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Abstract. QC-Trees is one of the most storage-efficient structures for
data cubes in a MOLAP system. Although QC-Trees can achieve a high
compression ratio, it is still a fully materialized data cube. In this pa-
per, we present an improved structure PMC, which allow us to partially
materialize cells in a QC-Trees. There is a sharp contrast between our
partially materialization algorithm and other extensively studied mate-
rialized view selection algorithms. If a view is selected in a traditional
algorithm, then all cells in this selected view are to be materialized. Our
algorithm, however, selects and materializes data by cells. Experiments
results show that PMC can further reduce storage space occupied by the
data cube, and can shorten the time for update the cube. Along with
further reduced space and update cost, our algorithm can ensure a stable
query performance.

1 Introduction

Using pre-aggregated data in data cube is an efficient method to improve query
performances of data cubes. Usually, to attain better storage and update per-
formance, only a part of views are materially stored in the database. Appar-
ently, there exists performance difference between materialized view and non-
materialized view. Moreover, to select materialized views, prior knowledge about
the query model of users should be attained. This kind of knowledge, however,
are usually not available.

QC-Trees is one of the most compress efficient structures of data cubes. This
structure has significant merits. The more sparse the data cube is, the more
storage space can be saved. Since typically high-dimension data cubes are sparse,
a high compression ratio can be easily achieved.

In this paper, we present PMC and corresponding algorithms to select only
a part of cells in QC-Tree to be materialized so that better space and update
efficiencies are achieved. In contrast with traditional view materialization algo-
rithms, cells (not views) are selected to be materialized. In this way, a low bound
of query can be ensured by our structure. This low bound is regulated by a pa-
rameter of selection algorithm, which can be used for controlling the tradeoff
between storage, update and query performances.
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This paper includes following contributions:
Firstly, we present a structure PMC (Partially Materialized Cube), which

can be seen as an extension or a generalization of QC-Tree. To our knowledge,
our work is the first attempt to partially materialize data cube at the cell level.

Secondly, corresponding algorithms are presented, including selection of ma-
terialized cells, queries and update process for PMC. Besides the costs of storage
and maintenance are reduced, the query performance can be stably ensured by
a parameter of the selecting algorithm.

The paper is organized as follows: related work are reviewed in Section 2.
In section 3, we present PMC structure and corresponding algorithms including
select, update and query algorithms. Then in Section 4 we conduct experiments
to evaluate PMC algorithm, while conclusions are presented in Section 5.

2 Related Work

Online analytical processing (OLAP) is an essential data analysis service and can
provide critical insights into huge amount of application data. Data Cube, which
was proposed by J. Gray[2], has been extensively applied to the implementation
of OLAP. Data in a data cube can be stored in special data structures(MOLAP)
or in tables of relational databases(ROLAP).

Using pre-aggregated data in data cube is an efficient method to improve
query performance of OLAP. However, this method brings serious space and
maintenance problems. Although this situation can be relived by materializing
only a subset of all views, which has been extensively studied in recent years,
this strategy results in significant difference of query performance between ma-
terialized views and non-materialized views. Another flaw of this strategy is that
the cost model for selecting views often needs prior knowledge about how users
query the data. However, it is very difficult to attain this knowledge.

For MOLAP systems, data cubes are typically stored in (sometimes com-
pressed) data arrays[10]. Although this method can help to achieve better queries
performance, the size of these data cube become more huge. A lot of papers tried
to compress data cube by compressing the arrays[6], or only providing inaccurate
answers for queries[1][7].

Recently several new structures, such as condensed cube[9], Dwarf[8], Quo-
tient cube[4] and QC-Trees[5], are proposed to substantially reduce the size of
the data cube. These structures have similar idea: when several different level
aggregation values have the same certain characteristics, these structures can
store them in one storage unit. In other words, they use one memory unit to
present several cells in data cube, if these cell are computed by the same subset
of the fact table’s tuples.

In 2002, W. Wang[9] proposed the concept of BST(Base Single Tuple). If a cell
SD in the data cube only covers one tuple r in the base table, then r is called the
BST of SD. If r is a BST on some (preferably maximized) SD, the aggregation
function should be applied only, and exactly once, to tuple r. Moreover, for every
BST r, only one base tuple needs to be stored in the Condensed Cube.
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Dwarf[8] has a similar and better idea. It adopts directed acyclic graph(DAG)
to reduce prefix redundancy. To reduce suffix redundancy, it places Dwarf, several
different level cells which can be aggregated from one set of base tables, in one
storage unit.

In Quotient cube[4], the set of cells of a Data Cube are partitioned into
certain number of equivalent classes. One equivalent classes, which contain one
or some cell(s) all have the same certain characteristics, will be coalesced into
one storage unit.

QC-Trees[5], which is the Quotient cube with cover equivalence, is one of the
most efficient structures among them. For example, a cell c covers a base table
tuple t whenever there exists a roll-up path from t to c. If the set of tuples in
the base table covered by cell c and cell d are the same, then c and d are cover
equivalent and their aggregation values are equal. In QC-Trees, both of them
will be partitioned into one class. Another point of QC-Trees is that all cells in
one class can be represented by the finest cell (called the upper bound of this
class) in the class.

3 Partially Materialized Cells

In this section, we develop a data structure PMC(Partially Materialized Cells)
to partially materialize QC-Tree at the cell level. Algorithms are also presented
for the constructing , updating and querying of PMC. In this section, a part of
algorithms are abridged for space reasons.

3.1 Motivation

In the QC-Tree, a node represents one or several cell(s) whose aggregation is not
NULL in the data cube. On the other hand, each non-NULL cell can find the
only corresponding node in the QC-Tree.

We noticed that a node in QC-Tree may possess many children (by edges
or links), whose labels may belong to one of several dimensions. Moreover, the
value of the node1 is equal to the aggregates of all children which belong to any
one of dimensions. For example, in Fig. 1, node 1 has 6 children: node 2,8,11(by
edge) and node 5, 7, 10 (by link). The labels of node 2,8 belong to dimension
Store, while 5,11 belong to Product and 7,10 belong to Season. The value of
node 1 and the aggregation of all its children on any one dimension are the
same: 27.

The point is, since the value of the node is equal to the aggregation of its
children, the value of the node needn’t to be stored if the cost of aggregating from
its children is trivial. When querying, we can retrieve the value by temporarily
aggregating the values of its children.

Thus, much of storage space can be saved. Moreover, the maintenance per-
formance of the data cube can be significantly improved.
1 In the following part of this paper, when we mention “the value of a node” , we are

refering to “the aggregation value of the cell which is correspond to the node ”.
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Store Product Season Price
S1 P1 s $6
S1 P2 s $12
S2 P1 f $9

Table 1. The base table
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Fig. 1. The QC-Tree for Table 1
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Fig. 2. The PMC for Table 1
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Fig. 3. A part of a slight complex PMC

For example, in a marketing management data warehouse, data are collected
under the schema sales(Store, Product, Season, Price). The base table,
which holds the sales records, is shown in Fig. 1. Attributes Store, Product and
Season are dimensions, while attribute Price is a measure and SUM(Sale) as
the aggregate function.

The data cube, with Store, Product and Season as dimensions and
SUM(Sale) as an aggregate function, is a set of results returned from being
grouped by each subset of these three dimentions. Each group-by corresponds
to a set of cells, described as tuples over the group-by dimensions.

A QC-Tree example for Table 1 is shown in Fig. 1, while Fig. 2 shows the
PMC from the same base data, where we set the threshold for query costs of PMC
to 2. Non-materialized nodes are marked with white boxes, while materialized
nodes are marked with black boxes. The edges are denoted by solid lines, the
link by the read thin broken lines. Compared to Fig. 1, node 1 and node 11 in
Fig. 2 are no longer to be materialized because the cost of computing each of
their values is not exceed 2. For example, A query for node 11 can be answered
by aggregating values of two other nodes:node 4 and node 10. In fact, QC-Tree
can be seen as the special case of PMC with threshold= 1.

Upon update problem, we have following considerations:
For a single cell, if it is to be updated, logically all cells roll up from it

should be updated to ensure consistency. QC-Trees can achieve a better update
performance than normal data cube just because a cell in QC-Trees may present
several coarser cells whose cover set are identical with it. When the base cell
is updated, values of those coarser cells needn’t be modified because they are
linked to the base cell. In other words, one modified action on the base cell also
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update all other cells with the same cover set, which is the reason why update
operation can be reduced in QC-Trees.

So the more other coarser cells are linked to the cell, the more the update
cost is reduced. In QC-Trees, an aggregated cell is only linked to one cell when
both cells’ cover sets are identical. In PMC, a non-materialized node can be
linked to one or several materialized node(s). As a result, PMC goes a further
step and makes more cells non-materialized.

Therefore, there are less nodes are to be update in PMC than in QC-Trees
when maintaining. As a result, PMC can achieve better update performance
than QC-Tree.

For example, in Fig. 1, if the value of node 10 are changed, the values of node
1 and node 11 should also be updated . However, in Fig. 2, such a change on
node 9 will not cause a update on node 1 and node 11.

3.2 The Structure of PMC

PMC is similar to QC-Tree , except that

– each node in PMC has an additional value cost, which denotes the cost
of retrieving the value of the node. For materialized node, the cost is set
to 1. For non-materialized node, the cost is set to the time of access its
descendants’ values when aggregating through edges and(or) links.

– all non-materialized nodes don’t store their value.
– (optional) each materialized node has a number of update-links which point

to its direct materialized descendants. These update-link are used for accel-
erating the process of update.

In this paper, the value of cost of a node is defined as the number of accessing
(materialized) node(s)’ value(s) in the course of get the value of the node. For a
materialized node, since its value is stored in the node itself, its cost is 1. To get
the value of a non-materialized node, we need drill down and get the value by
aggregating its descendants’ values. Therefor, if a node has a large cost, we will
spend much on retrieving its value when answering queries. In order to avoid
this situation, we have this kind of nodes materialized so that we can retrieve
any node’s value easily.

Fig. 3 shows a part of a more complex PMC, where the update-links are
marked by the blue thick broken lines.

Without loss of generality, we assume the type of aggregate function is SUM.
In fact, other common aggregate functions like COUNT, MAX, MIN can also
be the aggregate function of PMC, so does AVG, which can be denoted as
SUM/COUNT.

3.3 Construction of PMC

The construction of PMC is in four steps.

– Firstly, PMC is constructed like a QC-tree. The difference is that our algo-
rithm needn’t compute the aggregate value for each temporary class. In a
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Function PointQuery(CurrentNode)
local variable: localvalue
initiate localvalue;
if CurrentNode is materialized then

localvalue=CurrentNode.V aule;
else

Find the drill dimension D whose query cost is minimum;
for each child CD along dimension D of CurrentNode do

localvalue=aggregate(localvalue , PointQuery(CD));
endfor;

endif;
return localvalue;

Function Select(CurrentNode)
for every edge’s child nodes cd of CurrentNode do

Select(cd);
endfor;
//re-computer CurrentNode’s cost
if cost(CurrentNode) > Threshold then

SetMaterialized(CurrentNode);
BuildUpdateLinks(CurrentNode,CurrentNode);
compute and store CurrentNode’s aggregation value;
/*now the cost of CurrentNode becomes 1*/

endif;
return(cost(CurrentNode));

Fig. 4. Function PointQuery and Function Select

QC-Tree, the aggregates of all temporary classes have to be computed, and
a majority of them are repetitional and useless in the course of constructing
QC-Tree.

– Cost of each node is initiated in the second step. In this step, only leaf
nodes of the tree are materialized, so the cost of a node is in fact equal to
the number of the base tuple covered by the node.

– In third step, function select is executed for the tree and selects the set
of nodes to be materialized. The parameter Cthreshold of select is used to
control this process. Those nodes whose cost are larger than Cthreshold will
be materialized so that their costs are reduced to 1. By doing so, the cost of
query of all cells in PMC can be limited below Cthreshold.

– Finally, we perform BuildUpdateLinks to build update links for materialized
nodes. The update links are set among materialized nodes. Each materialized
node has update links which point to those nodes whose value is computed
from this node. Of course, if we want build a PMC without update-links, we
can jump over this step.

In Fig. 4, we present select function, which selects a set of nodes and then
materializes them so that there is no node whose cost exceeds Costthreshold in
PMC. It’s interesting that if this Costthreshold is set to 1, the corresponding
PMC is identical with the QC-Trees. It shows that QC-Tree is in fact the special
case of PMC with Costthreshold = 1.

For the sake of briefness, we do not show the detail of BuildUpdateLinks.
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3.4 Query

Point Query The answering for point query is rather easy. If the node is mate-
rialized, we’ll get the answer from the node immediately. Otherwise, the answer
will be retrieved by computing its descendants’ value. It’s clear that the cost
of this computation will not exceed Costthreshold. Algorithm for point query is
shown in Fig. 4.

3.5 Maintenance of PMC

To the PMC without update-links, the process of maintenance is similar to that
of QC-Tree. The difference is that only materialized nodes need to be updated
in PMC. As a result, less temporary “update” classes are produced in PMC and
thus the maintenance of PMC should be slight faster than that of QC-Tree.

If we want a better update performance, update-links can be build for accel-
eration. In following part of this subsection, we’ll address the issues concerned
with the maintenance of the PMC with update-links.

There are three types of maintaining operations on the base table: insert,
delete and update. Therefore, the change of source data can be represented
simply by tuples inserted into, deleted from, and updated in the base table.

Update. For a newly coming tuple, if there exits a corresponding node in PMC,
then a update operation starts. It’s clear that the corresponding node is a leaf
node. From subsection 3.3, we know that leaf nodes are materialized. Thus, The
node is materialized and has update links.

In PMC, values of nodes are update along update links. When the value is to
be updated, a (materialized) node will call the update functions of those nodes
which are pointed by its update links. The update value for the current node
will be passed as a parameter along these update functions. Thus, computing
aggregate values of newly coming tuples for temporary classes is avoided.

If execute the update function for a leaf node, all its materialized ancestors
will be updated.

If PMC is updated tuple by tuple, we can simply call the update functions
of corresponding leaf nodes to accomplish the update of PMC.

Batch Update. In theory, batch update can be accomplished by perform update
operations tuple by tuple. This strategy, however, is inefficient. In this way, if a
node is updated for t times, then all its ancestors’ value are bound to be modified
for t times. In other words, if a node covers n newly coming tuples, the update
function of this node will be executed for n times in the course of maintenance.

Therefore, for batch update, we adopt another strategy. Fig. 5 shows the
function BatchUpdate. Each materialized node has a variable tempV , and it is
initiated as 0. When the update function of this node is executed, the parameter
V alue, which is passed from one of its descendant, will used to cumulatively
modify (aggregate) tempV instead of the value of this node. Moreover, other
update functions will not be called by this update function. Only when it is
the last time the update function of this node is executed, will tempV be used
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Function BatchUpdate(CurrentNode, V alue)
CurrentNode.Countto update--;
if CurrentNode.Countto update > 0 then

tempV +=V alue;
else

SetNewV alue(CurrentNode, CurrentNode.tempV );
for every UpdateLink from CurrentNode do

Update(UpdateLink.TargetNode, CurrentNode.tempV );
endfor;

end if;

Fig. 5. Function BatchUpdate

to change the value of this node. And then, its ancestors’ update functions are
called along update links and take tempV as parameter.

This strategy has following merits:

1. No matter how many times will a node be updated , all its ancestors’
update functions will be executed only once.

2. Since values for update in PMC are passed along update links, we needn’t
compute aggregate values of temporary classes in ∆DFS. Thus, a lot of data
access and computations are avoided. Compared to it, computation for the initial
value of Countto update needn’t access the value of raw data and its complexity
can be neglected.

Insertion and Deletion. When there is no tuple in the base table such that it
has the same dimension values as the newly coming tuple, new classes should be
split from a old class, or be created. In this paper, we view an insertion operation
as the combination of (possibly) a node creation and a update operation.

Similar to insertion operation, we view a deletion operation as the combina-
tion of an update operation and possible mergence or deletion of old node(s).

Due to the limitation of space, we skip the detail of this part.

4 Experimental Results

In this section, synthetic and real data sets are used for examining the algorithms
we presented in this paper. We focus on three main performance issues(storage,
queries answering and maintenance) of PMC and compare them with those of
the QC-Trees.

There are two classes of data sets used in the experiments. The first one is
synthetic data with Zipf distribution. The synthetic data set contains 1,000,000
tuples and 6 dimensions, the cardinality of each dimension is 100. The other one
is the real data set containing weather conditions at various stations on land
for September 1985[3]. The weather data set contains 1,015,367 tuples and 6
dimensions. The attributes are as follows with cardinalities listed in parenthe-
ses: longitude (352), solar-altitude (179), latitude(152), present-weather (101),
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Fig. 6. Experimental Results

weather-change-code(10), and hour (8). All experiments are running on a Pen-
tium 4 PC with 256MB main memory and the operation system is Windows XP.

4.1 Storage

In QC-Tree, the number of data units is equal to the number of classes, while in
PMC it is equal to the number of materialized node. Fig. 6(a) and 6(b) illustrate
the value of thresholds versus the number of data storage units needed. The
results show that small thresholds(like 2 or 3) can achieve satisfying balance
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between storage and query. In Fig. 6(a) and 6(b), number of tuples in the base
table is 20000 .

Fig. 6(c) shows the results of storage vs. number of base tuples, while Fig.
6(d) shows storage vs. the number of dimensions and Fig. 6(e) shows storage
vs. the number of measures. The results illustrate that PMC can compresses the
data cube more efficiently than QC-Tree.

4.2 Queries Answering

In this experiment, we compared query answering performance of PMC and QC-
tree. We randomly generated 1,000 point queries and range queries on each data
set. Fig. 6(f) and 6(g) show the times for answering point queries on synthetic data
and range queries on real data separately. Other experiments have similar results.

The results show that the query performance of PMC is only a little worse
than that of QC-Tree.

4.3 Maintenance

To test the performance of the incremental maintenance of PMC, we generated
different size of data, inserted them into a size-fixed PMC. The tuples are batch
inserted. The results are shown in Fig. 6(h) and 6(i).

The results show that the maintenance performance of PMC is better than
QC-Tree. The reasons are: (1). our algorithm will conduct less aggregate opera-
tion when generating temporary classes; (2)there are less materialized nodes to
be update in PMC.

5 Conclusions

In this paper, we present algorithms to partially materialize cells in the data
cube. Compared with extensively studied view selection algorithms, our algo-
rithms deal with cells in compressed structure of data cube. Along with reduced
space and update cost, our algorithm can ensure a stable query performance.

Our algorithms can achieve a better tradeoff between storage, update and
query performances of a Data cube. As a example in this paper, our algorithms
are applied to QC-tree. In fact, other cell-level structure, such Dwarf or Con-
densed Cube, can also adapt our algorithms with appropriate modifications.
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