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Abstract. In this paper we present a solution called Materialized Aggre-
gate List designed for the efficient storing and processing of long aggre-
gate lists. An aggregate list contains aggregates, calculated from the data
stored in the database. In our approach, once created, the aggregates are
materialized for further use. The list structure contains a table divided
into pages. We present three different page-filling algorithms used when
the list is browsed. We present test results and we use them for estimating
the best combination of the configuration parameters: number of pages,
size of a single page and number of available database connections. The
Materialized Aggregate List can be applied on every aggregation level in
various indexing structures, such as, an aR-tree.

1 Introduction

Query evaluation time in relational data warehouse implementations can be im-
proved by applying proper indexing and materialization techniques. View mate-
rialization consists of first processing and then storing partial aggregates, which
later allows the query evaluation cost to be minimized, performed with respect to
a given load and disk space limitation [9]. In [5] the authors for the first time use
the spatial network for storing the relations between aggregated views. In [1,4]
materialization is characterized by workload and disk space limitation. Indices
can be created on every materialized view. In order to reduce problem com-
plexity, materialization and indexing are often applied separately. For a given
space limitation the optimal indexing schema is chosen after defining the set of
views to be materialized [2]. In [6] the authors proposed a set of heuristic crite-
ria for choosing the views and indices for data warehouses. They also addressed
the problem of space balancing but did not formulate any useful conclusions.
[8] presents a comparative evaluation of benefits resulting from applying views
materialization and data indexing in data warehouses focusing on query prop-
erties. Next, a heuristic evaluation method was proposed for a given workload
and global disk space limitation.

In this paper we present a new approach to storing and processing of long
aggregate lists. In our approach we materialize the calculated values (query re-
sults), but we divide the data set into smaller sets that we call pages. Our paper
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is organized as follows: section 2 briefly describes the motivation for our work. In
section 3 all the specification and configuration aspects are presented. Section 4
describes all the most interesting details of the proposed solution, and in section
5 we present the current state of the art. In section 6 we present test results.
Finally, section 7 concludes the paper.

2 Motivation

We are working in the field of spatial data warehousing. Our system (Distributed
Spatial Data Warehouse – DSDW) presented in [3] is a data warehouse gath-
ering and processing huge amounts of telemetric information generated by the
telemetric system of integrated meter readings. The readings of water, gas and
energy meters are sent via radio through the collection nodes to the telemetric
server. A single reading sent from a meter to the server contains a timestamp, a
meter identifier, and the reading values. Periodically the extraction system loads
the data to the database of our warehouse.

In our current research we are trying to find the weakest points of our solu-
tion. After different test series (with variations of aggregation periods, numbers
of telemetric objects etc.) we found that the most crucial problem is to create
and manage long aggregate lists. The aggregate list is a list of meter reading
values aggregated according to appropriate time windows. A time window is the
amount of time in which we want to investigate the utility consumption. The
aggregator is comprised of the timestamp and aggregated values.

When we want to analyze utility consumption we have to investigate con-
sumption history. That is when the aggregate lists are useful.

In the system presented in [3] aggregate lists are used in the indexing struc-
ture that is a modification of an aR-Tree [7]. Every index node encompasses
some part of the region where the meters are located and has as many aggregate
lists as types of meters featured in its region. If there are several meters of the
same type, the aggregate lists of the meters are merged (aggregated) into one
list of the parent node.

The aggregate lists are stored in the main computer memory. Memory over-
flow problems may occur when one wants to analyze long aggregation periods
for many utilities meters. If we take into consideration the fact that the me-
ter readings should be analyzed every thirty minutes, simple calculations reveal
that the aggregate list grows very quickly with the extension of an aggregation
period. For instance, for single energy meter an aggregate list for one year has
365 · 48 = 17520 elements. Each of the aggregators creating the list stores a few
values, so the memory consumption is high. In order to prevent memory overflows
we designed a memory managing algorithm applied in the system presented in
[3]. The mechanism defines a memory limit when the system starts. The limit is
always checked before some new aggregate list is created. If upon being loaded a
new list threatens to exceed a limit, the mechanism searches for a less frequently
read node in the indexing structure and removes its aggregate lists from the
memory, providing space for the new lists. The mechanism performs well when
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system uptime is not long. The creation and removal of aggregate list produces
memory fragmentation that results in memory overflow errors, even though the
memory limit had not been exceeded. Hence we decided to search for a new
approach to storing and processing aggregate lists with no length limitations.
Our main objectives were: the solution must be efficient and scalable, applicable
in indexing structures such as aR-tree and easy to use. We named the solution
a Materialized Aggregate List (MAL).

3 Specification

The main idea of the proposed solution is to provide a user with a simple interface
based on the standard Java list mechanism – a set of two functions: hasNext()
and next() which permits the convenient browsing of the list contents. Our
purpose was to create a list that could be used as a tool for mining data from
the database as well as a component of indexing structure nodes (fig. 1). Below
we present an example showing how the list can be used in the program code.
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Fig. 1. MAL idea – provide a solution based on a well-known standard

(1) MALList list = new MALList(categ, ob, dbConn);
(2) Iterator iterator = list.iterator(startDate);
(3) while (iterator.hasNext()){
(4) Aggregator a = (Aggregator)iterator.next();
(5) /* use theaggregator */
(6) /* time condition breaking the iteration */
(7) }
(8) list.close();

In the first line we see how the list object is constructed. The constructor parame-
ters are: the category (defines list type), an identifiable object (spatial telemetric
object or indexing structure node) and a database connector.

The second line creates the iterator that allows list browsing. In the standard
Java implementation the iterator function has no parameter. In the case of MAL
there is one parameter defining the timestamp of the first aggregator returned
by the next() function call.

Lines 3-7 contain instructions known from the standard Java solution. First
(line 3) it checks the availability of the next element in the list; the element is
retrieved (line 4) and some operations using this element are performed (line
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5). A time condition can be put in the next line, breaking the iteration. The
condition may be applied if it is not necessary to browse the whole list.

Line 8 closes the list. No new iterators can be created, the list waits for all
running threads to complete.

4 MAL Details

As mentioned before, our main intention when designing the MAL was to build
a solution free of memory overflows which would allow aggregate list handling
with no length limitations. We applied the following approach: every list iterator
consists of a table divided into pages. When an iterator is created some of the
pages are filled with aggregators (which pages and how many is defined by the
applied page-filling algorithm, see description below). The next pages are filled
(the aggregators are retrieved from the iterator table), while the list is being
browsed. After the whole page is read, it is refilled with new data. The solution
also uses an aggregates materialization mechanism that strongly speeds up the
aggregates retrieval. The most crucial configuration aspects are: the number of
pages, the size of a single page, the number of available database connections
and the pages-filling algorithm.

The actual list operation begins when a new iterator is created (iterator()
function call). A new table is created and two values are calculated:

– border date. The border date is used for managing the materialized data. The
border date is calculated by repeatedly adding to the install date (defined
in category block of the configuration file) a width of aggregation window
multiplied by the size of the table page. The date is equal to the timestamp
of the first aggregator in the page.

– starting index. In the case that starting date given as a parameter in the
iterator() function call is different from the calculated border date, the it-
erator index is adjusted so that a the first next() function call returns the
aggregator with the timestamp nearest to the given starting date.

4.1 Page-Filling Algorithms

As a new iterator is constructed some of its table pages are filled with aggre-
gators. Which pages and how many of them depends on the used page-filling
algorithm. All the algorithms create the page-filling threads that operate ac-
cording to the following steps:

1. Check whether some other thread filling a page with an identical border date
is currently running. If yes, register in the set of waiting threads.

2. Get a database connection from the connection pool.
3. Check if the required aggregates were previously calculated and materialized.

If yes, restore the data and go to 5.
4. Create the aggregate list. Materialize the list.
5. Release the database connection.
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6. Browse the set of waiting threads for threads with the specified border date.
Transfer the data and notify them.

In the subsections below we present three different page-filling algorithms.

Algorithm SPARE. Two first pages of the table are filled when a new iterator
is being created and the SPARE algorithm is used as a page-filling algorithm.
Then, during the list browsing, the algorithm checks in the next() function if
the current page (let’s mark it n) is exhausted. If the last aggregator from the n
page was retrieved, the algorithm calls the page-filling function to fill the n + 2
page while the main thread retrieves the aggregates from the n + 1 page. One
page is always kept as a ”reserve”, being a spare page. This algorithm brings
almost no overhead – only one page is filled in advance. If the page size is set
appropriately so that the page-filling and page-consuming times are similar, the
usage of this algorithm should result in fluent and efficient list browsing.

Algorithm RENEW. When the RENEW algorithm is used, all the pages are
filled during creation of the new iterator. Then, as the aggregates are retrieved
from the page, the algorithm checks if the retrieved aggregator is the last from the
current page (let’s mark it n). If the condition is true, the algorithm calls the page-
filling function to refill the n page while the main thread explores the n + 1 page.
Each time a page is exhausted it is refilled (renewed) immediately. One may want
to use this algorithm when the page consuming time is very short (for instance
the aggregators are used only for drawing a chart) and the list browsing should
be fast. On the other hand, all the pages are kept valid all the time, so there is a
significant overhead; if the user wants to browse the aggregates from a short time
period but the MAL is configured so that the iterators have many big pages – all
the pages are filled but the user does not use all of the created aggregates.

Algorithm TRIGG. During new iterator creation by means of the TRIGG
algorithm, only the first page is filled. When during n page browsing the one
before last aggregator is retrieved from the page the TRIGG algorithm calls
the page-filling function to fill the n + 1 page. No pages are filled in advance.
Retrieving the next to last aggregator from the n page triggers filling the n + 1
page. The usage of this algorithm brings no overhead. Only the necessary pages
are filled. But if the page consumption time is short the list-browsing thread
may be frequently stopped because the required page is not completely filled.

4.2 Connection Pool

A very important aspect of the Materialized Aggregate List operation is database
access. The page-filling threads use the database connection for creating an ag-
gregate list and for list materialization and restoring. The connection can be
used by only one thread at a time. The connection retrieving operation may
cause some threads to stop when the number of concurrently running threads is
greater than the number of available connections. To optimize connection man-
agement we decided to use the concept of connection pool (generally: resource
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pool) and connection factory (generally: resource factory). The pool parameter
is the maximal number of connections that can be obtained from the pool. After
creating, the pool does not contain any connections. During application oper-
ation, any thread that requires a database connection calls a pool method for
retrieving a connection. Depending on the pool state the following operations
are performed:

– if the pool contains a free connection, the connection is assigned to the calling
thread,

– if the pool does not contain a free connection, but the connections limit is
not exceeded, a new connection is created by means of the connection factory
and assigned to the calling thread

– if the pool does not contain a free connection and creating a new connection
would cause the connections limit to exceed, the calling thread is stopped
until some connection is returned to the pool or the pool is destroyed.

When a thread completes the operations requiring database connection, the
connection is returned to the resource pool. If some threads are waiting for a
connection, one of them will be assigned a connection and notified.

4.3 Materialization

In the presented operation of the page-filling function, points (3) and (4) mention
a concept of materialization. We introduced the materialization mechanism in
the DSDW system presented in [3] and the tests revealed the mechanism extreme
efficiency. The idea is to store once calculated aggregators as binary data in the
database, using the BLOB table column. In the current approach we use a table
with three columns storing the following values: the object identifier (telemetric
object or indexing structure node), page border date and aggregators in binary
form. The page materialization mechanism operates identically for each page-
filling algorithm.

5 State of Art and Future Plans

After finishing work on theoretical concepts we started implementation of our so-
lution. The current state of the art contains a full implementation of the database
iterator (the iterator for retrieving aggregates from a database) and all three
page-filling algorithms. The list operation is convergent with the description
presented in section 3. The iterator retrieving aggregates from the database can
automatically process new data added by the extraction process. If some page
was materialized but it is not complete (not all necessary data was found in the
database when it was being filled), then the page-filling thread starts exploring
the database from the point where the data was not available. The aggregates
retrieving finishes if there is no more available data, then the hasNext() function
call returns false.
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We are nearing completion of the work on the MAL iterator, which permits
us to apply the solution in indexing structures (such as aR-Tree). The applied
page-filling algorithm is very similar to the TRIGG algorithm for the database
iterator.

The data warehouse structure described in [3] applies distributed processing.
We also suppose that in this aspect introducing the MAL to our system will
bring benefits in efficiency. The current approach to sending complete aggregate
lists as a partial result from a server to a client results in high, single client
module load. When we divide the server response into MAL pages, the data
transfer and the overall system operation will presumably be more fluent.

6 Test Results

This section contains a description of the tests performed with the current im-
plementation of the presented solution. The tests were executed on a machine
equipped with Pentium IV 2.8 GHz and 512 MB RAM. The software environ-
ment was Windows XP Professional, Java Sun 1.5 and Oracle 9i. The tests were
performed for all three page-filling algorithms. Each of the algorithms was ap-
plied in the iterator used for retrieving aggregates from the database for 3, 6, 9,
and 12 months. The aggregates were created with a time window of 30 minutes.
The created aggregates were not used in the test program; the program only
sequentially browsed the list. Aggregates browsing was performed twice: during
the first run the list has no access to the materialized data, and during the sec-
ond run a full set of materialized data was available. The MAL parameters, page
number, page size and the number of available database connections, had the
following values:

– page size: 48 (1 day), 240 (5 days), 336 (7 days), 672 (14 days), 1008 (21
days), 1488 (31 days – 1 month), 2160 (46 days – 1.5 month), 2976 ( 62 days
– 2 months) and 4464 (93 days – 3 months),

– page number: 2 ÷ 10.
– number of database connections: 1 ÷ pageNumber + 1

Our goal was to find the best combination of the MAL parameters: the page-
filling algorithm, number of pages, size of a single page and number of available
database connections. The choice criterion consisted of two aspects: the efficiency
measured as a time of completing the list-browsing task and memory complexity
(amount of the memory consumed by the iterator table).

6.1 Page Size and Page Number

We first analyze the results of completing the list-browsing task during the first
run (no materialized data available) focusing on the influence of the page size
parameter. We investigated the influence for various numbers of pages and for all
three algorithms always setting the number of available database connections to
1. We observe that for all three algorithms the influence is very similar; graphs of
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Fig. 2. Operation of the SPARE algorithm for retrieving aggregates for 6 months

the relations are very convergent. Figure 2 presents a graph showing the results
obtained for the SPARE algorithm for the aggregation period of 6 months. The
list browsing times for small pages are very diverse. For the presented results
the times for a page of size 48 vary from 30 to 160 seconds depending on the
amount of pages. MAL operation for a page of size 240 is much more stable; the
differences resulting from the different number of pages do not exceed 25 seconds.
In graph we observe that for pages greater or equal 672 the list browsing time
does not significantly depend on the number of pages. We must notice that the
page size strongly influences the amount of memory consumed by the iterator.
Hence, considering the fact that further increasing the page size brings almost
no time benefit, we chose the page size 672 as the most optimal.

As next, we analyzed the influence of the combination of two parameters:
number of pages and number of available database connections on the MAL
efficiency. We performed the test for 1 to number of pages+1 available connec-
tions because in some particular cases the MAL instance also utilizes a database
connection. Again, we must notice, that number of pages influences the amount
of consumed memory as well as the CPU workload (in the worst case the num-
ber of pages equals the number of concurrently running threads). Analyzing test
results we concluded the following: the most optimal benefit/cost ratio is when
the list is configured to work with 4 ÷ 6 pages and the connection pool contains
as many connections as there are pages.

6.2 Page-Filling Algorithm

After choosing the optimal parameters, we compared the time efficiency of the
page-filling algorithms. Figure 3 shows a graph comparing efficiency of the al-
gorithms for browsing the list of aggregates for 12 months. The list was config-
ured to use 6 pages, each of size 672. The obtained results are strictly coherent
with the theoretical assumptions of the page-filling algorithms. When only one
database connection is available there is no time difference in the operation of the
algorithms. But along with increasing the number of available connections the
SPARE and the RENEW algorithms show better efficiency while the TRIGG
algorithm efficiency remains unchanged. The TRIGG algorithm fills only one
page at a time; it uses only one database connection. As a result, increasing the
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Fig. 3. Comparison of the page-filling algorithms

number of available connections brings no time profit. The STEPS algorithm
launches at maximum 2 threads concurrently, utilizing at most 3 database con-
nections what is clearly seen in the graph. And finally, the RENEW algorithm
fills all the pages concurrently, utilizing all the available connections. It improves
its efficiency each time the number of database connections increases. We chose
this algorithm as the most efficient one.

Therefore, to summarize the parameters selection we can state that the MAL
works efficiently for the following configuration: the RENEW algorithm, number
of pages 4÷6, size of a single page 672, number of available database connections
equals number of pages.

6.3 Materialization

The aspect last investigated was materialization influence on system efficiency.
The results interpretation reveals that materialization strongly improves sys-
tem efficiency. In figure 4 there is a graph showing the MAL operation for the
TRIGG algorithm for various number of pages of sizes 672 and 1488 and with
one database connection. As the first run we marked the list operation with no
materialized data, and as a second run we marked the operation with the full set
of materialized data. In both page size variants the benefit of materialization is
very similar, and upon analyzing the charts, we can state that using the materi-
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alized data the list operates from 5 to 8 times faster than when no materialized is
used. A similar situation can be observed for all the page size and page number
parameter combinations.

7 Conclusions

In this paper we presented the Materialized Aggregate List (MAL). The MAL
is a data structure for storing long aggregate lists. The list can be applied as a
component of indexing structure nodes in indexes like an aR-Tree. The aggre-
gators stored in the list can be retrieved from both the database and from other
levels of an indexing structure. In our solution we applied the idea of aggregates
materialization. The materialization has a very strong, positive influence on list
efficiency. We presented the current state of the art, our future plans, and the
theoretical and practical details of our solution. The paper additionally describes
results of the preliminary tests.
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