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Abstract. Extract-Transform-Load (ETL) workflows are data centric workflows 
responsible for transferring, cleaning, and loading data from their respective 
sources to the warehouse. In this paper, we build upon existing graph-based 
modeling techniques that treat ETL workflows as graphs by (a) extending the 
activity semantics to incorporate negation, aggregation and self-joins, (b) 
complementing querying semantics with insertions, deletions and updates, and (c) 
transforming the graph to allow zoom-in/out at multiple levels of abstraction (i.e., 
passing from the detailed description of the graph at the attribute level to more 
compact variants involving programs, relations and queries and vice-versa). 

1   Introduction 

Conceptual and logical modeling of the design of data warehouse back-stage activities 
has been a relatively novel issue in the research community [3, 5, 6, 7]. The data 
warehouse back-stage activities are mainly implemented through tools, known as 
Extraction-Transformation-Loading (ETL) tools that employ data centric workflows 
to extract data from the sources, clean them from logical or syntactical 
inconsistencies, transform them into the format of the data warehouse, and eventually 
load these data into the warehouse.  

The main issues concerning the modeling of these activities have to do (a) with the 
semantics of the involved activities and (b) with the exploitation of the deduced 
model to obtain a better understanding and a clearer evaluation of the quality of the 
produced design for a data warehouse scenario. 

Several works in the area [2, 4] present systems tailored for ETL tasks (see also [9] 
for a broader discussion); nevertheless, the main focus of these works is on achieving 
functionality, rather than on modeling the internals or dealing with the software 
design or maintenance of these tasks. [3, 5] employ UML as a conceptual modeling 
language, whereas [7] introduces a generic graphical notation for the same task. Being 
defined at the conceptual level, these efforts lack a full model of the semantics of ETL 
workflows and a mechanism to allow the designer to navigate efficiently through 
large scale designs without being overwhelmed by their inherent complexity. 
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In our previous research, we have presented a first attempt towards a graph-based 
model for the definition of the ETL scenarios [6]. The model of [6, 8] treats an ETL 
scenario as a graph, which we call the Architecture Graph. Activities and data stores 
are modeled as the nodes of the graph; the attributes that constitute them are modeled 
as nodes too. Activities have input and output schemata and provider relationships 
relate inputs and outputs between data providers and data consumers. In this paper, 
we extend previous work in several ways. First, we complement the existing graph-
based modeling of ETL activities by adding graph constructs to capture the semantics 
of insertions, deletions and updates. Second, we extend the previous results by adding 
negation, aggregation and self-joins in the expressive power of our graph-based 
approach. More importantly, we introduce a systematic way of transforming the 
Architecture Graph to allow zooming in and out at multiple levels of abstraction (i.e., 
passing from the detailed description of the graph at the attribute level to more 
compact variants involving programs, relations and queries and vice-versa). The 
visualization of the Architecture graph at multiple levels of granularity allows the 
easier understanding of the overall structure of the involved scenario, especially as the 
scale of the scenarios grows. 

This paper is organized as follows. In Section 2, we discuss extensions to the graph 
model for ETL activities. Section 3 introduces a principled approach for zooming in 
and out the graph. In Section 4, we conclude our results and provide insights for 
future work. 

2   Modeling of Side-Effects and Special Cases for ETL Activities 

The purpose of this section is to present a formal logical model for the activities of an 
ETL environment and the extensions to existing work that we make. First, we start 
with the background constructs of the model, already introduced in [6, 8] and then, we 
move on to extend this modeling with update semantics, negations, aggregation and 
self-joins. We employ LDL++ [1, 10] in order to describe the semantics of an ETL 
scenario in a declarative nature and understandable way. LDL++ is a logic-
programming, declarative language that supports recursion, complex objects and 
negation. Moreover, LDL++ supports external functions, choice, (user-defined) 
aggregation and updates.  

2.1   Preliminaries 

In this subsection, we introduce the formal model of data types, data stores and 
functions, before proceeding to the model of ETL activities. To this end, we reuse the 
modeling constructs of [6, 8] upon which we subsequently proceed to build our 
contribution. The basic components of this modeling framework are: 

− Data types. Each data type T is characterized by a name and a domain, i.e., a 
countable set of values. The values of the domains are also referred to as 
constants.  

− Attributes. Attributes are characterized by their name and data type. For single-
valued attributes, the domain of an attribute is a subset of the domain of its data 
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type, whereas for set-valued, their domain is a subset of the powerset of the 
domain of their data type 2dom(T). 

− A Schema is a finite list of attributes. Each entity that is characterized by one or 
more schemata will be called Structured Entity.  

− Records & RecordSets. We define a record as the instantiation of a schema to a 
list of values belonging to the domains of the respective schema attributes. 
Formally, a recordset is characterized by its name, its (logical) schema and its 
(physical) extension (i.e., a finite set of records under the recordset schema). In 
the rest of this paper, we will mainly deal with the two most popular types of 
recordsets, namely relational tables and record files.  

− Functions. A Function Type comprises a name, a finite list of parameter data 
types, and a single return data type. 

− Elementary Activities. In the framework of [8], activities are logical abstractions 
representing parts, or full modules of code. An Elementary Activity (simply 
referred to as Activity from now on) is formally described by the following 
elements: 
- Name: a unique identifier for the activity. 
- Input Schemata: a finite list of one or more input schemata that receive data 

from the data providers of the activity.  
- Output Schemata: a finite list of one or more output schemata that describe 

the placeholders for the rows that pass the checks and transformations 
performed by the elementary activity.  

- Operational Semantics: a program, in LDL++, describing the content passing 
from the input schemata towards the output schemata. For example, the 
operational semantics can describe the content that the activity reads from a 
data provider through an input schema, the operation performed on these 
rows before they arrive to an output schema and an implicit mapping 
between the attributes of the input schema(ta) and the respective attributes of 
the output schema(ta). 

- Execution priority. In the context of a scenario, an activity instance must 
have a priority of execution, determining when the activity will be initiated.  

− Provider relationships. These are 1:N relationships that involve attributes with a 
provider-consumer relationship. The flow of data from the data sources towards 
the data warehouse is performed through the composition of activities in a larger 
scenario. In this context, the input for an activity can be either a persistent data 
store, or another activity. Provider relationships capture the mapping between the 
attributes of the schemata of the involved entities. Note that a consumer attribute 
can also be populated by a constant, in certain cases. 

− Part_of relationships. These relationships involve attributes and parameters and 
relate them to their respective activity, recordset or function to which they 
belong.  

The previous constructs, can be complemented by incorporating the semantics of 
ETL workflow in our framework. Due to the lack of space, we do not elaborate in 
detail on the full mechanism of the mapping of LDL rules to the Architecture Graph 
(including details on intra-activity and inter-activity programs); we refer the interested 
reader to [9] for this task. Instead, in this paper, we focus on the parts concerning 
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side-effect programs (which are most common in ETL environments), along with the 
modeling of aggregation and negation. To this end, we first need to introduce 
programs as another modeling construct. 

− Programs. We assume that the semantics of each activity is given by a 
declarative program expressed in LDL++. Each program is a finite list of LDL++ 
rules. Each rule is identified by an (internal) rule identifier. We assume a normal 
form for the LDL++ rules that we employ. In our setting, there are three types of 
programs, and normal forms, respectively: 

(i) intra-activity programs that characterize the internals of activities (e.g., a 
program that declares that the activity reads data from the input schema, 
checks for NULL values and populates the output schema only with 
records having non-NULL values) 

(ii) inter-activity programs that link the input/output of an activity to a data 
provider/consumer 

(iii)side-effect programs that characterize whether the provision of data is an 
insert, update, or delete action. 

We assume that each activity is defined in isolation. In other words, the inter-
activity program for each activity is a stand-alone program, assuming the input 
schemata of the activity as its EDB predicates. Then, activities are plugged in the 
overall scenario that consists of inter-activity and side-effect rules and an overall 
scenario program can be obtained from this combination. 

Side-effect programs. We employ side-effect rules to capture database updates. We 
will use the generic term database updates to refer to insertions, deletions and updates 
of the database content (in the regular relational sense). In LDL++, there is an easy 
way to define database updates. An update expression is of the form 

head <- query part, update part 

and has the following semantics: (a) we make a query to the database and specify the 
tuples that abide by the query part and (b) we update the predicate of the update part 
as specified in the rule.  

raise1(Name, Sal, NewSal) <- 
 employee(Name, Sal), Sal = 1100,   (a) 
 NewSal = Sal * 1.1,     (b) 
 - employee(Name, Sal),     (c) 
 + employee(Name, NewSal).    (d) 

Fig. 1. Exemplary LDL++ rule for side-effect updates 

For example, consider the rule depicted in Fig. 1. In Line (a) of the rule, we mark 
the employee tuples with salary equal to 1100 in the relation employee(Name,Sal). 
For each the above marked tuples, Line (b) computes an updated salary with a 10% 
raise through the variable NewSal. In Line (c), we delete the originally marked tuples 
from the relation. Finally, Line (d) inserts the updated tuples, containing the new  
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salaries in the relation. In LDL updates, the order of the individual atoms is important 
and the query part should always advance the update part, to avoid having undesired 
effects from a predicate failing after an update (more details for the syntax of LDL 
can be found in [10]). 

2.2   Mapping Side-Effect Programs to the Architecture Graph of a Scenario 

Concerning our modeling effort, the main part of our approach lies in mapping 
declarative rules, expressing the semantics of activities in LDL, to a graph, which we 
call the Architecture Graph. In our previous work, the focus of [8] is on the input-
output role of the activities instead of their internal operation. It is quite 
straightforward to complement this modeling with the graph of intra- and inter- 
activity rules [9]. In principle, activities comprise input and output schemata. Intra-
activity programs and their variables facilitate the mapping of inputs to outputs. All 
attributes, activities and relations are nodes of the graph, connected through the proper 
part-of relationships. Each LDL rule connecting inputs (body of the rule) to outputs 
(head of the rule) is practically mapped to a set of provider edges, connecting inputs 
to outputs. Special purpose regulatory edges, capturing filters or joins are also part of 
the graph. 

 

Fig. 2. Side-effects over the LDL++ rule of Fig. 1 

While intra- and inter-activity rules are straightforwardly mapped to graph-based 
constructs, side-effects involve a rather complicated modeling, since there are both 
values to be inserted or deleted along with the rest of the values of a recordset. Still, 
there is a principled way to map LDL side-effects to the Architecture Graph. 
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1. A side-effect rule is treated as an activity, with the corresponding node. The 
output schema of the activity is derived from the structure of the predicate of 
the head of the rule. 

2. For every predicate with a + or – in the body of the rule, a respective provider 
edge from the output schema of the side-effect activity is assumed. A basic 
syntactic restriction here is that the updated values appear in the output 
schema. All provider relations from the output schema to the recordset are 
tagged with a + or –. 

3. For every predicate that appears in the rule without a + or – tag, we assume the 
respective input schema. Provider edges from this predicate towards these 
schemata are added as usual. The same applies for the attributes of the input 
and output schemata of the side effect activity. An obvious syntactic 
restriction is that all predicates appearing in the body of the rule involve 
recordsets or activity schemata (and not some intermediate rule). 

Notice that it is permitted to have cycles in the graph, due to the existence of a 
recordset in the body of a rule both tagged and untagged (i.e., both with its old and 
new values). The old values are mapped to the input schema and the new to the output 
schema of the side-effect activity.  

In Fig. 2, we depict an example for the usage of side-effects over the LDL++ rule 
of Fig. 1. Observe that Name is tagged both as + or –, due to its presence at two 
predicates, one removing the old value of Sal and another inserting NewSal, 
respectively. Observe, also, how the input is derived from the predicate employee at 
the body of the rule. 

2.3   Special Cases for the Modeling of the Graph 

In this subsection, we extend our basic modeling to cover special cases such as 
aliases, negation, aggregation and functions. 

Alias relationships. An alias relationship is introduced whenever the same predicate 
appears in the same rule (e.g., in the case of a self-join). All the nodes representing 
these occurrences of the same predicate are connected through alias relationships to 
denote their semantic interrelationship. Note that due to the fact that intra-activity 
programs do not directly interact with external recordsets or activities, this practically 
involves the rare case of internal intermediate rules.  

Negation. When a predicates appears negated in a rule body, then the respective part-
of edge between the rule and the literal’s node is tagged with ‘⌐’. Note that negated 
predicates can appear only in the rule body. 

Aggregation. Another interesting feature is the possibility of employing aggregation. 
In LDL, aggregation can be coded in two steps: (a) grouping of values to a bag and 
(b) application of an aggregate function over the values of the bag. Observe the 
example of Fig. 3, where data from the table DW.PARTSUPP are summarized, through 
activity Aggregate1 to provide the minimum daily cost in view V1. In Fig. 3 we list 
the LDL program for this activity. Rules (R16-R18) explain how the data of table 
DW.PARTSUPP are aggregated to produce the minimum cost per supplier and day. 
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Observe how LDL models aggregation in rule R17. Then, rule R19 populates view V1 
as an inter-activity program. 

The graph of an LDL rule is created as usual with only 3 differences: 

1. Relations which create a set from the values of a field employ a pair of 
regulator edges through an intermediate node ‘<>’. 

2. Provider relations for attributes used as groupers are tagged with ‘g’. 
3. One of the attributes of the aggr function node consumes data from a constant 

that indicates which aggregate function should be used (e.g., avg, min, max). 

R16: aggregate1.a_in(skey,suppkey,date,qty,cost)<- 
 dw.partsupp(skey,suppkey,date,qty,cost) 
R17: temp(skey,day,<cost>) <- 
 aggregate1.a_in(skey,suppkey,date,qty,cost). 
R18: aggregate1.a_out(skey,day,min_cost) <- 
 temp(skey,day,all_costs), 
 aggr(min,all_costs,min_cost). 
R19: v1(skey,day,min_cost) <- 
 aggregate1.a_out(skey,day,min_cost). 

Fig. 3. LDL Specification for an activity involving aggregation 

Functions. Functions are treated as any other predicate in LDL, thus they appear as 
common nodes in the architecture graph. Nevertheless, there are certain special 
requirements for functions: 

1. The function involves a list of parameters, the last of which is the return value 
of the function. 

2. All function parameters referenced in the body of the rule either as homonyms 
with attributes, of other predicates or through equalities with such attributes, 
are linked through equality regulator relationships with these attributes. 

3. The return value is possibly connected to the output through a provider 
relationship (or with some other predicate of the body, through a regulator 
relationship). 

For example, observe Fig. 2 where a function involving the multiplication of 
attribute Sal with a constant is involved. Observe the part-of relationship of the 
function with its parameters and the regulator relationship with the first parameter and 
its populating attribute. The return value is linked to the output through a provider 
relationship. 

3   Different Levels of Detail of the Architecture Graph 

The Architecture Graph can become a complicated construct, involving the full detail 
of activities, recordsets, attributes and their interrelationships. Although it is important 
and necessary to track down this information at design time, in order to formally 
specify the scenario, it quite clear that this information overload might be cumbersome 
to manage at later stages of the workflow lifecycle. In other words, we need to provide 
the user with different versions of the scenario, each at a different level of detail. 
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We will frequently refer to these abstraction levels of detail simply, as levels. We 
have already defined the Architecture Graph at the attribute level. The attribute level is 
the most detailed level of abstraction of our framework. Yet, coarser levels of detail can 
also be defined. The schema level, abstracts the complexities of attribute 
interrelationships and presents only how the input and output schemata of activities 
interplay in the data flow of a scenario. In fact, due to the composite structure of the 
programs that characterize an activity, there are more than one variants that we can 
employ for this description. Finally, the coarser level of detail, the activity level, 
involves only activities and recordsets. In this case, the data flow is described only in 
terms of these entities.  

Architecture Graph at the Schema Level. Let GS(VS,ES) be the architecture graph 
of an ETL scenario at the schema level. The scenario at the schema level has schemata, 
functions, recordsets and activities for nodes. The edges of the graph are part-of 
relationships among structured entities and their corresponding schemata and provider 
relationships among schemata. The direction of provider edges is again from the 
provider towards the consumer and the direction of the part-of edges is from the 
container entity towards its components (in this case just the involved schemata). Edges 
are tagged appropriately according to their type (part-of or provider).  

Intuitively, at the schema level, instead of fully stating which attribute populates 
another attribute, we trace only how this is performed through the appropriate schemata 
of the activities. A program capturing the semantics of the transformations and 
cleanings that take place in the activity is the means through which the input and output 
schemata are interconnected. If we wish, instead of including all the schemata of the 
activity as they are determined by the intermediate rules of the activity’s program, we 
can present only the program as a single node of the graph, to avoid the extra 
complexity.  

There is a straightforward way to zoom out the Architecture Graph at the attribute 
level and derive its variant at the schema level. For each node x of the architecture 
graph G(V,E) representing a schema: 

1. for each provider edge (xa,y) or (y,xa), involving an attribute of x and an 
entity y, external to x, introduce the respective provider edge between x  and y 
(unless it already exists, of course); 

2. remove the provider edges (xa,y) and (y,xa) of the previous step; 
3. remove the nodes of the attributes of x and the respective part-of edges. 

We can iterate this simple algorithm over the different levels of part-of 
relationships, as depicted in Fig. 4. 

Architecture Graph at the Activity Level. In this paragraph, we will deal with the 
model of ETL scenarios as graphs at the activity level. Only activities and recordsets are 

part of a scenario at this level. Let GA(VA,EA) be the architecture graph of an ETL 
scenario at the activity level. The scenario at the activity level has only recordsets and 
activities for nodes and a set of provider relationships among them for edges. The 
provider relationships are directed edges from the provider towards the consumer entity.  

Intuitively, a scenario is a set of activities, deployed along a graph in an execution 
sequence that can be linearly serialized through topological ordering. There is a 
straightforward way to zoom out the Architecture Graph at the schema level and derive 
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its variant at the activity level. For each node x of the architecture graph GA(VA,EA) 
representing a structured entity (i.e., activity or recordset): 

1. for each provider edge (xc,y) or (y,xc), involving a schema of x and an 
entity y, external to x, introduce the respective provider edge between x  and y 
(unless it already exists, of course); 

2. remove the provider edges (xc,y) and (y,xc) of the previous step; 
3. remove the nodes of the schema(ta) and program (if x is an activity) of x and 

the respective part-of edges. 

(a) 

(b) 

 
(c) 

Fig. 4. Zooming in/out. (a) different levels of detail for ETL workflows; (b) an activity with 
two input schemata populating an output and a rejection schema as follows: a subprogram P1 is 
assigned the population of the output schema only and a subprogram P2 populates only the 
rejection schema using only one input schema; and (c) a single node abstracts the internal 
structure of the activity. 

Discussion. Navigating through different levels of detail is a facility that primarily 
aims to make the life of the designer and the administrator easier throughout the full 
range of the lifecycle of the data warehouse. Through this mechanism, the designer 
can both avoid the complicated nature of parts that are not of interest at the time of the 
inspection and drill-down to the lowest level of detail for the parts of the design that 
he is interested in.  

Moreover, apart from this simple observation, we can easily show how our graph-
based modeling provides the fundamental platform for employing software engineering 
techniques for the measurement of the quality of the produced design [9]. Zooming in 
and out the graph in a principled way allows the evaluation of the overall design both at 
different depth of granularity and at any desired breadth of range (i.e., by isolating only 
the parts of the design that are currently of interest). 
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4   Conclusions 

Previous research in the logical modeling of ETL workflows has identified graph-based 
techniques that capture the high-level structure of these workflows. In this paper, we 
have extended the semantics of the involved ETL activities to incorporate negation, 
aggregation and self-joins. Moreover, we have complemented this semantics in order to 
handle insertions, deletions and updates. Finally, we have provided a principled method 
for transforming the architecture graph of an ETL scenario to allow zoom-in/out at 
multiple levels of abstraction. This way, we can move from the detailed description of 
the graph at the attribute level to more compact variants involving programs, relations 
and queries and vice-versa. 

Research can be continued in more than one direction, e.g., towards the derivation of 
precise algorithms for the evaluation of the impact of changes in the Architecture Graph. 
Finally, a field-study of the usage of the Architecture Graph in all the phases of a data 
warehouse project can also be pursued. 
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