
Parallel Consistency Maintenance of
Materialized Views Using Referential Integrity

Constraints in Data Warehouses

Jinho Kim1, Byung-Suk Lee1, Yang-Sae Moon1, Soo-Ho Ok2, and Wookey Lee3

1 Dept. of Computer Science, Kangwon Nat’l University,
192-1 Hyoja Dong 2, Chunchon, Kangwon, Korea

{jhkim, bsdream, ysmoon}@kangwon.ac.kr
2 Dept. of Computer Science, Kosin University,

149-1 Dongsam Dong, Youngdo Ku, Pusan, Korea
shok@kosin.ac.kr

3 Dept. of Computer Science, Sungkyul University,
147-2 Anyang 8 Dong, Anyang, Kyungki, Korea

wook@sungkyul.edu

Abstract. Data warehouses can be considered as materialized views
which maintain the online analytical information extracted from dis-
tributed data sources. When data sources are changed, materialized
views should be maintained correspondingly to keep the consistency be-
tween data sources and materialized views. If a view is defined through
joining several source relations, an update in one source relation invokes
a set of join subqueries thus the view maintenance takes much time
of processing. In this paper, we propose a view maintenance algorithm
processing these join subqueries in parallel by using referential integrity
constraints over source relations. A relation which has several foreign
keys can be joined with referenced relations independently. The pro-
posed algorithm processes these join operations in parallel then it merges
their results. With the parallel processing, the algorithm can maintain
materialized views efficiently. We show the superiority of the proposed
algorithm using an analytical cost model.

1 Introduction

Data Warehouses (DW) are composed of materialized views which maintain on-
line analytical information extracted from data sources located physically at
different sites. These materialized views can be used to process users’ OLAP
queries efficiently without accessing data sources [1,2,3]. Whenever data sources
are changed, the materialized views defined on the sources should be maintained
to keep them up-to-date. This process is called view maintenance. Of view main-
tenance methods, incremental maintenance has been widely used, because it in-
crementally maintains views by using only the updated portion of each source
relation [4,5].

Data sources for data warehouses can be stored in remote areas and they can
be changed independently. It is difficult to maintain views consistently over the

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 146–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Consistency Maintenance of Materialized Views 147

changes of data sources. Thus we need a technique which maintains views as the
same sequence of changes and the same state as data sources. We call it view
consistency maintenance [3,4]. There have been several algorithms for view con-
sistency maintenance, such as ECA [5], Strobe [6], SWEEP [7], and PVM [8]. The
ECA algorithm was developed for view maintenance in single source site. The
Strobe and SWEEP algorithms proposed a view consistency maintenance for
join views on source relations distributed at multiple sites. The PVM suggested
a parallel processing algorithm for view maintenance, which handles multiple up-
dates occurred in source relations concurrently. When any change (i.e., insertion
or deletion) occurs in a source relation, all of these algorithms has to process a
sequence of join operations serially which combine the update with the tuples of
other source relations. From the results of these join operations, we can get the
values to modify views. Because each source relation can be stored in different
sites, the join operations take much processing time. In this paper, we develop
a parallel view maintenance algorithm, called PSWEEP/RI (Parallel SWEEP
with Referential Integrity) which executes these join operations in parallel.

Let’s suppose that a source relation has several referential integrity con-
straints and a materialized view is defined as joining it with other source rela-
tions through foreign keys. The join operations are independent from each other
thus they can be executed in parallel to build the view. By using this property
of referential integrity constraints, this paper proposes a parallel processing al-
gorithm, PSWEEP/RI, for view consistency maintenance, which processes join
operations for view maintenance in parallel. This can reduce the processing time
for view maintenance. Furthermore, this can also lessen the problem that view
maintenance cost increases linearly when the number of source relations does.
The remainder of this paper is organized as follows. Section 2 describes the
related works and the motivation of this paper. Section 3 presents the basic
concepts of the proposed PSWEEP/RI algorithm. Section 4 analyzes the per-
formance evaluation then, finally, Section 5 concludes this paper.

2 Related Works and Motivation

Materialized views in data warehouse are defined as join views on source re-
lations distributed over several sites. When one of source relations is changed,
the corresponding materialized views should be maintained to accommodate the
source updates. For this view maintenance, data warehouse has to execute join
operations of the changed source relation and all other source relations used to
define the views.

For example, suppose there is a data warehouse view defined on four source
relations shown in Figure 1. When some changes U1 (i.e., ∆R2) happen at the
source relation r2 and they are sent to data warehouse, the data warehouse
has to execute the following view maintenance query Query1 to compute the
information (∆V) changing its view. In order to execute Query1, as shown in
the Figure 1, the subqueries to join δR2 and other source relations (R1, R3, and

148 J. Kim et al.

Fig. 1. View maintenance process over distributed sources

R4) are sent in turn to the source sites and are executed [1,4] as follows. (Here,
Answer1 1 is the result of SubQuery1 1).

Query1 = R1 �� R2 �� R3 �� R4
SubQuery1 1 = R1 �� R2
SubQuery1 2 = Answer1 1 �� R3

· · · · · · · · ·
These source relations are stored in different sites each other and they can

be changed independently at the same time. Thus it is very difficult to keep
the consistency between materialized views and source relations. For example,
when the source relation r3 happens some changes U2 (i.e., ∆R3) before the
Answer1 2 is computed at the site, the answer of the SubQuery1 2 can involve
the state that the updates U2 had already occurred, which is different from
the state of source relation r1. Thus the views may not be maintained consis-
tently. Therefore, we need view maintenance techniques to guarantee the con-
sistency between data warehouse views and distributed source relations. For
these techniques, ECA, Strobe, SWEEP, and PVM algorithms have been pro-
posed [5,6,7,8].

Zhuge et al. [5] introduced ECA algorithms ensuring the consistency of views
for the cases that source relations are stored at a single source site. The Strobe
algorithm [6] considers distributed data sources, requiring materialized views to
contain a key for each of base relations and also requiring quiescence before
installing any changes in materialized views. The SWEEP algorithms are in-
troduced by executing serially view maintenance queries for updates in source
relations as the order of their arrivals [7]. In the SWEEP algorithm, the join op-
erations included in each view maintenance query are executed sequentially like
Figure 1. It can incur much processing time when many resource relations are
involved and/or source relation updates happen very frequently. In order to solve
the problems of the SWEEP, the PVM algorithm [8] extends the SWEEP by in-
voking and parallelizing multiple threads for view maintenance, one thread for
a view maintenance query. However, each thread executes the join operations
of its query sequentially as same as the SWEEP does. Therefore, this paper
proposes another approach for view consistency maintenance executing the join
subqueries in parallel. By doing this, we can process efficiently view maintenance
queries and we can also reduce the problem that view maintenance cost increases
as linear as the number of source relations increases.

Parallel Consistency Maintenance of Materialized Views 149

3 PSWEEP/RI Algorithm

This chapter describes the basic concepts of PSWEEP/RI which we propose.
The algorithm processes join operations among source relations in parallel or
it filters out view maintenance operation without processing any join among
them [1].

3.1 Strategies in the SWEEP Algorithm

Let’s suppose that there are referential integrity constraints on source relations
and materialized views are defined as the joins among them. These referential
integrity constraints can be represented by a graph as shown in the Figure 2. In
the figure, ENROL relation refers to STUDENT, COURSE, and PROFESSOR
relations. We call that it has referring relationship. When a relation refers to
multiple relations, it is called multiple referring. Some relations such as STU-
DENT, COURSE, and PROFESSOR can be referred by others. We call they
have referred relationships. When a relation is referred by several relations, it is
called multiple referred.

1()RSTUDENT

3()RCOURSE

2()RENROL

4()RPROFESSOR

5()RProfessor_Community 6()RResearch_Association

RI

RI
RI

RI RI

Fig. 2. Referential Integrity (RI) graph

When some changes(i.e., ∆R2) occurs in a relation R2 (i.e., ENTROL), in
this example, data warehouse has to perform the following query to get the
information for maintaining its views:

∆V = R1 �� ∆R2 �� R3 �� R4 �� R5 �� R6

In the existing SWEEP algorithm, this query is executed as follows: the join
operations in the left-hand side of ∆R2 are processed at first then the rest join
operations in the right side of ∆R2 are done. (Refer to the following procedure.)
These join operations are executed in sequential order. In order to perform each
join operation, furthermore, a subquery is sent to the site storing the relation
to be joined. If the number of source relations defining a view increases, the
number of join operations to execute increases thus the processing time for view
maintenance increases too.

Left Sweep: ∆Vleft = R1 �� ∆R2

Right Sweep: ∆V = ∆Vleft �� R3 �� R4 �� R5 �� R6

150 J. Kim et al.

3.2 Maintenance Strategy for Multiple Referring Relation

Suppose some changes (i.e., ∆R2) occur at a multiple referring relation (i.e., R2)
as shown in the above example. From RI graph described above section, we can
identify that the relation R2 refers to R1, R3, and R4. In order to get the view
maintenance information(∆V), the join operations between ∆R2 and R1, R3, or
R4 should be executed. To prove it, we present some lemmas and a theorem in the
below. Here we assume that r1, r2, r3, and r4 relations are defined the schema R1,
R2, R3, and R4 respectively, and r1 → r2 indicates that relation r1 refers to r2.

Lemma 1. Self-join of an identical relation r1 using its primary key, produces
the same relation as the original one. That is, π

R1
(r1 �� r1) = r1 holds.

Lemma 2.(commutative rule) [9] Join operation is commutative. That is, r1 ��

r2 = r2 �� r1 holds.

Lemma 3.(associative rule) [9] Join operation is associative. That is, (r1 ��

r2) �� r3 = r1 �� (r2 �� r3) holds.

Theorem 1.(parallel join using referential integrity) Let referential integrity
constraints r1 → r2, r1 → r3, and r1 → r4 exist and ∆r1 be some changes of
a referring relation r1. Then ∆r1 �� r2 �� r3 �� r4 = πR1,R2,R3,R4

(∆r1 �� r2) ��

(∆r1 �� r3) �� (∆r1 �� r4) holds.

Proof: Let ∆r1 be r1 for the simplicity, then the theorem is proved as follows.

(r1 �� r2) �� (r1 �� r3) �� (r1 �� r4)
= (r1 �� r2 �� r1) �� r3 �� (r1 �� r4) by Lemma 3
= (r1 �� r1 �� r2) �� r3 �� (r1 �� r4) by Lemma 2
= (πR1

(r1 �� r1) �� r2) �� r3 �� (r1 �� r4)
= (r1 �� r2) �� r3 �� (r1 �� r4) by Lemma 1
= (r1 �� r2) �� (r1 �� r4) �� r3 by Lemma 2
= (r1 �� r2 �� r1) �� r4 �� r3 by Lemma 3
= (r1 �� r1 �� r2) �� r4 �� r3 by Lemma 2
= (π

R1
(r1 �� r1) �� r2) �� r4 �� r3

= (r1 �� r2) �� r4 �� r3 by Lemma 1
= r1 �� r2 �� r3 �� r4 by Lemma 2

By the above Theorem 1, we can observe that the result of sequential exe-
cution for the join operations between ∆R1 and R2, R3, or R4 is equal to the
one of parallel execution for them. Therefore, we process the view maintenance
query in parallel as follows.

1R(a) 2R∆

3R(b) 2R∆

4R(c) 2R∆

That is, the join subqueries (a), (b), and (c) are executed in parallel then their
results are merged in turn to get the final result. (For the simplicity of explana-
tion, merging was represented by a join operation.)

Parallel Consistency Maintenance of Materialized Views 151

3.3 Maintenance Strategy for Referred Relation

This section describes the strategies for changes on a referred relation, which is
referred by other relations.

Theorem 2.(filtering equijoin using referential integrity) Suppose that r1 → r2
exist and the changes on the referred relation r2 is ∆r2. Then r1 �� ∆r2 =
φ, where ∆r2 is the combination of insertions (notated by �r2) and deletions
(notated by �r2).

Proof:
1) When some insertions occurred at r2, if r1 �� �r2 �= φ, then it means that the

referring relation r1 has tuples satisfying r1.FK = �r2.PK. These tuples violate
the referential integrity constraint (i.e., r1 → r2), it contradicts the definition of
referential integrity.

2) When some deletions occurred at r2,
2.1) if there is any tuple in r1 that the deleted tuples in �r2 refer to, it will be auto-

matically deleted or changed into another value according to the options (i.e.,
cascade, set null, set default, or restrict) given to the referential integrity con-
straint. Therefore r1 doesn’t have any tuple to join with �r2 thus r1 �� �r2 = φ.
Otherwise,�r2 couldn’t be performed.

2.2) if there are no tuples in r1 that refer to the tuples deleted from r2, there are
no tuples to join with �r2. Therefore r1 �� �r2 = φ must be true.

With both 1) and 2) above, r1 �� ∆r2 = φ is true.

As proved in the Theorem 2, even though any tuple is inserted into or deleted
a referring relation, the result of join operations for view maintenance queries is
always null. In the proposed PSWEEP/RI algorithm, the maintenance queries
for the changes of referred relations are filtered without executing any operations
because they have no affection to the view updates.

4 Performance Evaluation

In this chapter, we present the results of performance evaluation comparing the
proposed PSWEEP/RI and the previous SWEEP. For the evaluation, we use the
materialized view example in Figure 2. In Section 4.1, we present an analytical
cost model based on the example in Figure 2. In Sections 4.2∼4.4, we show the
evaluation results computed by using the cost model.

4.1 PSWEEP/RI Cost Model

To design the analytical cost model for the example in Figure 2, we use the
parameters described in Table 1. And, we also use the following assumptions to
analyze the proposed algorithm.

– Since referential integrity constraints are enforced, the index join method will be
used if a join has a referential integrity constraint.

– The nested loop join method will be used if a join has not any referential integrity
constraint.

152 J. Kim et al.

Table 1. Summary of parameters

Parameters Definition/Meaning
Ccom Bandwidth for transmitting data
N(Ri) Number of tuples in relation Ri

W (Ri) Average size of a tuple in relation Ri

N(dRi) Number of tuples in Ri delta relation
DW Data warehouse
∆Ri Changed parts of the source relation Ri

Send(∆Ri, DW) Cost for transmitting ∆Ri to DW
Join(∆Ri, Rj) Cost for joining ∆Ri and Rj

B Block size
k Cost for depth first search in general case
br Constant value for communication overhead

– Changes will be occurred in relation R2 of the example, and let the changed parts
of relation R2 be ∆R2.

We compute the total view maintenance cost of PSWEEP/RI by adding
communication cost and join cost. Since communication operations in the same
phase are able to be processed in parallel, the cost for these operations will be
set to the maximum cost of them. Also, since join operations in the same phase
are able to be processed in parallel too, the cost for these join operations will
be set the maximum cost of them. The following equations show the analytical
cost model of PSWEEP/RI for the example in Figure 2 (The cost model of the
existing algorithm SWEEP can be derived as the similar way, but it is omitted
due to space limitation.).

1© Send(∆R2, DW) = (N(dR2)· W (R2)/Ccom Eq. (1)
2© Send(∆R2(DW), R1) = (N(dR2)· W (R2)/Ccom Eq. (2)
2© Send(∆R2(DW), R3) = (N(dR2)· W (R2)/Ccom Eq. (3)
2© Send(∆R2(DW), R4) = (N(dR2)· W (R2)/Ccom Eq. (4)
3© Join(∆R2, R1) = N(dR2)· �logk N(R1) + 1�· br = X Eq. (5)
3© Join(∆R2, R3) = N(dR2)· �logk N(R3) + 1�· br = Y Eq. (6)
3© Join(∆R2, R4) = N(dR2)· �logk N(R4) + 1�· br = Z Eq. (7)
4© Send(X, DW) = ((N(dR2)· (W (R2) + W (R1)))· 8)/ Ccom Eq. (8)
4© Send(Y, DW) = ((N(dR2)· (W (R2) + W (R3)))· 8)/ Ccom Eq. (9)
4© Send(Z, DW) = ((N(dR2)· (W (R2) + W (R4)))· 8)/ Ccom Eq. (10)
5© Join(X, Y) = (�(N(dR2)· (W (R2) + W (R1)))/B�+

�(N(dR2)· (W (R2) + W (R1)))/B�)· br = M Eq. (11)
6© Join(M, Z) = (�(N(dR2)· (W (R2) + W (R1) + W (R3)))/B�+

�(N(dR2)· (W (R2) + W (R4)))/B�)· br = N Eq. (12)
7© Send(N(DW), R5) =

(
N(dR2)·

(∑4
i=1 W (Ri)

)
· 8

)
/ Ccom Eq. (13)

7© Send(N(DW), R6) =
(
N(dR2)·

(∑4
i=1 W (Ri)

)
· 8

)
/ Ccom Eq. (14)

8© Join(N, R5) = N(dR2)·
(
�logk N(R5)� + N(R5)

N(R4)

)
· br = I Eq. (15)

8© Join(N, R6) = N(dR2)·
(
�logk N(R6)� + N(R6)

N(R4)

)
· br = J Eq. (16)

9© Send(I, DW) =
(
N(dR2)· N(R5)

N(R4) ·
(∑4

i=1 W (Ri) + W (R5)
)
· 8

)
/ Ccom Eq. (17)

Parallel Consistency Maintenance of Materialized Views 153

9© Send(J, DW) =
(
N(dR2)· N(R6)

N(R4) ·
(∑4

i=1 W (Ri) + W (R6)
)
· 8

)
/ Ccom Eq. (18)

10© Join(I, J) =
(⌈(

N(dR2)· N(R5)
N(R4) ·

(∑4
i=1 W (Ri) + W (R5)

))
/B

⌉
+

⌈(
N(dR2)· N(R6)

N(R4) ·
(∑4

i=1 W (Ri) + W (R6)
))

/B
⌉)

· br Eq. (19)

Total communication cost = Eq.(1) + max{Eq.(2), Eq.(3), Eq.(4)} + max{Eq.(8),
Eq.(9), Eq.(10)} + max{Eq.(13), Eq.(14)} + max{Eq.(17), Eq.(18)}
Total maintenance cost (join cost + communication cost) = Eq.(1) + max{Eq.(2),
Eq.(3), Eq.(4)} + max{Eq.(5), Eq.(6), Eq.(7)} + max{Eq.(8), Eq.(9), Eq.(10)} +
Eq.(11) + Eq.(12) + max{Eq.(13), Eq.(14)} + max{Eq.(15), Eq.(16)} + max{Eq.(17),
Eq.(18)} + Eq.(19)

4.2 Experimental Data and Environment

In analytical experiments, we compute the cost required in PSWEEP/RI and
that in SWEEP by varying transmission bandwidth, relation size, and the num-
ber of tuples. We determine the database sizes on the basis of TPC-D, and adjust
the other parameter values based on TPC-D database sizes. Table 2 shows the
parameter values used in the experiments.

Table 2. Parameter values used in the analytical experiments

Parameters Values
Ccom 100Kbps ∼ 100Mbps
W (Ri) 250 bytes

B 1,024 bytes
k 31
br 0.02

Transmission Bandwidth

T
ot

al
 c

om
m

u
ni

ca
ti

on
 c

os
t

0.0

0.5

1.0

1.5

100K 300K 1M 3M 30M 100M

PSWEEP/RI
SWEEP

Fig. 3. Results of communication cost by varying the transmission bandwidth

154 J. Kim et al.

4.3 Evaluation Results for Different Transmission Bandwidths

Figure 3 shows the changes of communication cost on different transmission
bandwidths. The sizes of source relations have the same values determined in
Section 4.2, and we set the number of updated tuples, N(dRi), to one and
compute the costs by increasing the transmission bandwidth from 100Kbps to
100Mbps. As shown in Figure 3, we know that the communication cost of the
proposed PSWEEP/RI is always less than that of the previous SWEEP. In
particular, in the cases of lower bandwidths, PSWEEP/RI outperforms SWEEP
significantly.

4.4 Evaluation Results for Different Relation Sizes

Figure 4 shows the changes of total communication cost on different numbers of
updated tuples, i.e., on different N(dR2)’s. We compute the cost by increasing
N(dR2) from 1 to 32. As shown in the figure, we know that the communication
cost of the PSWEEP/RI is always less than that of SWEEP due to the effect

T
ot

al
 c

om
m

u
ni

ca
ti

on
 c

os
t

The number of updated tuples ()

0.0

10.0

20.0

30.0

40.0

50.0

1 2 4 8 16 32

PSWEEP/RI
SWEEP

2()N dR

Fig. 4. Results of communication cost by varying the number of updated tuples

T
ot

al
 m

ai
nt

en
an

ce
 c

os
t

0.0

20.0

40.0

60.0

80.0

1 2 4 8 16 32

The number of updated tuples ()2()N dR

PSWEEP/RI
SWEEP

Fig. 5. Results of the total view maintenance cost by varying the number of updated
tuples

Parallel Consistency Maintenance of Materialized Views 155

of parallel processing. In particular, as N(dR2) increases, the cost difference
becomes larger.

Next, Figure 5 shows the total view maintenance costs of two methods
when we fix the bandwidth to 1Mbps and increase the number of updated
tuples, N(dR2), from 1 to 32. As shown in the figure, in the case where the
number of updated tuples is 32, which is only 0.002% of the source relation,
the proposed PSWEEP/RI improves performance by 159% over the previous
SWEEP.

5 Conclusions

In this paper, we proposed a view maintenance method which guarantees the
consistency between data warehouse views and distributed source data efficiently
by using parallel processing techniques. Existing algorithms like SWEEP exe-
cute sequentially join operations on source relations which are invoked to get
the data for view maintenance. This sequential execution requires high pro-
cessing cost for view maintenance. In order to reduce the processing cost, we
proposed an algorithm, PSWEEP/RI, processing join operations on source re-
lations stored different sites in parallel. We also designed a cost model to mea-
sure the processing cost of the proposed algorithm and evaluated its perfor-
mance. From the experiments, we found that the proposed algorithm reduced
both the communication cost and the total processing cost compared to existing
methods.

The basic approach of the proposed algorithm is to take advantage of refer-
ential integrity properties in order to parallelize join subqueries involved in view
maintenance. The join operations between a source relation (including multiple
foreign keys) and its referenced relations (stored at different site) can be exe-
cuted independently (i.e., in parallel). Then the join results can be merged to-
gether to obtain the final result for view maintenance. Furthermore, any changes
on each referenced relation does not have any tuple in referenced relations. Thus
view maintenance queries invoked by referenced relations can be filtered out
without executing any join operations [1]. Because of these properties, he pro-
posed algorithm reduced the cost of processing a sequence of join operations
and the communication cost. Because of parallel processing, the algorithm can
also reduce the problem that the view maintenance cost of existing methods
increases in proportional to the number of source relations. For further re-
searches, the proposed algorithm can be extended for join operations of source
relations which doesn’t employ referential integrity. This algorithm considered
only join operations hence we also need to investigate parallel processing tech-
niques for complex views involving other algebraic operations and aggregate
functions.

Acknowledgements. This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) through the Advanced Information Technology
Research Center (AITrc).

156 J. Kim et al.

References

1. Quass, D., Gupta, A., Mumick, I. S., and Widom, J., “Making Views Self-
Maintainable for Data Warehousing,” In Proc. of Conf. on PDIS, pp.158-169, 1996.

2. Colby, L., et al., ”Supporting Multiple View Maintenance Polices,” In Proc. of ACM
SIGMOD Conf., pp.405-416, 1997.

3. Gupta, A. and Mumick, I. S., “Maintenance of Materialized Views: Problems, Tech-
niques, and Applications,” IEEE Data Engineering Bulletin, Special Issue on Ma-
terialized views and Warehousing, Vol. 18, No. 2, pp.3-18, 1995.

4. Ross, K. A., Stivastava, D., and Sudarshan, S., “Materialized View Maintenance
and Integrity Constraint Checking: Trading Space for Time,” In Proc. of Proc. of
ACM SIGMOD Conf., pp.447-458, 1996.

5. Zhuge, Y., et al., “View Maintenance in a Warehousing Environment,” In Proc. of
Proc. of ACM SIGMOD Conf., pp.316-327, 1995.

6. Zhuge, Y., Garcia-Molina, H., and Wiener, J. L., “The Strobe Algorithms for Multi-
Source Warehouse Consistency,” In Proc. of Conf. on PDIS, pp.146-157, 1996.

7. Agrawal, D., El Abbadi, A., Singh, A., and Yurek, T., “Efficient View Maintenance
at Data Warehouses,” In Proc. of Proc. of ACM SIGMOD Conf., pp.417-427, 1997.

8. Zhang, X., Ding, L., and Rundensteiner, E. A., “Parallel Multisource View Mainte-
nance,” The VLDB Journal, Vol. 13, No. 1, pp.22-48, 2004.

9. Navathe, S. and Elmasri, R. Fundamentals of Database Systems, 4th ed., Addison
Wesley, 2004.

	Introduction
	Related Works and Motivation
	PSWEEP/RI Algorithm
	Strategies in the SWEEP Algorithm
	Maintenance Strategy for Multiple Referring Relation
	Maintenance Strategy for Referred Relation

	Performance Evaluation
	PSWEEP/RI Cost Model
	Experimental Data and Environment
	Evaluation Results for Different Transmission Bandwidths
	Evaluation Results for Different Relation Sizes

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

