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Abstract. The development of scalable parallel database systems re-
quires the design of efficient algorithms for the join operation which is
the most frequent and expensive operation in relational database sys-
tems. The join is also the most vulnerable operation to data skew and
to the high cost of communication in distributed architectures.

In this paper, we present a new parallel algorithm for join and multi-
join operations on distributed architectures based on an efficient semi-
join computation technique. This algorithm is proved to have optimal
complexity and deterministic perfect load balancing. Its tradeoff between
balancing overhead and speedup is analyzed using the BSP cost model
which predicts a negligible join product skew and a linear speed-up. This
algorithm improves our fa join and sfa join algorithms by reducing their
communication and synchronization cost to a minimum while offering
the same load balancing properties even for highly skewed data.

1 Introduction

The appeal of parallel processing becomes very strong in applications which
require ever higher performance and particularly in applications such as: data-
warehousing, decision support and OLAP (On-Line Analytical Processing). Par-
allelism can greatly increase processing power in such applications [7,1]. How-
ever parallelism can only maintain acceptable performance through efficient al-
gorithms realizing complex queries on dynamic, irregular and distributed data.
Such algorithms must be designed to fully exploit the processing power of multi-
processor machines and the ability to evenly divide load among processors while
minimizing local computation and communication costs inherent to multipro-
cessor machines. Join is very sensitive to the problem of data skew which can
have a disastrous effect on performance [6,4,13,10,9,15,8] due to the high costs
of communications and synchronizations in distributed architectures [4,5,2].

Many algorithms have been proposed to handle data skew for join operations
[13,10,9]. Such algorithms are not efficient for many reasons :

– the presented algorithms are not scalable (and thus cannot guarantee lin-
ear speedup) because their routing decisions are generally performed by a
coordinator processor while the other processors are idle,

– they cannot avoid load imbalance between processors because they base their
routing decisions on incomplete or statistical information,
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– they cannot solve data skew problem because data redistribution is generally
based on hashing data into buckets and hashing is known to be inefficient in
the presence of high frequencies.

In this paper we present a new parallel join algorithm called Osfa join (Opti-
mal symmetric frequency adaptive join algorithm) for Shared Nothing machines
(i.e architectures where memory and disks are distributed). This algorithm has
optimal complexity, perfect balancing properties and supports flexible control of
communications induced by intra-transaction parallelism. The Osfa join algo-
rithm is based on an optimal technique for semi-joins computation, presented in
[5], and on an improved version of the redistribution algorithm of sfa-join [4]
which efficiently avoids the problem of attribute value- and join product skews
while reducing the communication and synchronization costs to a minimum.

This algorithm guarantees a perfect balancing of the load of the different
processors during all the stages of the data redistribution because the data re-
distribution is carried out jointly by all processors (and not by a coordinator
processor). Each processor deals with the redistribution of the data associated
to a subset of the join attribute values, not necessarily its “own” values.

The performance of Osfa join is analyzed using the scalable and portable
Bulk-synchronous parallel (BSP) cost model [14]. It predicts a negligible join
product skew and a linear speed-up, independently of the data and of the (shared
nothing) architecture’s bandwidth, latency and number of processors.

2 PDBMS, Join Operations and Data Skew

Join is an expensive and frequently used operation whose parallelization is highly
desirable. The join of two tables or relations R and S on attribute A of R and
attribute B of S is the relation, written R �� S, containing the pairs of tuples
from R and S for which R.A = S.B. The semi-join of S by R is the relation S�R

composed of the tuples of S which occur in the join of R and S. Semi-join reduces
the size of relations to be joined and R �� S = R �� (S � R) = (R � S) �� (S � R).

Parallel join usually proceeds in two phases: a redistribution phase by join
attribute hashing and then sequential join of local table fragments. Many such
algorithms have been proposed. The principal ones are: Sort-merge join, Simple-
hash join, Grace-hash join and Hybrid-hash join [12]. All of them (called hashing
algorithms) are based on hashing functions which redistribute relations so that
tuples having the same attribute value are forwarded to the same node. Local
joins are then computed and their union is the output relation. Their major
disadvantage is to be vulnerable to both attribute value skew (imbalance of the
output of the redistribution phase) and join product skew (imbalance of the
output of local joins) [13,11]. The former affects immediate performance and the
latter affects the efficiency of output or pipelined multi-join operations.

To address the problem of data skew, we introduced fa join algorithm in
[3,6], to avoid the problem of AVS and JPS. However, its performance is sub-
optimal when computing the join of highly skewed relations because of unneces-
sary redistribution and communication costs. We introduce here a new parallel
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algorithm called Osfa join (Optimal symmetric frequency adaptive join algo-
rithm) to perform such joins. Osfa join improves on the sfa join algorithm
introduced in [4] by its optimal complexity by using a new approach for semi-
joins computation introduced recently in [5]. Its predictably low join-product and
attribute-value skew make it suitable for repeated use in multi-join operations.
Its performance is analyzed using the scalable BSP cost model which predicts a
linear speedup and an optimal complexity even for highly skewed data.

3 Data Redistribution: An Optimal Approach

In this section, we present an improvement of the algorithm sfa join [4] called
Osfa join (Optimal symmetric frequency adaptive join algorithm) with an op-
timal complexity. The major difference between sfa join and Osfa join lies
in the manner of computing semi-joins. We point out that, for semi-joins com-
putation, sfa join algorithm broadcasts the histograms Histi(R �� S)i=1..,p to
all processors. Thus, each processor has a local access to the whole histogram
Hist(R �� S) to compute local semi-joins. This is not, in general, necessary. In the
Osfa join algorithm, the semi-joins computation is carried out in an optimal
way without this stage of broadcast using the techniques presented in [5].

We first assume that relation R (resp. S) is partitioned among processors by
horizontal fragmentation and the fragments Ri for i = 1, .., p are almost of the
same size on every processor, i.e. |Ri| � |R|

p
where p is the number of processors. In

the rest of this paper we use the following notation for each relation T ∈ {R, S} :
– Ti denotes the fragment of relation T placed on processor i,
– Hist(T ) denotes the histogram1 of relation T with respect to the join at-

tribute value, i.e. a list of pairs (v, nv) where nv �= 0 is the number of tuples
of relation T having the value v for the join attribute,

– Hist(Ti) denotes the histogram of fragment Ti,
– Histi(T ) is processor i’s fragment of the histogram of T ,
– Hist(T )(v) is the frequency nv of value v in relation T ,
– ‖T‖ denotes the number of tuples of relation T , and
– |T | denotes the size (expressed in bytes or number of pages) of relation T .

In the following, we will describe Osfa join redistribution algorithm while giving
an upper bound on the BSP execution time of each phase. The O(. . .) notation
only hides small constant factors: they depend on the implementation program
but neither on data nor on the BSP machine parameters.

Our redistribution algorithm is the basis for efficient and scalable join pro-
cessing. It proceeds in 4 phases:

Phase 1: Creating local histograms
Local histograms Hist(Ri)i=1,..,p (resp. Hist(Si)i=1,..,p) of blocks Ri (resp. Si)

are created in parallel by a scan of the fragment Ri (resp. Si) on processor i

1 Histograms are implemented as balanced trees (B-tree): a data structure that main-
tains an ordered set of data to allow efficient search and insert operations.
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in time ci/o ∗ maxi=1,..,p |Ri| (resp. ci/o ∗ maxi=1,..,p |Si|) where ci/o is the cost to
read/write a page of data from disk. In principle, this phase costs :

T imephase1 = O
(
ci/o ∗ max

i=1,..,p
(|Ri| + |Si|)

)
,

but in practice, the extra cost for this operation is negligible because the his-
tograms can be computed on the fly while creating local hash tables.

Phase 2: Local Semi-joins computation
In order to minimize the redistribution cost and thus the communication time

between processors, we then compute the following local semi-joins : R̃i = Ri � S
(resp. S̃i = Si � R) using proposition 2 presented in [5] in time :

T imephase2 = O
(

min
(
g ∗ |Hist(R)|+ ‖Hist(R)‖, g ∗ |R|

p
+

‖R‖
p

)
+ max

i=1,..,p
‖Ri‖

+min
(
g ∗ |Hist(S)| + ‖Hist(S)‖, g ∗ |S|

p
+

‖S‖
p

)
+ max

i=1,..,p
‖Si‖ + l

)
,

where g is BSP communication parameter and l the cost of a barrier of syn-
chronisation [14].

We recall (cf. to proposition 1 in [5]) that, in the above equation, for a relation
T ∈ {R, S} the term min

(
g∗|Hist(T )|+‖Hist(T )‖, g∗ |T |

p
+ ‖T‖

p

)
is time to compute

Histi=1,...,p(T ) starting from the local histograms Hist(Ti)i=1,..,p and during semi-
joins computation, we store an extra information called index(d) ∈ {1, 2, 3} for
each value d ∈ Hist(R �� S) 2. This information will allow us to decide if, for a
given value d, the frequencies of tuples of relations R and S having the value
d are greater (resp. lesser) than a threshold frequency f0. It also permits us to
choose dynamically the probe and the build relation for each value d of the join
attribute. This choice reduces the global redistribution cost to a minimum.
In the rest of this paper, we use the same threshold frequency as in fa join
algorithm [3,6,4], i.e. f0 = p ∗ log(p). For a given value d ∈ Hist(R �� S),

– the value index(d) = 3, means that the frequency of tuples of relations R and
S, associated to value d, are less than the threshold frequency. Hist(R)(d) <

f0 and Hist(S)(d) < f0,
– the value index(d) = 2, means that Hist(S)(d) ≥ f0 and Hist(S)(d) >

Hist(R)(d),
– the value index(d) = 1, means that Hist(R)(d) ≥ f0 and Hist(R)(d) ≥

Hist(S)(d).

Note that, unlike hash-based algorithms where both relation R and S are redis-
tributed, we will only redistribute R� S and S � R to perform the join operation
R �� S. This will reduce communication costs to a minimum.
At the end of this phase, on each processor i, the semi-join R̃i = Ri � S (resp.
S̃i = Si � R) is divided into three sub-relations in the following way :

R̃i = R̃′
i ∪ R̃′′

i ∪ R̃′′′
i and S̃i = S̃′

i ∪ S̃′′
i ∪ S̃′′′

i where :

2 The size of Hist(R �� S) is generally very small compared to |Hist(R)| and |Hist(S)|
because Hist(R �� S) contains only values that appears in both relations R and S.

An Optimal Skew- nsensitive Join and Multi-join Algorithm for DAI
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– All the tuples of relation R̃′
i (resp. S̃′

i) are associated to values d such that
index(d) = 1 (resp. index(d) = 2),

– All the tuples of relation R̃′′
i (resp. S̃′′

i ) are associated to values d such that
index(d) = 2 (resp. index(d) = 1),

– All the tuples of relations R̃′′′
i and S̃′′′

i are associated to values d such that
index(d) = 3, i.e. the tuples associated to values which occur with frequencies
less than a threshold frequency f0 in both relations R and S.

Tuples of relations R̃′
i and S̃′

i are associated to high frequencies for the join
attribute. These tuples have an important effect on attribute value and join
product skews. They will be redistributed using an appropriate redistribution
algorithm to efficiently avoid both AVS and JPS. However the tuples of relations
R̃′′′

i and S̃′′′
i (are associated to very low frequencies for the join attribute) have

no effect neither on AVS nor JPS. These tuples will be redistributed using a
hash function.
Phase 3: Creation of communication templates

The attribute values which could lead to attribute value skew (those having
high frequencies) are also those which may cause join product skew in standard
algorithms. To avoid the slowdown usually caused by attribute value skew and
the imbalance of the size of local joins processed by the standard algorithms, an
appropriate treatment for high attribute frequencies is needed.
3.a To this end, we partition the histogram Hist(R �� S) into two sub-
histograms : Hist(1,2)(R �� S) and Hist(3)(R �� S) in the following manner :

– the values d ∈ Hist(1,2)(R �� S) are associated to high frequencies of the join
attribute (i.e. index(d) = 1 or index(d) = 2),

– the values d ∈ Hist(3)(R �� S) are associated to low frequencies of the join
attribute (i.e. index(d) = 3),

this partition step is performed in parallel, on each processor i, by a local traver-
sal of the histogram Histi(R �� S) in time :

T ime3.a = O(maxi=1,..,p ‖Histi(R �� S)‖).

3.b Communication templates for high frequencies
We first create a communication template : the list of messages which consti-

tute the relations’ redistribution. This step is performed jointly by all processors,
each one not necessarily computing the list of its own messages, so as
to balance the overall process.

Processor i computes a set of necessary messages relating to the values d
it owns in Hist

(1,2)
i (R �� S). The communication template is derived from the

following mapping, its intended result. For relation T ∈ {R̃′, S̃′}, tuples of T are
mapped to multiple nodes as follows :
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if
(
Hist(T )(d) mod(p) = 0

)
then

each processor j will hold : blockj(d) = Hist(T )(d)
p

of tuples of value d.

else
begin

- Pick a random value j0 between 0 and (p − 1)
- if

(
processor index j is between j0 and j0 + (Hist(T )(d) mod(p))

)
then

the processor of index j will hold a block of size : blockj(d) = �Hist(T )(d)
p

� + 1

else

processor of index j will hold a block of size : blockj(d) = �Hist(T )(d)
p

�.
end.

where �x� is the largest integral value not greater than x and blockj(d) be the
number of tuples of value d that processor j should own after redistribution of
the fragments Ti of relation T .
The absolute value of Restj(d) = Histj(T )(d) − blockj(d) determines the number
of tuples of value d that processor j must send (if Restj(d) > 0) or receive (if
Restj(d) < 0).

For d ∈ Hist
(1,2)
i (R �� S), processor i owns a description of the layout of

tuples of value d over the network. It may therefore determine the number of
tuples of value d which every processor must send/receive. This information
constitutes the communication template. Only those j for which Restj(d) > 0

(resp. < 0) send (resp. receive) tuples of value d. This step is thus completed in
time : T ime3.b = O(‖Hist(1,2)(R �� S)‖).
The tuples associated to low frequencies (i.e. tuples having d ∈ Hist

(3)
i (R ��

S)) have no effect neither on the AVS nor the JPS. These tuples are simply
mapped to processors using a hash function and thus no communication template
computation is needed.

The creation of communication templates has therefore taken the sum of the
above two steps :

T imephase3 = T ime3.a + T ime3.b = O
(

max
i=1,..,p

‖Histi(R �� S)‖ + ‖Hist(1,2)(R �� S)‖).

Phase 4: Data redistribution
4.a Redistribution of tuples having d ∈ Hist

(1,2)
i (R �� S):

Every processor i holds, for every one of its local d ∈ Hist
(1,2)
i (R �� S), the non-

zero communication volumes it prescribes as a part of communication template :
Restj(d) 	= 0 for j = 1, .., p. This information will take the form of sending orders
sent to their target in a first superstep, followed then by the actual redistribution
superstep where processors obey all orders they have received.

Each processor i first splits the processors indices j in two groups : those for
which Restj(d) > 0 and those for which Restj(d) < 0. This is done by a sequential
traversal of the Rest..(d) array.

Let α (resp. β) be the number of j’s where Restj(d) is positive (resp. negative)
and Proc(k)k=1,..α+β the array of processor indices for which Restj(d) 	= 0 in the
manner that : {RestProc(j)(d) > 0 for j = 1, .., α

RestProc(j)(d) < 0 for j = (α + 1), .., β

An Optimal Skew- nsensitive Join and Multi-join Algorithm for DAI
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A sequential traversal of Proc(k)k=1,..α+β determines the number of tuples that
each processor j will send. The sending orders concerning attribute value d are
computed using the following procedure :

i := 1; j := α + 1;
while (i ≤ α) do

begin
* n tuples=min(RestProc(i)(d),−RestProc(j)(d));
* order to send(Proc(i),Proc(j),d,n tuples);
* RestProc(i)(d) := RestProc(i)(d)− n tuples;
* RestProc(j)(d) := RestProc(j)(d)+ n tuples;
* if RestProc(i)(d) = 0 then i := i + 1; endif
* if RestProc(j)(d) = 0 then j := j + 1; endif

end.

of complexity O(‖Hist(1,2)(R �� S)‖) because for a given d, no more than (p − 1)
processors can send data and each processor i is in charge of redistribution of
tuples having d ∈ Hist

(1,2)
i (R �� S).

For each processor i and d ∈ Hist
(1,2)
i (R �� S), all the orders order to send(j, i, ...)

are sent to processor j when j �= i in time O
(
g ∗ |Hist(1,2)(R �� S)| + l

)
.

In all, this step costs : T ime4.a = O
(
g ∗ |Hist(1,2)(R �� S)|+‖Hist(1,2)(R �� S)‖+ l

)
.

4.b Redistribution of tuples with values d ∈ Hist
(3)
i (R �� S) :

Tuples of relations R̃′′′
i and S̃′′′

i (i.e. tuples having d ∈ Hist
(3)
i (R �� S)) are asso-

ciated to low frequencies, they have no effect neither on the AVS nor the JPS.
These relations are redistributed using a hash function.
At the end of steps 4.a and 4.b, each processor i, has local knowledge of how
the tuples of semi joins R̃i and S̃i will be redistributed. Redistribution is then
performed, in time : T ime4.b = O(g ∗ (|R̃i| + |S̃i|) + l).

Phase 4, has therefore taken the sum of the above two costs :

T imephase4 = O
(
g ∗ max

i=1,..,p
(|R̃i| + |S̃i| + |Hist(1,2)(R �� S)|) + ‖Hist(1,2)(R �� S)‖ + l

)
,

and the complete redistribution algorithm costs :

T imeredist= O
(
ci/o ∗ max

i=1..p
(|Ri| + |Si|) + min (g ∗ |Hist(R)| + ‖Hist(R)‖, g ∗ |R|

p
+

‖R‖
p

)

+ max
i=1..p

‖Ri‖ + max
i=1..p

‖Si‖ + min (g ∗ |Hist(S)| + ‖Hist(S)‖, g ∗ |S|
p

+
‖S‖
p

)

+g ∗ (|R̃i| + |S̃i| + |Hist(1,2)(R �� S)|) + ‖Hist(1,2)(R �� S)‖ + l
)
. (1)

We mention that, we only redistribute the semi-joins R̃i and S̃i. Note that |R̃i|
(resp. |S̃i|) is generally very small compared to |Ri| (resp. |Si|) and |Hist(R �� S)|
is generally very small compared to |Hist(R)| and |Hist(S)|. Thus we reduce the
communication cost to a minimum.
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4 Osfa join : An Optimal Skew-insensitive Join Algorithm

To perform the join of two relations R and S, we first redistribute relations R
and S using the above redistribution algorithm at the cost of T imeredist (see
equation 1 in previous section).

Once the redistribution phase is completed, the semi-joins R̃i (resp. S̃i) are
partitioned into three disjoint relations as follow : R̃i = R̃′

i ∪ R̃′′
i ∪ R̃′′′

i (resp.
S̃i = S̃′

i ∪ S̃′′
i ∪ S̃′′′

i ) as described in phase 2.
Taking advantage of the identities :

R �� S = R̃ �� S̃ = (R̃′ ∪ R̃′′ ∪ R̃′′′) �� (S̃′ ∪ S̃′′ ∪ S̃′′′)

= (R̃′
�� S̃′′) ∪ (R̃′′

�� S̃′) ∪ (R̃′′′
�� S̃′′′)

= (R̃′
�� S̃′′) ∪ (R̃′′

�� S̃′) ∪ (R̃′′′
�� S̃′′′)

=
( ⋃

i

R̃′
i �� S̃′′) ∪ ( ⋃

i

R̃′′
�� S̃′

i

) ∪ ( ⋃

i

R̃′′′
i �� S̃′′′

i

)
. (2)

Frequencies of tuples of relations R̃′
i (resp. S̃′

i) are by definition greater than the
corresponding (matching) tuples in relations S̃′′

i (resp. R̃′′
i ). Fragments R̃′

i (resp.
S̃′

i) will be thus chosen as build relations and S̃′′
i (resp. R̃′′

i ) as probe relations
to be duplicated on each processor. This improves over fa join where all the
semi-join S � R is duplicated. It reduces communications costs significantly in
asymmetric cases where both relations contain frequent and infrequent values.

To perform the join R �� S, it is sufficient to compute the three following
local joins R̃′

i �� S̃′′, R̃′′
�� S̃′

i and R̃′′′
i �� S̃′′′

i (cf. equation 2). To this end, we first
broadcast the fragments R̃′′

i (resp. S̃′′
i ) to all processors in time :

T imestep.a = O
(
g ∗ (|R̃′′| + |S̃′′|) + l

)
.

Local joins R̃′
i �� S̃′′, R̃′′

�� S̃′
i and R̃′′′

i �� S̃′′′
i could be done in time :

T imestep.b = ci/o ∗ O
(

max
i:1,..,p

(|R̃′
i| + |S̃′′| + |R̃′

i �� S̃′′|) + max
i:1,..,p

(|R̃′′| + |S̃′
i| + |R̃′′

�� S̃′
i|)

+ max
i:1,..,p

(|R̃′′′
i | + |S̃′′′

i | + |R̃′′′
i �� S̃′′′

i |))

= ci/o ∗ O
(

max
i:1,..,p

(|R̃′
i �� S̃′′| + |R̃′

i �� S̃′′| + |R̃′′′
i �� S̃′′′

i |)). (3)

The equation 3 holds due to the fact that the join size is at least equal to the
maximum of the semi-joins sizes.
The cost of the local join computation is thus the sum of the two costs above :

T imelocal−join = T imestep.a + T imestep.b

= O
(
g ∗ (|R̃′′| + |S̃′′|) + ci/o ∗ max

i:1,..,p
(|R̃′

i �� S̃′′| + |R̃′′
�� S̃′

i| + |R̃′′′
i �� S̃′′′

i |) + l
)
.

The global cost of the join of relations R and S using Osfa join algorithm is the
sum of redistribution cost with local join computation cost. It is of the order :

T imeOsfa join = O
(
ci/o ∗ max

i=1,..,p
(|Ri| + |Si|) + max

i=1,..,p
‖Ri‖ + max

i=1,..,p
‖Si‖ + l

An Optimal Skew- nsensitive Join and Multi-join Algorithm for DAI
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+ min
(
g ∗ |Hist(R)|+ ‖Hist(R)‖, g ∗ |R|

p
+

‖R‖
p

)

+ min
(
g ∗ |Hist(S)| + ‖Hist(S)‖, g ∗ |S|

p
+

‖S‖
p

)

+ g ∗ (|R̃i| + |S̃i| + |Hist(1,2)(R �� S)|) + ‖Hist(1,2)(R �� S)‖
+ g ∗ (|R̃′′| + |S̃′′|) + ci/o ∗ max

i:1,..,p
(|R̃′

i �� S̃′′| + |R̃′′
�� S̃′

i| + |R̃′′′
i �� S̃′′′

i |)
)
.

The join of relations R and S using the Osfa join algorithm, avoid JPS because
the values which could lead to attribute value skew (those having high frequen-
cies) are those which often cause the join product skew. This values are mapped
to multiple nodes so that local joins have almost the same sizes. It avoids thus,
the slowdown usually caused by attribute value skew and the imbalance of the
size of local joins processed by the standard algorithms. We recall that, the re-
distribution cost is minimal because redistribution concerns only tuples which
are effectively present in the join result.
Note that, the size of R̃′′ (resp. S̃′′) est generally very small compared to the size
of the join R̃′′

�� S̃′
i (resp. R̃′

i �� S̃′′) and the size of local join on each processor i,
|R̃′

i �� S̃′′| + |R̃′′
�� S̃′

i| + |R̃′′′
i �� S̃′′′

i |, have almost the same size � |R��S|
p

.

Remark : Sequential join processing of two relations R and S requires at least
the following lower bound : boundinf1 = Ω

(
ci/o ∗ (|R| + |S| + |R �� S|)) .

Parallel processing with p processors requires therefore : boundinfp = 1
p
∗boundinf1 .

and Osfa join algorithm has optimal asymptotic complexity when :

|Hist(1,2)(R �� S)| ≤ ci/o ∗ max(
|R|
p

,
|S|
p

,
|R �� S|

p
) (4)

this is due to the fact that, the local joins results have almost the same size and
all the terms in T imeOsfa−join are bounded by those of boundinfp . This inequality
holds, if we choose a threshold frequency f0 greater than p (which is the case for
our threshold frequency f0 = p ∗ log(p)).

5 Conclusion

In this paper, we have introduced the first parallel join algorithm with optimal
complexity based on an efficient semi-join algorithm introduced in [5] and on
a “symmetric” sub-set replication technique allowing to reduce the communica-
tion costs to the minimum while guaranteeing near perfect balancing properties.
The algorithm Osfa join is proved to have an optimal complexity even in the
presence of highly skewed data. Its predictably low join product skew makes it
suitable for multi-join operations.

The performance of this algorithm was analyzed using the BSP cost model
which predicts a linear speedup. The O(. . .) notation only hides small constant
factors : they depend only on the implementation but neither on data nor on the
BSP machine. Our experience with the join operation [4,6,3,2] is evidence that
the above theoretical analysis is accurate in practice.
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