
Evolving XML Schemas and Documents Using

UML Class Diagrams�

Eladio Domı́nguez1, Jorge Lloret1, Ángel L. Rubio2, and Maŕıa A. Zapata1

1 Dpto. de Informática e Ingenieŕıa de Sistemas,
Facultad de Ciencias. Edificio de Matemáticas,

Universidad de Zaragoza. 50009 Zaragoza. Spain
{noesis, jlloret, mazapata}@unizar.es

2 Dpto. de Matemáticas y Computación. Edificio Vives,
Universidad de La Rioja. 26004 Logroño. Spain

arubio@dmc.unirioja.es

Abstract. The widespread use of XML brings new challenges for its
integration into general software development processes. In particular, it
is necessary to keep the consistency between different software artifacts
and XML documents when evolution tasks are carried out. In this paper
we present an approach to evolve XML schemas and documents concep-
tually modeled by means of UML class diagrams. Evolution primitives
are issued on the UML class diagram and are automatically propagated
down to the XML schema. The XML documents are also automatically
modified to conform to the new XML schema. In this way, the consistency
between the different artifacts involved is kept. This goal is achieved by
using an intermediate component which reflects how the UML diagrams
are translated into the XML schemas.

1 Introduction

XML [17] is increasingly used as a standard format for data representation and
exchange across the Internet. XML Schema [16] is also the preferred means of
describing structured XML data. These widespread uses bring about new chal-
lenges for software researchers and practitioners. On the one hand, there is a need
for integrating XML schemas into general software development processes. The
production of XML schemas out of UML models [1,8,14] or the binding of XML
schemas to a representation in Java code [7] are examples of the relationships
between XML and development processes. On the other hand, XML documents
(and, in particular, XML schemas) are not immutable and must change over time
for various varied reasons, as for example widening the scope of the application
or changes in the requirements [15].

In these circumstances, it seems highly valuable to have a framework where
XML evolution tasks can be performed while ensuring that consistency between
� This work has been partially supported by DGES, project TIC2002-01626, by the

Government of La Rioja, project ACPI2002/06, by the Government of Aragón and
by the European Social Fund.

K.V. Andersen, J. Debenham, and R. Wagner (Eds.): DEXA 2005, LNCS 3588, pp. 343–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

344 E. Domı́nguez et al.

the different artifacts involved (documents, models, code) is kept. The general
objective of our research is to obtain such a complete framework. As a step in this
direction, in this paper we present our approach in order to evolve UML–modeled
XML data (XML schemas and documents) by means of applying evolution op-
erations on the UML class diagram.

This work relies on our own scaffolding architecture, presented in [4,5], that
contributes to the achievement of a satisfactory solution to analogous problems
in the database evolution setting. One of the main characteristics of this archi-
tecture is an explicit translation component that allows properties of traceability
and consistency to be fulfilled when evolution tasks are carried out. In the present
paper we use this architecture as a framework to perform XML evolution activ-
ities and, in particular, we explain with a certain degree of detail the algorithms
associated to that translation component.

The remainder of the paper is as follows. In section 2, we present an overview
of our architecture for evolution. Section 3 is devoted to the algorithm for trans-
lating a UML class diagram into an XML schema while section 4 deals with the
algorithm for propagating changes from the UML class diagram to the XML
schema and XML documents. In section 5 we review related work and finish
with the conclusions and future work.

2 Evolution Architecture Overview

As it is said in the introduction, the scaffolding of our approach is constituted by
an architecture we presented in [4,5] applied within a database evolution setting.
Although the architecture has been proven within this setting, it was designed
with the aim of being independent of any particular modeling technique. This
fact has allowed us to apply the same architectural pattern to the XML context.

The architecture is shaped along two dimensions. On the one hand, the dif-
ferent artifacts of the architecture are divided into three abstraction levels which
fit with the metamodel, model and data layers of the MOF metadata architec-
ture [11]. On the other hand, the architecture is also layered on the basis of
several structures that model different development phases. More specifically,
the architecture includes a conceptual component, a translation component, a
logical component and an extensional component. We will describe briefly the
meaning and purpose of each component (see [4,5] for details).

The conceptual component captures machine–independent knowledge of the
real world. For instance, in the case of database evolution, this component would
deal with entity–relationship schemas. In the XML evolution approach proposed
in the present paper, the conceptual component deals with UML class diagrams
modeling the domain. The logical component captures tool–independent knowl-
edge describing the data structures in an abstract way. In database evolution, this
component would deal with schemas from the relational model, as for instance
by means of standard SQL. In the case of XML evolution, the logical mod-
els univocally represent the XML schemas. The extensional component captures
tool dependent knowledge using the implementation language. In databases, it

Evolving XML Schemas and Documents Using UML Class Diagrams 345

would deal with the specific database in question, populated with data, and
expressed in the SQL of the DBMS of choice. Within the XML context, the
textual structure of data is represented using XML Schema and the data are
specified in textual XML documents conforming to an XML schema. One of the
main contributions of our architecture is the translation component, that not
only captures the existence of a transformation from elements of the conceptual
component to other of the logical one, but also stores explicit information about
the way in which concrete conceptual elements are translated into logical ones.

More specifically, the way of working of our architecture within the XML
context is as follows: given a UML class diagram representing a data structure, it
is mapped into a XML schema applying a translation algorithm. XML documents
conforming to the resultant XML schema can be created. For various reasons, the
data structure may need to be changed. In this case, the data designer must issue
the appropriate evolution transformations to the conceptual UML diagram. The
existence of the translation component allows these changes to be automatically
propagated (by means of the propagation algorithm) to the other components.
In this way the extensional XML schema is changed, and consequently the XML
documents are also changed so as to conform them to the new XML schema.

3 Translation Algorithm

There are several papers [8,14] where the generation of XML schemas from UML
class diagrams is proposed. Paper [8] proposes a generation based on transfor-
mation rules and in Table 1 we offer a summary of this approach.

Table 1. Rules for generating XML schemas from UML schemas

UML block XML item(s)

class element, complex type, with ID attribute, and key
attribute subelement of the corresponding class complex type
association reference element, with IDREF attribute referencing

the associated class and keyref for type safety (key/keyref references)
generalization complex type of the subclass is defined as an extension of the

complex type of the superclass

Our goal is not only the generation of the XML schema but also the automatic
management of its evolution. For this purpose, we have defined an intermediate
component which allows us to maintain the traceability between the UML and
XML schemas.

In order to deal with this intermediate component, we have enriched the
notion of transformation by developing the notion of translation rule. The trans-
lation rules are used inside the translation algorithm. When this algorithm is
applied to the UML class diagram it produces not only the XML schema but
also a set of elementary translations stored in the intermediate component. An
elementary translation is the smallest piece of information reflecting the corre-
spondence between the UML elements and the XML items.

346 E. Domı́nguez et al.

elementary_translation
elem_transl_id conceptual_element

1

logical_item
employee.name name element of employeeType type

2 employee.department department element of employeeType type

3 employee idEmployee attribute of employeeType type
4 - key of employee element of complexType of root element

5 employee employee element of complexType of root element
6 employee employeeType complexType

7 enterprise enterprise root element

ETT20
ETT20

type

ETT25
ETT60
ETT01
ETT05
ETT00

Fig. 1. Elementary translations after applying the translation to our running example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="enterprise">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="employee" type="employeeType"

minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:key name="keyEmployee">
 <xsd:selector xpath="employee"/>
 <xsd:field xpath="@idEmployee"/>
 </xsd:key>
 </xsd:element>

 <xsd:complexType name="employeeType">
 <xsd:sequence>
 <xsd:element name="name"

minOccurs="1" maxOccurs="1"/>
 <xsd:element name="department"

minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="idEmployee"
 type="xsd:ID" use="required"/>
 </xsd:complexType>
</xsd:schema>

Fig. 2. Initial extensional XML schema for our running example

Translation rule. We have defined our translation rules taking the transfor-
mation rules proposed in [8] as a starting point. Each translation rule basically
includes procedures for creating the XML items of the XML schema enriched
with procedures for creating the elementary translations. For example, a trans-
lation rule for classes defines, among other things, the name of the XML element
into which each class is translated as well as the elementary translations to be
added to the translation component.

Translation algorithm. This algorithm takes as input conceptual building
block instances of the UML schema and creates 1) the elementary translations
2) the logical elements of the logical XML schema and 3) the extensional XML
schema. More details about the translation algorithm can be found in [4].

As we can see, in our setting an XML schema admits two different views. In
the first, the XML schema is an instance of the metamodel for XML and each
item of the XML schema is an instance of a metaclass of the XML metamodel.
In the second view, it is a sequence of characters encoding tree–structured data
following rules specified by the XML standard. From now on, when we refer to
the first view, we use the term logical XML schema while for the second view
we use the term extensional XML schema.

Example. We consider a UML schema of a company where there is a class
employee with attributes name and department. When we apply the translation
algorithm to this UML schema, we obtain the elementary translations shown in
Figure 1, the corresponding items of the logical XML schema (not shown in this
paper) and the initial extensional XML schema shown in Figure 2. For example,
inside this algorithm, when the translation rule for classes is applied to the class

Evolving XML Schemas and Documents Using UML Class Diagrams 347

employee, some of the obtained results are: the name of the XML element for
the class employee is also employee (as can be seen in line 5 in Figure 2) and
the elementary translation numbered 5 in Figure 1 is added to the translation
component. This elementary translation reflects the fact that the class employee
is translated into the element employee of the root element.

4 Propagation Algorithm

The propagation algorithm propagates changes made in the UML schema to the
XML schema and XML documents. It is split into propagation subalgorithms
for the intermediate, for the logical and for the extensional levels. In this paper,
we briefly describe the first two subalgorithms while concentrating on the latter
because this subalgorithm is responsible for the evolution of the extensional XML
schema and documents.

Propagation subalgorithm for the intermediate and logical levels. In
order to change automatically the XML schema and the XML documents, the
data designer issues appropriate evolution primitives to the UML diagram. These
primitives are basic operations such as addition or deletion of modeling elements
(class, attribute, association), transformation of an attribute into a class and so
on.

For example, to transform the attribute employee.department into a
class, the primitive attribToClass(‘employee.department’) is executed. This
transformation (1) adds to the UML class diagram a department class described
by the attribute department, (2) adds a binary association employee has
department and, (3) deletes the attribute employee.department.

The conceptual changes are the input for the propagation subalgorithm for
the intermediate level, which updates the elementary translations of the inter-
mediate component to reflect these changes. After applying this subalgorithm in
our running example, the resulting intermediate component is shown in Figure 3
where the elementary translation number 2 has been deleted and the elementary
translations from 8 to 18 have been added.

The information about the changes performed in the intermediate compo-
nent is the input for the propagation subalgorithm for the logical level, which
changes the logical XML schema by triggering a set of procedures. Let us see a
general description of the procedures which are executed for the attribToClass
primitive:
(a) addType. Creates a new type in the logical XML schema.
(b) addRootChildElement. Creates a new child element of the root element.
(c) addAttributeForType. Adds a new attribute to a type.
(d) addKey. Adds a key to an element of the root type.
(e) emptyElement. A nested element is transformed into a non–nested element.
(f) addKeyref. Creates a new keyref.

Propagation subalgorithm for the extensional level. This subalgorithm
(see sketch in Table 2) takes as input the changes produced in the logical XML

348 E. Domı́nguez et al.

elementary_translation

elem_transl_id conceptual_element

1

logical_item

employee.name name element of employeeType type
2 employee.department department element of employeeType type

3 employee idEmployee attribute of employeeType type
4 - key of employee element of complexType of root element

5 employee employee element of complexType of root element
6 employee employeeType complexType

7 enterprise enterprise root element

ETT20
ETT20

type

ETT25
ETT60

ETT01
ETT05
ETT00

8 department.department department element of departmentType type
9 department idDepartment attribute of departmentType type
10 - key of department element of complexType of root element
11 department department element of complexType of root element

13
department departmentType complexType

ETT20
ETT25
ETT60
ETT01
ETT05

14

binaryAssociation
employee has department

department element of employeeType type

department idDepartment attribute of department element of employeeType type

15

16

multiplicity constraint 0..1 minOccurs and maxOcurrs in the department element
of employeeType type

17
multiplicity constraint 0..*

ETT02

ETT21

ETT75

ETT75

18
exists constraint exist1
exists constraint exist2

ETT65
ETT65

-
keyref from employee to department

12

-

added
elementary
translations

Fig. 3. Elementary translations after applying the attribToClass primitive to our run-

ning example

Table 2. Sketch of the propagation subalgorithm for the extensional level

INPUT: Set of operations on the logical XML schema

OUTPUT: Set of XSLT stylesheets to be applied to the old extensional XML

schema and to the XML documents

For each operation o of the INPUT

If the operation o is to add on the logical metaclass metaclassi and

the conceptual evolution primitive is concept primiti1 then

XML schi11;
. . .
XML schi1r1 ;
XML doci1r1+1;
. . .
XML doci1n1 ;

endif

If the operation o is to add on the logical metaclass...

endfor

schema and updates the extensional XML schema as well as the XML documents
in order to reflect these changes.

In order to do such updates, each change of the logical XML schema triggers
one or more XSLT stylesheets which, on the one hand, change the extensional
XML schema and, on the other hand, change the XML documents to conform
to the new extensional XML schema. The XML stylesheets are executed by pro-
cedures of which we distinguish two kinds: the XML sch* procedures execute
stylesheets that act on the extensional XML schema and the XML doc* proce-
dures execute stylesheets that act on the XML documents. Every procedure has
been designed to maintain the consistency between the XML documents and the
XML schema.

In our running example, the changes in the logical XML schema produced by
the procedures (a) to (f) mentioned above, as applied to our running example,
are the input for this subalgorithm. For these changes, the algorithm executes

Evolving XML Schemas and Documents Using UML Class Diagrams 349

(b) addRootChildElement('department','departmentType')

(2)<xsl:variable name="subelem"
 select="enterprise/employee/
 department[not(.=preceding::department)]"/>
 <xsl:template match="enterprise">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="node()"/>
 <xsl:copy-of select="$subelem"/>
 </xsl:copy>
 </xsl:template>

Logical procedure
Procedure which changes
the extensional XML schema

(1)<xsl:template match="xsd:schema/
xsd:element/xsd:complexType/xsd:sequence">

 <xsd:element name="department"
 type="departmentType" minOccurs="0"

maxOccurs="unbounded" />
 <xsl:apply-templates select="node()" />
 </xsl:template>

Stylesheet applied
to the extensional
XML schema
by the above procedure

Procedures which change
the XML documents

 (3)<xsl:template match="enterprise/department">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>

 <department>
 <xsl:apply-templates select="node()"/>

 </department>
 </xsl:copy>
 </xsl:template>

XML_sch_addRootChildElement('department','departmentType')

Stylesheets applied
to the XML documents
by the above procedures

XML_doc_addRootChilds
 ('enterprise/employee/department','enterprise')

XML_doc_addParentElement
 ('enterprise/department','department')

Fig. 4. XML stylesheets applied to the extensional XML schema and to the XML

documents after adding a new element to the root element in our running example

the corresponding XML sch* or XML doc* procedures, which apply their XML
stylesheets. In total, five schema stylesheets and four document stylesheets are
applied. An example of the applied stylesheets for the logical procedure (b) is
shown in Figure 4, where the identity template as well as the headers have been
omitted. Let us explain the meaning of each procedure triggered by the changes
made by the (b) procedure.

XML sch addRootChildElement(element:string, type:string)

Precondition: The type exists in the XML schema.
Semantics: Modifies the extensional XML schema in order to add to it a

new element in the sequence of the complex type of the root element. The type
of the new element is type.

Effect in the running example: Generates and executes on the extensional
XML schema the stylesheet (1) of Figure 4. As a result, the element department
is added to the extensional XML schema (see sixth line in Figure 5).

XML doc addRootChilds(d:xpath expression,rootelement:string)

Precondition: d is an xpath expression of the form
rootelement\element1\...\elementn and elementn is a terminal element.

Semantics: Copies each node of the node set defined by the xpath expression
d as a child of the root node. Moreover, there are no two nodes among the just
copied nodes with the same value.

Effect in the running example: Generates and executes on the XML
documents the stylesheet (2) of Figure 4.

XML doc addParentElement(d:xpath expression,element name:string)

Precondition: d is an xpath expression of the form
rootelement\element1\...\elementn

Semantics: Each node of the node set defined by the xpath expression d
is included as a content of a new element node with the name element name.

350 E. Domı́nguez et al.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="enterprise">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="employee" type="employeeType"

minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="department" type="departmentType"

minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:key name="keyEmployee">
 <xsd:selector xpath="employee"/>
 <xsd:field xpath="@idEmployee"/>
 </xsd:key>
 <xsd:key name="keyDepartment">
 <xsd:selector xpath="department"/>
 <xsd:field xpath="@idDepartment"/>
 </xsd:key>
 <xsd:keyref name="ref1" refer="keyDepartment">
 <xsd:selector xpath="./employee/department"/>
 <xsd:field xpath="@idDepartment"/>
 </xsd:keyref>
 </xsd:element>

 <xsd:complexType name="employeeType">
 <xsd:sequence>
 <xsd:element name="name" minOccurs="1"

maxOccurs="1"/>
 <xsd:element name="department"

minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:attribute name="idDepartment"
 type="xsd:IDREF" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="idEmployee"
 type="xsd:ID" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="departmentType">
 <xsd:sequence>
 <xsd:element name="department"

minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="idDepartment"
 type="xsd:ID" use="required"/>
 </xsd:complexType>
</xsd:schema>

Fig. 5. Final extensional XML schema (in bold, modified parts from the initial exten-

sional XML schema)

There is a new element for each node of the node set. The xpath expression for
the new nodes will be rootelement\element1\...\element name\elementn

Effect in the running example: Generates and executes on the XML
documents the stylesheet (3) of Figure 4.

In Figure 5 we can see the final extensional XML schema that is obtained after
applying the XML schema stylesheets generated by the procedures triggered by
the (a) to (f) procedures.

We have implemented our approach with Oracle 10g Release 1 and PL/SQL.
In particular, we have used the DBMS XMLSCHEMA package and its CopyE-
volve() procedure. This procedure allows us to evolve XML schemas registered
in the Oracle XML DB database in such a way that existing XML instance
documents continue to be valid.

5 Related Work

There exist in the literature various proposals for managing the evolution of XML
documents, [15] being the most sound proposal since it provides a minimal and
complete taxonomy of basic changes which preserve consistency between data
and schema. The problem with these proposals is that the data designer has to
perform the evolution changes working directly with the XML documents, so
that (s)he is concerned with some low-level implementation issues [14].

Like other authors [1,3,8,14], we advocate using a conceptual level or a plat-
form independent level for XML document design. However, we also consider
that the possibility of performing evolution tasks at a conceptual level is advis-
able, since it allows the data designer to work at a higher degree of abstraction.
The problem is that, to our knowledge, the approaches that propose a conceptual

Evolving XML Schemas and Documents Using UML Class Diagrams 351

modeling language for data design, generating the XML documents automati-
cally, do not take into account evolution issues [8,14]. Furthermore, the authors
that deal with evolution tasks at a conceptual level do not apply them for the
specific case of XML documents [6]. For this reason, as far as we are aware, our
proposal is the first framework including a conceptual level for managing XML
document evolution tasks.

With regard to other evolution frameworks that consider a conceptual
level [6,9], most of these are proposed for the specific database evolution field.
The main challenge of these proposals is to maintain the consistency between
models of different levels that evolve over time. We tackle this problem, as [6]
does, by ensuring the traceability of the translation process between levels. But,
although the traceability of transformation executions is a feature required in
several proposals (see, for example, QVT [12]), there is no agreement about
which artifacts and mechanisms are needed for assuring this traceability [13,18].
In [6] the traceability is achieved storing the sequence (called history) of oper-
ations performed during the translation of the conceptual schema into a logical
one. In this way the mappings affected by the changes can be detected and mod-
ified, whereas the rest can be reexecuted without any modification. The main
difference between this approach and ours is the type of information stored for
assuring traceability. Whereas in [6] the idea is to store the history of the process
performed (probably with redundancies), in our case the goal of the elementary
translations is to reflect the correspondence between the conceptual elements
and the logical ones, so there is no room for redundancies.

6 Conclusions and Future Work

The main contribution of this work is the presentation of a framework for man-
aging XML document evolution tasks. This framework includes a conceptual
level and a logical one, and the consistency between them is kept ensuring the
traceability of the translation process between levels. More specifically, we have
described, by means of an example, the component that reflects the correspon-
dence between conceptual and logical elements. For this purpose, elementary
translations that reflect the relations between the conceptual elements and the
logical ones and that facilitate evolution tasks are used. Furthermore the prop-
agation algorithm which guarantees the consistency between the XML schema
and documents has been explained.

There are several possible directions for future work. Our solution has been
implemented using a particular tool, while approaches such as MDA [10] promise
the future development of general model–driven tools that will provide further
automatized support to evolution tasks. Because of that we will work on ap-
proaching our solution to these other model–driven proposals. In particular,
the specification of the transformations involved in our proposal by means of
a unified transformation language such as it is demanded in the QVT request
for proposal [12] is a goal for further development. Besides, the present pro-
posal takes a forward maintenance perspective, and how to apply our ideas for a

352 E. Domı́nguez et al.

round–trip perspective [2] remains an ongoing project. Another direction is how
to apply the architecture to other contexts, such as, for example, for managing
the binding of XML schemas to a representation in Java code [7].

References

1. M.Bernauer, G. Kappel, G. Kramler, Representing XML Schema in UML – A
Comparison of Approaches, in N. Koch, P. Fraternali, M. Wirsing, Martin (Eds.)
Web Engineering - ICWE 2004 LNCS 3140, 2004, 440–444.

2. P. A. Bernstein, Applying Model Management to Classical Meta Data Problems,
First Biennial Conference on Innovative Data Systems Research- CIDR 2003.

3. R. Conrad, D. Scheffner, J. C. Freytag, XML Conceptual Modeling Using UML,
in Alberto H. F. Laender, Stephen W. Liddle, Veda C. Storey (Eds.) Conceptual
Modeling - ER 2000 LNCS 1920, 2000, 558–571.

4. E. Domı́nguez, J. Lloret, A. L. Rubio, M. A. Zapata, Elementary translations: the
seesaws for achieving traceability between database schemata, in S. Wang et al,
(Eds.), Conceptual modeling for advanced application domains- ER 2004 Work-
shops, LNCS 3289 , 2004, 377–389.

5. E. Domı́nguez, J. Lloret, M. A. Zapata, An architecture for Managing Database
Evolution, in A. Olivé et al. (eds) Advanced conceptual modeling techniques- ER
2002 Workshops, LNCS 2784 , 2002, 63–74.

6. J.M. Hick, J.L. Hainaut, Strategy for Database Application Evolution: The DB-
MAIN Approach, in I.-Y. Song et al. (eds.) ER 2003, LNCS 2813, 291–306.

7. Java Architecture for XML Binding (JAXB), available at http://java.sun.com/

xml/jaxb/.
8. T. Krumbein, T. Kudrass, Rule-Based Generation of XML Schemas from UML

Class Diagrams, in Robert Tolksdorf, Rainer Eckstein (Eds.), Berliner XML Tage
2003 XML-Clearinghouse 2003, 213–227

9. J. R. López, A. Olivé, A Framework for the Evolution of Temporal Conceptual
Schemas of Information Systems, in B. Wangler, L. Bergman (eds.), Advanced
Information Systems Eng.- CAiSE 2000, LNCS 1789, 2000, 369–386.

10. J. Miller, J. Mukerji (eds.), MDA Guide Version 1.0.1, Object Management Group,
Document number omg/2003-06-01, May, 2003.

11. OMG, Meta Object Facility (MOF) specification, version 1.4, formal/02–04–03,
available at http://www.omg.org, April, 2002.

12. OMG, MOF 2.0 Query / Views / Transformations RFP, ad/2002–04–10, available
at http://www.omg.org, 2002.

13. B. Ramesh, Factors influencing requirements traceability practice, Communica-
tions of the ACM, 41 (12), December 1998, 37-44.

14. N. Routledge, L. Bird, A. Goodchild, UML and XML schema, in Xiaofang Zhou
(Ed.), Thirteenth Australasian Database Conference, 2002, 157–166

15. H. Su, D. Kramer, L. Chen, K. T. Claypool, E. A. Rundensteiner, XEM: Managing
the evolution of XML Documents, in K. Aberer, L. Liu(Eds.) 11th Intl. Workshop
on Research Issues in Data Engineering, IEEE 2001, 103-110.

16. W3C XML Working Group, XML Schema Parts 0–2 (2nd ed), available at
http://www.w3.org/XML/Schema�dev.

17. W3C XML Working Group, Extensible Markup Language (XML) 1.0 (3rd ed),
available at http://www.w3.org/XML/Core/�Publications.

18. W. M. N. Wan-Kadir, P. Loucopoulos, Relating evolving business rules to software
design, Journal of Systems Architecture, 50 (7), july 2004, 367-382.

http://java.sun.com/xml/jaxb/
http://java.sun.com/xml/jaxb/

	Introduction
	Evolution Architecture Overview
	Translation Algorithm
	Propagation Algorithm
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

