

K.V. Andersen, J. Debenham, and R. Wagner (Eds.): DEXA 2005, LNCS 3588, pp. 756 – 765, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Event Composition and Detection in Data Stream
Management Systems

Mukesh Mohania1, Dhruv Swamini2, Shyam Kumar Gupta2, Sourav Bhowmick3,
 and Tharam Dillon4

1 IBM India Research Lab, I.I.T., Hauz Khas, New Delhi
2 Dept of Computer Science and Engg, I.I.T. Delhi, Hauz Khas, New Delhi

3 Nanyang Technological University, Singapore
4 Faculty of Information Technology, University of Technology Sydney, Australia

Abstract. There has been a rising need to handle and process streaming kind of
data. It is continuous, unpredictable, time-varying in nature and could arrive in
multiple rapid streams. Sensor data, web clickstreams, etc. are the examples of
streaming data. One of the important issues about streaming data management
systems is that it needs to be processed in real-time. That is, active rules can be
defined over data streams for making the system reactive. These rules are
triggered based on the events detected on the data stream, or events detected
while summarizing the data or combination of both. In this paper, we study the
challenges involved in monitoring events in a Data Stream Management System
(DSMS) and how they differ from the same in active databases. We propose an
architecture for event composition and detection in a DSMS, and then discuss
an algorithm for detecting composite events defined on both the summarized
data streams and the streaming data.

1 Introduction

The data in Data Stream Management System (DSMS) is delivered continuously,
often at well defined time intervals, without having been explicitly asked for it [9, 10].
The data needs to be processed in near real-time, as it arrives because of one or more
of the following reasons – it may be extremely expensive to save the raw streaming
data to disk; the data is likely to represent real-time events, like intrusion detection
and fault monitoring, which need to be responded to immediately. Another major
challenge handling streams is because of their delivery at unreliable rates, the data is
often garbled, and they have limited processor resources. It is likely to be subjected to
continuous queries (CQ) – which need to be evaluated continuously as data arrives, in
contrast to the one-time queries, which are evaluated once over a point-in-time
snapshot of the data set. The streaming data being infinite in size, and if the need for
storage be, it has to be summarized or aggregated [11].

Active functionality [1, 2] in a database enables automatic execution of operations
when specified events occur and particular conditions are met. Active databases
enable important applications, such as alerting users that a certain event of importance
has occurred, reacting to events by means of suitable actions, and controlling the
invocation of procedures. Most of the research efforts on incorporating this

 Event Composition and Detection in Data Stream Management Systems 757

functionality have focused on active capabilities in the context of relational database
systems [2]. However, due to the nature of streaming data, pointed out earlier, active
functionality cannot be easily incorporated on DSMS. Old aggregated data needs to
be referred to, from time to time, for events evaluation and prove very expensive if
the system was to make a disk access for the same each time. Also, the system would
be required to handle detection of events on streaming data in real-time which is not
an issue dealt with in case of traditional databases.

In this paper, we deal with the problem of referencing the old data to respond to
user-specified events in real time. As stated in [6], certain applications require
reference to data, not only when it arrives, but also after it is summarized (or
aggregated). The work illustrates a monitoring application for which access to the
entire historical time series is required. Similarly, for event detection in streaming
databases, there could be a need to use the past data for evaluation of events. Consider
the field of financial data, where the value of various stocks keeps changing
continuously. A user may be interested in re-computation of DowJones Average when
any two of IBM, GE or Boeing stock prices change by 1% in an hour during the day.
Assuming that the aggregation of the data is done every 10 minutes, the system would
be required to compare the values to past data. As another example, consider the
problem of monitoring constraints on the data, as declared by the user. They could be
of the following types – referential integrity (foreign key), primary key, domain
constraints etc. For example, consider two relation schemas R1 and R2, such that the
attributes of R1 reference to relation R2. As new data arrives for R1, it would be
required to check it against attribute values of R2 to ensure data integrity. This
information would have to be retrieved from the disk, which would be very time-
expensive. Our performance results show that events (primitive or composite) in
DSMS can be detected from the data streams and/or from the aggregated data in near
real-time.

Initial work on active databases and time-constraints data management was carried
out in the HiPAC project [1]. In this project, an event algebra has been proposed,
called SNOOP [3], for defining the primitive and composite events. In [5], the authors
propose a real-time event detection method for multi-level real-time systems. There
are many other systems, such as ODE[4], SAMOS [12], and Sentinel, address event
specification and detection in the context of active databases, however, they differ
primarily in the mechanism used for event detection. The Aurora [10] builds up a new
data processing system exclusively for stream monitoring applications. It provides
with a large number of stream operators to work with, from simple stream filters to
complex windowing and aggregation operators. The core of the system consists of a
large network of triggers. The OpenCQ [7] and NiagaraCQ [8] systems support
continuous queries for monitoring persistent data sets over a wide-area network.
OpenCQ uses a query processing algorithm based on incremental view maintenance,
while NiagaraCQ addresses scalability in number of queries by using techniques for
grouping continuous queries for efficient evaluation.

The rest of the paper is organized as follows. The event model is outlined in
Section 2. The system architecture is proposed in Section 3. The event composition
and detection in the proposed system is described in Sections 4. The experimental
results are discussed in Section 5. Finally, we conclude the paper in Section 6.

758 M. Mohania et al.

2 Event Syntax

An event is defined as a tuple: <event type, event_life_time, event_occ_time, attribute
list>. Event type defines the name of events which share a common system defined
meaning specified by the eid. Event-life-time is the time for which the occurrence of
this event is of importance and event-occ-time is the time at which the event occurs.
Attribute list is a flat list of typed values which carry further information about the
event.

An event E (either primitive or composite) is formally being defined as a function
from the time domain onto the boolean values, True and False.

 E : T → {True, False}
given by E = True if an event of type E occurs at time point t, False otherwise. The
following operators are used in our system for composing primitive events.

There are two kinds of events defined – primitive and composite. The most
common primitive events involve modifications to the data that occur through
commands like insert, delete, update, etc. in relational database systems and through
method invocations in object-oriented database systems. Temporal events are the
other type of frequently used primitive events. More advanced systems allow the user
to register compositions of such primitive events too. As mentioned above, lot of
work has been dedicated to evolve event algebras that would capture the necessary
compositions of events and their efficient detection. Figure 1 gives the BNF syntax of
the composite event used in our system; the consequent sub-sections will describe the
operators and their semantics, followed by the strategy adopted for event detection in
the system. We adopt SNOOP [4] as an Event Specification Language (ESL) that
allows specification of database, temporal, explicit and composite events.

Fig. 1. BNF syntax of Event Algebra

composite_ev ::= <element_ev><event_op><composite_ev><time_constraint>

element_ev ::= <primitive_ev> | <atomic_condition_ev>

primitive_ev ::= <basic_update_ev> | <temporal_ev>

time_constraint ::= till<absolute_time> | in<time_span>

atomic_conditon_ev ::= <attribute_name><composite_op><value>

basic_update_ev ::= <db_op> | <ext_signals>

temporal_ev ::= <abs_time> | <interval_time> | <rel_time>

event_op ::= AND | OR | ANY | SEQ | NOT | A | P

db_op ::= UPDATE | INSERT | DELETE

time_span ::= n seconds | n minutes | n hours | n days

 Event Composition and Detection in Data Stream Management Systems 759

3 System Description

In this section, we describe the proposed architecture of the event composition and
detection in a data stream management system as shown in Figure 2. The detection of
events is done by two separate monitoring routines, by Event Checker on streaming
(queued) data and by Trigger Messenger, database inbuilt triggers on summarized
data. The data is first buffered in the queue and then summarized/aggregated using
application specific algorithms after a fixed interval of time or after a specified
number of data points have arrived. The summarized information is then inserted into
the persistent storage of the system, marked as DB2 in the figure. When a new event
is defined, the event parser sends the correct event definitions to the event manager to
be stored for later retrievals.

3.1 Event Manager

The event manager stores the structural information of the events specified by the
user. An Event Specification Language is used that allows specification of database,
temporal, explicit and composite events. In our system implementation, we define
events using SNOOP as event algebra [3].

Fig. 2. Architecture of Event Composition and Detection in DSMS

When a new event is registered with the system, the event definition is extracted
and corresponding event handler is initialized. If the component(s) of the event is
already known to the system as triggering event(s), then the new event subscribes to it

Event
Checke

Summarizer

Trigger
Messenge

Event History
(Cache)

Composite
Event
Evaluator

DB2 Event
Manager

Condition
Evaluation
Service

Event
Registratio

Input
Streams

Notification
Messages

760 M. Mohania et al.

and if it is known as a triggering event, then the corresponding mechanisms for its
detection are initialized in the Event Checker and triggers are set in DB2. The
structural information of the event is also sent to Composite Event Evaluator where
the occurrence of the composite events will be detected.

3.2 Data Summarization

The streaming data from the application is initially buffered in the Data Queue and
then data is summarized. The data summarization can be time-based or data-based,
i.e. it could be done after fixed intervals of time or after the arrival of a fixed number
of data points in the stream. For example, a stock market may record the average
value of stocks after every 10 minutes, irrespective of the number of times the value
changes in that period, or the average of every 20 values can be stored. The definition
of data summarization can be seen as computing materialized views. These views are
then incrementally maintained as new data is summarized.

Considerable amount of work has been done in developing techniques for data
reduction and synopsis construction – sketches, random sampling, histograms, wavelets
to name a few [7, 9, 11]. Gilbert et al. have proposed QuickSAND: Quick Summary and
Analysis of Network Data which builds compact summaries of network traffic data
called sketches based on random projections. These sketches are much smaller in size
and respond well to trend-related queries or to features that stand out of data. Network
data can also be summarized incrementally at multiple resolutions to answer point
queries, range queries and inner product queries using SWAT [11]. Gibbons and Matias
have proposed two sampling based summary statistics of data – concise samples and
counting samples. These are incremental in nature and more accurate compared to other
techniques. The samples were actually created to provide approximate answers to hot list
queries. The data summarization techniques are application-specific and hence the
system would choose them according to the type of data that it must deal with. The
technique selected should be such that the summary created should be amenable to
answering queries and take only permissible amount of processing memory.

3.3 Event Cache

Monitoring is a continuous activity and lasts for a long period of time. For any
monitoring system, there would be an upper bound on its memory requirements. If the
system was to go on saving information about all event occurrences or partially
completed events, the available memory space would be soon exhausted. Such
situations can arise from very simple kind of events. Consider the event defined E1;E2
i.e. trigger is raised every time event E2 occurs after event E1 has occurred. It could
happen that there are multiple occurrences of E1 before a E2 occurs. The system
should not go on saving all these occurrences of E1 blindly, but make use of some
policy for the same to discard the irrelevant ones.

To deal with the problem of memory usage, we define an event-life time for every
event, after which the event is considered dead for future consideration. This time must
be user-defined, else the system-default is taken. Other solutions for the same could be to
store only the recent-most occurrence of the event type, rejecting the older, valid
occurrences or to permit one occurrence in one solution only. Whereas the former would

 Event Composition and Detection in Data Stream Management Systems 761

function in a similar fashion as using the recent parameter context described in [3], the
latter will not solve the problem in cases such as the example above.

When a cache entry is made with a new event, time for its removal from the cache
is determined using the following equations:

tlife = tocc + time_span OR tlife = abs_time
The cache makes periodic scans of the event entries for clean-up actions and

removes events with older tlife than the present system time.

4 Event Detection

This section deals with the specific strategies adopted by the system for event
detection. The steps involved are detection of the primitive events, collection of all
occurring events, composition of the same to detect complex events and de-
registration of events which are not of interest any longer. We describe below all the
steps in detail one by one.

4.1 Basic Event Detection

When a user registers a new event with the system, the following actions take place:

• Assignment of a unique event identifier (eid)
o A new event registered with the system is assigned with an eid. The

eid is used to identify this class of events in future.
• Parsing of the event

o The Event Parser reads and parses the new event registered and
decomposes it to sub-events such that each of them is a primitive
event.

• Update of events monitoring routines
o The sub-events are also assigned eids and sent to event monitoring

routines DB2 and Event Checker for monitoring data for their
occurrence.

Monitoring applications could be hardware monitoring or software monitoring or
hybrid of the two. Our monitoring technique is strictly a software monitoring system
thus saving on cost and assuring portability across different platforms. Disadvantages
are that since no special hardware is being dedicated to the process, it would be
sharing the resources with the rest of the system.

The event recognition is done by dedicated monitoring routines at two levels – low
level recognition and high-level recognition. The low level event recognition involves
detection of primitive events and high-level handles detection of composite events. A
special monitoring component – Event Checker is responsible for monitoring events
in the new, arriving data, whereas the events on the summarized data are checked by
setting appropriate triggers on the database. Composite Event Evaluator (CEE) is
dedicated for high-level event recognition once the primitive events are detected.
Events are detected on the summarized as well as on the streaming data.

• Events on summarized data
We make use of inbuilt triggers in the database to detect events on the summarized

data. This is called Synchronous monitoring of events since an event occurrence is

762 M. Mohania et al.

communicated explicitly to and in synchronization with the user. The triggers are
installed on the data columns or objects of interest as specified in the sub-events.
• Event on streaming data

For monitoring the arriving data for events, we make use of system-controlled
polling with system-defined interval where the system checks for the occurrence of
the event every interval-time. We detect the events of interest by comparing two
snapshots generated by two different polling time points, find out the changes i.e. the
inserts, deletes and updates that have taken place.

4.2 Event Notification

The occurrence of primitive events needs to be reported to the CEE for detection of
composite events. The event is packed with tocc, tlife and specified attributes into a
packet and sent to the Event Cache using message queues. Databases like DB2 have
inbuilt support for message queues (Websphere Message Queues) which can be
exploited directly. The arrival of the events at the Cache needs to be co-ordinated
since they would be coming from two asynchronous sources – database and Event
Checker. This can be done by either setting priorities or by using semaphores to
enforce mutual exclusion while writing to the Event Cache.

The events information is picked up by CEE from the Cache for subsequent
evaluation of composite events. The details about the composition of events are given
in the next sub-section. The cache must only keep information about relevant events,
which would contribute to event detection in future. Each event is marked with a
timestamp indicating the time when it occurred. With the knowledge of the validity
interval of an event, which is either user specified or system specific, the old events
are removed from the cache.

4.3 Composition of Summarized and Streaming Data Events

Event Algebra provides the necessary expressive power and allows composition of
events. Composite events, though more complex in nature, are more useful to the
user. The Composite Event Evaluator stores the structural information of the
registered composite events as well as the data-structures needed to describe the
different event-types. The approach taken for event composition is different from
earlier works of Ode [4] and SAMOS [12]. SAMOS defines a mechanism based on
Petri Nets for modeling and detection of composite events for an OODBMS. They use
modified colored Petri nets called SAMOS Petri Nets to allow flow of information
about the event parameters in addition to occurrence of an event. It seems that
common sub-expressions are represented separately leading to duplication of Petri
Nets. Also the use of Petri nets limits the detection of events in chronicle context
only. Ode used an extended finite automaton for the composite event detection. The
extended automaton makes transitions at the occurrence of each event like a regular
automaton and in addition looks at the attributes of the events and also computed a set
of relations at the transition. The definition of ‘AND’ operator on event histories does
not seem to produce the desired result; the automaton for the operator constructed
according to the specification given by [5] does not seem to reach an accepting state.
Since most of the operators in Ode are defined in terms of the ‘AND’ operator, it
makes their semantics also questionable.

 Event Composition and Detection in Data Stream Management Systems 763

We use event trees to store the structure of registered composite events. The
composing primitive events are placed at the leaves of the tree whereas the internal
nodes represent the relevant operators. The information about the occurrences of
primitive events is injected at the leaves and flows upwards. The advantages of using
event trees over the previously mentioned methods is that in case of common sub-
events, event trees can be merged together and hence reduce storage requirements. For
example, let events be A::= E0 AND (E1;E2), B::= (E1;E2) OR E3 and C::= E2;E3.
Clearly E1;E2 is common to events A and B and hence their trees can be coalesced.
Also, the event trees can be used to detect events in all four parameter contexts.

There could be two distinct ways of keeping the event trees – as a single,
consolidated structure for all events, or as specialized graphs, one for each event. A
single event graph minimizes on redundancy but makes garbage-collection difficult.
Specialized graphs carry an overhead due to multiple copies of the structure but make
garbage collection very simple. There are advantages and disadvantages to both and
the choice would depend on the application. The choice of the kind of tree used for
storage would depend on the application and resources available. The algorithm
followed for composite evaluation using event trees is given in Figure 3.

As mentioned earlier, the system must also carry out garbage collection to prevent
the system from getting clogged with semi-composed events. Hence, a validity
interval must be associated with each composite event, either user-specified or
system-defined.

Fig. 3. Algorithm for event detection using event trees

4.4 Deregistration of Events

After some time, the user may no longer wish to be notified of certain events. Hence
arises the need for facility of deregistration of events – removal of the event structure
from the CEE. If the event was a primitive one, then it requires a check if any other

ALGORITHM Composite Event Detection
Construct an event graph for each rule with nodes as operators and leaves as
primitive events. The primitive event nodes are the source and the rule nodes
are sinks. Edges are from constituent events to composite event.

For each occurrence of a primitive event

Store its parameter in the corresponding terminal node ‘t’;
activate_terminal_node(t);

PROCEDURE activate_terminal_node(n)

For all rule-ids attached to the node ‘n’
signal event;

For all outgoing edges i from ‘n’
propagate parameters in node ‘n’ to the nodei connected by edge i
activate_operator_node(nodei);

Delete propagated entries in the parameter list at ‘n’

764 M. Mohania et al.

event is subscribed to it. If not, then the event can be removed from the triggers of the
database and from the monitoring routines, else only the subscribing information will
be notified.

5 Performance Results

The system was tested for simulated real-time click-stream data using web logs from
IIT-CSE web-site (www.cse.iitd.ernet.in). The access_log from the web server was
used to create continuous messages from dataGenerator.java. The Threads.java calls
the Event Manager which allows user to register events that have to be monitored for.
The information about the events registered is also sent to the Receiever, which form
the event trees for event composition. It goes on to set the corresponding triggers on
the DB2 and set monitoring routines from them which would check for the events on
the queued data. As and when an event is detected on either of these, a message is
sent to Receiver.java about the same. The Receiver maintains the event trees and
computes the events following the receipt of sub-events and notifies the user on
detection of any registered events.

The system was registered with 20 composite events and tested on a month log
data. The number of events missed vs. the window size (number of tuples after which
summarization is done), was plotted. There was a slight degradation in the accuracy
of detecting events, with the change in window-size from 50,70 to 100. The miss rate
went up from 0.68% to 0.693% which is almost ignorable. However, this was
accompanied with reduction in memory space used by the database. The following
Figure 4 depicts the same.

0.675

0.68

0.685

0.69

0.695

0 50 100 150

Window Size

M
is

s
R

at
e

Fig. 4. Miss Rate (of events) vs. Window Size used for summarization

6 Conclusions

This paper has described an architecture and algorithms for detecting composite
events in a data stream management system. These events can trigger active rules

 Event Composition and Detection in Data Stream Management Systems 765

defined over data streams for making the system reactive. These rules are triggered based on
the events detected on the data stream, or events detected while summarizing the data or
combination of both. Integration of active rules in data stream management system is
important in many real-time applications, such as monitoring a single portfolio that
has equities from several stocks exchanges, monitoring the fraud transactions, etc. In
this paper, we have described the event model considered in our system
implementation and discuss the functionalities of each component of the architecture.
We have discussed the various approaches for summarizing the data and then how to
notify the events, if generated from this summarization to the composite event
evaluator for composing the events. We have done some experiments to measure the
miss rate of these events with respect to the varying window size. We have observed
that the miss rate is almost negligible as we increase the window size.

References

1. S. Chakravarthy et al. HiPAC: A research project in active time-constrained database
management – final technical report. Technical Report XAIT-89-02, Reference Number
187, Xerox Advanced Information Technology, July 1989.

2. U. Schreier, H. Pirahesh, R. Agarwal, and C. Mohan. Alert: an architecture for
transforming a passive DBMS into an active DBMS. In Proc. of the 1991 Intl. Conf. on
Very Large Data Bases, pages 469-478, Sept. 1991.

3. S. Chakravarthy and D. Mishr. Snoop: An Expressive Event Specification Language for
Active Databases. University of Florida CIS Tech. Report, Sept. 1991.

4. N. Gehani, H. V. Jagadish, and O. Shumeli. Composite Event Specification in Active
Databases: Model and Implementation. In Proc. 18th International Conference on Very
Large Data Bases, pages 100-111, Vancouver, Canada, 1992.

5. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim. Composite Events for
Active Databases: Semantics Contexts and Detection. In 20th International Conference on
Very Largee Databases (VLDB94), pages 606-617, September 1994.

6. P. Bates. Debugging Heterogeneous Distributed Systems Using Event-Based Models of
Behavior. ACM Transactions on Computer Systems, 13(1):1-31, February 1995.

7. L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven information
delivery. IEEE Trans. On Knowledge and Data Engineering, 11(4):583-590, Aug. 1999.

8. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query
system for internet databases. In Proc. of the 2000 ACM SIGMOD Intl. Conf. on
Management of Data, pages 379-390, May 2000.

9. S. Babu and J. Widom. Continuous queries over data streams. ACM SIGMOD Record,
2001(3):109-120.

10. D. Carney, U. Cetinternel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N.
Tatbul, and S. Zdonik. Monitoring streams – a new class of data management applications. In
Proc. 28th Intl. Conf. on Very Large Data Bases, Hong Kong, China, August 2002.

11. Bulut and A. K. Singh. SWAT: Hierarchical stream summarization in large networks. In
IEEE International Conference on Data Engineering, page to appear, 2003.

12. S. Gatziu and K. Dittrich, ‘Events in an Active Object-Oriented Database’, In Proceeding
of the 1st International Workshop on Rules in Database Systems, Springer-Verlag, pages
23-39, 1994.

	Introduction
	Event Syntax
	System Description
	Event Manager
	Data Summarization
	Event Cache

	Event Detection
	Basic Event Detection
	Event Notification
	Composition of Summarized and Streaming Data Events
	Deregistration of Events

	Performance Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

