
XML-OLAP: A Multidimensional Analysis
Framework for XML Warehouses

Byung-Kwon Park1, Hyoil Han2, and Il-Yeol Song2

1 Dong-A University, Busan, Korea
bpark@dau.ac.kr

2 Drexel University, Philadelphia, PA 19104, USA
hyoil.han@cis.drexel.edu, songiy@drexel.edu

Abstract. Recently, a large number of XML documents are available
on the Internet. This trend motivated many researchers to analyze them
multi-dimensionally in the same way as relational data. In this paper, we
propose a new framework for multidimensional analysis of XML docu-
ments, which we call XML-OLAP. We base XML-OLAP on XML ware-
houses where every fact data as well as dimension data are stored as XML
documents. We build XML cubes from XML warehouses. We propose a
new multidimensional expression language for XML cubes, which we call
XML-MDX. XML-MDX statements target XML cubes and use XQuery
expressions to designate the measure data. They specify text mining op-
erators for aggregating text constituting the measure data. We evaluate
XML-OLAP by applying it to a U.S. patent XML warehouse. We use
XML-MDX queries, which demonstrate that XML-OLAP is effective for
multi-dimensionally analyzing the U.S. patents.

1 Introduction

An online analytical processing (OLAP) system is a powerful data analysis tool
for decision-making [11]. It provides an analysis from multiple perspectives or
dimensions for a large amount of data residing in a data warehouse. Data ware-
houses are commonly organized with one large fact table and multiple small
dimension tables. The fact and dimension tables are typically the structured
data stored in a relational database.

Recently, a large number of XML documents are available on the Internet.
Thus, we need to analyze them multi-dimensionally in the same way as relational
data. However, the data model of XML documents is not flat like relational data,
but a tree structure. In addition, XML documents can contain unstructured data
such as text. Thus, we need to develop a new framework of multidimensional
analysis for XML documents.

In this paper, we propose an OLAP framework for XML documents, which
we call XML-OLAP. We base XML-OLAP on XML warehouses where every fact
data as well as dimension data is stored as an XML document. XML cubes are
built from XML warehouses. While conventional data cubes have numeric data
as measure values, XML cubes have either numeric or text data. We propose a

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 32–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XML-OLAP: A Multidimensional Analysis Framework 33

new multidimensional expression language over XML cubes, which we call XML-
MDX. XML-MDX statements target XML cubes and use XQuery expressions
to specify the measure data, axis dimensions, and slicer. They also specify text
mining operators for aggregating text constituting the measure data such as
summarization, classification, and top keyword extraction.

We show an XML-OLAP example for the U.S. patent warehouse to evaluate
its effectiveness. The U.S. patent warehouse is built by extracting information
from the U.S. Patent Web Site [12], converting it into XML documents, and stor-
ing them in a native XML database. Dimension tables are also built in the form
of XML documents and stored in the native XML database. We demonstrate
XML-MDX queries to show that XML-OLAP is effective for multi-dimensionally
analyzing the U.S. patents.

This paper makes the following contributions: (1) We propose a new frame-
work, XML-OLAP, for multi-dimensional analysis of XML documents. We be-
lieve XML-OLAP is the first framework for online analysis of an XML document
set. (2) We propose a new multidimensional expression language, XML-MDX.
We are inspired by the Microsoft MDX language [11] which is widely accepted
as an OLAP query language. XML-MDX can accommodate the hierarchical tree
structures of XML documents. (3) We propose a mechanism to enable the aggre-
gation of text data contained in XML documents using text mining operations. It
can give the text mining community a vehicle to make their technology accessible
to a broad user base.

This paper is organized as follows: Section 2 describes the related work.
Section 3 describes building an XML warehouse. Section 4 describes building
XML cubes and querying them using XML-MDX. Section 5 describes the XML-
OLAP application to the U.S. patent XML data. Section 6 concludes the paper.

2 Related Work

Pokorny [9] applied a star schema to XML data. A dimension hierarchy is de-
fined as a set of logically connected collections of XML data. Facts may also
be conceived as elements of XML data. Pokorny proposed a formal model for
dimension hierarchies and referential integrity constraints in an XML environ-
ment. We also assume that both dimension and fact information are represented
as XML documents in the same way as Pokorny does.

Nassis et al. [7] also worked on XML document warehousing. They focused
on the conceptual design of XML document warehouses and the concept of
virtual dimensions using XML views. They utilized object-oriented concepts in
UML to develop a conceptual model for XML document warehouses from user
requirements.

Golfarelli et al. [2] dealt with the problem of automatically deriving the con-
ceptual schema from an XML source. They assumed that the XML data have
all the information for the schema. They proposed a semi-automatic approach
for building a schema from an XML DTD or schema.

34 B.-K. Park, H. Han, and I.-Y. Song

Hümmer et al. [3] proposed a family of XML document templates, called
XCube, to describe a multidimensional structure, dimensions and fact data for
integrating several data warehouses into a virtual or federated data warehouse.
The XML templates are not directly related to XML warehousing, but they can
be used for representing hierarchical dimension data in our framework.

There are a lot of work on constructing OLAP cubes from distributed XML
data. Jensen et al. [4,5] transformed XML data on the web into relational data
in order to be used by conventional OLAP tools. Niemi et al. [8] proposed a
system which can construct an OLAP cube based on an user’s MDX query.
They all construct a relational OLAP cube by transforming XML data collected
from distributed XML sources, whereas we construct an XML cube from XML
documents.

3 XML Warehouses

In Section 3.1, we present the multidimensional model of an XML warehouse
and how to derive it. In Section 3.2, we present how to build an XML warehouse
from the given XML document set.

3.1 Multidimensional Modeling of XML Warehouses

We assume that an XML warehouse has a multidimensional model as in Fig-
ure 1. The model has a single repository of XML documents, which forms fact
data, and multiple repositories of XML documents, in which each forms one
dimension data. In Figure 1, there are n dimensions and thus, n repositories of
XML documents.

The fact repository is the same as assumed by Nassis et al. [7]. Each fact is
described in a single XML document. Thus, the fact data is not as simple as in
a conventional data warehouse. It has a hierarchical tree structure containing
structured data and unstructured data.

Dimension data are described in XML documents, and each dimension data
is grouped into a repository of XML documents. Since each dimension has a
hierarchy, a single XML document in a repository contains an instance of a di-
mension hierarchy rooted at a top level member in the hierarchy. Some auxiliary
data structures like indexes are used to link dimension data with fact data.

Facts

Dimension 1

Dimension n
………

XML Doc
XML Doc

XML Doc

Dimension 2

XML Doc

Fig. 1. Multidimensional Model of An XML Warehouse

XML-OLAP: A Multidimensional Analysis Framework 35

The XML multidimensional model described in this section has the following
advantages: (1) Since all the fact and dimension data are described in XML doc-
uments, we can easily collect them. (2) We can store all the fact and dimension
data in a native XML database and can easily manage and query them through
the native XML database management system. (3) Since each dimension data is
described in an XML document, we can easily represent the dimension hierarchy
in a single document using the tree structure of an XML document. Thus, we
need not join multiple tables as required in the relational snowflake model.

3.2 Building an XML Warehouse

Building an XML warehouse consists of two steps: building a single XML reposi-
tory for fact data and building a number of XML repositories for dimension data.
Rusu et al. [10] dealt with the problem of processing raw XML documents into
a data warehouse repository, and proposed some rules and techniques for data
cleaning, integration, summarization, and updating/linking existing documents.
We assume that the XML repository for fact data is provided after cleaning. We
focus on building the XML repositories for dimension data. In order to decide
the required dimensions to analyze the given XML document repository, we need
to build the conceptual model of the XML documents.

There are several works on the conceptual modeling of XML data using
UML. Jensen et al. [5] proposed an algorithm for automatically constructing
UML diagrams from XML data based on their DTD’s. Lujan-Mora et al. [6]
extended UML for multidimensional modeling including multistar model, shared
hierarchy levels, and heterogeneous dimensions. We adopt their methods for
conceptual modeling of XML data in UML class diagrams.

From the conceptual model of fact data, we can decide dimensions for analyz-
ing them. We assume that it is done manually because the conceptual model is
object-oriented and expressed in UML class diagrams for the purpose of helping
people to understand the logical structure of fact data. Nassis et al. [7] proposed
to select dimensions based on user requirements and to represent the dimensions
virtually using XML views since they assumed that all the dimension data are
part of fact data. However, we assume that some dimension data are out of fact
data. Thus, for simplicity, we materialize an XML repository for each dimension
selected.

For multidimensional analysis, we need some mechanism to join dimension
and fact data. In a conventional data warehouse, we insert a foreign key in the
fact data to match with each dimension data. In this paper, we rely on an index
structure that matches each dimension data with the corresponding fact data.
We build the index together with the XML repositories for dimension data.

4 The Multidimensional Analysis Framework for XML
Warehouses

In this section, we describe XML-OLAP, which is about generating XML cubes
and expressing multidimensional queries. In Section 4.1, we present a new notion

36 B.-K. Park, H. Han, and I.-Y. Song

of XML cube (called XQ-Cube). In Section 4.2, we present a new multidimen-
sional expression language (called XML-MDX) for XQ-Cubes.

4.1 XML Cubes

Since our XML warehouse has XML documents as fact data, the cube con-
structed from the XML warehouse should have the cells whose values are an
aggregation of XML documents. Defining an aggregation over multiple XML
documents is difficult because an XML document is a hierarchically structured
composite data object. However, defining an aggregation over such data segments
as numeric or text data segments is possible.

We propose to use an XQuery expression for measure specification. We call
the cube constructed from the XML warehouse with measure values described
by an XQuery expression XQ-Cube. The measure values, the evaluation result
of the XQuery expression, are numeric or text data. If they are numeric, the
aggregation will be the same as in relational cubes such as addition and average;
otherwise, the aggregation will be a kind of text operation. We introduce text
mining operations for text aggregation (see Section 4.2).

An XQ-Cube has the following advantages: (1) A variety of cubes can be gen-
erated. Since the measure data is specified using an XQuery expression, any kind
of cube can be defined that XQuery can generate. (2) It provides an aggregation
mechanism over XML documents. Since the measure data is a fragment of an
XML document, we can apply various aggregation operators according to the
data type. (3) An XQ-Cube is a generalization of a relational cube. It becomes a
relational cube when the XQuery expression is evaluated to numeric data, while
it becomes a text cube when evaluated to text data.

4.2 Multidimensional Expression Language

For querying a cube, we need a query language for cubes. Microsoft designed
a multidimensional expression language called MDX [11] for relational cubes.
We are inspired by Microsoft MDX to design a new multidimensional expres-
sion language called XML-MDX for XQ-Cubes. XML-MDX has two statements:
CREATE XQ-CUBE and SELECT. The former is for creating a new XQ-Cube,
and the latter for querying. In general, in order to enhance the query processing
performance of XML-MDX or to use an XQ-Cube multiple times, we first create
an XQ-Cubes and then refer to it in queries.

CREATE XQ-CUBE: Figure 2 shows the basic syntax of the CREATE XQ-
CUBE statement. The <XQ-Cube name> value specifies the name of the XQ-
Cube to create. A CREATE XQ-CUBE statement is composed of two clauses:
FROM and WHERE. The created XQ-Cube is stored for use by XML-MDX
queries.

The FROM clause specifies the measure data from which the XQ-Cube will
be created. Figure 3 shows the definition of the FROM clause expressed in BNF
notation. The <XQ-Cube specification> value specifies the measure data using

XML-OLAP: A Multidimensional Analysis Framework 37

CREATE XQ-CUBE <XQ-cube name>
FROM <XQ-cube specification>
[WHERE <slicer specification>]

Fig. 2. Definition of CREATE XQ-CUBE statement in BNF

<FROM_clause> ::= FROM <XQ-cube_specification>
<XQ-cube_specification> ::= <XQuery_expression> : <aggregation_operator>]
<aggregation_operator> ::= ADD | LIST | COUNT | SUMMARY | TOPIC |

TOP KEYWORDS | CLUSTER

Fig. 3. Definition of FROM Clause in BNF

<WHERE_clause> ::= WHERE <slicer_specification>
<slicer_specification> ::= “(“ <XQuery_expression> { “,” <XQuery_expression> } “)”

Fig. 4. Definition of WHERE Clause in BNF

SELECT <axis 0 specification>,
<axis 1 specification>,

…

FROM <XQ-Cube name>
[WHERE <slicer specification>]

Fig. 5. Basic Syntax of XML-MDX

an XQuery expression. We should specify an aggregation operator according to
the measure data, the evaluation result of the XQuery expression.

In this paper, we define the following seven aggregation operators: ADD,
LIST, COUNT, SUMMARY, TOPIC, TOP KEYWORDS, and CLUSTER.
ADD is for numeric data as it is in relational OLAP. The other operators are all
for non-additive data including text. LIST displays the data consecutively in a
sequence. COUNT displays the number of measure data. The others are all from
text mining techniques: SUMMARY, TOPIC, and TOP KEYWORDS display
a total summary, a topic, and top keywords respectively from all the text data
to aggregate. CLUSTER builds a cluster over all the text data to aggregate. We
can expand the aggregation operators as the text mining techniques progress.

The WHERE clause is optional. It determines which dimension members to
use for the slicer which restricts the extractions of data to the determined dimen-
sion members. Figure 4 shows the definition of the WHERE clause expressed in
BNF notation. The <slicer specification> value specifies a slicer which is a tuple
of XQuery expressions. Each XQuery expression specifies a dimension member
which filters off the other members. A special XQuery expression is used for
specifying the ’All’ member (see Figure 8). The dimensions that are not spec-
ified in the <slicer specification> form the axis dimensions of the XQ-Cube
created.

38 B.-K. Park, H. Han, and I.-Y. Song

<SELECT_clause> ::= SELECT <axis_specification> { “,” <axis_specification> }
<axis_specification> ::= <XQuery_expression_set> ON <axis_name>
<XQuery_expression_set> ::= “{“ <XQuery_expression> { “,” <XQuery_expression> } “}”
<axis_name> ::= COLUMNS | ROWS | PAGES | SECTIONS | CHAPTERS |

AXIS(<index>)

Fig. 6. Definition of SELECT Clause in BNF

SELECT: Figure 5 shows the basic syntax of the SELECT statement. A SE-
LECT statement has the same structure as that of Microsoft MDX, which is
composed of three clauses: SELECT, FROM, and WHERE. The FROM clause
designates an XQ-Cube name previously created by a CREATE XQ-CUBE
statement. We populate the result set of the SELECT statement from the des-
ignated XQ-Cube.

The SELECT clause specifies axis dimensions. Each axis dimension deter-
mines an edge of a multidimensional result set. Figure 6 shows the definition
of the SELECT clause expressed in BNF notation. Each <axis specification>
value defines one axis dimension. The number of dimensions in an XML ware-
house is the maximum number of axis dimensions. An <axis specification> value
is broken down into a set of XQuery expressions and an axis name.

The result set of the XQuery expressions constitute the members of an axis
dimension. Since each dimension having a hierarchical structure is represented in
a single XML document, an XQuery expression specifies a member of a dimension
level. We need an XQuery expression for each member of an axis dimension.

We assign axis names in the same way as Microsoft MDX does [11]. Each axis
dimension is associated with a number: 0 for the X-axis, 1 for the Y-axis, 2 for the
Z-axis, and so on. The <index> value is the axis number. For the first 5 axes, the
aliases COLUMNS, ROWS, PAGES, SECTIONS, and CHAPTERS can be used
in place of AXIS(0), AXIS(1), AXIS(2), AXIS(3), and AXIS(4), respectively. An
XML-MDX query cannot skip axes. That is, a query that includes one or more
axes must not exclude lower-numbered or intermediate axes.

The definition of the WHERE clause of the SELECT statement is the same as
that of CREATE XQ-CUBE statement. The <slicer specification> value filters
the XQ-Cube specified in the FROM clause. Note that, as in Microsoft MDX,
the dimensions that are not explicitly assigned to axes in the SELECT clause
are assumed to be slicer dimensions. They filter the XQ-Cube with their default
members. A default member is the All member if an ’All’ level exists, or an
arbitrary member of the highest level.

XML-MDX has the following advantages over Microsoft MDX: (1) It can
have all the features of Microsoft MDX since XML-MDX is designed based on
Microsoft MDX. (2) Composing and processing XML-MDX queries are easy
since all the specifications for the measure values and the dimension members are
expressed in XQuery. We use an existing XQuery engine to process XML-MDX
queries since no special syntax is required for XML-MDX. (3) When specifying
slicer or axes, selecting the dimension members satisfying a condition is possible
since we are using XQuery to specify them. Microsoft MDX has no such facility
and use only a path in the dimension hierarchy.

XML-OLAP: A Multidimensional Analysis Framework 39

5 Application to US Patent XML Warehouse

We assume that we are given a huge collection of XML documents about U.S.
patents. They form the XML repository representing fact data of the U.S. patent
XML warehouse. Figure 7 shows an example of such documents. After reviewing
the fact repository, we build a conceptual model using a UML class diagram.
From the conceptual model, we decide the dimensions to use for multidimen-
sional analysis.

Figure 8 shows the hierarchies of the four dimensions selected for the U.S.
patent XML warehouse. Each dimension has the ’All’ level. The two dimensions,
’Appl.Time’ and ’Reg.Time’, represent when a patent was applied and registered
respectively. The dimension, ’Inventor’, represents a patent’s inventors. The di-
mension, ’Topic’, represents a patent’s classification.

Figure 9 shows an XML document in the XML repository representing the
dimension, ’Appl.Time’. The document is about an application year, 1998. The

<uspatent>
<title>

<text> Rule based database security system and method </text>
</title>
<abstract>

<text> A rule-based database security system and method are disclosed. </text>
</abstract>
<inventor>

<name> Cook; William R. </name>
<addr> Redwood City, CA </addr>

</inventor>
<patent>

<no> 6,820,082 </no>
<applNo> 541227 </applNo>

</patent>
<registeredOn> <date> November 16, 2004 </date> </RegisteredOn>
<filedOn> <date> April 3, 2000 </date> </FiledOn>
<claim>

<number> 1 </number>
<text> A method for processing requests from a user to perform an act …</text>

</claim>
</uspatent>

Fig. 7. Fact Data about U.S. Patents

Reg. Time

All

Year

Month

Inventor

All

Inst.Type

Institute

Inventor

Topic

All

High

Low

Middle

Appl. Time

All

Year

Month

Fig. 8. Dimension Hierarchies of U.S. Patent XML Warehouse

<year num = “1998”>
<month num = “3” name = “Mar.” />
<month num = “9” name = “Sep.” />

</year>

Fig. 9. An XML Document for Dimension ApplTime

40 B.-K. Park, H. Han, and I.-Y. Song

<instType name = “university” code = “001”>
<institute name = “Drexel” addr = “Philadelphia, PA”>

<inventor name = Il-Yeol Song” addr = “Philadelphia, PA” />
</institute>

</instType>

Fig. 10. An XML Document for Dimension Inventor

CREATE XQ-CUBE XQ-Cube-1
FROM col(‘/db/uspatent’)//patent/no : COUNT
WHERE (col(‘/db/applTime’)/ALL,

col(‘/db/regTime’)//year[@num>2000])

Fig. 11. An Example of CREATE XQ-Cube Statement

level, ’year’, has an attribute, ’num’, It has the lower level, ’month’, having two
attributes: ’num’ and ’name’. The level, ’month’, has two members whose values
of the attribute, ’num’ are 3 and 9 respectively.

Figure 10 shows an XML document in the XML repository representing the
dimension, ’Inventor’. The document is about an institution type, ’university’,
which is a member of the level, ’instType’ of the dimension. The level, ’instType’,
has two attributes: ’name’ and ’code’. It has the lower level, ’institute’, having
two attributes: ’name’ and ’addr’. The level, ’institute’, has the lower level,
’inventor’, having two attributes: ’name’ and ’addr’.

Figure 11 shows an example to create an XQ-Cube named XQ-Cube-1. The
XQuery expression, ”col(’/db/uspatent’)//patent/no”, specifies the measure of
XQ-Cube-1. The collection, ”/db/uspatent” contains the fact data from which
we collect ”//patent/no” for the measure. The aggregation operator, COUNT,
counts the number of patent no’s. The WHERE clause has two XQuery ex-
pressions. The collection, ”/db/applTime” contains the XML documents for
’Appl.Time’. The special XQuery expression, ”/All” means that the ’All’ level
is selected for slicing, which results in the aggregation along all the members
of the dimension. The collection, ”/db/regTime” contains the XML documents
for ’Reg.Time’. The XQuery expression, ”//year[@num>2000]” results in slicing
off all ’year’ less than or equal to 2000. As a result, XQ-Cube-1 has three axis
dimensions: ’Inventor’, ’Topic’, and ’Reg.Time’ with ’year’ greater than 2000.

Figure 12 shows an XML-MDX query for XQ-Cube-1. The slicer specification
in the WHERE clause slices off the registration years less than or equal to 2002.

SELECT { col(‘/db/topic’)//high[@topic=‘XML’],
col(‘/db/topic’)//high[@topic=‘OLAP’] } ON COLUMNS

{ col(‘/db/inventor’)//instType[@name=‘university’],
col(‘/db/inventor’)//instType[@name=‘industry’] } ON ROWS

FROM XQ-Cube-1
WHERE (col(‘/db/regTime’)//year[@num > 2002])

Fig. 12. An Example of XML-MDX Query

XML-OLAP: A Multidimensional Analysis Framework 41

Then, a new XQ-Cube is returned as a result, which has the axis dimensions
specified in the SELECT clause. The axis COLUMNS has two members of the
dimension ’Topic’: ’XML’ and ’OLAP’. The axis ROWS has two members of the
dimension ’Inventor’: ’university’ and ’industry’.

6 Conclusions

In this paper, we proposed XML-OLAP as a new framework for multidimen-
sional analysis of XML warehouses. We assumed that both fact and dimension
data are all represented as XML documents in XML warehouses. We proposed to
construct a new type of cube named XQ-Cube from XML warehouses. An XQ-
Cube is constructed from the measure data specified by an XQuery expression.
We used text mining operations for the aggregation of text measure data. We
proposed XML-MDX as a new multidimensional expression language for XQ-
Cubes. We demonstrated its effectiveness through the example of U.S. Patent
XML Warehouse. We believe our framework will contribute to the effective anal-
ysis of the vast amount of XML documents on the Web.

Acknowledgement

This work was supported by the Post-doctoral Fellowship Program of Korea
Science & Engineering Foundation (KOSEF).

References

1. A. Abello, J. Samos and F. Saltor “Understanding Facts in a Multidimensional
Object-Oriented Model,” In Proc. The 4th ACM Intl Workshop on Data Ware-
housing and OLAP (DOLAP01), pp. 32–39, Atlanta, 2001.

2. M. Gofarelli, S. Rizzi, and B. Vrdoljak, “Data Warehouse Design from XML
Sources,” In Proc. The 4th ACM Intl Workshop on Data Warehousing and OLAP
(DOLAP01), pp. 40–47, Atlanta, 2001.

3. W. Hümmer, A. Bauer, and G. Harde, “XCube – XML For Data Warehouses,” In
Proc. The 6th ACM Intl Workshop on Data Warehousing and OLAP (DOLAP03),
pp. 33–40, New Orleans, Louisiana, 2003.

4. M. R. Jensen, T. H. Mφller and T. B. Pedersen, “Specifying OLAP Cubes on XML
Data,” Journal of Intelligent Information Systems, Vol. 17, No. 2/3, pp. 255–280,
2001.

5. M. R. Jensen, T. H. Mφller and T. B. Pedersen, “Converting XML Data To UML
Diagrams For Conceptual Data Integration,” In Proc. The 1st Intl Workshop on
Data Integration Over The Web, pp. 17–31, 2001.

6. S. Lujan-Mora, J. Trujillo and P. Vassiliadis, “Advantages of UML for Multidimen-
sional Modeling,” In Proc. the 6th Intl Conf. on Enterprise Information Systems
(ICEIS 2004), pp. 298–305, ICEIS Press, Porto (Portugal), 2004.

7. V. Nassis, R. Rajugan, T. S. Dillon and W. Rahayu, “Conceptual Design of XML
Document Warehouses,” In Proc. Data Warehousing and Knowledge Discovery,
6th International Conference, DaWaK 2004, pp. 1–14, Zaragoza, Spain, 2004.

42 B.-K. Park, H. Han, and I.-Y. Song

8. T. Niemi, M. Niinimaki, J. Nummenmaa and P. Thanisch, “Constructing an OLAP
Cube from Distributed XML Data,” In Proc. The 5th ACM Intl Workshop on Data
Warehousing and OLAP (DOLAP02), pp. 22–27, McLean, 2002.

9. J. Pokorny, “Modelling Stars Using XML,” In Proc. The 4th ACM Intl Workshop
on Dara Warehousing and OLAP (DOLAP01), pp. 24–31, Atlanta, 2001.

10. L. I. Rusu, W. Rahayu and D. Taniar, “On Building XML Data Warehouses,”
In Proc. Intelligent Data Engineering and Automated Learning - IDEAL 2004, 5th
International Conference, pp. 293–299, Exeter, UK, 2004.

11. G. Spofford, MDX Solutions with Microsoft SQL Server Analysis Services, John
Wiley & Sons, 2001.

12. United States Patent and Trademark Office, http://www.uspto.gov/

	Introduction
	Related Work
	XML Warehouses
	Multidimensional Modeling of XML Warehouses
	Building an XML Warehouse

	The Multidimensional Analysis Framework for XML Warehouses
	XML Cubes
	Multidimensional Expression Language

	Application to US Patent XML Warehouse
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

