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Abstract. We describe Modular-E (ME), a specialized, model-
theoretic logic for narrative reasoning about actions, able to repre-
sent non-deterministic domains involving concurrency, static laws (con-
straints) and indirect effects (ramifications). We give formal results which
characterize ME ’s high degree of modularity and elaboration tolerance,
and show how these properties help to separate out, and provide a princi-
pled solutions to, the endogenous and exogenous qualification problems.
We also show how a notion of (micro) processes can be used to facili-
tate reasoning at the dual levels of temporal granularity necessary for
narrative-based domains involving “instantaneous” series of indirect and
knock-on effects.

1 Introduction

Domain descriptions for reasoning about actions and change (RAC) in com-
monsense reasoning and other contexts should be Elaboration Tolerant [10,9].
Formalisms should be able to incorporate new information gracefully into repre-
sentations, e.g. by the simple addition of sentences. Elaboration Tolerance (ET)
is strongly linked with the need to have a modular semantics for RAC frameworks
that properly separates different aspects of the domain knowledge, as argued e.g.
in [6]. ET and modularity are known to be strongly related to the Qualification
Problem in RAC – if the effect laws (or action executability laws) of our domain
are not qualified in a complete way they can lead to unintended conclusions that
contradict new information. In particular, new narrative information about ob-
servations or attempted actions can render the domain description inconsistent
in this way.

In this paper, we present the language Modular-E (ME) as a case study in
developing modular semantics for RAC frameworks in order to provide compre-
hensive solutions to the ramification and qualification problems. Our approach
builds upon [7] and is inspired by [13], separating out the qualification problem
into two parts - an endogenous aspect concerning qualifications expressible in the
known domain language, and an exogenous aspect where change is qualified by
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unrepresented (or exogenous) factors. The semantics of ME decouples these two
problems, allowing exogenous qualifications to come into play only when the
endogenous qualification alone is not sufficient to avoid inconsistency. It uses
a simple default minimization of exogenous qualifications to “minimize unex-
plained failure” (c.f. [13]) when observations of properties cannot be reconciled
with the assumed success of the applied effect laws. ME ’s modular semantics of-
fers a clean solution to the problem of anomalous models that arose from earlier
treatments of the qualification problem.

To achieve the semantic decoupling of endogenous and exogenous qualifica-
tions it is important to address two issues. First, a proper treatment of ramifica-
tions, including non-determinism and loops in chains of instantaneous effects, is
needed (as any incomplete treatment will cause some endogenous qualifications
to be treated as exogenous). ME uses a notion of processes for this. Second, for
the same reason a full account is needed for the qualifications that static con-
straints provide for causal laws. In this regard we distinguish between local or
explicit and global or implicit qualification. Local qualifications are the explicit
preconditions included in individual causal effect laws and action executability
statements. Global qualifications are formed at the semantic level by taking into
account static laws and interactions between effect laws. Global qualification is
closely related to modularity. Without it elaboration tolerance is compromised
by the need to manually reconcile each local set of qualifications with each new
static law.

We show that this analysis of the qualification and ramification problems
indeed results in modularity and elaboration tolerance. For example, ME en-
joys a “free will” property – a domain description can be extended with any
action attempt at any time after its recorded observations without affecting the
conclusions about the domain up to that time.

2 ME Syntax and Examples

In this section we give ME ’s syntax and sketch its important characteristics via
a series of examples.

Definition 1 (Domain Language). An ME domain language is a tuple
〈Π, �, ∆, Φ〉, where � is a total ordering defined over the non-empty set Π of
time-points, ∆ is a non-empty set of action constants, and Φ is a non-empty set
of fluent constants.

Definition 2 (Formula, Literal and Conjunction). A fluent formula is
a propositional formula containing only fluent constants (used as extra-logical
symbols), the standard connectives ¬, →, ←, ↔, ∨ and ∧, and the truth value
constants 	 and ⊥. A fluent literal is either a fluent constant or its nega-
tion. An action literal is either an action constant or its negation. A fluent
conjunction is a conjunction of fluent literals.

Definition 3 (Converse). Let E be an action or fluent constant. The con-
verse of E, written E, is ¬E, and the converse of ¬E, written ¬E, is E.
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Definition 4 (Domain Description or Theory). A domain description
or theory in ME is a collection of the following types of statements, where φ
is a fluent formula, T is a time point (assume an integer or real number unless
otherwise stated), A is an action constant, C is a (possibly empty) set of fluent
and action literals, L is a fluent literal, and E is a non-empty set of action
constants and fluent literals:

– h-propositions of the form: φ holds-at T
– o-propositions of the form: A occurs-at T
– c-propositions of the form: C causes L
– p-propositions of the form: φ prevents E
– a-propositions of the form: always φ

A domain description is finite if it contains only a finite number of propositions.

Singleton sets of fluent or action literals in c-propositions of the form {P} will
sometimes be written without enclosing braces, i.e. as P .

The intended meaning of h-propositions is straightforward – they can
be used to record “observations” about the domain along the time line.
“A occurs-at T ” means that an attempt to execute A occurs at T . Together,
the h- and o-propositions describe the “narrative” component of a domain de-
scription. “C causes L” means that, at any time-point, the combination of ac-
tions, inactions and preconditions described via C will provisionally cause L
to hold immediately afterwards. As we shall see, the provisos automatically
accompanying this causal rule are crucial – in any model the potential effect
L competes with other potential effects, and maybe overridden, for example,
because it would otherwise result in a more-than-instantaneous violation of a
domain constraint described with an a-proposition. The rule “C causes L” is
thus qualified both locally (via C) and globally via the total set of c-, p- and
a-propositions. “φ prevents E” means that the circumstances described by φ
prevent the simultaneous causation/execution of the effects/actions listed in E.
“ always φ” means that ¬φ can never hold, other than in temporary, instanta-
neous “transition states” which form part of an instantaneous chain of indirect
effects. In other words, “ always φ” describes a domain constraint or static law
at the granularity of observable time.

Example 1 (Lift Door). A lift door can be opened and closed by pressing the
“open” and “close” buttons respectively. The door is initially open, and both
buttons are pressed simultaneously. This scenario can be described with a single
fluent DoorOpen and two actions PressOpen and PressClose :

{PressOpen} causes DoorOpen (LD1)
{PressClose} causes ¬DoorOpen (LD2)
DoorOpen holds-at 1 (LD3)
PressOpen occurs-at 2 (LD4)
PressClose occurs-at 2 (LD5)

Example 1 results in two models – one in which the door is open at times after
2 and one in which the door is closed. Note that, even though the conflicting
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actions are not prevented from occurring together (i.e. there is no p-proposition
“	 prevents {PressOpen,PressClose}”), they do not give rise to inconsistency.
More generally, we show in Section 4 that ME exhibits a “free will” property
– from any consistent initial state, and for any given collection of c- and p-
propositions, any series of actions may be attempted without giving rise to in-
consistency. Put another way, any finite collection of o-, c- and p-propositions
is consistent with any internally consistent collection of a-propositions. Conse-
quently, the only way to engineer an inconsistent ME domain description (other
than by inclusion of inconsistent a-propositions) is to include “observations” (h-
propositions) along the time line which contradict the predictions that would
otherwise be given by ME ’s semantics. In Section 5 we show how this remaining
type of inconsistency can sometimes be overcome by attributing it to unknown
exogenous reasons and applying a simple minimization to these.

The following series of “broken car” examples is to illustrate the modularity
and elaboration tolerance of ME , and how this is linked to the way a- and
c-propositions interact.

Example 2 (Broken Car A). Turning the key of a car causes its engine to start
running. The key is turned at time 1:

{TurnKey} causes Running (BC1)
TurnKey occurs-at 1 (BC2)

In all models of this domain the car engine is running at all times after 1. (A
more complete description would typically include some local qualifications for
(BC1), e.g. “{TurnKey,BatteryOK} causes Running” – turning the key starts
the engine only when the battery is OK, in which case models would also arise
where e.g. ¬BatteryOK and ¬Running at all time-points.)

Example 3 (Broken Car B). We elaborate the previous description by stating
that broken cars’ engines cannot run:

always ¬(Broken ∧ Running) (BC3)

There are two classes of models for the elaborated domain (BC1)-(BC3) –
one in which the car is broken and not running at times after 1, and one in
which the car is not broken and running. The occurrence of TurnKey at 1
does not eliminate the model in which the car is broken because the seman-
tics of ME allows (BC3) to act as a global qualification, in particular for (BC1).
The TurnKey action does not force ¬Broken at earlier times, and thus if in
addition the car is known to be broken the theory remains consistent after
this elaboration. Without this characteristic, we would have to alter (BC1)
to “{TurnKey, ¬Broken} causes Running” to accommodate (BC3), in other
words explicitly encode as a local qualification the global qualification effect
of (BC3) on (BC1). In ME this local qualification is redundant thus illustrat-
ing its modular nature; the a-proposition (BC3) has been simply added without
further ado.
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Example 4 (Broken Car C). We elaborate Example 3 with two more causal rules
and an extra action occurrence:

{Break} causes Broken (BC4)
{Broken} causes ¬Running (BC5)
Break occurs-at 1 (BC6)

In all models of the domain (BC1)-(BC6), the car is broken and not running at
times after 1. (BC5) describes an “indirect effect” or “ramification”. It introduces
an asymmetry between the Running and Broken fluents and their relationship
with (BC3), preventing (BC3) from acting as a qualification for (BC4) in the
same way as it does for (BC1). Translating global to local/explicit qualifications
is therefore complex, as it requires consideration of the interactions between a-
and c-propositions. ME deals with indirect effects by considering chains of in-
stantaneous, temporary transition states (“nodes”). Within these causal chains,
“processes” are introduced to describe the initiation and termination of fluents.
These processes may “stretch” across several links of a given chain before they
are complete, thus allowing all possible micro-orderings of effects to be consid-
ered. Because of the coarseness of the domain description with respect to the
granularity of time, this is important for a proper treatment of collections of
instantaneous effects which compete or “race” against each other. Furthermore,
since the granularity of time in which these chains operate is finer than that of
observable time, intermediate states within them may (temporarily) violate the
static laws described by a-propositions. In Example 4, one of the chains allowed
by the semantics completes the process initiating Running and then the pro-
cess initiating Broken . At this point there is a state in which (BC3) is violated,
but (BC5) then generates a new process terminating Running whose completion
results in a consistent state further along the chain.

Example 5 (Broken Car B+/C+). We elaborate the previous two descriptions
by observing the car running at time 2:

Running holds-at 2 (BC-obs)

Adding (BC-obs) to Example 3 does not result in inconsistency, but allows us
to infer that the car is not broken (in particular at earlier times). Note that
ME would facilitate the opposite conclusion (Broken) in exactly the same way
had the observation been “¬Running holds-at 2”. This is because it accords
exactly the same status to globally derived qualifications (in this case from
(BC3)) as to qualifications localized to particular c-propositions. However,
adding (BC-obs) to Example 4 does give rise to inconsistency at the level of
the ME ’s “base semantics” (as detailed in Section 3), because since there are
no (local or globally derived) qualifications to (BC4) and (BC5), the theory
would otherwise entail ¬Running. An intuitive explanation for (BC-obs) in
this context is that one or both of the effects of (BC4) and (BC5) “failed” due
to exogenous circumstances (i.e. factors not included in the representation)
implicitly qualifying these causal rules. This type of reasoning is captured within
ME by the use of simple default minimization of such exogenous qualifications
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(see Section 5). The minimization policy is straightforward and robust because
the base semantics fully accounts for all endogenous qualifications (i.e. those
expressed in the domain) by its modularity and its encapsulation of global as
well as local qualifications, as described above.

Example 6 (Broken Car D). We elaborate Example 4 with the knowledge that
the car was parked at time 0 in anti-theft mode (ATM), so that causing the
engine to run (even for an instant) will trigger the alarm:

(¬Broken ∧ ¬Running ∧ ¬Alarm ∧ ATM ) holds-at 0 (BC7)
{Running,ATM } causes Alarm (BC8)

Intuitively, even though at times after 1 the car will be broken and not running,
the alarm may or may not be triggered in this narrative, depending on whether
the (indirect) effect of the Break action takes effect just before or just after the
effect of the TurnKey action. This is an example of a “race” condition between
competing instantaneous effects. ME is able to deal correctly with such repre-
sentations via its processed-based semantics. It gives two models of this domain
– in both models (Broken ∧¬Running) is true at times after 1, but in one model
Alarm is true and in the other it is false. The example illustrates how ME ’s
processes operate at a finer level of temporal granularity than “observable time”
in order to deal with “instantaneous” indirect effects.1

Example 7 (Oscillator).

{On} causes ¬On (OSC1)
{¬On} causes On (OSC2)

This example (which might e.g. represent the internal mechanism of an electric
buzzer) has an infinite number of models in which the truth value of On is
arbitrarily assigned at each time point. It illustrates that ME is able to deal with
“loops” of indirect effects without over-constraining models. It is important, for
example, not to restrict the set of models to those in which the truth value of On
alternates at each successive time-point. This is because the change within the
domain is happening ”instantaneously” – i.e. at an altogether finer granularity
of time than “observable” time. Therefore the observable time-points are best
considered as arbitrarily spaced “snapshots” of the finer-grained time continuum.
A full treatment of such loops along these lines (as well as a full treatment of
concurrency and nondeterminism) is necessary for ME to exhibit the “free will”
property and resulting modularity and elaboration tolerance described above.
1 An interesting (and more contentious) variation of Example 6 is to delete (BC4) and

(BC6), and replace (BC7) with “(Broken∧¬Running∧¬Alarm∧ATM ) holds-at 0”.
(so that the car is already broken at 1). ME ’s semantics still gives the two models
with Alarm true in one and false in the other. This is because it treats (BC3)
only as a “stability” constraint at the temporal granularity of “observable” time,
and not as a “definitional” constraint that would transcend all levels of temporal
granularity. Note, however, that we could eliminate the model in which Alarm was
true by adding the p-proposition “Broken prevents Running”, meaning that Broken
prevents Running from being caused (even instantaneously).



ME : An Elaboration Tolerant Approach 217

3 Modular-E Base Semantics

In this section we give a formal account of ME ’s semantics. We begin with some
straightforward preliminary definitions concerning states and processes.

3.1 Definitions Regarding States, Processes and Causal Change

Definition 5 (States and Satisfaction). A state is a set S of fluent literals
such that for each fluent constant F , either F ∈ S or ¬F ∈ S but not both. A
formula φ is satisfied in a state S iff the interpretation corresponding to S
is a model of φ.

Definition 6 (A-Consistency). Let D be a domain description and S a state.
S is a-consistent with respect to D iff for every a-proposition “ always φ”
in D, φ is satisfied in S. D is a-consistent iff there exists a state which is
a-consistent with respect to D. Let Da denote the set of all a-propositions in
D. Then given a fluent formula ψ, Da |=a ψ iff ψ is entailed classically by the
theory T = {φ | always φ ∈ D}.

Definition 7 (Process). A process is an expression of the form ↑F or ↓F ,
where F is a fluent constant of the language. ↑F is called the initiating pro-
cess of F and ↓F is called the terminating process of F . The associated
processes of the c-propositions “C causes F” and “C causes ¬F” are respec-
tively ↑F and ↓F . ↑F and ↓F will also sometimes be written as proc(F ) and
proc(¬F ) respectively. An active process log is a set of processes.

Definitions 8 – 15 concern the identification of fluent changes following instanta-
neously from a given state and set of actions. A causal chain represents a possible
instantaneous series of knock-on effects implied by the causal laws. There is a
repeated two-phase mechanism for constructing the “nodes” of causal chains – a
triggering phase in which new processes are generated from c-propositions appli-
cable at that point, immediately followed by a resolution phase in which some of
the already-active processes complete, resulting in an update of the correspond-
ing fluents’ truth values. The process triggering is appropriately limited by the
p-propositions. The triggering and completion of a particular process may be
separated by several steps in the chain, so that consideration of all such chains
gives an adequate treatment of “race” conditions between competing instanta-
neous effects. Chains terminate either because they reach a state from which no
change is possible (a static node) or because they loop back on themselves. We
have made the working (but retractable) assumption that actions trigger pro-
cesses only at the beginning of such chains, at which point they are “consumed”.

Definition 8 (Causal Node). A causal node (or node) is a tuple 〈S, B, P 〉,
where S is a state, B is a set of action constants and P is an active process log.
〈S, B, P 〉 is fully resolved iff P = ∅, and is a-consistent w.r.t. a domain
description D iff S is a-consistent w.r.t. D.
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Definition 9 (Triggering). Let D be a domain description, N = 〈S, B, P 〉 a
node, Lt a set of fluent literals, Pt = {proc(L) | L ∈ Lt}, and Bt a set of action
constants. The set (Bt ∪ Pt) is triggered at N with respect to D iff

1. Bt ⊆ B
2. For each p-proposition “φ prevents E” in D, either φ is not satisfied in S

or E �⊆ (Bt ∪ Lt).
3. For each L ∈ Lt there is a c-proposition “C causes L” in D such that (i)

for each action constant A ∈ C, A ∈ Bt, (ii) for each action literal ¬A ∈ C,
A �∈ Bt, and (iii) for each fluent literal L′ ∈ C, L′ ∈ S.

(Bt ∪ Pt) is maximally triggered at N with respect to D iff there is no
other set (B′

t ∪P ′
t ) also triggered at N with respect to D and (Bt ∪Pt) is a strict

subset of (B′
t ∪ P ′

t ).

Definition 10 (Process Successor). Let D be a domain description and N =
〈S, B, P 〉 a node. A process successor of N w.r.t. D is a node of the form
〈S, Bt, (P ∪Pt)〉, where (Bt ∪ Pt) is maximally triggered at N with respect to D.

Definition 11 (Resolvant). Let N = 〈S, B, P 〉 and N ′ = 〈S′, ∅, P ′〉 be causal
nodes. N ′ is a resolvant of N iff S′ = S and P = P ′ = ∅ or there exists a
non-empty subset R of P such that the following conditions hold.

1. P ′ = P − R.
2. For each fluent constant F such that both ↑F and ↓F are in P , either both

or neither ↑F and ↓F are in R.
3. For each fluent constant F (i) if ↑F ∈ R and ↓F �∈ R then F ∈ S′, (ii) if

↓F ∈ R and ↑F �∈ R then ¬F ∈ S′, (iii) if ↓F �∈ R and ↑F �∈ R then F ∈ S′

iff F ∈ S.

N ′ is a full resolvant of N iff P ′ = ∅.

Definition 12 (Stationary/Static Nodes). Let D be a domain description
and N = 〈S, B, P 〉 a causal node. N is stationary iff for each resolvant
〈S′, ∅, P ′〉 of N , S′ = S. N is static w.r.t. D iff every process successor of
N w.r.t. D is stationary.

The central definition of causal chains now follows. It is slightly complicated by
the need to deal with loops – conditions 2, 3 and 4 below ensure that all chains
will end when the first static or repeated node is encountered.

Definition 13 (Causal Chain). Let D be a domain description and let N0 be
a node. A causal chain rooted at N0 with respect to D is a (finite) sequence
N0, N1, ..., N2n of nodes such that for each k, 0 ≤ k ≤ n − 1, N2k+1 is a process
successor of N2k w.r.t. D and N2k+2 is a resolvant of N2k+1, and such that the
following conditions hold:

1. N2n is fully resolved.
2. N2n is static, or there exists k < n s.t. N2n = N2k.
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3. If there exists j < k ≤ n s.t. N2j = N2k then k = n.
4. There does not exist a k < n s.t. N2k is static.

In the context of Example 1, Figure 1 below shows the tree of all possible causal
chains with the starting node 〈{DoorOpen}, {PressClose,PressOpen}, ∅〉 (which
intuitively corresponds to the situation at time 2). N1 is the unique process
successor of N0, and the nodes N2 and N ′

2 (which are both static) are the only
resolvants of N1.

N0 : 〈{DoorOpen}, {PressClose, PressOpen}, ∅〉
↓

N1 : 〈{DoorOpen}, {PressClose, PressOpen}, {↑DoorOpen, ↓DoorOpen}〉
↙ ↘

N2 : 〈{DoorOpen}, ∅, ∅〉 N ′
2 : 〈{¬DoorOpen}, ∅, ∅〉

Fig. 1.

As regards Example 6, we may form several causal chains starting from the
node corresponding to time 1. Here is a chain terminating with a state in which
Alarm holds (Br = Broken , Ru = Running , Al = Alarm):

N0 : 〈{¬Br , ¬Ru, ¬Al ,ATM }, {Break ,TurnKey}, ∅〉
N1 : 〈{¬Br , ¬Ru, ¬Al ,ATM }, {Break ,TurnKey}, {↑Br , ↑Ru}〉
N2 : 〈{Br ,Ru, ¬Al ,ATM }, ∅, ∅〉
N3 : 〈{Br ,Ru, ¬Al ,ATM }, ∅, {↓Ru, ↑Al}〉
N4 : 〈{Br , ¬Ru,Al ,ATM }, ∅, ∅〉

Here is another chain terminating with a state in which ¬Alarm holds:

N0 : 〈{¬Br , ¬Ru, ¬Al ,ATM }, {Break ,TurnKey}, ∅〉
N1 : 〈{¬Br , ¬Ru, ¬Al ,ATM }, {Break ,TurnKey}, {↑Br , ↑Ru}〉
N ′

2 : 〈{Br , ¬Ru, ¬Al ,ATM }, ∅, {↑Ru}〉
N ′

3 : 〈{Br , ¬Ru, ¬Al ,ATM }, ∅, {↓Ru, ↑Ru}〉
N ′

4 : 〈{Br , ¬Ru, ¬Al ,ATM }, ∅, ∅〉

Nodes, and in particular nodes that terminate causal chains, do not neces-
sarily contain a-consistent states. But causal chains that do not terminate a-
consistently are not discarded when computing direct and indirect instantaneous
effects. Rather, the semantics identifies proper causal descendants within a tree of
all possible causal chains starting from a given root node. These are a-consistent
nodes which are either within the terminating loop of a chain (condition 1 in
Definition 14), or are such that there are no other a-consistent nodes further
from the root of the tree (condition 2). (For example, in Fig. 1, N2 and N ′

2 are
proper causal descendants of N0 by condition 1 below, with j = k = n = 1.)

Definition 14 (Proper Causal Descendant). Let D be a domain description
and let N0 and N be nodes. N is a proper causal descendant of N0 w.r.t.
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D iff N is a-consistent w.r.t. D, and there exists a causal chain N0, N1, ..., N2n

w.r.t. D such that N = N2k for some 0 ≤ k ≤ n and at least one of the following
two conditions holds:

1. There exists j ≤ k such that N2j = N2n.
2. There does not exist a causal chain N0, N1, ..., N2k, N ′

2k+1, ..., N
′
2m w.r.t. D

and a j such that k < j ≤ m and N ′
2j is a-consistent w.r.t. D.

It is also useful to define a stable state as a state that does not always immediately
cause its own termination (note that stable states can be in loops, but must be
a-consistent):

Definition 15 (Stable State). Let D be a domain description and let S be
a state. S is stable w.r.t. D if there exists a node 〈S, ∅, P 〉 which is a proper
causal descendant of 〈S, ∅, ∅〉.

Example 8 (Promotion). An employee gets promoted at time 1. Promotion re-
sults in a large office (LO) and big salary (BS ). But nobody gets a large office
when the building is overcrowded (OC ), which it is at time 1:

always ¬(OC ∧ LO) (PR1)
Promote causes {BS ,LO} (PR2)
Promote occurs-at 1 (PR3)
(¬LO ∧ ¬BS ∧ OC ) holds-at 1 (PR4)

Here is the tree of possible causal chains that arise at time 1 in this example,
with the single proper causal descendant of the root node underlined:

〈{¬LO, ¬BS, OC}, {Promote}, ∅〉
↓

〈{¬LO, ¬BS, OC}, {Promote}, {↑LO, ↑BS}〉
↙ ↓ ↘

〈{LO, ¬BS, OC}, ∅, {↑BS}〉 〈{LO, BS, OC}, ∅, ∅〉 〈{¬LO, BS, OC}, ∅, {↑LO}〉
↓ ↓

〈{LO, ¬BS, OC}, ∅, {↑BS}〉 〈{¬LO, BS, OC}, ∅, {↑LO}〉
↓ ↓

〈{LO, BS, OC}, ∅, ∅〉 〈{LO, BS, OC}, ∅, ∅〉

Fig. 2.

3.2 Definitions Regarding Time and Temporal Change

If a causal node corresponds to a particular time-point in the narrative of a given
domain description (e.g. in Fig. 1, N0 corresponds to time 2), then Definitions 16
– 21 below ensure that the states within its proper causal descendants indicate
possible choices as to which fluents will change values in the time period imme-
diately afterwards. These definitions are largely modifications of those in [7], but
with the notion of a change set replacing that of initiation/termination points.

Definition 16 (Interpretation). An interpretation of ME is a mapping
H : Φ × Π �→ {true, false}.
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Definition 17 (Time-point Satisfaction). Given a fluent formula φ of ME
and a time point T , an interpretation H satisfies φ at T iff the mapping MT de-
fined by ∀F, MT (F ) = H(F, T ) is a model of φ. Given a set Z of fluent formulae,
H satisfies Z at T iff H satisfies φ at T for each φ ∈ Z.

Definition 18 (State/Event Base at a Time-point). Let D be a domain
description, H an interpretation, and T a time-point. The state at T w.r.t.
H, denoted S(H, T ), is the state {F | H(F, T )= true} ∪ {¬F | H(F, T )= false}.
The event base at T w.r.t. D, denoted B(D, T ), is the set {A | “A occurs-at
T” ∈ D}.

Definition 19 (Causal Frontier). Let D be a domain description, T a time-
point, H an interpretation and S a state. S is a causal frontier of H at T
w.r.t. D iff there exists a node N = 〈S, B, P 〉 such that N is a proper causal
descendant of 〈S(H, T ), B(D, T ), ∅〉 w.r.t. D.

Definition 20 (Change Set). Let D be a domain description, H an inter-
pretation, T a time-point and C a set of fluent literals. C is a change set at
T w.r.t. H iff there exists a causal frontier S of H at T w.r.t. D such that
C = S − S(H, T ).

Definition 21 (Model). Let D be a domain description, and let Φ∗ be the set
of all (+ve and -ve) fluent literals in the language. Then an interpretation H is
a model of D iff there exists a mapping c : Π �→ 2Φ∗

such that for all T , c(T )
is a change set at T w.r.t. H, and the following three conditions hold. For every
fluent literal L and time-points T1 ≺ T3:

1. If H satisfies L at T1, and there is no time-point T2 s.t. T1 � T2 ≺ T3 and
L ∈ c(T2), then H satisfies L at T3.

2. If L ∈ c(T1), and there is no time-point T2 s.t. T1 ≺ T2 ≺ T3 and L ∈ c(T2),
then H satisfies L at T3.

3. H satisfies the following constraints:
– For all “φ holds-at T” in D, H satisfies φ at T .
– For all time-points T , S(H, T ) is a stable state.

Intuitively, condition (1) above states that fluents change their truth values only
via successful effects of c-propositions, and (2) states that successfully initiat-
ing a literal establishes its truth value as true. Note also that condition (3)’s
requirement of stability ensures that S(H, T ) is a-consistent.

Definition 22 (Consistency and Entailment). A domain description D is
consistent if it has a model. D entails the h-proposition “φ holds-at T”,
written D |= φ holds-at T , iff for every model M of D, M satisfies φ at T .

Example 9 (Faulty Circuit). An electric current in a faulty circuit is switched
on causing a broken fuse, which in turn terminates the current:

{SwitchOn} causes ElectricCurrent (FC1)
{ElectricCurrent} causes BrokenFuse (FC2)
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{BrokenFuse} causes ¬ElectricCurrent (FC3)
always ¬(ElectricCurrent ∧ BrokenFuse) (FC4)
SwitchOn occurs-at 1 (FC5)

One causal chain that could be triggered at time 1 (with non-a-consistent nodes
N4 and N5) is:

N0 : 〈{¬ElectricCurrent , ¬BrokenFuse}, {SwitchOn}, ∅〉
N1 : 〈{¬ElectricCurrent , ¬BrokenFuse}, {SwitchOn}, {↑ElectricCurrent}〉
N2 : 〈{ElectricCurrent , ¬BrokenFuse}, ∅, ∅〉
N3 : 〈{ElectricCurrent , ¬BrokenFuse}, ∅, {↑BrokenFuse}〉,
N4 : 〈{ElectricCurrent ,BrokenFuse}, ∅, ∅〉
N5 : 〈{ElectricCurrent ,BrokenFuse}, ∅, {↓ElectricCurrent}〉
N6 : 〈{¬ElectricCurrent ,BrokenFuse}, ∅, ∅〉.

This chain is well-formed because N6 is the first static resolvant node and is
fully resolved (Definition 13). N6 is a-consistent and therefore is a proper causal
descendant of N0 (Definition 14). So {¬ElectricCurrent ,BrokenFuse} is a causal
frontier at 1 of any interpretation that satisfies (¬ElectricCurrent∧¬BrokenFuse)
at 1 (Definition 19), thus providing the change set {BrokenFuse} (Defini-
tion 20). Note that at the granularity level of the representation of this example,
ElectricCurrent , the cause of BrokenFuse, is never true! ElectricCurrent is true
only at a finer granularity.

4 Some Formal Results and Properties

As we have seen, ME provides principled, general mechanisms for causal laws
to be qualified both by each other and by static laws, thus integrating all en-
dogenous qualifications within one base-level semantic framework. ME also pro-
vides a high degree of modularity by its separation of information about causal-
ity (c-, p- and a-propositions), narrative information about attempted actions
(o-propositions), and observations (h-propositions) within the narrative. These
qualities make ME domain descriptions particularly elaboration tolerant, as
the following results show. (Proofs of all results at www.ucl.ac.uk/slais/rob-
miller/modular-e/lpnmr05long.pdf).

Definition 23 (Pre- and Post-observation/action Points). Given a do-
main description D, a post-observation point of D is a time-point Tp such
that, for every h-proposition of the form “φ holds-at T” in D, T � Tp. A pre-
action point (respectively post-action point) is a time-point Ta such that, for
every o-proposition “A occurs-at T” in D, Ta � T (respectively Ta � T ).

Definition 24 (Projection Domain Description). The domain description
D is a projection domain description if there exists a time-point which is
both a post-observation point and a pre-action point of D.
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Theorem 1 (Free Will Theorem). Let M be a model of a finite domain
description D, let O be a finite set of o-propositions, and let Tn be a time-point
which is both a post-observation point for D and a pre-action point for O. Then
there is a model MO of D∪O such that for any fluent F and time-point T � Tn,
MO(F, T ) = M(F, T ).

Corollary 1 (Free Will Corollary). Let D and D′ be domain descriptions
and let Tn be a post-observation point for both D and D′. Let D and D′ differ
only by o-propositions referring to time-points greater than or equal to Tn and let
M be a model of D. The there is a model M ′ of D′ such that M(F, T ) = M ′(F, T )
for all fluent constants F and all time-points T such that T � Tn.

Corollary 2 (Action Elaboration Tolerance Corollary). Let D be a con-
sistent domain description and let O be a finite set of o-propositions. If there
exists a time-point Tn which is both a post-observation point for D and a pre-
action point for O, then D ∪ O is consistent.

Theorem 2 demonstrates the robustness and elaboration tolerance of ME
theories by showing that their consistency is contingent only on the internal
consistency of the static laws and on whether observations match with predicted
effects.

Theorem 2 (Theorem of Causal Elaboration Tolerance). Let Da be a
consistent domain description consisting only of a-propositions and let E be a
finite set of o-, c- and p-propositions. Then Da ∪ E is also a consistent domain
description.

Lack of space prevents us from giving further formal results here on the
link between global and local qualifications as illustrated in examples 3 and 4.
These results show their complex relationship and hence the difficulty to have
modularity when a framework relies overly on explicit local qualification.

5 Exogenous Qualifications

ME ’s base semantics offers an elaboration tolerant solution to the endogenous
qualification problem, where properties of the domain implicitly qualify the ef-
fect laws. It is, nonetheless, still possible that an effect fails to be produced as
expected. Such a scenario occurs, for instance, when we elaborate Example 2
by observing the car not running at time 2. No known reason can explain this
unexpected observation, so it needs to be attributed to an exogenous cause.

A way to reconcile such conflicts is to assume that every effect law of a
domain description is implicitly qualified [4] by a set of extra preconditions,
written Normal exo that symbolizes the normal conditions under which the law
operates successfully. These preconditions are outside the user’s language or
exogenous [13], and package together all the unknown conditions necessary for
the effect law to successfully generate its effect. They hold true by default unless
the observations in a given narrative make the domain description inconsistent.
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Definition 25 (Default Domain Description). Let D be a domain
description. To obtain the default domain description Dd asso-
ciated with D: (i) replace every c-proposition “C causes L” with
“C ∪ Normal exo(C, L) causes L”, and (ii) add the n-proposition
“ normally norm exo( )” for every fluent norm exo( ) in some set
Normal exo( ).

The exogenous fluents norm exo that belong to the Normal exo sets depend
on assumptions on the nature of the failures of the effect law, in the particular
domain of application. A meta-level recovery policy can be chosen a-priori
appropriate for the domain at hand. Omitting the details, a recovery policy
defines what other effect laws will be assumed to fail once a given effect law is
observed to fail. One can define recovery policies where (i) no other effect laws
are assumed to fail, (ii) all effect laws sharing the same effect L are also assumed
to fail, (iii) all effect laws sharing the same event set C are also assumed to
fail, etc. Irrespective of the recovery policy, the default models of domain D are
given via the same simple minimization of the exogenous fluents over the (strict)
models of the associated default domain Dd.

Definition 26 (Default Model). Let D be a domain description, Ta a
pre-action point of D, and D′

d the default domain description associated with D
but without its n-propositions. Then, the restriction of M to fluents other than
the norm exo( ) fluents is a default model of D iff (1) )M is a model of D′

d,
and (2) There is no model M ′ of D′

d such that N ⊂ N ′, where

N = {norm exo( ) | M(norm exo( ), Ta) = true},
N ′ = {norm exo( ) | M ′(norm exo( ), Ta) = true}.

So far we have assumed that once an effect law is observed to fail, all sub-
sequent instances will also fail by virtue of the persistence of norm exo fluents.
Various alternatives are also possible and the semantics can easily be adapted to
support them. An observed failed effect law might, for example, cause its subse-
quent instances to fail nondeterministically, or not fail at all. Hence, in addition
to failures, we can also have uncertain failures, or “accidents” (see [13]).

The existence of default models can be guaranteed as long as domains are
a-consistent, point-wise consistent w.r.t. h-propositions, and do not violate flu-
ent persistence. This requirement is captured by the notion of a frame model,
which (assuming a “coupled accidents” recovery policy, where the exogenous
qualification of a causal law exactly implies the exogenous qualification of all
other causal laws applied to the same time-point) can be defined similarly to a
model with the exception that the change set mapping c(·) can map arbitrary
time-points to the empty set. Intuitively, this frame model definition allows all
causal laws at some time-point to simply fail to produce their effects, as long as
the successful production of their effects is not required to explain the change in
the truth-value of some fluents.

Theorem 3 (Default Model Existence). A domain description D has a de-
fault model iff it has a frame model.
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6 Summary and Related and Future Work

We have shown how ME can represent non-deterministic narrative domains
involving concurrency, static laws and indirect effects. We have formally charac-
terized ME ’s high degree of modularity and elaboration tolerance, enabled by an
exceptionally full solution to the ramification problem able to deal with looping
systems of indirect effects, and race conditions between competing causal laws.
These properties help separate out, and provide a principled solutions to, the en-
dogenous and exogenous qualification problems. Endogenous qualifications may
be either locally specified or globally derived within the base semantics, whereas
exogenous qualifications are provided by the use of default minimization.

Our approach to the qualification problem and its links to ramifications partly
follows that in [13]. But ME ’s fuller solution to the frame problem, which covers
both successful and failed action attempts, enables it to use the same default
reasoning mechanism to deal with not just the “weak” but also the “strong”
qualification problem as described in [13]. Two other important aspects in which
ME differs from [13] are (a) the more complete treatment of ramifications, e.g.
for concurrent effects and (b) the notion of global qualification which gives ME
a higher degree of modularity. Our results are in line with the recent study of
modularity in [6] which again highlights the link between modularity and free-
will properties.

Our solution to the ramification problem is related to that in [1] in that the
indirect effects of actions are defined constructively through causal laws. But
ME ’s processed-based semantics differs in that it (a) embraces nondeterminism
resulting from the possible orderings by which effects are realized, and (b) at-
tributes meaning to domains (e.g, Example 9) that are deemed ill-formed in [1].

Irrespective of the qualification problem, the “free will” property of Theo-
rem 1 is important to avoid anomalous planning, whereby unintended “plans”
can be abduced or deduced for the converse of a precondition of an effect law
by virtue of a lack of model for the successful application of that law. (See [11]
for an example.) Although lack of space prevents an illustration here, anoma-
lous plans are easy to construct in formalisms such as the Language C [5] which
express action non-executability in terms of inconsistency. But they also arise
in any framework (such as [7]) unable to provide models for all combinations of
causal laws.

We currently have a prototype implementation of ME ’s base semantics in
Prolog. The declarative programming style should facilitate an easy proof of
the soundness and completeness of the implementation w.r.t. to ME ’s seman-
tics. On the other hand, different techniques might be needed to address the
computational qualification problem [3] of avoiding considering the majority of
qualifications during the computation. Similar techniques might also prove use-
ful when computing default models, where one does not want to consider all
possible ways causal laws might fail, but rather deduce which ones should fail.
To this end we are currently considering the use of satisfiability methods or An-
swer Set Programming (along the lines of [8,12,2]), as well as argumentation (or
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abduction) based computational methods. We also aim to study subclasses (as
in [2]) of ME , where the computational complexity of reasoning decreases.

There are several aspects of ME that deserve further study. One is the extent
to which static laws should be regarded as specific to the temporal granularity
of the representation (how would we refine the role that a-propositions play
in computing indirect effects?). A detailed comparison would also be useful on
different recovery policies used in ME ’s approach to the exogenous qualification
problem. We would also like to investigate the use of priority policies on different
ME models, e.g. to prefer non-change in nondeterministic situations.
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