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Abstract. The main challenge of mining sequential patterns is the high 
processing cost of support counting for large amount of candidate patterns. For 
solving this problem, SPAM algorithm was proposed in SIGKDD’2002, which 
utilized a depth-first traversal on the search space combined with a vertical 
bitmap representation to provide efficient support counting. According to its 
experimental results, SPAM outperformed the previous works SPADE and 
PrefixSpan algorithms on large datasets. However, the SPAM algorithm is 
efficient under the assumption that a huge amount of main memory is available 
such that its practicability is in question. In this paper, an Improved-version of 
SPAM algorithm, called I-SPAM, is proposed. By extending the structures of 
data representation, several heuristic mechanisms are proposed to speed up the 
efficiency of support counting further. Moreover, the required memory size for 
storing temporal data during mining process of our method is less than the one 
needed by SPAM. The experimental results show that I-SPAM can achieve the 
same magnitude efficiency and even better than SPAM on execution time under 
about half the maximum memory requirement of SPAM. 

1   Introduction 

The problem of mining sequential patterns was first introduced by Agrawal and 
Srikant in [2]: Given a database of data-sequences, the problem is to find all 
sequential patterns with a user-defined minimum support, also named frequent 
sequential patterns. The main challenge of mining sequential patterns is the high 
processing cost of support counting for large amount of candidate patterns.  

Many studies have proposed methods for solving this problem [2, 3, 5, 6, 7]. 
Among the related works, Apriori-ALL[1], GSP[6], and SPADE[7] algorithms all 
belong to Apriori-like algorithms. An Apriori-like method finds all frequent items first. 
By adopting multi-pass approach, the candidate patterns with length l are generated 
from the frequent patterns with length (l-1) in each iteration. Then the supports of these 
candidate patterns are checked to discover frequent patterns with length l. The Apriori-
like sequential pattern mining methods suffer from the costs to handle a potentially 
huge set of candidate patterns and scan the database repeatedly. For solving these 
problems, PrefixSpan algorithm, originated from FreeSpan [4], was proposed in [5]. 
PrefixSpan was designed based on divide-and-conquer scheme. An elegant recursive 
method was presented to create projected databases where each one has the same 
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prefix subsequence. By growing local frequent prefix subsequences in each projected 
database recursively, all the sequential patterns were discovered. Although PrefixSpan 
prevented from generating unnecessary candidate patterns, the cost of constructing 
projected databases recursively was a burden when processing large databases. 

To further speed up the efficiency of support counting, SPAM algorithm was 
proposed in [3]. In SPAM, a vertical bitmap representation was created for each item 
to record its appearing information in a sequence. Then, a depth-first traversal 
strategy was adopted for generating candidate patterns. By performing bitwise 
operations on the bitmaps, the supports of candidate patterns were obtained quickly. 
In addition, an effective pruning mechanism was employed in SPAM to reduce the 
number of generated candidates. According to its experimental results, SPAM 
outperformed not only SPADE but also PrefixSpan for large databases. However, the 
SPAM algorithm is efficient under the assumption that a huge amount of main 
memory is available such that its practicability is in question. 

In this paper, an Improved-version of SPAM algorithm, called I-SPAM, is proposed 
for mining frequent sequential patterns efficiently. By extending the structures of 
bitmap data representation, an appearing sequence table is constructed additionally. 
Based on the modified data representation, several heuristic mechanisms are proposed 
to speed up the efficiency of support counting further. Moreover, the required memory 
size for storing temporal data during performing depth-first traversal on the search 
space is less than the one of SPAM. The experimental results show that I-SPAM can 
achieve the same magnitude efficiency and even better than SPAM on execution time 
under about half the maximum memory requirement of SPAM. 

The remaining of this paper is organized as follows. We define the related terms 
for the problem of mining sequential patterns in Section 2. The designed structures of 
data representation are introduced in Section 3. Then I-SPAM algorithm is developed 
in Section 4. In Section 5, the experimental results of performance evaluation by 
comparing I-SPAM with SPAM are reported. Finally, we summarize the contribution 
of the proposed method and discuss further research issues in Section 6. 

2   Preliminaries 

The problem of mining sequential patterns was originally proposed by [2]. The 
following definitions refer to [2, 3, 5, 6]. 

Let I={i1, i2,…, in} be the set of all possible items in a specific domain. A subset of 
I is called an itemset. A sequence α =<s1s2…sl> is an ordered list of itemsets, where sj 
is an itemset. Each sj in a sequence is called an element of the sequence and denoted 
as (x1x2…xm), where xk is an item. For brevity, the brackets are omitted if an element 
has only one item, i.e., (x) is written as x. The number of instances of items in a 
sequence α is called the length of the sequence and denoted as |α|. A sequence with 
length l is called an l–sequence. A sequence α =<a1a2…an> is called a subsequence 
of another sequence β=<b1b2…bm> and β a supersequence of α, denoted as α β, if 
there exist integers 1≤j1<j2<…<jn≤m such that a1⊆bj1, a2⊆bj2, …, and an⊆bjn.  

A sequence database S is a set of tuples, where each tuple: [sid, s] consists of a 
sequence, s, and the identification of sequence, sid. A tuple [sid, s] is said to contain a 
sequence α, if α is a subsequence of s. |S| denotes the number of sequences in 
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sequence database S. The support of a sequence α in database S is the number of 
tuples in the database containing α, denoted as supS(α). Given a positive integer, 
min_sup, as the support threshold, a sequence α is called a frequent sequential 
pattern in database S if supS(α)≥min_sup. Otherwise, the pattern is infrequent. The 
problem of mining sequential patterns is to find all frequent sequential patterns from a 
sequential database S. 

3   Bit Sequence Representation  

In our approach, for each sequence α in a sequence database S, a bit sequence table is 
constructed. In the table, each item X contained in sequence α has a corresponding bit 
sequence, denoted as BitX(α). The length of BitX(α) equals the number of elements in 
α and the first bit of BitX(α) is the leftmost bit. If item X is in the j-th element of α, the 
j-th bit of BitX(α) is set to be 1; otherwise, it is set to be 0. The bit sequence tables of 
all the sequences in sequence database S collectively represent the contents of 
sequences in the database.  

 [Example 1]. Consider sequence s1=<a(cd)ad> shown in Fig. 1(a), which consists of 
four elements: a, (cd), a, and d. Because item a appears in the 1st and the 3rd elements 
of s1, the bit sequence of a in s1, denoted as Bita(s1), is 1010. Similarly, Bitc(s1)= 0100 
and Bitd(s1)= 0101 are obtained. The bit sequence tables of all the five sequences in S 
are constructed as shown in Fig. 1(c).  

[Definition 1]. Given a sequence α=<a1a2…an>. If α is contained in a tuple [si, β] of the 
sequence database where β=<b1b2…bm>, there must exist integers 1≤j1<j2<…<jn≤m 
such that a1⊆bj1, a2⊆bj2, …, and an⊆bjn.  The integer jn is named a sequential position of 
α in sequence si. The first sequential position of α in si is defined to be the minimum 
value among all the sequential positions of α in si. Otherwise, if α is not contained in 
sequence si, the first sequential position of α in si is 0. 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

  

Fig. 1. (a) the sample database S, (b) the appearing sequence table of S, and (c) the bit sequence 
structure of S 

Item X AppearX FPX 
a 11100 1,1,2,0,0 
b 00111 0,0,4,1,1 
c 11111 2,2,1,3,1 
d 10101 2,0,3,0,1 
e 01000 0,4,0,0,0 

(b) 

sid sequence 
s1 <a(cd)ad> 
s2 <acae> 
s3 <cad(bcd)> 
s4 <bbc> 
s5 <(bcd)d> 

(a) 

sid s1 s2 s3 s4 s5 

Item X BitX(s1) 
a 1010 
c 0100 
d 0101 

Item X BitX(s2) 
a 1010 
c 0100 
e 0001 

Item X BitX(s3) 
a 0100 
b 0001 
c 1001 
d 0011 

(c) 

Item X BitX(s4) 
b 110 
c 001 

Item X BitX(s5) 
b 10 
c 10 
d 11 
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In order to reduce the cost of checking bit sequence tables, an appearing sequence 
table is constructed in our approach, which is composed of three fields: item name, 
appearing sequence, and first_position sequence. The appearing sequence of an 
item X is a bit sequence with length |S|, denoted as AppearX, which is used to record 
whether item X appears in the sequences of database S. If X appears in the i-th 
sequence of S, the i-th bit in AppearX, denoted as AppearX(i), is set to be 1; otherwise, 
it is set to be 0. The first bit is located at the far left of appearing sequence. In 
addition, for each item X, an integer sequence called first_position sequence, is 
constructed. The sequence is denoted as FPX, which consists of |S| nonnegative 
integers, from left to right, used to record the first sequential positions of <X> in 
every sequence of the database.  

[Example 2]. Consider the example shown in Fig. 1(a). Item d appearing in sequences 
s1, s3, and s5, thus, Appeard =“10101” and FPd = “2,0,3,0,1” are constructed. The 
whole appearing sequence table of S is shown as Fig. 1(b).  

The representation of appearing sequence and first position sequence are applicable 
to represent the distribution of a sequential pattern contained in the database. For 
example, pattern P=<ad> is contained in sequences s1 and s3. Therefore, 
AppearP=“10100” and FPP=“2,0,3,0,0”. Accordingly, if the appearing sequence of a 
pattern Q is known, the number of bits with 1 in AppearQ, denoted as 
1_count(AppearQ), implies the support of Q. 

4   I-SPAM Algorithm 

In this section, based on the representations of appearing sequences, the strategy for 
computing the supports of candidate patterns efficiently is introduced. Then the 
mining process of the proposed I-SPAM algorithm is described. 

4.1   Candidate Patterns Generation 

According to the monotonic property of frequent patterns, a pattern is possible 
frequent only if all its subsequences are frequent. Therefore, a candidate pattern is 
generated by inserting a data item into a pre-known frequent pattern.  

Given a data item T in the database, the S-extended method generates a candidate 
sequence by appending a new element containing itemset {T} after the last element of 
a sequence α. The generated pattern is named a S-extended sequence of α. On the 
other hand, an I-extended sequence of α is obtained by inserting a data item T to the 
last element X of α. These two patterns are named the S-extended and I-extended 
sequences of α by T, respectively. For example, suppose sequence α=<aa> and b 
denotes a data item. Then <aab> is the S-extended sequence and <a(ab)> is the I-
extended sequence of α by b. 

4.2   Support Counting Strategies 

The appearing and first_position sequences, introduced in the previous section, are 
used to speed up the support counting of candidate patterns. 
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1) Checking S-extended Sequences 
Let β denote a S-extended sequence of α by appending a new element containing 
itemset {T} to α. Suppose Appearα and FPα are given and the appearing sequence 
table of the database is constructed. The appearing sequence of the new pattern β, 
Appearβ, must have the properties that if bit j has value 1, then the corresponding 
sequence sj must contain sequence α and {T}, and there exists α before T in the 
sequence. After getting Appearβ, the support of β is obtained easily. The following 
strategies are designed to get the appearing sequence of β efficiently by avoiding the 
non-necessary checking on bit sequence tables as far as possible.  

First, the approximation of Appearβ, denoted as A_Appearβ, is obtained by 
performing an AND operation on Appearα and AppearT. Because 1_count(A_Appearβ) 
is larger than or equal to 1_count(Appearβ), β is not possible a frequent pattern if 
1_count(A_Appearβ) < min_sup and it is pruned without needing further checking. 

On the other hand, if 1_count(A_Appearβ)≥min_sup, for those bits in A_Appearβ 
with value 1, the corresponding sequences have to be checked whether they contain β 
actually to get Appearβ. For each bit k in A_Appearβ, if its value is 0, both Appearβ(k) 
and FPβ(k) are set to be 0. Otherwise, the values in FPα(k) and FPT(k) are compared. If 
FPα(k) is less than FPT(k), it implies the first sequential position of sequence α 
appearing is before all the occurring of item T in the k-th sequence. In other words, 
the k-th sequence of S contains the new pattern β and FPT(k) is the first sequential 
position that β occurring in this sequence. Therefore, Appearβ(k) is set to be 1 and 
FPβ(k) is set to be FPT(k). Although, it is not necessary that β does not occur in the k-
th sequence if FPα(k) is larger than or equal to FPT(k). Therefore, the following 
detailed checking on the bit sequence BitT(k) is executed.  

A left-shift operation is performed on BitT(k) by FPα(k) bits. If the resultant 
sequence is non-zero, it means there existing a position where item T located after the 
first sequential position of α in the k-th sequence. That is, β is contained in the k-th 
sequence. Let bit h denote the first bit in the resultant sequence with value 1, it 
indicates the first sequential position of β in the sequence is located h positions after 
the first sequential position of α. Therefore, Appearβ(k) is set to be 1 and FPβ(k) is set 
to be FPα(k)+h. Otherwise, sequence β is not contained in the k-th sequence of S, and 
both of Appearβ(k) and FPβ(k) are set to be 0. 

The appearing sequence of β, Appearβ, is obtained after performing the checking 
for all the bits in A_Appearβ with value 1. Finally, β is certified to be a frequent 
pattern if 1_Count(Appearβ) is larger than or equal to min_sup.  

2) Checking I-extended Sequences 
Let sequence α be represented as <α’X>, where X denotes the last element of α. 
Besides, let γ denote an I-extended sequence of α by inserting item T to the last 
element of α. For the appearing sequence of γ, Appearγ, if its j-th bit has value 1, 
sequence α and {T} must be contained in the corresponding sequence sj. Moreover, 
there exists an element containing both X and {T}, which is located after α’ in the 
sequence. 

Similarly, the approximation of Appearγ, denoted as A_Appearγ, is obtained by 
performing an AND operation on Appearα and AppearT. The candidate pattern γ is not 
possible frequent if 1_count(A_Appearγ)<min_sup and it is pruned. 
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On the other hand, if 1_count(A_Appearγ)≥min_sup, for those bits in A_Appearγ 
with value 1, the corresponding sequences have to be checked whether they contain γ 
actually to get Appearγ. For each bit k in A_Appearγ, if its value is 0, Appearγ is set to 
be 0. Otherwise, the values in FPα(k) and FPT(k) are compared. If FPα(k) is equal to 
FPT(k), it implies there exists an element within the k-th sequence which contains both 
{T} and the last element X of α. Besides, the element is located after α’ because 
FPα’(k) < FPα(k). In other words, the new pattern γ is contained in the k-th sequence of 
S and FPα(k) is the first sequential position of γ in this sequence. Therefore, 
Appearγ(k) is set to be 1 and FPγ(k) is set to be FPα(k). 

However, it is not necessary that γ does not occur in the k-th sequence if FPα(k) is 
larger  or less than FPT(k). Therefore, the following detailed checking on the bit 
sequences BitX(k) and BitT(k) is executed. First, BitX(k) is obtained by performing 
AND operations on Bitx1(k), Bitx2(k), …, and Bitxi(k),where xi is an item in X.  

Then, another AND operation is performed on BitX(k) and BitT(k) to get 
Bit(X∪{T})(k). If the resultant sequence is non-zero, it indicates that both X and {T} 
appear in certain element in the k-th sequence at the same time. To make sure there 
existing such an element located after α’, the similar strategy adopted for checking S-
extended sequences is applied.  

The first sequential position of α (i.e. <α’X>) in the k-th sequence is FPα(k). It 
implies, after α’ appears, FPα(k) is the smallest sequential position of X in sequence k. 
If γ is contained in the sequence, there must exist an element containing both X and 
{T} whose sequential location is no less than FPα(k). Therefore, a left-shift operation 
is performed on Bit(X∪{T})(k) by (FPα(k)-1) bits. If the resultant sequence is non-zero, 
it implies that such an element exists which is located after α’. That is, γ is contained 
in the k-th sequence. Let bit h denote the first bit in the resultant sequence with value 
1, it indicates the first sequential position of γ in the sequence is located h positions 
after position (FPα(k)-1). Therefore, Appearγ(k) is set to be 1 and FPγ(k) is set to be 
(FPα(k)-1)+h. Otherwise, sequence γ is not contained in the k-th sequence of S, and 
both of Appearγ(k) and FPγ(k) are set to be 0. 

The appearing sequence of γ, Appearγ, is obtained after performing the checking 
for all the bits in A_Appearγ with value 1. Finally, γ is certified to be a frequent 
pattern if 1_Count(Appearγ) is larger or equal to min_sup. 

[Example 3]. Following the running example shown in Fig. 1, suppose min_sup is set 
to be 2. A sequence α=<ac> is given, and Appear<ac>=11100 and FP<ac>=“2,2,4,0,0” 
are known. The process for checking whether the S-extended sequence <acd> and I-
extended sequence <a(cd)> of <ac> being frequent is described as following. 
-  Checking S-extended sequence <acd>: 
(1) A_Appear<acd>= Appear<ac> ∧ Appeard= 10100; 1_Count(A_Appear<acd>) ≥ 2, 

continue. 
(2) For the 1st and 3rd bit in A_Appear<acd> 

(2-1) A_Appear<acd>(1)≠0;  FP<ac>(1)=2 is not less than FPd(1)=2; 
   Get Bitd(1)=0101;  Left-shift(Bitd(1)) by 2 bits 0100(non-zero); 

       The first bit in the resultant sequence with value 1 is bit 2; 
Therefore, Appear<acd>(1) is set to be 1, and FP<acd>(1) is set to be 

FP<ac>(1)+2=4. 
(2-2) Check A_Appear<acd>(3)≠0; FP<ac>(3)=4 is not less than FPd(3)=3; 
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       Get Bitd(3)=0011; Left-shift(Bitd(3)) by 4 bits 0000(zero); 
       Therefore, Appear<acd>(3) and FP<acd>(3) are set to be 0. 

(3) For the bit k=2, 4, 5 in A_Appear<acd> 
(3-1) Check A_Appear<acd>(k)=0; Therefore, Appear<acd>(k) and FP<acd>(k) are set 

to be 0. 
(4) Appear<acd>=10000, 1_Count(Appear<acd>)<2;  Therefore, <acd> is not a frequent 
pattern.  
 
-  Checking I-extended sequence <a(cd)>: 
(1) A_Appear<a(cd)>= Appear<ac> ∧ Appeard= 10100;1_Count(A_Appear<a(cd)>) ≥ 2, 
continue. 
(2) For the 1st and 3rd bit in A_Appear<acd> 

(2-1) Check A_Appear<a(cd)> (1)≠0;  FP<ac>(1)=2 is equal to FPd(1)=2; 
        Therefore, Appear<a(cd)>(1) is set to be 1, and FP<a(cd)>(1) is set to be 
FP<ac>(1)=2. 

      (2-2) Check A_Appear<a(cd)> (3)≠0;  FP<ac>(3)=4 is not equal to FPd(3)=3; 
    Get Bitc(3)=1001 and Bitd(3)=0011;    Bit(cd)(3)= Bitc(3) ∧ Bitd(3)=0001; 

        Left-shift(Bit(cd)(3)) by (4-1) bits 1000(non-zero); 
       Therefore, Appear<a(cd)>(3) is set to be 1, and FP<a(cd)>(3) is set to be (FP<ac>(3)-
1)+1=4. 

(3) For the bit k=2, 4, 5 in A_Appear<acd> 
(3-1) Check A_Appear<acd>(k)=0; Therefore, Appear<acd>(k) and FP<acd>(k) are set 

to be 0. 
(4) Appear<a(cd)>=10100, FP<a(cd)>= “2,0,4,0,0”,   

Check 1_Count(Appear<a(cd)>) ≥ 2; Therefore, <a(cd)> is a frequent pattern. 

4.3   I-SPAM Algorithm 

The whole process of I-SPAM Algorithm is described as the pseudo codes shown 
below, which are similar to the ones of SPAM algorithm. The modified parts include 
the codes for constructing the bit sequence table and appearing sequence table, and 
removing infrequent items from the tables. The S-temp<α> /I-temp<α> is used to store 
the candidate items which are possible to construct frequent S-extended/I-extended 
sequences from sequence α according to the pruning strategy adopted in SPAM 
algorithm [3]. Initially, for each item T∈L1, S-temp<T> is set to be L1, and I-temp<T> is 
assigned the set of items in L1 and greater than T, respectively. Then procedure 
M_DFS() is called recursively to perform the process of generating candidates from T 
and discovering frequent patterns in a depth-first manner. 

The significant difference between SPAM and I-SPAM is that the appearing 
sequences and first_position sequences are used for more efficient support counting to 
avoid checking bit sequence tables as possible. Moreover, the memory size to retain the 
appearing and first_position sequences of patterns temporally during executing I-SPAM 
is less than the one to retain the bitmap sequences of patterns while executing SPAM. 

Algorithm I-SPAM (Sequence Database S, min_sup) 
  For each [sid

i
, s]∈S  /* construct the tables */  

    For each element s
j
 of s 

      For each item k∈s
j 
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        If Appear
k
(i)==0, set Appear

k
(i)= 1; 

        Set the j-th bit in Bit
k
(i) to be 1; 

        If FP
k
(i)==0, set FP

k
(i)= j; 

  L
1
=φ ; 

  For each item k in appearing sequence table 
    If 1_Count(Appear

k
)< min_sup, /* remove from the tables */ 

       For i=1 to |S| 
         If Appear

k
(i)==1,  

            Remove Bit
k
(i) from the bit sequence table; 

       Remove the tuple [k, Appear
k
, FP

k
] from appearing 

       sequence table; 
    Else L

1
= L

1
∪ {k}; 

  For each item T∈L
1 

    S-temp
<T>
= L

1
; 

    I-temp
<T>
= {x | x∈ L

1
 ∧ x > T by lexicographic order}; 

Call M_DFS(T, Appear
T
, FP

T
, S-temp

<T>
, I-temp

<T>
). 

5   Performance Evaluation  

In this section, the experimental results on the performance of I-SPAM in comparison 
with SPAM [3] are reported. All the experiments are performed on a personal 
computer with 2.4GHz Intel Pentium 4 CPU, 512MB main memory, and running 
Microsoft Windows XP.  

The experiments were performed on synthetic data generated by the IBM synthetic 
market-basket data generator AssociGen[2]. The inputted parameters AssociGen: 
D(number of sequences in the dataset), C(average number of elements per sequence), 
T(average number of items per element), S(average length of potentially frequent 
sequential patterns), and I(average length of itemsets in maximal potentially frequent 
patterns) are considered the factors while comparing I-SPAM against SPAM. 

5.1   Comparison with Spam on Execution Time 

The experimental results on execution time are shown in Fig. 2, where the min_sup 
setting and the parameters used for generating data set are controlled individually in 
each experiment. For SPAM algorithm, some experimental results are missing from 
the figures. It means, under the parameter setting, the SPAM algorithm could not be 
executed properly in the running environment. 

First, by varying min_sup setting, the execution times of these two algorithms are 
evaluated on three datasets with various scales(the first is 0.6MB, the second is 1.4MB 
and the third is 7.9MB). The experimental results are shown in Fig. 2(a), 2(b) and 2(c), 
respectively. The results show that I-SPAM can achieve the same magnitude efficiency 
and even better than SPAM on execution time. The primary reason is due to the 
representation of appearing and first_position sequences, which are used for more 
efficient support counting to avoid checking the bit sequences as possible. When the 
min_sup setting becomes larger, fewer candidate patterns are generated such that the 
benefit gained by I-SPAM is reduced. Additionally, the cost for pruning infrequent 
items from bits sequence and appearing sequence tables by I-SPAM is increasing. 
Therefore, the execution time of I-SPAM approaches the one of SPAM when  min_sup 
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is larger than 0.025. However, when min_sup is small enough, the execution efficiency 
of I-SPAM outperforms SPAM about a factor of 1.5. Moreover, SPAM is not 
executable when performing on large dataset with min_sup less than 0.08.  

Agreeing with the previous experimental results, the results shown in Fig. 2(d) 
indicate that I-SPAM outperforms SPAM when the numbers of sequences in the 
datasets(D) are larger than 5K. For small datasets, checking the bitmap representation 
directly could be performed very quickly. Therefore, in some cases of small 
datasets(when D is 3K), the overhead for processing the appearing and first_position 
sequences outweighs the benefits achieved by these structures, and SPAM runs 
slightly faster in these situations. 

Among the parameters used in AssociGen, as the average number of elements per 
sequence(C) and the average number of items per element(T) increase, the size of 
generated synthetic datasets will increase. Therefore, the experimental results shown 
in Fig. 2(e) and 2(f) indicate the coincident result shown in Fig. 2(d) due to the similar 
reasons as in the case of increasing the number of sequences in the dataset. Due to 
page limit, the experimental results on parameters (S) and (I) setting are omitted here.  
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Fig. 2. Experimental results 
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5.2   Comparison with SPAM on Maximal Memory Usage  

The estimated results on maximal memory usage are shown in Fig. 2(g) and 2(h). In the 
experiment performed on the 7.9MB dataset, Fig. 2(g) shows that the maximal memory 
requirement of I-SPAM is about half of the one required by SPAM. The primary reason 
is due to the size of required memory for storing the appearing and first_position 
sequences of a pattern temporally during executing I-SPAM is less than the one for 
storing the bitmap sequence of a pattern while executing SPAM. Fig. 2(h) shows the 
maximal memory requirement of I-SPAM and SPAM by varying the average number of 
elements per sequence in the datasets, which indicates the similar outcomes. 

To summarize the experimental results, in general, I-SPAM has better scalability 
than SPAM for larger datasets and less min_sup setting under the same running 
environment.  

6   Conclusion and Future Works 

In this paper, an improved-version of SPAM algorithm, called I-SPAM, for mining 
frequent sequential patterns is proposed. With the aid of appearing sequence table, more 
efficient support counting is achieved by avoiding checking the bit sequences as possible.  

Moreover, the required memory size for storing the temporal variables is reduced 
effectively to be less than the one needed by SPAM. The experimental results 
demonstrate that I-SPAM outperforms SPAM on execution time especially when 
performed on larger datasets and with smaller min_sup setting. Furthermore, the 
maximal memory requirement is reduced effectively to be about half of the one 
required for executing SPAM in most cases. 

Constraints are essential for many sequential pattern mining applications. In the 
future, it is worthy our studying on pushing constraints in the mining process of I-
SPAM to reduce the explored portion of the search space dramatically.  
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