
A Tree Comparison Approach to Detect
Changes in Data Warehouse Structures

Johann Eder, Christian Koncilia, and Karl Wiggisser

University of Klagenfurt,
Dep. of Informatics-Systems

{eder, koncilia, wiggisser}@isys.uni-klu.ac.at

Abstract. We present a technique for discovering and representing
changes between versions of data warehouse structures. We select a tree
comparison algorithm, adapt it for the particularities of multidimen-
sional data structures and extend it with a module for detection of node
renamings. The result of these algorithms are so called editscripts con-
sisting of transformation operations which, when executed in sequence,
transform the earlier version to the later, and thus show the relationships
between the elements of different versions of data warehouse structures.
This procedure helps data warehouse administrators to register changes.
We describe a prototypical implementation of the concept which imports
multidimensional structures from Hyperion Essbase data warehouses,
compares these versions and generates a list of differences.

1 Introduction and Motivation

Data warehouses provide sophisticated features for aggregating, analyzing, and
comparing data to support decision making in companies. The most popular
architecture for data warehouses are multidimensional data cubes, where trans-
action data (called cells, fact data or measures) are described in terms of master
data (also called dimension members). Usually, dimension members are hierar-
chically organized in dimensions, e.g., university ← faculty ← department.
where B ← A means that A rolls-up to B.

As most data warehouses typically comprise a time dimension, available data
warehouse systems are able to deal with changing measures, e. g. , changing mar-
gin or sales. They are however not able to deal with modifications in dimensions,
e. g. , if a new faculty or department is established, or a faculty is split into two,
or departments are joined.

In [1] we presented the COMET approach, a temporal data warehouse meta-
model, which allows to represent not only changes of transaction data, but also
of schema, and structure data. The COMET model can then be used as basis
of OLAP tools which are aware of structural changes and permit correct query
results spanning multiple periods and thus different versions of dimension data.

Temporal data warehouses, however, need a representation of changes which
took place between succeeding structure versions of the dimension data. Typi-
cally, a change log is not available, but the data warehouse administrator has

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 J. Eder, C. Koncilia, and K. Wiggisser

Fig. 1. Our running Example

to create and maintain a mapping between snapshots of the dimension struc-
ture. The contribution of this paper is to assist data warehouse administrators
in detecting and describing these structural changes, i.e. insertion, deletion and
rearrangement of dimension members. Besides these structural changes in tree
structured dimensions there are also semantical changes (e.g. merging or split-
ting of dimension members) which cannot be discovered by looking at dimension
data alone. For these semantical changes we have developed a change detection
procedure based on data mining techniques [2]. Since this method analyzes out-
liers in the cell values, the computational costs are rather high. Therefore, it is
desirable to find structural changes first by mere structural comparisons with
more efficient algorithms.

For detecting structural changes, we present a novel comparison algorithm for
multidimensional data by adopting and extending an existing tree comparison
algorithm to the particularities of data warehouses. One of the main advantages
of our approach is that beside detecting changes like insert, delete and update
of an element on the instance level, it also supports the detection of key modifi-
cations (e.g. renamings of departments).

Such an approach can only be heuristic in nature and can never be complete,
as we will explain below. Therefore, this method is intended to support the
administrator but not to fully automate the task. Since dimension members can
be numerous (e.g. product catalog), the productivity gain will be significant.

Throughout the rest of this paper, we will use the following running example.
Consider a car dealer who wants to keep track of her/his sales. For this, she/he
implements a data warehouse with several dimensions. For sake of simplicity, we
take a closer look at only one of these dimensions, namely the Cars dimension.

The left tree in Fig. 1 depicts the original version of this dimension. As can be
seen, this dealer sells two different brands: BMW and Rolls-Royce. Each brand
consists of several different car types. For instance, Corniche, Phantom V and
Silver Dawn are different Rolls-Royce cars. The right tree in Fig. 1 shows the

A Tree Comparison Approach to Detect Changes in DWH Structures 3

subsequent version of this dimension. As can be seen, different modifications
have been made: first of all, both brands united and are now known as BMW &
Rolls-Royce. A new car was introduced, namely BMW 1. Another car, Phantom
V, is no longer part of the product portfolio. Silver Spirit has been renamed and
is now known as Silver Spirit II. Moreover, for all Rolls-Royce cars power is no
longer given in kW but in horsepower.

2 Related Work

Our approach builds on the techniques developed in two different research areas,
namely temporal data warehousing and tree comparison algorithms.

During the last years different temporal data warehouse approaches have
been published. [3,4,5,6,7,8] are just a few of them. They differ in different as-
pects. For instance some of them support only changes on the schema level (e.g.
[7]) or on the instance level (e.g. [3] and [4]), some support changes on both, the
schema and the instance level (e.g. [8]).

There are several tree comparison algorithms. For instance, Zhang and
Shasha [9] worked on ordered trees. The Stanford DB Group proposed algo-
rithms for ordered [10] and unordered [11] trees. Nowadays as XML is very
popular many algorithms for comparing XML documents, which are also trees,
have been defined, for instance the approach of Cobena, Abiteboul and Marian
[12] or the approach of Wang, DeWitt and Cai [13].

3 Comparison of Data Warehouse Structures

3.1 The Data Structure

From our running example it is easy to see, that a DWH structure can be rep-
resented by a tree. To define our data structure formally, we introduce a tree
T = (V, E), where V = {m1, . . . , mm} is a set of nodes and E = {e1, . . . en} is a
set of edges. A node is representing a dimension member of a DWH cube, there-
fore node mi is defined as triple mi = 〈id, label, value〉, where id is a unique
identifier for each node, label is the dimension member’s name and value is
an object containing all other characteristics – i.e. formula, alias, description,
consolidation, . . . – of the dimension member. The id may stem from the data
source or may be generated during the process of building the tree. An edge ei

is a hierarchical relation between two members and therefore defined as tuple
ei = 〈mj , mk〉, meaning that mj is the parent of mk. E

+ is the transitive closure
of E and therefore holding all ancestor relations.

Depending on the underlying DHW system, the structure can either be seen
as ordered tree or unordered tree. In an ordered tree, members have a designated
order within their parents, whereas in an unordered tree they don’t. To be able to
identify the nodes in the tree and to map them to the underlying DWH-system,
we define labels to be unique in an unordered tree. As we always can identify a
node through its parent and position within the parent in ordered trees, labels
don’t have to be unique in such a tree.

4 J. Eder, C. Koncilia, and K. Wiggisser

3.2 Transformations and Operations

We compare two versions of a DWH structure. Therefore we represent each
version by a tree. Between this two versions a sequence of tree transformations
occurred. Our goal is to find this transformations.

We identified five possible operations on the member level. Hereafter t1 : T =
(V, E) references the old version of a tree and t2 : T = (V′, E′) references the
new version. Hence V,E and V

′,E′ are the sets of nodes and edges before and
after the transformation respectively.

1. DELETE (DEL(mi)): The dimension member mi is deleted from the DWH
structure. A node can only be deleted if it does not have children.
(a) Precondition: mi ∈ V, ∃ej = 〈 , mi〉 ∈ E, �ek = 〈mi, 〉 ∈ E

(b) Operation: V
′ = V\{mi}, E

′ = E\{ej}
(c) Postcondition: mi /∈ V

′, �e = 〈 , mi〉 ∈ E
′

2. INSERT (INS((mi, l, v),mj, mk)): The member mi with label l and value v
is inserted as child of node mj directly after node mk. If mk is NULL, mi

becomes the first child of mj . For unordered trees mk may always be NULL.
(a) Precondition: mi /∈ V, mj ∈ V, mk = NULL∨ (mk ∈ V∧ (mj , mk) ∈ E)
(b) Operation: V

′ = V ∪ {mi}, E
′ = E ∪ {〈mj , mi〉}

(c) Postcondition mi ∈ V
′, 〈mj, mi〉 ∈ E

′

3. MOVE (MOV(mi, mj , mk)): The dimension member mi is moved to the parent
mj or is moved within its parent mj to be directly after mk. If mk is NULL,
mi becomes the first child of mj . For unordered trees mk may be NULL.
(a) Precondition: mi ∈ V, mj ∈ V, mk = NULL∨(mk ∈ V∧(mj , mk) ∈ E),

〈mi, mj〉 /∈ E
+

(b) Operation: V
′ = V, E

′ = (E\ 〈 , mi〉) ∪ {〈mj , mi〉}
(c) Postcondition 〈mj, mi〉 ∈ E

′

4. UPDATE (UPD(mi, value)): The characteristics of a dimension member mi –
i.e. the node’s value – is changed to value.
(a) Precondition: mi = 〈id, label, 〉 ∈ V

(b) Operation: E
′ = E,m′

i = 〈id, label, value〉, V
′ = (V\{mi}) ∪ {m′

i}
(c) Postcondition: m′

i ∈ V
′ = 〈id, label, value〉

5. RENAME (REN(mi, label)): The name of a dimension member mi – i.e. the
node’s label – is changed to label.
(a) Precondition: mi = 〈id, , value〉 ∈ V

(b) Operation: E
′ = E,m′

i = 〈id, label, value〉, V
′ = (V\{mi}) ∪ {m′

i}
(c) Postcondition: m′

i ∈ V
′ = 〈id, label, value〉

One may argue that MOVE is not a basic operation, as it may be composed
using DELETE and INSERT. This is true for most cases, but in our context we
want to identify relations between the old and the new version of a member.
This enables us to define what we called transformation functions to transform
cell data between different versions [1].

We distinguish between UPDATE and RENAME because in many commercial
systems, e.g. Hyperion Essbase, the member’s name is a key and we want to
distinguish between value changes and key changes of a member.

A Tree Comparison Approach to Detect Changes in DWH Structures 5

3.3 Comparison of Dimension Members

To compare different versions of dimension members, we define a compare(x, y)
function that takes into account the various characteristics of a dimension mem-
ber. The compare(x, y) function takes two value-objects as defined above as
parameters and returns a value in the range of [0, 1] as degree of similarity.
Characteristics to be compared may for instance include formulae, user defined
attributes (UDAs), aliases, comments, shared member relations, consolidation
function and other DWH system specific attributes.

Some of these attributes are more distinguishing than others. So if for ex-
ample two nodes have exactly the same formula and three out of four UDAs
in common but a different consolidation function, it is rather likely that they
represent the same element, so compare(x, y) gives a value near to 1. On the
other hand, if the consolidation function is the same, but one is a shared mem-
ber and the other is not, it may be quite unlikely that these nodes represent
the same element, hence compare(x, y) results in a value near to 0. We define
these weighting factors to be parametrizeable. Hence the user may decide what
“similar” exactly means in her/his situation.

4 Treecomparison and Extensions

As tree comparison is a well explored area, there was no need to develop a new
comparison algorithm for trees. Instead we evaluated different existing methods
in order to find the ideal base for our approach.

In [10] Chawathe et al. present an algorithm for comparing two versions of a
tree. The result of the algorithm is an editscript consisting of tree transformations
which transforms t1 into t2. The time complexity of this method is O(nd + d2),
where n is the number of leaves in the tree and d is a measure for the difference
of the two versions. As we assume that there are only a few changes between two
versions, we can say that d 	 n. We chose Chawathe et al.’s algorithm as base
for our work because of a couple of reasons: its support of the essential MOVE
operation, its low time complexity, its ready-to-use editscript as representation
for changes, and it can be used for ordered and unordered trees.

In this section we will introduce Chawathe et al.’s treecomparison algorithm
and our extensions to make it applicabe for our domain.

4.1 Treecomparison in Detail

Chawathe et al.’s algorithm is defined on ordered trees but is applicable on
unordered trees as well. Each node has a label and a value which are obtained
from the data source. Furthermore, each node has a unique identifier which can
either stem from data source or be generated during data extraction. The id
may not identify nodes over different versions, so nodes representing the same
elements in different versions may have different ids and vice versa.

The result of this procedure is a so called editscript which transforms t1 into
t2. This editscript is a sequence consisting of four atomic operations: INSERT,

6 J. Eder, C. Koncilia, and K. Wiggisser

UPDATE, MOVE and DELETE. As the matching of nodes between versions relies on
node labels, change of node labels (RENAME) is not supported.

Chawathe et al. define their INSERT and MOVE operations index based, mean-
ing that to determine the position where to insert a node, they use the in-
dex within the children of a node. To adapt their approach to our predeces-
sor based data structure we modified the FindPos(x) function to return the
predecessor for the node, or NULL, if there is no predecessor, instead of the
index.

The algorithm compares two tree versions: t1 : T and t2 : T. For simplicity
reasons we write x ∈ t meaning that node x is an element of the node set V of
tree t. The comparison algorithm needs the two tree versions and a matching
set as input. The matching set M is a set of pairs (a, b) with a ∈ t1 and b ∈ t2,
where a and b represent the same member in the two versions.

As the node ids may not identify elements over versions other matching cri-
terions for nodes have been defined. Before we can give a definition of these
criterions, we have to introduce some terms: l(x) and v(x) give the label and
value of node x respectively. The function common(x, y) gives {(v, w) ∈ M|v
is leaf descendant of x and w is leaf descendant of y} the so called Common
Leaves of x and y. Finally |x| is the number of leaf descendants of node x. We
also slightly modified the original matching criterions for leaf nodes for sake of
simplicity. So two nodes x and y are seen as representing the same element iff
one of the following conditions holds:

1. x and y are leaves, l(x) = l(y), and compare(v(x), v(y)) ≥ f , where f is a
user defined threshold in the range [0, 1]. f is called Minimum Similarity.

2. x and y are inner nodes and l(x) = l(y) and |common(x,y)|
max(|x|,|y|) ≥ t for 1

2 < t ≤ 1.
We call t the Minimum Common Leaves. t is defined by the user.

It can easily be seen that in addition to their label leaf nodes are compared
using their values, but inner nodes are only compared using their descendants.
For sure changes in the values of inner nodes will be detected later on in the
update phase. Zhang [14] proposes a similar matching constraint for inner nodes.
As labels have to be equal for allowing matches, renamings of nodes – i.e. changes
of labels – cannot be detected in the approach of Chawathe et al.

After the matching set M is calculated the editscript can be generated. This
happens in five phases.

1. Update Phase: For all pairs of nodes (x, y) ∈ M where v(x) �= v(y) an update
operation is generated.

2. Align Phase: For all misaligned nodes, i.e. if the order is different in the two
versions, appropriate move operations are generated.

3. Insert Phase: For all unmatched nodes x ∈ t2 an insert is generated.
4. Move Phase: For all pairs of nodes (x, y) ∈ M such that (p(x), p(y)) /∈ M

(p(x) is the parent of x) a move to the correct parent is generated.
5. Delete Phase: For all unmatched nodes x ∈ t1 a delete operation is generated.

A Tree Comparison Approach to Detect Changes in DWH Structures 7

4.2 Detecting Renaming of Nodes

With the plain algorithm described above changes of labels – which are renam-
ings of dimension members in our case – cannot be detected. Hence, our approach
extends Chawathe et al.’s approach in order to detect label changes.

In the original algorithm a renaming will always result in two operations,
one DELETE and one INSERT. But this does not represent the real semantics. We
want the different versions of members to be connected over structure versions.
Therefore, we introduce the new operation RENAME, denoted as REN(x, l) where
x is the node to be renamed and l is its new label.

The renaming detection takes place after the matching set calculation but
before generating the editscript. All nodes x ∈ t1 and y ∈ t2 which are not part
of a matching may have been renamed. They are added to the sets OldNames
O and NewNames N, respectively. We define O = {x ∈ t1|�(x, b) ∈ M} and
N = {y ∈ t2|�(a, y) ∈ M}. If one of the sets is empty, no renaming is possible.

For reduction of complexity we only consider renamings within the same
parent to be detected. So parents of possibly renamed nodes have to match.
But as the parents may also be renamed and therefore no match is possible
yet, this rule may foreclose detecting many renamings. Hence we also consider
possibly renamed parents as matched parents. For this purpose we define a set
PossibleRenamings P as follows: P = {(a, b)|a ∈ O ∧ b ∈ N • (p(a), p(b)) ∈
M ∨ (p(a), p(b)) ∈ P}. So P is the set of all pairs of nodes from O and N where
their parents either match or are possibly renamed. One can create P during a
Top-Down traversal of the trees or by a repeated application of the build rule
until the set remains stable.

We also define an order on P which is important for the appropriate traversal
of P in the next step. To define this order formally, we introduce the level of
a member x (lev(x)) as the height of the subtree rooted at x. We define the
operator “<” on pairs ∈ P as follows: ∀(a, b), (x, y) ∈ P : (a, b) < (x, y) ⇔
min(lev(a), lev(b)) < min(lev(x), lev(y)). The order within leaf node pairs and
inner node pairs respectively is irrelevant. So if P is traversed following this
order, all pairs containing at least one leaf node will be examined before any
pair containing only inner nodes.

The similarity check for renamed nodes has in principle the same constraints
as mentioned before. So we define likelyRenamed(a, b) which checks if (a, b) ∈ P

is a likely renaming, to return true iff one of the following conditions holds:

1. a and b are leaf nodes and compare(v(a), v(b)) ≥ f (f as defined above)
2. a and b are inner nodes and |commonRename(a,b)|

max(|a|,|b|) ≥ t (t as defined above)

The function commonRename(x, y) gives {(v, w)|v is leaf descendant of x
and w is leaf descendant of y, and (v, w) ∈ M or (v, w) ∈ L}, so all common
leaves plus all common likely renamed leaf nodes.

In an ordered tree within the calculation of likelyRenamed(a, b) one may
also take into account the siblings of the nodes. So if the predecessors and the
successors of a and b match, one may increase the degree of similarity a bit,
although it must not reach 1, as this would mean identical.

8 J. Eder, C. Koncilia, and K. Wiggisser

likelyRenamed(a, b) splits P into two disjoint sets LikelyRenamings L and
UnlikelyRenamings U. L contains all pairs of nodes which are sufficiently similar
to be seen as representing the same element. All other elements of P are moved
to U. As for one node only one real renaming can have happened, the following
restriction has to hold for L: ∀(a, b), (x, y) ∈ L • a = x ⇔ b = y. So a node
can only appear in at most one pair in L. If more than one likely renaming
for one node is detected, we define the one with the highest similarity of the
involved nodes to go to L, all others are moved to U. Because of P’s order all
leaves are handled first. Likely renamed leaves are used in the similarity check
of inner nodes, i.e. likely renamed leaves are seen as common leaves. Therefore,
it is important to follow P’s order during this step, as otherwise renamed inner
nodes may not be detected correctly.

The renaming detection component cannot replace human interaction. It re-
lies on heuristics which may return a wrong result. Therefore, a human user has
to acknowledge all detected renamings by checking L and U. All renamings con-
firmed by the user are moved into the set Renamings R. For all pairs (a, b) ∈ R

a rename operation REN(a,l(b)) is generated and (a, b) is added to M. Fur-
thermore the algorithm may not detect all renamings. For instance, if a node is
renamed, its value changed very much and it is moved to another parent, then
the renaming will not be detected. For complexity purposes only renamed nodes
within the same parent will be considered. One may omit this restriction but
this will increase the runtime complexity considerably.

After this verbal description, we now formally describe the steps which are
necessary to detect renamings of nodes.

1. O = {x ∈ t1|�(a, b) ∈ M • a = x}, N = {y ∈ t2|�(a, b) ∈ M • b = y}
2. P = {(a, b)|a ∈ O, b ∈ N • (p(a), p(b)) ∈ M ∨ (p(a), p(b)) ∈ P}
3. ∀(a, b) ∈ P in traversal order•

(a) if likelyRenamed(a, b) = true
i. P = P\{(a, b)}, L = L ∪ {(a, b)}
ii. ∀x ∈ t1|(x, b) ∈ P • P = P\{(x, b)}, U = U ∪ {(x, b)}
iii. ∀y ∈ t2|(a, y) ∈ P • P = P\{(a, y)}, U = U ∪ {(a, y)}

(b) else P = P\{(a, b)}, U = U ∪ {(a, b)}
4. Let the user acknowledge all real renamings and insert them to R

5. ∀(a, b) ∈ R •
(a) Generate operation REN(a,l(b))
(b) M = M ∪ {(a, b)}

5 Implementation

We implemented our approach in Java 1.4 under Windows XP. In this prototype
the user is able to import and compare two different cubes from the commercial
multidimensional database Hyperion Essbase. After importing both cubes from
Hyperion Essbase, the prototype presents both versions as trees (see Fig. 1). The
left tree represents the old version and right tree the new version of the data
warehouse. The user triggers the matching procedure from the interface.

A Tree Comparison Approach to Detect Changes in DWH Structures 9

(a) Confirm renamings (b) Resulting EditScript

(c) After applying the comparison algorithm

Fig. 2. Outcomings of the Algorithm

After the matchings are calculated the systems tries to find renamed nodes.
Figure 2(a) shows how the user can acknowledge the renamings found by the
system. The resulting trees are presented to the user so she/he can evaluate,
if the weighting factors are adequate. After the user confirmed the matchings
found by the system, the system starts to generate the editscript.

The resulting editscript of our running example is shown in Fig. 2(b). Figure
2(c) shows the two trees after the editscript is calculated. Different symbols
are used to depict different types of modifications that where detected. “=”
means that a corresponding, unchanged dimension member has been found, “->”
means that a member has been moved to another position, “%” means that the
corresponding member has been changed, e.g., that a user defined attribute has
been modified, “+” means that no corresponding member in the other tree could
be found. Finally, “*” means that a member has been renamed.

We also applied our prototype on a larger cube with about 16.400 members.
The matching and the editscript generation took in average 0.6 and 1.15 seconds
respectively, running on a Pentium IV at 2.4GHz and 1GB RAM. Hence we see
that this approach may also be applied on large cubes in reasonable time. All
changes were recognized correctly.

10 J. Eder, C. Koncilia, and K. Wiggisser

6 Conclusions

For the validity of OLAP queries spanning several periods of data collection
it is essential to be aware of the changes in the dimension structure of the
warehouse. This means in particular, to have a representation of the changes (and
implicit unchanged elements) between different versions of the multidimensional
structure.

We adopted and extended a tree comparison algorithm to serve for this pur-
pose. The output of this extended algorithm is an editscript consisting of elemen-
tary change operations. We contributed in particular a module for discovering
renamings of nodes. Such an editscript facilitates the work of a data warehouse
administrator who is in charge of representing structural changes. In a proto-
type implementation based on Hyperion Essbase we were able to demonstrate
the validity of the approach, both the adequacy and validity of the algorithms
and their scalability for real data warehouses.

References

1. Eder, J., Koncilia, C.: Changes of dimension data in temporal data warehouses.
In: Proc. of 3rd DaWaK 2001. (2001)

2. Eder, J., Koncilia, C., Mitsche, D.: Automatic Detection of Structural Changes in
Data Warehouses. In: Proc. of the 5th DaWaK 2003. (2003)

3. Kimball, R.: Slowly Changing Dimensions, Data Warehouse Architect. DBMS
Magazine 9 (1996) URL: http://www.dbmsmag.com/.

4. Chamoni, P., Stock, S.: Temporal Structures in Data Warehousing. In: Proc. of
the 1st DaWaK 1999. (1999)

5. Yang, J.: Temporal Data Warehousing. PhD thesis, Stanford University (2001)
6. Vaisman, A.: Updates, View Maintenance and Time Management in Multidimen-

sional Databases. PhD thesis, Universidad de Buenos Aires (2001)
7. Blaschka, M.: FIESTA: A Framework for Schema Evolution in Multidimensional

Information Systems. PhD thesis, Technische Universität München (2000)
8. Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for Temporal Data

Warehouses. In: Proc. of the 14th Intl. Conf. on Advanced Information Systems
Engineering 2002. (2002)

9. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM journal on computing 18 (1989) 1245–1262

10. Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in
hierarchically structured information. In: Proc. of the 1996 ACM SIGMOD. (1996)

11. Chawathe, S., Garcia-Molina, H.: Meaningful change detection in structured data.
In: Proc. of the 1997 ACM SIGMOD. (1997)

12. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In:
Proc. of the 18th Intl. Conf. on Data Engineering. (2002)

13. Wang, Y., DeWitt, D., Cai, J.Y.: X-diff: An effective change detection algorithm
for XML documents. In: Proc. of the 19th Intl. Conf. on Data Engineering. (2003)

14. Zhang, L.: On matching nodes between trees. Tech. Rep. 2003–67, HP Labs (2003)

	Introduction and Motivation
	Related Work
	Comparison of Data Warehouse Structures
	The Data Structure
	Transformations and Operations
	Comparison of Dimension Members

	Treecomparison and Extensions
	Treecomparison in Detail
	Detecting Renaming of Nodes

	Implementation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

