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Abstract. There has been a rising need to handle and process streaming kind of 
data. It is continuous, unpredictable, time-varying in nature and could arrive in 
multiple rapid streams. Sensor data, web clickstreams, etc. are the examples of 
streaming data. One of the important issues about streaming data management 
systems is that it needs to be processed in real-time. That is, active rules can be 
defined over data streams for making the system reactive. These rules are 
triggered based on the events detected on the data stream, or events detected 
while summarizing the data or combination of both. In this paper, we study the 
challenges involved in monitoring events in a Data Stream Management System 
(DSMS) and how they differ from the same in active databases. We propose an 
architecture for event composition and detection in a DSMS, and then discuss 
an algorithm for detecting composite events defined on both the summarized 
data streams and the streaming data. 

1   Introduction 

The data in Data Stream Management System (DSMS) is delivered continuously, 
often at well defined time intervals, without having been explicitly asked for it [9, 10]. 
The data needs to be processed in near real-time, as it arrives because of one or more 
of the following reasons – it may be extremely expensive to save the raw streaming 
data to disk; the data is likely to represent real-time events, like intrusion detection 
and fault monitoring, which need to be responded to immediately. Another major 
challenge handling streams is because of their delivery at unreliable rates, the data is 
often garbled, and they have limited processor resources. It is likely to be subjected to 
continuous queries (CQ) – which need to be evaluated continuously as data arrives, in 
contrast to the one-time queries, which are evaluated once over a point-in-time 
snapshot of the data set. The streaming data being infinite in size, and if the need for 
storage be, it has to be summarized or aggregated [11].  

Active functionality [1, 2] in a database enables automatic execution of operations 
when specified events occur and particular conditions are met. Active databases 
enable important applications, such as alerting users that a certain event of importance 
has occurred, reacting to events by means of suitable actions, and controlling the 
invocation of procedures. Most of the research efforts on incorporating this 
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functionality have focused on active capabilities in the context of relational database 
systems [2]. However, due to the nature of streaming data, pointed out earlier, active 
functionality cannot be easily incorporated on DSMS. Old aggregated data needs to 
be referred to, from time to time, for events evaluation and prove very expensive if 
the system was to make a disk access for the same each time. Also, the system would 
be required to handle detection of events on streaming data in real-time which is not 
an issue dealt with in case of traditional databases. 

In this paper, we deal with the problem of referencing the old data to respond to 
user-specified events in real time. As stated in [6], certain applications require 
reference to data, not only when it arrives, but also after it is summarized (or 
aggregated). The work illustrates a monitoring application for which access to the 
entire historical time series is required. Similarly, for event detection in streaming 
databases, there could be a need to use the past data for evaluation of events. Consider 
the field of financial data, where the value of various stocks keeps changing 
continuously. A user may be interested in re-computation of DowJones Average when 
any two of IBM, GE or Boeing stock prices change by 1% in an hour during the day. 
Assuming that the aggregation of the data is done every 10 minutes, the system would 
be required to compare the values to past data. As another example, consider the 
problem of monitoring constraints on the data, as declared by the user. They could be 
of the following types – referential integrity (foreign key), primary key, domain 
constraints etc. For example, consider two relation schemas R1 and R2, such that the 
attributes of R1 reference to relation R2. As new data arrives for R1, it would be 
required to check it against attribute values of R2 to ensure data integrity. This 
information would have to be retrieved from the disk, which would be very time-
expensive. Our performance results show that events (primitive or composite) in 
DSMS can be detected from the data streams and/or from the aggregated data in near 
real-time. 

Initial work on active databases and time-constraints data management was carried 
out in the HiPAC project [1]. In this project, an event algebra has been proposed, 
called SNOOP [3], for defining the primitive and composite events. In [5], the authors 
propose a real-time event detection method for multi-level real-time systems. There 
are many other systems, such as ODE[4], SAMOS [12], and Sentinel, address event 
specification and detection in the context of active databases, however, they differ 
primarily in the mechanism used for event detection. The Aurora [10] builds up a new 
data processing system exclusively for stream monitoring applications. It provides 
with a large number of stream operators to work with, from simple stream filters to 
complex windowing and aggregation operators. The core of the system consists of a 
large network of triggers. The OpenCQ [7] and NiagaraCQ [8] systems support 
continuous queries for monitoring persistent data sets over a wide-area network. 
OpenCQ uses a query processing algorithm based on incremental view maintenance, 
while NiagaraCQ addresses scalability in number of queries by using techniques for 
grouping continuous queries for efficient evaluation. 

The rest of the paper is organized as follows. The event model is outlined in 
Section 2. The system architecture is proposed in Section 3. The event composition 
and detection in the proposed system is described in Sections 4. The experimental 
results are discussed in Section 5. Finally, we conclude the paper in Section 6. 
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2   Event Syntax 

An event is defined as a tuple: <event type, event_life_time, event_occ_time, attribute 
list>. Event type defines the name of events which share a common system defined 
meaning specified by the eid. Event-life-time is the time for which the occurrence of 
this event is of importance and event-occ-time is the time at which the event occurs. 
Attribute list is a flat list of typed values which carry further information about the 
event.  

An event E (either primitive or composite) is formally being defined as a function 
from the time domain onto the boolean values, True and False. 

 E : T → {True, False} 
given by E = True if an event of type E occurs at time point t, False otherwise. The 
following operators are used in our system for composing primitive events. 

There are two kinds of events defined – primitive and composite. The most 
common primitive events involve modifications to the data that occur through 
commands like insert, delete, update, etc. in relational database systems and through 
method invocations in object-oriented database systems. Temporal events are the 
other type of frequently used primitive events. More advanced systems allow the user 
to register compositions of such primitive events too. As mentioned above, lot of 
work has been dedicated to evolve event algebras that would capture the necessary 
compositions of events and their efficient detection. Figure 1 gives the BNF syntax of 
the composite event used in our system; the consequent sub-sections will describe the 
operators and their semantics, followed by the strategy adopted for event detection in 
the system. We adopt SNOOP [4] as an Event Specification Language (ESL) that 
allows specification of database, temporal, explicit and composite events.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. BNF syntax of Event Algebra 

 
 

composite_ev ::= <element_ev><event_op><composite_ev><time_constraint> 

element_ev ::= <primitive_ev> | <atomic_condition_ev> 

primitive_ev ::= <basic_update_ev> | <temporal_ev> 

time_constraint ::= till<absolute_time> | in<time_span> 

atomic_conditon_ev ::= <attribute_name><composite_op><value> 

basic_update_ev ::= <db_op> | <ext_signals> 

temporal_ev ::= <abs_time> | <interval_time> | <rel_time> 

event_op ::= AND | OR | ANY | SEQ | NOT | A | P 

db_op ::= UPDATE | INSERT | DELETE 

time_span ::= n seconds | n minutes | n hours | n days 
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3   System Description 

In this section, we describe the proposed architecture of the event composition and 
detection in a data stream management system as shown in Figure 2. The detection of 
events is done by two separate monitoring routines, by Event Checker on streaming 
(queued) data and by Trigger Messenger, database inbuilt triggers on summarized 
data. The data is first buffered in the queue and then summarized/aggregated using 
application specific algorithms after a fixed interval of time or after a specified 
number of data points have arrived. The summarized information is then inserted into 
the persistent storage of the system, marked as DB2 in the figure. When a new event 
is defined, the event parser sends the correct event definitions to the event manager to 
be stored for later retrievals. 

3.1   Event Manager 

The event manager stores the structural information of the events specified by the 
user. An Event Specification Language is used that allows specification of database, 
temporal, explicit and composite events. In our system implementation, we define 
events using SNOOP as event algebra [3]. 

 
                                                            

 
 
 
 

  

 
                               

 
 

 
 
 
 
 
 
 
 
 

Fig. 2. Architecture of Event Composition and Detection in DSMS 

When a new event is registered with the system, the event definition is extracted 
and corresponding event handler is initialized. If the component(s) of the event is 
already known to the system as triggering event(s), then the new event subscribes to it 
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and if it is known as a triggering event, then the corresponding mechanisms for its 
detection are initialized in the Event Checker and triggers are set in DB2. The 
structural information of the event is also sent to Composite Event Evaluator where 
the occurrence of the composite events will be detected. 

3.2   Data Summarization 

The streaming data from the application is initially buffered in the Data Queue and 
then data is summarized. The data summarization can be time-based or data-based, 
i.e. it could be done after fixed intervals of time or after the arrival of a fixed number 
of data points in the stream. For example, a stock market may record the average 
value of stocks after every 10 minutes, irrespective of the number of times the value 
changes in that period, or the average of every 20 values can be stored. The definition 
of data summarization can be seen as computing materialized views. These views are 
then incrementally maintained as new data is summarized.  

Considerable amount of work has been done in developing techniques for data 
reduction and synopsis construction – sketches, random sampling, histograms, wavelets 
to name a few [7, 9, 11]. Gilbert et al. have proposed QuickSAND: Quick Summary and 
Analysis of Network Data which builds compact summaries of network traffic data 
called sketches based on random projections. These sketches are much smaller in size 
and respond well to trend-related queries or to features that stand out of data. Network 
data can also be summarized incrementally at multiple resolutions to answer point 
queries, range queries and inner product queries using SWAT [11]. Gibbons and Matias 
have proposed two sampling based summary statistics of data – concise samples and 
counting samples. These are incremental in nature and more accurate compared to other 
techniques. The samples were actually created to provide approximate answers to hot list 
queries. The data summarization techniques are application-specific and hence the 
system would choose them according to the type of data that it must deal with. The 
technique selected should be such that the summary created should be amenable to 
answering queries and take only permissible amount of processing memory. 

3.3   Event Cache 

Monitoring is a continuous activity and lasts for a long period of time. For any 
monitoring system, there would be an upper bound on its memory requirements. If the 
system was to go on saving information about all event occurrences or partially 
completed events, the available memory space would be soon exhausted. Such 
situations can arise from very simple kind of events. Consider the event defined E1;E2 
i.e. trigger is raised every time event E2 occurs after event E1 has occurred. It could 
happen that there are multiple occurrences of E1 before a E2 occurs. The system 
should not go on saving all these occurrences of E1 blindly, but make use of some 
policy for the same to discard the irrelevant ones. 

To deal with the problem of memory usage, we define an event-life time for every 
event, after which the event is considered dead for future consideration. This time must 
be user-defined, else the system-default is taken. Other solutions for the same could be to 
store only the recent-most occurrence of the event type, rejecting the older, valid 
occurrences or to permit one occurrence in one solution only. Whereas the former would 



 Event Composition and Detection in Data Stream Management Systems 761 

 

function in a similar fashion as using the recent parameter context described in [3], the 
latter will not solve the problem in cases such as the example above. 

When a cache entry is made with a new event, time for its removal from the cache 
is determined using the following equations: 

tlife = tocc + time_span OR  tlife = abs_time 
The cache makes periodic scans of the event entries for clean-up actions and 

removes events with older tlife than the present system time. 

4   Event Detection 

This section deals with the specific strategies adopted by the system for event 
detection. The steps involved are detection of the primitive events, collection of all 
occurring events, composition of the same to detect complex events and de-
registration of events which are not of interest any longer. We describe below all the 
steps in detail one by one. 

4.1   Basic Event Detection 

When a user registers a new event with the system, the following actions take place: 

• Assignment of a unique event identifier (eid)                                    
o A new event registered with the system is assigned with an eid. The 

eid is used to identify this class of events in future. 
• Parsing of the event 

o The Event Parser reads and parses the new event registered and 
decomposes it to sub-events such that each of them is a primitive 
event. 

• Update of events monitoring routines 
o The sub-events are also assigned eids and sent to event monitoring 

routines DB2 and Event Checker for monitoring data for their 
occurrence. 

Monitoring applications could be hardware monitoring or software monitoring or 
hybrid of the two. Our monitoring technique is strictly a software monitoring system 
thus saving on cost and assuring portability across different platforms. Disadvantages 
are that since no special hardware is being dedicated to the process, it would be 
sharing the resources with the rest of the system. 

The event recognition is done by dedicated monitoring routines at two levels – low 
level recognition and high-level recognition. The low level event recognition involves 
detection of primitive events and high-level handles detection of composite events. A 
special monitoring component – Event Checker is responsible for monitoring events 
in the new, arriving data, whereas the events on the summarized data are checked by 
setting appropriate triggers on the database. Composite Event Evaluator (CEE) is 
dedicated for high-level event recognition once the primitive events are detected. 
Events are detected on the summarized as well as on the streaming data. 

• Events on summarized data 
We make use of inbuilt triggers in the database to detect events on the summarized 

data. This is called Synchronous monitoring of events since an event occurrence is 
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communicated explicitly to and in synchronization with the user. The triggers are 
installed on the data columns or objects of interest as specified in the sub-events. 
• Event on streaming data 

For monitoring the arriving data for events, we make use of system-controlled 
polling with system-defined interval where the system checks for the occurrence of 
the event every interval-time. We detect the events of interest by comparing two 
snapshots generated by two different polling time points, find out the changes i.e. the 
inserts, deletes and updates that have taken place. 

4.2   Event Notification 

The occurrence of primitive events needs to be reported to the CEE for detection of 
composite events. The event is packed with tocc, tlife and specified attributes into a 
packet and sent to the Event Cache using message queues. Databases like DB2 have 
inbuilt support for message queues (Websphere Message Queues) which can be 
exploited directly. The arrival of the events at the Cache needs to be co-ordinated 
since they would be coming from two asynchronous sources – database and Event 
Checker. This can be done by either setting priorities or by using semaphores to 
enforce mutual exclusion while writing to the Event Cache.  

The events information is picked up by CEE from the Cache for subsequent 
evaluation of composite events. The details about the composition of events are given 
in the next sub-section. The cache must only keep information about relevant events, 
which would contribute to event detection in future. Each event is marked with a 
timestamp indicating the time when it occurred. With the knowledge of the validity 
interval of an event, which is either user specified or system specific, the old events 
are removed from the cache. 

4.3   Composition of Summarized and Streaming Data Events 

Event Algebra provides the necessary expressive power and allows composition of 
events. Composite events, though more complex in nature, are more useful to the 
user. The Composite Event Evaluator stores the structural information of the 
registered composite events as well as the data-structures needed to describe the 
different event-types. The approach taken for event composition is different from 
earlier works of Ode [4] and SAMOS [12]. SAMOS defines a mechanism based on 
Petri Nets for modeling and detection of composite events for an OODBMS. They use 
modified colored Petri nets called SAMOS Petri Nets to allow flow of information 
about the event parameters in addition to occurrence of an event.  It seems that 
common sub-expressions are represented separately leading to duplication of Petri 
Nets. Also the use of Petri nets limits the detection of events in chronicle context 
only. Ode used an extended finite automaton for the composite event detection. The 
extended automaton makes transitions at the occurrence of each event like a regular 
automaton and in addition looks at the attributes of the events and also computed a set 
of relations at the transition. The definition of ‘AND’ operator on event histories does 
not seem to produce the desired result; the automaton for the operator constructed 
according to the specification given by [5] does not seem to reach an accepting state. 
Since most of the operators in Ode are defined in terms of the ‘AND’ operator, it 
makes their semantics also questionable. 
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We use event trees to store the structure of registered composite events. The 
composing primitive events are placed at the leaves of the tree whereas the internal 
nodes represent the relevant operators. The information about the occurrences of 
primitive events is injected at the leaves and flows upwards. The advantages of using 
event trees over the previously mentioned methods is that in case of common sub-
events, event trees can be merged together and hence reduce storage requirements. For 
example, let events be A::= E0 AND (E1;E2), B::= (E1;E2) OR E3 and C::= E2;E3. 
Clearly E1;E2 is common to events A and B and hence their trees can be coalesced. 
Also, the event trees can be used to detect events in all four parameter contexts. 

There could be two distinct ways of keeping the event trees – as a single, 
consolidated structure for all events, or as specialized graphs, one for each event. A 
single event graph minimizes on redundancy but makes garbage-collection difficult. 
Specialized graphs carry an overhead due to multiple copies of the structure but make 
garbage collection very simple. There are advantages and disadvantages to both and 
the choice would depend on the application. The choice of the kind of tree used for 
storage would depend on the application and resources available. The algorithm 
followed for composite evaluation using event trees is given in Figure 3.  

As mentioned earlier, the system must also carry out garbage collection to prevent 
the system from getting clogged with semi-composed events. Hence, a validity 
interval must be associated with each composite event, either user-specified or 
system-defined. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Algorithm for event detection using event trees 

4.4   Deregistration of Events 

After some time, the user may no longer wish to be notified of certain events. Hence 
arises the need for facility of deregistration of events – removal of the event structure 
from the CEE. If the event was a primitive one, then it requires a check if any other 

ALGORITHM Composite Event Detection 
Construct an event graph for each rule with nodes as operators and leaves as 
primitive events. The primitive event nodes are the source and the rule nodes 
are sinks. Edges are from constituent events to composite event. 
 
For each occurrence of a primitive event 

Store its parameter in the corresponding terminal node ‘t’; 
activate_terminal_node(t); 

 
PROCEDURE activate_terminal_node(n) 

For all rule-ids attached to the node ‘n’ 
signal event; 

For all outgoing edges i from ‘n’ 
propagate parameters in node ‘n’ to the nodei connected by edge i 
activate_operator_node(nodei); 

Delete propagated entries in the parameter list at ‘n’ 
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event is subscribed to it. If not, then the event can be removed from the triggers of the 
database and from the monitoring routines, else only the subscribing information will 
be notified. 

5   Performance Results 

The system was tested for simulated real-time click-stream data using web logs from 
IIT-CSE web-site (www.cse.iitd.ernet.in). The access_log from the web server was 
used to create continuous messages from dataGenerator.java. The Threads.java calls 
the Event Manager which allows user to register events that have to be monitored for. 
The information about the events registered is also sent to the Receiever, which form 
the event trees for event composition. It goes on to set the corresponding triggers on 
the DB2 and set monitoring routines from them which would check for the events on 
the queued data. As and when an event is detected on either of these, a message is 
sent to Receiver.java about the same. The Receiver maintains the event trees and 
computes the events following the receipt of sub-events and notifies the user on 
detection of any registered events. 

The system was registered with 20 composite events and tested on a month log 
data. The number of events missed vs. the window size (number of tuples after which 
summarization is done), was plotted. There was a slight degradation in the accuracy 
of detecting events, with the change in window-size from 50,70 to 100. The miss rate 
went up from 0.68% to 0.693% which is almost ignorable. However, this was 
accompanied with reduction in memory space used by the database. The following 
Figure 4 depicts the same. 
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Fig. 4. Miss Rate (of events) vs. Window Size used for summarization 

6   Conclusions 

This paper has described an architecture and algorithms for detecting composite 
events in a data stream management system. These events can trigger active rules 
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defined over data streams for making the system reactive. These rules are triggered based on 
the events detected on the data stream, or events detected while summarizing the data or 
combination of both. Integration of active rules in data stream management system is 
important in many real-time applications, such as monitoring a single portfolio that 
has equities from several stocks exchanges, monitoring the fraud transactions, etc. In 
this paper, we have described the event model considered in our system 
implementation and discuss the functionalities of each component of the architecture. 
We have discussed the various approaches for summarizing the data and then how to 
notify the events, if generated from this summarization to the composite event 
evaluator for composing the events. We have done some experiments to measure the 
miss rate of these events with respect to the varying window size. We have observed 
that the miss rate is almost negligible as we increase the window size. 
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