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Abstract. The problem of selecting an optimal fragmentation schema
of a data warehouse is more challenging compared to that in relational
and object databases. This challenge is due to the several choices of par-
titioning star or snowflake schemas. Data partitioning is beneficial if and
only if the fact table is fragmented based on the partitioning schemas
of dimension tables. This may increase the number of fragments of the
fact tables dramatically and makes their maintenance very costly. There-
fore, the right selection of fragmenting schemas is important for better
performance of OLAP queries. In this paper, we present a genetic algo-
rithm for schema partitioning selection problem. The proposed algorithm
gives better solutions since the search space is constrained by the schema
partitioning. We conduct several experimental studies using the APB-1
release II benchmark for validating the proposed algorithm.

1 Introduction

The main characteristics of data warehouses are (1) their data complexity due
to the presence of hierarchies between attributes, (2) the huge amount of data,
and (3) the complexity of their queries due to the presence of join and aggregate
operations. Several queries optimization techniques were proposed in the litera-
ture and supported by commercial systems. These techniques can be classified
into two categories: (1) redundant-structures and (2) non redundant-structures.
Techniques in the first category compete for the same resource representing the
storage cost and incur maintenance overhead in the presence of updates [12]. We
can cite: materialized views and indexes. Techniques in the second category do
not require an extra space compare to those in the first category. We can cite
vertical and horizontal partitioning [11]. Horizontal partitioning (HP) allows ac-
cess methods such as tables, indexes and materialized views to be partitioned
into disjoint sets of rows that are stored and accessed separately. On the other
hand, vertical partitioning allows a table to be partitioned into disjoint sets of
columns. Like indexes and materialized views, both kinds of partitioning can
significantly impact the performance of the workload i.e., queries and updates
that execute against the database system, by reducing cost of accessing and
processing data. In this paper, we are interesting to a non redundant structure,
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which is the HP. Several work and commercial systems show its utility and im-
pact in optimizing OLAP queries [11,3,2,8,13]. But none study has formalized
the problem of selecting a HP schema to speed up a set of queries and proposed
selection algorithms. In this paper, we use fragmentation and partitioning in-
terchangeably. HP in relational data warehouses is more challenging compared
to that in relational and object databases. This challenge is due to the several
choices of partitioning schemas 1 that can be found:

1. partition only the dimension tables using simple predicates defined on these
tables 2. This scenario is not suitable for OLAP queries, because the sizes of
dimension tables are generally small compare to the fact table. Therefore, any
partitioning that does not take into account the fact table is discarded.
2. partition only the fact table using simples predicates defined on this table.
Note that a fact relation stores foreign keys and raw data which is usually never
contain descriptive (textual) attributes because it is designed to perform arith-
metic operations. On the other hand, in a relational data warehouse, most of
OLAP queries access dimension tables first and then the fact table. This choice
is also discarded.
3. partition some/all dimension tables using their predicates, and then partition
the fact table based on the fragmentation schemas of dimension tables. This ap-
proach is best in applying partitioning in data warehouses. Because it takes into
consideration star join queries requirements (these queries impose restrictions
on the dimension values that are used for selecting specific facts; these facts
are further grouped and aggregated according to the user demands. The major
bottleneck in evaluating such queries has been the join of a large fact table with
the surrounding dimension tables [13]). In our study, we opt for last solution.

To show the procedure to fragment a fact table using this scenario, suppose
that a dimension table Di is fragmented into mi fragments: {Di1, Di2, ..., Dimi},
where each fragment Dij is defined as: Dij = σclij

(Di), where clij (1 ≤ i ≤ g, 1 ≤
j ≤ mi) represents a conjunction of simple predicates. Thus, the fragmentation
schema of the fact table F is defined as follows: Fi = F � D1i � D2i � ... � Dgi,
with � represents the semi join operation. In order to illustrate this procedure,
let consider a star schema with three dimension table (Customer, Time and
Product) and one fact table Sales. Suppose that the dimension table Customer
is fragmented into two fragments Cust 1 and Cust 2 defined by the following
clauses: Cust 1 = σSex=‘M ′ (Customer) and Cust 2 = σSex=‘F ′(Customer).
Therefore the fact table Sales can be fragmented using the fragmentation schema
of the dimension table Customer into two fragments Sales 1 and Sales 2 such as:
Sales 1 = Sales � Cust 1 and Sales 2 = Sales � Cust 2.

The initial star schema (Sales, Customer, Product, Time) is represented as
the juxtaposition of two sub star schemas S1 et S2 such as: S1 : (Sales 1, Cust 1,

1 The fragmentation schema is the result of the data partitioning process.
2 A simple predicate p is defined by: p : Ai θ V alue, where Ai is an attribute,

θ ∈ {=, <, >, ≤, ≥}, and value ∈ Dom(Ai)
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Product, Time) (sales activities for only male customers) et S2 : (Sales 2, Cust 2,
Product, Time) (sales activities for only female customers).

To the best of our knowledge, the proposed work is the first article that
addresses horizontal fragmentation schema selection problem in relational data
warehouses and uses a genetic algorithm to select a right solution that minimizes
the performance of OLAP queries, and reduces the maintenance cost.

This paper is divided in five sections: The section 2 formalizes the fragmenta-
tion selection problem in data warehouses modeled using star schemas. Section
3 presents a genetic algorithm with its four steps (selection, coding, mutation,
and fitness function). Section 4 gives the experimental results using benchmark
APB-1 release II benchmark. The Section 5 concludes the paper by summarizing
the mains results and suggesting future work.

2 Complexity of Generated Fragments of the Fact Table

Let a star schema with d dimension tables and a fact table. Let g (g ≤ d) be the
number of fragmented dimension tables. The number of horizontal fragments
of the fact table (denoted by N) is given by: N =

∏g
i=1 mi, where mi is the

number of fragments of dimension table Di. This fragmentation technique gen-
erates a large number of fragments of the fact table. For example, suppose we
have: Customer dimension table partitioned into 50 fragments using the State
attribute3, Time into 36 fragments using the Month attribute, and Product into
80 fragments using Package type attribute, therefore the fact table will be frag-
mented into 144 000 fragments (50×36×80). Consequently, instead of managing
one star schema, we will manage 144 000 sub star schemas. It will be very hard for
the data warehouse administrator (DWA) to maintain all these sub-star schemas.

Therefore it is necessary to reduce the number of fragments of the fact table
in order to guarantee two main objectives: (1) avoid an explosion of the number
of the fact fragments and (2) ensure a good performance of OLAP queries. To
satisfy the first objective, we give to DWA the possibility to choose the number
of fragment maximal that he/she can maintain (threshold W ). For the second
one, we can increase the number of fragment so that the global performance will
be satisfied. The problem of selecting an optimal fragmentation schema consists
in finding a compromise between the maintenance cost and the performance cost.

In order to satisfy this compromise, we use genetic algorithms [1,4] since they
explore a large search space. Our problem is similar to the problems multiproces-
sor document allocation [6], and data replication [9], where genetic algorithms
gave good results.

3 Genetic Algorithms

Genetic algorithms (GAs) [7], are search methods based on the evolutionary
concept of natural mutation and the survival of the fittest individuals. Given a
3 case of 50 states in the U.S.A.
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well-defined search space they apply three different genetic search operations,
namely, selection, crossover, and mutation, to transform an initial population of
chromosomes, with the objective to improve their quality. Fundamental to the
GA structure is the notion of chromosome, which is an encoded representation of
a feasible solution, most commonly a bit string. Before the search process starts,
a set of chromosomes is initialized to form the first generation. Then the three
genetic search operations are repeatedly applied, in order to obtain a population
with better characteristics. An outline of a generic GA is as follows:

Generate initial population ;
Perform selection step;
while stopping criterion not met do

Perform crossover step;
Perform mutation step;
Perform selection step ;

end while.

Report the best chromosome as the final solution. We demonstrate the design
of our algorithm in details by presenting our encoding mechanism and then the
selection, crossover and mutation operators.

3.1 Representation of Solutions

Representation of solution or chromosome is one of the key issues in problem
solving. In our study, a solution represents a fragmentation schema. Note that
any fragmentation algorithm needs application information defined on the tables
that have to be partitioned. The information is divided into two categories [10]:
quantitative and qualitative. Quantitative information gives the selectivity fac-
tors of selection predicates and the frequencies of queries accessing these tables
(Q = {Q1, , Qn}). Qualitative information gives the selection predicates defined
on dimension tables. Before representing each solution, the following tasks should
be done:

1. extraction of all simple predicates used by the n queries,
2. assignment to each dimension table Di(1 ≤ i ≤ d), its set of simple predicates
(SSPDi),
3. each dimension table Di having SSPDi = φ cannot be fragmented. Let
Dcandidate be the set of all dimension tables having a non-empty SSPDi. Let g
be the cardinality of Dcandidate (g ≤ d),
4. use the COM MIN algorithm [10] to each dimension table Di of Dcandidate.
This algorithm takes a set of simple predicates and then generates a set of com-
plete and minimal.

Representation of Horizontal Fragments Note each fragmentation pred-
icate has a domain values. The clauses of simple predicates representing hori-
zontal fragments defines partitions of each attribute domain into sub domains.
The cross product of partitions of an attribute by all predicates determines a
partitioning of the domains of all the attributes into sub domains.
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Example 1. Consider three fragmentation attributes 4 Age, Gender and City of
dimension table Customer and one attribute Season of dimension table Time.
The domains of these attributes are defined as follows: Dom(Age) = ]0, 120],
Dom(Season) = {“Summer′′, “Spring′′, “Autumn′′, “Winter′′}, and
Dom(Gender) = {‘M ′, ‘F ′}. Suppose that on attribute Age, three simple predi-
cates are defined as follows: p1 : Age ≤ 18, p2 : Age ≥ 60, and p3 : 18 < Age < 60.
The domain of this attribute (]0, 120]) is then partitioned into three sub domains
(p1, p2, and p3). Dom(Age) = d11 ∪ d12 ∪ d13, with d11 = ]0, 18], d12 = ]18, 60[,
d13 = [60, 120]. Similarly, the domain of Gender attribute is decomposed into
two sub domains: Dom(Gender) = d21 ∪ d22, with d21 = {‘M ′}, d22 = {‘F ′}.
Finally, domain of Season is partitioned into four sub domains : Dom(Season)
= d31 ∪ d32 ∪ d33 ∪ d34, where d31 = {“Summer”}, d32 = {“Spring”}, d33 =
{“Autumn”}, and d34 = {“Winter”}.

Each fragmentation attribute can be represented by an array with n cells,
where n corresponds to number of its sub domains. The values of these cells are
between 1 and n. If two cells have the same values, then they will be merged to
form only one. Each fragmentation schema is represented by a multi-dimensional
arrays. Suppose we have the following representation Gender: (1, 1), Season(2,
1, 3, 3) and Age (2, 1, 2). We can deduce that the fragmentation of the data
warehouse is not performed using the attribute Gender, because all its sub do-
mains have the same value. Consequently, the warehouse will be fragmented
using only Season and Age. For Season attribute, three simple predicates are
possible: P1 : Season = ”Spring”, P2 : Season = ”Summer”, and P3 : Season =
”autumn” ∨ Season = ”Winter”. For Age attribute, two predicates are possible:
P4 : Age ≤ 18 ∨ Age ≥ 60 et P5 : 18 < Age < 60 With these simple predicates,
the data warehouse can be fragmented into six fragments defined by the follow-
ing clauses: Cl1 : P1 ∧P4; Cl2 : P1 ∧P5; Cl3 : P2 ∧P4; Cl4 : P2∧P5; Cl5 : P3 ∧P4;
and Cl6 : P3 ∧ P5. The coding that we proposed satisfies the correctness rules
(completeness, reconstruction and disjointness [10]) and the new chromosomes
generated by cross over operations belong to the relevant sub domains (it does
not generate invalid solutions). This coding can be used to represent fragments
of dimension tables and fact table.

3.2 Selection Mechanism

Selection in genetic algorithms determines the probability of individuals being
selected for reproduction. The principle here is to assign higher probabilities to
filter individuals. The roulette wheel method is used in our algorithm (it allocate
a sector of the wheel equaling to the ith chromosome and creating an offspring
if a generated number in the range of 0 to falls inside the assigned sector of
the string). In this method, each chromosome is associated with its fitness value
calculated using the cost model defined in section 3.4. The chromosomes with
high fitness values have chances to be selected.

4 A fragmentation attribute is an attribute participating in the fragmentation process
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3.3 Types of Crossover

We selected a two-point crossover mechanism to include in our GA for the fol-
lowing reason: note that fragments are represented by arrays. The chromosomes
are crossed over once for each predicate. If the crossover is done over one chromo-
some, the predicates with high number (example of city) will have a probability
greater than predicate with small predicate like gender. This operation is applied
till none reduction of the number of suitable fragments of fact table (W ). The
rationale behind crossover operation, is that after the exchange of genetic ma-
terials, it is very likely that the two newly generated chromosomes will possess
the good characteristics of both their parents (building-block hypothesis [7]).

3.4 Fitness Value

The quality of each chromosome is measured by computing its fitness value.
This function gives a percentage for each performance parameters (respect of
threshold and performance of queries). A number of points is assigned to these
two parameters: (1) threshold : 55 points over 100 are assigned (by default). If the
number of obtained fragments is equal plus or minus 5 per cent of the threshold,
then all points will be assigned. Otherwise, less points will be assigned to this
parameter, and (2) performance of queries : a number of points (45) is assigned
to all queries in an uniform manner (we have used 15 queries). To compute the
cost of each query, we developed a cost model calculating the number of inputs
and outputs. As in the previous case, we assign all points (3 per query) if the
cost of a query is less than a given number. If the number of IOs increases, less
we assign points, following a linearly decreasing function. When the number of
IOs of a given query is very high, none point is assigned.

To estimate the cost of queries, we assume that all dimension tables are in
the main memory. Let Dsel = {Dsel

1 , ..., Dsel
k } be the set of dimension tables

having selection predicates, where each selection predicate pj (defined on a di-
mension table Di) has a selectivity factor denoted by Sel

pj

Di
(Sel

pj

Di
∈ [0, 1]). For

each predicate pj , we define its selectivity factor on the fact table, denoted by
Sel

pj

F (Sel
pj

Di
�= Sel

pj

F ). For example, if we consider the selection predicate Gen-
der=”Female” defined on the dimension table. Suppose that its selectivity factor
is 0.4. This is means that 40% of salespersons are female and 60% are male. But,
female sales activities may represent 70% of the whole sales. To execute a query Q
over a partitioned star schema {S1, S2, ..., SN}, we shall identify the relevant sub
star schema(s). To do so, we introduce a boolean variable denoted by valid(Q, Si)
and defined as follows: valid(Q, Si) = 1 if the sub star schema Si is relevant for
Q, 0 otherwise. The number of IOs for executing a query Q over a partitioned star
schema is given by: Cost(Q) =

∑N
j=1 valid(Q, Sj)

∏Mj

i=1(
(Sel

pi
F ×||F ||×L)

PS ), where,
Mj, F , L and PS represent the number of selection predicates defining the fact
fragment of the sub star schema SDEj , the number of tuples present in a fact
table F , the width, in bytes, of a tuple of a table F and the page size of the file
system (in bytes), respectively. In this study, the selectivity factors are chosen
using an uniform distribution (UD) and a non uniform distribution (NUD).
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3.5 The Mutation

Although crossover can put good genes together to generate better offspring. It
cannot generated new genes. Mutation is needed to create new genes that may
not be present in any member of a population and enables the algorithm to reach
all possible solutions (in theory) in the search space. Mutation is an operation
aiming at restoring lost genetic material and is performed in our algorithm by
simply flipping every bit with a certain probability, called the mutation rate.
We have chosen a mutation rate between 30 and 6 percent (rate often used).
Mutations are done for fragmentation attributes. Initialization of the first gen-
eration is performed by randomly generating half of the population while the
rest is obtained from the solutions previously found by algorithm. In practice,
there could be more intervals distinct or a merged intervals. In the same way,
mutations could occur on several attributes of the individual.

4 Experimental Studies

In our experiments, we use the dataset from the APB1 benchmark [5]. The star
schema of this benchmark has one fact table Actvars (||Actvars|| = 24786000
tuples, with a width = 74) and four dimension tables: Prodlevel (||Prodlevel||
= 9 000 tuples, with a width = 72), Custlevel (||Custlevel|| = 900 tuples, with
a width = 24), Timelevel (||T imelevel|| = 24 tuples, with a width = 36), and
Chanlevel (||Chanlevel|| = 9 tuples, with a width = 24). This warehouse has
been populated using the generation module of APB1. Our simulation software
was built using Visual C performed under a Pentium IV 2,8 Ghz microcomputer
(with a memory of 256 Mo). We have considered 15 queries. Each query has
selection predicates, where each one has its selectivity factor. The crossover and
mutations rates used in our experiments are 70% and 30% in the beginning.
After several generation, the mutation rate of 6% was used to avoid a redundant
search. We have used 1 500 generations (40 chromosomes per generation). 9
fragmentation attributes were considered.

If the DWA chooses the threshold as 2000, the dimension tables will be
fragmented as follows: table Prodlevel in 48 fragments, table Timelevel in 7
fragments, table Custlevel in 2 fragments, table Chanlevel in 3 fragments,and
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the fact table in 2016 fragments. Figure 1 shows the evolution of IOs over the
number of fragmentation attributes. The results show the impact of this number
on the performance of queries. We note also that the non uniform distribution
gives better performance than the uniform distribution.

In Figure 2, we have studied the effect of the number of fragmentation at-
tributes over the number of fact table. We realize that the type of distribution
does not have an effect on the total number of fragments.
Figure 3 shows the effect of the horizontal fragmentation and its role in reducing
the global cost of executing a set of queries. These results confirmed the existing
theoretical studies.

In Figure 4, we have studied the effect of the dimension tables participating
on the fragmentation process. The performance of OLAP queries is proportional
with the number of these tables. Figure 5 shows that the number of fragments of
the fact table increases when the the number of dimension tables participating
on the fragmentation process increases. But our algorithm controls this augmen-
tation. When we used less than six fragmentation attributes, the rate between
the number of fragments return by the algorithm and the possible number of
fragment is high (more than 35%) because the possible number of fragments is
small. From six attributes, this rate is small (less than de 2%) when we used 9
attributes (Figure 6). To get a better performance of queries, the threshold is
varied, and experiments show that this performance is obtained when threshold
is equals 4000.
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Note that the number of fragments increases when the threshold increases,
but it remains closer to the threshold (Figure 8).

In Figures 9, 10 and 11 we changed the selectivity factors of predicates in
order to see their effect on the number of fragments and performance of queries.
We realized that when we increase these factors, the number of IOs increases.
This is due to the fact that an high selectivity implies a large number of tuples
satisfying predicates. But the selectivity factors do not have a strong effect on
the final number of fragments.
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5 Conclusion

In this paper, we have formalized the problem of selecting an horizontal frag-
mentation schema in relational data warehousing environments. First we have
developed a methodology for fragmenting a star schema using the fragmentation
schemas of the dimension tables. We have also shown the complexity of the gen-
erated fragments of the fact table. This number can be very huge and then it will
be difficult for the data warehouse administrator to maintain all fragments. To
reduce this number and guarantee a good performance, we proposed a genetic
algorithm. Before applying this algorithm, we presented a coding mechanism for
all possible solutions. A cost model for evaluating the cost of a set of frequently
queries performed on a fragmented star schema is developed. This model is also
used to measure the quality of the final solution. Finally, we conducted experi-
ments to show the utility of the horizontal fragmentation and capture different
points that can have effect on the performance of OLAP queries and respecting
the threshold fixed by the administrator.

It will be interested to develop or adapt our algorithm to take into account
the dynamic aspect of a warehouse due to the evolution of the schema and
queries.
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