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Preface

These are the proceedings of the 8th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR 2005). Following the previous ones
held in Washington, DC, USA (1991), Lisbon, Portugal (1993), Lexington, KY,
USA (1995), Dagstuhl, Germany (1997), El Paso, TX, USA (1999), Vienna, Aus-
tria (2001) and Ft. Lauderdale, FL, USA (2004), the eighth conference was held
in Diamante, Italy, from 5th to 8th of September 2005.

The aim of the LPNMR conferences is to bring together and facilitate interac-
tions between active researchers interested in all aspects concerning declarative
logic programming, nonmonotonic reasoning, knowledge representation, and the
design of logic-based systems and database systems. LPNMR strives to encom-
pass theoretical and experimental studies that lead to the implementation of
practical systems for declarative programming and knowledge representation.

The technical program of LPNMR 2005 comprised three invited talks that
were given by Jürgen Angele, Thomas Eiter and Michael Kifer. All papers pre-
sented at the conference and published in these proceedings went through a
rigorous review process which selected 25 research papers and 16 papers for the
system and application tracks.

Many individuals worked for the success of the conference. Special thanks
are due to all members of the Program Committee and to additional reviewers
for their efforts to produce fair and thorough evaluations of submitted papers.
A special thanks is due to the University of Calabria Organizing Committee
which made this event possible. Last, but not least, we thank the sponsoring
institutions for their generosity.

June 2005 Chitta Baral and Nicola Leone
Program Co-chairs

LPNMR’05
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Nonmonotonic Reasoning in FLORA-2�

Michael Kifer

Department of Computer Science,
State University of New Your at Stony Brook,

Stong Brook, NY 11794, USA
kifer@cs.stonybrook.edu

Abstract. FLORA-2 is an advanced knowledge representation system
that integrates F-logic, HiLog, and Transaction Logic. In this paper we
give an overview of the theoretical foundations of the system and of some
of the aspects of nonmonotonic reasoning in FLORA-2. These include
scoped default negation, behavioral inheritance, and nonmonotonicity
that stems from database dynamics.

1 Introduction

FLORA-2 is a knowledge base engine and a complete environment for devel-
oping knowledge-intensive applications. It integrates F-logic with other novel
formalisms such as HiLog and Transaction Logic. FLORA-2 is freely available
on the Internet1 and is in use by a growing research community. Many of the
features of FLORA-2 have been adopted by the recently proposed languages in
the Semantic Web Services domain: WSML-Rule2 and SWSL-Rules.3

One of the main foundational ingredients of FLORA-2, F-logic [20], extends
classical predicate calculus with the concepts of objects, classes, and types, which
are adapted from object-oriented programming. In this way, F-logic integrates
the paradigms of logic programming and deductive databases with the object-
oriented programming paradigm. Most of the applications of F-logic have been in
intelligent information systems, but more recently it has been used to represent
ontologies and other forms of Semantic Web reasoning [14,12,27,1,11,2,19].

HiLog [8] is an extension of the standard predicate calculus with higher-
order syntax. Yet the semantics of HiLog remains first-order and tractable. In
FLORA-2, HiLog is the basis for simple and natural querying of term structures
and for reification (or objectification) of logical statements, which is an impor-
tant requirement for a Semantic Web language. Transaction Logic [6] provides
the basis for declarative programming of “procedural knowledge” that is often
embedded in intelligent agents or Semantic Web services.

In this paper we first survey the main features of FLORA-2 and then discuss
three forms of nonmonotonic reasoning provided by the system.
� This work was supported in part by NSF grant CCR-0311512 and by U.S. Army

Medical Research Institute under a subcontract through Brookhaven National Lab.
1 http://flora.sourceforge.net/
2 http://www.w3.org/Submission/WSML/
3 http://www.daml.org/services/swsl-rules/1.0/

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Kifer

2 Overview of F-Logic

F-logic extends predicate calculus both syntactically and semantically. It has
a monotonic logical entailment relationship, and its proof theory is sound and
complete with respect to the semantics. F-logic comes in two flavors: the first-
order flavor and the logic programming flavor. The first-order flavor of F-logic
can be viewed as a syntactic variant of classical logic [20]. The logic programming
flavor uses a subset of the syntax of F-logic, but gives it a different, non-first-
order semantics by interpreting the negation operator as negation-as-failure.

The relationship between the first-order variant of F-logic and its logic pro-
gramming variant is similar to the relationship between predicate calculus and
standard logic programming [23]: object-oriented logic programming is built on
the rule-based subset of F-logic by adding the appropriate non-monotonic ex-
tensions [32,33,24]. These extensions are intended to capture the semantics of
negation-as-failure (like in standard logic programming [28]) and the semantics
of multiple inheritance with overriding (which is not found in standard logic
programming).

F-logic uses first-order variable-free terms to represent object identity (abbr.,
OID); for instance, John and father(Mary) are possible Ids of objects. Objects
can have attributes. For instance,

Mary[spouse-> John, children-> {Alice,Nancy}].
Mary[children-> Jack].

Such formulas are called F-logic molecules. The first formula says that object
Mary has an attribute spouse whose value is the OID John. It also says that
the attribute children is set-valued and its value is a set that contains two
OIDs: Alice and Nancy. We emphasize “contains” because sets do not need to
be specified all at once. For instance, the second formula above says that Mary
has an additional child, Jack.

In earlier versions of F-logic, set-valued attributes were denoted with ->>
instead of -> . However, subsequently the syntax was modernized and simplified.
Instead of using different arrows, cardinality constraints (to be explained shortly)
were introduced to indicate that an attribute is single-valued.

While some attributes of an object are specified explicitly, as facts, other
attributes can be defined using deductive rules. For instance, we can derive
John[children-> {Alice,Nancy,Jack}] using the following deductive rule:

?X[children-> {?C}] :- ?Y[spouse-> ?X, children-> {?C}].

In the new and simplified syntax, alphanumeric symbols prefixed with the ?-
sign denote variables and unprefixed alphanumeric symbols denote constants
(i.e., OIDs). The earlier versions of FLORA-2 used Prolog conventions where
variables were capitalized alphanumeric symbols.

F-logic objects can also have methods, which are functions that take argu-
ments. For instance,

John[grade(cs305,fall2004) -> 100, courses(fall2004) -> {cs305,cs306}].
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says that John has a method, grade, whose value on the arguments cs305 (a
course identifier) and fall2004 (a semester designation) is 100; it also has a
set-valued method courses, whose value on the argument fall2004 is a set of
OIDs that contains course identifiers cs305 and cs306. Like attributes, methods
can be defined using deductive rules.

The F-logic syntax for class membership is John:student and for subclass
relationship it is student::person. Classes are treated as objects and it is possi-
ble for the same object to play the role of a class in one formula and of an object
in another. For instance, in the formula student:class, the symbol student
plays the role of an object, while in student::person it appears in the role of
a class.

F-logic also provides means for specifying schema information through signa-
ture formulas. For instance, person[spouse {0:1}=> person, name {0:1} =>
string, child=> person] is a signature formula that says that class person
has three attributes: single-valued attributes spouse and name (single-valuedness
is indicated by the cardinality constraint 0:1) and a set-valued attribute child.
It further says that the first attribute returns objects of type person, the second
of type string, and the last returns sets of objects such that each object in the
set is of type person.

3 HiLog and Meta-information

F-logic provides simple and natural means for exploring the structure of object
data. Both the schema information associated with classes and the structure of
individual objects can be queried by simply putting variables in the appropriate
syntactic positions. For instance, to find the set-valued methods that are defined
in the schema of class student and return objects of type person, one can ask
the following query:

?- student[?M=> person].

The next query is about the type of the results of the attribute name in class
student. This query also returns all the superclasses of class student.

?- student::?C and student[name=> ?T].

The above are schema-level meta-queries: they involve the subclass relationship
and the type information. One can also pose meta-queries that involve object
data (rather than schema). The following queries return the methods that have
a known value for the object John:

?- John[?Meth-> ?SomeValue].

However, the meta-query facilities of F-logic are not complete. For instance,
there is no way in such queries to separate method names from their arguments.
Thus, if we had a fact of the form

John[age(2005)-> 20].
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then the first of the above queries will bind ?Meth to age(2005)—we cannot
separate age from 2005.

This is where HiLog [8] comes into picture. In HiLog, second-order syntax
is allowed and so variables can appear in positions of function and predicate
symbols. For instance, queries such as

?- person[?M(?Arg)-> ?SomeValue].
?- person[?M(?Arg)=> integer].

are allowed and ?M would be bound to age and, possibly, to other values as well.
The semantics for this second-order syntax is first order, however. Roughly it
means that variables get bound not to the extensional values of the symbols
(i.e., the actual relations that are used to interpret the function and predicate
symbols), but to the symbols themselves. Details of these semantics can be found
in [8].

HiLog does not stop at allowing variables over function and predicate
symbols—it also permits them over atomic formulas. For instance, the following
query is legal and will succeed with ?X bound to p(a).

p(a).
q(p(a)).
?- q(?X), ?X.

What happens here is that the proposition p(a) is reified (made into an object)
and so it can be bound to a variable. HiLog’s reification of atomic formulas
can be extended to arbitrary quantifier-free formula of the rule-based subset of
HiLog and F-logic, and this has been done in [31,19]. For instance, one can say
that John believes that Mary likes Sally as follows:

John[believes ->${Mary[likes ->Sally]}]. (1)

Here ${...} is the syntax that FLORA-2 uses to denote reified statements. An
example of a more complicated reified statement is this:

John[believes ->${Bob[likes ->?X] : − Mary[likes ->?X]}]. (2)

This sentence reifies a rule (not just a fact) and states that John also believes that
Bob likes anybody who is liked by Mary. Combined with the previous statement
that John believes that Mary likes Sally, one would expect that John would also
believe that Bob likes Sally. However, we cannot conclude this just yet because
we do not know that John is a rational being who applies modus ponens in his
daily life. But this rational principle can be stated rather easily:

John[believes -> ?A] : −
John[believes -> {${?Head : − ?Body}, ?Body}]. (3)

4 Transaction Logic

Knowledge intensive applications, such as those in semantic Web services and
intelligent agents, often require primitives for modifying the underlying state



Nonmonotonic Reasoning in FLORA-2 5

of the system. Prolog provides the well-known assert and retract operators,
which are non-logical and are therefore widely viewed as problematic. Various
attempts to formalize updates in a logic programming language have had only
a limited success (e.g., [21,26,22]). A detailed discussion of this subject appears
in [5,6]. Some of the most serious problems with these approaches is that they
impose special programming styles (which is a significant burden) and that they
do not support subroutines — one of the most fundamental aspects of any pro-
gramming language.

Transaction Logic [4,5,6] is a comprehensive solution to the problem of up-
dates in logic programming. This solution has none of the above drawbacks
and it fits nicely with the traditional theory of logic programming. The use of
Transaction Logic has been illustrated on a vast variety of applications, ranging
from databases to robot action planning to reasoning about actions to workflow
analysis and Web services [5,7,10,19].

An important aspect of the update semantics of Transaction Logic is that
updates are atomic, which means that an update transaction executes in its
entirety or not at all. In contrast, in Prolog, if a post-condition of a state-
changing predicate is false, the execution “fails” but the changes made by assert
and retract would stay and the knowledge base is left in a inconsistent state.
This property is responsible for many complications in Prolog programming.
This and related problems are rectified by Transaction Logic semantics.

FLORA-2 integrates F-logic and Transaction Logic along the lines of [18] with
certain refinements that distinguish queries from transactions and thus enable
a number of compile-time checks. In Transaction Logic, both actions (transac-
tions) and queries are represented as predicates. In FLORA-2, transactions are
expressed as object methods that are prefixed with the special symbol “%”.

The following program is an implementation of a block-stacking robot in
FLORA-2. Here, the action stack is defined as a Boolean method of the robot.

?R[%stack(0, ?X)] : − ?R:robot.
?R[%stack(?N, ?X)] : − ?R:robot, ?N > 0,

?Y[%move(?X)], ?R[%stack(?N− 1, ?Y)].
?Y[%move(?X)] : − ?Y:block, ?Y[clear], ?X[clear], ?X[widerThen(?Y)],

btdelete{?Y[on ->?Z]}, btinsert{?Z[clear]},
btinsert{?Y[on ->?X]}, btdelete{?X[clear]}.

The primitives btdelete and btinsert are FLORA-2’s implementations of the
insert and delete operators with the Transaction Logic semantics. Informally,
the above rules say that to stack a pyramid of N blocks on top of block ?X, the
robot must find a block ?Y, move it onto ?X, and then stack N-1 blocks on top
of ?Y. To move ?Y onto ?X, both blocks must be “clear” (i.e., with no other
block sitting on top of them), and ?X must be wider than ?Y. If these conditions
are met, the database will be updated accordingly. If any of the conditions fails,
it means that the current attempted execution is not a valid try and another
attempt will be made. If no valid execution is found, the transaction fails and
no changes will be made to the database.
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A simple-minded translation of the above program into Prolog is incorrect,
since such a program might leave the database in an inconsistent state. A correct
version of the above FLORA-2 program in Prolog is more complicated and much
less natural.

5 Scoped Default Negation

Closed world assumption [25] is an inference rule for negative information. It
states that in the absence of a positive proof that a fact, F, is true one must
conclude that not F is true. Negation that obeys such an inference rule is not
classical and is often called default negation.4

Various forms of the closed-world assumption (CWA) have been successfully
used in database and logic programing applications for over thirty years now and
vast experience has been accumulated with the use of this paradigm in knowledge
representation [9,28,16]. In contrast, classical logic is based on the open-world
assumption (OWA), and this has been the sine qua non in, for example, the
description logic community. Each community allowed the other to continue to
believe in its respective heresy until the Semantic Web came along.

The advent of the Semantic Web caused heated discussions about the one
and only kind of negation that is suitable for this emerging global knowledge base
(see, e.g., http://robustai.net/papers/Monotonic Reasoning on the Semantic

Web. html for a compendium). The main argument against closed-world assump-
tion goes like this. The Web is practically infinite and failure to derive some fact
from the currently obtained information does not warrant the conclusion that
this fact is false. Nevertheless, thirty years of experience in practical knowledge
representation cannot be dismissed lightly and even the proponents of the open-
world assumption are beginning to realize that. One idea that is beginning to
take hold is that CWA is acceptable—even in the Web environment—as long
as the scope of the closure is made explicit and concrete [17]. A simplified form
of this idea was recently added to the N3 rule language [3] (whose author, Tim
Berners-Lee, previously resisted the use of default negation).

Scoped default negation was introduced in FLORA-2 as part of its innova-
tive architecture for knowledge base modules. It is related to (but is different
from) the so called local closed world assumption [13]. In FLORA-2, a module
is a container for a concrete knowledge base (or a part of it). Modules isolate
the different parts of a knowledge base and provide a clean interface by which
these parts can interact. Modules can be created dynamically, associated with
knowledge bases on the fly, and they support a very powerful form of encapsu-
lation. For our discussion, the relevant aspect of the FLORA-2 modules is that
they provide a simple and natural mechanism for scoped default negation.

Consider the statements (1), (2), and (3) about John’s beliefs from the end
of Section 3. To use these statements, one must insert them into a module,
4 Some researchers also sometimes call this type of negation negation-as-failure. We

avoid this terminology because negation-as-failure was originally used to denote a
specific proof strategy used in the Prolog language.
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let us call it johnmodule, by, for instance, loading the file that contains these
statements into the module. To query the information about John’s beliefs one
would now pose queries such as

?- John[believes -> ${Mary[likes->Sally]}]@johnmodule.

Similarly, to inquire whether John does not believe that Bob is Sally’s husband
one would ask the query

?− not John[believes ->${Sally[spouse ->Bob]}]@johnmodule. (4)

The scope of the above query is limited to the module johnmodule only. If it
cannot be derived that John[believes->${Sally[spouse->Bob]}] is true from
the knowledge base residing in the module then (and only then) the answer will
be “Yes.” The answer to (4) will remain the same even if some other module
asserts that John[believes->${Sally[spouse->Bob]}] because the scope of
the default negation in the query is limited to the module johnmodule. It is,
however, possible to ask unrestricted negative queries by placing a variable in
the module position:

?- not John[believes -> ${Sally[spouse->Bob]}]@?Mod.

This query returns “Yes” iff John is not known to believe that Sally[spouse->
Bob] is true in every module (that is registered with the system).

The semantics of FLORA-2 modules is very simple. The attribute and
method names of the formulas that are loaded into a module, such as john
module, are uniquified so that the same attribute name in the program will be
given different and unique real names in different modules. For instance, a for-
mula such as John[believes->abc] might become John[believes#foo->abc]
in module foo and John[believes#bar->abc] in module bar. Due to this trans-
formation, the query (4) turns into the following query in the actual knowledge
base:

?- not John[believes#johnmodule-> ${Sally[spouse#johnmodule->Bob]}].
Since other modules cannot have facts or rules whose heads have the form
...[believes#johnmodule->...], the answer “Yes” or “No” depends only on
the information stored in module johnmodule.

6 Nonmonotonic Inheritance

F-logic supports both structural and behavioral inheritance. The former refers to
inheritance of method types from superclasses to their subclasses and the latter
deals with inheritance of method definitions from superclasses to subclasses.

Structural inheritance is defined by very simple inference rules:

If subcl::cl, cl[attr �=>type] then subcl[attr �=>type]
If obj:cl, cl[attr �=>type] then obj[attr=> type]
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The statement cl[attr �=>type] above says that attr is an inheritable at-
tribute, which means that both its type and value are inheritable by the sub-
classes and members of class cl. Inheritability of the type of an attribute is
indicated with the star attached to the arrow: �=> . In all of our previous exam-
ples we have been dealing with non-inheritable attributes, which were designated
with star-less arrows. Note that when the type of an attribute is inherited to a
subclass it remains inheritable. However, when it is inherited to a member of
the class it is no longer inheritable.

Type inheritance, as defined by the above rules, is monotonic and thus is
peripheral to the subject of this paper. Behavioral inheritance is more complex.
To get a flavour of behavioral inheritance, consider the following knowledge base:

royalElephant::elephant.
clyde:royalElephant.
elephant[color �->grey].
royalElephant[color �->white].

As with type definitions, a star attached to the arrow �-> indicates inheritabil-
ity. For instance, color is an inheritable attribute in classes elephant and
royalElephant. The inference rule that guides behavioral inheritance can in-
formally be stated as follows. If obj is an object and cl is a class, then

obj:cl, cl[attr �->value] should imply obj[attr-> value]

unless the inheritance is overwritten by a more specific class. The meaning of
the exception here is that the knowledge base should not imply the formula
obj[attr-> value] if there is an intermediate class, cl′, which overrides the
inheritance, i.e., if obj : cl′, cl′ :: cl are true and cl′[attr �->value′] (for some
value′ �= value) is defined explicitly.5 A similar exception exists in case of multi-
ple inheritance conflicts. Note that inheritable attributes become non-inheritable
after they are inherited by class members. In the above case, inheritance of the
color grey is overwritten by the color white and so clyde[color-> white] is
derived by the rule of inheritance.

This type of inheritance is clearly nonmonotonic. For instance, if in the above
example we add the fact clyde[color->yellow] to the knowledge base then
clyde[color->white] is no longer inferred by inheritance (the inference is said
to be overwritten).

Model-theoretic semantics for nonmonotonic inference by inheritance is
rather subtle and has eluded researchers for many years. Although the above in-
formal rules for inference by inheritance seem natural, there are subtle problems
when behavioral inheritance is used together with deductive rules. To understand
the problem, consider the following example:

cl[attr �->v1].
subcl::cl.

5 The notion of an explicit definition seems obvious at first but, in fact, is quite subtle.
Details can be found in [29].
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obj:subcl.
subcl[attr �->v2] :- obj[attr-> v1].

If we apply the rule of inheritance to this knowledge base, then obj[attr-> v1]
should be inherited, since no overriding takes place. However, once
obj[attr-> v1] is derived by inheritance, subcl[attr �->v2] can be derived
by deduction—and now we have a chicken-and-egg problem. Since subcl is a
more specific superclass of obj, the derivation of subcl[attr �->v2] appears to
override the earlier inheritance of obj[attr-> v1]. But this, in turn, undermines
the very reason for deriving subcl[attr �->v2]. The above is only one of several
suspicious derivation patterns that arise due to interaction of inheritance and
deduction. The original solution reported in [20] was not model-theoretic and
was problematic in several other respects as well. A satisfactory and completely
model-theoretic solution was proposed in [29,30].

7 Database Dynamics and Nonmonotonicity

In [5], a generalization of the perfect-model semantics was defined for Transaction
Logic programs with negation in the rule body. This semantics was implemented
in FLORA-2 only partially, with negation applicable only to non-transactional
formulas in the rule body. For instance, the following transaction logs all unau-
thorised accesses to any given resource, and default negation, not, is applied
only to a query (not an action that has a side effect):

?Rsrc[%recordUnauthAaccess(?Agent)] : −
not ?Rsrc[eligible ->?Agent],
insert{unAuthLog(?Agent, ?Rsrc)}.

(5)

Nonmonotonicity comes into play here in a somewhat different sense than in
standard logic programming (ignoring the non-logical assert and retract).
In the standard case, nonmonotonicity means that certain formulas that were
derivable in a database state, s1, will not be derivable in the state obtained from
s1 by adding more facts. In the above example, however, no inference that was
enabled by rule (5) can become invalidated by adding more facts, since this rule
is not a statement about the initial database state.

In our example, nonmonotonicity reveals itself in a different way: the trans-
action of the form ?- mySecrets[%recordUnauthAaccess(John)] can be exe-
cutable in the initial state (if mySecrets[eligible->John] is not derivable) and
non-executable in the state obtained by adding mySecrets[eligible->John] to
the original state.

This kind of non-monotonicity can be stated formally in the logic as: there
are database states D and D′, where D⊆ D′, such that

D--- |= mySecrets[%recordUnauthAaccess(John)]

but
D′ |= not♦ mySecrets[%recordUnauthAaccess(John)]



10 M. Kifer

The first statement above is called executional entailment ; it means that there
is a sequence of states, beginning with the given state D, which represents an
execution path of the transaction mySecrets[%recordUnauthAaccess(John)].
The second statement says that there is no execution path, which starts at state
D′, for the transaction mySecrets[%recordUnauthAaccess(John)].

Another instance of nonmonotonic behavior that is different from the classical
cases occurs when enlarging the initial state of transaction execution leads to
a possible elimination of facts in the final state of transaction execution. To
illustrate this, consider a slightly modified version of transaction (5):

?Rsrc[%recordUnauthAaccess(?Agent)] :-

not ?Rsrc[eligible->?Agent], insert{unAuthLog(?Agent,?Rsrc)}.
?Rsrc[%recordUnauthAaccess(?Agent)] :- ?Rsrc[eligible->?Agent].

In this case, the transaction ?- mySecrets[%recordUnauthAaccess(John)]
can be executed regardless of whether John is eligible or not. If John is not eligible
then unAuthLog(John,mySecrets) becomes true in the final state of the execu-
tion of this transaction. If John is already eligible then nothing changes. Now, if
we add the fact that John is eligible to access mySecrets then the transaction
executes without changing the state. Therefore, unAuthLog(John,mySecrets)
is no longer derivable in the final state. Thus, enlarging the initial state of trans-
action execution does not necessarily lead to a monotonic enlargement of the
final state.

8 Conclusion

This paper presents an overview of the formal foundations of the FLORA-2 sys-
tem with a focus on various forms of nonmonotonic reasoning in the system.
Three aspects have been considered: scoped default negation, behavioral inheri-
tance, and nonmonotonicity that stems from database dynamics. Scoped nega-
tion is believed to be the right kind of negation for the Semantic Web. Behavioral
inheritance is an important concept in object-oriented modeling; in FLORA-2
it has been extended to work correctly (from the semantic point of view) in a
rule-based system. Finally, we discussed database dynamics in FLORA-2 and
have shown how it can lead to of nonmonotonic behavior.
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Abstract. The rapid expansion of the Internet and World Wide Web led to grow-
ing interest in data and information integration, which should be capable to deal
with inconsistent and incomplete data. Answer Set solvers have been considered
as a tool for data integration systems by different authors. We discuss why data
integration can be an interesting model application of Answer Set programming,
reviewing valuable features of non-monotonic logic programs in this respect, and
emphasizing the role of the application for driving research.

1 Introduction

Triggered by the rapid expansion of the Internet and the World Wide Web, the inte-
gration of data and information from different sources has emerged as a crucial issue
in many application domains, including distributed databases, cooperative information
systems, data warehousing, or on-demand computing.

However, the problem is complex, and no canonical solution exists. Commercial
software solutions such as IBM’s Information Integrator [1] and academic systems (see
e.g. [2]) fulfill only partially the ambitious goal of integrating information in complex
application scenarios. In particular, handling inconsistent and/or incomplete data is,
both semantically and computationally, a difficult issue, and is still an active area of
research; for a survey of query answering on inconsistent databases, see [3].

In recent years, there has been growing interest in using non-monotonic logic pro-
grams, most prominently answer set solvers like DLV [4], Smodels [5], or Cmodels-2
[6] as a tool for data integration, and in particular to reconcile data inconsistency and
incompleteness, e.g. [7,8,9,10,11,12,13,14,15]. In our opinion, data integration can in
fact be viewed as an interesting model application of Answer Set Programming (ASP),
for a number of different reasons:

1. The problem is important. There is rapidly growing interest in data and information
integration, and this was estimated to be a $10 Billion market by 2006 [16].

2. Some of the key features of non-monotonic logic programming and ASP in partic-
ular, namely declarativity, expressiveness, and capability of nondeterminism can be
fruitfully exploited.

3. Interest in ASP engines as a tool for solving data integration tasks emerged with
people outside the ASP community, and in fact by different groups [7,8,11,12,13].

4. The application has raised new research problems and challenges, which have
driven research to enhance and improve current ASP technology.

C. Baral et al (Eds.): LPNMR 2005, LNAI 3662, pp. 13–25, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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global (user) database B source database D︷ ︸︸ ︷ ︷ ︸︸ ︷
player : ? ? ?

. . .

team : ? ? ?
. . .

coach : ? ? ?
. . .

s1 : 10 Totti RM 27

9 Beckham MU 28

s2 : RM Roma 10

s3 : MU ManU 8

RM Real Madrid 10

s4 : 7 Camacho RM

Fig. 1. Simple soccer data integration scenario – global and source relations

Example 1. To illustrate the problem, we consider a simple scenario of a data integra-
tion system which provides information about soccer teams. At the global (user) level,
there are three relations

player (Pcode,Pname,Pteam), team(Tcode ,Tname,Tleader ), and
coach(Ccode,Cname,Cteam),

which are interrelated with source relations

s1(A1, A2, A3, A4), s2(B1, B2, B3), s3(C1, C2, C3), and s4(D1, D2, D3)

in the following way:

– player correlates with the projection of s1 to first three attributes;
– team correlates with the union of s2 and s3; and
– coach correlates with s4.

(The precise form of correlation will be detailed later.) Now given the instance of the
source database shown in Figure 1, how should a corresponding global database in-
stance look like? In particular, if there are key constraints for the user relations, and
further constraints like that a coach can neither be a player nor a team leader. Further-
more, if we want to pose a query which retrieves all players from the global relations
(in logic programming terms, evaluate the rules

q(X)← player (X,Y, Z)
q(X)← team(V,W,X)

where q is a query predicate), how do we semantically determine the answer? �

Different approaches to data integration have been considered; see [17,2] for dis-
cussion. The most prominent ones are the Global As View approach (GAV), in which
the relations at the user level are amount to database views over the sources, and Local
As View approach (GAV), in which conversely the relations of the source database are
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database views on the global relations. For both approaches, the usage of ASP has been
explored, cf. [7,8,10,11,12,13,15].

In this remainder of this paper, we shall first briefly present a framework for data
integration from the literature [17,18] which accommodates both GAV and LAV, along
with proposals for semantics to deal with data inconsistencies. We then discuss why em-
ploying non-monotonic logic programs for this application is attractive, but also what
shortcomings of ASP technology have been recognized, which have been driving (and
still do so) research to improve ASP technology in order to meet the needs of this
application. This is further detailed on the example of the INFOMIX information inte-
gration project, in which ASP has been adopted as the core computational technology
to deal with data inconsistencies. We conclude with some remarks and issues for future
research.

2 Data Integration Systems

While semi-structured data formats and in particular XML are gaining more and more
importance in the database world, most of the theoretical work on advanced data inte-
gration has considered traditional relational databases, in which a database schema is
modeled as a pair 〈Ψ,Σ〉 of a set Ψ of database relations and a set Σ of integrity con-
straints on them. The latter are first-order sentences on Ψ and the underlying (finite or
infinite) set of constants (elementary values) Dom. A database instance can be viewed
as a finite set of ground facts on Ψ and Dom, and is legal if it satisfies Σ.

A commonly adopted high-level structure of a data integration system I in a rela-
tional setting is a triple 〈G,S,M〉 with the following components [17,18]:

1. G = 〈Ψ,Σ〉 is a relational schema called the global schema, which represents the
user’s view of the integrated data. The integrity constraints Σ are usually from par-
ticular constraint classes, since the interaction of constraints can make semantic
integration of data undecidable. Important classes of constraints are key constraints
and functional dependencies (as well-known from any database course), inclusion
dependencies (which enforce presence of certain tuples across relations), and ex-
clusion dependencies (which forbid joint presence of certain tuples).

2. S is the source schema, which is given by the schemas of the various sources that
are part of the data integration system. Assuming that they have been standardized
apart, we can view S as a relational schema of the formS = 〈Ψ ′, Σ′〉. The common
setting is that Σ′ is assumed to be empty, since the sources are autonomous and
schema information may be not disclosed to the integration system.

3. M is the mapping, which establishes the relationship between G and S in a seman-
tic way. The mapping consists of a collection of mapping assertions of the forms

(1) qG(x) � qS(x) and (2) qS(x) � qG(x),

where qG(x) and qS(x) are database queries (typically, expressible in first-order
logic) with the same free variables x, on G respectively S.

In the above framework, the GAV and LAV approach result as special cases by
restricting the queries qG(x) respectively qS(x) to atoms r(x).
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Example 2. (cont’d) Our running example scenario is represented as a data integration
system I = 〈G, S,M〉, where G consists of the relations player , team, and coach . The
associated constraints Σ are that the keys of player , team , and coach are the attributes
{Pcode,Pteam}, {Tcode}, and {Ccode,Cteam}, respectively, and that a coach can
neither be a player nor a team leader. The source schema S comprises the relations s1,
s2, s3 and s4. Finally, the GAV mappingM is defined in logic programming terms as
follows (where qS � qG amounts to qG ← qS):

player (X,Y, Z)← s1(X,Y, Z,W )
team(X,Y, Z)← s2(X,Y, Z)
team(X,Y, Z)← s3(X,Y, Z)
coach(X,Y, Z)← s4(X,Y, Z) �

The formal semantics of a data integration system I is defined with respect to a given
instanceD of the source schema, S, in terms of the set sem(I, D) of all instances B of
the global schema, G, which satisfy all constraints in G and, moreover,

– {c | B |= qG(c)} ⊆ {c | D |= qS(c)} for each mapping assertion of form (1), and
– {c | D |= qS(c)} ⊆ {c | B |= qG(c)} for each mapping assertion of form (2),

where for any constants c on Dom, DB |= q(c) denotes that q(c) evaluates to true on
the database DB.

The notions of sound, complete, and exact mapping between query expressions
qG(x) and qS(x) [17], reflecting assumptions on the source contents, are then elegantly
captured as follows:

– sound mapping: qS(x) � qG(x) (intuitively, some data in the sources is missing),
– complete mapping: qG(x) � qS(x) (intuitively, the sources contain excess data),
– exact mapping: qS(x) � qG(x) ∧ qG(x) � qS(x)

The answer to a query Q with out query predicate q(x) against a data integration
system I with respect to source data D, is given by the set of tuples ans(Q, I,D) =
{c | B |= q(c), for each B ∈ sem(I,D)}; that is, ans(Q, I,D) collects all tuples
c on Dom such that q(c) is a skeptical consequence with respect to all “legal” global
databases.

In a GAV setting under sound mappings, the smallest candidate database B for
sem(I,D), is given by the retrieved global database, ret(I,D), which is the mate-
rialization of all the views on the sources. Under exact mappings, ret(I,D) is in fact
the only candidate database for sem(I,D).

Example 3. (cont’d) Note that the mappingM in our running example is a sound map-
ping. The global database B0 = ret(I,D) for D as in Figure 1 is shown in Figure 2. It
violates the key constraint on team, witnessed by the two facts team(RM,Roma, 10)
and team(RM, Real Madrid, 10), which coincide on Tcode but differ on Tname . Since
this key constraint is violated in every database B′ which contains B0, it follows that
sem(I,D) is empty, i.e., the global relations can not be consistently populated. �
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global database B0 = ret(I,D) source database D︷ ︸︸ ︷ ︷ ︸︸ ︷
player : 10 Totti RM

9 Beckham MU

team : RM Roma 10
MU ManU 8
RM Real Madrid 10

coach : 7 Camacho RM

s1 : 10 Totti RM 27

9 Beckham MU 28

s2 : RM Roma 10

s3 : MU ManU 8

RM Real Madrid 10

s4 : 7 Camacho RM

Fig. 2. Global database B0 = ret(I,D) for the soccer scenario as retrieved from the sources

repair R1 repair R2︷ ︸︸ ︷ ︷ ︸︸ ︷
player : 10 Totti RM

9 Beckham MU

team : RM Roma 10
MU ManU 8

coach : 7 Camacho RM

player : 10 Totti RM
9 Beckham MU

team : MU ManU 8
RM Real Madrid 10

coach : 7 Camacho RM

Fig. 3. Repairs in the example data integration scenario I w.r.t. D

Since “ex-falso-quodlibet” is not a desirable principle for database query answers
(e.g., in our scenario (Roma) would be a query answer), relaxations aim at adopt-
ing global databases B which (1) satisfy all constraints and (2) satisfy the mapping
assertion M with respect to D as much as possible. The latter may be defined in
terms of a preference ordering (i.e., a reflexive and transitive relation) 
 over global
databases B, such that those B are accepted which are most preferred. Different pos-
sibilities for instantiating 
 exist and have been considered in a number of papers
[7,8,19,10,11,12,20,13,21,15]. A popular one with GAV mappings is the one which
prefers databases B which are as close as possible, under symmetric set difference, to
the retrieved global databases ret(I,D); it amounts to the smallest set of tuples to be
added and/or deleted. Other orderings are based on giving preferences to retaining tu-
ples in ret(I,D) over adding new ones (as in loosely sound semantics [20,13]), or even
demand that only deletion of tuples is allowed (guided by some completeness assump-
tion [21]). These databases are commonly referred to as “repairs” of the global database
ret(I,D).

Example 4. (cont’d) Let us adopt the preference relation
B0 which prefers B1 over B2

if the symmetric difference B1 �B0 is a subset of B2 �B0. Then the retrieved global
database B0 for the running example has two repairs R1 and R2 shown in Figure 3.
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Accordingly, the example query Q evaluates to ans(Q, I,D) = {(8), (9), (10)}, since
the respective facts q(c) are derived over both repairs. �

For a more rigorous discussion of the above model, in particular from the perspec-
tive of logic, we refer to [18], where it is also shown that a number of different orderings

 used by different authors can be generically captured.

3 Employing Non-monotonic Logic Programs

Recently, several approaches to formalize repair semantics by using non-monotonic
logic programs have been proposed, cf. [7,8,9,19,10,11,12,13,14,15]. The idea com-
mon to most of these works is to encode the constraints Σ of the global schema G into
a function-free logic program, Π , using unstratified negation and/or disjunction, such
that the answer sets of this program [22] yield the repairs of the global database. An-
swering a user query, Q, then amounts to cautious reasoning over the logic program Π
augmented with the query, cast into rules, and the retrieved database B. For an elabo-
rated discussion of these proposals, we refer to [23]. In [19], the authors consider data
integration via abductive logic programming, where, roughly speaking, the repairs of a
database are computed as abductive explanations.

In the following, we discuss some key features of answer set programs which can
be fruitfully exploited for doing data integration via ASP.

High expressiveness. ASP is a host for complex database queries. ASP with disjunc-
tion has ΠP

2 -expressiveness, which means that each database query with complexity in
ΠP

2 can be expressed in this formalism [24]. Such expressiveness is strictly required
for query answering in some settings [13,21,25]; for example, under loosely-exact se-
mantics in the presence of inclusion dependencies for fixed queries, but also for ad
hoc queries under absence of such dependencies. And, ASP with disjunction has co-
NEXPNP program complexity [24], and thus very complex problems can be polynomi-
ally reduced to it (as for query answering, however, not always in a data-independent
manner). For more on complexity and expressiveness of ASP, see [26,27].

Declarative language. ASP supports a fully declarative, rule-based approach to infor-
mation integration. While languages such as Prolog also support declarative integration,
the algorithm-oriented semantics makes it more difficult to design and understand inte-
grations policies for the non-expert.

Nondeterminism. ASP engines have been originally geared towards model generation
(i.e., computation of one, multiple, or all answer sets) rather than towards theorem prov-
ing. This is particularly useful for solving certain AI problems including model-based
diagnosis, where given some observations and a background theory, a model is sought
which reconciles the actual and predicted observations in terms of assumptions about
faulty components applying Occam’s Razor.

Repair semantics for query answering from inconsistent data bases and integra-
tion systems [7,8,10,11,12,13,15] is closely related to this diagnostic problem. Using
an ASP engine, a particular repair for a corrupted database might be computed and
installed in its place.
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Proximity to database query languages. ASP programs are close to logic-based
database query languages such as conjunctive queries, union of conjunctive queries,
(plain) SQL, and datalog. This in particular facilitates a seamless integration of vari-
ous components of a data integration system – query evaluation, database “repair”, and
database mapping – into a uniform language.

Executable specifications. Given the seamless integration of various components of
a data integration system, an ASP program for information integration tasks can be re-
garded as an executable specification, which can be run on supplied input data. This
has been elaborated in [14,23] where abstract logic specification for querying a GAV
data integration I with a query Q has been considered in terms of a hierarchically com-
posed disjunctive datalog program ΠI(Q) = ΠM ∪ΠΣ ∪ΠQ such that (in simplified
notation):

1. ret(I,D) � AS(ΠM ∪ D), where ΠM is a stratified normal datalog program,
computing the mappingM;

2. repI(D) � AS(ΠΣ ∪ ret(I,D)), where ΠΣ is an (unstratified resp. disjunctive)
program computing the repairs, and

3. ans(Q, I,D) = {c | q(c) ∈M for each M ∈ AS((ΠM∪ΠΣ ∪ΠQ∪D)}, where
ΠQ is a non-recursive safe datalog program with negation (defining the query out-
put predicate q);

here, AS(P) are the answer sets of a program P and � denotes a polynomial-time
computable correspondence between two sets.

Language constructs. The original ASP language [22] has been enriched with a num-
ber of constructs, including different forms of constraints such as DLV’s weak con-
straints, Smodels’s choice rules and weight constraints, rule preferences (see e.g. [28]
for a survey), and more recently aggregates (see [29,30,31] and references therein).

Aggregates, for instance, are very desirable for querying databases (SQL provides
many features in this respect). Weak and weight constraints are convenient for specify-
ing certain integration semantics, such as repairs based on cardinality (Hamming) dis-
tance of changes to the retrieved global database. Rule preferences might be exploited
to expressing preferences in repair, and e.g. help to single out a canonical repair. There-
fore, refinements and variants of standards proposals for integration semantics can be
accomodated well.

Knowledge representation capability. ASP provides, thanks to the availability of
facts and rules, different kinds of negation (strong and weak i.e. default negation), a
rich language for representing knowledge. This makes ASP attractive for crafting spe-
cial, domain dependent integration policies, in which intuitively a knowledge-base is
run for determining the best integration result.

4 Emerging ASP Research Issues

While ASP is attractive as a logic specification formalism for data integration, and avail-
able ASP engines can be readily applied for rapid prototyping of experimental systems
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that work well on small examples, it becomes quickly apparent that ASP technology
needs to be seriously improved in order to meet the requirements of this application
and make its usage feasible in practice. Among others, the following important issues
emerge:

Scalability. In real data integration scenarios, one needs to deal with massive amounts
of data (in the Gigabytes and beyond), rather than with a few tuples. A graceful scaling
of an integration system’s response time with respect to the amount of data processed
is desired. A problem in this respect is that current ASP technology builds on program
grounding, i.e., the reduction of non-ground programs to ground (propositional) pro-
grams which are then evaluated with special algorithms. Even though the grounding
strategies of DLV and Smodels’ grounder Lparse are highly sophisticated and avoid as
much as possible the generation of “unnecessary rules,” the grounding of a repair pro-
gram over a large dataset will be ways too large to render efficient query answering.
Therefore, optimization methods are needed which allow for handling large amounts of
data. A call for this has been made e.g. in [11].

Nonground queries. Another issue is that as seen in the example scenario, queries to
an integration system typically contain variables, all whose instances should be com-
puted. ASP solvers, however, have been conceived for model computation rather than
for query answering. Query answering, e.g. as originally supported in DLV, was limited
to ground (variable-free) queries (which can be reduced to model computation resp.
checking program consistency by simple transformations). The straightforward method
of reducing a non-ground query by instantiation to a series of (separate) ground queries
is not efficient, since roughly the system response time will be O(#gq ∗ srt), where
#gq is the number of ground queries and srt is the response time for a single ground
query. Therefore, efficient methods for answering non-ground queries are needed.

Software interoperability. In data integration settings in practice, data is stored in
multiple repositories, and often in heterogeneous formats. In a relational setting, such
repositories will be managed by a commercial DBMS such as Oracle, DB2, SQLServer
etc. Data exchange between a DBMS and an ASP engine via files or other operating
systems facilities, as was the only possibility with early ASP systems, requires extra
development effort and, moreover, is an obvious performance bottleneck. To facilitate
efficient system interoperability, suitable interfaces from ASP solvers to DBMS must
be provided, such as an ODBC interface as available in other languages. Furthermore,
interfaces to other software for carrying out specific tasks in data integration (e.g., data
cleaning, data presentation) are desirable.

These issues are non-trivial and require substantial foundational and software devel-
opment work. Scalability and non-ground query answering are particularly challenging
issues, which are not bound to the data integration application. Advances on them will
be beneficial to a wide range of other applications as well.

The above issues have been driving some of the research on advancing and enhanc-
ing ASP technology in the last years, and in particular of the ASP groups at the Univer-
sity of Calabria and at TU Vienna. A number of results have been achieved, which are
briefly summarized as follows.
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– As for scalability and optimization, the magic set method (introduced in [32]) has
been extended to disjunctive programs and tuned for data integration [33,34,35];
focusing techniques and optimization methods genuine to data integration are pre-
sented in [14,23]; different variants of repair programs have been examined for
their suitability, in this context, recent notions and results on program equivalence
[36,37,38,39] turned out to be a useful tool.

– Non-ground query answering is supported in the current releases of DLV.
– Interfacing of relational DBMS is supported by an ODBC interface in DLV [40],

and a tight coupling between ASP engines and relational DBMSs has been con-
ceived [41].

These results have been obtained in the course of the INFOMIX project, which is
briefly presented in the next subsection, since to our knowledge it is the most compre-
hensive initiative to employ ASP in a data integration system.

4.1 The INFOMIX Project

INFOMIX [42] has been launched jointly by the ASP groups of the University of
Calabria and TU Vienna, the data integration group at the University of Rome “La
Sapienza,” and Rodan Systems S.A., a Polish database software house, with the ob-
jective to provide powerful information integration for handling inconsistent and in-
complete information, using computational logic tools as an implementation host for
advanced reasoning tasks. The usage of an ASP engine like DLV or Smodels which
is capable of handling non-ground programs and provides the expressiveness needed,
appeared to be well-suited. However, the research issues mentioned above had to be ad-
dressed in order to make employment of ASP in realistic integration scenarios feasible
beyond toy examples.

The INFOMIX prototype [43,44] is built on solid theoretical foundations, and im-
plements the GAV approach under sound semantics. It offers the user a powerful query
language which, as a byproduct of the usage of ASP, allows in certain cases also queries
beyond recursion-free positive queries (which are those expressed by non-recursive
ASP programs without negation), in particular stratified queries or queries with ag-
gregates, depending on the setting of the integrity constraints of the global schema;
the underlying complexity and undecidability frontier has been charted in [20]. Fur-
thermore, INFOMIX provides the user with tools for specifying and managing a data
integration scenario, as well as with a rich layer for accessing and transforming data
from sources (possibly dispersed on the Internet) in heterogeneous formats (including
relational format, XML, and HTML under constraints) into a homogenous format (con-
ceptually, into a fragment of XML Schema) by data wappers.

At the INFOMIX core are repair logic programs for handling data inconsistencies,
which are dynamically compiled by rewriting algorithms. Pruning and optimization
methods are applied which aim at reducing the portion of data which need to be ac-
cessed for query answering. In particular, the usage of the ASP engine is constrained to
the inconsistent data part which needs repair. Details about this can be found in paper
and reports [42,13,14,35].

Compared to data integration systems with similar semantics, of which the most
prominent are the Hippo [45] and ConQuer [46], INFOMIX is capable of handling a
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much larger range of queries and constraint settings which are realistic in practice. This
is exemplified by the INFOMIX Demo Scenario, in which data from various legacy
databases and web pages of the University of Rome “La Sapienza” are integrated into a
global view which has 14 relations and about 30 integrity constraints, including key con-
straints, inclusion and exclusion dependencies. Most of the 9 typical user queries in the
Demo Scenario can’t be handled by Hippo; ConQuer can only handle key constraints,
and thus is not applicable to the scenario. On the other hand, Hippo and ConQuer are
very efficient and faster than INFOMIX on the specific settings which they can handle.

Thanks to improved ASP technology and the optimization techniques, INFOMIX
is able to handle the queries in the Demo Scenario reasonably efficient within a few
seconds for core integration time, and tends to scale gracefully. Without these improve-
ments and optimizations, the performance is much worse and the system response time
barely acceptable.

5 Discussion and Conclusion

As argued above, data integration can be seen as an interesting model application of
Answer Set Programming. The results which have been obtained so far are encouraging,
and show clear benefits of using ASP. We remark that an experimental comparison
of computing database repairs with different logic-based methods – QBF, CLP, SAT,
and ASP solvers – in a propositional setting is reported in [9], which shows that ASP
performs very well. We suspect that in the realm of a relational setting (in which QBF
and SAT solvers can’t be directly applied and require preliminary grounding), it behaves
even more advantageous.

In spite of the advances that have been achieved on the issues in Section 4, research
on them is by no means closed, and in fact a lot of more work is necessary.

Optimization of ASP programs is still at a rather early stage, and there is room for
improvement. Currently, optimization is done at the level of ASP solvers, which employ
internal optimization strategies that to some extent build on heuristics. Optimization at
the “external” level, independent of a concrete ASP solver, is widely unexplored. Recent
results on program equivalences (cf. [36,37,38,47,39] and references therein) might pro-
vide a useful basis for optimization methods. However, as follows from classic results
in database theory, basic static optimization tasks for ASP programs are undecidable
in very plain settings (cf. [48]), and thus a detailed study and exploration of decidable
cases is needed.

Efficient non-ground query answering is an issue which is perhaps tied to a more
fundamental issue concerning the architecture of current state-of-the-art answer set en-
gines: it is unclear whether their grounding approach is well-suited as a computational
strategy. Indeed, for programs in which predicate arities are bounded by a constant,
non-ground query answering can be carried out in polynomial space (as follows from
results in [49]) while current answer set engines use exponential space for such queries
in general.

As for software interoperability, ASP engines need to interface a large range of
other data formats besides relational data, including popular formats like XML and,
more recently, also RDF. For XML data, ASP extensions are desired which allow to
manipulate them conveniently. The Elog language [50] may be a guiding example in
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this direction. In turn, integration of ASP solvers into more complex software systems
needs also better support.

As for future developments of ASP and data integration, one interesting issue would
be to realize an operational data integration system which is deployed in a concrete ap-
plication. The results of INFOMIX are encouraging in this direction. Here, a hybrid
system combining complementary approaches like those of Hippo, ConQuer, and IN-
FOMIX would be an intriguing idea. As for the perspective of advanced data integration
at the level of a full-fledged commercial DBMS, we feel that research is still at an early
stage and industry seems not to be ready for immediate takeup.

There are several interesting directions for further research on the usage of ASP
in data integration. Among them is powerful mediated data integration, as discussed
e.g. in [19], and peer-to-peer data integration in a network of information systems
[51]. Furthermore, applications of ASP in advanced integration of information sources
which contain information beyond factual knowledge, and in data model and ontology
management might be worthwhile to explore. Thanks to its rich knowledge represen-
tation capabilities, ASP might prove to be a valuable tool for developing declarative
formalisms in these areas.
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Abstract. Project Halo is a multi-staged effort, sponsored by Vulcan Inc, aimed at 
creating the Digital Aristotle (DA), an application that will encompass much of the 
world's scientific knowledge and be capable of applying sophisticated problem 
solving to answer novel questions.  Vulcan envisions two primary roles for the 
Digital Aristotle: as a tutor to instruct students in the sciences, and as an interdisci-
plinary research assistant to help scientists in their work. As a first step towards this 
goal, there was a six-month Pilot phase, designed to assess the state of the art in 
applied Knowledge Representation and Reasoning (KR&R). Vulcan selected three 
teams, each of which was to formally represent 70 pages from the Advanced 
Placement (AP) chemistry syllabus and deliver knowledge based systems capable 
of answering questions on that syllabus. The evaluation quantified each system’s 
coverage of the syllabus in terms of its ability to answer novel, previously unseen 
questions and to provide human-readable answer justifications. These justifications 
will play a critical role in building user trust in the question-answering capabilities 
of the Digital Aristotle.Despite differences in approach, all three systems did very 
well on the challenge, achieving performance comparable to the human median. 
The analysis also provided key insights into how the approaches might be scaled, 
while at the same time suggesting how the cost of producing such systems might 
be reduced.  

1   Introduction 

Today, the knowledge available to humankind is so extensive that it is not possible for 
a single person to assimilate it all. This is forcing us to become much more special-
ized, further narrowing our worldview and making interdisciplinary collaboration 
increasingly difficult. Thus, researchers in one narrow field may be completely un-
aware of relevant progress being made in other neighboring disciplines.  Even within 
a single discipline, researchers often find themselves drowning in new results. 
MEDLINE®1, for example, is an archive of 4,600 medical journals in thirty lan-
guages, containing over twelve million publications, with 2,000 added daily.   

                                                           
* Full support for this research was provided by Vulcan Inc. as part of Project Halo. 
1 MEDLINE is the National Library of Medicine's premier bibliographic database covering the 

fields of medicine, nursing, dentistry, veterinary medicine, the health care system, and the 
preclinical sciences. 
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The final Digital Aristotle DA will differ from classical expert systems in four im-
portant ways: 

• Speed and ease of knowledge formulation: Classical expert systems required 
years to perfect and highly skilled knowledge engineers to craft them; the 
DA will provide tools to facilitate rapid knowledge formulation by domain 
experts with little or no help from knowledge engineers. 

• Coverage: Classical expert systems were narrowly focused on the single 
topic for which they were specifically designed; the DA will over time en-
compass much of the world’s scientific knowledge. 

• Explanations: Classical expert systems produced explanations derived di-
rectly from inference proof trees; the DA will produce concise explanations, 
appropriate to the domain and the user’s level of expertise.  

The Pilot phase of Project Halo was a 6-month effort to set the stage for a long-
term research and development effort aimed at creating the Digital Aristotle. The 
primary objective was to evaluate the state of the art in applied KR&R systems. Un-
derstanding the performance characteristics of these technologies was considered to 
be especially critical to the DA, as they are expected to form the basis of its reasoning 
capabilities. The first objectives were to develop suitable evaluation methodologies; 
the project was also designed to help in the determination of a research and develop-
ment roadmap for KR&R systems. Finally, the project adopted principles of scientific 
transparency aimed at producing understandable, reproducible results.  

Three teams were contracted to participate in the evaluation: a team led by SRI In-
ternational with substantial contributions from Boeing Phantom Works and the Uni-
versity of Texas at Austin; a team from Cycorp; and our team at ontoprise.  

Significant attention was given to selecting a proper domain for the evaluation. In 
the end, a 70-page subset of introductory college-level Advanced Placement (AP) 
chemistry was selected because it was reasonably self-contained and did not require 
solutions to other hard AI problems, such as  representing and reasoning with uncer-
tainty, or understanding diagrams.  

Fig. 1 lists the topics in the chemistry syllabus. Topics included: stoichiometry cal-
culations with chemical formulas; aqueous reactions and solution stoichiometry; and 
chemical equilibrium. Background material was also identified to make the selected 
chapters more fully self-contained2. 

 
Subject Chapters Sections Pages 

Stoichiometry: Calculations with 
Chemical Formulas 

3 3.1 – 3.2 75 - 83 

Aqueous Reactions and Solu-
tion Stoichiometry 

4 4.1 – 4.4 113 - 133 

Chemical Equilibrium 16 16.1 – 16.11 613 - 653 

Fig. 1. Course Outline for the Halo Challenge 

                                                           
2 Sections 2.6-2.9 in chapter two provide detailed information. Chapter 16 also requires the 

definition of moles, which appears in section 3.4 pp 87-89, and molarity, which can be found 
on page 134. The form of the equilibrium expression can be found on page 580, and buffer 
solutions can be found in section 17.2. 
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This scope was large enough to support a large variety of novel, and hence unan-
ticipated, question types. One analysis of the syllabus identified nearly 100 distinct 
chemistry laws, suggesting that it was rich enough to require complex inference. It 
was also small enough to be represented relatively quickly – which was essential 
because the three Halo teams were allocated only four months to create formal encod-
ings of the chemistry syllabus. This amount of time was deemed sufficient to con-
struct detailed solutions that leveraged the existing technologies, yet was too brief to 
allow significant revisions to the teams’ platforms. Hence, by design, we were able to 
avoid undue customization to the task domain and thus to create a true evaluation of 
the state-of-the-art of KR&R technologies. 

2   The Technology 

The three teams had to address the same set of issues: knowledge formation, ques-
tion answering, and explanation generation, [3], [4], [5]. They all built knowledge 
bases in a formal language and relied on knowledge engineers to encode the requi-
site knowledge. Furthermore, all the teams used automated deductive inference to 
answer questions.  

2.1   Knowledge Formation 

For testing purposes in the dry run Vulcan Inc. provided 50 syllabus questions for 
each team. The encoding of the corpus (70 pages from (Brown, LeMay and Bursten 
(2003))) has been done in the ontoprise team in three different phases. During the first 
phase the knowledge within the corpus has been encoded into the ontology and into 
rules, not regarding the 50 syllabus questions. This knowledge has been tested with 
some 40 exercises from (Brown, LeMay and Bursten (2003)). For each of these exer-
cises an encoded input file containing the question in their formal language represen-
tation, and an output file containing the expected answer have been created. These 
pairs have been used for regression tests of the knowledge base.  

In the next phase the syllabus questions have been tested with a covering of around 
30% of these questions. During this phase the knowledge base has been refined until 
coverage of around 70% of these questions has been reached. Additionally, in parallel 
during this phase, the explanation rules have been encoded. In the so-called dry run 
itself, the encoded syllabus questions have been sent to Vulcan to test the installed 
systems. The remaining time to the challenge run has been used to refine the encoding 
of the knowledge base and the explanation rules. During the entire process, the library 
of test cases has been extended and used for automatic testing purposes. This ensured 
stability of the knowledge base against changes. 

Cycorp used a hybrid approach by first concentrating on representing the basic 
concepts and principles of the corpus, and gradually shifting over to a question-driven 
approach. SRI’s approach for knowledge formation was highly question driven.  
Starting from the 50 sample questions, they worked backwards to identify what pieces 
of knowledge will be needed to solve them.   
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2.2   The Architecture of the Knowledge Base 

The resulting knowledge base has a three layered architecture. The upper level con-
tains the ontological information about concepts like elements, reactions, substances 
and mixtures together with their attributes and relationships. This layer provides the 
domain vocabulary and the domain structure and is target of the queries posed to the 
system. This small ontology layer consisted of around 40 concepts, and 60 attributes 
and relations. For the second layer we identified around 35 basic chemical operations 
which are represented in around 400 F-Logic rules [19]. The third layer contains the 
basic facts like elements and the like represented in instances. 

Let us illustrate this by an example. The ontology defines the concept mixture with 
attributes hasPHValue, hasHConcentration, hasComponent, hasMole, and hasQuanti-
tiy. These attributes describe the formulae of components, the moles of the compo-
nents and the quantities of the components. The attribute hasPHValue represents the 
ph-value of the mixture.  Given such a mixture the following query queries for the H-
concentration of the mixture: 

FORALL X <- m1:Mixture[hasHConcentration->>X]. 

For the different types of mixtures different rules compute this H-concentration. 
E.g. for buffer solutions the H-concentration is described by the following rule which 
represents one basic chemical operation 

rule3: FORALL BF,MB,SF,MS,H,B,Kb,S,KbMB,KbMBminus,MSKb,OH 
bufferPh(BF,MB,SF,MS,H)  
<- B:WeakBase[hasFormula->>BF; hasKb->>Kb] and ….  

This basic chemical operation is now attached to the ontology and defines the at-
tribute hasHConcentration of a mixture (there is an additional rule to compute the 
pH-value from this H-concentration): 

rule2: FORALL M,H,F1,F2,M1,M2 
M:BufferSolution[hasHConcentration->>H] <- 
M:Mixture[hasComponents->>{F1,F2}; hasMoles-
>>{c(F1,M1),c(F2,M2)}] and bufferPh(F1,M1,F2,M2,H). 

The advantages of this three level architecture are twofold. First the basic chemi-
cal operations are nearly independent from each other and can therefore be devel-
oped and tested independently. So each chemical operation is a stand-alone knowl-
edge chunk.  

Accessing the values using an ontology on the other hand frees the encoder from 
knowing all the specialized predicates and enables an access to the different informa-
tion pieces in a way that is much closer to natural language than the predicates of the 
basic chemical operations. 

2.3   The Inferencing Process 

Figure 2 shows question 44 from the Multiple Choice section of the exam along with 
the answer generated by the ontoprise system. 
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Question 44 
Original question 

Given is an aqueous solution containing equimolar ratios of the following 
pairs of substances. 

a. CH3COOH and NaCH3COO 
b. HClO4 and NaCl 
c. KOH and HCl 
d. NH3 and KOH 
e. CH3NH2 and CH3NH3Cl 

 
Which is a buffer with a pH > 7 ? 

 
Answer: E 

Fig. 2. Question 44 from the Multiple Choice section of the Challenge Exam, and the answer 
generated by our system 

This question of the challenge run focuses on acid-base reactions (ch. 4.3 Brown, 
LeMay and Bursten (2003)) and on buffer solutions (ch. 17.2 Brown, LeMay and 
Bursten (2003)). In the following we present those parts of the knowledge base which  
contributed to the correct answer E and the chemical knowledge behind them. 

First of all this question has been encoded in F-Logic. For each possible choice, the 
encoding looks like the following example for E: 

m:Mixture[hasComponents->>{"CH3NH2"," CH3NH3Cl"}; has-
Moles->>{c("CH3NH2",1),c("CH3NH3Cl",1)}]. 

FORALL M answer("E") <- M:Mixture[hasPHValue->>Ph] and 
M:BufferSolution and greater(Ph,7). 

The first two lines encode the premise, viz. that a mixture m exists consisting of 
two substances with 1 mole each. The third and fourth lines constitute a query asking 
for the pH-value of the buffer and whether this pH-value is greater than 7.  

There is a rule in the KB which computes the Ph-value of a mixture from the H-
concentration using the well-known equation Ph = -log H (eq.4): 

rule1: FORALL M,Ph,H M[hasPHValue->>Ph]  
<- M:Mixture[hasHConcentration->>H] and phH(H,Ph). 

The H-concentration is computed by rule3: 

rule3: FORALL 
BF,MB,SF,MS,H,B,Kb,S,KbMB,KbMBminus,MSKb,OH 
bufferPh(BF,MB,SF,MS,H) <-  
B:WeakBase[hasFormula->>BF; hasKb->>Kb] and 
S:IonicMolecule[hasFormula->>SF] and  
isSaltOf(SF,BF) and  multiply(Kb,MB,KbMB) and multi-
ply(KbMB,-1,KbMBminus) and add(MS,Kb,MSKb) and quad-
ratic(OH,1,MSKb,KbMBminus) and multiply(H,OH,1.0E-14). 
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Consider this rule in more detail. The first three lines of the body of the rule deter-
mine whether BF is the formula of a weak base and whether SF is a salt of this weak 
base BF and thus checks whether we have a buffer solution consisting of a weak base 
and its salt. The second part of the rule body then determines first the OH-
concentration and then uses the relation H * OH = 1.0E-14 (eq.3) to determine the H-
concentration. The OH-concentration is given by the Kb-value of the weak acid and 
by the moles of the base MB and the salt MS (cf. ch. 17.2 Brown, LeMay and Bursten 
(2003), eq. 1,2): 

OH = -(Kb+MS) + sqrt((Kb+MS)2+4*Kb*MB))/2 

This formula computes the OH-concentration in our case to 4.4 E-4 (eq.2). This re-
sults in an H-concentration of 2.27E-11 according to the formula H = 1.0E-14/OH 
(eq.3). Finally the pH-value is thus determined to 10.64 according to Ph = -log H 
(eq.4). Rule 3 gets its input BF=CH3NH2, MB=1, SF=CH3NH3Cl, MS=1 top-down 
propagated over the head, determining whether we have a buffer solution consisting 
of a weak base and its salt and then computes the H-concentration. This H-
concentration is then propagated bottom-up to rule2 which assigns the H-
concentration to the mixture. Finally rule2 computes the pH-value from the H-
concentration and assigns this pH-value to the mixture and thus delivers the first part 
of the query. 

This proof tree together with the intermediate instantiations of the variables is 
shown in figure 3. 

 
 

Fig. 3.  The proof tree shows the rule dependencies in our example case 

 

query 

Rule 2: assigns H-concentration 
to mixture and calls rule 3 

Rule 3: determines buffer type, 
computes H-concentration 

Rule 1: computes pH-value from H-concentration 
in a mixture 

Input facts 

BF,SF,MB,
H

M,BF,SF,MB

M,H

M,Ph
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An analysis of the proof trees for the syllabus questions showed that the depth of 
these proof trees ranged from 1 up to 20. These proof trees are stored in a infrencing 
protocol (as F-Logic facts) to be used for generating explanations. 

Our inference system OntoBroker™ provides means for efficient reasoning with 
instances and for the capability to express arbitrary powerful rules, e.g. ones that 
quantify over the set of classes. As F-Logic relies on the well-founded semantics [17] 
a possible implementation is the alternating fixed point procedure. This is a forward 
chaining method which computes the entire model for the set of rules, i.e. the set of 
true and unknown facts. For answering a query according to its implementation, the 
entire model must be computed (if possible) to derive the variable substitutions for the 
query. In contrast, our inference engine OntoBroker™ performs a mixture of forward 
and backward chaining based on the dynamic filtering algorithm [18] to compute (the 
smallest possible) subset of the model for answering the query. In most cases this is 
much more efficient than simple evaluation strategies. These techniques stem from 
the deductive data base community and are optimized to deliver all answers instead of 
one single answer as e.g. resolution does.  

2.4   The Answer Justification 

The mentioned inferencing process generated for question 44 the following justification: 
 

If 1 moles of the weak base CH3NH2 are mixed with 1 moles of its salt CH3NH3Cl, 
the concentration of OH−atoms in the resulting buffer solution is 4.4E−4 and thus the 
ph−value is 10.64  

The [H+] concentration multiplied with the [OH−] concentration is always 
the ion−product constant of water 1.0E−14. In this case the values are 
[H+]=2.27E−11 and [OH−]=4.4E−4. 

The equation for calculating the ph−value is ph=−log[H+]. Thus we 
get ph−value ph = 10.64, H+ concentration [H+] = 2.27E−11. 

 
The explanations are generated in a second inference run by explanation rules 

working on the inference protocol (F-Logic facts). To each of the important rules in 
the knowledge base such an explanation rule is assigned: 

FORALL I,EX1,HP,OHM explain(EX1,I) <-  
I:Instantiation[ofRule->>phvaluephOH; instantiatedVars-
>>{i(H,HP),i(OH,OHM)}] and 
EX1 is ("The [H+] concentration multiplied with the 
[OH-] concentration is always the <b>ion-product con-
stant of water 1.0E-14</b>. In this case the values are 
<b>[H+]="+HP+" and [OH-]="+OHM+"</b>."). 

The first two lines of the rule body access the fact generated by the first inference 
run, i.e. the variables of the original rule and its instantiations. The second part gener-
ates the textual explanation. These explanation rules resemble the explanation tem-
plates of the SRI system. 
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Our system formatted the answers and the justifications into a pdf document which 
was the input for grading by the chemistry professors after the challenge run. Figure 4 
shows the concrete output for question 20. 

 

Fig. 4. Output for multiple choice question 20. Note the output’s format: the question number is 
indicated at the top; followed by the full English text of the original question; next, the letter 
answer is indicated; finally, the answer justification is presented. The graders written remarks 
are included. 

3   Evaluation 

3.1   The Experiment 

At the end of four months, knowledge formulation was stopped, even though the 
teams had not completed the task. All three systems were sequestered on identical 
servers at Vulcan. Then the challenge exam, consisting of 100 novel AP-style English 
questions, was released to the teams. The exam consisted of three sections: 50 multi-
ple-choice questions and two sets of 25 multipart questions—the detailed answer and 
free form sections. The detailed answer section consisted mainly of quantitative ques-
tions requiring a “fill in the blank” (with explanation) or short essay response. The 
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free form section consisted of qualitative, comprehension questions, which exercised 
additional reasoning tasks such as meta-reasoning, and relied more, if only in a lim-
ited way, on commonsense knowledge and reasoning. 

Due to the limited scope of the Pilot, there was no requirement that questions be input 
in their original, natural language form. Thus, two weeks were allocated to the teams for 
the translation of the exam questions into their respective formal languages. Upon com-
pletion of the encoding effort, the formal question encodings of each team were evalu-
ated by a program-wide committee to guarantee high fidelity to the original English. 

Once the encodings were evaluated, Vulcan personnel submitted them to the se-
questered systems. The evaluations ran in batch mode. Each of the three systems 
produced an output file in accordance with a pre-defined specification. Vulcan en-
gaged three chemistry professors to evaluate the exams. Adopting an AP-style evalua-
tion methodology, they graded each question for both correctness and the quality of 
the explanation. The exam encompassed 168 distinct gradable components consisting 
of questions and question sub-parts.  

3.2   Empirical Results  

In general, all teams showed up with similar good scores in the challenge run. There 
was no time limit for the answering process, so that the teams’ systems did not take an 
AP exam under original conditions. The aim of the run was to test the general ability 
of the systems to answer questions of a complex domain. 

3.3   Performance 

Processing performance of OntoNova (the ontoprise system[4]) has been much faster 
than its competitors, depending on the systems used to perform the challenge run. Our 
system for the official challenge run required about an hour to process the encodings. 
For a second, optional and not sequestrated run we slightly improved the knowledge 
base and brought down processing time to less than 10 minutes.  
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Fig. 5. Challenge answer scores 
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Challenge Justification Scores
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Fig. 6. Challenge justification scores 
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Fig. 7. Run times 

4   Lessons Learned 

The analysis of failures showed that ontoprise lost points for mainly the following 
reasons: 

1. The knowledge base contained a lot of typos, like wrongly or undefined 
variables in rules, faulty connections from explanation rules to their corre-
sponding rules, lacking explanation rules etc., which prevented rules and ex-
planation rules from firing. 

2. The knowledge base contains faults of the contents itself, like faulty assign-
ments of substances to categories. 

3. The knowledge base did not entirely cover the domain. 
4. The knowledge base contained the knowledge in principle but this knowl-

edge could not be exploited. 
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5. Explanations have been sometimes too lengthy and redundant. 
6. The knowledge base did not contain enough “common sense” knowledge to 

answer unexpected  or very general queries. This especially holds for the free 
form section. 

7. Some of the questions where out of scope in the opinion of ontoprise. 

The first point will in future be tackled by improving the modeling environment 
OntoStudioTM and by introspection. OntoStudioTM will in future allow parallel forma-
tion of axioms and their justification and will support tracking changes from rules into 
explanation rules and vice versa. This will solve many cases of justification brittle-
ness. The reasoning capabilities of OntoBrokerTM cannot “only” be used for inferenc-
ing proper and answer justification, but also for maintaining consistency in the ontol-
ogy and the knowledge base. In particular, we have investigated the Halo I knowledge 
base and found that reification of inference rules together with some simple checks 
(“Does every justification rule have a core inference rule?”, “Is every constant de-
clared to be a constant and not a misspelled variable?” etc.) would have discovered 
simple errors. The removal of these simple errors would have improved correctness of 
answers by about 20% – to a record of around 50% correct answers overall! 

The points 2 and 3 will in future be supported by an enhanced testing environment. 
We used test cases consisting of queries to the knowledge base and expected answers 
to keep the knowledge base stable after modifications. This testing will be integrated 
into OntoStudioTM making it easier for the knowledge engineer to collect test cases 
and to run them against the knowledge base. Additionally it became clear that the 
knowledge base must be tested against a lot more examples which could not be done 
in Halo I due to the time restriction. 

Basically rules in F-Logic allow a lot of flexibility in different ways to query them. 
One major problem for failures of point 4 has been the built-ins used. OntobrokerTM 
contains around 150 builtins and a lot of these built-ins are exploitable in a restricted 
way only. For instance the builtin for solving a quadratic equation could only be used 
for computing the resulting x-values, given the values a,b,c. Computing the value a, 
given x,b, and c was not incorporated. These built-ins will be reengineered to make 
them as flexible as possible. 

Point 5 will be tackled by advanced answer justification. Additional steps will be: 
(i) integration of additional knowledge, (ii) reduction of redundancies of explanations, 
and (iii) abstraction from fine-grained explanations. In detail: 

(i), when the proof tree does not contain enough information in itself, additional in-
formation will be needed to create comprehensible explanations. In the context of 
chemistry, e.g., the proof tree contains the formulae of the different substances. How-
ever, in the explanations the names of the formulae are often necessary to produce 
understandable justifications. The generation of names from formulae then requires 
additional information not found within the proof tree. 

(ii), in knowledge bases different paths often lead to the same result. In chemistry, 
e.g., the acidity order of two substances may be determined by the pH-values that may 
be computed from the amount of substances in aqueous solutions – or they may be 
given by qualitative criteria like the number of oxygen elements in the formulae of the 
substances. Both criteria lead to the same ordering. As a consequence there are two 
different explanation paths for the same result. An explanation rule may rank these 
two explanation paths and ignore one of them when formulating the justification.  
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(iii), often it is necessary to come to different abstractions of explanations. For exam-
ple for the purpose of debugging the knowledge base a very fine grained explanation 
level is necessary while for the grader a lower grained explanation level is more reason-
able. The single inference steps and thus the proof tree which is a representation of these 
single inference steps provide the finest resolution of explanations. Additional rules may 
summarize these steps and may thus produce higher abstracted explanations. E.g. in the 
chemistry domain such rules may summarize the three different steps of a reaction like 
the (a) decomposition of the substances into their ionic compounds, (b) the composition 
of an insoluble substance out of these compounds and (c) the precipitation of the result-
ing substance from the solution as a precipitation reaction.  

Point 6 can to our opinion only be tackled by modeling more “common sense” 
knowledge. Still it has to be proven whether this is really true. Cycorp says that it 
incorporates a lot of such “common sense” knowledge in his knowledge base, but 
they have not been much better in the free form section compared to ontoprise. At 
least it is clear that the inference engine must be able to handle a larger knowledge 
base. The performance results have shown that ontoprise has an inference engine with 
a very high performance compared to the other teams. 

5   Next Steps 

As we noted at the beginning of this article, Project halo is a multi-staged effort. In 
the foregoing, we have described Phase I, which assessed the capability of knowl-
edge-based systems to answer a wide variety of unanticipated questions with coherent 
explanations. Phase II of Project Halo will examine whether tools can be built to en-
able domain experts to build such knowledge based systems with an ever-decreasing 
reliance on knowledge engineers. In 2004, ontoprise entered Phase II of Project Halo 
with a multi-national team, bringing together best-of-breed cutting edge technology 
and expertise: the DARKMATTER team (Deep Authoring, Answering and Represen-
tation of Knowledge by Subject Matter Experts). 

The DARKMATTER approach to the Halo-2 challenge can be described as a Seman-
tic Web in the Small. Tim Berners-Lee, the inventor of the World Wide Web, envisions 
the Semantic Web as a global cooperation of individuals contributing data, ontology and 
logical rules to support sophisticated machine-generated answers from the Web. The 
DARKMATTER team adopts relevant Semantic Web principles to be applied in the 
small, while abstracting from some of the riskier and more intricate issues associated 
with the Semantic Web (like dynamic trust). The Semantic Web in the small is docu-
ment-rooted, i.e. a lot of knowledge is acquired from existing content by reformulating it 
in formal terms. The DARKMATTER approach improves upon existing technology, 
allowing subject matter experts to interact with formal scientific knowledge by them-
selves in an intuitive way. The goal of DARKMATTER STUDIO, the system we are 
proposing, is to allow knowledge formation by subject matter experts (SMEs) at a cost of 
less than $1000 per page of input text — comparable to the costs estimated by publishers 
for producing a page of textbook text. The DARKMATTER QUERYINTERFACE has 
been designed to support questioning of the system by users with no training in knowl-
edge formalization. Together, the DARKMATTER components will provide a system 
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able to answer AP-like exam questions, achieving at least an AP level 3 score — the 
sophistication achieved by Halo-1 systems. 

To reach these objectives, DARKMATTER STUDIO and DARKMATTER 
QUERYINTERFACE are designed along four dimensions. First, our analysis has 
shown what knowledge types occur in AP exams in biology, chemistry and physics. 
Second, SMEs have different cognitive abilities they may draw upon when working 
with knowledge, for example interacting with texts, diagrams or visualizations of 
conceptual structures. Correspondingly, we provide user interfaces that support these 
different modalities. Third, formulating knowledge and utilizing it constitutes a 
knowledge life cycle with a number of steps, viz. knowledge entry, justification au-
thoring, testing, debugging, validation, querying and presentation. Configurations of 
user interfaces (so called Perspectives) work together to support the major different 
steps in the knowledge formation and questioning life cycle. Fourth, Semantic Web 
technologies provide the representation and reasoning platform in which knowledge 
formation is restricted to instantiating and refining ontologies and linking between 
knowledge modules aka Semantic Web pages in the small. 

Each member of the DARKMATTER team has been selected in order to reflect the 
challenging nature of the Halo-2 undertaking: Ontoprise for system integration, 
knowledge representation and reasoning as well as knowledge acquisition, Carnegie-
Mellon University (CMU) for natural language processing; DFKI (German institute 
for AI) for intelligent user interfaces and usability; Georgia Institute of Technology 
for understanding and reasoning with diagrams; and University of Brighton, UK, for 
intuitive querying. 

Project Halo in general, and DARKMATTER in particular, may become for the 
field of knowledge representation what the World Wide Web became for hypertext. 
Just as the WWW protocols built in an clever way on top of existing infrastructure, 
DARKMATTER builds on existing frameworks with over 30 years of research to 
make the theoretical achievements of knowledge representation and reasoning avail-
able for a wide audience in a Semantic Web in the Small. 

Just as the WWW was of immediate value to its users, even at the time when only 
one single Web server existed, it will be crucial to the success of DARKMATTER 
that it provides immediate added value to its users. To do so, DARKMATTER builds 
on a comprehensive analysis investigating the capabilities and possible needs of its 
future user base. Halo-2 starts at an appropriate time. At present, the Semantic Web at 
large targets a representational infrastructure with objectives that coincide with those 
of project Halo. It must not be forgotten, however, that the value of the original 
WorldWideWeb was not created just by the defined protocols, but also by tools that 
were easy to use, like Mosaic. In this sense, DARKMATTER represents the knowl-
edge formulation and question answering system of a future scientific SemanticWeb. 
Being an interface used to teach and interact 15 with the Digital Aristotle, 
DARKMATTER may become the equivalent of Front Page and Internet Explorer for 
the Semantic Web.  

Just as the WWW has changed the way we retrieve texts and work online, a system 
like DARKMATTER has the potential to change the way that scientists and engineers 
do research or teaching in the future. 
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Abstract. Aggregates in answer set programming (ASP) have recently been
studied quite intensively. The main focus of previous work has been on defining
suitable semantics for programs with arbitrary, potentially recursive aggregates.
By now, these efforts appear to have converged. On another line of research, the
relation between unfounded sets and (aggregate-free) answer sets has lately been
rediscovered. It turned out that most of the currently available answer set solvers
rely on this or closely related results (e.g., loop formulas).

In this paper, we unite these lines and give a new definition of unfounded
sets for disjunctive logic programs with arbitrary, possibly recursive aggregates.
While being syntactically somewhat different, we can show that this definition
properly generalizes all main notions of unfounded sets that have previously been
defined for fragments of the language.

We demonstrate that, as for restricted languages, answer sets can be crisply
characterized by unfounded sets: They are precisely the unfounded-free models.
This result can be seen as a confirmation of the robustness of the definition of an-
swer sets for arbitrary aggregates. We also provide a comprehensive complexity
analysis for unfounded sets, and study its impact on answer set computation.

1 Introduction

The introduction of aggregate atoms [1,2,3,4,5,6,7,8] is one of the major linguistic ex-
tensions to Answer Set Programming of the recent years. While both semantic and
computational properties of standard (aggregate-free) logic programs have been deeply
investigated, relatively few works have focused on logic programs with aggregates;
some of their semantic properties and their computational features are still far from
being fully clarified.

The proposal for answer set semantics in [8] seems to be receiving a consensus.
Recent works, such as [9,10] give further support for the plausibility of this semantics
by relating it to established constructs for aggregate-free programs. In particular, [9]
presented a semantics for very general programs, and showed that it coincides with both
answer sets of [8] and Smodels answer sets (the latter holds for weight constraints with
positive weights only). In [10] the notion of unfounded sets is extended from aggregate-
free programs to programs with aggregates in a conservative way, retaining important

� This work was supported by an APART grant of the Austrian Academy of Sciences and the
European Commission under projects IST-2002-33570 INFOMIX, IST-2001-37004 WASP.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 40–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates 41

semantical and computational properties. It should be noted that unfounded sets are
the basis of virtually all currently available ASP solvers [11,4,12,13,14,15]. Extending
this notion to programs with aggregates should therefore be seen as paving the way to
effective and efficient systems for programs with aggregates.

However, in [10] only a fragment of the language has been considered, namely
nondisjunctive programs with monotone and antimonotone aggregates. In this paper
we lift this restriction and define unfounded sets for disjunctive programs with arbitrary
aggregates. To this end, some substantial change in the definition is necessary to account
for nonmonotone aggregates. Nevertheless, we are able to prove that our definition is
a clean extension of all main previous notions of unfounded sets: On the respective
fragments, our unfounded sets always coincide with the previously proposed ones.

Importantly, we can show that our notion of unfounded sets crisply characterizes
both models and answer sets of [8] for arbitrary programs. We also study complexity
issues for unfounded sets and put them into perspective with respect to complexity
of reasoning tasks on answer sets for various fragments of programs with aggregates.
Finally, we discuss the impact of our results on computation.

Summarizing, our contributions are as follows:

– We define the notion of unfounded sets for disjunctive logic programs with arbi-
trary aggregates. We demonstrate that this notion is a sound generalization of all
main previous concepts of unfounded sets.

– We analyze the properties of our unfounded sets, which parallel those of previous
definitions. We show that a unique greatest unfounded set always exists for the class
of unfounded-free interpretations.

– We characterize answer sets in terms of unfounded sets. One of the results is that a
model is an answer sets iff it is unfounded-free.

– We study the complexity of determining unfounded-freeness of an interpretation,
and deduce the complexity for answer set checking, which turns out to be a crucial
factor for the complexity of query answering.

– We indicate applications of our results; in particular, they allow to conceive how to
build efficient systems for computing answer sets for programs with aggregates.

2 Logic Programs with Aggregates

2.1 Syntax

We assume that the reader is familiar with standard LP; we refer to the respective con-
structs as standard atoms, standard literals, standard rules, and standard programs.
Two literals are said to be complementary if they are of the form p and not p for some
atom p. Given a literal L, ¬.L denotes its complementary literal. Accordingly, given
a set A of literals, ¬.A denotes the set {¬.L | L ∈ A}. For further background, see
[16,17].

Set Terms. A DLPAset term is either a symbolic set or a ground set. A symbolic set
is a pair {Vars :Conj}, where Vars is a list of variables and Conj is a conjunction of
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standard atoms.1 A ground set is a set of pairs of the form 〈t :Conj 〉, where t is a list of
constants and Conj is a ground (variable free) conjunction of standard atoms.

Aggregate Functions. An aggregate function is of the form f(S), where S is a set
term, and f is an aggregate function symbol. Intuitively, an aggregate function can be
thought of as a (possibly partial) function mapping multisets of constants to a constant.

Example 1. In the examples, we adopt the syntax of DLV to denote aggregates. Aggre-
gate functions currently supported by the DLV system are: #count (number of terms),
#sum (sum of non-negative integers), #times (product of positive integers), #min
(minimum term), #max (maximum term)2.

Aggregate Literals. An aggregate atom is f(S) ≺ T , where f(S) is an aggregate
function, ≺∈ {=, <, ≤, >,≥} is a predefined comparison operator, and T is a term
(variable or constant) referred to as guard.

Example 2. The following aggregate atoms are in DLV notation, where the latter con-
tains a ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V )} > Y #max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atom is either a standard atom or an aggregate atom. A literal L is an atom A or an
atom A preceded by the default negation symbol not; if A is an aggregate atom, L is
an aggregate literal.

DLPA Programs. A DLPA rule r is a construct

a1 ∨ · · · ∨ an :− b1, . . . , bk, not bk+1, . . . , not bm.

where a1, · · · , an are standard atoms, b1, · · · , bm are atoms, and n ≥ 1, m ≥ k ≥ 0.
The disjunction a1 ∨ · · · ∨ an is referred to as the head of r while the conjunction
b1, ..., bk, not bk+1, ..., not bm is the body of r. We denote the set of head atoms
by H(r), and the set {b1, ..., bk, not bk+1, ..., not bm} of the body literals by B(r).
B+(r) and B−(r) denote, respectively, the set of positive and negative literals in B(r).
Note that this syntax does not explicitly allow integrity constraints (rules without head
atoms). They can, however, be simulated in the usual way by using a new symbol and
negation.

A DLPA program is a set of DLPA rules. In the sequel, we will often drop DLPA,
when it is clear from the context. A global variable of a rule r appears in a standard
atom of r (possibly also in other atoms); all other variables are local variables.

Safety. A rule r is safe if the following conditions hold: (i) each global variable of
r appears in a positive standard literal in the body of r; (ii) each local variable of r
appearing in a symbolic set {Vars : Conj } appears in an atom of Conj ; (iii) each
guard of an aggregate atom of r is a constant or a global variable. A program P is safe
if all r ∈ P are safe. In the following we assume that DLPA programs are safe.

1 Intuitively, a symbolic set {X : a(X,Y ), p(Y )} stands for the set of X-values making
a(X, Y ), p(Y ) true, i.e., {X |∃Y s.t . a(X,Y ), p(Y ) is true}.

2 The first two aggregates roughly correspond, respectively, to the cardinality and weight con-
straint literals of Smodels. #min and #max are undefined for empty set.
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2.2 Answer Set Semantics

Universe and Base. Given a DLPA program P , let UP denote the set of constants
appearing in P , and BP be the set of standard atoms constructible from the (stan-

dard) predicates of P with constants in UP . Given a set X , let 2X
denote the set of all

multisets over elements from X . Without loss of generality, we assume that aggregate
functions map to I (the set of integers).

Example 3. #count is defined over 2UP, #sum over 2N
, #times over 2N

+

, #min and
#max are defined over 2N− {∅}.

Instantiation. A substitution is a mapping from a set of variables to UP . A substi-
tution from the set of global variables of a rule r (to UP) is a global substitution for
r; a substitution from the set of local variables of a symbolic set S (to UP ) is a local
substitution for S. Given a symbolic set without global variables S = {Vars : Conj},
the instantiation of S is the following ground set of pairs inst(S):

{〈γ(Vars) : γ(Conj )〉 | γ is a local substitution for S}.3

A ground instance of a rule r is obtained in two steps: (1) a global substitution σ
for r is first applied over r; (2) every symbolic set S in σ(r) is replaced by its instan-
tiation inst(S). The instantiation Ground(P) of a program P is the set of all possible
instances of the rules of P .

Interpretations. An interpretation for a DLPA program P is a consistent set of stan-
dard ground literals, that is I ⊆ (BP ∪¬.BP ) such that I∩¬.I = ∅. A standard ground
literal L is true (resp. false) w.r.t I if L ∈ I (resp. L ∈ ¬.I). If a standard ground literal
is neither true nor false w.r.t I then it is undefined w.r.t I . We denote by I+ (resp. I−)
the set of all atoms occurring in standard positive (resp. negative) literals in I . We de-
note by Ī the set of undefined atoms w.r.t. I (i.e. BP \ I+ ∪ I−). An interpretation I is
total if Ī is empty (i.e., I+ ∪ ¬.I− = BP ), otherwise I is partial.

An interpretation also provides a meaning for aggregate literals. Their truth value is
first defined for total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction is true (resp. false)
w.r.t I if all its literals are true (resp. false). The meaning of a set, an aggregate function,
and an aggregate atom under an interpretation, is a multiset, a value, and a truth-value,
respectively. Let f(S) be a an aggregate function. The valuation I(S) of S w.r.t. I is
the multiset of the first constant of the elements in S whose conjunction is true w.r.t. I .
More precisely, let I(S) denote the multiset [t1 | 〈t1, ..., tn :Conj 〉∈S∧ Conj is true
w.r.t. I ]. The valuation I(f(S)) of an aggregate function f(S) w.r.t. I is the result of the
application of f on I(S). If the multiset I(S) is not in the domain of f , I(f(S)) = ⊥
(where⊥ is a fixed symbol not occurring in P).

An instantiated aggregate atom A of the form f(S) ≺ k is true w.r.t. I if: (i)
I(f(S)) �= ⊥, and, (ii) I(f(S)) ≺ k holds; otherwise, A is false. An instantiated
aggregate literal not A = not f(S) ≺ k is true w.r.t. I if (i) I(f(S)) �= ⊥, and, (ii)
I(f(S)) ≺ k does not hold; otherwise, A is false.

3 Given a substitution σ and a DLPA object Obj (rule, set, etc.), we denote by σ(Obj) the
object obtained by replacing each variable X in Obj by σ(X).
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If I is a partial interpretation, an aggregate literal A is true (resp. false) w.r.t. I if it
is true (resp. false) w.r.t. each total interpretation J extending I (i.e., ∀ J s.t. I ⊆ J ,
A is true (resp. false) w.r.t. J); otherwise it is undefined.

Example 4. Consider the atom A = #sum{〈1:p(2, 1)〉, 〈2 :p(2, 2)〉} > 1. Let S be the
ground set in A. For the interpretation I = {p(2, 2)}, each extending total interpretation
contains either p(2, 1) or not p(2, 1). Therefore, either I(S) = [2] or I(S) = [1, 2] and
the application of #sum yields either 2 > 1 or 3 > 1, hence A is true w.r.t. I .

Remark 1. Our definitions of interpretation and truth values preserve “knowledge
monotonicity”. If an interpretation J extends I (i.e., I ⊆ J), then each literal which is
true w.r.t. I is true w.r.t. J , and each literal which is false w.r.t. I is false w.r.t. J as well.

Minimal Models. Given an interpretation I , a rule r is satisfied w.r.t. I if some head
atom is true w.r.t. I whenever all body literals are true w.r.t. I . A total interpretation
M is a model of a DLPA program P if all r ∈ Ground(P) are satisfied w.r.t. M . A
model M for P is (subset) minimal if no model N for P exists such that N+ ⊂ M+.
Note that, under these definitions, the word interpretation refers to a possibly partial
interpretation, while a model is always a total interpretation.

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz transforma-
tion and answer sets for DLPA programs from [8]: Given a ground DLPA program P
and a total interpretation I , let PI denote the transformed program obtained from P by
deleting all rules in which a body literal is false w.r.t. I . I is an answer set of a program
P if it is a minimal model of Ground(P)I .

Example 5. Consider interpretation I1 = {p(a)}, I2 = {not p(a)} and two programs
P1 = {p(a) :− #count{X : p(X)} > 0.} and P2 = {p(a) :− #count{X : p(X)} < 1.}.

Ground(P1)={p(a) :− #count{〈a : p(a)〉} > 0.} and Ground(P1)
I1 =Ground(P1),

Ground(P1)
I2 =∅. Furthermore, Ground(P2) = {p(a) :− #count{〈a : p(a)〉} < 1.}, and

Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2) hold.
I2 is the only answer set of P1 (since I1 is not a minimal model of Ground(P1)I1 ),

while P2 admits no answer set (I1 is not a minimal model of Ground(P2)I1 , and I2 is
not a model of Ground(P2) = Ground(P2)I2 ).

Note that any answer set A of P is also a model of P because Ground(P)A ⊆
Ground(P), and rules in Ground(P)−Ground(P)A are satisfied w.r.t. A.

Monotonicity. Given two interpretations I and J we say that I ≤ J if I+ ⊆ J+ and
J− ⊆ I−. A ground literal � is monotone, if for all interpretations I, J , such that I ≤ J ,
we have that: (i) � true w.r.t. I implies � true w.r.t. J , and (ii) � false w.r.t. J implies �
false w.r.t. I . A ground literal � is antimonotone, if the opposite happens, that is, for all
interpretations I, J , such that I ≤ J , we have that: (i) � true w.r.t. J implies � true w.r.t.
I , and (ii) � false w.r.t. I implies � false w.r.t. J . A ground literal � is nonmonotone, if it
is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereas negative standard literals
are antimonotone. Aggregate literals may be monotone, antimonotone or nonmonotone,
regardless whether they are positive or negative. Nonmonotone literals include the sum
over (possibly negative) integers and the average.
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3 Unfounded Sets

We now give a definition of unfounded set for arbitrary DLPA programs. It should be
noted that it is not possible to just take over the previous definitions in [18,11,10], as all
of them make a distinction on the kind of atoms, be it positive and negative atoms, or
the generalized version of monotone and antimonotone atoms. Just as in [8], where the
same problem with the transformation of the program was lifted, we need to introduce
a novel definition, which does not distinguish between the kinds of atoms.

In the following we denote by S1 ∪̇ ¬.S2 the set (S1 \ S2) ∪ ¬.S2, where S1 and
S2 are sets of standard ground literals.

Definition 1 (Unfounded Set). A set X of ground atoms is an unfounded set for a
program P w.r.t. an interpretation I if, for each rule r in Ground(P) having some
atoms from X in the head, at least one of the following conditions holds:

1. some literal of B(r) is false w.r.t. I ,
2. some literal of B(r) is false w.r.t. I ∪̇ ¬.X , or
3. some atom of H(r) \X is true w.r.t. I .

Intuitively, conditions 1 and 3 state that rule satisfaction does not depend on the
atoms in X , while condition 2 ensures that the rule is satisfied also if the atoms in X are
switched to false. Note that ∅ is always an unfounded set, independent of interpretation
and program.

Example 6. Let interpretation I0 = ∅ and P = {a(0) ∨ a(1) :− #avg{X : a(X)} = 1.,
a(2) ∨ a(1) :− #avg{X : a(X)} = 1.}. The unfounded sets w.r.t. I0 are ∅, {a(0), a(1)},
{a(1), a(2)}, and {a(0), a(1), a(2)}. Only condition 2 applies in these cases. For I1 =
{a(0)}, {a(1), a(2)}, and {a(0), a(1), a(2)} are unfounded sets. For I2 = {a(1)},
{a(0)}, {a(2)}, {a(0), a(2)}, and {a(0), a(1), a(2)} are unfounded sets. For I3 =
{not a(0), not a(1)}, {a(0), a(1), a(2)} and all of its subsets are unfounded sets.

In the sequel, we will demonstrate the robustness of Def. 1, and show that some cru-
cial properties of unfounded sets of nondisjunctive, aggregate-free programs continue
to hold, while a few others do not, basically mirroring unfounded sets for disjunctive,
aggregate-free programs. We first show that Def. 1 is a generalization of a previous
definition of unfounded sets for aggregate-free programs:

Theorem 1. For an aggregate-free program P and interpretation I , any unfounded set
w.r.t. Def. 1 is an unfounded set as defined in [11].

Proof. Recall that a set X of ground atoms is unfounded w.r.t. Def. 3.1 of [11], if
at least one of the following conditions holds for each rule r in Ground(P ) having
some atoms from X in the head: (a) B(r) ∩ ¬.I �= ∅, or (b) B+(r) ∩ X �= ∅, or (c)
(H(r) \X) ∩ I �= ∅. On the other hand, in the aggregate-free case, Def. 1 amounts to:
(1) B(r) ∩ ¬.I �= ∅, or (2) B(r) ∩ ¬.(I ∪̇ ¬.X) �= ∅, or (3) (H(r) \X) ∩ I �= ∅.

Obviously, (a) is equivalent to (1), and (c) is equivalent to (2). Now observe that
B+(r) ∩X �= ∅ implies B(r) ∩X �= ∅, which implies B(r) ∩ (¬.(I \X) ∪X) �= ∅
which is equivalent to B(r) ∩¬.((I \X)∪¬.X) �= ∅ ⇔ B(r) ∩¬.(I ∪̇ ¬.X) �= ∅, so
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(b) implies (2). On the other hand, (2) is equivalent to B(r) ∩ ((¬.I \ ¬.X) ∪X) �= ∅,
and therefore (A) B(r) ∩ (¬.I \ ¬.X) �= ∅ or (B) B(r) ∩ X �= ∅ holds. (A) clearly
implies (a), and (B) implies (b) because X contains only atoms, hence B−(r)∩X = ∅.
In total, (2) implies (a) or (b). �

By Proposition 3.3 in [11], unfounded sets of [11] generalize the “original” un-
founded sets of [18], which were defined for nondisjunctive programs. Therefore it
follows from Theorem 1 that also unfounded sets of Def. 1 generalize those of [18] on
nondisjunctive programs without aggregates.

Corollary 1. For a nondisjunctive, aggregate-free program P and interpretation I , any
unfounded set w.r.t. Def. 1 is a standard unfounded set (as defined in [18]).

Recently, unfounded sets have been defined for nondisjunctive programs with
monotone and antimonotone aggregates in [10]. Def. 1 also generalizes this notion.

Theorem 2. For a nondisjunctive program P with only monotone and antimonotone
aggregates and interpretation I , any unfounded set w.r.t. Def. 1 is an unfounded set
w.r.t. [10].

Proof. A set X of ground atoms is unfounded w.r.t. [10], if at least one of the following
conditions holds for each rule r in Ground(P ) having some atoms from X in the head:
(a) some antimonotone body literal of r is false w.r.t. I , and (b) some monotone body
literal of r is false w.r.t. I ∪̇ ¬.X .

We first observe that condition 3 is always false for nondisjunctive programs, as
H(r) \X = ∅, since H(r) ∩X �= ∅ and |H(r)| ≤ 1.

Now, observe that I ∪̇ ¬.X ≤ I holds. So, if a monotone body literal of r is false
w.r.t. I , it is also false w.r.t. I ∪̇ ¬.X , and if an antimonotone body literal of r is false
w.r.t. I ∪̇ ¬.X , it must be false w.r.t. I . Therefore, if condition 1 holds for a monotone
literal, also condition 2 and (b) hold for this literal; conversely, if condition 2 holds for
an antimonotone literal, also condition 1 and (a) hold for it. So, since (a) and (b) trivially
imply condition 1 and 2, respectively, we obtain equivalence. �

The union of two unfounded sets of nondisjunctive, aggregate-free programs is
guaranteed to be an unfounded set as well. For disjunctive programs, this does not hold;
also the addition of nonmonotone aggregates invalidates this property.

Observation 3. If X1 and X2 are unfounded sets for a programP w.r.t. I , then X1∪X2

is not necessarily an unfounded set for P w.r.t. I , even if P is nondisjunctive.

Example 7. Consider I = {a(0), a(1), a(−1)} and P ={a(1) :− #avg{X : a(X)} = 0.,

a(−1) :− #avg{X : a(X)} = 0., a(0).}. Both {a(1)} and {a(−1)} are unfounded sets
for P w.r.t. I , while {a(1), a(−1)} is not unfounded.

In this example, some elements in unfounded sets occur also in the interpretation.
This is not a coincidence, as shown by the following proposition.

Proposition 1. If X1 and X2 are unfounded sets for a program P w.r.t. I and both
X1 ∩ I = ∅ and X2 ∩ I = ∅ hold, then X1 ∪X2 is an unfounded set for P w.r.t. I .
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Proof. Consider a rule r where H(r)∩X1 �= ∅ (symmetric arguments hold for X2). At
least one of the conditions of Def. 1 holds w.r.t. X1. We will show that the conditions
also hold w.r.t. X1 ∪X2.

If condition 1 holds w.r.t. X1, then it trivially holds also for X1 ∪X2. If condition 2
holds, a body literal is false w.r.t. I ∪̇ ¬.X1, so it is false w.r.t. I∪¬.X1 (since I∩X1 =
∅). Because of Remark 1, it is then also false w.r.t. I∪¬.X1∪¬.X2 = I ∪̇ ¬.(X1 ∪X2).
If condition 3 holds, some atom a of H(r) \X1 is true w.r.t. I , so a ∈ I . It follows that
a �∈ X2, and so a ∈ H(r) \ (X1 ∪X2) is still true w.r.t. I . �

We next define interpretations which never contain any element of their unfounded sets.

Definition 2 (Unfounded-free Interpretation). Let I be an interpretation for a pro-
gram P . I is unfounded-free if I ∩X = ∅ for each unfounded set X for P w.r.t. I .

For unfounded-free interpretations, Prop. 1 holds for all unfounded sets.

Corollary 2. If X1 and X2 are unfounded sets for a programP w.r.t. an unfounded-free
interpretation I , then also X1 ∪X2 is an unfounded set for P w.r.t. I .

We can therefore define the Greatest Unfounded Set (GUS) for unfounded-free in-
terpretations as the union of all unfounded sets. Note that for non-unfounded-free inter-
pretations, there is in general no unique GUS, as demonstrated in Ex. 7.

Definition 3. Given a programP and an unfounded-free interpretation I , let GUSP(I)
(the GUS for P w.r.t. I) denote the union of all unfounded set for P w.r.t. I .

These features are shared with disjunctive logic programs without aggregates, as
discussed in [11]. However, while aggregate- and disjunction-free programs possess
a unique GUS for arbitrary interpretations, Ex. 7 shows that this does not hold for
disjunction-free programs with aggregates. By virtue of Thm. 2 and Thm. 10 of [10],
which states that a unique GUS exists for nondisjunctive programs with monotone and
antimonotone aggregates, we can infer that the presence of nonmonotone aggregates
or disjunction and a non-unfounded-free interpretation is necessary to invalidate the
existence of a unique GUS.

4 Unfounded Sets and Answer Sets

We will now use the notion of unfounded sets to characterize models and answer sets.
We begin with models and show that the negative part of a model is an unfounded set
and vice versa.

Theorem 4. Given a total interpretation I and program P , I− is an unfounded set for
P w.r.t. I iff I is a model of P .

Proof. (⇒) : For any rule, either (i) H(r) ∩ I− = ∅, or (ii) H(r) ∩ I− �= ∅. If (i),
then H(r) ∩ I �= ∅, i.e. the head is true and r is satisfied w.r.t. I . If (ii) then one of the
conditions of Def. 1 must hold. If condition 1 holds, the body is false w.r.t. I and r is
satisfied w.r.t. I . If condition 2 holds, a body literal is false w.r.t. I ∪̇ ¬.I− = I , so it
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coincides with condition 1. If condition 3 holds, H(r)∩ I �= ∅, and therefore the rule is
satisfied w.r.t. I . In total, if I− is an unfounded set for P w.r.t. I , all rules are satisfied
w.r.t. I , hence I is a model of P .

(⇐) : If I is a model, all rules are satisfied, so for any rule r, either (i) H(r)∩I �= ∅
or (ii) if H(r) ∩ I = ∅ then a body literal l is false w.r.t. I . So also for any rule r with
H(r) ∩ I− �= ∅, either (i) or (ii) holds. If (i), then condition 3 of Def. 1 applies. If (ii),
then condition 1 (and also condition 2, since I ∪̇ ¬.I− = I) applies. Therefore I− is
an unfounded set. �

We now turn to answer sets. Each answer set is a model, so its negative part is an
unfounded set. We can show that it is the greatest unfounded set. Conversely, if the
negative part of a total interpretation is its greatest unfounded set, it is an answer set.

Theorem 5. A total interpretation I is an answer set of P iff I− = GUSP(I)4.

Proof. (⇒) : If I is an answer set, it is also a model of P , so by Thm. 4, I− is an
unfounded set for P w.r.t. I . We next show that I is unfounded-free w.r.t. P , from
which I− = GUSP(I) follows. Let us assume an unfounded set X for P w.r.t. I exists
such that I ∩X �= ∅. We can show that then I ∪̇ ¬.X is a model of PI , contradicting
the fact that I is an answer set of P .

First note that for any rule r in PI , all body literals are true w.r.t. I (by construction
of P I ), and H(r) ∩ I �= ∅ (since I is a model of PI ). We differentiate two cases: (i)
H(r) ∩ (I ∪̇ ¬.X) �= ∅ and (ii) H(r) ∩ (I ∪̇ ¬.X) = ∅. For (i), r is trivially satisfied
by I ∪̇ ¬.X . For (ii), since we know H(r) ∩ I �= ∅, H(r) ∩ X �= ∅ must hold. Since
X is an unfounded set w.r.t P and I (and r ∈ P), a body literal of r must be false
w.r.t. I ∪̇ ¬.X (note that neither a body literal of r is false w.r.t. I since r ∈ PI , nor
(H(r) \X) ∩ I �= ∅ holds, otherwise H(r) ∩ (I ∪̇ ¬.X) �= ∅). So r is satisfied also in
case (ii). I ∪̇ ¬.X is therefore a model of PI , and since (I ∪̇ ¬.X)+ ⊂ I+, I is not a
minimal model of PI , contradicting that I is an answer set of P .

(⇐) : By Thm. 4 if I− is an unfounded set for P w.r.t. I , I is a model of P , so it is
also a model of PI . We show by contradiction that it is in fact a minimal model of PI .

Assume that a total interpretation J , where J+ ⊂ I+, is a model of PI . Since both
J and I are total, J− ⊃ I−. Again by Thm. 4, J− is an unfounded set for PI w.r.t. J .
We can then show that J− is also an unfounded set for P w.r.t. I , contradicting the fact
that I− is GUSP(I). For any rule in P \ PI , a body literal is false w.r.t. I , so condition
1 of Def. 1 holds. For a rule r ∈ PI such that H(r) ∩ J− �= ∅, (a) a body literal of r is
false w.r.t. J (note that J ∪̇ ¬.J− = J) or (b) an atom a in H(r) \ J− is true w.r.t. J .
Concerning (a), observe that I ∪̇ ¬.J− = J so (a) holds iff a body atom is false w.r.t.
I ∪̇ ¬.J−. Concerning (b), since J+ ⊂ I+, atom a is also true w.r.t. I . In total, we have
shown that J− is an unfounded set for P w.r.t. I , a contradiction to I− = GUSP(I).
So I is indeed a minimal model of PI , and hence an answer set of P . �

Since the existence of the GUS implies that the interpretation is unfounded-free, we
obtain also:

Corollary 3. A model I of a program P is unfounded-free iff I is an answer set of P .

4 Note that by Def. 3, the existence of GUSP(I) implies that I is unfounded-free.



Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates 49

5 Computational Complexity

We will now study the complexity involved with unfounded sets. In particular, we are
interested in the question whether a total interpretation is unfounded-free, as by Cor. 3
this notion can be fruitfully used for computing answer sets. Throughout this section,
we assume that the truth value of aggregates can be established in polynomial time,
which is feasible for all aggregates currently available in ASP systems. If, however,
aggregate truth valuation has a higher complexity, the total complexity will increase
accordingly.

We first show membership for the full language, and then hardness for a restricted
fragment, implying completeness for both languages and anything in between.

Theorem 6. Given a ground disjunctive logic program P , and a total interpretation I ,
deciding whether I is unfounded-free w.r.t. P is in co-NP.

Proof. The complementary problem (deciding whether I is not unfounded-free) is in
NP: Guess X ⊆ BP and check that 1. X is an unfounded set for P w.r.t. I , and 2. that
X ∩ I �= ∅. Both 1. and 2. are feasible in polynomial time, assuming that determining
the truth value of an aggregate literal can be done in polynomial time. �

Next we show that deciding unfounded-freeness is a hard problem even for a simple
class of programs, provided that nonmonotone aggregates may be present.

Theorem 7. Given a ground nondisjunctive, negation-free logic program P with ar-
bitrary aggregates, and a total interpretation I , deciding whether I is unfounded-free
w.r.t. P is co-NP-hard.

Proof. We give a reduction from the problem of unsatisfiability of a propositional 3CNF
φ = (c11 ∨ c12 ∨ c13) ∧ . . . ∧ (cm

1 ∨ cm
2 ∨ cm

3 ) where each ci
j is a literal over one of n

variables V = {x1, . . . ,xn}. We construct a program P(φ):

x1(1) :− #avg{X : x1(X)} = 0. x1(1) :− w. x1(0). . . . xn(0).
x1(−1) :− #avg{X : x1(X)} = 0. x1(−1) :− w. w :− ρ(c1

1), ρ(c1
2), ρ(c1

3).
...

...
...

xn(1) :− #avg{X : xn(X)} = 0. xn(1) :− w. w :− ρ(cm
1 ), ρ(cm

2 ), ρ(cm
3 ).

xn(−1) :− #avg{X : xn(X)} = 0. xn(−1) :− w.

where ρ(xi) = xi(1) and ρ(¬xi) = xi(−1). Then φ is unsatisfiable iff the interpreta-
tion I(φ) = {w,x1(1),x1(0),x1(−1), . . . ,xn(1),xn(0),xn(−1)} is unfounded-free.

Indeed, if σ is a satisfying truth assignment for V , then Xσ = {w} ∪ {xi(1) |
xi true in σ} ∪ {xi(−1) | xi false in σ} is unfounded for P(φ) w.r.t. I(φ). It is easily
checked that for each rule in P(φ) with a head in Xσ at least one body literal is false
w.r.t. I(φ) ∪̇ ¬.Xσ.

On the other hand, let X be a non-empty unfounded set forP(φ) w.r.t. I(φ). Clearly,
xi(0) �∈ X . If xi(1) ∈ X , then xi(−1) �∈ X and vice versa, because if both xi(1) ∈
X and xi(−1) ∈ X , #avg{X : xi(X)} = 0 is true w.r.t. I(φ) and I(φ) ∪̇ ¬.X .
Furthermore, if some xi(1) ∈ X or xi(−1) ∈ X , then also w ∈ X . If w ∈ X , then for
each clause in φ some correspondingxj(1) or xj(−1) must be in X . It is easy to see that
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this corresponds to a (possibly) partial truth assignment satisfying φ, which can always
be extended to a total truth assignment satisfying φ. So any non-empty unfounded set
X (hence X ∩ I(φ) �= ∅) implies the existence of a satisfying truth assignment for φ. �

These results allow us to give a complete picture of the complexity of model check-
ing, reported on the left of Table 1. There, the rows indicate the kinds of aggregates
(m – monotone, a – antimonotone, n – nonmonotone) allowed in programs, while the
columns vary over the presence of negation and disjunction. All co-NP entries are com-
pleteness results. The results in the first row are well-known results of the literature
(cf. [19]), the P entries for {m, a} follow from recent results in [10], while the other
results are consequences of Thms. 5, 6, 7, Cor. 3, with results from the literature.

It becomes clear from this table that a complexity increase occurs with the presence
of either disjunction or nonmonotone aggregates, and, importantly, that these two fac-
tors together do not cause a further increase. Also in Table 1, on the right hand side,
we have summarized results from the literature (see [19,8,10]) for the problem of cau-
tious reasoning. We observe that the complexity increase occurs at the same places, and
indeed one can blame the necessity of co-NP checks for the ΠP

2 results.
Concerning computation, we conjecture that, given the symmetries in properties

and complexity, techniques analogous to those described in [11] can be used in order to
effectively and efficiently compute answer sets of programs with arbitrary aggregates.

We will briefly discuss an important issue concerning computation, though. It is
striking that from Table 1 it appears that a single, apparently “innocent”, aggregate like
#count{< 1 : a >, < 2 : b >} = 1 will increase the reasoning complexity. Obviously,
this is not the case, as this aggregate can be rewritten to an equivalent conjunction
#count{< 1 : a >, < 2 : b >} ≤ 1, #count{< 1 : a >, < 2 : b >} ≥ 1, thus eliminating
the nonmonotone aggregate. In fact, such a decomposition is possible for each non-
monotone aggregate, if one allows the use of custom aggregates (rather than a set of
fixed aggregates) and the introduction of new symbols. However, this operation is only
polynomial (and hence effective) if the number of the truth value changes of the non-
monotone aggregate in the lattice of total interpretations induced by < is polynomially
bounded. Note that all currently implemented nonmonotone aggregates of DLV (#avg
is not) and Smodels are polynomially decomposable.

6 Related Work

To our knowledge, the only other works in which the notion of unfounded set has been
defined and studied for programs with aggregates are [1,10]. However, both works con-
sider only nondisjunctive programs, and the latter restricts itself to monotone and an-
timonotone aggregates. As discussed in [10], the definition of [1] seems to ignore ag-
gregates at crucial points of the definition, and appears to be incomparable with the one
in [10], and therefore also with Def. 1. Unfounded sets for disjunctive (aggregate-free)
programs had been defined and studied in [11]. In fact, several of our results parallel
those of [11]. We believe that for this reason the computational techniques reported
therein can be adapted to the aggregate setting.

Since unfounded sets have originally been used for defining the well-founded se-
mantics, one could do this also with our unfounded sets. This was done (to some ex-
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Table 1. Complexity of Answer Set Checking (left) and Cautious Reasoning (right)

Checking ∅ {not } {∨} {not ,∨}
∅ P P co-NP co-NP

{m, a} P P co-NP co-NP
{m, a, n} co-NP co-NP co-NP co-NP

Cautious ∅ {not } {∨} {not ,∨}
∅ P co-NP ΠP

2 ΠP
2

{m, a} co-NP co-NP ΠP
2 ΠP

2

{m, a, n} ΠP
2 ΠP

2 ΠP
2 ΠP

2

tent) in [11], but the recent work in [20] argues that for disjunctive programs a somewhat
refined version of unfounded sets based on so-called model sets rather than interpreta-
tions. Recently, a unifying framework for unfounded sets and loop formulas has been
defined in in [15]. Also this work does not consider aggregates, but we believe that the
results with aggregates should be generalizable in a similar way.

Concerning semantics for programs with aggregates, especially the last few years
have seen many proposals. We refer to [8] (the definition on which our work is based)
and [21] for overviews and comparisons.

7 Conclusion and Future Work

The semantics of logic programs with aggregates is not straightforward, especially in
presence of recursive aggregates. The characterizations of answer sets, provided in
Sec. 4, allow for a better understanding of the meaning of programs with aggregates.
Our results give confidence in the appropriateness of answer sets as defined in [8].

Furthermore, our results provide a handle on effective methods for computing an-
swer sets for disjunctive programs with (possibly recursive and nonmonotone) aggre-
gates. An approach with a separation of model generation and model checking (which
is co-NP in the worst case) is indicated by the complexity results of Sec. 5. By defining
suitable operators analogously to [11], one can obtain powerful means for pruning in the
generation phase, along with an effective instrument for model checking, as described
in [13,14]. Our results should also be adaptable to be used for SAT-based ASP systems,
all of which rely on loop formulas, along the lines described in [15].

Our complexity results provide a clear picture of the various program fragments
from the computational viewpoint. This is very useful for picking the appropriate tech-
niques to be employed for the computation. In particular, it became clear that in the
presence of only monotone and antimonotone aggregates and absence of disjunctions,
an NP computing scheme can be chosen. That is, there the focus should be on answer
set generation, while answer set checking is a simpler task. As soon as nonmonotone
aggregates or disjunctions are present, a two-level schema has to be employed, which
must focus on both answer set generation and checking, as both tasks are hard. Impor-
tantly, the presence of both nonmonotone aggregates and disjunction does not further
raise the complexity. It should be noted that, as pointed out at the end of Sec. 5, many
nonmonotone aggregates can be decomposed into monotone and antimonotone ones,
including Smodels cardinality and weight constraints with positive weights.

A main concern for future work is therefore the exploitation of our results for the
implementation of recursive aggregates in ASP systems, along with a study on how to
generalize the notion for defining the well-founded semantics for the full language.
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Loops: Relevant or Redundant?

Martin Gebser and Torsten Schaub

Institut für Informatik, Universität Potsdam, Postfach 900327, D–14439 Potsdam

Abstract. Loops and the corresponding loop formulas play an important role in
answer set programming. On the one hand, they are used for guaranteeing cor-
rectness and completeness in SAT-based answer set solvers. On the other hand,
they can be used by conventional answer set solvers for finding unfounded sets
of atoms. Unfortunately, the number of loops is exponential in the worst case.
We demonstrate that not all loops are actually needed for answer set computa-
tion. Rather, we characterize the subclass of elementary loops and show that they
are sufficient and necessary for selecting answer sets among the models of a pro-
gram’s completion. Given that elementary loops cannot be distinguished from
general ones in atom dependency graphs, we show how the richer graph structure
provided by body-head dependency graphs can be exploited for this purpose.

1 Introduction

The success of Answer Set Programming (ASP) is largely due to the availability of
efficient solvers, e.g. [1,2]. A similar situation is encountered in the area of satisfiabil-
ity checking (SAT), in which manifold solvers show an impressive performance. This
has led to ASP solvers mapping answer set computation to model generation via SAT
solvers [3,4,5]. Since the answer sets of a program form a subset of its classical models,
however, additional measures must be taken for eliminating models that are no answer
sets. To this end, a program is transformed via Clark’s completion [6]. The models of the
resulting completed program are called supported models; they are generally still a su-
perset of the program’s answer sets. However, supported models coincide with answer
sets on tight programs, that is, programs having an acyclic positive atom dependency
graph [7]. For example, the program {p ← p} is non-tight; it admits a single empty
answer set, while its completion, {p ≡ p}, has two models, ∅ and {p}. While early
SAT-based ASP solvers [3] reject non-tight programs, the next generation of solvers,
e.g. [4,5], exploits the circular structures within the atom dependency graph for han-
dling non-tight programs. As put forward in [4], the idea is to extend a program’s com-
pletion by loop formulas in order to eliminate the supported models that are no answer
sets. Loop formulas are generated from loops, which are sets of atoms that circularly
depend upon each other in a program’s atom dependency graph. Unfortunately, a pro-
gram may yield exponentially many loops in the worst case [8], so that exponentially
many loop formulas may be necessary for filtering out the program’s answer sets.

We show that not all loops are needed for selecting the answer sets among the mod-
els of a program’s completion. Rather, we introduce the subclass of elementary loops,
whose corresponding loop formulas are sufficient for determining the answer sets of a
program from its completion. Moreover, elementary loops are essential in the sense that
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generally none on their loop formulas can be omitted without reintroducing undesired
supported models. Given that elementary loops cannot be distinguished from general
ones in atom dependency graphs, we show how the richer graph structure provided by
body-head dependency graphs [9] can be exploited for recognizing elementary loops.
Body-head dependency graphs extend atom dependency graphs by an explicit represen-
tation of rules’ bodies. Their richer graph structure allows for identifying elementary
loops in an efficient way. Finally, we show that the set of elementary loops lies between
the set of⊆-minimal loops and the set of all loops. As a consequence, there may still be
an exponential number of elementary loops, since there may already be an exponential
number of ⊆-minimal loops in the worst case. On the other hand, we show that there
may also be exponentially fewer elementary loops than general ones in the best case.

The next section provides the background of this paper. In Section 3, we charac-
terize elementary loops and show that they are sufficient and, generally, necessary for
capturing answer sets. Section 4 introduces body-head dependency graphs as a device
for recognizing elementary loops. In Section 5, we provide lower and upper bounds for
programs’ elementary loops. We conclude with Section 6.

2 Background

A logic program is a finite set of rules of form a ← b1, . . . , bm,not c1, . . . ,not cn

where a, b1, . . . , bm, c1, . . . , cn are atoms for m ≥ 0, n ≥ 0. Given such a rule r, we
denote its head a by head(r) and its body {b1, . . . , bm,not c1, . . . ,not cn} by body(r).
Furthermore, we let body+(r) = {b1, . . . , bm} and body−(r) = {c1, . . . , cn} be the
positive and negative body of r, respectively. The set of bodies in logic program Π is
body(Π) = {body(r) | r ∈ Π}. The set of atoms appearing in Π is given by atom(Π).
A logic program Π is basic, if body−(r) = ∅ for every rule r ∈ Π . The smallest set
of atoms closed under basic program Π is denoted by Cn(Π). The reduct of a logic
program Π relative to a set X of atoms is the basic program ΠX = {head(r) ←
body+(r) | r ∈ Π, body−(r) ∩X = ∅}. An answer set of a logic program Π is a set
X of atoms satisfying X = Cn(ΠX).

The Clark completion of a program can be defined as follows [6]. For a logic pro-
gram Π and a rule r ∈ Π , define

comp(r) =
∧

b∈body+(r)b ∧
∧

c∈body−(r)¬c ,

comp(Π) = {a ≡
∨

r∈Π,head(r)=acomp(r) | a ∈ atom(Π)} .

An answer set of Π is also a model1 of comp(Π). Models of comp(Π) are also called
supported models of Π .

As shown in [4], answer sets can be distinguished among the supported models
by means of loops in atom dependency graphs (cf. [10,11]). To be precise, the positive
atom dependency graph of a program Π is the directed graph (atom(Π),E(Π)) where
E(Π) = {(b, a) | r ∈ Π, b ∈ body+(r), head (r) = a}. A set L ⊆ atom(Π) is
a loop in Π , if (L,E(Π,L)) is a strongly connected subgraph2 of the positive atom

1 That is, an interpretation is represented by its entailed set of atoms.
2 A (sub)graph is strongly connected, if there is a path between any pair of contained nodes.
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Π1 =

8>>>><
>>>>:

a ← not d̄ b ← not ē
a ← c b ← c
c ← a,not d c ← b,not e
d ← not d̄ e ← not ē
d̄ ← not d ē ← not e

9>>>>=
>>>>;

a� c� b��� ��

a�

c�

b�{c}

{a,not d} {b, not e}
� �

� �

�
� �

(a) Logic program Π1 (b) Atom depen- (c) Body-head depen-
dency graph of Π1 dency graph of Π1 (re-
(restricted to con- stricted to connected
nected nodes) nodes)

Fig. 1. Logic program Π1 yielding loop(Π1) = {{a, c}, {b, c}, {a, b, c}}

dependency graph (atom(Π),E(Π)) such that E(Π,L) = E(Π) ∩ (L × L) �= ∅.
Given a loop L in Π , we partition the rules whose heads are in L into two sets, namely

R+(Π,L) = {r ∈ Π | head(r) ∈ L, body+(r) ∩ L �= ∅} ,

R−(Π,L) = {r ∈ Π | head(r) ∈ L, body+(r) ∩ L = ∅} .

The loop formula associated with loop L is

LF (Π,L) = ¬
(∨

r∈R−(Π,L)comp(r)
)
→
∧

a∈L¬a . (1)

We denote the set of all loops in Π by loop(Π). The set of all loop formulas of Π is
LF (Π) = {LF (Π,L) | L ∈ loop(Π)}. As shown in [4], a set X of atoms is an answer
set of a logic program Π iff X is a model of comp(Π) ∪ LF (Π).

For illustration, consider Program Π1 in Figure 1(a). This program has four answer
sets: {a, b, d, e}, {b, d̄, e}, {a, d, ē}, and {d̄, ē}. Apart from these, Π1 has three addi-
tional supported models: {a, b, c, d̄, e}, {a, b, c, d, ē}, and {a, b, c, d̄, ē}. Observe that
each additional supported model is a superset of some answer set. A closer look re-
veals that all of them contain atoms a, b, and c, which are the ones being involved in
loops. In fact, the loops are responsible for the supported models that are no answer
sets since they allow for a circular support among atoms. To see this, consider the pos-
itive atom dependency graph of Π1 in Figure 1(b). (We omit atoms d, d̄, e, and ē since
they are not involved in any positive dependencies.) We can identify three loops: {a, c},
{b, c}, and {a, b, c}. Each of them induces a strongly connected subgraph that reflects
the possibility of circular derivations among these atoms (via rules in R+(Π1, {a, c}),
R+(Π1, {b, c}), and R+(Π1, {a, b, c})). This circular behavior can be counterbalanced
by the corresponding loop formulas

LF (Π1, {a, c}) = ¬(¬d̄ ∨ (b ∧ ¬e))→ ¬a ∧ ¬c ≡ d̄ ∧ (¬b ∨ e)→ ¬a ∧ ¬c ,
LF (Π1, {b, c}) = ¬(¬ē ∨ (a ∧ ¬d))→ ¬b ∧ ¬c ≡ ē ∧ (¬a ∨ d)→ ¬b ∧ ¬c ,
LF (Π1, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c .

While these formulas are satisfied by all answer sets of Π1, one of them is falsi-
fied by each of the additional supported models. In this way, LF (Π1, {a, c}) elimi-
nates {a, b, c, d̄, e}, LF (Π1, {b, c}) excludes {a, b, c, d, ē}, and LF (Π1, {a, b, c}) for-
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Π2 =

8>>>><
>>>>:

a ← not d̄ b ← not ē
a ← c,not d b ← c,not e
c ← a, b
d ← not d̄ e ← not ē
d̄ ← not d ē ← not e

9>>>>=
>>>>;

a� c� b��� ��

a�

c�

b�{a, b}

{c,not d} {c,not e}

� �

� �
�

� �

(a) Logic program Π2 (b) Atom depen- (c) Body-head depen-
dency graph of Π2 dency graph of Π2 (re-
(restricted to con- stricted to connected
nected nodes) nodes)

Fig. 2. Logic program Π2, where eloop(Π2) = {{a, c}, {b, c}} ⊂ loop(Π2)

bids {a, b, c, d̄, ē}. Observe that each loop formula prohibits a different supported model
and can, thus, not be omitted (although loop {a, b, c} contains the two other ones).

3 Elementary Loops

Our main focus lies in characterizing a set of relevant loops, whose loop formulas are
sufficient and necessary for capturing a program’s answer sets (together with the com-
pleted program). Sufficiency simply means that each model is an answer set. The mean-
ing of necessity is not that straightforward and needs some clarification (see below).

Based on these preliminaries, we introduce the notion of an elementary loop.

Definition 1 (Elementary Loop). Let Π be a logic program and let L ∈ loop(Π).
We define L as an elementary loop in Π , if, for each loop L′ ∈ loop(Π) such that

L′ ⊂ L,3 we have R−(Π,L′) ∩R+(Π,L) �= ∅.
In words, a loop is elementary if each of its strict sub-loops possesses a non-circular
support that positively depends on the loop. This characterization is inspired by the
structure of loop formulas in (1), according to which non-circular supports form loop
formulas’ antecedents. If a sub-loop has no non-circular support from the genuine loop,
its loop formula’s antecedent is satisfied independently. Notably, Section 4 gives a direct
characterization of elementary loops that avoids the inspection of sub-loops. As with
loops, we denote the set of all elementary loops in a program Π by eloop(Π). The set
of all elementary loop formulas of Π is denoted by eLF (Π) = {LF (Π,L) | L ∈
eloop(Π)}. Obviously, we have eloop(Π) ⊆ loop(Π) and eLF (Π) ⊆ LF (Π).

Program Π1 in Figure 1(a) yields the⊆-minimal loops {a, c} and {b, c}. Such loops
are by definition elementary. Moreover, {a, b, c} is an elementary loop: Its strict sub-
loops, {a, c} and {b, c}, yield R−(Π1, {a, c}) ∩ R+(Π1, {a, b, c}) = {c ← b,not e}
and R−(Π1, {b, c}) ∩ R+(Π1, {a, b, c}) = {c ← a,not d}. The difference between
elementary and non-elementary loops shows up when looking at Program Π2 in Fig-
ure 2(a). Similar to Π1, Program Π2 has four answer sets: {a, b, c, d, e}, {b, d̄, e},
{a, d, ē}, and {d̄, ē}. Also, both programs share the same positive atom dependency
graph, as witnessed by Figures 1(b) and 2(b), respectively. Hence, given that Pro-
grams Π1 and Π2 are indistinguishable from their positive atom dependency graphs,

3 We use ‘⊂’ to denote the strict subset relation; that is, L′ ⊂ L iff L′ ⊆ L and L′ �= L.
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both programs yield the same set of loops, namely, loop(Π2) = loop(Π1) = {{a, c},
{b, c}, {a, b, c}}. Unlike this, both programs yield a different set of elementary loops.
To see this, observe that for loop {a, b, c} and its sub-loops {a, c} and {b, c}, we have

R−(Π2, {a, c}) ∩R+(Π2, {a, b, c}) = {a ← not d̄} ∩R+(Π2, {a, b, c}) = ∅ ,
R−(Π2, {b, c}) ∩R+(Π2, {a, b, c}) = {b ← not ē} ∩R+(Π2, {a, b, c}) = ∅ .

Thus, {a, b, c} is not an elementary loop in Π2, and eloop(Π2) = {{a, c}, {b, c}} is a
strict subset of loop(Π2).

As mentioned above, we are interested in a minimal set of essential loops such that
their loop formulas in addition to a program’s completion capture the program’s answer
sets. Our next result is a step towards characterizing a sufficient set of loops.

Proposition 2. Let Π be a logic program and let L∈ loop(Π)such that L �∈

Let I be an interpretation of atom(Π) such that L ⊆ I and I |= ¬LF (Π,L).
Then, there is a loop L′ ∈ loop(Π) such that L′ ⊂ L and I |= ¬LF (Π,L′).

This shows that non-elementary loops are prone to redundancy.
Our first major result is an enhancement of [4, Theorem 1]. That is, elementary

loop formulas are, in addition to a program’s completion, sufficient for capturing the
program’s answer sets.

Theorem 3. Let Π be a logic program and let X ⊆ atom(Π).
Then, X is an answer set of Π iff X is a model of comp(Π) ∪ eLF (Π).

Let us illustrate the two last results by Π2 in Figure 2(a). Recall that we have

eloop(Π2) = {{a, c}, {b, c}} ⊂ {{a, c}, {b, c}, {a, b, c}}= loop(Π2) .

For Program Π2, the set loop(Π2) of general loops induces the loop formulas

LF (Π2, {a, c}) = ¬(¬d̄)→ ¬a ∧ ¬c ≡ d̄→ ¬a ∧ ¬c ,
LF (Π2, {b, c}) = ¬(¬ē)→ ¬b ∧ ¬c ≡ ē→ ¬b ∧ ¬c ,
LF (Π2, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c .

Observe that

LF (Π2, {a, c}),LF (Π2, {b, c}) |= LF (Π2, {a, b, c}) .

That is, loop formula LF (Π2, {a, b, c}) is redundant and can be removed from LF (Π2)
without any risk of producing models of comp(Π2)∪ (LF (Π2)\{LF (Π2, {a, b, c})})
that are no answer sets of Π2. This outcome is directly obtained when considering
elementary loop formulas because eLF (Π2) = LF (Π2) \ {LF (Π2, {a, b, c})}.

In what follows, we consider the “necessity” of elementary loops. The problem here
is that whether or not a loop formula eliminates unwanted supported models is context
dependent because of possible interactions with the completed program and/or among
loop formulas. To see this, consider Program Π = {a ← ; b ← a ; b ← c ; c ← b}.
We have eloop(Π) = {{b, c}}, but loop formula LF (Π, {b, c}) = ¬a → ¬b ∧ ¬c is

eloop(Π).
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not violated in the single supported model {a, b, c} of Π because atom b is supported
anyhow by rule b ← a. Furthermore, consider Program Π ′ = {a ← not b ; b ←
not a ; c ← d,not a,not b ; d ← c,not a,not b} having elementary loop {c, d}. The
supported models of Π ′ are {a} and {b} such that LF (Π ′, {c, d}) = � → ¬c ∧ ¬d is
not needed for inhibiting circular support among atoms c and d.

In order to capture elementary loops that really produce unwanted supported mod-
els, we introduce the notion of an active elementary loop.

Definition 4 (Active Elementary Loop). Let Π be a logic program and let I be an
interpretation of atom(Π).

We define L ∈ eloop(Π) as an active elementary loop with respect to I , if

1. for each rule r ∈ R−(Π,L), we have I |= ¬comp(r), and
2. L is an elementary loop in Π \ {r ∈ Π | I |= ¬comp(r)}.

By Condition 1. an active elementary loop is not non-circularly supported. Condition 2.
ensures that an active elementary loop is still elementary with respect to the rules satis-
fied by an interpretation; i.e. the rules connecting the elementary loop are not falsified.

The distinguishing property of elementary loops that are active with respect to an
interpretation I , as opposed to general loops, is that I “automatically” satisfies the loop
formula of any of their sub-loops.

Theorem 5. Let Π be a logic program, let L ∈ eloop(Π), and let I be an interpreta-
tion of atom(Π) such that L is active with respect to I .

Then, we have I |= ¬LF (Π,L) , and, for each loop L′ ∈ loop(Π) such that
L′ ⊂ L, we have I |= LF (Π,L′).

For illustration, reconsider Programs Π1 and Π2 (cf. Figures 1(a) and 2(a)). Both
programs yield the loops {a, c}, {b, c}, and {a, b, c}. The difference between Π1 and
Π2 is that {a, b, c} is an elementary loop in Π1, but not in Π2. For Π1, this means
that, if {a, b, c} is active with respect to a supported model M of comp(Π1), M is also
model of comp(Π1) ∪ eLF (Π1) \ {LF (Π1, {a, b, c})}. In fact, the supported model
M = {a, b, c, d̄, ē} violates

LF (Π1, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c

but satisfies

LF (Π1, {a, c}) = ¬(¬d̄ ∨ (b ∧ ¬e))→ ¬a ∧ ¬c ≡ d̄ ∧ (¬b ∨ e)→ ¬a ∧ ¬c ,
LF (Π1, {b, c}) = ¬(¬ē ∨ (a ∧ ¬d))→ ¬b ∧ ¬c ≡ ē ∧ (¬a ∨ d)→ ¬b ∧ ¬c .

Hence, we cannot skip LF (Π1, {a, b, c}) without producing a supported model that is
no answer set. In contrast to this, no model of comp(Π2) violates LF (Π2, {a, b, c})
and satisfies both LF (Π2, {a, c}) and LF (Π2, {b, c}). This follows directly from The-
orem 3, as {a, b, c} is not an elementary loop in Π2.

4 Graph-Theoretical Characterization of Elementary Loops

We have seen in the previous section that elementary and non-elementary loops cannot
be distinguished using atom dependency graphs (cf. Figures 1(b) and 2(b)). Further-
more, Definition 1 suggests examining all strict sub-loops for finding out whether a



Loops: Relevant or Redundant? 59

loop is elementary. This is intractable as a loop may have exponentially many strict
sub-loops. In what follows, we show that identifying elementary loops can be done
efficiently based on a refined concept of a dependency graph.

First of all, we introduce the body-head dependency graph of a program.

Definition 6 (Positive Body-Head Dependency Graph). Let Π be a logic program.
We define the positive body-head dependency graph of Π as the directed graph

(atom(Π) ∪ body(Π) ,E0(Π) ∪ E2(Π)) where

E0(Π) = {(b, B) | r ∈ Π, b ∈ body+(r), body(r) = B} ,

E2(Π) = {(B, a) | r ∈ Π, body(r) = B, head(r) = a} .

Body-head dependency graphs were introduced in [9] as a formal device for charac-
terizing answer set computation. In fact, fully-fledged body-head dependency graphs
constitute the primary data structure of the nomore answer set solver [12]. In addition
to the edges in E0(Π) and E2(Π), they contain a type of edges for negative depen-
dencies, namely, E1(Π) = {(c, B) | r ∈ Π, c ∈ body−(r), body(r) = B}.4 In what
follows, we often drop the attribute ’positive’ and simply write body-head or atom de-
pendency graph, respectively, since loops exclusively rely on positive dependencies.

Definition 7 (Induced Subgraph). Let Π be a logic program and let A ⊆ atom(Π).
We define the induced subgraph of A in Π as the directed graph (A ∪ body(Π, A),

E0(Π, A) ∪ E2(Π, A)) where

body(Π, A) = {B ∈ body(Π) | b ∈ A, (b, B) ∈ E0(Π), a ∈ A, (B, a) ∈ E2(Π)} ,

E0(Π, A) = E0(Π) ∩ (A× body(Π, A)) ,

E2(Π, A) = E2(Π) ∩ (body(Π, A)×A) .

Note that, in the induced subgraph of a set A of atoms, we only include those bodies
that contain an atom in A and that also occur in a rule whose head is in A. That is, the
bodies, which are responsible for edges in atom dependency graphs, are made explicit
in body-head dependency graphs as nodes in-between atoms.

Figure 1(c) shows the body-head dependency graph of Π1. As in Figure 1(b), we
leave out isolated nodes, that is here, purely negative bodies and atoms not occurring
in positive bodies. Unlike this, atom a is contained in the graph since it occurs in the
positive body of rule c ← a,not d; accordingly, the edge (a, {a,not d}) belongs to the
set of edges E0(Π1) of the body-head dependency graph. Among the edges in E2(Π1),
we find ({a,not d}, c) because of rule c ← a,not d. The induced subgraph of {a, c}
in Π1 contains atoms a and c, bodies {a,not d} and {c}, and their connecting edges.

As with atom dependency graphs, a set of atoms is a loop if its induced subgraph is
a non-trivial strongly connected graph.

Proposition 8. Let Π be a logic program and let L ⊆ atom(Π).
L is a loop in Π iff the induced subgraph of L in Π is a strongly connected graph

such that body(Π,L) �= ∅.
4 The notation traces back to [13]; the sum of labels in a cycle indicates whether the cycle is

even or odd.
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In order to describe elementary loops graph-theoretically, we introduce the elemen-
tary subgraph of a set of atoms, which is more fine grained than the induced subgraph.

Definition 9 (Elementary Subgraph). Let Π be a logic program, let A ⊆ atom(Π),
and let (A∪ body(Π, A) ,E0(Π, A)∪E2(Π, A)) be the induced subgraph of A in Π .

We define the elementary closure of A in Π as the set eCl(Π, A) of edges where

eCl0(Π, A) = ∅ ,

eCl i+1(Π, A) = eCl i(Π, A) ∪ {(b, B) ∈ E0(Π, A) | there is

a path in (A ∪ body(Π, A) , eCl i(Π, A) ∪E2(Π, A))
from b ∈ A to each b′ ∈ A such that (b′, B) ∈ E0(Π, A) } , 5

eCl(Π, A) =
⋃

i∈INeCl i(Π, A) .

We define the elementary subgraph of A in Π as the directed graph (A ∪ body(Π,
A), eCl(Π, A) ∪ E2(Π, A)).

The general purpose of elementary subgraphs is to distinguish essential from superflu-
ous dependencies. Let us illustrate this by rule c ← a, b in Π2 and consider the body-
head dependency graph of Π2 in Figure 2(c). Here, atom c positively depends on atoms
a and b through body {a, b}. In Π2, c is unfounded if either a or b and c itself are not
non-circularly supported; that is, the other atom cannot help in non-circularly support-
ing a and c or b and c, respectively. The situation changes if a and b take part in a loop
independently from c. Then, a and b non-circularly support c if there is a non-circular
support for either a or b. The elementary closure reflects these issues by stipulating that
there is already a path from one to the other predecessors of a body before an edge
to the body can be added. This allows for distinguishing essential dependencies from
superfluous ones.

Our next major result shows that elementary subgraphs make the difference between
elementary loops and non-elementary ones.

Theorem 10. Let Π be a logic program and let L ⊆ atom(Π).
L is an elementary loop in Π iff the elementary subgraph of L in Π is a strongly

connected graph such that body(Π,L) �= ∅.

For illustrating the previous result, reconsider Figure 1(c) showing the connected
part of the body-head dependency graph of Program Π1. Observe that each contained
body is reached by precisely one edge. Therefore, we have eCl1(Π1, A) = E0(Π1, A)
for every A ⊆ atom(Π1), and elementary subgraphs coincide with induced subgraphs.

The body-head dependency graph of Program Π2 is different from the one of Pro-
gram Π1, as witnessed by Figures 1(c) and 2(c). In Figure 2(c), we see the connected
part of the body-head dependency graph of Π2, which coincides with the induced sub-
graph of loop {a, b, c} in Π2. Regarding the elementary closure of {a, b, c}, we have

eCl(Π2, {a, b, c}) = eCl1(Π2, {a, b, c}) = {(c, {c,not d}), (c, {c,not e})} .

5 Note that the path from b to b′ can be trivial, i.e. b = b′.
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Observe that eCl(Π2, {a, b, c}) does not contain edges (a, {a, b}) and (b, {a, b}). This
is because a as well as b must have a path to the other atom before the respective edge
can be added to the elementary closure. Since there are no such paths, none of the
edges can ever be added. As a consequence, atoms a and b have no outgoing edges in
the elementary subgraph of {a, b, c} in Π2, which is not strongly connected. This agrees
with the observation made in Section 3 that {a, b, c} is not an elementary loop in Π2.
In contrast to {a, b, c}, the elementary subgraphs of loops {a, c} and {b, c} in Π2 are
strongly connected, verifying eloop(Π2) = {{a, c}, {b, c}}.

As observed on Program Π1, elementary subgraphs coincide with induced sub-
graphs on unary programs, having at most one positive body atom. For such programs,
every general loop is also an elementary one.

Proposition 11. Let Π be a logic program such that |body+(r)| ≤ 1 for all r ∈ Π .
Then, we have eloop(Π) = loop(Π).

Note that unary programs are strictly less expressive than general ones, as shown in [14].
The analysis of elementary subgraphs yields that each contained atom must be the

unique predecessor of some body; otherwise, the atom has no outgoing edge in the
elementary closure. Moreover, the induced subgraph of an elementary loop cannot be
torn apart by removing edges to bodies, provided that each body is still reachable.

Proposition 12. Let Π be a logic program and let L ∈ eloop(Π).
Then, the induced subgraph of L in Π , (L ∪ body(Π,L) ,E0(Π,L) ∪ E2(Π,L)) ,

has the following properties:

1. For each atom b ∈ L, there is a body B ∈ body(Π,L) such that {b} = {b′ ∈ L |
(b′, B) ∈ E0(Π,L)}.

2. For every set E⊆
0 ⊆ E0(Π,L) of edges such that {B ∈ body(Π,L) | b ∈ L,

(b, B) ∈ E⊆
0 } = body(Π,L), we have that (L ∪ body(Π,L) ,E⊆

0 ∪ E2(Π,L)) is
a strongly connected graph.

Although we refrain from giving a specific algorithm, let us note that the concept of
elementary subgraphs allows for computing elementary loops efficiently by means of
standard graph algorithms. In particular, deciding whether a set of atoms is an elemen-
tary loop can be done in linear time.

5 Elementary Versus Non-elementary Loops

This section compares the sets of a program’s elementary and general loops. By Theo-
rem 3, loop formulas for non-elementary loops need not be added to a program’s com-
pletion in order to capture the program’s answer sets. With this information at hand,
we are interested in how many loop formulas can be omitted in the best or in the worst
case, respectively.

First, we determine a lower bound on the set of a program’s elementary loops.
Such a bound is immediately obtained from Definition 1, because a loop is trivially
elementary if it has no strict sub-loops. Thus, we have mloop(Π) ⊆ eloop(Π) where
mloop(Π) denotes the set of ⊆-minimal loops in a program Π . Second, the set of a
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program’s loops constitutes an upper bound for the program’s elementary loops, also
by Definition 1. Thus, we have eloop(Π) ⊆ loop(Π). Finally, the question is how the
set of a program’s loops can be bound from above. In order to answer it, we define the
set of loops that are ⊆-minimal for an atom a ∈ atom(Π) as aloop(Π, a) = {L ∈
loop(Π) | a ∈ L, there is no loop L′ ∈ loop(Π) such that a ∈ L′ and L′ ⊂ L}. For a
program Π , we let aloop(Π) =

⋃
a∈atom(Π) aloop(Π, a).

In the worst case, any non-empty combination of loops in aloop(Π) is a loop, and
we obtain the following upper bound for a program’s loops.

Proposition 13. Let Π be a logic program.
Then, we have loop(Π) ⊆ {

⋃
L∈A L | A ∈ 2aloop(Π) \ {∅}}.

Taking the above considerations together, we obtain the following estimation.

Corollary 14. Let Π be a logic program. Then, we have

mloop(Π) ⊆ eloop(Π) ⊆ loop(Π) ⊆ {
⋃

L∈AL | A ∈ 2aloop(Π) \ {∅}} .

In what follows, we give some schematic examples with programs Π for which
loop(Π) = {

⋃
L∈A L | A ∈ 2aloop(Π) \ {∅}}. Our first program sketches the worst

case, i.e. eloop(Π) = {
⋃

L∈A L | A ∈ 2aloop(Π) \ {∅}}, whereas the second pro-
gram reflects the best case that eloop(Π) = mloop(Π). The programs show that the
set of elementary loops can vary significantly between the given lower and the upper
bound.

For illustrating the worst case, consider Program Π3 in Figure 3(a). First observe
that |body+(r)| = 1 for every rule r ∈ Π3. Thus by Proposition 11, each loop in Π3

is elementary. The atom dependency graph of Π3 is a complete graph because there is
a rule ai ← aj for every pair of distinct atoms ai ∈ atom(Π3), aj ∈ atom(Π3). As
a consequence, any combination of distinct elementary loops gives a new elementary
loop, and we have eloop(Π3) = {

⋃
L∈A L | A ∈ 2aloop(Π3) \ {∅}}.

Program Π4 in Figure 3(c) is complementary to Π3. Here |body+(r)| =
|atom(Π4)| −1 for every rule r ∈ Π4. However, the atom dependency graph of Π4 is
identical to that of Π3. As observed with Π1 and Π2 (cf. Figures 1(a) and 2(b)), Π3 and
Π4 are thus indistinguishable from their atom dependency graphs. Again the body-head
dependency graphs reveal the different natures of Π3 and Π4. We have that, similar to
Π3, every two-elementary subset of atom(Π4) forms a ⊆-minimal and, thus, elemen-
tary loop. However, looking at the body-head dependency graph of Π4 in Figure 3(d),
we see that each atom has a single body as predecessor (i.e. there is a single supporting
rule) such that distinct elementary loops can only be “glued” at bodies. In the resulting
induced subgraph, bodies have several predecessors. Such an induced subgraph does
not satisfy property 1. from Proposition 12, and the obtained loop is non-elementary.
Thus, we have eloop(Π4) = mloop(Π4) and can omit loop formulas for all loops in
{
⋃

L∈A L | A ∈ 2aloop(Π4) \ {∅}} \mloop(Π4).
The achievements obtainable through using elementary instead of general loops

can be underpinned by looking at the approaches of assat [4] and smodels [1] for
dealing with unfounded sets. The assat system is based on a program’s completion
and identifies loops, whose loop formulas are violated, on demand, that is, whenever a
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Π3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ← a2 . . . a1 ← an

...
ai ← a1 . . . ai ← an

ai+1 ← a1 . . . ai+1 ← an

...
an ← a1 . . . an ← an−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Schematic program Π3
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(b) Schematic body-head dependency graph of Π3

Π4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ← a2, . . . , an

...
ai ← a1, . . . , ai−1, ai+1, . . . , an

ai+1 ← a1, . . . , ai, ai+2, . . . , an

...
an ← a1, . . . , an−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c) Schematic program Π4
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(d) Schematic body-head dependency graph of Π4

Fig. 3. Logic programs Π3 and Π4, where loop(Πi) = {⋃L∈A L | A ∈ 2aloop(Πi) \ {∅}},

eloop(Π3) = {⋃L∈A L | A ∈ 2aloop(Π3) \ {∅}}, and eloop(Π4) = mloop(Π4)

supported model not representing an answer set has been found. The circular support
of such loops is in future prohibited by loop formulas such that an unwanted supported
model cannot be recomputed. Now assume that the supported model {a, b, c, d̄, ē} is
found first for Program Π2 in Figure 2(a). Then assat identifies {a, b, c} as a so-
called terminating loop [4] and adds loop formula

LF (Π2, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c

to comp(Π2) before searching for another supported model. The problem is that loop
{a, b, c} is non-elementary and that circular support within elementary loops {a, c}
and {b, c} is not prohibited by LF (Π2, {a, b, c}). Consequently, assat may find sup-
ported models {a, b, c, d̄, e} and {a, b, c, d, ē} next, necessitating additional loop for-
mulas

LF (Π2, {a, c}) = ¬(¬d̄)→ ¬a ∧ ¬c ≡ d̄→ ¬a ∧ ¬c and
LF (Π2, {b, c}) = ¬(¬ē)→ ¬b ∧ ¬c ≡ ē→ ¬b ∧ ¬c ,

before finding the first answer set. The possibility of computing the supported models
{a, b, c, d̄, e} and {a, b, c, d, ē} can be avoided by splitting the non-elementary loop
{a, b, c} into its elementary sub-loops {a, c} and {b, c}. Besides {a, c} and {b, c},
LF (Π2, {a, c}) and LF (Π2, {b, c}) prohibit circular support within loop {a, b, c}, and
assat may treat three loops using only two loop formulas. In general, the elementary
closure, as given in Definition 9, can be used for checking whether a terminating loop is
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elementary. If not, an elementary sub-loop, whose loop formula also prohibits circular
support within the genuine terminating loop, can be determined.6

The smodels answer set solver falsifies greatest unfounded sets in its function
atmost. At the implementation level, atmost is restricted to strongly connected com-
ponents of a program’s positive atom dependency graph (but may spread over different
components if an unfounded set is detected) [1]. When atmost is applied to Program Π4

in Figure 3(c) (or a program having a comparable body-head dependency graph), it has
to take the whole strongly connected component induced by atom(Π4) into considera-
tion, since the atom dependency graph of Π4 is complete. The efforts of atmost can be
restricted by concentrating on elementary loops, which are pairs of atoms in case of Π4.
That is, any pair of unfounded atoms is sufficient for falsifying the bodies of all rules
that contribute to the strongly connected component induced by atom(Π4).

Finally, it is noteworthy to mention that [15] describes how the computation of a
program’s well-founded model [16] simplifies based on certain properties of the pro-
gram’s full atom dependency graph (i.e. both positive and negative edges are included).
The simplifications can be applied if a strongly connected component contains either
only positive edges or if no atom depends positively on itself. The first case reflects
that the contained atoms are involved in a loop and the second that circular support is
impossible. An interesting topic for future investigation is whether the above conditions
can be refined using the richer structure of body-head dependency graphs, which, for
instance, allows for distinguishing between elementary and non-elementary loops.

6 Conclusion

The purpose of loop formulas is to falsify unfounded sets whose atoms circularly de-
pend upon each other in a given program. The detection of unfounded sets traces back
to well-founded semantics [16]. Basically, the well-founded semantics infers atoms that
are consequences of a program’s rules and falsifies unfounded sets. In accord with the
well-founded semantics, all atoms in an answer set are consequences and no atom is
unfounded. Complementary to [16] concentrating on greatest unfounded sets, this pa-
per investigates indispensable unfounded sets whose falsification is essential for answer
set computation. To this end, we have introduced the notion of an elementary loop and
have described it using body-head dependency graphs. Although we cannot avoid the
theoretical barrier of exponentially many loops in the worst case, we have shown that el-
ementary loops provide necessary and sufficient criteria for characterizing answer sets.
Apart from their theoretical importance, our results have furthermore a practical im-
pact since they allow to focus the computation in ASP solvers to ultimately necessary
parts. An interesting topic for future research will be generalizing our new concept of
elementary loops to disjunctive programs, as has been done for general loops in [17].
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6 A non-elementary loop may yield exponentially many elementary sub-loops. Thus, identify-
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needed to cover the atoms in a (general) terminating loop of size n is bound by n.
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Abstract. We investigate techniques for approximating answer sets of general
logic programs of Lifschitz and Woo, whose rules have single literals as heads.
We propose three different methods of approximation and obtain results on the
relationship between them. Since general logic programs with single literals as
heads are equivalent to revision programs, we obtain results on approximations
of justified revisions of databases by revision programs.

1 Introduction

General logic programs were introduced by Lifschitz and Woo [LW92]. Their syntax
follows closely that of disjunctive logic programs but there is one essential difference.
The operator not, representing the default negation is no longer confined to the bodies
of program rules but may appear in their heads, as well. Lifschitz and Woo [LW92]
showed that the semantics of answer sets introduced for disjunctive logic programs in
[GL91] can be lifted to the class of general logic programs.

In this paper, we study the class of those general programs that do not contain dis-
junctions in the heads of their rules. We call such programs unitary. Unitary general
programs are of interest for two reasons. First, they go beyond the class of normal
logic programs by allowing the default-negation operator in the rule heads. Second, in
a certain precise sense, unitary general programs are equivalent to the class of revision
programs [MT98, MPT02], which provide a formalism for describing and enforcing
database revisions. Consequently, results for unitary general programs extend to the
case of revision programs.

The problem we focus on in this paper is that of approximating answer sets of
unitary general programs. The problem to decide whether a unitary logic program has
an answer set is NP-complete1. Consequently, computing answer sets of unitary general
programs is hard and it is important to establish efficient ways to approximate them. On
one hand, such approximations can be sufficient for some reasoning tasks. On the other
hand, they can be used by programs computing answer sets to prune the search space
and can improve their performance significantly.

1 Without the restriction to unitary programs (and assuming that the polynomial hierarchy does
not collapse) the problem is even harder — ΣP

2 -complete.
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In the case of normal logic programs the well-founded model [VRS88] provides
an effective approximation to all answer sets2. It can be computed in polynomial time
and is known to provide an effective pruning mechanism for programs computing stable
models [SNV95, SNS02]. An obvious approach to the problem at hand seems to be then
to extend the well-founded model and its properties to the class of unitary programs.
However, despite similarities between normal and unitary programs, no counterpart of
the well-founded model has been proposed for the latter class so far, and whether it can
be done remains unresolved.

Thus, we approach the problem not by attempting to generalize the well-founded
semantics but by exploiting this semantics in some other, less direct ways. Namely, we
introduce three operators for unitary general programs and use them to define the ap-
proximations. The first two operators are antimonotone and are closely related to opera-
tors behind the well-founded semantics of normal logic programs. Iterating them yields
alternating sequences. We use the limits of these sequences to construct our first two
approximations to answer sets of unitary general programs. The two approximations
we obtain in this way are not comparable (neither is stronger than the other one). The
third operator is not antimonotone in general. However, in the case of unitary general
programs that have answer sets, iterating this operator results in an alternating sequence
and the limit of this sequence yields yet another approximation to answer sets of unitary
general programs. We show that this third approximation is stronger than the other two.
We also show that all three approaches imply sufficient conditions for the non-existence
of answer sets of unitary programs.

As we noted, unitary programs are related to revision programs [MT98, MPT99].
Having introduced approximations to answer sets of unitary general programs, we show
that our results apply in a direct way to the case of revision programming.

All programs we consider in the paper are finite. That assumption simplifies argu-
ments. However, all our results can be extended to the case of infinite programs.

2 Preliminaries

Atoms and literals. In the paper we consider a fixed set U of (propositional) atoms.
Expressions of the form a and not(a), where a ∈ U , are literals (over U ). We denote
the set of all literals over U by Lit(U). A set of literals L ⊆ Lit(U) is coherent if there
is no a ∈ U such that both a ∈ L and not(a) ∈ L. A set of literals L ⊆ Lit(U) is
complete if for every a ∈ U , a ∈ L or not(a) ∈ L (it is possible that for some a, both
a ∈ L and not(a) ∈ L).

For a set M of atoms, M ⊆ U , we define

not(M) = {not(a) : a ∈M} and M c = M ∪ not(U \M).

The mapping M �→ M c is a bijection between subsets of U and coherent and complete
sets of literals contained in Lit(U).

2 In the context of normal logic programming, answer sets are more commonly known as stable
models.
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Unitary general programs. A unitary general logic program, or UG-program is a
collection of rules of the form:

α ← α1, . . . , αm (1)

where α, α1, . . . , αm are literals from Lit(U). The literal α is the head of the rule. The
set of literals {α1, . . . , αm} is the body of the rule.

Let P be a UG-program. We write P+ (respectively, P−) to denote programs con-
sisting of all rules in P that have an atom (respectively, a negated atom) as the head.

Satisfaction and models. A set of atoms M ⊆ U satisfies (is a model of) an atom
a ∈ U (respectively, a literal not(a) ∈ Lit(U)), if a ∈ M (respectively, a /∈ M ).
The concept of satisfaction (being a model of) extends in a standard way to rules and
programs. As usual, we write |= to denote the satisfaction relation.

Sets of literals closed under UG-programs. In addition to models, we also associate
with a UG-program P sets of literals that are closed under rules in P . A set L of literals
is closed under a UG-program P if for every rule r = α ← Body ∈ P such that
Body ⊆ L, α ∈ L. One can show that every UG-program P has a least set of literals
closed under its rules3. We denote it by P ∗. We observe that if P is a definite Horn
program, P ∗ consists of atoms only and coincides with the least model of P .

Stable models of normal logic programs. Models are too weak for knowledge repre-
sentation applications. In the case of normal logic programs, the appropriate semantic
concept is that of a stable model. We recall that according to the original definition
[GL88], a set of atoms M is a stable model of a normal logic program P if

[PM ]∗ = M, (2)

where PM is the Gelfond-Lifschitz reduct of P with respect to M . The following char-
acterization of stable models is well known [BTK93]: M is a stable model of a normal
logic program P if and only if

[P ∪ not(U \M)]∗ ∩ U = M. (3)

Answer sets of UG-programs. Lifschitz and Woo [LW92] extended the concept of a
stable model to the case of arbitrary general programs and called the resulting semantic
object an answer set. Rather than to give the original definition from [LW92], we recall
a basic characterization of answer sets of UG-programs that will be of use in the paper.
Its proof can be found in [Lif96, MPT99].

Proposition 1. Let P be a UG-program. A set of atoms M is an answer set to P if and
only if M is a stable model of P+ and a model of P−. In particular, if M is an answer
set to P then M is a model of P .

Alternating sequences. All approximations to answer sets of UG-programs we study
in this paper are defined in terms of alternating sequences and their limits. A sequence
(Xi) of sets of literals is alternating if

3 If we treat literals not(a) as new atoms, P becomes a Horn program and its least model is the
least set of literals closed under P .
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1. X0 ⊆ X2 ⊆ X4 ⊆ . . .
2. X1 ⊇ X3 ⊇ X5 ⊇ . . .
3. X2i ⊆ X2i+1, for every non-negative integer i.

If (Xi) is an alternating sequence, we define X l =
⋃∞

i=0 X2i and Xu =
⋂∞

i=0 X2i+1.
We call the pair (X l, Xu) the limit of the alternating sequence (Xi). It follows directly
from the definition that for every non-negative integers i and j,

X2i ⊆ X l ⊆ Xu ⊆ X2j+1

Alternating sequences are often defined by means of operators that are antimono-
tone. An operator γ defined on Lit(U) is antimonotone if for every two sets X ⊆ Y ⊆
Lit(U), γ(Y ) ⊆ γ(X). Let γ be antimonotone. We define X0 = ∅ and Xi+1 = γ(Xi).
It is well known (and easy to show) that the sequence (Xi) is alternating. We call (Xi)
the alternating sequence of γ.

We will consider in the paper the following two operators:

γP,U (X) = [P ∪ not(U \X)]∗ ∩ U and γP (X) = [P ∪ not(U \X)]∗.

Both operators are antimonotone and give rise to alternating sequences, say (Wi) and
(Yi). Let (W l,Wu) and (Y l, Y u) be the limits of these sequences, respectively. One
can verify that these limits form alternating pairs. That is, we have

γP,U (W l) = Wu and γP,U (Wu) = W l (4)

and
γP (Y l) = Y u and γP (Y u) = Y l. (5)

One can show that if P is a normal logic program then the alternating sequence
of γP,U is precisely the alternating sequence defining the well-founded semantics of P
[VRS88, Van93].

One can also show that the limit of the alternating sequence of γP is the well-
founded model of the normal logic program P ′ obtained from P by replacing every
literal not(a) with a new atom, say a′, and adding rules of the form a′ ← not(a) (the
claim holds modulo the correspondence a′ ↔ not(a)). The mapping P �→ P ′ was
introduced and studied in [PT95] in the context of revision programs.

Approximating sets of atoms. Let M be a set of atoms. Every pair of sets (T ,S) that
approximates M , that is, such that T ⊆M ⊆ S, implies a lower bound on the complete
representation M c of M :

T ∪ {not(U \ S)} ⊆M c.

Conversely, every set L of literals such that L ⊆ M c determines an approximation
(T ,S) of M , where T = U ∩ L and S = {a ∈ U : not(a) /∈ L}. Indeed,

U ∩ L ⊆M ⊆ {a ∈ U : not(a) /∈ L}.

In this way, we establish a bijection between approximations to a set of atoms M and
subsets of M c. It follows that approximations of answer sets can be represented as
subsets of their complete representations. We have the following fact.
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Proposition 2. Let P be a UG-program and let T and S be two sets of atoms. For every
answer set M of P , if T ⊆M ⊆ S then [P ∪ T ∪ not(U \ S)]∗ ⊆M c.

Proof: We have T ⊆ M ⊆ S. Thus, T ∪ not(U \ S) ⊆ M c. Let r = α ← Body be a
rule in P such that Body ⊆ M c. It follows that M satisfies the body of r. Since M is
an answer set of P , M satisfies α and so, α ∈ M c. Thus, T ∪ not(U \ S) ⊆ M c and
M c is closed under P . Consequently, [P ∪ T ∪ not(U \ S)]∗ ⊆M c. �

In the case of normal logic programs, the well-founded model, that is, the limit
(W l,Wu) of the alternating sequence (Wi) of the operator γP,U , approximates every
stable model (if they exist) and, in some cases determines the existence of a unique
stable model.

Theorem 1 ([VRS88, Lif96]). Let (W l,Wu) be the well-founded model of a normal
logic program P .
1. For every stable model M of P , W l ∪ not(U \Wu) ⊆M c.
2. If W l = Wu, then W l is a unique stable model for P .

In the remainder of the paper, we will propose approximations to answer sets of
UG-programs generalizing Theorem 1.

3 Approximating Answer Sets Using Operators γP,U and γP

Our first approach exploits the fact that every answer set of a UG-program P is a stable
model of P+ (Proposition 1). Let P be a UG-program and let (W l,Wu) be the limit
of the alternating sequence of the operator γP+,U . As we observed, (W l,Wu) is the
well-founded model of P+. We define

Appx 1(P ) = [P ∪ not(U \Wu)]∗.

By (4), W l = [P ∪ not(U \Wu)]∗ ∩ U . Hence, W l ⊆ Appx 1(P ) and so, Appx 1(P )
contains all literals that are true in the well-founded model (W l,Wu).

Theorem 2. Let P be a UG-program. For every answer set M of P , Appx 1(P ) ⊆M c.
In addition, if Appx 1(P ) is incoherent then P has no answer sets.

Proof: Let M be an answer set of P . By Proposition 1, M is a stable model of P+. Let
(W l,Wu) be the well-founded model of P+. By Theorem 1, not(U \Wu) ⊆ M c.
Moreover, since M is an answer set of P , M is a model of P (Proposition 1, again)
and so, M c is closed under P . Since Appx 1(P ) is the least set of literals containing
not(U \Wu) and closed under P , Appx 1(P ) ⊆ M c, as claimed. The second part of
the assertion follows from the first one. �

We will illustrate this approach with an example.

Example 1. Let us consider the following UG-program P :

a← not(b),not(c)
c← c,not(b)
b← not(d)

d← not(b)
not(b)←
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All but the last rule belong to P+. The operator γP+,U determines the following alter-
nating sequence (Wi) of sets:

∅ �→ {a, b, d} �→ ∅ . . . .

It follows that the well-founded model of P+ is (W l,Wu) = (∅, {a, b, d}). Conse-
quently,

Appx 1(P ) = [P ∪ {not(c)}]∗ = {a, d,not(b),not(c)}.
In this case, the well-founded model of P+ alone provides a weak bound on answer
sets of P . The improved bound Appx 1(P ), which closes the model under P , pro-
vides a much stronger approximation. In fact, only one set M is approximated by
{a, d,not(b),not(c)}. This set is {a, d} and it happens to be a unique answer set of P .

Let Q = P ∪ {not(a) ← d}. Since Q+ = P+, it follows that Appx 1(Q) =
[Q ∪ {not(c)}]∗ = {a, d,not(a),not(b),not(c)}. Since Appx 1(Q) is incoherent, Q
has no answer sets, a fact that can be verified directly. �

The approximation Appx 1(P ), where P is the first program from Example 1, is
complete and coherent, and we noted that the unique set of atoms that Appx 1(P ) ap-
proximates is a unique answer set of P . It is a general property extending Theorem 1(2).

Corollary 1. Let P be a UG-program. If Appx 1(P ) is coherent and complete then
Appx 1(P ) ∩ U is a unique answer set of P .

Proof: Since Appx 1(P ) is coherent and complete, Theorem 2 implies that P has at most
one answer set. To prove the assertion it is then enough to show that M = Appx 1(P )∩
U is an answer set of P .

Let (W l,Wu) be the well-founded model of P+. Since Appx 1(P ) = [P ∪not(U \
Wu)]∗, [P ∪ not(U \Wu)]∗ is coherent and complete. Consequently,

M c = [P ∪ not(U \Wu)]∗.

It follows that not(U \ Wu) ⊆ not(U \ M). Thus, M c ⊆ [P ∪ not(U \ M)]∗.
It also follows that M c is closed under the rules in P . Since not(U \ M) ⊆ M c,
[P ∪ not(U \M)]∗ ⊆M c. Thus,

M c = [P ∪ not(U \M)]∗.

It follows now that M is a model of P−. Moreover, it also follows that M = [P+ ∪
not(U \M)]∗ and so, M is a stable model of P+. Thus, M is an answer set of P . �

We will now introduce another approximation to answer sets of a UG-program P .
This time, we will use the operator γP . Let Yi be the alternating sequence of the operator
γP and let (Y l, Y u) be the limit of (Yi). We define

Appx 2(P ) = Y l.

Theorem 3. Let P be a UP-program. If M is an answer-set for P then Appx 2(P ) ⊆
M c. In addition, if Appx 2 is incoherent, then P has no answer sets.
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Proof: Let M be an answer set of P and let (Yi) be the alternating sequence for the
operator γP . We will show by induction that for every i ≥ 0, Y2i ∩ U ⊆M ⊆ Y2i+1.

Since Y0 = ∅, Y0 ∩ U ⊆M . We will now assume that Y2i ∩U ⊆M and show that
M ⊆ Y2i+1. Our assumption implies that not(U \M) ⊆ not(U \ Y2i). Thus, since
M is a stable model of P+, it follows from (3) that

M = [P+∪not(U \M)]∗∩U ⊆ [P ∪not(U \M)]∗ ⊆ [P ∪not(U \Y2i)]∗ = Y2i+1.

Next, we assume that M ⊆ Y2i+1 and show that Y2i+2 ∩ U ⊆ M . The assumption
implies that not(U \ Y2i+1) ⊆ not(U \M). Thus,

Y2i+2 ∩ U = [P ∪ not(U \ Y2i+1)]∗ ∩ U ⊆ [P ∪ not(U \M)]∗ ∩ U

= [P+ ∪ not(U \M)]∗ ∩ U = M.

The last but one equality follows from the fact that M is a model of P− and the last
inequality follows from the fact that M is a stable model of P+.

From the claim it follows that M ⊆ Y u. Thus, not(U \ Y u) ⊆ M c. Since M is a
model of P , M c is closed under P . Thus, Y l = [P ∪ not(U \ Y u)]∗ ⊆M c. �

As before, if the approximation provided by Appx 2(P ) is complete and coherent,
P has a unique answer set.

Corollary 2. Let P be a UG-program such that Appx 2(P ) is complete and coherent.
Then, Appx 2(P ) ∩ U is a unique answer set of P .

The following example illustrates our second approach.

Example 2. Let U = {a, b}. Let P be a UG-program consisting of rules:

not(a)← not(b)
b← not(a)
a←

Iterating the operator γP results in the following alternating sequence:

∅ �→ {a, b,not(a),not(b)} �→ {a} �→ {a, b,not(a),not(b)} �→ . . . .

Its limit is ({a}, {a, b,not(a),not(b)}) and so, Appx 2(P ) = {a}. �

We conclude this section by showing that the approximations Appx 1 and Appx 2

are, in general, not comparable.
The following example shows that there is a UG-program P such that Appx 1(P )

and Appx 2(P ) are coherent and Appx 2(P ) is a proper subset of Appx 1(P ).

Example 3. Let U = {a, b, c, d, e} and let P be a UG-program consisting of the rules:

a← not(a)
b← not(a)
c← not(d)

d← not(c),not(e)
e←
a← c, e

not(e)← a, b
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Computing Appx 1(P ). The program P+ consists of all rules of P except the last one.
The alternating sequence of γP+,U starts as follows:

∅ �→
{

a, b, c, d, e
}
�→ {e} �→

{
a, b, c, e

}
�→
{

a, c, e
}
�→
{

a, c, e
}
�→ . . . .

Thus, its limit is ({a, c, e}, {a, c, e}) and

Appx 1(P ) = [P ∪ {a, c, e} ∪ {not(b),not(d)}]∗ = {a, c, e,not(b),not(d)}.

Computing Appx 2(P ). Iterating the operator γP yields the following sequence:

∅ �→ Lit(U) �→ {e} �→ Lit(U) �→ . . . .

Thus, the limit is ({e},Lit(U)) and so, Appx 2(P ) = {e}. �

The next example shows that for some programs the opposite is true and the second
approximation is strictly more precise.

Example 4. Let U = {a, b, c} and let P be a UG-program consisting of the rules:

a← not(b)
b← not(a)

c← a, b

not(a)←

Computing Appx 1(P ). The alternating sequence of the operator γP+,U is

∅ �→ {a, b, c} �→ ∅ �→ . . . .

Thus,
Appx 1(P ) = P ∗ = {not(a), b}.

Computing Appx 2(P ). Iterating γP yields:

∅ �→ Lit(U) �→ {not(a), b} �→ {not(a), b,not(c)} �→ {not(a), b,not(c)} �→ . . . .

Thus, Appx 2(P ) = {not(a), b,not(c)}. �

4 Strong Approximation

Let P be a UG-program and Z ⊆ Lit(U) a set of literals (not necessarily coherent). By
the weak reduct of P with respect to Z we mean the program PZ

w obtained from P by:

1. removing all rules that contain in the body a literal not(a) such that a ∈ Z and
not(a) /∈ Z;

2. removing from the bodies of the remaining rules all literals not(a) such that a /∈ Z .

Let us note that if a ∈ Z and not(a) ∈ Z , not(a) will not be removed from the rules
that remain after Step 1.

Let Z be a set of literals, Z ⊆ Lit(U). We define

γw
P (Z) = [PZ

w ]∗.

In general, the operator γw
P is not antimonotone. Thus, the sequence (Zi) obtained by

iterating γw
P (starting with the empty set) in general is not alternating.
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Example 5. Let P be a UG-program consisting of the rules:

a← not(b)
b←

not(b)← not(c)

c← not(d)
d←

By the definition, Z0 = ∅. When computing PZ0 , no rule is removed in Step 1 of the
definition of the weak reduct, and every literal of the form not(a) is removed from
the bodies of rules in P . Thus, Z1 = {a, b, c, d,not(b)}. When computing PZ1

w , we
observe that not(b) ∈ Z1. Thus, the first rule is not removed despite the fact that
b ∈ Z1. Hence, we have:

PZ1
w =

⎧⎨
⎩

a← not(b)
b←
d←

⎫⎬
⎭ , and so, Z2 = {b, d}.

In the next step, we compute:

PZ2
w =

⎧⎨
⎩

b←
not(b)←

d←

⎫⎬
⎭ , and so, Z3 = {b, d,not(b)}.

When computing PZ3
w , the rule a← not(b) is again not removed in Step 1. Thus,

PZ3
w =

⎧⎪⎪⎨
⎪⎪⎩

a← not(b)
b←

not(b)←
d←

⎫⎪⎪⎬
⎪⎪⎭ , and so, Z4 = {a, b, d,not(b)}.

We note that Z4 is not a subset of Z3. Thus, for this program P , the sequence (Zi) is
not alternating. �

In the remainder of this section we show that under some conditions the sequence
(Zi) is alternating and may be used to approximate answer sets of UG-programs. We
first establish a lemma providing conditions, under which [PX

w ]∗ is antimonotone in X .

Lemma 1. Let P be a UG-program, X and X ′ be sets of literals such that X ⊆ X ′.
Moreover, let at least one of the following conditions hold:

1. X ′ is coherent
2. X ⊆ [PX′

w ]∗ and [PX′
w ]∗ is coherent.

3. [PX′
w ]∗ ⊆ X

4. X ⊆ [PX
w ]∗ and [PX

w ]∗ is coherent.

Then [PX′
w ]∗ ⊆ [PX

w ]∗.

The next lemma describes two properties of [PX
w ]∗ under the assumption that X is

coherent.
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Lemma 2. Let P be a UG-program and X a coherent set of literals, X ⊆ Lit(U).

1. [PX
w ]∗ = [PX∩U

w ]∗.
2. [PX

w ]∗ = [(P+)X∩U
w ]∗ ∪ not(X ′) = [(P+)X∩U ]∗ ∪ not(X ′),

where X ′ is the set of atoms such that a ∈ X ′ if and only if there is a rule not(a)←
Body in (P−)X

w such that [(P+)X∩U
w ]∗ |= Body .

We can now prove the following characterization of answer sets of UG-programs.

Lemma 3. Let P be a UG-program, M ⊆ U a set of atoms, and N a set of atoms
consisting of all atoms a ∈ U such that a /∈ M and there is a rule not(a) ← Body
in P such that M |= Body . Then M is an answer set of P if and only if [P M

w ]∗ =
M ∪ not(N).

Proof: (⇒) By Proposition 1, M is a stable model of P+ and a model of P−. In partic-
ular, [(P+)M ]∗ = M . Let X ′ be the set specified in Lemma 2(2), defined for X = M .
Since [(P+)M ]∗ = M and M is a model of P−, for every a ∈ X ′, a /∈ M . Thus,
X ′ = N and the assertion follows from Lemma 2(2).

(⇐) It follows from Lemma 2(2) that M = [(P+)M ]∗. Thus, M is stable model
of P+. Let us consider a rule not(a) ← Body from P− such that M satisfies Body .
Let Body ′ consist of all atoms in Body . It follows that not(a) ← Body ′ is a rule in
(P−)M

w . Since M |= Body , M |= Body ′. Thus, by Lemma 2(2), not(a) ∈ [PM
w ]∗.

Since [PM
w ]∗ = M ∪ not(N), a ∈ not(N) which, in turn, implies a /∈ M . It follows

that M is a model of P− and so, an answer set of P . �

The results we presented above allow us to prove that as long as the lower (even)
terms of the sequence (Zi) are coherent, the sequence behaves as an alternating one.

Proposition 3. Let i be an integer, i ≥ 0, such that Z2i is coherent. Then

1. Z0 ⊆ Z2 ⊆ . . . ⊆ Z2i

2. Z1 ⊇ Z3 ⊇ . . . ⊇ Z2i+1

3. Z2i ⊆ Z2i+1.

This last proposition is crucial for the definition of our third approximation. Let us
consider the sequence (Zi). If for every i, Z2i is coherent, Proposition 3 implies that
the sequence (Zi) is alternating. Let (Zl, Zu) be the limit of (Zi). We define

Appx 3(P ) = Z l ∪ {not(a) : a ∈ U \ Zu}.

Otherwise, there is i such that Z2i is incoherent. In this case, we say that Appx 3(P ) is
undefined.

Theorem 4. Let P be a UG-program. If M is an answer set of P then Appx 3(P ) is
defined and Appx 3(P ) ⊆M c. If Appx 3(P ) is not defined, then P has no answer sets.

Proof: The second part of the assertion follows from the first one. To prove the first part
of the assertion, we will show that for every i ≥ 0, Z2i ⊆M c, and M ⊆ Z2i+1.

We proceed by induction on i. If i = 0, then Z0 = ∅ ⊆ M c. We now assume that
Z2i ⊆M c and prove that M ⊆ Z2i+1.
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Since Z2i ⊆ M c and M c is coherent, Z2i is coherent, too. By Lemma 1 (applied
to X = Z2i and X ′ = M c, under the assumption (4)), [PMc

w ]∗ ⊆ [PZ2i
w ]∗. Thus,

[PMc

w ]∗ ⊆ Z2i+1. By Lemma 2(1), [PM
w ]∗ ⊆ Z2i+1. By Lemma 3, M ⊆ [PM

w ]∗.
Therefore, M ⊆ Z2i+1.

Next, we assume that M ⊆ Z2i+1 and prove that Z2i+2 ⊆ M c. Let us note that
Z2i+2 = [PZ2i+1

w ]∗ and that by Lemma 3, [PM
w ]∗ ⊆ M c. Thus, it will suffice to show

that [PZ2i+1
w ]∗ ⊆ [PM

w ]∗. To this end, we note that by Lemma 3, M ⊆ [PM
w ]∗ and so

Lemma 1 applies (under the condition (4)) to X = M and X ′ = Z2i+1, and implies
the required inclusion.

It follows that Zl ⊆ M c and that M ⊆ Zu. If a /∈ Zu, then a /∈ M and so,
not(a) ∈M c. Thus, Appx 3(P ) = Z l ∪ not(U \ Zu) ⊆M c. �

Example 6. Let P be a UG-program consisting of the rules:

not(a)←
a← not(b)
b← not(a)
c← a, b

not(d)← not(c)
d← not(e)
e← not(d)
f ← d, e

Iterating the operator γw
P results in the following sequence:

∅ �→ {a, b, c, d, e, f,not(a),not(d)} �→ {not(a), b} �→ {b, d, e, f,not(a),not(d)}
�→ {b, e,not(a),not(d)} �→ {b, e,not(a),not(d)} �→ . . . .

Thus, the sequence (Zi) is alternating. Its limit is (Z l, Zu), where Z l = Zu = {b, e,
not(a),not(d)}. Thus,

Appx 3(P ) = Z l ∪ not(U \ Zu) = {b, e,not(a),not(c),not(d),not(f)}.

Since Appx 3(P ) is coherent and complete, P has a unique answer set, {b, e}. This
example also demonstrates that Zu can improve on the bound provided by Zl itself. �

5 Properties of Appx3

In this section we will show that if Appx 3 is defined then it is stronger than the other
two approximations. We recall that if Appx 3(P ) is undefined, then P has no answer
sets, that is, P is inconsistent. It follows that for all consistent UG-programs, Appx 3 is
stronger than the the other two approximations.

Theorem 5. LetP be a UG-program. If Appx 3(P ) is defined then

Appx 1(P ) ∪ Appx 2(P ) ⊆ Appx 3(P )

There are programs which show thatAppx3 is strictly stronger.

Example 7. Let P be the UG-program from Example 4. We recall that Appx 1(P ) =
{not(a), b}. Let us compute Appx 3(P ). By iterating the operator γP

w , we obtain the
following sequence:
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Z0 = ∅ �→ Z1 = {a, b, c,not(a)} �→ Z2 = {not(a), b} �→ Z3 = {not(a), b} . . . .

Hence, Appx 3(P ) = {not(a), b,not(c)} and Appx 1(P ) is a proper subset of
Appx 3(P ). �

Example 8. Let P be the UG-program from Example 3. We recall that Appx 2(P ) =
{e}. To compute Appx 3(P ), we note that by iterating the operator γP

w we get the fol-
lowing sequence:

Z0 = ∅ �→ Z1 = {a, b, c, d, e,not(e)} �→ Z2 = {e} �→

Z3 = {a, b, c, e,not(e)} �→ Z4 = {a, c, e} �→ Z5 = {a, c, e} . . . .

Hence, Appx 3(P ) = {a,not(b), c,not(d), e} and Appx 2(P ) is a proper subset of
Appx 3(P ). �

Finally, we show that if Appx 3(P ) is defined and complete then P has a unique
answer set.

Corollary 3. Let P be a UG-program such that Appx 3(P ) is defined and complete.
Then Appx 3(P ) ∩ U is an answer set of P and P has no other answer sets.

6 Corollaries for the Case of Revision Programs

Revision programming [MT98] is a formalism for describing and enforcing constraints
on databases. The main concepts in the formalism are an initial database, a revision
program, and justified revisions.

Expressions of the form in(a) and out(a) (a ∈ U ) are revision literals. Intuitively,
in(a) (respectively, out(a)) means that atom a is in (respectively, is not in) a database.

A revision program consists of rules α ← α1, . . . , αn, where α, αi, . . . , αn are
revision literals. Given a revision program P and an initial database I , [MT98] defined
P -justified revisions of I to represent revisions that satisfy the constraints of P , are
“grounded” in P and I , and differ minimally from the initial database.

As we mentioned earlier, unitary general programs are equivalent to revision pro-
grams. The equivalence is established by the so called shifting theorem [MPT99], which
allows us to reduce any pair (P, I), where P is a revision program and I is an initial
database, to a unitary general program so that P -justified revisions of I correspond to
answer sets of the unitary general program. Consequently, all results of our paper im-
ply results about approximations of justified revisions. Formal descriptions of Appx 1,
Appx 2, and Appx 3 for revision programs can be found in [Piv05]. Approximations
Appx 1 and Appx 2 for revision programs were originally described in [Piv01].
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Abstract. Given two classes of logic programs, we may be interested
in modular translations from one class into the other that are sound
with respect to the answer set semantics. The main theorem of this
paper characterizes the existence of such a translation in terms of strong
equivalence. The theorem is used to study the expressiveness of several
classes of programs, including the comparison of cardinality constraints
with monotone cardinality atoms.

1 Introduction

The notion of an answer set (or “stable model”), originally defined in
[Gelfond and Lifschitz, 1988], was extended to more general logic programs in
various ways. In Fig. 1 we see some examples of extensions of the class of “tradi-
tional” rules studied in that paper, and also some subclasses of that class. The
language in each line of the table contains the languages shown in the previous
lines.

When we compare the expressiveness of two classes of rules R and R′, several
criteria can be used. First, we can ask whether for any R-program (that is, a
set of rules of the type R) one can find an R′-program that has exactly the
same answer sets. (That means, in particular, that the R′-program does not
use “auxiliary atoms” not occurring in the given R-program.) From this point
of view, the classes of rules shown in Fig. 1 can be divided into three groups:
a UR- or PR-program has a unique answer set; TR-, TRC- and DR-programs
may have many answer sets, but its answer sets always have the “anti-chain”
property (one cannot be a proper subset of another); a NDR- or RNE-program
can have an arbitrary collection of sets of atoms as its collection of answer sets.

Another comparison criterion is based on the computational complexity of
the problem of the existence of an answer set. We pass, in the complexity hier-
archy, from P in case of UR- and PR-programs, to NP in case of TR- and TRC-
programs [Marek and Truszczyński, 1991], and finally to ΣP

2 for more complex
kinds of programs [Eiter and Gottlob, 1993].

A third criterion consists in checking whether every rule in R is strongly
equivalent [Lifschitz et al., 2001] to an R′-program. From this point of view, PR
is essentially more expressive than UR: we will see at the end of Sect. 3 that

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 79–91, 2005.
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class of rules syntactic form

UR unary rules:
a ← (also written as simply a) and a ← b

PR positive rules:
a ← b1, . . . , bn

TR traditional rules:
a ← b1, . . . , bn,not c1, . . . , not cm

TRC TRs + constraints:
TRs and ← b1, . . . , bn,not c1, . . . , not cm

DR disjunctive rules:
a1; . . . ; ap ← b1, . . . , bn,not c1, . . . , not cm

NDR negational disjunctive rules:
a1, . . . ; ap; not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . , not cm

RNE rules with nested expressions:
F ← G

Fig. 1. A classification of logic programs under the answer set semantics. Here a, b, c,

d stand for propositional atoms. F , G stand for nested expressions without classical

negation [Lifschitz et al., 1999], that is, expressions formed from atoms, 	 and ⊥, using

conjunction (,), disjunction (;) and negation as failure (not).

a← b, c is not strongly equivalent to any set of unary rules. Furthermore, TRC
and DR are essentially different from each other, since no program in TRC is
strongly equivalent to the rule p; q in DR [Turner, 2003, Proposition 1].

A fourth comparison criterion is based on the existence of a translation from
R-programs to R′-programs that is not only sound (that is, preserves the pro-
gram’s answer sets) but is also modular: it can be applied to a program rule-by-
rule. For instance, [Janhunen, 2000] showed that there is no modular translation
from PR to UR and from TR to PR 1. On the other hand, RNE can be translated
into NDR by a modular procedure similar to converting formulas to conjunctive
normal form [Lifschitz et al., 1999].

The main theorem of this paper shows that under some general conditions,
the last two criteria — the one based on strong equivalence and the existence of a
sound modular translation — are equivalent to each other. This offers a method
to prove that there is no modular translation from R to R′ by finding a rule in
R that is not strongly equivalent to any R′-program. For instance, in view of
the Proposition 1 from [Turner, 2003] mentioned above, no modular translation
exists from DR to TRC.

To apply the main theorem to other cases, we need to learn more about
the strong equivalence relations between a single rule of a language and a set
of rules. We show that for many rules r in NDR, any NDR-program that is
strongly equivalent to r contains a rule that is at least as “complex” as r. This
fact will allow us to conclude that all classes UR, PR, TR, TRC, DR and NDR
are essentially different from each other in terms of strong equivalence. In view

1 His results are actually stronger, see Sect. 7 below.
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of the main theorem, it follows that they are essentially different from each other
in the sense of the modular translation criterion as well.

Finally, we show how to apply our main theorem to programs with weight
constraints [Simons et al., 2002]. As a result, we find that it is not possible to
translate programs with weight constraints into programs with monotone cardi-
nality atoms [Marek and Niemelä, 2004] in a modular way (unless the translation
introduces auxiliary atoms).

The paper continues with the statement of our main theorem (Sect. 2). In
Sect. 3, we study the expressiveness of subclasses of NDR in terms of strong
equivalence and modular translations. We move to the study of cardinality con-
straints in Sect. 4. Section 5 provides some background needed for the proof of
some of the claims of this paper (Sect. 6).

2 Modular Transformations and Strong Equivalence

We assume that the reader is familiar with the concept of an answer set for the
classes of logic programs in Fig. 1 (the semantics for the class RNE, which is
applicable to all its subclasses, is reproduced in Sect. 5.1). A program is a subset
of RNE. Two programs Π1 and Π2 are strongly equivalent if, for every program
Π , Π1 ∪Π and Π2 ∪Π have the same answer sets. A (modular) transformation
is a function f such that

– Dom(f) ⊆ RNE, and
– for every rule r ∈ Dom(f), f(r) is a program such that every atom occurring

in it occurs in r also.

A transformation f is sound if, for every program Π ⊆ Dom(f), Π and
⋃

r∈Π

f(r) have the same answer sets.
For example, the transformation defined in the proof of Proposition 7 from

[Lifschitz et al., 1999], which eliminates nesting from a program with nested ex-
pressions, is a sound transformation. For instance, for this transformation f ,

f(a← b; c) = {a← b, a← c}.

As another example of a sound transformation, consider the transformation f
with Dom(f) = NDR, where

f(not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not cm) =
{← b1, . . . , bn, d1, . . . , dq,not c1, . . . ,not cm}

and f(r) = {r} for the other rules r in NDR. On the other hand, the famil-
iar method of eliminating constraints from a program that turns ← p into
q ← p,not q is not a transformation in the sense of our definition, because
it introduces an atom q that doesn’t occur in ← p.
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This is the theorem that relates strong equivalence and modular
transfomations:

Theorem 1 (Main Theorem). For every transformation f such that Dom(f)
contains all unary rules, f is sound iff, for each r ∈ Dom(f), f(r) is strongly
equivalent to r.

Our definition of transformation requires that all atoms that occur in f(r)
occur in r also. The following counterexample shows that without this assump-
tion the assertion of the Main Theorem would be incorrect. Let p and q be two
atoms, and, for each rule r = F ← G in RNE, let f1(r) be

F ← G,not p
F ← G,not q
Fp↔q ← Gp↔q,not not p,not not q.

where Fp↔q and Gp↔q stand for F and G with all the occurrences of p replaced
by q and vice versa. Note that f1 is not a transformation as defined in this paper
since q occurs in f1(p ← �). It can also be shown that p ← � and f1(p ← �)
are not strongly equivalent. However, the “transformation” is sound:

Proposition 1. For any program Π, Π and
⋃

r∈Π f1(r) have the same answer
sets.

Without the assumption that UR ⊆ Dom(f), the Main Theorem would not
be correct either. We define a transformation f2 such that Dom(f2) consists of
all rules of DR where all atoms in the body are prefixed by negation as failure,
and the head is nonempty: the rules have the form

a1; . . . ; ap ← not c1, . . . ,not cm. (1)

with p > 0. For each rule r of the form (1), f2(r) is defined as

{ai ← not a1, . . . ,not ai−1,not ai+1, . . . ,not ap,not c1, . . . ,not cm : 1 ≤ i ≤ p}.

It is easy to see that f2(p; q) is not strongly equivalent to p; q. However, this
transformation is sound:

Proposition 2. For any program Π ⊆ Dom(f2), Π and
⋃

r∈Π f2(r) have the
same answer sets.

3 Applications: Negational Disjunctive Rules

In order to apply the Main Theorem to modular translations, we first need to
study some properties of strong equivalence. We focus on the class NDR.

If r is

a1, . . . ; ap;not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not cm
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define
head+(r) = {a1, . . . , ap} head−(r) = {d1, . . . , dq}
body+(r) = {b1, . . . , bn} body−(r) = {c1, . . . , cm}.

We say that r is basic if every pair of these sets, except possibly for the pair
head+(r), head−(r), is disjoint.

Any nonbasic rule can be easily simplified: it is either strongly equivalent to
the empty program or contains redundant terms in the head. A basic rule, on
the other hand, cannot be simplified if it contains at least one nonnegated atom
in the head:

Theorem 2. Let r be a basic rule in NDR such that head+(r) �= ∅. Every
program subset of NDR that is strongly equivalent to r contains a rule r′ such
that

head+(r) ⊆ head+(r′) body+(r) ⊆ body+(r′)
head−(r) ⊆ head−(r′) body−(r) ⊆ body−(r′)

This theorem shows us that for most basic rules r (the ones with at least one pos-
itive element in the head), every program strongly equivalent to r must contain
a rule that is at least as “complex” as r.

Given two subsets R and R′ of RNE, a (modular) translation from R to R′

is a transformation f such that Dom(f) = R and f(r) is a subset of R′ for each
r ∈ Dom(f). Using Theorems 1 and 2, we can differentiate between the classes
of rules in Fig. 1 in terms of modular translations:

Proposition 3. For any two languages R and R′ among UR, PR, TRC, TR,
DR and NDR such that R′ ⊂ R, there is no sound translation from R to R′.

Theorems 1 and 2 allow us also to differentiate between subclasses of NDR de-
scribed in terms of the sizes of various parts of the rule. Define, for instance PBRi

(“positive body of size i”) as the set of rules r of NDR such that |body+(r)| ≤ i.
We can show that, for every i ≥ 0, there is no sound translation from PBRi+1

to PBRi (or even from PBRi+1 ∩PR to PBRi). Similar properties can be stated
in terms of the sizes of body−(r), head+(r) and head−(r).

Another consequence of Theorem 2 is in terms of (absolute) tightness of a pro-
gram [Erdem and Lifschitz, 2003, Lee, 2005].Tightness is an important property of
logic programs: if a program is tight then its answer sets can be equivalently char-
acterized by the satisfaction of a set of propositional formulas of about the same
size. Modular translations usually don’t make nontight programs tight:

Proposition 4. Let R be any subset of NDR that contains all unary rules, and
let f be any sound translation from R to NDR. For every nontight program
Π ⊂ R consisting of basic rules only,

⋃
r∈Π f(r) is nontight.

4 Applications: Programs with Cardinality Constraints

4.1 Syntax

We briefly review the syntax of programs with cardinality constraints
[Simons et al., 2002].
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A rule element is an atom possibly prefixed with negation as failure symbol
not . A cardinality constraint is an expression of the form

L{c1, . . . , cm}U (2)

where

– each of L, U is (a symbol for) an integer or −∞, +∞,
– m ≥ 0, and
– c1, . . . , cm are rule elements.

As an abbreviation, L can be omitted if L = −∞; similarly, we can drop U if
U = +∞. A rule with cardinality constraints is an expression of the form

C0 ← C1, . . . , Cn (3)

where C0, . . . , Cn (n ≥ 0) are cardinality constraints. A program with cardinality
constraints is a set of rules with cardinality constraints.

Let CCR denote the set of all rules with cardinality constraints. A straight-
forward generalization of the definition of a transformation allows us to talk
about sound translations between subclasses of CCR, and also between a class
of CCR and a subclass of RNE. The concept of (modular) transformations and
translations can be extended to programs with cardinality constraints: we can
have translations between subclasses of CCR, and from/to subclasses of RNE.
The definition of the soundness for those translations follows as well.

Another class of programs similar to the one with cardinality constraints —
programs with monotone cardinality atoms — has been defined in
[Marek and Niemelä, 2004]. The results of that paper show that rules with mono-
tone cardinality atoms are essentially identical to rules with cardinality con-
straints that don’t contain negation as failure; we will denote the set of all such
rules by PCCR (“positive cardinality constraints”).

4.2 Translations

First of all, we show how programs with cardinality constraints are related to
the class NDR. Let SNDR (Simple NDR) be the language consisting of rules of
the form

a;not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not cm (4)

and
← b1, . . . , bn,not c1, . . . ,not cm. (5)

Proposition 5. There exist sound translations from SNDR to CCR, and back.

If we don’t allow negation in cardinality constraints, another relationship
holds. We define the class VSNDR (Very Simple NDR) consisting of rules of the
form

a;not a← b1, . . . , bn,not c1, . . . ,not cm (6)

and of the form (5).
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Proposition 6. There exist sound translations from VSNDR to PCCR, and
back.

Using Theorems 1 and 2, we can prove:

Proposition 7. There is no sound translation from CCR to PCCR.

Since the class PCCR is essentially identical to the class of rules with mono-
tone cardinality atoms, we have that programs with cardinality constraints are
essentially more expressive than programs with monotone cardinality atoms.

5 Background for Proofs

5.1 Answer Set Semantics for RNE

The semantics of programs is characterized by defining when a set X of atoms
is an answer set for a program Π . As a preliminary step, we define when a set
X of atoms satisfies a formula F (symbolically, X |= F ), as follows:

– for an atom a, X |= a if a ∈ X
– X |= �
– X �|= ⊥
– X |= (F,G) if X |= F and X |= G
– X |= (F ; G) if X |= F or X |= G
– X |= not F if X �|= F .

We say that X satisfies a program Π (symbolically, X |= Π) if, for every
rule F ← G in Π , X |= F whenever X |= G.

The reduct ΠX of a program Π with respect to a set X of atoms is obtained
by replacing each outermost formula of the form not F (that is, every formula
of the form not F not in the scope of negation as failure) by ⊥, if X |= F , and
by � otherwise.

The concept of an answer set is defined first for programs not containing
negation as failure: a set X of atoms is an answer set for such a program Π if
X is a minimal set satisfying Π . For an arbitrary program Π , we say that X is
an answer set for Π if X is an answer set for the reduct ΠX .

5.2 Strong Equivalence

The following lemma is the main criterion that we use to check strong equivalence
in most of the proofs. It can be proved in a way similar to the equivalence
criterion from [Turner, 2003].

Lemma 1. Let A be the set of atoms occurring in programs Π1 and Π2. Π1 and
Π2 are strongly equivalent iff, for each Y ⊆ A,

– Y |= ΠY
1 iff Y |= ΠY

2 , and
– if Y |= ΠY

1 then, for each X ⊂ Y , X |= ΠY
1 iff X |= ΠY

2 .

Next lemma can be easily proven under the characterization of strong equiv-
alence as stated in [Lifschitz et al., 2001].
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Lemma 2. Let P1 and P2 be sets of programs. If each program in P1 is strongly
equivalent to a program in P2 and vice versa, then

⋃
Π∈P1

Π and
⋃

Π∈P2
Π are

strongly equivalent.

Finally, we will use another property of strong equivalence from
[Lifschitz et al., 2001]:

Lemma 3. Two programs P1 and P2 are strongly equivalent iff, for every pro-
gram Π ⊆ UR, Π1 ∪Π and Π2 ∪Π have the same answer sets.

6 Proofs

6.1 Proof of the Main Theorem

Main Theorem. For every transformation f such that Dom(f) contains all
unary rules, f is sound iff, for each r ∈ R, f(r) is strongly equivalent to r.

The proof from right to left is a direct consequence of Lemma 2: if f(r) is
strongly equivalent to r for every rule r ∈ R, then for any Π ⊆ R, Π and⋃

r∈Π f(r) are strongly equivalent, and consequently have the same answer sets.
In the proof from left to right, we first consider the case when r is a unary rule,

and then extend the conclusion to arbitrary rules. In the rest of this section, f
is an arbitrary sound transformation such that Dom(f) contains all unary rules.
By a and b we denote distinct atoms.

Lemma 4. For every fact a, {a} and f(a) are strongly equivalent.

Proof. For every program Π that has {a} as the only answer set, we have that
∅ �|= Π∅, {a} |= Π{a} and ∅ �|= Π{a}. Since {a} and f(r) are two of such programs
Π , and a is the only atom that occurs in r and f(r), we can conclude that {r}
and f(r) are strongly equivalent by Lemma 1. "#

Lemma 5. For every rule r and fact a, {r, a} and f(r) ∪ {a} have the same
answer sets.

Proof. In view of Lemma 4, f(r) ∪ {a} and f(r) ∪ f(a) have the same answer
sets, and the same holds for {r, a} and f(r) ∪ f(a) by hypothesis. "#

Lemma 6. For every rule r of the form a← a,

(i) ∅ |= f(r)∅,
(ii) {a} |= f(r){a}, and
(iii) ∅ |= f(r){a}.

Proof. First of all, since the empty set in the only answer set for {r} and then
for f(r), (i) is clearly true. Now consider the program consisting of rule r plus
fact a. Since {a} is an answer set for {r, a}, it is an answer set for f(r)∪{a} also
by Lemma 5. Consequently, {a} |= (f(r) ∪ {a}){a}, which proves (ii). From (ii)
and the fact that {a} is not an answer set for f(r), (iii) follows also. "#
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Lemma 7. For every rule r of the form a← b,

(i) ∅ |= f(r)∅,
(ii) {a} |= f(r){a},
(iii) ∅ |= f(r){a}, and
(iv) {b} �|= f(r){b}.

Proof. The proof of the first three claims is similar to the one of Lemma 6. To
prove (iv), consider that since {b} is not an answer set for {r, b}, it is not an
answer set for f(r) ∪ {b} either by Lemma 5. But ∅ �|= (f(r) ∪ {b}){b} because
∅ �|= {b}{b}; consequently {b} �|= (f(r) ∪ {b}){b}. Since {b} |= {b}{b}, we can
conclude (iv). "#

Lemma 8. For every rule r of the form a← b,

(i) {a, b} |= f(r){a,b},
(ii) {b} �|= f(r){a,b}, and
(iii) {a} |= f(r){a,b}.

Proof. Set {a, b} is an answer set for {r, b}, and consequently for f(r) ∪ {b}
also by Lemma 5. Consequently {a, b} |= (f(r) ∪ {b}){a,b} — from which we
derive (i) — and all proper subsets of {a, b} don’t satisfy (f(r)∪{b}){a,b}. Since
{b} |= {b}{a,b}, we have that (ii) holds. Notice that {a, b} |= (f(r) ∪ {a}){a,b}

follows from (i), and that {a, b} is not an answer set for f(r) ∪ {a} because it
is not an answer set for {r, a} and by Lemma 5. Consequently there is a proper
subset of {a, b} that satisfies (f(r) ∪ {a}){a,b}. Such subset can only be {a}
because it is the only one that satisfies {a}{a,b}. We can conclude (iii). "#

Lemma 9.
∅ |= f(a← b){a,b}.

Proof. Let r be a← b, and r′ be b← a. Lemma 8 can help us determine which
subsets of {a, b} satisfy (f(r) ∪ f(r′)){a,b}: from part (i) applied to both r and
r′, we get that {a, b} satisfies this program, while {b} (by part (ii) applied to
r) and {a} (by part (ii) applied to r′) don’t. On the other hand {a, b} is not
an answer set for {r, r′} and then for f(r) ∪ f(r′) by the soundness hypothesis.
We can conclude that ∅ |= (f(r) ∪ f(r′)){a,b} from which the lemma’s assertion
follows. "#

Lemma 10. For every unary program Π, Π and
⋃

r∈Π f(r) are strongly equiv-
alent.

Proof. In view of Lemma 2, it is sufficient to show that for each unary rule r,
{r} and f(r) are strongly equivalent. For rules that are facts, this is shown by
Lemma 4. For rules r of the form a ← a, in view of Lemma 6 it is easy to
check that, for every sets X and Y such that X ⊆ Y ⊆ {a}, X |= (a ← a)Y iff
X |= f(a ← a)Y . So a ← a and f(a ← a) are strongly equivalent by Lemma 1.
Similarly, we can check that for every sets X and Y such that X ⊆ Y ⊆ {a, b}
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with X �= ∅ or Y �= {b}, that X |= (a← b)Y iff X |= f(a← b)Y . (The case with
X = ∅ and Y = {b} is irrelevant for strong equivalence since {b} �|= (a← b){b}.)
This is by Lemmas 7–9. Consequently a← b and f(a← b) are strongly equivalent
by Lemma 1 as well. "#

Now we are ready to prove the second part of the main theorem: for any rule
r ∈ Dom(f), f(r) and {r} are strongly equivalent. By Lemma 3,it is sufficient to
show that, for each unary program Π , Π∪{r} and Π∪f(r) have the same answer
sets. First we notice that Π∪{r} and

⋃
r′∈Π∪{r} f(r′) have the same answer sets

since Π ∪ {r} ⊆ Dom(f) and for the soundness of the transformation. Then we
can see that

⋃
r′∈Π∪{r} f(r′) =

⋃
r′∈Π f(r′) ∪ f(r). Finally,

⋃
r′∈Π f(r′) ∪ f(r)

and Π ∪ f(r) have the same answer sets because, by Lemma 10, programs Π
and

⋃
r′∈Π f(r′) are strongly equivalent. "#

6.2 Proof of Propositions 1 and 2

Proposition 1. For any program Π, Π and
⋃

r∈Π f1(r) have the same answer
sets.

Proof. (outline) Consider any set of atoms X . If {p, q} �⊆ X then f(F ← G)X

is essentially {F ← G}X , and the claim easily follows. Otherwise f1(F ← G)X

is essentially {Fp↔q ← Gp↔q}. If we extend the notation of the subscript p↔ q
to both programs and sets of atoms, (

⋃
r∈Π f1(r))X can be seen as (ΠX)p↔q .

A subset Y of X satisfies ΠX iff Yp↔q satisfies (ΠX)p↔q. Since Yp↔q ⊆ X and
|Yp↔q| = |Y |, we can conclude that X is a minimal set satisfying (

⋃
r∈Π f1(r))X

iff it is a minimal set satisfying ΠX . "#

Proposition 2. For any program Π ⊆ NBR, Π and
⋃

r∈Π f2(r) have the same
answer sets.

Proof. (outline) Let Π ′ be
⋃

r∈Π f2(r). The proof is based on the fact that Π
and Π ′ are both absolutely tight. So each set X atoms is an answer set for Π iff
X satisfies Π and X is “supported” by Π , and similarly for Π ′ (for more details,
see [Lee, 2005]).

It is not hard to see that the same sets of atoms satisfy Π and Π ′, and that
Π and Π ′ are supported by the same sets of atoms. "#

6.3 Proof of Theorem 2

For simplicity, we consider the definition of an answer set for NDR programs as
defined in [Lifschitz and Woo, 1992], in which the reduct ΠX consists of the rule

head+(r)← body+(r) (7)

(head+(r) here stands for the disjunction of its elements, body+(r) for their
conjunction) for every rule r in Π such that head−(r) ⊆ X and body−(r)∩X = ∅.
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Since ΠX is satisfied by the same sets of atoms regardless on the definition, the
strong equivalent criterion based on satisfaction of the reduct doesn’t change.

Let Π be a program strongly equivalent to r. Let X be head+(r)∪head−(r)∪
body+(r), and let Y be body+(r). Then rX is (7). By Lemma 1, since X |= rX

(recall that head+(r) is nonempty by hypothesis) then X |= ΠX , and since
Y �|= rX it follows that Y �|= ΠX . Consequently, there is a rule of Π — the rule
r′ of the theorem’s statement — such that X |= (r′)X and Y �|= (r′)X . From this
second fact, (r′)X is nonempty so it is

head+(r′)← body+(r′), (8)

and also Y |= body+(r′) and Y �|= head+(r′).
To prove that head+(r) ⊆ head+(r′), take any atom a ∈ head+(r). The

set Y ∪ {a} satisfies rX , so it satisfies ΠX by Lemma 1, and then (r′)X also.
On the other hand, since Y |= body+(r′) and Y ⊆ Y ∪ {a}, we have that
Y ∪{a} |= body+(r′). Consequently, Y ∪{a} |= head+(r′). Since Y �|= head+(r′),
we can conclude that a is an element of head+(r′).

The proof that body+(r) ⊆ body+(r′) is similar to the previous part of the proof,
by taking any a ∈ body+(r) and considering the set Y \ {a} instead of Y ∪ {a}.

To prove that head−(r) ⊆ head−(r′), take any atom a ∈ head−(r). Since
rX\{a} is empty, it is satisfied, in particular, by Y and X \ {a}. Consequently,
Y |= (r′)X\{a} by Lemma 1. On the other hand, Y �|= (r′)X , so (r′)X\{a} is
not (8), and then it is empty. The only case in which (r′)X\{a} is empty and
(r′)X is not is if a ∈ head−(r′).

The proof that body−(r) ⊆ body−(r′) is similar to the previous part of the
proof, by taking any a ∈ body−(r) and considering the reduct rX∪{a}.

6.4 Proofs of Propositions 5–7 (Outline)

In the proof of Proposition 5, from SNDR to CCR, we take the following sound
translation f : if r has the form (4) then f(r) is

1{a} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0, {not d1}0, . . . , {not dq}0,

and, if r has the form (5), then f(r) is

1{} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0, 1{d1}, . . . , 1{dq}.

A sound translation f from VSNDR to PCCR (proof of Proposition 6) is defined
as follows: if r has the form (6) then f(r) is

{a} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0

while for rules r of the form (5), f(r) is the same as in the previous translation.
The proof in the other direction is based on the modular translation from pro-

grams with cardinality constraints to programs with nested expressions whose
heads are atoms or ⊥, as defined in [Ferraris and Lifschitz, 2005]. If we first ap-
ply such translation to any CCR-program, then the one from RNE to NDR



90 P. Ferraris

of [Lifschitz et al., 1999], we get a SNDR-program. Similarly from a PCCR-
program we get a VSNDR-program.

For Proposition 7 assume, in sake of contradiction, that a sound translation
from CCR to PCCR exists. Then, in view of Propositions 5 and 6, a sound trans-
lation from SNDR to VSNDR exists. This is impossible in view of Theorem 2
and the Main Theorem.

7 Conclusions

We have established a relationship between modular transformations and strong
equivalence. We showed how it can be used to determine whether sound modular
translations between languages are possible.

Other definitions of a modular translation allow the the introduction of aux-
iliary atoms. This is, for instance, the case for the definitions in [Ferraris, 2005]
and [Janhunen, 2000]. These two papers are also different from the work de-
scribed in this note in that they take into account the computation time of
translation algorithms.

We restricted, in Sect. 2, the domain and range of transformations to pro-
grams with nested expressions. If we drop this limitation by allowing arbitrary
propositional formulas, and we define the soundness of a transformation in
terms of equilibrium logic [Pearce, 1997, 1999] then the Main Theorem will
still hold. Since each propositional theory is strongly equivalent to a logic pro-
gram [Cabalar and Ferraris, 2005] we can conclude that there exists a sound and
modular translation from propositional theories to RNE and vice versa.

Criteria for strong equivalence, in part related to Theorem 2, are proposed
in [Lin and Chen, 2005].

The theorems about cardinality constraints stated in Sect. 4 can be trivially
extended to arbitrary weight constraints in view of the fact that an expression
c = w in a weight constraint can always be replaced by w copies of c = 1.
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temic logic. Journal of the ACM, 38:588–619, 1991.

[Pearce, 1997] David Pearce. A new logical characterization of stable models and an-
swer sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-
Monotonic Extensions of Logic Programming (Lecture Notes in Artificial Intelligence
1216), pages 57–70. Springer-Verlag, 1997.

[Pearce, 1999] David Pearce. From here to there: Stable negation in logic programming.
In D. Gabbay and H. Wansing, editors, What Is Negation? Kluwer, 1999.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and
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Abstract. Open answer set programming (OASP) is an extension of answer set
programming where one may ground a program with an arbitrary superset of the
program’s constants. We define a fixed point logic (FPL) extension of Clark’s
completion such that open answer sets correspond to models of FPL formulas
and identify a syntactic subclass of programs, called (loosely) guarded programs.
Whereas reasoning with general programs in OASP is undecidable, the FPL trans-
lation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed
point logic (μ(L)GF).

Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling
a characterization of an answer set semantics by μLGF formulas. Finally, we
relate guarded OASP to Datalog LITE, thus linking an answer set semantics to a
semantics based on fixed point models of extended stratified Datalog programs.
From this correspondence, we deduce 2-EXPTIME-completeness of satisfiability
checking w.r.t. (loosely) guarded programs.

1 Introduction

A problem with finite closed answer set programming (ASP)[10] is that all significant
constants have to be present in the program in order to capture the intended semantics.
E.g., a program with a rule r : p(X ) ← not q(X ) and a fact q(a) has the unique
answer set {q(a)} and thus leads to the conclusion that p is not satisfiable. However,
if r is envisaged as a schema constraint and a is just one possible data instance, this
conclusion is wrong: other data makes p satisfiable.

This problem was solved in [11] by introducing k new constants, k finite, and
grounding the program with this extended universe; the answer sets of the grounded
program were called k-belief sets. We extended this idea, e.g. in [16], by allowing for
arbitrary, thus possibly infinite, universes. Open answer sets are then pairs (U,M) with
M an answer set of the program grounded with U . The above program has an open
answer set ({x, a}, {q(a), p(x)}) where p is satisfiable.

Characteristic about (O)ASP is its treatment of negation as failure (naf): one guesses
an interpretation for a program, computes the program without naf (the GL-reduct[10]),
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calculates the iterated fixed point of this reduct, and checks whether this fixed point
equals the initial interpretation. We compile these external manipulations, i.e. not ex-
pressible in the language of programs itself, into fixed point logic (FPL)[14] formulas
that are at most quadratic in the size of the original program. First, we rewrite an arbi-
trary program as a program containing only one designated predicate p and (in)equality;
this makes sure that when calculating a fixed point of the predicate variable p, it con-
stitutes a fixed point of the whole program. In the next phase, such a p-program P is
translated to FPL formulas comp(P ). comp(P ) ensures satisfiability of program rules
by formulas comparable to those in Clark’s completion. The specific answer set seman-
tics is encoded by formulas indicating that for each atom p(x) in the model there must
be a true rule body that motivates the atom, and this in a minimal way, i.e. using a fixed
point predicate. Negation as failure is correctly handled by making sure that only those
rules that would be present in the GL-reduct can be used to motivate atoms.

In [5], Horn clauses were translated to FPL formulas and in [12] reasoning with an
extension of stratified Datalog was reduced to FPL, but, to the best of our knowledge,
this is the first encoding of an answer set semantics in FPL.

In [21,19], ASP with (finite) propositional programs is reduced to propositional sat-
isfiability checking. The translation makes the loops in a program explicit and ensures
that atoms p(x) are motivated by bodies outside of these loops. Although this is an
elegant characterization of answer sets in the propositional case, the approach does not
seem to hold for OASP, where programs are not propositional but possibly ungrounded
and with infinite universes. Instead, we directly use the built-in “loop detection” mech-
anism of FPL, which enables us to go beyond propositional programs.

Translating OASP to FPL is thus interesting in its own right, but it also enables the
analysis of decidability of OASP via decidability results of fragments of FPL. Satis-
fiability checking of a predicate p w.r.t. a program, i.e. checking whether there exists
an open answer set containing some p(x), is undecidable, e.g. the undecidable domino
problem can be reduced to it[15]. It is well-known that satisfiability checking in FOL is
undecidable, and thus the extension to FPL is too. However, expressive decidable frag-
ments of FPL have been identified[14]: (loosely) guarded fixed point logic (μ(L)GF)
extends the (loosely) guarded fragment (L)GF of FOL with fixed point predicates.

GF was identified in [2] as a fragment of FOL satisfying properties such as decid-
ability of reasoning and the tree-model property, i.e. every model can be rewritten as a
tree-model. The restriction of quantified variables by a guard, an atom containing the
variables in the formula, ensures decidability in GF. Guards are responsible for the tree-
model property of GF (where the concept of tree is adapted for predicates with arity
larger than 2), which in turn enables tree-automata techniques for showing decidability
of satisfiability checking. In [4], GF was extended to LGF where guards can be con-
junctions of atoms and, roughly, every pair of variables must be together in some atom
in the guard. Satisfiability checking in both GF and LGF is 2-EXPTIME-complete[13],
as are their extensions with fixed point predicates μGF and μLGF[14].

We identify a syntactically restricted class of programs, (loosely) guarded programs
((L)GPs), for which the FPL translation falls in μ(L)GF, making satisfiability checking
w.r.t. (L)GPs decidable and in 2-EXPTIME. In LGPs, rules have a set of atoms, the
guard, in the positive body, such that every pair of variables in the rule appears together
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in an atom in that guard. GPs are the restriction of LGPs where guards must consist of
exactly one atom. Programs under the normal answer set semantics can be rewritten as
LGPs under the open answer set semantics by guarding all variables with atoms that
can only deduce constants from the original program. Besides the desirable property
that OASP with LGPs is thus a proper decidable extension of normal ASP, this yields
that satisfiability checking w.r.t. LGPs is, at least, NEXPTIME-hard.

Datalog LITE[12] is a language based on stratified Datalog with input predicates
where rules are monadic or guarded and may have generalized literals in the body, i.e.
literals of the form ∀Y · a ⇒ b for atoms a and b. It has an appropriately adapted
bottom-up fixed point semantics. Datalog LITE was devised to ensure linear time model
checking while being expressive enough to capture computational tree logic[8] and
alternation-free μ-calculus[18]. Moreover, it was shown to be equivalent to alternation-
free μGF. Our reduction of GPs to μGF, ensures that we have a reduction from GPs
to Datalog LITE, and thus couples the answer set semantics to a fixed point semantics
based on stratified programs. Intuitively, the guess for an interpretation in the answer
set semantics corresponds to the input structure one feeds to the stratified Datalog pro-
gram. The translation from GPs to Datalog LITE needs only one stratum to subsequently
perform the minimality check of answer set programming.

The other way around, we reduce satisfiability checking in recursion-free Datalog
LITE to satisfiability checking w.r.t. GPs. Recursion-free Datalog LITE is equivalent to
GF[12], and, since satisfiability checking of GF formulas is 2-EXPTIME-hard[13], we
obtain 2-EXPTIME-completeness for satisfiability checking w.r.t. (L)GPs.

In [16,17], other decidable classes of programs under the open answer set seman-
tics were identified; decidability was attained differently than for (L)GPs, by reduc-
ing OASP to finite ASP. Although the therein identified conceptual logic programs are
more expressive in some aspects (they allow for a more liberal use of inequality), they
are less expressive in others, e.g. the use of predicates is restricted to unary and binary
ones. Moreover, the definition of (L)GPs is arguably more simple compared to the often
intricate restrictions on the rules in conceptual logic programs.

The remainder of the paper is organized as follows. After recalling the open answer
set semantics in Section 2, we reduce reasoning under the open answer set semantics
to reasoning with FPL formulas in Section 3. Section 4 describes guarded OASP, to-
gether with a 2-EXPTIME complexity upper bound and a reduction from finite ASP
to loosely guarded OASP. Section 5 discusses the relationship with Datalog LITE and
establishes 2-EXPTIME-completeness for (loosely) guarded open answer set program-
ming. Section 6 contains conclusions and directions for further research. Due to space
restrictions, proofs have been omitted; they can be found in [15].

2 Open Answer Set Semantics

We recall the open answer set semantics from [16]. Constants, variables, terms, and
atoms are defined as usual. A literal is an atom p(t) or a naf-atom not p(t).1 The

1 We have no negation ¬, however, programs with ¬ can be reduced to programs without it, see
e.g. [20].
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positive part of a set of literals α is α+ = {p(t) | p(t) ∈ α} and the negative part
of α is α− = {p(t) | not p(t) ∈ α}. We assume the existence of binary predicates
= and �=, where t = s is considered as an atom and t �= s as not t = s. E.g. for
α = {X �= Y, Y = Z}, we have α+ = {Y = Z} and α− = {X = Y }. A regular atom
is an atom that is not an equality atom. For a set X of atoms, not X = {not l | l ∈ X}.

A program is a countable set of rules α ← β, where α and β are finite sets of
literals, |α+| ≤ 1, and ∀t, s · t = s �∈ α+, i.e. α contains at most one positive atom,
and this atom cannot be an equality atom.2 The set α is the head of the rule and repre-
sents a disjunction of literals, while β is called the body and represents a conjunction
of literals. If α = ∅, the rule is called a constraint. Free rules are rules of the form
q(t) ∨ not q(t) ← for a tuple t of terms; they enable a choice for the inclusion of
atoms. Atoms, literals, rules, and programs that do not contain variables are ground.

For a program P , let cts(P ) be the constants in P , vars(P ) its variables, and
preds(P ) its predicates. A universe U for P is a non-empty countable superset of the
constants in P : cts(P ) ⊆ U . We call PU the ground program obtained from P by
substituting every variable in P by every possible constant in U . Let BP be the set of
regular atoms that can be formed from a ground program P .

An interpretation I of a ground P is any subset of BP . For a ground regular atom
p(t), we write I |= p(t) if p(t) ∈ I; For an equality atom p(t) ≡ t = s, we have
I |= p(t) if s and t are equal terms. We have I |= not p(t) if I �|= p(t). For a set
of ground literals X , I |= X if I |= l for every l ∈ X . A ground rule r : α ← β
is satisfied w.r.t. I , denoted I |= r, if I |= l for some l ∈ α whenever I |= β, i.e. r
is applied whenever it is applicable. A ground constraint ← β is satisfied w.r.t. I if
I �|= β. For a ground program P without not, an interpretation I of P is a model of P
if I satisfies every rule in P ; it is an answer set of P if it is a subset minimal model
of P . For ground programs P containing not, the GL-reduct[10] w.r.t. I is defined as
P I , where P I contains α+ ← β+ for α ← β in P , I |= not β− and I |= α−. I is an
answer set of a ground P if I is an answer set of P I .

In the following, a program is assumed to be a finite set of rules; infinite programs
only appear as byproducts of grounding a finite program with an infinite universe. An
open interpretation of a program P is a pair (U,M) where U is a universe for P and M
is an interpretation of PU . An open answer set of P is an open interpretation (U,M) of
P with M an answer set of PU . An n-ary predicate p in P is satisfiable if there is an
open answer set (U,M) of P and a x ∈ Un such that p(x) ∈M .

3 Open Answer Set Programming via Fixed Point Logic

We assume without loss of generality that the set of constants and the set of predicates
in a program are disjoint and that each predicate q has one associated arity, e.g. q(x)
and q(x, y) are not allowed. A program P is a p-program if p is the only predicate
in P different from the (in)equality predicate. We can rewrite any program P as an
equivalent p-program Pp by replacing every regular m-ary atom q(t) in P by p(t,0, q)
where p has arity n, with n the maximum of the arities of predicates in P augmented by

2 The condition |α+| ≤ 1 ensures that the GL-reduct is non-disjunctive.
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1, 0 a sequence of new constants 0 of length n−m− 1, and q a new constant with the
same name as the original predicate. Furthermore, in order to avoid interference of the
new constants, we add for every variable X in a rule r ∈ P and for every newly added
constant a in Pp, X �= a to the body. E.g., the rule h(a, b) ← q(X ) in P corresponds
to p(a, b, h) ← p(X , 0 , q),X �= 0 ,X �= h,X �= q in Pp.

Proposition 1. An open interpretation (U,M) is an open answer set of P iff (U ∪
preds(P ) ∪ {0}, {p(x,0, q) | q(x) ∈M}) is an open answer set of the p-program Pp.

The translation of a program to a p-program does not influence the complexity of rea-
soning, i.e. the size of Pp is linear in the size of P . By Proposition 1, we can focus
attention on p-programs only. Since p-programs have open answer sets consisting of
one predicate p, fixed points calculated w.r.t. p yield minimal models of the whole pro-
gram as we will show in Proposition 2.

In [5], a similar motivation drives the reduction of Horn clauses to clauses consisting
of only one defined predicate. Their encoding does not introduce new constants to iden-
tify old predicates and depends entirely on the use of (in)equality. However, to account
for databases consisting of only one element, [5] needs an additional transformation
that unfolds bodies of clauses.

We assume that FOL interpretations have the same form as open interpretations: a
pair (U,M) corresponds with the FOL interpretation M over the domain U . Further-
more, we consider FOL with equality such that equality is always interpreted as the
identity relation over U . (Least) Fixed Point Logic (FPL) is defined along the lines of
[14]. Fixed point formulas are of the form

[LFP WX.ψ(W,X)](X) , (1)

where W is an n-ary predicate variable, X is an n-ary sequence of variables, ψ(W,X)
is a FOL formula where all free variables are contained in X and where W appears
only positively in ψ(W,X).3

We associate with (1) and an interpretation (U,M) that does not interpret W , an
operator ψ(U,M) : 2Un → 2Un

defined on sets S of n-ary tuples as ψ(U,M)(S) ≡
{x ∈ Un | (U,M) |= ψ(S,x)}. By definition, W appears only positively in ψ such
that ψ(U,M) is monotonic on sets of n-ary U -tuples and has a least fixed point, which
we denote by LFP(ψ(U,M)). Finally, we have (U,M) |= [LFP WX.ψ(W,X)](x) iff
x ∈ LFP(ψ(U,M)).

We can reduce a p-program P to equivalent FPL formulas comp(P ). The completion
comp(P ) consists of formulas a �= b for different constants a and b in P making sure
that constants are interpreted as different elements, where a �= b ≡ ¬(a = b). comp(P )
also contains the formula ∃X · true ensuring the existence of at least one element in
the domain of an interpretation. Besides these technical requirements that match FOL
interpretations with open interpretations, comp(P ) contains the formulas in fix(P ) ≡
sat(P ) ∪ gl(P ) ∪ fpf(P ), which can be intuitively categorized as follows: sat(P )

3 Since ψ(W,X) is a FOL formula, we do not allow nesting of fixed point formulas. This
restriction is sufficient for the FPL simulation of OASP, and, furthermore, it simplifies the
notation since one does not have to take into account an extra function χ that gives meaning
to free second-order variables different from W .
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ensures that a model of fix(P ) satisfies all rules in P , gl(P ) is an auxiliary component
defining atoms that indicate when a rule in P belongs to the GL-reduct of P , and finally,
fpf(P ) ensures that every model of fix(P ) is a minimal model of the GL-reduct in P ;
it uses the atoms defined in gl(P ) to select, for the calculation of the fixed point, only
those rules in P that are in the GL-reduct of P .

We interpret a naf-atom not a in a FOL formula as the literal ¬a. Moreover, we
assume that, if a set X is empty,

∧
X = true and

∨
X = false. We further assume that

the arity of p, the only predicate in a p-program, is n.

Definition 1. Let P be a p-program. Then, fix(P ) ≡ sat(P ) ∪ gl(P ) ∪ fpf(P ),
where

– sat(P ) contains formulas

∀Y ·
∧

β ⇒
∨

α (2)

for rules α← β ∈ P with variables Y ,
– gl(P ) contains formulas

∀Y · r(Y ) ⇔
∧

α− ∧
∧
¬β− (3)

for rules r : α← β ∈ P with variables Y and a new predicate r,
– fpf(P ) contains the formula

∀X · p(X) ⇒ [LFP W X.φ(W ,X)](X) (4)

with φ(W,X) ≡ W (X) ∨
∨

r:p(t)∨α←β∈P E(r) and E(r) ≡ ∃Y · X1 = t1 ∧
. . .∧Xn = tn∧

∧
β+[p|W ]∧r(Y ), where X = X1, . . . , Xn are n new variables,

Y are the variables in r, W is a new (second-order) variable and β+[p|W ] is β+

with p replaced by W .

The completion of P is comp(P ) ≡ fix(P )∪{a �= b | a �= b ∈ cts(P )}∪{∃X · true}.

The predicate W appears only positively in φ(W,X) such that the fixed point formula
in (4) is well-defined. The first conjunct, W (X), in φ(W,X) ensures that previously
deduced tuples are deduced by the next application of the fixed point operator, i.e.
S ⊆ φ(U,M)(S). The disjunction

∨
r E(r) makes sure that for each atom there is a

rule r in the GL-reduct (∃Y · r(Y )) with a true positive body that can motivate that
atom.

Example 1. Take a p-program P with rule r : p(X ) ← p(X ). comp(P ) is then such
that sat(P ) = {∀X · p(X ) ⇒ p(X )}, ensuring that r is satisfied, and gl(P ) = {∀X ·
r(X ) ⇔ true} says that r belongs to every GL-reduct since there are no naf-atoms.
Finally, fpf(P ) = {∀X1 ·p(X1 ) ⇒ [LFP W X1 .φ(W ,X1 )](X1 )}, with φ(W,X1) ≡
W (X1) ∨ ∃X ·X1 = X ∧W (X) ∧ r(X).

Proposition 2. Let P be a p-program. Then, (U,M) is an open answer set of P iff
(U,M ∪R) is a model of comp(P ), where R ≡ {r(y) | r[Y |y] ∈ P M

U , vars(r) = Y },
i.e. the atoms corresponding to rules in the GL-reduct of PU w.r.t. M .4

4 We denote the substitution of Y = Y1, . . . , Yd with y = y1, . . . , yd in a rule r by r[Y |y].
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Example 2. For a universe U = {x}, we have the unique open answer set (U, ∅) of P
in Example 1. Since U is non-empty, every open answer set with a universe U satisfies
∃X · true. Both (U,M1 = {p(x), r(x)}) and (U,M2 = {r(x)}) satisfy sat(P ) ∪
gl(P ). Since LFP(φ(U,M1)) = LFP(φ(U,M2)) = ∅, only (U,M2) satisfies fpf(P );
(U,M2) corresponds exactly to the open answer set (U, ∅) of P .

The completion in Definition 1 differs from Clark’s completion[6] both in the presence
of the fixed point construct in (4) and the atoms representing membership of the GL-
reduct. For p-programs P , Clark’s Completion ccomp(P ) does not contain gl(P ), and
fpf(P ) is replaced by the formula ∀X · p(X) ⇒

∨
r :p(t)∨α←β∈P D(r) with D(r) ≡

∃Y · X1 = t1 ∧ . . . ∧ Xn = tn ∧
∧

β ∧
∧

α−. Program P in Example 1 is the
OASP version of the classical example p ← p[19], for which there are FOL models of
ccomp(P ) that do not correspond to any answer sets: both ({x}, {p(x)}) and ({x}, ∅)
are FOL models while only the latter is an open answer set of P .

Using Propositions 1 and 2, we can reduce satisfiability checking in OASP to sat-
isfiability checking in FPL. Moreover, with c the number of constants in a program P ,
the number of formulas a �= b is 1

2c(c − 1), and, since the rest of comp(P ) is linear in
P , this yields a quadratic bound for the size of comp(P ).

Theorem 1. Let P be a program and q an n-ary predicate in P . q is satisfiable w.r.t. P
iff p(X ,0, q) ∧ comp(Pp) is satisfiable. Moreover, this reduction is quadratic.

4 Guarded Open Answer Set Programming

We repeat the definitions of the loosely guarded fragment[4] of FOL as in [14]: The
loosely guarded fragment LGF of FOL is defined inductively as follows:

(1) Every relational atomic formula belongs to LGF.
(2) LGF is closed under propositional connectives ¬, ∧, ∨, ⇒, and ⇔.
(3) If ψ(X ,Y ) is in LGF, and α(X,Y ) = α1 ∧ . . . ∧ αm is a conjunction of atoms,

then the formulas
∃Y · α(X ,Y ) ∧ ψ(X ,Y )
∀Y · α(X ,Y ) ⇒ ψ(X,Y )

belong to LGF (and α(X ,Y ) is the guard of the formula), provided that free(ψ) ⊆
free(α) = X ∪ Y and for every quantified variable Y ∈ Y and every variable
Z ∈ X ∪ Y there is at least one atom αj that contains both Y and Z (where
free(ψ) are the free variables of ψ).

The loosely guarded (least) fixed point logic μLGF is LGF extended with fixed point
formulas (1) where ψ(W,X) is a LGF formula5 such that W does not appear in guards.
The guarded fragment GF is defined as LGF where the guards are atoms instead of
conjunctions of atoms. The guarded fixed point logic μGF is GF extended with fixed
point formulas where ψ(W,X) is a GF formula such that W does not appear in guards.

5 Thus, in accordance with our definition of FPL, nesting of (guarded) fixed point logic formulas
is not allowed.
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Definition 2. A rule r : α← β is loosely guarded if there is a γb ⊆ β+ such that every
two variables X and Y from r appear together in an atom from γb; we call γb a body
guard of r. It is fully loosely guarded if it is loosely guarded and there is a γh ⊆ α−

such that every two variables X and Y from r appear together in an atom from γh; γh

is called a head guard of r.
A program P is a (fully) loosely guarded program ((F)LGP) if every non-free rule

in P is (fully) loosely guarded.

Example 3. The rule in Example 1 is loosely guarded but not fully loosely guarded.
A rule a(Y ) ∨ not g(X ,Y ) ← not b(X ), f (X ,Y ) has body guard {f(X,Y )} and
head guard {g(X,Y )}, and is thus fully loosely guarded.

Definition 3. A rule is guarded if it is loosely guarded with a singleton body guard. It
is fully guarded if it is fully loosely guarded with singleton body and head guards.

A program P is a (fully) guarded program ((F)GP) if every non-free rule in P is
(fully) guarded.

Every F(L)GP is a (L)GP, and we can rewrite every (L)GP as a F(L)GP.

Example 4. The rule p(X ) ← p(X ) can be rewritten as p(X ) ∨ not p(X ) ← p(X )
where the body guard is added to the negative part of the head to function as the head
guard. Both programs are equivalent: for a universe U , both have the unique open an-
swer set (U, ∅).
Formally, we can rewrite every (L)GP P as an equivalent F(L)GP P f , where P f is P
with every α← β replaced by α ∪ not β+ ← β. The body guard of a rule in a (loosely)
guarded program P is then also a head guard of the corresponding rule in P f , and P f is
indeed a fully (loosely) guarded program.

A rule is vacuously satisfied if the body of a rule in P f is false and consequently the
head does not matter; if the body is true then the newly added part in the head becomes
false and the rule in P f reduces to its corresponding rule in P .

Proposition 3. Let P be a program. An open interpretation (U,M) of P is an open
answer set of P iff (U,M) is an open answer set of P f .

Since we copy the positive bodies to the heads, the size of P f only increases linearly
in the size of P . Furthermore, the construction of a p-program retains the guardedness
properties: P is a (F)LGP iff Pp is a (F)LGP. A similar property holds for (F)GPs.

For a fully (loosely) guarded p-program P , we can rewrite comp(P ) as the equiva-
lent μ(L)GF formulas gcomp(P ). gcomp(P ) is comp(P ) with the following modifica-
tions:

– Formula ∃X · true is replaced by ∃X ·X = X , a formula guarded by X = X .
– Formula (2) is removed if r : α← β is free and otherwise replaced by

∀Y ·
∧

γb ⇒
∨

α ∨
∨
¬(β+\γb) ∨

∨
β− ,

where γb is a body guard of r; we logically rewrite formula (2) such that it is
(loosely) guarded. If r is a free rule of the form q(t) ∨ not q(t) ← , we have
∀Y · true ⇒ q(t) ∨ ¬q(t) ∈ comp(P ), which is always true and can be removed.
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– Formula (3) is replaced by the formulas ∀Y · r(Y ) ⇒
∧

α− ∧
∧
¬β− and ∀Y ·∧

γh ⇒ r(Y ) ∨
∨

β− ∨
∨
¬(α−\γh), where γh is a head guard of r. We thus

rewrite an equivalence as two implications. The first implication is guarded by
r(Y ) and the second one is (loosely) guarded by the head guard of the rule – hence
the need for a fully (loosely) guarded program, instead of just a (loosely) guarded
one.

– For every E(r) in (4), define T ≡ {ti �∈ cts(P ) | 1 ≤ i ≤ n}, and replace E(r)
by

E′(r) ≡
∧

ti ∈T

Xi = ti ∧ ∃Z · (
∧

β+[p|W ] ∧ r(Y ))[ti ∈ T |Xi] ,

with Z = Y \T , i.e. move all Xi = ti where ti is constant out of the quantifier’s
scope, and remove the others by substituting each ti in

∧
β+[p|W ] ∧ r(Y ) by Xi.

This rewriting makes sure that every variable in the quantified part of E′(R) is
guarded by r(Y )[ti ∈ T |Xi].

Example 5. For the fully guarded p-program P containing a rule p(X ) ∨ not p(X )←
p(X ) with body and head guard {p(X)}, one has that sat(P ) = {∀X · p(X ) ⇒
p(X ) ∨ ¬p(X )}, gl(P ) = {∀X · r(X ) ⇔ p(X )} and the formula φ(W,X1) in
fpf(P ) is φ(W,X1) ≡ W (X1) ∨ ∃X · X1 = X ∧W (X) ∧ r(X). gcomp(P ) does
not modify sat(P ) and rewrites the equivalence in gl(P ) as two guarded implications.
The rewritten φ(W,X1) is W (X1) ∨ (W (X1) ∧ r(X1)).

For a fully (loosely) guarded p-program P , gcomp(P ) is a μ(L)GF formula, and it is
logically equivalent to comp(P ), i.e. (U,M) is a model of comp(P ) iff (U,M) is a
model of gcomp(P ). gcomp(P ) is a simple logical rewriting of comp(P ), with a size
linear in the size of comp(P ). Using Proposition 3 and Theorem 1, satisfiability check-
ing w.r.t. (L)GPs can be quadratically reduced to satisfiability checking of a μ(L)GF
formula.

Theorem 2. Let P be a (L)GP and q an n-ary predicate in P . q is satisfiable w.r.t. P
iff p(X ,0, q) ∧ gcomp((P f)p) is satisfiable. Moreover, this reduction is quadratic.

Since satisfiability checking for μ(L)GF is 2-EXPTIME-complete (Proposition [1.1] in
[14]), we have the following upper complexity bound.

Theorem 3. Satisfiability checking w.r.t. (L)GPs is in 2-EXPTIME.

An answer set of a program P (in contrast with an open answer set) is defined as an
answer set of the grounding of P with its own constants, i.e. M is an answer set of P if
it is a minimal model of PM

cts(P ). As is common in literature, we assume P contains at
least one constant.

We can make any program loosely guarded and reduce the answer set semantics
for programs to the open answer set semantics for loosely guarded programs. For a
program P , let P g be the program P , where for each rule r in P and for each pair of
variables X and Y in r, g(X,Y ) is added to the body of r. Furthermore, P g contains
rules g(a, b) ← for every a, b ∈ cts(P ), making its size quadratic in the size of P .
Note that we assume w.l.o.g. that P does not contain a predicate g.
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The newly added guards in the bodies of rules together with the definition of those
guards for constants only ensure a correspondence between answer sets and open an-
swer sets where the universe of the latter equals the constants in the program.

Proposition 4. Let P be a program. M is an answer set of P iff (cts(P ),M∪{g(a, b) |
a, b ∈ cts(P )}) is an open answer set of P g. Moreover, this reduction is quadratic.

By construction, P g is loosely guarded. We can reduce checking whether there exists
an answer set containing a literal to satisfiability checking w.r.t. the open answer set
semantics for loosely guarded programs.

Proposition 5. Let P be a program and q an n-ary predicate in P . There is an answer
set M of P with q(a) ∈ M iff q is satisfiable w.r.t. P g. Moreover, this reduction is
quadratic.

The “only if” direction is trivial; the other direction uses that for every open answer set
(U,M ′) of a loosely guarded program P g, M ′ contains only terms from cts(P ), and
can be rewritten as an open answer set (cts(P ),M ∪ {g(a, b) | a, b ∈ cts(P )}), after
which Proposition 4 becomes applicable.

By [7,3] and the disjunction-freeness of the GL-reduct of the programs we consider,
we have that checking whether there exists an answer set M of P containing a q(a) is
NEXPTIME-complete. Thus, by Proposition 5, satisfiability checking w.r.t. a LGP is
NEXPTIME-hard. In the next section, we improve on this result and show that both
satisfiability checking w.r.t. GPs and w.r.t. LGPs is actually 2-EXPTIME-hard.

5 Relationship with Datalog LITE

We define Datalog LITE as in [12]. A Datalog rule is a rule α← β where α = {a} for
some atom a. A basic Datalog program is a finite set of Datalog rules such that no head
predicate appears in negative bodies of rules. Predicates that appear only in the body of
rules are extensional or input predicates. Note that equality is, by the definition of rules,
never a head predicate and thus always extensional. The semantics of a basic Datalog
program P , given a relational input structure U defined over extensional predicates of
P 6, is given by its fixed point model, see e.g. [1]; for a query (P, q), where P is a basic
Datalog program and q is a n-ary predicate, we write a ∈ (P, q)(U) if there is a fixed
point model M of P with input U such that q(a) ∈ M . We call (P, q) satisfiable if
there exists a U and an a such that a ∈ (P, q)(U).

A program P is a stratified Datalog program if it can be written as a union of basic
Datalog programs (P0, . . . ,Pn), so-called strata, such that each of the head predicates
in P is a head predicate in exactly one stratum Pi. Furthermore, if a head predicate in Pi

is an extensional predicate in Pj , then i < j. This definition entails that head predicates
in the positive body of rules are head predicates in the same or a lower stratum, and head
predicates in the negative body are head predicates in a lower stratum. The semantics

6 We assume that, if U defines equality, it does so as the identity relation on, at least, the terms
in the regular atoms of U and on the constants in P . Moreover, U may define equality even if
no (in)equality is present in P ; one can thus introduce arbitrary universes.
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of stratified Datalog programs is defined stratum per stratum, starting from the lowest
stratum and defining the extensional predicates on the way up.

A generalized literal is of the form ∀Y1, . . . , Yn · a ⇒ b where a and b are atoms
and vars(b) ⊆ vars(a). A Datalog LITE program is a stratified Datalog program, pos-
sibly containing generalized literals in the positive body, where each rule is monadic or
guarded. A rule is monadic if each of its (generalized) literals contains only one (free)
variable; it is guarded if there exists an atom in the positive body that contains all vari-
ables (free variables in the case of generalized literals) of the rule. The definition of
stratified is adapted for generalized literals: for a ∀Y1, . . . , Yn · a ⇒ b in the body of a
rule where the underlying predicate of a is a head predicate, this head predicate must be
a head predicate in a lower stratum (i.e. a is treated as a naf-atom) and a head predicate
underlying b must be in the same or a lower stratum (i.e. b is treated as an atom). The
semantics can be adapted accordingly since a is completely defined in a lower stratum.

In [12], Theorem 8.5., a Datalog LITE query (πϕ, qϕ) was defined for an alternation-
free7 μGF sentence8 ϕ such that (U,M) |= ϕ iff (πϕ, qϕ)(M∪id(U)) evaluates to true,
where the latter means that qϕ is in the fixed point model of πϕ with input M ∪ id(U),
and where id(U) ≡ {x = x | x ∈ U}. For the formal details of this reduction, we refer
to [12].

Satisfiability checking with GPs can be polynomially reduced to satisfiability check-
ing in Datalog LITE. Indeed, by Theorem 2, q is satisfiable w.r.t. a GP P iff p(X,0, q)∧
gcomp((P f)p) is satisfiable, and the latter is satisfiable iff ϕ ≡ ∃X · p(X,0, q) ∧
gcomp((P f)p) is. Since ϕ is a μGF sentence, we have that ϕ is satisfiable iff (πϕ, qϕ)
is satisfiable. By Theorem 2, the translation of P to ϕ is quadratic in the size of P and
the query (πϕ, qϕ) is quadratic in ϕ[12], resulting in a polynomial reduction.

Theorem 4. Let P be a GP, q an n-ary predicate in P and ϕ the μGF sentence ∃X ·
p(X,0, q)∧ gcomp((P f)p). q is satisfiable w.r.t. P iff (πϕ, qϕ) is satisfiable. Moreover,
this reduction is polynomial.

Satisfiability checking in stratified Datalog under the fixed point model semantics can
be linearly reduced to satisfiability checking w.r.t. programs under the open answer
set semantics. For a stratified Datalog program P , let P o be the program P with free
rules f (X) ∨ not f (X)← added for all predicates f that are extensional in the entire
program P (with the exception of equality predicates). The free rules in P o mimic the
role of extensional predicates from the original P : they allow for an initial free choice
of the relational input structure.

Proposition 6. Let P be a stratified Datalog query (P, q). (P, q) is satisfiable iff q is
satisfiable w.r.t. P o. Moreover, this reduction is linear.

Recursion-free stratified Datalog is stratified Datalog where the head predicates in the
positive bodies of rules must be head predicates in a lower stratum. We call recursion-
free Datalog LITE where all rules are guarded, i.e. without monadic rules that are not
guarded, Datalog LITER, where the definition of recursion-free is appropriately ex-
tended to take into account the generalized literals.

7 Since we did not allow nested least fixed point formulas in our definition of μ(L)GF, it is
trivially alternation-free.

8 A sentence is a formula without free variables.
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For a Datalog LITER program P , let ¬¬P be the program P where all generalized
literals are replaced by a double negation. E.g. q(X )← f (X ), ∀Y · r(X ,Y ) ⇒ s(Y )
is rewritten as the rules q(X ) ← f (X ),not q ′(X ) and q ′(X ) ← r(X ,Y ),not s(Y ).
As indicated in [12], ¬¬P is equivalent to P and the recursion-freeness ensures that
¬¬P is stratified. Clearly, (¬¬P )o is a GP.

For a Datalog LITER query (P, q), (¬¬P, q) is an equivalent stratified Datalog
query. Hence, by Proposition 6, (¬¬P, q) is satisfiable iff q is satisfiable w.r.t. (¬¬P )o.
This reduction is linear since ¬¬P is linear in the size of P and so is (¬¬P )o. Thus
satisfiability checking of Datalog LITER queries can be linearly reduced to satisfiability
checking w.r.t. GPs.

Theorem 5. Let (P, q) be a Datalog LITER query. (P, q) is satisfiable iff q is satisfiable
w.r.t. (¬¬P )o. Moreover, this reduction is linear.

The reduction from μGF sentences ϕ to Datalog LITE queries (πϕ, qϕ) specializes, as
noted in [12], to a reduction from GF sentences to recursion-free Datalog LITE queries.
Moreover, the reduction contains only guarded rules such that GF sentences ϕ are ac-
tually translated to Datalog LITER queries (πϕ, qϕ).

Satisfiability checking in the guarded fragment GF is 2-EXPTIME-complete[13],
such that, using Theorem 5 and the intermediate Datalog LITER translation, we have
that satisfiability checking w.r.t. GPs is 2-EXPTIME-hard. Completeness readily follows
from the 2-EXPTIME membership in Theorem 3.

Every GP is a LGP and satisfiability checking w.r.t. to the former is 2-EXPTIME-
complete, thus satisfiability checking w.r.t. LGPs is 2-EXPTIME-hard. Completeness
follows again from Theorem 3.

Theorem 6. Satisfiability checking w.r.t. (L)GPs is 2-EXPTIME-complete.

6 Conclusions and Directions for Further Research

We embedded OASP in FPL and used this embedding to identify (loosely) guarded
OASP, a decidable fragment of OASP. Finite ASP was reduced to loosely guarded
OASP and the relationship with Datalog LITE was made explicit. Finally, satisfiabil-
ity checking w.r.t. (loosely) guarded OASP was shown to be 2-EXPTIME-complete.

We plan to further exploit the correspondence between (loosely) guarded OASP and
μ(L)GF by seeking to apply implementation techniques used for μ(L)GF satisfiability
checking directly to (loosely) guarded OASP. Possibly, we can take advantage of the
fact that the embedding does not seem to need the full power of μ(L)GF – there are,
e.g. , no nested fixed point formulas in the FPL translation of OASP. It is interesting to
search for fragments of guarded OASP that can be implemented using existing answer
set solvers such as DLV[9] or SMODELS[23]. Another promising direction is to study
generalized literals in the context of the answer set semantics: what is an appropriate
semantics in the absence of stratification, can this still be embedded in FPL?

Finally, ω-restricted programs[22] are programs where function symbols are al-
lowed but reasoning is kept decidable by “guarding” variables in a rule with a predicate
that is in a lower stratification than the predicate of the head of that rule. Since reasoning
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with ω-restricted programs is 2-NEXPTIME-complete, it should be possible to simulate
guarded open answer set programming in this framework.
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Abstract. The paper introduces Answer Set Programming with Exter-
nal Predicates (ASP-EX), a framework aimed at enabling ASP to deal with
external sources of computation. This feature is realized by the introduc-
tion of “parametric” external predicates, whose extension is not specified
by means of a logic program but computed through external code. With
respect to existing approaches it is explicitly addressed the issue of inven-
tion of new information coming from external predicates, in form of new,
and possibly infinite, constant symbols. Several decidable restrictions of
the language are identified as well as suitable algorithms for evaluating
Answer Set Programs with external predicates. The framework paves the
way to Answer Set Programming in several directions such as pattern
manipulation applications, as well as the possibility to exploit function
symbols. ASP-EX has been successfully implemented in the DLV system,
which is now enabled to make external program calls.

1 Introduction

Among nonmonotonic semantics, Answer Set Programming (ASP) is
nowadays taking a preeminent role, witnessed by the availability of ef-
ficient answer-set solvers, like ASSAT [Lin and Zhao, 2002], Cmodels
[Babovich and Maratea, 2003], DLV [Leone et al., 2005b], and Smodels
[Simons et al., 2002], and various extensions of the basic language with
features such as classical negation, weak constraints, aggregates, cardinality and
weight constraints. ASP has become an important knowledge representation
formalism for declaratively solving AI problems in areas including planning
[Eiter et al., 2003], diagnosis and information integration [Leone et al., 2005a],
and more.

Despite these good results, state-of-the-art ASP systems hardly deal with
data types such as strings, natural and real numbers. Although simple, this
data types bring two kinds of technical problems: first, they range over infinite
domains; second, they need to be manipulated with primitive constructs which
can be encoded in logic programming at the cost of compromising efficiency
and declarativity.Furthermore, interoperability with other software is nowadays
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important, especially in the context of those Semantic Web applications aimed
at managing external knowledge.

The contributions of the paper are the following:

– we introduce a formal framework, named ASP-EX, for accommodating external
predicates in the context of Answer Set Programming;

– ASP-EX includes the explicit possibility of invention of new values from ex-
ternal sources: since this setting could lead to non-termination of any con-
ceivable evaluation algorithm, we tailor specific cases where decidability is
preserved.

– we show that ASP-EX enhances the applicability of Answer Set Programming
to a variety of problems such as string and algebraic manipulation. Also the
framework paves the way for simulating function symbols in a setting where
the notion of term is kept simple (Skolem terms are not necessary).

– we discuss implementation issues, and show how we have integrated ASP-EX

in the DLV system, which is, this way, enabled with the possibility of using
external sources of computation.

– we carry out some experiments, confirming that the accommodation of ex-
ternal predicates does not cause any relevant computational overhead.

2 Motivating Example

The introduction of external sources of computation in tight synergy with An-
swer Set Solvers opens a variety of possible applications. We show next an ex-
ample of these successful experiences.

The discovery of complex pattern repetitions in string databases plays an
important role in genomic studies, and in general in the areas of knowledge
discovery. Genome databases mainly consist of sets of strings representing DNA
or protein sequences (biosequences) and most of these strings still require to be
interpreted. In this context, discovering common patterns in sets of biologically
related sequences is very important.

It turns out that specifying pattern search strategies by means of Answer Set
Programming and its extensions is an appealing idea: constructs like strong and
weak constraints, disjunction, aggregates may help an algorithm designer to fast
prototype search algorithms for a variety of pattern classes.

Unfortunately, state-of-the-art Answer Set Solvers lack the possibility to deal
in a satisfactory way with infinite domains such as strings or natural numbers.
Furthermore, although very simple, such data types need of ad hoc manipulation
constructs, which are typically difficult to be encoded and cannot be efficiently
evaluated in logic programming.

So, in order to cope with these needs, one may conceive to properly extend
answer set programming with the possibility of introducing external predicates.
The extension of an external predicate can be efficiently computed by means of
an intensional definition expressed using a traditional imperative language.

Thus, we might allow a pattern search algorithm designer to take advantage
of Answer Set Programming facilities, but extended with special atoms such as
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e.g. #inverse(S1,S2) (true if S1 is the inverse string of S2), #strcat(S1,S2,S3) (true
if S3 is equal to the concatenation of S1 and S2), or #hammingDistance(S1,S2,N)

(true if S1 has N differences with respect to S2). Note that it is desirable that
these predicates introduce new values in the domain of a program whenever
necessary. For instance, the semantics of #strcat(a,b,X) should be such that X
matches with the new symbol ab.

Provided with a suitable mechanism for defining external predicates, the au-
thors of [Palopoli et al., 2005] have been able to define and implement a frame-
work allowing to specify and resolve genomic pattern search problems; the frame-
work is based on automatically generating logic programs starting from user-
defined extraction problems, and exploits disjunctive logic programming prop-
erly extended in order to enable the possibility of dealing with a large variety
of pattern problems. The external built-in framework implemented into the DLV

system is essential in order to deal with strings and patterns. We provide next
syntax and semantics of the proposed framework.

3 Syntax and Semantics

Let U , X , E and P be mutually disjoint sets whose elements are called constant
names, variable names, external predicate names, and ordinary predicate names,
respectively. Unless explicitly specified, elements from X (resp., U) are denoted
with first letter in upper case (resp., lower case); elements from E are usually
prefixed with “# ”. U will constitute the default Herbrand Universe. We will
assume that any constant appearing in a program or generated by external
computation is taken from U , which is possibly infinite1.

Elements from U ∪ X are called terms. An atom is a structure p(t1, . . . , tn),
where t1, . . . , tn are terms and p ∈ P ∪ E ; n ≥ 0 is the arity of the atom.
Intuitively, p is the predicate name. The atom is ordinary, if p ∈ P , otherwise
we call it external atom. A list of terms t1, . . . , tn is succinctly represented by
t. A positive literal is an atom, whereas a negative literal is not a where a is an
atom.

For example, node(X), and #succ(a,Y) are atoms; the first is ordinary, whereas
the second is an external atom.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, notβn+1, . . . , notβm, (1)

where m ≥ 0, k ≥ 1, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordinary
or external) atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r),
where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. E(r) is the set of
external atoms of r. If H(r) = ∅ and B(r) �= ∅, then r is a constraint, and if
B(r) = ∅ and H(r) �= ∅, then r is a fact; r is ordinary, if it contains only ordinary
atoms. A ASP-EX program is a finite set P of rules; it is ordinary, if all rules are
1 Also, we assume that constants are encoded using some finite alphabet Σ, i.e. they

are finite elements of Σ∗.



108 F. Calimeri and G. Ianni

ordinary. Without loss of generality, we will assume P has no constraints2 and
only ground facts.

The dependency graph G(P ) of P is built in the standard way by inserting a
node np for each predicate name p appearing in P and a directed edge (p1, p2),
labelled r, for each rule r such that p2 ∈ B(r) and p1 ∈ H(r).

The following is a short ASP-EX program:

mustChangePasswd(Usr) ← passwd(Usr,Pass),
#strlen(Pass,Len),#<(Len,8).

(2)

We define the semantics of ASP-EX by generalizing the answer-set semantics,
proposed by Gelfond and Lifschitz [1991] as an extension of the stable model
semantics of normal logic programs [Gelfond and Lifschitz, 1988]. In the sequel,
we will assume P is a ASP-EX program. The Herbrand base of P with respect
to U , denoted HBU (P ), is the set of all possible ground versions of ordinary
atoms and external atoms occurring in P obtained by replacing variables with
constants from U . The grounding of a rule r, grndU (r), is defined accordingly,
and the grounding of program P by grndU (P ) =

⋃
r∈P grndU (r).

An interpretation I for P is a couple 〈S, F 〉 where:

– S ⊆ HBU (P ) contains only ordinary atoms; We say that I (or by small
abuse of notation, S) is a model of ordinary atom a∈HBU (P ), denoted
I |= a (S |= a), if a∈S.

– F is a mapping associating with every external predicate name #e ∈ E , a
decidable n-ary Boolean function (which we will call oracle) F (#e) assigning
each tuple (x1, . . . ,xn) either 0 or 1, where n is the fixed arity of #e, and
xi ∈ U . I (or by small abuse of notation, F ) is a model of a ground external
atom a = #e(x1, . . . ,xn), denoted I |= a (F |= a), if F (#e)(x1, . . . ,xn) = 1.

A positive literal is modeled if its atom is modeled, whereas a negated literal is
modeled if its corresponding atom is not modeled.

Example 1. We give an interpretation I = 〈S, F 〉 such that the external predi-
cate #strlen is associated to the oracle F (#strlen), and F (#<) to #<. Intuitively
these oracles are defined such that #strlen(pat4dat,7) and #< (7,8) are modeled
by I, whereas #strlen(mypet,8) and #<(10,8) are not.

The following is a ground version of rule 2:

mustChangePasswd(frank) ← passwd(frank,pat4dat),
#strlen(pat4dat,7),#<(7,8).

(3)

�

Let r be a ground rule. We define

2 A constraint ← B(r) can be easily simulated through the introduction of a cor-
responding standard rule fail ← B(r), not fail, where fail is a fresh predicate not
occurring elsewhere in the program.
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i. I |=H(r) iff there is some a ∈ H(r) such that I |= a;
ii. I |=B(r) iff I |= a for each atom a∈B+(r) and I �|= a for each atom a∈B−(r);
iii. I |= r (i.e., r is satisfied) iff I |=H(r) whenever I |=B(r).

We say that I is a model of a ASP-EX program P with respect to a universe
U , denoted I |=UP , iff I |= r for all r∈ grndU (P ). A model M is minimal if there
is no model N such that N ⊂M .

Given a general ground program P , its GL reduct w.r.t. an interpretation I
is the positive ground program P I , obtained from P by:

– deleting all rules having a negated literal which is not modeled by I;
– deleting all the negated literals from the remaining rules.

I ⊆HBU (P ) is an answer set for a program P w.r.t. U iff I is a minimal
model for the positive program grndU (P )I . Let ansU(P ) be the set of answer
sets of grndU (P ). We call P F-satisfiable, if it has some answer set for a fixed
function mapping F , i.e. if there is some interpretation 〈S, F 〉 which is an answer
set. In the following we will assume the semantics associated to each external
predicate is defined a priori, i.e. F is fixed.

4 Properties of ASP-EX Programs

Although simple in its definition, the above semantics does not give any hint on
how to actually compute answer sets of a given program P . In general, given an
infinite domain of constants U , and a program P , HBU (P ) is indeed infinite.

Theorem 1. It is given a ASP-EX program P , a domain of constants U , and a
function mapping F where the co-domain of F contains only boolean functions
decidable in polynomial time in the size of their arguments. Deciding whether P
is F -satisfiable in the domain U is undecidable.

Proof. (Sketch) The proof is carried out by showing that the Answer Set Se-
mantics of a ordinary program P with function symbols3 can be reduced to the
Answer Set Semantics of a ASP-EX program P . We take advantage of a family of
external predicates {#functioni}. In a given interpretation 〈S, F 〉, F will be such
that #functioni(C, f,x1, . . . ,xi) is modeled if C unifies with the compound term
f(x1, . . . ,xi).

This allows to rewrite a logic program P with function symbols by means of
external predicates. For instance, given the rule

p(s(X)) ← a(X, f(Y, h(Z))).

This can be rewritten in an equivalent ASP-EX rule:

p(S) ← a(X, F ), #function1(S, s, X), #function2(F, f, Y, H),
#function1(H,h, Z).

�

3 Positive Horn programs with function symbols are undecidable, see e.g.
[Dantsin et al., 2001].
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Tailoring cases where a finite portion of U is enough to evaluate the semantics
of a given program is thus of interest. In the following we reformulate some results
regarding splitting sets [Lifschitz and Turner, 1994].

Definition 1. Given a ASP-EX program P , a splitting set is a set of atoms
A ∈ HBU(P ) such that for each atom a ∈ A, if a ∈ H(r) for some r ∈ grndU (P ),
then B(r) ∪H(r) ⊆ A. The bottom bA(P ) is the set of rules
{r | r ∈ grndU (P ) and H(r) ⊆ A}. The residual rU (P, I) is a program obtained
from grndU (P ) by deleting all the rules which are not modeled by I, and remov-
ing from the remaining rules all the a ∈ A modeled by I. �

We take advantage here of the formulation of the splitting theorem as given
in [Bonatti, 2004].

Theorem 2. (Splitting theorem [Lifschitz and Turner, 1994; Bonatti, 2004])
Given a program P and a splitting set A, M ∈ ansU(P ) iff M can be split
in two disjoint sets I and J , such that I ∈ ansU (bA(P )) and
J ∈ ansU (rU (grndU (P ) \ bA(P )), I).

Definition 2. Given a rule r, a variable X is safe in r if it appears in some
ordinary atom a ∈ B+(r). A rule r is safe if each variable X appearing in r is
safe. A program P is safe if each rule r ∈ P is safe.

Theorem 3. Given a safe ASP-EX program P , let U ⊂ U be the set of constants
appearing in P . Then ansU (P ) = ansU(P ).

Proof. (Sketch) The line of reasoning of the theorem is proving that, assuming P
is safe, grndU (P ) is a finite splitting set for P . Furthermore, grndU (P ) = bU (P ).
For each M ∈ ansU (P ), we can prove that rU (grndU (P )\bU(P ),M) is consistent
and its only answer set is the empty model. Thus M ∪ ∅ ∈ ansU(P ). Viceversa,
assuming an answer set M ∈ ansU(P ) is given, same arguments lead to conclude
that M ∈ ansU (P ). �

In case a safe program is given, the above theorem allows to consider as the
set of “relevant” constants only those values explicitly appearing in the program
at hand. Intuitively, the semantics of a safe program P can be evaluated by
means of the following steps:

– compute grndU (P );
– remove from grndU (P ) all the rules containing at least one external literal

e such that F �|= e, and remove from each rule all the remaining external
literals.

– compute the remaining ordinary program by means of a standard Answer
Set solver.
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It is worth pointing out that, assuming the complexity of computing oracles is
polynomial in the size of their arguments, this algorithm as same complexity as
computing grndU (P )4.

5 Dealing with Values Invention

Although important for clarifying the given semantics, it is an actual practice to
specify external sources of computation not in terms of boolean oracles. So we
aim at introducing the possibility to specify functional oracles, keeping anyway
the simple reference semantics given previously. In the new setting we are going
to introduce, it is also very important that an external atom brings knowledge
from external sources of computation, in terms of new symbols added to a
given program.

For instance, assume U contains encoded values that can be interpreted as
natural numbers and that the external predicate #sqr is defined such that the
atom #sqr(X,Y) is true whenever Y encodes a natural number representing the
square of the natural number X ; we want to extract a series of squared values
from this predicate; consider the short program

number(2) ←
square(Y) ← number(X),#sqr(X,Y).

(4)

In the presence of unsafe rules as in the above example, Theorem 3 ceases to
hold: it is indeed unclear whether there is a finite set of constants which the
program can be grounded on. In the above example, we can intuitively conclude
that the set of meaningful constants is {2, 4}. It is however undecidable, given a
computable boolean oracle f to establish whether a given set S contains all and
only all those tuples t such that f(t) = 1.

In order to overcome these limits, we extend our framework with the possibil-
ity of explicitly computing missing values on demand. Although restrictive, this
setting is not far from a realistic scenario where external predicates are defined
by means of generic partial functions instead of boolean ones.

Definition 3. It is given an external predicate name #p, having arity n and
its oracle function F (#p). A pattern is a list of b’s and u’s. A b will represent
a placeholder for a constant (or a bounded variable), whereas an u will be a
placeholder for a variable. Given a list of terms, the corresponding pattern will
be given by replacing each constant with a b, and each variable with a u. �

For instance, the pattern related to the list of terms (X, a, Y ) is (u, b,u). Let
pat be a pattern of length n having k placeholders b (which we will call input
positions), and n−k placeholders of u type (which we will call output positions).
A functional oracle F (#p)[pat] for the pattern pat, associated to the external

4 Assuming rules can have unbounded length, grounding a disjunctive logic pro-
gram is in the worst case exponential in the size of the Herbrand base (see e.g.
[Leone et al., 2001]).
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predicate #p, is a partial function taking k constant arguments from U and
returning a tuple of arity n−k, and such that F (#p)[pat](a1, ..., ak) = b1, ..., bn−k

iff F (#p)(a1, . . . , ak, b1, . . . , bn−k) = 1. Let pat[j] be the j-th element of a pattern
pat. Let unboundpat(X) be the sub-list of X such that pat[j] = u for each
Xj ∈ X, and boundpat(X) be the sub-list of X such that pat[j] = b for each
Xj ∈ X.

An external predicate #p might be associated to one or more functional
oracles “consistent” with the originating boolean oracle. For instance, consider
the #sqr external predicate, defined as mentioned above. We associate to it two
functional oracles, F (#sqr)[b,u] and F (#sqr)[u, b]. The two functional oracles are
such that, e.g.

F (#sqr)[b,u](3) = 9 (5)
F (#sqr)[u, b](16) = 4 (6)

consistently with the fact that F (#sqr)(3, 9) = F (#sqr)(4, 16) = 1, whereas
F (#sqr)[u, b](5) is set as undefined since F (#sqr)(X, 5) = 0 for any natural X .

In the sequel, given an external predicate #e, we will assume it comes
equipped with its oracle F (#e) (called also base oracle) and a list of consis-
tent functional oracles {F (#e)[pat1], . . . , F (#e)[patm]}, having different patterns
pat1, . . . , patm

5.
Adopting functional oracles in the context of safe programs is however to

big a restriction. We thus aim at enlarging the class of programs that can be
evaluated against a finite Herbrand universe. To this end, we introduce a relaxed
notion of safety. Intuitively, a variable is weakly safe if its value, although not
explicitly appearing in a program, can be computed through a functional oracle.

Definition 4. Given a rule r, let E(r) its set of external atoms. A choice C of
functional oracles is a mapping C : E(r) �→ N associating each external atom of
r with the index of one of its functional oracles. Given a choice C, let FC(#e) a
shortcut for the functional oracle F (#e)[patC(#e)].

Given a rule r and a choice C, a variable X is weakly safe in r w.r.t. to C if
either

– X is safe; or
– X appears in some external atom #e(X) ∈ B+(r), X ∈ unboundpat

C(#e)

and each variable Y ∈ boundpat
C(#e)

is weakly safe. �

A rule r is weakly safe if there is a choice Cr such that each variable X
appearing in some atom a ∈ B(r) is weakly safe with respect to Cr. A program
P is weakly safe if each rule r ∈ P is weakly safe. �

Example 2. Assume that #sqr is associated to the list of functional oracles
{F (#sqr)[b,u], F (#sqr)[u, b]} defined above. Given a choice of oracles C such
5 Note that functional oracles prevent, to some extent, to define multivalued functions

and/or generic relations. We consider anyway this setting acceptable for a variety of
applications.
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that C(#sqr(X,Y )) = 2, the second rule of Program 4 is not weakly safe (intu-
itively there is no way for computing the value of the variable Y with the oracle
F (#sqr)[u, b]. The same rule is weakly safe if we set C(#sqr(X,Y)) = 1. �

It turns out that deciding whether a given rule is weakly safe or not depends
on a given choice, but also from the set of available functional oracles. It is
assumed indeed that an external predicate does not come with all its possible
functional oracles.

Proposition 1. Given a set of external predicates E, and a list of functional
oracles for each #e ∈ E, it can be checked in polynomial time whether a program
P is weakly safe.

Proof. (Sketch) Simply observe that for each rule r ∈ P it can be checked in
time linear in the number of atoms of r whether a choice making r weakly safe
exists. �

Weakly safe rules can be grounded with respect to functional oracles as fol-
lows.

Definition 5. Given a weakly safe rule r, a choice C for it, and a set of ordinary
ground atoms A, a ground rule r′ is member of ins(r, A) if r can be grounded
to r′ by the following algorithm:

1. replace positive literals of r with a consistent nondeterministic choice of
matching ground atoms from A; let θ the resulting variable substitution;

2. until θ instantiates all the variables of r:
– pick from rθ an external atom #e(X)θ such that θ instantiates all the

variables X ∈ boundpat
C(#e)

(X).

– If FC(#e)(boundpat
C(#e)

(Xθ)) = a1, . . . , ak, then update θ by assigning

a1, . . . , ak to unboundpat
C(#e)

(Xθ); else fail;
3. return r′ = rθ. �

Example 3. Let’s consider the second rule of Program 4; then,
ins(r, {number(1),number(2)}) contains the two rules:

square(1) ← number(1), #sqr(1, 1).
square(4) ← number(2), #sqr(2, 4).

�

Although desirable, weak safety is not sufficient in order to intuitively guar-
antee finiteness of answer sets and decidability. For instance, the program

square(2) ←
square(Y ) ← square(X),#sqr(X, Y ).

(7)

is modeled by the infinite set of atoms {square(2), square(4), . . .}.
We thus introduce the notion of semi-safe program. Intuitively a semi-safe

program is such that external atoms cannot create infinite chains of new values
to be taken in account.
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Definition 6. A weakly safe program P is semi-safe if each cycle in G(P ) con-
tains only edges corresponding to safe rules. �

Example 4. For instance, the program

square(Y ) ← square(X),number(Y ), #sqr(X,Y ).
square(Y ) ← number(X),#sqr(X, Y ).

is semi-safe. �

We extend next Theorem 3 to the case of semi-safe programs.

Theorem 4. It is given a semi-safe program P . Then there is a finite set of
constants U such that ansU (P ) = ansU(P ).

Proof. (Sketch) The set U is defined as all the constant symbols appearing in
the set of atoms T∞P (∅) where the operator TP is defined as follows.

TP (A) = A ∪ {a ∈ H(r′)|r′ ∈ ins(r, A) for some r ∈ P}
It is provable that T∞P (∅) = T n

P (∅) for some n in case P is semi-safe; T∞P (∅)
is a splitting set, and U is finite; as in Theorem 3 for each M ∈ ansU (P ), we can
prove that rU (grndU (P )\bT ∞

P
(P ),M) is consistent and its only answer set is the

empty model. Thus M ∪ ∅ ∈ ansU(P ). Assuming an answer set M ∈ ansU(P )
is given, same arguments lead to conclude that M ∈ ansU (P ). �

The above theorem allows to compute semantics of a semi-safe program P
by means of a traditional answer set solver, following the steps:

– compute the ground program T∞P (∅). This computation involves a number of
evaluation of ins(r, A) that trigger evaluation of functional oracles whenever
needed;

– eliminate external literals as in the case of safe programs;
– evaluate the remaining ordinary program by means of a traditional solver;

We observe that, assuming F contains polynomial-time functional oracles, the
complexity of the above algorithm is not greater than the complexity of com-
puting grounding for an ordinary program.

6 Implementation and Experiments

The proposed language has been integrated into the ASP system
DLV [Leone et al., 2005b]. We called this prototype DLV-EX. From a practical point
of view, the external atoms are dealt with in the following steps (see Figure 1):

1. at design time: a developer provides a library of external atoms, each of
them associated with a set of functional oracles. Each functional oracle has
a corresponding pattern. Although useful in practice, it is not compulsory to
provide functional oracles other than the base oracle. However, the absence
of specific functional oracles limits de facto the possibility to exploit an
external atom in weakly safe rules. A testing environment helps checking the
correctness of the oracles by means of automatically generated test programs.
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2. at run-time in a pre-processing stage: each rule is checked to be weakly safe,
and a suitable choice of functional oracles is made. Then the overall program
is checked to be semi-safe. It is anyway possible to relax this second condition,
provided that termination of grounding algorithms is not guaranteed in this
case. It is worth pointing out that an user developing a logic program is not
in charge of specifying a choice of oracles, since the system itself will choose
the best functional oracles among a variety of possibilities.

3. at run-time during the rule instantiation stage: the optimized grounder of
the DLV system has been extended in order to compute ins(r, A) for a given
rule r and a set of “active” atoms A. For each external atom in r,the chosen
functional oracles are repeatedly invoked according to Definition 5.

Point 2 and 3 above are integrated in the existing grounding algorithm of
the system. We briefly recall the rule instantiation algorithm of the DLV system
[Leone et al., 2001]. Given a rule r, this algorithm exploits an intelligent back-
tracking algorithm, where a given atom a ∈ B(r) is picked at each stage and
it is tried to be instantiated with respect to currently allowed values. The pick-
ing order is crucial in order to tailor the search space to the smallest extent: in
principle, it is preferred to pick first those atoms whose estimated set of possible
values is smaller.

The presence of external atoms impacts within such algorithm in a two-
fold way: for what point 2 above is concerned, given a rule r, among possible
choices of functional oracles, our algorithm prefers those patterns whose number
of unbounded variables is bigger. This intuitively allows to reduce the space of
possible instantiations for a given external atom. For instance, given the atom
#sqr(X,Y), the choosing algorithm prefers, whenever possible, to choose the or-
acle with pattern (b,u) instead of the base oracle (which can be seen has having
the pattern (b, b)), since this way it is searched only the space of values where
Y is equal to the square of X . In the second case, an oracle with pattern (b, b)
forces in principle to check all the possible couples of values for X and Y .

Point 3 impacts on the atom pick-up ordering strategy. For the same reasons
above, it is preferred to pick up external atoms, with pattern having many un-
bounded variables, as earlier as possible. This strategy relies on the assumption,
often true in practice, that the computation of a functional oracle is less time
consuming than several computations of the corresponding base oracle.

All the pre-existing built-in atoms available in the DLV system (such as arith-
metic and relational operators) have been rewritten using the new general frame-
work. We carried out some experiment in order to appreciate the impact and
the possible overhead of the new construct. Results are encouraging: grounding
times are in most cases equivalent, and the slowdown reported in few cases is
never above 6-7%.

External predicate definitions can be grouped in one or more libraries. Li-
braries have to be compiled such that they can be dynamically linked to the
DLV-EX executable; oracles are written in the C++ language. A special directive
inside DLV-EX programs tells the system which libraries have to be linked at run-
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Fig. 1. System Architecture

time. Also, built-in developers are enabled to redefine predefined operators in
order to deal with new data types, e.g. real numbers.

Some usage experiments have been carried out as well; few users have been
requested to start implementing some customized libraries [Palopoli et al., 2005;
Cumbo et al., 2004],and early feedbacks are positive both from the correctness
and the ease of use points of view.

7 Related Works

For what the possibility of calling external modules in a logic program is con-
cerned, it is worth to mention the foundational work of Eiter et al. [1997].
This paper takes the notion of generalized quantifier, known in formal log-
ics, and adapts it in the context of modular logic programming. A general-
ized quantifier indeed, can be seen as a way for delegating the truth value
of a formula to an external source of computation. Based on this work, the
same authors are addressing the issue of implementing generalized quanti-
fiers under Answer Set Semantics, in order to enable Answer Set Solvers to
communicate, in both directions, with external reasoners [Eiter et al., 2004;
Eiter et al., 2005]. This approach is different from the one considered in this
paper since the former is inspired from second order logics and allows bidirec-
tional flow of relational data (to and from an external atom), whereas, in our
setting, the information flow is strictly value based. Nonetheless, HEX programs,
as defined in [Eiter et al., 2005], do not deal with infinite domains explicitly.

Although this know-how has not been explicitly divulgated yet, other Answer
Set Solvers introduced the possibility to deal with externally computed functions
[Syrjänen, 2002; Osorio and Corona, 2003].
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Furthermore, there are several works aiming at bringing in Answer Set
Programming a restricted capability of dealing with infinite domains. Among
these, it is worth citing the notion of ω-restricted programs [Syrjänen, 2001]. ω
-restricted programs allow to keep decidability of Answer Set Semantics in the
presence of functions symbols, and constitute a subclass of finitary programs.
It is indeed important to recall the work of Bonatti [2004], aimed at tailoring
the class of finitary programs. Although, in general, recognizing this class of pro-
grams is undecidable, finitary programs allow function symbols but are decidable
under brave/skeptical reasoning with ground queries. As shown in Theorem 1,
external functions might be exploited in order to simulate function symbols. It
is a matter of future search to extend the notion of semi-safe program to a larger
class and investigate equivalence conditions with the notion of finitary program.

In the above cited literature, infinite domains are obtained through the intro-
duction of compound functional terms. Thus the studied theoretical insights are
often specialized to this notion of term, and take advantage e.g., of the common
unification rules of formal logics over infinite domains. Similar in spirit to our
approach is the work on open logic programs, and conceptual logic programs
[Heymans et al., 2004]. Such paper addresses the possibility of grounding a logic
program, under Answer Set Semantics, over an infinite domain, in a way similar
to classical logics and/or description logics. Each constant symbol has no prede-
fined compound structure however. Also similar is the work of Cabibbo [1998],
which extend the work of Hull and Yoshikawa [1998]. The latter authors in-
troduce a language (ILOG) with a special construct aimed at introducing new
invented values in a logic program, for the purpose of creating new tuple iden-
tifiers in relational databases. Based on this work, Cabibbo investigates about
decidable fragments of the language. Despite some crucial semantic differences,
the presented notion of weak safety is similar to the one herein presented, and
describes conditions such that new values do not propagate in infinite chains.

8 Conclusions

We presented a framework where external atoms with value invention are taken
in account. The purpose of this work is in the direction of closing the gap between
Answer Set Programming and practical applications. Also, we believe this works
paves the way to an actual implementation of finitary programs with function
symbols. The system prototype, examples, manuals and benchmark results are
available at http://www.mat.unical.it/kali/dlv-ex.
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Abstract. Equilibrium logic, introduced by David Pearce, extends the
concept of an answer set from logic programs to arbitrary sets of for-
mulas. Logic programs correspond to the special case in which every
formula is a “rule” — an implication that has no implications in the
antecedent (body) and consequent (head). The semantics of equilibrium
logic looks very different from the usual definitions of an answer set in
logic programming, as it is based on Kripke models. In this paper we
propose a new definition of equilibrium logic which uses the concept of a
reduct, as in the standard definition of an answer set. Second, we apply
the generalized concept of an answer set to the problem of defining the
semantics of aggregates in answer set programming. We propose, in par-
ticular, a semantics for weight constraints that covers the problematic
case of negative weights. Our semantics of aggregates is an extension of
the approach due to Faber, Leone, and Pfeifer to a language with choice
rules and, more generally, arbitrary rules with nested expressions.

1 Introduction

Equilibrium logic, introduced by Pearce [1997, 1999], extends the concept of an
answer set [Gelfond and Lifschitz, 1988, 1991] from logic programs to arbitrary
sets of formulas. Logic programs correspond to the special case in which every
formula is a “rule” — an implication that has no implications (or equivalences)
in the antecedent (body) and consequent (head).

The semantics of equilibrium logic looks very different from the usual defini-
tions of an answer set in logic programming: it is based on Kripke models. In this
paper, we propose a new definition of equilibrium logic, equivalent to Pearce’s
definition, which uses the concept of a reduct, as in the one used in the standard
definition of an answer sets.

Second, we apply the generalized concept of an answer set to the problem of
defining the semantics of aggregates in answer set programming. The best pro-
posal in this area published so far is due to Faber, Leone, and Pfeifer [2004]. The
strong point of that paper is that it is applicable to aggregates that are neither
monotone nor antimonotone (such as, for instance, weight constraints in which
some some weights are positive and some are negative). It has two defects, how-
ever. First, it does not allow negation in aggregate expressions. Second, it does
not cover choice rules, which play an important role in answer set programming.1

1 Both negation within aggregates and choice rules can be defined, in principle, as
abbreviations for expressions containing auxiliary atoms.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 119–131, 2005.
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Our semantics includes aggregates in the style of [Faber et al., 2004] containing
arbitrary formulas and also choice rules. We show also that the existence of an
answer set for nondisjunctive program with aggregates of a very simple kind
(weight constraints with the weights 1 and −1) is ΣP

2 -hard, as in the case of
disjunctive programs.

In the following section we define answer sets for propositional theories, and
we relate this definition to equilibrium logic and to the traditional definition
of an answer set. In Section 3 we extend several important theorems about
logic programs to propostional theories. In Section 4, we propose our semantics
of aggregates, discuss its properties, and show, as an example, how it applies
to representing a combinatorial auction with negative costs. Comparisons with
other formalizations are given in Section 5.

2 Formulas, Reducts and Answer Sets

2.1 Definition

For simplicity, we limit our attention to formulas without strong negation. We
consider (propositional) formulas formed from atoms and connectives ⊥, ∨, ∧
and ⊃.2 A theory is a set of formulas. In the rest of the paper, F and G denote
formulas, Γ a theory, X and Y sets of atoms, and ⊗ a binary connective.

We identify an interpretation with the set of atoms satisfied by it. We write
X |= F (X |= Γ ) if X satisfies F (or Γ ) in the sense of classical logic.

The reduct FX of F relative to X is defined recursively:

– if X �|= F then FX = ⊥,
– if X |= a (a is an atom) then aX = a, and
– if X |= F ⊗G then (F ⊗G)X = FX ⊗GX .

This definition of a reduct is similar to a transformation proposed in
[Osorio et al., 2004, Section 4.2].

The reduct FX can be alternatively defined as the formula obtained from F
by replacing every outermost subformula not satisfied by X with ⊥ (this alter-
native definition applies even if we treat ¬, � and ≡ as primitive connectives).

For instance, if X contains p but not q then

((p ⊃ q) ∨ (q ⊃ p))X = ⊥ ∨ (⊥ ⊃ p).

It is easy to see that, for every X , Y , ⊗, F and G,

Y |= (F ⊗G)X iff X |= F ⊗G and Y |= FX ⊗GX . (1)

The reduct ΓX of Γ relative to X is {FX : F ∈ Γ}. A set X is an answer set
for Γ if X is a minimal set satisfying ΓX .

For instance, let Γ be {(p ⊃ q) ∨ (q ⊃ p), p}. Set {p} is an answer set for Γ
because {p} is a minimal model satisfying the reduct {⊥ ∨ (⊥ ⊃ p), p}. It is not
difficult to see that no other set of atoms is an answer set for Γ .
2 ¬F stands for F ⊃ ⊥; 	 stands for ⊥ ⊃ ⊥; F ≡ G stands for (F ⊃ G) ∧ (G ⊃ F ).
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2.2 Relationship to Equilibrium Logic

Theorem 1. For any theory, its models in the sense of equilibrium logic are
identical to its answer sets.

Since in application to programs with nested expressions equilibrium logic is
equivalent to the semantics defined in [Lifschitz et al., 1999], Theorem 1 implies
that our definition of an answer set extends the corresponding definition from
that paper.

In the proof of Theorem 1, we write 〈X,Y 〉 |= Γ (with X ⊆ Y ) if the HT-
interpretation 3 〈X,Y 〉 is a model of Γ .

Lemma 1. For any X and Y such that X ⊆ Y and any theory Γ ,

X |= Γ Y iff 〈X,Y 〉 |= Γ.

The lemma is proven first for the case when Γ is a singleton, by structural
induction.

Proof of Theorem 1. According to the semantics of equilibrium logic (reproduced
in [Lifschitz et al., 2001, Section 4.4]), Y is a model of Γ iff

〈Y, Y 〉 |= Γ and, for all proper subsets X of Y , 〈X,Y 〉 �|= Γ .

In view of Lemma 1, this is the same as

Y |= Γ Y and, for all proper subsets X of Y , X �|= Γ Y .

which means that Y is an answer set for Γ . "#

2.3 Relationship to the Traditional Definition of Reduct

A nested expressions is a formula that contains no implications F ⊃ G with
G �= ⊥, and no equivalences. 4 A program with nested expressions is a set of
rules F ← G, where F and G are nested expressions. We will identify such a
rule with the implication G ⊃ F .

In application to programs with nested expressions, our definition of a reduct
is quite different from the traditional definition [Lifschitz et al., 1999]. Consider,
for instance, the following program:

p← not q
q ← not r

According to [Lifschitz et al., 1999], its reduct relative to {r} is

p← �
q ← ⊥;

3 See [Lifschitz et al., 2001, Section 2.1].
4 Traditionally, in nested expressions conjunction is denoted by comma, disjunction

by semicolon, and negation by “not”.

with our definition, it is
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⊥
q ← ⊥.

The first reduct is satisfied, for instance, by {p}, while the second is unsatisfiable.
However, some similarities between these formalisms exist. For instance, it is easy
to see that for any formula F , (¬F )X , according to the new definition, is � when
X �|= F , and ⊥ otherwise, as with the traditional definition. Indeed, if X |= F
then X �|= F ⊃ ⊥ and consequently

(¬F )X = (F ⊃ ⊥)X = ⊥.

Otherwise, X |= F ⊃ ⊥, so that

(¬F )X = (F ⊃ ⊥)X = FX ⊃ ⊥ = ⊥ ⊃ ⊥ = �.

The following proposition states a more general relationship between the
new definition of the reduct and the traditional one. We denote by FX the
reduct of a nested expression F relative to X according to the definition from
[Lifschitz et al., 1999], and similarly for the reduct of a program.

Proposition 1. For any program Π with nested expressions and any set X of
atoms, ΠX is equivalent, in the sense of classical logic,

– to ⊥, if X �|= Π, and
– to the program obtained from ΠX by replacing all atoms that do not belong

to X by ⊥, otherwise.

The proof of this proposition is based on the following lemma, proven by
structural induction.

Lemma 2. The reduct FX of a nested expression F is equivalent, in the sense
of classical logic, to the nested expression obtained from FX by replacing all
atoms that do not belong to X by ⊥.

Corollary 1. Given two sets of atoms X and Y with Y ⊆ X and any program
Π, Y |= ΠX iff X |= Π and Y |= ΠX.

This corollary suggests another way to verify that the definition of an answer
set proposed in this paper is equivalent to the usual one in the case of programs
with nested expressions. If X �|= Π then X is not an answer set for Π under
either semantics. Otherwise, for every subset Y of X , Y |= ΠX iff Y |= ΠX by
Corollary 1.

3 Properties of Propositional Theories

Several theorems about answer sets for logic programs can be extended to propo-
sitional theories. The proofs are omitted for lack of space.

Two theories Γ1 and Γ2 are strongly equivalent if, for every theory Γ , Γ1 ∪Γ
and Γ2 ∪ Γ have the same answer sets.
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Proposition 2. For any two theories Γ1 and Γ2, the following conditions are
equivalent:

(i) Γ1 is strongly equivalent to Γ2,
(ii) Γ1 is equivalent to Γ2 in the logic of here-and-there, and
(iii) for each set X of atoms, ΓX

1 is equivalent to ΓX
2 in classical logic.

The equivalence between (i) and (ii) is a generalization of the main result
of [Lifschitz et al., 2001], and it is an immediate consequence of Lemma 4 from
that paper and our Theorem 1. The equivalence between (i) and (iii) is similar
to Theorem 1 from [Turner, 2003].

The following claims require some definitions. An occurrence of an atom in
a formula is positive if it is in the antecedent of an even number of implications.
An occurrence is strictly positive if such number is 0. An occurrence of an atom
in a formula is negated if it is in a subformula of the form F ⊃ ⊥. For instance,
in a formula (p ⊃ ⊥) ⊃ q, the occurrences of p and q are positive, the one of q
is strictly positive, and the one of p is negated.

The following proposition is an extension of the property that in each an-
swer set of a program, each atom occurs in the head of a rule of that pro-
gram [Lifschitz, 1996, Section 3.1].

Proposition 3. Each answer set of a theory consists of atoms that have a
strictly positive occurrence in some formula of that theory.

The following two propositions were stated in [Ferraris and Lifschitz, 2005]
in the case of logic programs.

Proposition 4 (Lemma on Explicit Definitions). Let Γ be any proposi-
tional theory, and Q a set of atoms that do not occur in Γ . For each q ∈ Q, let
Def(q) be a formula that doesn’t contain any atom from Q. Then X �→ X \Q is
a 1–1 correspondence between the answer sets of Γ ∪ {Def(q) ⊃ q : q ∈ Q} and
the answer sets of Γ .

Proposition 5 (Completion Lemma). Let Γ be any propositional theory,
and Q a set of atoms that do not have positive, nonnegated occurrences in any
rule of Γ . For each q ∈ Q, let Def(q) be a formula such that all occurrences of
elements of Q in Def(q) are either positive or negated. Then Γ ∪ {Def(q) ⊃ q :
q ∈ Q} and Γ ∪ {Def(q) ≡ q : q ∈ Q} have the same answer sets.

The following proposition is essentially a generalization of the splitting set
theorem from [Lifschitz and Turner, 1994] and [Erdoğan and Lifschitz, 2004].

Proposition 6 (Splitting Set Theorem). Let Γ1 and Γ2 be two theories such
that all atoms occurring in Γ1 have no strictly positive occurrences in Γ2. Then
a set of X is an answer set for Γ1 ∪ Γ2 iff there is an answer set Y for Γ1 such
that X is an answer set for Y ∪ Γ2.
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4 Representing Aggregates

4.1 Definition

Aggregates are an important extension to logic programs, widely used in answer
set programming. We define a (ground) aggregate as an expression of the form

op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N (2)

where

– op is (a symbol for) a function from multisets of R (real numbers) to R ∪
{−∞,+∞} (such as sum, product, min, max, etc.),

– {F1 = w1, . . . , Fn = wn} (n ≥ 0) is a multiset where F1, . . . , Fn are formulas,
and w1, . . . ,wn are (symbols for) real numbers (“weights”),

– ≺ is (a symbol for) a binary relation between real numbers, such as ≤ and
=, and

– N is (a symbol for) a real number.

As an intuitive explanation of an aggregate, take the multiset W consisting of
the weights wi (1 ≤ i ≤ n) such that Fi is “true”. The aggregate is considered
“true” if op(W ) ≺ N . For example,

sum〈{p = 1, q = 1}〉 �= 1. (3)

intuitively expresses the condition that both p are q are “true” or none of them.
To define the semantics of aggregates, we propose to identify (2) with the

formula ∧
I⊆{1,...,n} : op({wi : i∈I}) ≺N

((∧
i∈I

Fi

)
⊃
(∨

i∈I

Fi

))
, (4)

where I stands for {1, . . . ,n} \ I, and �≺ is the negation of ≺ 5.
For instance, if we consider aggregate (3), the conjunctive terms in (4) cor-

respond to the cases when the sum of weights is 1, that is, when I = {1} and
I = {2}. The two implications are q ⊃ p and p ⊃ q respectively, so that (3) is

(q ⊃ p) ∧ (p ⊃ q). (5)

Similarly,
sum〈{p = 1, q = 1}〉 = 1 (6)

is
(p ∨ q) ∧ ¬(p ∧ q). (7)

Note that, even if (5) is classically equivalent to (7), they are not equivalent in
the logic of here-and-there. This shows that it is generally incorrect to “move”
a negation from a binary relation symbol (such as �=) in front of the aggregate
as the unary connective ¬.

Some properties of aggregates are stated in the following proposition.
5 This definition, based on the idea of the translation from [Faber et al., 2004], is

meant to provide a very general semantics for aggregates, but we do not propose to
use it directly for computing answer sets.
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Proposition 7. For any aggregate op〈S〉 ≺ N where S is

{F1 = w1, . . . , Fn = wn},

and any sets X and Y of atoms,

(a) X |= op〈S〉 ≺ N iff op({wi : X |= Fi}) ≺ N , and
(b) Y |= (op〈S〉 ≺ N)X iff X |= op〈S〉 ≺ N and Y |= op〈SX〉 ≺ N ,

where SX stands for {FX
1 = w1, . . . , F

X
n = wn}.

Proposition 7(a) confirms that our proposal to identify (2) with (4) is in
agreement with the intuitive meaning of an aggregate. Part (b) is similar to
property (1) of binary connectives.

When a theory Γ is described using abbreviation (2) in its formulas, answer
sets of Γ can be computed using Proposition 7 instead of a direct reference to (4).

Finally, it can be shown by Proposition 2 that if we want to identify (2) with
a formula so that Proposition 7 holds then (4) is the only choice, modulo strong
equivalence.

Proposition 7(a) follows from the fact that X satisfies an implication in (4)
iff I �= {j : X |= Fj}. The proof of part (b) uses the following lemma that is
easily provable.

Lemma 3. For any formulas F1, . . . , Fn (n ≥ 0), any set X of atoms, and any
connective ⊗ ∈ {∨,∧}, (F1⊗· · ·⊗Fn)X is classically equivalent to FX

1 ⊗· · ·⊗FX
n .

4.2 Monotone Aggregates

An aggregate op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N is monotone if, for each pair
of multisets W1, W2 such that W1 ⊆ W2 ⊆ {w1, . . . ,wn}, op(W2) ≺ N is true
whenever op(W1) ≺ N is true. The definition of an antimonotone aggregate is
similar, with W1 ⊆W2 replaced by W2 ⊆W1.

For instance,
sum〈{p = 1, q = 1}〉 > 1. (8)

is monotone, and
sum〈{p = 1, q = 1}〉 < 1. (9)

is antimonotone. An example of an aggregate that is neither monotone nor an-
timonotone is (3).

Proposition 8. An aggregate op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N is equivalent,
in the logic of here-and-there, to ∧

I⊆{1,...,n} : op({wi : i∈I}) ≺N

(∨
i∈I

Fi

)
if the aggregate is monotone, and to∧

I⊆{1,...,n} : op({wi : i∈I}) ≺N

(
¬
∧
i∈I

Fi

)
if the aggregate is antimonotone.
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In other words, if op〈S〉 ≺ N is monotone then the antecedents of the im-
plications in (4) can be dropped. Similarly, in case of antimonotone aggregates,
the consequents of these implications can be replaced by ⊥. In both cases, (4) is
turned into a nested expression, if F1, . . . , Fn are nested expressions.

For instance, the monotone aggregate (8) is

(p ∨ q) ∧ (p ⊃ q) ∧ (q ⊃ p),

which is equivalent, in the logic of here and there, to

(p ∨ q) ∧ q ∧ p

and then to q ∧ p. In the case of the antimonotone aggregate (9), the formula

((p ∧ q) ⊃ ⊥) ∧ (p ⊃ q) ∧ (q ⊃ p)

is equivalent, in the logic of here-and-there, to

(¬(p ∧ q)) ∧ ¬p ∧ ¬q,

and then to ¬p ∧ ¬q.
On the other hand, if an aggregate is neither monotone nor antimonotone,

it may be not possible to find a nested expression equivalent, in the logic of
here-and-there, to (4), even if F1, . . . , Fn are nested expressions. This is the case
for (3). Indeed, let A denote (3). Considering that this expression stands for (5),
it is easy to check that 〈{p}, {p, q}〉 �|= A and 〈∅, {p, q}〉 |= A. On the other hand,
for any nested expression F , if 〈{p}, {p, q}〉 �|= F then 〈∅, {p, q}〉 �|= F (easily
provable by structural induction.)

Both parts of Proposition 8 can be proven, in the difficult direction, by strong
induction on the cardinality of I.

4.3 Example

We consider the following variation of the combinatorial auction problem, which
can be naturally formalized using an aggregate that is neither monotone nor
antimonotone.

Joe wants to move to another town and has the problem of removing all his
bulky furniture from his old place. He has received some bids: each bid may
be for one piece or several pieces of furniture, and the amount offered can be
negative (if the value of the pieces is lower than the cost of removing them). A
junkyard will take any object not sold to bidders, for a price. The goal is to find
a collection of bids for which Joe doesn’t lose money, if there is any.

Assume that there are n bids, labeled from 1 to n. We express by the formulas

bi ∨ ¬bi (10)

(1 ≤ i ≤ n) that Joe is free to accept any bid or not. Clearly, Joe cannot accept
two bids that involve the selling of the same piece of furniture. So, for each pair
i, j of such bids, we include the formula

¬(bi ∧ bj). (11)
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Next, we need to express which pieces of the furniture have not been given to
bidders. If there are m objects (numbered from 1 through m), we can express
that an object i is sold by bid j by adding the rule

bj ⊃ si (12)

to our theory.
Finally, we need to express that Joe doesn’t lose money by selling his items.

This is done by the aggregate

sum〈{b1 = w1, . . . , bn = wn,¬s1 = −c1, . . . ,¬sm = −cm}〉 ≥ 0, (13)

where each wi is the amount of money (possibly negative) obtained by accepting
bid i, and each ci is the money requested by the junkyard to remove item i. Note
that (13) is neither monotone nor antimonotone.

Proposition 9. X �→ X ∩ {b1, . . . , bn} is a 1–1 correspondence between the
answer sets of the theory consisting of formulas (10)–(13) and the solutions of
this problem.

5 Other Formalisms

5.1 Programs with Weight Constraints

Weight constraints [Simons et al., 2002] can be viewed as aggregates of the form
sum〈S〉 ≥ N (traditionally denoted by N ≤ S) and sum〈S〉 ≤ N (denoted by
S ≤ N), where each formula in S is a literal. Weight constraints are one of the
most commonly used kind of aggregates in logic programs, especially in the case
of weights that are equal to 1 (cardinality constraints).

A program with weight constraints is a set of formulas of the form

W1 ∧ · · · ∧Wn ⊃ a (14)

(n ≥ 0) where a is an atom or ⊥, and W1, ...,Wn are weight constraints. 6

Theorem 2. For every program with weight constraints, if all the weights are
positive, then the answer sets under our semantics are identical to its answer
sets in the sense of [Simons et al., 2002, Section 2.3].

The proof consists in showing that, in the case of positive weights,
sum〈S〉 ≥ N and sum〈S〉 ≤ N are equivalent, in the logic of here-
and-there, to the nested expressions [N ≤ S] and [S ≤ N ] defined
in [Ferraris and Lifschitz, 2005]. Theorem 2 follows from this fact in view of
Theorem 1 from [Ferraris and Lifschitz, 2005].
6 For simplicity, we are considering only part of the syntax allowed

in [Simons et al., 2002]. Every rule in the sense of that paper can be equiva-
lently rewritten as a set of rules of the form (14).
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Our semantics is not equivalent to the semantics of [Simons et al., 2002] when
the weights can be negative (as discussed in the introduction, our view of nega-
tive weights is equivalent to the one proposed in [Faber et al., 2004]). According
to [Ferraris and Lifschitz, 2005, Footnote 6], the traditional semantics for weight
constraints may lead to some unintuitive results: program

(0 ≤ {p = 2, p = −1}) ⊃ p (15)

according to [Simons et al., 2002], has no answer sets, while

(0 ≤ {p = 1}) ⊃ p

has one answer set {p}. Under our semantics, {p} is the only answer set for both
programs.

While weight constraints with positive weights only are either monotone or
antimonotone, this is not the case when negative weights are allowed as in (13).
In particular, it may not be possible to represent an aggregate of this kind by a
nested expression.

This is the main reason why the translation from programs with weight
constraints to programs with nested expressions of [Ferraris and Lifschitz, 2005]
was limited to the case of positive weights only.

5.2 Complexity of Programs with Weight Constraints

Under the semantics of [Simons et al., 2002], the existence of an answer set for
programs with weight constraints is an NP-complete problem even in presence
of negative weights. On the other hand, under our semantics, the place of this
problem in the polynomial hierarchy is different.

Proposition 10. Under the semantics of this paper, the existence of an answer
set for a program with weight constraints is a Σ2

P -complete problem.

A similar result has been independently proven in [Calimeri et al., 2005].
The problem is clearly in Σ2

P by the definition of an answer set. The Σ2
P -

hardness follows from the Σ2
P -completeness of the existence of an answer set

for disjunctive logic programs [Eiter and Gottlob, 1993, Corollary 3.8], and the
following lemma, which provides a polynomial translation from disjunctive pro-
grams to programs with weight constraints.

Lemma 4. Rule
l1 ∧ · · · ∧ lm ⊃ a1 ∨ · · · ∨ an

(n > 0,m ≥ 0) where a1, . . . , an are atoms and l1, . . . , lm are literals, is strongly
equivalent to the set of n implications (i = 1, . . . ,n)

(1 ≤ {l1 = 1}) ∧ · · · ∧ (1 ≤ {lm = 1}) ∧Ai1 ∧ · · · ∧Ain ⊃ ai,

where each Aij stands for 0 ≤ {ai = 1, aj = −1}.
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5.3 FLP-Aggregates

We will now show that our semantics of aggregates is an extension of the seman-
tics proposed by Faber, Leone and Pfeifer [2004]. An aggregate of the form (2)
is a (ground) FLP-aggregate if F1, . . . , Fn are conjunctions of atoms. A (ground)
FLP-program is a set of formulas

A1 ∧ · · · ∧Am ⊃ a1 ∨ · · · ∨ an (16)

(n,m ≥ 0), where a1, . . . , an are atoms and A1, . . . , Am are FLP-aggregates.7

Theorem 3. The answer sets for a FLP-program under our semantics are iden-
tical to its answer sets in the sense of [Faber et al., 2004].

To prove this theorem we need to observe, first of all, that the definition
of satisfaction of FLP-aggregates and FLP-programs in [Faber et al., 2004] is
equivalent to ours. The definition of a reduct is different, however. According
to [Faber et al., 2004], the reduct of a program Π with FLP-aggregates relative
to X (we denote such a reduct by ΠX) consists of the rules (16) of Π such that
X |= A1 ∧ · · · ∧ Am. The definition of an answer set is again similar to ours:
a set X of atoms is an answer set for a FLP-program Π if X is a minimal set
satisfying ΠX .

Lemma 5. For any nested expression F without negations and any two sets X
and Y of atoms such that Y ⊆ X, Y |= FX iff Y |= F.

Lemma 6. For any FLP-aggregate op〈S〉 ≺ N and any set X of atoms, if
X |= op〈S〉 ≺ N then

Y |= (op〈S〉 ≺ N)X iff Y |= op〈S〉 ≺ N.

Lemma 5 can be proven by structural induction. Lemma 6 follows from Lemma 5
and Proposition 7(b).

Proof of Theorem 3. It is easy to see that if X �|= Π then X �|= ΠX and
X �|= ΠX , so that X is not an answer set under either semantics. Now assume
that X |= Π . We will show that the two reducts are satisfied by the same subsets
of X . It is sufficient to consider the case in which Π contains only one rule (16).
If X �|= A1 ∧ · · · ∧Am then ΠX = ∅, and ΠX is the tautology

⊥ ⊃ (a1 ∨ · · · ∨ an)X .

Otherwise, ΠX is rule (16), and ΠX is

AX
1 ∧ · · · ∧AX

m ⊃ (a1 ∨ · · · ∨ an)X .

These two reducts are satisfied by the same subsets of X by Lemmas 5 and 6. "#

7 The syntax of [Faber et al., 2004] is more general in several ways. An expression of
the form ¬(op〈S〉 ≺ N) in such syntax has the same meaning as op〈S〉 �≺ N . Also,
that paper allows literals as conjunctive terms in the antecedent of the implica-
tion (16). However, semantically, an atom a is not different from sum〈{a = 1}〉 ≥ 1,
and ¬a is not different from sum〈{a = 1}〉 ≤ 0.
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6 Conclusion

We extended the definition of an answer set to arbitrary propositional theo-
ries. This definition of an answer set is equivalent to the definition of a model
in equilibrium logic, so that it shares important properties of equilibrium logic
such as the characterization of strong equivalence in terms of the logic of here-
and-there. The new definition of reduct is different from the traditional defini-
tion [Lifschitz et al., 1999] in the case of programs with nested expressions, but
it is in some ways similar to it.

Even though propositional theories have a richer syntax, it turns out that
any propositional theory can be expressed as a program with nested expression
with the same answer sets [Cabalar and Ferraris, 2005]. In view of this fact, the
possibility of defining answer sets for arbitrary propositional theories is not so
surprising.

Propositional formulas cover both disjunctive rules with FLP-aggregates and
choice rules. In the case of weight constraints, if negative weights are allowed then
our semantics is not equivalent to the one of [Simons et al., 2002], but seems to
have better properties. We have seen that this difference has consequences from
the point of view of computational complexity.

It is possible, by Proposition 7, to view an aggregate op〈S〉 ≺ N as a primitive
construct rather than an abbreviation for an exponentially larger formula. This
is what is already happening in the answer set solver dlv 8, which partially
supports programs with FLP-aggregates. On the other hand, viewing aggregates
as formulas allows us to reason about strong equivalence in terms of the logic of
here-and-there.
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Abstract. We introduce a declarative approach for a coherent composition of
autonomous databases. For this we use ID-logic, a formalism that extends clas-
sical logic with inductive definitions. We consider ID-logic theories that express,
at the same time, the two basic challenges in database composition problems:
relating different schemas of the local databases to one global schema (schema
integration) and amalgamating the distributed and possibly contradictory data to
one consistent database (data integration). We show that our framework supports
different methods for schema integration (as well as their combinations) and that
it provides a straightforward way of dealing with inconsistent data. Moreover,
this framework facilitates the implementation of database repair and consistent
query answering by means of a variety of reasoning systems.

1 Introduction and Motivation

Composition of information that arrives from different data-sources is a major challenge
of information systems and its importance has been recognized by many researches. The
works on this subject may be divided to two types according to their objectives:

– Systems for schema integration, in which the main goal is to provide a uniform
vocabulary to which the various vocabularies of the data-sources can be mapped
(see, for instance, [6,10,21,26,30]).

– Systems for data integration, in which the major concern is to resolve contradic-
tions that may occur when the distributed data is amalgamated (see, e.g.,
[1,2,3,4,5,8]).

In this work we consider a framework that handles both these tasks at the same time.
To illustrate (and motivate) this, consider the following situation:

Example 1. Given two data sources. One source stores information about all the stu-
dents that were enrolled for the first time during 2004, and the other source contains
information about all the students whose first year of enrollment is 2005. The encoding
of such databases might be the following:

DB1 = ({st04(·)}, {st04(john)}),
DB2 = ({st05(·)}, {st05(mary), st05(john)}).

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 132–144, 2005.
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Here, DB1 encodes the fact that John is a student first enrolled in 2004, and DB2 en-
codes the facts that John and Mary are students first enrolled in 2005.

Assume further that there is a set of (global) integrity constraints, stating that the
first year of enrollment is unique for every student, and that someone must have been
enrolled already in 2003. That is,

IC =

{
∀XYZ

(
enr(X,Y ) ∧ enr(X,Z) → Y = Z

)
∃Xenr(X, 2003)

}
.

A proper integration system is expected to take the following actions in this case:

a) remove the information that John was first enrolled in 2004 or the information that
he was first enrolled in 2005 (but not both!)

b) insert a fact that some student other than John or Mary was first enrolled in 2003.

Note that in order to accomplish this task, the mediator system should be able to
cope with the following challenges:

1. relate the different terminologies of the local databases and that of the global in-
tegrity constraints,

2. identify inconsistencies (i.e., violations of integrity constraints) and resolve them
by making some (minimal amount of) changes in the unified database,

3. search for solutions that may lie outside the active domain of the databases (in
order, e.g., to satisfy the second constraint above).

We call the whole process described above database composition. In this paper we
present a composition system that generalizes the schema integration process intro-
duced in [30] and at the same time enhances the abductive system for data integration
introduced in [3], by using the same logical formalism. The outcome is a uniform so-
lution for database composition, which to the best of our knowledge is more compre-
hensive (with respect to the expressive power of the underlying language, the amount
of integration methods that are supported, and the mediation capabilities mentioned in
Example 1) than any other approach implemented by similar systems.

2 Preliminaries

2.1 ID-logic

ID-logic [12,13] is a knowledge representation formalism extending classical first-order
logic with non-monotone inductive definitions. It is motivated by the realization that (in-
ductive) definitions are a distinctive form of human knowledge and are often encoun-
tered in mathematical practice. At the same time, inductive definitions cannot easily be
expressed in classical logic (for instance, the transitive closure of a graph is one of the
simplest concepts typically defined by induction but it is well-known that this concept
cannot be defined in first-order logic).
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The language of ID-logic uses the well-founded semantics [28] to extend classi-
cal logic with a new ‘inductive definition’ primitive, and as such it allows even non-
monotone inductive definitions to be correctly formalized in an intuitive way. It has
also been shown that ID-logic is able to capture the basic ideas behind different con-
cepts and approaches in common-sense reasoning, such as the semantical foundations
of situation calculus [15] and description logic [27]. As our goal here is to define com-
posed databases in terms of the distributed ones, together with a description of the
merging process, ID-logic is a natural candidate for being the underlying formalism
behind such an axiomatization. Below we give the formal definition of this logic.

Definition 1. An ID-logic theory T , based on a first-order language L, is a pair (D,F ),
where D is a set of definitions Di (i = 1, . . . ,n) and F is a set of first-order formulas.
A definition D is a set of rules of the form p(t)←B, where p(t) is an atom and B is a
first-order formula.

Example 2. The transitive closure of a graph can be defined by the following ID-logic
definition: T ransCl(x, y)← Edge(x, y) ∨ ∃z(T ransCl(x, z) ∧ T ransCl(z, y)).

In what follows we refer to D and F as the definitions and the constraints (respec-
tively) of T . The predicates occurring in the heads of the rules in the definitions are the
defined predicates ofD. All the other predicates belong to Open(D), the set of the open
(abducible) predicates of D.

Definition 2. A structure M is a model of a definition D iff there exists an interpreta-
tion I of Open(D) such that M is the two-valued well-founded model [28] of D that
extends I . A structure M is a model of D iff M is a model of each D ∈ D.

Definition 3. A structure M is a model of an ID-logic theory T =(D,F ) iff M is a
model ofD and satisfies all formulas ofF . The collection of all models of T is denoted
by mod(T ).

We say that a formula ψ is satisfied by an ID-logic theory T if there is a model of
T that satisfies ψ. A formula ψ follows from T if every model of T satisfies ψ.

The following notation will be useful in what follows:

Definition 4. For two ID-logic theories T1, T2 over the same languageL, the composed
theory T1 ◦ T2 is an ID-logic theory T over L, obtained by the pairwise union of both
theories: T = T1 ◦ T2 = (D1,F1) ◦ (D2,F2) = (D1 ∪ D2,F1 ∪ F2).

Proposition 1. mod(T1 ◦ T2) = mod(T1) ∩mod(T2).

2.2 Database Composition

In this section we formally define the problem under consideration and its solutions.

Definition 5. A database is a pair DB = (L,D), where the database language L is
a first-order language based on a vocabulary consisting of the predicate symbols in a
fixed database schema S and a finite set Dom of constants representing the elements of
the domain of discourse. The database instance D is a finite set of ground atoms in the
language L.
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The semantics of a database instance is given by the conjunction of the atoms in D
augmented with the Unique Name Assumption (UNA(Dom)), i.e., different constants
represent different objects, and the Closed World Assumption (CWA(D)) that assures
that each atom which is not explicitly mentioned in D is false. Often, the Domain Clo-
sure Assumption (DCA(Dom)) is also imposed, meaning that all elements of the domain
of discourse are named by constants in Dom.1 The meaning of a database instance un-
der these assumptions is formalized in a model theoretical way by the least Herbrand
model semantics.

Definition 6. A composition problem is a pair (D,C), where the set of resources D is
a non-empty set of (local) databases DBi = (Li,Di), i = 1, . . . ,n, and the (global)
integrity constraints C = (LG , IC) consists of a (possibly empty) set IC of first-order
formulae in a first-order (global) language LG .

Given a composition problem (D,C), our goal is therefore to construct a composed
(global) database DBG = (LG ,DG) such that its database instance DG contains the
translation to LG of data-facts that appear in database instances of elements in D, pro-
vided that these data facts do not violate the integrity constraints in IC. Clearly, this
database instance should ‘gather’ from the local databases as much information as con-
sistently possible, that is, it should be ‘as close as possible’ to

⋃
i=1,...,nDi, without

violating IC.

Example 3. Consider again Example 1. The composition problem in this case consists
of two databases, DB1 and DB2, that should be composed under the integrity con-
straints in IC. When LG = {enr(X,Y )} is the language of the composed database
(meaning that a student X was first enrolled in a year Y ), the two best composed
database instances are the following:

D1
G =

{
enr(mary, 2005), enr(john, 2005), enr(u, 2003)

}
D2
G =

{
enr(mary, 2005), enr(john, 2004), enr(u, 2003)

}
where u is a (Skolem) constant, different from mary and john.

When Dom consists only of mary and john, DCA(Dom) excludes the two solu-
tions above, and the composed database instances are the following (see also Exam-
ple 5):

D3
G =

{
enr(mary, 2005), enr(john, 2003)

}
D4
G =

{
enr(john, 2005), enr(mary, 2003)

}
D5
G =

{
enr(john, 2004), enr(mary, 2003)

}
Note that other compositions of DB1 and DB2 are less intuitive in this case. For in-
stance, D∗ = {enr(john, 2003)} requires more revisions in the original assumptions
than D3

G , and so D3
G is ‘closer’ to D1 ∪D2 than D∗.

In what follows we shall describe how to define ID-logic theories that represent the
composition problems under consideration (Section 3) and how to reason with these
theories in order to compute composed databases for the given composition problems
(Section 4).

1 This assumption is sometimes lifted when constants outside Dom should be introduced; see
e.g. Examples 3 and 5 below.
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3 The Composition Theory

In what follows we assume that all the databases share the same domain Dom (this will
simplify the presentation, as the implicit assumptions UNA(Dom) and DCA(Dom) can
be imposed globally) and that all the languages are mutually distinct (to assure this, one
can annotate the predicate names with the source identities).

Definition 7. A mediator system for a composition problem (D,C) is a quadruple
M = 〈L,CP, SI,DI〉, where:

– L is the union of the source languagesLi, the global languageLG , and the auxiliary
predicates defined below.

– CP = {S1, . . . ,Sn, IC}, the composition problem description, is a set of ID-logic
theories Si encoding the source databases (i.e., the database instances Di of the
databases in D), and an ID-logic theory IC encoding the global integrity constraints
IC in C (see Section 3.1).

– SI = {M1, . . . ,Mn,K}, the schema integration specification, is a set of ID-logic
theories Mi encoding the relations between the source languages Li and the global
language LG , and an ID-logic theory K encoding additional information about the
relations among the schemas (see Section 3.2).

– DI = {Comp,Trans}, the data integration specification, is a set of ID-logic theo-
ries that specify how to make the combined database consistent with the set IC of
integrity constraints in C (see Section 3.3).

A composition theory for a mediator systemM is an ID-logic theory TM = TSI ◦ TDI

in L, where TSI = S1 ◦ · · · ◦ Sn ◦M1 ◦ · · · ◦Mn ◦ K and TDI = IC ◦ Comp ◦ Trans.

In the rest of this section we consider in further details the components of a mediator.

3.1 Representation of the Composition Problem

Let ({(L1,D1) , . . . , (Ln,Dn)} , (LG , IC)) be a composition problem.

– The encoding of a source database instance Di (1 ≤ i≤ n) in CP is the ID-logic
theory Si = ({{Di}} , ∅), where Di is the enumeration of the facts in Di.

– The encoding of the global integrity constraints IC in CP is the ID-logic theory
IC = (∅, {IC}), where IC is obtained by interpreting the integrity constraints IC as
an enumeration of formulae in LG , and substituting every occurrence of a predicate
p(t) by fact(p(t)).2

3.2 Representation of Schema Integration

The component SI of a mediator system describes the relationships between the source
languagesLi and the global languageLG . These relationships are expressed in the form
of (inductive) definitions, taking into account the ontological relationships between the
predicates and the actual knowledge of the source. For a proper description of such
relations, one has to take into consideration the following cases:

2 The need of this substitution will become apparent in Section 3.3.
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1. Suppose that the set of rules {p(t) ← Bi | i = 1 . . .k} only partially defines a
predicate p. A complete definition can be obtained by adding a rule p(s)← p∗(s),
in which the auxiliary open predicate p∗ represents all the tuples in p that are not
defined by any of the bodies Bi.

2. Sometimes a body of a rule p(t) ← B is too general, i.e., it includes tuples not
intended to be in the predicate p. In this case it is possible to add to the body B an
auxiliary open predicate ps that filters the extraneous tuples. The completed rule in
this case is p(t)← B ∧ ps(t).

Auxiliary predicates help to relate different languages and to complete partial infor-
mation. As such, they serve as open (abducible) predicates.

Definition 8. A language mapping from a language L1 to a language L2 is an ID-
logic theory (R1→2, IC1,2), where R1→2 defines the predicates of L2 in terms of the
predicates of L1 and the necessary auxiliary predicates, and IC1,2 formulates generic
integrity constraints on the auxiliary predicates.

In terms of the last definition, the elements M1, . . . ,Mn of SI are the language
mappings between the source languages and the global language. The first component
of each one of these mappings Mi may be of one of the following two forms:

– Ri→G . In this case the predicates of global language LG are defined in terms of the
predicates of a local language (Li in this case). This mapping corresponds to the
Global as View (GAV) approach in schema integration (see, e.g., [26]).

– RG→i. In this case the languageLi of a local source is defined in terms of the global
language LG . This mapping corresponds to the Local as View (LAV) approach in
schema integration (see [21]).

Most of the systems that are introduced in the literature support only one type of the
schema integration methods described above. In our case it is clear that one may use
both kinds of language mappings in the same theory, and so imitate both GAV and LAV
by the same mediator system.

Example 4. Consider the source languages L1 = {st05(·)} and the global language
LG = {enr(·, ·)}, where st05(·) represents (some) students that are first enrolled in
2005 and enr(·, ·) represents all students with their first year of enrollment. According
to the LAV approach, a mapping M1 = (RG→1, ICG,1) between these languages could
be the following ID-logic theory:(

{{st05(X)← enr(X, 2005) ∧ st05s(X).}},
{∀X(st05s(X) → enr(X, 2005))}

)
,

where st05s(·) represents the students known by the source and the integrity constraint
expresses that this is a subset of all students enrolled in 2005. Similarly, a GAV mapping
M1 = (R1→G , IC1,G) could be, e.g., the following ID-logic theory:(

{{enr(X,Y )← (st05(X) ∧ Y = 2005) ∨ enr∗(X,Y ).}},
∀XY (enr∗(X,Y ) → ¬(st05(X) ∧ Y = 2005))

)
,

where enr∗(·, ·) represents the students not known by the source, and the integrity con-
straint imposes that enr∗(·, ·) does not duplicate the information from the source.
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The remaining element in SI, denoted by K, contains some additional information
about the predicates and the interrelations. In the above example, for instance, one may
know that the source has complete information about all students enrolled in 2005,
so now st05(·) should represent all the students first enrolled in 2005. This can be ex-
pressed by the constraint ∀Xenr(X, 2005)↔ st05(X). In the LAV approach it implies
that the relation st05s(·) is empty (and could be omitted in the language mapping); in
the GAV approach, it implies that enr∗(·, ·) cannot have tuples with the year 2005.

3.3 Representation of Data Integration

The data integration specification DI is a specification of how the database instances
should be integrated such that no integrity constraint will be violated. It makes sure that
if the setD =

⋃
Di of all the local databases (translated to the global schema) preserves

all the integrity constraints in IC (notation:D |= IC),3 then the global database instance
DG will be equal to this set. Otherwise, some (minimal amount of) data-facts should be
inserted to- or retracted from this union in order to restore its consistency with respect
to IC. In other words,

⋃
Di should be ‘repaired’:

Definition 9. [1] A repair of a database instanceD with respect to a set IC of integrity
constraints is a pair (Insert,Retract), such that: (1) Insert ∩ D= ∅, (2) Retract ⊆ D,4

and (3) ((D ∪ Insert) \ Retract) |= IC.

Intuitively, Insert is a set of elements that should be inserted to D and Retract is a
set of elements that should be removed from D in order to assure that D is consistent
with IC. This is represented by the following ID-logic theory (the composer):

Comp =

⎛
⎜⎜⎝
{{

fact(X)← db(X) ∧ ¬retract(X).
fact(X)← insert(X).

}}
,{

∀X ¬(insert(X) ∧ db(X))
∀X db(X)← retract(X)

}
⎞
⎟⎟⎠,

where db(X) denotes in the global language that X is a data-fact, and fact(X) denotes
that the data-fact X should appear in the global database. Here, insert and retract are
open (abducible) predicates that describe repairs. The last two formulas of Comp assure
that conditions (1) and (2) in Definition 9 will hold.5

As there are usually many ways to repair a given database, it is often convenient
to make preferences among the possible repairs, and consider only the most preferred
ones. Below are two common preference criteria for preferring a repair (Insert,Retract)
over a repair (Insert′,Retract′):

Definition 10. Let (Insert,Retract) and (Insert′,Retract′) be two repairs of a database.

– set inclusion preference criterion:
(Insert,Retract) ≤i (Insert′,Retract′), if Insert ⊆ Insert′ and Retract ⊆ Retract′

3 That is, every formula in IC is satisfied in the least Herbrand model of D.
4 Note that by conditions (1) and (2), Insert ∩ Retract=∅.
5 The third condition of Definition 9 is imposed by the theory IC as defined in Section 3.1.
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– minimal cardinality preference criterion:
(Insert,Retract)≤c (Insert′,Retract′), if |Insert|+|Retract| ≤ |Insert′|+|Retract′|
If D |= IC, then (∅, ∅) is the only ≤i- and ≤c-preferred repair of D, as expected.

The second component of DI is the translator, Trans. It represents all the translated
data-facts in terms of one (global) language:

Trans = ({{db(p1(t))←p1(t), . . . , db(pG(t))←pG(t)}}, ∅)
where p1, . . . , pG are the predicates of the global language LG .

The translator reifies the database predicates, i.e., it converts the database facts into
terms of the predicate db.6 For reducing notational complexity, we use the same sym-
bols for the predicates and their reifications (e.g., in Trans above, the pi appearing on
the left-hand side of the implications are the reified symbols of the predicates pi on the
right-hand side of the same implications). Note that the predicate fact of the composer
represents which one on these new ‘fact’-terms appears in the composed database.

3.4 Back to the Canonical Example

A composition theory for Example 1 may be the following:

• The schema integration theory TSI is a composition of S1, S2,M1, and M2 (in this case
K is assumed to be empty):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
st04(john).

}{
st05(mary).
st05(john).

}
{

enr(X,Y )← st04(X) ∧ Y = 2004.
enr(X,Y )← enr∗1(X,Y ).

}
{

enr(X,Y )← st05(X) ∧ Y = 2005.
enr(X,Y )← enr∗2(X,Y ).

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{
∀XY (enr∗1(X,Y ) → ¬(st04(X) ∧ Y = 2004)).
∀XY (enr∗2(X,Y ) → ¬(st05(X) ∧ Y = 2005)).

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The definitions of TSI are from the theories S1, S2, M1, and M2; the constraints are
from M1 and M2.

• The data integration theory TDI is the following composition of IC, Comp and Trans:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎨
⎩
{

fact(X)← db(X) ∧ ¬retract(X).
fact(X)← insert(X).

}
{

db(enr(X,Y ))← enr(X,Y ).
}

⎫⎬
⎭ ,

⎧⎪⎪⎨
⎪⎪⎩
∀X¬(insert(X) ∧ db(X)).
∀Xdb(X)← retract(X).
∀XY Z (fact(enr(X,Y )) ∧ fact(enr(X,Z)) → Y = Z).
∃Xfact(enr(X, 2003)).

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The definitions of TDI are from Comp (the first two) and Trans (the third one); the
constraints of TDI are from Comp (the first two) and IC (the last two).

6 See [7] for a description of reifications in the context of knowledge representation.
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4 Reasoning with Composed Databases

Query answering is probably the main task of a mediator system. In order to com-
pute answers from a composition theory in our context, the underlying ID-logic theory
should be converted to an equivalent theory in answer set programming (ASP) or abduc-
tive logic programming (ALP), which are the two available methods of reasoning with
ID-logic theories. By this, corresponding off-the-shelf solvers (such as the ASP systems
dlv [17] and sModels [25], or the ALP solver Asystem [3,20,29]) can be utilized for
the query answering. Below we consider both options.

Abductive Logic Programming

An ID-logic theory can be converted to an equivalent abductive normal logic program
(see [29] for a detailed description of this process), and then processed by solvers for
reasoning with abductive theories. We have implemented our approach for database
composition by such a solver, called Asystem [3,20,29].7 The Asystem computes in-
terpretation of the abducible predicates of a given ID-logic theory8 by executing the
abductive refutation procedure SLDNFA (an extension of SLD-resolution for programs
with Negation as Failure operators and Abducible predicates; see [14]). It therefore
constructs an explanation formula E , in terms of the open predicates of T , that entails a
queryQ. Formally:

Definition 11. An abductive solution for an ID-logic theory T and a query Q is a pair
(Δ, E), where Δ is a set of abducible atoms and E is the conjunction of the elements in
Δ, such that T |= ∃x E(x) and T |= ∀x (E → Q)(x).

In our case, the computed explanation formula E describes a class of models of
T . When E is true, the query is satisfiable with respect to all the models. When the
Asystem is unable to find an abductive solution forQ, then T |= ∀(¬Q).

SLDNFA is a sound proof procedure for abductive normal logic programs under the
(three-valued) completion semantics. Under certain conditions it is also complete (see
[14]) and always terminates (see [31]).9 These properties are inherited by theAsystem,
which is also equipped with a component that discards non-optimal solutions, called the
optimizer. Given a preference criterion on the solution space, the optimizer computes
only the most-preferred (abductive) solutions by pruning ‘on the fly’ those branches of
the search tree that lead to solutions that are worse than others that have already been
computed. This is actually a branch and bound ‘filter’ that speeds-up execution and
makes sure that only the desired solutions will be obtained. If the preference criterion is
a pre-order (as those of Definition 10), the optimizer is complete, that is, it can compute
all the optimal solutions (as illustrated in Example 5 below). We refer to [3,29] for a
detailed description of the abductive inference process implemented by the Asystem.

7 See also http://www.cs.kuleuven.ac.be/∼dtai/kt/systems-E.shtml.
8 These interpretations uniquely determine the models of the theory; see Definitions 2 and 3.
9 This is the case, for instance, when the underlying logic programs are hierarchical, or abductive

non-recursive



An ID-Logic Formalization of the Composition of Autonomous Databases 141

Example 5. Consider again the composition theory TM = TSI◦TDI given in Section 3.4
for the running example. By TSI we derive the atoms enr(john, 2004), enr(john,
2005), enr(mary, 2005), which is the translation of the local data in terms of the global
language. Now, both integrity constraints in IC are violated, so the data should be re-
paired. Indeed, by TDI and ≤c-optimizer, the following repairs are obtained:

– retract(enr(john, 2004)), insert(enr(u, 2003)) for u �∈{john,mary},
– retract(enr(john, 2005)), insert(enr(u, 2003)) for u �∈{john,mary}.

With an ≤i-optimizer, three more solutions are obtained:

– retract(enr(john, 2004)), retract(enr(john, 2005)), insert(enr(john, 2003))
– retract(enr(mary, 2005)),retract(enr(john,2004)),insert(enr(mary, 2003))
– retract(enr(mary, 2005)),retract(enr(john,2005)),insert(enr(mary, 2003))

The global database instances in this case are, respectively,

– {enr(u, 2003)), enr(john, 2005)), enr(mary, 2005))},
– {enr(u, 2003)), enr(john, 2004)), enr(mary, 2005))}.
– {enr(john, 2003)), enr(mary, 2005))}.
– {enr(mary, 2003)), enr(john, 2005))}.
– {enr(mary, 2003)), enr(john, 2004))}.

The first two solutions are obtained since the Asystem does not impose the domain
closure assumption DCA(Dom). This allows to compute solutions outside the least Her-
brand model of the problem, and so to suggest explanations for database inconsistency,
which could not be captured otherwise.

Answer Set Programming

An ID-logic theory in which each variable occurring in a formula is delimited by a
range (domain) relation is called a strongly range-restricted theory. In [23] it is shown
that strongly range-restricted ID-logic theories can be transformed to equivalent logic
programs under the stable model semantics. This implies that ASP solvers may also be
incorporated for reasoning with ID-logic-based mediator systems.

ALP and ASP have a lot in common, and they are often viewed as different varia-
tions of the same paradigm. In particular, both approaches compute (minimal) models
of the theory. Still, in opposed to the ALP approach, which is a local inference proce-
dure that selects only the information which is relevant for the query, ASP is a global
reasoning tool for processing ground theories. ASP requires finite domains and imposes
the domain closure axiom. As a consequence, this method is conceptually less suitable
for reasoning about tasks which need to go outside the Herbrand space, and it is inher-
ently less scalable (in terms of the size of the databases) than ALP.10 Note, however,
that grounding to finite theories ensures the termination of the ASP computations.

10 In Example 5, for instance, ASP solvers will not produce the two repairs that contain the
Skolem constant u.
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A simple work around that allows to lift the domain closure assumption posed by the
ASP approach is to iteratively add new Skolem constants to the Herbrand domain and
check for solutions in the new domains. However, a problem with this naive generate-
and-test approach is that one needs a criterion to know whether all the solutions have
been found. In case of a preference condition, the number of the Skolems constants
used in a solution allows to derive a lower bound on its cost, which could likely be the
basis for a terminating condition. Note that in certain cases (e.g., when no insertions
are allowed to restore consistency), all the solutions are already inside the Herbrand
domain, and so ASP and ALP solvers will terminate.

5 Concluding Remarks

In this paper we have developed a formal declarative foundation for representing and
reasoning with independent databases that contain information about a common do-
main, but may have different schemas and may contradict each other. This problem,
known as database composition, is represented by ID-logic theories that mediate among
the ontologies of the sources, and resolve contradictions between local information and
global constraints.

It is important to note that this paper is mainly concerned with the representation
aspects of this problem, showing that different ingredients of it can be expressed in a
natural and intuitive way by a single logical formalism. In this context, we have elabo-
rated on the following advantages of our approach:

– The underlying logic extends classical logic with inductive definitions, and as such
it can be viewed as an expressive form of a description logic.11 In particular, our
approach is more expressive than similar approaches that are based on description
logics.

– Unlike some other approaches of data integration, no syntactical restriction is im-
posed on the integrity constraints (which can be any set of first-order formulas).

– The inherent modularity of ID-logic allows to represent different aspects of the
same problem (that is, schema and data integration) in different modules. In other
formalisms (e.g., ALP, ASP, or description logics) these aspects are mixed in one
complex theory.

– The representation methodology is tolerant to the structure of the autonomous
databases. For instance, the composition theory described in Section 3 may be eas-
ily modified in case that a certain source of information is added or dropped.

– Different types of schema integration are supported (e.g., GAV and LAV), as well
as their combinations and corresponding extensions, such as the generalized LAV
approach (GLAV) [19] and Both-as-View approach (BAV) [24].

Other benefits of our framework, which are related to computation aspects of data inte-
gration, are hinted in Section 4. Below we list two of them: 12

11 See [27] for more information about the relation between ID-logic and description logics.
12 The full details are beyond the scope (and the space limitations) of this paper. Still, as noted in

Section 4, the properties below are obtained by straightforward generalizations or adaptations
to our context of the techniques described in [3] (for ALP) and [23] (for ASP).
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– Different types of query answering are supported. I.e., skeptical query answering
(also called certain answering), in which a query is true iff it is entailed by every
composed database, or credulous query answering, in which a query is true iff it is
entailed by some composed database.

– Different notions of optimal repairs (e.g., set inclusion, minimal cardinality, mini-
mization of the amount of inserted data-facts, and so forth) are dealt with through
preferential semantics.

As noted above, the mediator systems considered here may be implemented by a
variety of off-the-shelf solvers. Several other implementations have been introduced for
the kind of problems we are dealing with here. Among the implementations of schema
integration are the abductive GAV-based system of [9] and the LAV-based information
manifold system of [21]. Systems for data integration are, e.g., BReLS [22] and the data
repair system of [18]. We provide here a uniform framework for both kinds of integra-
tions. Recently, some other implementations of schema and data integration have been
introduced, e.g., [8] and [10]. These approaches are based on representation platforms
that are more restricted than ours, as they implement only particular kinds of schema
mapping styles, limit the syntactic structure of the integrity constraints, and impose the
domain closure assumption.

A detailed investigation of the properties of particular computational models for our
framework is beyond the scope of the current paper. We refer to [11,16] for a discus-
sion on some computational aspects (e.g, complexity and decidability) of the kinds of
problems considered here. Other topics for future elaboration include incorporation of
temporal information in the databases, handling of conflicts among integrity constraints,
and a study of other merging policies (such as merging by majority vote).
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Abstract. The Closed-World Assumption (CWA) on a database ex-
presses that an atom not in the database is false. The CWA is only
applicable in domains where the database has complete knowledge. In
many cases, for example in the context of distributed databases, a data
source has only complete knowledge about part of the domain of dis-
course. In this paper, we introduce an expressive and intuitively appeal-
ing method of representing a local closed-world assumption (LCWA) of
autonomous data-sources. This approach distinguishes between the data
that is conveyed by a data-source and the meta-knowledge about the
area in which these data is complete. The data is stored in a relational
database that can be queried in the standard way, whereas the meta-
knowledge about its completeness is expressed by a first order theory
that can be processed by an independent reasoning system (for example
a mediator). We consider different ways of representing our approach,
relate it to other methods of representing local closed-word assumptions
of data-sources, and show some useful properties of our framework which
facilitate its application in real-life systems.

1 Introduction and Motivation

In recent years, information integration has attracted considerable attention from
the AI and databases communities. Generally speaking, the idea is, given a set of
independent data-sources, to characterize the collective knowledge represented
by them in terms of a uniform vocabulary, called the global schema, and then
to exploit this information to obtain correct answers from the whole system (see
[8] for a detailed description of this problem, and [1,9,14] for some particular
solutions for it). An important aspect of this research is to arrive at an exact
description of the information endorsed by each and every data-source in the
system. Typically, a data-source stores a database consisting of a set of tuples.
In standard database settings, the information held by the data-source would be
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expressed by the conjunction of atoms together with the closed-world assumption
[13]. The CWA expresses the communication agreement that an atom that does
not appear in the database is false. However, it is clear that the CWA can only
be applied when the database contains complete knowledge of the domain of
discourse. In a context of distributed data-sources this assumption is inherently
inappropriate since a consideration of a certain data-source as a single and com-
plete representation of the world either completely discards the other sources of
information or causes contradictions among them. For this reason, some existing
approaches have applied an open-world assumption [3,11], interpreting a data-
source just as the conjunction of atoms in the database. However, we find that
this does not allow to grasp more refined information that is held in distributed
data systems (sometimes called mediator-based systems). We illustrate this in
the following example.

Example 1. Consider a distributed traffic tax administration system, in which
there is one data-source for each county, maintaining a database of car owners
in that county. There is a protocol amongst the different counties so that when
a car owner leaves one county A to live in another county B, then county A
immediately transfers its information to county B, while still preserving a record
of the car owner and its current status for a certain period of time, to handle
all running tax demands. By the nature of the protocol, we may assume that
each data-source has complete knowledge about all car owners in its county, but
in general it has more information than that. Part of the tables of a particular
county, say Bronx, may look as follows:

Car Owners
Name Model CarID

Peter Steward Mercedes 320 Qn-5452
John Smith Volvo 230 Bx-5242
Mary Clark BMW 550 Bx-5462

Location
Name Residence

Peter Steward Queens
Mary Clark Bronx
John Smith Bronx

By the nature of the distributed system, this data-source has an expertise
on car owners of Bronx. This meta-knowledge allows to derive further informa-
tion that is not explicitly stated in the data-source, e.g. that all people that are
recorded in the table Location as residents of Bronx, are actually all the car own-
ers from that county. However, as the information about car owners in Queens
is not complete in this data-source, one should not rely only on the tables of this
source for making further conclusions about that county.

The example above shows that when the information is distributed over sev-
eral independent data-sources, a different approach is needed in order to properly
capture the meaning of a particular data-source. While in distributed informa-
tion systems, data-sources usually have only partial knowledge about the domain
of discourse, still it is often the case that a particular source is an expert about
a specific area and has complete knowledge about it. We call this area the win-
dow of expertise of the data source. It follows that to express the information
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held by a data source, the explicit data recorded in the data-source has to be
complemented by a meta-information that describes this window of expertise.
These two kinds of information should be separated as much as possible, so
that one may still consider data-sources as relational databases, and process the
information about their completeness by an independent reasoning system.

Following these guidelines, we represent the meta-information about the com-
pleteness of a data-source by a theory that consists of several local closed-world
assumptions (LCWA) [4]. A LCWA refines the closed-world assumption by spec-
ifying for a certain predicate an area in which the data source contains all true
tuples of the predicate. In our approach, the semantics of a LCWA is expressed
by a first-order formula of a uniform syntactical form. Specifically, the contribu-
tion of this paper is the following:

• A new method for representing local closed-world assumptions is introduced.
Unlike other methods for expressing such assumptions, conceived e.g. in [2,4],
which are tailored for intelligent agents, our notion of LCWA is specifically
devised for describing complete knowledge in relational data-sources that are
part of mediator systems. This allows, in particular, to formally define the
meaning of each and every data source in such systems.

• The representation of the local closed-world assumption considered here al-
lows to distinguish between the explicit data of the source and the exter-
nal (implicit) information about its completeness. This separation allows to
query a data-source in the standard way, whereas the knowledge about its
completeness can be independently processed by the mediator system.

• We present two equivalent representations of the meaning of data-sources.
One representation is given in terms of first-order theories and the other one
is based on circumscription [10] (which is the common approach for express-
ing LCWA in related works; see, e.g., [2]). This equivalence allows us to show
how our proposal captures the intuition behind traditional approaches for
LCWA, expressed in terms of higher-order languages, and how they can be
reduced to first-order theories in case that certain conditions are met.

The organization of the rest of paper is the following. In Section 2 we intro-
duce the local closed-world assumption and use it for defining the meaning of a
data-source. In Section 3 we consider an alternative approach, defined in terms
of second-order, pseudo-circumscriptive formulae, and show the equivalence be-
tween the two approaches. Then, in Section 4 we give some further comments
and generalizations to the local closed-world assumption, and in Section 5 we
discuss some other approaches to this assumption. Section 6 concludes the paper.

2 The Local Closed-World Assumption (LCWA)

Definition 1. A data-source S is a pair 〈Σ,D〉, where Σ is a vocabulary con-
sisting of predicate symbols in a fixed relational schema R(Σ) and a finite set
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C(Σ) of constants representing the elements of the domain of discourse; and D
is a finite set of ground atoms expressed in terms of Σ.

Definition 2. Let S = 〈Σ,D〉 be a data-source and let P be a predicate that
appears in D. Denote by PS the set of tuples of P in D. We write P (t) ∈ PS ,
where t is a tuple of terms, to denote the formula

∨
a∈P S (t = a).

Example 2. Let S = 〈Σ,D〉 be the following data-source with facts about the
relations CarO(·, ·) (between people and their cars ID) and Loc(·, ·) (between
people and the place they live.)

〈{
CarO/2, Loc/2

}
,

{
CarO(JS,V231),CarO(MC,V231),CarO(MC,B342),
Loc(JS,Qn), Loc(MC,Bx)

}〉
.

Here, LocS = {(JS,Qn), (MC,Bx)}, hence Loc(x, y) ∈ LocS denotes the following
formula:

(
(x = JS) ∧ (y = Qn)

)
∨
(
(x = MC) ∧ (y = Bx)

)
.

Standard mediator systems consist of a number of data-sources collaborating
with information through a common interface, the global schema [8,14]. In such
context, the data-sources can be viewed as storing information, in the form of
a collection of tuples, about certain domain in the real world. However, which
parts of the modeled world are accurately represented in the data-source is not
recorded explicitly in the system, and so the meaning of the data-source remains
ambiguous. With the following definition we address this problem by character-
izing through a FOL expression -using the same language of the data-source-
the cases in which the data-source contains all the valid facts. We call this the
window of expertise of the data-source, and it is represented in the following
definition by the formula Ψ .

Definition 3. A local closed-world assumption for a data-source S = 〈Σ,D〉, is
a triple LCWA = 〈S,P , Ψ〉, where P = {P1(x1), . . . ,Pn(xn)} is a set of atoms
(the LCWA’s objects) and Ψ(y) (the context of the assumption) is a first-order
formula over Σ with free variables y s.t. y ⊆

⋃n
i=1 xi.

Note that in each Pi(xi), the value of the variables xi ∩ y are constrained by
Ψ . For this reason we call Ψ the window of expertise, and ∃y \xi(Ψ) the window
of expertise of the predicate Pi. The intuitive meaning of the local closed-world
assumption in Definition 3 is that for each i ∈ {1, . . . ,n}, each fact Pi(xi) that
is true in the real world and which satisfies ∃y \ xi(Ψ) should appear in the
data-source.

Example 3. Let S = 〈Σ,D〉 the data-source of Example 2.

1. 〈S, {CarO(x, y)},x = MC〉 intuitively indicates that the data-source S con-
tains all true atoms of the form CarO(x, y) for x = MC.

2. 〈S, {CarO(x, y)}, Loc(x,Bx)〉 indicates that S knows about all the cars of the
people that live in Bx.
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3. 〈S, {CarO(x, y), Loc(x, z)}, Loc(x,Bx)〉 expresses that S contains all the data
about the cars of persons living in Bx and about all people living in Bx.

4. 〈S, {CarO(x, y), Loc(x, z)},x = MC〉 indicates that S has full knowledge ab
-out Mary Clark (i.e., a LCWA regarding everything that is concerned with
MC).

Example 4. Consider the following two local closed-world assumptions:

LCWAA = 〈S, {CarO(x, y), Loc(x, z)},CarO(x,V231) ∧ Loc(x,Bx)〉
LCWAB = 〈S, {CarO(x,u), Loc(y, v)},u = V231 ∧ v = Bx〉

Intuitively, the difference between these two expressions is that the first one
expresses a full knowledge of S about car ownership and locations of V231 owners
in Bronx. On the other hand, under the second assumption, the data-source
knows all people having a V 321 including people not living in the Bronx; the
data-source also knows all people living in the Bronx, including those that do
not have a V 321.

Example 5. In case of item (1) of Example 3, the local closed-world assumption
may be expressed as follows:

∀x
(
x = MC → ∀y(CarO(x, y) → y = V231 ∨ y = B342)

)
(1)

In case of item (2) of the same example, the local closed-world assumption may
be expressed as follows:

∀x
(
Loc(x,Bx) → ∀y(CarO(x, y) → y = V231 ∨ y = B342)

)
(2)

These examples lead us to the following general formulation of a local closed-
world assumption in terms of first-order formulae:

Definition 4. Let LCWA = 〈S, {P1(x1), . . . ,Pn(xn)}, Ψ(y)〉 be a local closed-
world assumption for a data-source S. The formula that is induced from LCWA,
denoted by ΛLCWA, is the following:

∀y
(
Ψ(y) → ∀z

( n∧
i=1

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

))))

where, x =
⋃n

i=1 xi, and z = x \ y.

Note that if P is empty, then ΛLCWA is tautologically true and does not
specify any additional information.

Example 6. Below are, respectively, the formulae that are induced from the local
closed-world assumptions of items (1) and (2) in Example 3.

1. ∀x
(
x = MC → ∀y

(
CarO(x, y) →

((x = JS ∧ y = V231) ∨ (x = MC ∧ y = V231) ∨ (x = MC∧ y = B342))
))
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2. ∀x
(
Loc(x,Bx) → ∀y(CarO(x, y) →

((x = JS ∧ y = V231) ∨ (x = MC ∧ y = V231) ∨ (x = MC ∧ y = B342))
))

Note that under the unique name assumption (see Note 1 below), these formulae
are equivalent with those of Example 5.1

Definition 5. For a data-source S = 〈Σ,D〉, denote: D(S) =
∧

d∈D d.

Now we are ready to define the meaning of a data-source (in the context of
mediator systems):

Definition 6. Let S = 〈Σ,D〉 be a data-source and let LCWAj = 〈S,P j
, Ψ j〉,

j =1, . . . ,m, be all the local closed-world assumptions of S. Then the meaning
of S is given by the following formula:

M(S) = D(S) ∧
m∧

j=1

ΛLCWAj .

Note 1. When S = 〈Σ,D〉 is the only data-source, the following two conditions
are usually assumed:

– Domain Closure Axiom: DCA(S) = ∀x(
∨n

i=1 x = Ci)
– Unique Name Axiom: UNA(S) =

∧
1�i<j�n Ci �= Cj

where C1, . . . , Cn are all constants in Σ. In such cases, DCA(S) and UNA(S)
appear as two additional conjuncts in M(S). We denote the meaning of S by
MD(S), MU (S), or MDU (S), when the first, the second or both assumptions
are imposed, respectively.

The meaning of a data-source can be understood as a first-order theory rep-
resenting incomplete knowledge about the real world. In the general case this
theory will be incomplete, so there will exist more than one model, the actual
world corresponding to one of them. Consequently, the meaning of a data-source
is not be interpreted with respect to its database but with respect to the real
world.

Given a formula Ψ , denote by ∃|xΨ the existential quantification of all free
variables in Ψ , except those in x.

The next proposition shows that the formula ΛLCWA formalizes the intu-
itive meaning of the local closed-world assumption 〈S,P , Ψ〉, as specified in the
paragraph below Definition 3.

Proposition 1. For S = 〈Σ,D〉, let LCWA = 〈S, {P1(x1), . . . ,Pn(xn)}, Ψ〉 and
LCWAi = 〈S, {Pi(xi)}, ∃|xi

Ψ〉 i = 1, . . .n. Then:

ΛLCWA ≡
n∧

i=1

ΛLCWAi

1 Consider, for instance, the first formula. It is of the form ∀xΦ, and the formula in
Example 3–(1) is of the form ∀xΦ′. For every x other than MC both Φ and Φ′ are
trivially true, and for x = MC, both Φ and Φ′ hold only if there is no c �∈ {V231, B342}
s.t. CarO(MC, c) is true.
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Proof. The equivalence is obtained by applying some simple rewriting rules on
the relevant formulae. Indeed, denote x = ∪n

i=1xi and z = x \ y . Then:

ΛLCWA ≡ ∀y
(
Ψ(y) →

(
∀z
(∧n

i=1

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))))
≡ ∀y

(
Ψ(y) →

(∧n
i=1 ∀z

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

))))
≡ ∀y(

∧n
i=1

(
Ψ(y) → ∀(xi \ y)

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))
≡
∧n

i=1 ∀y
(
Ψ(y) → ∀(xi \ y)

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))
≡
∧n

i=1 ∀(y ∩ xi)
(
∃|xΨ(y) → ∀(xi \ y)

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))
≡
∧n

i=1 ΛLCWAi .

Thus the equivalence is obtained. �

Example 7. The assumption LCWA = 〈S, {CarO(x, y), Loc(x, z)},x = MC〉,
given in Example 3-(4), which says that S has full knowledge about Mary Clark,
may also be represented in a modular way by the following two expressions:

LCWAA = 〈S, {CarO(x, y)},x = MC〉
LCWAB = 〈S, {Loc(x, z)},x = MC〉

We say that the meaning of a data-source is consistent if it has at least one
model in the standard model-theoretic sense.

Proposition 2. Every data-source has a consistent meaning.

Proof. We consider the case where the meaning of a data-source S = 〈Σ,D〉 is
given by M(S). The proofs for MD(S), MU (S), and MDU (S) (i.e., when any
combination of DCA and UNA is also assumed) are similar.

Let LCWAj = 〈S,P j
, Ψ j〉, j=1, . . . ,m be all the local closed-world assump-

tions for S. Then M(S) =
∧

A∈D A∧
∧m

j=1 ΛLCWAj . To show the proposition we
define an interpretation I for Σ and show that it is a model of M(S). Let I be the
Herbrand interpretation associated with the database of S: the domain is C(Σ)
and P I = PS . By construction of I, I |= Pi(di1 , . . . , dik

) for every ground atom
in D. When Ψ j(yj) is false in I, then trivially I |=

∧m
j=1 ΛLCWAj . When Ψ j(yj)

true in I, then by its construction, whenever I |= P
j
, also I |= P j(x) ∈ PS . �

The next proposition implies that for single data-sources our semantics of the
local closed-world assumption is a conservative extension of Reiter’s closed-world
assumption for relational databases; the present approach allows to express in
such cases that a single data-source has complete knowledge about the world.

Proposition 3. Let S = 〈Σ,D〉 be the only data-source and let LCWA =
〈S,P ,TRUE〉, where P = {P1(x1), . . . ,Pn(xn)} are all the predicates occurring
in Σ. Then MDU (S) coincides with Reiter’s axiomatization of the closed-world
assumption [13] for S.
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Proof. Reiter’s axiomatization of closed-world assumption of S is a first-order
theory Γ , consisting of the following formulae: (1) DCA(S), (2) UNA(S), (3) the
ground atomic facts in D, and (4) completion axioms for each predicate of S:
∀x(Pi(xi) → P (xi) ∈ PD

i ), i = 1, . . . ,n.
By Definition 6, MDU (S) includes (1), (2) and (3), so it remains to show that

LCWA = 〈S,P ,TRUE〉 is equivalent to (4). Indeed, the formula that is induced
from this assumption is

∀x
( n∧

i=1

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))
,

which is equivalent to the conjunction of the formulae in (4). �

3 A Circumscriptive Approach to the LCWA

In this section we consider an alternative approach to the representation of
the closed-word assumption, this time by second-order formulas, and show its
equivalence to the approach given in the previous section.

Consider again item 1 of Example 3. The local closed-world assumption in
this case could be defined also in terms of sets as follows:

{y | CarO(MC, y)} = {y | CarO(MC, y) ∈ D}.
Since the set on the left-hand side of this equation is always a superset of the
set on the right-hand side, the condition could be rephrased as follows:

{y | CarO(MC, y)} ⊆ {y | CarO(MC, y) ∈ D}.
This condition is specified in terms of a set inclusion property, and it is common to
express such conditions by means of circumscriptive formulae. These formulae ex-
press the aspiration that the set of tuples of a certain predicate, satisfying a certain
condition, should be as minimal as possible. It is not surprising, therefore, that a
variant of the notion of local closed-world assumption presented here has already
been expressed in term of circumscriptive axioms (see [2] and Section 5).

Definition 7. Let LCWA = 〈S, {P1(x1), . . . ,Pn(xn)}, Ψ(y)〉 be a local closed-
world assumption for a data-source S = 〈Σ,D〉. The pseudo-circumscriptive
form of LCWA is the following (second-order) formula, denoted C(S):

∀Θ
(

D(S)[P/Θ] →
(
∀y
(
Ψ(y) → ∀z

(
Θ � P )

)
→ ∀y

(
Ψ(y) → ∀z(P � Θ)

)))
,

where x =
⋃n

i=1 xi, z = x \ y, and

– P = {P1(x1), . . . ,Pn(xn)}, Θ = {Θ1(x1), . . . , Θn(xn)}, and each Θi(xi) is a
predicate variable with the same arity of Pi(xi),

– P � Q is an abbreviation for
∧n

i=1(Pi(xi) → Qi(xi)). 2

2 C(S) is called pseudo-circumscriptive since it differs from a pure circumscription
schema by introducing the first-order formula Ψ into the representation. Just as in
Definition 4, Ψ represents the context in which P should be minimal.
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Definition 8. Let S = 〈Σ,D〉 be a data-source and let Cj(S), j = 1, . . . ,m be
the pseudo-circumscriptive forms of its local closed-world assumptions. Denote:

C(S) = D(S) ∧
m∧

j=1

Cj(S).

Theorem 1. For every data-source S, M(S) is equivalent to C(S).

Proof. We prove the theorem for the case that P and Θ are singletons, and that
m = 1. The proof can be easily extended to the general case. We have to show
that when D(S) holds,

∀y
(
Ψ(y) → ∀z

(
P (x) →

(
P (x) ∈ PS

)))
(3)

is equivalent to

∀Θ
(

D(S)
[
P/Θ

]︸ ︷︷ ︸
(a)

→
(
∀y
(
Ψ(y) → ∀z

(
Θ � P )︸ ︷︷ ︸

(b)

)
→ ∀y

(
Ψ(y) → ∀z(P � Θ)︸ ︷︷ ︸

(c)

)))
,

(4)
where, in both cases, z = x \ y. Indeed,
(⇒) Let I be a model of D(S) and (3), and consider some value ΘI in I for
the predicate variable Θ. We show that if D(S)[P/Θ] is satisfied, so is the sub-
formula (c) of (4), and hence the whole formula (4) is true as well. Let us prove,
then, that sub-formula (c) holds. Assume that for some y, Ψ(y) is true in I and
for some z, P (x) is true in I. As I is a model of (3), this implies that P (x) ∈ PS ,
i.e. for some tuple of terms c in the table of P in S, the equality x = cI holds in
I. Since ΘI satisfies D(S)[P/Θ], it follows that x ∈ ΘI .

(⇐) Let I be a model of D(S) and (4). From D(S) it follows that Θ � P . It
is obvious that Θ � P implies (b). Consequently (c) holds. Assume that there
exist values x such that Ψ(y) and P (x) hold in I. To prove (3) we need to show
that P (x) ∈ PS ; or equivalently that there exists c ∈ PS s.t. x = cI . Because of
(c) holds, it follows that x ∈ ΘI . By our choice of ΘI , this mean that for c ∈ PS ,
x = cI . �

By the last theorem, the counterparts of Propositions 1, 2, and 3 in terms of
C(S) are also obtained.

Note 2. It is important to note that unless the data-sources consist of sets of
facts, the first-order approach and the circumscriptive approach to the LCWA
do not coincide. To see this, consider S = 〈{P/1}, {P (a) ∨ P (b)}〉, and the as-
sumption LCWA = 〈S, {P (x)},TRUE〉. The formula in Definition 7 expresses
a set inclusion minimization, and in this case it states an unconditional mini-
mization of any extension of P . That is, an interpretation that satisfies both the
disjunctive expression in S and the circumscriptive form of LCWA, will neces-
sarily state that either P (a) or P (b) is true, but not both. Intuitively, this can
be read as “although the data-source is not complete with respect to P , at least
it knows that no other element of the domain can belong to P , except of a or b
(where the ‘or’ here is interpreted exclusively)”.
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4 Extensions and Additional Comments on the LCWA

4.1 LCWA with Several Data-Sources

An important (and intended) aspect of LCWA is applying it in a multiple-source
environment. In this respect, it could be useful to specify a LCWA that addresses
expertise obtained by the collective information in several data-sources. That is,

LCWA = 〈{S1, . . . ,Sn},P , Ψ〉. (5)

should represent complete knowledge, shared by sources {S1, . . . ,Sn}, in the
context Ψ , about the predicates in P . The induced formula ΛLCWA of the as-
sumption in (5) is obtained just as in the case of one data-source, when PS is
modified in the obvious way as follows:

Definition 9. Let Si = 〈Σ,Di〉, i = 1, . . . ,n be n data-sources and let P be
a predicate that appears in

⋃n
i=1 Di. Denote by P ∪Si the set of tuples of P in⋃n

i=1 Di, and abbreviate by P (t) ∈ P ∪Si the formula
∨

a∈P ∪Si (t = a).

Now, the formula ΛLCWA for the LCWA in (5) is defined just as the formula
for one source, where P (t) ∈ PS is replaced by P (t) ∈ P ∪Si .

4.2 Complex Forms of LCWA

As local closed-world assumptions are first-order formulae, they can be used for
expressing more complex assumptions about the information endorsed by the
data-sources. For instance, a context (i.e., the third component) of one LCWA
may be a formula that is induced by another LCWA, and so it is possible to
’compose’ assumptions, and get, e.g., LCWA such as the following:

LCWA =
〈
S2, {Q(x)}, Λ〈S1{P (x)},TRUE〉

〉
(6)

Note that the formula that is induced by assumption (6) is in fact equivalent to
Λ〈S1,{P (x)},TRUE〉 → Λ〈S2,{Q(x)},TRUE〉, and in general,

Λ〈S2,{Q(x〉},Λ〈S1{P(x)},Ψ〉〉 = Λ〈S1,{P (x)},Ψ〉 → Λ〈S2,{Q(x)},TRUE〉.

This idea also allows us to express more complicated assertions in terms of local
closed-world assumptions. For instance, the following formula expresses that
“either S1 or S2 has complete knowledge about P”:{

Λ〈S1,{P (x)},TRUE〉 ∨ Λ〈S2,{P (x)},TRUE〉
}

Another possibility is to express that the assumptions about S1 and S2 are
complementary, and so forth.
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5 Related Works

The concept of a local closed-world assumption was first introduced in [4], in the
context of knowledge bases for agents. The idea in that work was to represent
a situation in which an agent has local closed-world information relative to a
formula Φ and a knowledge base Γ , by a condition saying that every ground
sentence that unifies with Φ either follows from Γ or is falsified by it. Formally:

LCWA (Φ) ≡ (Γ |= Φθ) ∨ (Γ |= ¬Φθ) for all ground substitutions θ.

As we have noted above, a formal semantics for the definition of [4] in terms of
second-order circumscription was proposed in [2]. The intuitive idea behind this
semantics is the selection of only those models that satisfy the agent’s knowledge-
base and that are minimal with respect to the formulae for which the agent
has complete information. We note, however, that the circumscriptive approach
presented in [2] allows to minimize more predicates than those allowed by the
pseudo-circumscriptive formula presented here. To see this consider, for instance
LCWA = 〈S, {P (x)}, Q(x)〉. Here, one may not know for which x, Q(x) is true,
and indeed the pseudo-circumscriptive formula of the LCWA does not affect
Q(x), but only P (x) in the context of Q(x). Suppose, then, that P (a) is not
in S, and we do not know whether Q(a) is true, i.e. Q(a) is not in S. In our
approach, all we can derive is that if Q(a) were true, then P (a) would be false;
but it is also possible that P (a) is true but Q(a) is false. Following the approach
in [2], P (x) and Q(x) satisfy the data-source, but moreover, the intersection of
P (x) and Q(x) should be minimal. In particular, if P (b) is in S, but Q(b) is not,
then Q(b) is considered false. So in this approach, also part of Q is minimized,
not only P .

An alternative approach to express different levels of knowledge of a certain
data-source with respect to the global domain is to label the predicates of the
data-sources as “sound”, “complete” or “exact” (see, for instance, [1,5,6]). We
identify two main drawbacks with this approach. The first one is the loss of
elegance and flexibility by the introduction of non-logical symbols to the rep-
resentation. The second, more serious problem, is related to the limitation in
grasping more refined knowledge about the specific areas in which the predi-
cates of the data-source contain complete information, as observed in several
examples in this paper.

In [12], the concepts of “coverage” and “density” were introduced in order
to measure the completeness of data-sources at the intensional and extensional
levels, respectively. The authors use these concepts to determine the complete-
ness of one or more data-sources, gathered under merge operators. As in our
approach, the intension and the contents of the predicates in a data-source are
divided into two independent components. This allows to provide a general com-
pleteness measure for the data-sources, but again, it is not possible to explicitly
specify situations in which the data-sources have complete knowledge about
(parts of) the domain of discourse.
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6 Conclusion and Future Work

In this paper we presented a method of expressing the meaning of a data-source
in the context of information systems that mediate among several sources. A
key issue in this respect is the ability to properly define and represent particular
cases where there is a complete knowledge, although partial knowledge of the
sources is usually assumed. The resulting theory is expressed by a first-order
one. It may also be represented by circumscriptive-like formulae.

This is an ongoing work which is part of a larger project aiming to represent
and reason with incomplete information in general mediator-based systems. In
such broader context a number of related issues should be addressed as well.
Below we consider some of them.

• Expressing meta-knowledge about the data-sources themselves. For instance,
while it is possible to express by our approach statements such as “the data-
source S contains complete knowledge about car owners in Bronx”, it is
not possible to represent a statement such as “for every car in Bronx that
is known to the data-source S, S also knows its owners”. While the first
statement refers to the knowledge that S possesses about the domain of
discourse, the latter expresses knowledge about S itself. In order to represent
the second kind of statements, an extension based on modalities in the spirit
of [7] seems to be a natural candidate.
• Consider the assumption LCWA∗ = 〈S, {P (x)},¬Q(x)〉. If no other assump-

tion mentions Q in its second component, this assertion does not allow to con-
clude whether S has complete knowledge about P . Indeed, the induced for-
mula in this case is of the form ΛLCWA = ∀x.¬Q(x) → . . ., but the validity
of ¬Q(x) cannot be verified, since the data-sources mention only positive in-
formation. Of course, if there are other assumptions, for instance, LCWA∗∗ =
〈S, {Q(x)},TRUE〉 (which implies complete knowledge about Q) thenLCWA∗
states that for all x such that Q(x) is not in the database, if P (x) is true then
S contains P (x). This situation shows that in order to obtain complete knowl-
edge about an arbitrary predicateP under its window of expertise, the formula
Ψ must define unambiguously such window. The specific conditions for which
Ψ define complete knowledge over source predicates is a crucial issue that must
be investigated in the depth, since it would allow to discriminate from a set of
LCWA expressions which ones are useful in practice.
• While this paper concentrates on representation forms of the closed-world-

assumption and their properties, computational aspects of reasoning with
these assumptions should be considered as well. Among the issues that should
be addressed is the effect of the local closed-world assumptions on the com-
plexity and decidability of the resulting theories.
• Finding a proper way to incorporate the information that the mediator sys-

tem has about its data-sources with the theory that relates the different
terminologies of the data-sources and the global vocabulary (called schema
mappings). This information may also be used for splitting global queries
among the sources to obtain sound and complete answers (query planning).
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Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is a
logic programming language which combines features from argumenta-
tion theory and logic programming, incorporating as well the treatment
of possibilistic uncertainty and fuzzy knowledge at object-language level.
Solving a P-DeLP query Q accounts for performing an exhaustive anal-
ysis of arguments and defeaters for Q, resulting in a so-called dialectical
tree, usually computed in a depth-first fashion. Computing dialectical
trees efficiently in P-DeLP is an important issue, as some dialectical
trees may be computationally more expensive than others which lead to
equivalent results. In this paper we explore different aspects concerning
how to speed up dialectical inference in P-DeLP. We introduce defini-
tions which allow to characterize dialectical trees constructively rather
than declaratively, identifying relevant features for pruning the associ-
ated search space. The resulting approach can be easily generalized to be
applied in other argumentation frameworks based in logic programming.

Keywords: Defeasible Argumentation, Logic Programming, Dialectical
Reasoning.

1 Introduction and Motivations

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is a logic programming
language which combines features from argumentation theory and logic pro-
gramming, incorporating as well the treatment of possibilistic uncertainty and
fuzzy knowledge at object-language level. As in many argumentation frameworks
based in logic programming, solving a P-DeLP query Q accounts for performing
an exhaustive analysis of arguments and defeaters for Q, resulting in a so-called
dialectical tree, usually computed in a depth-first fashion.

Computing dialectical trees efficiently in P-DeLP is an important issue, as
some dialectical trees may be computationally more expensive than others which
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lead to equivalent results. In this paper we explore different aspects concerning
how to speed up dialectical inference in P-DeLP. We introduce definitions which
allow to characterize dialectical trees constructively rather than declaratively,
identifying relevant features for pruning the associated search space. The re-
sulting approach can be easily generalized to be applied in other argumentation
frameworks based in logic programming.

The rest of the paper is structured as follows. Section 2 summarizes the details
of P-DeLP. Section 3 discusses how computation of dialectical trees can be
modelled in the context of P-DeLP, a characterization extensible to other similar
frameworks. Section 4 presents a generic algorithm for computing dialectical
trees in a depth-first fashion, as well as some criteria to be considered for pruning
the resulting search space. Finally, Section 5 summarizes related work and the
main conclusions that have been obtained.

2 The P-DeLP Programming Language: Fundamentals

The P-DeLP language L is defined from a set of ground fuzzy atoms (fuzzy
propositional variables) {p, q, . . .} together with the connectives {∼, ∧, ← }.
The symbol ∼ stands for negation. A literal L ∈ L is a ground (fuzzy) atom
q or a negated ground (fuzzy) atom ∼q, where q is a ground (fuzzy) proposi-
tional variable. A rule in L is a formula of the form Q ← L1 ∧ . . . ∧ Ln, where
Q,L1, . . . ,Ln are literals in L. When n = 0, the formula Q← is called a fact and
simply written as Q. The term goal will be used to refer to any literal Q ∈ L.1

In the following, capital and lower case letters will denote literals and atoms in
L, respectively.

Definition 1 (P-DeLP formulas). The set Wffs(L) of wffs in L are facts, rules
and goals built over the literals of L. A certainty-weighted clause in L, or simply
weighted clause, is a pair of the form (ϕ, α), where ϕ ∈ Wffs(L) and α ∈ [0, 1] expresses
a lower bound for the certainty of ϕ in terms of a necessity measure.

The original P-DeLP language [1] is based on Possibilistic Gödel Logic or
PGL [2], which is able to model both uncertainty and fuzziness and allows for a
partial matching mechanism between fuzzy propositional variables. For simplic-
ity and space reasons we will restrict ourselves to fragment of P-DeLP built on
non-fuzzy propositions, and hence based on the necessity-valued classical propo-
sitional Possibilistic logic [3]. As a consequence, possibilistic models are defined
by possibility distributions on the set of classical interpretations 2 and the proof
method for our P-DeLP formulas, written (, is defined based on the following
generalized modus ponens rule (GMP):

1 Note that conjunction of literals is not a valid goal.
2 Although the connective ← in logic programming is different form the material

implication, e.g. p ← q is not the same as ∼ q ← ∼ p, regarding the possibilistic
semantics we assume here they share the same set interpretations.
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(L0 ← L1 ∧ · · · ∧ Lk, γ)
(L1, β1), . . . , (Lk, βk)

(L0, min(γ, β1, . . . , βk))

which is a particular instance of the well-known possibilistic resolution rule,
and which provides the non-fuzzy fragment of P-DeLP with a complete calculus
for determining the maximum degree of possibilistic entailment for weighted
literals.3

In P-DeLP we distinguish between certain and uncertain clauses. A clause
(ϕ, α) will be referred as certain if α = 1 and uncertain, otherwise. Moreover, a
set of clauses Γ will be deemed as contradictory, denoted Γ ( ⊥, if Γ ( (q, α) and
Γ ( (∼q, β), with α > 0 and β > 0, for some atom q in L.4 A P-DeLP program
is a set of weighted rules and facts in L in which we distinguish certain from
uncertain information. As additional requirement, certain knowledge is required
to be non-contradictory. Formally:

Definition 2 (Program). A P-DeLP program P (or just program P) is a pair
(Π, Δ), where Π is a non-contradictory finite set of certain clauses, and Δ is a finite
set of uncertain clauses.

Example 1. Consider an intelligent agent controlling an engine with three switches
sw1, sw2 and sw3. These switches regulate different features of the engine, such as
pumping system, speed, etc. The knowledge of such an agent can be modelled by the
program Peng shown in Fig. 1. Note that uncertainty is assessed in terms of different
necessity measures. This agent may have the following certain and uncertain knowledge
about how this engine works, e.g. “if the pump is clogged, then the engine gets no fuel
with necessity measure of 1” (rule 1) or “When there is heat, then oil is usually not ok
with necessity measure of 0.9” (rule 12). Suppose also that the agent knows that sw1,
sw2 and sw3 are on, and there is heat (rules 1-5). The agent wants to determine if the
engine is ok on the basis of this program Peng.

(1) (∼fuel ok ← pump clog, 1)
(2) (sw1, 1)
(3) (sw2, 1)
(4) (sw3, 1)
(5) (heat, 1)
(6) (pump fuel ← sw1 , 0.6)
(7) (fuel ok ← pump fuel, 0.3)
(8) (pump oil ← sw2 , 0.8)

(9) (oil ok ← pump oil, 0.8)
(10) (engine ok ← fuel ok ∧ oil ok , 0.3)
(11) (∼engine ok ← fuel ok ∧ oil ok ∧ heat, 0.95)
(12) (∼oil ok ← heat, 0.9)
(13) (pump clog ← pump fuel ∧ low speed, 0.7)
(14) (low speed ← sw2 , 0.8)
(15) (∼low speed ← sw2 , sw3 , 0.8)
(16) (fuel ok ← sw3 , 0.9)

Fig. 1. P-DeLP program Peng (example 1)

3 From now on we will simply use P-DeLP to actually refer to the non-fuzzy fragment
of the original P-DeLP.

4 For a given goal Q, we write ∼Q as an abbreviation to denote “∼q” if Q ≡ q and
“q” if Q ≡ ∼q.
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Definition 3 (Argument. Subargument). Given a program P = (Π, Δ), a set
A ⊆ Δ of uncertain clauses is an argument for a goal Q with necessity degree α > 0,
denoted 〈A, Q, α〉, iff: (1) Π ∪ A � (Q, α); (2) Π ∪ A is non contradictory; and (3)
There is no A1 ⊂ A such that Π ∪ A1 � (Q, β), β > 0. Let 〈A, Q, α〉 and 〈S, R, β〉 be
two arguments. We will say that 〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A.
Notice that the goal R may be a subgoal associated with the goal Q in the argument A.

Note that from the definition of argument, it follows that on the basis of a
P-DeLP program P there may exist different arguments 〈A1, Q, α1〉, 〈A2, Q, α2〉,
. . . , 〈Ak, Q, αk〉 supporting a given goal Q, with (possibly) different necessity de-
grees α1, α2, . . . , αk. Arguments are built by backward chaining on the basis of
the P-DeLP program P. The necessity degree of the conclusion of an argument in-
volving clauses (C1, β1), . . . (Ck, βk) is defined as min(β1, . . . , βk). Consequently,
if 〈S,R, β〉 is a subargument of an argument 〈A, Q, α〉, then β ≥ α.

Example 2. Consider theprogram Peng in Ex 1. The argument 〈A1, engine ok, 0.3〉
can be obtained, with
A1 = {(engine ok ← fuel ok ∧ oil ok , 0.3), (pump fuel ← sw1 , 0.6);

(fuel ok ← pump fuel , 0.3), {(pump oil ← sw2 , 0.8);(oil ok ← pump oil , 0.8)}.
In particular, the argument 〈B, fuel ok, 0.3〉, with B= {(pump fuel ← sw1 , 0.6);
(fuel ok ← pump fuel , 0.3)}, is a subargument of 〈A1, engine ok, 0.3〉.

Conflict among arguments will be formalized by the notions of counterargu-
ment and defeat presented next.

Definition 4 (Counterargument). Let P be a program, and let 〈A1, Q1, α1〉
and 〈A2, Q2, α2〉 be two arguments wrt P. We will say that 〈A1, Q1, α1〉 counterar-
gues 〈A2, Q2, α2〉 iff there exists a subargument (called disagreement subargument)
〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Π ∪ {(Q1, α1), (Q, β)} is contradictory. The literal
(Q, β) will be called disagreement literal.

Example 3. Consider the program from Ex 1. Another argument 〈A2,∼ fuel ok, 0.6〉
can be found, with

A2 = { (∼fuel ok ← sw1 , 0.6), (low speed ← sw2 , 0.8),
(pump clog ← pump fuel ∧ low speed , 0.7)}

Argument 〈A2,∼fuel ok, 0.6〉 is a counterargument for 〈A1, engine ok, 0.3〉 as there
exists a subargument 〈B, fuel ok, 0.3〉 in 〈A1, engine ok, 0.3〉 (see Example 2) such that
Π ∪ {(fuel ok, 0.3), (∼fuel ok, 0.6)} is contradictory.

Defeat among arguments involves a preference criterion on conflicting argu-
ments, defined on the basis of necessity measures associated with arguments.

Definition 5 (Defeat). Let P be a program, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be two arguments in P. We will say that 〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉
iff 〈A1, Q1, α1〉 counterargues argument 〈A2, Q2, α2〉 with disagreement subargument
〈A, Q, α〉, with α1 ≥ α. If α1 > α then 〈A1, Q1, α1〉 is called a proper defeater, other-
wise (α1 = α) it is called a blocking defeater.

Example 4. Consider 〈A1, engine ok, 0.3〉 and 〈A2,∼ fuel ok, 0.6〉 in Ex. 3. Then
〈A2,∼ fuel ok, 0.6〉 is a proper defeater for 〈A1, engine ok, 0.3〉, as 〈A2,∼ fuel ok, 0.6〉
counterargues 〈A1, engine ok, 0.3〉 with disagreement subargument 〈B, fuel ok, 0.3〉,
and 0.6 > 0.3.
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Definition 6 (Argumentation line). An argumentation line λ starting in an
argument 〈A0, Q0, α0〉 is a finite sequence of arguments [〈A0, Q0, α0〉, 〈A1, Q1, α1〉,
. . . , 〈An, Qn, αn〉, . . . ] such that every 〈Ai, Qi, αi〉 defeats 〈Ai−1, Qi−1, αi−1〉, for 0 <
i ≤ n, satisfying certain dialectical constraints (see below). Every argument 〈Ai, Qi, αi〉
in λ has level i. We will distinguish the sets

Sk
λ=
⋃

i=0,2,...,2�k/2�{〈Ai, Qi, αi〉 ∈ λ} and Ik
λ=
⋃

i=1,3,...,2�k/2�+1{〈Ai, Qi, αi〉 ∈ λ}
associated with even-level (resp. odd-level) arguments in λ up to the k-th level (k ≤ n).

An argumentation line can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed arguments) and an opponent
(oddly-indexed arguments). In order to avoid fallacious reasoning, argumenta-
tion theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt a P-DeLP program P, namely:5

1. Non-contradiction: given an argumentation line λ of length n the set Sn
λ associ-

ated with the proponent (resp. In
λ for the opponent) should be non-contradictory

wrt P.6

2. No circular argumentation: no argument 〈Aj , Qj , αj〉 in λ is a sub-argument
of an argument 〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation: every blocking defeater 〈Ai, Qi, αi〉 in λ is de-
feated by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line that cannot be further extended on the basis of a
given program P will be called exhaustive, otherwise it will be partial. Formally:

Definition 7 (Partial/exhaustive argumentation line). Given two argu-
mentation lines λ and λ′, we will say that λ′ extends λ iff λ is an initial subsequence
of λ′. An argumentation line λ will be called exhaustive iff there is no argumentation
line λ′ that extends λ; otherwise λ will be called partial.

As most argumentation systems [5,6], in order to determine whether a given
argument is ultimately undefeated (or warranted) wrt a program P, the P-DeLP
framework relies on an exhaustive dialectical analysis. Such analysis is modelled
in terms of a dialectical tree,7 where every path can be seen as an exhaustive
argumentation line.

Definition 8 (Dialectical tree). Let P be a program, and let 〈A0, Q0, α0〉 be
an argument wrt P. A dialectical tree for 〈A0, Q0, α0〉, denoted T〈A0, Q0, α0〉, is a tree
structure defined as follows:

5 These constraints may vary from one particular argumentation framework to an-
other. In particular, parametrizing dialectical trees with constraints on argumenta-
tion lines may give rise to characterizations of different logic programming semantics,
as shown in [4].

6 Non-contradiction for a set of arguments is defined as a generalization of Def. 3: a
set S =

⋃n
i=1{〈Ai, Qi, αi〉} of arguments is contradictory wrt P iff Π ∪ ⋃n

i=1 Ai is
contradictory.

7 In some frameworks other names are used for denoting tree-like structures of argu-
ments, e.g. ‘argument tree’ or ‘dialogue tree’ [7,8].
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1. The root node of T〈A0, Q0, α0〉 is 〈A0, Q0, α0〉.
2. 〈B′, H ′, β′〉 is an immediate child of 〈B, H, β〉 iff there exists an exhaustive ar-

gumentation line λ = [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,〈An, Qn, αn〉, . . . ] such that
there are two elements 〈Ai+1, Qi+1, αi+1〉 = 〈B′, H ′, β′〉 and 〈Ai, Qi, αi〉 =
〈B, H, β〉, for some i = 0 . . . n − 1.

Example 5. Consider Ex. 1. To compute the dialectical tree for 〈A1, engine ok, 0.3〉,
the P-DeLP inference engine computes argumentation lines by depth-first search. A
defeater for 〈A1, engine ok, 0.3〉 is found, namely 〈A2,∼ fuel ok, 0.6〉 (Ex. 4). This de-
feater can on its turn be defeated by a third defeater 〈A3,∼low speed, 0.8〉, with dis-
agreement subargument 〈A2

′, low speed, 0.8〉. Note that argument 〈A4, fuel ok, 0.9〉,
with A4 = { (fuel ok ← sw3 , 0.9) } would be also a defeater for 〈A2,∼ fuel ok, 0.6〉.
This completes the analysis of defeaters for 〈A2,∼ fuel ok, 0.6〉. Backtracking to ar-
gument 〈A1, engine ok, 0.3〉, another defeater is found, namely 〈A5,∼ engine ok, 0.3〉,
with

A5 = { (∼ engine ok ← fuel ok ∧ oil ok ∧ heat , 0.95) ; (pump fuel ← sw1 , 0.6);
(fuel ok ← pump fuel , 0.3), (pump oil ← sw2 , 0.8); (oil ok ← pump oil , 0.8)}.

Note that no further arguments can be found in the dialectical analysis. Although
〈A6,∼ oil ok, 0.9〉, with A6 = { (∼ oil ok ← heat , 0.9) } seems a possible defeater for
〈A5,∼ engine ok, 0.3〉, such argument would be fallacious as A1 supports oil ok, and
there would be even-level arguments (namely A1 and A5) supporting contradictory
conclusions. Therefore three different exhaustive argumentation lines can be computed,
namely rooted in 〈A1, engine ok, 0.3〉, namely:

• [〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A3,∼ low speed, 0.8〉 ]
• [ 〈A1, engine ok, 0.3〉, 〈A2,∼ fuel ok, 0.6〉, 〈A4, fuel ok, 0.9〉 ]
• [〈A1, engine ok, 0.3〉, 〈A5,∼ engine ok, 0.3〉 ]

Fig. 2(b) shows the corresponding dialectical tree T〈A1, engine ok, 0.3〉.

Nodes in a dialectical tree T〈A0, Q0, α0〉 can be marked as undefeated and
defeated nodes (U-nodes and D-nodes, resp.). A dialectical tree will be marked
as an and-or tree: all leaves in T〈A0, Q0, α0〉 will be marked U-nodes (as they have
no defeaters), and every inner node is to be marked as D-node iff it has at least
one U-node as a child, and as U-node otherwise. Note that α − β pruning (see
Fig. 2(a)) can be applied, so not every node in the tree needs to be generated.
We will write Mark(Ti) = U (resp.Mark(Ti) = D) to denote that the root node
of Ti is marked as U -node (resp. D-node).

Definition 9 (Warrant). An argument 〈A0, Q0, α0〉 is ultimately accepted as valid
(or warranted) with a necessity degree α0 wrt a program P iff the root of the tree
T〈A0, Q0, α0〉 is marked as U-node (i.e., Mark(T〈A0, Q0, α0〉) = U).

Example 6. Consider T〈A1, engine ok, 0.3〉 in Ex. 5. Fig. 2(b) shows the result of com-
puting Mark(T〈A1, engine ok, 0.3〉) = D with α − β pruning. From Def. 9 it holds that
〈A1, engine ok, 0.3〉 is not warranted.
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3 Modelling the Computation of Dialectical Trees

P-DeLP –as well as other implemented logic programming approaches to argum-
entation– relies on depth-first search to generate dialectical trees. As discussed
before, such search can be improved by applying α−β pruning, so that not every
node (argument) is computed. A well-known fact in depth-first search is that the
order in which branches are generated is important. Fig. 2(b) shows a pruned
dialectical tree, where only three arguments were actually computed to deem
the root node as defeated. Fig. 2(c) shows that there is an alternative analysis
which renders the search space even smaller, by considering first the argument
〈A5,∼ engine ok, 0.3〉 instead of 〈A2,∼ fuel ok, 0.6〉. Such evaluation order for
generating argumentation lines is an issue not taken into account in existing
formalizations of argumentation frameworks which mostly rely on dialectical
trees computed exhaustively. On the other hand, the actual branching factor of
a the dialectical tree is clearly restricted by dialectical constraints as discussed
in Def. 6. In order to take into account such features we will introduce some new
definitions required to characterize dialectical trees constructively rather than
declaratively as follows.

Definition 10 (Dialectical tree (revisited)). Consider the definition of dialec-
tical tree (as in Def. 8) without the restriction of argumentation lines being exhaustive.
A dialectical tree T〈A0, Q0, α0〉 will be called exhaustive iff each of its argumentation
lines is exhaustive, otherwise T〈A0, Q0, α0〉 will be called partial. We will write TreeP
(or just Tree) to denote the set of all possible dialectical trees based on P.

In this new setting the process of building a dialectical tree can be thought
of as a computation starting from an initial tree (consisting of a single node),
evolving into more complex trees by adding stepwise new arguments (nodes).
This will be formalized by means of a precedence relationship “�” among trees:

Definition 11 (Precedence relationship �). Let P be a program, and let T,
T ′ be dialectical trees in P. We define a relationship � ⊆ Tree × Tree, where T � T ′

(a) (b) (c)
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〈A1, engine ok, 0.3〉
(D)

�
�

�
�

〈A2,∼fuel ok, 0.6〉
(D)

〈A5,∼engine ok, 0.3〉
(U)�

�
�

�
�

〈A3,∼low speed, 0.8〉
(U)

〈A4, fuel ok, 0.6〉
(U)�

〈A1, engine ok, 0.3〉
(D)

〈A5,∼engine ok, 0.3〉
(U)

Fig. 2. (a) Dialectical tree, where �’s denote arguments that do not need to be gener-

ated because of α−β pruning; (b) Dialectical Tree T〈A1, engine ok, 0.3〉 with exhaustive

argumentation lines (ex. 5) marked with α−β pruning; (c) Optimally settled dialectical

tree T ′
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(expressed as T ′ evolves from T) whenever T ′ can be obtained from T by extending
some argumentation line in T. We will also write T �∗T ′ iff there exists a (possibly
empty) sequence T1, T2, . . . , Tk such that T = T1 � . . . � Tk = T ′.

Clearly from Defs. 7 and 10 the notion of exhaustive dialectical tree can
be recast as follows: A dialectical tree Ti is exhaustive iff there is no Tj �= Ti

such that Ti �∗ Tj . In fact, every dialectical tree Ti can be seen as a ‘snapshot’
of the status of a disputation between two parties (proponent and opponent),
and the relationship “�” allows to capture the evolution of such disputation.
As discussed before, pruning strategies could be applied (e.g. α − β pruning),
allowing to determine whether the marking of the root of a partial tree without
computing its associated exhaustive tree. We formalize this situation as follows:

Definition 12 (Settled dialectical tree). Let Ti be a dialectical tree, such that
for every Tj evolving from Ti (i.e., Ti �∗Tj) it holds that Mark(Ti) = Mark(Tj). Then
Ti is a settled dialectical tree. A Ti is an optimally settled dialectical tree iff there is
no Ti

′�∗Ti such that Ti
′ is a settled dialectical tree.

Example 7. Consider the dialectical trees shown in Fig. 2(b) and (c). Then it holds
that T ′ �∗T〈A1, engine ok, 0.3〉. Note also that both T〈A1, engine ok, 0.3〉 and T ′ are

settled dialectical trees. In particular, T ′ is an optimally settled dialectical tree.

Note that from the above definition argumentation lines in a settled dialec-
tical tree are not necessarily exhaustive. It is also clear that every exhaustive
dialectical tree will be settled, although not necessarily optimally settled. Opti-
mally settled dialectical trees are those involving the least number of arguments
needed to determine whether the root of the tree is ultimately defeated or not
according to the marking procedure.

Proposition 1. Let P be a program, and 〈A0, Q0, α0〉 an argument in P. Then
〈A0, Q0, α0〉 is warranted with necessity degree α0 iff Mark(T〈A0, Q0, α0〉) = U , where
T〈A0, Q0, α0〉 is a settled dialectical tree.

Next we will analyze how to characterize the computation of dialectical trees
in depth-first fashion, modelling informed search oriented towards computing
optimally settled dialectical trees. Consider a leaf (argument) 〈B,H, β〉 in a
given argumentation line λ in a partial dialectical tree T which is not settled,
so that further computation will be needed (possibly expanding λ). Clearly, the
dialectical constraints given in Def. 6 make that not every defeater as defined in
Def. 5 can be used to extend λ. Defeaters satisfying dialectical constraints will
be called feasible defeaters. Formally:

Definition 13 (Feasible defeaters). Let T1 be a partial dialectical tree and let
〈B, H, β〉 be a leaf node in T1 at level k in an argumentation line λ. Let T be the
exhaustive dialectical tree associated with T1 and let {λ1, . . . λm} be the set of all possible
argumentation lines in T of length > k + 1 that extend λ, i.e. each λi has the form
[〈A0, Q0, α0〉, . . . , 〈B, H, β〉, 〈Bi, Hi, βi〉, . . . ], for i = 1 . . . m. We define the set of
feasible defeaters for 〈B, H, β〉 wrt λ as FDefeat(〈B, H, β〉, λ) =

⋃m
i=1{〈Bi, Hi, βi〉}.
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Our depth-first approach can thus be improved by restricting search to fea-
sible defeaters. Note that in depth-first search there will be always one current
path associated with the last argument introduced. We call that path current
argumentation line. Clearly, if 〈B,H, β〉 is a leaf in the current argumentation
line λ associated with the computation of a settled dialectical tree T, any el-
ement in FDefeat(〈B,H, β〉, λ) is a possible candidate for expanding λ. The
marking of the tree T induces an order “≺eval” in FDefeat(〈B,H, β〉, λ): for any
two arguments 〈Bi,Hi, βi〉, 〈Bj ,Hj , βj〉 in FDefeat(〈B,H, β〉, λ), we will say that
〈Bi,Hi, βi〉 ≺eval〈Bj ,Hj , βj〉 if the subtree rooted in 〈Bi,Hi, βi〉 is marked be-
fore than the subtree rooted in 〈Bj ,Hj , βj〉. Fig. 3 illustrates how a dialectical
tree can be built in a depth-first fashion using α−β pruning and the evaluation
order ≺eval. In order to speed up the construction of a settled dialectical tree,
our approach will be twofold: on the one hand, we will identify which literals can
be deemed as candidates for computing feasible defeaters. On the other hand, we
will provide a definition of ≺eval which prunes the search space using dialectical
constraints.

Algorithm 1 BuildDialecticalTree
Input: 〈A, Q, α〉, λ = [〈A, Q, α〉] Output: T〈A, Q, α〉, Mark (Marking)
{uses α-β pruning and evaluation ordering �eval}
Global variable: T〈A, Q, α〉 Local variables: MarkAux, ParentDefeated, λ
{λ is the current argumentation line, initially λ = [〈A, Q, α〉]}

Put 〈A, Q, α〉 as root node of T〈A, Q, α〉
Compute FDefeat(〈A, Q, α〉, λ) = {〈A0, Q0, α0〉, . . . , 〈Ak, Qk, α0〉}
{FDefeat(〈A, Q, α〉, λ)= feasible defeaters for 〈A, Q, α〉 wrt λ}
If S �= ∅

Then
ParentDefeated := false
While (ParentDefeated=false) and (S �= ∅) do

Choose some 〈Ai, Qi, αi〉 ∈ S minimal wrt ≺eval

S := S \ {〈Ai, Qi, αi〉}
λ := λ ◦ 〈Ai, Qi, αi〉 {expand λ adding new argument 〈Ai, Qi, αi〉}
BuildDialecticalTree(〈Ai, Qi, αi〉, T〈Ai, Qi, αi〉, MarkAux)
Add T〈Ai, Qi, αi〉 as immediate subtree of 〈A, Q, α〉.
If MarkAux=U then ParentDefeated := true

end while
If ParentDefeated=false {S = ∅, all defeaters were defeated}
then Mark := U {mark T〈A, Q, α〉 as U}
else Mark := D {mark T〈A, Q, α〉 as D}

else {S = ∅, hence 〈A, Q, α〉 has no defeaters}
Mark := U {mark T〈A, Q, α〉 as U}

Return T〈A, Q, α〉, Mark

Fig. 3. Algorithm for building and labelling settled dialectical trees in a depth-first

fashion taking into account feasible defeaters and evaluation order ≺eval
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4 Pruning Dialectical Trees in P-DeLP

Given an argument 〈A0, Q0, α0〉, building a dialectical tree T〈A0, Q0, α0〉 involves
computing defeaters in a recursive way. According to Def. 4, to automate the
computation of such defeaters it is necessary to detect the set of disagreement
literals { (L1,φ1), . . . , (Lk,φk) } that can be source of conflict with counter-
arguments 〈B1,H1, β1〉, . . . , 〈Bk,Hk, βk〉 that defeat 〈A0, Q0, α0〉. Fortunately,
in the context of P-DeLP this can be done on the basis of the consequents of
uncertain clauses associated with subarguments in 〈A0, Q0, α0〉.

Definition 14 (Set of consequents Co). Let 〈A0, Q0, α0〉 be an argument. The
set Co(〈A0, Q0, α0〉) = { (Q, α) | ∃ (Q ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ A0 such that
〈A, Q, α〉 is a subargument of 〈A0, Q0, α0〉 }. We generalize this to a set S of argu-
ments, S =

⋃
i=1...k 〈Ai, Qi, αi〉, defining Co(S) =

⋃
i=1...k Co(〈Ai, Qi, αi〉).8

Lemma 1 (Goal-driven defeat [9]). Let 〈A, Q, α〉 be an argument, and let
〈B, H, β〉 be a defeater for 〈A, Q, α〉. Then there exists an argument 〈B, H ′, β〉, such
that H ′ is the complement of a literal in Co(〈A, Q, α〉), (where complement of (L, γ)
is defined as (∼L, γ)).

Lemma 1 allows to search for defeaters automatically by backward chaining,
on the basis of the consequents of uncertain clauses in an argument. Thus if
(L, γ) ∈ Co(〈A0, Q0, α0〉), a search for a defeater with disagreement literal (L,φ)
will involve finding an argument for concluding (∼L, γ′), with γ′ ≥ γ.

Example 8. Consider 〈A1, engine ok, 0.3〉 in Ex. 2. Then Co(〈A1, engine ok, 0.3〉) =
{ (engine ok, 0.3), (pump fuel, 0.6), (fuel ok, 0.3), (oil ok, 0.3), (pump oil, 0.8) }. De-
featers for 〈A1, engine ok, 0.3〉 can be found by backward chaining from the comple-
ment of each weighted literal (L, γ), searching for arguments for (∼L, γ′), with γ′ ≥ γ.

From the above considerations we can establish the following inclusionship
for detecting candidate disagreement literals in an argument 〈A, Q, α〉 appearing
as a leaf in an argumentation line λ:

Optimal(〈A, Q, α〉, λ) ⊆ Feasible(〈A, Q, α〉, λ) ⊆ Co(〈A, Q, α〉)

Here Feasible(〈A, Q, α〉, λ) denotes the set of weighted literals (φ, α) which are
possible disagreement literals for 〈A, Q, α〉 for some feasible defeater, whereas
Optimal(〈A, Q, α〉, λ) denotes the set of weighted literals (φ, α) which are pos-
sible disagreement literals for feasible defeaters leading to the shortest argumen-
tation lines.9 Clearly Optimal(〈A, Q, α〉, λ) is in a sense an ideal set of disagree-
ment literals, for which we can find different approximations. One possibility is to
consider the set Feasible(〈A, Q, α〉, λ). However, determining feasible defeaters
is computationally also quite a difficult task, as it involves checking different
8 Note that the set Co(〈A0, Q0, α0〉) can be easily computed along the derivation

process of the argument itself.
9 Note that this is a set, as there may be different argumentation lines extending λ,

all of them having the same length.
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dialectical constraints (see Def. 6). As discussed before, a more tractable way to
detect candidate defeaters is to consider the set Co(〈A, Q, α〉).

A better approximation than Co(〈A, Q, α〉) can be stated taking into account
the following intuition: let us assume that the current argumentation line λ has
been computed up to level k. From the ‘non-contradiction’ constraint, even-level
as well as odd-level arguments in λ should not be contradictory. This accounts
to saying also that literals which are common to both even-level and odd-level
arguments cannot be disagreement literals within any extension of λ. To for-
malize this notion, we will suitably extend the definitions for set intersection
and difference for weighted literals as follows: given two sets of weighted literals
S1 and S2, we define intersection among S1 and S2 as S1 " S2 =def{(Q,α) |
(Q,α1) ∈ S1 and (Q,α2) ∈ S2, with α = min(α1, α2) }. Similarly, we define
difference among S1 and S2 as follows: S1 \ S2 =def { (Q,α) | (Q,α) ∈ S1 and
� ∃(Q, β) ∈ S2, for β > 0 }

Definition 15 (Set SharedLit). Let λ be an argumentation line. SharedLit(λ, k) is
the set of weighted literals common to even-level and odd-level arguments up to level k,
i.e. SharedLit(λ, k) =def Co(Sk

λ) � Co(Ik
λ).

Proposition 2. Let λ be an argumentation line in a partial dialectical tree T, and let
〈A, Q, α〉 an argument which is a leaf in λ at level k. Let (L, γ) ∈ SharedLit(λ, k), k > 0.
Then (L, γ′) �∈ Feasible(〈A, Q, α〉, λ), for any γ′ ≥ γ.

Proposition 2 allows to further refine the inclusion relationship given before
as follows:

Feasible(〈A, Q, α〉, λ) ⊆ Co(〈A, Q, α〉) \ SharedLit(λ, k) ⊆ Co(〈A, Q, α〉)

We can now come back to the original question: how to choose which defeater
belongs to the (on the average) shorter argumentation line, i.e. the one more
prone to settle the disputation as soon as possible. From our preceding results
we can suggest the following definition for ≺eval:

Definition 16 (Evaluation order based on SharedLit). Let λ be an argumen-
tation line, and let 〈A, Q, α〉 be a leaf at level k. Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two
candidate defeaters for 〈A, Q, α〉, such that λ can be extended to λ1 (using 〈A1, Q1, α1〉)
or λ2 (using 〈A2, Q2, α2〉). Then 〈A1, Q1, α1〉 ≺eval〈A2, Q2, α2〉 iff Co(〈A1, Q1, α1〉) \
SharedLit(λ1, k + 1) ⊆ Co(〈A2, Q2, α2〉) \ SharedLit(λ2, k + 1).10

Example 9. Consider the argument 〈A1, engine ok, 0.3〉 as in Ex. 2 and 8, and as-
sume that the current argumentation line is λ = [〈A1, engine ok, 0.3〉]. In such a
case the set FDefeat(〈A1, engine ok, 0.3〉, λ) has two defeaters { 〈A2,∼ fuel ok, 0.6〉,
〈A5,∼ engine ok, 0.3〉 }, computed in Ex. 3 and 5. Argumentation line λ can there-
fore be extended in two different ways, λ1 = λ◦ 〈A2,∼ fuel ok, 0.6〉 and λ2 = λ◦
10 Note that this partial order can be refined by considering those arguments with

higher necessity, i.e. given two defeaters 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 equally pre-
ferred wrt ≺eval, the one having max(βi, βj) as necessity degree is preferred.
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〈A5,∼ engine ok, 0.3〉. Let us compute the set of consequents for these arguments:
Co(〈A1, engine ok, 0.3〉) = { (engine ok, 0.3), (pump fuel, 0.6),

(fuel ok, 0.3), (oil ok, 0.3), (pump oil, 0.8)}.
Co(〈A5,∼engine ok, 0.3〉) = {(∼engine ok, 0.3), (pump fuel, 0.6), (fuel ok, 0.3),

(oil ok, 0.3), (pump oil, 0.8)}.
Co(〈A2,∼fuel ok, 0.6〉) = { (∼fuel ok, 0.6), (low speed, 0.8), (pump clog, 0.7) }

From the above sets we have then SharedLit(λ1, 1) = ∅ and SharedLit(λ2, 1) = {
(engine ok, 0.3), (pump fuel, 0.6), (fuel ok, 0.3), (oil ok, 0.3), (pump oil, 0.8)}. Con-
sequently, it holds that

Co(〈A1, engine ok, 0.3〉)\SharedLit(λ2, 1) ⊂ Co(〈A1, engine ok, 0.3〉)\SharedLit(λ1, 1)

Thus the defeater 〈A5,∼ engine ok, 0.3〉 should be evaluated before the defeater
〈A2,∼ fuel ok, 0.6〉 in the depth-first computation of the dialectical tree using the
algorithm in Fig. 3.

Although Example 9 is rather näıve, it is intended to show one possible way of
characterizing the evaluation order ≺eval, reducing the average branching factor
of the dialectical tree when in a depth-first fashion.

5 Related Work and Conclusions

In this paper we have presented a novel approach to characterize dialectical
reasoning in the context of Possibilistic Defeasible Logic Programming, aiming
at speeding up the underlying inference procedure. The contribution of this
paper is twofold: on the one hand, we have formalized the notion of dialectical
trees constructively, taking into account salient features in modelling the depth-
first construction of such trees. On the other hand, we have analyzed the role of
dialectical constraints as an additional element for pruning the resulting search
space. Although our characterization is based in P-DeLP, it can be generalized
to be applied in other argumentation frameworks based on logic programming. It
must be remarked that P-DeLP is an extension of Defeasible Logic Programming
[9], which has been successfully integrated in a number of real-world applications
(e.g. clustering [10], and recommender systems [11]).

Our work complements previous research concerning the dynamics of argu-
mentation, notably [12] and [13]. In particular, Prakken [12] has analyzed the
exchange of arguments in the context of dynamic disputes. Our approach can also
be understood in the light of his characterization of dialectical proof theories.
However, Prakken focuses on a comprehensive but rather general framework,
in which important computational issues (e.g. detecting disagreement literals,
search space considerations, etc.) are not taken into account. Hunter [14] ana-
lyzes the search space associated with dialectical trees taking into account novel
features such as the resonance of arguments. His interesting formalization com-
bines a number of features that allow to assess the impact of dialectical trees,
contrasting shallow vs. deep trees. However, computational aspects as the ones
analyzed in this paper are outside the scope of his work. In [4] a throughout
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analysis of various argumentation semantics for logic programming is presented
on the basis of parametric variations of derivation trees. In contrast with that
approach, our aim in this paper was not to characterize different emerging seman-
tics, but rather to focus on an efficient construction of dialectical trees for speed-
ing up inference. On the other hand, in [4] the authors concentrate in normal
logic programming, whereas our approach deals with extended logic program-
ming enriched with necessity degrees. Recently semantical aspects of P-DeLP
have been analyzed in the context of specialized inference operators [15].

It must be remarked that our approach can also be improved by considering
the non-circularity constraint (see Def. 6) for argumentation lines: as the cur-
rent argumentation line λ is computed, the set of feasible defeaters associated
to the last argument in λ at level k is also restricted by arguments which al-
ready appeared earlier at any level k′ < k. Part of our current research work
involves how to extend our algorithm to include such non-circularity constraints
in our analysis, in order to develop a full-fledged implementation of the algo-
rithm presented in this paper including such features. Our experiments so far
have been performed only on a “proof of concept” prototype, as we have not
been able yet to carry out thorough evaluations in the context of a real-world
application. The results obtained, however, have been satisfactory and as stated
before can be generalized to most argumentation frameworks. The development
of such generalization is part of our future work.
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Abstract. In this paper we generalize the notion of approximation of action the-
ories introduced in [13,26]. We introduce a logic programming based method for
constructing approximation of action theories of AL and prove its soundness.
We describe an approximation based conformant planner and compare its perfor-
mance with other state-of-the-art conformant planners.

1 Introduction and Motivation

Static causal laws (a.k.a. state constraints or axioms) constitute an important part of
every dynamic domain. Unlike an effect of an action, a static causal law represents a
relationship between fluents. For example,
(a) In the travel domain, the static causal law “one person cannot be at A if he is at B”

states that at(B) is false if at(A) is true;
(b) In the block world domain, the static causal law “block A is above block B if A is

on B” says that above(A,B) is true if on(A,B) is true;
Static causal laws can cause actions to have indirect effects. For example, the action of
putting the block A atop the block B, denoted by put(A,B), causes on(A,B) to be true.
The static causal law (b) implies that above(A,B) is also true, i.e., above(A,B) is an
indirect effect of put(A,B). The problem of determining such indirect effects is known
as the ramification problem in the area of reasoning about action and change (RAC).

In the last decade, several solutions to the ramification problem have been pro-
posed. Each of these solutions extends a framework for RAC to allow static causal laws
[2,18,22,23,20,15,17]. While being intensively studied by the RAC’s research commu-
nity, static causal laws have rarely been directly considered by the planning commu-
nity. Although the original specification of the Planning Domain Description Language
(PDDL) – a language frequently used for the specification of planning problems by the
planning community – includes axioms (or static causal laws in our notation) [14], most
of the planning domains used in the recent planning competitions [1,19,11] do not in-
clude axioms. The main reason for this practice is that it is widely believed that axioms
can be compiled into actions’ effect propositions; thus, making the representation of
and reasoning about axioms become unnecessary in planning. This is partly true due to
the fact that PDDL only allows non-recursive axioms. In a recent paper [29], it is proved

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 172–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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that adding axioms to the planning language not only improves the readability and el-
egance of the representation but also increases the expressiveness of the language. It is
also shown that the addition of a component to handle axioms in a planner can indeed
improve the performance of the planner.

The main difficulty in planning in domains with static causal laws lies directly in
defining and computing the successor states. In general, domains with static causal laws
are nondeterministic; for example, in a theory with a single action a and three fluents
f , g, and h with the property that execution of a causes f to become true and the two
static causal laws

(i) if f is true and g is false then h must be true; and,
(ii) if f is true and h is false then g must be true.

Intuitively, the execution of a in a state where f , h, and g are false will yield two
possible states. In one state, f and g are true and h is false. In the other one, f and h
are true and g is false. This nondeterminism leads to the fact that the execution of an
action sequence can generate different trajectories. Thus, exact planning1 is similar to
conformant planning, an approach to dealing with incomplete information in planning.
It is also worth noticing that the complexity of conformant planning (ΣP

2 ) is much
higher than planning in deterministic domains (NP-complete) [3,30]. It is also pointed
out in [3] that approximations of the transition function between states can help reduce
the complexity of the planning problem.

In this paper, we further investigate the notion of approximations of action theories
introduced in [26,13]. We define an approximation for action theories of AL. The key
difference between the newly developed approximation and those proposed in [26,13]
is that it is applicable for action descriptions with arbitrary static causal laws: while
the approximation proposed in [13] is only for specific type of state constraints, the ap-
proximations in [26] are defined for action descriptions with sensing actions but without
state constraints. We use a logic program in defining the approximation.

The paper is organized as follows. In the next section, we review the basics of the
language AL. Afterward, we define an approximation of AL action theories. We then
proceed with the description of a logic programming based conformant planner which
makes use of the approximation. We then compare the performance of our planner with
some conformant planners which are closely related to our planner.

2 Syntax and Semantics of AL
We consider domains which can be represented by a transition diagram whose nodes
are possible states of the domain and whose arcs are actions that take the domain from
one state to another. Paths of the diagram correspond to possible trajectories of the
system. We limit our attention to transition diagrams which can be defined by action
descriptions of the action language AL from [4]. The signature Σ of an action descrip-
tion ofAL consists of two disjoint, non-empty sets of symbols: the set F of fluents, and

1 By exact planning we mean the problem of finding a polynomial-bounded length sequence of
actions that can achieve the goal at the end of every possible trajectory generated by the action
sequence.
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the set A of elementary actions. By an action we mean a non-empty set a of elemen-
tary actions. Informally we interpret an execution of a as a simultaneous execution of
its components. For simplicity we identify an elementary action e with {e}. By fluent
literals we mean fluents and their negations. By l we denote the fluent literal comple-
mentary to l. A set S of fluent literals is called complete if, for any f ∈ F, f ∈ S or
¬f ∈ S. An action description D of AL is a collection of statements of the form:

e causes l if p (1)

l if p (2)

impossible a if p (3)

where e is an elementary action, a is an action, l is a fluent literal, and p is a set of fluent
literals from the signature Σ of D. The set p is often referred to as the precondition
of the corresponding statement. When it is empty, the “if” part of the statement can be
omitted. Statement (1), called a dynamic causal law, says that, if e is executed in a state
satisfying p then l will hold in any resulting state. Statement (2), called a static causal
law, says that any state satisfying p must satisfy l. Statement (3) is an impossibility
condition. It says that action a cannot be performed in a state satisfying p. We next
define the transition diagram, T (D) specified by an action description D of AL.

A set of literals S is closed under a static causal law (2) if l ∈ S whenever p ⊆ S.
By Cn(S), we denote the smallest set of literals that contains S and is closed under the
static causal laws ofD. A state σ of T (D) is a complete, consistent set of literals closed
under the static causal laws of D. An action b is said to be prohibited in σ if D contains
an impossibility condition (3) such that p ⊆ σ and a ⊆ b. E(a,σ) stands for the set of
all fluent literals l for which there is a causal law (1) in D such that p ⊆ σ and e ∈ a.
Elements of E(a,σ) are called direct effects of the execution of a in σ.

Definition 1 ([21]). For an action a and two states σ1 and σ2, a transition 〈σ1, a,σ2〉 ∈
T (D) iff a is not prohibited in σ1 and σ2 = Cn(E(a,σ1) ∪ (σ1 ∩ σ2)).

An alternate sequence of states and actions, M = 〈σ0, a0,σ1, . . . , an−1,σn〉, is a path
in a transition diagram T (D) if 〈σi, ai,σi+1〉 ∈ T (D) for 0 ≤ i < n. M is called
a model of the chain of events α = 〈a0, . . . , an−1〉; σ0 (resp. σn) is referred to as
the initial state (resp. final state) of M ; M entails a set of fluent literals s, written as
M |= s, if s ⊆ σn. We sometime write 〈σ0, α,σn〉 ∈ T (D) to denote that there exists
a model of α whose initial state and final state is σ0 and σn, respectively. An action
description D is called deterministic if for any state σ1 and action a there is at most one
successor state σ2 such that 〈σ1, a,σ2〉 ∈ T (D). Note that if D is deterministic there
can be at most one model for α given the initial state σ0 and final state σn. We denote
this model by σn = α(σ0). Notice that in the presence of static causal laws, action
theories can be nondeterministic. As an example, the second theory in the introduction
can be described by the action description D0 consisting of the following statements:

D0 =
{

a causes f g if f,¬h h if f,¬g
}

Observe that T (D0) includes the transitions 〈{¬f,¬h,¬g}, a, {f, h,¬g}〉 and
〈{¬f,¬h,¬g}, a, {f, g,¬h}〉. Hence, D0 is non-deterministic.

An action a is executable in state σ1 if there is a state σ2 such that 〈σ1, a,σ2〉 ∈
T (D); a chain of events α = 〈a1, . . . , an−1〉 is executable in a state σ if there exists a
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path 〈σ, α,σ′〉 in T (D) for some σ′;D is called consistent if for any state σ1 and action
a which is not prohibited in σ1 there exists at least one successor state σ2 such that
〈σ1, a,σ2〉 ∈ T (D).

3 Approximating Action Theories of AL
Normally an agent does not have complete information about its current state. Instead its
knowledge is limited to the current partial state – a consistent collection of fluent literals
closed under the static causal laws of the agent’s action description D. In what follows
partial states and states are denoted by (possibly indexed) letters s and σ respectively.

A state σ that includes a partial state s is called a completion of s. By comp(s) we
denote the set of all completions of s. An action a is safe in s if it is executable in every
completion of s. A chain of events α = 〈a0, . . . , an−1〉 is safe in s if (i) a0 is safe
in s; and (ii) for every state σ′ such that 〈σ, a0,σ

′〉 ∈ T (D) for some σ ∈ comp(s),
〈a1, . . . , an−1〉 is safe in σ′.

For many of its reasoning tasks the agent may need to know the effects of its actions
which are determined by the fluents from s (as opposed to the actual completion of s).
In [26] the authors suggest to model such knowledge by a transition function which
approximates the transition diagram T (D) for deterministic action theories with sens-
ing actions. We will next generalize this notion to action theories in AL. Even though
approximations can be non-deterministic, in this paper we will be interested only in
deterministic approximations.

Definition 2 (Approximation). T ′(D) is an approximation of T (D) if

1. States of T ′(D) are partial states of T (D).
2. If 〈s, a, s′〉 ∈ T ′(D) then for every σ ∈ comp(s),

(a) a is executable in σ and,
(b) s′ ⊆ σ′ for every σ′ such that 〈σ, a,σ′〉 ∈ T (D).

An approximation T ′(D) is deterministic if for each partial state s and action a, there
exists at most one s′ such that 〈s, a, s′〉 ∈ T ′(D). The next observation shows that an
approximation must be sound.

Observation 1. Let T ′(D) be an approximation of T (D). Then, for every chain of
events α if 〈s, α, s′〉 ∈ T ′(D) then for every σ ∈ comp(s), (a) α is executable in
σ; and (b) s′ ⊆ σ′ for every σ′ such that 〈σ, α,σ′〉 ∈ T (D).

In what follows we describe a method for constructing approximations of action theo-
ries ofAL. In our approach, the transitions in T ′(D) will be defined by a logic program
π(D) called the cautious encoding of D. The signature of π(D) includes terms corre-
sponding to fluent literals and actions of D, as well as non-negative integers used to
represent time steps. For convenience, we often write π(D,n) to denote the program
π(D) where the time constants take values between 0 and n. Atoms of π(D) are formed
by the following (sorted) predicate symbols:

– h(l,T ) is true if literal l holds at time-step T ;
– o(e,T ) is true if action e occurs at time-step T ;
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– dc(l,T ) is true if literal l is a direct effect of an action that occurs at time T−1; and
– ph(l,T ) is true if literal l possibly holds at time T .

The program also contains a set of auxiliary predicates, including time, fluent, and
action, for enumerating constants of sorts time, fluent, and action respectively; literal
and contrary for defining literals and complementary literals, respectively2.

In our representation, letters T , F , L, and A (possibly indexed) are used to represent
variables of sorts time, fluent, literal, and action correspondingly. Morever, we also use
some shorthands: if a is an action then o(a,T ) = {o(e,T ) : e ∈ a}. For a set of fluent
literals p, and a predicate symbol ρ ∈ {h, dc, ph}, ρ(p,T ) = {ρ(l,T ) : l ∈ p} and
not ρ(p,T ) = {not ρ(l,T ) : l ∈ p}. For a fluent f , by l we mean ¬f if l = f and f if
l = ¬f . Literals l and l are called contrary literals. For a set of literals p, p = {l : l ∈ p}.
The set of rules of π(D) consists of those encoding the laws in D, those encoding the
inertial axioms, and some auxiliary rules. We next describe these subsets of rules:

1. For each dynamic causal law (1) in D, the rules

h(l,T+1)← o(e,T ), h(p,T ) (4)

dc(l,T + 1)← o(e,T ), h(p,T ) (5)

belong to π(D). The first rule states that l holds at T + 1 if e occurs at T and
the condition p holds at T . The second rule indicates that l is a direct effect of the
execution of e. Since the state at the time moment T might be incomplete, we add
to π(D) the rule

ph(l,T + 1)← o(e,T ),not h(p,T ) (6)

which says that l might hold at T +1 if e occurs at T and the precondition p possibly
holds at T .

2. For each static causal law (2) in D, π(D) contains the two rules:

h(l,T )← h(p,T ) (7)

ph(l,T )← ph(p,T ) (8)

These rules basically state that if p holds (or possibly holds) at T then so does l.
3. For each impossibility condition (3) in D, we add to π(D) the following rule:

← o(a,T ),not h(p,T ) (9)

This rule states that a cannot occur if the condition p possibly holds.
4. The inertial law is encoded as follows:

ph(L,T + 1)← not h(L,T ),not dc(L,T + 1) (10)

h(L,T )← not ph(L,T ),T �= 0 (11)

which says that L holds at the time moment T > 0 if its negation cannot possibly
hold at T .

2 Some adjustment to this syntax is needed if one wants to use some of the existing answer
set solvers. For instance, since Cmodels does not allow h(¬f, T ) we may replace it with, say,
h(neg(f), T ). Besides, to simplify our representation, we make use of choice rules introduced
in [24].
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5. Auxiliary rules: π(D) also contains the following rules:

← h(F,T ), h(¬F,T ) (12)

literal(F )← fluent(F ) (13)

literal(¬F )← fluent(F ) (14)

contrary(F,¬F )← fluent(F ) (15)

contrary(¬F, F )← fluent(F ) (16)

The first constraint guarantees that two contrary literals cannot hold at the same
time. The last four rules are used to define fluent literals and complementary literals.

At this point, it is worthwhile to provide the intuition behind the of atoms dc(l,T ),
h(l,T ), and ph(l,T ). Let a be an action and s be a partial state. Consider an “one-step”
program Π = π(D, 1) ∪ {h(l, 0) | l ∈ s} ∪ {o(a, 0)}.

Observe that Definition 1 implies that a literal l belongs to a possible next state if

1. it is an direct effect of a, i.e., l ∈ E(a,σ1);
2. it holds by inertial, i.e., l ∈ (σ1 ∩ σ2); or,
3. it is an indirect effects of a, i.e., l ∈ σ2 \ (E(a,σ1) ∪ (σ1 ∩ σ2)). In other words, it

is caused by a static causal law.

Let S1, S2, and S3 denote the three sets of literals corresponding to the above three cases
with respect to the partial state s. Since s might be incomplete, these three sets cannot
be computed in full. Our approach is to conservatively estimate the next partial state by

(i) underestimate S1 by considering only what definitely will hold given s. This set is
encoded by the set of atoms of the form dc(l, 1) and is computed by the rule (5);

(ii) overestimate the negation of S2 by considering what can possibly hold in the next
state. This set is encoded by the set of atoms of the form ph(l, 1) and is computed
by the rules (6) and (8); and

(iii) underestimate S3 by considering only what definitely will hold and what cannot
possibly change in the construction of the next state. This is encoded by the rules
(10)-(11) and (7).

Definition 3. Let T lp(D) be a transition diagram such that 〈s, a, s′〉 ∈ T lp(D) iff s
is a partial state and s′ = {l | h(l, 1) ∈ A} where A is the answer set of π(D, 1) ∪
h(s, 0) ∪ {o(a, 0)}.

The following theorem3 show that T lp(D) is sound with respect to T (D).

Theorem 1 (Soundness). If D is consistent then T lp(D) is a deterministic approxima-
tion of T (D).

4 Approximation Based Conformant Planners

We will now turn our attention to the conformant planning problem in action theories
of AL. We begin with the definition of a planning problem.

3 Proofs of theorems are omitted to save space.
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Definition 4. A planning problem is a tuple 〈D, s0, sf 〉 where s0 and sf are partial
states of D.

Partial states s0 and sf characterize possible initial situations and the goal respectively.

Definition 5. A chain of events α = 〈a0, . . . , an−1〉 is a solution to a planning problem
P = 〈D, s0, sf 〉 if α is safe in s0, and for every model M of α with a possible initial
state σ0 ∈ comp(s0), M |= sf .

We often refer to α as a plan for sf . If s0 is a state and action descriptionD is determin-
istic then α is a “classical” plan, otherwise it is a conformant plan. We next illustrate
these definitions using the well-known bomb-in-the-toilet example.

Example 1 (Bomb in the toilet). There is a finite set of toilets and a finite set of pack-
ages. One of the packages contains a bomb. The bomb can be disarmed by dunking the
package that contains it in a toilet. Dunking a package clogs the toilet. Flushing a toilet
unclogs it. Packages can only be dunked in unclogged toilets, one package per toilet.
The objective is to find a plan to disarm the bomb. This domain can be modeled by the
action description D1 which consists of the following laws:

dunk(P,E) causes ¬armed(P ) impossible dunk(P,E) if clogged(E)
dunk(P,E) causes clogged(E) impossible {dunk(P,E), flush(E)}
flush(E) causes ¬clogged(E) impossible {dunk(P1,E), dunk(P2,E)}

impossible {dunk(P,E1), dunk(P,E2)}

E and P are variables for toilets and packages respectively; E1 and E2 stand for dif-
ferent toilets and P1 and P2 stand for different packages. Note that the last three state-
ments specify physical impossibilities of some concurrent actions and the domain does
not have a static causal law.

Let n and m denote the number of packages and toilets respectively. A planning
problem in this domain, denoted by BMTC(n,m), is often given by 〈D1, s

0, sf 〉
where s0 is a (possibly empty) collection of literals of the form ¬armed(P ), where
P denotes some package. The goal sf contains {¬armed(1), . . . ,¬armed(n)}.

Consider the problem BMTC(2, 1). We can easily check that if σ is a state con-
taining ¬clogged(1) then 〈σ, dunk(1, 1),σ′〉 is a transition in T (D1) where σ′=(σ\
{armed(1),¬clogged(1)})∪{¬armed(1), clogged(1)}. Furthermore,

α = 〈flush(1), dunk(1, 1), flush(1), dunk(2, 1)〉

is safe in the partial state ∅ and α is a solution to the problem BMTC(2, 1). �

It is not difficult to show that there is a close relationship between conformant plans
and paths of an approximation T ′(D) of T (D). Because of the soundness of an approx-
imation, it follows from Observation 1 that if 〈s, α, s′〉 ∈ T ′(D), s ⊆ s0, and sf ⊆ s′

then α is a safe solution in s0 of the planning problem 〈D, s0, sf 〉.
Since T lp(D) is an approximation of T (D), we can use the program π(D) to com-

pute safe solutions of the planning problem P = 〈D, s0, sf 〉. Furthermore, because
T lp(D) is deterministic and computing the next state can be done in polynomial time,
we can show that the complexity of the conformant planning problem with respect to
T lp(D) is reduced to NP-complete (comparing to ΣP

2 , see [30]).
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We will next describe the program π(P) for this purpose. Like π(D), the signature
of π(P) includes terms corresponding to fluent literals and actions of D. We add to
π(P) a constant, length, which represents the plan length, i.e., time steps can take
value in the interval [0, length]. We also write π(P,n) to denote the program π(P)
with length equal to n. π(P) consists of π(D) and the following rules:

1. Rules encoding the initial state: for each l ∈ s0, we add to π(P) the rule:

h(l, 0)← (17)

2. Goal encoding: for each l ∈ sf , π(P) contains the constraint:

← not h(l, length)

This set of constraints makes sure that every literal in sf holds in the final state.
3. Action generation rule: as in other ASP-planners, π(P) contains the rule for gen-

erating action occurrences:

1{o(A,T ) : action(A)} ← T < length (18)

which says that at each moment of time T , some action must occur4.

With the help of Theorem 1, we can prove the correctness of the planner π(P).

Theorem 2. Let A be an answer set of π(P,n). It holds that

– for every 0 ≤ i < n, if ai = {e | o(e, i) ∈ A} then ai is an action which is not
prohibited in {l | h(l, i) ∈ A}; and

– α = 〈a0, . . . , an−1〉 is a solution to P .

This theorem allows us to use π(P) for computing minimal plans of P . This is done
by sequentially computing the answer sets of π(P, 0), π(P, 1), . . .. In the next section,
we will describe our experiments with π(P). From now on, we will refer to π(P) as
CPASP5. Before going on, we would like to mention that π(P) is not complete. One
of the main reasons for the incompleteness of π(P) lies in its limited capability in
reasoning-by-cases. The next example demonstrates this issue.

Example 2. Consider the action description D2 consisting of two dynamic causal laws
a causes f if g a causes f if ¬g

Intuitively, we have that a is a conformant plan achieving f from ∅ because either g or
¬g is true in any state belonging to comp(∅). Yet, it is easy to verify that a cannot be
generated by CPASP due to the fact that π(D2, 1) ∪ h(∅, 0) ∪ {o(a, 0)} has a unique
answer set containing no atom of the form h(l, 1). �

The next example shows that it is not only conditional effects but also static causal laws
can cause T lp to be incomplete.

4 If we wish to find a sequential plan, the only thing needed to do is to change the left side of
the rule to 1{o(A, T ) : action(A)}1.

5 CPASP stands for Conformant Planning using Answer Set Programming.
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Example 3. Consider the action description D3 consisting of the following laws
a causes f g if f, h g if f,¬h

We can check that a is a solution to the problem P3 = 〈D3, {¬f,¬g}, {g}〉 since a
causes f to hold and the two static causal laws guarantee that if f holds then so does g.
Yet, neither h(h, 1) nor h(¬h, 1) will belong to any answer set of π(P3, 1) due to the
rules (10) and (11). As such, π(P3, 1) does not return an answer set, i.e., a cannot be
found using T lp(D3). �

5 Experiments

We ran CPASP on both SMODELS and Cmodels [16]. In general, Cmodels yields better
performance. The results reported in this paper are the times obtained using Cmod-
els. Since most answer set solvers do not scale up well to programs that require large
grounded representation, we also implemented the approximation in a C++ planner,
called CPAph([28]). CPAph employs a best-first search strategy with the number of
fulfilled subgoals as its heuristic function. Unlike CPASP, the current version of CPAph

does not compute concurrent plans. However, CPAph allows disjunctions to be speci-
fied in the initial state description, while CPASP does not. Thus, CPASP cannot solve
conformant planning benchmarks in the literature where the initial state specification
contains disjunctions. We consider this as one of the weaknesses of CPASP.

We compare CPASP (and CPAph) with three other conformant planners CMBP[9],
DLVk[12], and C-PLAN[8] because these planners do allow static causal laws and are
similar in spirit of CPASP (that is, a planning problem is translated into an equivalent
problem in a more general setting which can be solved by an off-the-shelf software
system). While the latter two allow concurrent planning, the former does not. A com-
parison between DLVK and other planners like SGP [25] and GPT [5] can be found in
[12]. For a comparison between CPAph and other state-of-the-art conformant planners
like Conformant-FF [6], KACMBP [10], and POND [7], we refer the reader to [28].

We prepared two test suites: one contains sequential, conformant planning bench-
marks and the other contains concurrent, conformant planning benchmarks.

The first test suite includes two typical planning domains, the well-known Bomb-in-
the-toilet and the Ring domains [10]. In the former, we consider two variants,
BMT (n, p) and BMTC(n, p), where n and p are the numbers of packages and toi-
lets respectively. The first one is without clogging and the second one is with clogging.
The uncertainty in the initial state is that we do not know whether or not packages
are disarmed. In the Ring domain, one can move in a cyclic fashion (either forward or
backward) around a n-room building to lock windows. Each room has a window and
the window can be locked only if it is closed. Initially, the robot is in the first room and
it does not know the state (open/closed) of the windows. The goal is to have all windows
locked. A possible conformant plan is to perform a sequence of actions forward, close,
lock repeatedly. In this domain, we tested with n∈{2, 4, 6, 8, 10}.

These domains, however, do not contain many static causal laws. Therefore, we
introduce two new domains, called Domino and Gaspipe. The former is very simple.
We have n dominos standing on a line in such a way that if one of them falls then the
domino on its right also falls. There is a ball hanging close to the leftmost one. Touching
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the ball causes the first domino to fall. Initially, the states of dominos are unknown. The
goal is to have the rightmost one to fall. The solution is obviously to touch the ball. In
this domain, we tested with n∈{100, 200, 500, 100, 2000, 5000, 10000}.

The Gaspipe domain is a little more complicated. We need to start a flame in a
burner, which is connected to a gas tank through a pipe line. The gas tank is on the
left-most of the pipeline and the burner is on the right-most. The pipe line contains
sections that connect with each other by valves. The state of pipe sections can be either
pressured or unpressured. Opening a valve causes the section on its right side to be
pressured if the section on its left is pressured. Moreover, to be safe, a valve can be
opened only if the next valve on the line is closed. Closing a valve causes the pipe
section on its right side to be unpressured. There are two kinds of static causal laws.
The first one is that if a valve is open and the section on its left is pressured then the
section on its right will pressured. Otherwise (either the valve is closed or the section
on the left is unpressured), the pipe on the right side is unpressured. The burner will
start a flame if the pipe connecting to it is pressured. The gas tank is always pressured.
The uncertainty we introduce with the initial situation is that the states of valves are
unknown. A possible conformant plan will be closing all valves but the first one (that is,
the one that connects to the gas tank), in the right-to-left order and then opening them
in the reverse order. We tested with n∈{3, 5, 7, 9, 11}.

The last domain in the first test suite is the Cleaner domain. It is a modified version
of the Ring domain. The difference is that instead of locking the window, the robot has
to clean objects. Each room has p objects to be cleaned. Initially, the robot is at the first
room and does not know whether or not objects are cleaned. The goal is to have all ob-
jects cleaned. While the Domino and Gaspipe domains expose a richness in static causal
laws, the Cleaner domain provides a high degree of uncertainty in the initial state. We
tested the domain with 6 problems where n∈{2, 5} and p∈{10, 50, 100} respectively.

The second test suite includes benchmarks for concurrent, conformant planning. It
contains four domains. The BMT p and BMTCp domains are variants of BMT and
BMTC in the first test suite in which dunking different packages into different toilets at
the same time is allowed. The Gaspipep is a modification of Gaspipe in which closing
multiple valves at the time are allowed. In addition, one can open a valve while closing
other valves. However, it is not allowed to open and close the same valve or open two dif-
ferent valves at the same time. TheCleaner domain is relaxed to allow cleaning multiple
objects in the same room at the same time. The relaxed version is denoted by Cleanerp.
The testing problems in the second test suite are the same as those in the first test suite.

All experiments were made on a 2.4 GHz CPU, 768MB RAM machine, running
Slackware 10.0 operating system. Time limit is set to half an hour. The testing results
for two test suites are shown in Tables 1a) and 1b) respectively. We did not test C-
PLAN in the sequential planning benchmarks since it is supposed to use for concurrent
planning6. Times are shown in seconds; “PL”, “TO”, “MEM”, “NA” indicate the length
of the plan found by the planner, that the planner ran out of time, that the planner ran out
of memory, and that the planner returns a message indicating that no plan can be found7,
respectively. Since both DLVK and CPASP require as an input parameter the length of

6 The authors told us that C-PLAN was not intended for searching sequential plans.
7 We did contact the authors’ of the planner for help and are waiting for a response.
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Table 1. Comparison between CPASP, CPAph, CMBP DLVK, and C-PLAN in sequential DLVK,
and C-PLAN in sequential a) Sequential Benchmarks b) Concurrent Benchmarks

Domains CMBP DLVK CPASP CPAph Domains C-PLAN DLVK CPASP

Problems PL Time PL Time PL Time PL Time Problems PL Time PL Time PL Time
BMT (2, 2) 2 0.03 2 0.046 2 0.209 2 0.000 BMT p(2, 2) 1 0.078 1 0.074 1 0.116
BMT (4, 2) 4 0.167 4 0.555 4 0.418 4 0.002 BMT p(4, 2) 2 0.052 2 0.094 2 0.268
BMT (6, 2) 6 0.206 6 216.557 6 0.775 6 0.005 BMT p(6, 2) 3 1.812 3 3.065 3 0.346
BMT (8, 4) 8 0.633 TO 8 6.734 8 0.021 BMT p(8, 4) 2 4.32 2 10.529 2 0.248
BMT (10, 4) 10 1.5 TO 10 890.064 10 0.038 BMT p(10, 4) TO TO 3 1.911
BMT C(2, 2) 2 0.166 2 0.121 2 0.222 2 0.001 BMT Cp(2, 2) 1 0.057 1 0.059 1 0.13
BMT C(4, 2) 6 0.269 6 72.442 6 0.712 6 0.004 BMT Cp(4, 2) 3 0.076 3 0.908 3 0.3
BMT C(6, 2) 10 0.749 TO 8 2.728 10 0.010 BMT Cp(6, 2) 5 7.519 5 333.278 5 0.672
BMT C(8, 4) TO TO TO 12 0.031 BMT Cp(8, 4) TO TO 3 0.508
BMT C(10, 4) TO TO TO 16 0.054 BMT Cp(10, 4) TO TO 5 1192.458
Gaspipe(3) NA 5 0.132 5 1.349 7 0.026 Gaspipep(3) TO 4 0.088 4 0.402
Gaspipe(5) NA 9 0.425 9 2.226 22 0.481 Gaspipep(5) TO 6 0.173 6 0.759
Gaspipe(7) NA 13 42.625 13 6.186 86 8.464 Gaspipep(7) TO 8 0.441 8 1.221
Gaspipe(9) NA TO 17 39.323 261 45.910 Gaspipep(9) TO 10 17.449 10 3.175
Gaspipe(11) NA TO 21 868.102 1327 529.469 Gaspipep(11) TO TO 12 8.832
Cleaner(2, 2) 5 0.1 5 0.104 5 0.496 5 0.002 Cleanerp(2, 2) 3 0.052 3 0.076 3 0.265
Cleaner(2, 5) 11 0.617 11 214.696 11 3.88 11 0.012 Cleanerp(2, 5) 3 0.121 3 0.066 3 0.3
Cleaner(2, 10) TO TO TO 21 0.060 Cleanerp(2, 10) 3 0.06 3 0.076 3 0.309
Cleaner(4, 2) 11 0.13 11 14.82 11 2.094 11 0.014 Cleanerp(4, 2) 7 0.068 7 0.196 7 0.773
Cleaner(4, 5) TO TO TO 23 0.082 Cleanerp(4, 5) 7 0.09 7 0.809 7 0.931
Cleaner(4, 10) TO TO TO 43 0.434 Cleanerp(4, 10) 7 0.131 7 237.637 7 1.164
Cleaner(6, 2) 17 4.1 TO 17 224.391 17 0.054 Cleanerp(6, 2) 11 0.116 11 4.475 11 1.982
Cleaner(6, 5) TO TO TO 35 0.311 Cleanerp(6, 5) 11 0.195 11 986.731 11 2.947
Cleaner(6, 10) TO TO TO 65 1.623 Cleanerp(6, 10) 11 0.357 TO 11 3.737
Ring(2) 5 0.01 0.201 5 0.911 5 0.003
Ring(4) 11 0.116 0.638 11 2.738 12 0.025 b)
Ring(6) 17 0.5 TO 17 18.852 18 0.088
Ring(8) TO TO 23 669.321 24 0.242
Ring(10) TO TO TO 30 0.542
Domino(100) 1 0.26 1 0.1 1 0.216 1 0.026
Domino(200) 1 1.79 1 0.352 1 0.285 1 0.099
Domino(500) 1 7.92 1 2.401 1 0.747 1 0.568
Domino(1000) 1 13.2 1 13.104 1 1.236 1 2.313
Domino(2000) 1 66.6 1 62.421 1 2.414 1 9.209
Domino(5000) 1 559.467 MEM 1 6.076 1 67.619
Domino(10000) TO MEM 1 12.584 1 350.129

a)

a plan to search for, we ran them by incrementally increasing the plan length, starting
from 18, until a plan is found.

As can be seen in Table 1a), in the BMT and BMTC domains, CMBP outper-
forms both DLVK and CPASP in most problems. However, its performance is not com-
petitive with CPAph which can solve the BMTC(10, 4) with only less than one tenth
of a second (In fact, CPAph can scale up to larger problems, e.g., with 100 packages
and 100 toilets, within the time limit). CPASP in general has better performance than
DLVK in these domains. As an example, DLVK took more than three minutes to solve the
BMT (6, 2), while it took only 0.775 seconds for CPASP to solve the same problem.
Within the time limit, CPASP is able to solve more problems than DLVK.

CPASP seems to work well with domains rich in static causal laws like Domino
and Gaspipe. In the Domino domain, CPASP outperforms all the other planners in
most of instances. It took only 2.414 seconds to solve Domino(2000), while both DLVK

and CMBP took more than one minute. Although CPAph can solve all the instances in
this domain, its performance is in general worse than CPASP’s. In the Gaspipe domain,
CPASP and CPAph are competitive with each other and outperform the other two. The
Cleaner domain turns out to be quite hard for the tested planners except CPAph. We
believe that the high degree of uncertainty in the initial state is the main reason for this
performance gain of CPAphcomparing to others since it does not consider all possible
cases in searching for a solution.

CPASP is outperformed by both CMBP and DLVK in some small instances in the
Ring domain. However, it can solve the Ring(8), while CMBP and DLVK cannot.

8 We did not start from 0 because none of the benchmarks has a plan of length 0.
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Again, CPAph is the best. This shows that CPASP can be competitive with the tested
conformant planners in some sequential planning benchmarks.

Table 1b) shows that CPASP also has a fairly good performance in concurrent plan-
ning problems. It outperforms both DLVK and C-PLAN in most instances in the BMT p,
BMTCp, and Gaspipep domains. DLVK is better than C-PLAN in the Gaspipep do-
main. On the contrary, C-PLAN is very good at the Cleanerp domain. To solve Cleaner
(6, 10), C-PLAN took only 0.357 seconds , whereas DLVK ran out of time and CPASP

needs 3.737 seconds.

6 Conclusion and Future Work

We present a logic programming based approximation for AL action descriptions and
apply it to conformant planning. We describe two conformant planners, CPASP and
CPAph, whose key reasoning part is for computing the approximation. Our initial ex-
periments show that with an appropriate approximation, logic programming based con-
formant planners can be built to deal with problems rich in static causal laws and incom-
plete information about the initial state. In other words, a careful study in approximated
reasoning may pay off well in the development of practical planners.

As an approximation can only guarantee soundness, it will be interesting to charac-
terize situations when an approximation (e.g. T lp(D)) can yield completeness. For ex-
ample, if T lp(D) can generate all conformant plans of length 1 and whenever 〈a1, . . . ,
an〉 is a solution to 〈D, s, sf 〉, 〈a2, . . . , an〉 is a solution to 〈D, s′, sf 〉 where s′ =⋂
∃σ∈comp(s).〈σ,a1,σ′〉∈T (D) σ′, then T lp(D) is complete. It can be shown that the first

condition can be met when D does not contain (i) a static causal law; (ii) a pair of
dynamic causal laws of the form a causes f if p and a causes f if p′ with
p′ ∩ p̄ �= ∅; and (iii) a pair of impossibility conditions of the form impossible a if p
and impossible a if p′ with p′ ∩ p̄ �= ∅. Identifying sufficient conditions for the com-
pleteness of T lp(D) will be our main concern in the near future.

At this point, we would like to mention that to verify that our approach can deal
with a broad spectrum of planning problems, we tested CPASP and CPAph with several
benchmarks problems [1] including the instances of the Blocks World domain tested in
[12] and did not encounter a problem that the two planners cannot solve. This shows
that our approach can deal with a large class of practical planning problems. Finally,
we would like to point out that the use of logic programming allows us to easily exploit
control knowledge (e.g., “do not dunk a package unless it is armed”) in improving the
quality of a plan or to specify complex initial (incomplete)-states (see e.g., [13,27]).
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Via Salaria 113, I-00198 Rome, Italy
{finzi, lukasiewicz}@dis.uniroma1.it

Abstract. We present the action language GC+ for reasoning about actions
in multi-agent systems under probabilistic uncertainty and partial observability,
which is an extension of the action language C+ that is inspired by partially ob-
servable stochastic games (POSGs). We provide a finite-horizon value iteration
for this framework and show that it characterizes finite-horizon Nash equilibria.
We also describe how the framework can be implemented on top of nonmonotonic
causal theories. We then present acyclic action descriptions in GC+ as a special
case where transitions are computable in polynomial time. We also give an ex-
ample that shows the usefulness of our approach in practice.

1 Introduction

There are several important problems that we have to face in reasoning about actions
for mobile agents in real-world environments. First and foremost, we have to deal with
uncertainty, both about the initial situation of the agent’s world and about the results
of the actions taken by the agent (due to noisy effectors and/or sensors). Second, a
closely related problem is that the properties of real-world environments are in general
not fully observable (due to noisy and inaccurate sensors, or because some relevant
parts of the environment simply cannot be sensed), and thus we also have to deal with
partial observability. One way of adding uncertainty and partial observability to reason-
ing about actions is based on qualitative models in which all possible alternatives are
equally taken into consideration. Another way is based on quantitative models where
we have a probability distribution on the set of possible alternatives, and thus can nu-
merically distinguish between the possible alternatives.

Well-known first-order formalisms for reasoning about actions such as the situation
calculus [24] easily allow for expressing qualitative uncertainty about the effects of ac-
tions and the initial situation of the world through disjunctive knowledge. Furthermore,
there are generalizations of the action languageA [12] that allow for qualitative uncer-
tainty in the form of nondeterministic actions. An important recent formalism in this
family is the action language C+ [13], which is based on the theory of nonmonotonic
causal reasoning presented in [18], and has evolved from the action language C. In
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addition to allowing for conditional and nondeterministic effects of actions, C+ also
supports concurrent actions as well as indirect effects and preconditions of actions
through static causal laws. Closely related to it is the recent planning language K [7].

There are a number of formalisms for probabilistic reasoning about actions. In par-
ticular, Bacchus et al. [1] propose a probabilistic generalization of the situation calculus,
which is based on first-order logics of probability, and which allows to reason about an
agent’s probabilistic degrees of belief and how these beliefs change when actions are
executed. Poole’s independent choice logic [22] is based on acyclic logic programs un-
der different “choices”. Each choice along with the acyclic logic program produces a
first-order model. By placing a probability distribution over the different choices, we
then obtain a distribution over the set of first-order models. Boutilier et al. [5] introduce
and explore an approach to first-order (fully observable) Markov decision processes
(MDPs) [23] that are formulated in a probabilistic generalization of the situation cal-
culus. A companion paper [6] presents a generalization of Golog, called DTGolog,
that combines agent programming in Golog with decision-theoretic planning in MDPs.
Probabilistic extensions of the action language A and its most recent variant C+ have
especially been proposed by Baral et al. [2] and Eiter and Lukasiewicz [8].

Many of the above logical formalisms for reasoning about actions under proba-
bilistic uncertainty take inspiration from decision-theoretic planning in fully observ-
able Markov decision processes (MDPs) [23] and the more general partially observ-
able Markov decision processes (POMDPs) [16]. Such logical formalisms for reasoning
about actions that are inspired by decision-theoretic planning are also appealing from
the perspective of decision-theoretic planning, since they allow for [11,14] (i) com-
pactly representing MDPs and POMDPs without explicitly referring to atomic states
and state transitions, (ii) exploiting such compact representations for efficiently solving
large-scale problems, and (iii) nice properties such as modularity (parts of the specifi-
cation can be easily added, removed, or modified) and elaboration tolerance (solutions
can be easily reused for similar problems with few or no additional effort).

The above generalizations ofA and C+ in [2,8] assume that the model of the world
consists of a single agent that we want to control and the environment summarized in
“nature”. In realistic applications, however, we often encounter multiple agents, which
may compete or cooperate with each other. Here, the optimal actions of one agent gen-
erally depend on the actions of all the other agents. In particular, there is a bidirectional
dependence between the actions of two agents, which generally makes it inappropriate
to model enemies and friends of the controlled agent simply as a part of “nature”.

There are generalizations of MDPs and POMDPs to multi-agent systems with coop-
erative agents, called multi-agent MDPs [4] and decentralized POMDPs [3,20], respec-
tively. Similarly, there are also generalizations of MDPs and POMDPs to multi-agent
systems with competing (that is, not necessarily cooperative) agents, called stochas-
tic games [21] (or Markov games [25,17]) and partially observable stochastic games
(POSGs) [15,9], respectively. Multi-agent MDPs (resp., decentralized POMDPs) and
stochastic games (resp., POSGs) are similar to MDPs (resp., POMDPs), except that ac-
tions (and decisions) are distributed among multiple agents, where the optimal actions
of each agent may depend on the actions of all the other agents. Stochastic games (resp.,
POSGs) generalize both normal form games [26] and MDPs (resp., POMDPs).
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In this paper, we present the language GC+ for reasoning about actions in multi-
agent systems under probabilistic uncertainty and partial observability, which is an ex-
tension of the language C+ that takes inspirations from partially observable stochastic
games (POSGs) [15]. The main contributions of this paper are as follows:

– We present the action language GC+ for reasoning about actions in multi-agent
systems under probabilistic uncertainty and partial observability, which is an ex-
tension of both the action language C+ and POSGs. We consider the very general
case in which the agents may have different rewards, and thus may be competitive.
Here, we assume that planning and control are centralized as follows. All agents
transmit their local belief states and/or observations to a central agent, which then
computes and returns the optimal local action for each agent.

– Under the above assumption, the high worst-case complexity of POSGs (NEXP-
completeness for the special case of decentralized POMDPs [3]) is avoided, since
the POSG semantics of GC+ can be translated into a belief state stochastic game
semantics. We use the latter to define a finite-horizon value iteration for GC+, and
show that it characterizes finite-horizon Nash equilibria.

– We show that the GC+ framework can be implemented on top of reasoning in
nonmonotonic causal theories. We present acyclic action descriptions in GC+ as a
special case where transitions are computable in polynomial time. We also provide
an example that shows the usefulness of our approach in practice.

Note that further technical details are given in the extended paper [10].

2 Preliminaries

In this section, we recall the basic concepts of the action language C+, normal form
games, and partially observable stochastic games.

2.1 The Action Language C+

We first recall the main concepts of the action language C+; see especially [13] for
further details, motivation, and background.

Syntax. Properties of the world are represented by rigid variables, simple fluents, and
statically determined fluents, while actions are expressed by action variables. The values
of rigid variables do not change when actions are performed, while the ones of simple
(resp., statically determined) fluents may directly (resp., indirectly) change through ac-
tions. The knowledge about the latter is encoded through dynamic (resp., static) causal
laws over formulas, which are Boolean combinations of atomic assignments.

Formally, we thus assume a finite set V of variables, which are divided into rigid
variables, simple fluents, statically determined fluents, and action variables. Every
variable X ∈V may take on values from a nonempty finite domain D(X), where
every action variable has the Boolean domain {⊥,�}. We define formulas inductively
as follows. False and true, denoted ⊥ and �, respectively, are formulas. If X ∈V
and x∈D(X), then X =x is a formula (called atom). If φ and ψ are formulas, then
also ¬φ and (φ∧ψ). A literal is an atom X =x or a negated atom¬X =x (abbreviated
as X �=x). We often abbreviate X =� (resp., X =⊥) as X (resp., ¬X).
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Static causal laws express static knowledge about fluents and rigid variables. They
are expressions of the form

caused ψ if φ , (1)

where ψ and φ are formulas such that either (a) every variable in ψ is a fluent, and no
variable in φ is an action variable, or (b) every variable in ψ and φ is rigid. Informally,
(1) encodes that every state of the world that satisfies φ should also satisfy ψ. If φ=�,
then (1) is abbreviated by caused ψ. Dynamic causal laws express how simple fluents
change when actions are performed. They have the form

caused ψ if φ after θ , (2)

where ψ, φ, and θ are formulas such that every variable in ψ is a simple fluent, and no
variable in φ is an action variable. Informally, (2) encodes that every next state of the
world satisfying φ should also satisfy ψ, if the current state and the executed action sat-
isfy θ. If φ=�, then (2) is abbreviated by caused φ after θ. If also θ = a1∧· · ·∧ak ∧ δ,
where every ai is an assignment of � to an action variable, then (2) is abbreviated
by a1, . . . , ak causes ψ if δ. Informally, if the current state of the world satisfies δ, then
the next state after concurrently executing a1, . . . , ak satisfies ψ. If ψ =⊥ and φ=�,
then (2) is an execution denial and abbreviated by

nonexecutable θ . (3)

Informally, if a state s and an action α satisfy θ, then α is not executable in s. If θ =
a1 ∧ · · · ∧ak ∧ δ, then (3) is abbreviated by nonexecutable a1, . . . , ak if δ. Informally,
a1, . . . , ak cannot be concurrently executed in a state satisfying δ. The expression in-
ertial X , where X ∈V , abbreviates the set of all laws (2) such that φ= ψ = θ =X=x
and x∈D(X). Informally, the value of X remains unchanged when actions are exe-
cuted, as long as this does not produce any inconsistencies.

A causal law (or axiom) is a static or dynamic causal law. An action description D
is a finite set of causal laws. An initial database φ is a formula without action variables.

Semantics. An action description D represents a system of transitions from states to
sets of possible successor states, while an initial database φ encodes a set of possible
initial states. We now define states and actions, the executability of actions in states, and
the above transitions through actions.

An interpretation I of a set of variables V ′⊆V assigns to every X ∈V ′ an element
of D(X). We say I satisfies an atom Y = y, where Y ∈V ′, denoted I |= Y = y, iff
I(Y )= y. Satisfaction is extended to all formulas over V ′ as usual.

Let s be an interpretation of all rigid variables and fluents in V . Let Ds be the set of
all ψ such that either (a) s |=φ for some caused ψ if φ in D, or (b) s |=ψ and ψ =X=x
for some simple fluent X ∈X and x∈D(X). A state s of D is an interpretation s
as above that is a unique model of Ds. An action α is an interpretation of all action
variables in V . The action α is executable in a state s, denoted Poss(α, s), iff s∪α
satisfies ¬θ for every nonexecutable θ in D.

An action transition is a triple (s, α, s′), where s and s′ are states of D such that
s(X)= s′(X) for every rigid variable X ∈V , and α is an action that is executable in s.
A formula ψ is caused in (s, α, s′) iff either (a) s′ |=φ for some caused ψ if φ in D,
or (b) s∪α |= θ and s′ |=φ for some caused ψ if φ after θ in D. The triple (s, α, s′)
is causally explained iff s′ is the only interpretation that satisfies all formulas caused



Game-Theoretic Reasoning About Actions in Nonmonotonic Causal Theories 189

in (s, α, s′). For every state s and action α, define Φ(s, α) as the set of all states s′ such
that (s, α, s′) is causally explained. Note that Φ(s, α)= ∅ if no such (s, α, s′) exists, in
particular, if α is not executable in s. We say that D is consistent iff Φ(s, α) �= ∅ for all
actions α and states s such that α is executable in s. Informally, Φ(s, α) is the set of all
possible successor states after executing α in s.

2.2 Normal Form Games

Normal form games from classical game theory [26] describe the possible actions
of n� 2 agents and the rewards (or utilities) that the agents receive when they simul-
taneously execute one action each. For example, in two-finger Morra, two players E
and O simultaneously show one or two fingers. Let f be the total numbers of fingers
shown. If f is odd, then O gets f dollars from E, and if f is even, then E gets f dollars
from O. Formally, a normal form game G=(I, (Ai)i∈I , (Ri)i∈I) consists of a set of
agents I = {1, . . . ,n}, n� 2, a nonempty finite set of actions Ai for each agent i∈ I ,
and a reward (or utility) function Ri : A→R for each agent i∈ I , which associates with
every joint action a∈A= ×i∈I Ai a reward (or utility) Ri(a) to agent i.

A pure (resp., mixed) strategy specifies which action an agent should execute (resp.,
which actions an agent should execute with which probability). Formally, a pure strat-
egy for agent i∈ I is any action ai ∈Ai. A pure strategy profile is any joint action a∈A.
If the agents play a, then the reward to agent i∈ I is Ri(a). A mixed strategy for agent
i∈ I is any probability distribution πi over Ai. A mixed strategy profile π = (πi)i∈I

consists of a mixed strategy πi for each agent i∈ I . If the agents play π, then the ex-
pected reward to agent i∈ I , denoted E[Ri(a) |π] (or Ri(π)), is defined as

a=(aj)j∈I ∈A Ri(a) · Πj∈Iπj(aj) .

We are especially interested in mixed strategy profiles π, called Nash equilibria,
where no agent has the incentive to deviate from its part, once the other agents play
their parts. A mixed strategy profile π =(πi)i∈I is a Nash equilibrium for G iff for
every agent i∈ I , it holds that Ri(π′i ◦π−i)�Ri(π) for every mixed strategy π′i, where
π−i (resp., π′i ◦ π−i) is obtained from π by removing πi (resp., replacing πi by π′i).
Every normal form game G has at least one Nash equilibrium among its mixed (but
not necessarily pure) strategy profiles, and many have multiple Nash equilibria. A Nash
selection function f associates with every normal form game G a unique Nash equilib-
rium f(G). The expected reward to agent i∈ I under f(G) is denoted by vi

f (G).

2.3 Partially Observable Stochastic Games

We will use POSGs [15] to define the semantics of the action language GC+, where we
assume that planning and control are centralized as follows. There exists a central agent,
which (i) knows the local belief state of every other agent, (ii) computes and sends them
their optimal local actions, and (iii) thereafter receives their local observations. Hence,
we assume a transmission of local belief states and local observations to a central agent
from all other agents, and of the optimal local actions in the reverse direction. Using
this assumption, we can translate POSGs into belief state stochastic games, and then
perform a finite-horizon value iteration.
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Roughly, a POSG consists of a nonempty finite set of states S, a normal form game
for each state s∈S, a set of joint observations of the agents O, and a transition function
that associates with every state s∈S and joint action of the agents a∈A a probability
distribution on all combinations of next states s′ ∈S and joint observations o∈O. For-
mally, a partially observable stochastic game (POSG) G=(I,S, (Ai)i∈I , (Oi)i∈I ,P,
(Ri)i∈I) consists of a set of agents I = {1, . . . ,n}, n� 2, a nonempty finite set of
states S, two nonempty finite sets of actions Ai and observations Oi for each agent
i∈ I , a transition function P : S×A→ PD(S×O), which associates with every state
s∈S and joint action a∈A=×i∈IAi a probability distribution over S×O, where
O =×i∈IOi, and a reward function Ri : S×A→R for each agent i∈ I , which asso-
ciates with every state s∈S and joint action a∈A a reward Ri(s, a) to agent i.

Since the actual state s∈S of the POSG G is not fully observable, every agent i∈ I
has a belief state bi that associates with every state s∈S the belief of agent i about
s being the actual state. Formally, a belief state b=(bi)i∈I of G consists of a proba-
bility function bi over S for each agent i∈ I . The POSG G then defines probabilistic
transitions between belief states as follows. The new belief state ba,o = (ba,o

i )i∈I after
executing the joint action a∈A in b=(bi)i∈I and jointly observing o∈O is given by:

ba,o
i (s′) = s∈S P (s′, o | s, a) · bi(s) / Pb(b

a,o
i | bi, a), where

Pb(b
a,o
i | bi, a) = s′∈S s∈S P (s′, o | s, a) · bi(s)

is the probability of observing o after executing a in bi. These probabilistic transitions
define the fully observable stochastic game over belief states G′=(I, B, (Ai)i∈I ,Pb,
(Ri)i∈I), where B is the set of all belief states of G.

We next define finite-horizon pure and mixed policies and their rewards and ex-
pected rewards, respectively, using the above fully observable stochastic game over be-
lief states. Assuming a finite horizon H � 0, a pure (resp., mixed) time-dependent pol-
icy associates with every belief state b of G and number of steps to go h∈{0, . . . ,H}
a pure (resp., mixed) normal form game strategy. Formally, a pure policy α assigns to
each belief state b and number of steps to go h∈{0, . . . ,H} a joint action from A. A
mixed policy is of the form π = (πi)i∈I , where every πi assigns to each belief state b
and number of steps to go h∈{0, . . . ,H} a probability function πi[b, h] over Ai. The
H-step reward (resp., expected H-step reward) for pure (resp., mixed) policies can now
be defined as usual. In particular, the expected H-step reward to agent i∈ I under a
start belief state b=(bi)i∈I and the mixed policy π, denoted Gi(H, b, π), is defined as

a∈A(Πj∈Iπj [b, 0](aj))· s∈S bi(s)Ri(s, a) if H =0;

a∈A(Πj∈Iπj [b, H ](aj))·( s∈S bi(s)Ri(s, a)+

o∈O P (ba,o
i |bi, a) · Gi(H−1, ba,o, π)) otherwise.

The notion of a finite-horizon Nash equilibrium for a POSG G is then defined as
follows. A policy π is a Nash equilibrium of G under a belief state b iff for every agent
i∈ I , it holds that Gi(H, b, π′i ◦π−i)�Gi(H, b, πi ◦π−i) for all policies π′i. A policy
π is a Nash equilibrium of G iff it is a Nash equilibrium of G under every belief state b.

Nash equilibria of G can be characterized by finite-horizon value iteration from
local Nash equilibria of normal form games as follows. Let f be an arbitrary Nash
selection function for normal form games with the action sets (Ai)i∈I . For every belief
state b=(bi)i∈I and number of steps to go h ∈ {0, . . . ,H}, let G[b, h] = (I, (Ai)i∈I ,
(Qi[b, h])i∈I), where Qi[b, h](a) is defined as follows (for all a∈A and i∈ I):
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s∈S bi(s)Ri(s, a) if h =0;

s∈S bi(s)Ri(s, a) + o∈O P (ba,o
i |bi, a) · vi

f (G[ba,o, h−1]) otherwise.

Let the mixed policy π =(πi)i∈I for the POSG G be defined by πi(b, h)= fi(G[b, h])
for all i∈ I , belief states b, and number of steps to go h∈{0, . . . ,H}. Then, π is a Nash
equilibrium of G, and Gi(H, b, π)= vi

f (G[b,H ]) for every i∈ I and belief state b.

3 The Action Language GC+

In this section, we define the action language GC+, which generalizes both the action
language C+ and POSGs.

Syntax. We extend C+ by formulas that express probabilistic transitions and agent
rewards as in POSGs as well as formulas that encode the initial belief state of the agents.

We assume a set of n� 2 agents I = {1, . . . ,n}. Each agent i∈ I has (i) a non-
empty set of action variables AV i, where AV 1, . . . ,AV n partitions the set of all ac-
tion variables AV ⊆V , and (ii) a nonempty set of possible observations Oi. Every
o∈O = ×i∈IOi is a joint observation. A probabilistic dynamic causal law is of the
form

caused [(ψ1 if φ1; o1) : p1, . . . , (ψk if φk; ok) : pk] after δ , (4)

where every caused ψj if φj after δ with j ∈{1, . . . , k} is a dynamic causal law, every
oj is a joint observation, p1, . . . , pk > 0, p1+ · · ·+pk = 1, and k � 1. Informally, if
an action α is executed in a state s, where s∪α |= δ, then with the probability pj the
successor states satisfy caused ψj if φj and the agents observe oj . We omit “if φj”
in (4), when φj =�. A reward law for agent i∈ I is of the form

reward i : r after δ , (5)

where r is a real. Informally, if an action α is executed in a state s, where s∪α |= δ, then
agent i receives the reward r. A probabilistic initial database law for i∈ I is of form

i : [ψ1 : p1, . . . , ψk : pk] , (6)

where each ψj with j ∈{1, . . . , k} is a formula without action variables, p1, . . . , pk > 0,
p1+ · · ·+pk =1, and k � 1. Informally, the initial belief of agent i is that the set of
states satisfying ψj holds with the probability pj .

A probabilistic action description P is a finite set of causal, probabilistic dynamic
causal, and reward laws. A probabilistic initial database Ψ =(Ψi)i∈I consists of a prob-
abilistic initial database law Ψi for every agent i∈ I .

Semantics. A probabilistic action description P represents a transition system, where
every state s and action α executable in s is associated with a reward to every agent and
a probability distribution over possible successor states. A probabilistic initial database
Ψ =(Ψi)i∈I encodes each agent’s probabilistic belief about the possible initial states.

The set of all states and actions of P and the executability of an action in a state are
defined as in Section 2.1. An action for agent i∈ I is any interpretation over AV i. The
set of all actions for agent i is denoted by Ai. We next define the probabilistic transitions
and the rewards encoded in P .



192 A. Finzi and T. Lukasiewicz

Let s be a state, and let α be an action executable in s. Suppose that P contains
exactly one law F of the form (4) such that s∪α |= δ. For every j ∈{1, . . . , k}, let
Pj be obtained from P by replacing F by caused ψj if φj after δ. Let Φj(s, α)
be the set of all states s′ such that (s, α, s′) is causally explained relative to Pj . For
each state s′ and o∈O, let Pj(s′, o|s, α)= pj / |Φj(s, α)|, if s′ ∈Φj(s, α) and o= oj ,
and Pj(s′, o|s, α)= 0, otherwise. Informally, pj is uniformly distributed among all
s′ ∈Φj(s, α). For each state s′ and o∈O, the probability of moving to the successor
state s′ along with jointly observing o, when executing α in s, denoted P (s′, o|s, α), is
defined as

∑k
j=1 Pj(s′, o|s, α).

Let s be a state, and let α be an action executable in s. Suppose for every agent i∈ I ,
exactly one law reward i : r after δ with s∪α |= δ belongs to P . Then, the reward to i
when executing α in s, denoted Ri(s, α), is defined as r.

We next define the initial probabilistic belief of every agent i∈ I , which is encoded
in the law Ψi of the form (6). For each j ∈{1, . . . , k}, let Φj be the set of all states
satisfying ψj . For each state s, let Pj(s)= pj / |Φj |, if s∈Φj , and Pj(s)= 0, otherwise.
Agent i’s belief about s being the initial state, denoted b0i (s), is defined as

∑k
j=1 Pj(s).

In the sequel, we implicitly assume that all P and Ψ are consistent: We say that P
is consistent iff for each state s and action α executable in s, (i) there is exactly one
law (4) in P with s∪α |= δ, (ii) each Φj(s, α) as above is nonempty, and (iii) for every
agent i∈ I , there is exactly one law reward i : r after δ in P with s∪α |= δ. We say
that Ψ is consistent iff, for every i∈ I , each Φj as above is nonempty.

Example 3.1 (Two Robots). We consider the scenario shown in Fig. 1: There are two
robots a1 and a2 in a room looking for an object o1, and trying to bring it out through
the only door d1. Both robots can pick up the object, and also pass it to another robot.
A pass attempt is only possible if the two robots are facing in adjacent positions. If the
receiving robot is not expecting the object, then it falls down. If the two robots are in
the same location, then they both cannot perform any pick up and door crossing action.
We assume that the reward for the robot bringing out the object is a bit higher. Hence,
there is an additional individual payoff for the robot able to accomplish the goal.

Let L= {l1,1, . . . , l2,3, d1,nil} be the set of possible locations of the robots and
the object, where li,j encodes the field (i, j), and d1 represents the door. For loca-
tions L and L′, let close(L,L′) be true iff L and L′ are adjacent. We assume the sim-
ple fluents at(X), where X ∈{a1, a2, o1}, with the domain L, as well as holds(R),
where R∈{a1, a2}, with the domain {o1,nil}. Let the action variables be given by
goTo(R,L), pickUp(R), passTo(R,R′), receive(R), where R,R′ ∈ {a1, a2}, R �=R′,

a1a1

a2 a2

o1 o1

o1
??

o1

Fig. 1. Initial belief states of a2 and a1, respectively
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and L∈L. Each robot’s set of observations is {obs(holds), obs(notHolds)}. Infor-
mally, each robot can only check if it is carrying something or not after a pick up. We
assume the following static causal law:

caused at(O) = nil if holds(R) = O .

We introduce the following dynamic causal laws for the action variables passTo(R,R′),
receive(R), and goTo(R,L) (they abbreviate probabilistic causal laws (4) with k = 1):

caused holds(R) = nil after passTo(R,R′) with R �= R′ ,
caused holds(R) = O after holds(R′) = O ∧ passTo(R′, R)∧

receive(R) with R �= R′ ,
caused at(O) = L after holds(R) = O ∧ passTo(R, R′)∧

¬receive(R′) ∧ at(R, L) with R �= R′ ,
caused at(R) = L after goTo(R, L) .

Here, if R fails to pass the object O, the latter remains in the location of R. For
pickUp(R), we introduce the following probabilistic causal law, assuming pickUp(R)
can fail, and obs(notHolds) can give incorrect positive results:

caused [(holds(R) = O ; obs(holds)) : 0.7,
(holds(R) = O ; obs(notHolds)) : 0.1,
(holds(R) = nil ; obs(notHolds)) : 0.2]

after pickUp(R) ∧ at(R) = L ∧ at(O) = L ,

We assume the following execution denials:

nonexecutable pickUp(R) ∧ holds(R) �= nil ,
nonexecutable pickUp(R) ∧ at(R) = L ∧ at(o1) �= L ,
nonexecutable pickUp(R) ∧ at(R′) = L ∧ at(R) = L ,
nonexecutable goTo(R, L) ∧ at(R) = L′ ∧ ¬close(L, L′) ,
nonexecutable goTo(R, d1) ∧ at(R) = L ∧ at(R′) = L ,
nonexecutable passTo(R,R′) ∧ at(R)=L ∧ at(R′)=L′ ∧ ¬close(L, L′) .

where R′ �=R and L′ �=L. Furthermore, every robot can execute only one action at a
time, that is, for any two distinct actions α and α′ of either robot a1 or a2:

nonexecutable α ∧ α′ .

For every simple fluent X , we assume the inertial law inertial X . Finally, the reward
function is defined as follows:

reward ai : 100 after αi ∧ holds(ai, O) ,
reward ai : 90 after αi ∧ holds(aj , O) with i �= j ,
reward ai : 10 after α ∧ holds(ai, O) with α �= αi ,
reward ai : 0 after α ∧ i=1,2 ¬holds(ai, O) with α �= αi.

where αi = goTo(ai, d1). The robot achieving the goal receives a high reward, the other
one a bit less. If a robot moves carrying something, it also receives a small payoff.

4 Finite-Horizon Value Iteration

In this section, we define finite-horizon Nash equilibria for probabilistic action descrip-
tions P in GC+ and provide a finite-horizon value iteration for computing them.
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Nash Equilibria. We first define belief states and probabilistic transitions between
them. A belief state of P is of the form b=(bi)i∈I , where every bi is a probability
function over the set of states of P . An action α is executable in b=(bi)i∈I iff for
every i∈ I the action α is executable in some state s with bi(s)> 0. Then, the new
belief state bα,o =(bα,o

i )i∈I after executing α in b and observing o∈O is given by:

bα,o
i (s′)= s∈S,Poss(α,s) P (s′, o|s, α)·bi(s)/P (bα,o

i |bi, α), where

P (bα,o
i | bi, α) = s′∈S s∈S, Poss(α,s) P (s′, o | s, α) · bi(s)

is the probability of observing o after executing α in bi.
A mixed policy is of the form π = (πi)i∈ I , where each πi assigns to every belief

state b and number of steps to go h∈{0, . . . ,H} a probability function over Ai. The
expected H-step reward to i∈ I under an initial belief state b=(bi)i∈I and the mixed
policy π, denoted Gi(H, b, π), is defined as

α(Πj∈Iπj [b, 0](αj))· s∈S,Poss(α,s) bi(s)Ri(s, α) if H =0;

α(Πj∈Iπj [b, H ](αj))·( s∈S,Poss(α,s) bi(s)Ri(s, α)+

o∈O P (bα,o
i |bi, α) · Gi(H−1, bα,o, π)) otherwise.

A policy π is a Nash equilibrium of G iff for each agent i∈ I and each belief state b,
it holds that Gi(H, b, π′i ◦π−i) � Gi(H, b, πi ◦π−i) for all π′i. We are especially inter-
ested in partial Nash equilibria, which are only defined for an initial belief state and all
future belief states within a fixed horizon.

Algorithm. We characterize Nash equilibria of P by finite-horizon value iteration
from local Nash equilibria of normal form games. We assume an arbitrary Nash se-
lection function f for normal form games with action set (Ai)i∈I . For every belief state
b=(bi)i∈I and number of steps to go h∈{0, . . . ,H}, we consider the normal form
game G[b, h] = (I, (Ai)i∈I , (Qi[b, h])i∈I), where Qi[b, h](α) is defined as follows (for
all actions α and agents i∈ I):

s∈S, Poss(α,s) bi(s)Ri(s, α) if h = 0;

s∈S, Poss(α,s) bi(s)Ri(s, α) + o∈O P (bα,o
i |bi, α) · vi

f (G[bα,o, h−1]) otherwise.

The next result shows that the above finite-horizon value iteration computes a Nash
equilibrium for consistent probabilistic action descriptions P in GC+.

Theorem 4.1. Let P be a consistent probabilistic action description in GC+, and
π =(πi)i∈ I be defined by πi(b, h)= fi(G[b, h]) for all agents i∈ I , belief states b,
and number of steps to go h∈{0, . . . ,H}. Then, π is a Nash equilibrium of G, and
Gi(H, b, π) = vi

f (G[b,H ]) for all i∈ I and b.

The following theorem shows that every POSG can be encoded as a consistent prob-
abilistic action description in GC+.

Theorem 4.2. Let G= (I,S, (Ai)i∈I , (Oi)i∈I ,P, (Ri)i∈I) be a POSG. Then, there ex-
ists a consistent probabilistic action description D in GC+ that encodes G.

Example 4.1 (Two Robots cont’d). Suppose the initial belief of robot a1 (resp., a2)
is as in Fig. 1, right (resp., left) side. In particular, a1 initially believes that o1 is at
l1,2 or l2,2, while a2 initially believes that o1 is at l2,3 or l2,2. Given the three possible
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states s1,2, s2,2, and s2,3 such that si,j |= at(o1)=li,j , let the probabilities be given by
b1(s1,2)= 0.2 and b1(s2,2)= 0.8 for a1, and by b2(s2,3)= 0.4 and b2(s2,2)= 0.6 for a2.

How should the two robots act in such an initial situation? We now apply our finite-
horizon value iteration algorithm to compute a partial Nash equilibrium. Notice that
pickUp(a1, l2,3) and pickUp(a2, l1,2) are not executable in the initial belief states of
a2 and a1, respectively. Hence, pickUp can only be executed in l2,2. In this case, each
agent wants to get to l1,2 first, execute pickUp, and cross the door. Assuming a 3-
step horizon, we obtain two pure partial policies αi, one for each agent ai: (1) at 3
steps to go, αi assigns the action a= goTo(ai, l2,2) to bi, while any executable ac-
tion bj except for goTo(aj , l2,2) is assigned to bj ; (2) at 2 steps to go, ai executes
pickUpi(ai, l2,2) from ba

i , while aj avoids goTo(aj , l2,2) from bb
j ; (3) at 1 step to

go, ai performs goTo(ai, d1) in any reached belief state (both after obs(holds) and
obs(notHolds)), while aj can execute any action. Both α1 and α2 represent a pure
partial Nash equilibrium, where the expected 3-step reward of α1 and α2 for the ro-
bot pair (a1, a2) is (70.4, 43.2) and (52.8, 57.6), respectively. Another Nash equilib-
rium can be obtained form the previous policies by randomizing the first action selec-
tion with π1(b1, a)= 0.55 for a= goTo(a1, l2,2) (Σβπ1(b1, β)= 0.45 with β �= a), and
π2(b2, a)= 0.56 for a= goTo(a2, l2,2) (Σβπ2(b2, β)= 0.44 with β �= a). Depending
on the first action execution, the remaining policy is defined as in α1 or α2. In this case,
the expected 3-step reward is G1(3, b1, π)= 30.67 and G2(3, b2, π)= 25.70.

5 Reductions and Special Cases

Computing partial Nash equilibria for a probabilistic action description P and an ini-
tial belief state requires the following computations: (i) computing the set of all states
for P , (ii) deciding whether an action α is executable in a state s, (iii) computing all
probabilistic transitions P (s′, o | s, α), and (iv) computing Nash equilibria of normal
form games. Here, (ii) can be easily done in polynomial time on P , while (iv) can be
done with standard technology from game theory (see especially [19]). Finally, (i) and
(iii) can be reduced to reasoning in causal theories as follows.

Reduction to Causal Theories. We first recall the main concepts of causal theo-
ries [13]. A (causal) rule has the form ψ⇐φ with formulas ψ and φ, called its head
and body, respectively. A causal theory T is a finite set of rules. Let I be an interpre-
tation of the variables in T . The reduct of T relative to I , denoted T I , is defined as
{ψ |ψ⇐φ∈T , I |=φ}. We say I is a model of T iff I is the unique model of T I .

The following result shows that the tasks (i) and (iii) above can be reduced to com-
puting the set of all models of a causal theory. It follows from the original semantics of
C+ based on causal theories [13]. In the case of definite causal laws, where all law heads
ψ in (1) and (2) are literals, the set of all models of the corresponding causal theories
can be computed using the Causal Calculator and answer set programming [13].

Proposition 5.1. Let D be an action description.

(a) Let T be the set of all rules ψ⇐φ such that either (i) caused ψ if φ∈D, or
(ii) φ=ψ = X=x for some simple fluent X∈X and x∈I(X). Then, an interpretation s
of all fluents and rigid variables is a state of D iff it is a model of T .
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(b) Let α be an action executable in state s. Let Ts∪α be the set of all ψ⇐φ such that
either (i) caused ψ if φ∈D, or (ii) s∪α |= θ for some caused ψ if φ after θ∈D. Then,
Φ(s, α) is the set of all models s′ of Ts∪α that coincide with s on all rigid variables.

Acyclic Action Descriptions. The action description of Section 3 is acyclic, which
allows for polynomial-time computations, as we now show. A causal theory T is acyclic
relative to W ⊆V iff (i) every rule head is a literal, and (ii) there is a mapping κ from
W to the non-negative integers such that κ(X)>κ(Y ) for all X, Y ∈W such that X
(resp., Y ) occurs in the head (resp., body) of some rule in T . An action description D is
acyclic iff (i) the set of all rules ψ⇐φ with caused ψ if φ∈D is acyclic relative to all
statically determined fluents and rigid variables, and (ii) for each state s and action α
executable in s, it holds that Ts∪α is acyclic relative to all fluents.

The following result shows that, in the acyclic case, every interpretation of the sim-
ple fluents produces at most one state, which is computable in polynomial time. Simi-
larly, the Φ(s, α)’s contain at most one state, and are computable in polynomial time.

Theorem 5.1. Let D be an acyclic action description. Then: (a) Every interpretation f
of the set of all simple fluents can be extended to at most one state s of D. (b) Deciding
whether such s exists and computing it can be done in polynomial time. (c) If s is
a state and α an action executable in s, then Φ(s, α) is either empty or a singleton,
and it is computable in polynomial time.

6 Summary and Outlook

We have presented the action language GC+ for reasoning about actions in multi-agent
systems under probabilistic uncertainty and partial observability, which is an extension
of the action language C+ that is inspired by partially observable stochastic games
(POSGs). We have provided a finite-horizon value iteration algorithm and shown that
it characterizes finite-horizon Nash equilibria. We have also given a reduction to non-
monotonic causal theories and identified the special case of acyclic action descriptions
in GC+, where transitions are computable in polynomial time.

An interesting topic of future research is to define similar action languages for more
general classes of POSGs and decentralized POMDPs.
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Abstract. The formalism of nonmonotonic causal theories (Giunchiglia,
Lee, Lifschitz, McCain, Turner, 2004) provides a general-purpose formal-
ism for nonmonotonic reasoning and knowledge representation, as well
as a higher level, special-purpose notation, the action language C+, for
specifying and reasoning about the effects of actions and the persistence
(‘inertia’) of facts over time. In this paper we investigate some logical
properties of these formalisms. There are two motivations. From the
technical point of view, we seek to gain additional insights into the prop-
erties of the languages when viewed as a species of conditional logic.
From the practical point of view, we are seeking to find conditions under
which two different causal theories, or two different action descriptions
in C+, can be said to be equivalent, with the further aim of helping
to decide between alternative formulations when constructing practical
applications.

1 Introduction

The formalism of nonmonotonic causal theories, presented by Giunchiglia, Lee,
Lifschitz, McCain and Turner [1], is a general-purpose language for knowledge
representation and nonmonotonic reasoning. A causal theory is a set of causal
rules each of which is an expression of the form

F ⇐ G

where F and G are formulas of an underlying propositional language and F ⇐ G
corresponds to the statement “if G, then F has a cause” (which is not the same
as saying that G is a cause for F ).

Associated with causal theories is the action language C+, also presented
in [1]. This may be viewed as a higher-level formalism for defining classes of
causal theories in a concise and natural way, for the purposes of specifying and
reasoning about the effects of actions and the persistence, or ‘inertia’, of facts
through time, with support for indirect effects, non-deterministic actions and
concurrency. The two closely-related formalisms have been used to represent
standard domains from the knowledge representation literature.

In this paper, we investigate some logical properties of these formalisms.
There are two motivations. The first is technical, to gain new insights into the
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languages when they are viewed as species of conditional logic. For example,
Turner [2] presents a more general formalism called the ‘logic of universal cau-
sation’. A rule F ⇐ G of a causal theory can be expressed equivalently in this
logic by the formula

G → CF

where C is a modal operator standing for ‘there is a cause for’ (and → is truth-
functional, ‘material’ implication). Since C is a normal modal operator whose
logic is at least as strong as S5, some logical properties of F ⇐ G are immediately
obvious. For example, we can see from G → CF (S5 G → C (F ∨H) that the
logic of causal theories will exhibit the property of ‘weakening of the consequent’:
F ⇐ G implies (in a sense to be made more precise) (F ∨H) ⇐ G. Other prop-
erties of F ⇐ G will be straightforwardly propositional, such as ‘strengthening
of the antecedent’: F ⇐ G implies F ⇐ G ∧H . This last property is intriguing,
since it is often seen as a characteristic feature of monotonic conditionals, yet
the logic of causal theories is nonmonotonic.

In this paper, we will not rely on the translation to Turner’s modal logic but
prove properties directly from the semantics of causal theories. This is largely
because of space limitations. Although many of the properties can be derived
quite straightforwardly in S5, there is some preliminary notation and terminol-
ogy we need, and we do not have space to introduce it here. Moreover, there are
some fundamental properties of causal theories that are not inherited from S5.

The second motivation is a practical one. Causal theories and C+ are very
expressive languages. One purpose of the technical investigation is to find con-
ditions under which which two different causal theories, or two different action
descriptions in C+, can be said to be equivalent, with the further aim of helping
to decide between alternative formulations when constructing applications.

2 Causal Theories

A multi-valued propositional signature σ [3,1] is a set of symbols called constants.
For each constant c in σ, there is a non-empty set dom(c) of values called the
domain of c. An atom of a signature σ is an expression of the form c=v, where c is
a constant in σ and v ∈ dom(c). A formula ϕ of signature σ is any propositional
compound of atoms of σ.

A Boolean constant is one whose domain is the set of truth values {t, f}. If
p is a Boolean constant, p is shorthand for the atom p=t and ¬p for the atom
p=f. Notice that, as defined here, ¬p is an atom when p is a Boolean constant.

An interpretation of σ is a function that maps every constant in σ to an
element of its domain. An interpretation I satisfies an atom c=v, written I |=
c=v, if I(c) = v. The satisfaction relation |= is extended from atoms to formulas
in accordance with the standard truth tables for the propositional connectives.
When X is a set of formulas we also write I |= X to signify that I |= ϕ for all
formulas ϕ ∈ X . I is then a model for the set of formulas X .

We write |=σ ϕ to mean that I |=σ ϕ for all interpretations I of σ. Where
X is a set of formulas of signature σ, X |=σ ϕ denotes that I |=σ ϕ for all
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interpretations I of σ such that I |=σ X . When X ′ is a set of formulas of
signature σ, X |=σ X ′ is shorthand for X |=σ ϕ for all formulas ϕ ∈ X ′. In
addition, where A and B are sets of formulas of a multi-valued propositional
signature, we define A ≡σ B to mean that A |=σ B and B |=σ A. A causal rule
is an expression of the form F ⇐ G, where F and G are formulas of signature
σ. A causal theory is a set of causal rules.

Semantics. Let Γ be a causal theory, and let X be an interpretation of its
underlying propositional signature. Then the reduct of Γ , written ΓX , is

{F | F ⇐ G ∈ Γ and X |= G}

X is a model of Γ , written X |=C Γ , iff X is the unique model of the reduct ΓX .
By models(Γ ) we denote the set of all models of the causal theory Γ .

ΓX is the set of all formulas which have a cause to be true, according to the
rules of Γ , under the interpretation X . If ΓX has no models, or has more than
one model, or if it has a unique model different from X , then X is not considered
to be a model of Γ . Γ is consistent or satisfiable iff it has a model.

For an illustration of the preceding definitions, consider the causal theory T1,
with underlying Boolean signature {p, q}: T1 = {p ⇐ q, q ⇐ q, ¬q ⇐ ¬q}.

There are clearly four possible interpretations of the signature: X1(p �→
t, q �→ t), X2(p �→ t, q �→ f), X3(p �→ f, q �→ t), and X4(p �→ f, q �→ f).
It is clear that T X1

1 = {p, q}, whose only model is X1; T X2
1 = {¬q}, which has

two models; T X3
1 = {p, q}, whose only model is X1 �= X3; and T X4

1 = {¬q},
which has two models. In only one of these cases—that of X1—is it true that
the reduct of the causal theory with respect to the interpretation has that inter-
pretation as its unique model. Thus X1 |=C T1 and models(T1) = {X1}.

Suppose we add another law to T1: for example, T2 = T1 ∪ {¬p ⇐ ¬p}. Now
we have models(T2) = {X1, X4}. In this example, augmenting the causal theory
increases the set of models. It is clear that in general, for causal theories Γ and
Δ, models(Γ ∪Δ) �⊆ models(Γ ). This is the sense in which the causal theories
are nonmonotonic. In the following, one of our purposes will be to invesigate
under which conditions Γ ∪Δ has the same models as Γ .

3 A Consequence Relation Between Causal Theories

In this section, we frequently omit set-theoretic brackets from causal theories
where doing so does not create confusion. In particular, causal theories which
are singletons are often represented by the sole law they contain.

Proposition 1. X |=C Γ iff, for every formula F , X |= F iff ΓX |=σ F .

Proof. This is Proposition 1 of [1]. "#

Observation 2. (Γ1 ∪ Γ2)X = ΓX
1 ∪ ΓX

2 .

Proposition 3. X |= {F ⇐ G}X iff X |= G → F .
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Proof. Assume X |= {F ⇐ G}X . If X |= G, then {F ⇐ G}X = {F}, so
X |= F . For the other direction, suppose X |= G → F . If X |= G then X |= F .
But then {F ⇐ G}X = {F} and we have X |= {F ⇐ G}X . If X �|= G then
{F ⇐ G}X = ∅, and X |= {F ⇐ G}X , trivially. "#

It follows from the above that X |= {F1 ⇐ G1, . . . , Fn ⇐ Gn}X iff X |=
(G1 → F1) ∧ · · · ∧ (Gn → Fn). Moreover, if a causal theory Γ contains a rule
F ⇐ G then every model of Γ satisfies G → F , i.e., X |=C Γ implies X |= G →
F . This last remark is Proposition 2 of [1].

Where Γ is a causal theory, we will denote by mat(Γ ) the set of formulas
obtained by replacing every rule F ⇐ G of Γ by the corresponding material
implication, G → F . The remarks above can thus be summarised as follows.

Proposition 4.

(i) X |= ΓX iff X |= mat(Γ ) (ii) X |=C Γ implies X |= mat(Γ )

Proof. In the preceding discussion. "#

We now define a notion of consequence between causal theories. This will allow
us to say under which conditions two causal theories are equivalent, to simplify
causal theories by removing causal laws that are implied by the causal theory,
and to identify (in the following section) general properties of causal laws.

We will say that causal theories Γ1 and Γ2 of signature σ are equivalent,
written Γ1 ≡ Γ2, when Δ ∪ Γ1 and Δ ∪ Γ2 have the same models for all causal
theories Δ of signature σ. We will say that Γ1 implies Γ2, written Γ1 ( Γ2, when
(Γ1 ∪ Γ2) ≡ Γ1, that is, when Δ ∪ Γ1 ∪ Γ2 and Δ ∪ Γ1 have the same models for
all causal theories Δ of signature σ.

Proposition 5. Γ1 ≡ Γ2 iff Γ1 ( Γ2 and Γ2 ( Γ1

Proof. A straightforward consequence of the definitions and basic set theory. "#

Proposition 6. Γ ( Γ1 and Γ ( Γ2 iff Γ ( (Γ1 ∪ Γ2)

Proof. Immediate from the definitions. "#

Proposition 7. For all causal theories Γ , Γ1, Γ2, Δ of signature σ we have:

(i) If Γ1 ≡ Γ2, then (Γ1 ∪Δ) ( Γ iff (Γ2 ∪Δ) ( Γ .
(ii) If Γ1 ≡ Γ2, then Γ ( (Δ ∪ Γ1) iff Γ ( (Δ ∪ Γ2).
(iii) If Γ1 ≡ Γ2, then (Γ1 ∪Δ) ≡ (Γ2 ∪Δ).

Proof. Part (ii): suppose Γ1 ≡ Γ2 and (Γ1 ∪ Δ) ( Γ . That models(Δ′ ∪ (Γ2 ∪
Δ) ∪ Γ ) is equal to models(Δ′ ∪ (Γ2 ∪Δ)) follows easily using basic set theory.
The other parts can be proved in similar fashion. "#

Proposition 8. The relation ( between causal theories of a given signature σ
is a classical consequence relation (also known as a closure operator), that is, it
satisfies the following three properties, for all causal theories Γ , Γ ′, and Δ:
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– inclusion: Γ ( Γ
– cut: (Γ ∪Δ) ( Γ ′ and Γ ( Δ implies Γ ( Γ ′

– monotony: Γ ( Γ ′ implies (Γ ∪Δ) ( Γ ′

Proof. ‘Inclusion’ is trivial. For ‘monotony’, suppose Γ ( Γ ′. Then (Γ ∪Γ ′) ≡ Γ .
We show (Γ ∪Δ∪Γ ′) ≡ (Γ ∪Δ) for any causal theory Δ. Clearly (Γ ∪Δ∪Γ ′) ≡
((Γ ∪ Γ ′)∪Δ). And ((Γ ∪ Γ ′)∪Δ) ≡ (Γ ∪Δ) because (Γ ∪ Γ ′) ≡ Γ . The proof
for ‘cut’ is similar. "#

Corollary 1.
Γ1 ( Γ2 iff (Γ1 ∪ Γ2) ≡ Γ1 (As Γ1 ( Γ1 and Γ1 ( Γ2 iff Γ1 ≡ (Γ1 ∪ Γ2).)
If Γ1 ( Γ2 and Γ2 ( Γ3 then Γ1 ( Γ3. (By ‘monotony’ and ‘cut’.)

Notice that although the formalism of causal theories is non-monotonic, in the
sense that in general models(Γ ∪Δ) �⊆ models(Γ ), the consequence relation (
between causal theories is monotonic.

We now establish some simple sufficient conditions under which ( holds.

Proposition 9. models(Γ1) ⊆ models(Γ2) iff, for all X ∈ models(Γ1), we have
ΓX

1 ≡σ ΓX
2 .

Proof. Omitted. "#

Corollary 2. models(Γ1) = models(Γ2) iff we have ΓX
1 ≡σ ΓX

2 , for all X ∈
models(Γ1) ∪models(Γ2).

Proposition 10.

(i) Γ1 ( Γ2 if ΓX
1 |=σ ΓX

2 , for all X |= mat(Γ1 ∪ Γ2).
(ii) Γ1 ( Γ2 if ΓX

1 |=σ ΓX
2 , for all X |= mat(Γ1).

(iii) Γ ( (G ⇐ F ) if ΓX |=σ G, for all X |= mat(Γ1) ∪ {F}.

Proof. Part (i) follows from considering Proposition 9 and Corollary 2; the de-
tails of this have been omitted. Part (ii) is obtained from Part (ii) by strengthen-
ing the condition. Part (iii) follows from Part (ii): if X |= F then {G ⇐ F}X =
{G}. If X �|= F then {G ⇐ F}X = ∅, and so ΓX |=σ {G ⇐ F}X , trivially. "#

We record one further property for future reference. A causal rule of the form
F ⇐ F expresses that F holds by default. Adding F ⇐ F to a causal theory Γ
cannot eliminate models, though it can add to them.

Proposition 11. models(Γ ) ⊆ models(Γ ∪ {F ⇐ F})

Proof. Suppose X |=C Γ , i.e., X |= ΓX and Y |= ΓX implies Y = X . We show
(i) X |= (Γ ∪ {F ⇐ F})X , and (ii) if Y |= (Γ ∪ {F ⇐ F})X then Y = X . For
(i): if X |= F then (Γ ∪ {F ⇐ F})X = ΓX ∪ {F}; we have both X |= ΓX and
X |= F . If X �|= F , then (Γ ∪ {F ⇐ F})X = ΓX ; we have X |= ΓX . For (ii),
suppose Y |= (Γ ∪{F ⇐ F})X . Then Y |= ΓX , and X |=C Γ implies Y = X . "#
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4 Properties of ⇐
We can now prove properties about the logic of causal theories, using the pre-
liminary results and definitions given in the previous section. We have chosen to
name the results after Chellas’s [4] taxonomy of rules of inference from modal
logic, as this scheme is well-known and seems natural to us. We frequently omit
the proofs in this section, which in nearly all cases are based straightforwardly
on Proposition 10, possibly including reasoning by cases of interpretations. (Full
proofs are available in a companion technical report.)

In the following, we will frequently use the notational convenience of writing
A
B instead of A ( B, where A and B are causal rules or sets of such.

Proposition 12. [RCM] If F1 |=σ F2, then F1 ⇐ G ( F2 ⇐ G

Proof. From Proposition 10(iii), a sufficient condition for F1 ⇐ G ( F2 ⇐ G is
{F1 ⇐ G}X |=σ F2 for all X |=σ G, which is just F1 |=σ F2, which was given. "#

Proposition 13. [RAug] If G1 |=σ G2, then F ⇐ G2 ( F ⇐ G1

Proof. Similar to that for Proposition 12, and also using Proposition 10(ii). "#

Given the preceding two propositions and Proposition 5, we have the following
corollary, of which the second part will be dubbed [RCEA], again after [4].

Corollary 3.

(i) If F1 ≡σ F2, then F1 ⇐ G ≡ F2 ⇐ G

[RCEA] (ii) If G1 ≡σ G2, then F ⇐ G1 ≡ F ⇐ G2

Proposition 14.

[RCK] If F1, . . . , Fn |=σ F , then
F1 ⇐ G, . . . , Fn ⇐ G

F ⇐ G
(n � 0)

The above are properties characteristic of ‘normal conditional logics’ [4]. We
now move on to consider some distribution laws.

Proposition 15.

[CC]
F1 ⇐ G, . . . , Fn ⇐ G

(F1 ∧ · · · ∧ Fn) ⇐ G
[CM]

(F1 ∧ · · · ∧ Fn) ⇐ G

F1 ⇐ G, . . . , Fn ⇐ G

[DIL]
F ⇐ G1, . . . , F ⇐ Gn

F ⇐ (G1 ∨ · · · ∨Gn)
[cDIL]

F ⇐ (G1 ∨ · · · ∨Gn)
F ⇐ G1, . . . , F ⇐ Gn

There follows a network of interrelated properties which all express a form
of monotonicity of the conditional ⇐.
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Proposition 16. [Aug] F ⇐ G ( F ⇐ G ∧H

Proof. This is clearly a specific instance of [RAug]. For a direct proof: a sufficient
condition for [Aug] is {F ⇐ G}X |=σ F for all X |= (G∧H). But if X |= (G∧H),
then the condition reduces to F |=σ F , which holds. "#

In fact, it can be shown that in the presence of the rule [RCEA], which we proved
as Corollary 3(ii), the schema [Aug] is equivalent to the distribution law [cDIL];
constraints on space prevent our including the proof.

Proposition 17. [Contra] ( F ⇐ ⊥

Proof. A sufficient condition for this is ∅X ( F for all X |= ⊥, which holds
trivially, since there is no such X . "#

Proposition 18. F ⇐ G ( ⊥⇐ ¬F ∧G

Proof. By Proposition 10(iii), a sufficient condition is that {F ⇐ G}X |=σ ⊥,
for all X with X |= (¬F ∧G)∧ (G → F ), which obtains: there is no such X . "#

The converse of this proposition does not hold: ⊥ ⇐ ¬F ∧ G �( F ⇐ G. Now,
since G |=σ ⊥ iff G ≡σ ⊥, the schema [Contra] is equivalent to the rule: if
G |=σ ⊥ then ( F ⇐ G. This is the case n = 0 for the following generalization
of [RAug], easily proved by induction on n.

Proposition 19.

[RDIL] If G |=σ (G1 ∨ · · · ∨Gn), then
F ⇐ G1, . . . , F ⇐ Gn

F ⇐ G
(n � 0)

Proposition 20. [S] F ⇐ G, G ⇐ H ( F ⇐ H

A statement of the propogation of constraints, and a rule of Modus Ponens,
are obvious instances of [S]:

Corollary 4.

[Constr]
F ⇐ G, ⊥⇐ F

⊥⇐ G
, [MP]

F ⇐ G, G ⇐ �
F ⇐ �

From G ⇐ �, we get ⊥ ⇐ ¬G ∧ � using Proposition 18; an application of
[RCEA] then gives us ⊥⇐ ¬G. Using [Contra] and [S] we then derive F ⇐ ¬G:

Proposition 21. G ⇐ � ( F ⇐ ¬G

The rule describing propogation of constraints may be generalised to a weak
resolution law for Horn-like rules:
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Proposition 22. F ⇐ G ∧H, G ⇐ K ( F ⇐ H ∧K

The logic of causal theories does not contain the two equivalent rules

[I] ( F ⇐ F ; [RI] If G |=σ F , then ( F ⇐ G

To see this, use ¬p ⇐ ¬p for F and consider the causal theory with the single
rule p ⇐ p; models({p ⇐ p}) �= models({p ⇐ p,¬p ⇐ ¬p}) which means that
we do not have models(Γ ∪ ∅) = models(Γ ∪ ∅ ∪ {¬p ⇐ ¬p}) for all causal
theories Γ , and so �( ¬p ⇐ ¬p. Although we do not have [I], it has already been
shown (Proposition 11) that models(Γ ) ⊆ models(Γ ∪ {F ⇐ F}).

Using the same example, it can easily be seen that the logic of ⇐ does not
contain a contrapositive law: we have that F ⇐ G �( ¬G ⇐ ¬F .

Example. As one example of an application of these properties consider the
following common patterns of causal rules:

{F ⇐ F ∧G ∧ ¬R, ¬F ⇐ R } and { F ⇐ F ∧G, ¬F ⇐ R }

In each case the first law expresses that F holds by default if G holds, and
the second that R is an exception to the default rule. These pairs of laws are
equivalent in causal theories. One direction is straightforward: F ⇐ F ∧G∧¬R
follows from F ⇐ F ∧G by [Aug].

For the other direction, notice first that ¬F ⇐ R implies ⊥ ⇐ F ∧ G ∧ R
(because ¬F ⇐ R implies ⊥ ⇐ F ∧ R and the rest follows by [Aug]). Now
( F ⇐ ⊥ [Contra], and by [S] we derive F ⇐ F ∧G ∧R. For the final step

F ⇐ F ∧G ∧R, F ⇐ F ∧G ∧ ¬R
F ⇐ F ∧G ∧ (R ∨ ¬R)

from which F ⇐ F ∧G follows.

5 The Action Language C+

As with the logic of causal theories, the language C+ is based on a multi-valued
propositional signature σ, with σ partitioned into a set σf of fluent constants
and a set σa of action constants. Further, the fluent constants are partitioned
into those which are simple and those which are statically determined. A fluent
formula is a formula whose constants all belong to σf ; an action formula has at
least one action constant and no fluent constants.

A static law is an expression of the form

caused F if G,

where F and G are fluent formulas. An action dynamic law is an expression of
the same form in which F is an action formula and G is a formula. A fluent
dynamic law has the form

caused F if G after H,
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where F and G are fluent formulas and H is a formula, with the restriction that F
must not contain statically determined fluents. Causal laws are static laws or dy-
namic laws, and an action description is a set of causal laws.

In the following section we will make use of several of the many abbreviations
afforded in C+. In particular:

α causes F if G abbreviates the fluent dynamic law caused F if � after α ∧G;
nonexecutable α if G expresses that there is no transition of type α from a

state satisfying fluent formula G. It is shorthand for the fluent dynamic
law caused ⊥ if � after α ∧G;

inertial f where f is a simple fluent constant, states that the values of f persist
by default—they are subject to inertia—from one state to the next. It stands
for the collection of fluent dynamic laws caused f=v if f=v after f=v for
every v ∈ dom(f).

exogenous a where a is an action constant, stands for the set of action dynamic
laws caused a=v if a=v after a=v for every v ∈ dom(a).

The language C+ can be viewed as a useful shorthand for the logic of causal
theories, for to every action description D of C+ and non-negative integer m,
there corresponds a causal theory ΓD

m . The signature of ΓD
m contains constants

c[i], such that

– i ∈ {0, . . . ,m} and c is a fluent constant of the signature of D, or
– i ∈ {0, . . . ,m−1} and c is an action constant of the signature of D,

and the domains of such constants c[i] are kept identical to those of their con-
stituents c. The expression F [i], where F is a formula, denotes the result of
suffixing [i] to every occurrence of a constant in F . The causal rules of ΓD

m are:
F [i] ⇐ G[i], for every static law in D and every i ∈ {0, . . . ,m}, and for every
action dynamic law in D and every i ∈ {0, . . . ,m−1}; F [i+1] ⇐ G[i+1]∧H [i],
for every fluent dynamic law in D and every i ∈ {0, . . . ,m−1}; and f [0]=v ⇐
f [0]=v, for every simple fluent constant f and v ∈ dom(c).

Each action description of C+ defines a labelled transition system. The states
of the transition system are the models of ΓD

0 . Each state is an interpretation of
the fluent constants σf . Transitions are the models of ΓD

1 . Each transition label
(also called an ‘event’) is an interpretation of the action constants σa. When
α is a formula of σa, we say that a transition label/event is of type α when it
satisfies the formula α. It can also be shown [1] that paths of length m of the
transition system correspond to the models of ΓD

m .
Since action descriptions are a shorthand for particular forms of causal theo-

ries, we obtain a notion of equivalence and consequence between action descrip-
tions of C+: D1 (C+ D2 is defined as ΓD1

m ( ΓD2
m for all non-negative integers

m, and likewise for equivalence of action descriptions. We also inherit properties
of causal laws of C+ corresponding to those proven in Section 4. For example:
α causes F if G (C+ α∧β causes F if G follows directly from ‘augmentation’ [Aug]
for causal theories in general. In the following we will use the same labels for prop-
erties of C+ as for the causal-theoretic properties from which they are derived.
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6 Example (Winning the Lottery)

Winning the lottery causes one to become (or remain) rich. Losing one’s wallet
causes one to become (or remain) not rich. A person who is rich is happy. A
person who is not alive is neither rich nor happy.

The example is constructed partly to show how C+ deals with indirect ef-
fects of actions (ramifications). The example also illustrates some issues in the
representation of concurrent actions, actions with defeasible effects, and non-
deterministic actions. Naturally it is not possible to illustrate everything with
one simple example, but the example is indicative of the issues that are encoun-
tered when formulating applications in a language as expressive as C+.
Signature: simple Boolean fluent constants alive , rich , happy ; Boolean action
constants birth , death,win, lose.

inertial alive , rich , happy
exogenous birth, death, win , lose
birth causes alive
nonexecutable birth if alive
death causes ¬alive
nonexecutable death if ¬alive
win causes rich
nonexecutable win if ¬alive
lose causes ¬rich
nonexecutable lose if ¬alive
caused happy if rich
caused ¬rich if ¬alive
caused ¬happy if ¬alive
nonexecutable birth ∧ death
nonexecutable birth ∧ win
nonexecutable birth ∧ lose
nonexecutable win ∧ lose

¬alive
¬rich
¬happy

alive
¬rich
¬happy

alive
rich

happy

alive
¬rich
happy

null ‘lose’

‘death’

‘win’

null

‘birth’

‘win’

null

‘death’

‘lose’

null ‘lose’

‘win’

‘death’

States and transition labels/events are interpretations of the fluent constants and
action constants, respectively. Here, each state and each transition label/event
is represented by the set of atoms that it satisfies. Because of the static laws,
there are only four states in the transition system and not 23 = 8. The diagram
label ‘birth’ is shorthand for the label/event {birth,¬death ,¬win ,¬lose}, and
likewise for the labels ‘death ’, ‘win’ and ‘lose’. The label null is shorthand for
{¬birth,¬death,¬win ,¬lose}. The diagram does not show transitions of type
death ∧ lose, win ∧ death, and so on. We will discuss those presently.

Notice that happy is declared inertial, and so still persists even if one be-
comes not rich. That is why the ‘lose’ transition from state {alive , rich, happy}
results in the state {alive,¬rich , happy}. We could of course modify the action
description so that happy is no longer inertial but defined to be true if and only
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if rich is true. Or we might prefer to make happy non-inertial and let the ‘lose’
transition be non-deterministic. The interactions between these various adjust-
ments are rather subtle, however, and are not always immediately obvious.

We will restrict attention to the following two questions. First, there are al-
ternative ways of formulating the constraints that a person cannot be rich or
happy when not alive, and these alternatives have different interactions with the
other causal laws. Second, as it turns out, the last group of four nonexecutable
statements are all redundant, in that they are already implied by the other causal
laws. There are some remaining questions about the effects of concurrent actions
in the example which we will seek to identify.

First, let us look at some effects of individual actions. With the static con-
straints as formulated above, we have the following implied laws. (Henceforth we
omit the keyword caused to conserve space.) death causes ¬alive (in other words,
¬alive if � after death) together with ¬rich if ¬alive imply death causes ¬rich .
And in general

α causes F if G, F ′ if F

α causes F ′ if G

as is easily checked. By a similar argument we also have the implied causal law
death causes ¬happy (¬happy if � after death) and win causes happy . We do not
get the law lose causes ¬happy because as formulated here, we do not have the
static law (explicit or implied) ¬happy if ¬rich.

Suppose that instead of the static laws¬rich if ¬alive and¬happy if ¬alive , we
had included only the weaker constraints⊥ if rich∧¬alive and⊥ if happy ∧¬alive .
These constraints eliminate the unwanted states, but are too weak to give the im-
plied effects (ramifications). We also lose transitions: if¬happy if ¬alive is replaced
by either of alive if happy or ⊥ if happy ∧ ¬alive , the only way that ¬happy can
be ‘caused’ is by inertia. Consequently, we eliminate all the death transitions from
states in which happy holds: we get the implied law nonexecutable death if happy .
(We omit the formal derivation of this implied law for lack of space. It is rather in-
volved since it also requires to taking into account the presence of other causal laws
in the example.) Similarly, if we replace ¬rich if ¬alive by either of alive if rich or
⊥ if rich ∧¬alive , the only way that¬rich can be ‘caused’ is by a lose transition or
by inertia. Consequently, transitions of type death ∧¬lose become non-executable
in the states {alive , rich,¬happy} and {alive, rich, happy} whether or not we also
make the earlier adjustment to the alive/happy constraint. In addition, we have
the implied law nonexecutable death ∧¬lose if rich: a rich person cannot die unless
he simultaneously loses his wallet.

There is one way in which we can use constraints ⊥ if rich ∧ ¬alive and
⊥ if happy∧¬alive (or alive if rich and alive if happy) without losing transitions.
That is by adding a pair of extra fluent dynamic laws: either

death causes ¬rich and death causes ¬happy

or the weaker pair death may cause ¬rich and death may cause ¬happy . (In C+,
α may cause F is an abbreviation for the fluent dynamic law F if F after α.) We
leave out the (straightforward) derivation that demonstrates both these pairs
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have the claimed effect. Neither is entirely satisfactory since they require all
ramifications of death to be identified in advance and then modelled explictly
using causal laws.

We turn now to examine the effects of concurrent actions. First, notice
that the law nonexecutable birth ∧ death is implied by the other causal laws.
Because: alive if � after birth and ¬alive if � after death imply by [Aug]
alive if � after birth ∧ death and ¬alive if � after birth ∧ death, which in turn
together imply by [CC] alive ∧¬alive if � after birth∧death (which is equivalent
to nonexecutable birth ∧ death). And in general

α causes A if F, β causes B if G, C if A ∧B

α ∧ β causes C if F ∧G

There is another derivation of nonexecutable birth ∧ death from the causal
laws of the example. We have the causal laws nonexecutable birth if alive and
nonexecutable death if ¬alive . ⊥ if � after birth ∧ alive and ⊥ if � after death ∧
¬alive imply by [Aug]: ⊥ if � after birth ∧ death ∧ alive and ⊥ if � after birth ∧
death∧¬alive , which in turn together imply by [DIL] ⊥ if � after (birth∧death∧
alive)∨ (birth ∧ death ∧¬alive), whose antecedent can be simplified by [RCEA]:
⊥ if � after birth ∧ death.

In general we have:

nonexecutable α if F, nonexecutable β if G

nonexecutable α ∧ β if (F ∨G)

What of birth ∧ win and birth ∧ lose? We have

nonexecutable birth if alive , nonexecutable win if ¬alive
nonexecutable birth ∧ win

from which nonexecutable birth ∧ lose follows by a similar argument.
This leaves transitions of type death ∧ lose and death ∧ win. death ∧ lose is

not problematic. We have the implied causal laws death ∧ lose causes ¬alive
(by [Aug] from death causes ¬alive) and death ∧ lose causes ¬rich (either by
[Aug] from lose causes ¬rich or from the implied law death causes ¬rich). In
this example, the effects of death ∧ lose transitions are the same as those of
death ∧ ¬lose transitions.

Consider now death ∧ win. Here we need some adjustment to the example’s
formulation. We have the implied law nonexecutable win ∧death because (one of
several possible derivations): we have the implied law (win∧death) causes (rich∧
¬alive), the static law ¬rich if ¬alive implies ⊥ if rich ∧ ¬alive , and so (win ∧
death) causes ⊥, which is equivalent to nonexecutable win ∧ death .

But it seemsunreasonable to insist thatwin∧death transitions cannothappen—
that was not the intention when the example was originally formulated. We can
admitthepossibilityofwin∧death transitionsbyre-formulatingtherelevant causes
statement for win so that it reads instead win causes rich if ¬death , or equivalently
win ∧ ¬death causes rich . The effects of the ‘win ’ transitions are unchanged, but
the transition system now contains transitions of type win ∧death : their effects are
exactly the same as those of ‘death’ and death ∧ lose transitions.
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But note that after this adjustment, we have to re-examine other combi-
nations of possible concurrent actions. win ∧ birth is still non-executable (it
depended on the pre-conditions of the two actions, not their effects) but we
no longer have nonexecutable win ∧ lose. We have only the implied law (win ∧
lose) causes (rich ∧¬rich) if ¬death , or equivalently, nonexecutable win ∧ lose ∧
¬death. So now a person can win the lottery and lose his wallet simultaneously,
but only if he dies at the same time.

But suppose win ∧ lose ∧ ¬death is intended to be executable. What should
its effects be? One possibility is that the effects of win override those of lose.
We replace the lose causes ¬rich law by the weaker lose causes ¬rich if ¬win .
A second possibility is that the effects of lose override those of win . We replace
the win causes rich if ¬death law by the weaker win causes rich if ¬death ∧
¬lose. (And we may prefer to introduce an ‘abnormality’ action constant (see
[1, Section 4.3]) to express the defeasibility of winning more concisely.) The third
possibility is to say that win ∧ lose transitions are non-deterministic:

win ∧ lose may cause rich , win ∧ lose may cause ¬rich
What of the interactions between non-deterministic win ∧ lose actions and

death? We still have the implied law win∧ lose∧death causes ¬rich . But perhaps
the non-deterministic effects of the other win∧ lose transitions should have been
formulated thus:

win ∧ lose ∧ ¬death may cause rich , win ∧ lose ∧ ¬death may cause ¬rich
This is unnecessary. In C+ {α may cause F, α may cause ¬F, β causes ¬F}
and {α ∧ ¬β may cause F, α ∧ ¬β may cause ¬F, β causes ¬F} are equiv-
alent. Left-to-right is just an instance of [Aug]. For right-to-left, notice that
α ∧ ¬β may cause F, β causes ¬F is an instance of the general pattern of causal
rules {P ⇐ P ∧ Q ∧ ¬R, ¬P ⇐ R}, discussed at the end of Section 4. It
is equivalent to {P ⇐ P ∧ Q, ¬P ⇐ R}. For the other part, notice that
β causes ¬F implies α ∧ β may cause ¬F by [Aug], and α ∧ ¬β may cause ¬F
and α ∧ β may cause ¬F together imply α may cause ¬F by [DIL] and [RCEA].

There are other variations of the example that we do not consider here for
lack of space. We might remove the declaration that happy is inertial. Or we
might choose to make the fluent constant happy statically determined instead of
‘simple’. These changes have a further set of interactions with the other causal
laws. Their effects can be analysed in similar fashion.
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Abstract. We describe Modular-E (ME), a specialized, model-
theoretic logic for narrative reasoning about actions, able to repre-
sent non-deterministic domains involving concurrency, static laws (con-
straints) and indirect effects (ramifications). We give formal results which
characterize ME ’s high degree of modularity and elaboration tolerance,
and show how these properties help to separate out, and provide a princi-
pled solutions to, the endogenous and exogenous qualification problems.
We also show how a notion of (micro) processes can be used to facili-
tate reasoning at the dual levels of temporal granularity necessary for
narrative-based domains involving “instantaneous” series of indirect and
knock-on effects.

1 Introduction

Domain descriptions for reasoning about actions and change (RAC) in com-
monsense reasoning and other contexts should be Elaboration Tolerant [10,9].
Formalisms should be able to incorporate new information gracefully into repre-
sentations, e.g. by the simple addition of sentences. Elaboration Tolerance (ET)
is strongly linked with the need to have a modular semantics for RAC frameworks
that properly separates different aspects of the domain knowledge, as argued e.g.
in [6]. ET and modularity are known to be strongly related to the Qualification
Problem in RAC – if the effect laws (or action executability laws) of our domain
are not qualified in a complete way they can lead to unintended conclusions that
contradict new information. In particular, new narrative information about ob-
servations or attempted actions can render the domain description inconsistent
in this way.

In this paper, we present the languageModular-E (ME) as a case study in
developing modular semantics for RAC frameworks in order to provide compre-
hensive solutions to the ramification and qualification problems. Our approach
builds upon [7] and is inspired by [13], separating out the qualification problem
into two parts - an endogenous aspect concerning qualifications expressible in the
known domain language, and an exogenous aspect where change is qualified by
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unrepresented (or exogenous) factors. The semantics ofME decouples these two
problems, allowing exogenous qualifications to come into play only when the
endogenous qualification alone is not sufficient to avoid inconsistency. It uses
a simple default minimization of exogenous qualifications to “minimize unex-
plained failure” (c.f. [13]) when observations of properties cannot be reconciled
with the assumed success of the applied effect laws.ME ’s modular semantics of-
fers a clean solution to the problem of anomalous models that arose from earlier
treatments of the qualification problem.

To achieve the semantic decoupling of endogenous and exogenous qualifica-
tions it is important to address two issues. First, a proper treatment of ramifica-
tions, including non-determinism and loops in chains of instantaneous effects, is
needed (as any incomplete treatment will cause some endogenous qualifications
to be treated as exogenous).ME uses a notion of processes for this. Second, for
the same reason a full account is needed for the qualifications that static con-
straints provide for causal laws. In this regard we distinguish between local or
explicit and global or implicit qualification. Local qualifications are the explicit
preconditions included in individual causal effect laws and action executability
statements. Global qualifications are formed at the semantic level by taking into
account static laws and interactions between effect laws. Global qualification is
closely related to modularity. Without it elaboration tolerance is compromised
by the need to manually reconcile each local set of qualifications with each new
static law.

We show that this analysis of the qualification and ramification problems
indeed results in modularity and elaboration tolerance. For example, ME en-
joys a “free will” property – a domain description can be extended with any
action attempt at any time after its recorded observations without affecting the
conclusions about the domain up to that time.

2 ME Syntax and Examples

In this section we giveME ’s syntax and sketch its important characteristics via
a series of examples.

Definition 1 (Domain Language). An ME domain language is a tuple
〈Π,), Δ, Φ〉, where ) is a total ordering defined over the non-empty set Π of
time-points, Δ is a non-empty set of action constants, and Φ is a non-empty set
of fluent constants.

Definition 2 (Formula, Literal and Conjunction). A fluent formula is
a propositional formula containing only fluent constants (used as extra-logical
symbols), the standard connectives ¬, →, ←, ↔, ∨ and ∧, and the truth value
constants � and ⊥. A fluent literal is either a fluent constant or its nega-
tion. An action literal is either an action constant or its negation. A fluent
conjunction is a conjunction of fluent literals.

Definition 3 (Converse). Let E be an action or fluent constant. The con-
verse of E, written E, is ¬E, and the converse of ¬E, written ¬E, is E.
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Definition 4 (Domain Description or Theory). A domain description
or theory in ME is a collection of the following types of statements, where φ
is a fluent formula, T is a time point (assume an integer or real number unless
otherwise stated), A is an action constant, C is a (possibly empty) set of fluent
and action literals, L is a fluent literal, and E is a non-empty set of action
constants and fluent literals:

– h-propositions of the form: φ holds-at T
– o-propositions of the form: A occurs-at T
– c-propositions of the form: C causes L
– p-propositions of the form: φ prevents E
– a-propositions of the form: always φ

A domain description is finite if it contains only a finite number of propositions.

Singleton sets of fluent or action literals in c-propositions of the form {P} will
sometimes be written without enclosing braces, i.e. as P .

The intended meaning of h-propositions is straightforward – they can
be used to record “observations” about the domain along the time line.
“A occurs-at T ” means that an attempt to execute A occurs at T . Together,
the h- and o-propositions describe the “narrative” component of a domain de-
scription. “C causes L” means that, at any time-point, the combination of ac-
tions, inactions and preconditions described via C will provisionally cause L
to hold immediately afterwards. As we shall see, the provisos automatically
accompanying this causal rule are crucial – in any model the potential effect
L competes with other potential effects, and maybe overridden, for example,
because it would otherwise result in a more-than-instantaneous violation of a
domain constraint described with an a-proposition. The rule “C causes L” is
thus qualified both locally (via C) and globally via the total set of c-, p- and
a-propositions. “φ prevents E” means that the circumstances described by φ
prevent the simultaneous causation/execution of the effects/actions listed in E.
“ always φ” means that ¬φ can never hold, other than in temporary, instanta-
neous “transition states” which form part of an instantaneous chain of indirect
effects. In other words, “ always φ” describes a domain constraint or static law
at the granularity of observable time.

Example 1 (Lift Door). A lift door can be opened and closed by pressing the
“open” and “close” buttons respectively. The door is initially open, and both
buttons are pressed simultaneously. This scenario can be described with a single
fluent DoorOpen and two actions PressOpen and PressClose :

{PressOpen} causes DoorOpen (LD1)
{PressClose} causes ¬DoorOpen (LD2)
DoorOpen holds-at 1 (LD3)
PressOpen occurs-at 2 (LD4)
PressClose occurs-at 2 (LD5)

Example 1 results in two models – one in which the door is open at times after
2 and one in which the door is closed. Note that, even though the conflicting
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actions are not prevented from occurring together (i.e. there is no p-proposition
“� prevents {PressOpen,PressClose}”), they do not give rise to inconsistency.
More generally, we show in Section 4 that ME exhibits a “free will” property
– from any consistent initial state, and for any given collection of c- and p-
propositions, any series of actions may be attempted without giving rise to in-
consistency. Put another way, any finite collection of o-, c- and p-propositions
is consistent with any internally consistent collection of a-propositions. Conse-
quently, the only way to engineer an inconsistentME domain description (other
than by inclusion of inconsistent a-propositions) is to include “observations” (h-
propositions) along the time line which contradict the predictions that would
otherwise be given byME ’s semantics. In Section 5 we show how this remaining
type of inconsistency can sometimes be overcome by attributing it to unknown
exogenous reasons and applying a simple minimization to these.

The following series of “broken car” examples is to illustrate the modularity
and elaboration tolerance of ME , and how this is linked to the way a- and
c-propositions interact.

Example 2 (Broken Car A). Turning the key of a car causes its engine to start
running. The key is turned at time 1:

{TurnKey} causes Running (BC1)
TurnKey occurs-at 1 (BC2)

In all models of this domain the car engine is running at all times after 1. (A
more complete description would typically include some local qualifications for
(BC1), e.g. “{TurnKey,BatteryOK} causes Running” – turning the key starts
the engine only when the battery is OK, in which case models would also arise
where e.g. ¬BatteryOK and ¬Running at all time-points.)

Example 3 (Broken Car B). We elaborate the previous description by stating
that broken cars’ engines cannot run:

always ¬(Broken ∧ Running) (BC3)

There are two classes of models for the elaborated domain (BC1)-(BC3) –
one in which the car is broken and not running at times after 1, and one in
which the car is not broken and running. The occurrence of TurnKey at 1
does not eliminate the model in which the car is broken because the seman-
tics ofME allows (BC3) to act as a global qualification, in particular for (BC1).
The TurnKey action does not force ¬Broken at earlier times, and thus if in
addition the car is known to be broken the theory remains consistent after
this elaboration. Without this characteristic, we would have to alter (BC1)
to “{TurnKey,¬Broken} causes Running” to accommodate (BC3), in other
words explicitly encode as a local qualification the global qualification effect
of (BC3) on (BC1). In ME this local qualification is redundant thus illustrat-
ing its modular nature; the a-proposition (BC3) has been simply added without
further ado.
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Example 4 (Broken Car C). We elaborate Example 3 with two more causal rules
and an extra action occurrence:

{Break} causes Broken (BC4)
{Broken} causes ¬Running (BC5)
Break occurs-at 1 (BC6)

In all models of the domain (BC1)-(BC6), the car is broken and not running at
times after 1. (BC5) describes an “indirect effect” or “ramification”. It introduces
an asymmetry between the Running and Broken fluents and their relationship
with (BC3), preventing (BC3) from acting as a qualification for (BC4) in the
same way as it does for (BC1). Translating global to local/explicit qualifications
is therefore complex, as it requires consideration of the interactions between a-
and c-propositions. ME deals with indirect effects by considering chains of in-
stantaneous, temporary transition states (“nodes”). Within these causal chains,
“processes” are introduced to describe the initiation and termination of fluents.
These processes may “stretch” across several links of a given chain before they
are complete, thus allowing all possible micro-orderings of effects to be consid-
ered. Because of the coarseness of the domain description with respect to the
granularity of time, this is important for a proper treatment of collections of
instantaneous effects which compete or “race” against each other. Furthermore,
since the granularity of time in which these chains operate is finer than that of
observable time, intermediate states within them may (temporarily) violate the
static laws described by a-propositions. In Example 4, one of the chains allowed
by the semantics completes the process initiating Running and then the pro-
cess initiating Broken . At this point there is a state in which (BC3) is violated,
but (BC5) then generates a new process terminating Running whose completion
results in a consistent state further along the chain.

Example 5 (Broken Car B+/C+). We elaborate the previous two descriptions
by observing the car running at time 2:

Running holds-at 2 (BC-obs)

Adding (BC-obs) to Example 3 does not result in inconsistency, but allows us
to infer that the car is not broken (in particular at earlier times). Note that
ME would facilitate the opposite conclusion (Broken) in exactly the same way
had the observation been “¬Running holds-at 2”. This is because it accords
exactly the same status to globally derived qualifications (in this case from
(BC3)) as to qualifications localized to particular c-propositions. However,
adding (BC-obs) to Example 4 does give rise to inconsistency at the level of
the ME ’s “base semantics” (as detailed in Section 3), because since there are
no (local or globally derived) qualifications to (BC4) and (BC5), the theory
would otherwise entail ¬Running. An intuitive explanation for (BC-obs) in
this context is that one or both of the effects of (BC4) and (BC5) “failed” due
to exogenous circumstances (i.e. factors not included in the representation)
implicitly qualifying these causal rules. This type of reasoning is captured within
ME by the use of simple default minimization of such exogenous qualifications



216 A. Kakas, L. Michael, and R. Miller

(see Section 5). The minimization policy is straightforward and robust because
the base semantics fully accounts for all endogenous qualifications (i.e. those
expressed in the domain) by its modularity and its encapsulation of global as
well as local qualifications, as described above.

Example 6 (Broken Car D). We elaborate Example 4 with the knowledge that
the car was parked at time 0 in anti-theft mode (ATM), so that causing the
engine to run (even for an instant) will trigger the alarm:

(¬Broken ∧ ¬Running ∧ ¬Alarm ∧ ATM ) holds-at 0 (BC7)
{Running,ATM } causes Alarm (BC8)

Intuitively, even though at times after 1 the car will be broken and not running,
the alarm may or may not be triggered in this narrative, depending on whether
the (indirect) effect of the Break action takes effect just before or just after the
effect of the TurnKey action. This is an example of a “race” condition between
competing instantaneous effects. ME is able to deal correctly with such repre-
sentations via its processed-based semantics. It gives two models of this domain
– in both models (Broken ∧¬Running) is true at times after 1, but in one model
Alarm is true and in the other it is false. The example illustrates how ME ’s
processes operate at a finer level of temporal granularity than “observable time”
in order to deal with “instantaneous” indirect effects.1

Example 7 (Oscillator).

{On} causes ¬On (OSC1)
{¬On} causes On (OSC2)

This example (which might e.g. represent the internal mechanism of an electric
buzzer) has an infinite number of models in which the truth value of On is
arbitrarily assigned at each time point. It illustrates thatME is able to deal with
“loops” of indirect effects without over-constraining models. It is important, for
example, not to restrict the set of models to those in which the truth value of On
alternates at each successive time-point. This is because the change within the
domain is happening ”instantaneously” – i.e. at an altogether finer granularity
of time than “observable” time. Therefore the observable time-points are best
considered as arbitrarily spaced “snapshots” of the finer-grained time continuum.
A full treatment of such loops along these lines (as well as a full treatment of
concurrency and nondeterminism) is necessary forME to exhibit the “free will”
property and resulting modularity and elaboration tolerance described above.
1 An interesting (and more contentious) variation of Example 6 is to delete (BC4) and

(BC6), and replace (BC7) with “(Broken∧¬Running∧¬Alarm∧ATM ) holds-at 0”.
(so that the car is already broken at 1). ME ’s semantics still gives the two models
with Alarm true in one and false in the other. This is because it treats (BC3)
only as a “stability” constraint at the temporal granularity of “observable” time,
and not as a “definitional” constraint that would transcend all levels of temporal
granularity. Note, however, that we could eliminate the model in which Alarm was
true by adding the p-proposition “Broken prevents Running”, meaning that Broken
prevents Running from being caused (even instantaneously).
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3 Modular-E Base Semantics

In this section we give a formal account ofME ’s semantics. We begin with some
straightforward preliminary definitions concerning states and processes.

3.1 Definitions Regarding States, Processes and Causal Change

Definition 5 (States and Satisfaction). A state is a set S of fluent literals
such that for each fluent constant F , either F ∈ S or ¬F ∈ S but not both. A
formula φ is satisfied in a state S iff the interpretation corresponding to S
is a model of φ.

Definition 6 (A-Consistency). Let D be a domain description and S a state.
S is a-consistent with respect to D iff for every a-proposition “ always φ”
in D, φ is satisfied in S. D is a-consistent iff there exists a state which is
a-consistent with respect to D. Let Da denote the set of all a-propositions in
D. Then given a fluent formula ψ, Da |=a ψ iff ψ is entailed classically by the
theory T = {φ | always φ ∈ D}.

Definition 7 (Process). A process is an expression of the form ↑F or ↓F ,
where F is a fluent constant of the language. ↑F is called the initiating pro-
cess of F and ↓F is called the terminating process of F . The associated
processes of the c-propositions “C causes F” and “C causes ¬F” are respec-
tively ↑F and ↓F . ↑F and ↓F will also sometimes be written as proc(F ) and
proc(¬F ) respectively. An active process log is a set of processes.

Definitions 8 – 15 concern the identification of fluent changes following instanta-
neously from a given state and set of actions. A causal chain represents a possible
instantaneous series of knock-on effects implied by the causal laws. There is a
repeated two-phase mechanism for constructing the “nodes” of causal chains – a
triggering phase in which new processes are generated from c-propositions appli-
cable at that point, immediately followed by a resolution phase in which some of
the already-active processes complete, resulting in an update of the correspond-
ing fluents’ truth values. The process triggering is appropriately limited by the
p-propositions. The triggering and completion of a particular process may be
separated by several steps in the chain, so that consideration of all such chains
gives an adequate treatment of “race” conditions between competing instanta-
neous effects. Chains terminate either because they reach a state from which no
change is possible (a static node) or because they loop back on themselves. We
have made the working (but retractable) assumption that actions trigger pro-
cesses only at the beginning of such chains, at which point they are “consumed”.

Definition 8 (Causal Node). A causal node (or node) is a tuple 〈S, B,P 〉,
where S is a state, B is a set of action constants and P is an active process log.
〈S, B,P 〉 is fully resolved iff P = ∅, and is a-consistent w.r.t. a domain
description D iff S is a-consistent w.r.t. D.
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Definition 9 (Triggering). Let D be a domain description, N = 〈S, B,P 〉 a
node, Lt a set of fluent literals, Pt = {proc(L) | L ∈ Lt}, and Bt a set of action
constants. The set (Bt ∪ Pt) is triggered at N with respect to D iff

1. Bt ⊆ B
2. For each p-proposition “φ prevents E” in D, either φ is not satisfied in S

or E �⊆ (Bt ∪ Lt).
3. For each L ∈ Lt there is a c-proposition “C causes L” in D such that (i)

for each action constant A ∈ C, A ∈ Bt, (ii) for each action literal ¬A ∈ C,
A �∈ Bt, and (iii) for each fluent literal L′ ∈ C, L′ ∈ S.

(Bt ∪ Pt) is maximally triggered at N with respect to D iff there is no
other set (B′t ∪P ′t ) also triggered at N with respect to D and (Bt ∪Pt) is a strict
subset of (B′t ∪ P ′t ).

Definition 10 (Process Successor). Let D be a domain description and N =
〈S, B,P 〉 a node. A process successor of N w.r.t. D is a node of the form
〈S, Bt, (P ∪Pt)〉, where (Bt ∪Pt) is maximally triggered at N with respect to D.

Definition 11 (Resolvant). Let N = 〈S, B,P 〉 and N ′ = 〈S′, ∅,P ′〉 be causal
nodes. N ′ is a resolvant of N iff S′ = S and P = P ′ = ∅ or there exists a
non-empty subset R of P such that the following conditions hold.

1. P ′ = P −R.
2. For each fluent constant F such that both ↑F and ↓F are in P , either both

or neither ↑F and ↓F are in R.
3. For each fluent constant F (i) if ↑F ∈ R and ↓F �∈ R then F ∈ S′, (ii) if
↓F ∈ R and ↑F �∈ R then ¬F ∈ S′, (iii) if ↓F �∈ R and ↑F �∈ R then F ∈ S′

iff F ∈ S.

N ′ is a full resolvant of N iff P ′ = ∅.

Definition 12 (Stationary/Static Nodes). Let D be a domain description
and N = 〈S, B,P 〉 a causal node. N is stationary iff for each resolvant
〈S′, ∅,P ′〉 of N , S′ = S. N is static w.r.t. D iff every process successor of
N w.r.t. D is stationary.

The central definition of causal chains now follows. It is slightly complicated by
the need to deal with loops – conditions 2, 3 and 4 below ensure that all chains
will end when the first static or repeated node is encountered.

Definition 13 (Causal Chain). Let D be a domain description and let N0 be
a node. A causal chain rooted at N0 with respect to D is a (finite) sequence
N0,N1, ...,N2n of nodes such that for each k, 0 ≤ k ≤ n− 1, N2k+1 is a process
successor of N2k w.r.t. D and N2k+2 is a resolvant of N2k+1, and such that the
following conditions hold:

1. N2n is fully resolved.
2. N2n is static, or there exists k < n s.t. N2n = N2k.
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3. If there exists j < k ≤ n s.t. N2j = N2k then k = n.
4. There does not exist a k < n s.t. N2k is static.

In the context of Example 1, Figure 1 below shows the tree of all possible causal
chains with the starting node 〈{DoorOpen}, {PressClose,PressOpen}, ∅〉 (which
intuitively corresponds to the situation at time 2). N1 is the unique process
successor of N0, and the nodes N2 and N ′

2 (which are both static) are the only
resolvants of N1.

N0 : 〈{DoorOpen}, {PressClose, PressOpen}, ∅〉
↓

N1 : 〈{DoorOpen}, {PressClose, PressOpen}, {↑DoorOpen, ↓DoorOpen}〉
↙ ↘

N2 : 〈{DoorOpen}, ∅, ∅〉 N ′
2 : 〈{¬DoorOpen}, ∅, ∅〉

Fig. 1.

As regards Example 6, we may form several causal chains starting from the
node corresponding to time 1. Here is a chain terminating with a state in which
Alarm holds (Br = Broken , Ru = Running , Al = Alarm):

N0 : 〈{¬Br ,¬Ru,¬Al ,ATM }, {Break ,TurnKey}, ∅〉
N1 : 〈{¬Br ,¬Ru,¬Al ,ATM }, {Break ,TurnKey}, {↑Br , ↑Ru}〉
N2 : 〈{Br ,Ru,¬Al ,ATM }, ∅, ∅〉
N3 : 〈{Br ,Ru,¬Al ,ATM }, ∅, {↓Ru, ↑Al}〉
N4 : 〈{Br ,¬Ru,Al ,ATM }, ∅, ∅〉

Here is another chain terminating with a state in which ¬Alarm holds:

N0 : 〈{¬Br ,¬Ru,¬Al ,ATM }, {Break ,TurnKey}, ∅〉
N1 : 〈{¬Br ,¬Ru,¬Al ,ATM }, {Break ,TurnKey}, {↑Br , ↑Ru}〉
N ′

2 : 〈{Br ,¬Ru,¬Al ,ATM }, ∅, {↑Ru}〉
N ′

3 : 〈{Br ,¬Ru,¬Al ,ATM }, ∅, {↓Ru, ↑Ru}〉
N ′

4 : 〈{Br ,¬Ru,¬Al ,ATM }, ∅, ∅〉

Nodes, and in particular nodes that terminate causal chains, do not neces-
sarily contain a-consistent states. But causal chains that do not terminate a-
consistently are not discarded when computing direct and indirect instantaneous
effects. Rather, the semantics identifies proper causal descendants within a tree of
all possible causal chains starting from a given root node. These are a-consistent
nodes which are either within the terminating loop of a chain (condition 1 in
Definition 14), or are such that there are no other a-consistent nodes further
from the root of the tree (condition 2). (For example, in Fig. 1, N2 and N ′

2 are
proper causal descendants of N0 by condition 1 below, with j = k = n = 1.)

Definition 14 (Proper Causal Descendant). Let D be a domain description
and let N0 and N be nodes. N is a proper causal descendant of N0 w.r.t.
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D iff N is a-consistent w.r.t. D, and there exists a causal chain N0,N1, ...,N2n

w.r.t. D such that N = N2k for some 0 ≤ k ≤ n and at least one of the following
two conditions holds:

1. There exists j ≤ k such that N2j = N2n.
2. There does not exist a causal chain N0,N1, ...,N2k, N ′

2k+1, ...,N
′
2m w.r.t. D

and a j such that k < j ≤ m and N ′
2j is a-consistent w.r.t. D.

It is also useful to define a stable state as a state that does not always immediately
cause its own termination (note that stable states can be in loops, but must be
a-consistent):

Definition 15 (Stable State). Let D be a domain description and let S be
a state. S is stable w.r.t. D if there exists a node 〈S, ∅,P 〉 which is a proper
causal descendant of 〈S, ∅, ∅〉.

Example 8 (Promotion). An employee gets promoted at time 1. Promotion re-
sults in a large office (LO) and big salary (BS ). But nobody gets a large office
when the building is overcrowded (OC ), which it is at time 1:

always ¬(OC ∧ LO) (PR1)
Promote causes {BS ,LO} (PR2)
Promote occurs-at 1 (PR3)
(¬LO ∧ ¬BS ∧OC ) holds-at 1 (PR4)

Here is the tree of possible causal chains that arise at time 1 in this example,
with the single proper causal descendant of the root node underlined:

〈{¬LO, ¬BS, OC}, {Promote}, ∅〉
↓

〈{¬LO, ¬BS, OC}, {Promote}, {↑LO, ↑BS}〉
↙ ↓ ↘

〈{LO, ¬BS, OC}, ∅, {↑BS}〉 〈{LO, BS, OC}, ∅, ∅〉 〈{¬LO, BS, OC}, ∅, {↑LO}〉
↓ ↓

〈{LO, ¬BS, OC}, ∅, {↑BS}〉 〈{¬LO, BS, OC}, ∅, {↑LO}〉
↓ ↓

〈{LO, BS, OC}, ∅, ∅〉 〈{LO, BS, OC}, ∅, ∅〉

Fig. 2.

3.2 Definitions Regarding Time and Temporal Change

If a causal node corresponds to a particular time-point in the narrative of a given
domain description (e.g. in Fig. 1, N0 corresponds to time 2), then Definitions 16
– 21 below ensure that the states within its proper causal descendants indicate
possible choices as to which fluents will change values in the time period imme-
diately afterwards. These definitions are largely modifications of those in [7], but
with the notion of a change set replacing that of initiation/termination points.

Definition 16 (Interpretation). An interpretation of ME is a mapping
H : Φ×Π �→ {true, false}.
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Definition 17 (Time-point Satisfaction). Given a fluent formula φ of ME
and a time point T , an interpretation H satisfies φ at T iff the mapping MT de-
fined by ∀F, MT (F ) = H(F,T ) is a model of φ. Given a set Z of fluent formulae,
H satisfies Z at T iff H satisfies φ at T for each φ ∈ Z.

Definition 18 (State/Event Base at a Time-point). Let D be a domain
description, H an interpretation, and T a time-point. The state at T w.r.t.
H, denoted S(H,T ), is the state {F | H(F,T )= true} ∪ {¬F | H(F,T )= false}.
The event base at T w.r.t. D, denoted B(D,T ), is the set {A | “A occurs-at
T” ∈ D}.

Definition 19 (Causal Frontier). Let D be a domain description, T a time-
point, H an interpretation and S a state. S is a causal frontier of H at T
w.r.t. D iff there exists a node N = 〈S, B,P 〉 such that N is a proper causal
descendant of 〈S(H,T ), B(D,T ), ∅〉 w.r.t. D.

Definition 20 (Change Set). Let D be a domain description, H an inter-
pretation, T a time-point and C a set of fluent literals. C is a change set at
T w.r.t. H iff there exists a causal frontier S of H at T w.r.t. D such that
C = S − S(H,T ).

Definition 21 (Model). Let D be a domain description, and let Φ∗ be the set
of all (+ve and -ve) fluent literals in the language. Then an interpretation H is
a model of D iff there exists a mapping c : Π �→ 2Φ∗

such that for all T , c(T )
is a change set at T w.r.t. H, and the following three conditions hold. For every
fluent literal L and time-points T1 ≺ T3:

1. If H satisfies L at T1, and there is no time-point T2 s.t. T1 ) T2 ≺ T3 and
L ∈ c(T2), then H satisfies L at T3.

2. If L ∈ c(T1), and there is no time-point T2 s.t. T1 ≺ T2 ≺ T3 and L ∈ c(T2),
then H satisfies L at T3.

3. H satisfies the following constraints:
– For all “φ holds-at T” in D, H satisfies φ at T .
– For all time-points T , S(H,T ) is a stable state.

Intuitively, condition (1) above states that fluents change their truth values only
via successful effects of c-propositions, and (2) states that successfully initiat-
ing a literal establishes its truth value as true. Note also that condition (3)’s
requirement of stability ensures that S(H,T ) is a-consistent.

Definition 22 (Consistency and Entailment). A domain description D is
consistent if it has a model. D entails the h-proposition “φ holds-at T”,
written D |= φ holds-at T , iff for every model M of D, M satisfies φ at T .

Example 9 (Faulty Circuit). An electric current in a faulty circuit is switched
on causing a broken fuse, which in turn terminates the current:

{SwitchOn} causes ElectricCurrent (FC1)
{ElectricCurrent} causes BrokenFuse (FC2)
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{BrokenFuse} causes ¬ElectricCurrent (FC3)
always ¬(ElectricCurrent ∧ BrokenFuse) (FC4)
SwitchOn occurs-at 1 (FC5)

One causal chain that could be triggered at time 1 (with non-a-consistent nodes
N4 and N5) is:

N0 : 〈{¬ElectricCurrent ,¬BrokenFuse}, {SwitchOn}, ∅〉
N1 : 〈{¬ElectricCurrent ,¬BrokenFuse}, {SwitchOn}, {↑ElectricCurrent}〉
N2 : 〈{ElectricCurrent ,¬BrokenFuse}, ∅, ∅〉
N3 : 〈{ElectricCurrent ,¬BrokenFuse}, ∅, {↑BrokenFuse}〉,
N4 : 〈{ElectricCurrent ,BrokenFuse}, ∅, ∅〉
N5 : 〈{ElectricCurrent ,BrokenFuse}, ∅, {↓ElectricCurrent}〉
N6 : 〈{¬ElectricCurrent ,BrokenFuse}, ∅, ∅〉.

This chain is well-formed because N6 is the first static resolvant node and is
fully resolved (Definition 13). N6 is a-consistent and therefore is a proper causal
descendant of N0 (Definition 14). So {¬ElectricCurrent ,BrokenFuse} is a causal
frontier at 1 of any interpretation that satisfies (¬ElectricCurrent∧¬BrokenFuse)
at 1 (Definition 19), thus providing the change set {BrokenFuse} (Defini-
tion 20). Note that at the granularity level of the representation of this example,
ElectricCurrent , the cause of BrokenFuse, is never true! ElectricCurrent is true
only at a finer granularity.

4 Some Formal Results and Properties

As we have seen, ME provides principled, general mechanisms for causal laws
to be qualified both by each other and by static laws, thus integrating all en-
dogenous qualifications within one base-level semantic framework.ME also pro-
vides a high degree of modularity by its separation of information about causal-
ity (c-, p- and a-propositions), narrative information about attempted actions
(o-propositions), and observations (h-propositions) within the narrative. These
qualities make ME domain descriptions particularly elaboration tolerant, as
the following results show. (Proofs of all results at www.ucl.ac.uk/slais/rob-
miller/modular-e/lpnmr05long.pdf).

Definition 23 (Pre- and Post-observation/action Points). Given a do-
main description D, a post-observation point of D is a time-point Tp such
that, for every h-proposition of the form “φ holds-at T” in D, T ) Tp. A pre-
action point (respectively post-action point) is a time-point Ta such that, for
every o-proposition “A occurs-at T” in D, Ta ) T (respectively Ta 
 T ).

Definition 24 (Projection Domain Description). The domain description
D is a projection domain description if there exists a time-point which is
both a post-observation point and a pre-action point of D.
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Theorem 1 (Free Will Theorem). Let M be a model of a finite domain
description D, let O be a finite set of o-propositions, and let Tn be a time-point
which is both a post-observation point for D and a pre-action point for O. Then
there is a model MO of D∪O such that for any fluent F and time-point T ) Tn,
MO(F,T ) = M(F,T ).

Corollary 1 (Free Will Corollary). Let D and D′ be domain descriptions
and let Tn be a post-observation point for both D and D′. Let D and D′ differ
only by o-propositions referring to time-points greater than or equal to Tn and let
M be a model of D. The there is a model M ′ of D′ such that M(F,T ) = M ′(F,T )
for all fluent constants F and all time-points T such that T ) Tn.

Corollary 2 (Action Elaboration Tolerance Corollary). Let D be a con-
sistent domain description and let O be a finite set of o-propositions. If there
exists a time-point Tn which is both a post-observation point for D and a pre-
action point for O, then D ∪O is consistent.

Theorem 2 demonstrates the robustness and elaboration tolerance of ME
theories by showing that their consistency is contingent only on the internal
consistency of the static laws and on whether observations match with predicted
effects.

Theorem 2 (Theorem of Causal Elaboration Tolerance). Let Da be a
consistent domain description consisting only of a-propositions and let E be a
finite set of o-, c- and p-propositions. Then Da ∪E is also a consistent domain
description.

Lack of space prevents us from giving further formal results here on the
link between global and local qualifications as illustrated in examples 3 and 4.
These results show their complex relationship and hence the difficulty to have
modularity when a framework relies overly on explicit local qualification.

5 Exogenous Qualifications

ME ’s base semantics offers an elaboration tolerant solution to the endogenous
qualification problem, where properties of the domain implicitly qualify the ef-
fect laws. It is, nonetheless, still possible that an effect fails to be produced as
expected. Such a scenario occurs, for instance, when we elaborate Example 2
by observing the car not running at time 2. No known reason can explain this
unexpected observation, so it needs to be attributed to an exogenous cause.

A way to reconcile such conflicts is to assume that every effect law of a
domain description is implicitly qualified [4] by a set of extra preconditions,
written Normal exo that symbolizes the normal conditions under which the law
operates successfully. These preconditions are outside the user’s language or
exogenous [13], and package together all the unknown conditions necessary for
the effect law to successfully generate its effect. They hold true by default unless
the observations in a given narrative make the domain description inconsistent.
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Definition 25 (Default Domain Description). Let D be a domain
description. To obtain the default domain description Dd asso-
ciated with D: (i) replace every c-proposition “C causes L” with
“C ∪ Normal exo(C,L) causes L”, and (ii) add the n-proposition
“ normally norm exo( )” for every fluent norm exo( ) in some set
Normal exo( ).

The exogenous fluents norm exo that belong to the Normal exo sets depend
on assumptions on the nature of the failures of the effect law, in the particular
domain of application. A meta-level recovery policy can be chosen a-priori
appropriate for the domain at hand. Omitting the details, a recovery policy
defines what other effect laws will be assumed to fail once a given effect law is
observed to fail. One can define recovery policies where (i) no other effect laws
are assumed to fail, (ii) all effect laws sharing the same effect L are also assumed
to fail, (iii) all effect laws sharing the same event set C are also assumed to
fail, etc. Irrespective of the recovery policy, the default models of domain D are
given via the same simple minimization of the exogenous fluents over the (strict)
models of the associated default domain Dd.

Definition 26 (Default Model). Let D be a domain description, Ta a
pre-action point of D, and D′d the default domain description associated with D
but without its n-propositions. Then, the restriction of M to fluents other than
the norm exo( ) fluents is a default model of D iff (1) )M is a model of D′d,
and (2) There is no model M ′ of D′d such that N ⊂ N ′, where

N = {norm exo( ) |M(norm exo( ),Ta) = true},
N ′ = {norm exo( ) |M ′(norm exo( ),Ta) = true}.

So far we have assumed that once an effect law is observed to fail, all sub-
sequent instances will also fail by virtue of the persistence of norm exo fluents.
Various alternatives are also possible and the semantics can easily be adapted to
support them. An observed failed effect law might, for example, cause its subse-
quent instances to fail nondeterministically, or not fail at all. Hence, in addition
to failures, we can also have uncertain failures, or “accidents” (see [13]).

The existence of default models can be guaranteed as long as domains are
a-consistent, point-wise consistent w.r.t. h-propositions, and do not violate flu-
ent persistence. This requirement is captured by the notion of a frame model,
which (assuming a “coupled accidents” recovery policy, where the exogenous
qualification of a causal law exactly implies the exogenous qualification of all
other causal laws applied to the same time-point) can be defined similarly to a
model with the exception that the change set mapping c(·) can map arbitrary
time-points to the empty set. Intuitively, this frame model definition allows all
causal laws at some time-point to simply fail to produce their effects, as long as
the successful production of their effects is not required to explain the change in
the truth-value of some fluents.

Theorem 3 (Default Model Existence). A domain description D has a de-
fault model iff it has a frame model.
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6 Summary and Related and Future Work

We have shown how ME can represent non-deterministic narrative domains
involving concurrency, static laws and indirect effects. We have formally charac-
terizedME ’s high degree of modularity and elaboration tolerance, enabled by an
exceptionally full solution to the ramification problem able to deal with looping
systems of indirect effects, and race conditions between competing causal laws.
These properties help separate out, and provide a principled solutions to, the en-
dogenous and exogenous qualification problems. Endogenous qualifications may
be either locally specified or globally derived within the base semantics, whereas
exogenous qualifications are provided by the use of default minimization.

Our approach to the qualification problem and its links to ramifications partly
follows that in [13]. ButME ’s fuller solution to the frame problem, which covers
both successful and failed action attempts, enables it to use the same default
reasoning mechanism to deal with not just the “weak” but also the “strong”
qualification problem as described in [13]. Two other important aspects in which
ME differs from [13] are (a) the more complete treatment of ramifications, e.g.
for concurrent effects and (b) the notion of global qualification which givesME
a higher degree of modularity. Our results are in line with the recent study of
modularity in [6] which again highlights the link between modularity and free-
will properties.

Our solution to the ramification problem is related to that in [1] in that the
indirect effects of actions are defined constructively through causal laws. But
ME ’s processed-based semantics differs in that it (a) embraces nondeterminism
resulting from the possible orderings by which effects are realized, and (b) at-
tributes meaning to domains (e.g, Example 9) that are deemed ill-formed in [1].

Irrespective of the qualification problem, the “free will” property of Theo-
rem 1 is important to avoid anomalous planning, whereby unintended “plans”
can be abduced or deduced for the converse of a precondition of an effect law
by virtue of a lack of model for the successful application of that law. (See [11]
for an example.) Although lack of space prevents an illustration here, anoma-
lous plans are easy to construct in formalisms such as the Language C [5] which
express action non-executability in terms of inconsistency. But they also arise
in any framework (such as [7]) unable to provide models for all combinations of
causal laws.

We currently have a prototype implementation of ME ’s base semantics in
Prolog. The declarative programming style should facilitate an easy proof of
the soundness and completeness of the implementation w.r.t. to ME ’s seman-
tics. On the other hand, different techniques might be needed to address the
computational qualification problem [3] of avoiding considering the majority of
qualifications during the computation. Similar techniques might also prove use-
ful when computing default models, where one does not want to consider all
possible ways causal laws might fail, but rather deduce which ones should fail.
To this end we are currently considering the use of satisfiability methods or An-
swer Set Programming (along the lines of [8,12,2]), as well as argumentation (or
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abduction) based computational methods. We also aim to study subclasses (as
in [2]) ofME , where the computational complexity of reasoning decreases.

There are several aspects ofME that deserve further study. One is the extent
to which static laws should be regarded as specific to the temporal granularity
of the representation (how would we refine the role that a-propositions play
in computing indirect effects?). A detailed comparison would also be useful on
different recovery policies used inME ’s approach to the exogenous qualification
problem. We would also like to investigate the use of priority policies on different
ME models, e.g. to prefer non-change in nondeterministic situations.

Acknowledgement. This work was partially supported by the IST programme
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Computing proactive initiative.
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Abstract. We propose a model to manage the distributed computation of answer
sets within a general framework. This design incorporates a variety of software
and hardware architectures and allows its easy use with a diverse cadre of com-
putational elements. Starting from a generic algorithmic scheme, we develop a
platform for distributed answer set computation, describe its current state of im-
plementation, and give some experimental results.

1 Introduction

The success of Answer Set Programming (ASP) has been greatly boosted by the avail-
ability of highly efficient ASP solvers [1,2]. However, its expanding range of application
creates an increasing demand for more powerful computational devices. We address this
by proposing a generic approach to distributed answer set solving that permits exploita-
tion of the increasing availability of clustered and/or multi-processor machines.

We observe that the search strategies of most current answer set solvers naturally
decompose into a deterministic and a non-deterministic part, borrowing from the well-
known DPLL satisfiability checking algorithm [3]. While the non-deterministic part is
usually realized through heuristically driven choice operations, the deterministic one
is normally based on advanced propagation operations, often amounting to the com-
putation of Fitting’s [4] or well-founded semantics [5]. Roughly, the idea is: starting
with an empty (partial) assignment of truth values to atoms, successively apply prop-
agation and choice operations, gradually extending a partial assignment, until finally a
total assignment, expressing an answer set, is obtained. The overall approach is made
precise in Algorithm 1, which closely follows smodels [1].1,2 When called with
SMODELS((∅, ∅)), it computes all answer sets of a logic program via backtracking.
A partial assignment is represented as a pair (X, Y ) of sets of atoms, in which X and
Y contain those atoms assigned true and false, respectively. Informally, propagation is
done with the EXPAND function (in Line 1); choices are done with CHOOSE (in Line 4).
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2 We use typewriter font when referring to actual systems.
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The first if-statement accounts for invalid assignments indicating an inconsistency (in
Line 2), and the second, for the case of a total assignment representing an answer set
(in Line 3). Otherwise, a case-analysis is performed on the chosen atom,3 assuming it
to be true in Line 5 and false in Line 6, respectively.

Algorithm 1: SMODELS

Global : A logic program Π over alphabet A.
Input : A partial assignment (X, Y ).
Output : Print all answer sets of Π ∪ {← not A | A ∈ X} ∪ {← A | A ∈ Y }.

begin
(X ′, Y ′) ← EXPAND((X, Y ))1

if X ′ ∩ Y ′ �= ∅ then return2

if X ′ ∪ Y ′ = A then3

print X ′

return
A ← CHOOSE(A \ (X ′ ∪ Y ′))4

SMODELS((X ′ ∪ {A}, Y ′))5

SMODELS((X ′, Y ′ ∪ {A}))6

end

Our approach takes advantage of this idea by relying on an encapsulated module
for propagation. For sake of comparability, this is currently embodied by smodels’
expansion procedure. Unlike smodels, however, we are interested in distributing parts
of the search space, as invoked by the two recursive calls in Algorithm 1. To this end,
we propose a general approach, based on pioneering work in distributed tree search, that
accommodates a variety of different architectures for distributing the search for answer
sets over different processes and processors, respectively. Distributed tree search in ASP
solvers [6,7,8] has been significantly influenced by the general-purpose backtracking
package, DIB [9], the culmination of a decade of research in distributed tree search.
Also, much work has been carried out in the area of parallel logic programming, among
which our work is particularly analogous to or-parallelism; see [10,11] for surveys of
this field. However, an important difference is that concurrent prolog implementations
seek to parallelize query evaluation, whereas our goal is to distribute the search for
answer sets. The latter is more closely related to distributed satisfiability checking (see
e.g. [12,13]), although differing in the sense that it typically suffices for satisfiability
checking to find only one satisfying assignment. An early attempt to compute answer
sets in parallel was made in [14] by using the model generation theorem prover MGTP.

We start by developing an iterative enhancement of Algorithm 1 that is based on an
explicit representation of the search space. Whenever the system environment allows us
to delegate a part of this search space, it may be transferred to another computational
device. Although our early efforts have focused on smodels as the computing engine,
we differ from [7] and [8] in that their design philosophy is to build distributed versions
of smodels, whereas our approach (1) modularizes (and is thus independent of) the
propagation engine, and (2) incorporates a flexible distribution scheme, accommodat-
ing different distribution policies and distribution architectures, for instance. Regarding

3 In fact, smodels chooses a literal, thereby dynamically deciding the order between the two
calls in Line 5 and Line 6.
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the latter, the current system supports a multiple process (by forking) and a multiple
processor (by MPI [15]) architecture. A multi-threaded variant is currently under de-
velopment. The multi-process and multi-threaded architectures can also be run on a
multi-processor environment to achieve real speed-ups (compared to a one-processor
environment).

2 Definitions and Notation

A logic program is a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn , (1)

where n ≥ m ≥ 0, and each pi (0 ≤ i ≤ n) is an atom in some alphabet A. Given
a rule r as in (1), we let head(r) denote the head (set), {p0}, of r and body+(r) =
{p1, . . . , pm} and body−(r) = {pm+1, . . . , pn}, the sets of positive and negative body
literals, respectively. Also, we allow for integrity constraints, where head(r) = ∅. The
reduct, ΠX , of a program Π relative to a set X of atoms is defined as

ΠX = {head(r) ← body+(r) | r ∈ Π, body−(r) ∩X = ∅} .

Then,4 a set X of atoms is an answer set of a program Π if X is a ⊆–minimal model
of ΠX . We use AS(Π) for denoting the set of all answer sets of a program Π .

As an example, consider program Π , consisting of rules

p ← not q, r ← p, s ← r,not t,

q ← not p, r ← q, t ← r,not s.
(2)

Program Π has 4 answer sets, {p, r, s}, {p, r, t}, {q, r, s}, and {q, r, t}. Adding in-
tegrity constraint ← q, r eliminates the two last sets.

For computing answer sets, we rely on partial assignments, mapping atoms in A
onto true, false, or undefined. We represent such assignments as pairs (X, Y ) of sets of
atoms, in which X contains all true atoms and Y all false ones. An answer set X is then
represented by the total assignment (X,A\X). In general, a partial assignment (X, Y )
aims at capturing a subset of the answer sets of a program Π , viz.

AS (X,Y )(Π) = {Z ∈ AS(Π) | X ⊆ Z, Z ∩ Y �= ∅} .

3 The PLATYPUS Approach

A key observation leading to our approach is that once the program along with its
alphabet is fixed, the outcome of Algorithm 1 depends only on the partial assignment
given as Input. As made precise in the Output field, the resulting answer sets are then
uniquely determined. Moreover, partial assignments provide a straightforward way for

4 We use this definition since it easily includes integrity constraints. Note that any integrity
constraint ← body(r) can be expressed as x ← body(r),not x by using a new atom x.
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partitioning the search space, as witnessed by Lines 5 and 6 in Algorithm 1. In fact,
incompatible partial assignments represent different parts of the search space.

For illustration, let us compute the answer sets of Program Π , given in (2). Starting
with SMODELS((∅, ∅)) forces us to choose immediately among the undefined atoms
in {p, q, r, s, t} because (∅, ∅) cannot be extended by EXPAND. Choosing p makes
us call SMODELS first with ({p}, ∅) and then with (∅, {p}). This case-analysis parti-
tions the search space into two subspaces, the one containing all assignments making
p true and the other with all assignments making p false. Following up the first call
with ({p}, ∅), the latter gets expanded to ({p, r}, {q}) before a choice must be made
among {s, t}. Again, the search space becomes partitioned, and we obtain two total as-
signments, ({p, r, s}, {q, t}) and ({p, r, t}, {q, s}), whose first components are printed
as answer sets. The two remaining answer sets are obtained analogously, but with the
roles of p and q interchanged.

For distributing the computation of answer sets, the idea is to decompose the search
space by means of partial assignments. For instance, instead of invoking a single process
via SMODELS((∅, ∅)), we may initiate two independent ones by calling SMODELS on
({p}, ∅) and (∅, {p}), possibly even on different machines. Although this static distri-
bution of the search space results in a fair division of labor, such a balance is hardly
achievable in general. To see this, consider the choice of r instead of p, resulting in
calling SMODELS with ({r}, ∅) and (∅, {r}). While the former process gets to compute
all 4 answer sets, the latter terminates almost immediately, since the EXPAND function
yields an invalid assignment.5 In such a case a dynamic redistribution of the search
space is clearly advantageous. That is, once the second process is terminated, the first
one may delegate some of its remaining tasks to the second one.

To this end, we propose a general approach that accommodates a variety of different
modes for distributing the search for answer sets over different processes and/or proces-
sors. We start by developing an iterative enhancement of Algorithm 1 that is based on an
explicit representation of the search space in terms of partial assignments. Algorithm 2
gives our generic PLATYPUS6 algorithm for distributed answer set solving. A principal
goal in its design is to allow for as much generality as possible. Specific instances con-
tain trade-offs, for example, arbitrary access to the search space versus compact spatial
representations of it. Another major design goal is minimal communication in terms
of message size. To this end, PLATYPUS relies on the omnipresence of the given logic
program Π along with its alphabet A as global parameters. Communication is limited
to passing partial assignments as representatives of parts of the search space.

The only input variable S delineates the initial search space given to a specific in-
stance of PLATYPUS. S is thus a set of partial assignments over alphabet A. Although
this explicit representation offers an extremely flexible access to the search space, it
must be handled with care since it grows exponentially in the worst case. Without
Line 9, Algorithm 2 computes all answer sets in

⋃
(X,Y )∈S AS (X,Y )(Π), or equiva-

lently,

5 This nicely illustrates that the choice of the branching atom is more crucial in a distributed
setting.

6 platypus, small densely furred aquatic monotreme of Australia and Tasmania having a broad
bill and tail and webbed feet.
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Algorithm 2: PLATYPUS

Global : A logic program Π over alphabet A.
Input : A nonempty set S of partial assignments.
Output : Print a subset of the answer sets of Π (cf. (3)).

repeat
(X, Y ) ← CHOOSE(S )1

S ← S \ {(X, Y )}2

(X ′, Y ′) ← EXPAND((X, Y ))3

if X ′ ∩ Y ′ = ∅ then4

if X ′ ∪ Y ′ = A then5

print X ′6

else
A ← CHOOSE(A \ (X ′ ∪ Y ′))7

S ← S ∪ { (X ′ ∪ {A}, Y ′), (X ′, Y ′ ∪ {A}) }8

S ← DELEGATE(S )9

until S = ∅

⋃
(X,Y )∈S

AS (Π ∪ {← not A | A ∈ X} ∪ {← A | A ∈ Y }) . (3)

With Line 9, a subset of this set of answer sets is finally obtained (from a specific
PLATYPUS instance). Clearly, depending on which parts of the search space are re-
moved by delegation (see below), this algorithm is subject to incomplete and redundant
search behaviour, unless an appropriate delegation strategy is used.

A PLATYPUS instance iterates until its local search space has been processed. Be-
fore detailing the loop’s body, let us fix the formal behavior of the functions and proce-
dures used by PLATYPUS (in order of appearance).

CHOOSE: Given a set7 X , CHOOSE(X) gives some x ∈ X .
EXPAND: Given a partial assignment (X, Y ), EXPAND((X, Y )) computes a partial as-

signment (X ′, Y ′) such that
1. X ⊆ X ′ and Y ⊆ Y ′,
2. AS (X′,Y ′)(Π) = AS (X,Y )(Π),
3. if X ′ ∩ Y ′ = ∅ and X ′ ∪ Y ′ = A, then AS (X′,Y ′)(Π) = {X ′},

and furthermore (X ′, Y ′) can be closed under propagation principles such as those
based on well-founded semantics and contraposition [1].8

DELEGATE: Given a set X , DELEGATE(X) returns a subset X ′ ⊆ X .

Both functions CHOOSE and DELEGATE are in principle non-deterministic selection
functions. As usual, CHOOSE is confined to a single element, whereas DELEGATE se-
lects an entire subset. In sum, PLATYPUS adds two additional sources of non-deter-
minism. While the one in Line 1 is basically a “don’t care” choice, the one in Line 9
must be handled with care since it removes assignments from the local search space.

7 The elements of X are arbitrary in view of Lines 1 and 7.
8 In practice, propagation may even go beyond well-founded semantics, as for instance with
smodels’s lookahead.
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The EXPAND function hosts the deterministic part of Algorithm 2; it is meant to be
accomplished by an off-the-shelf system that is used as a black-box providing both
sufficiently firm as well as efficient propagation operations which aim to reduce the
remaining local search space resulting from choice operations.

DELEGATE permits some answer set computation tasks embodied in S to be as-
signed to other processes and/or processors. The assignments returned in Line 9 have
not been delegated and thus remain in S . The removed assignments are either dealt with
by other PLATYPUS instances or even algorithms other than PLATYPUS. The elimina-
tion of search space constituents is a delicate operation insofar as we may lose complete-
ness or termination. For example, an implementation of DELEGATE that does not re-
assign all removed constituents is incomplete. Accordingly, passing certain constituents
around forever would lead to non-termination.9

For illustration, we present some concrete specifications of DELEGATE, given in
Algorithms 3 and 4. The common idea is that the system wide number of PLATYPUS

Algorithm 3: DELEGATE1

Global : Two integers k, n indicating the current and maximum number of PLATYPUS

instances.
Input : A set S of partial assignments.
Output : A subset of S .
begin

while (k < n) ∧ (S �= ∅) do
(X, Y ) ← CHOOSE(S )
S ← S \ {(X, Y )}
k ← k + 1
distribute PLATYPUS({(X,Y )})

return S
end

Algorithm 4: DELEGATE2

Global : Two integers k, n indicating the current and maximum number of PLATYPUS

instances.
Input : A set S of partial assignments.
Output : A subset of S .
begin

if k < n then
(S ,D) ← SPLIT(S )
k ← k + 1
distribute PLATYPUS(D )

return S
end

instances is limited (by n). Variable k holds the current number of PLATYPUS instances.
Accordingly, in this specific setting, k must be declared in Algorithm 2 as a global vari-
able and decremented after each execution of the repeat loop. In Algorithm 3, the dele-
gation procedure tries to maximize the global number of PLATYPUS instances. Without

9 In fact, this cannot happen in a pure PLATYPUS setting, since at least one element is removed
by each PLATYPUS instance in Line 2.
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external interference (a changing k), DELEGATE1 tries to produce (n− k) new PLATY-
PUS instances. Each instance is created10 following one of a variety of strategies, for
instance, taking into account temporal or structural criteria on the partial assignments
in S as well as system-specific balance criteria. Algorithm 4 is less greedy insofar as
it “removes”11 a subset from S and creates only a single new PLATYPUS instance. As
with CHOOSE previously, SPLIT can be guided by various strategies, e.g. trying to share
the remaining search space equally among processes/processors in order to minimize
communication costs that result from delegation operations. Also, numerous mixtures
of both strategies can be envisaged. Both delegation procedures guarantee complete-
ness. To see this, it is enough to observe that every assignment and thus every part of
the search space is investigated by one PLATYPUS instance in one way or another. Also,
duplicate solutions are avoided by having exactly one solver investigate each part of the
search space.

Table 1. Three PLATYPUS instances computing the answer sets of Π2

k/n PLATYPUS I PLATYPUS II PLATYPUS III
{(∅, ∅)}

1/3 (∅, ∅)
{({s}, ∅), (∅, {s})}

{({s}, ∅)} {(∅, {s})}
2/3 ({s, r}, {t}) (∅, {s})

{({s, r, q}, {t}), ({s, r}, {t, q})} {({p}, {s}), (∅, {s, p})}
{({s, r, q}, {t})} {({p}, {s}), (∅, {s, p})} {({s, r}, {t, q})}

3/3 ({s, r, q}, {t, p}) ({p, r, t}, {s, q}) ({s, r, p}, {t, q})
∅ {(∅, {s, p})} ∅

{(∅, {s, p})}
1/3 ({r, t, q}, {s, p})

∅
0/3

To illustrate, let us compute the answer sets of the program given in (2) in an en-
vironment with at most 3 PLATYPUS instances, using the delegation procedure in Al-
gorithm 4. The distribute procedure is used for creating new processes. Our instance
of SPLIT transfers ,|S |/2- assignments to another PLATYPUS instance. These assign-
ments are overlined in Table 1, while the ones chosen in Lines 1 and 7 in Algorithm 2
are underlined. The print of an answer set (in Line 5) is indicated by boldface letters.
A cell in Table 1 represents an iteration in Algorithm 2. In each cell the first entry is
S after Line 1, the second presents the result of the EXPAND function, and the last
one is S before Line 9. Once the environment has been initialized, setting n = 3 and
k = 1 among other things, the first PLATYPUS instance is invoked with {(∅, ∅)}. After
the first iteration, its search space contains ({s}, ∅), while (∅, {s}) is used to create a

10 To be precise, MPI instances are merely reinitialized; they live throughout the computation.
11 Given a set X, SPLIT(X) returns a partition (X1, X2) of X.
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second instance of PLATYPUS. Also, variable k is incremented by DELEGATE2. After
one more iteration, each PLATYPUS instance could potentially create yet another in-
stance. Since the maximum number of processes is limited to 3, only one of them is
able to create a new PLATYPUS instance. Once this is done k equals 3, which prevents
DELEGATE2 from creating any further processes. In our case, PLATYPUS I manages
to delegate ({s, r}, {t, q}) while blocking any delegation by PLATYPUS II. The three
processes output their answer sets. Whereas the first and third terminate, having emp-
tied their search spaces, the second one iterates once more to compute the fourth and
last answer set. (No delegation is initiated since ,|S |/2- = ,1/2- = 0.)

4 The platypus Platform

Current technology provides a large variety of software and hardware mechanisms
for distributed computing. Among them, we find single- and multi-threaded processes,
multiple processes, as well as multiple processors, sometimes combined with multiple
processes and threads.

The goal of the platypus platform is to provide an easy and flexible use of these
architectures for ASP. To begin with, we have implemented a multiple process and a
multiple processor variant of platypus. A multi-threaded variant is currently under
development. To enable the generality of the approach, the platypus system is de-
signed in a strictly modular way. The central module consists of a black-box providing
the functionality of the EXPAND function. This module provides a fixed interface that
permits wrapping different off-the-shelf propagation engines. A second module deals
with the search space given by variable S in Algorithms 2, 3, and 4. Last but not least,
distribution is handled by a dedicated control module fixing the respective implementa-
tion of the distribute operation. That is, this module controls forking, threading or MPI.
With this module, each variant is equipped with a common set of distribution policies;
currently all of them are realized through controllers being variations of DELEGATE2

(cf. Algorithm 4), where SPLIT is replaced by CHOOSE. Hence, the currently imple-
mented policies vary the strategy of the CHOOSE operation. Each policy depends upon
the underlying distribution capabilities of the software and hardware architectures.

The multiple process variant is implemented with the UNIX fork mechanism,
which creates a child process managed by the same operating system that controls the
parent process. The forking policy requires a local controller in each process to perform
the delegation task. Communication among the processes is accomplished via shared
memory. The forking policy provides an easily manageable framework to test design
alternatives and to experiment with low-level distribution policy decisions, such as re-
source saturation caused by having too many processes. The multiple processor variant
runs on a cluster and relies on The Message Passing Interface (MPI [15]) library to per-
form the distribution to a process controlled by another operating system on a distinct
processor. As with forking, we rely on a local controller in each process to control the
delegation task; in addition, we use a global controller to manage the processes on the
separate processors and the communication among processes.

To reduce the size of partial assignments and thus of passed messages, we fol-
low [8] in storing only atoms whose truth values were assigned by a choice oper-
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ation (cf. atom A in Lines 7 and 8 of Algorithm 2). Given an assignment (X, Y )
along with the subsets Xc ⊆ X and Yc ⊆ Y of atoms treated in this way, we have
(X, Y ) = EXPAND((Xc, Yc)). Accordingly, some care must be taken when imple-
menting the tests in Lines 4 and 5. To this end, the current design foresees two signals
provided by the EXPAND module. The search space module (1) must support multiple
access modes for accommodating the varying choice policies in Lines 1 and 9 (or better
the subsequent delegation procedures) of Algorithm 2, and (2) must be handled with
care, since it may grow exponentially without appropriate restrictions. So that, at this
stage of the project, we can focus on issues arising from our distribution-oriented set-
ting, the current implementation is based on the design decision that a non-distributing
platypus instance must correspond to a traditional solver, as given in Algorithm 1.
This has the advantage that we obtain a “bottom-line” solver instance that we can use
for comparison with state-of-the-art solvers as well as all distributed platypus in-
stances for measuring the respective trade-offs. To this end, we restrict the search space
(in S ) to a single branch of the search tree and implement the “local” choice opera-
tion in Line 1 of Algorithm 2 through a LIFO strategy. In this way, the “local” view
of the search space can be realized by stack-based operations. Unlike this, the second
access to the search space, described in the delegation procedures 3 and 4 is completely
generic. This allows us to integrate various delegation policies (cf. Section 5). Follow-
ing the above decision, our design also foresees the option of using a choice proposed
by a given EXPAND module for implementing Line 7 in Algorithm 2, provided that this
is supported by the underlying propagation engine.

Finally, let us detail some issues of the current implementation. platypus is writ-
ten in C++. Its major EXPAND module is based on the smodels API. This also al-
lows us to take advantage of smodels’ heuristics in view of Line 7 in Algorithm 2
(see above). Accordingly, this module requires lparse for parsing logic programs.
All experiments reported in Section 5 are conducted with this implementation of EX-
PAND. However, for guaranteeing modularity, we have also implemented other EXPAND

modules, among them the one of the nomore++ system [16]. While the distribution
architecture of a platypus instance must be fixed at compile time, the respective pa-
rameters, like constant n in Algorithm 3, or delegation policies, such as the kind of the
delegated choice point, are set via command line options at run-time. More details are
given in the experimental section.

5 Experimental Results

To illustrate the feasibility of our approach, we present in Tables 2 and 3 a selection of
experimental results obtained with the multi-process and the multi-processor versions
of platypus. As a point of reference, we mention that on all these tests smodels
is on average 1.62 times faster than the multi-process version of platypus limited to
one process. Apart from platypus’ early stage of development, a certain overhead
is created by “double bookkeeping” due to the strict encapsulation of the EXPAND

module. In this way, we trade-off some speed for our modular design.
The multi-process data were generated using the forking architecture limited to

1 to 4 active processes on a quad processor under Linux, comprised of 4 Opteron
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Table 2. Data obtained for computing all answer sets with the multi-process version of
platypus

platypus -p1 -ls -p2 -ls -p3 -ls -p4 -ls

color-5-10 6.44 (0) 3.54 (21.1) 2.55 (44.7) 2.12 (69.2)
color-5-15 349.07 (0) 178.70 (36.5) 120.24 (63.2) 91.15 (99.8)
hamcyc-8 4.35 (0) 2.61 (30.9) 1.94 (55.4) 1.66 (87.1)
hamcyc-9 105.88 (0) 54.59 (40.6) 36.73 (88.3) 28.13 (134.8)
pigeon-7-8 1.92 (0) 1.60 (38.5) 1.33 (68.5) 1.22 (92.7)
pigeon-7-9 7.44 (0) 4.49 (45.2) 3.35 (84.8) 2.83 (115.8)
pigeon-7-10 24.21 (0) 12.86 (49.0) 9.04 (99.3) 7.24 (142.6)
pigeon-7-11 71.40 (0) 34.93 (55.9) 23.73 (111.8) 18.34 (165.2)
pigeon-7-12 177.02 (0) 85.71 (60.5) 57.53 (124.2) 44.04 (193.3)
pigeon-8-9 18.83 (0) 9.99 (46.3) 7.09 (94.7) 5.73 (138.8)
pigeon-8-10 87.45 (0) 43.23 (49.5) 29.22 (112.3) 22.33 (163.4)
pigeon-9-10 227.72 (0) 107.14 (60.3) 71.14 (123.8) 53.56 (189.2)
schur-11-5 1.50 (0) 1.15 (18.1) 0.82 (25.4) 0.71 (34.9)
schur-12-5 5.26 (0) 3.09 (19.6) 2.23 (34.9) 1.80 (48.0)
schur-13-5 22.53 (0) 11.78 (20.6) 8.07 (37.9) 6.22 (56.9)
schur-14-5 74.51 (0) 37.80 (19.9) 25.60 (46.0) 19.25 (68.0)
schur-14-4 2.93 (0) 1.88 (16.4) 1.52 (41.9) 1.17 (46.0)
schur-15-4 8.02 (0) 4.54 (20.4) 3.23 (41.3) 2.55 (55.5)
schur-16-4 14.14 (0) 7.64 (24.1) 5.28 (43.9) 4.13 (62.3)
schur-17-4 32.50 (0) 16.92 (22.9) 11.50 (48.1) 8.82 (68.3)
schur-18-4 62.72 (0) 31.23 (21.8) 20.77 (52.8) 15.75 (74.7)
schur-19-4 132.30 (0) 65.99 (22.6) 44.02 (54.2) 33.24 (77.7)
schur-20-4 164.24 (0) 80.70 (26.1) 53.61 (60.5) 40.09 (75.0)

2.2GHz processors with 8 GB shared RAM. The multi-processor tests ran on a cluster
of 5 Pentium III 1GHz PCs under Linux with 1 GB RAM each, with 1 to 4 active
nodes and one extra node serving as master.12 All of our timing results reflect the aver-
age elapsed time (in seconds) of the launching process/processor, respectively, over 20
runs, each computing all answer sets. Timing excludes parsing and printing time. Simi-
larly, the number in parentheses indicates the average number of forks/messages passed,
respectively.

The first column of Tables 2 and 3 lists the benchmarks, largely taken from the
benchmarking site at [17]. Columns 2 to 5 give the forking architecture results, and
columns 6 to 9 contain the data obtained from the cluster using MPI. The first row pro-
vides the command line options with which platypus was invoked. The -p option
indicates the maximum number of processes or processors, respectively (n in Algo-
rithms 3 and 4). And -l stands for the delegation policy. All listed tests are run in
shallow mode, delegating the smallest among all of the delegatable partial assignments
available to the delegation procedure. The current system also supports a deep, middle,
and random mode. Delegating small partial assignments is theoretically reasonable
since they represent the putatively largest parts of the search space, thus each delegated

12 Note that the former processor type is much faster than the latter.
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Table 3. Data obtained for computing all answer sets with the multi-processor version of
platypus

platypus -p1 -ls -p2 -ls -p3 -ls -p4 -ls

color-5-10 28.18 (4) 14.57 (119.0) 9.99 (245.1) 7.74 (385.4)
color-5-15 1632.91 (4) 821.83 (120.3) 549.68 (258.4) 413.75 (616.5)
hamcyc-8 16.59 (4) 8.89 (146.8) 6.10 (312.4) 4.77 (454.3)
hamcyc-9 407.43 (4) 202.16 (219.8) 135.96 (585.8) 102.80 (993.6)
pigeon-7-8 6.37 (4) 4.01 (82.8) 3.23 (176.6) 2.87 (243.3)
pigeon-7-9 25.53 (4) 13.99 (131.8) 10.18 (251.6) 8.54 (349.1)
pigeon-7-10 84.28 (4) 42.92 (167.3) 30.08 (335.3) 24.01 (546.9)
pigeon-7-11 238.62 (4) 117.46 (198.3) 81.07 (476.1) 62.73 (750.0)
pigeon-7-12 590.83 (4) 291.03 (219.3) 197.33 (581.1) 150.43 (972.6)
pigeon-8-9 62.70 (4) 32.22 (146.3) 22.71 (281.8) 18.44 (486.0)
pigeon-8-10 282.19 (4) 139.72 (176.8) 95.51 (453.8) 73.75 (753.7)
pigeon-9-10 695.56 (4) 341.25 (214.0) 230.35 (586.1) 175.02 (1024.1)
schur-11-5 5.45 (4) 3.19 (40.5) 2.67 (83.7) 2.27 (133.6)
schur-12-5 18.85 (4) 9.88 (30.3) 7.19 (81.9) 5.95 (195.6)
schur-13-5 78.90 (4) 40.16 (48.5) 27.36 (104.5) 21.30 (247.5)
schur-14-5 254.78 (4) 129.08 (70.5) 86.70 (106.8) 66.05 (297.1)
schur-14-4 10.26 (4) 5.55 (27.5) 4.38 (112.9) 3.77 (187.2)
schur-15-4 27.83 (4) 14.56 (44.5) 10.24 (102.7) 8.52 (251.3)
schur-16-4 48.56 (4) 24.92 (56.3) 17.27 (122.8) 14.16 (291.6)
schur-17-4 113.29 (4) 57.61 (65.8) 39.47 (164.9) 30.36 (291.3)
schur-18-4 206.20 (4) 103.74 (47.5) 70.19 (172.5) 53.92 (369.6)
schur-19-4 450.43 (4) 225.75 (75.3) 151.40 (226.6) 113.60 (306.2)
schur-20-4 539.21 (4) 270.21 (70.0) 180.97 (237.8) 135.70 (335.9)

platypus instance will be given the largest task to perform, hence minimizing the
amount of delegation. Our early experiments and similar observations reported in [8]
support this view. In fact, selecting the largest assignment (via option -ld) results in
much more forking/message passing and much poorer performance. For instance, us-
ing the forking architecture, we get on average for schur-20-4 with options -p4-ld a
time of 155.43s and a count of 322 forks.

The results in Tables 2 and 3 are indicative of what is expected from distributed
computation. When looking at each benchmark, the forking and MPI experiments show
a qualitatively consistent 2-, 3-, and 4-times speed-up when doubling, tripling, and qua-
drupling the number of processors, with only minor exceptions. The more substantial
the benchmark, the more clear-cut the speed-up. A more global and more quantitative
sense of the speed-up is provided by the sum of times13 for all benchmarks for each
-p setting compared to “-p1”. These ratios are: 1, 1.98, 2.93, 3.85, and 1, 1.99, 2.96,
3.88 for forking and MPI, respectively. With this in mind, we observe on computation-
ally undemanding benchmarks, like hamcyc-8, pigeon-7-8, or schur-11-5 no real gain.
In fact, our overall experiments show that the less substantial the benchmark, the more

13 Of course, these ratios are biased by the more substantial benchmarks, but these are the more
reasonable indicators of the speed-up.
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insignificant the speed-up as the overhead caused by distribution dominates the actual
search time. Similarly, the sum of messages increases from “-p2” to “-p3” and to
“-p4” by 2.03, 2.95, and by 2.41, 4.16, respectively for forking and MPI. To interpret
the number of messages in Tables 2 and 3, the one in the forking results reflects the num-
ber of delegations, whereas the number of messages in our MPI setting include 2(n+1)
start-up and shut-down messages plus 5 handshaking messages for each delegation.

6 Summary

Conceptually, the PLATYPUS approach offers a general and flexible framework for man-
aging the distributed computation of answer sets, incorporating a variety of different
software and hardware architectures for distribution. The major design decisions were
to minimize the number and size of the messages passed by appeal to partial assign-
ments and to abstract from a serial ASP propagation system. The latter allows us to
take advantage of efficient off-the-shelf engines, developed within the ASP community
for the non-distributive case.

Meanwhile, the platypus system furnishes a platform for implementing vari-
ous forms of distribution. All versions of platypus share the same code, except for
the control module matching the specific distribution architecture. The current system
supports a multiple process architecture, using the UNIX forking mechanism, and a
multiple processor architecture, running on a cluster via MPI. A multi-threaded variant
is currently under development. Moreover, platypus supports different distribution
policies, being open to further extensions through well-defined interfaces.

Finally, the encouraging results from our experiments suggest that our generic ap-
proach to the distributed computation of answer sets offers a powerful computational
enhancement to classical answer set solvers. In particular, we have seen a virtually
optimal speed-up on substantial benchmarks, that is, the speed-up nearly matched the
number of processes or processors, respectively.

The platypus platform is freely available on the web [18]. The current system
provides us with the necessary infrastructure for manifold future investigations into
distributed answer set solving. This concerns the whole spectrum of different instances
of the procedures CHOOSE and SPLIT, on the one side, and distribute on the other.
A systematic study of different options in view of dynamic load balancing will be a
major issue of future experimental research. In fact, the given set of benchmarks was
chosen as a representative selection demonstrating the feasibility of our approach. In
view of load balancing, it will be interesting to see how the type of benchmark (and
thus the underlying search space) is related to specific distribution schemes. Also, we
have so far concentrated on finding all answer sets of a given program. When extending
the system for finding some answer set(s) only, the structure of the search space will
become much more important.
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Abstract. Recent research on answer set programming (ASP) systems,
has mainly focused on solving NP problems more efficiently. Yet, disjunc-
tive logic programs allow for expressing every problem in the complexity
classes ΣP

2 and ΠP
2 . These classes are widely believed to be strictly larger

than NP, and several important AI problems, like conformant and con-
ditional planning, diagnosis and more are located in this class.

In this paper we focus on improving the evaluation of ΣP
2 /ΠP

2 -hard
ASP programs. To this end, we define a new heuristic hDS and implement
it in the (disjunctive) ASP system DLV. The definition of hDS is geared
towards the peculiarites of hard programs, while it maintains the benign
behaviour of the well-assessed heuristic of DLV for NP problems.

We have conducted extensive experiments with the new heuristic. hDS

significantly outperforms the previous heuristic of DLV on hard 2QBF
problems. We also compare the DLV system (with hDS) to the QBF
solvers SSolve, Quantor, Semprop, and yQuaffle, which performed best in
the QBF evaluation of 2004. The results of the comparison indicate that
ASP systems currently seem to be the best choice for solving ΣP

2 /ΠP
2 -

complete problems.

1 Introduction

Answer Set Programming (ASP) is a novel programming paradigm, which has
been recently proposed in the area of nonmonotonic reasoning and logic program-
ming. The idea of answer set programming is to represent a given computational
problem by a logic program whose answer sets correspond to solutions, and then
use an answer set solver to find such a solution [1]. The knowledge representa-
tion language of ASP is very expressive in a precise mathematical sense; in its
general form, allowing for disjunction in rule heads and nonmonotonic negation
in rule bodies, ASP can represent every problem in the complexity class ΣP

2 and
ΠP

2 (under brave and cautious reasoning, respectively) [2]. Thus, ASP is strictly
more powerful than SAT-based programming, as it allows us to solve problems
which cannot be translated to SAT in polynomial time. The high expressive
power of ASP can be profitably exploited in AI, which often has to deal with
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problems of high complexity. For instance, problems in diagnosis and planning
under incomplete knowledge are complete for the complexity class ΣP

2 or ΠP
2

[3,4], and can be naturally encoded in ASP [5,6].
Most of the optimization work on ASP systems has focused on the efficient

evaluation of non-disjunctive programs (whose power is limited to NP/co-NP),
whereas the optimization of full (disjunctive) ASP programs has been treated in
fewer works (e.g., in [7,8]). In particular, we are not aware of any work concerning
heuristics for ΣP

2 /ΠP
2 -hard ASP programs.

Since the model generators of ASP systems, like DLV [9] and Smodels [10],
are similar to the Davis-Putnam procedure, employed in many SAT solvers,
the heuristic (branching rule) for the selection of the branching literal (i.e., the
criterion determining the literal to be assumed true at a given stage of the
computation) is fundamentally important for the efficiency of an ASP system.
Some other systems, like ASSAT [11] or Cmodels [12] use a SAT solver directly
as a black box, and thus have limited means of tuning the heuristic. Also note
that all of Smodels, ASSAT, and Cmodels are confined to NP problems. Since
our focus is on harder problems, we will not consider these systems further.

In this paper, we address the following two questions:
� Can the heuristics of ASP systems be refined to deal more efficiently with
ΣP

2 /ΠP
2 -hard ASP programs?

� On hard ΣP
2 /ΠP

2 problems, can ASP systems compete with other AI systems,
like QBF solvers?

We define a new heuristic hDS for the (disjunctive) ASP system DLV. The
new heuristic aims at improving the evaluation of ΣP

2 /ΠP
2 -hard ASP programs,

but it is designed to maintain the benign behaviour of the well-assessed heuristic
of DLV on NP problems like 3SAT and Blocks-World, on which it proved to be
very effective [13]. We experimentally compare hDS against the DLV heuristic
on hard 2QBF instances, generated following recent works presented in the lit-
erature that describe transition phase results for QBFs [14,15]. hDS significantly
outperforms the heuristic of DLV on 2QBF.

To check the competitiveness of ASP w.r.t. QBF solvers on hard problems, we
carry out an experimental comparison of the DLV system (with the new heuris-
tic hDS) with four prominent QBF solvers, which performed best at the 2004
QBF evaluation[16,17]: SSolve, Semprop, Quantor, yQuaffle. The results of the
comparison, performed on instances used in the QBF competition and on a set
of randomly generated instances for the Strategic Companies problem, indicate
that ASP systems currently perform better than QBF systems on ΣP

2 /ΠP
2 -hard

problems.

2 Answer Set Programming Language

2.1 ASP Programs

A (disjunctive) rule r is a formula

a1 ∨ · · · ∨ an :− b1, · · · , bk, not bk+1, · · · , not bm.
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where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The disjunction
a1∨· · ·∨an is the head of r, while the conjunction b1, · · · , bk, not bk+1, · · · , not bm

is the body, b1, · · · , bk the positive body, and not bk+1, · · · , not bm the negative
body of r.

An (ASP) program P is a finite set of rules. An object (atom, rule, etc.) is
called ground or propositional, if it contains no variables.

2.2 Answer Sets

Given a program P, let the Herbrand Universe UP be the set of all constants
appearing in P and the Herbrand Base BP be the set of all possible ground
atoms which can be constructed from the predicate symbols appearing in P
with the constants of UP .

Given a rule r, Ground(r) denotes the set of rules obtained by applying
all possible substitutions σ from the variables in r to elements of UP . Simi-
larly, given a program P, the ground instantiation Ground(P) of P is the set⋃

r∈P Ground(r).
For every program P, we define its answer sets using its ground instantiation

Ground(P) in two steps: First we define the answer sets of positive programs,
then we give a reduction of general programs to positive ones and use this re-
duction to define answer sets of general programs.

A set L of ground literals is said to be consistent if, for every atom � ∈ L,
its complementary literal not � is not contained in L. An interpretation I for
P is a consistent set of ground literals over atoms in BP .1 A ground literal �
is true w.r.t. I if � ∈ I; � is false w.r.t. I if its complementary literal is in I;
� is undefined w.r.t. I if it is neither true nor false w.r.t. I. Interpretation I is
total if, for each atom A in BP , either A or not A is in I (i.e., no atom in BP
is undefined w.r.t. I). A total interpretation M is a model for P if, for every
r ∈ Ground(P), at least one literal in the head is true w.r.t. M whenever all
literals in the body are true w.r.t. M . X is an answer set for a positive program
P if it is minimal w.r.t. set inclusion among the models of P.

Example 1. For the positive program P1={a ∨ b ∨ c. , :−a.}, {b, not a, not c}
and {c, not a, not b} are the answer sets. For the positive program P2={a ∨ b ∨
c. , :−a. , b:−c. , c:−b.}, {b, c, not a} is the only answer set.

The reduct or Gelfond-Lifschitz transform of a general ground program P
w.r.t. an interpretation X is the positive ground program PX , obtained from
P by (i) deleting all rules r ∈ P whose negative body is false w.r.t. X and (ii)
deleting the negative body from the remaining rules.

An answer set of a general program P is a model X of P such that X is an
answer set of Ground(P)X .

Example 2. Given the (general) program P3={a ∨ b:−c. , b:−not a, not c. , a ∨
c:−not b.} and I = {b, not a, not c}, the reduct PI

3 is {a ∨ b:−c., b.}. I is an
answer set of PI

3 , and for this reason it is also an answer set of P3.
1 We represent interpretations as set of literals, since we have to deal with partial

interpretations in the next sections.
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Fig. 1. Graphs (a) DGP4 , and (b) DGP5

2.3 Some ASP Properties

Given an interpretation I for a ground program P,we say that a ground atom
A is supported in I if there exists a supporting rule r ∈ ground(P) such that the
body of r is true w.r.t. I and A is the only true atom in the head of r.

Proposition 1. [18,19,20] If M is an answer set of a program P, then all atoms
in M are supported.

Another relevant property of ASP programs is head-cycle freeness (HCF).
With every ground program P, we associate a directed graph DGP = (N,E),
called the dependency graph of P, in which (i) each atom of P is a node in N
and (ii) there is an arc in E directed from a node a to a node b iff there is a rule
r in P such that b and a appear in the head and body of r, respectively.

The graph DGP singles out the dependencies of the head atoms of a rule r
from the positive atoms in its body.2

Example 3. Consider the program P4={a ∨ b. , c:−a. , c:−b.}, and the program
P5 = P4 ∪ {d∨ e:−a. , d:−e. , e:−d, not b.}. The dependency graph DGP4 of P4

is depicted in Figure 1 (a), while the dependency graph DGP5 of P5 is depicted
in Figure 1 (b).

The dependency graphs allow us to single out HCF programs [21]. A program
P is HCF iff there is no rule r in P such that two atoms occurring in the head
of r are in the same cycle of DGP .

Example 4. The dependency graphs given in Figure 1 reveal that program P4 of
Example 3 is HCF and that program P5 is not HCF, as rule d ∨ e← a contains
in its head two atoms belonging to the same cycle of DGP5 .

HCF programs are computationally easier than general (non-HCF) programs.

Proposition 2. [21,2] 1. Deciding whether an atom belongs to some answer
set of a ground HCF program P is NP-complete. 2. Deciding whether an atom
belongs to some answer set of a ground (non-HCF) program P is ΣP

2 -complete.

3 Answer Set Computation

In this section, we describe the main steps of the computational process per-
formed by ASP systems. We will refer particularly to the computational engine
2 Note that negative literals cause no arc in DGP .
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of the DLV system, which will be used for the experiments, but also other ASP
systems, like Smodels, employ a very similar procedure.

An answer set program P in general contains variables. The first step of a
computation of an ASP system eliminates these variables, generating a ground
instantiation ground(P) of P.3 The hard part of the computation is then per-
formed on this ground ASP program generated by the instantiator.

Function ModelGenerator(I: Interpretation): Boolean;
begin

I := DetCons(I);
if I = L then return False; (* inconsistency *)
if no atom is undefined in I then return IsAnswerSet(I);
Select an undefined ground atom A according to a heuristic;
if ModelGenerator(I ∪ {A}) then return True;
else return ModelGenerator(I ∪ {not A});

end;
Fig. 2. Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is
sketched in Figure 2. Roughly, the Model Generator produces some “candidate”
answer sets. The stability of each of them is subsequently verified by the func-
tion IsAnswerSet(I), which verifies whether the given “candidate” I is a minimal
model of the program Ground(P)I obtained by applying the GL-transformation
w.r.t. I and outputs the model, if so. IsAnswerSet(I) returns True if the compu-
tation should be stopped and False otherwise.

The ModelGenerator function is first called with parameter I set to the
empty interpretation.4 If the program P has an answer set, then the function
returns True setting I to the computed answer set; otherwise it returns False.
The Model Generator is similar to the Davis-Putnam procedure employed by
SAT solvers. It first calls a function DetCons(), which returns the extension
of I with the literals that can be deterministically inferred (or the set of all
literals L upon inconsistency). This function is similar to a unit propagation
procedure employed by SAT solvers, but exploits the peculiarities of ASP for
making further inferences (e.g., it exploits the knowledge that every answer set
is a minimal model). If DetCons does not detect any inconsistency, an atom A
is selected according to a heuristic criterion and ModelGenerator is called on
I ∪ {A} and on I ∪ {not A}. The atom A plays the role of a branching variable
of a SAT solver. And indeed, like for SAT solvers, the selection of a “good”
atom A is crucial for the performance of an ASP system. In the next section, we
describe a number of heuristic criteria for the selection of such branching atoms.

Remark 1. On hard ASP programs (non-hcf programs), a very large part of the
computation-time may be consumed by function isAnswerSet(I), since it performs
a co-NP-complete task if the program is non-hcf.
3 Note that ground(P) is not the full set of all syntactically constructible instances of

rules in P; rather, it is a subset of it having precisely the same answer sets as P.
4 Observe that the interpretations built during the computation are 3-valued, that is

a literal can be True, False or Undefined w.r.t. to an interpretation I.s
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4 Heuristics

Throughout this section, we assume that a ground ASP program P and an inter-
pretation I have been fixed. Here, we describe the two heuristic criteria that will
be compared in Section 5. We consider “dynamic heuristics” (the ASP equiv-
alent of UP heuristics for SAT5), that is, branching rules where the heuristic
value of a literal Q depends on the result of taking Q true and computing its
consequences. Given a literal Q, ext(Q) will denote the interpretation resulting
from the application of DetCons (see previous section) on I ∪ {Q}; without loss
of generality, we assume that ext(Q) is consistent, otherwise Q is automatically
set to false and the heuristic is not evaluated on Q at all.

The Heuristic of DLV (hUT ). The heuristic employed by the DLV system
was proposed in [13], where it was shown to be very effective on relevant problems
like 3Satisfiability, Hamilthonian Path, Blocks World, and Strategic Companies.

A peculiar property of answer sets is supportedness: For each true atom A
of an answer set I, there exists a rule r of the program such that the body of
r is true w.r.t. I and A is the only true atom in the head of r. Since an ASP
system must eventually converge to a supported interpretation, ASP systems try
to keep the interpretations “as much supported as possible” during the interme-
diate steps of the computation. To this end, the DLV system counts the number
of UnsupportedTrue (UT) atoms, i.e., atoms which are true in the current inter-
pretation but still miss a supporting rule (further details on UTs can be found
in [22] where they are called MBTs). For instance, the rule :−not x implies that
x must be true in every answer set of the program; but it does not give a “sup-
port” for x. Thus, in the DLV system x is taken true to satisfy the rule, and it
is added to the set of UnsupportedTrue; it will be removed from this set once a
supporting rule for x will be found (e.g., x∨b:−c is a supporting rule for x in the
interpretation I = {x, not b, c}). Given a literal Q, let UT (Q) be the number
of UT atoms in ext(Q). Moreover, let UT2(Q) and UT3(Q) be the number of
UT atoms occurring, respectively, in the heads of exactly 2 and 3 unsatisfied
rules w.r.t. ext(Q). The heuristic hUT of DLV considers UT (Q), UT2(Q) and
UT3(Q) in a prioritized way, to favor atoms yielding interpretations with fewer
UT/UT2/UT3 atoms (which should more likely lead to a supported model). If
all UT counters are equal, then the heuristic considers the total number Sat(Q)
of rules which are satisfied w.r.t. ext(Q).

The heuristic hUT is “balanced”, that is, the heuristic values of an atom Q
depends on both the effect of taking Q and not Q.

For an atom Q, let UT ′(Q) = UT (Q) + UT (not Q), UT ′2(Q) = UT2(Q) +
UT2(not Q), UT ′3(Q) = UT3(Q) + UT3(not Q), and, eventually, Sat′(Q) =
Sat(Q) + Sat(not Q). Given two atoms A and B:
1. A <hUT

B if UT ′(A) > UT ′(B);
2. otherwise, A <hUT

B if UT ′(A) = UT ′(B) and UT ′2(A) > UT ′2(B);
5 The UP heuristic for SAT adds for each variable x a unit clause x and -x, respec-

tively, and makes two independent unit propagations. The choice is then based on
information thus obtained.
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3. otherwise, A <hUT
B if UT ′2(A) = UT ′2(B) and UT ′3(A) > UT ′3(B);

4. otherwise, A <hUT
B if UT ′3(A) = UT ′3(B) and Sat′(A) < Sat′(B).

A <hUT
-maximum atom A is selected by the heuristic hUT of DLV; A is

taken positive or negative, by comparing the values of UT (A), UT2(A), UT3(A),
and Sat(A), with UT (not A), UT2(not A), UT3(not A), and Sat(not A), re-
spectively, as above.

Example 5. Consider P6 = {a ∨ b ∨ c. , d ∨ e ∨ f. , :−not w. , w:−a. , w:−d. ,
a ∨ z:−w. , b ∨ z:−w. , :−d, z. , :−a, z. , }, and let the current interpretation
I = {w}; atom w is UT. a and d are the <hUT

-maxima, as only assuming their
truth can eliminate the UT w. Indeed, anything apart from a or d would be a
poor choice.

The New Heuristic (hDS). The unsupported true atoms are, in a sense, the
hardest constraints occurring in an ASP program. Indeed, as pointed out above,
an unsupported true atom x is intuitively like a unary constraint :−not x, which
must be satisfied. By minimizing the UT atoms and maximizing the satisfied rules,
the heuristic hUT tries to drive the DLV computation toward a supported model
(i.e., all rules are satisfied and no UT exists). Intuitively, supported models have
good chances to be answer sets (while unsupported models are guaranteed to be
not answer sets), and, for simple classes of programs (e.g., tight stratified disjunc-
tive programs) the supported models are precisely the answer sets. If the program
is not tight and stratified, then supported models are not guaranteed to be answer
sets; but answer-set checking can be done efficiently if the program is HCF.

For hard ASP programs (i.e., non-HCF programs – they express ΣP
2 -complete

problems under brave reasoning), supported models are often not answer sets.
Answer-set checking is computationally expensive (co-NP-complete), and may
consume a large portion of the resources needed for computing an answer set.

The heuristic hDS , described next, tries to drive the computation toward
supported models having higher chances to be answer sets, reducing the overall
number of the expensive answer-set checks. Models having a “higher degree of
supportedness” are preferred, where the degree of supportedness is the average
number of supporting rules for the true atoms (note that this number is higher
than one, on supported models). Intuitively, if all true atoms have many sup-
porting rules in a model M , then the elimination of an atom from the model
would violate many rules, and it becomes less likely finding a subset of M which
is a model of PM , to disprove that M is an answer set.

We next formalize this intuition to define the new heuristic hDS . Given a
literal Q, let T rue(Q) be the number of true non-HCF atoms in ext(Q), and let
SuppRules(Q) be the number of all supporting rules for non-HCF atoms w.r.t.
ext(Q). Intuitively, the heuristic maximizes the “degree of supportedness” of the
interpretation, intended as the ratio between the number of supporting rules and
the number of true atoms. Also in this case, the heuristic is “balanced”, it takes
into account both the atom and its complement.

Moreover, it is defined as a refinement of the heuristic hUT (i.e., A <hUT
B ⇒

A <hDS
B). In this way, hDS keeps the same nice behaviour as the well-assessed



Solving Hard ASP Programs Efficiently 247

hUT on NP problems like 3SAT and Blocks-World, where hUT proved to be very
effective [13]; while, as we will see in Section 5 it sensibly improves on hUT on
hard 2QBF problems (ΣP

2 -complete). Given two atoms A and B:

1. A <hDS
B if A <hUT

B;
2. otherwise, A <hDS

B if B �<hUT
A and DS(A) < DS(B)

where DS(Q) = SuppRules(Q)/T rue(Q) + SuppRules(not Q)/T rue(not Q).6

The heuristic selects a <hDS
-maximum atom A; A is taken positive or nega-

tive, by comparing the degree of supportedness of A and not A.

Example 6. Reconsider Example 5 with the interpretation being I = {w}. We get
ext(a) = {w, a, b, not z, not c}, ext(d) = {w, d, a, b, not z, not c, not e, not f}.
DS(a) = 3/3, since w ← a; a ∨ z ← w and b ∨ z ← w are supporting rules
for the three true non-HCF atoms w, a, b. On the other hand, DS(d) = 4/3,
since w ← d is an additional supporting rule for the same three true non-HCF
atoms w, a, b. Therefore a <hDS

d holds. Indeed, d is a better choice than a, as
it leads immediately to an answer set. a would require at least another choice,
and choosing e or f would cause a failing model check.

5 Comparing hUT vs hDS: Experiments

The proposed heuristic aims at improving the performance of DLV on hard (ΣP
2 -

complete) ASP programs. While there are many experimental works benchmark-
ing ASP systems on NP-complete problems, less is available for ΣP

2 -complete
problems. We resort to 2QBF, the canonical problem, and one of the few ΣP

2 -
hard problems for which some transition phase results are known [14,15].

The problem here is to decide whether a quantified Boolean formula (QBF)
Φ = ∃X∀Y φ, where X and Y are disjoint sets of propositional variables and
φ = C1 ∨ . . . ∨ Ck is a 3DNF formula over X ∪ Y , is valid. The transformation
from 2QBF to disjunctive logic programming is based on a reduction used in [23].
The propositional disjunctive logic program Pφ produced by the transformation
requires 2 ∗ (|X|+ |Y |) + 1 predicates (with one dedicated predicate w).

Our benchmark instances were generated following recent works presented in
the literature that describe transition phase results for QBFs [14,15], see [9],
for a thorough discussion. In all generated instances, the number of ∀-variables
in any formula is the same as the number of ∃-variables (that is, |X| = |Y |) and
each disjunct contains at least two universal variables. Moreover, the number of
clauses is ((|X|+ |Y |)/2)0.5.

Experiments were performed on a PentiumIV 1500 MHz machine with
256MB RAM running SuSe Linux 9.0. Time measurements have been done using
the time command shipped with SuSe Linux 9.0.

We generated 100 random QBF instances for each problem size. The results
of our experiments are displayed in Fig. 3. For each instance, we allowed a
maximum time of 7200 seconds (two hours). The line of a system stops whenever

6 The denominator is increased by 1, in order to avoid possible divisions by zero.
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Fig. 3. Running Times on Random QBF problems

some problem instance was not solved within this time limit. On the vertical axis,
we report, respectively, the average and the maximum running time in seconds
over the 100 instances of the respective size, in logarithmic scale.

It is evident that the new heuristic hDS outperforms the heuristic hUT in
these experiments. Heuristic hUT stopped at size 56; while heuristic hDS solved
all instances up to size 92. To solve an instance of size 56, hUT took 3455.85s;
while hDS required at most 5.13s and 0.12s on average for instances of this size.
Heuristic hUT could not solve a 60-variables instance within 2 hours of cpu time;
while hDS took at most 12.41s and 0.64s on average for solving these.

6 ASP vs QBF Solvers

One may wonder whether ASP systems are competitive with other systems on
ΣP

2 /ΠP
2 -hard problems. Currently it seems that QBF solvers are the most promi-

nent (and efficient) non-ASP-systems for such problems.
In order to answer this question, we carry out an experimental comparison

of DLV (with the heuristic described in this paper) with QBF solvers which
performed best at the 2004 QBF evaluation [16,17]: SSolve [24] (in the version
used at the 2004 QBF evaluation), Semprop [25] (version v01.06.04), Quantor
[26] (version 1.3pre1), and yQuaffle [27] (version 093004). We use two different
sets of benchmarks, which we describe in the following sections.

6.1 QBF Evaluation

The first group of benchmarks constitute the ΣP
2 - and ΠP

2 -complete QBF in-
stances of the 2004 QBF evaluation, which we obtained from the qbflib web site
[16]. These instances are of four different kinds: (1) Letz-tree, (2) Narizzano-
robot, (3) Pan-Kph, and (4) hard random-instances, see [16] for details. In
total, our suite contains 143 2QBF instances: 2 Letz-tree, 32 Narizzano-robot, 1
Pan-Kph, and 108 random instances. For DLV we used a standard propositional
encoding as described in Sec. 5, while for the QBF systems we used directly the
qDimacs format.

The experiments were performed on the same machine as those of Sec. 5. For
each instance, we have allowed a maximum running time of 1800 seconds (30
minutes). Again, we have limited the process size to 256MB to avoid swapping.
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Table 1. Number (and percentage) of instances solved within the allowed time

DLV Quantor Semprop yQuaffle SSolve

Robot 32 (100%) 10 (31%) 17 (53%) 21 (67%) 22 (69%)
Random 108 (100%) 14 (13%) 96 (89%) 55 (51%) 103 (95%)
Tree 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Pan − Kph 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)

Total 143 (100%) 27 (19%) 116 (81%) 79 (55%) 128 (90%)

Table 1 displays, for each system, the number and percentage of instances
which have been solved under the resource limitations. Summarizing, DLV could
solve all instances (100%) and is therefore clearly the best among the compared
systems. Among the QBF solvers, SSolve and Semprop could solve 81% and 88%
of the instances, respectively, and thus performed significantly better than both
yQuaffle (55%) and Quantor (19%). It should be noted that practically all of the
unsolved instances for Quantor are due to excessive memory consumption, while
for the other systems they are due to time-outs. Indeed, we have tried to run
Quantor on some of its unsolved instances manually: Within the first minute of
CPU time (several minutes real-time due to swapping), it had typically allocated
around 500MB, and after two minutes (around half an hour in real time) more
than 700MB, still growing. We then aborted the test to avoid a machine lock-up.

Table 2. Average time (seconds) on instances solved by QBF systems

SSolve Semprop Quantor yQuaffle

# solved 128 116 27 79

solver avg 43,86 68,18 4,74 55,24
DLV avg 38,95 43,50 10,94 49,05

While SSolve and Semprop did significantly better on the random instances
than on the ”Narizzano-robot” instances, the situation is inverse for Quantor
and yQuaffle, which confirms the observations in [17].

Also when comparing the average runtime between DLV and each QBF solver
(on the instances solved by the respective system), DLV usually has an edge, as
Table 2 shows. The average runtime of DLV is only larger when comparing to
Quantor; but given that this comparison is based only on 19% of all instances,
this is rather insignificant.

6.2 Strategic Companies

The second group of benchmarks is made up of randomly generated instances
for the Strategic Companies problem, as defined in [28]. We use the same DLV
program and generation method as in [9]. s

Here, we generated tests as in [9] with 20 instances each size for m companies
(5 ≤ m ≤ 200), 3m products, 10 uniform randomly chosen contr by relations
per company (up to four controlling companies), and uniform randomly chosen
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prod by relations (up to four producers per product). The problem is deciding
whether two fixed companies (1 and 2, without loss of generality) are strategic.

For the QBF solvers we have produced the following formula: ∃c1, . . . , cn :
∀c′1, . . . , c′n : ((I ∧NE) → (R∧R′)∧ c1 ∧ c2) where I stands for (c′1 → c1)∧ . . .∧
(c′n → cn), NE for ¬((c′1 ↔ c1) ∧ . . . ∧ (c′n ↔ cn)), R for

∧m
i=1((

∧
cj∈Oi

cj) →
ci) ∧

∧n
i=1(
∨

gi∈Cj
cj) (Oi contains the controlling companies of ci, while Cj

contains the companies producing good j. R′ is defined analogous to R on the
primed variables.

Unfortunately this formula is not in CNF, as required by the qDimacs format.
In order to avoid a substantial blowup of the formula by a trivial normalization,
we have used the tool qst of the traquasto suite [29], which transforms a formula
into qDimacs by introducing additional “label variables” to avoid exponential
formula growth. However, these additional variables are existentially quantified
at the inner level and thus would turn the formula above into a 3QBF. To avoid
this, we consider the negated formula ∀c1, . . . , cn : ∃c′1, . . . , c′n : ¬((I ∧ NE) →
(R ∧R′) ∧ c1 ∧ c2), which stays on the second level after the transformation.
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Fig. 4. Average (left) and maximum (right) timings for Strategic Companies

In the same experimental setting as before, we obtained the results of Fig. 4.7

It is evident that DLV scales significantly better than the QBF solvers (note
that the vertical axis is logarithmic), and can solve all instances of up to 175
companies, while the QBF solver fail to solve instances of 40 companies.

7 Conclusion

In this paper, we have presented a new heuristic method for ASP systems, which
is geared towards hard problems on the second level of the polynomial hierarchy.
We have implemented this method in the state-of-the-art system DLV, and
showed that it is beneficial for the performance of the system.

To our knowledge, this is the first work dealing with heuristics dedicated for
ΣP

2 /ΠP
2 -hard ASP programs. Previous optimization techniques for this segment

have been concerned with the model checking portion, which is important for
this class of problems. In our work, we attack the problem earlier, in the model

7 yQuaffle is not included, as it triggered assertions on some of the input files.
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generation phase, and can therefore cut on the model checks. Importantly, this
heuristics has been incorporated in a way such that the benign behavior on
NP/co-NP programs w.r.t. the previous heuristic of DLV is maintained.

We experimentally verified that the new heuristic significantly improves the
DLV system performance on randomly generated hard 2QBF instances, reduc-
ing the average execution time, enlarging the maximum solvable size of these
problems for a fixed time limit.

We also carried out an experimental comparison of DLV (with the heuristic
described in this paper) with the best QBF solvers of the 2004 QBF evaluation
[16,17]: SSolve [24], Semprop [25], Quantor [26], and yQuaffle [27]. This compari-
son was done on benchmark instances of the 2004 QBF evaluation, and Strategic
Companies. In both cases, DLV could outperform the QBF solvers, often sig-
nificantly. DLV was able to solve all the instances of the 2004 QBF evaluation
within the given resource limitations, while the best QBF system solved 88%,
and the worst only 19%. Also for Strategic Companies, DLV exhibited much bet-
ter performance. We therefore conclude that ASP systems are currently the best
choice for solving ΣP

2 /ΠP
2 -complete problems. All benchmark data is available

at http://www.dlvsystem.com/examples/tests-sigma2-2005.tar.gz.
We note again that QBF solvers are designed for solving also harder problems

than the ones considered here. Nevertheless, they are used for solving problems
of this kind, especially planning problems, cf. [30]. However, from our results we
have to conclude that DLV appears to be the better choice for ΣP

2 /ΠP
2 -complete

problems

References

1. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: ICLP’99, Las Cruces,
New Mexico, USA, The MIT Press (1999) 23–37

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22 (1997)
364–418

3. Rintanen, J.: Improvements to the Evaluation of Quantified Boolean Formulae. In
Dean, T., ed.: IJCAI 1999, Sweden,(1999) 1192–1197

4. Eiter, T., Gottlob, G.: The Complexity of Logic-Based Abduction. JACM 42
(1995) 3–42

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
CUP (2002)

6. Leone, N., Rosati, R., Scarcello, F.: Enhancing Answer Set Planning. In: IJCAI-
01 Workshop on Planning under Uncertainty and Incomplete Information. (2001)
33–42
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Abstract. Goal-directed fixed point computation strategies have been
widely adopted in the tabled logic programming paradigm. However,
there are many situations in which a fixed point contains a large number
or even infinite number of solutions. In these cases, a fixed point compu-
tation engine may not be efficient enough or feasible at all. We present
a mode-declaration scheme which provides the capabilities to reduce a
fixed point from a big solution set to a preferred small one, or from an
infeasible infinite set to a finite one. We show the correctness of the mode-
declaration scheme. One motivating application of our mode-declaration
scheme is for dynamic programming, which is typically used for solving
optimization problems. There is no need to define the value of an op-
timal solution recursively, instead, defining a general solution suffices.
The optimal value as well as its corresponding concrete solution can be
derived implicitly and automatically using a mode-directed fixed point
computation engine. This mode-directed fixed point computation engine
has been successfully implemented in a commercial Prolog system.

1 Introduction

Due to their highly declarative nature and efficiency, Tabled logic programming
(TLP) systems [3,16,5,10] have been put to many innovative uses, such as model
checking [9] and non-monotonic reasoning [12]. A tabled logic programming sys-
tem can be thought of as an engine for efficiently computing fixed points, which
is critical for many practical applications. A TLP system is essential for extend-
ing traditional LP system (e.g., Prolog) with tabled resolutions (or memorized
resolutions). The main advantages of tabled resolution are that a TLP system
terminates more often by computing fixed points, avoids redundant computation
by memoing the computed answers, and keeps the declarative and procedural
semantics consistent for pure logic programs with bounded-size terms.

Example 1. Consider the following two programs defining the reachability re-
lations. The predicate reach(X,Y) in the program (a) checks whether a node X
is reachable to Y, while the predicate reach(X,Y,E) in the program (b) does the
same job as well as returning a path information as an explanation.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 253–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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:- table reach/2.

reach(X,Y) :- reach(X,Z), arc(Z,Y).

reach(X,Y) :- arc(X,Y).

arc(a,b). arc(a,c). arc(b,a).

:- reach(a,X).

:- table reach/3.

reach(X,Y,E) :-

reach(X,Z,E1), arc(Z,Y,E2),

append(E1,E2,E).

reach(X,Y,E) :- arc(X,Y,E).

arc(a,b,[(a,b)]). arc(a,c,[(a,c)]).

arc(b,a,[(b,a)]).

:- reach(a,X,P).

(a) Finite Solutions (b) Infinite Solutions

The program for example 1(a), checking the existence of reachability, does
not work properly in a traditional Prolog system. With the declaration of a
tabled predicate reach/2 in a tabled Prolog system, it can successfully find the
complete solutions due to the fixed point computation strategy. However, there
are many situations in which a fixed point contains a large number or even
infinite number of solutions, which in turn affects the efficiency or completion of
the computation.

Consider another reachability program shown in example 1(b), where
append/3 is a standard predicate to append a list to another. An extra argument
is added for the predicate reach/3 to collect the corresponding path. However,
this extra argument results in the fixed point of the computation to be infinite
and nonterminating, since there are indeed infinite number of paths from a to
any node due to the cycle between a and b. Similar problems on evidence con-
struction have been studied on justification in [11,8]. One reasonable solution is
presented in [8] by asserting the first evidence into a dynamic database for each
tabled answer. However, the evidence has to be organized as segments indexed
by each tabled answer. That is, an extra procedure is required to construct the
full evidence.

To avoid such an inefficiency or nontermination problem due to a fixed point
containing a large number or an infinite number of solutions respectively, it is
often necessary to change the original problem to having a small finite solution
set. For this reachability example, it is actually enough to find a single simple
path to show the evidence of reachability. However, it is generally not only
difficult to alter the predicate definition of reach/3 to avoid nontermination to
have a single simple path for each pair of reachable nodes, but also sacrifices the
clarity of the original relation. In these cases, a fixed point computation engine
may not be efficient enough or feasible at all.

In this paper, we present a mode-declaration scheme in a tabled Prolog par-
adigm which provides the capabilities to reduce a fixed point from a large or
infinite solution set to a preferred finite one. Note that we only consider definite
logic programs in this paper. The method introduces a new mode declaration for
tabled predicates. The mode declaration classifies arguments of a tabled predi-
cate as indexed or non-indexed. Each non-indexed argument can be thought of
as a function value uniquely determined by indexed arguments. The mode decla-
ration can further extend one of the non-indexed arguments to be an aggregated
value, e.g., the minimum function, so that the global table will record answers
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with the value of that argument appropriately aggregated. Thus, in the case of
the minimum function, a tabled answer can be dynamically replaced by a new
one with a smaller value during the computation.

Semantically, the mode declaration scheme can be characterized as a meta-
level operation over the fixed point to the original program. The semantics of
a tabled Prolog program is formalized based on the Herbrand model [13,7] and
fixed-point theory, whereas the semantics of declared modes is defined as a strict
partial order relation 1 among the solutions. The mode declaration essentially
provides selection mechanism among the alternative solutions, thus making fixed
point computation more flexible. We formally present the semantics of mode
declaration in a tabled Prolog program, and further show the correctness of its
operational semantics in a tabled resolution.

The new mode-declaration scheme, coupled with recursion, provides an at-
tractive platform for making dynamic programming simpler [6]: there is no need
to define the value of an optimal solution recursively, instead, defining the value
of a general solution suffices. The optimal value, as well as its associated solution,
will be computed implicitly and automatically in a tabled Prolog system that
uses the new mode declaration and modified variant checking. Thus, dynamic
programming problems are solved more elegantly and declaratively.

The rest of the paper is organized as follows: Section 2 gives a brief intro-
duction of tabled logic programming and presents a mode declaration scheme
for tabled predicates. Section 3 explains how the mode declaration affects the
operational semantics of tabled logic programming. Section 4 gives a detailed
demonstration of how dynamic programming can benefit from this new scheme.
Section 5 presents the running performance on some dynamic programming
benchmarks. Finally, section 6 gives our conclusions.

2 Mode-Directed Fixed Point Computation

2.1 Tabled Logic Programming (TLP)

Traditional logic programming systems (e.g., Prolog) use SLD resolution [7] with
the following computation strategy: subgoals of a resolvent are solved from left
to right and clauses that match a subgoal are applied in the textual order
they appear in the program. It is well known that SLD resolution may lead
to non-termination for certain programs, even though an answer may exist via
the declarative semantics. That is, given any static computation strategy, one
can always produce a program in which no answers can be found due to non-
termination even though some answers may logically follow from the program.
In case of Prolog, programs containing certain types of left-recursive clauses are
examples of such programs.

Tabled logic programming (TLP) [3,5,16,10] eliminates such infinite loops by
extending logic programming with tabled resolution. The main idea of tabled
resolution is to memorize the answers to some calls and use the memorized
1 A strict partial order relation is irreflexive and transitive.
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answers to resolve subsequent variant calls. Tabled resolution adopts a dynamic
computation strategy while resolving subgoals in the current resolvent against
matched program clauses or tabled answers. It keeps track of the nature and
type of the subgoals; if the subgoal in the current resolvent is a variant of a
former tabled call, tabled answers are used to resolve the subgoal; otherwise,
program clauses are used following SLD resolution.

TLP systems can be thought of as an engine for efficiently computing fixed
points. However, there are many situations in which a fixed point contains a
large number or even infinite number of solutions (for example 1(b)). In these
cases, a fixed point computation engine may not be efficient enough or feasible
at all. In this section, we present a mode-declaration scheme which provides the
capabilities to reduce a fixed point from a big solution set to a preferred small
one, or from an infeasible infinite set to a finite one.

2.2 Mode Declarations

The fixed point reduction can be achieved by a mode declaration for tabled
predicates, which is described in the form of

:- table q(m1, ...,mn).
where q/n is a tabled predicate name, n ≥ 0, and each mi has one of the forms
as defined in Table 1.

Table 1. Built-in Modes for Tabled Predicates

Modes Informal Semantics

+ an indexed argument
− a non-indexed argument

min a minimum non-indexed argument
max a maximum non-indexed argument

In order to find out how modes will affect the fixed point computation, we
have to get better understanding on the function of variant checking in tabled
resolution. Variant checking is a crucial operation for tabled resolution as it leads
to avoidance of non-termination. It is used to differentiate both tabled goals and
their answers. While computing the answers to a tabled goal p with tabled reso-
lution, if another tabled subgoal q is encountered, the decision regarding whether
to consume tabled answers or to try program clauses depends on the result of
variant checking. If q is a variant of p, the variant subgoal q will be resolved
by unifying it with tabled answers, otherwise, traditional Prolog resolution is
adopted for q. Additionally, when an answer to a tabled goal is generated, vari-
ant checking is used to check whether the generated answer is variant of an
answer that is already recorded in the table. If so, the table is not changed; this
step is crucial in ensuring that a fixed point is reached.

The main purpose of the mode declaration is to classify the predicate ar-
guments into two types: indexed and non-indexed. Only indexed arguments are



Mode-Directed Fixed Point Computation 257

used for variant checking during collecting answers for the table; for each tabled
call, any answer generated later for the same value of the indexed arguments is
discarded because it is a variant, w.r.t. the indexed arguments, of a previously
tabled answer. Consider again the reachability program in Example 1(b). Sup-
pose we declare the mode as “:- table reach(+,+,-)”; this means that only
the first two arguments of the predicate reach/3 are used for variant checking
during the tabled answers collection. Given the query reach(a,X,P), the an-
swers “X=b, P=[(a,b),(b,a),(a,b)]” and “X=c, P=[(a,b),(b,a),(a,c)]”,
are variant to “X=b, P=[(a,b)]” and “X=c, P=[(a,c)]” respectively. There-
fore, the computation is then terminated properly with three answers, that is,
each answer gives a reachable node from a as well as its explanation.

The mode directive table makes it very easy and efficient to extract expla-
nation for tabled predicates. In fact, our strategy of ignoring the explanation
argument during variant checking results in only the first explanation for each
tabled answer being recorded. Subsequent explanations are filtered by our mod-
ified variant checking scheme. This feature ensures that those generated expla-
nations are concise and that cyclic explanations are guaranteed to be absent.
For the reachability instance, each returned path is simple such that all arcs are
distinct.

Essentially, if we regard a tabled predicate as a function, then all the non-
indexed arguments are uniquely defined by the instances of indexed arguments.
For the previous example, the third argument of reach/3 returns a single path
depending on the first two arguments. Therefore, variant checking should be done
w.r.t. only indexed arguments during tabled resolution. From this viewpoint,
the mode declaration makes tabled resolution more efficient and flexible. More
importantly, this declaration scheme is especially useful to reduce an infinite
computation model to a finite one for some practical uses, or to reduce a large
finite computation model to an optimized one as shown below.

2.3 Declaration of Aggregates

The mode directive table can be further extended to associate a non-indexed
argument of a tabled predicate with some optimum constraint. With the mode
‘-’, a non-indexed argument for each tabled answer only records the very first
instance. This “very first” property can actually be generalized to support other
preferences, e.g., the minimum value with mode min (or the maximum with
mode max), in which case the global table will record answers with the value of
that argument as small (or great) as possible. That is, a tabled answer can be
dynamically replaced by a new one with smaller (or greater) value during the
computation. Note that we only enumerate two typical aggregates as examples,
other aggregates, such as sum, average, etc., can easily be extended as well.

Example 2. Consider the following program searching for a shortest path,
where path(X,Y,D,L) denotes a path from X to Y with the distance D and the
route L.
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:- table path(+, +, min, -). (1)

path(X, X, 0, []). (2)

path(X, Y, D, [e(X, Y)]) :- edge(X, Y, D). (3)

path(X, Y, D, [e(X, Z) | P]) :-

edge(X, Z, D1), path(Z, Y, D2, P), D is D1 + D2. (4)

edge(a,b,4). edge(b,a,3). edge(b,c,2). (5)

:- path(a, X, D, P). (6)

The aggregates, min and max, are specified via mode declarations as shown
in Table 1. Both modes imply that the declared arguments are non-indexed. The
aggregates can be used to make the specification and execution of optimization
problems more elegant. For the program 2 searching for shortest paths, instead of
defining the shortest path directly, we only need to specify what is the definition
for a general path. Clauses (2) to (5) make up the core program defining the
path relation and a directed graph with a set of edges; Clause (1) specifies
the predicate path/4 to be optimized and gives the criteria how to optimize
the path/4 predicate. The mode declaration path(+,+,min,-) means that only
the first two arguments (pair of nodes) are used for variant checking when an
answer is generated, and a minimum value (the shortest path) is expected for the
third argument. Arguments with different modes are tested in the following order
during variant checking of a recently generated answer: (i) the indexed argument
with ‘+’ mode has the highest priority to be checked to identify whether it is
a new answer. If that is the case, a new tabled entry is required to record the
answer; otherwise a tabled answer with the same indexed arguments is found.
(ii) This tabled answer is then compared with the recently generated one w.r.t
the argument with the optimum mode ‘min’; if the new answer has a smaller
value on the optimum argument, then a replacement of the tabled answer is
required such that the tabled answer keeps the minimum value as expected for
this argument. (iii) The last argument with mode ‘-’ will not be used for variant
checking; if a replacement of a tabled answer happens, then the argument will
be replaced as well; otherwise, the recently generated answer as well as its fourth
argument are discarded.

3 Operational Semantics

The operational semantics of a tabled program is dependent on tabled resolution
[2,16,5], which can be formalized based on the Herbrand model [13,7] and fixed-
point theory. In spite of having different tabled resolution, a tabled Prolog can
be thought of as an engine for computing the least fixed points by mimicing
the bottom-up computation strategy [5]. For the consideration of clarity and
simplicity, we ignore any optimization used for the bottom-up computation.
(e.g. incremental consumption simulating semi-naive bottom-up computation).

We use the following notational conventions: P is used to denote a tabled
logic program, BP denotes the Herbrand base of P , 2BP

denotes the set of all
Herbrand interpretations of P , and a ground instance (e.g., a ground atom, a
ground instance of a clause) denotes an instance without involving any variable.
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Note that ω is the first infinite ordinal, and F ↑ n(x) to denote applying the

mapping F n times as

n︷ ︸︸ ︷
F(F(· · · F(x) · · · )).

Definition 1. Let P and BP be a logic program and its Herbrand base. We
define a meta-level procedure TP : 2BP → 2BP . Given a Herbrand interpretation
I, TP (I) performs:

1. I0 ← ∅;
2. for each ground instance A :- A1, · · · , An of a clause in P where
{A1, · · · , An} ⊆ I, do

I0 ← I0 ∪ {A};
3. return I0.

Thus, the fixed point semantics of P can be described as TP ↑ ω(∅) [7].

We next show how mode declaration affects the fixed point semantics of a
logic program. One key ingredient that the mode declaration scheme can be
applicable is the optimal-substructure property 2, that is, the optimal solution to
a tabled call contains optimal solutions to its tabled sub-calls. Typical examples
of such problems are those for dynamic programming. For simplicity, we assume
that for any tabled predicate, there is at most one optimization mode, ‘min’ or
‘max’, in the mode declaration. For the optimization minimizing or maximizing
multiple arguments, they can always be combined as one by transforming the
program clauses. Additionally, we assign non-indexed modes different priorities,
i.e., ‘min’ and ‘max’ have higher priorities than ‘-’.

Note that a tabled predicate without explicit mode declaration has a default
one with all indexed modes ‘+’. Although mode declarations are only allowed
for tabled predicates, the non-tabled predicates can also be simply treated as
implicitly declaring indexed modes ‘+’ for all arguments. Thus, in the rest of this
subsection we will not differentiate tabled predicates from non-tabled predicates,
and each predicate defined in a tabled logic program is associated with a mode
declaration.

Definition 2. Let q/n be a predicate with a mode declaration q(m1,m2, · · · ,mn)
in a tabled logic program P , let mi1,mi2, · · · ,mik (0 ≤ k ≤ n) be all the modes
‘+’ such that 1 ≤ i1 < i2 < · · · < ik ≤ n; let mj be a non-indexed mode with
the highest priority if there are any non-indexed modes for q/n; we define two
functions Kq/n and Oq/n as follows: given a ground atom q(a1, a2, · · · , an),

Kq/n(q(a1, a2, · · · , an)) = (ai1, ai2, · · · , aik);
Oq/n(q(a1, a2, · · · , an)) = aj , if mj exists.

We say two ground atoms, t1 and t2, of q/n comparable if and only if Kq/n(t1) =
Kq/n(t2).

2 The optimal-substructure property refers to problems with optimal solutions that
exhibit optimal solutions in their subproblems.
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The function Kq/n is used to return a sequence of indexed arguments in a
left-to-right order, whereasOq/n return a non-indexed argument with the highest
priority. We say two ground atoms of q/n comparable if and only if these two
atoms have the same indexed arguments. We abbreviate Kq/n and Oq/n to K
and O, respectively, whenever the predicate is obvious from the context. Thus,
we have a preference relation defined as follows.

Definition 3. Let P be a logic program. A preference relation in P is a strict
partial order relation ≺P s.t. for any two ground atoms A1 and A2 of a predicate
q/n in P , A1 ≺P A2 if both of the followings are true:

– K(A1) = K(A2);
– cases the non-indexed mode with the highest priority in q/n of

min: O(A1)iscomparablygreaterthanO(A2);
max: O(A1)iscomparablylessthanO(A2);
−: A2 is generated earlier than A1 during tabled resolution.

We abbreviate ≺P to ≺ whenever the tabled logic program is obvious from
the context. It has to be mentioned that the semantics of mode ‘−’ is heavily
dependent on the generating order of answers, which is decided by the procedure
of tabled resolution. For Example 2, the preference relation ≺ is the set

{ path(a, a, 7, ) ≺ path(a, a, 0, ), path(a, a, 14, ) ≺ path(a, a, 0, ), · · ·
path(a, b, 11, ) ≺ path(a, b, 4, ), path(a, b, 18, ) ≺ path(a, b, 4, ), · · · · · · }

where the numbers 0, 7, 11, ... are the possible distances for their corresponding
pair of nodes, and ‘ ’ means any ground term from the Herbrand universe. Note
that no atoms of the non-tabled predicate edge/3 are in the preference relation.
That is because the non-tabled predicate has an implicit declaration having
indexed modes ‘+’ for all arguments, therefore, none of their atoms can satisfy
the second condition of Definition 3. Similarly, all ground atoms of non-tabled
predicates are optimized according to the following definition.

Definition 4. Let P be a logic program and I be one of its Herbrand interpreta-
tions; We say that A is an optimized ground atom, abbreviated as an optimized
atom, in I if there does not exist any other ground atom A1 ∈ I s.t. A ≺ A1.

Definition 5. Let P and BP be a logic program and its Herbrand base. We
define a meta-level procedure T

′
P : 2BP → 2BP . Given a Herbrand interpretation

I, T
′
P (I) performs:

1. I0 ← ∅;
2. for each ground instance A :- A1, · · · , An of a clause in P where
{A1, · · · , An} ⊆ I, do

2a. I0 ← I0 ∪ {A};
2b. I0 ← I0 − {a1 ∈ I0 : ∃a2 ∈ I0 s.t. a1 ≺ a2} (∗)

3. return I0.
Thus, the fixed point semantics of P can be described as T

′
P ↑ ω(∅).
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Def. 5 gives the fixed point semantics for a tabled logic program with mode
declaration. The statement (*) shows how non-indexed modes affect the the
procedural semantics of the core program through the preference relation ≺.

Proposition 1. Let P be a tabled logic program. For any atom A ∈ T
′
P ↑ n(∅),

where n ≥ 0, A is an optimized atom in T
′
P ↑ n(∅).

Proof: This can be easily shown by a mathematical induction on n, mainly
using the result of step 2b in Definition 5:

I0 ← I0 − {a1 ∈ I0 : ∃a2 ∈ I0 s.t. a1 ≺ a2},
so that any atom A in the resulting I0 is an optimized atom according to
Definition 4. �

Proposition 2. Let P be a tabled logic program. If A is an optimized atom in
TP ↑ n(∅), then A ∈ T

′
P ↑ n(∅), for any n ≥ 0.

Proof: The proof is a mathematical induction on n.
Base case: Consider n = 0. Since TP ↑ 0(∅) is an empty set, the proposition is
vacuously true.
Inductive Case: Assume that the proposition is true for some i ≥ 0. We con-
sider an optimized atom A ∈ TP ↑ (i+ 1)(∅). A is obviously an optimized atom
in T

′
P ↑ (i + 1)(∅) as well due to the fact that T

′
P ↑ (i + 1)(∅) ⊆ TP ↑ (i + 1)(∅).

Next, we complete the proof by showing A ∈ T
′
P ↑ (i + 1)(∅). According to

Definition 1, there exists a ground instance A:-A1, ..., Am (for some m ≥ 0) of a
clause in P where {A1, ..., Am} ⊆ TP ↑ i(∅). Based on the optimal-substructure
property, A1, ..., Am must be optimized atoms in TP ↑ i(∅). Following the induc-
tion assumption, we have {A1, ..., Am} ∈ T

′
P ↑ i(∅). Therefore, A satisfies the

conditions specified in Definition 5; we have A ∈ T
′
P ↑ (i + 1)(∅). �

Proposition 3. Let P be a tabled logic program. If A ∈ T
′
P ↑ n(∅), then A is

an optimized atom in TP ↑ n(∅), for any n ≥ 0.

Proof: We can easily get A ∈ TP ↑ n(∅) due to the fact that T
′
P ↑ n(∅) ⊆ TP ↑

n(∅). Assume that A′ is an optimized atom in TP ↑ n(∅) and A ≺ A′. Based on
Proposition 2, we have A′ ∈ T

′
P ↑ n(∅), which is a contradiction with the fact

that A ∈ T
′
P ↑ n(∅) since A ≺ A′. Therefore, A must be an optimized atom in

TP ↑ n(∅). �

Thus, we have the following major result showing the correctness of our mode
declaration scheme in the application of optimization problems with optimal-
substructure properties.

Theorem 4. Let P be a tabled logic program. A ∈ T
′
P ↑ ω(∅) if and only if A is

an optimized atom in TP ↑ ω(∅).

Proof: According to Proposition 2 and Proposition 3. �

The monotonic property in traditional logic programming is not present in
the mode-directed fixed point computation. Adding new rules or facts to a logic
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program may retract obtained conclusions since the new knowledge may lead to
new optimal answers for mode-directed optimization predicates. Fortunately, it
is not necessary to compute the new fixed point from scratch. Instead, the meta-
level procedure T

′
P in Definition 5 can continue to be applied on the obtained

interpretation as well as the new knowledge, until a new fixed point is found.

4 Dynamic Programming with Modes

In the dynamic programming paradigm the value of an optimal solution is re-
cursively defined in terms of optimal solutions to subproblems. Such dynamic
programming definitions can be very tricky and error-prone to specify due to
the involvement of both optimization and recursion. In this section, we presents
a novel, elegant method using mode declaration that simplifies the specification
of such dynamic programming solutions.

We use the matrix-chain multiplication problem [4] as an example to illustrate
how tabled logic programming can be adopted for solving dynamic programming
problems. A product of matrices is fully parenthesized if it is either a single
matrix or the product of two fully parenthesized matrix products, surrounded
by parentheses. Thus, the matrix-chain multiplication problem can be stated as
follows

Problem 1. Given a chain 〈A1, A2, ..., An〉 of n matrices, where for
i = 1, 2, ...,n, matrix Ai has dimension pi−1 × pi, fully parenthesize the product
A1A2...An in a way that minimizes the number of scalar multiplications.

Using mode declaration for dynamic programming, the programmer is only
required to define what a general solution is, while searching for the optimal
solution is left to the TLP system. The mode declaration can be used to make
control of execution implicit during dynamic programming, making the speci-
fication of dynamic programming problems more declarative and elegant. For
the matrix-chain multiplication, instead of defining the cost of an optimal solu-
tion, we only need to specify what the cost for a general solution is. Let m[i, j]
be the number of scalar multiplications needed to compute the matrix Ai..j for
1 ≤ i ≤ j ≤ n, where n is the total number of matrices. The recursive definition
for the cost of parenthesizing Ai..j becomes

m[i, j] =
{

0 if i = j,
m[i, k] + m[k + 1, j] + pi−1pkpj if i < j,

where any k ∈ [i, j). Thus, we have the following program shown in Example 3.

Example 3. A tabled logic program with optimum mode declaration for matrix-
chain multiplication problems:

:- table scalar cost(+, min, -, -).

scalar cost([P1, P2], 0, P1, P2).

scalar cost([P1, P2, P3 | Pr], V, P1, Pn) :-
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break([P1, P2, P3 | Pr], PL1, PL2, Pk),

scalar cost(PL1, V1, P1, Pk),

scalar cost(PL2, V2, Pk, Pn),

V is V1 + V2 + P1 * Pk * Pn.

The predicate scalar cost(PL, V, P0, Pn) is a tabled predicate, where PL,
P0 and Pn are given by the user to represent the dimension squence [p0, p1, ..., pn],
the first dimension p0 and the last dimension pn, respectively, and V is the min-
imum cost of scalar multiplications to multiply A1..n. The mode declaration
scalar cost(+,min,-,-)means that only the first argument (the list of matrix
dimensions) is used for variant checking when an answer is generated, and a
minimum value is expected from the second argument (the cost of scalar multi-
plication).

Consider the problem for a chain 〈A1, A2, A3〉 of three matrices. Suppose that
the dimensions of the matrices are 10 × 100, 100 × 5, and 5 × 50, respectively.
Figure 1 shows a skeleton of the recursion tree produced by the query

:- scalar cost([10,100,5,50],V,10,50).
Its first tabled answer has V=75000. However, when the second answer V=7500
is computed, it will automatically replace the previous answer following the
declared optimum mode. Therefore, there is at most one answer for the tabled
call scalar cost([10,100,5,50],V,10,50) that exists in the table at any point
in time, and it represents the optimal value computed up to that point.

scalar_cost([10,100,5,50],7500,10,50)

scalar_cost([10,100],0,10,100) scalar_cost([10,100,5],5000,10,5)

scalar_cost([100,5,50],25000,100,50)

cost=75000

scalar_cost([5,50],0,5,50)

scalar_cost([100,5],0,100,5)

scalar_cost([5,50],0,5,50)

cost=25000

scalar_cost([10,100],0,10,100)

scalar_cost([100,5],0,100,5)

cost=5000

cost=7500

Fig. 1. Recursion tree for computing scalar cost([10,100,5,50],V,10,50)

5 Experimental Results

The mode declaration scheme has been implemented in the author’s TALS [5]
system, a tabled Prolog system incorporating DRA resolution on the top of
the commercial ALS Prolog engine [1]. Detailed implementation details and ex-
perimental results can be found in [6]. No changes are required to the DRA
resolution; therefore, the same idea can also be applied to other tabled Prolog
systems.

Our experimental benchmarks include five typical dynamic programming
examples. matrix is the matrix-chain multiplication problem; lcs is longest
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common subsequence problem; obst finds an optimal binary search tree; apsp
finds the shortest paths for all pairs of nodes; and knap is the knapsack problem.
All tests were performed in TALS system on an Intel Pentium 4 CPU 2.0GHz
machine with 512M RAM running RedHat Linux 9.0.

Table 2. Running time performance comparison in Seconds(Ratio)

Benchmarks without modes with modes

matrix 2.74(1.0) 1.97(0.72)

lcs 0.86(1.0) 0.55(0.63)

obst 10.58(1.0) 0.63(0.06)

apsp 6.05(1.0) 2.85(0.47)

knap 126.25(1.0) 38.56(0.31)

Table 2 compares the running time performance between the programs with
and without mode declaration. The experimental data indicates, based on the
ratios in Table 2, that the programs with mode declaration consume only 6% to
72% time that the corresponding programs without mode declaration do.

The efficiency for those benchmarks are mainly credited to two factors. First,
tabled Prolog systems with mode declaration provides a concise but easy-to-
use interface for dynamic programming, and it does not introduce any major
overhead; the mode declaration are flexible and powerful to support meta-level
manipulation of fixed points, and the mode functionality is implemented at the
system level instead of the Prolog programming level. Second, tabled answers
can be more efficiently organized due to the mode declaration. Indeed, variant
checking is only applied for indexed arguments; if an indexed argument is instan-
tiated in advance before a tabled goal is called, variant checking on this indexed
argument can be avoided since its value is same for all the answers; furthermore,
it is not necessary to record the pre-instantiated value with each tabled answer
because the same value has already been stored in the tabled call entry. Those
optimization leads to great running performance improvement.

6 Conclusions

A new mode declaration for tabled predicates has been presented in TLP systems
to aggregate information dynamically into the table. It provides a declarative
method to reduce a fixed point from a big solution set to a preferred small one,
or even from an infeasible infinite set to a finite one. The mode declaration
classifies arguments of tabled predicates as either indexed or non-indexed. As
a result, (i) a tabled predicate can be regarded as a function in which non-
indexed arguments (outputs) are uniquely defined by the indexed arguments
(inputs); (ii) concise explanation for tabled answers can be easily constructed in
non-indexed (output) arguments; (iii) the efficiency of tabled resolution may be
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improved since only indexed arguments are involved in variant checking; and (iv)
the non-indexed arguments of a tabled predicate can be further qualified with
an aggregate mode such that an optimal value can be sought without explicit
coding of the comparison.

This new mode declaration scheme, coupled with recursion, provides an ele-
gant method for specifying dynamic programming problems: there is no need to
define the value of an optimal solution recursively, instead, defining the value of
a general solution is enough. The optimal value, as well as its associated solu-
tion, is obtained automatically by the TLP systems. This new scheme has been
implemented in the TALS system with encouraging results.
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Abstract. In answer set programming systems like Smodels and some SAT
solvers, constraint propagation is carried out by a mechanism called lookahead.
The question arises as what is the pruning power of lookahead, and how such
pruning power fares in comparison with the consistency techniques in solving
CSPs. In this paper, we study the pruning power of lookahead by relating it to
local consistencies under two different encodings from CSPs to answer set pro-
grams. This leads to an understanding of how the search space is pruned in an
answer set solver with lookahead for solving CSPs. On the other hand, lookahead
as a general constraint propagation mechanism provides a uniform algorithm for
enforcing a variety of local consistencies. We also study the impact on the search
efficiency under these encodings.

1 Introduction

Constraint satisfaction problems (CSPs) on the one hand and propositional satisfiability
(SAT) and answer set programming (ASP) under the stable model semantics [9] on the
other are two competing approaches to constraint programming.

CSPs are typically solved by a systematic backtracking search algorithm, whereas
at each choice point consistency of a certain kind is maintained for constraint propa-
gation. Many SAT and answer set solvers are based on the DP procedure (the Davis-
Putnam-Logemann-Loveland algorithm) [4], where a main mechanism for space prun-
ing is lookahead [8] - before a guess on a choice point is made, for each atom, if fixing
the atom’s truth value leads to a contradiction, the atom gets the opposite truth value.
In this way, an atom may be propagated from already assigned atoms without going
through a search process.

ASP has been advocated as an emerging paradigm of constraint programming for
solving a variety of constraint problems, including CSPs [12]. It is therefore important
to understand how the search space is pruned in solving CSPs. Such studies can po-
tentially benefit both sides - an effective method in one approach may be adopted by
another to improve the search efficiency. The relationship between the two becomes
more interesting recently in light of the fact that answer set solvers have been inte-
grated with CSP solvers [7]. One would expect more to come in combining the two in
the future.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 266–278, 2005.
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The research direction of this paper started in [16], where it is shown that lookahead
is strictly stronger than arc consistency under Niemelä’s encoding with an understand-
ing of where the added pruning power comes from.

In this paper, we extend our investigation in two fronts, one of which is to con-
sider different encodings, and the other is to study how higher level local consistencies
for CSPs such as i-consistency may be captured in lookahead. For the first goal we
consider two familiar encodings in the SAT literature, the direct encoding and support
encoding. In the direct encoding, disallowed tuples are expressed. We show that the
pruning power of lookahead under the direct encoding is the same as the pruning power
under Niemelä’s encoding where allowed tuples are expressed. The pruning power of
lookahead under these two encodings is precisely that of arc consistency enhanced by
propagation of unique domain values to variables [16]. However, we will see that these
two complementary encodings have different inference powers if tuples of literals are
tested in lookahead. For the support encoding, we show that lookahead coincides with
a stronger local consistency called singleton arc consistency in the literature [2,5]. This
shows that an idea similar to lookahead had been formulated independently for CSP.
We also show that by testing tuples instead of individual literals, lookahead can cap-
ture higher level consistencies, such as i-consistency and singleton restricted path con-
sistency [6]. The possibility of testing n-tuples in lookahead was briefly discussed in
Simons’ thesis [14].

The work on relating CSP with SAT are relevant here. In [15] several encodings of
CSP in SAT are compared. In general, unit propagation is weaker than arc consistency.
Kasif [11] on the other hand shows that the support encoding of binary CSPs in SAT can
have arc consistency established by unit propagation. Gent in [10] reports experiments
that show the support encoding handles hard instances of random binary CSP more
effectively than the direct encoding. Kasif’s work is further extended to some higher
levels and wider range of local consistencies [3]. However, none of these works consider
the more powerful mechanism of lookahead in SAT solvers.

The next section defines terminologies for CSPs. Section 3 introduces answer set
programming and the lookahead algorithm as defined in Smodels. Section 4 deals with
direct encoding while Section 5 treats support encoding. Then, in Section 6 we dis-
cuss some relationships between the direct encoding and Niemelä’s encoding [12] from
CSPs to answer set programs. In Section 7 we show some experimental results that
confirm some of our theoretical findings. Section 8 provides a summary.

2 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a triple A(X,D,C) where X =
{x1, . . . ,xn} is a finite set of variables with respective domains D = {Dx1 , . . . , Dxn

}
listing the possible values for each variable, and C is a finite set of constraints. A con-
straint cy1,...,yk

∈ C is a subset of the Cartesian product Dy1 × ... × Dyk
. We denote

by A|Dx={a} the CSP obtained by restricting the domain Dx to {a} in A.
Given a CSP A(X,D,C), if a tuple (a, b) is in a binary constraint cxy , we say a

is a support of b w.r.t. cxy and b is a support of a w.r.t. cxy . We say x is a neighboring
variable of y, and vice versa, if there is a constraint cxy or cyx in C.
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An instantiation is a variable assignment where each variable is assigned a unique
value from its domain. An assignment may be partial. A partial instantiation is consis-
tent with an n-ary constraint c ∈ C iff the assignment yields a projection of a tuple
in the relation of c. A partial instantiation is consistent iff it is consistent with every
constraint. A constraint cy1,...,yk

∈ C is satisfied iff the assignment to the variables
y1, ..., yk forms a tuple in the relation of cy1,...,yk

. A solution to a CSP is an instantia-
tion of all variables that satisfy all the constraints. We denote by x → a that variable x
is assigned value a from its domain.

Given a CSP A(X,D,C), we use n to denote the number of variables in X , e the
number of constraints in C, and d the maximum domain size. In this paper we deal only
with binary constraints.

A CSP is i-consistent iff given any consistent instantiation of any i − 1 variables,
there exists an instantiation of any ith variable such that the i values taken together
satisfy all of the constraints among the i variables. The most popular degrees of consis-
tencies are arc consistency when i = 2, and 3-consistency when i = 3 (which coincides
with path consistency for binary constraints).

A local consistency LC is said to be stronger than another local consistency LC’ if
for any CSP in which LC holds so does LC’.

Maintaining (or enforcing) arc consistency on a CSP is a domain reduction pro-
cess − it removes inconsistent values from the domains of unassigned variables. This
is compared with maintaining higher level consistencies where nogood tuples are iden-
tified. More recently, based on the idea of domain reduction, some additional notions
of consistency for domain reduction are introduced [13,6], among which singleton arc
consistency and singleton restricted path consistent are particularly interesting due to
their potential in practical applications. We give their definitions below.

Let A(X,D,C) be a CSP.

– A is singleton arc consistent (SAC) iff ∀x ∈ X , Dx �= ∅, and ∀a ∈ Dx, A|Dx={a}
can be made arc consistent with non-empty domains.

– A is restricted path consistent (RPC) iff ∀x ∈ X , Dx has a non-empty arc consis-
tent domain and, ∀a ∈ Dx and ∀y ∈ X such that a has a unique support b ∈ Dy ,
and ∀z ∈ X , ∃c ∈ Dz such that (a, c) ∈ cxz and (b, c) ∈ cyz .1

– A is singleton restricted path consistent (SRPC) iff ∀x ∈ X , Dx �= ∅, and ∀a ∈
Dx, A|Dx={a} can be made restricted path consistent.

Intuitively, in order to enforce a certain kind of singleton consistency, one restricts
each variable to each of its domain values and then enforces that consistency. If enforc-
ing that consistency causes an empty domain, we then know the corresponding value
of that variable cannot contribute to any solution and thus should be removed from its
domain. One can see that the notion of singleton consistencies bears an idea similar to
that of lookahead. In the latter, since we are dealing with Boolean variables, removing
a value of a variable simply means to assign the variable with the opposite (truth) value.

Among singleton consistencies, singleton arc consistency is the most extensively
studied in the literature of CSP, due to its relatively low complexity.

1 When a constraint is not explicitly presented in C, it means all the tuples in the corresponding
Cartesian product are allowed.
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As singleton can be prefixed to any consistency, the next computationally realistic
consistency to be considered is path consistency. From the definition of path consis-
tency, two variables are required to be instantiated with all possible domain values to
see if a conflict exists. To reduce the complexity, restricted path consistency is pro-
posed where only the domain values that satisfy the stated condition in the definition
are tested. In the literature, more complex singleton consistencies are considered to be
only of theoretical interest [6].

3 Constraint Propagation in Smodels

Smodels implements the stable model semantics for normal logic programs which con-
sist of rules of the form A ← B1, ..., Bm,not C1, ...,not Cn., where A, Bi and Ci

are function-free atoms, and not Ci are default negations or simply called not-atoms.
The head A may be the special atom ⊥, in which case it serves as a constraint. In
systems like Smodels, these programs are first instantiated to ground instances for the
computation of answer sets.

An answer set (also called a stable model) is defined over the ground instantiation
of a given program [9]. A set of atoms M is an answer set for a program P iff M is the
least model of PM , where PM is defined as

PM = {a← b1, ..., bm | a← b1, ..., bm,not c1, ...,not cn ∈ P and
∀i ∈ [1..n], ci �∈M}

Additional notations: Atoms and not-atoms are both called literals. A set of literals
is consistent if there is no atom φ such that φ and not φ are both in the set.

Atoms(Φ) denotes the set of distinct atoms appearing in Φ (excluding the special
atom ⊥). The expression not(not φ) is identified with φ, and not(φ) is not φ. Given
a set of literals B, B+ = {ξ | ξ is an atom in B} and B− = {ξ | not ξ ∈ B}. Suppose
Q is a set of atoms. Then we define not(Q) = {not φ | φ ∈ Q}.

Constraint propagation in Smodels is carried out by lookahead (cf. Figure 1 where
P is a program and A a set of literals representing a partial truth value assignment).
For each unassigned atom φ, lookahead assumes a truth value for it (via the function
lookahead once), if that leads to a conflict, then the opposite truth value for φ is in any
answer set M agreeing with A (meaning A+ ⊆ M and A− ∩M = ∅). Truth values
are propagated in lookahead by a function called expand(P, A) (cf. Figure 2), which
returns a superset of A, representing the process of propagating the values of the atoms
in A to some additional atoms. In lookahead once, the function conflict(P, A) returns
true if A+ ∩A− �= ∅ and false otherwise.

Atleast(P, A) in the expand function returns a superset of A by repeatedly applying
four propagation rules until no new literals can be deduced. Let r be a rule in program
P of the form: r = h← a1, ..., an,not b1, ...,not bm. Define

minr(A) = {h | {a1, ..., an} ⊆ A+, {b1, ..., bm} ⊆ A−}
maxr(A) = {h | {a1, ..., an}

⋂
A− = ∅,

{b1, ..., bm}
⋂

A+ = ∅}
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Function lookahead(P, A) Function lookahead once(P, A)
repeat B := Atoms(P ) − Atoms(A)
A′ := A B := B

⋃
not (B)

A := lookahead once(P, A) while B �= ∅ do
until A = A′ take any literal χ ∈ B

return A. A′ := expand(P, A
⋃ {χ})

B := B − A′

if conflict(P, A′) then
return expand(P, A

⋃ {not (χ)})
end while

return A.

Fig. 1. Function lookahead(P, A)

Function expand(P, A)
repeat
A′ := A
A := Atleast(P, A)
A := A

⋃ {not φ | φ ∈ Atoms(P ) and φ �∈ Atmost(P, A)}
until A = A′

return A.

Fig. 2. Function expand(P, A)

The four propagation rules in Atleast(P, A) are:

1. If r ∈ P , then A := A
⋃

minr(A).
2. If there is an atom a such that for all r ∈ P , a /∈ maxr(A), then A := A

⋃ {not a}.
3. If an atom a ∈ A, there is only one r ∈ P for which a ∈ maxr(A), and there is a literal x

such that a /∈ maxr(A
⋃ {x}), then A := A

⋃ {not(x)}.
4. If not a ∈ A and there is a literal x s.t. for some r ∈ P , a ∈ minr(A

⋃ {x}), then
A := A

⋃ {not(x)}.

Rule 1 adds the head of a rule to A if the body is true in A. If there is no rule with a as
the head whose body is not false w.r.t. A, then a cannot be in any answer set agreeing
with A. This is Rule 2. Rule 3 says that if a ∈ A, the only rule with a as the head whose
body is not yet false must have its body true in extending A. Rule 4 forces the body of
a rule to be false if the head is false in A.

The function Atmost(P, A) is of little relevance here, since the answer set programs
that encode CSPs in this paper do not have “positive loops”. For these programs, it can
be shown that the expand function behaves as if the fifth line in the definition were
removed.

4 Constraint Propagation Under Direct Encoding

The direct encoding of a CSP by an answer set program consists of two parts. The first
part specifies the uniqueness property - a variable in CSP is assigned exactly one value
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from its domain. For each variable x ∈ X and its domain Dx = {a1, ..., ad}, we use
an atom x(aj) to represent that x gets the value aj ∈ Dx. Then, for each j ∈ [1..d] we
have a rule

x(aj)← not x(a1), ...,not x(aj−1),not x(aj+1), ...,not x(ad). (1)

These rules will be referred to as the uniqueness encoding.
In the second part, disallowed tuples in constraints are expressed. For each con-

straint cxy ∈ C, and for each tuple (a, b) �∈ cxy , where a ∈ Dx and b ∈ Dy , we have a
rule of denial

⊥ ← x(a), y(b). (2)

The direct encoding of a CSP A is denoted Pdir(A).
The correctness of the direct encoding is obvious. For the complexity, for any CSP

A, it can be verified that O(nd2 + ed2) bounds the size of Pdir(A).

4.1 Propagation Arc Consistency

Given a CSPA(X,D,C) and a collection Π of pairs x → a, unique value propagation
is an operation that generates an extension of Π , which is

Π ∪ {x → a | cxy ∈ C or cyx ∈ C, and y → b ∈ Π
such that a is the only value in Dx consistent with b}

A collection of pairs Π is closed under (unique value) propagation if it cannot be
extended further by unique value propagation. Π is said to be in conflict (or conflicting)
if there are distinct values a and a′ such that for some variable x, x → a,x → a′ ∈ Π ,
otherwise it is non-conflicting.

Definition 1. A CSP A(X,D,C) is propagation arc consistent (PAC) iff it is arc con-
sistent, and ∀x ∈ X and ∀a ∈ Dx, the closure of {x → a} under unique value
propagation is non-conflicting.

It is clear from the definition that PAC is stronger than arc consistency (AC).

Example 1. Consider a CSP with three variables x, y, and z, all with the domain {0, 1},
and the following constraints:

cxy = {(0, 0), (1, 1)} cyz = {(0, 1), (1, 0)} czx = {(0, 0), (1, 1)}

It is clear that this CSP is arc consistent. However, it is not PAC since {x → 0} leads to
a conflict under unique value propagation.

In the direct encoding of this CSP, besides the uniqueness encoding, the disallowed
tuples are expressed by the following rules:

⊥ ← x(0), y(1). ⊥ ← y(0), z(0). ⊥ ← z(0),x(1).
⊥ ← x(1), y(0). ⊥ ← y(1), z(1). ⊥ ← z(1),x(0).

Now, we have not x(0) ∈ lookahead(Pdir(A), {not ⊥}), corresponding to 0 being
removed from its domain in CSP. This is obtained by assuming x(0), and then by ap-
plying the expand function to infer not y(1), y(0), not z(0), z(1), and not x(0),
resulting in a conflict.
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Under the direct encoding, the pruning power of lookahead is precisely that of PAC.

Theorem 1. Let A(X,D,C) be a CSP. A value a is removed from its domain Dx by
maintaining PAC on A iff not x(a) ∈ lookahead(Pdir(A), {not ⊥}).

A proof of this theorem is relatively routine but can be lengthy. Roughly, we note
that it is known that the result of lookahead is independent of the order in which lit-
erals are picked up in lookahead once [16]. Thus, we only need to show that for any
values a1, ..., ak that are removed from Dx1 , ..., Dxk

, perspectively, in enforcing PAC,
lookahead(Pdir(A), {not ⊥}) infers not x1(a1), ...,not xk(ak), in the same order
(and vice versa). Since the effect of value removals is incremental, we can apply a sim-
ple induction on k to show that if in lookahead once xi(ai) is picked up, the expand
function generates a conflict, assuming all not x1(a1), ...,not xk(ai−1) have already
been added by lookahead.

4.2 Extension to i-Consistency

Though strictly stronger than AC, it is not a surprise that PAC in general is not as
powerful as higher level consistencies.

Example 2. Consider a CSP with three variables x, y, and z, all with the domain
{0, 1, 2, 3}, and three constraints

cxy = {(0, 0), (0, 1), (1, 2), (1, 3), (2, 0), (2, 1), (3, 2), (3, 3)}
cxz = {(0, 0), (0, 1), (1, 2), (1, 3), (2, 0), (2, 1), (3, 2), (3, 3)}
czy = {(0, 2), (1, 3), (2, 0), (3, 1), (1, 2), (0, 3), (3, 0), (2, 1)}

This CSP is not path consistent: for any pair (ai, aj) ∈ cxy there exists no value ak ∈
Dz such that (ai, ak) ∈ cxz and (ak, aj) ∈ czy . However, this CSP is arc consistent.
One can also check that for this CSP there is no possibility of unique value propagation.
Therefore, it is PAC.

Lookahead may be extended to test tuples of literals instead of single literals [14].
Here we show that i-consistency can be captured by testing (i− 1)-tuples.

Theorem 2. Let A(X,D,C) be a CSP. For any 1 < i ≤ |X|, let {y1, ..., yi−1} be
any i − 1 variables in X and yi be any ith variable. For any consistent instantiation
Π = {y1 → b1, ..., yi−1 → bi−1}, if yi has no instantiation consistent with Π , then a
conflict will be generated in expand(Pdir(A), {not ⊥, y1(b1), ..., yi−1(bi−1)}).

Note that although this theorem is not stated directly using lookahead, it is clear
that what it states is that any inconsistency in enforcing i-consistency can be detected
by testing the corresponding (i− 1)-tuple by lookahead. This implies that if lookahead
tests all (i− 1)-tuples, and the result of lookahead in such testing is independent of any
order in which these tuples are tested, then i-consistency is enforced.

Proof. That there is no instantiation of yi that is consistent with Π implies that for any
v ∈ Dyi

, there exists yj ∈ {y1, ..., yi−1}, such that bj ∈ Dyj
is inconsistent with v.
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Thus, in Pdir(A) there must be a rule of denial ⊥ ← yj(bj), yi(v). Since yj(bj) is in
the input set, not yi(v) can be inferred by Rule 4 of the Atleast function. Since this is
the case for any v ∈ Dyi

, a conflict will be generated by the uniqueness encoding in
Pdir(A). "#

5 Constraint Propagation Under Support Encoding

The support encoding of a CSP by an answer set program consists of two parts. The
first part is the uniqueness encoding, the same as in the direct encoding. The difference
lies in the second part: for each constraint cxy ∈ C and for each value a ∈ Dx, let
{b1, ...bk} be the set of the supports for a w.r.t. cxy , the support rule for a w.r.t. cxy is

⊥ ← x(a),not y(b1), ...,not y(bk). (3)

Similarly, for each value b in Dy , let {a1, ...ak′} be the set of the supports for b w.r.t.
cxy , the support rule for b w.r.t. cxy is

⊥ ← y(b),not x(a1), ...,not x(ak′). (4)

The support encoding of a CSP A is denoted Psup(A).

Example 3. Let a CSP have two variables x and y with domains Dx = Dy = {0, 1},
and a constraint cxy = {(0, 0), (0, 1), (1, 0)}. The support rules for cxy are:

⊥ ← x(0),not y(0),not y(1). ⊥ ← y(0),not x(0),not x(1).
⊥ ← x(1),not y(0). ⊥ ← y(1),not x(0).

It can be seen that the size of the resulting program by support encoding remains to
be bounded by O(nd2+ed2). Again, the correctness of the support encoding is obvious.

Our goal in this section is to show that, under the support encoding, lookahead co-
incides with singleton arc consistency (SAC). First, we should place this result in a
context, namely the fact that SAC is strictly stronger than propagation arc consistency
(PAC) introduced in the last section. It is easy to see that whenever unique value prop-
agation is possible, enforcing AC will carry it out. Thus, SAC is stronger than PAC.
Example 4 below shows a CSP which is PAC but not SAC.

Example 4. Consider a CSP with three variables all with domain Dx = Dy = Dz =
{0, 1, 2, 3}, and three constraints

cxy = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}
cyz = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}
czx = {(0, 2), (0, 3), (1, 2), (1, 3), (2, 0), (2, 1), (3, 0), (3, 1)}

This CSP is arc consistent, and there is no unique value propagation; hence it is PAC.
But it is not SAC. Suppose we restrict Dx to {0}. Enforcing AC removes 2 and 3 from
Dy as well as from Dz , resulting in 0 being removed from Dx.

We therefore have

Theorem 3. SAC is strictly stronger than PAC.

Now, let us use the following example to explain the main technical result of this
section.
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Example 5. Consider a CSP A with three variables all with domain {0, 1}, and three
constraints:

cxy = {(0, 0), (0, 1), (1, 1)} cyz = {(0, 0), (1, 1)} czx = {(0, 1), (1, 0)}

Enforcing arc consistency onA|Dx={1} will eventually remove 1 from Dx. On the other
hand, we have not x(1) ∈ lookahead(Psup(A), {not ⊥}).

The following lemma is essential in proving the main result.

Lemma 1. LetA(X,D,C) be a CSP. For any value a ∈ Dx, a is removed by enforcing
arc consistency iff not x(a) ∈ Atleast(Psup(A), {not ⊥}).

The lemma can be proved by an induction on the sequence of value removals. For
the base case, for any constraint cxy , if a value a ∈ Dx does not have a support in Dy ,
the corresponding support rule in Psup(A) is⊥ ← x(a). By Rule 4 of Atleast we infer
not x(a). For the inductive step, suppose a value a in Dx is removed because all of its
supports in Dy have already been removed. Then, the corresponding rule in Psup(A) is

⊥ ← x(a),not y(b1), ...,not y(bk).

Again by Rule 4 of the Atleast function, because all not y(bi), i ∈ [1..k] are already
inferred, we must have not x(a). The argument for the other direction is similar.

This lemma leads to the following theorem.

Theorem 4. Let A(X,D,C) be a CSP. A value a is removed from its domain Dx by
maintaining SAC on A iff not x(a) ∈ lookahead(Psup(A), {not ⊥}).

We can further show that by testing pairs of literals, lookahead captures singleton
restricted path consistency (SRPC).

Theorem 5. Let A(X,D,C) be a CSP. For any constraint cxy ∈ C, if a pair (a, b) ∈
cxy is identified as nogood by maintaining RPC onA|Dz={v}, then either expand(Psup

(A), {not ⊥, z(v),x(a)}) or expand(Psup(A), {not ⊥, z(v), y(b)}) generates a
conflict.

Note that, in enforcing SRPC, inconsistencies are detected by fixing three values,
one for domain restriction and the other two for testing a path. Since one of the latter
two is a unique support of the other, it can be propagated in the Atleast function. This
is why lookahead only needs to test two values.

6 Relationships

Niemelä proposes to encode a CSP by representing allowed tuples [12]. The resulting
program consists of the uniqueness encoding and the rules for allowed tuples: for each
constraint cxy , and each pair (a, b) ∈ cxy , we have

sat(cxy)← x(a), y(b). (5)
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where sat(cxy) is a new atom. We then ask an answer set generator to compute the
answer sets that contain all sat(cxy) where cxy ∈ C.

It is shown in [16] that under Niemelä’s encoding lookahead coincides with PAC.
However, the following example shows that Theorem 2 does not hold under Niemelä’s
encoding, illustrating that these two complementary encodings behave differently when
testing tuples of literals.

Example 6. Given three variables and their domains Dx = Dy = {0} and Dz =
{0, 1, 2, 3}, and three constraints

cxy = {(0, 0)} cxz = {(0, 0), (0, 1)} cyz = {(0, 2), (0, 3)}

{x → 0, y → 0} cannot be consistently extended to z. Under the direct encoding, we
have rules of denial as follows

⊥ ← x(0), z(2). ⊥ ← x(0), z(3). ⊥ ← y(0), z(0). ⊥ ← y(0), z(1).

When we test the pair 〈x(0), y(0)〉, we derive not z(0), not z(1), not z(2), and
not z(3), from which conflicts are derived by the uniqueness encoding.

However, one can check that no conflict can be derived by the expand function under
Niemelä’s encoding. The rules for allowed tuples in Niemelä’s encoding are:

sat(cxy) ← x(0), y(0).
sat(cxz) ← x(0), z(0). sat(cxz) ← x(0), z(1).
sat(cyz) ← y(0), z(2). sat(cyz) ← y(0), z(3).

When we test the pair 〈x(0), y(0)〉, for sat(cxz) to be true one of the literals in {z(0),
z(1)} must be true; for sat(cyz) to be true one of the literals in {z(2), z(3)} must be
true. But their intersection is empty. To arrive at the conclusion of conflict, one has to
reason disjunctively along with the uniqueness encoding. But the expand function of
Smodels does not perform this type of reasoning.

7 Experiments

The experiments were designed to test the following: the difference in performance of
the direct and support encodings from CSP to ASP.

We ran the direct encoding and support encoding on a wide range of problems vary-
ing the number of variables, the size of the domains, the number of constraints and
the number of no-goods. We found that problems with approximately 10 variables are
best for testing, as increasing the number of variables can significantly extend the run-
ning time of the program for the more complex problems. We then tested with various
domain sizes and made the number of constraints range from 5 to 45. The number of
no-good values as a percentage of the constraints is called the tightness, which in our
experiments ranged from 5% to 95%.

When measuring the running time of the ASP programs, we only report the time
required to run Smodels and omit the time required to ground the problem through
lparse. We do this because it is possible to directly translate from the CSP instance to a
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grounded instance without having to use a grounding program. All times were recorded
using the time command in Linux, and recording the user CPU time.

All experiments were performed by generating random CSP instances using the
generator found at [1]. All results reported were performed on an Intel Pentium 4 2.00
Ghz machine with 512 Mb of RAM running Slackware Linux 10.0.

Fig. 3. Run time vs. tightness

Figure 3 shows the running time (in seconds) of Smodels plotted against the tight-
ness of the problems. The tests were performed on problems with 10 variables, a domain
size of 30, and 20 constraints. Each point on the graph represents the average running
time of 10 random instances. The direct encoding begins by having a better running
time than the support encoding, but is quickly outdone by the support encoding as the
tightness of the problems increase. This is especially apparent as the problem set is
about to enter its phase transition; the support encoding is greatly outperforming direct
encoding.

It is worth noting that Gent performed similar tests between the direct and support
encoding of CSP to SAT, using Chaff which does not employ the lookahead mechanism.
In his tests a similar shape to the graph was reported. This indicates that the support
encoding has a similar improvement in running time over the direct encoding in both
the SAT and ASP encodings, with or without lookahead.

We also decided to measure the amount of searching that both the direct and support
encodings must do in order to arrive at a solution. This is measured in Smodels via the
number of picked atoms reported. This number represents the number of atoms that the
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lookahead function must pick a value for and then test to see if any conflicts occur. It is
a good (though implicit) measure of the amount of search that occurs.

Fig. 4. Picked atoms vs. tightness

Figure 4 shows the number of picked atoms plotted against the tightness of the
problem set. The problem set is identical to the one used for figure 3. For lower values of
tightness, the number of picked atoms is almost identical in both the direct and support
encoding. Similar to Figure 3, as the problem set begins to enter its phase transition,
the number of picked atoms between the two encodings begins to diverge. The support
encoding clearly picks less atoms as the problem set becomes tighter.

8 Conclusion

We summarize below the main findings reported in this paper.

(1) Lookahead has the same pruning power under the direct encoding as well as under
Niemelä’s encoding (Theorem 1 and [16]).

(2) When testing (i − 1)-tuples, lookahead captures i-consistency under the direct en-
coding (Theorem 2).

(3) Under the support encoding, lookahead coincides with SAC (Theorem 4).

(4) Lookahead performs more effectively under the support encoding than under the
direct encoding (Theorems 1, 4 and 3). Experimentally, the former shows a substantial
improvement in running time than the latter on hard random binary CSPs.
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(5) When testing pairs of literals, lookahead captures singleton restricted path consis-
tency under the support encoding (Theorem 5).

(6) Lookahead provides an uniform algorithm for maintaining local consistencies of
various kinds, in particular enforcing both SAC and PAC is of the complexity O(n3d4+
en2d4). This is because the number of atoms in these encodings is nd, lookahead may
be called at most O(n2d2) times, and each time expand takes time linear in the size
of the program (which is bounded by O(nd2 + ed2)). It is interesting to see that this
complexity is comparable to that of the algorithm specifically designed for SAC in [5].

Acknowledgment: We thank the referees for their comments, which have been useful
in improving the presentation of the paper.
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Abstract. Nested logic programs and epistemic logic programs are two impor-
tant extensions of answer set programming. However, the relationship between
these two formalisms is rarely explored. In this paper we first introduce the epis-
temic HT-logic, and then propose a more general extension of logic programs
called nested epistemic logic programs. The semantics of this extension - named
equilibrium views - is defined on the basis of the epistemic HT-logic. We prove
that equilibrium view semantics extends both the answer sets of nested logic pro-
grams and the world views of epistemic logic programs. Therefore, our work
establishes a unifying framework for both nested logic programs and epistemic
logic programs. Furthermore, we also provide a characterization of the strong
equivalence of two nested epistemic logic programs.

1 Introduction

Answer set programming (ASP) [6] was developed in the late of 1990s and has been
widely recognized as a promising tool for effective knowledge representation and
declarative problem solving [1]. ASP is based on the answer set semantics of logic
programs introduced by Gelfond and Lifschitz [4,5]. The formal systems for ASP may
have different features such as default negation, explicit negation, disjunction and pref-
erence. Normal, general, extended and disjunctive logic programs are among the major
ASP formalisms.

As many researchers (including [3,8]) have noticed, the languages of logic pro-
gramming are still insufficient in representing commonsense knowledge. Recently an-
swer set semantics has been extended to nested logic programs [8], in which arbitrarily
nested formulas are allowed. On the other hand, ASP is also expanded to epistemic
logic programs by Gelfond [3], where belief operators can be explicitly presented so
that incomplete information may be correctly represented in the extent of multiple be-
lief sets. The semantics of epistemic logic programs is defined as the collection of its
world views, which are generalizations of the answer sets for logic programs without
nested expressions.

Having examined the syntax and semantics of nested logic programs and epistemic
logic programs, people may observe an important fact: Although the world view seman-
tics of epistemic logic programs generalizes the answer set semantics for disjunctive
(extended) logic programs, it, however, cannot be used as the semantics for the epis-
temic logic programs with nested expressions containing belief operators. Hence, the
following two problems remain open:

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 279–290, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 University of Western Sydney, Australia
yan@cit.uws.edu.au



280 K. Wang and Y. Zhang

1. As two extensions of ASP, can nested logic programs and epistemic logic programs
be unified in one common language?

2. Can nested expressions of formulas with belief operators be allowed in both the
head and body of rules in an epistemic logic program?

We observe that existing nonmonotonic epistemic logics, such as [9], do not provide
direct solutions to the above problems. As it will be illustrated in the following, since
the world view semantics is defined based on a transformation from epistemic logic
programs to disjunctive logic programs by eliminating the belief operators in the body
of rules, it is not feasible to simply allow belief operators to occur in the head of rules in
an epistemic logic program. Hence, it seems to be inevitable to develop a new approach
to solve these problems instead of seeking for a straightforward extension of Gelfond’s
world view semantics.

This paper aims to solve these problems in a unified manner. In particular, we first
introduce a new logic called epistemic equilibrium HT-logic. This logic is a natural
integration of the equilibrium HT-logic [10,11] and modal logic. Based on this logic,
we then specify a more general extension of logic programs called nested epistemic
logic programs (NELPs). The semantics of this extension - named equilibrium views
- is defined on the basis of the epistemic HT-logic. We prove that equilibrium view
semantics extends both the answer sets of nested logic programs and the world views
of epistemic logic programs. Therefore, our work establishes a unifying framework for
both nested logic programs and epistemic logic programs. Furthermore, we also provide
a characterization of the strong equivalence of two nested epistemic logic programs.The
main results of this paper are summarized as follows:

1. Equilibrium view semantics extends the answer set semantics of nested logic pro-
grams;

2. Equilibrium view semantics extends the world view semantics of epistemic logic
programs;

3. Two nested epistemic logic programs are strong equivalent if and only if they are
equivalent in the epistemic HT-logic.

The rest of this paper is organized as follows. Section 2 proposes a new logic called
epistemic HT logic and defines its semantics. Section 3 presents a new logic program-
ming language (i.e. nested epistemic logic programs) which extends both the nested
logic programs and epistemic logic programs. Section 4 proves two major results to
show that the equilibrium view semantics generalizes both the answer set semantics
for nested logic programs and the world view semantics for epistemic logic programs.
Section 5 further proves a result about the strong equivalence of nested epistemic logic
programs. Section 6 discusses how to add the second negation into the new class of
programs. Finally, section 7 concludes the paper with some discussions.

2 Epistemic HT-Logic and Equilibrium Models

2.1 Syntax and Semantics

The language of our epistemic HT-logic will be the modal language which extends
the classical propositional language by means of two belief operators K and M . We
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consider classical propositional formulas built from propositional atoms and the 0-place
connective⊥ (“false”) using the binary connectives ∨,∧ and →. We use� for⊥ ← ⊥,
and ¬F for F → ⊥ where F is a formula. Modal formulas are obtained by addition of
the following clauses to the usual inductive definition of propositional formulas:

– If F is a formula, then KF is a formula;
– If F is a formula, then MF is a formula.

KF is read as “F is known to be true” and MF is read as “F may be believed to be
true”. If a is an atom in the classical propositional logic, then an objective literal is
either a or ¬a, and both Kb and Mb are called subjective literals for any objective
literal b. Similarly, F is a subjective formula if F contains at least one belief operator.
An epistemic theory is a (finite) set of formulas in the language of epistemic HT-logic.

The HT-logic (i.e. the logic of here-and-there) is also known as “the logic of present
and future”, which is basically a three-valued logic. Pearce first used this logic to char-
acterize the answer set semantics of logic programs [11]. More recently, Lifschitz,
Pearce and Valverde characterize the strong equivalence of logic programs through the
HT-logic [7]. In the following we extend the semantics of the HT logic to the epistemic
HT-logic. So in our logic, we will have two tenses (H and T ) and two belief operators
(K and F ).

Let A be a collection of sets of (ground) atoms. An epistemic HT-interpretation is
defined as an ordered tuple (A, IH , IT ) where IH , IT are sets of atoms with IH ⊆ IT .
If IH = IT , we say (A, IH , IT ) is total. Notice that we do not require IH ∈ A or
IT ∈ A.

For any epistemic HT-interpretation (A, IH , IT ), any tense t ∈ {H,T}, and any
formula F , we define when (A, IH , IT , t) satisfies F , denoted as (A, IH , IT , t) |= F ,
as follows:

– for any atom F , (A, IH , IT , t) |= F if F ∈ It.
– (A, IH , IT , t) �|= ⊥.
– (A, IH , IT , t) |= KF if (A,JH ,JT , t) |= F for all JH ,JT ∈ A with JH ⊆ JT .
– (A, IH , IT , t) |= MF if (A,JH ,JT , t) |= F for some pair JH ,JT ∈ A with

JH ⊆ JT .
– (A, IH , IT , t) |= F ∧G if (A, IH , IT , t) |= F and (A, IH , IT , t) |= G.
– (A, IH , IT , t) |= F ∨G if (A, IH , IT , t) |= F or (A, IH , IT , t) |= G.
– (A, IH , IT , t) |= F → G if, for every tense t′ with t ≤ t′, (A, IH , IT , t′) �|= F or

(A, IH , IT , t′) |= G.
– (A, IH , IT , t) |= ¬F if (A, IH , IT , t) |= F → ⊥

It is easy to see that if F does not contain any belief operators, (A, IH , IT , t) |=
F is irrelevant to the collection A; if F is a subjective literal (either Ka or Ma),
(A, IH , IT , t) |= F is irrelevant to IH and IT . For example, take A = {{a, b}, {a, c}}
and then (A, IH , IT , t) |= Ka for any sets of atoms IH and IT with IH ⊆ IT .

Epistemic HT-logic has the following basic properties which will be used in subse-
quent sections.

Lemma 1. For any epistemic HT-interpretation (A, IH , IT ), if (A, IH , IT ,H) |= F ,
then (A, IH , IT ,T ) |= F .
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The intuition behind this lemma is obvious: If a statement is true “here”, then it is also
true “there”. This property is guaranteed by the condition IH ⊆ IT .

Finally, we say that an epistemic HT-interpretation (A, IH , IT ) satisfies a formula
F , denoted (A, IH , IT ) |= F , if (A, IH , IT ,H) |= F .

A model of an epistemic theory E is an epistemic HT-interpretation (A, IH , IT ) by
which every formula in E is satisfied.

2.2 Epistemic Equilibrium Logic

Pearce’s equilibrium logic is a kind of minimal model reasoning based on the HT-logic
and its semantics is defined as the set of the equilibrium models [11]. An interesting
result about the equilibrium logic is that it provides a characterization of the answer sets
for nested logic programs [7]. In this subsection, we generalize the notion of equilibrium
models to our epistemic HT-logic and the resulting logic is called epistemic equilibrium
logic.

Definition 1. An epistemic equilibrium model of an epistemic theory Γ is a total epis-
temic HT-interpretation (A, I, I) such that

(i) (A, I, I) is a model of Γ .
(ii) for every proper subset J of I , (A,J, I) is not a model of Γ .

Epistemic equilibrium logic is the logic whose semantics is defined through epistemic
equilibrium models. To provide a unifying characterization for the semantics of both
nested logic programs and epistemic logic programs, we need the following definition.

Definition 2. Let A be a collection of sets of atoms occurring in an epistemic theory
Π . We say A is an equilibrium view if A is a maximal collection that satisfies

A = {I | (A, I, I) is an equilibrium model of Π}.

To illustrate our definitions, let us look at the following examples.

Example 1. Let Π1 be the epistemic theory containing only the formula {Ka∨b}. Then
both ({{a}}, {a}, {a}) and ({{b}}, {b}, {b}) are epistemic equilibrium models of Π1.
Moreover, A1 = {{a}} and A2 = {{b}} are equilibrium views of Π1. But A3 =
{{a}, {b}} is not an equilibrium view of Π1 since (A3, {a}, {a}) is not an epistemic
model of Π1 (note that (A3, {a}, {a}) �|= Ka). A4 = {{a, b}} is not an equilibrium
view of Π1 either because (A4, {a, b}, {a, b}) is not an epistemic equilibrium model.

Example 2. Let Π2 = {K(a∨b)} be an epistemic theory. Then {{a}, {b}} is the unique
equilibrium view of Π2. Note that although ({{a}}, {a}, {a}) and ({{b}}, {b}, {b}) are
epistemic equilibrium models of Π1, neither {{a}} nor {{b}} is an equilibrium view
of Π2 since they are not maximal.

Example 3. Let Π3 = {a,Ka → b ∨ c} be an epistemic theory. It is easy to see that
Π3 has a unique equilibrium view {{a, b}, {a, c}}.
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It is worth to mentioning that differently from the standard propositional modal
logic, for instance S5, the epistemic equilibrium logic can be viewed as a kind of mini-
mal model reasoning about epistemic concepts (i.e knowledge and belief). In this way,
the equilibrium view semantics shares the same spirit of Gelfond’s world view seman-
tics. However, as will be shown next, epistemic equilibrium logic is general enough to
characterize the semantics of nested epistemic logic programs, while the world view
semantics cannot.

3 Nested Epistemic Logic Programs (NELPs)

As we will see in the next section, the epistemic HT-logic is actually a very general
extension of both nested logic programs (NLPs) and epistemic logic programs (ELPs).
To make this comparison more direct, we generalize both the syntax of NLPs and the
syntax of ELPs by introducing a class of logic programs called nested epistemic logic
programs or NELP. This language corresponds to a subset of the language of the epis-
temic HT-logic.

The atom is understood as in propositional logic. Elementary formulas are propo-
sitional atoms and the 0-place connective ⊥ (“false”) and � (“true”). NELP formulas
are built from elementary formulas using negation as failure “not”, conjunction “,”,
disjunction “;”, and the two belief operators K and M .

An NELP rule is an expression of the form

F ← G

where F and G are NELP formulas called the head and the body of the rule. For any rule
r, its head and body are denoted head(r) and body(r), respectively. A nested epistemic
logic program (abbreviated NELP) is a (finite) set of NELP rules.

For our purpose, in this paper we will only consider propositional epistemic logic
programs where rules containing variables are viewed as the set of all ground rules by
replacing these variables with all constants occurring in the language.

Let us think of NELP rules as epistemic formulas by replacing every “not” with “¬”,
every comma with “∧”, every semicolon “;” with disjunction “∨”, and transforming ev-
ery rule head ← body into the implication body → head. Accordingly we can turn
every nested epistemic logic program Π into an epistemic theory. When no confusion
is caused, we will not distinguish a nested epistemic logic program Π and its corre-
sponding epistemic theory. Note that the negation “¬” corresponds to the negation as
failure rather than the strong negation (or classical negation) in logic programming. For
simplicity, the second negation will not be considered until in Section 6. For example,
we may use Π to denote both the NELP {Ka; b← c,Md,note} and its corresponding
epistemic theory {c ∧Md ∧ ¬e → Ka ∨ b}.

Now based on the epistemic HT-logic introduced in Section 2, we define the seman-
tics of nested epistemic logic programs as follows.

Definition 3. Let Π be a nested epistemic logic program and A be a collection of sets
of atoms. We say A is an equilibrium view of Π if A is an equilibrium view of the
corresponding epistemic theory Π .
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Example 4. Consider the nested epistemic logic program Π:

Ka;Kb←,
c← Ka,notMb,
d← Kb,notMa.

It is easy to see that Π has two equilibrium views {{a, c}} and {{b, d}}. Note that if
we change the first rule in Π to be a; b ←, then the modified program will only have
one equilibrium view {{a}, {b}}.

4 Epistemic Equilibrium Logic and Logic Programs

The class of NELPs contains two major classes of logic programs: nested logic pro-
grams and epistemic logic programs. Thus NELPs generalize most classes of logic pro-
grams including normal logic programs and disjunctive logic programs. In this section
we will prove that the equilibrium view semantics of NELPs extends both the world
view semantics of epistemic logic programs and answer set semantics of nested logic
programs.

4.1 Equilibrium Views and Answer Sets of Nested Logic Programs

An NLP rule is a special NELP rule which contains no belief operators, and a nested
logic program (NLP) is a set of NLP rules. Similarly, an NLP formula is an NELP
formula containing no belief operators.

To define the answer sets of nested logic programs, we first define when a set S of
atoms satisfies an NLP formula F , denoted as S |= F , recursively as follows:

S |= F if F is an atom and F ∈ S,
S |= �,
S |= ⊥,
S |= (F,G) if S |= F and S |= G,
S |= (F ;G) if S |= F or S |= G,
S |= notF if S �|= F .

We say a nested logic program Π is closed under a set of atoms S if, for every rule
r, body(r) implies head(r). Then the definition of answer sets is defined in two steps:

– Let Π be a nested logic program without negation as failure not. A set S of atoms
is an answer set of Π if S is minimal set closed under S;

– For an arbitrary nested logic program Π , the reduct ΠS with respect to a set S of
atoms is obtained by replacing every maximal occurrence of a formula of the form
notF in Π with ⊥ if S |= F and with � if S |= notF . We say S is an answer set
of Π if S is an answer set of ΠS .

As we have noted before, a nested logic program is also a nested epistemic logic
program and thus any nested logic program Π can be assigned two semantics: answer
sets and equilibrium views. The following result states that these two semantics coin-
cide for nested logic programs and thus the equilibrium view semantics generalizes the
answer set semantics.
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Theorem 1. Let Π be a nested logic program and S be a set of atoms. Then S is an
answer set of Π if and only if there exists an equilibrium view A of Π (as a nested
epistemic logic program) such that S ∈ A.

Proof. (⇒) If S is an answer set of Π , let A denote the set of minimal models of ΠS .
Then we have S ∈ A by the definition of answer sets. We need only to prove that A
is an equilibrium view of Π (as a nested epistemic logic program). Since Π contains
no belief operators, (A,S,S) is an equilibrium model of Π in the epistemic HT-logic
if and only if (S,S) is an equilibrium model of Π in ordinary HT-logic. Again, by
Lemma 3 in [7], (S,S) is an equilibrium model of Π in ordinary HT-logic if and only if
S is an answer set of Π . Thus (A,S,S) is an equilibrium model of Π in the epistemic
HT-logic.
(⇐) Using the above argument, we have that if (A,S,S) is an equilibrium model of Π
in the epistemic HT-logic then S is an answer set of Π .

4.2 Equilibrium Views and World Views of Epistemic Logic Programs

Epistemic logic programs were first proposed by Gelfond [3] in order to overcome dif-
ficulties in reasoning about disjunctive information through disjunctive logic programs.
It turns out that epistemic logic programs can be used as an effective formulation to rep-
resent and reason about agents’ epistemic states and hence have great potential in agent
programming. The semantics for epistemic logic programs is based on the pair (A,S),
where A is a collection of sets of ground literals and S is a set in A. The truth of an
NELP formula F in (A,S) is denoted by (A,S) |= F and the falsity by (A,S) =|F ,
and are defined as follows: (A,S) |= F iff F ∈ S where F is a ground atom.

(A,S) |= KF iff (A,Si) |= F for all Si ∈ A.
(A,S) |= MF iff (A,Si) |= F for some Si ∈ A.
(A,S) |= (F,G) iff (A,S) |= F and (A,S) |= G.
(A,S) |= (F ;G) iff (A,S) |= ¬(¬F,¬G).
(A,S) |= ¬F iff (A,S) =|F .
(A,S) =|F iff ¬F ∈ S where F is a ground atom.
(A,S) =|KF iff (A,S) �|= KF .
(A,S) =|MF iff (A,S) �|= MF .
(A,S) =|(F,G) iff (A,S) =|F or (A,S) =|G.
(A,S) =|(F ;G) iff (A,S) =|F and (A,S) =|G.

An epistemic logic program or ELP is a finite set of ELP rules of the form:

F1;F2; · · · ;Fk ← G1, · · · ,Gm,notGm+1, · · · ,notGn. (1)

Here F1, · · · , Fk are (objective) formulae, G1, · · · ,Gm are (objective) formulae or sub-
jective formulaes, and Gm+1, · · · ,Gn are (objective) formulae.

Note that ELP also allows nested expressions but in a restricted form.
For an epistemic logic program Π , its semantics is given by its world view which is

defined in the following steps:
Step 1. Let Π be an epistemic logic program containing neither belief operators K and
M nor negation as failure not. A set S of ground literals is called a belief set of Π iff S is
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a minimal set of satisfying conditions: (i) for each rule F1;F2; · · · ;Fk ← G1, · · · ,Gm

from Π such that S |= (G1, · · · ,Gm) we have S |= (F1;F2; · · · ;Ft); and (ii) if S
contains a pair of complementary literals, then S is the set Lit of all literals (called
inconsistent belief set).
Step 2. Let Π be an epistemic logic program not containing modal operators K and
M and S be a set of ground literals in the language of Π . By ΠS we denote the result
of (i) removing from Π all the rules containing formulas of the form notG such that
S |= G and (ii) removing from the rules in Π all other occurrences of formulas of the
form notG. S is a belief set of Π iff S is a belief set of ΠS .
Step 3. Finally, let Π be an arbitrary epistemic logic program and A a collection of
sets of ground literals in its language. By ΠA we denote the epistemic logic program
obtained from Π by (i) removing from Π all rules containing formulas of the form
G such that G is subjective and A �|= G, and (ii) removing from rules in Π all other
occurrences of subjective formulas. S is a belief set of Π iff S is a belief set of ΠA.

Example 5. The following epistemic logic program Π:

a←
b; c←
d← Ka
e←Mb

has a unique world view {{a, b, d, e}, {a, c, d, e}}.

Observe that the world view of the above program Π is also the equilibrium view
of Π . This is not surprising because we will show that, for any epistemic logic program
Π , A is a world view of Π if and only if A is an equilibrium view of Π .

The negation ¬ in epistemic program actually corresponds to the strong negation
in extended logic program. In the rest of this section our discussion is temporarily re-
stricted to epistemic programs that do not contain ¬. In Section 6, we will see that the
results here are all valid for arbitrary epistemic programs.

We first introduce some notations. By viewing an epistemic logic program Π as
an epistemic theory in epistemic HT-logic, (A,J, I) |= Π means that each rule is
satisfied in the epistemic HT-interpretation (A,J, I). Under the world view semantics,
on the other hand, we say that a rule of the form (1) is satisfied in a pair (A,S) if the
fact (A,S) |= (G1, · · · ,Gm), (A,S) �|= Gm+1, · · · , (A,S) �|= Gn implies (A,S) |=
F1; · · · ;Fk. (A,S) |= Π means that each rule of Π is satisfied in (A,S). If Π does not
contain any belief operators, we simply use S |= Π to denote (A,S) |= Π (recall that
the truth values of objective formulas are irrelevant to A.

Lemma 2. Let (A, IH , IT ) be an epistemic HT-interpretation and Π an epistemic
logic program without containing negation as failure. (A,J, I) |= Π if and only if
(A,J) |= Π .

Lemma 3. Let Π be an epistemic logic program and (A,J, I) be an epistemic HT-
interpretation. Then (A,J, I) |= Π if and only if J |= (ΠA)I . Here (ΠA)I is obtained
through Step 3 and Step 2 in the definition of the world views.
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Proof. (⇒) Suppose (A,J, I) |= Π , we want to show J |= (ΠA)I .
If R ∈ Π , we can assume that R is of the form (1). If R satisfies (A, I) |= Gi for

every i with r + 1 ≤ i ≤ m and (A, I) �|= Gj for every i with m + 1 ≤ j ≤ n, we use
(RA)I to denote the reduction of R with respect toA and I: F1; · · · ;Fk ← G1, · · · ,Gr.
In general, (RA)I may be undefined. Note that (ΠA)I = {(RA)I | R ∈ Π}.

For any rule of ((ΠA)I), it must be of the form (RA)I for some rule R ∈ Π . So we
need only to prove that J |= (RA)I for R ∈ Π .

By the definition of the program reduction, we have the following two facts:

1. (A, I) |= Gi for r + 1 ≤ i ≤ m and
2. (A, I) �|= Gi for m + 1 ≤ i ≤ n.

Suppose J |= body((RA)I)), we want to show J |= head((RA)I). That is, J |=
(F1; · · · ;Fk). Since the body of (RA)I is now the conjunction of G1, · · · , and Gr, we
have J |= Gi for all i with 1 ≤ i ≤ r.

We prove that (A,J, I) |= body(R) by considering three different cases:

Case 1. Since J |= Gi for 1 ≤ i ≤ r, then Gi ∈ J and thus (A,J, I, t) |= Gi for any
t ∈ {H,T}.

Case 2. If r + 1 ≤ i ≤ m, then Gi is a subjective literal and it is of form either
KO′i or MO′i for some objective literal Oi. If Gi = KOi, by (A, I) |= Gi for
r + 1 ≤ i ≤ m, (A, I) |= KOi. This means (A, I ′) |= Oi for all I ′ ∈ A, which
implies (A, IH , IT , t) |= Oi for all sets JH ,JT of atoms with JH ⊆ JT . Thus
(A,J, I, t) |= KOi or (A,J, I, t) |= Gi for r + 1 ≤ i ≤ m. Similarly, we also
have (A,J, I, t) |= Gi for r + 1 ≤ i ≤ m if Gi = MOi.

Case 3. If (A, I) �|= Gi for m + 1 ≤ i ≤ n, then Gi ∈ I . Since Gi is objective and
J ⊆ I , (A,J, I) �|= Gi.

Combining Cases 1-3, we have (A,J, I) |= body(R). By (A,J, I) |= R, we have
(A,J, I) |= head(R). By head(R) = head((RA)I) and thus (A,J, I) |= head
((RA)I).

(⇐) Suppose J |= (ΠA)I , we show (A,J, I) |= Π by considering the following three
cases:

For any rule R ∈ Π , assume R is of form (1),

Case 1. If (A, I) �|= Gi for some i with r + 1 ≤ i ≤ m, then Gi �∈ I and thus Gi �∈ J .
This implies (A,J, I) �|= Gi. In this case, (A,J, I) �|= body(R). So (A,J, I) |= R.

Case 2. If (A, I) |= Gi for some i with m + 1 ≤ i ≤ n, then Gi ∈ I . This implies
(A,J, I,T ) |= Gi. In this case, (A,J, I) �|= body(R). So (A,J, I) |= R.

Case 3. If neither Case 1 nor Case 2, then (A,J, I) |= Gr+1 ∧ · · · ∧Gm∧ ¬Gm+1 ∧
· · · ∧ ¬Gn and thus (RA)I is well defined.
If (A,J, I) |= G1 ∧ · · · ∧Gr, then J |= G1 ∧ · · · ∧Gr. Since J |= (RA)I , we have
J |= head((RA)I). That is, J |= head(R).

Lemma 4. Let Π be an ELP and (A,J, I) be a epistemic HT-interpretation. Then
(A, I, I) is an equilibrium model of Π if and only if I is a belief set of (ΠA)I .

The above lemma, obtained directly from Lemma 3, implies the following result.

Theorem 2. Let Π be an epistemic logic program and A be a collection of sets of
atoms. Then A is a world view of Π if and only if A is an equilibrium view of Π .
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5 Strong Equivalence of Nested Epistemic Logic Programs

Recently, researchers have addressed the problem of characterizing the strong equiv-
alence of logic programs under the answer sets. In particular, the result in [7] shows
that the strong equivalence of nested logic programs can be characterized in term of
the equivalence of formulas in monotonic logic (the HT-logic). Here we are interested
in extending this result to NELPs under the equilibrium view semantics. We say two
NELPs Π1 and Π2 are equivalent if they have the same equilibrium views. A NELP
Π1 is said to be strong equivalent to another NELP Π2 if, for every NELP Π , Π1 ∪Π
and Π2 ∪Π are equivalent. It is well-known that equivalence of two programs does not
implies their strong equivalence in general (see [2,8,7] for more examples of strongly
equivalent programs).

Similarly, two theories Π1 and Π2 in the epistemic HT-logic is equivalent if they
have the same set of models.

Theorem 3. For any nested epistemic logic programs Π1 and Π2, the following con-
ditions are equivalent:

(1) Π1 is strongly equivalent to Π2.
(2) Π1 is equivalent to Π2 in the epistemic HT-logic.

By Theorem 2, it is easy to prove Theorem 3 since we have the following lemma,
whose proof is similar to that of Theorem 1 in [7].

Lemma 5. For any epistemic theories Γ1 and Γ2, the following conditions are
equivalent:

(1) for every epistemic theory Γ , Γ1∪Γ and Γ2∪Γ have the same equilibrium models.
(2) Γ1 is equivalent to Γ2 in the epistemic HT-logic.

For any two objective theories Γ1 and Γ2, they are equivalent in the logic of here-
and-there if and only if they are equivalent in the epistemic HT-logic. Thus, by Theo-
rem 2, the main result (Theorem 1) in [7] is a corollary of our Theorem 3:

Corollary 1. For any nested logic programs Π1 and Π2, the following conditions are
equivalent:

(1) Π1 is strongly equivalent to Π2.
(2) Π1 is equivalent to Π2 in the logic of here-and-there.

By Theorem 2, the strong equivalence of epistemic logic programs under the world view
semantics can also be verified by checking the equivalence of formulas in the epistemic
HT-logic which is a monotonic logic.

Corollary 2. For any epistemic logic programs Π1 and Π2, the following conditions
are equivalent:

(1) Π1 is strongly equivalent to Π2.
(2) Π1 is equivalent to Π2 in the epistemic HT-logic.



Nested Epistemic Logic Programs 289

6 Adding Strong Negation in NELPs

In answer set programming, the syntax of logic programs usually allows both negation
as failure and strong negation [5]. The second negation is denoted by ¬. It is well-known
that this extension is very useful for representing and reasoning about incomplete infor-
mation. In this section, we show how to add the second negation in NELPs. This can be
done by an easy generalization of Section 5 in [7]. Technically, it is not hard to add the
strong negation in the syntax of logic programs.

A literal is an atom a or its strong negation ¬a. By allowing arbitrary literals in
place of atoms, extended NELP formula, extended NELP rule and extended NELP can
be defined in the same way as we defined NELP formula, NELP rule and NELP. Fol-
lowing [5], the semantic of an extended NELP can be defined through a simple syntactic
translation.

Given an extended NELP Π , we introduce a new symbol a′ for each atom a in Π .
Then Π can be translated into a NELP Π ′ by replacing each negative literal ¬a with
a′. Note that Π ′ does not contain the strong negation. For any expression E, we use E′

to denote the expression obtained by replacing every ¬a with a′. Denote Cons(Π) =
{⊥ ← a, a′ | a is literal in Π}. Then we say A is an equilibrium view of Π if A′ is an
equilibrium view of Π ′ ∪ Cons(Π).

For nested logic programs (with strong negation) Π , a set X of literals is an answer
set of Π iff X is X ′ is an answer set of Π ′ ∪ Cons(Π). Therefore, Theorem 1 is also
true for nested logic programs with strong negation.

In the same way as in [5], the negation ¬ in an epistemic logic program can be
eliminated by introducing new atom a′ for each atom a. Thus, Theorem 2 is also true
for epistemic logic program with strong negation.

Theorem 3 can also be generalized to extended NELPs.

Theorem 4. For any extended NELPs Π1 and Π2, the following conditions are
equivalent:

(1) Π1 is strongly equivalent to Π2.
(2) Π1 ∪ Cons(Π1) is equivalent to Π2 ∪ Cons(Π2) in the epistemic HT-logic.

Proof. Π1 is strongly equivalent to Π2

if and only if
Π ′

1 ∪ Cons(Π1) is strongly equivalent to Π2 ∪ Cons(Π2)
if and only if
Π1 ∪ Cons(Π1) is equivalent to Π2 ∪ Cons(Π2) in the epistemic HT-logic.

7 Conclusions

In this paper, we introduced the epistemic HT-logic and based on this logic further de-
veloped a new type of logic programs called nested epistemic logic programs (NELPs).
We showed that the equilibrium view semantics of NELPs generalizes the answer set
semantics of nested logic programs as well as the world view semantics of epistemic
logic programs. We also characterize the strong equivalence property of NELPs in terms
of epistemic HT-logic.
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Some important issues related to NELPs should be further investigated. Firstly, it is
important to understand the computational properties of NELPs in detail from both the-
oretical and practical viewpoints. Secondly, as epistemic logic programs may be viewed
as an effective formalism for representing and reasoning about agent’s dynamic epis-
temic state, e.g. [12], it would be interesting to explore how this work can be improved
by applying NELPs.

Acknowledgements. The authors would like to thank the three referees for their com-
ments. In particular, the comments from one referee greatly helped the improvement of
the paper.
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Abstract. ID-logic uses ideas from the field of logic programming to
extend second order logic with non-monotone inductive defintions. In
this work, we reformulate the semantics of this logic in terms of approx-
imation theory, an algebraic theory which generalizes the semantics of
several non-monotonic reasoning formalisms. This allows us to apply cer-
tain abstract modularity theorems, developed within the framework of
approximation theory, to ID-logic. As such, we are able to offer elegant
and simple proofs of generalizations of known theorems, as well as some
new results.

1 Introduction

Inductive definitions are common in mathematical practice. For instance, the
non-monotone inductive definition of the satisfaction relation |= (see Defini-
tion 1 in Section 2.2) can be found in most textbooks on first-order logic. This
prevalence of inductive definitions indicates that these offer a natural and well-
understood way of representing knowledge. At the same time, inductive defi-
nitions cannot easily be expressed in classical logic. For instance, the transitive
closure of a graph is one of the simplest concepts typically defined by induction—
such a definition might consist of the following two rules: if (x, y) is an edge of
the graph, (x, y) belongs to the transitive closure and if ∃z such that both (x, z)
and (z, y) belong to the transitive closure, then (x, y) belongs to the transitive
closure—yet it can be shown that this concept cannot be defined in first-order
logic. While second-order logic does allow the representation of such simple def-
initions, the resulting formula might not always be very natural and the use of
second-order logic itself may be undesirable, e.g., due to computational consid-
erations. Moreover, even this methodology breaks down when faced with non-
monotone inductive definitions, such as that of the satisfaction relation.

It turns out, however, that certain knowledge representation logics do allow
even non-monotone inductive definitions to be correctly formalized in an intu-
itive way. Particularly suited for this are logic programs under the well-founded
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model semantics. In fact, one could even go so far as to explain the semantical
foundations of this logic themselves as precisely a formalization of the principle
of inductive definition [Den01]. The language of ID-logic uses the well-founded
semantics to extend classical logic with a new “inductive definition” primitive.
In the resulting formalism, all kinds of definitions regularly found in mathe-
matical practice—e.g., monotone inductive definitions, non-monotone inductive
definitions over a well-ordered set, and iterated inductive definitions—can be
represented in a uniform way. Moreover, this representation neatly corresponds
to the form such a definitions would take in a mathematical text. For instance,
in ID-logic the transitive closure of a graph can be defined as:{

∀x, y T ransCl(x, y)← Edge(x, y).
∀x, y T ransCl(x, y)← (∃z T ransCl(x, z) ∧ T ransCl(z, y)).

}

However, ID-logic is able to handle more than only mathematical concepts.
Indeed, inductive definitions are also useful in common-sense reasoning. For in-
stance, in [DT04a], it was shown that situation calculus can be given a natural
representation as an iterated inductive definition. The resulting theory is able to
correctly handle tricky issues such as recursive ramifications, and is in fact, to the
best of our knowledge, the most general representation of this calculus to date.
In general, definitions are a distinctive and important form of human expert
knowledge; as a uniform and natural way of representing this kind of knowledge,
ID-logic provides a useful contribution to the field of knowledge representation.

The goal of this paper is to study modularity properties for ID-logic. Mod-
ularity properties deal with the relation between a theory and its components.
Typical examples are so-called splitting results, which allow large theories to
be rewritten as equivalent sets of sub-theories. Such properties are of interest,
because they may offer additional insight into the semantics of a formalism, can
be used to guarantee that certain transformations are equivalence preserving, or
may lead allow more efficient computations.

Modularity properties have been studied for a large number of different
formalisms. Recently, an algebraic theory of modularity [VGD04b, VGD04a]
was developed within the framework of approximation theory, a general fix-
point theory for arbitrary operators, which naturally captures the semantics of
logic programs, auto-epistemic logic, and default logic [DMT03, DMT00]. These
abstract results have since been used to unify several concrete splitting theo-
rems: [VGD04a] generalizes results concerning autoepistemic logic [GP92], and
[VGD04b] (partially) generalizes results for logic programming [LT94].

Here, we apply this algebraic modularity theory to ID-logic. First, we show
how the semantics of this logic can be reformulated in terms of approximation
theory. By doing so, we are able to apply the aforementioned splitting theorems
(and a small extension thereof) to ID-logic and obtain a generalization of results
from [DT04b], as well as some new results.

The structure of this paper is as follows. Section 2 introduces approximation
theory and ID-logic. Section 3 summarizes the algebraic modularity results which
will be used. In Section 4, we then apply those results to ID-logic.
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2 Preliminaries

2.1 Approximation Theory

Approximation theory is a general fixpoint theory for arbitrary operators. Our
presentation of this theory is based on [DMT00, DMT03].

Let 〈L,≤〉 be a lattice. An element (x, y) of the square L2 of the domain
of such a lattice, can be seen as denoting an interval [x, y] = {z ∈ L | x ≤
z ≤ y}. Using this intuition, we can derive a precision order ≤p on the set
L2 from the order ≤ on L: for each x, y,x′, y′ ∈ L, (x, y) ≤p (x′, y′) iff x ≤
x′ and y′ ≤ y. Indeed, if (x, y) ≤p (x′, y′), then [x, y] ⊇ [x′, y′]. It can easily be
shown that 〈L2,≤p〉 is also a lattice, which is called the bilattice corresponding
to L. Moreover, if L is complete, then so is L2. As an interval [x,x] contains
precisely one element, namely x itself, elements (x,x) of L2 are called exact. The
set of all exact elements of L2 forms a natural embedding of L in L2. A pair
(x, y) only corresponds to a non-empty interval if x ≤ y. Such pairs are called
consistent.

Approximation theory is based on the study of operators on bilattices L2

which are monotone w.r.t. the precision order ≤p. Such operators are called
approximations. For an approximation A and x, y ∈ L, we denote by A1(x, y)
and A2(x, y) the unique elements of L, for which A(x, y) = (A1(x, y),A2(x, y)).
An approximation approximates an operator O on L if for each x ∈ L, A(x,x)
contains O(x), i.e. A1(x,x) ≤ O(x) ≤ A2(x,x). An approximation is symmetric
if for each pair (x, y) ∈ L2, if A(x, y) = (x′, y′) then A(y,x) = (y′,x′).

For an approximation A on L2, the following two operators on L can be
defined: the function A1(·, y) maps an element x ∈ L to A1(x, y), i.e. A1(·, y) =
λx.A1(x, y), and the function A2(x, ·) maps an element y ∈ L to A2(x, y), i.e.
A2(x, ·) = λy.A2(x, y). As all such operators are monotone, they all have a
unique least fixpoint. We define an operator C↓A on L, which maps each y ∈
L to lfp(A1(·, y)) and, similarly, an operator C↑A, which maps each x ∈ L to
lfp(A2(x, ·)). C↓A is called the lower stable operator of A, while C↑A is the upper
stable operator of A. Both these operators are anti-monotone. Combining these
two operators, the operator CA on L2 maps each pair (x, y) to (C↓A(y), C↑A(x)).
This operator is called the partial stable operator of A. Because the lower and
upper partial stable operators C↓A and C↑A are anti-monotone, the partial stable
operator CA is monotone. If an approximation A is symmetric, its lower and
upper partial stable operators will always be equal, i.e. C↓A = C↑A.

An approximation A defines a number of different fixpoints: the least fixpoint
of an approximation A is called its Kripke-Kleene fixpoint, fixpoints of its partial
stable operator CA are stable fixpoints and the least fixpoint of CA is called
the well-founded fixpoint of A. As shown in [DMT00, DMT03], these fixpoints
correspond to various semantics of logic programming, auto-epistemic logic and
default logic.

Finally, it should also be noted that the concept of an approximation as
defined in [DMT00] corresponds to our definition of a symmetric approximation.
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2.2 ID-Logic

ID-logic [DT04b, DT04a] extends second-order logic with non-monotone induc-
tive definitions. Before defining this logic in its entirity, we first introduce basic
second order logic. Following [DT04a], we do this in a slightly non-standard way.
In particular, no distinction is made between constant symbols and variables.

We assume an infinite supply of object symbols x, y, . . ., function symbols
f/n, g/n, . . . of every arity n, and predicate symbols P/n, Q/n, . . . of every arity
n. A vocabulary Σ is a set of symbols. We denote by Σo the object symbols in Σ,
by Σf the function symbols, and by ΣP the predicate symbols. Terms and atoms
of Σ are defined in the usual way. A formula of Σ is inductively defined as:

– a Σ-atom P (t1, . . . , tn) is a Σ-formula;
– if φ is a Σ-formula, then so is ¬φ;
– if φ1 and φ2 are Σ-formulas, then so is (φ1 ∨ φ2);
– if φ is a (Σ ∪ {σ})-formula and σ an (object, function or predicate) symbol,

then (∃σ φ) is a Σ-formula.

If in all quantifications ∃σ of a formula φ, σ is an object symbol, φ is called first
order.

Given a certain domain D, a symbol σ can be assigned a value in D:

– if σ ∈ Σo, a value for σ in D is an element of D;
– if σ/n ∈ Σf , a value for σ in D is a function of arity n in D;
– if σ/n ∈ ΣP , a value for σ in D is a relation of arity n in D.

A structure S for vocabulary Σ, or Σ-structure S, consists of a domain, de-
noted SD, and a mapping from each symbol σ in Σ to a value σS in SD for σ.
A vocubalary Σ is a sub-vocabulary of Σ′ iff Σ ⊆ Σ′. The restriction S′|Σ of a
Σ′-structure S′ to a sub-vocabulary Σ, is the Σ-structure S for which SD = S′D
and, for each symbol σ of Σ, σS = σS′

. Under the same conditions, S′ is called
an extension of S to Σ′. The set of all structures extending S to Σ′ is denoted
by SS

Σ′ . For each value a in SD for a symbol σ, we denote by S[σ/a] the ex-
tension S′ of S to Σ ∪ {σ}, such that σS′

= a.We also extend this notation to
tuples x and a, and to pairs (X,Y ) of Σ-structures sharing the same domain,
i.e., (X,Y )[x/a] = (X[x/a], Y [x/a]).

The value of a Σ-term t in a Σ-structure S, also denoted tS , is inductively
defined as: (f(t1, . . . , tn))S = fS(tS1 , . . . , t

S
n), for a function symbol f and terms

t1, . . . , tn. We now define a satisfaction relation between structures and formulas:

Definition 1. For a Σ-structure S and Σ-formula φ, the relation “S satisfies
φ”, denoted S |= φ, is inductively defined as:

– S |= P (t) iff tS ∈ PS;
– S |= (φ1 ∨ φ2) iff S |= φ1 or S |= φ2;
– S |= ¬φ iff S �|= φ;
– S |= (∃σ φ) iff there exists a value a for σ in the domain SD, such that

S[σ/a] |= φ;
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A pre-interpretation H for Σ is a structure for the language Σo ∪ Σf , i.e.,
one which interprets only the object and function symbols of Σ. A structure
S extending H to Σ is called an H-interpretation. Clearly, H-interpretations
can only differ in their assignment of relations (over the common domain SH)
to predicate symbols. Given a domain D, a domain atom is a pair (P,a), with
P/n a predicate of Σ and a ∈ Dn. We also write such a pair as P (a). The
function AtH is defined as mapping an H-interpretation S to the set of all domain
atoms P (a) in HD, for which a ∈ PS . AtH is a one-to-one correspondence
between H-interpretations and sets of domain atoms for HD. The set of all
H-interpretations is a complete lattice w.r.t. to the truth order ≤t, defined as:
S ≤t S′ iff AtH(S) ⊆ AtH(S′) (or, equivalently, for each predicate P , PS ⊆ PS′

).
Next, we explain how this logic can be extended with inductive definitions.

We do this using concepts from approximation theory. In this, our presentation
differs from the more direct approach taken in [DT04a].

As a first step, we extend the notion of satisfation to pairs (X,Y ) of struc-
tures.

Definition 2. Let H be a pre-interpretation for Σ, X and Y H-interpretations,
and φ a Σ-formula. The relation “(X,Y ) satisfies φ”, denoted (X,Y ) |= φ is
inductively defined by:

– (X,Y ) |= P (t) iff tH ∈ PX ;
– (X,Y ) |= (φ1 ∨ φ2) iff (X,Y ) |= φ1 or (X,Y ) |= φ2;
– (X,Y ) |= ¬φ iff (Y,X) �|= φ;
– (X,Y ) |=(∃σ φ) iff there exists a value a for σ in HD, such that (X,Y )[σ/a] |=φ;

Observe that in the rule for ¬φ, the roles of X and Y are switched. This causes
all positively occurring atoms in φ to be evaluated in X, while all negatively
occurring atoms in φ are evaluated in Y . To motivate this definition, let us
consider a structure S approximated by (X,Y ), i.e. such that X ≤t S ≤t Y .
In the evaluation of φ in (X,Y ), all positively occurring atoms are evaluated
with respect to the underestimate X of S, and all negatively occurring atoms
are evaluated with respect to the overestimate Y of S. Therefore, the truth
value of φ in (X,Y ) is an underestimate of the value of φ in S. Vice versa, in
the evaluation of φ in (Y,X), all positively occurring atoms are evaluated in
the overestimate Y while all negatively occurring atoms are evaluated in the
underestimate X, and hence, the truth value of φ in (Y,X) is an overestimate
of the value of φ in S.

Considering satisfaction in pairs of structures rather than single structures,
corresponds to switching to a four-valued logic: φ is true according to (X,Y ) if
(X,Y ) |= φ and (Y,X) |= φ , false if (X,Y ) �|= φ and (Y,X) �|= φ, unkown if
(X,Y ) �|= φ and (Y,X) |= φ, and inconsistent if (X,Y ) |= φ and (Y,X) �|= φ .

We now define the ID-logic syntax used for inductive definitions. Let Σ be a
vocabulary. A definitional rule r of Σ is a formula ∀x A← φ, with A a Σ-atom
and φ a first-order (Σ ∪ x)-formula. The atom A is called the head, head(r), of
r and φ is called the body, body(r), of r. Note that the symbol “←” in such a
rule should not be read as material implication, but rather as a new language
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primitive: the definitional implication. A rule r is said to be a defining rule of
a predicate P if P is the predicate of head(r). A Σ-definition Δ is a set of
definitional rules. A predicate symbol having at least one defining rule r in Δ, is
called a defined predicate of Δ. The set of all such predicates is denoted by Pd

Δ.
Predicates of ΣP which are not defined by Δ are open in Δ and the set of all
such predicates is denoted by Po

Δ. The notations Σo
Δ and Σd

Δ are used to denote
the vocabularies Σo ∪Σf ∪ Po

Δ and Σo ∪Σf ∪ Pd
Δ, respectively.

Using this syntax, the well-known simultaneous inductive definition of the
even and odd numbers (i.e., 0 is an even number, each successor of an even
number is an odd number, and vice versa) can be written as:

Example 1.

Δeven =

⎧⎪⎨
⎪⎩

Even(0).
∀x Even(s(x))← Odd(x).
∀x Odd(s(x))← Even(x).

⎫⎪⎬
⎪⎭

Intuitively, such an inductive definition describes a process by which, given
some fixed interpretation of the open predicates, new elements of the defined
relations can be derived from a set of already known elements. The formal defi-
nition of the semantics of ID-logic captures this intuition, by associating a class
of operators to a definition Δ. More precisely, for each interpretation O of the
open predicates of Δ, an operator T O

Δ is defined, which maps an estimate (X,Y )
of the defined relations to a more precise estimate T O

Δ (X,Y ) = (X ′, Y ′). The
new lower bound X ′ is constructed by underestimating the truth of the bodies
of the rules in Δ, i.e., by evaluating these in (X,Y ). When constructing the new
upper bound Y ′, on the other hand, the truth of the bodies of these rules is
overestimated, i.e., evaluated in (Y,X).

Definition 3. LetΔ be aΣ-definition andO aΣo
Δ-structure.We define a function

UO
Δ from the bilattice (SO

Σ )2 toSO
Σ asUO

Δ (X,Y )=S, with for eachP ∈Σd
Δ: a∈PS iff

there exists a rule (∀x P (t)←φ) inΔ and a value c forx, such that (X,Y )[x/c] |= φ
and a=tS[x/c]. The operator T O

Δ on (SO
Σ )2 is defined as, for all X,Y ∈SO

Σ :

T O
Δ (X,Y ) = (UO

Δ (X,Y ),UO
Δ (Y,X)).

If an estimate (X,Y ) is more precise than an estimate (X ′, Y ′), i.e., X ′ ≤t X
and Y ≤t Y ′, then T O

Δ (X,Y ) will also be more precise than T O
Δ (X ′, Y ′). In

other words, each operator T O
Δ is an approximation. As such, each T O

Δ has a
well-founded fixpoint. We now use this to define the semantics of the logic.

Definition 4. Let Σ be a vocabulary. An ID-logic formula is inductively defined
by extending the definition of a formula with the additional base case:

– A definition Δ is an ID-logic formula.

The corresponding base case for the satisfaction relation is:

– S |= Δ iff X|Σd
Δ

= S|Σd
Δ

= Y |Σd
Δ
, with (X,Y ) the well-founded fixpoint of

T O
Δ , with O = S|Σo

Δ
.
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Note that, even though this definition uses the operator T S
Δ on pairs of struc-

tures, the eventual models of a definition are always single structures S. The
intuition here is that a definition should completely define its defined predicates,
i.e., there should be no tuples for which it is “unknown” whether they belong to
the defined relations or not.

Definition 5. Let Σ be a vocabulary. A Σ-definition Δ is total in a Σo
Δ

-structure O iff X = Y , with (X,Y ) the well-founded fixpoint of T O
Δ .

3 Algebraic Splitting Results

In this section, we summarize and extend results from [VGD04b]. First, we
introduce some basic definitions and notations. Let I be a set, which we call the
index set, and for each i ∈ I, let Si be a set. The product set

⊗
i∈I Si is the

following set of functions:⊗
i∈I

Si = {f | f : I →
⋃
i∈I

Si such that ∀i ∈ I : f(i) ∈ Si}.

If, for instance, I is {1, . . . ,n}, the product
⊗

i∈I Si is (isomorphic to) the carte-
sian product S1 × · · · × Sn.

If each Si is partially ordered by some ≤i, this induces the product order ≤⊗
on ⊗i∈ISi: ∀x, y ∈ ⊗i∈ISi, x ≤⊗ y iff ∀i ∈ I : x(i) ≤i y(i). It can easily be shown
that if all 〈Si,≤i〉 are (complete) lattices, then 〈⊗i∈ISi,≤⊗〉 is also a (complete)
lattice; this is the product lattice of the lattices Si.

From now on, we only consider product lattices with a well-founded index
set, i.e., index sets I with a partial order ) such that each non-empty subset of
I has a )-minimal element. This allows us to use inductive arguments in dealing
with elements of product lattices.

The following notations are used. Let L be a product lattice ⊗i∈ILi. For
x ∈ L and i ∈ I, we abbreviate the restriction x|{j∈I|j�i} by x|�i. We also use
similar abbreviations x|≺i, x|i and x|�i. If i is a minimal element of the well-
founded set I, x|≺i is defined as the empty function. For any subset J of I, the
set {x|J | x ∈ L}, ordered by the appropriate restriction ≤⊗|J of the product
order, is also a lattice. This sublattice of L is of course equal to the product
lattice ⊗j∈JLj . If J is of the form {j ∈ I | j ) i} for some i, we simply write
L|�i for L|J . Similarly, L|≺i is written for ⊗j≺iLi.

If f, g are functions f : A → B, g : C → D and the domains A and C are
disjoint, we denote by f # g the function from A∪C to B ∪D, such that for all
a ∈ A, (f # g)(a) = f(a) and for all c ∈ C, (f # g)(c) = g(c). Furthermore, for
any g whose domain is disjoint from the domain of f , we call f # g an extension
of f . For each element x of a product lattice L and each index i ∈ I, the
extension x|≺i#x|i of x|≺i is clearly equal to x|�i. To ease notation, we sometimes
write x(i) instead of x|i in such expressions, i.e. we identify an element a of the
ith lattice Li with the function from {i} to Li which maps i to a. Similarly,
x|≺i # x(i) # x|�i = x.
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Our goal is now to study operators on product lattices. Let 〈I,)〉 be a well-
founded index set and let L = ⊗i∈ILi be a product lattice. Intuitively, an oper-
ator O on L is stratifiable over ), if the value (O(x))(i) of O(x) in the ith level
only depends on values x(j) for which j ) i.

Definition 6. An operator O on a product lattice L is stratifiable iff ∀x, y ∈
L,∀i ∈ I : if x|�i = y|�i then O(x)|�i = O(y)|�i.

It is possible to characterize stratifiablity in a more constructive manner. The
following proposition shows that stratifiablity of an operator O on a product
lattice L is equivalent to the existence of a family of operators on each lattice
Li (one for each partial element u of L|≺i), which mimics the behaviour of O on
this lattice.

Proposition 1. Let O be an operator on a product lattice L. O is stratifiable iff
for each i ∈ I and u ∈ L|≺i there exists a unique operator Ou

i on Li, such that
for all x ∈ L:

If x|≺i = u then (O(x))(i) = Ou
i (x(i)).

The operators Ou
i are called the components of O. The main results of

[VGD04b] are the following correspondences between various kinds of fixpoints
of the original operator O and those of its components Ou

i :

Theorem 1. Let L be a product lattice ⊗i∈ILi.

– If O is a stratifiable operator on L, then for each x ∈ L: x is a fixpoint of O

iff ∀i ∈ I : x(i) is a fixpoint of O
x|≺i

i .
– If O is a monotone stratifiable operator on L, then for each x ∈ L: x is the

least fixpoint of O iff ∀i ∈ I : x(i) is the least fixpoint of O
x|≺i

i .
– If O is a stratifiable approximation on the bilattice L2, then for each x ∈ L2:

x is a stable (well-founded) fixpoint of O iff ∀i ∈ I : x(i) is a stable (well-
founded, respectively) fixpoint of O

x|≺i

i .

This theorem allows us to incrementally construct any kind of fixpoint of a
stratifiable operator, by constructing the corresponding fixpoints of its compo-
nents in a bottom-up manner w.r.t. the well-founded order ) on the index set.

We now extend this material from [VGD04b] with some additional results.
More specifically, we not only want to split a stratifiable operators into its com-
ponents, but also into sets of “bigger” operators, i.e., operators which may en-
compass several levels. For a subset J of I and x ∈ L|I\J , we denote by Ox

J

the operator on L|J which maps each y ∈ L|J to O(x # y)|J . Such operators Ox
J

are called recombinations of O. Our goal is now to show that, for each partition
J of I, a stratifiable operator O can be split into the recombinations Ox

J , with
J ∈ J . We do this, by showing that a recombination Ox

J is also stratifiable and
can be split into the components of O itself.

Proposition 2. Let O be a stratifiable operator. For each J ⊆ I and x ∈ L|I\J ,
Ox

J is stratifiable.
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Proof. Let Ox
J be as above, i ∈ J , and y, y′ ∈ L|J , such that y|�i = y′|�i. By

definition, Ox
J(y) = O(x # y)|J . Because (x # y)|�i = (x # y′)|�i, we have that,

by stratifiability of O, Ox
J (y)|�i = O(x # y)|{j∈J|j�i} = O(x # y′)|{j∈J|j�i} =

Ox
J(y′)|�i.

Proposition 3. Let O be a stratifiable operator. For each J ⊆ I, x ∈ L|I\J ,
i ∈ J , and u ∈ L|{j∈J|j≺i}, the component (Ox

J )u
i of Ox

J equals the component
O

u�(x|≺i)
i of O.

Proof. Let (Ox
J )u

i be as above and let y ∈ Li. By definition, for any z extending
u # y to J , (Ox

J )u
i (y) = O(x # z)|i = (O(x�z)|≺i

i (z|i))|i = O
x|≺i�u
i (y).

These two propositions now imply the wanted result.

Theorem 2. Let O be a stratifiable operator and let J be a partition of I.
Then, for each x ∈ L, x is a fixpoint (least fixpoint, stable fixpoint, or well-
founded fixpoint) of O (assuming that O is monotone or an approximation, where
appropriate) iff for each J ∈ J , x|J is a fixpoint (least fixpoint, stable fixpoint,
or well-founded fixpoint) of O

x|I\J

J .

Proof. We only show the correspondence between fixpoints; the proofs of the
other correspondences are similar. Let x be a fixpoint of O. By Theorem 1, this
is equivalent to: ∀i∈I, x|i is a fixpoint of O

x|≺i

i . Because J partitions I, this is
equivalent to ∀J ∈J , ∀i∈J , x|i is a fixpoint of O

x|≺i

i . By Proposition 3, such a
component O

x|≺i

i is equal to (Ox|I\J

J )x|{j∈J|j≺i}
i . By Proposition 2 and Theorem

1, ∀J ∈J , ∀i∈J , x|i is a fixpoint (Ox|I\J

J )x|{j∈J|j≺i}
i iff ∀J ∈J , x|J is a fixpoint

of O
x|I\J

J .

4 Modularity Results for ID-Logic

Now, we apply the algebraic results presented in Section 3 to ID-logic. We fix a
vocabulary Σ and a pre-interpretation H for Σ. Also, we restrict our attention
to H-interpretations, which can therefore be viewed as sets of domain atoms.

The basic notion needed to split an ID-logic theory, is that of a dependence
relation between domain atoms. Roughly speaking, such a relation is supposed
to express which domain atoms Q(c) can influence whether an operator T O

Δ will
derive a certain P (a) in a pair (X,Y ). We require that dependence relations are
well-founded.

Definition 7. A well-founded pre-order � on domain atoms is called a depen-
dence relation. We denote by E� the set of all equivalence classes P (a) = {Q(c) |
P (a) � Q(c) and Q(c) � P (a)}, together with the well-founded order 	, defined
as P (a) 	 Q(c) iff P (a) � Q(c).

Such a dependence relation now gives us a product lattice in which to study
stratifiability of the operators T O

Δ . Recall that we can only apply the algebraic
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splitting results, if T O
Δ can be seen as operating on the square of some product

lattice ⊗i∈ILi. It turns out that the product of the powersets of all equiva-
lence classes E in E� can give us such a lattice. We denote by S� the lattice⊗

E∈E� 2E . Now, S� is isomorphic to the powerset of all domain atoms, which is
in turn isomorpic to the set of all H-interpretations. An operator T O

Δ can there-
fore be seen as operating on the square of the set S�

O of all elements of S� which
extend O (or, more precisely, whose image under the appropriate isomorphism
extends O).

When dealing with the definition Δeven from Example 1, we will consider
the obvious pre-interpretation HN with domain N. The set of domain atoms
then consists of {Even(n) | n ∈ N} ∪ {Odd(n) | n ∈ N}. We will use the
dependence relation � consisting of: Odd(n) � Even(n + 1) and Even(n) �
Odd(n + 1), for all n ∈ N. The fact that � is well-founded follows from the
fact that N is well-founded. The set E� consists of the equivalence classes
{Even(n) | n ∈ N} ∪ {Odd(n) | n ∈ N}, which are all singletons, i.e., for all
n ∈ N, Even(n) = {Even(n)} and Odd(n) = {Odd(n)}. The relation 	 consists
of the pairs Even(n) 	 Odd(n + 1) and Odd(n) 	 Even(n + 1) with n ∈ N.

Definition 8. A dependence relation � stratifies a definition Δ given an H-
interpretation O of Σo

Δ iff the operator T O
Δ is a stratifiable approximation on the

product lattice S�
O .

In [DT04b], a dependence relation that stratifies a definition, is called a
reduction relation. In case of our example, the dependence relation � defined
above stratifies Δeven. Now, the results presented in Section 3 can be used to
show the equivalence of a definition Δ and certain partitions of Δ.

Definition 9. Let Δ be a definition and let � be a dependence relation. A par-
tition {Δ1, . . . ,Δn} of Δ is a �-partition iff, for each 1 ≤ j ≤ n, if Δj contains
a rule defining a predicate P , then Δj also contains all rules defining a predicate
Q, for which there exist tuples a, c of domain elements, such that Q(c) ∈ P (a).

In order to show the desired equivalence, we relate the concept of �-partitions
to that of recombinations.

Proposition 4. Let Δ be a definition, let � be a dependence relation, and
{Δ1, . . . ,Δn} a �-partition. Let O be an H-interpretation of Σo

Δj
, for some

1 ≤ j ≤ n. Then T O
Δj

is equal to the recombination (T O1
Δ )O2

J , with O1 = O|Σo
Δ
,

O2 = O|(Σo
Δj
\Σo

Δ), and J = {P (a) | Δj defines P}.

Proof. Let T O
Δj

and (T O1
Δ )O2

J be as above. We first note that an H-interpretation
X extends O iff it extends O1#O2. It now follows directly from the definitions of
the two operators, that T O

Δj
= (T O1

Δ )O2
J iff for all X,Y extending O, the following

two statements are equivalent:

– There exists a rule ∀x P (t) ← φ in Δj , for which there exists a c ∈ Hn
D,

such that (X,Y )[x/c] |= φ.
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– There exists a rule ∀x P (t)← φ in Δ, for which there exists a c ∈ Hn
D, such

that (X,Y )[x/c] |= φ.

Because, for each P ∈ Pd
Δj

, Δj contains precisely all rules from Δ defining P ,
this is the case.

As a direct consequence of this proposition and Theorem 2, we now have the
following equivalence between a definition and its �-partitions:

Theorem 3. Let Δ be a definition, � a dependence relation, and {Δ1, . . . ,Δn}
a �-partition. Let O be a Σ-structure, such that � stratifies Δ given O. Then
for each Σ-structure S, such that S|Σo

Δ
= O|Σo

Δ
:

S |= Δ iff S |= Δ1 ∧ · · · ∧Δn.

[DT04b] contains a theorem which corresponds to the restriction of this the-
orem to those cases where each Δj is total given O. Our result is strictly more
general.

We can now use this result to split the example Δeven. Recall that above we
already defined a dependence relation � which stratifies Δeven. A corresponding
�-partition of Δeven is:

Δ1 =

{
Even(0).

∀x Even(s(x))← Odd(x).

}

Δ2 =
{
∀x Odd(s(x))← Even(x).

}
Therefore, for every H-interpretation S, S |= Δeven iff S |= Δ1 ∧Δ2.

We now characterize the components of the operators T O
Δ in more detail.

Recall that a stratifiable operator T O
Δ has a component (T O

Δ )(U,V )
E for each level

E ∈ E� and (U, V ) in (S�
O |≺E)2. Our goal is now to find a way of deriving some

new definition Δ
(U,V )
E from Δ, which characterizes such a component, i.e., such

that (T O
Δ )(U,V )

E = (U
Δ

(U,V )
E

,U
Δ

(V,U)
E

).
Intuitively, there are two main steps in constructing a component-definition

Δ
(U,V )
E . First, we need to ground Δ w.r.t. to the set of domain atoms E. To

do this, we need to assume domain closure, i.e., that for each a ∈ HD, there
exists some term t of Σ, such that tH = a. Such a term is denoted â; for a tuple
a = (a1, . . . , an) ∈ Hn

D, we denote (â1, . . . , ân) by â. Roughly speaking, in the
grounding step, a rule r should be replaced by all rules that can be obtained
by replacing the universally quantified variables x of r by some â, such that
the head of this new rule corresponds to a domain atom in E. Additionally,
existential quantifiers also need to be eliminated; this can be done by replacing
such a quantifier by a disjunction over all domain elements.

In the following definition, the notation φ[x/y] is used to denote the result
of substituting in φ every free occurence of a symbol x ∈ x by the corresponding
symbol y ∈ y.
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Definition 10. Let Δ be a definition, E ∈ E�. For a rule (∀x A ← φ) ∈ Δ
and domain tuple a, the rule ra is the rule A′ ← φ′, with A′ = A[x/â] and
φ′ = γ(φ[x/â]), with γ defined as:

– for each atom A, γ(A) = A;
– γ(φ1 ∨ φ2) = γ(φ1) ∨ γ(φ2) and γ(¬φ) = ¬γ(φ);
– γ(∃x φ) =

∨
a∈HD

γ(φ[x/â]);

The grounding ,r-E of a rule r = (∀x P (t) ← φ) ∈ Δ, is the set of rules ra,
with a a domain tuple, such that P (tH[x/a]) ∈ E. The grounding ,Δ-E of Δ is⋃

r∈Δ,r-E.

In a second step, we now replace ground atoms P (t) for which P (tH) ≺ E,
by their truth-value according to (U, V ); atoms such that P (tH) ∈ E are left as
they are. We make the small technical assumption that two predicate symbols
T and F exist, such that T holds and F does not.

Definition 11. Let Δ be a definition, E ∈ E�, and (U, V ) ∈ (S�
O |≺E)2. For

each rule r = (A← φ) ∈ ,Δ-E, we define r(U,V ) as the rule A← δ(U,V )(φ), with
δ(U,V ) inductively defined as:

– for each atom A = P (t), such that P (tH) �∈ E:
δ(U,V )(A) is T if (U, V ) |= A and F otherwise;

– for each other atom A, δ(U,V )(A) = A;
– δ(U,V )(φ1 ∨ φ2) = δ(U,V )(φ1) ∨ δ(U,V )(φ2);
– δ(U,V )(¬φ) = ¬δ(V,U)(φ).

We define Δ
(U,V )
E as {r(U,V ) | r ∈ ,Δ-E}.

The proof of the following theorem is omitted, as it follows easily from the
various definitions.

Theorem 4. Let Δ be a definition, E ∈ E�, U, V ∈ S�
O |≺E, and O an H-

interpretation of Σo
Δ. Then (UO

Δ )(U,V )
E = UO

Δ
(U,V )
E

and (UO
Δ )(V,U)

E = UO

Δ
(V,U)
E

.

Let us look again at definition Δeven from Example 1, with the obvious pre-
interpretation HN. If E = {Even(n + 1)} for some n ∈ N, then for all U, V ∈
S�|≺E the component (TΔeven

)(U,V )
E is the constant function {Even(n + 1)} if

n ∈ OddU and the constant function {} otherwise. Similarly, for every level E =
{Odd(n+1)}, (TΔeven

)(U,V )
E is the constant function {Odd(n+1)} if n ∈ EvenU

and the constant function {} otherwise. The component (TΔeven
){Even(0)} is

the constant function {Even(0)}, while the component (TΔeven
){Odd(0)} is the

constant function {}. From this, it follows that there exists a unique model of
Δeven extending HN, namely that which interprets Even by {n ∈ N | n is even}
and Odd by {n ∈ N | n is odd}.

While space restrictions prevent us from discussing this here, this character-
ization of the components of a stratifiable operator promises to be useful for the
study of the relation between ID-logic and known classes of mathematical induc-
tive definitions. For instance, we suspect that the class of well-founded inductions
coincides precisely with the class of ID-logic definitions whose T O

Δ -operators can
be split into constant components, as witnessed by the above example.
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5 Conclusions and Related Work

Our work extends that from [VGD04b, VGD04a] about algebraic modularity
results. Firstly, we have extended these results to also allow operators to be split
into recombinations, rather than components. Secondly, our work is the first to
apply these results outside a propositional context.

Our work also extends previous work on modularity properties for ID-logic
[DT04b], by generalizing existing results in Theorem 3 and by the additional
Theorem 4. It is interesting to note that, although in the context of ID-logic we
are only interested in the well-founded fixpoints of the operators associated with
definitions, our results also suffice to show a similar correspondence between
their Kripke-Kleene and stable fixpoints. Indeed, this follows directly from the
generality of the algebraic splitting theorem (Theorem 1). As such, our work
actually also generalizes the results from [VGD04b], which in turn generalized
part of the splitting theorem for the stable model semantics from [LT94].

The work presented here demonstrates that approximation theory and alge-
braic modularity results can be used to elegantly and easily derive useful results,
even in a complex setting. In our opinion, it therefore offers quite a convincing
testimony to the power of this approach.
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Abstract. The main construction in this paper is an encoding of de-
fault logic into an “only knowing” logic with degrees of confidence. By
imposing simple and natural constraints on the encoding we show that
the “only knowing” logic can accommodate ordered default theories and
that the constrained encoding implements a prescriptive interpretation
of preference between defaults. An advantage of the encoding is that it
provides a transparent formal rendition of such a semantics. A feature of
the construction is that the generation of extensions can be carried out
within the “only knowing” logic, using object level concepts alone.

1 Introduction

Although default logic [16] is most widely studied among the consistency-based
approaches to non-monotonic reasoning, a number of arguments have emerged
in favour of an autoepistemic approach [15]. In autoepistemic logic, defaults
are provided with a clear model-theoretic semantics, since they are represented
by modal belief formulae, as opposed to rules. A further clarification of the
semantics of autoepistemic logic was provided by Levesque’s introduction of
“only knowing” logic [12], by which he achieved a clearer separation of the object-
and meta-level parts of the modal language. Thus, in Levesque’s logic a notion
of e.g. consistency of defaults receives a clear interpretation. Another advantage
of an autoepistemic approach over standard default logic is that the underlying
language can be extended to represent multi-agent reasoning.

These arguments carry over to the debate on how to represent preference
in non-monotonic reasoning. The notion of preference has been added to the
framework of non-monotonic reasoning as one way of avoiding unintended ambi-
guities, known as the multiple extension problem. A preference order intuitively
captures the idea that some defaults lead to more plausible conclusions than
others. Two varieties of preference have been identified [5]: prescriptive, which
“prescribes” the order in which to apply defaults, and descriptive, which is de-
fined independently of application order. E.g. preferring the default p : q / q to
the default � : p / p, without further world beliefs, prescriptively yields no exten-
sion, because applying the more preferred default requires us to apply the less
preferred default first. Descriptively, however, an extension including p and q is

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 304–316, 2005.
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accepted. This paper adopts a prescriptive interpretation, because descriptive
approaches seem to require extra meta-level machinery [6].

In recent years, a number of approaches to handling preference have been
proposed in terms of default logic [1,2,5,3]. In contrast, only a few approaches
interpret preference in relation to autoepistemic logic [10,17]. Rintanen’s pri-
oritized autoepistemic logic interprets preference descriptively, thus imposing a
higher complexity on the system, while hierarchic autoepistemic logic (HAEL),
introduced by Konolige, is prescriptive, and avoids this disadvantage. HAEL is
founded on the idea of a hierarchy of beliefs. It gives a natural interpretation
of prescriptive preference in autoepistemic logic because it captures the idea
that some beliefs take precedence over others. In HAEL, the multiple extension
problem is avoided in the sense that each theory gives rise to a unique extension.

However, Konolige’s system fails to satisfy a number of evaluative principles
that have recently emerged in the default literature [6] and which, e.g., the
prescriptive semantics of preference satisfies. In light of these principles, HAEL is
not a satisfactory approach to preference. One shortcoming is that a theory may
in HAEL give rise to extensions that are not extensions of the underlying classical
default theory. The system also violates the weak Principle I proposed by Brewka
and Eiter [3], cf. Sect. 2.2 below. An even more unfortunate aspect of HAEL is
its limited expressive power, a result of disallowing nested modalities. Thus, the
notion of an agent reasoning about his own beliefs cannot be represented.

Recently Levesque’s system has been generalized to the logic Æ of “only
knowing” with degrees of confidence [13] which does not suffer from these short-
comings. The added expressive power is illustrated in [13] by a simple repre-
sentation in Æ of supernormal defaults equipped with a preference relation.
The computation of extensions is carried out at the object level by means of
equivalence-preserving rewriting steps to yield a formula of a particularly simple
form, from which the extensions of the theory are straightforwardly identified.

In this paper we show that there is a translation of any ordered default the-
ory with prescriptive semantics into Æ. A central idea underlying our work is
that modalities can be used to control deduction. We here control deduction
by assigning different modalities to different steps in the generation of an ex-
tension, and impose logical relationships between the modalities which reflect
the intended interpretation of the modalities. This allows us to give a precise
formal rendition of the semantics of prescriptive preference, characterized by the
property of order-preservation from the approach of Delgrande and Schaub [5].
In contrast to the their approach, our formalization has the advantage that all
aspects of the default theory are formulated entirely at the object level. Seeing
that a substantial part of the reasoning used to generate extensions is captured
within the logic itself, a higher degree of formalization is obtained. Another con-
tribution of this work is that the semantics of prescriptive ordered defaults is
expressed in a simpler and more transparent way than the technical encoding
provided in the work of Delgrande and Schaub.

The exact relation between autoepistemic logic and default logic is non-trivial
and has been addressed in a number of studies [4,9,11,14,7]. From the results
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of Gottlob [8] we know that an autoepistemic representation of default logic
cannot be both faithful and modular, hence a solution to this task is far from
straightforward. This picture changes significantly when we instead represent
ordered default theories in autoepistemic logic. Since our approach treats clas-
sical default theories as ordered theories with empty preference order, it follows
that there is a simple translation of classical default logic into an autoepistemic
system with language constructs representing different degrees of confidence.

2 Preliminaries

We will assume a propositional language over a finite set Φ of propositional
variables, the Boolean constants ⊥ and �, and the usual connectives. Formulae
in this language are called purely Boolean. If S is a set of purely Boolean formulae,
Th(S) denotes the closure of S under classical consequence.

2.1 Default Logic

A classical default theory is a pair (W,D) consisting of a set W of purely Boolean
formulae and a finite set D of default rules or defaults. In a default δ = α : β / γ
the prerequisite α is denoted pre(δ), the justification β is denoted just(δ), while
cons(δ) is the consequent γ. Default theories induce zero or more extensions; for
any (W,D) this notion is defined from the function Γ(W,D) which maps any set
S of purely Boolean formulae to the smallest set E for which (1) W ⊆ E, (2)
E = Th(E) and (3) γ ∈ E for each α : β / γ in D such that α ∈ E and ¬β �∈ S.
Following Reiter [16] we say that the extensions of a classical theory Δ = (W,D)
are the fixed-points of ΓΔ, i.e. those S for which ΓΔ(S) = S.

Extensions can also be characterized in a more constructive way along the fol-
lowing lines. Let (W,D) be a default theory; a generating sequence is a sequence
u of defaults in D, not containing repetitions, such that for any δ ∈ D

GS1 if sδ ) u then W ∪ cons(s) ( pre(δ) and W ∪ cons(u) �( ¬just(δ), and
GS2 δ occurs in u if W ∪ cons(u) ( pre(δ) and W ∪ cons(u) �( ¬just(δ).

Here, cons(u) is the set of consequents of defaults in u, while s ) u denotes that
s is an initial segment of u. By sδ we mean the sequence s with δ added to the
right. The next lemma is a straightforward consequence of Theorem 2.1 of [16].

Lemma 1. The extensions of (W,D) are the sets Th(W ∪ cons(u)) for gener-
ating sequences u.

For sequences s of defaults we define formulae ψs by recursion as follows.

ψε =
∧

W

ψsδ =
{

ψs

∧
cons(δ) if ψs ( pre(δ) and ψs �( ¬just(δ)

ψs otherwise
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Hence Th(W ∪ cons(u)) = Th(ψu) for any generating sequence u (or any initial
segment of one) while Th(ψu) in general (i.e., for arbitrary sequences of defaults)
is only a subset of Th(W ∪ cons(u)). An enumeration1 t of D is felicitous if

ψt ( pre(δ) and ψs �( ¬just(δ) together imply ψs ( pre(δ) and ψt �( ¬just(δ)

whenever sδ ) t. This notion can be used to characterize extensions in a way
similar to generating sequences, as seen in the next lemma, which follows as a
special case of Lemma 3.

Lemma 2. The extensions of (W,D) are the sets Th(ψt) for felicitous enumer-
ations t of D.

2.2 Ordered Default Theories

An ordered default theory is a structure (W,D,<) such that (W,D) is a classical
default theory and < is a strict partial order on D. δ1 < δ2 intuitively expresses
that δ1 is preferred to δ2. The partiality of the preference relation is important
as there are cases where the defaults are incomparable.

Following Delgrande and Schaub [5], we define an extension of an ordered
theory2 (W,D,<) as an order-preserving extension of the underlying classical
default theory, where an extension E of (W,D) is defined to be order-preserving
if there is a generating sequence u such that E = Th(ψu), which satisfies the
following conditions3

for each initial segment rδ ) u and each default δ′ ∈ D:

O1 if δ < δ′, then δ′ is not in r,
O2 if δ′ < δ and ψu ( pre(δ′) and ψr �( ¬just(δ′), then δ′ is in r.

O1 says that a less preferred default is never to be applied before a more preferred
one, and O2 says (contrapositively) that if, at any point (r), the justification of a
more preferred default (δ′) that has not yet been applied is still possible, and the
prerequisite of this default is eventually believed, then a less preferred default (δ)
shall not be used in the next step (rδ �) u). The next result says that this notion
of extension is fully determined from its behaviour on strict linear orderings.

Lemma 3. E is an extension of the ordered theory (W,D,<) iff E is an exten-
sion of (W,D,<′) for some strict total ordering <′ on D containing <.

Proof. As < only occurs negatively in O1 and O2, the “if” direction is trivial.
The “only if” direction assumes an arbitrary generating sequence u satisfying O1
1 An enumeration of D is a sequence without repetitions, containing all and only the

elements of D.
2 The authors interpret the preference relation ¡ in the opposite direction from what

is done here, in accordance with the convention of answer set programming. We, on
the other hand, follow the convention of [3].

3 It is worth noting that in the presence of O1, O2 is equivalent to a version with the
weaker conclusion that δ′ is in u.
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and O2 with respect to <, and proceeds by construction of a strict linear order
<′ extending <, with respect to which u still satisfies O1 and O2. To ensure
this, <′ is chosen so that it agrees with the ordering of elements in u and also,
whenever < allows, gives precedence to u-elements over non-u-elements.4 "#

An enumeration of D satisfying O1 is said to be a topological sorting of (D,<).
The encoding introduced in Sect. 3 relies on this notion; the soundness of the
approach rests on the following observation.

Lemma 4. The extensions of (W,D,<) are the sets Th(ψt) for felicitous enu-
merations t of D which are also topological sortings of (D,<).

Proof. The latter, alternative, notion of extension clearly satisfies the property
of Lemma 3, hence it suffices to prove that the two notions coincide on any
(W,D,<) where < is a strict linear ordering on D.

For such (D,<) we can suppose that D = {δ1, · · · , δn}, where δi < δj iff
i < j. Now in the presence of O1 a generating sequence u is fully determined
from the corresponding subset U of D, hence GS1 and GS2 can be rephrased
to 1 and 2 below, while the additional content of O2 is represented by 3. 5 We
suppose that δi = αi : βi/γi for all i.

1. δj ∈ U ⇒ (W ∪ {γi | δi ∈ U, i < j} ( αj & W ∪ {γi | δi ∈ U} �( ¬βj),
2. δj ∈ U ⇐ (W ∪ {γi | δi ∈ U} ( αj & W ∪ {γi | δi ∈ U} �( ¬βj),
3. δj ∈ U ⇐ (W ∪ {γi | δi ∈ U} ( αj & W ∪ {γi | δi ∈ U, i < j} �( ¬βj).

Now 3 of course implies 2, and it is easily checked that 1 and 3 in combination
are equivalent to the implication from the right-hand side of 3 to the right-hand
side of 1, in combination with the equivalence

δj ∈ U ⇔ (W ∪ {γi | δi ∈ U, i < j} ( αj & W ∪ {γi | δi ∈ U, i < j} �( ¬βj).

Now recall that we are existentially quantifying over U ⊆ D. As δ1 · · · δn is the
only topological sorting of D, we see that the two latter conditions (with U
existentially quantified) precisely express that δ1 · · · δn is felicitous. "#
4 If u = δ1 · · · δn then for i = 0, . . . , n let Ai be {δ �∈ u | δ < δ1 ∨ · · · ∨ δ < δi} (hence

A0 = ∅) while An+1 = {δ | δ �∈ u}, and for i = 1, . . . , n+1 let Bi be Ai \Ai−1. Then
let <′ be any strict, linear order containing <, such that all elements of B1 precede
δ1, which in turn precedes all elements of B2, which all precede δ2, etc. Inside each
Bi, the defaults can be ordered in any way that agrees with <.

5 The direct rendering of O2 (actually, the equivalent (modulo O1) version noted in
footnote 3) is rather that if k > j for any δk ∈ U then δi ∈ U if W∪{γi | δi ∈ U} � αj

and W ∪ {γi | δi ∈ U, i < k} �� ¬βj . If there are several such k, the implication
obtained from the smallest one yields the corresponding implications for all larger,
hence provided there is such a k > j for which δk ∈ U , O2 is equivalent to the
condition 3’ below.

δj ∈ U ⇐ (W ∪ {γi | δi ∈ U} � αj & W ∪ {γi | δi ∈ U, i ≤ j} �� ¬βj)

If there is no such k, 3’ is equivalent to 2, hence in either case O2 is, in the presence of
2, equivalent to 3’. Finally, the falsifying conditions of 3 and 3’ are clearly identical.



Default Reasoning with Preference Within Only Knowing Logic 309

From properties noted below and the fact that any enumeration is a topological
sorting for empty <, we see that Lemma 2 is a special case of Lemma 3.

In the literature, approaches to adding preference to a non-monotonic logic
have proved to yield very different results. Therefore, certain principles and
properties that serve to evaluate an ordered logic have emerged. The following
three principles follow easily from Lemma 2 and Lemma 4.

– Classical Subset : Every extension of an ordered default theory (W,D,<) is
an extension of the classical default theory (W,D).

– Empty order : Every extension of the classical default theory (W,D) is an
extension of the ordered default theory (W,D, ∅).

– Inapplicable defaults: Any extension E of an ordered default theory (W,D,<)
is also an extension of the ordered default theory (W,D ∪ {δ},<′) if δ is a
default such that pre(δ) �∈ E and <′ is a conservative extension of <.

The first two principles were identified in [6]. The third was identified in [3] and is
there referred to as Principle II. The corresponding Principle I can be formulated
in the following way. Let E1 and E2 be two extensions of a classical default theory
(W,D) and let u1 and u2 be generating sequences s.t. E1 = Th(W ∪ cons(u1))
and E2 = Th(W ∪ cons(u2)). Assume that, neglecting their intrinsic order, u1

and u2 only differ by the defaults δ1 and δ2. If δ1 < δ2, then E2 is not an
extension of (W,D,<).

This principle is easily seen to hold for our definition of extension: if E1, E2,
u1, u2, δ1, δ2 are as above and r1, r2 are the sequences such that r1δ1 ) u1 and
r2δ2 ) u2 then, as u1 is a generating sequence, we have W ∪ cons(r1) ( pre(δ1)
and W ∪ cons(u1) �( ¬just(δ1). Now since every default in r1 is in u2 and every
default in r2 is in u1, we also infer W ∪ cons(u2) ( pre(δ1) and W ∪ cons(r2) �(
¬just(δ1). But then u2 is not order-preserving, since δ1 < δ2 and δ1 �∈ u2.

2.3 The Logic Æ�

The system Æ� belongs to the family of “only knowing” logics. It generalizes the
pioneering system of Levesque [12] to a language which allows us to represent
various degrees of confidence for a doxastic subject. Æ� is a special instance of
the system Æρ introduced in [13] and further analysed and motivated in [20].
An interesting proof-theoretical property of Æ� is that it has a sequent calculus
formulation which admits constructive cut-elimination and hence cut-free proofs;
this is shown in [18] for a generalization to a multi-agent language in which the
beliefs of each subject are represented relative to different degrees of confidence.

This section contains a review of the main concepts of Æ�. The object lan-
guage extends the language of purely Boolean formula by the addition of modal
operators: � (necessity) and modalities Bk (belief) and Ck (co-belief) for each k
in a finite index set I. I comes along with a strict partial order 
. bkϕ is defined
as ¬Bk¬ϕ and denotes that ϕ is compatible with belief at k. A formula ϕ is
completely modalized if every occurrence of a propositional letter is within the
scope of a modal operator.
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The intuitions behind the syntactical operators are discussed at length in
[20]. In short, � is intended to express personal necessities. The indices in I
are intended to represent various degrees of confidence or conviction. Bkϕ ex-
presses that ϕ is believed with degree of confidence k; Ckϕ expresses that ϕ is
co-believed with degree of confidence k. The belief and co-belief operators are
complementary. Ckϕ expresses a notion of caution, and can generally be read
as expressing that at most ¬ϕ is believed with degree of confidence k; or, what
amounts to the same, that ¬ϕ is at least as strong as everything that is believed
at k.

The “all I know at k” expression Okϕ is central; it abbreviates Bkϕ∧Ck¬ϕ,
meaning that precisely ϕ is believed with degree of confidence k. A formula of the
form

∧
k∈IOkϕk is called an OI-block. If each ϕk is purely Boolean, the OI -block

is said to be prime.
An Æ�-model M is a quadruple (U,U+,U−, V ). The universe U is a non-

empty set of points; U+ and U− are functions which assign a subset of U to each
index in I. U+(k) is denoted U+

k ; U−k denotes U−(k). V is a valuation function
which assigns a subset of U to each propositional letter in the language. For each
k ∈ I, we require that U+

k ∪ U−k = U , expressing that while belief states may
vary between degrees of confidence, the universe does not. We also require that
greater confidence is never accompanied by stronger belief: U+

k ⊆ U+
i and U−i ⊆

U−k for each i 
 k. Finally we require that U is Boolean saturated, i.e., that
the following condition holds for every subset P of the propositional letters:
there is a point x ∈ U such that for each propositional letter p, x ∈ V (p) iff
p ∈ P . Informally, the points in U span the set of all propositional valuations.
A satisfaction relation can be defined for each point x:

M �x p iff x ∈ V (p), when p is any propositional letter
M �x �ϕ iff M �y ϕ for each y ∈ U

M �x Bkϕ iff M �y ϕ for each y ∈ U+
k

M �x Ckϕ iff M �y ϕ for each y ∈ U−k

and as usual for Boolean connectives. A formula is satisfied in a model if it is
true at one of its points. If M �x ϕ for all x ∈ U we write M � ϕ and say that ϕ
is true in M. If ϕ is true in all models, we also write � ϕ. Note that all points in
a model agree on the truth value of every completely modalised formula. Hence,
for such formulae the notions of satisfiability and truth in a model coincide, and
the notation M � ϕ can be used to express either notion. We omit the easy
proof of the following useful observation.

Lemma 5. Let M satisfy Okϕ for an index k.

1. If M satisfies Okψ, then ϕ ≡ ψ is true at every point in M .
2. If ϕ and ψ are purely Boolean, M satisfies Bkψ iff ϕ ( ψ and bkψ iff ϕ �( ¬ψ.

A model is bisected if, for each k ∈ I, U+
k ∩U−k = ∅. This is not a model condition.

It is however, easy to prove that a model is bisected if it satisfies an OI -block.
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An axiom system for Æ is defined in [13].6 From here on ( denotes the
provability relation of Æ� (which extends the provability relation of classical
logic). The following properties have been established for Æ� [13,20]:

– Soundness: if ( ϕ, then � ϕ.
– Completeness: if � ϕ, then ( ϕ.
– Decidability and the Finite model property: the logic is determined by the

set of finite models.
– The Modal Reduction Theorem: for each OI -block there is an m ≥ 0 as well

as prime OI -blocks ψI
1 , . . . , ψ

I
m such that ( ϕI ≡ (ψI

1 ∨ · · · ∨ ψI
m).

A prime OI -block determines the belief state of the agent in a unique and
transparent way. It is easy to show that all models of a prime OI -block are
modally equivalent : they agree on the truth value of all completely modalised
formulae. The models of a non-prime OI -block are in general not transparent;
it requires some work to find them. A non-prime OI -block hence only implic-
itly defines the belief state. The Modal Reduction Theorem relates an implicit
belief representation to an explicit representation by a provable equivalence. To
determine whether m > 0 in the statement of the theorem is Σp

2 -hard.
If there is only one degree of confidence, Æ� is equivalent to Levesque’s

system of only knowing, for which there is a direct correspondence between
a stable expansion in autoepistemic logic and a prime formula Oϕ. A prime
OI -block is a natural generalization of the notion of stable expansion to an
hierarchical collection of expansions.

3 Translating a Default Theory into Æ�

3.1 The Basic Translation

In this section we define the mapping �·� of an ordered default theory (W,D,<)
to a formula �W,D,<� of Æ�. The index set I in the signature of Æ� is the set of
numbers 0, . . . , |D| and the order 
 on I is the usual strict order on numbers. Let
T be the set of topological sortings of (D,<); the formula �W,D,<� quantifies
over initial segments of elements of T :

�W,D,<� =
∨

t∈T

(∧
s�t

�W,D�s ∧ IC(t)
)

�W,D�s = O|s|
(∧

W ∧
∧

rδ�s
tr(rδ)

)
IC(t) =

∧
sδ�t

((B|t|α ∧ b|s|β) ⊃ (B|s|α ∧ b|t|β))

Here we have used the notational convention of identifying δ with α : β / γ.
The integrity constraint function IC corresponds exactly to the condition for a
felicitous enumeration (cf. the proof of Lemma 7). The function served by tr

6 Æ� is just the system Æρ in [13] with the characteristic formula ρ set to 	.
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is to map specific defaults. We shall first define one basic mapping and later
introduce two alternative translations. The basic mapping is:

tr(rδ) = (B|r|α ∧ b|r|β) ⊃ γ .

The basic correctness result below relates the translation to formulae ψs studied
in Sect. 2.1.

Lemma 6. Let t be any enumeration of D. Then

(
∧

s�t
�W,D�s ≡

∧
s�t

O|s|ψs .

Proof. We show, by induction on v, the more general result that for any v ) t,

(
∧

s�v
�W,D�s ≡

∧
s�v

O|s|ψs .

The basis is trivial, as �W,D�ε = O0

∧
W and ψε =

∧
W . For the induction step,

it suffices to show that M � �W,D�sδ ≡ O|sδ|ψsδ for any Æ�-model M satisfying
both �W,D�s and O|s|ψs. By Lemma 5(1), every such model M satisfies

M � (
∧

W ∧
∧

rδ′�s
tr(rδ′)) ≡ ψs .

Thus M � �W,D�sδ ≡ O|sδ|(ψs ∧ tr(sδ)). It only remains to show

M � O|sδ|(ψs ∧ ((B|s|α ∧ b|s|β) ⊃ γ)) ≡ O|sδ|ψsδ .

But since M � O|s|ψs, it follows directly from the definition of ψsδ and Lemma
5(2) that M � B|s|α iff ψs ( α, and M � b|s|β iff ψs �( ¬β, and we are done. "#

If s is an enumeration and �W,D�s is proved equivalent to O|s|ψs, Th{ψs} is
a potential extension of the underlying classical theory (W,D). The integrity
constraint will, however, reduce to � precisely when s is felicitous and reduce to
⊥ otherwise, as illustrated in the examples below.

Example 1 (From [16]). Let W = ∅, D = {δ} and δ = � : p /¬p. As there is
only one default, < is empty. �W,D,<� = �W,D�ε ∧ �W,D�δ ∧ IC(δ), where

�W,D�ε = O0�
�W,D�δ = O1(� ∧ ((B0� ∧ b0p) ⊃ ¬p))
IC(δ) = (B1� ∧ b0p) ⊃ (B0� ∧ b1p)

By Lemma 6, ( �W,D,<� ≡ O0�∧O1¬p∧ (b0p ⊃ b1p), thus �W,D,<� is incon-
sistent. This illustrates that the integrity constraints serve to exclude potential
extensions.

Example 2 (From [3,5]). Let W = ∅, D = {δ1, δ2, δ3}, <= ∅, and

δ1 = � : q
q , δ2 = � : p

p , and δ3 = � : ¬q
p .

Below are listed every enumeration and a simpler, equivalent form of the trans-
lation. Since the order < is empty, the entire translation is the disjunction of the
translation for each enumeration in the table.
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t
∧

s�t�W,D�t IC(t) Extension

δ1δ2δ3 O0� ∧ O1q ∧ O2(p ∧ q) ∧ O3(p ∧ q) ∧ � Th{p, q}
δ1δ3δ2 O0� ∧ O1q ∧ O2(p ∧ q) ∧ O3(p ∧ q) ∧ � Th{p, q}
δ2δ1δ3 O0� ∧ O1p ∧ O2(p ∧ q) ∧ O3(p ∧ q) ∧ � Th{p, q}
δ2δ3δ1 O0� ∧ O1p ∧ O2p ∧ O3(p ∧ q) ∧ ⊥ -
δ3δ1δ2 O0� ∧ O1p ∧ O2(p ∧ q) ∧ O3(p ∧ q) ∧ ⊥ -
δ3δ2δ1 O0� ∧ O1p ∧ O2p ∧ O3(p ∧ q) ∧ ⊥ -

When t is any of the last three enumerations
∧

s�t�W,D�t ( ¬IC(t), as

IC(δ2δ3δ1) ( b1¬q ⊃ b3¬q and IC(δ3δ1δ2) ∨ IC(δ3δ2δ1) ( b0¬q ⊃ b3¬q.

It can be seen that these enumerations are not felicitous while the remaining are
and moreover define the extensions in the rightmost column. Note that the entire
translation entails O3(p ∧ q), showing that Th{p, q} is the unique extension.

If we change the order relation, the translation selects as disjuncts only the
enumerations that are topological sortings of the order. Note that any order
where δ3 < δ1 yields no extension, as this constraint rules out the first three
enumerations. If we, on the other hand, use the order δ1 < δ3, we get the same
extensions as when δ1 and δ3 are unrelated. Restricting the order further has no
impact on the extensions, as δ1 < δ2 < δ3, δ1 < δ3 < δ2 and δ2 < δ1 < δ3 all
yield the extension Th{p, q}.

Example 3 (Nixon diamond). Let W = {q, r}, D = {δ1, δ2}, and

δ1 = q : p
p and δ2 = r : ¬p

¬p .

t
∧

s�t�W,D�t IC(t) Extension

δ1δ2 O0(q ∧ r) ∧ O1(q ∧ r ∧ p) ∧ O2(q ∧ r ∧ p) ∧ � Th{p, q, r}
δ2δ1 O0(q ∧ r) ∧ O1(q ∧ r ∧ ¬p) ∧ O2(q ∧ r ∧ ¬p) ∧ � Th{¬p, q, r}

If we let δ1 < δ2, then δ2δ1 �∈ T , thus the only extension is Th{p, q, r}. Similarly
if we let δ2 < δ1, the only extension is Th{¬p, q, r}. If the order is empty, the
representation entails O2(q∧r∧p)∨O2(q∧r∧¬p), which is the Æ�-representation
of the corresponding two extensions.

3.2 Adequacy of Translation

The proof that the translation determines all and only order-preserving exten-
sions follows straightforwardly from the previous results in the paper.

Lemma 7. Let t be an enumeration of D. Then
∧

s�t�W,D�s ∧ IC(t) is consis-
tent in Æ� iff t is a felicitous enumeration of D.

Proof. Since IC(t) formalizes the condition for t being felicitous, it is immediate
that

∧
s�tO|s|ψs and IC(t) are true in the same model iff t is felicitous. The

result follows from this and Lemma 6. "#
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Lemma 8. The extensions of (W,D) are the sets Th(ψt) for enumerations t of
D such that

∧
s�t�W,D�s ∧ IC(t) is consistent in Æ�.

Proof. By Lemma 2 and Lemma 7. "#

Theorem 1. Let (W,D) be a default theory, n = |D|, and suppose for some m

( �W,D,<� ≡
∨

0≤j≤m

∧
0≤i≤n

Oiϕ
j
i ,

where all ϕj
i are purely Boolean and each disjunct

∧
0≤i≤n Oiϕ

j
i is Æ�-consistent.

Then {Th(ϕj
n) | 0 ≤ j ≤ m} is the set of extensions of (W,D,<).

Proof. By Lemma 4 and Lemma 8. "#

3.3 Alternative Translations

Prior attempts to relate default logic and autoepistemic logic gave rise to a
variety of mappings from default rules to autoepistemic formulae. It has been a
general conception that the different mappings allow different sets of extensions
to be generated [4], and therefore that the choice of mapping would determine
the degree of correspondence one would find.

We now show that some mappings turn out to be equivalent in our encoding.
This is due to the integrity constraint, which controls the impact a default may
have on possible extensions. Such equivalences would seem to indicate that the
differences between mappings are not as substantial as argued in the literature.

The mapping tr used in the encoding is identical to that of the HAEL system
[10]. We will study two mappings that are simple modifications of tr, defined by

tr1(rδ) = (α ∧B|r|α ∧ b|r|β) ⊃ γ and
tr2(rδ) = (α ∧B|rδ|α ∧ b|rδ|β) ⊃ γ , respectively.

We now proceed to show that the lemmata of the previous section also hold
for these two translations. Write �W,D�1s and �W,D�2s for the two alternative
translation functions; we show that

(
∧

s�t
�W,D�s ∧ IC(t) ≡

∧
s�t

�W,D�1s ∧ IC(t) ≡
∧

s�t
�W,D�2s ∧ IC(t)

for any enumeration t of D. To see that the first equivalence holds, observe that
a proof of Lemma 6 for the translation �W,D�1s would proceed precisely as the
above proof of this lemma, until it remains to prove

M � O|sδ|(ψs ∧ ((α ∧B|s|α ∧ b|s|β) ⊃ γ)) ≡ O|sδ|ψsδ

under the assumption that M � O|s|ψs. Now if M � B|s|α, then ψs ( α, hence

M � O|sδ|(ψs ∧ ((α ∧B|s|α ∧ b|s|β) ⊃ γ)) ≡ O|sδ|(ψs ∧ ((B|s|α ∧ b|s|β) ⊃ γ)).
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The rest of the proof then proceeds as originally. The equivalence between the
two latter translations can be seen from the fact that for any ϕ both translations
imply B|r|ϕ ⊃ B|s|ϕ and b|s|ϕ ⊃ b|r|ϕ whenever r ) s, hence in combination
with IC(t) either translation implies the equivalence between tr1 and tr2.

Notice that the mapping tr2 is the one adopted by Chen [4]. He introduces
this mapping in order find an autoepistemic correspondence of default theories
(W,D) where W and the prerequisites of all δ ∈ D are conjunctions of literals.
With this mapping, Lemma 8 shows the correspondence to all default theories.

4 Discussion and Future Work

This article presents a method for representing ordered default theories in modal
logic by encoding these into formulae in Æ. We have shown that a classical
default theory may be treated as a special case of an ordered default theory, and
thus that the encoding is adequate for representing classical default reasoning.
These results open up a number of possibilities for using the ideas and the
toolbox of modal logic for interpreting reasoning with preference.

The idea of having different steps in the generation of an extension correspond
to distinct modalities has strong intuitive value in the sense that it provides
support for the idea that the confidence in default beliefs are relative to the
number of defaults that have been tested. To conclude something by default is
one way of restricting the set of worlds or situations that one considers to be
plausible, and thereby be subject to a greater risk of error. The representation
of this idea does not have a counterpart in the framework of default logic.

There are many interesting variants and extensions of the encoding to con-
sider. In section 3.3 above, alternative, equivalent translations were discussed,
but there is also room for a discussion and comparison of translations corre-
sponding to alternative notions of an ordered default theory. Furthermore we
have, up until now, only dealt with the idea of static preference, i.e. preferences
that are fixed in every circumstance. For the future, we plan to encompass the
idea of dynamic preference as well. Many preferences are context independent,
especially within the field of medical and legal reasoning. Dynamic preference
may not be encoded in the current translation. Handling dynamic preferences
presupposes that preferences may be subject to reasoning, thus we need to rep-
resent preferences at the object level. Making preferences objects of reasoning
could provide many interesting perspectives on default reasoning.

The system Æ has been generalized to a multi-agent logic [18,19]. Under-
standing default reasoning in multi-agent contexts is a task that we will work on
in the future. It would be fruitful to consider the idea of static preference also
in the multi-agent case. This way the idea of an agent having beliefs about the
preferences of other agents might be represented.

Another idea that we want to develop further is that of constraining reason-
ing by excluding some possible worlds from the set of conceivable worlds. This
restriction would provide us with an even more fine-grained method for select-
ing the most plausible extensions. The Æ framework [20] is defined so that any
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nonempty sets of points can serve as universe, allowing a flexible representation
of the idea of personal necessity. Of course, such restrictions would go beyond
the ideas of classical default logic.
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Abstract. As in human world many of our goals could not be achieved
without interacting with other people, in case many agents are part of the
same environment one agent should be aware that he is not alone and he
cannot assume other agents sharing his own goals. Moreover, he may be
required to interact with other agents and to reason about their mental
state in order to find out potential friends to join with (or opponents
to fight against). In this paper we focus on a language derived from
logic programming which both supports the representation of mental
states of agent communities and provides each agent with the capability
of reasoning about other agents’ mental states and acting accordingly.
The proposed semantics is shown to be translatable into stable model
semantics of logic programs with aggregates.

1 Introduction

Beside autonomy, agents [16,15] may be required to have social ability, which
is the capability of interacting with other self-interested agents and, as a con-
sequence, producing beliefs, desires and intentions (BDI) [2,3] which may be
dependent on such interactions. Social ability means not only using a common
language for agent communication. In this respect, KQML [13] and FIPA ACL
[7], both based on the speech act theory by Cohen and Levesque [6], represent the
main efforts done in the last years. Another important issue is reasoning about
the content of such a communication [15,14,11].

In this paper we focus on a language derived from logic programming which
both supports the representation of mental states of agent communities and
provides each agent with the capability of reasoning about other agents’ mental
states and acting accordingly. Consider the following example: There are four
agents which have been invited to the same wedding party. Some agents are less
autonomous than the others, i.e. they may decide either to join the party or
not to go at all, possibly depending on the other agents’ choice. Moreover some
agents may tolerate some options. These are the desires of the agents:

Agent1 will go to the party only if at least the half of the total number of agents
(not including himself) goes there.
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Agent2 possibly does not go to the party, but he tolerates such an option. In
case he goes, then he possibly drives the car.

Agent3 would like to join the party together with Agent2, but he is not so
much safe with Agent2’s driving skill. Thus he decides to go to the party
only if Agent2 both goes there and does not want to drive the car.

Agent4 does not go to the party.

It is possible to represent the above desires using logic programming with
negation as failure (not) where each agent is represented by a single program
and requested/desired items (representing the mental state of the agent) are
modelled as atoms occurring inside rule heads. In particular, mandatory items
are modelled as facts. Moreover, it is possible to represent tolerated items, i.e.
items which are not requested, but possibly accepted. To this aim we use the
predicate okay(), previously introduced in [5].

However, representing the requests/acceptances of single agents in a commu-
nity is not enough. A social language should provide also a machinery to handle
compromises among those agents. Thus, we introduce a new construct providing
one agent with the ability to reason about other agents’ mental state and then
to act accordingly. Program rules may have the form:

head ← [selection condition]{body}, (1)

where selection condition predicates about some social condition concerning ei-
ther the cardinality of communities or particular individuals satisfying body.

For instance, consider the following rule, belonging to a program representing
a given agent A: a← [ l , h ] {b, not c}. This rule means that A will require a
only if n agents (other than A) exist such that they require or tolerate b, do not
require or tolerate c and it holds that 0 ≤ l ≤ n ≤ h ≤ nagent − 1, where nagent

is the total number of agents1.
This enriched language is referred to as SOcial Logic Programming (SOLP).

The wedding party example above may be represented by the four SOLP pro-
grams shown in Table 1, where the program P4 is empty since the corresponding
agent has not any desire to express.

The intended models must represent the mental states of each agent inside
the community. For instance, the agents’ choices w.r.t. the party can be:
{}, {go weddingP1, go weddingP2, driveP2}, and {go weddingP1, go weddingP2,

go weddingP3}, where the subscript Pi
(1 ≤ i ≤ nagent) references, for each atom

in a model, the program (resp. agent) that atom is entailed by. The models
respectively mean that either (i) no agent will go to the party, (ii) only Agent1

and Agent2 will go and also Agent2 will drive the car, or (iii) all agents but
Agent4 will go to the party.

Indeed, Agent4 anyway does not go. On the one hand, if Agent2 does not
go to the party, then Agent3 will do the same. Now, let n′ be the number
of agents which are going to the party, it is n′ = 0. Agent1 requires that at

1 By default, l = 0 and h = nagent − 1.
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Table 1. The wedding party example

P1 (Agent1) :

go wedding ← [
nagent

2
− 1, ]{go wedding}

P2 (Agent2) :

okay(go wedding) ←
okay(drive) ← go wedding

P3 (Agent3) :

go wedding ← [Agent2]{go wedding,

not drive}

P4 (Agent4) :

empty program

least ν = nagent
2 − 1 agents (other than himself) go to the party, but since it is

ν = 4
2 − 1 = 1 and n′ < ν, then Agent1 does not go to the party (case (i)).

On the other hand, if Agent2 goes to the party, it is possible that he wants
either to drive the car or not. If he wants to drive, then Agent3 will not join
the party. Now, it is n′ = 1 = ν, then Agent1 will go to the party (case (ii)).
Otherwise, if Agent2 does not want to drive the car, then all conditions required
by Agent3 are satisfied, thus he will go to the party. Now, it is n′ = 2 > ν and
then Agent1 will join the party too (case (iii)).

The intended models are referred to as social models, since they express the
results of the interactions among agents.

Our work is strongly related to [5], where the Joint Fixpoint Semantics (JFP),
that is a semantics providing a way to reach a compromise (in terms of a common
agreement) among many agents, is proposed. Therein, each model contains atoms
representing items being common to all the agents. Our paper extends such a
semantics, providing feature-selective atom subset community, i.e. given a set S
of SOLP programs representing a community of agents, a program P ∈ S and a
rule r ∈ P of the form head ← [selection condition]{body}, then head will belong
to an intended model if all properties enclosed in {body} are entailed by either
(i) any subset S′ ⊆ (S \ {P}) of programs with a given cardinality (specified by
[selection condition]) or (ii) some particular program different from P.

An example of case (i) is shown in Table 1 by the program P1: An in-
tended model M will include the atom go weddingP1 if a set of programs S′ ⊆
{P2,P3,P4} exists such that ∀Pi ∈ S′, go weddingPi∈ M and |S′| ≥ nagent

2 − 1.
An example of case (ii) is represented by the program P3, which requests the
atom go weddingP3 to be part of an intended model M if go weddingP2 belongs
to M , but the atom driveP2 does not.

Importantly, social constraints can be nested. Consider for example the pro-
gram: download(X)←[min, ]{shared(X), [1, ]{not incomplete(X)}}, file(X). This
program represents a Peer-to-Peer file-sharing system where a user can share his
collection of files with other users on the Internet. In order to get better perfor-
mances, a file is split into several parts being downloaded separately (possibly
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each part from a different user)2. Thus, the program describes the behavior of
an agent (acting on behalf of a given user) that wants to download any file X
being shared by at least a number min of users such that at least one of them
owns a complete version of X.

We show also that, given a set of SOLP programs in input, a source-to-source
transformation is possible which provides as output a single DLPA [8] program
whose stable models are in one-to-one correspondence with the intended ones.
We recall that DLPA is basically disjunctive logic programming with aggregate
functions, supported by the DLV system [9]. The translation to DLPA give us
the ability of exploiting DLV (widely accepted as the state-of-the-art system
implementing disjunctive logic programming)3. Observe that since our language
includes neither disjunction nor classical negation (even though the extensions
to these cases could be considered), both disjunction and classical negation of
DLPA are never enabled by our translation. Moreover, Section 5 shows that
our kind of social reasoning is not trivial, since even in the case of positive
programs, the semantics of SOLP has a computational complexity which is NP
complete.

The paper is organized as follows: in Sections 2 and 3 we respectively define
the notion of SOLP programs and define their semantics (Social Semantics). In
Section 4 we illustrate how a set of SOLP programs, each representing a differ-
ent agent, is translated into a single DLPA logic program whose stable models
describe the mental states of the whole agent community and then we show that
such a translation is correct. In Section 5 we prove that the Social Semantics
extends the JFP Semantics [5] and we study the complexity of the problem of
searching for a social model. In Section 6 we describe how this novel approach
may be used for knowledge representation and finally, we draw our conclusions.
For space restrictions, proofs of theorems and lemmata are omitted. They can
be found in [4].

2 Social Logic Programs: Basic Definitions

In this section we introduce the notion of SOLP program.
A term is either a variable or a constant. An atom or positive literal is an

expression p(t1, · · · , tn), where p is a predicate of arity n and t1, · · · , tn are terms.
A negative literal is the negation as failure (NAF) not a of a given atom a.

Definition 1. A (n-)social selection constraint s, said also (n-)SSC, is an ex-
pression of the form cond(s) property(s), such that:

(1) cond(s) is an expression [α] where α is either (i) a pair of integers l, h such
that 0 ≤ l ≤ h ≤ n−1, or (ii) an integer belonging to {1, · · · ,n} said program
identifier4.

2 Among others, KaZaA, EDonkey, WinMX and BitTorrent are the most popular
Internet P2P file-sharing systems exploiting such a feature.

3 Of course, our approach may easily be adapted to other systems supporting cardi-
nality constraints, such as Smodels.

4 We will show, at the end of the section, that the program identifier uniquely identifies
a program (i.e., an agent).
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(2) property(s) = content(s) ∪ skel(s), where content(s) is a non-empty set of
literals and skel(s) is a (possibly empty) set of SSCs.

Concerning item (1) of the above definition, in case (i), cond(s) is said car-
dinal selection condition, while, in case (ii), cond(s) is said member selection
condition.

n-social selection constraints operate over a collection of n programs (we will
formally define later in this section which kind of program are allowed). Thus,
with a little abuse of notation, we often denote a member selection condition by
[Pj ] instead of [j].

Concerning item (2) of Definition 1, if skel(s) = ∅ then s is said simple. For
a simple SSC s such that content(s) is singleton, the enclosing braces can be
omitted. Finally, given a SSC s, the formula not s is said the NAF of s.

In our initial wedding party example, [
nagent

2
− 1, ]{go wedding} and [Agent2]

{go wedding, notdrive} are two simple SSCs. On the contrary, the SSC occurring
in the example regarding a Peer-to-Peer system (see Page 319) is not simple.

As a further example, if s = [l, h]{a, b, c, [l1, h1]{d, [l2, h2]e}, [l3, h3]f}, then s is
not simple, content(s) = {a, b, c} and skel(s) = {[l1, h1]{d, [l2, h2]e}, [l3, h3]f}.

Now we define a function which returns, for a given SSC s, its nesting depth.
Given a SSC s, we define the function depth as follows:{

depth(s) = depth(s′) + 1, if ∃s′ | s ∈ skel(s′)
depth(s) = 0, otherwise.

Given two SSCs s and s′ such that cond(s) = [l, h] and cond(s′) = [l′, h′], i.e.
they are cardinal selection conditions, we say that cond(s′) ⊆ cond(s) if h′ ≤ h.

A SSC s is well-formed if either (i) s is simple, or (ii) s is not simple, cond(s)
is a cardinal selection condition and ∀s′ ∈ skel(s) it holds that:

(a) If cond(s′) is a cardinal selection condition, then s′ is well-formed and
cond(s′) ⊆ cond(s);

(b) If cond(s′) is a member selection condition, then s′ is simple.

From now on, we consider only well-formed SSCs.

Example 1. The SSC s = [1, 8]{a, [3, 6]{b, [AgentX]{c, d}}} is well-formed, while
s1 = [4, 7]{a, [3, 9]b} is not a well-formed SSC, because [3, 9] �⊆ [4, 7].

We introduce now the notion of rule. Our definition generalizes the notion of
classical logic rule.

Definition 2. A (n-)social rule r is a is a formula a← b1∧ · · · ∧bm∧s1∧ · · · ∧sk

(m ≥ 0, k ≥ 0), where a is an atom, each bi (1 ≤ i ≤ m) is a literal and each sj

(1 ≤ j ≤ k) is either a n-SSC or the NAF of a n-SSC. The atom a is said the
head of r, while the conjunction b1∧ · · · ∧bm∧s1∧ · · · ∧sk is said the body of r. In
case a is of the form okay(p), where p is an atom, then r it is said (n-)tolerance
(social) rule and p is said the head of r. In case k = 0, a social non-tolerance
rule is said classical rule.
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Given a rule r, we denote by head(r) (resp. body(r)) the head (resp. the
body) of r. Moreover, r is said a fact in case the body is empty, while r is said
an integrity constraint if the head is missing.

Definition 3. A SOLP collection is a set {P1, · · · ,Pn} of SOLP programs,
where each SOLP program is a set of n-social rules. The cardinal i (1 ≤ i ≤ n)
is called program identifier of the program Pi.

A SOLP program is positive if no NAF symbol not occurs in it. For the sake of
presentation we only refer, in the following sections, to ground (i.e., variable-free)
SOLP programs – the extension to the general case is straightforward.

3 Semantics of SOLP Programs

In this section we introduce the Social Semantics, i.e. the semantics of a collection
of SOLP programs. We assume the reader is familiar with the basic concepts of
logic programming [1,12].

We start by introducing the notion of interpretation for a single SOLP pro-
gram (note that this is the same as for classical programs). An interpretation
for a ground SOLP program P is a subset of V ar(P), where V ar(P) is the set
of atoms appearing in P. A positive literal a (resp. a negative literal not a) is
true w.r.t. an interpretation I if a ∈ I (resp. a /∈ I); otherwise it is false. A rule
is satisfied (or is true) w.r.t. I if its head is true or its body is false w.r.t. I.

Before defining the intended models of our semantics, we need some prelimi-
nary definitions. Let P be a SOLP program. We define the autonomous reduction
of P, denoted by AP, the program obtained from P by removing all the SSCs
from the rules in P. Thus, if the program P represents the social behavior of an
agent, then AP represents the behavior of the same agent in case he decides to
operate independently of the other agents.

Given a SOLP program P and an interpretation I ⊆ V ar(AP), let CL(AP)
(resp. TR(AP)) be the set of classical (resp. tolerance) rules in AP. The au-
tonomous immediate consequence operator ATP is the function from 2V ar(AP)

to 2V ar(AP) defined as follows:

ATP(I) = {head(r) | ∀r ∈ CL(AP), body(r) is true w.r.t. I} ∪
{head(r) | ∀r ∈ TR(AP), body(r) ∧ head(r) is true w.r.t. I}.

Definition 4. An interpretation I for a SOLP program P is an autonomous
fixpoint of P if I is a fixpoint of the associated transformation ATP , i.e. if
ATP(I) = I. The set of all autonomous fixpoints of P is denoted by AFP (P).

Thus, the autonomous fixpoints of a given SOLP program P represent the men-
tal states of the corresponding agent, whenever every social constraint in P is
discarded.

Definition 5. Let P be a SOLP program and L be a set of literals. The labeled
version of L w.r.t. P is the set LP = {aP | a ∈ L}.
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Let C = {P1, · · · ,Pn} be a SOLP collection. A social interpretation for C is
a set Ī = I1

P1
∪ · · · ∪ In

Pn
, where Ij is an interpretation for Pj (1 ≤ j ≤ n).

Example 2. If C = {P1,P2,P3}, I1 = {a, b, c}, I2 = {a, d, e} and I3 = {b, c, d},
where Ij is an interpretation for Pj (1 ≤ j ≤ 3), then Ī = {aP1 , bP1 , cP1 , aP2 , dP2 ,
eP2 , bP3 , cP3 , dP3} is a social interpretation for C.

Let C = {P1, · · · ,Pn} be a SOLP collection and P ∈ C. Given a social
interpretation Ī for C, a positive literal a ∈ V ar(P) (resp. a negative literal
not a) is true w.r.t. Ī if aP ∈ Ī (resp. aP /∈ Ī); otherwise it is false.

Before giving the definition of truth for a SSC, we introduce a way to reference
any SSC s (and also every SSC nested in s) occurring in a given rule r of a SOLP
program P.

Given a SOLP program P, a social rule r ∈ P and an integer n ≥ 0, we de-
fine the set MSSC〈P,r,n〉 = {s | s is a SSC occurring in r ∈ P ∧ depth(s) = n}.
Observe that MSSC〈P,r,0〉 denotes the set of SSCs as they appear in the rule r
of the SOLP program P.

Example 3. Let a ← [1, 8]{a, [3, 6]{b, [AgentX]{c, d}}}, [2, 3]{e, f} be a rule r in a
SOLP program P. Then:

MSSC〈P,r,0〉 = { [1, 8]{a, [3, 6]{b, [AgentX]{c, d}}}, [2, 3]{e, f} },
MSSC〈P,r,1〉 = { [3, 6]{b, [AgentX]{c, d}} },
MSSC〈P,r,2〉 = { [AgentX]{c, d} },
MSSC〈P,r,3〉 = ∅.

Given a SOLP program P, we define the set MSSCP =
⋃
r∈P

MSSC〈P,r,0〉.

Thus MSSCP is the set of all the SSCs (with depth 0) occurring in P.
Now we provide the definition of truth of a SSC w.r.t. a given social inter-

pretation and, subsequently, the definition of truth of a social rule.

Definition 6. Let C = {P1, · · · ,Pn} be a SOLP collection, C ′ ⊆ C and Pj ∈
C ′. Given a social interpretation Ī for C ′ and a n-SSC s ∈ MSSCPj , we say
that s is true in C ′ w.r.t. Ī if it holds that either:

(1) cond(s) = [k] ∧
∃Pk ∈ C ′ | ∀aPk

∈ (content(s))Pk
a is true w.r.t. Ī, or

(2) cond(s) = [l, h] ∧
∃D ⊆ C ′ \ {Pj} | l ≤ |D| ≤ h ∧
∀aP ∈

⋃
P∈D(content(s))P a is true w.r.t. Ī ∧

∀s′ ∈ skel(s) ∃D′ ⊆ D | s′ is true in D′ w.r.t. Ī,
where l, h and k are integers (observe that k is a program identifier). If C ′ = C,
then we simply say that s is true w.r.t. Ī. A n-SSC not true (in C ′) w.r.t. Ī is
said false (in C ′) w.r.t. Ī.

Finally, the NAF of a n-SSC s, not s, is said true (resp. false) (in C ′) w.r.t.
Ī if s is false (resp. true) (in C ′) w.r.t. Ī.

Thus, given a SSC s included in Pj , s is true w.r.t. a social interpretation Ī if
a single SOLP program corresponding to a program identifier k (resp. a set of
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SOLP programs) exists (resp. not including Pj) such that all the elements in
property(s) are true w.r.t. Ī. Observe that the truth of property(s) w.r.t. Ī is
possibly defined recursively, since s may contain nested SSCs.

Once the notion of truth of SSCs has been defined, we are able to define the
notion of satisfaction of a social rule w.r.t. a social interpretation.

Let C = {P1, · · · ,Pn} be a SOLP collection and P ∈ C. Given a social
interpretation Ī for C, a social rule in P is satisfied (or is true) w.r.t. Ī if its
head is true w.r.t. Ī or its body is false w.r.t. Ī.

Given a SOLP collection {P1, · · · ,Pn}, we define the set of candidate social
interpretations for P1, · · · ,Pn as

U(P1, · · · ,Pn) =
{
F 1
P1
∪ · · · ∪ Fn

Pn
| F i ∈ AFP (Pi), 1 ≤ i ≤ n

}
.

where, recall, AFP (Pi) is the set of autonomous fixpoints of the SOLP program
Pi, introduced in Definition 4 and by F i

P (1 ≤ i ≤ n) we denote the labeled
version of F i w.r.t. P (see Definition 5). U(P1, · · · ,Pn) represents all the con-
figurations obtained by combining the autonomous (i.e. without considering the
social constraints) mental states of the agents corresponding to the programs
P1, · · · ,Pn. Each candidate social interpretation is a candidate intended model.

The intended models are then obtained by enabling the social constraints.
Now, we are ready to give the definition of intended model w.r.t. the Social

Semantics.

Definition 7. Given a SOLP collection C = {P1, · · · ,Pn}, a candidate social
interpretation Ī for C is a social model of C if ∀r ∈

⋃
1≤i≤n

Pi, r is true w.r.t. Ī.

Definition 8. Given a SOLP collection {P1, · · · ,Pn}, the Social Semantics (of-
ten referred to as S-Semantics) of P1, · · · ,Pn is the set

SOS(P1, · · · ,Pn) = {M̄ | M̄ ∈ U(P1, · · · ,Pn) ∧ M̄ is a social model of P1, · · · ,Pn},

Thus SOS(P1, · · · ,Pn) is the set of all social models of P1, · · · ,Pn.
Given a SOLP collection C = {P1, · · · ,Pn} and a SOLP program P ∈ C, we

define the S-Semantics of P as

S(P) = {F | F ∈ AFP (P) ∧ ∃M̄ ∈ SOS(P1, · · · ,Pn) | FP ⊆ M̄},

Hence S(P) represents the autonomous mental states of an agent, correspond-
ing to a SOLP program P, which are also included in some social model of
P1, · · · ,Pn, and then fulfill all social requirements.

4 Translation

In this section we give the translation from SOLP under the Social Semantics to
DLPA [8] under Stable Model Semantics. We assume that the reader is familiar
with the Stable Model Semantics [10]. Given a classical logic program P, we
denote by SM(P) the set of all the stable models of P.
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Given a SOLP program P, we define the set USSCP =
⋃
r∈P

⋃
n≥0

MSSC〈P,r,n〉.

Thus, USSCP includes all the SSCs (at any nesting depth) in P.
Given a SOLP program P, we define the functions ρ and g, each establishing

a one-to-one correspondence between each element in USSCP and a set of atoms
L such that both (i) L∩V ar(P) = ∅ and (ii) ∀s, t ∈ USSCP , ρ(s) �= g(t). Thus,
given a SSC s included in a SOLP program P, ρ(s) is a unique positive literal
identifying s and we denote by (ρ(s))P the labeled version of ρ(s) w.r.t. P.
Similar considerations hold for g(s). Moreover, with a little abuse of notation we
write (g(s))P(x) denoting the labeled version of the predicate (g(s))(x) w.r.t. P.

Now we introduce the translation of a single SSC and then we extend such a
translation to all SSCs included in a social rule, a SOLP program and a SOLP
collection, respectively.

Definition 9. Given a SOLP collection {P1, · · · ,Pj , · · · ,Pn} and s ∈ USSCPj ,
we define the translation of s as the DLPA program ΨPj (s) = GUESSPj (s) ∪
CHECKPj (s), where GUESSPj (s) =

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{(g(s))Pj
(k)←

∧
b∈content(s) bPk

}, if cond(s) = [k ],

{(g(s))Pj
(i)←

∧
b∈content(s) bPi

∧∧
s′∈skel(s)(g(s

′))Pj
(i) |

1 ≤ i �= j ≤ n} ∪
{GUESSPj (s′) | s′ ∈ skel(s)}, if cond(s) = [l , h],

and CHECKPj (s) =

=

⎧⎪⎪⎨
⎪⎪⎩

{(ρ(s))Pj ← (g(s))Pj (k)}, if cond(s) = [k ],

{(ρ(s))Pj ← l ≤ #count{K : (g(s))Pj (K), K �= j} ≤ h} ∪
{CHECKPj (s′) | s′ ∈ skel(s)}, if cond(s) = [l , h],

where #count is an aggregate function which returns the cardinality of a set
of literals satisfying some conditions [8]. Observe that the above translation
produces a safe aggregate-stratified DLPA program and thus the computational
complexity remains the same as for standard DLP [8,9].

Given a SOLP program Pj and a social rule r ∈ Pj , we define the SSC
translation of r as the DLPA program TPj (r) =

⋃
s∈MSSC〈P,r,0〉 ΨPj (s). Observe

that, for any classical rule r ∈ Pj , it holds that TPj (r) = ∅.
Given a SOLP program Pj , the SSC translation of Pj is the DLPA program

WPj =
⋃

r∈Pj
TPj (r).

Definition 10. Given a SOLP collection {P1, · · · ,Pn}, we define the SSC trans-
lation of the collection as the DLPA program C(P1, · · · ,Pn) =

⋃
1≤i≤n WPi .

Thus C(P1, · · · ,Pn) is a DLPA program representing the translation of all the
SSCs included in P1, · · · ,Pn.
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We have defined above the translation for the SSCs included in a SOLP
program. Now we give the translation for the whole SOLP program, but first we
need a preliminary processing of all tolerance rules. The latter is done by means
of the transformation defined as follows:

Given a SOLP program P, P̂ = P \TR(P)∪{head(r)← head(r) ∧ body(r) |
r ∈ TR(P)}. Thus P̂ is obtained from P by replacing each tolerance rule
okay(p)← body with the rule p← p, body .

Definition 11. Let P be a SOLP program. We define the program Γ ′(P̂) over
the set of atoms V ar(Γ ′(P̂)) = {aP | a ∈ V ar(AP̂)} ∪ {a′P | a ∈ V ar(AP̂)} ∪
{saP | a ∈ V ar(AP̂)}∪{failP} as Γ ′(P̂) = S′1(P̂)∪S′2(P̂)∪S′3(P̂), where S′1(P̂),
S′2(P̂) and S′3(P̂) are defined as follows:

S′
1(P̂) = {aP ← not a′

P | a ∈ V ar(AP̂)} ∪ {a′
P ← not aP | a ∈ V ar(AP̂)},

S′
2(P̂) = {saP ← b1

P , · · · , bn
P , (ρ(s1))P , · · · (ρ(sm))P | a ← b1, · · · bn, s1, · · · , sm ∈ P},

S′
3(P̂) = {failP ← not failP , saP , not aP | a ∈ V ar(AP̂)}∪

{failP ← not failP , aP , not saP | a ∈ V ar(AP̂)}.

Definition 12. Given a SOLP collection {P1, · · · ,Pn}, we define the set P ′u =⋃
1≤i≤n Γ ′(P̂i).

Thus P ′u is a classical logic program representing the translation of the
SOLP collection. This program is used in conjunction with the DLPA program
C(P1, · · · ,Pn) in order to enable the social constraints.

In the next theorem we state that a one-to-one correspondence exists be-
tween the social models in SOS(P1, · · · ,Pn) and the stable models of the DLPA

program P ′u ∪ C̄. First, we need the following definition and results:
Let P be a SOLP program and M ⊆ V ar(P). We denote by [M ]P the set

{aP | a ∈M} ∪ {a′P | a ∈ V ar(P) \M} ∪ {saP | a ∈M}.

Lemma 1. Given a SOLP collection SP = {P1, · · · ,Pn}, a social interpretation
Ī for SP , a SOLP program Pj ∈ SP and a SSC s ∈ MSSCPj , assume C̄ =
C(P1, · · · ,Pn) and Q = {a←| a ∈ Ī}. Then:

s is true w.r.t. Ī iff ∃M ∈ SM(C̄ ∪Q) | (ρ(s))Pj
∈M.

Definition 13. Given a SOLP collection SP = {P1, · · · ,Pn}, a social interpre-
tation Ī for SP , a SOLP program Pj ∈ SP and a SSC s ∈ MSSCPj , assume
C̄ = C(P1, · · · ,Pn) and Q = {a←| a ∈ Ī}. We define the set

SAT
Pj

Ī
(s) = { h | h = head(r), r ∈ ΨPj (s) ∧ ∃M ∈ SM(C̄ ∪Q) | h ∈M

}
.

Thus, by virtue of Lemma 1, if s is true w.r.t. Ī, then SAT
Pj

Ī
(s) includes the

literal (ρ(s))Pj
and those heads of rules in ΨPj (s) corresponding (by means of

the functions ρ and g) to both s and the SSCs which are nested in s.

Theorem 1. Given a SOLP collection {P1, · · · ,Pn}, and C̄ = C(P1, · · · ,Pn).
Then A = B, where:
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A = SM(P ′u ∪ C̄) and
B = { F̄ ∪ Ḡ ∪ H̄ |

F̄ =
⋃

1≤i≤n F i
Pi
∧ F i ∈ AFP (Pi) ∧ F̄ ∈ SOS(P1, · · · ,Pn)

Ḡ =
⋃

1≤i≤n Gi
Pi
∧ Gi

Pi
= [F i]Pi

\ F i
Pi

H̄ =
⋃

1≤i≤n Hi
Pi
∧ Hi

Pi
=
⋃

s∈MSSCPi SATPi

F̄
(s)}.

Thus each stable model x ∈ A may be partitioned in three sets: F̄ (the social
model of the SOLP collection, which corresponds to x), Ḡ and H̄ (both including
overhead literals needed by the translation).

5 Social Models, Joint Fixpoints and Complexity

In this section we show that the Social Semantics extends the JFP semantics [5].
Basically, COLP programs are logic programs containing also tolerance rules,
that are rules of the form okay(p) ← body(r). The semantics of a collection
of COLP programs is defined over classical programs obtained by the COLP
programs by translating each rule of the form okay(p) ← body(r) into the rule
p ← p, body(r). The semantics of a collection P1, · · · ,Pn of COLP programs is
defined in [5] in terms of joint (i.e., common) fixpoints (of the immediate conse-
quence operator) of the logic programs obtained from P1, · · · ,Pn by transforming
tolerance rules occurring in them (as shown above). Recall that the immediate
consequence operator TP is a function from 2V ar(P) to 2V ar(P) defined as follows.
For each interpretation I ⊆ V ar(P), TP(I) is the set of all heads of rules in P
whose bodies are true w.r.t. I.

First, we define a translation from COLP programs [5] to SOLP programs:

Definition 14. Given a COLP program P and an integer n ≥ 1, the SOLP
translation of P is a SOLP program σn(P) = {σrule(r) | r ∈ P}, where

σrule(r) =
{

head(r)← [n− 1,n− 1]head(r), body(r) if r is a classical rule,
okay(p)← [n− 1,n− 1]p, body(r) if head(r) = okay(p).

The next theorem states that the JFP semantics is a special case of the Social
Semantics. JFP (P1, · · · ,Pn) denotes the set of the joint fixpoints of P1, · · · ,Pn.

Theorem 2. Given n ≥ 1, let P1, · · · ,Pn be COLP programs and Q1, · · · , Qn

be SOLP programs such that Qi = σn(Pi). Then:

SOS(Q1, · · · , Qn) =

⎧⎨
⎩ ⋃

1≤i≤n

FQi
| F ∈ JFP (P1, · · · ,Pn)

⎫⎬
⎭ .

Now we introduce a relevant decision problem w.r.t. the Social Semantics
and discuss its complexity. Observe that the analysis is done in case of positive
programs. Indeed, the case of non positive programs is straightforward: Since
it is NP complete to determine whether a single non-positive program has a
fixpoint, it is easy to see that the same holds for non-positive SOLP programs
and autonomous fixpoints. Thus, checking whether a SOLP collection containing
at least one non-positive SOLP program has a social model is trivially NP hard.
Moreover, since this problem is easily seen to be in NP, it is NP complete.



328 F. Buccafurri and G. Caminiti

PROBLEM SOSn (Social Model Existence):

Instance: A SOLP collection P1, . . . ,Pn

Question: Is SOS(P1, . . .Pn) �= ∅, i.e., does the SOLP collection P1, . . . ,Pn

have any social model?

Theorem 3. The problem SOSn is NP complete.

6 Knowledge Representation with SOLP Programs

In this section, we provide a real-life example showing the capability of our
language of representing common knowledge.

Seating. We must arrange a seating for a number nagent of agents, with m
tables and a maximum of c chairs per table. Agents who like (resp. dislike) each
other should (resp. should not) sit at the same table. Moreover, an agent can
express some requirements w.r.t. the number and the identity of other agents
sitting at the same table. Assume that the i-th agent is represented by a predicate
agent(i) (1 ≤ i ≤ nagent) and his knowledge base is included in a single SOLP
program. The predicate like(i) (resp. dislike(i)) means that Agenti is desired
(resp. not tolerated) at the same table, table(T ) represents a table (1 ≤ T ≤ m)
and at(T ) expresses the desire to sit at table T . For instance, the program P1

(which is associated to Agent1) could be written as follows:

r1 : agent(1) ←
r2 : ← at(T1), at(T2), T1 <> T2
r3 : at(T ) ← [, c − 1]{at(T ), agent(P )}, like(P ), table(T )
r4 : ← at(T ), [1, ]{at(T ), agent(P )}, dislike(P )
r5 : ← like(P ), dislike(P )
r6 : like(2) ←
r7 : dislike(3) ←
r8 : okay(like(4)) ←
r9 : ← at(T ), [3, ]{at(T )}

where rules from r1 to r5 are common to all the programs (of course, the argu-
ment of agent() in r1 is suited to the enclosing program) and rules from r6 to
r9 express agent’s own requirements. In particular, while the rule r2 states that
any agent cannot be seated at more than one table, the rules r3 and r4 mean
that an agent wants to share the table with no more than c− 1 agents he likes
and with no agent he dislikes, respectively. The rule r5 provides consistency for
like and dislike. The rule r8 is used to declare that Agent1 tolerates Agent4,
i.e. Agent4 possibly shares a table with Agent1, and finally the rule r9 means
that Agent1 does not want to share a table with 3 agents or more.

Observe that while the rule r3 generates possible seating arrangements, the
rules r2, r4 and r9 discard those which are not allowed.
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7 Conclusions

In this work we have proposed a new language, SOcial Logic Programming
(SOLP), which enables social behavior among a community of agents repre-
sented by logic programs, extending COLP [5]. Thus, the intended models of the
Social Semantics represent those mental states satisfying social requirements im-
posed by the agents. Moreover, we have given a translation from SOLP to logic
programming with aggregates and discussed the computational complexity of
SOLP, which has been proved to be NP complete.
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Abstract. Two approaches to logic programming with probabilities emerged
over time: bayesian reasoning and probabilistic satisfiability (PSAT). The attrac-
tiveness of the former is in tying the logic programming research to the body of
work on Bayes networks. The second approach ties computationally reasoning
about probabilities with linear programming, and allows for natural expression of
imprecision in probabilities via the use of intervals.

In this paper we construct precise semantics for one PSAT-based formalism for
reasoning with inteval probabilities, probabilistic logic programs (p-programs),
orignally considered by Ng and Subrahmanian. We show that the probability
ranges of atoms and formulas in p-programs cannot be expressed as single in-
tervals. We construct the prescise description of the set of models of p-programs
and study the computational complexity if this problem, as well as the problem of
consistency of a p-program. We also study the conditions under which our seman-
tics coincides with the single-interval semantics originally proposed by Ng and
Subrahmanian for p-programs. Our work sheds light on the complexity of con-
struction of reasoning formalisms for imprecise probabilities and suggests that
interval probabilities alone are inadequate to support such reasoning.

1 Introduction

Reasoning with probabilistic information, in the context of logic programming, has two
distinct origins: bayesian reasoning and probabilistic satisfiability. The former is based
on interpreting statements about conditional probability of event A given event B as an
implication of a special kind (if B then the probability of A is equal to p). Among the
logic programming frameworks following this idea are the work of Poole[16], Ngo and
Haddawy [14], and more recently, and in the context of answer set programming, of
Baral, Gelfond and Rushton [2].

The second approach to reasoning with probabilistic information starts with Porba-
bilistic Satisfiability (PSAT), a problem originally formulated by Boole in [1], “resur-
rected” by Hailperin[9] more than a century later, and, finally, “modernized” by Geor-
gakopoulos, Kavvadis and Papadimitriou[8] in 1988. PSAT is the problem of deter-
mining, whether a set {P (F ) = pF }, of assignments of probabilities to a collection
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F = {F} of boolean formulas over atomic events is consistent, i.e., whether there ex-
ists a way to assign probabilities to all atomic events in a way that P (F ) = pF for
all formulas F in F . Nilsson’s probabilistic logic[15] is based on PSAT and uses the
semantics of possible worlds (world probability functions) to model probabilities of
events. In [8] it is shown that PSAT is NP-complete.

The attractiveness of building logic programming frameworks based on bayesian
reasoning lies in direct relationship to the large body of work on Bayesian networks
and Markov Decision Processes. The attractiveness of PSAT-based logic programs is in
the fact that PSAT has a natural extension to the case of imprecise probabilities. The
importance of imprecise probabilities has been observed by numerous researchers in
the past 10-15 years [17,3] and lead to the establishment of the Imprecise Probabilities
Project [10].

Interval PSAT is a reformulation of PSAT, in which probability assignments of the
form P (F ) = pF are relplaced with inequalities of the form lF ≤ P (F ) ≤ uF .
The underlying semantics and the methodology for solving Interval PSAT is the same
as for PSAT. Logic programming frameworks inspired by PSAT consider rules of the
form “P (F ) = μ if P (F1) = μ1 and . . . and P (Fn) = μn”. Unlike in bayesian-
inspired frameworks, here “if” is the classical logical implication. Logic programming
formalisms stemming from PSAT, in which probabilities of events are expressed as in-
tervals, have been considered by Ng and Subrahmanian[11,12] and by Dekhtyar and
Subrahmanian[6]. In these frameworks, the fixpoint semantics of formulas, i.e., the
set of possible probability assignments for them, had been represented using a single
interval.

In [5] we have established that even for simple logic programs (a subset of pro-
grams considered by [11]), which contain only atomic events in heads and bodies, the
single-interval fixpoint does not adequately describe the exact set of possible probabil-
ity assignments. We have shown that the “real” possible-world semantics is a union of
a set of sub-intervals of [0,1].

In this paper, we extend the results of [5] onto the general case of propositional
interval probabilistic logic programs as defined in [12]. We formally define the propo-
sitional interval probabilistic logic programs of [12]1 in Section 2, where we also show
that the single-interval fixpoint is not precise. In Section 3 we provide the precise de-
scription of the set of models for an interval logic program. In Section 4 we address the
problem of determining if an interval logic program has a model. In Section 5 we study
the problem of when the single-interval fixpoint describes all the models of an interval
logic program precisely, and prove a number of sufficient conditions.

2 Interval Probabilistic Logic Programs

2.1 Syntax

In this section we describe interval Probabilistic Logic Programs of Ng and Subrah-
manian [11,12]. Let L be some first order language containing infinitely many vari-

1 Ng and Subrahmanian consider in [12] probabilistic logic programs with variables in the prob-
ability intervals. In this paper, we consider only constant probability intervals, leaving the rest
of the syntax from [12] the same.
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able symbols, finitely many predicate symbols and no function symbols. Let BL =
{A1, . . . , AN} be the Herbrand base of L. A basic formula is either an atom from BL

or a conjunction or disjunction of two or more atoms. The set of all basic formulas is
denoted bf(BL). Formulas of the form (B1 ∧ . . . ∧Bn) : μ and (B′1 ∨ . . . ∨B′m) : μ′,
where B1, . . . , Bn, B

′
1, . . . , B

′
m ∈ BL and μ = [l,u], μ′ = [l′,u′] ⊆ [0, 1] are called

p-annotated conjunctions and p-annotated disjunctions respectively.
P-annotated conjunctions and disjunctions represent probabilistic information.

Every atom in BL is assumed to represent an (uncertain) event or statement. A p-
annotated conjunction A1 ∧ . . . ∧ An : [l,u] is read as “the probability of the joint
occurrence of the events corresponding to A1, . . . , An lies in the interval [l,u]”.
Similarly, A1 ∨ . . . ∨ An : [l,u] is read as “the probability of the occurrence of at
least one of the events corresponding to A1, . . . , An lies in the interval [l,u]”.

Probabilistic Logic Programs (p-programs) are constructed from p-annotated for-
mulas as follows. Let F, F1, . . . , Fn be some basic formulas and μ, μ1, . . . , μn be subin-
tervals of [0, 1] (also called annotations). Then, a p-clause is an expression of the form
F : μ ←− F1 : μ1 ∧ . . . ∧ Fn : μn (if n = 0, as usual, the p-clause F : μ ←− is
referred to as a fact). A Probabilistic Logic Program (p-program) is a finite collection
of p-clauses. In this paper, we call a p-program in which all clauses consist of atoms
from BL only a simple p-program[5]. We also call a p-program in which the heads of
all clauses are atoms from BL a factored p-program.

In [11] Ng and Subrahmanian considered factored p-programs. In [13] they consid-
ered a framework, in which variables were allowed in the probability annotations. Our
definition of p-programs allows arbitrary heads of p-clauses, but does does not consider
variable annotations.

2.2 Model Theory

The model theory assumes that in the real world each atom from BL, and therefore
each basic formula, is either true or false. However, exact information about the real
world is not known. The uncertainty about the world is represented in a form of a
probability distribution over the set of 2N possible worlds. In addition, p-programs
introduce uncertainty about the probability distribution itself.

More formally, given BL, a world probability density function WP is defined as
WP : 2BL → [0, 1],

∑
W⊆2BL WP (W ) = 1. Each subset W of BL is considered

to be a possible world and WP associates a point probability with it. W |= A iff
A ∈ W ; W |= A1 ∧ . . . ∧ An iff (∀1 ≤ i ≤ n)W |= Ai and W |= A1 ∨ . . . ∨ An iff
(∃1 ≤ i ≤ n)W |= Ai. We fix an enumeration W1, . . .WM , M = 2N of the possible
worlds and denote WP (Wi) as pi.

Given a function WP , probabilistic interpretation (p-interpretation) IWP is de-
fined on the set of all basic formulas as follows: IWP : bf(BL) → [0, 1], IWP (F ) =∑

W |=F WP (W )2. P-interpretations assign probabilities to basic formulas by adding
up the probabilities of all worlds in which they are true.

2 Note, that each world probability density function WP has a unique p-interpretation IWP

associated with it. However, in general, a p-interpretation I can be induced by more than one
world probability density function.
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P-interpretations specify the model-theoretic semantics of p-programs. Given a p-
interpretation I , the following definitions of satisfaction are given:

− I |= F : μ iff I(F ) ∈ μ;
− I |= F1 : μ1 ∧ . . . ∧ Fn : μn iff (∀1 ≤ i ≤ n)(I |= Fi : μi);
− I |= F : μ ←− F1 : μ1 ∧ . . . ∧ Fn : μn iff either I |= F : μ or I �|= F1 :

μ1 ∧ . . . ∧ Fn : μn.

Now, given a p-program P , I |= P (I is a model of P ) iff for all p-clauses C ∈ P ,
I |= C. Let Mod(P ) denote the set of all models of p-program P . It is convenient to
view a single p-interpretation I as a point (I(F1), . . . , I(FM )) in M = 2N -dimensional
unit cube EM . Then, Mod(P ) can be viewed as a subset of EM . P is called consistent
iff Mod(P ) �= ∅, otherwise P is called inconsistent.

2.3 Interval Fixpoint

In this section we give a brief definition of the fixpoint semantics proposed in [12]. The
fixpoint semantics of defined on atomic functions and formula functions.

Let C[0, 1] denote the set of all subintervals of the interval [0, 1]. An atomic func-
tion is a mapping f : BL → C[0, 1]. A formula function h is a mapping h : bf(BL) →
C[0, 1]. Given a set F ⊆ bf(BL) a restricted formula function is a mapping fF : F →
C[0, 1]. Intuitively atomic and formula functions assign probability intervals to atoms
and basic formulas: h(F ) = [l,u] can be interpreted as the statement
‘‘probability of formula F lies in the interval [l,u]".

Each formula function hF induces a set LL(hF ) of linear inequalities on the prob-
abilities p1, . . . , pM of possible worlds. LL(hF ) consists of the following inequalities:

– lF ≤
∑

Wj |=F pj ≤ uF , for all F ∈ F , hF(F ) = [lF ,uF ];

–
∑M

j=1 pj = 1;
– pj ≥ 0, for all 1 ≤ j ≤M .

Note that
∑

Wj |=F pj is the probability of F . Therefore, the first group of inequali-
ties specifies, in terms of probabilities pj of possible worlds, the fact that the probability
of F must be between lF and uF . The equality

∑M
j=1 pj = 1 simply states that the sum

of probabilities of all possible worlds adds up to 1, while inequalities of the form pj ≥ 0
specify that probabilities of possible worlds are nonnegative.

Given a p-program P , two operators, SP and TP are defined. They map formula
functions to formula functions in the following manner. For a basic formula F ,
SP (h)(F ) = ∩MF , where MF = {μ|F : μ ←− F1 : μ1 ∧ . . . ∧ Fn : μn ∈
P, and (∀1 ≤ i ≤ n)(h(Fi) ⊆ μi)}. If MF = ∅ then SP (h)(F ) = [0, 1]. The TP

operator is defined as follows: TP (h)(F ) = [lF ,uF ], where lF = min
(∑

Wj |=F pj

)
,

subject to LL(SP (h)) and uF = max
(∑

Wj |=F pj

)
, subject to LL(SP (h)).

Intuitively, SP computes the intervals of formulas based on the p-clauses that fired.
However, because basic formulas are not, in general, independent (e.g. such formulas
as a ∧ b and a ∧ c), the ranges computed by SP may need tightening, performed by
TP . We also note that for factored p-programs, TP can be specified in a simpler way as
described in [11,5]. The work of these operators is illustrated on the following example.
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P1 :
C1 : (a ∧ b) : [0.5, 1] ←− .
C2 : (a ∧ b) : [0, 0.5] ←− .
C3 : (a ∧ c) : [0.5, 0.5] ←− .
C4 : (b ∧ c) : [0.5, 0.5] ←− .
C5 : (a ∧ b ∧ c) : [0.1, 0.2] ←− .

p1 + p2 = 0.5
p1 + p3 = 0.5
p1 + p4 = 0.5
0.1 ≤ p1 ≤ 0.2
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1
p1, p2, p3, p4, p5, p6, p7, p8 ≥ 0

Fig. 1. Sample p-program P1, and the set of inequalities LL(SP ) it induces

Example 1. Consider the p-program P1 shown in Figure 1. Let h(F ) = [0, 1] for all
F ∈ bf(BL). SP (h)(a∧ b) = [0, 0.5]∩ [0.5, 1] = [0.5, 0.5]. SP (h)(a∧ c) = [0.5, 0.5];
SP (h)(b ∧ c) = [0.5, 0.5] and SP (h)(a ∧ b ∧ c) = [0.1, 0.2]. To compute TP (h)
we first construct LL(SP (h). Let W1 = {a, b, c}, W2 = {a, b}, W3 = {a, c} and
W4 = {b, c}. The set of inequalities LL(SP )(h) is shown in Figure 1 (for simplicity
replace constraints of the form a ≤ X ≤ a with X = a).

Combining the first three constraints with the fifth we get 2p1 − 0.5 = p5 + p6 +
p7 + p8 or p1 = 0.25 + p5 + p6 + p7 + p8. Because all pi ≥ 0, min(p1) subject to
the latter constraint is 0.25 (when all p5,p6,p7,p8 = 0). However, this contradicts the
fourth constraint above which says, in particular p1 ≤ 0.2. Thus, LL(h)(SP ) has no
solutions.

Example 2. Consider the p-program P2 = P1 − {C5}. The computation of SP (h)
will be the same as in the previous example, except SP (h)(a ∧ b ∧ c) = [0, 1]. Now,
TP (h)(a ∧ b ∧ c) is defined: min(p1) subject to LL(SP )(h) is 0.25 (see previous ex-
ample for derivation). max(p1) = 0.5 and it is reached when p2 = p3 = p4 = 0. Thus,
TP (h)(a ∧ b ∧ c) = [0.25, 0.5].

The set of all formula functions over bf(BL) forms a complete lattice FF w.r.t. the
subset inclusion: h1 ≤ h2 iff (∀F ∈ bf(BL))(h1(F ) ⊇ h2(F )). The bottom element
⊥ of this lattice is the function that assigns [0, 1] interval to all formulas, and the top
element � is the atomic function that assigns ∅ to all formulas. Ng and Subrahmanian
show that TP is monotonic [11] w.r.t.FF . The iterations of TP are defined in a standard
way: (i) T 0

P = ⊥; (ii) T α+1
P = TP (T α

P ), where α + 1 is the successor ordinal whose
immediate predecessor is α; (iii) T λ

P = #{T α
P |α ≤ λ}, where λ is a limit ordinal. Ng

and Subrahmanian show that, the least fixpoint lfp(TP ) of the TP operator is reachable
after a finite number of iterations ([11], Theorem 2). They also show that if a p-program
P is consistent, then I(lfp(TP )), the set of all p-interpretations satisfying lfp(TP )3,
contains Mod(P ) ([11,12] Corollary 3).

2.4 Fixpoint Is Not Enough

The inverse of the latter statement, however, is not true. We illustrate it on the examples
below. There, and elsewhere in the paper, we use the following conventions concerning

3 I |= h iff for all F ∈ bf(BL), I(F ) ∈ h(F ) and there exists WP , s.t., WP satisfies LL(h)
and I = IWP .
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Fig. 2. Fixpoint does not describe exactly all models for p-programs P3 and P4

the possible worlds W1, . . . ,WM over which world probability functions are defined.
Let BL = {A1, . . . , AN}. The mapping of indexes i of worlds Wi to subsets of BL is
the reverse lexicografical order: W1 = BL, W2 = BL − {AN}, . . . , WM = ∅.

Consider now the p-program P3 in Figure 2.

Proposition 1. There exists a p-interpretation I , such that I |= lfp(TP3), but I �|= P3.

Proof. First, we compute lfp(TP3). On step 1 of the itrative process, SP3(⊥)(a ∧ b) =
[0.2, 0.5] and SP3(⊥)(c ∨ d) = [0.4, 0.6], i.e., clauses C1 and C2 of the program will
fire. The following constraints are present in LL(SP3(⊥)).
0.2 ≤ p1 + p2 + p3 + p4 ≤ 0.5
0.4 ≤ p1 + p2 + p3 + p5 + p6 + p7 + p9 + p10 + p11 + p13 + p14 + p15 ≤ 0.6

From these constraints we can find the upper and lower bounds of TP3 on individual
atoms. For a we get la = min(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = 0.2, while
ua = max(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = 1. The probability range
for b, [lb,ub] = [la,ua] = [0.2, 1] due to symmetricity of conjunction of two events.
Similarly, we can discover that lc = ld = 0 and uc = ud = 0.6.

On the second step, no new rules will fire. Indeed, for the p-clause C3 to fire, we
must have T 1

P3
(a∧b) ⊆ [0.2, 0.4], and for C4 to fire, it should be T 1

P3
(a∧b) ⊆ [0.4, 0.5].

But T 1
P3

(a ∧ b) = SP (⊥)(a ∧ b) = [0.2, 0.5], which is a subset of neither [0.2, 0.4] nor
[0.4, 0.5]. Thus, lfp(TP3) = T 1

P3
.

We now show, that there exist a p-interpretation I , such that I |= T 1
P3

but I �|= P3.
Consider a (partially defined) p-interpretation I , such that I(a∧b) = 0.3 and I(c∨d) =
0.4. We complete the construction of I to ensure that it satisfies T 1

P3
as follows.

I(a ∧ b) = p1 + p2 + p3 + p4 = 0.3
I(c ∨ d) = p1 + p2 + p3 + p5 + p6 + p7 + p9 + p10 + p11 + p13 + p14 + p15 = 0.4

Let p1 = p2 = p3 = 0.05, p4 = 0.15, p5 = 0.05, p6 = 0.1, p7 = 0.1, p9 = p10 =
p11 = p13 = p14 = p15 = 0, p12 = 0.15, p16 = 0.3. This assignment satisfies all
constraints in LLSP3(⊥), which means that I |= T 1

P3
.

I |= P3 iff I |= C1, I |= C2, I |= C3 and I |= C4. We can see easilty that I |= C1

and I |= C2: I(a ∧ b) = 0.3 ∈ [0.2, 0.5] and I(c ∨ d) = 0.4 ∈ [0.4, 0.6]. However,
I �|= C3. Indeed, I(a ∧ b) = 0.3 ∈ [0.2, 0.4], i.e., the body of C3 is satisfied, but
I(c ∨ d) = 0.4 �∈ [0.5, 0.6], i.e., the head of C3 is not satisfied.

Proposition 1 shows that not all p-interpretations satisfying lfp(TP ) satisfy the pro-
gram itself, i.e., Mod(P ) �= lfp(TP ). As it turns out, there exist p-programs with non-
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empty lfp(TP ) for which Mod(P ) = ∅. One such example is program P4 shown in
Figure 2.

Proposition 2. lfp(TP4) is not empty, while Mod(P4) = ∅.
Proof. First we show that there are p-interpretations satisfying lfp(TP4). Using reason-
ing similar to that in the proof of Proposition 1 we see that on the first step of the fix-
point computation process, clauses C1 and C2 will fire, giving rise to TP4(⊥)(a ∧ b) =
SP4(⊥)(a ∧ b) = [0.2, 0.5] and TP4(⊥)(c ∨ d) = SP4(⊥)(c ∨ d) = [0.4, 0.6]. On the
second step neither C3 nor C4 will fire as TP4(⊥)(a ∧ b) = [0.2, 0.5] �⊆ [0.2, 0.4] and
TP4(⊥)(a ∧ b) = [0.2, 0.5] �⊆ [0.4, 0.5]. This means lfpTP4

= T 1
P4

= TP4(⊥), which
is not empty and thus contains satisfying p-interpretations.

Now we show that Mod(P4) = ∅. Let I |= P4 be a p-interpretation. I |= P4, means
I |= C1, I |= C2, I |= C3 and I |= C3. From I |= C1 we obtain I(a ∧ b) ∈ [0.2, 0.5].
From I |= C2 we obtain I(c∨d) ∈ [0.4, 0.6]. Now, we observe that I(a∧b) ∈ [0.2, 0.5]
implies that either I(a ∧ b) ∈ [0.2, 0.4) or I(a ∧ b) ∈ (0.4, 0.5] or I(a ∧ b) = 0.4.
Consider each case separately.

If I(a ∧ b) ∈ [0.2, 0.4), then I satisfies the body of C3. Therefore, it must be the
case that I(c ∨ d) ∈ [0.7, 0.8]. However, because I |= C2, I(c ∨ d) ∈ [0.4, 0.6] which
leads to a contradiction. Similarly, I(a∧ b) ∈ (0.4, 0.5] makes the body of C4 satisfied,
and thus I(c ∨ d) must be in [0.7, 0.8] contradicting the fact that I |= C2. Finally, if
I(a ∧ b) = 0.4 then the bodies of both C3 and C4, and hence I must satisfy their
(identical) heads, leading again to I(c ∨ d) ∈ [0.7, 0.8], which contradicts I |= C2.
Thus, no p-interpretation I can satisfy P4.

Looking at the proofs of both propositions above we see that the reason for the
“bad” behavior of lfp(TP ) lies in the computation of the SP operator, namely, in the
determination when p-claues fire. By definition of SP , a p-clause C fires if current val-
uation for each basic formula in the body of the clause is a subinterval of its annotation
in the clause. Consider, for example a clause C : F : μ ←− G : μ′ and some formula
function (valuation) h, such that h(G) �⊆ μ′ but h(G) ∩ μ′ �= ∅. This clause will not
fire. However, any p-interpretation I |= C such that I(G) ∈ h(G) ∩ μ′, satisfies the
body of the clause, and thus, must satisfy its head, i.e., we must have I(F ) ∈ μ. This
extra restriction on the probability range of F is not captured by the SP computation.

3 Possible Worlds Semantics

We ask ourselves: given a p-program P , how do we give an exact description of
Mod(P )? In [5] we have answered this question of simple p-programs, i.e., p-programs
with only atoms in the program clauses. In this section we extend the new semantics to
the full case of p-programs.

Definition 1. Let P be a p-program over the Herbrand base BL = {A1, . . . , AN}, and
letW = (W1, . . . ,WM ), M = 2N be an enumeration of all subsets of BL. With each
Wj , 1 ≤ j ≤ M we associate a variable pj with domain [0, 1]. Let C be a p-clause in
P of the form F : [l,u]←− F1 : [1,u1] ∧ . . . ∧ Fn : [ln,un].

The family of systems of inequalities induced by C, denoted INEQ(C) is defined
as follows:
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– n = 0 (C is a fact). INEQ(C) =
{

l ≤∑Wj |=F pj ≤ u
}

.

– n ≥ 1 (C is a rule). INEQ(C) = T (C) ∪ F (C);

T (C) =
{{

l ≤∑Wj |=F pj ≤ u; li ≤∑Wj |=Fi
pj ≤ ui|1 ≤ i ≤ k

}}
;

F (C) =
{{∑

Wj |=Fi
pj < li

}
|1 ≤ i ≤ k

}
∪
{{∑

Wj |=Fi
pj > ui

}
|1 ≤ i ≤ k

}
.

Let P = {C1, . . . , Cs}. Then, INEQ(P ) is defined as follows:
INEQ(P ) = {α1 ∪ . . . ∪ αs|αi ∈ INEQ(Ci), 1 ≤ i ≤ s}

Informally, INEQ(P ) is constructed as follows: for each p-clause C in the program
we select the reason, why it is true. The reason/evidence is either the statement that the
head of the clause is satisfied, or that one of the conjuncts in the body is not. The set
INEQ(P ) represents all possible systems of such evidence/restrictions on probabilities
of basic formulas. Solutions of any system of inequalities in INEQ(P ) satisfy every
clause of P . Of course, not all individual systems of inequalities have solutions, but
INEQ(P ) captures all the systems that do, as shown in the following lemma and
theorem.

Lemma 1. Let C : F : μ ←− F1 : μ1 ∧ . . . ∧ Fm : μk be a p-clause and I be a
p−interpretation (both over the same Herbrand Base BL). Then I |= C iff there exists
a world probability function WP , such that I = IWP and {pj = WP (Wj)|Wj ⊆ BL}
∈ Sol(α) for some α ∈ INEQ(C).

Proof (sketch). First we note that given a p-interpretation I , one can always construct a
world probability function WP , such that I = IW P [11,12]. If I |= C, then either ei-
ther I satisfies F : μ, the head of C, or it does not satisfy the body of C. In the first case,
we show in a straightforward manner that any world density function WP , such that
I = IWP is in the solution of T (C). In the second case, we determine which conjunt
Fi : μi in the body is not satisfied, and show that the appropriate system of inequalities
from F (C) has any such WP as a solution. Going back, if WP is a probability density
function that is a solution of some system of inequalities α ∈ INEQ(C), we show that
IW P |= C as follows. α must be either in T (C) or in F (C). In the first case, we show
in a straightforward manner that I(F ) ∈ μ. In the second case, we show that I(F ) �∈ μi

for some 1 ≤ i ≤ m.

Theorem 1. A p-interpretation I is a model of a p-program P iff there exists a world
probability function WP , such that I = IWP , and a system of inequalities α ∈
INEQ(P ) such that P = {pj = WP (Wj)|Wj ⊆ BL} ∈ Sol(α).

This leads to the following description of Mod(P ):

Corollary 1. Mod(P ) =
⋃

α∈INEQ(P ){IWP |WP ∈ Sol(α)}
Let Rules(P ) and Facts(P ) denote the sets of p-clauses from P with non-empty

and empty bodies respectively. Let f(P ) = |Facts(P )| and r(P ) = |Rules(P )|.
Finally, let k(P ) be the maximum number of basic formulas in a body of a rule in P .

The solution of each system α ∈ INEQ(P ) is a convex M − 1-dimensional4 (in
general case) polyhedron. Given a solution WP of some α ∈ INEQ(P ), IWP is

4 Because p1 + . . .+pM = 1 is present in every α ∈ INEQ(P ), the dimensionality of Sol(α)
cannot be more than M − 1.
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obtained via a linear transformation. Because linear transformations preserve convexity
of regions, we can make the following statement about the geometry of the set Mod(P ).

Corollary 2. Given a p-program P over the Herbrand base BL = {A1, . . . , AN},
Mod(P ) is a union of S ≤ (2k(P )+1)r(P ), not necessarily disjoint, convex polyhedra.
Each polyhedron has a dimensionality of at most M − 1 = 2N − 1.

This corollary provides an exponental, in the size of the p-program, upper bound on
the number of possibly disjoint components of Mod(P ). In [5] we constructed a simple
p-program P with 2N + 1 clauses and k(P ) = 1, whose Mod(P ) is a collection of 2N

disjoint N -dimensional parallepipeds. This shows that the exponential bound cannot be
substantially decreased.

The semantics of p-programs is closely connected to Interval PSAT. As mentioned
above, each system of inequalities in INEQ(P ) is constructed by selecting one for-
mula from each clause (either the head or from the body) and assigning it an interval:
[l,u] for the head; [0, li) or (ui, 1] for the formula Fi from the body. Theorem 1 showed
that any assignment of point probabilities to the atoms, that satisfies these constraints is
a model of P . At the same time, the set {F : μ} of annotated formulas for which satis-
fying p-interpretations are to be found is an instance of Interval PSAT. Thus, an instance
of Interval PSAT is associated with each set of inequalities in INEQ(P ). We note that
the sets of solutions for individual systems from INEQ(P ) are not disjoint, however,
each system can contain unique solutions. Thus, one way of computing Mod(P ) is to
solve |INEQ(P )| Interval PSAT problems.

4 Consistency Problem

The consistency problem for p-programs is defined as follows: given a p-program P ,
check whether P has a model, i. e. Mod(P ) �= ∅. Let CONS-P= {P |Mod(P ) �= ∅}.

Theorem 2. The set CONS-P is NP-complete.

Proof. Upper bound. Let P be a p-program, B1, . . . , Br be all basic formulas of P
Then Mod(P ) �= ∅ iff there exist such probabilitues b1, . . . , br of B1, . . . , Br that
(i) the system of linear equations and inequalities EQ(P ):

–
∑

Wj |=Bi
pj = bi, for i = 1, . . . , r,

–
∑M

j=1 pj = 1;
– pj ≥ 0, for all 1 ≤ j ≤M .

has a solution WP = {p′1. . . . , p′M} defined the interpretation IWP ∈Mod(P ).
To prove the upper bound, we use the following lemma from [7] (which, in turn,

cites [4]. Similar statement is also found in [8]).

Lemma 2. If a system of r linear equations and/or inequalities with integer coefficients
each of length at most l has a nonnegative solution, then it has a nonnegative solution
with at most r entries positive, and where the size of each member of the solution is
O(rl + r log r).

Based on this lemma we obtain the following “small model” theorem.
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Lemma 3. p-program P including r different basic formulas is consistent iff there ex-
ists a probability distribution WP on possible worlds with no more than r + 1 nonzero
probabilities such that IWP |= P .

Let the longest number in annotations of P have length l. Then the following non-
deterministic procedure allows us to check whether Mod(P ) �= ∅.
1) Guess for each Bi(i = 1, . . . , r) it’s probability bi ∈ [0, 1] of the length O(rl +
r log r).
2) Guess a probability distribution WP with no more than r + 1 positive probabilities
pi1 , . . . , pir+1 of the length O(rl + r log r) and check that WP is a solution of the
system EQ(P ).
3) If IWP |= P retur n ”Yes”.

From the lemmas above it follows that this algorithm runs in nondeterministic time
bounded by a polynomial of |P |.

Lower bound. We prove the lower bound for a subclass of simple p-programs with
clause bodies of size 3 or less. We show that 3-CNF≤P CONS-P. Let Φ = C1∧ . . . Cm

be a 3-CNF over the set of boolean variables V ar = {x1, . . . ,xn}. Let each clause
Cj , j = 1, . . . ,m, include 3 literals l1j , l

2
j , l

3
j . Define for each literal l an annotated

atom α(l) as follows: if l = x ∈ V ar then α(l) = x : [0.5, 1], if l = ¬x then
α(l) = x : [0, 0.5]. Let BL = V ar ∪ {Cj | j = 1, . . . ,m} ∪ {Φ}. We include in p-
program P (Φ) the following p-clauses. (f1) : Φ : [1.1]← .
(fcj) : Cj : [0, 0.1]← . (j = 1, . . . ,m)
(fxi) : xi : [0, 1]← . (i = 1, . . . ,n)
(rcj) : Cj : [0.9, 1]← α(l1j ) ∧ α(l2j ) ∧ α(l3j ). (j = 1, . . . ,m).
(rfi) : Φ : [0, 0]← xi : [0.5, 0.5]. (i = 1, . . . ,n)

It is easy to see that P (Φ) can be constructed from Φ in polynomial time. Now the
theorem follows from the following proposition.

Proposition 3. Φ ∈ 3-CNF ⇐⇒ P (Φ) ∈ CONS-P.

A consistent p-program P entails a formula F : [l,u] if for each I ∈ Mod(P )
I |= F : [l,u]. The entailment problem is, thus, expressed as follows: given a consistent
P and a formula F : [l,u], decide if P entails F : [l,u]?

Let EQ1(P, F ) = EQ(P ) ∪ {
∑

Wj |=F pj < l} and EQ2(P, F ) = EQ(P ) ∪
{
∑

Wj |=F pj > u}. Then it easy to see that P does not entail F : [l,u] iff EQ1(P, F ) is
solvable or EQ2(P, F ) is solvable. Therefore we get the following complexity bounds
for the entailment problem.

Theorem 3. The enailment problem for p-programs is co-NP-complete.

We note, in fact, that the theorem holds for the class of simple p-programs.

5 When Fixpoint Is Enough?

In this section we study subclasses of p-programs for which simpler procedures for de-
termining Mod(P ) exist. In particular, we ask ourselves a question of when Mod(P ),
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as defined here, and lfp(TP ), as defined in [12] coincide. We then address the problem
of complexity of detecting that Mod(P ) = I(lfp(TP )). First, we consider the problem
of Mod(P ) = lfp(TP ) for the case of simple p-programs. In the definition below we
use the following notation. Given a simple p-program P and an atom A, we let haP (A)
denote the set of all intervals associated with occurrences of a in the heads of clauses
in P . We also let baP (A) denote the set of all intervals associated with occurrences of
A in the bodies of the clauses from P .

Definition 2. A simple p-program P is called semi-strict if it satifies the following con-
dition: for all atoms A ∈ BL, and for each pair μ ∈ haP (A) and ν ∈ baP (A) either
μ ⊆ ν or μ ∩ ν = ∅.

Intuitively, a simple p-program is called semi-strict if for all atoms their annotations
in the heads of the rules are either subintervals of annotations in the bodies or do not
intersect with them.

Theorem 4. If P is a simple semi-strict p-program, then Mod(P ) = I(lfp(TP )).

Theorem 5. Semi-strictness of a simple p-program P can be checked in time O(|P |2).

Semi-strictness is a syntactic condition on simple p-programs, that can be checked
in time, quadratic, in the size of the p-program in a straightforward manner. This makes
it an attractive condition to use in general case. However, two facts make it impossible.
First, this is a sufficient, but not necessary condition, and second, for programs with
non-atomic formulas, semi-strictness does not imply Mod(P ) = I(lfp(TP )). The
following two examples illustrate this.

Example 3. To show that semi-strictness is not a necessary condition, consider
p-program P5 from Figure 3. First, we note that lfp(TP5) assigns intervals [0.2, 0.4],
[0.3, 0.7] and [0, 1] to atoms a, b and c respectively. We can also see that the body of the
third clause of P5 is unsatisfiable given the first two clauses, because the intervals for
a, [0.5, 1] in the clause and [0.2, 0.4] from the first clause, do not intersect. Therefore,
Mod(P5) will not differ from lfp(TP5). At the same time, we note that P5 is not semi-
strict, because for b the annotation of the head of the second clause, [0.3, 0.7], and the
annotation in the body of the third clause, [0.6, 0.9] overlap.

Example 4. Consider the p-program P6 from Figure 3. P6 is semi-strict by definition 2.
But we can show that I(lfp(TP )) and Mod(P ) differ. Indeed, because the constraints
on the probabilities of a and b from the first two p-clauses do not entail the [0.3, 0.6]

P5 :
a : [0.2, 0.4] ←− .
b : [0.3, 0.7] ←− .
c : [0.8, 0.9] ←− b : [0.6, 0.9], a : [0.5, 1].

P6 :
a : [0.2, 0.6] ←−.
b : [0.3, 0.7] ←−.
c : [0.8, 0.9] ←− (a ∧ b) : [0.3, 0.6].

Fig. 3. Programs P5 and P6 show that semi-strictness is not the right condition for general p-
programs
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constraint on the probability of a∧b, this rule does not fire, and therefore lfp(TP )(c) =
[0, 1]. In particular, a p-interpretation I , s.t., I(a) = 0.6, I(b) = 0.7, I(c) = 0.2 is in
I(lfp(TP )). At the same time, if I(a) = 0.6 and I(b) = 0.7, then I(a∧ b) ∈ [0.3, 0.6],
and therefore, in the thrid rule, the head must be satisfied, but 0.2 �∈ [0.8, 0.9].

It turns out that it is possible to specify a sufficient condition in the general case.
However, this is no longer a syntactic condition.

Definition 3. Let P be a p-program and let P ′ be the result of removing from P all
p-clauses whose heads are satisfied by lfp(TP ). A p-program P is called strict if the
following condition holds: for each clause C : F : μ ←− F1 : μ1 ∧ . . . Fn : μn in P ′,
there exists an index 1 ≤ i ≤ n, such that lfp(TP )(Fi) ∩ μi = ∅.

Theorem 6. If a p-program P is strict, then Mod(P ) = I(lfp(TP )).

Proof. We know that Mod(P ) ⊆ I(lfp(TP )). Suppose now, I ∈ I(lfp(TP )). We
show that (∀C : F : μ ←− F1 : μ1 ∧ . . . Fn : μn ∈ P )I |= C. If C ∈ P − P ′, then
I(F ) ∈ lfp(TP )(F ) ⊆ μ, and therefore, I |= F : μ. If C ∈ P ′, then, because C is
strict, there exists such index i, that lfp(TP )(Fi) ∩ μi = ∅. Then I �|= Fi : μi, and
therefore I �|= F : μ←− F1 : μ1 ∧ . . . Fn : μn and I |= C.

For the class of simple p-programs, strictness can be efficiently checked and is a
necessary condition. This leads to polynomial-time upper bounds on entailment and
consistency.

Theorem 7. 1. For a simple p-program P checking whether it is strict can be per-
formed in polynomial time.

2. For a simple p-program P , Mod(P ) = I(lfp(TP )) iff P is strict.

Corollary 3. Consistency and entailment problems are solvable in polynomial time for
strict simple p-programs.

The following example shows that strictness is not a necessary condition for non-
simple programs.

Example 5. Consider the following p-program P7:

a : [0.6, 0.8]←−. b : [0.6, 0.7]←−. d : [0.2, 0.3]←− .
c : [0.4, 0.5]←− (a ∧ b) : [0.65, 0.7]∧ (b ∨ d) : [0.5, 0.6].

lfp(TP ) assigns intervals [0.2, 0.7] and [0.6, 1] to a ∧ b and b ∨ d respectively, and
therefore, P7 is not strict. However, there exists no p-interpretation I which satisfies the
first three rules and the body of the fourth rule: I(b∨d) ∈ [0.5, 0.6] implies, I(b∨d) =
0.6 and I(b) = 0.6, while I(a ∧ b) ∈ [0.65, 0.7] implies that I(b) ≥ 0.65. Therefore,
Mod(P ) coincides with I(lfp(TP )).

6 Related Work and Conclusions

A survey of different approaches to probabilistic logic programming can be found in
[6] and [5]. This paper studies the precise semantics of a logic programming language
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for reasoning about the interval probabilities of events and their combinations. This lan-
guage, proposed by Ng and Subrahmanian[12] is a natural extension of Interval Prob-
abilistic Satisfiability problem PSAT [8]: an instance of Interval PSAT is a p-program,
in which all rules have no bodies. We show that for this, relatively simple language, the
class of satisfying models (probabilistic interpretations) has a complex description: it is
a union of a number of (closed, open, semiopen) intervals, obtained, solving an array of
Interval PSAT problems. On the positive side, our results show how to compute the set
of models of a p-program precisely. On the negative side, the complexity of the descrip-
tion and the computational complexity of the problem itself suggest that intervals may
be inadequate as the means for specifying imprecision in probabilistic assessments.
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Abstract. We present an alternative model theory for answer sets based on the
possible worlds semantics proposed by Routley (1974) as a framework for the
propositional logics of Fitch and Nelson. By introducing a falsity constant or sec-
ond negation into Routley models, we show how paraconsistent as well as ordi-
nary answer sets can be represented via a simple minimality condition on models.
This means we can define a paraconsistent version of equilibrium logic, or para-
consistent answer sets (PAS) for propositional theories. The underlying logic of
PAS is denoted by N9. We characterise it axiomatically and algebraically, show-
ing it to be the least conservative extension of the logic of here-and-there with
strong negation. In addition, we show that N9 captures the strong equivalence of
programs in the paraconsistent case and can thus serve as a useful mathematical
foundation for PAS. We end by showing that N9 has the Interpolation Property.

1 Introduction

In Pearce [19] it was shown how the nonclassical logic of here-and-there with strong
negation, often denoted by N5, can serve as a foundation for answer set programming
(ASP). The main property involved is that answer sets can be viewed as a certain kind
of minimal N5-model. A second key property was established in [13]: programs are
strongly equivalent wrt answer set semantics (see §5.2) if and only if they are equivalent
viewed as propositional theories in N5. This shows that N5 can be used to reason about
answer set programs, and N5-deduction may be relevant for program transformation
and optimisation. These issues have been explored in several recent works in the area
of logic programming and nonmonotonic reasoning, where N5-inference as well as its
metatheoretic properties have been exploited, [21,26,27].

It is natural to ask whether other kinds of logic programming semantics, either vari-
ants of ASP, or alternatives such as the well-founded semantics (WFS), also possess
a well-behaved monotonic ‘base’ logic. Although some partial results have been ob-
tained, generally speaking complete solutions are still lacking. For WFS, for instance,
it is not even known whether there exists a monotonic, deductive characterisation of
strongly equivalent programs.

In this paper we show how the paraconsistent version of answer set semantics also
admits a natural underlying, monotonic logic, which we denote by N9, and we look at
an alternative model theory for answer sets due to R. Routley. Paraconsistent answer
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sets (PAS) were studied as a logic programming semantics by Sakama and Inoue [30].
Recently, Alcantara et al [1] have made some progress towards a logical, declarative
style of characterisation for PAS. However, [1] do not axiomatise or otherwise syntac-
tically characterise the underlying (monotonic) logic of PAS; nor do they investigate
the problem of strong equivalence. Moreover, their semantical frames can easily be re-
duced to a simpler notion of possible worlds model proposed by Routley [29] in 1974
as a semantical framework for the propositional logics of Nelson [16] and Fitch [6]. By
introducing a falsity constant or second negation into Routley models, we can show how
paraconsistent as well as ordinary answer sets can be represented via a simple minimal-
ity condition on models. It is relatively straightforward to prove this property from first
principles. However, in the paper we will make use of the results of [1]. In particular we
show (i) how the semantical frames of [1] can be reduced to Routley models, and (ii)
how this leads to a simple characterisation of paraconsistent answer sets. An additional
condition on Routley models yields N5-models that capture ordinary answer sets.

In the case of PAS, the underlying logic N9 belongs to the lattice of logics studied
by Odintsov [17] which we denote here by EN−¬ . We axiomatise the logic, showing it to
be the least conservative extension of the logic of here-and-there with strong negation,
representable via the full twist-structure on the 3-element Heyting algebra. The latter
means that N9 can be viewed as a 9-valued logic, which explains the notation. In addi-
tion, we show that the logic suffices to characterise the strong equivalence of programs
in the paraconsistent case and can thus serve as a useful mathematical foundation for
PAS. We conclude the mathematical part of the paper by showing that the logic has the
Interpolation Property.

Besides providing a logico-mathematical foundation for PAS, and an extension to
arbitrary theories, we hope to shed some light on the interplay between strong or ex-
plicit negation, ‘∼’, and default negation or negation-as-failure, ‘¬’ or ‘not’. Unlike
in the usual case, in the paraconsistent version of answer sets, default negation is no
longer definable in terms of strong negation. An interesting feature of PAS is that all the
paraconsistency resides in that part of reasoning involving strong negation, reflecting
the idea that basic information (facts) and even rules may be contradictory. That part
of reasoning involving default negation, on the other hand, remains quite standard: the
underlying logic of PAS extends intuitionistic logic and is even a conservative extension
of the logic of here-and-there, when ‘not’ is identified with intuitionistic negation ‘¬’.

2 Some Background on Constructible Falsity

The concept of constructible falsity was introduced into logic by David Nelson [16] via
his system of constructive logic with strong negation, later often denoted by N. Nelson’s
logic was subsequently axiomatised by Vorob’ev [32,33] and studied algebraically in
the 1950s and 60s by the group of Helena Rasiowa [28]. A logical system related to
Nelson’s, but somewhat weaker, was developed by Fitch [6].

From the early 1970s several authors explored logical systems similar to Nelson’s
and Fitch’s but lacking the “explosive” axiom α → (∼α → β), thus producing para-
consistent logics. The paraconsistent version of N is sometimes denoted by N−. It was
studied independently by R. Routley (later R. Sylvan) in the propositional case in [29],
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by López-Escobar in [14] and by Nelson himself in [2], both in the first-order case. A
very similar system was explored by von Kutschera in [12]. Both the logics N and N−,
as well as the corresponding systems of Fitch, are extensions of positive logic. Only
N itself can be viewed as an extension of intuitionistic logic, when the intuitionistic
negation ‘¬’ is defined in it, say by ¬α := α → ∼α.

Kripke semantics for N ([31,9]) is readily obtained from the usual Kripke seman-
tics for intuitionistic logic by assigning to each world, instead of a set of atoms, a set
of literals, ie. atoms or strongly negated atoms. Equivalently, the truth-assignment on
atoms and worlds is 3-valued, to reflect the three cases of verified, falsified or neither.
Changing to 4-valued assignments in Kripke models produces a semantics for N−: the
fourth value now corresponds to “overdetermined” or the situation that both a literal
and its contrary are verified at a world. An alternative possible worlds semantics for
constructive logic with strong negation was provided by Routley in [29]. Routley stud-
ied all four variants of the Fitch and Nelson logics and proved completeness relative
to models with 2-valued truth assignments. To handle strong negation and paraconsis-
tency, Routley made use of a kind of non-normal worlds, related to ordinary worlds via
a star operation (a kind of involution); hence one has normal and “starred” worlds.

Since in N−, unlike in N, intuitionistic negation is not definable, there are several
options for introducing a second negation into the paraconsistent systems. This topic
has recently been studied in [17] which investigates the lattice of extensions of N−

augmented with a falsum constant⊥ satisfying two new axioms.

2.1 Constructible Falsity and Nonmonotonic Reasoning

At the end of the 80s the use of constructible falsity, via normal and paraconsistent
versions of Nelson’s logic and its variants, was explored as a tool for knowledge rep-
resentation and reasoning. and studied in depth in the context of logical languages for
information and knowledge exchange in several articles and books, [24,25,36,10,35].
In nonmonotonic logic programming in the tradition of stable models, strong negation
became firmly established via the answer set semantics of Gelfond and Lifschitz [7].
The fact that they called their second negation, representing explicit falsity, classical,
obscured at first the connection to Nelson’s logic N; though for computational purposes
they used precisely the same reduction technique as Vorob’ev to eliminate strong nega-
tion through the addition of new predicates. That answer set inference could be viewed
as an extension of Nelson’s logic N was later established in [18].

Later, attempts to find a precise match between answer set inference and a logic in
the lattice of extensions of N led to equilibrium logic based on the propositional logic
of here-and-there with strong negation, see Pearce [19,20], that we denote here by N5.
Equilibrium logic can be understood both as a nonmonotonic extension of N5 and as a
generalisation of the language of answer set programming to full propositional logic.

Paraconsistency also came to be considered in logic programming, initially by Blair
and Subrahmanian [3], later by several other authors, for an overview see [4]. Among
them, Sakama and Inoue [30] proposed a paraconsistent version of answer set seman-
tics, essentially by dropping the requirement that one discard inconsistent models in the
construction of answer sets. Recently the paraconsistent version of answer sets (PAS)
was taken up again by Alcantara, Damásio and Pereira [1] who have attempted to give
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a more declarative style of characterisation of PAS, more in the spirit of the logical ap-
proach to AS [19]. However [1] uses a two-valued semantics based on frames, rather
than the usual four values associated with the more typical Kripke model approach to
paraconsistent logics such as N−. Here we show that the Routley [29] semantics, with
the addition of a constant⊥ or a second negation ¬, will do equally well; the advantage
is that we know these models to be complete for N−.

3 Routley Semantics for N−

N− is the weak, paraconsistent version of Nelson’s constructive logic with strong nega-
tion. Formulas of N− are built-up in the usual way using the logical constants: ∧, ∨,
→, ∼, standing respectively for conjunction, disjunction, implication and strong nega-
tion. The only rule of inference for N− is modus ponens and the axioms are the axiom
schemata of positive logic:

P1. α → (β → α) P2. (α ∧ β) → α
P3. (α → (β → γ)) → ((α → β) → (α → γ)) P4. (α ∧ β) → β
P5. (α → β) → ((α → γ) → (α → (β ∧ γ))) P6. α → (α ∨ β)
P7. (α → γ) → ((β → γ) → ((α ∨ β) → γ)) P8. β → (α ∨ β)

plus the following axiom schemata involving strong negation taken from the calculus
of Vorob’ev [32,33] (where ‘α↔ β’ abbreviates (α → β) ∧ (β → α)):

N1. ∼ (α → β)↔ α ∧ ∼β N2. ∼(α ∧ β)↔ ∼α∨ ∼ β
N3. ∼(α ∨ β)↔ ∼α ∧ ∼β N4. ∼ ∼α↔ α

The main idea of Routley semantics is that the validity of negation ∼α at a world w is
equivalent to the falsity of α not at w as in classical logic but at some adjacent world
w∗1. To define Routley semantics for N− we have additionally to divide the set of
possible worlds into parts, unstarred and starred worlds. A Routley model for N− is a
quadrupleM = 〈W ∪W ∗,≤,∗ , V 〉 such that: W ∪W ∗ is a non-empty set (of worlds),
W ∩W ∗ = ∅,≤ is a partial ordering on W , ∗ is a bijection on W ∪W ∗, ∗(W ) = W ∗,
and V is a valuation function from Atoms ×W −→ {0, 1} satisfying the following
conditions: 1. u ≤ w ⇒ w∗ ≤ u∗, 2. w = w∗∗, 3. V (p,u) = 1 and u ≤ w imply
V (p,w) = 1.
V is extended to a valuation on all formulas via the following conditions:

V (ϕ ∧ (∨)ψ,w) = 1 iff V (ϕ,w) = 1 and (or) V (ψ,w) = 1
V (∼ϕ,w) = 1 iff V (ϕ,w∗) = 0

For implication, one distinguishes between starred and unstarred worlds as follows.

For w ∈W , V (ϕ → ψ,w) = 1 iff for every w′ ∈W such that w ≤ w′,
V (ϕ,w′) = 1 ⇒ V (ψ,w′) = 1.
For w ∈W ∗, V (ϕ → ψ,w) = 1 iff V (ϕ,w∗) = 1 ⇒ V (ψ,w) = 1.

1 A natural understanding of the ∗ operator is a moot point. For discussion and further links we
refer the reader to [5].
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A proposition ϕ is said to be true in a Routley modelM = 〈W,≤,∗ , V 〉, if V (ϕ, v) =
1, where v is an arbitrarily selected unstarred element of W . A formula is valid if it
is true in every Routley model. It is easy to prove by induction that condition 3 above
holds for any formula ϕ, ie V (ϕ,u) = 1 & u ≤ w ⇒ V (ϕ,w) = 1. Moreover
N− is complete for the Routley semantics in the sense that a formula is valid iff it is a
theorem of N−.

In the full Nelson logic, N, intuitionistic or weak negation ¬ is definable, eg by
¬ϕ := ϕ → ∼ϕ. In the paraconsistent N−, however, there are various options for
introducing an intuitionistic style negation, ¬. We shall consider a second negation ¬
defined via the constant⊥, ¬ϕ := ϕ → ⊥, characterised semantically via the following
condition:

V (⊥,w) = 0 for all w.

The logic obtained in this way we denote N−¬ . Note that validity of ∼-free formulas in
N−
¬ can be defined via unstarred worlds only. Moreover, this definition is identical with

the validity of formulas in Kripke semantics for intuitionistic logic. Therefore, N−
¬ is a

conservative extension of intuitionistic logic.

Proposition 1. N−
¬ = N− + {⊥→ p, p →∼ ⊥}

Proof sketch. The validity of formulas⊥→ p and p →∼ ⊥ is verified directly. The
completeness follows by an obvious modification of the original Routley proof. �

Thus, the logic N−¬ is identical with the logic N4⊥ studied in [17] and we can apply
to extensions of N−

¬ the results of [17].

4 Answer Set Semantics

We consider the version of answer set semantics defined for disjunctive logic programs
with two kinds of negation [7]. We use the syntax of N−

¬ to describe the rules or for-
mulas of programs. Strong negation is denoted therefore by ‘∼’ and the second, default
negation, usually written as ‘not’ will be denoted by ‘¬’. The formulas of disjunctive
programs therefore have the form

L1 ∧ . . . ∧ Lm ∧ ¬ Lm+1 ∧ . . . ∧ ¬ Ln → K1 ∨ . . . ∨Kk (1)

where each Li,Kj is a literal (atom or strongly negated atom) and we may have m = n
and m or n may be zero. A logic program Π is a set of such formulas. The set of all
literals in the language of Π is denoted by Lit. We assume the reader is familiar with
the usual definition of answer set [7] employing the notion of reduct. Paraconsisent
answer sets (PAS) are defined, following [30], in the same way but omitting the clause
((ii) of [7]) which essentially imposes consistency by making Lit the only inconsistent
answer set.

Some simple examples from [30] may help to illustrate the difference between an-
swer sets and PAS. For instance the program {∼A;¬B → A} has no answer sets but
an inconsistent PAS {A,∼A}, while the program {A;∼A;¬B → B} has Lit as its
only answer sets, but no paraconsistent answer sets. The reader is referred to [30] for
further properties of PAS and additional motivation.
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5 Here-and-There Models

In the semantics for intermediate or superintuitionistic logics, the so-called logic of
here-and-there can be captured by rooted frames with two elements, commonly denoted
by h and t and called ‘here’ and ‘there’, with h ≤ t. If we work instead in the lattice
of extensions of Nelson’s logic N−, we can consider here-and-there models as special
kinds of Routley models. In the obvious way therefore a Routley here-and-there model
can be represented as a Routley modelM = 〈W ∪W ∗,≤,∗ , V 〉, where W = {h, t}
comprises two worlds ‘here’ and ‘there’, such that h ≤ t, and W ∗ = {h∗, t∗} com-
prises the “starred” worlds. It follows that t∗ ≤ h∗. We now consider the relation
between Routley here-and-there models and answer sets, in particular paraconsistent
answer sets. We shall therefore assume that a second negation ¬ is present in the lan-
guage understood according to the above semantics for N−

¬ . The logic determined by
here-and-there Routley models according to the semantics of N−

¬ will be denoted by
N9. We prove (Proposition 6) that this logic is determined by a 9-valued matrix, which
explains the choice of notation.

Recently a frame based semantics has been presented by Alcantara et al [1] to pro-
vide a more declarative style of representation for paraconsistent answer sets. Their ap-
proach (henceforth ADP frames) is based on here-and-there style worlds and 2-valued
truth-valuations. In fact they call their models HT 2-models. Syntax is as for the logic
N−
¬ , but the frames employ no fewer than 3 accessibility relations to model the logi-

cal constants →,¬,∼. In addition the authors use point sets and so-called belief sets. It
turns out however that several items of this rather complicated machinery are redundant.
Once redundancies are removed it is easy to see that the HT 2-models can be replaced
without loss by Routley here-and-there models. We now indicate the steps to show this.

5.1 ADP Frames

[1] define frames based on point sets, where a point set P = 〈Q,≤〉, with Q a set and
≤ a partial ordering on Q. Propositions on P are upwards closed subsets of Q. Frames
are point sets together with acccessibility relations. According to [1], an HT 2 frame
is defined as follows. The underlying point set P = 〈Q,≤〉 is such that Q has four
elements that we will denote here by h, h∗, t, t∗, where h ≤ t and t∗ ≤ h∗. Secondly,
three accessibility relations are defined on P that we will denote here by R,R∼,R¬. R
is a ternary relation and R∼ and R¬ are binary relations determined by:

R(h, h, h),R(h, h, t),R(h, t, t),R(t, t, t),R(t, h, t),
R(t∗, t, t∗),R(t∗, t, h∗),R(t∗, h, t∗),R(t∗, h, h∗),R(h∗, h, h∗).
R∼(h, h∗),R∼(t, t∗),R∼(h∗, h),R∼(t∗, t),R∼(h, t∗),R∼(t∗, h).
R¬(h, h),R¬(t, t),R¬(h, t),R¬(t, h),R¬(h∗, h),R¬(t∗, h),R¬(t∗, t).

An HT 2 model M is formed from an HT 2 frame by assigning atoms to the four points
in accordance with the interpretation that propositions form upwards closed sets. In
other words if we denote the set of atoms true in w by W , then we have w ≤ w′ implies
W ⊆W ′. The assignment of atoms to points is extended to all propositions via standard
conditions for conjunction and disjunction and the following clauses:
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(M,w) |= ϕ → ψ iff ∀w′,w′′s.t.R(w,w′,w′′), (M,w′) |= ϕ ⇒ (M,w′′) |= ψ.
(M,w) |= ¬ϕ iff ∀w′s.t.R¬(w,w′), (M,w′) �|= ϕ
(M,w) |= ∼ϕ iff ∀w′s.t.R∼(w,w′), (M,w′) �|= ϕ

It is straightforward to check that HT 2 models are equivalent to Routley here-and-
there models. Let M be an HT 2 model. Then the corresponding Routley modelM =
〈W,W ∗,≤,∗ , V 〉 consists of the same four points or worlds h, h∗, t, t∗, such that for
any propositional atom p, and world w, V (p,w) = 1 ⇔ (M,w) |= p, and conversely.

Proposition 2. For all formulas ϕ and worlds w, V (ϕ,w) = 1 ⇔ (M,w) |= ϕ.

Proof sketch. By assumption the two models make the same truth assignment for atoms.
The truth conditions for conjunction and disjunction are also the same in each case. For
the remaining connectives one simply applies the definitions. The verification is tedious
but simple. We illustrate the case of strong negation; other cases are left to the reader.
By Routley semantics we have V (∼ϕ,w) = 1 iff V (ϕ,w∗) = 0. Consider the case
w = h. Then we have V (∼ϕ, h) = 1 iff V (ϕ, h∗) = 0. By the ADP semantics,
(M,h) |= ∼ϕ iff for all w s.t. R∼(h,w), (M,w) �|= ϕ iff (M,h∗) �|= ϕ (applying the
definition of R∼ and noting that by the hereditary condition and the fact that t∗ ≤ h∗,
(M,h∗) �|= ϕ implies (M, t∗) �|= ϕ). So V (∼ϕ, h) = 1 ⇔ (M,h) |= ∼ϕ. The
argument for other worlds w is analogous. �

We can therefore replace the rather complicated HT 2 models of [1] by simpler
Routley here-and-there models. Aside from simplicity, an advantage is that we know
that Routley models capture logics in the lattice EN− of extensions of Nelson’s logic
and with minor modification they capture the logic of Fitch and its extensions.

5.2 Minimal Models

Consider Routley here-and-there modelsM = 〈W,W ∗,≤,∗ , V 〉, where W = {h, t}
with h ≤ t, and W ∗ = {h∗, t∗}. More succinctly, representM as a pair of ordered pairs
(〈H,H∗〉, 〈T ,T ∗〉), where the upper-case letters denote the sets of atoms verified at the
corresponding point or world. Even more succinctly we can denote an unstarred, starred
pair in the form H and T, soM is represented simply as (H,T), with H = 〈H,H∗〉
and T = 〈T ,T ∗〉. Such pairs can be partially ordered as follows. We say in general that
H ≤ T if H ⊆ T and T ∗ ⊆ H∗. Notice that by the Routley semantics, if (H,T) is
a model then necessarily H ≤ T. This ordering can be extended to a partial ordering
� among models as follows. We set (H,T) � (H′,T′) if (i) T = T′; (ii)H ≤ H′. A
model (H,T) in which H = T is said to be total.

We are interested here in a special kind of minimal model that we call an equilibrium
model. Let Π be a theory. A modelM of Π is said to be an equilibrium model of Π
if (i)M is total; (ii)M is minimal among models of Π under the ordering �. In other
words an equilibrium model of Π has the form (T,T) and is such that if (H,T) is a
model of Π with H ≤ T, then H = T. The main property of equilibrium models is
expressed in the next proposition.

We introduce some notation. For a set X of atoms we set ∼X = {∼A : A ∈ X}
and denote by X the complement of X . Then, note that a literal L is true in a model
(H,T), just in case L ∈ H ∪ ∼H∗.
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Proposition 3. Let Π be a disjunctive logic program. A set of literals S is a paracon-
sistent answer set of Π just in case it can be represented in the form S = T ∪ ∼T ∗
where T and T ∗ are sets of atoms, and (T,T) is an equilibrium model of Π such that
T = 〈T ,T ∗〉.

Proof sketch. By Proposition 2, HT 2 models can be equivalently represented as Routley
here-and-there models (H,T). Using this representation, by Theorem 1 of [1], (H,T)
is a model of a disjunctive program Π iff the sets I = H ∪∼H∗ and J = T ∪∼T ∗ are
models of the reduct ΠJ . By Theorem 2 of [1], paraconsisent answer sets correspond
to total models (T,T) in which T satisfies a certain minimality condition. By this
condition, if (H,T) is a model of Π different from (T,T) but with H ≤ T, then
clearly I = H ∪ ∼H∗ is a model of ΠJ strictly contained in J = T ∪ ∼T ∗. But
this is impossible by the definition of answer sets. Hence paraconsistent answer sets
correspond to total models that are minimal under �. �

This shows the equivalence of paraconsistent answer sets and equilibrium models
in N9. However, notice that the notion of equilibrium model is defined for arbitrary
propositional theories, not only disjunctive logic programs. From the above proposition
it follows that any theories logically equivalent in N9 have the same equilibrium mod-
els. In general we say that two programs or theories, Π1 and Π2, are strongly equivalent
if for any set of formulas Π , Π1 ∪Π and Π2 ∪Π have the same equilibrium models.
So clearly any two theories equivalent in N9 are strongly equivalent. As in the ordinary
(non-paraconsistent) case, the converse also holds.

Proposition 4. Two propositonal theories, Π1 and Π2, are strongly equivalent if and
only if they are equivalent in N9.

The method of proof is similar to that of Theorem 1 of [13] adapted to take account of
strong negation and paraconstency. We omit the details.

Finally, to obtain ordinary answer sets for the non-paraconsistent case we add one
more condition on Routley models, namely we require for all worlds w, w ≤ w∗.
The notion of equilibrium is defined exactly as before and the resulting here-and-there
Routley models are axiomatised by the logic N5, studied in [11,22,23].

6 On the Logic N9

In this section we axiomatise the logic N9, prove that it can be defined via a 9-element
matrix and establish that it possesses the Craig interpolation property. To this end we
will use some facts from [17] concerning the algebraic semantics of N−

¬ and the in-
terrelations of the lattices of extensions EN−¬ and EInt, where Int is intuitionistic
logic. The lattice of logics EN−

¬ (EInt) consists of sets of formulas in the respective
language containing all N−

¬ -(Int-)tautologies and closed under the rules of substitution
and modus ponens, ie. a logic is identified with its set of tautologies. The meet-operation
in these lattices coincides with set-theoretical intersection and the join operation is the
closure of the sum of logics wrt substitution and modus ponens. If L ∈ EN−¬ (EInt)
and X is a set of formulas, then L + X denotes the least logic containing L and X .
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Recall that the algebraic semantics for Int and its extensions is provided by Heyting
algebras. An algebraic structure A = 〈A,∨,∧,→, 0, 1〉 is said to be a Heyting algebra
if its reduct 〈A,∨,∧, 0, 1〉 is a bounded lattice and the pseudo-complement a → b is
the greatest x such that a ∧ x ≤ b. Validity of formulas in Heyting algebras (A |= ϕ) is
understood in a usual way assuming that the unit 1 is the only distinguished element.

Intuitionistic logic Int coincides with the set of formulas valid in all Heyting al-
gebras. For any Heyting algebra A define the logic LA := {ϕ : A |= ϕ}. Clearly,
LA ∈ EInt. For a class K of Heyting algebras, LK =

⋂
{LA : A ∈ K}. If L = LK

we say that L is characterized by the class K. Every element of EInt is characterized
by some class of Heyting algebras.

6.1 Twist-Structures

Definition 1. Let A = 〈A,∨,∧,→, 0, 1〉 be a Heyting algebra. A full twist-structure
over A is an algebra A�� = 〈A × A,∨,∧,→,∼,⊥, 1〉 with twist-operations defined
for (a, b), (c, d) ∈ A×A as follows:

(a, b) ∨ (c, d) := (a ∨ c, b ∧ d), (a, b) ∧ (c, d) := (a ∧ c, b ∨ d)
(a, b) → (c, d) := (a → c, a ∧ d), ∼ (a, b) := (b, a),

⊥ := (0, 1), 1 := (1, 0).

A twist-structure overA is an arbitrary subalgebraB of the full twist-structureA�� such
that π1(B) = A (in which case also π2(B) = A), where πi, i = 1, 2, is a projection of
a direct product onto the ith coordinate.

For a Heyting algebraA denote byA��
0 a twist-structure overA with the universe

|A��
0 | = {(a, b) : a, b ∈ A, a ∧ b = 0}.

A valuation into a twist-structure B is defined in a usual way as a homomorphism of an
algebra of formulae into B. The relation B |=�� ϕ, where ϕ is a formula of a respective
language, means that π1v(ϕ) = 1 for any B-valuation v. For a formula ϕ, the relation
|=�� ϕ means that B |=�� ϕ for any twist-structure B.

Theorem 1. [17] Let ϕ be a formula. Then N−
¬ ( ϕ ⇔ |=�� ϕ.

Moreover, it was proved in [17] that algebras isomorphic to twist-structures form a
variety and that any logic extending N−

¬ is characterized by some subvariety of this
variety.

For a logic L ∈ EInt, define the N−¬ -extensions η−(L) and η(L) as follows

η−(L) = N−
¬ + L and η(L) = η−(L)+ ∼ p → (p → q).

Note that the logic η(Int) = N−¬+ ∼ p → (p → q) can be identified with the logic
N, because if we define in N the new constant⊥ :=∼ (p → p) it satisfies the two new
axioms of the logic N−

¬ . It was proved in [8] that η(L) is the least conservative exten-
sion of L in the lattice EN. In [17], it was stated that η−(L) is the least conservative
extension of L in the lattice EN−

¬ .
For any twist-structure A define the logic LA := {ϕ : A |=�� ϕ}. Then LA ∈

EN−
¬ .
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Proposition 5. Let A be a Heyting algebra and L = LA.

1. [17] η−(L) = LA��.
2. [8] η(L) = LA��

0 .

6.2 Axioms of N9

It it well known that the logic HT of here-and-there is determined by the two-element
Kripke frame or by the three-element Heyting algebra 3, where |3| = {0, 1/2, 1},
0 ≤ 1/2 ≤ 1. We prove now that N9 is determined by the twist-structure 3��.

Proposition 6. N9 = L3��.

Proof. LetM = (〈H,H∗〉, 〈T ,T ∗〉) be a Routley here-and-there model. Define a 3��

valuation vM by the following equivalences.

π1vM(p) = 0 iff p �∈ T π1vM(p) = 1/2 iff p ∈ T \H
π1vM(p) = 1 iff p ∈ H π2vM(p) = 0 iff p �∈ H∗

π2vM(p) = 1/2 iff p ∈ H∗ \ T ∗ π2vM(p) = 1 iff p ∈ T ∗

Clearly, the mappingM �→ vM establishes a one-to-one correspondence between
Routley here-and-there models and 3��-valuations. An easy induction on the structure
of formulas shows that π1vM(ϕ) = 1 iff ϕ is true at h inM and so at every unstarred
world ofM. �

Taking into account Proposition 5 we arrive at

Corollary 1. N9 = η−(HT ).

The logic of here-and-there is axiomatized over Int by the formula

p ∨ (p → q) ∨ ¬q.
Therefore, N9 is axiomatized by the same formula over N−

¬ . Note also that N5 =
η(HT ) and it is characterized by the five-element twist-structure 3��

0 , which explains
the choice of notation.2

6.3 Interpolation Property

We say that a logic L possesses the Craig interpolation property, for short CIP, if ϕ →
ψ ∈ L implies that there exists a formula χ such that ϕ → χ ∈ L and χ → ϕ ∈ L, and
χ has occurences of common variables of ϕ and ψ only.

The algebraic counterpart of this property is as follows. LetK be a class of algebras.
We say that K has an amalgamation property if for any algebras A0,A1,A2 ∈ K and
monomorphisms i1 : A0 ↪→ A1 and i2 : A0 ↪→ A2, there exists an algebra A ∈ K and
monomorphisms ε1 : A1 ↪→ A and ε2 : A2 ↪→ A such that ε1i1 = ε2i2. The triple
(A, ε1, ε2) is called an amalgam of A1 and A2 overA0.

It was proved in [15] that an intermediate logic possesses CIP if and only if the
variety of its models has an amalgamation property. The next statement can be obtained
by an easy modification of the proof from [15].

2 In [1] the authors also mention that propositions on their frames take 9 possible truth values.
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Proposition 7. Let L ∈ EN−
¬ . L possesses CIP if and only if the family of twist-

structures A such that A |=�� L has an amalgamation property.

Proposition 8. The logic N9 possesses CIP.

Proof. Recall that N9 = η−(HT ), and that models of N−
¬ are exactly twist-structures

over HT -models. In [15] it was proved that the latter possess the amalgamation prop-
erty. We verify that the same holds for N9-models.

Let A0,A1,A2 |= HT . Consider twist-structures B0, B1 and B2 over A0, A1

and A2, respectively, and their embeddings i1 : B0 ↪→ B1 and i2 : B0 ↪→ B2.
Then π1i1 embeds A0 into A1, and π1i2 embeds A0 into A2. There is an amalgam
(A, ε1, ε2) of A1 and A2 over A0. Lift up the monomorphisms ε1 and ε2 as follows.
Put (εi)��((a, b)) = (εi(a), εi(b)) for (a, b) ∈ Bi. It is not hard to check that (ε1)�� and
(ε2)�� are embeddings of B1 and B2 into A��. So we obtain the following diagram.

B0

B2

B1

A��

i1

i2

ε��
1

ε��
2

�
��

�
���

��

�
��

Commutativity of this diagram immediately follows from the equalities ε1π1i1 =
ε2π2i2. �

Note that CIP for N5 can be established in the same way.

7 Conclusions and Future Work

Extending the results of [19] and [1] we have shown how both ordinary and paracon-
sistent answer sets can be captured via possible worlds models due to Routley [29]. In
the case of PAS, the underlying logic, N9, has been identified axiomatically and alge-
braically, and an important metalogical property - interpolation - has been proved. A
consequence of our analysis is that PAS can easily be defined for arbitrary theories. An
interesting feature to emerge is that the underlying logic of PAS, although paraconsis-
tent, still extends intuitionistic inference (unlike say well-founded semantics), and is
still a conservative extension of the logic of here-and-there.

Answer set programming is already being applied in areas such as information
integration where data sources may be incomplete and inconsistent (see INFOMIX:
http://sv.mat.unical.it/infomix/). In this area paraconsistent reasoning may be a useful
extension to ordinary ASP, and here PAS may be worthy of further study.3 Follow-
ing Wagner [34] one can distinguish different styles of information processing in the
presence of contradictions. Our characterisation of PAS should provide a useful basis

3 Currently INFOMIX uses various database repair techniques to restore consistency prior to
query evaluation.
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for developing these issues further in the setting of logic programming. For example
we may want to assume explosiveness for one kind of statement and not for another;
eg one might distinguish essential information, where contradictions are not admitted,
from ”information noise”, where contradictions are irrelevant. We can also discuss dif-
ferent ways in which contradictions may be localised. In this respect, the logic N−

has the advantage of having no contradictory extensions [17]. It is not compatible with
contradiction as a scheme, ie. it admits only local contradictions. Another important
avenue for further research is the comparison of PAS with other approaches to paracon-
sistency in logic programming and nonmonotonic reasoning. In particular our purely
logical characterisation of PAS may facilitate comparison with paraconsistent logics in
general.
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Abstract. Multidimensional dynamic logic programs are a paradigm
which allows to express (partially) hierarchically ordered evolving knowl-
edge bases through (partially) ordered multi sets of logic programs and
allowing to solve contradictions among rules in different programs by al-
lowing rules in more important programs to reject rules in less important
ones. This class of programs extends the class of dynamic logic program
that provides meaning and semantics to sequences of logic programs. Re-
cently a semantics named refined stable model semantics has fixed some
counterintuitive behaviour of previously existing semantics for dynamic
logic programs. However, it is not possible to directly extend the def-
initions and concepts of the refined semantics to the multidimensional
case and hence more sophisticated principles and techniques are in or-
der. In this paper we face the problem of defining a proper semantics
for multidimensional dynamic logic programs by extending the idea of
well supported model to this class of programs and by showing that this
concept alone is enough for univocally characterizing a proper seman-
tics. We then show how the newly defined semantics coincides with the
refined one when applied to sequences of programs.

1 Introduction

In recent years some effort was devoted to explore the problem of how to update
knowledge bases represented by logic programs (LPs) with new rules. This allows,
for instance, to better use LPs for representing and reasoning with knowledge
that evolves in time, as required in several fields of application. The LPs updates
framework has been used, for instance, as the base of the MINERVA agent
architecture [14] and the action description language EAPs [3].

Different semantics have been proposed [1,2,5,6,12,15,17,19,18] that assign
meaning to arbitrary finite sequences P1, . . . ,Pm of logic programs, usually called
dynamic logic programs (DyLPs), each program in the sequence representing a
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supervenient state of the world. The different states may represent different time
points, in which case P1 is an initial knowledge base, and the other Pis are sub-
sequent updates of the knowledge base or as knowledge coming from different
sources that are (totally) ordered according to some precedence, or as different
hierarchical instances where the subsequent programs represent more specific
information. The role of the semantics of DyLPs is to employ the relationships
among different states to precisely determine the meaning of the combined pro-
gram comprised of all individual programs at each state. Intuitively, one can add,
at the end of the sequence, newer rules or rules with precedence (arising from
newly acquired, more specific or preferred knowledge) leaving to the semantics
the task of ensuring that these added rules are in force, and that previous or less
specific rules are still valid (by inertia) only as far as possible, i.e. that they are
kept as long as they are not rejected. A rule is rejected whenever it is in conflict
with a newly added one (causal rejection of rules). Most of the semantics defined
for DyLPs [1,2,5,6,12,15,17,19,18] are based on such a concept of causal rejection.
Multidimensional dynamic logic programs (MDyLPs) [13] generalize DyLPs by
considering, instead of sequences, partially ordered multisets of programs. This
generalization allows to combine in a single framework the possibility of having
hierarchically ordered knowledge bases, with evolution in time. While most of the
existing semantics1 for DyLPs coincide on a large class of program updates (cf.
[6,11]), there are situations in which the set of (dynamic) stable models (SMs)
differs from one semantics to the other. Usually such counter-examples show a
counterintuitive behaviour of the semantics when dealing with particular kinds
of recursive dependencies. Also the existing semantics for MDyLPs exhibit such
counterintuitive behaviour as it emerges from the following example which also
illustrates a possible usage of MDyLPs.

Example 1. Roughly speaking, a joint venture is a society of companies that
is administrated by a delegated administrator. The administrator can pursue
his own policy independent of the requests of the partners, though taking the
directives of the partners into account. Suppose that two companies α and β
constitute a joint venture j whose customers are other companies. The two com-
panies give some directives to the administrator, represented by programs Pα1

and Pβ1. The administrator has his own policy which we represent by program
Pj1. Moreover, both the companies and the administrator update their policies
from time to time. We represent such updates, respectively, by programs Pαt,
Pβt and Pjt where t is a time-stamp. Since the policy of the administrator has
precedence over the directives of α and β, we assign precedence to the Pjs over
the other programs. At any given time tk, the decisions of the administrator are
described by the semantics of the MDyLP computed at the most recent node
Pjt. The administrator respects a specific directive from a partner unless it con-

1 In this paper we restrict our study to semantics generalizing the stable models se-
mantics and that are based on causal rejection of rules. Semantics not based on
causal rejection like the ones defined in [17,19], or semantics which use more general
forms of rejection like the one presented in [18] are outside the scope of this paper,
and are only briefly mentioned in the conclusions.
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flicts either with a more recent directive of the same partner or with any of the
clauses representing the updates. For any order x, if cost(x, z) is true then z
represents the estimated expenses that the j should face in order to satisfy the
commission x. Let us assume that the directive of β is to not decline any order
whose cost is within a given limit C. This is encoded by the single rule program:
Pβ1 : not decline(X) ← cost(X,Z), Z ≤ C. On the other hand, α assigns a de-
gree of reliability to some customers and wants to decline any commission asked
by a customer who is not reliable enough. So, Pα1 contains:

decline(X)← comm(X,Y ), reliability(Y,K), rel limit(Z), K ≤ Z.

plus a database of facts reliability(C,K) for customers C, and a fact rel limit(li)
for representing the limit under which a customer is considered to be unreliable.
The initial policy of the administrator is to accept any commission that is ac-
ceptable and not declined, having also a set of rules for establishing when a
commission is acceptable. Moreover, whenever several orders are received from
the same costumer, if one order is accepted, then the others can not be declined.
So, Pj1 contains some rules for acceptable(X) plus:

accept(X)← acceptable(X),not decline(X). (1)
not decline(X)← accept(K), comm(X,Y ), comm(K,Y ). (2)

Let us suppose a commission x1 arrives from the company y, the commission is
acceptable, and the reliability of y is high enough. Hence the order is accepted.
At time t2 the administrator updates his policy by deciding that no commission
from the customer y will be declined. This is done by updating Pj1 with the
program Pj2 with the rule: not decline(X)← comm(X, y).

At time t3, α augments the limit of reliability. This is done by the update
Pα3 with the two facts not rel limit(li) and rel limit(new li). Suppose that at
time t4 a commission x2 arrives from y and the reliability of y is under the
new limit of reliability. The directives in Pα1 say to decline the commission.
Nevertheless the policy of the administrator encoded by the clause in Pj2 conflicts
with this directive. Since Pj2 has precedence over Pα1, the latter is rejected and
the order is accepted. Note how the partially ordered programs are used to
represent precedence among rules coming from different sources, as well as to
represent updates of rules.

So far we provided an example of how multidimensional dynamic logic pro-
grams work. We show now a problematic situation involving cyclic dependencies.
At time t5, another commission x3 arrives from a new costumer y2. The reliabil-
ity of y2 is below the current limit, but the estimated cost of x3 is below the limit
C and, moreover x3 is acceptable. Hence the directives of α and β collide. Since
the directives of the two partners are not comparable, none can overcome the
other. From an intuitive point of view the policy of j should not allow to judge
whether the order should be declined or not. Hence, intuitively the semantics
of the considered MDyLP should allow the administrator to detect the conflict
and specify, by a new update, whether to decline the new order or accept it.
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Unfortunately, none of the existing semantics for MDyLPs matches such
intuition. The rules 1 and 2 have cyclic instances for X = K. Such a cycle is
not relevant in the other examined cases. For X = K = x3, instead, the rule 2
rejects the rule in Pα1 thus allowing the semantics to have a model where the
commission x3 is not declined.

It is clearly possible to find also much more complex examples involving com-
plicated self dependencies among rules. Similar examples are known also in the
case of DyLPs. In [1] the authors propose the refined extension principle,which
should be satisfied by a proper semantics for DyLPs in order to avoid such coun-
terintuitive behaviour and then proposed the refined stable model semantics for
DyLPs that complies with such a principle. Unfortunately, as we show in sec-
tion 3, the definition of the refined semantics cannot be extended directly to
MDyLPs. Moreover, the refined extension principle is too weak for uniquely de-
termining one “right” semantics. For example, the trivial semantics that assigns
to each DyLP the empty set of models, satisfies the principle, which is obviously
unsatisfactory. We hence need stronger new criteria and techniques.

We begin this paper by, after recalling preliminary notions in Section 2,
providing insights of the existing semantics for DyLPs and MDyLPs and explain
why a new approach to the problem, based on stronger criteria, is in order.
Then, in Section 4 we introduce such a criterium by extending the notion of
well-supported model (WS model) [4,7] to DyLPs and MDyLPs. Fages [7] shows
the equivalence between the concept of stable model and WS model, i.e. given
a program P , an interpretation M is a stable model of P iff it is a WS model of
P . By extending the definition of well supported model to MDyLPs, we obtain
a new semantics for such class of programs. We also show how well supported
models do not show counterintuitive behaviour in the illustrated example and,
moreover, they provide new insights of the matrix of the behaviour of the other
semantics for MDyLPs. Finally, we show that the well supported model semantics
coincides with the refined semantics of [1] if we restrict to sequences of programs.
For this reason we refer to the defined semantics also as the refined semantics for
MDyLPs. Well-supported models do already provide a semantics for MDyLPs.
Such a descriptive characterization, however, is not completely satisfactory for
several reasons, the main one being the problem of finding a reasonable algorithm
for its computation. So, in Section 5, we provide an alternative, though equivalent
and more traditional characterization based on a fixpoint operator. We then
establish relationships between the well supported semantics and the existing
semantics for MDyLPs, and show that any WS model is also a model in the
existing semantics.

2 Background and Preliminaries

In the following, a propositional language L is a (possibly countably infinite) set
of atoms. A literal in L is an atom A of L or the (default) negation not A of an
atom of L. We say that A is the default complement of not A and vice versa.
Given a set of literals I, we say a literal L is true (resp. false) in I iff L ∈ I
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(resp. notL ∈ I). In the sequel a (two-valued) interpretation is a set of literals
of L such that for each atom A ∈ L exactly one of A or not A belongs to I. To
simplify the notation, whenever it is clear that we are talking about two-valued
interpretations we omit all its negative literals. Let L and L′ be two languages
such that L ⊂ L′. Let M be an interpretation over L′. We use the notation M |L
for the set of literals of M in L. Given two interpretations M and M∗ over L′,
we use the notation M ≡ |LM∗ for M |L ≡M∗|L.

2.1 Well-Supported Models

The semantic analysis which we make in this paper rests on the notion of level
mapping over a set of atoms L, where a level mapping � is a function from L to
the set of natural numbers. We also lift � to negative literals of the form not A,
where A is an element of L, by setting �(not A) = �(A). Given a conjunction
of literals C = L1, . . . ,Ln we further extend � by assigning to C the value
�(Li), where i is chosen such that the value of �(Li) is maximal, i.e. �(C) =
max({�(Li) : Li ∈ C}). For convenience, and by slight abuse of notation,
we assign the value −1 to the empty conjunction of literals. Our approach is
stimulated by recent results on uniform characterizations of different semantics
for LPs in terms of level mappings as introduced in [10] and extended in [9].
This perspective provides an additional tool and guidelines on how to obtain
reasonable new semantics for new classes of programs.

A normal logic program over a language L is any (possibly countably infinite)
set of rules of the form A ← body, where A is any atom of L and body is any
conjunction of literals of L. Several different (two-valued) semantics are being
used for assigning meaning to programs, including the supported model semantics
[4], the minimal supported model semantics [4] and the stable model semantics
[8]. Given any program P , the set of all supported models (SU(P )), the set of all
minimal supported models (MSU(P )) and the set of all stable models (SM(P ))
of P are related by SU(P ) ⊇MSU(P ) ⊇ SM(P ). For large classes of programs
these sets of models coincide, but there are particular cases where the inclusions
above are strict.

Example 2. Consider the program P : A ← A. P has unique SM ∅ which
coincides with the unique minimal supported model. It has {A} as a second
supported model. All the cited semantics have ∅ as unique model of the program
consisting of the empty set of clauses. Hence, for the supported model semantics
adding tautologies of the form A← A to a program may change its semantics.

Example 3. Consider now P1 : A ← not A. A← A. P1 has no stable models
but has {A} as unique minimal supported model. The program P2 : A← not A,
has no minimal supported model. Hence, again, the introduction of the tautology
A← A has changed the semantics of the program.

Stable models for normal LPs can be characterized in terms of level mappings,
and in this disguise they are termed well-supported models [7]. A model is well-
supported iff it is possible to define a level mapping over the literals of the
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language, such that a literal A belongs to the model iff there is a rule in the
program whose head is A, whose body is true in the considered model and the
level of A is greater than the level of any atom in the body. Formally:

Definition 1. Let P be a normal logic program over the language L. An in-
terpretation M over L is a well-supported model of P iff i) M is a model
of P and ii) there exists a level mapping � defined over L, such that for each
atom A in M there exists a rule A← A1, . . . , An,not B1, . . . ,not Bm with M |=
A1, . . . , An,not B1, . . . ,not Bm and �(A) > �(Ai) for each Ai with 1 ≤ i ≤ n.

As formalized in the following result of [7], the WS models of a program P
coincide with its stable models.

Theorem 1. Let P be a normal logic program over L. An interpretation M
over L is a well-supported model of P iff it is a stable model of P .

2.2 Semantics for DyLPs and MDyLPs

To represent negative information in logic programs and their updates, DyLPs
use generalized logic programs (GLPs) [16], which allow for default negation not
only in the premises of rules but also in their heads. A GLP over a language
L is any (possibly countably infinite) set of rules of the form L0 ← L1, . . . ,Ln,
where each Li is a literal of L. Given a rule τ as above, by hd(τ) we mean L0

and by B(τ) we mean {L1, . . . ,Ln}.
A dynamic logic program P over a language L is a finite sequence P1, . . . ,Pm,

where all the Pi’s are GLPs over L. We call the Pis updates. A multidimensional
dynamic logic program MP is any partially ordered finite multiset of GLPs.
Let M be a set of indices for the elements of MP , and let ≺ be the partial
order defined over MP. For any index i, by Pi we denote the element of MP
associated with i, and we call it an update. We often use the notation i ≺ j
instead of Pi ≺ Pj . Let τ and η be two rules appearing in MP. As an abuse
of notation, we also use the notation τ ≺ η for denoting that τ and η belong,
respectively, to the updates Pi and Pj with Pi ≺ Pj . Two rules τ and η are said
to be not comparable iff neither τ ≺ η nor η ≺ τ is true. For elements Pi and
Pj of M, we say that Pi is less recent than Pj iff i ≺ j. Let Pn be an update
of MP . The genealogy of Pn, denoted by MPn, is the subset of the elements
of MP which are less recent than Pj plus Pn itself. We use ρ (P) to denote
the multiset of all rules appearing in MP and ρ(Pn) to denote the multiset of
all rules appearing in MPn. Note that, if the order defined over the MDyLP
MP consisting of m elements is a total order, thenMP is the DyLP P1, . . . ,Pm

where Pi denotes the ith element ofMP such that Pi ≺ Pj iff i < j.
The dynamic stable models semantics for MDyLPs (DS) is defined in [13]

by assigning to each MDyLP a set of dynamic stable models. The basic idea
of the semantics is that, if a later rule τ has a true body, then former rules in
conflict with τ are rejected. Moreover, any atom A for which there is no rule
with true body is considered false by default. The semantics is then defined by a
fixpoint equation that, given an interpretation I, tests whether I has exactly the
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consequences obtained after removing from the multiset ρ (Pn) all the rejected
rules, and imposing all the default assumptions given I. Formally:

Definition 2. Let MP be any MDyLP over language L , Pn be an update of
MP and M be a two valued interpretation. Define

Default(MPn,M) = {not A |� ∃A← body ∈ ρ (Pn) : body ⊆M}
Rej(MPn,M) = {τ ∈ Pi| ∃ η ∈ Pj : i ≺ j, τ !" η,B(η) ⊆M},

where τ !" η means that τ and η are conflicting rules, i.e. the head of τ is the
default complement of the head of η. Then M is a dynamic stable model of
MPat Pn iff M is a fixpoint of Γn

MP , defined by

Γn
MP(M) = least (ρ (Pn) \Rej(MPn,M) ∪Default(MPn,M))

where least(P ) denotes the least Herbrand model of the definite program obtained
by considering each negative literal not A in P as a new atom2.

Other semantics for either DyLPs and MDyLPs based on causal rejection
are the justified update (JU) [15] and the update programs semantics (UP) [6].
The latter is equivalent to the semantics proposed in [5]. All these semantics
are extensions of the stable model semantics for normal and generalized LPs [8];
relations among them have been studied in [11,12], and the main result is as
follows. Given any MDyLP MP, let UP(P),JU(P),DS(P) and be the set of
models of P according to, respectively, the update programs, the justified up-
date, the dynamic stable for MDyLPs. Then, as showed in [12,11] the following
(possibly strict) inclusions hold:

UP(P) ⊇ JU(P) ⊇ DS(P) (3)

3 Some Considerations on the Existing Semantics

As shown in [11] and [6], all the cited semantics for MDyLPs based on causal
rejection coincide on large classes of programs. The examples where these seman-
tics differ involve cyclic dependencies among rules, similar to the one illustrated
in the example 1. As stated in the introduction, all the existing semantics for
MDyLPs (wrongly) coincide on the program of example 1, i.e. they allow the
program to have a model where the commission is not declined. Note that this
is a consequence of the cycle introduced by the instances of the rules 1 and 2. In
fact, the MDyLP obtained by removing the mentioned instances of the rules has
no model according to any of the cited semantics. Indeed these two rules that
should not affect the semantics allow somehow an undesired model.

Analogous behaviours are known also in the case of DyLPs as discussed in [1],
where examples are given where cycles or even tautologies generate counterintu-
itive behaviour. In particular, all the semantics show counterintuitive behaviour
2 Whenever clear from the context we will omit the MP in any of the above defined

operators.
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in cases where conflicting rules appear in the same update. In [1], the authors
introduce the refined extension principle as a principle that any semantics should
satisfy in order to avoid such behaviour. Moreover, the refined dynamic stable
model semantics [1] or simply refined semantics for DyLPs is defined. Such se-
mantics obeys the refined extension principle and, in fact, it avoids the mentioned
counterintuitive behaviour. The definition of the refined semantics is the same of
definition 2 but replacing the MDyLPMP with a DyLP P and replacing i ≺ j
in the rejection operator by i ≤ j. Intuitively, whenever rules with true body
and with heads, respectively, A and notA appear in the same update Pi they
reject each other. Moreover they reject also all the previous rules with either
head A and not A, and finally they also reject the default assumption not A.
Hence, unless a new rule with head A or not A and true body appears in a more
recent update, the considered program has no model because it is not possible
to derive neither A nor not A. The refined semantics (RS) for DyLPs is, among
the cited semantics, the one that admits the less number of models. Hence, if we
restrict to DyLPs, we can refine the inclusions 2.2 as follows

UP(P) ⊇ JU(P) ⊇ DS(P) ⊇ RS(P) (4)

Unfortunately, the technique of mutual rejection of rules in the same state cannot
be extended to the class of MDyLPs. In fact, if we extend directly the definition
of refined model to MDyLPs, Example 1 still exhibits an undesired model. This
originates from the fact that, in multidimensional case, unlike in the linear one,
two rules may be non comparable even if they do not belong to the same up-
date. If, instead we allow non comparable rules to reject each other, the obtained
semantics allows too few models. Let us consider for instance the following pro-
gramMP P1 : A P2 : not A P3 : A P4 : not A P1 ≺ P2 P3 ≺ P4 According to
the proposal above, the rules in P1 and P4 reject each other, as well as the ones
in P2 and P3. The default assumption is rejected as well and, as a result, we
cannot derive neither A nor not A and henceMP would have no model. We re-
gard this as counterintuitive, since, according to causal rejection, the facts A are
rejected and {not A} should be the unique model of the program. Moreover, this
last counterintuitive behavior is not captured by the refined extension principle
since this principle only ensures that, whenever it is satisfied, the introduction
of particular kind of rules does not allow undesired models. Here the problem
is exactly the opposite: the proposed semantics would have too few models. We
conclude that it is simply not possible to hack the definition of the refined se-
mantics in order to apply it to MDyLPs nor can we refer to the refined extension
principle as a tool for univocally determine a semantics. What is needed is an
entirely new methodology to attack the problem. The next section introduces
such a methodology.

4 Well-Supported Models for MDyLPs

As we see from equation (4), the existing semantics for DyLPs can be ordered in
a sequence where each semantics is a refinement of the previous one. Going right
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in the sequence, the conditions for an interpretation to be accepted as a model
become stricter. It seems that research is trying to discard bad models from the
semantics and to keep only good models. Is this really the case? Moreover, can we
consider the sequence ended by the refined semantics, or do we need to further
refine it? To answer these questions we need a formal definition of what we
mean by good model. Recalling section 2.1, we can see an interesting historical
parallelism between the evolution of semantics for DyLPs and the evolution of
two-valued semantics for normal LPs, where the supported, minimal supported
and stable model semantics are successive refinements. We also note similarities
between examples 1 and 2, 3: in them, rules that should not play any semantic
role change the behavior of some semantics by introducing more models. In the
static case, this behaviour is rectified by the introduction of the concept of well-
supported model. Guided by this historical perspective, we extend the notion of
WS model to MDyLPs.

We first note that in the definition of well-supported models for normal LPs
only the level of the positive literals in the body of a rule is considered. This
happens because within normal LPs only positive literals are derived by rules,
and the negative ones follow by negation by default. For DyLPs and MDyLPs,
however, also negative literals can be derived by rules, since we allow negative
literals in rule heads. More importantly, in the static case a rule plays a role
only for deciding whether or not a given literal should be true or not. In the
dynamic case, a rule is also used for rejecting other rules. Hence the concept of
well-supportedness should be applied not only to the derivation of literals but
also to the rejection of rules. More precisely, we require well-supported rejection:
a rule can reject another rule in a previous update iff the body of the rejecting
rule is true and the level of the body of the rejecting rule is less than the level
of its head. The following definition formalizes this idea using level mappings.

Definition 3. Let MP be any MDyLP over some language L, let Pn be an
update of MP, � be any level mapping over L and M be any two-valued inter-
pretation over L. Define the set of rejected rules w.r.t. � by3

Rej�(MP ,M,n) = {τ ∈ Pi | ∃η ∈ Pj : i ≺ j ) n, τ !" η,
M |= body(η), �(hd(η)) > �(B(η)) }.

Given the considerations above and Definition 3, it is now easy to extend the
concept of WS model to MDyLPs. An interpretation M is a WS model if it is
possible to find a level mapping such that: M is a model of all the rules that
are not rejected w.r.t. the given level mapping and such that, for each atom A
which is true in M , a non-rejected rule with head A exists, whose body is true
and has level less than the level of A. The formal definition follows.

Definition 4. Let MP be any MDyLP over some language L and let M be
an interpretation over L, Pn be an update of M and M be any interpretation
over L. We say that M is a well-supported model at Pn iff there exists a
3 Hereafter, we use the simplified notation Rej	(M, n) whenever this causes no ambi-

guity.
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level mapping � over L such that i) M is a model of ρ(P ) \ Rej�(M,n) and ii)
∀ A ∈ M ∃ τ ∈ ρ(P ) \ Rej�(M,n) such that hd(τ) = A, �(A) > �(B(τ)) and τ
is supported by M .

If we consider again the program of the example 1, we find that the model where
the commission x3 is not declined is not a well supported model. This also implies
that the well supported model semantics for MDyLPs does not coincide with any
of the existing semantics for such class of programs. If the partial order defined
over the programs is a total one, then the considered program is a DyLP. In this
case, it is possible to prove the analogue of Theorem 1.

Theorem 2. Let P be any DyLP and M be an interpretation. Then M is a
refined stable model of P iff it is a well-supported model of P.

For this reason, we refer to the defined semantics also as to the the refined
semantics for MDyLPs. We have shown that the WS models coincide with the
refined SMs for a DyLP.

Some comparisons of the refined semantics to other semantics for MDyLPs
are in order. We would expect that any well supported model of a given program
is also a model in any of the existing semantics for MDyLPs. In fact this result
holds, as stated by the next theorem.

Theorem 3. Let MP be any MDyLPs in the language L, Pn be an update of
MP and M be a well supported model of MP at Pn. Then M is also a model
of MP in any of the semantics defined in [13,5,11].

It is now easy to understand the different behaviour of the considered semantics.
Two distinguished semantics differ for those cases when one semantics is a better
approximation of the semantics of well-supported models than the other one.

5 Fixpoint Characterization for Well-Supported Models
of MDyLPs

Well-supported models define a semantics for MDyLPs. However, this charac-
terization is purely descriptive, which is obviously not entirely satisfactory for
computational purposes. Moreover, to understand from this definition whether a
given interpretation is a WS model of a given MDyLP, we have to face the prob-
lem of finding a corresponding level mapping or show that such a level mapping
does not exist. This does not seem to be a reasonable approach for computing
the semantics and, furthermore, may not lead to quick ways of testing whether
a given interpretation is a well-supported model or not. For these reasons, we
present an alternative characterization based on a fixpoint operator. We charac-
terize our models as the fixpoints of an operator defined from interpretations to
interpretations, in the spirit of the Gelfond-Lifschitz operator [8]. Given a pro-
gramMP and an update Pn with index n, we associate with any pair (MP ,n)
an operator ΓS

(MP,n) as in Definition 7 below. We then obtain a characterization
of the well-supported models ofMP as the fixpoints of this operator.
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The semantics of a MDyLP MP is defined with respect to the updates
Pn of MP. To establish the semantics consider only the genealogy of Pn. The
underlying idea of the semantics is to collect in a single program all the rules of
the given MDyLP and add new rules and predicates that specify whether a rule
is rejected or not.

LetMP be a MDyLP over L, Pj , Pk be programs ofMP and j ≺ k. If there
exists a rule γ in Pk with head L, then every rule in Pj with head notL could
be rejected, depending on whether the body of γ is true or not. Formally:

Definition 5. Let MP be an MDyLP over the language L. Add new atoms
rej(L, i) not belonging to L, where L is a literal in L and i ranges over the indices
of the updates of MP. The set of rejecting rules over the extended language is
then defined as follows:

Rj(MP) = { rej(notL, j) ← body. | L← body. ∈ Pk ∧ j ≺ k }

Let MP be a multidimensional DyLP over L, n be an index, L be a literal of
L, M be an interpretation over L, Pi, Pj and Pk be programs of MPn and τ i

and ηj be rules in, respectively Pi and Pj . We say that ηj is a threat for L in
i, or alternatively that L is threatened by ηj iff the head of ηj is notL, its body
is true in M , and j �≺ i. We say that ηj is a threat for some other rule τ i in Pi

iff it is a threat for its head in i. A literal (rule) is considered to be strictly safe
in Pi iff all its threats are rejected. Intuitively, derivations should only be made
from safe rules. The main idea behind our definition is that a rule can be used
to derive consequences iff it has already been established that the rule is safe. To
achieve this result, we first consider the GLP given by the union of all the rules
in MP with a new atom in the body of each rule which is satisfied only if the
considered rule is safe. Then we introduce rules specifying which threats should
be rejected in order to consider a literal (rule) as safe. Finally we introduce rules
determining when a threat is rejected. Formally:

Definition 6. Let MP be any multidimensional dynamic logic program in the
language L. Add new atoms safe(L, i) not belonging to L, where L is a literal
in L and i ranges over the indices of the updates ofMP. We denote by Σ(MP)
the following set of rules.

Σ(MP) = {L← body, safe(L, i)|L← body ∈ Pi}

Let M be an interpretation over L. The set of conditions for a literal L to be
strictly safe at Pi is defined as follows.

condS(MP,M,L, i) = {rej(notL, j) | ∃η ∈ Pj , j �≺ i, M |= B(η)∧
hd(η) = notL}

By abuse of notation, condS(MP,M,L, i) also denotes the conjunction of all
the literals in condS(MP ,M,L, i). The set of strictly safe rules is defined as

SafeS(MP ,M)) = {safe(L, i)← condS(MP,M,L, i)|∃ τ ∈ Pi : hd(τ) = L}.
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Having specified the condition for a rule to be allowed to derive literals, we then
add the set of default assumptions and compute the least model of the obtained
program. Finally we discard the auxiliary literals computed.

Definition 7. Let MP be any multidimensional dynamic logic program in the
language L, Pn be an update of MP and M be an interpretation over L. We
define the operator ΓS

(MP,n) on interpretations over L as follows.

ΓS
(MP,n)(I) = least (Σ(MPn) ∪ SafeS(MPn, I) ∪

Rj(MPn) ∪Default(MPn, I) )|L

We are finally ready to define the refined semantics for MDyLPs. A refined
multi stable model (RMSM) of an MDyLP at Pn is any fixpoint of the ΓS

(MP,n)

operator.

Definition 8. Let MP be any multidimensional dynamic logic program in the
language L, Pn be an element of MP and M be any interpretation over L. We
say that M is a refined multi stable model of MP at Pn iff M = ΓS

(MP,n)(M).

The goal of Definition 8 is to provide a fixpoint characterization of the WS
models of Definition 4. Indeed, this has been accomplished, as shown by the
following theorem.

Theorem 4. Let MP be any MDyLP in the language L, n be an index and M
be any two valued interpretation over L. Then M is a refined multi stable model
of MP at Pn iff M is a well-supported model of MP at Pn.

6 Conclusions and Future Research

The initial purpose of the paper was to provide a semantics for MDyLPs based
on causal rejection that can be properly considered to be the stable models-
like semantics for such classes of programs. To obtain this, we extended the
definition of well-supported model to the dynamic case. It turns out that, for
DyLPs, our characterization coincides with the refined semantics. We provided
also a fixpoint characterization of such semantics and established relationships
between the new semantics and existing ones. Is it possible to conclude that the
refined semantics is the proper extension of the SMs semantics to DyLPs and
MDyLPs? Unfortunately there exists no theoretical result which is equivalent
to the statement “this is the correct semantics”. Nevertheless we claim that the
characterizations given herein provide some evidence that further refinements of
the semantics will not be necessary.

As mentioned in the introduction, there exist stable models-like semantics
for LP updates [17,19,18] which are not (or at least not exclusively) based on
the concept of causal rejection. Unlike those based on causal rejection, such se-
mantics significantly differ from the refined semantics, and among each other,
in properties, behaviors and underlying concepts. Comparisons of the semantics
defined in [17,19] can be found in [12]. Given the underlying differences, it is pos-
sible that in the future specific application areas will be found where different
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approaches to LP updates are needed for different applications. It is our strong
opinion that DyLPs and MDyLPs can be a useful tool in several application
areas, in particular in those areas related to web-oriented applications for AI
where powerful reasoning capabilities have to be applied in highly dynamic en-
vironments and where merging knowledge from different sources is an important
and challenging task.
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Abstract. Evolution is an important sub-area of study in biological sci-
ence, where given a set of taxa, the goal is to reconstruct their evolu-
tionary history, or phylogeny. One very recent approach is to predict a
local phylogeny for every subset of 4 taxa, called a quartet topology, and
then to assemble a phylogeny for the whole set of taxa satisfying these
predicted quartet topologies. In general, the predicted quartet topologies
might not always agree with each other, and thus the objective function
becomes to satisfy a maximum number of them. This is the well known
Maximum Quartet Consistency (MQC) problem. In the past, the MQC
problem has been solved by dynamic programming and the so-called
fixed-parameter method. Recently, we have proposed to solve the MQC
in answer set programming. In this note, we summarize the theoretical re-
sults of this approach and report new experimental results for the purpose
of comparison, which show that our approach in answer set programming
is favored over the existing approaches based on dynamic programming
and fixed-parameter method. In particular, some of the hard instances
(where the error ratio is high) that were not reported to be solved in other
approaches can now be solved in our approach.

1 Introduction

In recent years, quartet based phylogeny construction methods have received consider-
able attention in the computational biology community. In comparison with other phy-
logeny construction methods, an advantage of quartet based methods is that they can
overcome the data disparity problem [1]. Given a taxa set S, quartet based phylogeny
construction methods first try to build an unrooted phylogeny for every (or most) subset
of four taxa. This four taxa set is called a quartet and the phylogeny associated with
that quartet is called a quartet topology. For each quartet, there are 3 possible quar-
tet topologies associated with it. For example, Fig. 1 shows the 3 quartet topologies
for quartet {s1, s2, s3, s4}. For simplicity, we use [s1, s2|s3, s4] to denote the quartet
topology in which the path connecting s1 and s2 doesn’t intersect the path connecting
s3 and s4 (cf. Fig. 1(a)). Given a phylogeny T on a set of taxa S and a quartet topology
q on {si, sj , sk, s�}, if the path structure connecting si, sj , sk, and s� in T is the same
as q, then T satisfies q or q is consistent with T . Given a set Q of quartet topologies,
the recognition problem, called the Quartet Compatibility Problem (QCP), is to deter-
mine if there is a phylogeny T on S satisfying all the quartet topologies in Q. The more

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 369–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



370 G. Wu, J.-H. You, and G. Lin

�s2
�

��
�s4

�
��

�s1
�

��

�s3
�

��

(a)
�s3
�

��
�s4

�
��

�s1
�

��

�s2
�

��

(b)
�s4
�

��
�s3

�
��

�s1
�

��

�s2
�

��

(c)

Fig. 1. Three possible quartet topologies for quartet {s1, s2, s3, s4}: (a) [s1, s2|s3, s4], (b)
[s1, s3|s2, s4], and (c) [s1, s4|s2, s3]

interesting computational problem is the optimization problem where we cannot find a
phylogeny to satisfy all the quartet topologies in Q and the goal is to construct one to
satisfy as many quartet topologies as possible. This is the so-called Maximum Quartet
Consistency Problem (MQC), and it is NP-hard [2].

A few attempts have been made to solve the MQC problem optimally. Ben-Dor et
al. [1] present a dynamic programming approach whose time complexity is O(3nn4),
where n = |S| is the number of taxa. The fixed-parameter method proposed by Gramm
and Niedermeier [3] can return an optimal phylogeny in O(4kn + n4) time, where k is
the exact number of of inconsistent quartet topologies.

2 Solving the MQC Problem with Answer Set Programming

We consider the rooted phylogeny, as the quartet consistency property is independent
of whether or not a phylogeny is rooted. Given a set of taxa S = {s1, s2, . . . , sn} and a
rooted phylogeny T on S, the least common ancestor of two leaf nodes si and sj in T is
the common ancestor of si and sj farthest away from the root, denoted as LCA(si, sj).
A labeling scheme for T is a mapping from the set of internal nodes in T to the set
of integers {1, 2, . . . ,n − 1}. Note that there are exactly (n − 1) internal nodes in T
and each node can be labeled by any number in the set {1, 2, . . . ,n − 1}. A labeling
scheme is ultrametric if along any root to leaf path, the labels of the internal nodes
on the path are strictly decreasing. One rooted phylogeny together with an ultrametric
labeling scheme is called an ultrametric phylogeny. Let M be an n × n symmetric
matrix in which M(i, j) denotes the label of the internal node LCA(si, sj). A triplet
(i, j, k) for M is ultrametric if and only if there are two equal values among M(i, j),
M(j, k), and M(i, k) and they are greater than the third value. M is ultrametric if every
triplet (i, j, k) for M is ultrametric. An n × n ultrametric matrix M satisfies a quartet
topology [si, sj |sk, s�] if min{M(i, k),M(j, �)} > min{M(i, j),M(k, l)} holds.

Theorem 1. [5] Given a quartet topology set Q and an ultrametric phylogeny T on
S, T satisfies a maximum number of quartet topologies in Q if and only if the corre-
sponding ultrametric matrix M satisfies a maximum number of quartet topologies in Q.

Theorem 1 tells that the MQC problem is equivalent to the search for an ultrametric
matrix to satisfy a maximum number of quartet topologies. In such a way, the MQC
problem can be formulated into a constraint programming problem as shown in Fig. 2.
This formulation can be easily translated into answer set programming rules and im-
plemented in Smodels [4]. For each variable M(i, j) with its domain {1, 2, . . . ,n −
1}, we use one atom m(i, j, k) to represent that M(i, j) takes the value k. That is,
when m(i, j, k) is true, M(i, j) = k. We know that each variable should take ex-
actly one value in the domain. So we use a cardinality rule to represent this constraint.
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INPUT:
– A set of n taxa S = {s1, s2, . . . , sn}. n2 variables M(i, j), where 1 ≤ i, j ≤ n. The

domain of each variable M(i, j), where i �= j, is {1, 2, . . . , n − 1}; M(i, i) = 0, for
all i.

– A set Q of quartet topologies on S. Each quartet topology [si, sj |sk, s	] is transformed
into a quartet consistency constraint q(i, j, k, �).

CONSTRAINTS:
– Symmetry Constraint: M(i, j) = M(j, i), for all 1 ≤ i, j ≤ n, i, j distinct;
– Ultrametric Constraint: ultra(i, j, k), for all 1 ≤ i, j, k ≤ n, i, j, k distinct;
– Quartet Consistency Constraint: q(i, j, k, �), for quartet topology [si, sj |sk, s	] ∈ Q.

GOAL:
– Find a solution to M(i, j) for all 1 ≤ i, j ≤ n, such that all the symmetry and

ultrametric constraints are satisfied and the number of satisfied quartet consistency
constraints is maximized.

Fig. 2. Formulating the MQC problem into a constraint programming problem

For example, “1{m(1, 2, 1),m(1, 2, 2),m(1, 2, 3),m(1, 2, 4)}1” means that variable
M(1, 2) takes exactly one value in the domain {1, 2, 3, 4}. Similarly, we use one atom
ultra(i, j, k) to represent that the triplet (i, j, k) for M is ultrametric if ultra(i, j, k) is
true, and one atom q(i, j, k, �) to represent that [si, sj |sk, s�] is in the optimal phylogeny
if q(i, j, k, �) is true. Based on this translation of variables, the ultrametric constraints
and quartet consistency constraints can be formulated as:

ultra(i, j, k)← equal(i, j, j, k), gter(i, j, i, k)
ultra(i, j, k)← equal(i, j, i, k), gter(i, j, j, k)
ultra(i, j, k)← equal(i, k, j, k), gter(i, k, i, j)

q(i, j, k, �)← gter(i, k, i, j), gter(j, �, i, j)
q(i, j, k, �)← gter(i, k, k, �), gter(j, �, k, l)

where equal(i, j, j, k) means M(i, j) = M(j, k), and gter(i, j, j, k) means M(i, j) >
M(j, k). Finally, we use a maximize statement to find a stable model that contains the
maximum number of true assignments of q(i, j, k, �). For example, for n = 5,

maximize [ q(2, 3, 4, 5) = 1, q(1, 4, 3, 5) = 1, q(1, 5, 2, 4) = 1,
q(1, 5, 2, 3) = 1, q(1, 4, 2, 3) = 1]

3 Strategies to Speed Up the Computation

Observe that an ultrametric matrix M is symmetric and therefore instead of putting the
symmetry as constraints, we would rather use it to reduce the number of variables. Only
M(i, j) with 1 ≤ i < j ≤ n becomes a variable, which gives only 1

2 (n2 − n) variables
at the end. Consequently, we remove all symmetry constraints from the constraint set.
Similarly, we would only consider ultrametric constraints ultra(i, j, k) such that 1 ≤
i < j < k ≤ n and quartet consistency constraints q(i, j, k, �) such that 1 ≤ i < j ≤ n,
1 ≤ k < � ≤ n, and 1 ≤ i < k ≤ n.

In the following, we introduce two new speedup strategies used in our Smodel pro-
grams. For any rooted phylogeny T , one natural ultrametric labeling scheme is to label
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each internal node by its height. Therefore, the domain of variables M(i, j) can be
reduced to {1, 2, . . . , h}, where h denotes the height of the optimal phylogeny.

Theorem 2. Given a quartet topology set Q on taxa set S = {s1, s2, . . . , sn}, there
exists an optimal phylogeny whose height is at most .n

2 /.
Theorem 3 lists some of the propagation rules that have been implemented into our

Smodels programs.

Theorem 3. For every set of five taxa {si, sj , sk, s�, sm},
– if [si, sj |sk, s�] and [si, sj |sk, sm] are in an optimal phylogeny, then [si, sj |s�, sm]

must be in the optimal phylogeny too, i.e.,
q(i, j, �,m) ← q(i, j, k, �), q(i, j, k,m)

– if [si, sj |sk, s�] and [si, sk|s�, sm] are in an optimal phylogeny, then [si, sj |sk, sm],
[si, sj |s�, sm], and [sj , sk|s�, sm] must be in the optimal phylogeny too, i.e.,

q(i, j, k,m) ← q(i, j, k, �), q(i, k, �,m)
q(i, j, �,m) ← q(i, j, k, �), q(i, k, �,m)
q(j, k, �,m) ← q(i, j, k, �), q(i, k, �,m).

4 Computational Results

We have shown in [5] some preliminary computational results on our answer set pro-
gramming approach. In this note, we make comparisons among the approaches pro-
posed to solve the MQC problem optimally, including the dynamic programming by
Ben-Dor et al. (denoted as DP) [1], the fixed-parameter method (denoted as GN) [3],
and our answer set programming (denoted as ASP). We generated datasets defined by a
pair (n, p) where for each dataset, n is the number of taxa and p records the percentage
of quartet errors in the given complete quartet set. We used quartet error percentage
p = 1%, 5%, 10%, 15%, 20%, 30%. The reported experimental results were done on a
computer with an AMD 2.2GHz Opteron processor and 2.5GB main memory. Some of
the running time results are summarized in Table 1. These results showed that the quar-
tet error rate may affect the performance greatly, typically when the number of taxa
under consideration exceeds 15. When the error rate was less than 10%, the problem
could be solved more efficiently.

In our experiments, we found that the lookahead function employed by Smodels
played a very important role during the search of an optimal ultrametric matrix. In
particular, we solved the Smodels programs without lookahead on the same datasets of
10 and 15 taxa reported in Table 1. The average computational times were 2 minutes
and 5 minutes, respectively. These results showed that the lookahead in Smodels made
hundreds of speedups to our Smodels programs and was the main factor that makes our
programs outperform the other approaches.

The symmetry breaking and domain reduction strategies proposed in Section 3 obvi-
ously can reduce the running time significantly since they can eliminate many variables
and reduce the domain for variables. In our experiments, Smodels could improve search
efficiency with the propagation rules proposed in Section 3. However, the overhead is a
concern since Smodels need extra time to compute these rules. In some of our datasets,
the performance with all possible propagation rules was even worse than that without
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Table 1. The running times of three exact methods for the MQC problem. A ‘−’ indicates that a
method didn’t terminate in 168 hours (7 days).

Problem Size DP GN ASP Problem Size DP GN ASP

n = 10 p = 1% 2 secs 1 secs 1 sec n = 15 p = 1% 2 mins 20 secs 1 sec
p = 5% 2 secs 1 secs 1 sec p = 5% 2 mins 10 mins 1 sec
p = 10% 2 secs 5 secs 1 sec p = 10% 2 mins 5 hours 1 sec
p = 15% 2 secs 16 secs 1 sec p = 15% 2 mins − 1 sec
p = 20% 2 secs 35 secs 1 sec p = 20% 2 mins − 1 sec
p = 30% 2 secs 2 mins 1 sec p = 30% 2 mins − 1 sec

n = 20 p = 1% 40 hrs 20 mins 10 mins n = 25 p = 1% − 9 hrs 20 mins
p = 5% 40 hrs − 40 mins p = 5% − − 8 hrs
p = 10% 40 hrs − 6 hrs p = 10% − − 78 hrs
p = 15% 40 hrs − 6 hrs p = 15% − − 102 hrs
p = 20% 40 hrs − 8 hrs p = 20% − − 136 hrs
p = 30% 40 hrs − 10 hrs p = 30% − − −

any propagation rules. Currently, we are investigating this issue and trying to figure out
which types of propagation rules are more important than the others.

5 Conclusions

We have presented a formulation of the MQC problem and applied Smodels to solve it.
The formulation, together with our speedup strategies, might lead us to a new perspec-
tive of the problem, as our experiments on simulated datasets showed that the proposed
approach outperformed existing approaches proposed to solve the MQC problem op-
timally. Although in the worst case solving the problem still takes exponential time,
it allows us to incorporate the domain knowledge into the search process. In the ideal
case, we might be able to encode the target matrix variables such that the exponential
behavior is a rare occurrence, and the average behavior is acceptable for practical use.
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Abstract. ACMI is a decision support system for the checking of med-
ical invoices in a German health insurance company. We present a brief
overview of the system and its implementation in DLV.

1 Introduction

In contrast to Germany’s compulsory health insurance, in the private health
insurance system, a physician or a physiotherapist does not have a contractual
relationship with the patient’s insurance company, but only with the patient
himself. He issues an invoice to the patient which the patient has to pay. Hav-
ing a private health insurance, the patient will hand the doctor’s bill to his
insurance company for reimbursement. Typically, the insurance company will
check whether the invoice obeys various legal and other regulations, in partic-
ular, whether it conforms to e.g. the Gebührenordnung für Ärzte (GOÄ, scale
of fees for physicians) [4]. The checking of the invoices requires detailed knowl-
edge of many regulations and is a labor-intensive task; the purpose of ACMI
(Automatic Checking of Medical Invoices) is to support this task [2]. When in-
vestigating the official regulations concerning medical invoices (e.g. [4], [5]) and
the corresponding business rules of one of Germany’s large insurance companies,
it turned out that also various default rules are used. Thus, the paradigm of
answer set programming (ASP) [6] was used for ACMI’s implementation.

2 Overview of the System

ACMI is embedded in an environment processing the workflow from the incom-
ing patients invoices to the refunding decision done by the insurance company’s
person in charge. Figure 1 shows a typical invoice. The first column specifies the
date when the treatment was carried out. The second column specifies a number
from the respective Gebührenordnung (scale of fees). In this case, the invoice is
from an alternative practitioner (Heilpraktiker) so the relevant scale of fees is
the GebüH (Gebührenverzeichnis für Heilpraktiker, scale of fees for alternative
practitioners) [5]. The third column gives a verbal description of the treatment
corresponding to the fee number, and the fourth column contains the invoiced
fee (in e) for that treatment (which is not fixed, but must be in a certain range
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Fig. 1. An invoice handed in by the patient Max Musterkrank

specified by the GebüH). After extraction of the relevant information from the
invoice, ACMI automatically performs checks for every item with a fee number
and reports the results.

3 ACMI’s Knowledge Base

In the following, we focus on ACMI’s knowledge base with respect to the GebüH
[5]. The GebüH contains 148 different fee numbers (as a matter of fact, the GOÄ
[4] contains many more). Each combination of fee numbers occurring in an invoice
for a particular day of treatment must satisfy various constraints given in the
GebüH, e.g.:

C1 Number 4 may not occur more than once, and it may occur simultaneously
only with 1 or with 17.1.

C3 If number 28.1 occurs more than once, replace all its occurrences with one
occurrence of 28.2.

C4 Number 12.9 may not occur simultaneously with 12.10 and 12.11.
C5 Number 5.0 may not occur simultaneously with 6.0, 7.0 or 8.0.

Note that there are constraints about the frequency of certain numbers, different
restrictions about the simultaneous occurrences of combinations of numbers, and
even prescriptions where numbers have to be replaced by another one.

There are also internal business rules (cf. [1]) of the insurance company at-
tached to a fee number, e.g:

T1 Number 21.1 is only refundable in insurance contracts with full coverage of
the GebüH.

H1 For number 12.2 a notification text is to be displayed to the person in charge.

In addition, the following general rule applies to each fee number N :

G1 If a number N occurs in an invoice and N is not found to be invalid, then
N is valid.
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Note that this rule is a typical default rule, and it turned out that also many
other rules needed (default or classical) negation and could be expressed quite
straightforwardly in ASP.

4 Knowledge Representation with Rule Schemas

By investigating all individual rules, three general types of rule schemas and
four different types of consequences of a rule violation could be identified. Using
these observations, each of ACMI’s rule information can be expressed using
the following three predicates, where N is the number to be checked, k ≥ 0 is
a number indicating a maximal frequency, M is a set of fee numbers, Cons ∈
{reject , replace , tariff ,note} indicates the type of consequence of a violation, and
R is a fee number being used in the output part of the rule (e.g. the number to
be rejected or the number be used in a replacement):

frequency(N, k,Cons ,R): If N occurs more than k times, execute Cons for N
with number R.

forbidden(N, k,M,Cons,R): If N occurs and more than k fee numbers fromM
occur, execute Cons for N with number R.

restricted(N,M,Cons ,R): If N occurs and another fee number occurs that is
not inM, execute Cons for N with number R.

In all three predicates, “execute Cons for N with number R” is given by:

– If Cons = reject , mark N to be rejected.
– If Cons = replace , mark N to be rejected and mark R to be refunded instead.
– If Cons = tariff , mark N to be not covered by the insurance tariff unless

the current insurance tariff covers the full GebüH.
– If Cons = note, mark N to be displayed with notification R to the person

in charge.

E.g., using these predicates, the information of the rules C1, C3, C4, C5, and
T1 given in Sec. 3 can be expressed by:

C1: frequency(4, 1, replace, 4)
restricted(4, {1, 17.1}, reject, 4)

C3: frequency(28.1, 1, replace, 28.2)

C4: forbidden(12.9, 1, {12.10,12.11},
reject, 12.9)

C5: forbidden(5, 0, {6,7,8}, reject, 5)

T1: frequency(21.1, 0, tariff, 21.1)

For instance, frequency(4, 1, replace, 4) says that if number 4 occurs more than
once, all occurrences of 4 should be replaced by a single occurrence of 4. re-
stricted(4, {1, 17.1}, reject, 4) says that 4 should be rejected if fee numbers
other than 1 or 17.1 occur simultaneously with it. The schema frequency(28.1,
1, replace, 28.2) requires that all occurrences of 28.1 should be replaced by 28.2
if 28.1 occurs more than once. In the schema for T1, frequency(21.1, 0, tariff,
21.1) states that 21.1 might not be covered, depending on the current tariff.
Note also the difference between the schemas for C4 and C5: 12.9 may occur
with (not more than) one of {12.10, 12.11}, but 5 may not occur simultaneously
with any of {6, 7, 8}.
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5 Implementation of ACMI in DLV

Whereas the rule schemas given above represent a high level of abstraction, they
can not be expressed directly within the paradigm of ASP due to their usage of
set-valued arguments. Therefore, we developed a transformation from the general
rule schemas to DLV [3] code where each schema instance corresponds to a set
of DLV facts and rules.

Internally, each fee number is represented by a four digit number, e.g., 4 by
0400, 10 by 1000, and 20.8 by 2008. The occurrence of a number N at the I ’th
position in the invoice is given by the literal p(I ,N ). Thus, the invoice depicted
in Figure 1 is internally represented by

p(1,0100). p(2,0200). p(3,0400). p(4,1202).

p(5,2008). p(6,2101). p(7,2801). tariff(vc).

where the literal tariff(vc) reflects the patient’s insurance tariff, being extracted
from the corresponding database.

A literal of the form z (N ) (resp. −z (N )) indicates that N occurs in the
invoice and should be refunded (resp. should not be refunded). A literal r(N )
says that N serves as a replacement for (one or more) other number occurrences.
A literal h(N ) indicates that a notification text should be presented to the person
in charge, and t(N ) says that the patient’s tariff does not cover fee number N .
Rules like

fullGebuh :- tariff(an).

fullGebuh :- tariff(ebc).

specify the tariffs providing full coverage of the GebüH. Also rule G1 (cf. Sec. 3)
can be expressed easily using the DLV default rule:

z(N) :- p(_,N), not -z(N).

For each of the three rule schemas introduced in Sec. 4, one or more facts
are generated to represent what is called the schema information. For each
frequency(N, k,Cons , R), frequency fact(N,k,Cons,R). is generated. For
each forbidden(N, k,M,Cons , R) withM = {M1, . . . , Mn}, n facts of the form

forbidden_fact(N, k, Mi, Cons, R).

are generated, and similarly for all restricted rule schemas.1 For instance, for the
rule schemas for C1, the following facts are generated:

frequency_fact(0400, 1, replace, 0400). %

restricted_fact(0400, 0100, reject, 0400). % C1

restricted_fact(0400, 1701, reject, 0400). %

Checking the constraints expressed by the rule schemas is done by exploiting
DLV’s count facility as e.g. in checking the restricted schema:

1 If there is more than one rule schema of the form forbidden(N, , , , ) for a fee
number N , a more complicated generation of facts along with a correspondingly
extended form of checking the constraints expressed by these facts must be used [2].
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execute(N,Cons,R) :-

restricted_fact(N,_,Cons,R),

countRestrictedPartners(N,I),

countPartners(N,All),

All > I.

countRestrictedPartners(N,I) :-

p(_,N),

#count{P: restrictedPartner(N,P)} = I.

restrictedPartner(N,Partner) :-

p(_,N), p(_,Partner),

restricted_fact(N,Partner,_,_).

countPartners(N,All) :-

p(_,N),

#count{P: p(_,P), P <> N} = All.

Execution of the consequences of a rule violation is ensured by rules like:

%------ replace: ---------------

-z(N) :- execute(N, replace, R).

r(R) :- execute(N, replace, R).

% ------ tariff: ------------

t(N) :- execute(N, tariff, R),

not fullGebuh.

6 Conclusions and Future Work

Using appropriate input masks, instances of the frequency, forbidden and re-
stricted schemas can be created and modified directly by the insurance experts
who need not have knowledge about ASP. Additionally, the three rule schemas
provide a powerful modelling tool: All rules and regulations stemming from the
GebüH [5] or from the insurance company’s business rules could be expressed
straightforwardly. Whereas these set-valued constraints can not be expressed di-
rectly as ASP rules, we developed a transformation for generating DLV code
ensuring the constraints. Up to now the implemented system covers the full
GebüH [5]; our current work includes the testing of ACMI in a large insurance
company and its extension to cover the full GOÄ [4].
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Abstract. The paper presents INFOMIX a successful application of ASP tech-
nology to the domain of Data Integration. INFOMIX is a novel system which
supports powerful information integration, utilizing the ASP system DLV. While
INFOMIX is based on solid theoretical foundations, it is a user-friendly system,
endowed with graphical user interfaces for the average database user and ad-
ministrator, respectively. The main features of the INFOMIX system are: (i) a
comprehensive information model, through which the knowledge about the inte-
gration domain can be declaratively specified, (ii) capability of dealing with data
that may result incomplete and/or inconsistent with respect to global constraints,
(iii) advanced information integration algorithms, which reduce (in a sound and
complete way) query answering to cautious reasoning on disjunctive Datalog pro-
grams, (iv) sophisticated optimization techniques guaranteeing the effectiveness
of query evaluation in INFOMIX, (v) a rich data acquisition and transforma-
tion framework for accessing heterogeneous data in many formats including re-
lational, XML, and HTML data.

1 Data Integration Systems

The enormous amount of information even more and more dispersed over many data
sources, often stored in different heterogeneous formats, has boosted in recent years
the interest for data integration systems (see, e.g, [2,6,5,4]). Roughly speaking, a data
integration system I provides transparent access to different data sources by suitably
combining their data, and providing the user with a unified view of them, called global
schema. Formally, I can be seen as a triple 〈G,S,M〉, where G is the global schema, S
is the source schema, constituted by the schemas of all sources, andM is the mapping
between G and S that contains a view over S for each element of G. The users formulate
their queries over G, and the system automatically provides the answers. We assume
that G and S are relational schemas, and that G contains integrity constraints (ICs)
of three kinds: key dependencies (KDs), exclusion dependencies (EDs), and inclusion
dependencies (IDs). Views in the mapping are specified in Datalog.

Example 1. Consider the integration system I = 〈G,S,M〉, where (i) G comprises the
relation predicates HasTutor(student, tutor) and Student(name), (ii) S comprises
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the unary relation predicate s1 and the binary predicates s2 and s3, (iii)M is defined
by the Datalog program:

HasTutor(x, y)← s2(x, y) ∨ s3(x, y) Student(x)← s1(x).

ICs in G state that: (a) the key of HasTutor is the attribute student (KD); (b) a tutor
cannot be a student (ED), and (c) each name in Student must occur in HasTutor , i.e.,
each student has at least one tutor (ID). �

Data stored at the sources may violate global ICs when filtered through the mapping,
since in general source data are not under the control of the data integration system.
The standard approach to this problem is inherently procedural, and basically consists
of explicitly modifying the data in order to eliminate violation of ICs (data cleaning).
However, the explicit repair of data is not always convenient or possible. Therefore,
when answering a user query, the system should be able to “virtually repair” relevant
data in a declarative fashion (in the line of [1,2]) .

In this paper, we present INFOMIX, a novel system which supports powerful inte-
gration of inconsistent data by resorting to computational logic systems. The INFOMIX
approach is based on the idea of reformulating a user query, taking into account the ICs
of the global schema, in terms of a logic program Π , using disjunction, in a way such
that the stable models of Π represent the repairs of the global database constructed
by evaluating the mapping over the source extension. Then, answering a user query
amounts to cautious reasoning over the logic program Π augmented by the facts re-
trieved from the sources. We point out that this reduction is possible since query an-
swering in data integration systems is coNP-complete in data complexity in the above
setting (and also in many other data integration frameworks [5,4]).

INFOMIX implements recent results of the database theory, which have been ex-
tended and specialized within the INFOMIX project [3,4,9,7,8,10]. While INFOMIX
is based on solid theoretical foundations, it is a user-friendly system, endowed with
graphical user interfaces for the average database user and administrator. INFOMIX
is built in cooperation with RODAN systems, a commercial DBMS developer. Among
the different features supported by the INFOMIX system,1 we shall consider here the
following two aspects:

• Advanced information integration algorithms [4] that reduce query answering
to cautious reasoning on (head cycle free) disjunctive Datalog programs. This allows
for effectively computing the query results (even in the presence of incomplete and/or
inconsistent data) by using the state-of-the-art disjunctive Datalog system DLV [11].
The formal semantics of queries is captured also in the presence of incomplete and/or
inconsistent data.
• Sophisticated optimization techniques [9,7,8] guarantee the effectiveness of query
evaluation in INFOMIX. The novel optimization techniques, developed in INFOMIX,
“localize” the computation and limit the inefficient (coNP) computation to a very small
fragment of the input, obtaining fast query answering, even in such a powerful data
integration framework.

1 Further information, system documentation, and publications are available on the INFOMIX
website: www.mat.unical.it/infomix.
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We have experimented the system on a real-life application scenario. The results
we have conducted clearly indicate the impact of the optimizations techniques on the
system performance, and, more generally, show that, despite its worst-case computa-
tional complexity, the semantic approach to data integration pursued by INFOMIX can
be effectively realized.

2 Logic Programming Within the INFOMIX Architecture

The INFOMIX system supports two modes: a design and a query mode. In the first, the
global schema, the source schema, and the mapping between them are specified. Fur-
thermore, wrappers for the data sources are created or imported. In the query mode, the
system provides query answering facilities at run time, including data acquisition, inte-
gration, answer computation, and presentation to the user. In both the design and query
mode, INFOMIX is conceptually divided into three levels, namely the Information Ser-
vice Level, the Internal Integration Level and the Data Acquisition and Transformation
Level. The most important level is the Internal Integration Level, which is based on com-
putational logic and deductive database technology. It is composed by three modules,
namely the Query Rewriter, the Query Optimizer and the Query Evaluator.

The Query Rewriter reformulates the user query taking into account global ICs. Ac-
cording to the notion of repair adopted in INFOMIX, the Query Rewriter can separately
consider IDs and KDs and EDs in the reformulation process, as showed in [3,4]. More
precisely, it makes use of a sub-module to verify data consistency w.r.t. KDs and EDs:
exploiting the mapping, the sub-module unfolds the user query over the source relations
and activates the corresponding wrappers to retrieve relevant data; then it checks wether
there are KD or ED violations. If no violations occur, the reformulation produced by
the rewriter is a simple (disjunction free) Datalog program, constructed according to the
global IDs; otherwise, a suitable disjunctive Datalog program is generated that performs
automatic repair of data w.r.t. both EDs and KDs. Basically, the Datalog program encodes
the user query, the views in the mapping, and the global ICs that involve relation pred-
icates that are relevant to answer the user query, in a way such that cautious answers to
this program evaluated over the data sources correspond to the answers to the user query.

Example 2. In our example, consider now the the user query q(x)← HasTutor(x, y).
Wrapper activation populates the Internal Data Store of the system with a database D
for the source schema S. Let us assume that the consistency check finds out that the KD
and the EDs in G are violated by data migrating from the sources to the global schema
through the mapping. Then, the Query Rewriter module reformulates the query in the
following program:

q(x) : − HasTutor(x, y)

q(x) : − Student(x)

HasTutor(x, y) : − HasTutorD(x, y) , not HasTutor(x, y)

HasTutor(x, y) ∨ HasTutor(x, z) : − HasTutorD(x, y) , HasTutorD(x, z) , z = y

HasTutor(x, y) ∨ HasTutor(y, z) : − HasTutorD(x, y) , HasTutorD(y, z)

Student(x) : − StudentD(x) , not Student(x)

HasTutor(x, y) ∨ Student(y) : − HasTutorD(x, y) , StudentD(y)

StudentD(x) : − s1(x)
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HasTutorD(x, y) : − s2(x, y)

HasTutorD(x, y) : − s3(x, y)

Informally, for each global relation r, the above program contains (i) a relation rD
that represents the extension of r obtained by evaluating the associated view in the
mapping over the source database D; (ii) a relation r that represents a subset of such
extension that is consistent with the KD and the EDs for r; (iii) an auxiliary relation
r. The first two rules encode in the user query the ID stating that each student must
have a tutor (intuitively, in order to return all the students that have a tutor, the rewriting
looks also in the predicate Student). The third and the fourth rule encode the KD on
HasTutor . The fifth, the sixth, and the seventh rule encode the ED stating that students
cannot be tutors, whereas the last three rules encode the mappingM. �

The Query Optimizer provides several optimization strategies, which turned out
to be crucial for the efficiency of the system; in particular, the module exploits some
focusing techniques which are able to isolate the portion of the source database that
is relevant to answer the user query, by pushing constants in the query towards the
sources. To this aim, an optimized (possibly disjunctive) Datalog program is generated
by applying advanced binding propagation techniques à la Magic-Set [9,7].

Finally, the optimized program is passed to the Query Evaluator. It first loads data
from the Internal Data Store and then invokes DLV [11] in order to compute the an-
swers. The results are then sent to the Information Model Manager for suitable presen-
tation to the user.

3 Application and Experiments

We have tested the INFOMIX prototype system on a real-life application scenario, in
which data from various legacy databases and web sources must be integrated for a
university information system. In particular, we built our information integration system
on top of the data sources available at the University of Rome “La Sapienza”.

The data sources comprise information on students, professors, curricula and ex-
ams in various faculties of the university. Currently, this data is dispersed over several
databases in various (autonomous) administration offices and many webpages at differ-
ent servers. Given this setting, we have devised a global schema of 14 relations and 29
integrity constraints, comprising KDs, IDs, and EDs.

The application scenario includes 3 legacy databases in relational format, compris-
ing about 25 relations in total. The relation sizes range from a few hundred to tens of
thousands of tuples (e.g., exam data). Besides these legacy databases, there are numer-
ous web pages, which either provide information explicitly or through simple query
interfaces (e.g., members of a department, phone numbers etc). We have developed a
number of wrappers using LiXto tools [10], which extract information from these web
sources. In total, there are about 35 data sources in the application scenario, which are
mapped to the global relations through about 20 UCQs. Each UCQ joins up to three dif-
ferent logical data sources. Finally, we have formulated 9 typical queries with peculiar
characteristics, which model different use cases.

Figure 1 shows the execution time for the 9 typical queries Q1, . . . ,Q9. Results are
obtained on Pentium III machines running GNU/Linux with 256MB of memory. These
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Fig. 1. Impact of Optimizations

demonstrate the feasibility of our approach, and the impact of optimization techniques.
Actually, the figure shows the total execution time for the optimized INFOMIX system,
where in particular amagic-set technique is included, and the relativegainw.r.t. theevalua-
tionwithoutanyoptimization.Formanyqueries,wenoteasignificantspeed-up,especially
for query Q9. We have verified that for Q9, the magic-set technique effectively prunes the
unrelated conflicts, thus avoiding their repair. Note that for Q3 none of our optimizations
applies; the overhead of the optimization methods (1%) is very lightweight, however.
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Abstract. We associate optimality theory with abduction and prefer-
ence handling. We present linguistic problems that appear in the study of
dialects as new application of abduction and preference handling. Differ-
ences in German dialects originate from different rankings of linguistic
constraints which determine the well-formedness of expressions within
a language. We introduce a framework for analyzing differences in Ger-
man dialects by abduction of preferences. More precisely, we will take the
perspective of a linguist and reconstruct dialectal variation as abduction
problem: Given an observation that a sentence is found as grammati-
cally correct, abduct the underlying constraint ranking. For this, we give
a new definition for the determination of optimal candidates for total
orders with indifferences. Additionally, we give an encoding for the diag-
nosis front-end of the DLV system.

1 Background

We assume a basic familiarity with logic programs, answer set programming
(ASP) [5], abduction (within ASP), and diagnosis [2,7,8,4].

In this work we want to find preference structures in a linguistic framework
as explanations of an abduction problem. A linguistic grammar is a model of the
implicit knowledge that guides linguistic behavior. This knowledge is usually
conceived as a system of rules and/or well-formedness constraints which deter-
mine for a given language which expressions are well-formed and which are not.
Our example is the verb order in 3-verb clusters of German dialects. A standard
German clause with such a 3-verb cluster looks as follows:

Maria glaubt, dass sie das Lied singen müssen wird .
Maria thinks that she the song sing must will.

Swiss and Standard German follow different ordering strategies for the verbs:
Default verb cluster orders

Standard German: singen müssen wird
Swiss German: wird müssen singen
Syntactic structures are composed recursively by complementation. The object,
here: “ein Lied” is the complement of its governing head, here: the predicative
verb “singen”. This verb phrase, “ein Lied singen”, is the complement of the
modal verb “müssen”, and this modal verb phrase, in Standard German: “ein
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Lied singen müssen”, is the complement of the temporal auxiliary verb, “wer-
den”. The differences between the languages and variants can now be described
in terms of complement-head order:

Default complement-head orders
Standard German: All complements precede their heads:

“ein Lied singen müssen wird”
Swiss German: Noun complements precede their heads, verbal com-

plements follow them: “wird müssen ein Lied singen”
English All complements follow their heads:

“will have to sing a song”

The differences between the three languages can be reconstructed within Opti-
mality Theory (OT) using the following three constraints:

H-Comp A complement follows its head.
Comp-H A complement precedes its head.
H-VComp A verbal complement follows its head.

Constraint rankings are indicated with “0”, meaning “has higher priority than”.
The three rankings that conform to the observations are the following: 1

Standard German: Comp-H 0 H-Comp (H-V Comp)
Swiss German: H-V Comp 0 Comp-H 0 H-Comp
English: H-Comp 0 Comp-H (H-V Comp)

The exact rank of H-V Comp can only be determined in Swiss German. While
its effects are completely subsumed by the high rank of H-Comp in English, in
Standard German all that is necessary is that Comp-H has highest priority, while
the relative order of H-Comp and H-V Comp is irrelevant because of the low
rank of these two constraints. Grammars are usually, but not necessarily, strict
total orders of constraints. The rankings given here are only the crucial ones. For
those which are left open, any order will be compatible with the observations.

2 Optimal Candidates

A linguistic grammar predicts the well-formedness of expressions. Optimality
theory grammars do so by establishing a competition between different candidate
expressions which are evaluated on a hierarchy of well-formedness constraints.
An OT grammar is an input-output mapping. The input defines what is to be
expressed. We then have a set of candidate output expressions. The candidates
incur different constraint violations. Each candidate is evaluated on the basis of
the constraint hierarchy, and the candidate that performs best in this evaluation
is the winner, the optimal, hence, grammatical expression.

In the following, we will consider the determination of optimal candidates wrt
well-formedness of expressions. For this, let X be a set of candidates (sentences),
C be a set of constraints, δ : X × C → IN be a violation function, where δ(x, c)
denotes the degree of violation of x ∈ X wrt c ∈ C, and 1 be a (strict) total
order on C. Then, we call L = (X , C, δ,1) a linguistic framework.
1 These rankings were found out by empirical linguistic studies.
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In Section 1, we have taken an example for the dialectal variation in German
3-verb clusters. In the following we will elaborate this example. For the 3-verb
cluster we have the following possible word orders:2 Maria glaubt, dass sie das
Lied ...

(321) singen müssen wird. (231) müssen singen wird.
(123) wird müssen singen. (132) wird singen müssen.
(312) singen wird müssen. (213) müssen wird singen.

Our set of candidates X = {321, 231, 123, 132, 312, 213} is constituted by these
possible word orders. 3 C = {H-V Comp, Comp-H,H-Comp} is our set of con-
straints. The degree of violation denotes how well a sentence fulfills a constraint.
It is represented by the number of asterisks (∗), as in the following table.

H-V Comp Comp-H H-Comp
321 ∗ ∗ ∗ ∗∗
231 ∗∗ ∗ ∗
123 ∗∗
132 ∗ ∗ ∗
312 ∗∗ ∗ ∗∗
213 ∗ ∗∗ ∗

Next, we want to clarify when a sentence is a best candidate wrt a given
constraint ranking [1].

Definition 1. Let L = (X , C, δ,1) be a linguistic framework, where 1 is a
strict total order on C. Then, candidate x ∈ X is a winner if there does not exist
a candidate y ∈ X ,x �= y such that there exists a constraint c ∈ C where
1. for all c′ ∈ C where c1 c′ we have that δ(x, c′) ≥ δ(y, c′), and
2. δ(x, c) > δ(y, c).

In our example, for the constraint order H-V Comp 0 Comp-H 0 H-Comp
(Swiss German), we get 123 as winner. For constraint ranking Comp-H 0
H-V Comp0 H-Comp (Standard German), candidate 321 is a winner.

3 Abduction of Constraint Rankings

In Optimality theoretic terms, linguists observe that a candidate is determined
by a speaker as a winner, expressing that the sentence is grammatically correct.
The problem is that the observer does not know which underlying constraint
ranking the speaker has. Here, abduction comes into play. Given a linguistic
framework L = (X , C, δ) with an unknown constraint ranking 1 and an obser-
vation that candidate x ∈ X wins, we want to abduct 1 which explains x.

The set of candidates is given by rules (1) cd(x) ← for each x ∈ X , the set
of constraints by (2) cst(c) ← for each c ∈ C, and the violation degrees by (3)
viol(x, c, δ(x, c)) ← where δ(x, c) is the degree of violation of x ∈ X wrt c ∈ C.
2 The numbers signal the hierarchical position of the verb. Verb 1 is the temporal

auxiliary (werden), verb 2 the modal (müssen), and verb 3 the predicative (singen).
3 Due to OT we have to consider all possibilities.
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According to Definition 1, a winner, can be determined by the following rules:
(4) winner(X) ← cd(X), not defeated(X)
(5) defeated(X) ← cd(X), cd(Y ), Y �= X, better(Y, X)
(6) better(Y, X) ← cd(X), cd(Y ), Y �= X, cst(C), wins(Y, X, C), not hp(X, Y, C)
(7) hp(X, Y, C) ← cd(X), cd(Y ), Y �= X, cst(C), pref (C1, C), wins(X, Y, C1)
(8) wins(X, Y, C) ← cd(X), cd(Y ), cst(C), viol(X, C, NX), viol(Y, C, NY ), NX < NY

(9) pref (X, Z) ← pref (X, Y ), pref (Y, Z)
(10) ← pref (C, C), cst(C)
(11) ← cst(C1), cst(C2), unranked(C1, C2), C1 �= C2

(12) unranked(C1, C2) ← not pref (C1, C2), not pref (C2, C1), cst(C1), cst(C2)

Our logic program Π consists of the rules (1)–(12). 4 An observation is that
exactly one candidate is observed as a winner, but the other candidates not [1]:

O(x) =
{

winner(x) ← for x ∈ X
defeat(y) ← for all y ∈ X , y �= x

}
Our hypothesis is the set of all possible pairwise preferences: H = {pref (c, c′) ←|
c, c′ ∈ C, c �= c′}.

Then, an explanation Δ ⊆ H for 〈Π,H, O〉 gives us a possible strict total
order among the constraints such that Π ∪Δ explains O. More precisely, Δ ⊆ H
is an explanation if O(x) ⊆ S for some answer set S of Π ∪Δ.

In our linguistic example we have additionally the background knowledge
that constraint Comp-H is strictly higher preferred than H-Comp. Hence, we
have pref (comph, hcomp) ← . additionally in Π . Then, our hypotheses is H =
{pref (comph, hvcomp) ←, pref (hvcomp, hcomp) ←, pref (hvcomp, comph) ←,
pref (hcomp, hvcomp) ←}, which gives us together with pref (comph, hcomp) ←
all possible constraint rankings. For computing explanations, we use DLV [3,4]
with the command -FD for abductive diagnosis. As a result, we get that 321
has two explanations, Δ1 = {Comp-H 0 H-Comp 0 H-V Comp} and Δ2 =
{Comp-H 0 H-V Comp 0 H-Comp}. 123 has one explanation, Δ =
{H-V Comp 0 Comp-H 0 H-Comp}, and for observing other candidates as
winners, we get no explanation. This means that the constraints are not suf-
ficient for explaining these candidates as a winner. Candidate 321 yields two
explanations, H-Comp 0 H-V Comp and H-V Comp 0 H-Comp. This sup-
poses that H-Comp and H-V Comp can be ranked equally. Since Def. 1 is only
valid for (strict) total orders, we have to extend it for total (pre-)orders.

Definition 2. Let L = (X , C, δ,)) be a linguistic framework, where ) is a total
order on C. Then, candidate x ∈ X is a winner if there exists no y �= x such
that there exists a c ∈ C such that
1. for all c′ �= c such that c′ ≈ c or c′ 3 c we have δ(c′,x) ≥ δ(c′, y), and
2. δ(c, y) < δ(c,x).

The encoding for Definition 1 is adapted to Definition 2 in a straight forward
way. Our hypotheses are now the set of all pairwise strict preference relations
and the set of all possible indifferences: H = {pref (c, c′) ←| c, c′ ∈ C, c �=
c′} ∪ {prefeq(c, c′) ←| c, c′ ∈ C, c �= c′}. From this set of hypotheses, all possible

4 Note that the abducted preference ordering must be total, as required in OT.
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4 Discussion and Further Work

We have associated OT with abduction and preference handling. Abduction and
preference handling were studied in many other issues, e.g. in [6].But, as far as
the authors know, abduction and preferences were not yet linked to OT before.

We have shown that abduction within ASP is a useful knowledge reasoning
tool for linguistic problems, here: dialectic studies, where the abducted explana-
tions match the empirical results found out by the linguists. We have taken the
perspective of a linguist and have reconstructed dialectal variation as abduction
problem: Given an observation that a sentence is found as grammatically cor-
rect, abduct the underlying constraint ranking of the dialect. Furthermore, we
have provided an encoding (within ASP) for the diagnosis front-end of DLV.

Regarding linguistic studies, there is an ongoing debate about how unique
the rule systems of language are in human cognition, as well as in biology in a
very broad sense. The reconstruction of grammatical regularities with abduction
and preference handling has consequences for this debate: if grammars can be
modeled this way, then they share core properties with other non-linguistic rule
systems. This supports a position that does not make special assumptions about
the nature of linguistic rule systems.

Further work is to study results when observing non-unique optimal can-
didates and to study abduction of partial orders instead of total orders, since
partial orders may be enough for explaining the observations.
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Abstract. We describe an application of Abductive Logic Programming
(ALP) to the analysis of an important class of DNA microarray exper-
iments. We develop an ALP theory that provides a simple and general
model of how gene interactions can cause changes in observable expres-
sion levels of genes. Input to the procedure are the observed microar-
ray results; output are hypotheses about possible gene interactions that
explain the observed effects. We apply and evaluate our approach on
microarray experiments on M. tuberculosis and S. cerevisiae.

1 Introduction

The focus in bioinformatics has shifted from the analysis of genome sequences,
now available in their entirety for several organisms, to functional genomics,
which seeks to ascribe biological function to genes and understand gene interac-
tions. An important tool in these studies is DNA microarray technology, which
enables simultaneous measurement of expression levels of thousands of genes. A
common form of experiment measures differences in expression levels of whole
genomes in differing environmental conditions and/or after deletion or overex-
pression of one or more genes. The aim is to obtain clues about gene interactions
and unravel pathways that define the cell’s responses to various stimuli. The
datasets generated are too large and complex for manual analysis. Raw data
are analysed using statistical techniques to define significantly differentially ex-
pressed genes. Methods for further interpretation of the results, in terms of gene
interactions, remain largely undeveloped, however, though Bayesian Networks
have recently attracted attention (See e.g. [1] for an overview).

We formulate the analysis of this type of microarray data as a problem of
abduction, that is, inference from observable effects, i.e. the microarray data,
to possible causes, hypotheses about possible gene interactions. We construct
an Abductive Logic Program (ALP) theory which provides a simple, general
model of how gene interactions can cause changes in observable expression levels
of genes—essentially a formalisation of the (usually implicit) reasoning used by
biologists designing microarray experiments. Adjustable parameters allow us to
constrain the search for hypotheses and apply the methods to large data sets.
A novel feature of our method is the ability to deal with observations in many
separate experiments together.
� Visiting from Department of Computer Science, University of Cyprus.
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The model is validated by comparing the inferred hypotheses against known
gene interactions and by assessing the biological plausibility of the hypotheses
where detailed information is lacking. We use microarray data sets on M. tu-
berculosis and S. cerevisiae (yeast). Section 3 presents an example of inferences
that re-discover part of the M. tuberculosis heat shock response pathway.

There are many issues and other experimental methods in the search for
gene regulation mechanisms. To our knowledge, inference of gene networks from
microarray data has not previously been formulated as a problem of abduction,
though abduction has been used in [6] to construct a genetic network from classi-
cal genetics experiments. The nature of the data, the hypotheses and the model
itself, differ from what is addressed here.

2 The Model

Input to the procedure is a set of observations expressed as logic assertions of
the form increases expression(Expt, Gene) and reduces expression(Expt, Gene).
They are obtained by statistical analysis of the raw microarray data to determine
the significance of measured differences of expression levels of each gene [4].

The output is a set of abducible relations of two different types: induces
(Gene1, Gene2) and inhibits(Gene1,Gene2) for the hypothesis that Gene1 in-
duces the expression of Gene2, or inhibits it, respectively. Each individual ex-
periment provides partial clues about possible induces/inhibits relations between
genes.

The modelling framework we employ is Abductive Logic Programming (ALP)
[2], an extension of logic programming that allows declarative logical representa-
tions of the problem domain and supports abductive reasoning. A theory is rep-
resented by a triple (P, A, IC ), where P is a logic program, A a set of abducible
predicates and IC a set of classical logic formulae, the integrity constraints.

An abductive explanation for a query Q is a set Δ of ground abducible atoms
on the predicates A such that: P ∪Δ |=LP Q, P ∪Δ is consistent, P ∪Δ |=LP IC ,
where |=LP denotes a standard entailment relation of logic programming.

The integrity constraints IC impose additional validity requirements on the
hypotheses Δ. They are modularly stated in the theory, in addition to the basic
model in P . They augment any partial information on the abducible predicates
or impose other constraints on the abductively generated explanations. We form
integrity constraints (IC) of three different types: (1) self-consistency: For exam-
ple, a gene cannot both inhibit and induce the same gene at the same time (under
the same conditions). (2) consistency with background information: Background
knowledge, such as known inhibitor genes can also be expressed in the form of
IC. (3) experimental consistency: When analysing the results of an experiment
E in which a gene G is mutated, we may want to consider as ‘intermediary genes’
(see below) only genes whose expression is also observed to be affected in E.
Gene Interactions
Top-level Rules The program P of the ALP theory represents how gene in-
teractions can increase or reduce the expression of genes, as observed in the
experiments. An assumption is that such observed variations in gene expression
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should be attributed directly or indirectly to the variations (gene mutations or
environmental stress), carried out in the experiment(s) investigated. This as-
sumption is not justified for all classes of microarray experiments or all forms of
gene regulation.

For example: if an experiment E knocks out a gene G, and G inhibits gene
X, then E will show an increased expression of X — subject to some possible
exceptions. This rule is expressed in logic programming notation as follows:

increases expression(E, X) ← (1)
knocks out(E, G), inhibits(G, X),
not incr affected by other gene(E,G,X),
not incr affected by EnvFact(E, X).

E is a variable that ranges over names of experiments and G, X are variables
that represent genes. increases expression(E,X) is observational data from the
experiment E, inhibits(G,X) is part of the unknown information to be abduced,
and knocks out(E,G) provides background knowledge about the experiment E.

The last two conditions express possible exceptions that deal with the possi-
bility that the difference in gene expression can be attributed to a factor other
than the mutated gene: e.g. (a) a gene other than G, or (b) an environmental
factor. Here, not is the logic programming construct ‘negation as failure’, used
to express that (1) is a default general rule subject to the stated exceptions.

Similarly, there is a rule that deals with the cases of reduced expression
of G in experiment E. Similar rules cover the cases of over-expressing G and
further rules deal with the various combinations of gene mutation and changes
in environmental conditions according to our classification of experiment types.

Rule (1) only accounts for direct relationships between the mutated gene and
the differentially expressed one. These relationships could be indirect: Inference
of intermediate steps of interaction is achieved by further recursive rules:

increases expression(E, X) ← (2)
mutates(E, G), intermediary gene(E, Gx, G),
reduces expression(E, Gx), inhibits(Gx, X),
not incr affected by other gene(E,Gx,X),
not incr affected by EnvFact(E, X).

If gene Gx inhibits gene X, and the expression of gene Gx is reduced (directly
or indirectly) by the mutation of gene G in experiment E, then the expression
of X is increased in the experiment E. The relation mutates(E,G) covers both
knock-out and over-expression of gene G in the experiment E.

The Parameters are relations that control the genes taken into account
when searching for hypotheses. In the general case, where every gene is possibly
related to other genes, there may be an exponential number of possible hypothe-
ses. With the parameters we constrain the problem by reducing the search space.
By varying their definition, we can test different possibilities of the model. There
are two parametric relations including intermediary gene/3 in rule (2). The in-
tegrity constraints provide another means of constraining the search space.
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3 Application: Heat Shock Response of M. tuberculosis

M. tuberculosis data sets were obtained from our collaborators at the Centre for
Microbiology and Infection, Imperial College London [4] and publicly available
tables from the Schoolnik lab, Stanford University. Observations and inferred
hypotheses are presented as directed graphs using a set of visualisation tools we
developed, which is based on Graphviz, an open source graph-layout software
from the AT&T Laboratories. A web-based front-end to explore and manipulate
the graphical displays is available [3].

In the example shown here, observations from 5 experiments were selected
according to a conservatively chosen significance threshold in the 1st phase sta-
tistical analysis. Each experiment knocks out or over-expresses a gene believed
to be involved in heat shock response and known to function as a transcrip-
tional regulator (regulator of expression of other genes). The two parameters
of the model were defined to restrict attention to possible interactions between
16 genes of known regulatory function. Analysis of the observations in all ex-
periments together generated a single hypothesis, shown in graphical form in
figure [1], that explained all observations.

Rv0249c

Rv0250c
Rv0251c

Rv0350

Rv0351

Rv0352

Rv0353

Rv0384c

Rv3417c

Rv3418c

Rv0990c

Rv0991c

Rv1221

Rv2710

Rv2374c

Rv3223c

Fig. 1. The nodes represent genes, whereas the edges show the inferred relations be-

tween genes, bold for induces and dotted for inhibits. Cyclical edges represent the

auto-regulation relationships abduced.

The resulting hypothesis is in agreement with previous knowledge [4]. The
DnaK operon1 (genes Rv0350–353, on the right of the figure) is controlled by
the positive regulator sigH (Rv3223c) and the negative regulator hspR (Rv0353).
The acr2 operon (genes Rv0249c–251c, at the top left of the figure) is controlled
by the positive regulator sigE (Rv1221) and negative regulator hspR (Rv0353).

1 Group of genes that reside next to each other on the DNA and are expressed together.
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The groES/EL genes (Rv3417c–Rv3418c) are under dual negative control by
hspR (Rv0353) and hrcA (Rv2374c). Known feedback loops are also discovered:
the DnaK operon (Rv0350–353) is negatively regulated via its member Rv0353.
Finally, there is a group of genes whose function in heat shock response is not
clear but are linked in the explanatory hypothesis. Rv0249c and Rv0250c are
both unknown genes, repressed (inhibited) by hspR, both next to Rv0251c in
the chromosome. This could be a real effect, suggesting they are in an operon,
or it could be some artefact due to their place on the chromosome and the way
data is collected. Similarly, Rv0990c and Rv0991c could also be members of an
operon, but isolated with no obvious function in heat shock. Our collaborators
are planning to investigate these hypotheses in a new set of experiments. Further
discussion of our methods and more detailed examples are available in [5].

4 Conclusions

We develop a general method to support the analysis of an important class of mi-
croarray experiments. The novel feature is a simple, general model of how gene
interactions can cause changes in observable expression levels of genes under
differing conditions, and the use of abduction to infer explanatory hypotheses.
This method allows us to infer regulation relations across several experiments.

The declarative and modular nature of this gene interaction model allows
us to experiment easily with variations and new general rules suggested by our
biological collaborators, and to add biological knowledge as it becomes available.
The parameters in the model allow us to constrain the search space of possible
hypotheses and thereby apply the methods to realistically large data sets.

Tests on M. tuberculosis rediscovered part of the heat shock response mech-
anism and suggested further experiments. We are presently engaged in a sys-
tematic exploration of the various possibilities afforded by the model and an
extensive validation against known gene regulation processes in yeast.

We have been able to apply these methods in practice to the analysis of large
data sets. Whatever the biological significance of this technique turns out to be
in the long-term, the model provides a valuable test case for those concerned
with the development of abductive reasoning technology.
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1 Introduction

The integration of preferences into Answer Set Programming (ASP) constitutes
an important practical device for distinguishing certain preferred answer sets
from non-preferred ones. Up to now, the preference semantics we are considering
in this system description were incorporated into answer set solvers either by
meta-interpretation [3] or by pre-compilation front-ends [2]; therefore, such kinds
of preferences were never integrated into the core existing ASP solvers.

Unlike this, the nomore< system pursues an integrative approach to prefer-
ence handling. Its theoretical background is described in [6]. The system itself
is an early branch of the nomore++ ASP solver [8]. The approach relies on rule
dependency graphs and computes answer sets by coloring this graph by following
a certain strategy. It integrates preferences as an additional type of edges among
nodes representing rules. The idea is to start from an uncolored graph and to
employ specific operators that turn a partially colored graph gradually into a
totally colored one that represents a preferred answer set.

Apart from describing the nomore< system, we focus in our experimental
section on the question how an integrative approach compares to a compilation-
based approach. To this end, we use the plp system [9] in connection with
nomore< as well as smodels [11] as its respective back-end ASP solvers.
(Ab)using nomore< as a standard ASP solver allows us to obtain comparable
results, although its performance is much more inferior than that of smodels as
well as the full-fledged nomore++ system [8].

2 Background

The current version of the nomore< system computes preferred answer sets of
logic programs with preferences on rules. A logic program is a finite set of rules
such as p0 ← p1, . . . , pm,not pm+1, . . . ,not pn, where n ≥ m ≥ 0, and each pi

(0 ≤ i ≤ n) is an atom. The semantics of logic programs is determined by its set
of answer sets, as proposed in [5]. An ordered program is a pair (Π,<), where Π
is a logic program and < ⊆ Π ×Π is a strict partial order among the rules in Π .
Given, r1, r2 ∈ Π , the relation r1 < r2 expresses that r2 has higher priority than
r1. The ordering < is used for selecting preferred answer sets among the standard
ones of Π , which can be achieved in different ways. Here, we concentrate on one
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interpretation for preference handling, namely the D-semantics provided in [2].
Similar semantics for preferences among rules where defined in [1,10].

Previous work [6] provides the theoretical background for computing pre-
ferred answer sets in terms of coloring strategies of a rule dependency graph
extended by preference information. The main goal of the work presented in [6]
is the integration of preference information into an ASP solver. There, determin-
istic operators, e.g. U ,P and nondeterministic operators, e.g. choice operator D,
where defined. For instance, iterated application of P (denoted by P∗) and U ,
denoted by (PU)∗, yield the well-founded semantics [12]. Iterated application of
propagation (PU)∗ and choice operations D, denoted by [(PU)∗ ◦ D]n ◦ (PU)∗,
yield preferred answer sets of the underlying ordered program. More precisely,
these propagation and choice operations are preference-based, following the idea
that rules are considered in an order preserving way.

3 System

The nomore< system is a C++ implementation of the approach given in [6] and
an improvement of the GCplp [4] system. The current version 1.0 can be down-
loaded from http://www.cs.uni-potsdam.de/wv/nomorepref/. Since
nomore< uses lparse [7] as parser, we have to encode preference statements
as the following set of rules:

name(r)← for all rules r involved in <

preferred(r1, r2)← for every preference relation r2 < r1,

where the name predicates name are needed for rule labelling and the preferred
predicates make the preferences explicit. For example, the ordered program {r1 :
a← not b, r2 : b← not a, r2 < r1} is represented as program

a← name(r1),not b name(r1)←
b← name(r2),not a name(r2)←

preferred(r1, r2)←

which has standard answer sets {a} and {b}, but only {a} as preferred one.

4 Experiments

We have considered the following examples:

– indset 〈N〉.lp encodes the independent set problem for an undirected circle
graph with N vertices, where even numbered vertices are preferred to be in
an independent set.

– art2 〈N〉.lp and art 〈N〉.lp are artificial ordered programs, where all N rules
of the underlying logic program have only negative body atoms (except for
name predicates used for rule labelling).
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– kernel comp 〈N〉.lp encodes the kernel problem for a complete graph with
N vertices, where one special vertex is preferred to be in a kernel, but no
other ones.

– col lad 1 〈N〉.lp encodes the coloring problem of a ladder graph with two
colors, where a particular color is preferred for every odd vertex.

A detailed description of the used examples including downloads can be found
at http://www.cs.uni-potsdam.de/∼konczak/benchmarks/BenchPref/index.html.

Table 1 shows the time measurements on an AMD processor with 2.2 Ghz and
2 GB memory. We have tested several problem classes for finding one preferred
answer set and finding all preferred answer sets. In Table 1, DH denotes a
coloring strategy, where the propagation operators are preference-based (i.e. we
propagate from higher preferred rules to lower preferred rule) and the choice
operator is a conventional one. There, generated solutions have to be checked
by the operator H, which verifies the existence of a so called height function [6]
ensuring that an answer set is a preferred one. D< denotes a coloring strategy,
where the propagation operators and the choice operators are fully preference-
based. More precisely, it denotes the coloring sequence [(PU)∗ ◦D]n ◦ (PU)∗ [6].
That is, propagating and choosing goes along the given preferences from higher
preferred rules to lower preferred ones. In short, DH offers a partial integration of
preference information into an ASP solver where a check is still needed, whereas
D< fully integrates preference information into an ASP solver.

In contrast to the integration of preferences into an ASP solver, the plp sys-
tem [9] compiles an ordered program into a logic program such that the preferred
answer sets correspond to the standard answer set of the compiled program. We
have used plp to compare our integrative approach with the compilation method
provided by plp. In Table 1, plp + n denotes the time for computing preferred
answer sets via the plp compilation while using the nomore< system as a stan-
dard ASP solver. Additionally, we have run the compilation in connection with
smodels [11] (see plp+s in Table 1) for showing differences in the current devel-
opment status of the nomore< system, when computing standard answer sets.

The times for plp + s and plp + n show that the nomore< system has a
lower base speed than smodels due to the fact that nomore< is not as optimized
as smodels, e.g. heuristics and lookahead are not yet integrated in nomore<

and nomore< provides only forward propagation whereas smodels (as well as
nomore++ [8]) provides forward and backward propagation.

The results in Table 1 show that for problems where one is interested in
finding only one solution, the strategy where preference information is fully in-
tegrated into an ASP solver (indicated by appealing to the preference-based
choice operator D<) is much better than a strategy where the preference infor-
mation is only partially integrated. Additionally in this case, D< behaves much
better than the compilation method (plp + n). D< is also a good strategy for
determining preferred answer sets whenever the underlying rules of the program
have no positive body atoms, e.g. as in the artificial examples art2 〈N〉.lp. The
strategy DH seems to be good whenever we want to find all preferred answer
sets or whenever we have multiple positive atoms in the body of an rule.
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Table 1. Time Measurements on an AMD processor with 2.2 Ghz and 2 GB memory,
and lparse version 1.0.13 and smodels version 2.28

find one preferred answer set find all preferred answer sets

file DH D< plp+n plp+s DH D< plp+n plp+s

indset 5.lp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
indset 10.lp 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.01
indset 15.lp 0.01 0.00 0.06 0.01 0.02 0.02 0.06 0.01
indset 20.lp 0.00 0.00 0.13 0.02 0.14 0.18 0.13 0.02
indset 25.lp 0.29 0.01 0.23 0.04 0.68 0.89 0.23 0.04
indset 30.lp 0.01 0.01 0.38 0.05 3.42 8.47 0.38 0.05
indset 35.lp 6.83 0.01 0.59 0.07 16.25 41.90 0.60 0.07
indset 40.lp 0.01 0.01 0.88 0.09 78.31 371.60 0.90 0.09

art2 10.lp 0.00 0.00 0.02 0.01 0.00 0.00 0.05 0.01
art2 16.lp 0.02 0.00 0.05 0.02 0.03 0.00 0.32 0.02
art2 20.lp 0.06 0.00 0.09 0.02 0.10 0.00 0.82 0.02
art2 30.lp 1.44 0.01 0.27 0.05 2.55 8.05 4.91 0.05
art2 40.lp 32.81 0.01 0.62 0.08 58.40 0.01 19.08 0.08
art2 50.lp – 0.02 1.36 0.13 – – 69.11 0.13
art2 60.lp – 0.02 2.57 0.19 – – – 0.19
art2 70.lp – 0.03 4.26 0.25 – – – 0.25
art2 80.lp – 0.04 6.50 0.33 – – – 0.33
art2 90.lp – 0.05 9.32 0.42 – – – 0.43

art2 100.lp – 0.06 12.74 0.52 – – – 0.52

kernel comp 10.lp 0.03 0.01 0.11 0.03 0.03 0.34 0.11 0.03
kernel comp 20.lp 0.21 0.06 0.70 0.11 0.21 1087.77 0.72 0.11
kernel comp 30.lp 0.81 0.16 2.87 0.25 0.80 – 2.93 0.25
kernel comp 40.lp 2.20 0.33 7.09 0.46 2.17 – 7.23 0.46
kernel comp 50.lp 5.03 0.60 14.37 0.73 4.99 – 14.23 0.73
kernel comp 60.lp 10.34 1.01 24.28 1.07 9.91 – 24.88 1.07
kernel comp 70.lp 21.02 1.60 38.54 1.46 20.00 – 39.00 1.46
kernel comp 80.lp 46.69 2.55 59.49 1.92 41.67 – 59.11 1.91
kernel comp 90.lp 87.17 3.87 84.36 2.45 85.27 – 83.31 2.44

col lad 1 2.lp 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
col lad 1 4.lp 0.00 0.00 0.06 0.01 0.00 0.05 0.06 0.01
col lad 1 8.lp 0.01 0.01 3.13 0.02 0.01 33.78 3.16 0.02

col lad 1 10.lp 0.01 0.01 19.38 0.03 0.02 – 19.47 0.03
col lad 1 20.lp 0.05 0.06 – 0.10 0.07 – – 0.10
col lad 1 30.lp 0.11 0.13 – 0.22 0.16 – – 0.22
col lad 1 40.lp 0.20 0.23 – 0.38 0.28 – – 0.39

art 10.lp 0.02 0.00 0.06 0.01 0.03 0.00 0.07 0.01
art 20.lp 37.24 0.04 0.70 0.04 55.93 0.04 0.84 0.04
art 30.lp – 0.29 3.63 0.10 – 0.29 4.41 0.10
art 40.lp – 1.21 15.18 0.18 – 1.19 18.94 0.18
art 50.lp – 3.60 39.98 0.28 – 3.74 47.92 0.28
art 60.lp – 9.01 – 0.41 – 8.90 – 0.41
art 70.lp – 19.24 – 0.57 – 19.89 – 0.57
art 80.lp – 38.40 – 0.77 – 37.78 – 0.77
art 90.lp – 70.38 – 1.00 – 68.47 – 0.99

art 100.lp – 121.81 – 1.26 – 116.74 – 1.25



398 S. Grell, K. Konczak, and T. Schaub

For the independent set problem, the compilation method (plp + n) seems
to be better than an integration of preference information into an ASP solver.
This is mainly caused by the underlying preference structure. It remains to
be future work, under which preference structure the compilation method and
under which preference structure the integrative approach yields the best results.
Hence, choosing the best strategy for computing preferred answer set depends
on the underlying problem (example) class.

5 Conclusions and Future Work

We have presented the nomore< system, implemented in C++, which integrates
preference information into an ASP solver. Furthermore, we have compared our
integrative approach with the compilation method of preference handling pro-
vided by the plp system. We have found out that it really depends on the
underlying problem class and preference structure, whether an integrative ap-
proach of preference handling is better than the compilation method, or vice
versa. Hence, it remains to be future work to study problem classes and un-
derlying preference structures in view of compilation and integrative methods.
Moreover, the current version of nomore< contains no optimization methods,
e.g. backward propagation, heuristics, and lookahead.
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1 Introduction

A number of answer set solvers have been proposed in recent years, such as
Smodels, DLV, Cmodels, and ASSAT. Most existing ASP solvers have been ex-
tended to provide front-ends that are suitable to encode specialized forms of
knowledge—e.g., weight-constraints, restricted forms of optimization, front-ends
for planning and diagnosis. These features allow declarative solutions in specific
application domains. However, this is not completely satisfactory:

• The development of an ASP program is viewed as a “monolithic” process.
Most ASP systems offer only a batch approach to execution of programs—
programs are completely developed, “compiled”, executed, and finally answer
sets are proposed to the user. The process lacks any levels of interaction with
the user. In particular, it does not directly support an interactive development
of programs (as in Prolog), where one can immediately explore the results of
simply adding/removing rules.
• ASP programmers can control the computation of answer sets through the

rules that they include in the logic program. Nevertheless, ASP systems of-
fer very limited capabilities for reasoning on the whole class of answer sets
associated to a program—e.g., to perform selection of models according to
user-defined criteria or to compare models. These activities are important in
many application domains—e.g., to express soft constraints, to support pref-
erences when using ASP to perform planning.
• ASP solvers are independent systems; interaction with other languages can be

performed only through complex, low level APIs; this prevents programmers
from writing programs that manipulate ASP programs and answer sets as
first-class citizens. E.g., we wish to write programs in a high-level language
(Prolog in this case), which are capable to access ASP programs, modify their
structure (by adding or removing rules), and access and reason with answer
sets. This type of features is essential in many domains—e.g., automatically
modify the plan length in a planning problem.

We address these problems by developing a system, ASP− PROLOG. The
system provides a tight integration of ASP in Prolog. The language is developed
using the module and class capabilities of CIAO Prolog. ASP− PROLOG allows
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programmers to assemble a variety of different modules to create a program;
along with the traditional types of modules supported by CIAO Prolog (e.g.,
standard Prolog, constraint logic programming, active deductive databases), it
allows the presence of various ASP modules, each being a logic program conform-
ing to the syntax of lparse. Each Prolog module can access any ASP modules
(using the traditional module qualification of Prolog), read its content, access its
models, and modify it (e.g., adding/removing rules).

2 System Capabilities and Possible Areas of Application

User Interface: Prolog modules are required to declare their intention to access
any ASP modules; this is accomplished through the declarations

:− use asp(module name, file name, parameters)
where module name is the name of the ASP module, file name is the file con-
taining the ASP code, while parameters control the ASP solver (command line
and compute arguments of Smodels). ASP− PROLOG provides predicates that
allow Prolog to interact with ASP modules:

• model(ModelName,ModelObject) retrieves one answer set of an ASP module;
ModelName is an atom uniquely identifying one answer set, while
ModelObject is a CIAO Prolog object containing the answer set (as Pro-
log facts). For example, plan:model(1, Q) retrieves the answer set named
1 of ASP module plan and stores it as an object in Q; if we want to check
whether the atom p is true in such answer set, we simply execute the Prolog
goal Q:p.
• total stable model/2 determines the number of answer sets of an ASP

module, and returns a list of the names given to the answer sets.
• assert/1 and retract/1: the argument of these predicates is a list of ASP

rules, that are either added or removed from an ASP module. For example,
the goal plan:assert([p:-q]) adds the rule p:-q to the ASP module plan.
Modifications are undone during backtracking.
• assert nb/1 and retract nb/1 have the same effect as assert/retract,

with the exception that the modifications are not undone upon backtracking.
• change parm/1 allows to set/modify the parameters for the ASP execution

(e.g., values of constants, components of the compute statement of Smod-
els).
• clause/2: this predicate is used to allow a Prolog module to access the rules

of an ASP module—in the same spirit as the clause predicate is employed in
Prolog to access the Prolog rules present in the program. The two arguments
represent respectively the head and the body of the rule.

If α is a CIAO object representing an answer set, then the Prolog goal α : p cor-
responds to testing truth of p (possibly non-ground) in the answer set α. Observe
that, due to the fact that the syntax of Smodels is not ISO Prolog-compliant, cer-
tain Smodels constructs (e.g., cardinality and weight constraints) have a slightly
different syntactic representation when used within Prolog modules.
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Possible Application Areas: ASP− PROLOG allows users to
• manipulate answer sets of a program; this includes (i) the computation of

the entailment relation of a logic program (e.g., different modes of reasoning,
such as skeptical or credulous reasoning can be done), and (ii) comparing an-
swer sets of an ASP program, and select those that satisfy certain properties
(e.g., individual preferences).
Since ASP has frequently been used as a knowledge representation lan-
guage, the ability to compute the entailment relation of a logic program
makes ASP− PROLOG an attractive candidate for the implementation of
query-answering systems based on answer set semantics. Furthermore, be-
cause computing preferred answer sets has found its application in planning
with preferences, diagnosis, and common-sense reasoning, ASP− PROLOG

can be used as an interactive environment for such systems.
• modify programs and recompute their answer sets on the fly (e.g., adding or

removing rules); this feature provides a simple way to modify the values of
constants occurring in a program and/or to delay the grounding process of a
program with variables until the instantiated rules are needed. Furthermore,
ASP− PROLOG provides different ways for users to test and debug an ASP
program interactively. For example, ’suspected rules’ can be removed for
testing the consistency of a program; adding ’known-to-be-true’ atoms into
a program is another way for detecting errors in the program; etc.
• work with several logic programs simultaneously (e.g., reasoning about the

common knowledge of multiple-agents); since ASP− PROLOG allows users
to work with several modules at the same time, it can be used as an environ-
ment for implementing/testing various formalisms for modeling multi-agents.
For example, when each agent’s knowledge is represented by a logic program,
computing common knowledge among them is equivalent to computing the
intersection of all possible answer sets.
• use logic programs with answer set semantics to control the query-answering

process of a Prolog program (e.g., avoiding infinite loops); this is possible,
since ASP− PROLOG programs are Prolog programs extended with a new
type of atoms, whose truth value is determined by the ASP solver.

We are not aware of any systems with the same capabilities as ASP− PROLOG.
Smodels provides a very low level API [5] that allows C++ programs to use
Smodels as a library. DLV does not document any external API, although a
Java wrapper has been recently announced [1]. XASP [2] proposes an interface
from XSB to the API of Smodels. It provides a subset of the functionalities
of ASP− PROLOG, with a deeper integration with the capabilities of XSB of
handling normal logic programs.

3 System Implementation

The syntax and semantics of ASP− PROLOG programs are described in [3]. It
suffices to notice that a ASP− PROLOG program is a pair (P r, As), where P r
is a set of ASP− PROLOG rules and As is a logic program which conforms to
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the syntax of lparse. Each ASP− PROLOG rule is a Prolog rule whose body
can contain atoms occurring in As. Furthermore, the above mentioned interface
predicates (e.g., assert, retract) can be used by ASP− PROLOG programs to
manipulate As. The overall structure of the implementation is depicted in Figure
1. The system is composed of two parts, a preprocessor and the actual CIAO
Prolog system. The system accepts the input composed of (i) the main Prolog
module (P r); (ii) a collection of CIAO Prolog modules (m1,m2, . . . ,mn); (iii)
a collection of ASP modules (e1, e2, . . . , em).

Prolog
Modules

ASP
Modules

ASP-Prolog
PreProcessor

CIAO
Prolog

ASP-Prolog
Goals

Answer
Substitutions

Updated
Prolog

Modules

Module Load

Interface
Modules

Model
Classes

Fig. 1. Overall Structure of ASP − PROLOG Implementation

Preprocessing: The input to the system is used as the input to the prepro-
cessor. The preprocessor transforms each Prolog module into a new module (P r
is transformed to NP r and mi is transformed to nmi), and each ASP module
ei into a CIAO module imi and a class definition ci.1 The main purpose of
this step is to adapt the syntax of the interface predicates, make it compatible
with CIAO Prolog’s syntax, and prepare different objects (interface module and
model class) for the actual program execution. The preprocessor also invokes the
CIAO Prolog top-level and loads all the appropriate modules for execution. The
interaction with the user is the same as the standard Prolog top-level.

Interface Modules: For each ASP module ei, the preprocessor generates an
interface module ci by instantiating a generic module skeleton to the content
of ei. ci is a standard CIAO Prolog module and provides the client Prolog
modules with the predicates used
to access and manage the ASP
module ei. The overall structure
of the interface module is illus-
trated in Figure 2. The module
has an export list which includes
all the predicates used to manipu-
late ASP modules (e.g., assert,
retract, model) as well as all
the predicates that are defined
within the ASP module. The typ-
ical module declaration generated

Public Part
Export List

Private
Data

Module
Initialization

* access ASP file & parameters
* computation of initial models
* generation of model objects
* interface initialization 

MODELS
* Internal ASP Program representation
* Model Objects
* Backtracking checkpoints
* Support Tables

* interface predicates
   - assert/1, assert_nb/1
   - retract/1, retract_nb/1
   - models/2, total_stable_models/1
   - compute/2, change_parm/1

Fig. 2. Structure of the Interface Module

for an interface module will look
like:

1 CIAO provides the ability to define classes and create class instances [4].
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:− module(’plan.lp’,[assert/1,retract/1,...,model/2,p/0,q/0,r/0]). The
definition of the various exported predicates (except for the predicates defined
in the ASP module) is derived by instantiating a generic definition of each pred-
icate. Each module has an initialization part, which is in charge of setting up
the internal data structures (e.g., the internal representation of the ASP module,
tables to store parameters and answer sets), and invoke the answer set solvers for
the first time on the ASP module—in the current prototype we are using Smod-
els as answer set solver. The result of the computation of the models will be
encoded as a collection of Model Objects (see below). The module will maintain
a number of internal data structures, including a representation of the ASP code,
a representation of the parameters to be used for the computation of the answer
sets (e.g., values of constants), a list of the objects representing the models of
the ASP module, and a count of the current number of answer sets.

Model Classes: For each ASP module ei, the preprocessor generates a CIAO
class definition ci. The objects obtained from the instantiation of such class will
be used to represent the individual models of the ASP module. Prolog modules
can obtain reference to these objects (e.g., using the model predicate supplied
by the interface module) and use them to directly query the content of one or
several models. The definition of the class is obtained through a straightforward
parsing of the ASP module, to collect the names of the predicates defined in it;
the class will provide a public method for each of the predicates present in the
ASP module. In addition, the class defines also a public method add/1 which is
employed by the interface module to initialize the content of the model.

Each model is stored in one instance of the class; the actual atoms rep-
resenting the model are stored internally in the objects as facts of the form
s(〈fact〉).

Implementation and System Details: The various interface predicates are
implemented in CIAO Prolog in a fairly straightforward way. For instance, the
implementation of assert (resp. retract) makes use of the module concat of CIAO
Prolog to introduce new (resp. remove) rules to (resp. from) the ASP module.

A number of tables are maintained by each interface module to support the
execution of ASP modules. Some of the relevant internal structures include:

• fn: maintains a (Prolog-based) representation of the rules of the ASP module;
• stable ref: a table (implemented as Prolog facts) that maintains references

to the current answer sets of the ASP module (as pairs model name/object
reference that maps name of models to objects representing the models);
• retract rule: a trail structure that caches the modifications performed by
assert and retract; this is required to allow undoing of the changes;
• prm: a table (encoded as Prolog facts) that stores the parameters to be used

during the computation of the models of the ASP module.
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Code and URL: The original idea and the semantics of ASP− PROLOG has
been presented in [3]. The first version of system is now complete and available
for download at www.cs.nmsu.edu/∼okhatib/asp prolog.html.
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1 Introduction

The stable model semantics of disjunctive logic programs (DLPs) is based on
minimal models [5,12] which makes atoms appearing in a disjunctive program
false by default. This is often desirable from the knowledge representation point
of view, but certain domains become awkward to formalize if all atoms are blindly
subject to minimization. In contrast to this, parallel circumscription [11] provides
a refined notion of minimal models as it distinguishes varying and fixed atoms in
addition to those being falsified. This eases the task of knowledge presentation in
many cases. For example, it is straightforward to formalize Reiter-style minimal
diagnoses [13] for digital circuits using parallel circumscription.

There have been several attempts to embed parallel circumscription into dis-
junctive logic programming. Although fixed atoms are easy in this respect [1,6],
varying atoms are not fully covered. Earlier approaches either deal with syntactic
subclasses of logic programs [4] or have exponential worst-case space complex-
ities [9,14]. To the contrary, the system circ2dlp described in this article is
based on a new linear but non-modular transformation [8] which enables the use
of existing implementations of disjunctive logic programming such as dlv [10]
and GnT [7] for the actual search of minimal models.

The rest of this system description is organized as follows. Section 2 con-
centrates on specifying the output produced by circ2dlp, i.e. the translation
presented in [8], on a high level of abstraction. In Section 3, we provide the
reader with some instructions how to use the tool in practice. The last section
(Section 3) comprises of some preliminary experimental results obtained using
circ2dlp together with dlv and GnT. As a benchmark, we use the problem
of finding Reiter-style minimal diagnoses [13] for digital circuits. Moreover, we
briefly compare the performance of our translation-based approach with another:
circum [15] is a system developed for computing prioritized circumscription
(a generalization of parallel circumscription) using a generate and test method.
� The research reported in this paper is partially funded by the Academy of Finland

(project #211025) and the European Commission (contract IST-FET-2001-37004).
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2 Translation-Based Approach

The aim in the following is to briefly describe the translation computed by
circ2dlp. For that purpose, we give a definition for parallel circumscription
in the propositional case. Following the presentation in [8], we formulate the
definition in the case of a positive DLP Π possessing a Herbrand base Hb(Π).
Given a set of varying atoms V ⊆ Hb(Π) and a set of fixed atoms F ⊆ Hb(Π), the
parallel circumscription of Π is characterized by 〈V, F 〉-minimal models M |= Π
each of which is minimal in the following sense: there is no model N |= Π such
that N \ (V ∪ F ) ⊂M \ (V ∪ F ) and N ∩ F = M ∩ F .

The basic idea in the translation-based approach [8] is that the 〈V, F 〉-
minimal models of a positive DLP Π can be captured by projecting the stable
models of the translation

Trcirc2dlp(Π) = TrGEN(TrKK(Π)) ∪ TrEG(TrMIN(TrKK(Π))) (1)

with respect to Hb(Π). The translation given in (1) is based on the following
primitives: (i) TrKK(·) removes fixed atoms using a technique proposed in [1],
(ii) TrGEN(·) produces a model generator for Π as a DLP, (iii) TrMIN(·) encodes
a test for 〈V, ∅〉-minimality as a propositional unsatisfiability problem, and (iv)
TrEG(·) implements the required unsatisfiability check using the primitives of
DLPs [3]. To summarize the properties of Trcirc2dlp(Π), the translation is linear
in the length of the program ||Π || and a bijective correspondence between sta-
ble models of the translation and the 〈V, F 〉-minimal models of Π is obtained.
Further details and the correctness proof of Trcirc2dlp(Π) can be found in [8].

The model generator TrGEN(TrKK(Π)) can be enhanced by taking the set of
varying atoms V properly into account. Actually, an improved model generator
TrGEN2(TrKK(Π)) is already used in the implementation. The idea is to replace
the rules in items 1 and 2 in [8, Definition 6] by the following:

1′. a← ∼a for each a ∈ V and a← ∼a for each a ∈ Hb(Π),
2′. (A \ V )← (B \ V ),∼(A ∩ V ),∼B ∩ V for each rule A← B in Π .

The translation Trcirc2dlp(Π) optimized in this way is a DLP and thus a valid
input for disjunctive solvers implementing the search for stable models [7,10].

Prioritized circumscription [11] can be translated into parallel circumscrip-
tion using a scheme proposed by Lifschitz [11]:

Circ(Π,P1 > . . . > Pk, V ) =
k∧

i=1

Circ(Π,Pi,Pi+1 ∪ · · · ∪ Pk ∪ V ) (2)

where P1, . . . ,Pk are sets of minimized atoms with decreasing priority, V is
the set of varying atoms, and the sets of fixed atoms remain implicit. In our
translation-based approach, the equation (2) is understood as a join of k parallel
circumscriptions. The respective subtranslations can be concatenated so that
Hb(Π) is shared and the new atoms produced by Trcirc2dlp remain distinct for
each part. It follows that the time complexity is O(k × ||Π ||) in general.
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3 Some Instructions for Use

The translator circ2dlp has been implemented in C under Linux operating
system and is available at http://www.tcs.hut.fi/Software/circ2dlp/. The
translator takes a DLP Π combined with sets of varying and fixed atoms as
input and produces translation Trcirc2dlp(Π) as output. The input format is the
internal format of GnT produced by the front-end lparse. Rules with variables
can be used, although lparse performs an instantiation for the rules. circ2dlp
produces output compatible with both GnT (default) and dlv.

All atoms are minimized by default, unless explicitly stated to be varying
or fixed. Default behaviour can be altered using option --vary. Notice that
lparse might produce invisible atoms that have no name in the symbol ta-
ble. Option --vary cannot be applied to programs containing invisible atoms,
as the semantics of invisible atoms becomes unclear. circ2dlp can also han-
dle programs containing negation. For such programs the translation yields the
〈V, F 〉-minimal models of the Gelfond-Lifschitz reduct of the original program
which can be understood as the 〈V, F 〉-stable models of the program.

Command line options for circ2dlp are the following:

• -h or --help – Print a help message.
• -t – Print human readable output.
• --dlv – Print the output in dlv syntax.
• --vary – Vary all atoms by default.
• --all – Generate all classical model candidates, using the model generator

TrGEN(TrKK(Π)). Otherwise, TrGEN2(TrKK(Π)) is used.
• --version – Print version information.

For example, all 〈{a}, ∅〉-minimal models of a program stored in a file
example.lp can be computed as follows:

lparse --dlp example.lp > example.sm
circ2dlp example.sm -v a | gnt 0

or, with dlv,

circ2dlp --dlv example.sm -v a | dlv -n=0 --

For more examples, see http://www.tcs.hut.fi/Software/circ2dlp/.
The translator circ2dlp is accompanied by a Perl implementation of Lifs-

chitz’s scheme for computing prioritized circumscription called prio circ2dlp.
For example, the script is used to compute prioritized circumscription Circ(Π,
{a} > {b}, ∅) for program Π given in file example.sm as follows:

prio_circ2dlp example.sm a:b | gnt 0

4 Experiments

As a benchmark, we use the problem of finding Reiter-style minimal diagnoses
[13] for digital circuits encoded as parallel circumscription. We generate circuits
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Fig. 1. Computing minimal diagnoses for faulty digital circuits. On the left all diag-
noses are computed, whereas only one diagnosis on the right.

as follows. First, a random tree is generated using the inverse Pruefer algorithm.
The leaves of the tree corresponding to the inputs of the digital circuit are as-
signed random Boolean values. The intermediate nodes are assigned random
logical operations corresponding to the intermediate gates of the circuit. The
gate at the root node of the tree produces the output of the circuit. The value of
the output is calculated and flipped in order to obtain faulty behaviour for the
circuit. The number of nodes N in the tree forming the digital circuit varies from
16 to 28. For each number of nodes we generate 100 random instances. These
instances are available at http://www.tcs.hut.fi/Software/circ2dlp/. Typ-
ically an instance has less than ten minimal diagnoses when N = 28.

The measured running time is the translation time of circ2dlp plus the
duration of the search for stable models using GnT or dlv. The actual transla-
tion times are negligible, however. We use user+system time of /usr/bin/time
command in UNIX. All the tests were run under the Debian GNU/Linux 2.4.26
operating system on a AMD Athlon XP 2000+ computer with 1 GB memory.

Results are illustrated in Fig. 1. In the case of finding all minimal diagnoses,
GnT outperforms dlv, but in the case of finding a single minimal diagnosis
dlv is superior to GnT in most of the cases. One obvious advantage of our
translation-based approach is that it is rather easy to use different solvers and
thus gain from their development in the future.

We also compared briefly the performance of our approach with that of the
circum system [15] using some instances of our diagnosis benchmark. Our ex-
periments suggest that in the case of parallel circumscription the running times
for the circum system are one or two orders of magnitude higher than running
times for circ2dlp+GnT. To compare the systems in the case of prioritized
circumscription we used our diagnosis benchmarks and added random priorities
for the minimized atoms varying the number of priority classes k. These exper-
iments suggest that our approach is able to compete with circum when k is
small, but as k grows, the quadratic blowup implied by (2) becomes apparent.

There is also a diagnosis front-end in dlv [2], but there are restrictions in
the case of minimal diagnoses: the theory has to be non-disjunctive and the
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abnormality atoms may only appear negatively. This limits the applicability of
the front-end so that our diagnosis benchmark cannot be represented naturally.
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Abstract. We describe a new software, pbmodels, that uses pseudo-boolean con-
straint solvers (PB solvers) to compute stable models of logic programs with
weight atoms. To this end, pbmodels converts ground logic programs to propo-
sitional theories with weight atoms so that stable models correspond to models.
Our approach is similar to that used by assat and cmodels. However, unlike these
two systems, pbmodels does not compile the weight atoms away. Preliminary
experimental results on the performance of pbmodels are promising.

1 Introduction

We describe a system pbmodels to compute stable models of logic programs with
weight atoms. We call such programs smodels programs, as we adopt for them the
semantics implemented in smodels [1]. The key idea behind pbmodels is to translate
programs into propositional theories and use propositional satisfiability solvers. How-
ever, unlike existing systems assat [2] and cmodels [3], which first exploited this direc-
tion, we do not replace weight atoms with propositional formulas. Instead, we translate
programs with weight atoms directly into theories in propositional logic extended with
weight atoms, which we refer to as the logic PLwa [4]. We then use existing solvers
for such theories as computational back-end engines. We refer to solvers testing satisfi-
ability of PLwa theories as PB solvers. In some cases, prior to the use of a PB solver,
additional simple transformations are needed to ensure the right input format.

Compiling away weight atoms may lead to significantly larger programs and theo-
ries. Currently most advanced translations result in the growth by a logarithmic factor
in the case of cardinality atoms, and a polynomial factor in the case of general weight
atoms. Moreover, for some solvers, especially those based on the local-search idea, the
structure of the resulting theories makes them difficult to process. The growth in size
and the additional structure, which result from compiling weight atoms away, often ren-
der solvers that require that step, such as assat [2] and cmodels [3], less effective. That
motivates our work. Pbmodels is designed to compute models of smodels programs
without replacing weight atoms by their pure propositional representations.

2 Pbmodels — The Algorithm

Our paper is based on theoretical results developed in [4] for an abstract setting of pro-
grams with monotone and convex constraints. The approach developed there specializes

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 410–415, 2005.
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to smodels programs. In particular, it yields the concepts of the program completion, a
loop, a terminating loop and a loop formula for an smodels program, with the comple-
tion and loop formulas being formulas in the logic PLwa .

Results in [4] imply that stable models of an smodels program are in one-to-one
correspondence with models (in the sense of the logic PLwa ) of the completion of the
program extended with some loop formulas for the program. That result, generalizing a
result of Lin and Zhao [2], allows us to extend the design of assat to the case of smodels
programs in a way, which does not require that weight atoms be complied away. In a
nutshell, we first compute the completion of the smodels program. Then we iteratively
compute models of the completion using PB solvers. Whenever a non-stable model is
found, we add to the completion loop formulas that guarantee that the same non-stable
model will not be computed again. Our algorithm is shown in Figure 1.

Input: P — a ground logic program (possibly with weight atoms)
A — a pseudo-boolean solver

Output: M — a stable model of P if A finds one; “Failed” otherwise

BEGIN
compute the completion comp(P ) of P represented in PB logic;
do

M := a model of comp(P ) found by A;
if (M does not exist) output “Failed” and terminate;
if (M is stable) output M and terminate;
compute the reduct P M of P with respect to M ;
compute the greatest stable model M ′ under M in P M ;
M− := M \ M ′;
find all maximal loops in M−;
add loop formulas of the loops found in previous step to comp(P );

while (true);
END

Fig. 1. Algorithm of pbmodels

3 Pbmodels — The Package

The pbmodels package, including executable PB solvers code, can be obtained at
http://www.cs.uky.edu/ai/pbmodels/pbmodels-0.1.tar.gz. It is
also installed at the asparagus site http://asparagus.cs.uni-potsdam.de.

The package contains the source code of pbmodels and supported PB solvers:
satzoo [5], pbs [6], wsatoip [7], and wsatcc [8]. The first two are complete PB solvers
while the last two are incomplete PB solvers based on walksat [9] local-search algo-
rithm. In addition, the package contains also two scripts:

– esrapl: a perl script that recovers the structure of rules and weight atoms when
lparse grounds the input program and converts it to a normal form required by
smodels. We found that PB solvers are more effective when the original structure
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of rules and weight atoms is restored. We designed esrapl1 to “undo” conversion
of ground programs to their normal form by lparse.

– convert2: a perl script that takes a theory in the logic PLwa , and produces PB
theories that are accepted by different PB solvers. It is invoked by the command:
convert2 <target format> <source file>
Values for <target format> are: satzoo, pbs, wsatcc, or wsatoip.
They specify the format, to which the input PLwa theory in the file <source
file> is to be converted.
The script can be used as a stand alone format translation program.

4 Input, Output, and How to Invoke Pbmodels

Pbmodels accepts on input programs obtained by grounding smodels programs with
lparse and processing the result with esrapl. The output of pbmodels is similar
to that of smodels . The string “False” indicates that there are no stable models for the
input program2. Otherwise, the first stable model of the input will be printed on the
screen.

The main options for pbmodels are:

1. --engine <engine name>
It specifies which PB solver to use. Values for this option are: satzoo, pbs,
wsatcc, and wsatoip

2. --option <list of options to the solver>
It specifies options for a solver selected with the --engine option. Everything
after --option is passed to the solver.

In addition, there are also options that allow the user to specify the path to executable
programs if they are not installed to the default bin directory. We do not discuss them
here due to space constraints.

The following examples show how to invoke pbmodels . We assume that the file
prog.lp contains an input smodels program. We also assume that satzoo is to be used as
the back-end engine.
lparse prog.lp | esrapl | pbmodels --engine satzoo

The following command will invoke pbmodels , use satzoo, and pass specific satzoo
options to satzoo:
lparse prog.lp | esrapl | pbmodels --engine satzoo
--option -no-rand

5 Performance

We report here briefly on our experiments comparing the performance of pbmodels and
smodels . We considered several benchmark problems. Due to lack of space, we present

1 lparse spelled backwards.
2 If an incomplete solver is used, “False” means that no stable models were found; the program

may actually have stable models.
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here only the results concerning the traveling salesperson problem, and the weighted n-
queens problem. Specifications of both problems use general weight atoms. Additional
experimental results can be found at http://www.cs.uky.edu/ai/pbmodels.

We tested pbmodels with the four PB solvers mentioned earlier and compared the
results with those obtained for smodels . All experiments were run on machines with
3.2GHz Pentium 4 CPU, 1GB memory, running Linux with kernel version 2.6.11, gcc
version 3.3.4.

In the following tables we report the number of instances a solver solved, and the
number of times a solver won among all solvers, and among the complete solvers (that
latter metric for complete solvers only). We also report the average and the median
running times in seconds, over all instances that do not time out3.

Table 1 shows results on the traveling salesperson problem. We randomly generated
50 weighted complete graphs containing 20 vertices. For each of them, we set the upper
bound on the length of the TSP cycle to w = 62. With this bound, the solvers we tested
find that 31 instances have solutions. For the remaining 19, none of the solvers was able
to find a solution within the 3000-second time limit we set.

Table 1. TSP Problem

TSP # of Instances # of Times Won Timing
(n = 20, w = 62) Solved v.s. All v.s. Complete Mean Median

smodels 19/50 1 7 1558.37 1637.14

pbmodels-satzoo 19/50 2 16 696.42 461.25

pbmodels-pbs 1/50 0 0 1482.24 1482.24

pbmodels-wsatcc 19/50 6 − 28.39 6.59

pbmodels-wsatoip 28/50 22 − 7.20 1.43

Among complete solvers, pbmodels-satzoo performs better than the other two.
Even though pbmodels-satzoo and smodels solved the same number of instances,
pbmodels-satzoo won more times among the three complete solvers. Moreover, the av-
erage running time of pbmodels-satzoo is about half of that of smodels and the median
running time is about 1/3 of that of smodels . Over all, pbmodels-wsatoip is the winner.
It solves the largest number of instances. Furthermore, its average and median running
times are about three orders of magnitude less than the running time of smodels .

Table 2 shows the results on the weighted n-queens problem. An instance to this
problem consists of n2 non-negative integer weights, one for each square of an n × n
chessboard, and of an integer bound w. A solution to an instance is a placement of n
queens on the chessboard so that they do not attack each other and the total weight of
the placement (the sum of the weights of the squares occupied by queens) is no greater
than w. We randomly generated 50 weighted “chessboards” of the size 20× 20 and, in
each case, we set w = 50. In this group, 29 instances have solutions. For the remaining
21 we do not know whether they have solutions or not; none of the solvers we tested
could decide that within the set time limit.

3 We do not include the time used by lparse and esrapl in the time reported, as we are only
interested in the effectiveness of solvers.
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Table 2. Weighted NQueens Problem

W-NQueens # of Instances # of Times Won Timing
(n = 20, w = 50) Solved v.s. All v.s. Complete Mean Median

smodels 2/50 0 2 697.81 661.20

pbmodels-satzoo 0/50 0 0 N/A N/A
pbmodels-pbs 0/50 0 0 N/A N/A

pbmodels-wsatcc 29/50 15 − 1.01 0.33

pbmodels-wsatoip 29/50 14 − 0.44 0.35

We observe that pbmodels-wsatcc and pbmodels-wsatoip outperformed smodels .
Among the complete solvers, smodels is slightly better than pbmodels-satzoo and
pbmodels-pbs (smodels managed to solve two instances in this category, other complete
solvers timed-out on all). However, the local-search solvers are the overall winners in
all metrics considered.

6 Conclusions

We have presented software package pbmodels that computes models of smodels pro-
grams. The key feature of our system is that it supports the use of off-the-shelf PB
solvers developed by the satisfiability community and capable of process weight atoms
directly.

Our experiments show that pbmodels performs better than smodels on benchmarks
we considered. The results were especially good when local-search PB solvers were
used. We observed the same phenomenon in experiments on other problems we consid-
ered: weighted Latin square problem, magic square problem, vertex-cover problem and
the tower-of-Hanoi problem. The last two problems use only cardinality atoms. Hence
we were able to include cmodels [3] in those two tests, too. The results showed that PB
solvers are generally faster than cmodels on these two benchmark families.
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in Action Theories�
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Abstract. We present a monitoring tool for plan execution in non-deterministic
environments, which are described in an action language, based on non-mono-
tonic logic programming. Thanks to it, deviations of concrete executions from
expected ones can be detected, and diagnostic explanations in terms of unsuccess-
ful action executions can be obtained. The latter may be exploited for execution
recovery, and may help in rectifying an incoherent view of the planning domain.

1 Introduction

In a non-deterministic environment, an agent’s plan for achieving a goal by taking a
sequence of actions might fail, if some of the actions do not materialize as expected.
For this reason, the plan execution might be monitored in order to detect an execution
failure or potential problems at an early stage, from which the agent may then recover.
Execution monitoring was considered for logical domain descriptions in Golog [7,8]
and Flux [6], and for the action language AL in the APLAgent Manager [1,2]. To our
knowledge it has not been considered for other KR action languages such as C, orK, and
in particular for non-deterministic domains. In [4,3], a general monitoring approach for
logic-based action languages with transition-based semantics is presented, in which it is
checked from time to time whether the current state complies with a set T of trajectories
which describe the expected executions of the plan. If a discrepancy is detected, then the
execution is not on track and the agent might suitably reconsider it; in order to diagnose
discrepancies, points of failure in the execution are computed, which informally explain
discrepancies applying Occam’s Razor by the latest action execution which might have
resulted in a “bad” outcome. Such information is useful for execution recovery, e.g., if
actions are undone [3], but also for checking whether the user’s understanding of the
domain is coherent with the formalization.

Example 1. As a running example, we consider here a variant of the well-known Blocks
World domain, in which a block being moved may end up at a location different from
the intended one, because the agent might not grip it properly. Suppose we have the
blocks a, i, p, r, s, x, and the plan

P = 〈move(r, x), move(i, s), move(r, i), move(p, x), move(a, r), move(p, a)〉
for reaching the goal state S6 from the initial state S0 in 6 steps as in Figure 1, which
shows all trajectories for P that establish the goal. If now at stage 4 the discrepancy is

� Work supported by grants of FWF (P16536-N04) and the EC (FET-2001-37004 WASP).

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 416–421, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



KMONITOR – A Tool for Monitoring Plan Execution in Action Theories 417

p r
x a si

p
r

x a i s

p
x a i sr

p
x ar

i
s

p
r

x a
i
s

pr
x a i s

pr
x a

i
s

p
r

x a
i
s

p
r

x a
i
s

r

x a
i
sp

r
a

i
sxp

p
r

x

a

i
s

p

r

x

a

i
s

initial state goal state

S0 S3 S6

Fig. 1. Goal-establishing trajectories for the example plan

detected that p is on r, then the execution will fail, since the next action move(a, r) can
not be taken. If all other blocks are situated as in S3, an explanation is that the preceding
action move(p, x) has failed (see [4, Ex. 3] for a formal description).

In general, not all goal-establishing trajectories might be equally desired, and some
preferred over others. To model this, T contains all preferred trajectories.

Example 2. In our example, let the preferred trajectories T be those in which no block
unintentionally falls on the table during execution. Hence, from the goal-establishing
trajectories in Figure 1, those which pass through the dotted area are not preferred.

KMONITOR (http://www.kr.tuwien.ac.at/research/monitoring)
implements the execution monitoring approach of [4,3] for the action language K on
top of the DLVK planning system [5]. Fig. 2 shows the main loop, which is entered when
monitoring is issued. To keep the monitoring overhead low, the current state is analyzed
only at certain checkpoints, which are determined by a respective component from a
checkpoint policy specified by a non-monotonic logic program (see Section 2). State
analysis is done by the tool KDIAGNOSE implementing the diagnosis method from [4].
If a discrepancy is detected, control is returned with this information and any diagnoses
found.

Example 3. Suppose that blocks x, p, r and s are known to be heavy, and that the pol-
icy is to check each time when a heavy block was moved (as such moves bear high
likelihood of failure). Then, the checkpoints would be the stages 1, 3, 4, and 6.

2 Checkpointing

Rather than checking for a discrepancy after each step, we may check only at certain
stages, e.g., if a stage has higher likelihood of failure, or do a periodic check. Then
monitoring can be less intrusive and the execution of the whole plan will be faster.

In order to select stages for a discrepancy check, a “checkpointing policy” is spec-
ified in terms of a logic program, which has facts and rules over the sets of fluents and
actions from the domain. The policy is evaluated for all stages in the plan, and if a fact
checkpoint(t) is true for the current stage, then a check for discrepancy is issued.

We distinguish two types of checkpointing policies – static and dynamic ones. In
the static case, checkpoints are calculated one and for all from the policy logic program
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and the plan. In the dynamic case, a part of the current state is taken into considera-
tion, yielding more expressive power, but also the need for re-evaluating checkpoints.
Figure 3 gives an overview of the checkpoint generation utility.

Static Checkpoints. When using a static checkpointing policy, we compute the model
of a logic program, comprised of the checkpoint definition file and the modified plan.
Actions of the plan are rewritten into facts with timestamps. (E.g., an action move(a, r)
occurring at stage 2 is rewritten into move(a, r, 2).) The checkpoint definition file con-
tains rules over the modified action predicates and the special predicate checkpoint(t),
whose truth value defines whether we have to do a check at stage t or not.

Example 4. To force a check after each move involving a heavy block, we can define
the following static checkpointing policy:

heavy(X). for X∈{x, p, r, s}, and
checkpoint(Tj) : − move(X, Y, Ti), heavy(X), Tj = Ti + 1.

Dynamic Checkpoints. A dynamic checkpointing policy also involves information
about some fluents of the current state; intuitively, they are sensed to steer the check-
pointing. Therefore, we need to find models of the logic program – made up from the
checkpoint declaration file, the plan, and partial state information – at each stage. At
stage t we compute a model of this program, and if checkpoint(t) is true, a check for
discrepancy is executed. The current stage t may be accessed via now(t).
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Example 5. For issuing a check after each step in which a block ends on a different
location than intended, we can use the following dynamic checkpointing policy:

checkpoint(Tj) : −move(X, Y, Ti), not on(X, Y), Tj = Ti + 1.

This policy will be evaluated at each stage and its result depends on the current state.

In a “sleep” mode, policy re-evaluation can be suppressed until the next provisional
checkpoint according to the last evaluation.

3 Diagnosis of Discrepancies

Before we detail KDIAGNOSE, we informally introduce some terminology (cf. [4]).
There is a discrepancy between a state Si and a set of preferred trajectories T rel-

ative to a plan P , if there is no trajectory S′0, A0,S
′
1, . . . , S′n−1, An−1,S

′
ni.e., an al-

ternating sequence of states and action occurrences in T , such that S′i = Si and S′n is
a goal state. Furthermore, we identify the point of failure for an observed discrepancy
by finding the latest time stamp after which every evolution of Si deviates from every
trajectory in T . Thus, a pair (Sk, k) is a point of failure, or a diagnosis, if:

(S1) Some evolution of Si matches a goal-establishing trajectory in T at stage k
(0 ≤ k < i ≤ n) in state Sk and deviates at stage k + 1.

(S2) No evolution of Si matches a goal-establishing trajectory in T at stage k′> k.

Example 6. If, in our running example, (i) at stage 1 block r is on the table, or (ii)
on(p, r) holds at stage 4 while the remaining blocks are as depicted in S3, then in both
cases we cannot find a preferred trajectory with a corresponding state, i.e., we detect a
discrepancy. For (i) still a feasible trajectory to the goal exists (stages 1 and 2 along the
dotted area), not so for (ii). Thus, discrepancy (i) cannot be detected in, or after, stage
3. Observe also that (S3, 3) is the only diagnosis for (ii) and no diagnosis exists for (i).

KDIAGNOSE detects discrepancies and, if found, computes all diagnoses as follows
(cf. Figure 3). Besides P , T , and Si it takes a domain description and the planning
problem as inputs. In a preprocessing step, the current state and the planning problem
are transformed into slightly modified planning problems for calculating
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– the set match T of all goal-establishing preferred trajectories, and
– the set match Plan of all evolutions leading to Si according to P .

Clearly, if Si is on a goal-establishing preferred trajectory of match T (and thus
also in match Plan), then there is no discrepancy. Otherwise, KDIAGNOSE computes
all diagnoses by comparing the above sets and searching maximal states Sj at which
possible evolutions and goal-establishing preferred trajectories coincide.

4 Implementation

Our implementation of KMONITOR builds on KDIAGNOSE, which uses the DLVK sys-
tem to compute diagnoses for a given state. It invokes the diagnosis tool sequentially at
all stages singled out by the checkpoint policy. The inputs to KMONITOR are:

– plan - a plan (in DLVKsyntax) to monitor for discrepancies;
– checkpoints.dl - the checkpoint definition file;
– background.dl and K.plan - the domain description and planning problem;
– T.plan - a list of preferred trajectories, or alternatively a (modified) planning prob-

lem defining preferred trajectories (by its solutions);
– state.*, cstate.* - state & checkpointing information about the plan execution.

The checkpoint generation component is invoked as described in Section 2. Check-
point computation is accomplished by computing models using the DLV system. For
static policies, facts checkpoint(t) are extracted into a temporary file, and at the re-
spective stages KDIAGNOSE is invoked for state analysis. A state t of a concrete partial
execution (run) of the plan is fetched from file state.t. For simulation, a run may
be automatically generated using DLVK(e.g., by randomly generating a trajectory for
a modified planning problem). In the dynamic case, checkpointing state information is
fetched from file cstate.t. If state information is missing, checkpointing is skipped.

Example 7. The static checkpoint policy of Ex. 4 yields checkpoint(t) , t ∈ {1, 3, 4,
6}. For a plan execution as in Ex. 6 (ii), KMONITOR reports a discrepancy for state S4:

> No error at stage 1.

> No error at stage 3.

> Error at stage 4 - Point of failure at stage 3.

> State info: {on(x,table), on(a, table), on (p,a), ...

The dynamic policy of Ex. 5 would yield a run with the same result, but the check point
policy would be evaluated at each step, and a check would occur only at stage 4. Note
that if at stage 1 block r would unintentionally end on block p, then we would have
another check but would not detect any discrepancy. We also remark that by simple
refinements of our dynamic policy we could avoid evaluation at each step.

5 Conclusion and Future Work

KMONITOR is an execution monitoring tool for non-deterministic domains utilizing ac-
tion language K. It detects deviations from intended execution paths and computes ex-
planations for discrepancies. By means of a checkpointing policy, discrepancy checking
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and diagnosis can be restricted to certain stages of the execution. A detailed comparison
with [1] is left for a longer version of the paper. For a comparison and further references
to related work on diagnosis in answer-set programming, the reader is referred to [4].

Currently KDIAGNOSE handles no concurrent actions, which however is easy to
overcome. Generalizing [4], it shall also support diagnosis w.r.t. partial state informa-
tion restricted to a focus of interest. Finally, we plan to extend KMONITOR towards
a system capable of giving recovery support as well. To this end, implementing and
integrating techniques for recovery as described e.g. in [3] is envisioned.
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Abstract. We present a new answer set solver nomore++. Distinguishing fea-
tures include its treatment of heads and bodies equitably as computational objects
and a new hybrid lookahead. nomore++ is close to being competitive with state-
of-the-art answer set solvers, as demonstrated by selected experimental results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the easy
availability of efficient solvers. We present a new ASP solver, called nomore++ that
pursues a hybrid approach in combining features from literal-based approaches, like
smodels [1] and dlv [2], with the rule-based approach of its predecessor noMoRe [3].
To this end, it treats heads and bodies equitably as computational objects. We argue that
this approach allows for more effective (in terms of search space pruning) choices than
obtainable when dealing with either heads or bodies only. In particular, we demonstrate
that the resulting hybrid lookahead operation allows for propagating more than previous
approaches. Also, we detail a special strategy keeping assignments unfounded-free and
empirically show that it outperforms smodels on relevant benchmarks. Another feature
of nomore++ is its configurable operator-based design. The system is available at [4].

2 Theoretical Background

The nomore++ system deals with normal logic programs under the answer set se-
mantics [5]. A normal logic program is a finite set of rules of the form p0 ←
p1, . . . , pm,not pm+1, . . . ,not pn, where n ≥ m ≥ 0, and each pi (0 ≤ i ≤ n)
is an atom. A literal is an atom p or its (default) negation not p. For such a rule r, let
head(r) = p0 be the head of r and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}
be the body of r. For a program Π , we write head(Π) = {head(r) | r ∈ Π} and
body(Π) = {body(r) | r ∈ Π}. Without loss of generality, we assume that each atom
of a program is the head of at least one rule in the program.1

Given a normal logic program Π , nomore++ computes the answer sets of Π . Un-
like other solvers, such as smodels [1] and dlv [2],2 the nomore++ approach is based

� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.
1 Atoms not occurring as heads are necessarily false. nomore++ removes such atoms during

preprocessing.
2 Note that dlv is designed to handle disjunctive logic programs, which are on a higher complex-

ity level than normal ones.
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on an extended concept of assignments. That is, nomore++ maps heads and bodies
of a program into {⊕,5}, indicating whether a head or body is true or false, re-
spectively. Given program Π , we define a (partial) assignment as a partial mapping
A : head(Π) ∪ body(Π) → {⊕,5}. For simplicity, we often represent such assign-
ments as pairs (A⊕, A"), where A⊕ = {x | A(x) = ⊕} and A" = {x | A(x) = 5}.
Treating heads and bodies equitably as computational objects provides great flexibility.
Bodies can be viewed as conjunctions, and their explicit representation allows for rea-
soning about applicability of rules, in addition to atoms’ truth values. Structurally more
complex objects have recently been deployed in SAT [6] and neighboring fields [7,8].
However, to the best of our knowledge this has not been done in ASP, so far.

nomore++ is a highly flexible, runtime-configurable system. Flexibility roots on
an operator-based design, featuring (among others) the following basic operators: i)
Forward propagation operator P , ii) Backward propagation operator B, iii) Unfounded
set [9] operator U , and iv) Choice operator C.3 Omitting details, P generalizes Fitting’s
operator [11] to bodies, combined operators (PU) coincide with the well-founded op-
erators [9], and (PB) and U correspond to smodels’ functions atleast and atmost [1].
Differences to atom- and rule-based approaches come up at nomore++’s more gen-
eral choice operator C. For instance, C can assign ⊕ to a body, enabling propagation
to decide all the body’s literals and heads. Such complex choices are not possible with
assignments restricted to atoms.

Following [12], we characterize the process of answer set formation by a sequence
of assignments. Based on the above operators, one possible strategy is to determine
deterministic consequences with propagation operators P , B, and U and to apply choice
operator C whenever a fix-point of propagation is not total. We abbreviate this strategy
by (PBU)∗C, where (PBU)∗ denotes the closure under operators P , B, and U . The
⊕-assigned atoms in a total assignment, constructed by (PBU)∗C, form an answer set.4

However, other strategies for answer set formation can also be shown to be sound and
complete. For instance, we can safely skip either backward or forward propagation,
yielding strategies (PU)∗C and (BU)∗C. Due to its configurable design, nomore++
can handle those different strategies as well.

An important concept, distinguishing answer set programming from propositional
logic, is well-foundedness. It is thus desirable that no ⊕-assigned atom becomes un-
founded later on. In fact, no atom in the positive part A⊕ of an assignment can become
unfounded, if each atom in A⊕ is the head of a rule whose body is non-circularly jus-
tified in A⊕. We call such an assignment unfounded-free,5 and nomore++ supports the
computation of unfounded-free assignments by providing choice operatorD as an alter-
native to C. As opposed to C, D is restricted to bodies whose positive preconditions are
already present in A⊕ and where only negative literals are undecided. On the one hand,
D restricts possible choices. But on the other hand, assignments are kept unfounded-
free, which pays off on non-tight problems (cf. Section 4).

3 For a detailed operational characterization of nomore++, please refer to [10].
4 Note that we derive a contradiction when different values are to be assigned to some head or

body. In this case, a total assignment cannot be constructed.
5 A related notion for disjunctive programs is described in [13].
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In addition to propagation operators P , B, and U , lookahead strengthens propaga-
tion by conflict-driven assertions (nomore++ provides operator L for this [10]). An-
swer set solvers like smodels and dlv apply lookahead to atoms only. In contrast to
them, nomore++ provides a hybrid lookahead considering both heads and bodies. In
order to limit efforts to approximately the same amount as with lookahead on atoms,
nomore++’s hybrid lookahead assigns ⊕ to bodies and 5 to atoms only. As shown
in [10], this restriction does not decrease strength of propagation. Rather we demon-
strate in Section 4 that hybrid lookahead can save exponentially many choices in com-
parison to lookahead applied to either atoms or bodies only.

3 System

The input language of nomore++ is generated by the grounder lparse [14] from normal
logic programs obeying the format “Logic Programs V1.0” as defined in [15].6 A major
feature of nomore++ is that operators can be selected at runtime, enabling the use of a
multitude of strategies (combinations of operators). Via command line option -op, the
propagation and choice operators to be used can be determined. As lookahead allows for
different degrees of propagation within, one can also determine which set of operators
to use during lookahead via command line option -laop.

nomore++’s default strategy applies operators P , B, and U in usual propagation as
well as in lookahead. Furthermore, D is the default choice operator. Note that operators
P , U , and D keep a given assignment unfounded-free, which is not guaranteed for B
and lookahead. At the implementation level, nomore++ uses the additional truth value
⊗ for distinguishing between the unfounded-free part of an assignment and the part that
must eventually be true but is not non-circularly justified, yet. The virtue of this is that
the scope of unfounded set operator U can be restricted to ⊗-assigned and unassigned
heads and bodies. In fact, U is implemented in a “lazy fashion” ignoring the ⊕-part of
an assignment. The dlv system uses a similar feature, the truth value “must be true” [16].

Internally, nomore++’s primary data structure consists of a body-head dependency
graph [17]. This is a very efficient structure, as it only stores each head-atom and each
distinct body of a program, instead of each rule as most other ASP-solvers do. E.g.,
measuring over 241 randomly chosen ground programs in [15], the ratio of the number
of distinct bodies over the number of rules is 0.41.

4 Selected Experimental Results

Due to space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features of nomore++. A complete evaluation, including further
ASP solvers, like assat and cmodels, can be found at the ASP benchmarking site [15].
All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. A memory limit
of 256MB as well as a time limit of 900s were enforced. All results given in Figure 1
reflect the average of 10 runs.

Benchmarks 1-a to 1-d are taken from [4] and demonstrate the advantage of the
hybrid lookahead strategy. For comparisons, we have in nomore++ implemented body-
based lookahead (“Body LaH”) in addition to hybrid lookahead (“Hybrid LaH”). Values

6 nomore++ currently does not support smodels-style cardinality and weight constraints.
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on the x-axis are a measurement for the size of the problem, please check [4] for de-
tails. Examples denoted with “Body-Plus” (Figures 1-a and 1-b) are better suited for
a body-based lookahead. The nomore++ version with body-based lookahead outper-
forms smodels on these. Examples “Head-Minus” (Figures 1-c and 1-d) can be solved
optimally with a head-based lookahead. Consequently, we have smodels outperforming
nomore++ with body-based lookahead. Please note that nomore++ with hybrid looka-
head always performs similar to the better suited approach.

Benchmark 1-e demonstrates the advantage of nomore++’s strategy of keeping as-
signments unfounded-free. The figure reflects results obtained on classical Hamiltonian
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cycle problems on complete graphs, where values on the x-axis reflect the number of
nodes in the graph.

Let us note that, due to the fairly early development state of nomore++, its base
speed is still inferior to more mature ASP solvers, like smodels or dlv. To reflect on this,
we have in Figure 1-f included results from the “Equality Testing” benchmark taken
from [15]. Please observe that, while nomore++ performs worse than either smodels
or dlv, it scales like the other two systems, indicating that only improvements with the
implementation are needed.

Acknowledgments. This work was supported by DFG under grant SCHA 550/6-4 as
well as the EC through IST-2001-37004 WASP project.

References
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1 Introduction

In [2], we presented a system called ASP-CLP for computing answer sets of logic
programs with aggregates. The implementation of ASP-CLP relies on the use of an
external constraint solver (ECLiPSe) to deal with aggregate literals and requires some
modifications to the answer set solver used in the experiment (SMODELS). In general,
the system is capable of computing answer sets of arbitrary programs with aggregates,
i.e., there is no syntactical restrictions imposed on the inputs to the system. This makes
ASP-CLP different from DLVA (built BEN/5/23/04) [1], which deals with stratified pro-
grams only. ASP-CLP, however, is based on a semantics that does not guarantee min-
imality of answer sets. Furthermore, our experiments with ASP-CLP indicate that the
cost of communication between the constraint solver and the answer set solver proves
to be significant in large instances.

In this work, we explore an alternative to ASP-CLP and develop a new system
for computing answer sets of logic programs with aggregates. We begin with the
definition of a new semantics for programs with aggregates that has the following
characteristics:

• It applies to arbitrary programs with aggregates, e.g., no syntactic restrictions on
the use of aggregates, and it is as intuitive as the traditional answer set semantics.
• It does not explicitly require the satisfaction of desirable properties of answer sets

(such as being closed, supported, or minimal), but the answer sets resulting from
the new definition naturally satisfy such properties.
• It can handle aggregates as head of rules (not supported yet in our implementation).
• It can be implemented by integrating the definition directly in state-of-the-art an-

swer set solvers. In particular, it requires only the addition of a module to determine
the “solutions” of an aggregate, without any modifications to the mechanisms to
computer answer sets.

The syntax of the language is similar to ASP-CLP—where a new type of literals (aggre-
gate literals) is used; an aggregate literal has the form F ({X | p(X1, . . . , Xn)})opV al
where F is an aggregate function (e.g., SUM), and op is a relational operator (e.g., =,
≤). A similar literal with multisets is also available. The semantics and comparison with
other approaches can be found in [3]. Its main features are:

• it defines the concept of solution of an aggregate � as a pair 〈X,Y 〉 such that every
model M of the program satisfying X ⊆M and Y ∩M = ∅ also satisfies �;
• it defines the unfolding of a program based on the notion of solution.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 427–431, 2005.
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The unfolding of a program with aggregates is a normal logic program whose answer
sets can be computed using off-the-shelf systems. A set of atoms M is an answer set of
a program with aggregates P iff it is an answer set of unfolding(P ). We illustrate the
semantics through the following examples.

Example 1. Let P1 be the program
p(1). p(2). p(3)← q. q ← sum({X | p(X)}) > 5.

The only aggregate solution of sum({X | p(X)}) > 5 is 〈{p(1), p(2), p(3)}, ∅〉 and
unfolding(P1) contains:

p(1). p(2). p(3) ← q. q ← p(1), p(2), p(3).
which has M1 = {p(1), p(2)} as its only answer set. M1 is the only answer set of P1.

Example 2. Consider the program P2:
p(2). p(1)← min({X | p(X)}) ≥ 2.

The aggregate literal min({X | p(X)}) ≥ 2 has a unique solution 〈{p(2)}, {p(1)}〉.
unfolding(P2) = {p(2). p(1)← p(2),not p(1).}

unfolding(P2) does not have answer sets, i.e., P2 does not have answer sets.

We will now describe SMODELSA that implements the new semantics. Source code of
the system can be found at www.cs.nmsu.edu/∼ielkaban/asp-aggr.html.

2 The SMODELSA System

Our main goal in developing SMODELSA is to test the feasibility of a new approach to
computing the answer sets of programs with aggregates by (i) computing the solutions
of aggregate literals; (ii) computing the unfolding; and (iii) using standard answer set
solvers to compute the answer sets. For this reason, we add to LPARSE and SMODELS

two new modules. One for the preprocessing and another for the computation of the
unfolding program. The overall structure of our system is shown in Fig. 1. The current
implementation is built using SMODELS v.2.28 and LPARSE v.1.0.13.

pipe pipe pipe pipe

Preprocessor Lparse LparseTransformer Smodels

ASP
Program

A ground
program
with

aggregates

unfolded
ground

normal logic
program

simplified
ground normal
logic program

Answer
Sets

Fig. 1. Overall System Structure

Similar to the SMODELS system, the computation of answer sets of a program with
aggregates is piped through several stages. In the 2nd and 4th stage, LPARSE is used. In
the last stage, SMODELS is used. Let us detail the modules used in the other stages.

2.1 The Preprocessor

The Preprocessor is used to perform a number of simple syntactic transformations of
the input program. These transformations are mostly aimed at rewriting the aggregate
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literals in a format acceptable by LPARSE. An aggregate literal of the form f({X |
p(X,Y )}) opR is transformed into an atom, t-aggregate atom, of the form

‘‘$agg’’(f, ‘‘$x’’, p(‘‘$x’’, Y), R, op)
and a choice rule
{‘‘$agg’’(f, ‘‘$x’’, p(‘‘$x’’, Y), R, op)} ← type(Y)

where type(Y) is the domain predicate specifying the possible values of Y . For ex-
ample, the rule

q ← sum({X | p(X)}) > 3.
is transformed to:

q ← ‘‘$agg’’(sum,‘‘$x’’,p(‘‘$x’’),3,greater).
{‘‘$agg’’(sum,‘‘$x’’,p(‘‘$x’’),3,greater)}.

The resulting program is processed by LPARSE and by the Transformer Module.

2.2 The Transformer Module

The Transformer Module is the major component of SMODELSA. It is responsible for
the computing of the unfolding of the input programs and has four components: Reader,
Dependencies Analyzer, Aggregate Solver, and Rules Expander. The overall organiza-
tion of the Transformer Module is shown in Fig. 2. The Transformer is completely
written in Prolog.

Reader. The Reader gets the out-
put of the first LPARSE process-
ing and constructs three tables:
the Atoms Table, the Rules Table,
and the Aggregates Table. These
tables store the ground atoms,
the ground rules, and the ground
t-aggregate atoms (called aggre-
gate atoms hereafter). For each
aggregate atom, the Reader also
stores other information, such
as its aggregate function (e.g.,
SUM, COUNT, etc.), its rela
tional operator (e.g., >,<, etc.),
the com

Fig. 2. Transformer Module
pared value, the grouped

variable, and the dependent atoms skeleton (e.g., p(X) where X is the grouped vari-
able). For example, the values for these attributes are SUM, >, 3, “$x”, p(“$x”), respec-
tively, for the aggregate atom “$agg”(sum, “$x”,p(“$x”),3,greater).

Dependencies Analyzer (DA). The DA is responsible for the identification of the depen-
dencies between aggregate atoms and atoms contributing to such aggregates. For each
aggregate literal, the DA searches the Atoms Table for its atom dependencies, constructs
a set (implemented as a list) of pointers to these atoms, and stores it as a part of the ag-
gregate information in the Aggregates Table. These dependencies represent the domain
from which the solutions of an aggregate constraint are built. For example, the set of

-

SMODELSA — A System for Computing Answer Sets of Logic Programs
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dependencies of the atom “$agg”(sum, “$x”,p(“$x”),3,greater) consists of all the atoms
of the form p(X) and is {p(1), p(2), p(3)} in the previous example.

Aggregate Solver (AS). The main task of the AS is to compute a minimal solution set for
each aggregate atom in the program. It contains several constraint solving procedures,
one for each aggregate function. Presently, it supports SUM, AVG, MIN, MAX, and
COUNT and the basics relational operators >,<,≥,≤,=, �=. For every aggregate atom
in the Aggregates Table, AS identifies its aggregate function and sends it, together with
its set of dependencies, to the appropriate constraint solving procedure which produces
either (i) a minimal set of solutions needed for the unfolding of the atom, if the aggre-
gate literal has some solutions; or (ii) false otherwise. This information is then stored
in the Aggregates Table. If we consider the previous example, AS will return the set
{〈{p(1), p(2), p(3)}, ∅〉} for the aggregate atom “$agg”(sum, “$x”,p(“$x”),3,greater)
with the set of dependencies {p(1), p(2), p(3)}. If the constant 3 in the aggregate literal
is changed to 7, the AS will returns false.

Rules Expander (RE). The RE module completes the job of the Transformer Module, by
computing the unfolding of the program. For each rule r in the Rules Table, it generates
unfolding(r), the set of rules obtained from r by simultaneously replacing each aggre-
gate literal in r by the unfolding of one of its solutions (stored in the Aggregate Table).
The RE also simplifies the code to remove the temporary choice rules introduced by
the Reader. RE also performs some optimizations, such as removing rules whose body
contains an unsatisfiable aggregate literal. For the program P1, the result of this step is
the following program:

p(1). p(2). p(3) ← q. q ← p(1),p(2),p(3).

Table 1. Benchmarks with Aggregates (times in sec.)

Program Sample Size SMODELSA Time Transformer Time DLVA Time

Company Control 20 0.010 0.080 N/A
Company Control 40 0.020 0.340 N/A
Company Control 80 0.030 2.850 N/A
Company Control 120 0.040 12.100 N/A
Shortest Path 20 0.220 0.740 N/A
Shortest Path 30 0.790 2.640 N/A
Shortest Path 50 3.510 13.400 N/A
Shortest Path (All Pairs) 20 6.020 35.400 N/A
Party Invitations 40 0.010 0.010 N/A
Party Invitations 80 0.020 0.030 N/A
Party Invitations 160 0.050 0.050 N/A
Seating 16/4/4 11.40 0.330 4.337
Employee Raise 15/5 0.57 0.140 2.750
Employee Raise 21/15 2.88 1.770 6.235
Employee Raise 24/20 3.13 2.420 26.50
NM1 125 0.11 0.10 N/A
NM1 150 0.16 0.13 N/A
NM2 125 1.44 0.80 N/A
NM2 150 2.08 1.28 N/A
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3 Experiments and Benchmarks

We have experimented SMODELSA with various benchmarks (some from the literature
and some newly created) and compared it with DLVA whenever possible (Table 1).
The experiments have been performed on a Linux P4 (3.06GHz, 512MB). The column
SMODELSA reports the time for computing answer sets of the unfolded program, while
Transformer Time reports the unfolding time. The performance results are acceptable
in most cases; on stratified programs, our system is occasionally faster than DLV, and
occasionally slower, depending on the type of aggregate (some have many solutions,
that we precompute, and that are not required during answer set computation).

4 Discussion

We presented a new system for computing answer sets of logic programs with aggre-
gates. The new system differs from our previous system in two ways: (i) it implements
a different, intuitive, semantics, which leads only to minimal models; and (ii) it does
not modify LPARSE and SMODELS. The result of our initial experimentation shows that
this direction is promising. The system has not been optimized for performance and this
will be our focus in the near future. In particular, we plan to

1. Improve the preprocessor, e.g., by using more sophisticated data structures (e.g., to
speedup search of atoms during the DA phase) and to eliminate redundant aggregate
atoms in the Aggregate Table.

2. Improve the aggregate solver to allow more than one grouping variable and ad-
ditional aggregate functions (presently, it handles only one grouping variable and
allows only basic aggregate functions);

3. Improve the rule expander to reduce the size of the unfolding program.

A more important work, that is in progress, is to extend our system to support a sec-
ond characterization of our aggregate semantics, equivalent to the one mentioned here,
which relies on unfolding w.r.t. a specific answer set; this is expected to reduce the size
of the unfolding for many aggregates and simplifies the handling of aggregates in the
head of the rules. Furthermore, from our experiments, it is obvious that there are ag-
gregates that are better handled with the approach described in this paper (as they lead
to a small unfolding), and others that would benefit from additional knowledge about
the answer set we are building (i.e., delay the unfolding until the actual answer set
computation). We plan to develop classification methods that will select the appropriate
unfolding approach.
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Abstract. The paper presents DLV+a Disjunctive Logic Programming
system with object-oriented constructs, including classes, objects, (multi-
ple) inheritance, and types. DLV+ is built on top of DLV (a state-of-the
art DLP system), and provides a graphical user interface that allows
to specify, update, browse, query, and reason on knowledge bases. Two
strong points of the system are the powerful type-checking mechanism,
and the advanced interface for visual querying.

1 Introduction

Disjunctive Logic Programming (DLP) is an advanced formalism for Knowledge
Representation and commonsense Reasoning (KR&R)[1]. DLP is very expressive
in a precise mathematical sense: it is able to express all problems belonging to
the complexity class ΣP

2 . Moreover, the availability of a couple of efficient DLP
systems, like DLV [2], GnT [3] and, more recently, the disjunctive version of
Cmodels [4] make DLP a powerful tool for developing advanced knowledge-based
applications [5,6].

The recent application of DLV in the emerging areas of Knowledge Manage-
ment (KM) and Information Integration [8], has confirmed, from the one hand,
the viability of the DLP exploitation. On the other hand, it has evidenced some
limitations of DLP language and systems. As far as the language is concerned,
the need to represent complex real-world entities, like classes, objects, compound
objects, and taxonomies, has emerged [7]. Moreover, the DLP systems are miss-
ing the tools for supporting the programmers, like type-checkers and easy-to-use
graphical environments, to manage the large and complex domains to be dealt
with in real-world applications.

This paper describes the DLV+ system, a first step to overcome the above
limitations. It is a cross-platform development environment for knowledge model-
ing and advanced knowledge-based reasoning. The DLV+ system allows to easily
develop complex applications and allows to perform advanced reasoning tasks in
a user friendly visual environment. The DLV+ system seamlessly integrates the
DLV system exploiting the power of a stable and efficient ASP solver.

A strong point of the system is its powerful language, extending DLP by
object-oriented features. In particular, the language includes, besides the concept
of relations, the object-oriented notions of classes, objects (class instances),
object-identity, complex-objects, (multiple) inheritance, and the concept
of modular programming by means of reasoning modules.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 432–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A DLP System with Object-Oriented Features 433

A class can be thought of as a collection of individuals that belong together
because they share some properties. An individual, or object, is any identifiable
entity in the universe of discourse. Objects, also called class instances, are un-
ambiguously identified by their object-identifier (oid) and belong to a class. A
class is defined by a name (which is unique) and an ordered list of attributes,
identifying the properties of its instances. Each attribute is identified by a name
and can be of class type. This allows the specification of complex objects (objects
made of other objects).

Classes can be organized in a specialization hierarchy (or data-type taxon-
omy) using the built-in is-a relation (multiple inheritance).

Relationships among objects are represented by means of relations, which,
like classes, are defined by a (unique) name and an ordered list of attributes
(with name and type). Importantly, DLP+ supports two kind of relations, base
relations, corresponding to basic facts (that can be stored in a database), and
derived relations corresponding to facts that can be inferred by logic programs.

As in DLP, logic programs are a set of logic rules and constraints. However,
DLP+extends the definition of logic atom introducing class and relation pred-
icates and complex terms, allowing a direct access to object properties. This
way, DLP+ rules merge, in a simple and natural way, the declarative style of
logic programming with the navigational style of the object-oriented systems.
In addition, DLP+ logic programs are organized in reasoning modules, taking
advantage of the benefits of modular programming.

Importantly, the strongly-typed nature of DLP+ allowed the implementa-
tion of a number of type-checking routines that verify the correctness of a
specification on the fly, resulting in a great help for the programmer.

Moreover, DLV+ offers several important facilities driving the development
of both the knowledge base and the reasoning modules. Using DLV+, developers
and domain experts can create, edit, navigate and query object-oriented knowl-
edge bases by an easy-to-use visual environment, enriched by a full graphic
query interface à la QBE.

2 Language Overview

Classes can be declared in DLV+ by using the keyword class followed by the
class name and by a comma separated list of attributes. Each attribute is a
couple (attribute-name : attribute-type). The attribute-type is either a user-
defined class name, or a built-in class name (in order to deal with concrete data
types, DLP+ features two built-in classes string and integer). For instance, the
class faculty with an argument of type string can be declared as follows:
class faculty(name:string).

Objects, that is class instances, are declared by asserting new facts. An in-
stance for the class faculty, can be declared as follows:
#1:faculty(name:"Faculty of Science").

The string “Faculty of science” values the attribute name; while #1 is the
object-identifier (oid) of this instance (each instance is equipped by a unique
oid). The possibility to specify user-defined classes as attribute types allows for
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complex objects, i.e. objects made of other objects. The following declaration of
class person includes, besides name and age, an attribute of type person, namely,
partner.
class person(name:string,age:integer,partner:person).

Note that this declaration is “recursive” (partner is of type person). A couple
of partners can be specified as follows:
#2:person(name:"Max", age:30,partner:#3).

#3:person(name:"Mary", age:28, partner:#2).

Note that “Max” (identified by #2) is “Mary’s” partner and vice versa
(“Mary” is identified by #3). In general, the object identifier can be assigned
explicitly by the programmer (any DLP constant can be used as oid); if omit-
ted, the oid is automatically provided by the system. Moreover, arguments are
identified by name, allowing for an easier way to access attributes.

Classes can be organized in a taxonomy. For example, the following student
class extends the person class by two new attributes, code and enrol.
class student isa {person} (code:string,enrol:faculty).

Instances of the class student are declared as usual, by asserting new facts.

#6:student(name:"John",age:20,father:#2,partner:#7,code:0, enrol:#1).

#7:student(name:"Alice",age:20,father:#2,partner:#6,code:1, enrol:#1).

Like in common object-oriented languages , each instance of a sub-class be-
comes, automatically, an instance of all super classes (isa relation induces an
inclusion relation between classes). In the example, “John” and “Alice” are in-
stances of both person and student. Moreover, sub-classes inherit attributes from
all super-classes. In the example, the student class has all attributes of the person
class (inherited) plus the (local) attributes code and enrol.

The language provides a built-in most general class named object that is the
class of all individuals and is a superclass of all DLP+ classes.

Also multiple inheritance is supported. For example, class stud emp, declared
next, inherits from both class student and class employee.
class employee isa{person}(salary:integer,skill:string,company:string).

class stud_emp isa{student,employee}(workload:integer).

Attribute inheritance in DLP+ follows the strategy adopted in the COM-
PLEX language, for a formal description refer to [9].

Relations represent relationships among objects. Base relations are declared
like classes, and tuples are specified (as usual) asserting a set of facts (but tuples
are not equipped with an oid). For instance, the base relation colleague, and a
tuple asserting that “Max” and ”Mary” are colleague, follows:

relation colleague(p1:person,p2:person).

colleague(p1:#2,p2:#3).

Classes and base relations are, from a data-base point of view, the extensional
part of the DLP+ language. Conversely, derived relation are the intensional
(deductive) part of the language and are specified by using reasoning modules,
which like DLP programs, are composed of logic rules and integrity constraints.

DLP+ reasoning modules allow one to exploit the full power of DLP. As an
example, consider the following module, encoding the team-building problem
(compute a team satisfying some project restrictions).
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class project(numEmp:integer, numSk:integer, budget:integer,

maxSal:integer).

module(teamBuilding){
inTeam(E,P) v outTeam(E,P) :- E:employee(), P:project().
:- P:project(numEmp:N),not #count{E: inTeam(E,P)}=N.
:- P:project(numSk:S),not #count{Sk: inTeam(employee(skill:Sk),P)}>=S.
:- P:project(budget:B),not #sum{Sa,E: E:employee(salary:Sa),

inTeam(E,P)}<=B.
:- P:project(maxSal:M),not #max{Sa: inTeam(employee(salary:Sa),P)}<=M. }

Predicate arguments can be valued both by specifying simple terms like vari-
ables or object identifiers, and by using a nested class predicate (complex term)
which works like a function (e.g., above, in the second and fourth constraint, the
first argument of inTeam relation is an employee specified by a complex term).
Note that, the complex predicate terms allow to combine in a simple and natural
way, the declarative style of logic programming with the navigational one of the
object-oriented systems.

Finally, in order to check the consistency of a knowledge base the user can
specify global integrity constraints called axioms. Axioms can be defined as com-
mon logic rules by using the ”::-” operator instead of ”:-”. Importantly, axioms
are different by logic rules because model sentences that must be always true
and do not derive new knowledge. For example the following axiom asserts that
colleguaes must work at the same company.

X2:employee(company:C) ::- colleague(X1,X2), X1:employee(company:C).

3 System Architecture

The system architecture, depicted in Figure 1 (a), is a collection of seven mod-
ules: Parser, Data Handler, Type Checker, Intelligent Rewriter, Output Handler,
Message Handler, and GUI.

The Parser has the job to analyze and load the content of a DLP+ text
file in the data structures supplied by the Data Handler. The Data Handler

Fig. 1. The DLV+architecture (a) and GUI (b)
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provides all the methods needed to access and manipulate the knowledge base
components. In particular, data indexing and full-text search are based on the
open-source library Lucene. The Type Checker module implements a number of
type checking routines, in order to ensure the consistency of a knowledge base.
The Intelligent Rewriter module translates DLP+ knowledge base, reasoning
modules and queries in an equivalent disjunctive logic program which runs on
the DLV system. The Intelligent Rewriter features a number of optimization
and caching techniques in order to reduce the time wasted interacting with the
computational engine. Reasoning results and possible error messages are handled
respectively by the Output Handler and by the Message Handler modules.

The user exploits the system through an easy-to-use visual environment
called GUI (Graphical User Interface). The GUI combines a number of special-
ized visual tools for authoring, browsing and querying a DLP+ knowledge base.
In particular, the GUI features a graph-based knowledge base viewer based on
the JGraph library.

The GUI, shown in Figure 1 (b), is written in Java, while, the computational
engine, (the DLV system) is a highly portable software, available for various
platforms. Thus, the DLV+ system runs under a variety of operating systems.

An important feature of the system is the querying interface which provides
both textual editing mode and visual editing mode à la QBE. The user can
create queries without wondering about the syntax, simply selecting classes and
relations and creating links between class attributes and relation parameters.
Query results are presented to the user in a friendly way, while details about the
interaction with DLV are hidden by the system.
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Abstract. In this work we describe a system for determining strong equivalence
of disjunctive non-ground datalog programs under the stable model semantics.
The problem is tackled by reducing it to the unsatisfiability problem of first-
order formulas in the Bernays-Schönfinkel fragment. We then employ a tableaux-
based theorem prover, which (unlike most other currently available provers) is
guaranteed to terminate for these formulas. To the best of our knowledge, this is
the first strong equivalence tester for disjunctive non-ground datalog.

1 Introduction

Answer Set Programming (ASP) [1] is by now an acknowledged tool for knowledge
representation and reasoning. The availability of efficient solvers has furthermore stim-
ulated its use in practical applications in recent years. This development had quite some
implications on ASP research. For example, increasingly large applications require fea-
tures for modular programming. Another requirement is the fact that in applications,
ASP code is often generated automatically by so-called frontends, calling for optimiza-
tion methods which remove redundancies, as also found in database query optimizers.
For these purposes, the more recently suggested notion of strong equivalence for pro-
grams [2,3] can be used. Indeed, if two ASP programs are strongly equivalent, they can
be used interchangeably in any context. This gives a handle on showing the equivalence
of ASP modules. If a program is strongly equivalent to a subprogram of itself, then
one can always use the subprogram instead of the original program, a technique which
serves as an effective optimization method.

So far, work on strong equivalence has mostly focused on propositional, or variable-
free programs. The complexity of deciding whether two variable-free datalog programs
are strong equivalent is in co-NP [4], however, when admitting variables, we obtain
completeness for co-NEXPTIME [5]. Several systems have been proposed for testing
strong equivalence of variable-free programs, some of which encode the problem again
in ASP (e.g. [6]) or in propositional satisfiability [7,4].

In this work, we build on [4] and use a variant of the reduction described there,
which in the non-ground case produces first-order formulas in the Bernays-Schönfinkel
class which are unsatisfiable iff the original logic programs are strongly equivalent.
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2 Preliminaries

Disjunctive Datalog Programs. A (disjunctive) rule r is a formula

a1(x̄1)∨· · ·∨an(x̄n) :- b1(ȳ1), · · · , bk(ȳk), not bk+1(ȳk+1), · · · , not bm(ȳm). (1)

n ≥ 0, m ≥ k ≥ 0, where all ai(x̄i) and bj(ȳj) are function-free atoms; if n = 0,
r is also called a constraint. A disjunctive datalog program P is a finite set of rules
and constraints. Two programs Π1 and Π2 are strongly equivalent [2] iff every program
extensions Π1 ∪R and Π2 ∪R have the same answer sets [1].

Bernays-Schönfinkel Fragment of First-Order Logic. Any first-order sentence ψ of form

∃x1...xk∀y1...ylϕ(x1, ...,xk, y1, ..., yl) (2)

where ϕ is quantifier-free and without function and constant symbols, is a Bernays-
Schönfinkel formula. Deciding satisfiability of such formulas is NEXPTIME-complete.

3 Reduction

In this section, we describe a reduction from the complementary problem of strong
equivalence to satisfiability of Bernays-Schönfinkel formulas (whose quantifier-free
part is in CNF), which is similar to the reduction defined in [4].

Given two logic programs Π and Π ′, let for each predicate p occurring in Π ∪Π ′,
be p′ a fresh predicate of the same arity. Then

Σ(x̄) :=
∧

p∈Pred(Π∪Π′)(p
′(x̄) ∨ ¬p(x̄))

For any rule r of the form (1), we define γr as the formula (z̄ = x̄1 · · · x̄nȳ1 · · · ȳm):

∀z̄

⎛
⎝ (a1(x̄1)∨· · ·∨an(x̄n) ∨ b′k+1(ȳk+1)∨· · ·∨b′m(ȳm) ∨ ¬b1(ȳ1)∨· · ·∨¬bk(ȳk))∧

(a′1(x̄1)∨· · ·∨a′n(x̄n) ∨ b′k+1(ȳk+1)∨· · ·∨b′m(ȳm) ∨ ¬b′1(ȳ1)∨· · ·∨¬b′k(ȳk))

⎞
⎠

For a program Π , we then define ΓΠ :=
∧

r∈Π γr, which we can easily rewrite to
∀x̄WΠ(x̄) where WΠ(x̄) is a quantifier-free CNF. We next define a formula encoding
the unique name assumption for the constants c̄ = c1, ..., cn occurring in Π and Π ′:

U :=
∧n

i=1(Ui(ci) ∧
∧

j∈{1,...,n}\{i} ¬Ui(cj)).

For a formula ϕ, let ϕx
y be the formula with y replaced by x, and for a set S of formulas,

let Sx
y = {ϕx

y | ϕ ∈ S}. As shown in [4], Π and Π ′ are not strongly equivalent iff at
least one of the following two Bernays-Schönfinkel sentences is finitely satisfiable:

– ∃ū∃ȳ∀z̄∀x̄(U ū
c̄ (ū) ∧Σ(z̄) ∧WΠ

ū
c̄ (x̄, ū) ∧ ¬WΠ′ ū

c̄ (ȳ, ū)), resp.

– ∃ū∃ȳ∀z̄∀x̄(U ū
c̄ (ū) ∧Σ(z̄) ∧WΠ′ ū

c̄ (x̄, ū) ∧ ¬WΠ
ū
c̄ (ȳ, ū)).

(By the finite model property of Bernays-Schönfinkel, this is tantamount to un-
restricted satisfiability.) Note that U , Σ, WΠ , and WΠ′ are CNFs, while ¬WΠ and
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¬WΠ′ are not (moving negation inside, they are in DNF). Instead of the simple con-
version to CNF, which is exponential in the worst case, we may for our purpose re-
place them with CNFs W ∗

Π and W ∗
Π′ , respectively, which are equivalent with respect

to satisfiability. To this end, we use the following transformation of a quantifier-
free DNF D(x̄) =

∨n
i=1 τi(x̄i) with free variables x̄ = x̄1 · · · x̄n, where τi(x̄i) =

li,1(x̄i,1)∧ · · · ∧ li,mi(x̄i,mi) into a CNF D∗(x̄) which is satisfiability-equivalent if the
x̄i and x̄j are pairwise disjoint:

D∗(x̄) = (s(d1) ∨ · · · ∨ s(dn)) ∧
∧

1≤i≤n

∧
1≤j≤mi

(li,j(x̄i,j)∨¬s(dj))

where s is a new unary predicate symbol and d1,. . . , dn are fresh constant symbols.

Lemma 1. ∀x̄D(x̄) is satisfiable iff ∀x̄D∗(x̄) is satisfiable, if all x̄i and x̄j are disjoint.

We note that the size of (¬WΠ)∗ is linear in the size of Π , since it is linear in the
size of WΠ , which in turn is linear in the size of Π . Let nr and nc be the number of
predicate and constant symbols, respectively, in Π and Π ′. Then, the size of Σ is linear
in nr and the size of U is quadratic in nc.

Let Δ(Π,Π ′) denote the clausal form of ∃ū∃ȳ∀z̄∀x̄(U ū
c̄ (ū)∧Σ(z̄)∧WΠ

ū
c̄ (x̄, ū)∧

(¬WΠ′ (ȳ) ū
c̄ (ȳ, ū))∗) after Skolemization, i.e., the set of clauses in (U ∧Σ(z̄)∧WΠ (x̄)

∧ (¬WΠ′ (f ȳ, fū))∗). It can be easily generated, and its size is bounded as follows.

Proposition 1. |Δ(Π,Π ′)| ≤ k · (|Π |+ |Π ′|+ nr + n2
c) for some constant k.

4 Implementation

The input language is similar to the one of DLV, but add-ons like built-ins, aggregates,
weak constraints etc. are not supported. Also comments and anonymous variables are
currently unsupported, as well as strong negation.3

The implementation is in C++ employing a flex/bison-generated parser. Our
basic data structures include a symbol table and a collection of rules. The generation of
the clausal forms Δ(Π,Π ′) and Δ(Π ′, Π) is carried out via suitable functions working
on these basic structures. We use the DARWIN theorem prover 4 as a back-end to solve
the formulas. A distinguishing feature of DARWIN is that it is refutation-complete on
our types of formulas, and thus strong equivalence of programs Π and Π ′, tantamount
to refutations of Δ(Π,Π ′) and Δ(Π ′, Π), is definitely answered in all cases. Indeed,
we are not aware of other provers which would guarantee this property.

The tool (including some examples) is available at http://www.kr.tuwien.
ac.at/students/prak setest/.

5 Examples

Example 1. Consider the program

Π: a(k1). a(k2).
h(X):- a(X). t(X):- h(X). a(X):- t(X). a(X):- h(X).

3 In fact, strong negation ¬a(x̄) is realized in DLV and other systems viewing ¬a as a new pred-
icate and adding a constraint :-a(x̄),¬a(x̄); this can be respected and handled accordingly.

4 http://goedel.cs.uiowa.edu/Darwin/
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Π states that a ⊆ h ⊆ t ⊆ a, i.e. a = h = t. By dropping the last rule, we obtain
Π ′: a(k1). a(k2). h(X):- a(X). t(X):- h(X). a(X):- t(X).

The components of the formula Δ(Π,Π ′) are, in Darwin syntax, as follows.

Σ: a (X1):-a(X1). t (X1):-t(X1). h (X1):-h(X1).

WΠ: a(k1). a(k2). a (k1). a (k2).

h(X):- a(X). h (X):- a (X). t(X):- h(X). t (X):- h (X).

a(X):- t(X). a (X):- t (X). a(X):- h(X). a (X):- h (X).

W ∗
Π′: -a(k1):- s (1). -a (k1):- s (6). -a(k2):-s (2). -a (k2):-s (7).

-h(sk 1):-s (3). -h (sk 4):- s (8). a(sk 1):-s (3). a (sk 4):-s (8).

-t(sk 2):-s (4). -t (sk 5):- s (9). h(sk 2):-s (4). h (sk 5):-s (9).

-a(sk 3):-s (5). -a (sk 6):- s (0). t(sk 3):-s (5). t (sk 6):-s (0).

s (1), s (2), s (3), s (4), s (5), s (6), s (7), s (8), s (9), s (0).

U: u1(k1). -u1(k2). -u2(k1). u2(k2).

A refutation is found by Darwin for Δ(Π,Π ′), and also for Δ(Π ′, Π). Hence, Π ′

and Π are strongly equivalent.

Example 2. Consider the two programs

Π: t(X,Y):-a(X,Y). Π ′: t(X,Y):-a(X,Y).
t(X,Z):-t(X,Y),t(Y,Z). t(X,Z):-a(X,Y),t(Y,Z).

which both compute the transitive closure of a. They are, however, not strongly
equivalent, since Π ∪ {t(1, 2)., t(2, 3).} and Π ′ ∪ {t(1, 2)., t(2, 3).} have different an-
swer sets. Δ(Π,Π ′) is unsatisfiable and Δ(Π ′, Π) is satisfiable, reflecting this fact.

6 Benchmarks

When experimenting with our tool, we have found that it often terminates quickly (less
than one second), for instance for the examples presented in the previous section or
for pairs of programs which differ substantially. We have been looking for parametric
benchmark examples which create formulas that are increasingly hard to solve. These
examples should be (1) scalable and (2) sufficiently similar to each other. We find that
the following example interesting in this respect:
Example 3. (n-Layer TC Programs) Let Πn be the following n-layer transitive closure:

t1(X,Y):- r(X,Y). t1(X,Y):- r(X,Z), t1(Z,Y).
t2(X,Y):- t1(X,Y). t2(X,Y):- t1(X,Z), t2(Z,Y).

· · ·
tn(X,Y):- tn−1(X,Y). tn(X,Y):- tn−1(X,Z), tn(Z,Y).

Π ′
n is similar but with one additional redundant rule for each layer except the first:

t1(X,Y):- r(X,Y). t1(X,Y):- r(X,Z), t1(Z,Y).
t2(X,Y):- t1(X,Y). t2(X,Y):- t1(X,Z), t2(Z,Y).
t2(X,Y):- r(X,Z), t2(Z,Y).

· · ·
tn(X,Y):- tn−1(X,Y). tn(X,Y):- tn−1(X,Z), tn(Z,Y).
tn(X,Y):- r(X,Z), tn(Z,Y).
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Table 1. Run-times for n-layer transitive closure

n 10 20 30 40 50 60
CPU time (sec) 0.38 1.43 3.66 7.93 13.55 23.56

The programs Πn and Π ′
n are strongly equivalent. We have tested this for various n

on an 800MHz PowerPC with 1GB main memory, running GNU/Linux and DARWIN
in version 08-27-04. The results are shown in Table 1. We can observe that the runtimes
roughly double when increasing n by 10. Thus the scaling shows exponential behavior.
On the other hand, viewed from computational complexity the n-layer TC is not among
the “hard” instances of the problem; such hard instances could be systematically gener-
ated from complexity proofs.

We have also considered variants of these programs, where we added the rule

in(X,Y) ∨ out(X,Y) :- tn.

to Πn, arriving at Πfinal,∨
n . To Πn, we added the two body-shift variants of this rule

in(X,Y) :-tn(X,Y), not out(X,Y). out(X,Y) :-tn(X,Y), not in(X,Y).

to obtain Πfinal,¬
n . The programs Πfinal,∨

n and Πfinal,¬
n are not strongly equivalent,

and our tool was always very fast (less than one second) to decide this. Finding testcases
which are not strongly equivalent and hard for our tool remains as an open issue.

7 Conclusion

We have implemented a non-ground strong equivalence tester, which works by a reduc-
tion to unsatisfiability of Bernays-Schönfinkel formulas, which are solved by the the-
orem prover Darwin, which is guaranteed to terminate on these formulas. The size of
the resulting Darwin programs is nearly linear in the size of the input programs. Hence,
the overall performance of testing strong equivalence depends heavily on the automated
theorem prover. We have made a positive experience with our tool. We could find a class
of problems which is apparently hard for the employed prover. With similar examples
that are not strongly equivalent, its performance was, however, very good.
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Abstract. This paper describes a system called SELP for studying
strong equivalence in answer set logic programming. The basic function
of the system is to check if two given ground disjunctive logic programs
are equivalent, and if not, return a counter-example. We have used the
system to discover some interesting theorems about strong equivalence
[Lin and Chen, 2005]. Here we briefly describe how the system can be
used to find out whether a given set of rules is strongly equivalent to
another, perhaps simpler set of rules.

1 Introduction

The notion of strongly equivalent logic programs was proposed by
[Lifschitz et al., 2001]. It has been found useful for tasks such as program sim-
plification. In this paper, we describe a system called SELP that can help us
answer questions regarding this notion, from simple ones such as “are P and Q
strongly equivalent” to more involved ones such as “is there another, preferably
simpler logic program that is strongly equivalent to a given one”.

The core of the system is checking whether two disjunctive logic programs
are strongly equivalent. This is based on [Lin, 2002], which provides a sim-
ple mapping from logic programs to propositional theories that reduces strong
equivalence to entailment in classical propositional logic. Thus, the problem of
strong equivalence checking can be translated into a satisfiability problem in
propositional logic, and solved using SAT solvers like zChaff. In addition, when
two programs are not strongly equivalent, we may want to find some witnesses
(counter-example). It is often hard to find a witness manually, but SELP can do
this automatically: when two programs P1 and P2 are found not to be strongly
equivalent, it will return a program P , such that P1∪P and P2∪P have different
answer sets.

Our motivation for developing SELP was to use it to study properties of the
notion of strong equivalence. In [Lin and Chen, 2005], we described some results
on classes of strongly equivalent logic programs discovered using the system. In
this paper, we shall show how the system can help us answer questions of the
� This work was supported in part by HK RGC CERG HKUST6170/04E.
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following form: Given a set P of rules, is there another set of rules of certain
property that is strongly equivalent to P?

In [Janhunen and Oikarinen, 2004], a system call LPEQ was developed that
can check if two normal programs are strongly equivalent, and was implemented
using the answer set logic programming system smodels. Besides being imple-
mented using a different technique, our system can deal with normal as well as
disjunctive logic programs. Furthermore, our system can construct a counter-
example when two programs are not strongly equivalent.

The remainder of this paper is organized as follows. We introduce some basic
notions in logic programming in section 2. In section 3, we describe the core of
the system, i.e. how to check if two programs are strongly equivalent. In section
4, we show how to find all programs that are strongly equivalent to a given one.
Finally, we conclude the paper in section 5.

2 Logic Programming

Let L be a propositional language, i.e. a set of atoms. In this paper we shall
consider logic programs with rules of the following form:

h1; · · · ; hk ← p1, · · · , pm,not pm+1, · · · ,not pn (1)

where hi’s and pi’s are atoms in L. So a logic program here can have default
negation (not ), constraints (when k = 0), and disjunctions in the head of its
rules. In the following, if r is a rule of the above form, we write Hdr to denote
the set {h1, ..., hk}, P sr the set {p1, ..., pm}, and Ngr the set {pm+1, ..., pn}.
Thus a rule r can also be written as Hdr ← P sr,notNgr.

The semantics of program is given by answer sets as defined in [?]. Two logic
programs P1 and P2 in L are said to be equivalent if they have the same answer
sets, and strongly equivalent [Lifschitz et al., 2001] (in the language L) if for any
logic program P in L, P ∪ P1 and P ∪ P2 are equivalent.

3 Checking Strong Equivalence Between Two Logic
Programs

Lifschitz, Pearce, and Valverde [Lifschitz et al., 2001] showed that checking for
strong equivalence between two logic programs can be done in the logic of here-
and-there, a three-valued non-classical logic somewhere between classical logic
and intuitionistic logic. Lin [Lin, 2002] provided a mapping from logic programs
to propositional theories and showed that two logic programs are strongly equiv-
alent iff their corresponding theories in propositional logic are equivalent. This
result will be the basis that we are using in this paper for checking if two logic
programs are strongly equivalent, and we repeat it here.

Let P1 and P2 be two finite logic programs, and L the set of atoms in them.
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Theorem 1. [Lin, 2002] P1 and P2 are strongly equivalent iff in the proposi-
tional logic, the following two entailments hold:

{p ⊃ p′|p ∈ L} ∪Δ(P1) |= Δ(P2), (2)
{p ⊃ p′|p ∈ L} ∪Δ(P2) |= Δ(P1). (3)

where for each p ∈ L, p′ is a new atom, and for each program P , Δ(P ) =
{Δ(r) | r ∈ P}, where for each rule r of the form (1), Δ(r) is the conjunction
of the following two sentences:

p1 ∧ · · · ∧ pm ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h1 ∨ · · · ∨ hk, (4)
p′1 ∧ · · · ∧ p′m ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h′1 ∨ · · · ∨ h′k. (5)

Notice that if m = n = 0, then the left sides of the implications in (4) and (5)
are considered to be true, and if k = 0, then the right sides of the implications
in (4) and (5) are considered to be false.

Theorem 1 makes it possible to check the strong equivalence between two
logic programs using a SAT solver. For instance, to verify (2), it is sufficient to
check that both of the following two formulas are satisfied for all r ∈ P2:

{p ⊃ p′ | p ∈ L} ∪Δ(P1) ∪ {p | p ∈ P sr} ∪ {¬p′ | p ∈ Ngr} ∪ {¬p | p ∈ Hdr},
{p ⊃ p′ | p ∈ L} ∪Δ(P1) ∪ {p′ | p ∈ P sr} ∪ {¬p′ | p ∈ Ngr ∪Hdr}.

We implement this idea by using the SAT solver zChaff.
If P1 and P2 are not strongly equivalent, then zChaff will return an assign-

ment that is a counter-example to either (2) or (3), and from this assignment,
we can construct a program P such that P ∪ P1 and P ∪ P2 are not equivalent,
i.e. P is a witness of the fact that P1 and P2 are not strongly equivalent. The
next theorem shows how to do this.

Theorem 2. Let P1 and P2 be two programs, M a model of {p ⊃ p′|p ∈ L} ∪
Δ(P1), and not Δ(P2). Let ML and ML′ be the two sets of atoms defined as
follows:

ML = {p | p ∈ L and M |= p}, (6)
ML′ = {p | p ∈ L and M |= p′}. (7)

Then we have

(1) If ML′ is not closed under P2, then P1 ∪ P and P2 ∪ P is not equivalent,
where P = {p ← | p ∈ML′}.

(2) If ML′ is closed under P2, then P1 ∪ P and P2 ∪ P is not equivalent, where
P = {p ← | p ∈ML} ∪ {p ← q | p, q ∈ML′ \ML, p �= q}.
While the basic function of our system SELP is to check whether two given

logic programs are strongly equivalent, and if not provides a witness, we do
not envision its use this way. Rather, we consider it a tool to systematically
study the notion of strong equivalence. We have used this system to discover
theorems about strongly equivalent logic programs in [Lin and Chen, 2005]. Here
we describe how our system can be used to find whether there is a simpler set
of rules that is strongly equivalent to a given set of rules.
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4 Finding Strongly Equivalent Logic Programs

One application of SELP is about finding out whether there is another, prefer-
ably simpler logic program that is strongly equivalent to a given one. For in-
stance, we have seen that the self-loops (loops of length one) like p ← p, q are
strongly equivalent to ∅. A natural follow-up question is then: what about loops
of length two, like {(a ← b), (b ← a)}? Can they be simplified? Similarly, we
know that an odd cycle of length one like {a ← not a} is strongly equivalent to
a constraint like {← not a}. Is this also true for an odd cycle of greater length
like {(a1 ← not a2), (a2 ← not a3), (a3 ← not a1)}?

Given a program P in the language L, an obvious way to look for another
program in L that is strongly equivalent to P would be to generate all possible
programs in L, and call SELP on them one by one. This is clearly infeasible
even for a program with only three or four atoms. Fortunately, there is a much
better way of doing it. Instead of considering all possible sets of rules, we can
first find all possible rules that are redundant in the presence of P , i.e. all rules
r such that P ∪ {r} is strongly equivalent to P , and consider sets of these rules
only, as the following theorem says.

Theorem 3. Let P be a logic program in L, and S the set of rules defined as
follows:

S = {r | r is in L, and P ∪ {r} and P are strongly equivalent }.

For any program Q in L, if P and Q are strongly equivalent, then Q ⊆ S.

Notice that the set S in the theorem includes “trivial” rules like p ← p. As we
mentioned in [Lin and Chen, 2005], we need to consider only rules where each
atom occurs at most once, i.e. non-redundant rules.

Corollary 1. Let P be a logic program in L, and SP the set of rules defined as
follows:

SP = {r | r is a non-redundant rule in L, and P ∪ {r} and P are strongly
equivalent }.

For any program Q in L, if P and Q are strongly equivalent, then Q′ ⊆ SP ,
where Q′ is obtained from Q by deletion rules that are strongly equivalent to ∅,
and replace each remaining rule r by Hdr \Ngr ← P sr,notNgr.

Using this corollary, our system SELP finds all programs that are strongly
equivalent to a given logic program in two steps:

– generate all possible non-redundant rule r, and check if P is strongly equiv-
alent to P ∪ {r}, thus computing the set SP ,

– for each subset of SP , check if it is strongly equivalent to P .

For instance, consider again the following set of rules that is in fact a positive
loop with length two: P1 = {(a ← b), (b ← a)}. Using SELP, we can see that
SP1 consists of the following rules:
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a ← b b ← a ← a,not b ← b,not a

As it turned out, there is no subset of SP1 that is strongly equivalent to P1

yet does not contain P1, i.e. P1 cannot be simplified using strong equivalence.
Similarly, the odd cycle with length three {(a1 ← not a2), (a2 ← not a3), (a3 ←
not a1)} is not strongly equivalent to any constraints.

5 Concluding Remarks and Future Work

We have developed a system called SELP for studying strong equivalence be-
tween logic programs. It plays a central role in discovering some theorems about
strong equivalence as described in [Lin and Chen, 2005]. Here we have shown
that it can also be used to check if a given set of rules is strongly equivalent
to another, hopefully “simpler” set of rules. There are several directions for fu-
ture work. One of them is to develop a similar system for studying the notion
of uniform equivalence between two logic programs [Eiter and Fink, 2003]. In
particular, it is interesting to see if theorems like those for strong equivalence
discovered in [Lin and Chen, 2005] can be discovered for uniform equivalence.
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Lifschitz and Ilkka Niemelä, editors, LPNMR, volume 2923 of Lecture Notes in Com-
puter Science, pages 336–340. Springer, 2004.

[Lifschitz et al., 2001] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent
logic programs. ACM Transactions on Computational Logic, 2(4):526–541, 2001.

[Lin and Chen, 2005] Fangzhen Lin and Yin Chen. Discovering classes of strongly
equivalent logic programs. In Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence (IJCAI–05), 2005. To appear.

[Lin, 2002] Fangzhen Lin. Reducing strong equivalence of logic programs to entailment
in classical propositional logic. In Proceedings of the Eighth International Conference
on Principles of Knowledge Representation and Reasoning (KR2002), pages 170–176,
2002.



CMODELS – SAT-Based Disjunctive Answer Set Solver

Yuliya Lierler

Erlangen-Nürnberg Universität
yuliya.lierler@informatik.uni-erlangen.de

1 Introduction

Disjunctive logic programming under the stable model semantics [GL91] is a new
methodology called answer set programming (ASP) for solving combinatorial search
problems. This programming method uses answer set solvers, such as DLV [Lea05],
GNT [Jea05], SMODELS [SS05], ASSAT [LZ02], CMODELS [Lie05a]. Systems DLV and
GNT are more general as they work with the class of disjunctive logic programs, while
other systems cover only normal programs. DLV is uniquely designed to find the an-
swer sets for disjunctive logic programs. On the other hand, GNT first generates possi-
ble stable model candidates and then tests the candidate on the minimality using system
SMODELS as an inference engine for both tasks. Systems CMODELS and ASSAT use
SAT solvers as search engines. They are based on the relationship between the com-
pletion semantics [Cla78], loop formulas [LZ02] and answer set semantics for logic
programs. Here we present the implementation of a SAT-based algorithm for finding
answer sets for disjunctive logic programs within CMODELS. The work is based on the
definition of completion for disjunctive programs [LL03] and the generalisation of loop
formulas [LZ02] to the case of disjunctive programs [LL03]. We propose the necessary
modifications to the SAT based ASSAT algorithm [LZ02] as well as to the generate and
test algorithm from [GLM04] in order to adapt them to the case of disjunctive programs.
We implement the algorithms in CMODELS and demonstrate the experimental results.

2 Syntax of CMODELS

A Disjunctive program (DP) is a set of rules with expressions that have the form

A ← B, F (1)

where A is the head of the rule and is a disjunction of atoms or symbol ⊥, B is a
conjunction of atoms, and F is a formula of the following form

not A1, . . . ,not Am,not not Am+1, . . . ,not not An

where Ai are atoms. We call such rules disjunctive. If a head of a rule does not contain
disjunction, we call such a rule normal. If the formula F of the rule (1) contains an
expression of the form not not Ai then the rule is nested, otherwise the rule is non-
nested. If all rules of a DP are normal we call the program normal.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 447–451, 2005.
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Our implementation – system CMODELS – uses the program LPARSE --dlp-choice
for grounding disjunctive logic programs. The input of CMODELS may include rules of
three types. It allows (i) non-nested disjunctive rules, (ii) choice rules that have the form

{A0, ...Ak}← Ak+1, . . . , Al,not Al+1, . . . ,not Am (2)

where Ai are atoms, and (iii) weight constraints of the form

A0 ← L[A1 = w1, . . . , Am = wm,not Am+1 = wm+1, . . . ,not An = wn] (3)

where A0 is an atom or symbol ⊥; A1, . . . , An are atoms; L (lower bound); and w1 . . .
wn (weights) are integers.

The concept of an answer set for programs containing rules (2) and (3) was intro-
duced in [NS00]. The original rules given to the front end LPARSE --dlp-choice allow
lower and upper bounds for choice rules and upper bounds for weight rules. They also
allow use of literals (negated atoms) in place of atoms. LPARSE --dlp-choice translates
all the rules to the forms specified above. In CMODELS, choice rules are translated into
normal nested rules, and weight constraints are translated with the help of auxiliary
variables into normal non-nested rules.[FL05]

Note that CMODELS is the first answer set programming system that allows use of
disjunctive and choice rules in the same program.

3 Details on the Modified Algorithms and the Implementation

The implementation is based on definitions of completion, tightness and loop formula
for DP introduced in [LL03]. We also refer the reader to [LL03] for formal definitions
of a set of atoms satisfying a program, answer set, reduct, and positive dependency
graph of DP. The implementation exploits the relationship between completion seman-
tics, loop formulas and answer set semantics for DP. For class of programs called tight
models of completion and answer sets are the same. For nontight programs the dif-
ference in semantics is due to the cycles (loops) in the program. Loop formulas serve
a role of an extension to completion so that the semantics coincide again. Number of
loop formulas is exponential and therefore precomputing all loop formulas at once is
not feasible, and iterative approach is explored. The correctness of algorithms encoded
in CMODELS follows from two theorems.

Theorem for Tight Programs. [LL03] For any tight DP Π and any set X of atoms, X
is an answer set for Π iff X satisfies program’s completion comp(Π).

Theorem 1. Let Π be a DP, M be a model of its completion comp(Π), set of atoms
M ′ |= ΠM , such that M ′ ⊂M . There must be a loop of Π under M \M ′, s.t. M does
not satisfy its loop formula.

Deciding whether a model of the completion is an answer set of disjunctive program
is co-NP-complete. Within this implementation of CMODELS we verify that a model
of the completion is indeed an answer set by using the minimality requirement of an
answer set. We invoke a SAT solver on formula ΠM∪M−∪¬M , where (i) ΠM denotes
the reduct of Π under M , s.t. its rules are represented as propositional formulas with
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the comma understood as conjunction, and A ← B as the material implication B ⊃ A;
(ii) M− denotes the conjunction of negation of the atoms in Π that do not belong to
M ; and (iii) ¬M denotes the negation of the conjunction of atoms in M . If this formula
is unsatisfied then M is indeed an answer set of Π otherwise some model M ′ ⊂ M
is returned. Note that M ′ |= Π . We call this procedure minimality test. It is similar to
the procedure introduced in [JNSY00]. [KLP03] introduced a more sophisticated way
of verifying whether a model is an answer set using SAT solvers by exploiting some
modularity property of the program, that permits splitting verification step on the whole
program into verification on its parts. It is a direction of future work to research the
applicability of the approach to the case of nested programs.

CMODELS’ algorithm is enhanced to verify the tightness of DP at first. In case when
a program is tight it performs a completion procedure on the program and uses a SAT
solver for enumerating its answer sets, avoiding invocation of minimality test proce-
dure. This way we allow efficient use of SAT solvers in ASP, by analysing program
syntactically and identifying in advance disjunctive program involving lower computa-
tional complexity.

For nontight programs we adapt ASSAT algorithm [LZ02] to the case of disjunctive
programs based on Theorem 2. The modified algorithm follows — DP-assat-Proc:

1. Let T be the Completion of Π — Comp(Π)
2. Invoke SAT solver SAT-A to find a model M of T . If there is no such model then

terminate with failure.
3. Invoke the minimality test procedure on program Π , and model M with SAT solver

SAT-B to find model M ′. If there is no such model then exit with an answer set M .
If there is a model M ′ then M is not an answer set of Π .

4. Build the subgraph GM\M ′ of the positive dependency graph of Π induced by
M \M ′. Look for loop L in GM\M ′ , s.t. M �|= FL, where FL is a loop formula
of L.

5. Let T be T ∪ FL, and go back to step 2.

The implementation also adapts another SAT-based answer set programming gen-
erate and test algorithm from [GLM04] to the case of nontight disjunctive programs.
State-of-the-art SAT solvers are enhanced by the ability of performing backjumping
and learning within standard SAT Davis-Logemann-Loveland (DLL) procedure. Back-
jumping and learning techniques are due to providing DLL procedure with a certain
clause. We retrieve the necessary clause from some loop formula of a program that
allows us to enhance SAT solver inner computation. The enhanced generate and test
algorithm for DP — DP-generate-test-enhanced-Proc:

1. Compute completion of Π — Comp(Π)
2. Initiate SAT solver SAT-A with the completion Comp(Π). Invoke DLL to find

model M of Comp(Π). If there is no such model then terminate with failure.
3, 4. The same as Step 3,4 of DP-assat-proc.

5. Calculate a clause Cl implied by FL such that M �|= Cl.
6. Return control to the SAT-A procedure DLL by giving Cl as a clause to backjump

and learn. Find the next model M of the completion. If there is no such model then
terminate with failure. Go back to step 3.
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4 Experimental Analyses

Details on the performance of system CMODELS in case of tight disjunctive programs
can be found in [Lie05b]. For experimental analysis of CMODELS’ performance on non-
tight programs we shall specify the algorithmic differences of SAT solvers’ invocations.
Algorithm DP-assat-Proc is implemented in CMODELS using SAT solver MCHAFF1 in
Step 2. Algorithm DP-generate-test-enhanced-Proc is implemented in CMODELS with
SAT solver SIMO2 or ZCHAFF1 invoked in place of SAT-A in the procedure. In case of
DP-generate-test-enhanced-Proc implementation of Step 6 when control is given back
to the SAT solver, SIMO and ZCHAFF behave differently. SIMO continues its work with
the same search tree it obtained in previous computations, while ZCHAFF starts building
a new search tree. In all cases ZCHAFF is used for minimality test procedure.

instance sat dlv.5.02.23 cmodels+mchaff cmodels+zchaff cmodels+simo gnt2
qbf7 SAT 15.67 0.01 (23) 0.01 (16) 0.14 (5) -
qbf8 SAT 92.45 0.01 (23) 0.01 (5) 0.09 (4) -
qbf9 SAT 7.50 0.01 (33) 0.01 (12) 0.09 (5) 25.77
qbf1 UNSAT 19.81 0.21(10) 0.01 (16) 0.01 (37) 0.001
qbf2 UNSAT 5.43 - 823.98 (19928) 239.68 (26523) 1466.30
qbf3 UNSAT 5.27 - 1779.28 (28481) 193.69 (21260) -
qbf4 UNSAT 6.83 memory 10.55 (137) 33.64 (663) -

Fig. 1. CMODELS using MCHAFF, ZCHAFF, SIMO vs. DLV, and GNT on 2QBF benchmark

The first experiment that we demonstrate is 2QBF benchmark. The problem is Σp
2 -

hard. The encoding and the instances of the problem where obtained at the web-site of
the University of Kentucky3. Figure 1 presents the results. The experiments were run
on Pentium 4, CPU 3.00GHz. The columns 3 through 7 present the running times of
the systems in seconds with 30 minutes cutoff time. Number in parentheses specifies
how often CMODELS invoked the minimality test procedure during its run. In case of
satisfiable instances of the problem we can see the payoff in using CMODELS in place
of other disjunctive ASP solvers. The picture changes when unsatisfiable instances of
the problem come into play. Implementation of DP-assat-Proc reaches time limit twice
and in case of one instance reaches the memory limit. Implementation of DP-generate-
test-enhanced-Proc shows better results but as a rule is slower than DLV running time
by two orders of magnitude. If we pay attention to the number of minimality test proce-
dure invocations, the slow performance is not surprising. The number of models of the
completion is large in case of unsatisfiable instances qbf2, qbf3 instances and hence all
found models must be verified and denied by the minimality test procedure.

The second experiment that we present is the Strategic Company benchmark. The
problem is Σp

2 -hard. We used the encoding and the instances of the problem provided
by the benchmark system for answer set programming – Asparagus4. Figure 2 presents

1 http://www.princeton.edu/∼chaff/
2 http://www.star.dist.unige.it/∼sim/simo/
3 http://www.cs.uky.edu/ai/benchmark-suite/
4 http://asparagus.cs.uni-potsdam.de/
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inst- dlv.4 gnt2 cmodels cmod-s cmod-s inst- dlv.4 gnt2 cmodels cmod-s cmod-s
ance 5.23 zchaff mchaff simo ance 5.23 zchaff mchaff simo
160.1 0.64 1.08 0.33 0.40 0.34 125.45 9.03 41.02 - - -
160.3 0.87 1.23 0.34 0.40 0.34 105.38 15.55 79.99 315.41 404.72 580.23
75.37 0.51 6.78 1.20 2.49 1.49 155.0 26.15 16.56 - - -
150.2 6.66 41.25 1.52 2.10 5.04 135.11 49.01 8.00 191.89 62.25 577.12
150.26 2.24 5.64 5.99 27.04 14.27 155.3 144.00 188.14 43.11 755.12 215.46

Fig. 2. CMODELS using ZCHAFF, MCHAFF, SIMO vs. DLV, GNT on Strategic Company

running times of systems obtained from Asparagus, machine AMD Athlon 1.4GHz PC
with 512MB RAM and cutoff time 15 minutes. All given instances are satisfiable. In
case of strategic company benchmark there is no clear winner in the performance, but
GNT and DLV are in general faster.
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