
Towards Mining Structural Workflow Patterns

Walid Gaaloul1, Karim Baı̈na2, and Claude Godart1

1 LORIA - INRIA - CNRS - UMR 7503,
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

2 ENSIAS, Université Mohammed V - Souissi,
BP 713 Agdal - Rabat, Morocco

baina@ensias.ma, {gaaloul, godart}@loria.fr

Abstract. Collaborative information systems are becoming more and more com-
plex, involving numerous interacting business objects within considerable pro-
cesses. Analysing the interaction structure of those complex systems will enable
them to be well understood and controlled. The work described in this paper
is a contribution to these problems for workflow based process applications. In
fact, we discover workflow patterns from traces of workflow events based on a
workflow mining technique. Workflow mining proposes techniques to acquire a
workflow model from a workflow log. Mining of workflow patterns is done by a
statistical analysis of log-based event. Our approach is characterised by a ”local”
workflow patterns discovery that allows to cover partial results and a dynamic
technique dealing with concurrency.

Keywords: workflow patterns, workflow mining, business process reengineering.

1 Introduction

With the technological improvements and the continuous increasing market pressures
and requirements, collaborative information systems are becoming more and more com-
plex, involving numerous interacting business objects. Analysing interactions of those
complex systems will enable them to be well understood and controlled. Our paper is a
contribution to this problem in a particular context : workflow application analysis and
control by mining techniques (a.k.a. ”reversing processes” [1]).

In our approach, we start by collecting log information from workflow processes
instances as they took place. Then we build, through statistical techniques, a graphical
intermediary representation modelling elementary dependencies over workflow activi-
ties executions. These dependencies are then refined to discover workflow patterns [2].
This paper is structured as follows. Section 2 explains our workflow log model. Sec-
tion 3, we detail our structural workflow patterns mining algorithm. Section 4 discusses
related work, and concludes.

2 Workflow Log Model

As shown in the UML class diagram in figure 1, WorkflowLog is composed of a set
of EventStreams (definition 1). Each EventStream traces the execution of one case
(instance). It consists of a set of events (Event) that captures the activities life cycle

K.V. Andersen, J. Debenham, and R. Wagner (Eds.): DEXA 2005, LNCS 3588, pp. 24–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Mining Structural Workflow Patterns 25

Fig. 1. Workflow Log Model

Fig. 2. Running example of workflow

performed in a particular workflow instance. An Event is described by the activity
identifier that it concerns, the current activity state (aborted, failed and completed)
and the time when it occurs (TimeStamp). A Window defines a set of Events over an
EventStream. Finally, a Partition builds a set of partially overlapping Windows parti-
tion over an EventStream.

Definition 1. (EventStream)
An EventStream represents the history of a worflow instance events as a tuple stream=
(begin, end, sequenceLog, isntances) where:

�(begin:TimeStamp) and (end:TimeStamp) are the log beginning and end time;
�sequenceLog : Event* is an ordered Event set belonging to a workflow instance;
�instances : int is the instance number.

A WorkflowLog is a set of EventStreams. WorkflowLog=(workflowID,{EventStreami,
0 ≤ i ≤ number of workflow instances}) where EventStreami is the event stream of the
ith workflow instance.

Here is an example of an EventStream extracted from the workflow example of
figure 2 in its 5th instantiation :

L = EventStream((13/5,5:42:12), (14/5, 14:01:54), [Event(Event(”A1”,
completed, (13/5, 5:42:12)), Event(”A2”, completed, (13/5,11:11:12)),

Event(”A4”, completed, (13/5,14:01:54)), Event(”A3”, completed, (14/5,
00:01:54)), Event(”A5”, completed, (14/5,5:45:54)), Event(”A6”, aborted,
(14/5,10:32:55)), Event(”A7”, completed, (14/5,10:32:55)), Event(”A9”,

completed, (14/5,14:01:54))],5)

26 W. Gaaloul, K. Baı̈na, and C. Godart

3 Mining Structural Workflow Patterns

As we state before, we start by collecting WorkflowLog from workflow instances as
they took place. Then we build, through statistical techniques, a graphical intermediary
representation modelling elementary dependencies over workflow logs (see section
3.1). These dependencies are then refined by advanced structural workflow patterns
(see section 3.2).

3.1 Discovering Elementary Dependencies

In order to discover direct dependencies from a WorkflowLog, we need an intermediary
representation of this WorkflowLog through a statistical analysis. We call this intermedi-
ary representation : statistical dependency table (or SDT). SDT is built through a statisti-
cal calculus that extracts elementary dependencies between activities of a WorkflowLog
that are executed without ”exceptions” (i.e. they reached successfully their completed
state). Then, we need to filter the analysed WorkflowLog and take only EventStreams of
instances executed ”correctly”. We denote by WorkflowLogcompleted this workflow log
projection. Thus, the unique necessary condition to discover elementary dependencies
is to have workflow logs containing at least the completed event states. These features
allow us to mine control flow from ”poor” logs which contain only completed event
state. By the way, any information system using transactional systems or workflow
management systems offer this information in some form [1].

For each activity A, we extract from workflowLogcompleted the following informa-
tion in the statistical dependency table (SDT): (i) The overall occurrence number of this
activity (denoted #A) and (ii) The elementary dependencies to previous activities Bi

(denoted P (A/Bi)). The size of SDT is N ∗ N , where N is the number of workflow
activities. The (m,n) table entry (notation P(m/n)) is the frequency of the nth activity
immediately preceding the mth activity. The initial SDT in table 1 represents a frac-
tion of the SDT of our workflow example given in figure 2. For instance, in this table
P(A3/A2)=0.69 expresses that if A3 occurs then we have 69% of chance that A2 oc-
curs directly before A3 in the workflow log. As it was calculated SDT presents some
problems to express correctly activities dependencies relating to concurrent behaviour.
In the following, we detail these issues and propose solutions to correct them.

Discarding errorneous dependencies : If we assume that each EventStream from
WorkflowLog comes from a sequential (i.e no concurrent behaviour) workflow, a zero
entry in SDT represents a causal independence and a non-zero entry means a causal
dependency relation (i.e. sequential or conditional relation). But, in case of concurrent
behaviour, as we can see in workflow patterns (like and-split, and-join, or-join, etc.)
the EventStreams may contain interleaved events sequences from concurrent threads.
As a consequence, some entries in initial SDT can indicate non-zero entries that do not
correspond to dependencies. For example the events stream given in section 2 ”sug-
gests” erroneous causal dependencies between A2 and A4 in one side and A4 and A3

in another side. Indeed, A2 comes immediately before A4 and A4 comes immediately
before A3 in this events stream. These erroneous entries are reported by P (A4/A2) and
P (A3/A4) in initial SDT which are different to zero. These entries are erroneous be-

Towards Mining Structural Workflow Patterns 27

Table 1. Fraction of Statistical Dependencies Table (P (x/y)) and activities Frequencies (#)

Initial SDT Final SDT
P (x/y) A1 A2 A3 A4 A5 A6

A1 0 0 0 0 0 0
A2 0.54 0 0 0.46 0 0
A3 0 0.69 0 0.31 0 0
A4 0.46 0.31 0.23 0 0 0
A5 0 0 0.77 0.23 0 0
A6 0 0 0 0 1 0

P (x/y) A1 A2 A3 A4 A5 A6

A1 0 0 0 0 0 0
A2 1 0 0 -1 0 0
A3 0 1 0 -1 0 0
A4 1 -1 -1 0 0 0
A5 0 0 1 1 0 0
A6 0 0 0 0 1 0

#A1 = #A2 = #A3 = #A4 = #A5 = #A9 = 100,
#A6 = 23, #A7 = 42, #A8 = 35

cause there is no causal dependencies between these activities as suggested (i.e. noisy
SDT). Underlined values in initial SDT report this behaviour for other similar cases.

Formally, two activities A and B are in concurrence iff P (A/B) and P (B/A) en-
tries in SDT are different from zero with the assumption that WorkflowLog is complete.
Indeed, a WorkflowLog is complete if it covers all possible cases (i.e. if a specific rout-
ing element can appear in the mined workflow model, the log should contain an example
of this behaviour in at least one case). Based on this definition, we propose an algorithm
to discover activities parallelism and then mark the erroneous entries in SDT. Through
this marking, we can eliminate the confusion caused by the concurrence behaviour pro-
ducing these erroneous non-zero entries. Our algorithm scans the initial SDT and marks
concurrent activities dependencies by changing their values to (−1).

Discovering indirect dependencies: For concurrency reasons, an activity might not
depend on its immediate predecessor in the events stream, but it might depend on an-
other ”indirectly” preceding activity. As an example of this behaviour, A4 is logged
between A2 and A3 in the events stream given in section 2. As consequence, A2 does
not occur always immediately before A3 in the workflow log. Thus we have only
P (A3/A2) = 0.69 that is an under evaluated dependency frequency. In fact, the right
value is 1 because the execution of A3 depends exclusively on A2. Similarly, values in
bold in initial SDT report this behaviour for other cases.

Definition 2. Window
A log window defines a log slide over an events stream S : stream (bStream, eStream,
sLog, workflowocc). Formally, we define a log window as a triplet window(wLog, bWin,
eWin) :

�(bWin : TimeStamp) and (eWin : TimeStamp) are the moment of the window
beginning and end (with bStream ≤ bWin and eWin ≤ eStream)

�wLog ⊂ sLog and ∀ e: event ∈ S.sLog where bWin ≤ e.TimeStamp ≤ eWin ⇒ e
∈ wLog.

To discover these indirect dependencies, we introduce the notion of activity con-
current window (definition 2). An activity concurrent window (ACW) is related to the
activity of its last event covering its directly and indirectly preceding activities. Initially,
the width of ACW of an activity is equal to 2. Every time this activity is in concurrence
with an other activity we add 1 to this width. If this activity is not in concurrence with

28 W. Gaaloul, K. Baı̈na, and C. Godart

other activities and has preceding concurrent activities, then we add their number to
ACW width. For example the activity A4 is in concurrence with A2 and A3 the width
of its ACW is equal to 4. Based on this, we propose an algorithm that calculates for
each activity the activity concurrent width regrouped in the ACW table. This algorithm
scans the ”marked” SDT calculated in last section and updates the ACW table.

Definition 3. Partition
A partition builds a set of partially overlapping Windows partition over an events
stream. Partition : WorkflowLog → (Window)*
Partition(S : EventStream(bStr, eStr, sLog: (Evti 1≤i≤n), wocc)) = {wi :Window;
1≤i≤n} where : Evti= the last event in wi ∧ width(wi)= ACWT[Evti.ActivityID].

After that, we proceed through an EventStreams partition (definition 3) that builds
a set of partially overlapping windows over the EventStreams using the ACW table.
Finally, we compute the final SDT. For each ACW, we compute for its last activity the
frequencies of its preceding activities. The final SDT will be found by dividing each
row entry by the frequency of the row’s activity. Note that, our approach adjusts dy-
namically, through the width of ACW, the process calculating activities dependencies.
Indeed, this width is sensible to concurrent behaviour : it increases in case of concur-
rence and is ”neutral” in case of concurrent behaviour absence. Now, we can compute
the final SDT (table 1) which will be used to discover workflow patterns.

3.2 Discovering Advanced Dependencies: Workflow Patterns

We have identified three kinds of statistical properties (sequential, conditional and con-
current) which describe the main behaviours of workflow patterns. Then, we have spec-
ified these properties using SDT’s statistics. We use these properties to identify sep-
arately workflow patterns from workflow logs. We begin with the statistic exclusive
dependency property which characterises, for instance, the sequence pattern.

Property 1. Mutual exclusive dependency property: A mutual exclusive depen-
dency relation between an activity Ai and its immediately preceding previous activity
Aj specifies that the enactment of the activity Ai depends only on the completion of
activity Aj and the completion of Aj enacts only the execution of Ai. It is expressed in
terms of:

�activities frequencies : #Ai = #Aj

�activities dependencies : P (Ai/Aj) = 1 ∧ ∀k 	= j; P (Ai/Ak) = 0 ∧ ∀l 	=
i; P (Al/Aj) = 0.

The next two statistic properties: concurrency property (property 2) and choice
property (property 3) are used to insulate statistical patterns behaviour in terms of con-
currence and choice after a ”fork” or before a ”join” point.

Property 2. Concurrency property: A concurrency relation between a set of ac-
tivities {Ai, 0 ≤ i ≤ n} belonging to the same workflow specifies how, in terms of
concurrency, the execution of these activities is performed. This set of activities is com-
monly found after a ”fork” point or before a ”join” point. We have distinguished three
activities concurrency behaviours:

Towards Mining Structural Workflow Patterns 29

�Global concurrency where in the same instantiation the whole activities are per-
formed simultaneously : ∀0 ≤ i, j ≤ n; #Ai = #Aj ∧ P (Ai/Aj) = −1

�Partial concurrency where in the same instantiation we have at least a partial
concurrent execution of activities : ∃0 ≤ i, j ≤ n; P (Ai/Aj) = −1

�No concurrency where there is no concurrency between activities: ∀(0 ≤ i, j ≤
n; P (Ai/Aj) ≥ 0)
Property 3. Choice property: A choice relation specifies which activities are exe-
cuted after a ”fork” point or before a ”joint” point. The two actors of a ”fork” point
(respectively a ”join” point) perform this relation are : (actor 1) an activity A from
which comes (respectively to which) a single thread of control which splits (respectively
converges) into (respectively from) (actor 2) multiple activities {Ai, 1 ≤ i ≤ n}. We
have distinguished three activities choice behaviours :

�Free choice where a part of activities from the second actor are chosen. Expressed
statistically, we have in terms of activities frequencies (#A ≤ Σn

i=1(#Ai)) ∧ (∀(1 ≤
i, j ≤ n; #Ai ≤ #A) and in terms of activities dependencies we have :

�In ”fork” point : ∀1 ≤ i ≤ n; P (Ai/A) = 1
�In ”join” point : 1 < Σn

i=1P (A/Ai) < n
�Single choice where only one activity is chosen from the second actor. Expressed

statistically, we have in terms of activities frequencies (#A = Σn
i=1(#Ai))) and in

terms of activities dependencies we have :
�In ”fork” point : ∀1 ≤ i ≤ n; P (Ai/A) = 1
�In ”join” point : Σn

i=1P (A/Ai) = 1
�No choice where all activities in the second actor are executed. Expressed statis-

tically, we have in terms of activities frequencies ∀1 ≤ i ≤ n #A = #Ai and in terms
of activities dependencies we have :

�In ”fork” point : ∀1 ≤ i ≤ n; P (A/Ai) = 1
�In ”join” point : ∀1 ≤ i ≤ n; P (Ai/A) = 1

Using these statistical specifications of sequential, conditional and concurrent prop-
erties, the last step is the identification of workflow patterns through a set of rules. In
fact, each pattern has its own statistical features which abstract statistically its causal
dependencies, and represent its unique identifier. These rules allow, if workflow log is
completed, to mine the whole workflow patterns hidden in this workflow.

Our control flow mining rules are characterised by a ”local” workflow patterns dis-
covery. Indeed, these rules are context-free, they proceed through a local log analysing
that allows us to recover partial results of mining workflow patterns. In fact, to dis-
cover a particular workflow pattern we need only events relating to pattern’s elements.
Thus, even using only fractions of workflow log, we can discover correctly correspond-
ing workflow patterns (which their events belong to these fractions).

We divided the workflows patterns in three categories : sequence, fork and join
patterns. In the following we present rules to discover the most interesting workflow
patterns belonging to these three categories. Note that the rules formulas noted by :
(P1) finger the Statistic exclusive dependency property, (P2) finger statistic concurrency
property and (P3) finger statistic choice property.

Discovering sequence pattern: In this category we find only the sequence pattern (ta-
ble 2). In this pattern, the enactment of the activity B depends only on the completion

30 W. Gaaloul, K. Baı̈na, and C. Godart

Table 2. Rules of sequence workflow pattern

Rules workflow patterns

(P1) (#B = #A) Sequence pattern

(P1) (P (B/A) = 1)

Table 3. Rules of fork workflow patterns

Rules workflow patterns

(P3)(Σn
i=0 (#Bi)=#A) xor-split pattern

(P3)(∀0 ≤ i ≤ n;P (Bi/A) = 1) ∧
(P2)(∀0 ≤ i, j ≤ n; P (Bi/Bj) = 0)

(P3)(∀0 ≤ i ≤ n;#Bi=#A) and-split pattern

(P3)(∀0 ≤ i ≤ n; P (Bi/A) = 1)∧
(P2)(∀0 ≤ i, j ≤ n P (Bi/Bj) = −1)

(P3)(#A ≤ Σn
i=0 (#Bi)) ∧

(∀0 ≤ i ≤ n; #Bi ≤ #A) or-split pattern

(P3)(∀0 ≤ i ≤ n; P (Bi/A) = 1)∧
(P2)(∃0 ≤ i, j ≤ n;P (Bi/Bj) = −1)

of activity A. So we have used the statistical exclusive dependency property to ensure
this relation linking B to A.

Discovering fork patterns: This category (table 3) has a ”fork” point where a single
thread of control splits into multiple threads of control which can be, according to the
used pattern, executed or not. The dependency between the activities A and Bi before
and after ”fork” point differs in the three patterns of this category: and-split, or-split,
xor-split. These dependencies are characterised by the statistic choice properties. The
xor-split pattern, where one of several branches is chosen after ”fork” point, adopts the
single choice property. and-split and or-split patterns differentiate themselves through
the no choice and free choice properties. Effectively, only a part of activities are exe-
cuted in the or-split pattern after a ”fork” point, while all the Bi activities are executed
in the and-split pattern. The non-parallelism between Bi, in the xor-split pattern are
ensured by the no concurrency property while the partial and the global parallelism in
or-split and and-split is identified through the application of the statistical partial and
global concurrency properties.

Towards Mining Structural Workflow Patterns 31

Table 4. Rules of join workflow patterns

Rules workflow patterns

(P3)(Σn
i=0 (#Ai)=#B) xor-join pattern

(P3)(Σn
i=0 P(B/Ai)=1) ∧

(P2)(∀0 ≤ i, j ≤ n; P (Ai/Aj) = 0)

(P3)(∀0 ≤ i ≤ n; #Ai=#B) and-join pattern

(P3)(∀0 ≤ i ≤ n; P (B/Ai) = 1)∧
(P2)(∀0 ≤ i, j ≤ n P (Ai/Aj) = −1)

(P3)(m ∗ #B ≤ Σn
i=0 (#Ai))

∧ (∀0 ≤ i ≤ n; #Ai ≤ #B)
M-out-of-N-Join pattern

(P3)(m ≤ Σn
i=0 P (B/Ai) ≤ n)

∧ (P2)(∃0 ≤ i, j ≤ n; P (Ai/Aj) = −1)

Discovering join patterns: This category (table 4) has a ”join” point where multiple
threads of control merge in a single thread of control. The number of necessary branches
for the causal of the activity B after the ”join” point depends on the used pattern.

To identify the three patterns of this category: and-join pattern, xor-join pattern and
M-out-of-N-Join pattern we have analysed dependencies between the activities Ai and
B before and after ”join”. Thus the single choice and the no concurrency properties
are used to identify the xor-join pattern where two or more alternative branches come
together without synchronisation and none of the alternative branches is ever executed
in parallel. As for the and-join pattern where multiple parallel activities converge into
one single thread of control, the no choice and the global concurrency are both used
to discover this pattern. In contrary of the M-out-of-N-Join pattern, where we need
only the termination of M activities from the incoming N parallel paths to enact the B
activity, The concurrency between Ai would be partial and the choice is free.

4 Discussion

The idea of applying process mining in the context of workflow management was first in-
troduced in [3]. This work proposes methods for automatically deriving a formal model
of a process from a log of events related to its executions and is based on workflow
graphs. Cook and Wolf [4] investigated similar issues in the context of software engi-
neering processes. They extended their work limited initially to sequential processes, to
concurrent processes [5]. Herbst [6,7] presents an inductive learning component used
to support the acquisition and adaptation of sequential process models, generalising
execution traces from different workflow instances to a workflow model covering all
traces. Starting from the same kind of process logs, van der Aalst et al. explore also
proposes techniques to discover workflow models based on Petri nets. Beside analysing

32 W. Gaaloul, K. Baı̈na, and C. Godart

Table 5. Comparing Process Mining Tools

EMiT [12] Little Thumb [13] InWoLvE [14] Process Miner [15] WorkflowMiner

Structure Graph Graph Graph Block Patterns
Local discovery No No No No Yes

Parallelism Yes Yes Yes Yes Yes
Non-free choice No No No No Yes

Loops Yes Yes Yes Yes No
Noise No Yes Yes No No
Time Yes No No No No

process structure, there exist related works dealing with process behaviour reporting,
such as [8,9,10] that describe tools and case studies that discuss several features, such
as analysing deadline expirations, predicting exceptions, process instances monitoring.

We have implemented our presented workflow patterns mining algorithms within
our prototype WorkflowMiner [11]. WorkflowMiner is written in Java and based on
Bonita Workflow Management System1 and XProlog Java Prolog API2. Starting from
executions of a workflow, (1) events streams are gathered into an XML log. In order to
be processed, (2) these workflow log events are wrapped into a 1st order logic format,
compliant with UML class diagrams shown in figure 1. (3) Mining rules are applied
on resulted 1st order log events to discover workflow patterns. We use a Prolog-based
presentation for log events, and mining rules. (4) Discovered patterns are given to the
workflow designer so he/she will have a look on the analysis of his/her deployed work-
flow to restructure or redesign it either manually or semi-automatically.

Table 5 compares our WorkflowMiner prototype to workflow mining tools repre-
senting previous studied approches. We focus on seven aspects: structure of the target
discovering language, local discovery dealing with incomplete parts of logs (opposed
to global and complete log analysis), parallelism (a fork path beginning with and-split
and ending with and-join), non-free choice (NFC processes mix synchronisation and
choice in one construct), loops (cyclic workflow transitions, or paths), noise (situation
where log is incomplete or contains errors or non-representative exceptional instances),
and time (event time stamp information used to calculate performance indicators such
as waiting/synchronisation times, flow times, load/utilisation rate, etc.).

WorkflowMiner can be distinguished by supporting local discovery through a set
of control flow mining rules that are characterised by a ”local” workflow patterns dis-
covery enabling partial results to be discovered correctly. Moreover, even if non-free
choice (NFC) construct is mentioned as an example of a workflow pattern that is diffi-
cult to mine, WorkflowMiner discovers M-out-of-N-Join pattern which can be seen as a
generalisation of the basic Discriminator pattern that were proven to be inherently non
free-choice. None of related works can deal with such constructs.

In our future works, we aim to discover more complex patterns by enriching our
workflow log, and by using more metrics (e.g. entropy, periodicity, etc.). We are also
interested in the modeling and the discovery of more complex transactional character-
istics of cooperative workflows [16].

1 Bonita, bonita.objectweb.org
2 XProlog, www.iro.umontreal.ca/∼vaucher/XProlog/

Towards Mining Structural Workflow Patterns 33

References

1. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J.
M. M. Weijters. Workflow mining: a survey of issues and approaches. Data Knowl. Eng.,
47(2):237–267, 2003.

2. W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

3. Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models from
workflow logs. Lecture Notes in Computer Science, 1377:469–498, 1998.

4. Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes from
event-based data. ACM Transactions on Software Engineering and Methodology (TOSEM),
7(3):215–249, 1998.

5. Jonathan E. Cook and Alexander L. Wolf. Event-based detection of concurrency. In Pro-
ceedings of the 6th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 35–45. ACM Press, 1998.

6. Joachim Herbst. A machine learning approach to workflow management. In Machine Learn-
ing: ECML 2000, 11th European Conference on Machine Learning, Barcelona, Catalonia,
Spain, volume 1810, pages 183–194. Springer, Berlin, May 2000.

7. Joachim Herbst and Dimitris Karagiannis. Integrating machine learning and workflow man-
agement to support acquisition and adaptation of workflow models. In DEXA ’98: Proceed-
ings of the 9th International Workshop on Database and Expert Systems Applications, page
745. IEEE Computer Society, 1998.

8. M. Sayal, F. Casati, M.C. Shan, and U. Dayal. Business process cockpit. Proceedings of
28th International Conference on Very Large Data Bases (VLDB’02), pages 880–883, 2002.

9. Daniela Grigori, Fabio Casati, Malu Castellanos, Umeshwar Dayal, Mehmet Sayal, and
Ming-Chien Shan. Business process intelligence. Comput. Ind., 53(3):321–343, 2004.

10. K. Baı̈na, I. Berrada, and L. Kjiri. A Balanced Scoreboard Experiment for Business Pro-
cess Performance Monitoring : Case study. In 1st International E-Business Conference
(IEBC’05), Tunis, Tunisia, June 24-25, 2005.

11. W. Gaaloul, S. Alaoui, K. Baı̈na, and C. Godart. Mining Workflow Patterns through
Event-data Analysis. In The IEEE/IPSJ International Symposium on Applications and the
Internet (SAINT’05). Workshop 6 Teamware: supporting scalable virtual teams in multi-
organizational settings. IEEE Computer Society Press, 2005.

12. Wil M. P. van der Aalst and B. F. van Dongen. Discovering workflow performance models
from timed logs. In Proceedings of the First International Conference on Engineering and
Deployment of Cooperative Information Systems, pages 45–63. Springer-Verlag, 2002.

13. A. J. M. M. Weijters and W. M. P. van der Aalst. Workflow mining: Discovering workflow
models from event-based data. In Dousson, C., Hppner, F., and Quiniou, R., editors, Pro-
ceedings of the ECAI Workshop on Knowledge Discovery and Spatial Data, pages 78–84,
2002.

14. Joachim Herbst and Dimitris Karagiannis. Workflow mining with inwolve. Comput. Ind.,
53(3):245–264, 2004.

15. Guido Schimm. Process Miner - A Tool for Mining Process Schemes from Event-Based
Data. In Proceedings of the European Conference on Logics in Artificial Intelligence, pages
525–528. Springer-Verlag, 2002.

16. W. Gaaloul, S. Bhiri, and C. Godart. Discovering workflow transactional behaviour
event-based log. In 12th International Conference on Cooperative Information Systems
(CoopIS’04), LNCS, Larnaca, Cyprus, October 25-29, 2004. Springer-Verlag.

	Introduction
	Workflow Log Model
	Mining Structural Workflow Patterns
	Discovering Elementary Dependencies
	Discovering Advanced Dependencies: Workflow Patterns

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

