
Progressive Ranking of Range Aggregates�

Hua-Gang Li, Hailing Yu, Divyakant Agrawal, and Amr El Abbadi

University of California, Santa Barbara, CA 93106, USA
{huagang, hailing, agrawal, amr}@cs.ucsb.edu

Abstract. Ranking-aware queries have been gaining much attention recently in
many applications such as search engines and data streams. They are, however,
not only restricted to such applications but are also very useful in OLAP appli-
cations. In this paper, we introduce aggregation ranking queries in OLAP data
cubes motivated by an online advertisement tracking data warehouse application.
These queries aggregate information over a specified range and then return the
ranked order of the aggregated values. They differ from range aggregate queries
in that range aggregate queries are mainly concerned with an aggregate operator
such as SUM and MIN/MAX over the selected ranges of all dimensions in the data
cubes. Existing techniques for range aggregate queries are not able to process
aggregation ranking queries efficiently. Hence, in this paper we propose new al-
gorithms to handle this problem. The essence of the proposed algorithms is based
on both ranking and cumulative information to progressively rank aggregation re-
sults. Furthermore we empirically evaluate our techniques and the experimental
results show that the query cost is improved significantly.

1 Introduction

Traditionally, databases handle unordered sets of information and queries return un-
ordered sets of values or tuples. However, recently, the ranking or ordering of mem-
bers of the answer set has been gaining in importance. The most prevalent applica-
tions include search engines where the qualifying candidates to a given query are or-
dered based on some priority criterion [3]; ranking-aware query processing in relational
databases [14,11,2,10,4,7]; and network monitoring where top ranking sources of data
packets need to be identified to detect denial-of-service attacks [1,9]. Ranking of query
answers is not only relevant to such applications, but is also crucial for OnLine Ana-
lytical Processing (OLAP) applications. More precisely ranking of aggregation results
plays a critical role in decision making. Thus, in this paper, we propose and solve ag-
gregation ranking over massive historical datasets.

As a motivating example, consider an online advertisement tracking company 1,
where each advertiser places its advertisements on different publishers’ pages, e.g.,
CNN and BBC. In general an advertiser is interested in identifying the “top” publishers
in terms of total sales or number of clicks during a specific time period. For instance,

� This research is supported by the NSF grants under IIS-23022, CNF-0423336, and EIA-00-
80134.

1 The proposed research is motivated by a real need for such type of algorithmic support in an
application that arises in a large commercial entity, an online advertisement tracking company.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 179–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 H.-G. Li et al.

during a period of last 30 days while a particular advertisement campaign was con-
ducted, or during the period of 15 days preceding the new year. Such an advertising
company would need to maintain a data warehouse which stores data cube information
regarding the sales (or clicks) of the various publishers and advertisers, and where an
advertiser would like to ask queries of the form: “find the top-10 publishers in terms of
total sales from Dec 15, 2003 to Dec 31, 2003”. Based on existing techniques, first the
total sales from Dec 15, 2003 to Dec 31, 2003 for each publisher needs to be computed.
Then the total sales for all publishers are sorted to identify the top-10 publishers. We
refer to such queries as aggregation ranking, since they aggregate information over a
specified range and then return the ranked order of the results. An alternative example
is in the context of the stock market data. For example, given the trade volume of each
stock, an analyst might be interested in the top trades during a certain period.

The problem of aggregation ranking is similar and yet differs from many related
problems which have been addressed by the database and related research communi-
ties. We concentrate on the online analysis of massive amounts of data, which is similar
to range aggregate queries prevalent in data warehouses. However, we are concerned
with ranking of aggregated values over dimensions while prior research work on range
aggregate queries has mainly concentrated on a single aggregate operator such as SUM
and MIN/MAX over selected ranges of dimensions [6,13]. To the best of our knowledge,
this paper is the first attempt to address the ranking of aggregation in the context of
OLAP applications. Our approach differs from the data stream research related to the
TOP-k operations [1,9,5] since the data is not continuously evolving. Moreover, queries
in data streams are interested in more recent data. In contrast, our aggregation rank-
ing queries can involve data in any arbitrary time range. In the context of relational
databases, Bruno et al. [2] proposed to evaluate a top-k selection by exploiting statis-
tics stored in a RDBMS. Ilyas el al. [11,10] proposed a new database operator, top-k
join, and efficiently implemented it using available sorting information of joined rela-
tions. This work addresses the optimization of top-k selection and join operations in the
context of relational databases. Our work, however, targets aggregation ranking queries
in OLAP applications. In multimedia systems, Fagin [8] introduced ranking queries
that combine information from multiple subsystems. Fagin’s algorithm can be directly
applied if aggregates at multiple granularities (e.g. day, month, year) are considered.
In particular aggregates on any specified range can be obtained by additions of multi-
ple involved lists at different granularities. However when the number of involved lists
grows large, Fagin’s algorithm tends to have a linear cost while our proposed algo-
rithms in this paper always involve only two lists with sublinear cost. Furthermore, the
framework in [8] is indeed useful for reasoning the correctness of our algorithms for
aggregation ranking queries and therefore we adapt it to our context.

The rest of the paper is organized as follows. Section 2 gives the model and a mo-
tivating example. In Section 3, we present a new cube representation. Then we incre-
mentally develop three different techniques for answering aggregation ranking queries
in the following three sections, each of these improves a previous one. In Section 7
we empirically evaluate our proposed techniques and present the experimental results.
Conclusions and future research work are given in Section 8.

Progressive Ranking of Range Aggregates 181

2 Model and Motivating Example

In this paper we adopt the data cube [12] as a data model, A data cube can be concep-
tually viewed as a hyper-rectangle which contains d dimensions or functional attributes
and one or more measure attributes. Dimensions describe the data space, and measure
attributes are the metrics of interest (e.g., sales volume). In particular, each cell in a data
cube is described by a unique combination of dimension values and contains the cor-
responding value of the measure attribute. To introduce aggregation ranking queries,
we assume that among the d functional attributes of a data cube, one of the functional
attributes, Ar, is the ranking functional attribute and the rest d − 1 functional attributes
are the range functional attributes. An aggregation ranking query specifies ranges over
the d − 1 range functional attributes and requests a ranking of the values of the ranking
functional attribute Ar based on the aggregated values of the measure attribute after
applying some type of aggregation over the specified ranges.

For instance, using the online advertisement tracking company example, we con-
sider a 2-dimensional data cube SALES for a particular advertiser a, which has
Publisher as the ranking functional attribute, Date as the range functional attribute
and Sales as the measure attribute. Each cell in this data cube contains the daily sales
of advertiser a through the advertisements placed on a publisher p’s website. Fig. 1(a)
shows an example SALES data cube. A particular type of aggregation ranking query
of interest to advertiser a in the SALES data cube is “find the top-k publishers in terms
of total sales from day Ds to De”, and is specified as AR(k, Ds, De) for simplicity.
The shaded area in Fig. 1(a) shows an instance of such a query from day D3 to D6.
Answering this kind of aggregation ranking queries with SUM operator efficiently is the
focus of this paper. A basic way to answer such a query is to access each selected cell
in the data cube to compute the total sales for each publisher within the time range from
Ds to De. Then we sort the aggregated values to obtain the top-k publishers. Since the
number of involved cells is usually large, and data cubes are generally stored on disks,

10 5 10 16 7 17 1 4 12 4

ADVERTISER a
PUBLISHER

D
A
T
E

P1 P2 P3 P4 P5 P6 P7 P8 P9P0

D0

D1

D2

D3

D4

D5

D6

D7

D8

16 8 7 9 16 14 1 16 10 16

11 11 5 17 8 5 2 18 15 1

7 14 11 18 18 17 18 14 4 6

3 1 4 6 2 13 1 10 15 8

7 12 6 16 19 9 19 16 12 7

13 17 16 6 3 6 13 12 15 11

18 6 19 18 4 13 19 7 19 17

14 7 8 10 5 16 9 14 6 3

a

(a) SALES data cube

SPPS Cube
PUBLISHER

D
A
T
E

P1 P2 P3 P4 P5 P6 P7 P8 P9P0

D0

D1

D2

D3

D4

D5

D6

D7

D8

16P0
P7

16N
P4

16P4
P9

16P7
P5

14P9
P8

10P5
P3

9 P8
P1

8 P3
P2

7 P1
P6

1 P2

N

24P8
P1

27P7
P3

34N
P0

17P5
P2

19P1
P9

25P3
P4

19P4
P5

12P9
P6

26P0
P8

3 P3
N

34P5
P1

33P0
P8

23P8
P9

44P7
P4

42P3
P5

36P4
P0

21P9
N 48N

P3
29P1

P2
23P2

P6

44P4
P8

38P8
P2

33P1
P9

60N
P5

49P7
P0

53P3
P7

22P9
N

52P5
P4

41P0
P1

27P2
P6

47P4
P1

39P0
P2

37P1
P9

66N
P5

51P8
P0

66P3
P7

23P9
N

62P5
P8

56P7
P4

35P2
P6

54P8
P1

51P0
P2

43P1
P6

82N
P7

70P5
P8

75P7
P4

42P2
P9

78P3
P5

68P4
P0

42P6

N

67P1
P2

68P4
P0

59P0
P6

88P7
P8

73P5
P1

81P8
P4

55P2
P9

90N
P3

83P3
P5

53P6

N

99P8
P2

81P4
P9

86P0
P6

116N
P7

82P6
P1

110P7
P8

83P2
P4

111P3
P5

108P5
P0

73P1
N

85P5
P2

74P4
P6

78P0
P4

106N
P8

77P2
P1

94P7
P0

74P1
P9

97P8
P5

102 P3
P7

70P6
N

H T

HT

HT

H T

H T

H T

H T

H T

H T

[H: Header T: Tail N: NULL]

(b) SPPS cube for SALES data cube

Fig. 1. A SALES data cube and its SPPS cube

182 H.-G. Li et al.

this will result in significant overhead. Also online sorting entails significant time over-
head if there is a large number of publishers per advertiser. This in turn will impact the
response time of interactive queries negatively.

3 Sorted Partial Prefix Sum Cube

In order to process aggregation ranking queries efficiently, we propose to use cumula-
tive information maintained for each value of the ranking attribute Ar along the time
dimension. This is based on the prefix sum approach [6] which can answer any range
aggregate query in constant time. Furthermore we pre-sort the values of Ar for each
time unit based on the cumulative information. Hence a new cube presentation, Sorted
Partial Prefix Sum Cube (SPPS cube in short), is developed. SPPS cube has exactly the
same size as the original data cube. For simplicity of presentation, we will use the online
advertisement tracking company example to explain our data structures and algorithms.
The proposed algorithms can be generalized to handle data cubes with any arbitrary
number of dimensions in a straightforward manner. An SPPS cube for the SALES data
cube contains cumulative information along the DATE dimension for each publisher and
daily order information along the PUBLISHER dimension. Each cell in the SPPS cube,
indexed by (Pi, Di), maintains the following three types of information:

– PPSUM (Partial Prefix Sum): total sales for publisher Pi within the time range from
D0 to Di, i.e., cumulative sum Since the initial time of the SALES data cube.

– PPC (Pointer to Previous Cell): a pointer to a cell in the same row of the SPPS cube
which contains the least value no less than SPPS[Pi, Di].PPSUM; if such a pointer
does not exist, PPC is set to NULL.

– PNC (Pointer to Next Cell): a pointer to a cell in the same row of the SPPS cube
which contains the largest value no greater than SPPS[Pi, Di].PPSUM; if such a
pointer does not exist, PNC is set to NULL.

PPC and PNC for all cells in a given row or time unit, Di, maintain a doubly linked
list in decreasing order of PPSUM. We refer to this list as PPSUM(Di). In addition we
maintain two pointers pointing to the header and the tail of each doubly linked list for
the SPPS cube. The header is the top ranked publisher based on the cumulative sales
from the initial date of the SALES data cube and the tail is the bottom ranked publisher.

Fig. 1(b) shows the SPPS cube for the SALES data cube in Fig. 1(a). Each cell
contains PPSUM, PPC, PNC information in the form of PPSUMPPCPNC. Also for presentation
simplicity, we use the publisher index for pointers PPC/PNC. Note that the preprocessing
of SPPS cube is offline, which is typical in real data warehousing applications. Space
and offline processing are usually sacrificed for online interactive query processing.

4 Complete Scan Algorithm

We first present a simple algorithm, complete scan, to process aggregation ranking
queries by using the pre-computed cumulative information in SPPS cubes. Given a
query AR(k, Ds, De), we need to obtain the total sales SUM(Pi, Ds, De) for each pub-
lisher Pi from Ds to De. This can be computed from PPSUM(Di) maintained for each
publisher Pi in the SPPS cube, which is actually given by the following subtraction:

Progressive Ranking of Range Aggregates 183

SUM(Pi, Ds, De) = SPPS[Pi, De].PPSUM−SPPS[Pi, Ds − 1].PPSUM.

Collecting the total sales of all publishers between Ds and De together, we get a list de-
noted by SUM(Ds, De) = {SUM(P0, Ds, De), . . . , SUM(Pn−1, Ds, De)}. Then the top-k
publishers during the period (Ds, De) can be easily extracted from the list SUM (Ds, De)
as follows. Take the first k publishers from the SUM list, sort and store them into a list
called list-k. For each publisher in the sum list ranging from k + 1 to n, insert it into
list-k, then remove the smallest publisher from list-k. Therefore the publishers in the
final list-k are the top-k publishers. The query cost is O(n + n log k). If k is a constant
or k is much smaller than n (k << n), the query cost is linear.

Note that the cost of the query is independent of the query range in the time dimen-
sion and is linearly dependent on the total number of publishers. Since the data cube is
stored on disks, the cost of retrieving every publisher’s information from disk can be
relatively high. Furthermore an online advertisement tracking data warehouse serves a
large number of advertisers at the same time. Thus the delay may not be acceptable for
analysts who prefer interactive response time. In the next two sections, we extend the
complete scan algorithm to improve the query cost by exploiting the ranking informa-
tion maintained in the SPPS cube to minimize the number of publishers scanned.

5 Bi-directional Traversal Algorithm

In the complete scan algorithm, the first step computes the total sales for each publisher
in a given time range, for which the best time complexity is linear. In order to reduce
the total query cost, we need to avoid computing the entire SUM list. This is the premise
of the bi-direction traversal algorithm discussed in this section.

The problem of evaluating aggregation ranking queries now reduces to the problem
of combining two lists of ordered partial prefix sums corresponding to the given time
range (Ds, De), i.e., PPSUM(Ds−1) and PPSUM(De) respectively. Intuitively, for a given
query AR(k, Ds, De), the publishers which are in the query result must have relatively
larger values in list PPSUM (De) and relatively smaller values in list PPSUM(Ds − 1).
Thus, instead of computing the entire list of SUM (Ds, De), we may only need to com-
pute the total sales of publishers which have higher ranking in PPSUM(De), and lower
ranking in PPSUM (Ds − 1) as long as the number of these publishers is large enough
to answer the aggregation ranking query. Based on this intuition, we design the bi-
directional traversal algorithm shown in Algorithm 1.

In the bi-directional traversal algorithm, we extract publishers concurrently from
list PPSUM(De) in decreasing order (starting from the header of PPSUM(De) down to
the tail) into a list denoted by Le, and from list PPSUM(Ds − 1) in increasing order
(starting from the tail of PPSUM(Ds − 1) up to the header) into another list denoted
by Ls, until the number of publishers in the intersection of their output sets Ls ∩ Le

is no smaller than k. Hence scanning all the publishers is avoided. Then calculate the
total sales of all publishers in L = Ls ∪ Le. Finally, compute the top-k publishers in
L = Ls ∪ Le based on their total sales during (Ds, De). These top-k publishers are
actually the answer to the given query. The bi-directional traversal algorithm improves
the processing cost of AR(k, Ds, De) to O(

√
n) with arbitrarily high probability if the

two lists PPSUM(Ds−1) and PPSUM(De−1) are independent and k is much smaller than

184 H.-G. Li et al.

Algorithm 1 Bi-directional Traversal Algorithm
1: Input:
2: AR(k, Ds, De);
3: Procedure
4: Ls = φ, Le = φ;
5: POINTERs = Tail of PPSUM(Ds − 1)
6: POINTERe = Header of PPSUM(De);
7: while | Ls ∩ Le |< k do
8: Ls = Ls ∪ POINTERs.publisher;
9: POINTERs = POINTERs.PPC

10: Le = Le ∪ POINTERe.publisher;
11: POINTERe = POINTERe.PNC
12: end while
13: for each publisher P in L = Ls ∪ Le do
14: Compute the total sales in [Ds, De] by SPPS[P, De].PPSUM− SPPS[P, Ds − 1].PPSUM;
15: Insert P into set R;
16: if | R |> k then
17: Remove Pi from R if its SUM(Pi, Ds, De) is smaller than all other publishers in R;
18: end if
19: end for
20: End Procedure
21: Output: R;

n. Due to the space limit, please refer to [15] for further details of query cost analysis
and the correctness proof of the bi-directional algorithm.

6 Dominant-Set Oriented Algorithm

The bi-directional traversal algorithm can answer a query AR(k, Ds, De) in O(
√

n)
with arbitrarily high probability for n publishers if the two lists PPSUM(Ds − 1) and
PPSUM(De) are independent. Unfortunately in most real applications, this is not the
case. For example, considering the online advertisement tracking data warehouse appli-
cation, the two lists are independent if the probability of daily sales is not dependent on
a specific publisher, i.e., if all publishers have similar and independent degree of pop-
ularity. However, in real world, some publishers are usually more popular than others.
Thus the daily sales obtained through the advertisements placed on those publishers
are much more than that of other publishers. Under such circumstances, the cumulative
sales in lists PPSUM(Ds − 1) and PPSUM(De) for a publisher may not be completely
independent. Therefore the probability that the query cost is O(

√
n) becomes low. In

particular, the worst case could happen when the two lists have almost the same set
of publishers that always have the most daily sales. Fig. 2(a) shows such an example,
where publishers P0, P1, and P2 always have more daily sales than the rest of the pub-
lishers. Given any query AR(k, Ds, De) over the data cube shown in Fig. 2(a), by using
the bi-directional traversal algorithm, in order to get Ls ∩ Le ≥ k, the number of pub-
lishers in Ls ∪ Le can be up to n. As a result, the query cost is almost linear. This
is mainly because the bi-directional traversal algorithm is unable to minimize the size
of a superset of the top-k publishers efficiently in the presence of correlation among
publishers and skewed distributions.

Hence, our goal now is to optimize the bi-directional traversal algorithm by pruning
the search space in list PPSUM(Ds − 1). In order to do that, we need to identify the
candidates for an aggregation ranking query. Without any doubt, dominant publishers

Progressive Ranking of Range Aggregates 185

PUBLISHER

D
A
T
E

P1 P2 P3 P4 P5 P6 P7 P8 P9P0

D0

D1

D2

D3

D4

D5

D6

D7

D8

65 51 61 9 16 14 1 16 10 16

64 56 60 17 8 5 2 18 15 1

50 69 66 18 18 17 18 14 4 6

62 67 61 16 7 17 1 4 12 4

63 53 59 6 2 13 1 10 15 8

67 61 62 16 19 9 19 16 12 7

60 54 50 6 3 6 13 12 15 11

65 54 60 18 4 13 19 7 19 17

68 52 54 10 5 16 9 14 6 3

10 9 9 2

5 4 3 2

100 99 98 20

112 109 106 34

P0 P3 P2 P1

P1 P0 P3 P2

P3 P1 P2 P0

D0

D1

D2

P3 P2 P1 P0

Ranking of publishers based on the sales on Di

1

1

P4

P4

10

P4

12

P4

Ranking of publishers based on the sales from D0 to D2

Scan(D0) = {P0,P3}

Scan(D1) = {P0,P3,P1}

Scan(D2) = {P0,P3,P1,P2}

(a) An example of dominant set (b) Identify candidate set

Fig. 2. An example of dominant set and how to identify candidate set

usually dominate the top-k slots and need to be considered in the candidate set. However
some variations may occur, i.e., some non-dominant publishers may become dominant.
Hence we need to identify such a set of candidates that may include the answer to an
aggregation ranking query, for which we assume that all aggregation ranking queries
AR(k, Ds, De) request a value of k no larger than kmax which is the maximum value
of k specified in any aggregation ranking query. This is a realistic assumption, since
advertisers are usually interested in a small number of publishers, especially those with
a relatively high performance. We, therefore, assume that kmax << n and kmax is an
application-dependent and user-defined parameter. We now introduce the notation of
the candidate set for a day Di, denoted as Scan(Di). Scan(D0) is initialized to contain
the top-kmax publishers on the first day of the SALES data cube. Scan(Di) contains all
publishers in Scan(Di−1) and all publishers which are ranked on day Di above any
publisher in Scan(D0) as well. We observe that Scan(Di−1) ⊆ Scan(Di).

Consider the following example: assume there are 5 publishers P0, P1, P2, P3 and
P4 as shown in Fig. 2(b). We have the sales tracking information for three days D0,
D1 and D2. Let kmax be 2. P0 and P3 ranked top-2 on day D0. Hence Scan(D0) =
{P0, P3}. On day D1, P1 is ranked above P3 and P3 ∈ Scan (D0), therefore, Scan(D1)
= {P0, P3, P1}. Similarly Scan (D2) = {P0, P3, P1, P2}. It is possible that a publisher
which is ranked above any publisher in Scan(D0) on day Di could have a large total
sales within some time range (Ds, Di). For example, P2 ranked top-2 in terms of total
sales within (D0, D2). Moreover, since P4 does not have a higher rank than the publish-
ers in Scan(D0) for any day, it is impossible to be a top-2 publisher for any aggregation
ranking query. Scan(Di) is a superset of the top-k publishers for a given aggregation
ranking query AR(k, Ds, Di), and the correctness is given in the following assertion2.

Assertion 1 For a given aggregation ranking query AR(k, Ds, De), all the qualifying
publishers must be contained in the candidate set for day De, Scan(De).

From Assertion 1, we know that in order to answer a given query AR(k, Ds, De),
we need to consider all the publishers in Scan(De). A straightforward solution is to

2 Please refer to [15] for proof.

.

186 H.-G. Li et al.

obtain for each publisher p ∈ Scan(De) its prefix sum of sales from list PPSUM(Ds −1)
and list PPSUM(De). However this requires random accesses to both lists which results
in a lot of random I/Os. In order to reduce the random accesses as well as consider all
publishers in Scan(De), we need to track the maximum index of all publishers in Scan

(De) in list PPSUM(Ds − 1). We refer to this maximum index as the pruning marker.
Note that the indices of cells in a list are in increasing order from the header to the tail.
The header has an index of 0 and the tail has an index of n − 1. All publishers after the
pruning marker in list PPSUM(Ds − 1) will be pruned as they do not qualify to be top-k
publisher candidates, and hence the search space is reduced.

However it is not efficient to compute the pruning marker online since finding the
index of each publisher P ∈ Scan(De) in list PPSUM(Ds − 1) requires access to its
corresponding cell in the SPPS cube. This can again degrade performance, especially
when the size of Scan(De) is large. Since Scan (Ds − 1) is a subset of Scan(De), we
can pre-process the publishers in Scan(Di − 1) for each date Di and store the index
corresponding to the smallest ranked publishers in Scan (Di − 1), and then process the
remaining publishers for a given query. Hence for each day Di, in addition to Scan (Di),
we maintain the maximum index in list PPSUM(Di) of all publishers in Scan(Di). We
refer to this index as IDXmax(Di). Please refer to [15] for the pseudo-code of comput-
ing Scan(Di) and IDXmax(Di). Note that a data cube such as SALES is updated in an
append-only fashion. When the new sales data of date Di are appended to the data cube,
we simply compute Scan(Di) and IDXmax(Di) based on Scan(Di−1) and Scan(D0).

We now show how to use Scan(Di) and IDXmax(Di) to reduce the list traver-
sals of the bi-directional traversal algorithm, resulting in the dominant-set oriented
algorithm. We first calculate a set of candidate publishers Sr that are in Scan(De)
but not in Scan(Ds − 1). The publishers in Sr may or may not be ranked higher
than IDXmax(Ds − 1) which is pre-computed. Let idxr be the maximum index of
the publishers in Sr. Hence we need to identify the pruning marker PM which is
max(IDXmax(Ds −1), idxr). Consider the example shown in Fig. 2(b). Given AR(2,
D1, D2), Sr = Scan(D2) − Scan(D0) = {P1, P2}. The PM for list PPSUM(D0) is the
maximum value of idxr and IDXmax(D0). idxr in this case is 3 while IDXmax(D0)
is 1. Hence PM = 3. Thus publisher P4 can be pruned from the search space.

The rest of the dominant-set oriented algorithm is the same as the bi-directional
traversal algorithm except that the starting point of traversing PPSUM (Ds − 1) is from
the pruning marker PM . Again, due to the space limit, please refer to [15] for the
pseudo-code of the algorithm. Since the dominant-set oriented algorithm prunes the
search space in PPSUM(Ds −1) by applying a pruning marker, it will always outperform
the bi-directional traversal algorithm, especially when there is a dominant publisher set.

7 Experiments

We conducted extensive experiments over both synthetic and real datasets to evaluate
our proposed techniques. The experimental results validated our assumptions regard-
ing the characteristics of datasets. Due to the lack of space, we only present partial
experimental results over the real data sets. Please refer to [15] for more performance
evaluation.

Progressive Ranking of Range Aggregates 187

The real clicks datasets are from CJ.com, an online advertisement tracking company.
They are for a larger number of advertisers where the number of publishers for each
advertiser ranges between 4,000 and 5,000. The maximum number of publishers is up to
100,000 for some advertisers, however for confidentiality, we were only supplied with
the datasets restricted to about 4,000 to 5,000 publishers. Each clicks dataset contains
the daily clicks of all publishers for about 180 days.

The experiments were conducted on a Pentium IV 1.6GHz PC with 256MB RAM
and 30GB hard disk. We executed two sets of aggregation ranking queries: a uniform
query set and a biased query set, each of them with 1,000 queries. The uniform query set
contains queries whose ranges are uniformly generated along the DATE dimension, The
biased query set contains queries which are generated to model real user query patterns.
The details of generating such a biased query set can be found in [15]. The comparison
of the different techniques is based on the average query time in milliseconds.

We conducted experiments over a large number of real clicks datasets of different
advertisers to examine how the value of k affects query cost. The experiments exhibited
similar results. Thus, here we only present the experimental results for an advertiser
with 4,000 publishers and kmax = 50. Fig. 3(a) and Fig. 3(b) show the experimental
results over a uniform query set and a biased query set respectively. We observe that
the dominant-set oriented algorithm outperforms both the complete scan algorithm and
the bi-directional traversal algorithm. The value of k does not affect the complete scan
approach, since the value of k does not have any impact on this algorithm assuming
that the output time can be ignored. The average query cost of the two other techniques
tends to increase slightly when the value of k increases, since the number of publishers
in Ls ∩ Le becomes larger and therefore results in a larger number of publishers in
Ls ∪ Le. We also notice that the bi-directional traversal algorithm performs worse than
the complete scan algorithm. This is because the real clicks datasets demonstrate to
have a set of dominant publishers. Also this does not contradict the theoretical analysis
as given in [15], which states that the bi-directional traversal algorithm at most needs to
process all publishers and has linear performance in the worst case. Due to the dominant
publishers, when using the bi-directional traversal algorithm, the number of publishers

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
se

c)

The value of k

Complete Scan Algorithm
Bi-directional Traversal Algorithm
Dominant-Set Oriented Algorithm

(a) Effect of k (uniform query set)

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(in

 m
se

c)

The value of k

Complete Scan Algorithm
Bi-directional Traversal Algorithm
Dominant-Set Oriented Algorithm

(b) Effect of k (biased query set)

Fig. 3. Performance evaluation over real data set

188 H.-G. Li et al.

in Ls ∪ Le reaches n (n is the total number of publishers). Based on the Algorithm 1,
in order to compute the total sales for each publisher in Ls ∪ Le, we need to randomly
access the prefix sums of the sales for publishers that are in Ls but not in Le or vice
versa. Since the number of publishers in Ls ∪ Le is almost n, we need nearly n ran-
dom accesses, which results in expensive disk I/O cost. However, in the complete scan
algorithm, lists PPSUM(Ds − 1) and PPSUM(De) are always loaded into main memory
sequentially thus taking advantage of the fast sequential access property of disks. As a
result, the bi-directional traversal algorithm has worse performance than the complete
scan algorithm even though they process almost the same number of publishers.

8 Conclusion

In this paper, we formalized the notion of aggregation ranking for data warehouse ap-
plications. Aggregation ranking queries are critical in OLAP applications for decision
makers in the sense that they provide ordered aggregation information. We have pro-
posed a progression of three different algorithms to handle aggregation ranking queries.
Our final algorithm, the dominant-set oriented algorithm, is efficient and realistic, since
it exploits the pre-computed cumulative information and the bi-directional traversal of
lists while restricting the traversal to a small superset of the actual dominant set which
is exhibited in real datasets. In general, with increasing reliance on online support for
interactive analysis, there is a need to provide query processing support for complex
aggregation queries in large data warehouses where sub-query results are correlated on
a variety of metrics. Our future work will involve identifying such types of queries and
developing database technologies for efficiently processing such queries. Furthermore,
our proposed techniques can be generalized to handle aggregation ranking queries over
high dimensional data cubes.

References

1. Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proc. of Int. Conf. on
Managment of Data (SIGMOD), pages 563–574, 2003.

2. N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Trans. on Database Systems,
27(2):153–187, 2002.

3. N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web accessible
databases. In Proc. of Int. Conf. on Data Engineering (ICDE), pages 369–380, 2002.

4. K. C. Chang and S. Hwang. Minimal probing: Supporting expensive predicates for top-k
queries. In Proc. of Int. Conf. on Management of Data (SIGMOD), pages 346–357, 2002.

5. M. Charikar, K. Chen, and M. Farach-Colton. Approximate frequency counts over data
streams. In Proc. of 29th Int. Colloq. on Automata, Languages and Programming, pages 693
– 703, 2002.

6. C.Ho, R.Agrawal, N.Megiddo, and R.Srikant. Range queries in olap data cubes. In Proc. of
Int. Conf. on Management of Data (SIMGMOD), pages 73–88, 1997.

7. D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top N queries. In Proc.
of Int. Conf. on Very Large Data Bases (VLDB), pages 411–422, 1999.

8. Ronald Fagin. Combining fuzzy information from multiple systems. In Proc. of Symp. on
Principles of Database Systems (PODS), pages 216–226, 1996.

Progressive Ranking of Range Aggregates 189

9. L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Identifying frequent
items in sliding windows over on-line packet streams. In Proc. of the conference on Internet
measurement conferenc, pages 173–178, 2003.

10. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Joining ranked inputs in practice. In Proc. of
Int. Conf. on Very Large Data Bases (VLDB), pages 950–961, 2002.

11. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in relational
databases. In Proc. of Int. Conf. on Very Large Data Bases (VLDB), pages 754–765, 2003.

12. J.Gray, A.Bosworth, A.Layman, and H.Pirahesh. Data cube: A relational aggregation oper-
ator generalizing group-by, cross-tabs and sub-totals. In Proc. of Int. Conf. on Data Engeer-
ing(ICDE), pages 152–159, 1996.

13. S. Y. Lee, T. W. Ling, and H.-G. Li. Hierarchical compact cube for range-max queries. In
Proc. of Int. Conf. on Very Large Data Bases (VLDB), pages 232–241, 2000.

14. C. Li, K. C.-C. Chang, I.F. Ilyas, and S. Song. Ranksql: Query algebra and opatimization for
relational topk queries. In Proc. of Int. Conf. on Management of Data (SIGMOD), 2005.

15. H.-G. Li, H. Yu, D. Agrawal, and A. El Abbadi. Ranking aggregates. Technical Report
2004-07, University of California at Santa Barbara,
http : //www.cs.ucsb.edu/research/trcs/docs/2004-07.pdf, 2004.

	Introduction
	Model and Motivating Example
	Sorted Partial Prefix Sum Cube
	Complete Scan Algorithm
	Bi-directional Traversal Algorithm
	Dominant-Set Oriented Algorithm
	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

