <acd>:
(1) A_Appear<acd>= Appear<ac> ∧ Appeard= 10100; 1_Count(A_Appear<acd>) ≥ 2,

continue.
(2) For the 1st and 3rd bit in A_Appear<acd>

(2-1) A_Appear<acd>(1)≠0; FP<ac>(1)=2 is not less than FPd(1)=2;
 Get Bitd(1)=0101; Left-shift(Bitd(1)) by 2 bits 0100(non-zero);

 The first bit in the resultant sequence with value 1 is bit 2;
Therefore, Appear<acd>(1) is set to be 1, and FP<acd>(1) is set to be

FP<ac>(1)+2=4.
(2-2) Check A_Appear<acd>(3)≠0; FP<ac>(3)=4 is not less than FPd(3)=3;

782 C.-L. Wu, J.-L. Koh, and P.-Y. An

 Get Bitd(3)=0011; Left-shift(Bitd(3)) by 4 bits 0000(zero);
 Therefore, Appear<acd>(3) and FP<acd>(3) are set to be 0.

(3) For the bit k=2, 4, 5 in A_Appear<acd>
(3-1) Check A_Appear<acd>(k)=0; Therefore, Appear<acd>(k) and FP<acd>(k) are set

to be 0.
(4) Appear<acd>=10000, 1_Count(Appear<acd>)<2; Therefore, <acd> is not a frequent
pattern.

- Checking I-extended sequence <a(cd)>:
(1) A_Appear<a(cd)>= Appear<ac> ∧ Appeard= 10100;1_Count(A_Appear<a(cd)>) ≥ 2,
continue.
(2) For the 1st and 3rd bit in A_Appear<acd>

(2-1) Check A_Appear<a(cd)> (1)≠0; FP<ac>(1)=2 is equal to FPd(1)=2;
 Therefore, Appear<a(cd)>(1) is set to be 1, and FP<a(cd)>(1) is set to be
FP<ac>(1)=2.

 (2-2) Check A_Appear<a(cd)> (3)≠0; FP<ac>(3)=4 is not equal to FPd(3)=3;
 Get Bitc(3)=1001 and Bitd(3)=0011; Bit(cd)(3)= Bitc(3) ∧ Bitd(3)=0001;

 Left-shift(Bit(cd)(3)) by (4-1) bits 1000(non-zero);
 Therefore, Appear<a(cd)>(3) is set to be 1, and FP<a(cd)>(3) is set to be (FP<ac>(3)-
1)+1=4.

(3) For the bit k=2, 4, 5 in A_Appear<acd>
(3-1) Check A_Appear<acd>(k)=0; Therefore, Appear<acd>(k) and FP<acd>(k) are set

to be 0.
(4) Appear<a(cd)>=10100, FP<a(cd)>= “2,0,4,0,0”,

Check 1_Count(Appear<a(cd)>) ≥ 2; Therefore, <a(cd)> is a frequent pattern.

4.3 I-SPAM Algorithm

The whole process of I-SPAM Algorithm is described as the pseudo codes shown
below, which are similar to the ones of SPAM algorithm. The modified parts include
the codes for constructing the bit sequence table and appearing sequence table, and
removing infrequent items from the tables. The S-temp<α> /I-temp<α> is used to store
the candidate items which are possible to construct frequent S-extended/I-extended
sequences from sequence α according to the pruning strategy adopted in SPAM
algorithm [3]. Initially, for each item T∈L1, S-temp<T> is set to be L1, and I-temp<T> is
assigned the set of items in L1 and greater than T, respectively. Then procedure
M_DFS() is called recursively to perform the process of generating candidates from T
and discovering frequent patterns in a depth-first manner.

The significant difference between SPAM and I-SPAM is that the appearing
sequences and first_position sequences are used for more efficient support counting to
avoid checking bit sequence tables as possible. Moreover, the memory size to retain the
appearing and first_position sequences of patterns temporally during executing I-SPAM
is less than the one to retain the bitmap sequences of patterns while executing SPAM.

Algorithm I-SPAM (Sequence Database S, min_sup)
 For each [sid

i
, s]∈S /* construct the tables */

 For each element s
j
 of s

 For each item k∈s
j

Improved Sequential Pattern Mining Using an Extended Bitmap Representation 783

 If Appear
k
(i)==0, set Appear

k
(i)= 1;

 Set the j-th bit in Bit
k
(i) to be 1;

 If FP
k
(i)==0, set FP

k
(i)= j;

 L
1
=φ ;

 For each item k in appearing sequence table
 If 1_Count(Appear

k
)< min_sup, /* remove from the tables */

 For i=1 to |S|
 If Appear

k
(i)==1,

 Remove Bit
k
(i) from the bit sequence table;

 Remove the tuple [k, Appear
k
, FP

k
] from appearing

 sequence table;
 Else L

1
= L

1
∪ {k};

 For each item T∈L
1

 S-temp
<T>
= L

1
;

 I-temp
<T>
= {x | x∈ L

1
 ∧ x > T by lexicographic order};

Call M_DFS(T, Appear
T
, FP

T
, S-temp

<T>
, I-temp

<T>
).

5 Performance Evaluation

In this section, the experimental results on the performance of I-SPAM in comparison
with SPAM [3] are reported. All the experiments are performed on a personal
computer with 2.4GHz Intel Pentium 4 CPU, 512MB main memory, and running
Microsoft Windows XP.

The experiments were performed on synthetic data generated by the IBM synthetic
market-basket data generator AssociGen[2]. The inputted parameters AssociGen:
D(number of sequences in the dataset), C(average number of elements per sequence),
T(average number of items per element), S(average length of potentially frequent
sequential patterns), and I(average length of itemsets in maximal potentially frequent
patterns) are considered the factors while comparing I-SPAM against SPAM.

5.1 Comparison with Spam on Execution Time

The experimental results on execution time are shown in Fig. 2, where the min_sup
setting and the parameters used for generating data set are controlled individually in
each experiment. For SPAM algorithm, some experimental results are missing from
the figures. It means, under the parameter setting, the SPAM algorithm could not be
executed properly in the running environment.

First, by varying min_sup setting, the execution times of these two algorithms are
evaluated on three datasets with various scales(the first is 0.6MB, the second is 1.4MB
and the third is 7.9MB). The experimental results are shown in Fig. 2(a), 2(b) and 2(c),
respectively. The results show that I-SPAM can achieve the same magnitude efficiency
and even better than SPAM on execution time. The primary reason is due to the
representation of appearing and first_position sequences, which are used for more
efficient support counting to avoid checking the bit sequences as possible. When the
min_sup setting becomes larger, fewer candidate patterns are generated such that the
benefit gained by I-SPAM is reduced. Additionally, the cost for pruning infrequent
items from bits sequence and appearing sequence tables by I-SPAM is increasing.
Therefore, the execution time of I-SPAM approaches the one of SPAM when min_sup

784 C.-L. Wu, J.-L. Koh, and P.-Y. An

is larger than 0.025. However, when min_sup is small enough, the execution efficiency
of I-SPAM outperforms SPAM about a factor of 1.5. Moreover, SPAM is not
executable when performing on large dataset with min_sup less than 0.08.

Agreeing with the previous experimental results, the results shown in Fig. 2(d)
indicate that I-SPAM outperforms SPAM when the numbers of sequences in the
datasets(D) are larger than 5K. For small datasets, checking the bitmap representation
directly could be performed very quickly. Therefore, in some cases of small
datasets(when D is 3K), the overhead for processing the appearing and first_position
sequences outweighs the benefits achieved by these structures, and SPAM runs
slightly faster in these situations.

Among the parameters used in AssociGen, as the average number of elements per
sequence(C) and the average number of items per element(T) increase, the size of
generated synthetic datasets will increase. Therefore, the experimental results shown
in Fig. 2(e) and 2(f) indicate the coincident result shown in Fig. 2(d) due to the similar
reasons as in the case of increasing the number of sequences in the dataset. Due to
page limit, the experimental results on parameters (S) and (I) setting are omitted here.

D1C5T3S4I3N1

0

1

2

3

4

5

6

0.01 0.015 0.02 0.025 0.03
min_sup

R
un

 T
im

e(
se

c.
)

I-SPAM

SPAM

 (a)

D3C8T5S5I5N1

0

20

40

60

80

100

120

0.01 0.015 0.02 0.025 0.03
min_sup

R
un

 T
im

e
(s

ec
.)

I-SPAM

SPAM

 (b)

D8C10T10S10I8N1

0

50

100

150

200

250

300

0.06 0.08 0.1 0.12
min_sup

R
un

 T
im

e
(s

ec
.) I-SPAM

SPAM

 (c)
D?C10T10S10I8N1 with min_sup 0.08

0

50

100

150

200

3 4 5 6 7 8 9 10
D

R
un

 T
im

e
(s

ec
.)

I-SPAM

SPAM

 (d)

D8C?T10S10I8N1 with min_sup 0.08

0

100

200

300

400

4 5 6 7 8 9 10 11 12
C

R
un

 T
im

e
(s

ec
.)

I-SPAM

SPAM

 (e)

D8C10T?S10I8N1 with min_sup 0.08

0

50

100

150

200

250

300

4 5 6 7 8 9 10 11 12
T

R
un

 T
im

e
(s

ec
.) I-SPAM

SPAM

 (f)
D8C10T10S10I8N1

0

100

200

300

400

500

0.06 0.08 0.1 0.12 0.14 0.16 0.18

min_sup

M
ax

im
al

 M
em

or
y

U
sa

ge
(M

B
)

I-SPAM

SPAM

 (g)

D8C?T10S10I8N1 with min_sup 0.08

0

100

200

300

400

500

4 5 6 7 8 9 10 11 12
C

M
ax

im
al

 M
em

or
y

U
sa

ge
(M

B
) I-SPAM

SPAM

 (h)

Fig. 2. Experimental results

Improved Sequential Pattern Mining Using an Extended Bitmap Representation 785

5.2 Comparison with SPAM on Maximal Memory Usage

The estimated results on maximal memory usage are shown in Fig. 2(g) and 2(h). In the
experiment performed on the 7.9MB dataset, Fig. 2(g) shows that the maximal memory
requirement of I-SPAM is about half of the one required by SPAM. The primary reason
is due to the size of required memory for storing the appearing and first_position
sequences of a pattern temporally during executing I-SPAM is less than the one for
storing the bitmap sequence of a pattern while executing SPAM. Fig. 2(h) shows the
maximal memory requirement of I-SPAM and SPAM by varying the average number of
elements per sequence in the datasets, which indicates the similar outcomes.

To summarize the experimental results, in general, I-SPAM has better scalability
than SPAM for larger datasets and less min_sup setting under the same running
environment.

6 Conclusion and Future Works

In this paper, an improved-version of SPAM algorithm, called I-SPAM, for mining
frequent sequential patterns is proposed. With the aid of appearing sequence table, more
efficient support counting is achieved by avoiding checking the bit sequences as possible.

Moreover, the required memory size for storing the temporal variables is reduced
effectively to be less than the one needed by SPAM. The experimental results
demonstrate that I-SPAM outperforms SPAM on execution time especially when
performed on larger datasets and with smaller min_sup setting. Furthermore, the
maximal memory requirement is reduced effectively to be about half of the one
required for executing SPAM in most cases.

Constraints are essential for many sequential pattern mining applications. In the
future, it is worthy our studying on pushing constraints in the mining process of I-
SPAM to reduce the explored portion of the search space dramatically.

References

[1] R. Agarwal and R. Srikant. Fast Algorithm for Mining Association Rule in Large
Databases. In Proc. 1994 Int. Conf. Very Large DataBases, pp. 487-499, 1994.

[2] R. Agarwal and R. Srikant. Mining Sequential Pattern. In Proc. 1995 Int. Conf. Data
Engineering, pages 3-10, 1995.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential PAttern Mining Using A Bitmap
Representation. In Proc. 2002 Int. Conf. Knowledge Discovery and Data Mining, 2002.

[4] J. Pei, J. Han, Q. Chen, U. Dayal, and H. Pinto. FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining. In Proc. 2000 Int. Conf. Knowledge Discovery and Data
Mining, 2000.

[5] J. Pei, J. Han, B. Mortazavi-Asi and H. Pinto. PrefixSpan�Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth. In Proc. 2001 Int. Conf. on Data
Engineering , 2001.

[6] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance
Improvements. In Proc. 5th Int. Conf. Extending Database Technology, 1996.

[7] M.J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. In Machine
Learning Journal, 42(1/2): 31-60, 2001.

	Introduction
	Preliminaries
	Bit Sequence Representation
	I-SPAM Algorithm
	Candidate Patterns Generation
	Support Counting Strategies
	I-SPAM Algorithm

	Performance Evaluation
	Comparison with Spam on Execution Time
	Comparison with SPAM on Maximal Memory Usage

	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

