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Preface

These are the proceedings of the 7th Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2005) held in Edinburgh, Scotland from August 29 to
September 1, 2005. The CHES workshop has been sponsored by the International
Association for Cryptologic Research (IACR) for the last two years.

We received a total of 108 paper submissions for CHES 2005. The double-
blind review process involved a 27-member program committee and a large num-
ber of external sub-referees. The review process concluded with a two week dis-
cussion process which resulted in 32 papers being selected for presentation. We
are grateful to the program committee members and the external sub-referees
for carrying out such an enormous task. Unfortunately, there were many strong
papers that could not be included in the program due to a lack of space. We
would like to thank all our colleagues who submitted papers to CHES 2005.

In addition to regular presentations, there were three excellent invited talks
given by Ross Anderson (University of Cambridge) on “What Identity Systems
Can and Cannot Do”, by Thomas Wille (Philips Semiconductors Inc) on “Se-
curity of Identification Products: How to Manage”, and by Jim Ward (Trusted
Computing Group and IBM) on “Trusted Computing in Embedded Systems”. It
also included a rump session, chaired by Christof Paar, featuring informal talks
on recent results.

The focus of CHES 2005 was similar to that of the earlier CHES workshops
with the addition of a few new topics of emerging interest among which were
smart card attacks and architectures, tamper resistance on the chip and board
level, true and pseudo random number generators, special-purpose hardware for
cryptanalysis, embedded security, cryptography for pervasive computing (e.g.,
RFID, sensor networks), device identification, non-classical cryptographic tech-
nologies, and side channel cryptanalysis. Special attention was paid to trusted
computing platforms.

Special compliments go out to Colin D. Walter, the general chair and local
organizer of CHES 2005, who brought the workshop to the beautiful historic
town of Edinburgh, Scotland making it as much of a cultural event as a stimu-
lating technical gathering. Christof Paar held the publicity Chair of CHES and
was helpful at all stages of the organization. We would like to thank our corpo-
rate sponsors Cryptography Research Inc., escrypt GmbH, Gemplus, IBM, and
RSA Security, who made it possible to have a lively event with their generous
contributions. We would like to thank our dedicated webmaster Jens-Peter Kaps
for maintaining the CHES website and review system even when he was travel-
ling. Finally, we would like to thank the CHES steering committee members for
giving us the honor of being part of such an influential conference.

August 2005 Josyula R. Rao and Berk Sunar
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Louis Goubin . . . . . . . . . Université de Versailles-St-Quentin-en-Yvelines, France
Jorge Guajardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infineon Technologies, Germany
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Resistance of Randomized Projective
Coordinates Against Power Analysis

William Dupuy and Sébastien Kunz-Jacques

DCSSI Crypto Lab,
51, bd de Latour-Maubourg, 75700 PARIS 07 SP

william.dupuy@laposte.net
kunzjacq@yahoo.fr

Abstract. Embedded devices implementing cryptographic services are
the result of a trade-off between cost, performance and security. Aside
from flaws in the protocols and the algorithms used, one of the most
serious threats against secret data stored in such devices is Side Channel
Analysis.

Implementing Public Key Cryptography in low-profile devices such as
smart cards is particularly challenging given the computational complex-
ity of the operations involved. In the area of elliptic curve cryptography,
some choices of curves and coefficient fields are known to speed up com-
putations, like scalar multiplication. From a theoretical standpoint, the
use of optimized structures does not seem to weaken the cryptosystems
which use them. Therefore several standardization bodies, such as the
NIST, recommend such choices of parameters. However, the study of
their impact on practical security of implementations may have been
underestimated.

In this paper, we present a new chosen-ciphertext Side-Channel Attack
on scalar multiplication that applies when optimized parameters, like
NIST curves, are used together with some classical anti-SPA and anti-
DPA techniques. For a typical exponent size, the attack allows to recover
a secret exponent by performing only a few hundred adaptive power
measurements.

1 Introduction

The use of elliptic curves for cryptographic purposes was proposed by Miller [10]
in 1985 and Koblitz [8] in 1987. Since then, it became an essential part of public
key cryptography. In particular, many cryptosystems rely on the intractability
of the discrete logarithm problem (DLP) on elliptic curves. The main advantage
of this problem is that it is believed to be harder to solve than other number-
theoretic problems. As a consequence, for a similar security level, it is possible
to use smaller objects than with integer factorization for example. This property
is especially attractive for embedded systems, where storage requirements and
computation times are critical.

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 1–14, 2005.
c© International Association for Cryptologic Research 2005



2 W. Dupuy and S. Kunz-Jacques

Cryptosystems relying on DLP on elliptic curves use the scalar multiplication
operation in some large elliptic curve group (G, +)

P ∈ G → kP (1)

where k is a secret data. Because of DLP hardness, it is believed to be infeasible
to compute k from the knowledge of one or several pairs (P, kP ).

In a situation where no reasonable attack on a cryptographic algorithm is
known, Kocher first observed in 1996 [9] that the measurement of the algorithm
computation time could still reveal secret information. This paved the way to
Side Channel Attacks that take advantage of the measurement of physical signals
emitted by a cryptographic device during a computation to gain access to secret
data.

Since then, several examples of Side Channel Attacks led to various coun-
termeasures being developed. Concerning scalar multiplication in EC groups,
the use of scalar multiplication algorithms with a regular computation flow like
double-and-add always or Montgomery Ladder is an answer to Simple Power
Analysis (SPA), while randomized projective coordinates, first proposed by [4],
are used to counter Differential Power Analysis (DPA).

In this paper, we present a new side-channel attack against scalar multipli-
cation implementing these countermeasures, when the EC group used is chosen
among the NIST [12], ANSI [1] or SEC [13] recommended curves. It is a Goubin-
style attack [6] that uses distinguished points whose presence can be detected
along the computation by an observation of power traces despite the random-
ization countermeasure. It leverages the particular shape of the underlying coef-
ficient fields.

The paper is organized as follows. We first briefly review some facts about
elliptic curves in section 2. Then section 3 presents some classical Side Channel
Attacks and common countermeasures to prevent them. Finally, sections 4 and
5 present the details of our attack.

2 Elliptic Curves

2.1 Elliptic Curve Equation

Let K be a finite field of characteristic p. Over this field, we set the equation (E)

y2 + a1xy = x3 + a2x
2 + a4x + a6

The elliptic curve (C) associated to (E) is the set of all points of K
2 satisfying

(E), together with a particular point O called point at infinity. K is the coefficient
field of the curve.

Up to an affine change of variables, if p = 2, we can set a1 = 1 and a4 = 0.
The equation can then be rewritten y2 + xy = x3 + a2x

2 + a6. If p ≥ 3, we can
set a1 = a2 = 0 and then (E) becomes y2 = x3 + a4x + a6.

Together with an addition law, this set forms a commutative group. We do
not describe the group law here since it does not play any role in the attack we
present.
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2.2 Affine and Projective Representation

A point on a curve of equation (E) is a solution of (E). Therefore the simplest
representation of a point on a curve of equation (E) is the corresponding solution
of (E) in K

2. This is the affine representation.
Nevertheless, other representations can be preferred. We are mainly inter-

ested in projective coordinates. Given P = (x, y) in affine coordinates, its repre-
sentation in projective coordinates is P = (xZ, yZ, Z) for any Z ∈ K

∗. If a finite
solution of (E) is represented by (α, β, γ), then γ �= 0. The point at infinity O is
represented by (0, β, 0) for any β �= 0.

The projective representation is not unique. In fact, for some finite solution
(x, y) of (E) with x �= 0 and y �= 0, any of the three projective coordinates can
take an arbitrary value in K

∗. This observation is the basis of the randomized
projective coordinates countermeasure, which we will describe in section 3.2.
Projective representation is also used to increase the efficiency of point addition
computations since for example, it allows to compute the group law without
having to perform modular inversion in the coefficient field.

2.3 Recommended Coefficient Fields for NIST Elliptic Curves

Curves recommended by standardization bodies such as NIST, ANSI, or SEC
are usually defined over Fp, or F2[x]/(P ) where P a primitive polynomial. We
focus on NIST recommended curves from now on. Other standardized curves
present similar properties as the ones of the NIST.

Curves Defined on Binary Fields. The coefficient field is here of the form
F2[x]/(P ). The primitive polynomials standardized by the NIST are:

P233(x) = x233 + x74 + 1
P283(x) = x283 + x12 + x7 + x5 + 1

P409(x) = x409 + x87 + 1
P571(x) = x571 + x10 + x5 + x2 + 1

We can notice that these polynomials are very sparse. This has to do with
hardware efficiency.

Curves Defined on Prime Order Fields. For these curves, the coefficient
field is Fp, with p among

p192 = 2192 − 264 − 1
p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1
p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1
As in the binary case, the sparse form of these primes simplifies and speeds

up operations in the coefficient field.
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2.4 Scalar Multiplication

As already mentioned, cryptosystems relying on discrete logarithm on elliptic
curves make a consistent use of scalar multiplication. Given a public point P on
the elliptic curve, and a secret scalar k, this operation consists in computing kP .

Let us write k =
n−1∑
i=0

ki2i. The most basic algorithm that computes kP given

P and a ”black-box” implementation of the group law is the following:

[double-and-add from MSB to LSB]
INPUT: P in C
R=0
for i from n-1 to 0

R <- 2R
if k_i=1

R <- R+P
end for;
RETURN R

3 Side Channel Attack and Common Countermeasures

3.1 Classes of Attacks

SPA: Simple Power Analysis applies when the sequence of operations performed
during some computation depends on a secret value. When the operations used
are sufficiently complex, they can be easily detected by physical measures and
the sequence of operations performed can be retrieved.

For instance, in a double-and-add algorithm, an addition is performed only if
the corresponding bit of k is set to 1. Assuming that doubling and adding have
noticeably different power consumption signatures, one observation of a power
consumption curve can be enough to extract the secret exponent value.

DPA: Differential Power Analysis was introduced by [3] on DES implementa-
tions, but it applies to public-key cryptography as well.

For DPA to work, some intermediate value v manipulated by a cryptographic
device must depend on known input and output values and on a few secret bits.
The power consumption of some operation manipulating v is measured for several
input values. To each value k of the secret bits involved corresponds a partition
of the input and output messages into subsets leading to the same value for v. A
guess for k can be checked as follows: if the value of k is correct, averaging the
power consumption inside these subsets should yield noticeably different results
among subsets. If it is wrong, results should be roughly identical no matter the
subset chosen.
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Goubin-Style Attacks. L. Goubin [6] first noticed that some properties of
intermediate values may be invariant under randomization. For example, if a
coordinate of some projective point representation is zero, it remains equal to
zero whatever the randomization applied. If such a remarkable property can
be detected, an attack can be built as follows: input values are chosen so that
a remarkable value appears during the computation only if some hypothesis
about a secret is correct. The measure then allows the attacker to test his
hypothesis.

The attack we present follows this framework.

3.2 Countermeasures

Many countermeasures have been developed to make the attacks presented in
section 3.1 impractical. Most widely used ones are presented here.

Regularization of the Instructions Flow. For an algorithm to be protected
against SPA, its instruction flow must not depend on secret values. Double-and-
add always, or Montgomery ladder [11] are examples of such algorithms:

[Double-and-add always from MSB to LSB]
INPUT: P in C
R[0]=0
for i from n-1 to 0

R[0]<- 2R[0]
R[1]<- R[0]+P
R[0]<- R[k_i]

end for;
RETURN R[0]

[Montgomery ladder]
INPUT: P in C
R[0]=0;R[1]=P
for i from n-1 to 0

R[1-k_i]<- R[k_i]+R[1-k_i]
R[k_i]<- 2R[k_i]

end for;
RETURN R[0]

Randomization of Data Representation. is targeted at DPA. If the rep-
resentation of temporary values is randomized, an intermediate value does not
depend only on inputs and key bits, but also on some random data out of control
of the attacker. Consequently, aggregating measures is no longer possible.

In the case of scalar multiplication, expressing a point in randomized projec-
tive (or Jacobian) form, as suggested by Coron [4], is a common instantiation of
this countermeasure.
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Randomization of the computation flow In order to prevent Goubin-style
attacks, randomness can be introduced in the sequence of operations performed.
Here are two examples of techniques applied to the scalar multiplication P → kP :

– Point blinding The hardware computes k(P + R) and kR, for some
random point R, separately [4] or together using a trick due to Shamir [7].

– Random exponent If q is the order of the underlying group, then qP = 0.
Therefore if (k + rq)P is computed instead of kP for some random value r,
the final result is unchanged, but the binary representation of the secret key
is scrambled by the addition of rq all along the computation.

4 The Attack: Theory

4.1 Assumptions on the Target Device

We aim at retrieving the n-bit secret scalar k stored in a cryptographic device
performing scalar multiplication P → kP for any point P of our choice, on an
elliptic curve whose coefficient field is defined by a sparse polynomial for the
binary field case or a ”sparse” prime for the prime field case (see 2.3).

An element e in the coefficient field can always be written e =
n−1∑
i=0

eiu
i with

u = 2 if K = Fp, and u = x if K = F2n = F2[x]. Since we will observe Hamming
weights during the attack, we assume that our target crypto device represents e
in the standard way by the binary string {ei}.

The secret scalar, on the other hand, is an object of Z/qZ where q is the
number of elements of the chosen elliptic curve group. We will write

k =
n−1∑
i=0

ki2i

The attack we propose applies to implementations having the following prop-
erties:

– Points are represented with randomized projective coordinates.
– No randomization of the computation flow is performed.

We focus on double-and-add always from the MSB to the LSB or on the
Montgomery ladder. However, the particular choice of the scalar multiplication
algorithm used is irrelevant, and we target more generally algorithms that per-
form one computation step per exponent bit. We suppose that in step j the point
KjP is manipulated, with

Kj =
n−1∑

i=n−1−j

ki2i−(n−1−j)

On the measurement side, we assume we have access to the Hamming weights
of the values manipulated, up to some noise.
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4.2 Overview of the Attack

Suppose that some special point P0 can be distinguished from a random point,
for example by power analysis. Since we assumed in section 4.1 that on input P
and during step j, the multiplication algorithm manipulates

Kj.P =

⎛⎝ n−1∑
i=n−1−j

ki2i−(n−1−j)

⎞⎠P

asking for the computation of k.(1/KjP0) makes P0 appear at the j-th step of
computation. Because Kj = 2Kj−1+kn−1−j , assuming Kj−1 is known, the value
of the next unknown bit kn−1−j can be recovered as follows:

Assume that kn−1−j = 0 and that conse-
quently Kj = 2Kj−1. Observe the computation of
k (1/Kj)P0. If P0 is detected at step j, the hypothe-
sis on bit kn−1−j was correct. Otherwise, kn−1−j = 1
and Kj = 2Kj−1 + 1.

The above applies for j = 0 as well with K−1 = 0.
For each bit, several computations might be performed to improve the relia-

bility of the guess of kn−j . Then, by iterating this algorithm, the whole secret k
can be extracted.

4.3 Using Hamming Weights to Build a Distinguishable Point

We choose a point of the form

P0 = (uλ, y)

in affine coordinates, with λ as small as possible. Its representation in projective
form is P0 : (X = uλZ, Y = yZ, Z) for some random Z ∈ K

∗.
For each value of λ we can expect that there is a point with abscissa uλ with

probability 1/2 : in Fp, this is the case if and only if 23λ+a2λ+b is a square, while
in F2n , it depends on whether the polynomial p(y) = y2 + xλy + x3λ + ax2λ + b
has roots. For all NIST curves, λ can be chosen ≤ 5.

Detecting the Distinguishable Point. Because of the form of common co-
efficient fields such as NIST fields, we show in sections 4.4 and 4.5 that for a
random Z, X = uλZ is close to Z rotated by λ bits on the left (Z <<< λ),
therefore

U = Ham(X) − Ham(Z)

is small. At the opposite, for a random point where coordinates are uncorrelated,
U has mean 0 and variance V(U) = 2(n/4) = n/2. Therefore,

We measure U to discriminate P0 from a random
point.
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As usual, increasing the number of experiments decreases the error probabil-
ity; several scalar multiplications lead to as many observations of U as necessary.
Statistical tests can then be performed as described in section 5.1 to make a de-
cision according to the observations.

Now, let us estimate the Hamming distance between uλZ and (Z <<< λ)
on both fields types.

4.4 Binary Fields

Let P (x) = 1+xn+
∑I

i=1 xmi with 1 ≤ mi < mi+1 < n be a primitive polynomial
over Z2[X ] of degree n. Let e = n−deg(P (x)−xn) = mI . We assume that e > λ;
this is true for NIST curves which satisfy e > n/2. More generally, multiplication
optimization in F2n = F2[x]/(P ) commands to choose e large.

Let Z ∈ F2n . Remember that elements of F2n are represented in the usual
polynomial base. For λ < e, set Z = Z1 + xn−λZ2 with deg(Z1) < n − λ and
deg(Z2) < λ : (Z <<< λ) = xλZ1 + Z2.

xλZ and (Z <<< λ) mod P are related by:

xλZ ≡ xλZ1 ⊕ xnZ2

≡ xλZ1 ⊕ (xn − P )Z2

≡ (Z <<< λ) ⊕ Z2 ⊕ (xn − P )Z2

≡ (Z <<< λ) ⊕
I∑

i=1

xmi Z2

Since λ < e, the above result is the reduced expression of the difference mod
P . Each term xmiZ2 is a λ-bit pattern that can affect at most a λ-bit window
of the difference. Therefore at most Iλ bits differ from Z and xλQ.

Under the assumption that the λ-bit windows do not overlap, the exact com-
putation of the probability law of Ham(xλQ) −Ham(Q) can be carried out; this
is useful to improve the attack (see section 5.1, Neyman-Pearson). The computa-
tion is performed in appendix A.1. The non-overlapping assumption is satisfied
for the NIST curves P233 and P409.

4.5 Prime Fields

We work here in Fp with p is prime. This case is more complex than the binary
case because of the carry propagations that occur while adding values mod p.

Let e be the the greatest integer such that 2n − 1 − p < 2n−e. For all NIST
curves, e ≥ 32. Distinguished points for curves on prime fields satisfy λ ≤ 3:
thus we always have e − λ ≥ 29.

Let Z ∈ Fp, Z = Z1 + 2n−λZ2, with Z1 < 2n−λ and Z2 < 2λ.
(Z <<< λ) = 2λZ1 + Z2 and
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2λZ ≡ 2λZ1 + 2nZ2 [p]
≡ 2λZ1 + (2n − p)Z2 [p]
≡ (Z <<< λ) + Δ [p] with Δ = (2n − 1 − p)Z2

Since Z2 < 2λ and 2n − 1 − p ≤ 2n−e, Δ < 2n−(e−λ). Since p ≥ 2n − 2n−e,
with probability around 1 − 2e−λ ≥ 1 − 2−29, (Z <<< λ) + Δ, viewed as an
integer, is reduced mod p (i.e. it lies in the interval [0, p−1]). We can thus forget
reduction mod p and study the effect of adding Δ to (Z <<< λ) in Z.

Sparse primes like NIST primes satisfy relations of the form 2n − 1 − p =∑I
i=1 εi 2mi , with I small and εi = ±1 (see section 2.3; in the NIST case, I ≤ 3).

Therefore Δ =
∑I

i=1 εi 2mi Z2. Δ is composed of I λ-bit blocks; we now assume
as in the binary case that these blocks do not overlap, and this hypothesis is
fulfilled for all NIST curves mod p.

On average, carries beyond λ-bit blocks of multiples of Z2 (“block carries”)
do not change U = Ham(Z <<< λ) − Ham(2λZ), and have a small influence on
V(U) as shown in appendix A.2. Since inside each block the Hamming weight
is not changed on average, E(U) = 0 as in the binary case. Excluding the block
carries, at most Iλ bits differ between 2λZ and Z.

5 The Attack: Practice

5.1 Statistical Tests

During the course of the attack, we target some specific bit kn−j manipulated
during step j + 1. We compute m times k.(1/(2Kj)P0) and collect m measures
Ui, 1 ≤ i ≤ m, of U . We must then choose a guess for kn−j depending on
S = (U1, . . . , Um). Let Dh be the law of U if kn−j = h, PD0(U = k) = pk,0 and
PD1(U = k) = pk,1.

Neyman-Pearson Test. It is well known from the Neyman-Pearson lemma
that the test that has the smallest error probability if both hypothesis on kn−j

are equally likely, consists in computing the probability of the sample S observed
according to both hypotheses, and to select the hypothesis kn−j = h for which
the probability of the sample is the highest; this is the hypothesis that explains
best the observed value. Knowing the pk,h, one can compute the probability of
S under hypothesis h through

PDh
(S) = Ph = pU1,hpU2,h . . . pUm,h (2)

Test Based on a Variance Estimator. While the Neyman-Pearson test on
S is optimal, it requires the exact knowledge of D0 and D1. A slightly less
efficient, but simpler test consists in estimating the variance of S. If kn−j = 0,
V(U) = V0 = (Iλ)/2 (binary case) or (I(λ + 1))/2 (prime case), whereas if
kn−j = 1, V(U) = V1 = n/2.
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After m experiments, V(U) is estimated by V = 1
m

∑m
i=1 U2

i . The probability
Ph that V takes some specific value under Dh is then computed by approximating
both laws D0 and D1 by normal laws1: the law of V under Dh is approximated
by Vh/m times a χ2 with m degrees of freedom. The Neyman-Pearson decision
rule is then used on V : kn−j = 0 is decided if and only if P0 > P1.

Necessary Number of Experiments. The error probability of the Neyman-
Pearson decision rule on some function f of the observation S for one experiment
depends on the statistical distance between f(D0) and f(D1)∑

k

|PD0(f(S) = k) − PD1(f(S) = k)|

and similarly, on several experiments, the distance between f(D0) × . . . f(D0)
and f(D1) × . . . × f(D1) could be computed. However, this is not practical.
Some approximations exist, like the Kullback-Leibler distance, or the Square
Euclidean Imbalance (see [2] or [5]). Very roughly, they state that for a con-
stant error rate the number of experiments depends on the distributions like(∑

k[PD0(f(S) = k) − PD1(f(S) = k)]2
)−1.

Practically, we prefer adaptive strategies that estimate on the fly the error
probability.

Adaptive Strategies. If m measures are performed, resulting in some obser-
vation S of probability Ph under Dh, the probability that hypothesis h actually
holds is

P(h = 0|S) =
P0

P0 + P1
and P(h = 1|S) =

P1

P0 + P1

During a series of m experiments, m being a fixed value, the probability ratio
P(h = 0|S)/P(h = 1|S) = P0/P1 indicates the confidence in the decision made.
In the experiments we perform, some threshold δ > 1 is set. We perform more
experiments as long as 1/δ < P0/P1 < δ. If P0 > δP1 we decide h = 0, and
if P1 > δP0 we decide h = 1. Since the number of experiments is computed
adaptively, experiments are no longer independent and for example (2) is not
strictly true anymore. However we assume that the confidence estimation P0/P1
is still meaningful.

Recovering the Whole Key. Even if the error probability for each bit guess is
small, since we are dealing with large secret values (at least 192 bits), the proba-
bility that at least one error occurs during the attack is high. Additionally, after
one error at step j, since next experiments rely on the value of Kj, subsequent
tests will fail to detect P0 and with high probability, the next guessed bits will
be equal to 1.

Of course, one way to overcome this problem is to have a very low error prob-
ability per bit. However, more subtle approaches can be devised: for example, if
1 this is justified by the central limit theorem for D1; for D0, this can be considered

as an heuristic hypothesis.
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a long run of ones is guessed, one can attempt to restart from the computation
step where the run begins.

5.2 Experimental Results

We simulated a Montgomery Ladder using randomized projective coordinates
on the various NIST curves. We used the most basic variance estimator, with
no backtracking in case of long runs of ones. We looked for the number of mea-
surements required to guess the whole secret scalar with a success probability of
90%. No noise was added to the measurements, unlike in a real setting.

The number of measurements that had to be performed in order to reach a
confidence level of 90% does not grow linearly in the size of the scalar. In fact,
it depends on Iλ; this is to be expected because of the expression of V(U) under
the hypothesis kn−1−j = 0.

Current results are summarized in table 1 below.

Table 1. Experiments Required for a 90% Confidence Level

Curve Total number of experiments Experiments per bit λ Iλ

p192 1117 6 2 2
p224 2347 10 6 6
p256 2729 11 4 12
p384 2519 7 1 3
p521 1305 3 n.a. 0
B233 482 2 1 1
B283 1854 7 5 15
B409 789 2 1 1
B571 2219 4 5 15

6 Conclusion

In this paper, we presented a new chosen-ciphertext Side-Channel Attack on
elliptic curve scalar multiplication. It does not apply to any elliptic curve, but
rather to curves whose coefficient fields are chosen to enable efficient implemen-
tations on resource-constrained hardware; unfortunately, this kind of hardware
is precisely the target of choice for Side-Channel Attacks.

The attack is able to defeat some widely used countermeasures like anti-SPA
scalar multiplication algorithms and projective coordinate randomization. It is
stopped by more complex defenses like point blinding and scalar randomization;
these countermeasures do not however come for free in hardware. The attack
might also be prevented if the cryptanalyst cannot have full control over the
scalar multiplication input.

Practically, basic simulations show that the attack is able to recover a secret
scalar with a success rate of 90% on any NIST curve using no more than 11
power measurements per bit guessed, using a very simple statistical test. This
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lead us to think that it is a practical threat that should be taken into account
by implementors.
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A Computation of the Probability Law of U

A.1 Binary Case

In that section, we compute the exact probability law of the Hamming weight
difference between xλZ and Z <<< λ, under the assumption that the λ-bit
windows do not overlap.

We use the same notations as in 4.4: F2n = F2[X ]/(P ) and Z is a random
uniform value in F2n . For some λ < n − kI ,

U = Ham(Z) − Ham(xλZ)
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is the random variable whose law we want to compute. We saw in section 4.4
that if Z = Z1 + xn−λZ2 with deg(Z1) < n − λ and deg(Z2) < λ, then

xλZ ≡ (Z <<< λ) ⊕
I∑

i=1

xki .Z2

Set (Z <<< λ) =
∑n−1

i=0 zix
i. Then Z2 =

∑λ−1
j=0 zj xj . Let Uj be the con-

tribution of the j-th bit of Z2, zj , to U . Under the non-overlapping condition,
U = U0 + . . . + Uλ−1 and

Uj = Ham(Z <<< λ) − Ham

(
(Z <<< λ) ⊕ zj

I∑
i=1

xki+j

)

= zj

I∑
i=1

(2zki+j − 1) = zj

(
2

I∑
i=1

zki+j − 2I

)

and for each i, j, zj and zki+j are independent because ki �= 0. If W is a
binomial random variable B(I, 1/2),

P(Uj = k) =
1
2

P(2W − I = k) if k �= 0

P(Uj = 0) =
1
2

+
1
2

P(2W = I)

In particular, E(Uj) = 0, and V(Uj) = I/2. Now U0, . . . , Uλ−1 depend on
different bits of Z and are therefore independent: the law of U is simply the law
of the sum of λ independent ”copies” of U0, for example. In order to implement
a Neyman-Pearson test on outcomes of U , its law can therefore be derived by
computing the λ-th convolution power of the law of U0. In order to perform
variance tests, we only need E(U) = 0, and V(U) = Iλ/2.

A.2 Large Prime Case

In the prime field case, we want to approximate the law of U = Ham(Z) −
Ham(2λZ), where 0 ≤ Z < p is random and the Hamming weight is computed
on reduced representations mod p.

In section 4.5, we proved that the law of U is very close to the law of

U ′ = Ham(Z ′) − Ham(Z ′ + Δ)

with Z ′ a random value in [0, 2n − 1],

Δ = (2n − p − 1)(Z ′ mod 2λ) =
I∑

i=1

εi 2mi (Z ′ mod 2λ)
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and εi = ±1. Set Z ′ mod 2λ = Z ′
2. λ copies of Z ′

2 are added or subtracted
at I different λ-bit windows in Z. For the prime numbers we consider, mi+1 −
mi 	 λ and we will therefore assume that these windows do not overlap, and
even more, that no carry can propagate from one window to the other. We
will handle separately bit differences occurring inside these windows and bit
differences outside them, caused by carries overflowing the windows. The first
category of bit differences will be enumerated by a random value U ′

i , and the
second one by U ′

o: U ′ = U ′
o+U ′

i . We will assume that U ′
i and U ′

o are independent.
The contribution ci of each λ-bit window to U ′

i is a random binomial value
satisfying ci/2 − 1 ∼ B(λ, 1/2), and these contributions are independent be-
cause they involve independent bits of Z ′ (and although they both involve Z ′

2).
Therefore U ′

i/2 − 1 ∼ B(Iλ, 1/2).
Let us focus on the contribution co of a term 2miZ ′

2 to U ′
o, corresponding

to a case εi = 1. With probability 1/2, no carry occurs and co = 0. If a carry
occurs, co contributes to U ′

o in the following way:

Contribution 1 0 −1 −i

Probability 1/4 1/8 1/16 2−(i+2)

For example, in the second case of the above table, two bits 01 in Z ′ are
changed by the carry into 10.

In fact, c0 = b(1 − Z) where b is a Bernoulli variable that is equal to one
if and only if a carry occurs, P(Z = i) = 2−i+1 for i ≥ 0, and b and Z are
independent. With the help of this expression, one can check that E(co) = 0 and
V(co) = 1/2. We would have obtained the same result for εi = −1, although c0
would be changed into −c0.

Finally, in the simplified model corresponding to the assumptions we made,
E(U) = 0 and V(U) = (I(λ + 1))/2. Also note that the modeling above can be
used to compute the probability law of U .
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Abstract. We introduce two new attacks: the single-bit template attack
and the template-enhanced DPA attack. The single-bit template attack
can be used very effectively to classify even single bits in a single side
channel sample with a high probability of correctness. The template-
enhanced DPA attack, combines traditional DPA with single-bit tem-
plate attacks to show that if an adversary has access to a test card
with even a slightly biased RNG, then he/she can break protected cryp-
tographic implementations on a target card even if they have perfect
RNGs. In support of our claim, we report results from experiments on
breaking two implementations of DES and AES protected by the masking
countermeasure running on smartcards of different manufacturers.

In light of these results, the threat of template attacks, generally
viewed as intrinsically difficult to mount, needs to be reconsidered.

1 Introduction

Several side channel cryptanalytic techniques, such as those based on measuring
timing, power consumption and electromagnetic emanations have been used ef-
fectively to launch a wide range of attacks such as simple power analysis (SPA),
differential power analysis (DPA), higher order DPA, template attacks and multi-
channel attacks [Koc96,KJJ99,AARR02,CRR02,ARR03] against a wide variety
of cryptographic devices. While countermeasures, even provably secure ones,
have been developed for some attacks such as DPA, the perceived difficulty (in
terms of the work effort required by an adversary) of launching other attacks
has led developers to discount their feasibility.

This is particularly true for template attacks. For instance, the very high
successful classification results that can often be achieved with the analysis of
a single side channel sample, make template attacks the ideal choice to attack
ciphers, such as stream ciphers, which use ephemeral keys. However, until now all
published works [CRR02,RO04] used template attacks to classify the state of a
byte, e.g., a key byte in RC4. This makes the process of creating templates quite
tedious since 256 templates need to be created for each byte. Further, templates
for the full attack cannot be precomputed as the templates for a subsequent key

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 15–29, 2005.
c© International Association for Cryptologic Research 2005
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byte need to be created for each likely hypothesis for the earlier key bytes, i.e.,
the template building process can only be guided by partial attack results. In
this paper, we show that this apparent difficulty is not intrinsic and present two
new attack techniques to surmount it.

1.1 Contributions

Our first contribution is the single-bit template attack technique. For a given
bit, this attack uses DPA to build templates. It relies on our experimental ob-
servation that templates can be built from peaks observed in a DPA attack and
these templates can predict the value of a single DPA-targeted bit in a single
side channel sample with high probability. Thus, even though the specific com-
putation yielding the single sample uses byte sized variables, the template can
predict a single bit from those variables.

This technique immediately yields attacks where an adversary precomputes
a large number of single-bit templates using several different DPA attacks on a
test device and uses these precomputed templates and their classification proba-
bilities to attack a single sample from an identical target device. These templates
provide the best guess for each of the DPA-targeted bits and the template clas-
sification probabilities can be used to guide a weighted brute force search for
the key. With enough precomputed templates, the entropy of the key is reduced
substantially making the weighted brute force search practical. For example, in
an experiment on a DES implementation, just attacking the 32-bits of S-box
output in the first round, reduced the key entropy by over 16 bits. Clearly, by
building templates, for DPA attacks carried on other variables in other rounds,
the key entropy could be further reduced.

Reflecting further on the single-bit template attack, it should be evident,
that knowledge of a single-bit template is comparable to having some partial
knowledge about the key used in a card. Possession of several such single-bit
templates is akin to having a master key that can be used to break any of a
collection of cards from the same mask. This is true even for cards that are
protected by DPA countermeasures such as secret sharing and random masking
[GP99, CJR+99, AG01], if single-bit templates for the bits being processed in
such cards can be built.

The second major contribution of this paper is to introduce template-en-
hanced DPA attacks which can be used to attack DPA protected cards under
some assumptions. The problem with such cards is that single-bit templates
(as described earlier) cannot be built, since in principle, the DPA protection
renders DPA (the first step in building single-bit templates) infeasible. However,
in practice, this is not a limitation, as there are multiple ways to get hold of a
test card with a (slightly) biased RNG. For example, an adversary in collusion
with the designers, testers and maintainers of card software may have hooks
to add code to disable specific RNG registers on their own test cards while
changes to deployed cards in the field may be much more tightly controlled and
impossible for an adversary. Some production cards may fail the RNG tests at
fabrication time and may be discarded only to be picked up by an adversary.
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In our experience, we have sometimes encountered even production cards with
slight RNG bias (to the tune of 3–4%). Therefore, if cards are not tested or
tested to wide tolerance limits, then it is highly likely that several cards in the
field may have slightly biased RNGs. As a last resort, an attacker could mount
an intrusive attack to disable the RNG on his own test card.

Given a test card with a (slightly) biased RNG, an adversary can successfully
perform multiple DPA attacks on the test card to build single-bit templates. The
DPA peaks in these attacks would occur at locations where the masked value of
the predicted variable bit (such as an S-box output bit) occur, since the masking
is imperfect. Single-bit templates built using these DPA peaks would then be
able to classify corresponding bits of the masked variables used in any card,
including cards that have a perfect RNG. The template-enhanced DPA attack
works by setting the DPA selector function to be the XOR of the standard
DPA selector function (e.g., an S-box output bit for a key hypothesis) and the
classification obtained by the single-bit templates (such as the masked S-box
output bit). Depending on the effectiveness of the template classification, this
DPA selector function will have high correlation with the mask bit being used.
Thus for the right key hypothesis, this attack will show DPA peaks at locations
where the random mask is being used.

We demonstrate such a single-bit template attack for two DPA protected
implementations: a protected DES implementation on a 6805 based smartcard
and a protected AES implementation on an AVR architecture. We also report a
surprising result that indicates that in practice, the bias of the RNG in the test
card has little relevance to the effectiveness of the template-enhanced DPA attack.
The RNG bias only affects the effort required to build single-bit templates. The
classification error with single-bit templates built using a slightly biased RNG is
not significantly worse than the classification error using templates built using
a completely broken (fixed at 0) RNG.

The paper is organized as follows: In Section 2, we introduce single-bit tem-
plate attacks. In Section 3, we introduce the template-enhanced DPA attacks
and show how it can be uses to attack two smartcards of different architecture1,
which run protected implementations of DES and AES.

2 Single-Bit Template Attack

We extend earlier work on template attacks [CRR02, RO04] that focused on
classifying a byte in a computation, e.g., a byte of key used in RC4, by showing
how template attacks can be applied to classify single bits in a computation from
a single side channel sample.

A template attack begins by selecting variables occurring in the computa-
tion for which templates would be built. Furthermore, it requires a selection
of significant points for each of the selected variables that are included in the
corresponding template. Having a good selection criterion for significant points
1 Smartcard A is an ST19 based on the 6805 architecture and smartcard B is an Atmel

ATmega163 based on the AVR architecture.
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is critical to the success of template attacks and this problem has been well
studied: ideally, the significant points should have high variance with respect to
the particular variable of interest. For example, Bohy et al. [BNSQ03] suggest
Principal Component Analysis (PCA) while Rechberger et al. [RO04] suggest
a simpler and computationally less expensive approach that resembles classical
DPA. For the single-bit template attack, we let DPA attacks guide the selection
of both the bits in the computation for which templates are built and significant
points included in these templates. Templates are built for the bits for which a
DPA attack is successful and the significant points included in a template are
the points with the top N highest DPA-peaks.

We illustrate the attack by means of an example. Consider an unprotected
implementation of DES on smartcard A. Consider the 32 s-box output bits of
the DES computation in round one. For the unprotected DES implementation,
one can easily perform DPA for each of the 32 output bits. Correspondingly,
we built a pair of templates for each output bit corresponding to the bit being
equal to 0 and 1 respectively. In order to build these templates, we performed a
DPA of each output bit using the improved DPA metric described in [ARR03]
which results in a higher signal-to-noise ratio (SNR) than the standard DPA.
The improved metric is computed by using the following formula:

MHi =

(
μHi − μHv

)2

σ2
Hv ,0
N0

+
σ2

Hv ,1
N1

− ln
( σ2

Hi,0

N0
+

σ2
Hi,1

N1

σ2
Hv,0
N0

+
σ2

Hv,1
N1

)
(1)

where μH is the difference of sample means of signals in the 0-bin and the 1-
bin respectively for a hypothesis H . Similarly, σ2

H,0 and σ2
H,1 are the sample

variances of the signals in the 0-bin and the 1-bin respectively for a hypothesis
H . Hi denotes a hypothesis where a subkey is assumed to be i, and Hv is a
special hypothesis (null hypothesis) where signals are partitioned in the 0-bin
and the 1-bin randomly.

Figure 1 displays the improved metric of s-box 1, bit 0. The figure reveals
several points in time that clearly correlate with the selected s-box output bit. In
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Fig. 1. Improved DPA metric of s-box 1, bit 0 of the test device. Time in μs.
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Table 1. s-box output bit classification success rates and entropy loss

s-box
1

s-box
2

s-box
3

s-box
4

s-box
5

s-box
6

s-box
7

s-box
8

bit 0 1.00 0.91 0.88 0.93 0.77 0.72 0.80 0.84
bit 1 0.98 0.88 0.92 0.94 1.00 0.92 0.97 0.77
bit 2 0.75 0.89 0.99 0.92 0.95 0.83 0.90 0.79
bit 3 0.90 0.91 0.72 0.85 0.83 0.86 1.00 0.89

entropy
loss

2.57 2.10 2.13 2.30 2.28 1.50 2.61 1.35

our experiments, we chose the 50 highest peaks from this DPA metric to select
significant points and built a pair of templates for these points for each s-box
output bit using a single set of 1400 side channel samples.

To estimate classification success rate, we classified the state of the 32 s-
box output bits using a single set of another 100 random side channel samples
measured from the same device. The classification success rates ηSibj for the i-th
s-box and j-th bit, 1 ≤ i ≤ 8 and 0 ≤ j ≤ 3, together with the corresponding
entropy loss are shown in Table 1. The classification success rates ranged from
0.72 to 1.00; in the worst case s-box 3, bit 3 and s-box 6, bit 0 were predicted
correctly for only 72 of the 100 samples. From these results, the probability that
the entire 32-bit output of all s-boxes is classified correctly is

∏8
i=1
∏3

j=0 ηSibj =
0.0154 which although small is still 66-million times higher than a random guess.

These results can also be viewed in terms of entropy loss. For a particular
bit, if the classification success rate is p, then its corresponding entropy loss
is given by 1 + (1 − p) log2(1 − p) + p log2(p). To compute the entropy loss for
multiple bits we can add the individual losses (this corresponds to the worst case
where classification of different bits is independent). From this formula, we can
see that 16.8-bits of entropy has been lost from the 48-bits of the DES key used
in the first round (out of a maximum possible loss is 32-bits if the classification
was perfect). The loss of entropy of the keyspace can be translated into reduced
expected computational cost of a guided exhaustive search through the entire
keyspace that examines more likely keys earlier than the less likely keys.

For DES implementations, the attack can be improved substantially. Tem-
plates can be built not just for round 1, s-box output bits but also for other
bits such as the data bits fed to the second round. These templates will further
narrow down the possibilities for the 48 key bits used in the first round. In addi-
tion, templates can be built for the corresponding DPA attacks on the last two
rounds of DES (which utilize another 48-bit size subset of the key) and so on.
Depending on the implementation, single-bit templates can also be built directly
for the key bits that are likely to be highly effective since the same key bits show
up in multiple locations in a round and across multiple rounds.

To summarize, single-bit template attacks are capable of classifying a sin-
gle bit in a single side channel sample with high probability even though the
influence of a single bit on the side channel signal is generally very little at
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a particular instance of time, and is superimposed by several sources of noise
including that from other adjacent bits. Cryptographic algorithms with high
contamination properties [CRR02], such as DES, are ideally suited for single-bit
classification. Multiple precomputed single-bit templates can lead to practical
guided keyspace search algorithms using only a single sample from the target
device. Moreover, single-bit attacks when combined with other attacks can result
in much more devastating attacks as we show in the next section.

3 Attacking the Masking Countermeasure:
Template-Enhanced DPA

The proposed attack consists of two steps: a profiling phase and a hypothesis
testing phase. In the profiling phase, the adversary, who is in possession of a test
card with a biased RNG, builds templates, and in the hypothesis testing phase,
the adversary uses these prebuilt templates to mount a DPA-like attack on a
target card which is identical to the test card, but has a perfect RNG.

3.1 Profiling Phase

We assume that the adversary has a test card with a biased RNG that produces
0 bits with some biased probability ν �= 0.5, and that the adversary only faces
masking countermeasures such as the duplication method [GP99]23. A masking
countermeasure generally blinds all intermediate key-dependent variables with
randomly generated masks. The original values of the intermediate variables
can be recovered from their blinded values by applying the inverse mask. Non-
linear functions such as the s-boxes in DES and AES cannot be dealt with this
way; they are typically handled by creating masked tables in RAM. While the
unmasked s-box output s(x ⊕ k) never occurs as a run-time variable during the
execution of the algorithm, both the masked output s(x⊕ k)⊕m and the mask
m do occur and thus leak in the side channel sample.

As an illustration, consider the upper plots of Figures 2 and 3 that show DPA
attacks on two test cards, one with a protected DES implementation, and another
with a protected AES implementation. The target of both attacks was the bit
0 of s-box 1 in round one. The differential samples were obtained by switching
off the RNGs of the test cards (ν = 1). Both plots show peaks at points in time
when the masked s-box output bit leaks. Note that the differential trace from the
AES implementation contains less peaks compared to the DES implementation
due to the lower contamination properties of AES.

The first step in the profiling stage is to perform exhaustive DPA attacks on
the test card using as many samples as possible. In a card with a biased RNG,
where the mask is not perfectly random, such an attack will succeed since the
2 We make this simplifying assumption just for the sake of exposition, the attacks

would work if bad RNG has different biases for different bits in a random byte.
3 We assume other countermeasures, such as the desynchronization of side channel

samples due to random wait states etc., have been removed using signal processing.
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DPA prediction of an algorithmic bit (e.g., s-box output bit s(x ⊕ k)) would be
correlated with the masked value of that bit. A successful DPA attack will give
us the subkey k (in fact we will get all the subkeys) and also reveal the points
of time t∗ when targeted masked algorithmic bit (e.g., masked s-box output bit
s(x ⊕ k) ⊕ m) leaks.

The second step of the profiling phase is to create single-bit templates based
on each of the DPA attacks. For each DPA attack, the adversary builds a pair of
templates for the masked bit being 0 and 1 by using the collected samples at the
points where the DPA peaks appear. It may seem that building the template
pairs will require that the adversary knows which of the N collected samples
have the masked bit 0 and which have the masked bit 1. This is not possible in
general, unless the RNG is completely broken in a known way (e.g., fixed at 0).
Instead the adversary blindly assumes that the bit is exactly the same as the
DPA prediction and builds the templates anyway.

Clearly, if the RNG is not fixed at 0, but has a probability ν of outputing a
0 bit, the templates built by an adversary have significant errors. For example
when ν > 0.5, then the 0-bit template will be built using roughly ν∗N/2 samples
that are actually 0 samples and roughly (1− ν) ∗ N/2 samples that are actually
1’s. When ν < 0.5, then the templates are inverted: the 0 template is built using
more 1 samples than 0 samples. Such templates are equally useful since they
will consistently predict the bit incorrectly with high probability. When ν = 0.5,
DPA will not work and the templates as described here cannot be built.

We will show later in the paper that even though significant errors are intro-
duced in the templates when the RNG is very slightly biased, i.e., when ν is close
to 0.5, if enough signals are used to build these templates, then the performance
of the template-enhanced DPA attack is not significantly impacted—the attack
works almost as well as an attack using perfect templates (ν = 1).

3.2 Hypothesis Testing Phase

Once the adversary has built templates to classify masked s-box output bits in
DES or AES using a test device with imperfect RNG, he/she is given a target
device to attack that is identical to the test device, except for the fact that its
RNG is perfect.

The adversary can make a hypothesis regarding the secret key k used in the
target device, and for a particular side channel sample, use the key hypothesis
to predict the unmasked output bit s(x ⊕ k). Furthermore, the adversary can
use template classification to predict the masked output bit s(x⊕ k)⊕m. These
two together can be used to predict the mask bit m itself4

m = [s(x ⊕ k)]︸ ︷︷ ︸
prediction

⊕ [s(x ⊕ k) ⊕ m]︸ ︷︷ ︸
template classification

(2)

Since the mask bit m is an intermediate variable in the algorithm, it will leak
at some instances of time in the side channel sample. The idea is to perform
4 We assume that boolean masking is used.
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a DPA-like attack on the prediction of m according to the equation above. If
the hypothesized value of k is correct, peaks will show up in the corresponding
differential trace at points in time when the mask bit m leaks.

The number of samples required to perform this attack depends on two main
factors: the number of samples required to perform a DPA attack based on a
perfect prediction for m and the template classification error probability ε. The
first factor is a function of the leakage properties of m in the smart-card, while
the second factor is dependent on the quality of single-bit templates. A higher
value of ε results in worse SNR of the differential sample since classification errors
make the predicted and actual values of the mask m less correlated. To estimate
the impact of classification error ε, we modified the SNR model proposed by
Messerges et al. in [MDS99] to account for the additional noise caused by the
misclassification (details are given in the Appendix). Table 2 shows the impact
of ε on the proposed template-enhanced DPA attack. This table assumes that
a certain SNR ratio is obtained using 100 side-channel samples with perfect
classification and computes how many side-channel samples would be needed
to achieve the same SNR with different values of ε. Given the classification
results obtained for single-bit templates in the earlier section, where all error
probabilities were less than 0.3 and many were under 0.1, it would be reasonable
to assume that the template-enhanced DPA attacks would be a factor of 1.5 to
6 more expensive (in terms of the number of required samples) than the regular
DPA attacks.

Table 2. Number of measurements N required to achieve a constant SNR in a
template-enhanced DPA attack for different template classification errors ε

ε 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.48 0.49
N 100 123 156 204 278 400 625 1,111 2,500 10,000 62,500 250,000

3.3 Results

We performed the proposed template-enhanced DPA attack on two smardcards:
a protected DES implementation on the smartcard A and a protected AES
implementation on the smartcard B. For each smartcard, in the profiling phase,
the templates were built with the RNG turned off (ν = 1). In the hypothesis
testing phase, traces were obtained with the RNG on and working perfectly
(ν = 0.5). For the smartcard A, the lower plot in Figure 2 shows the differential
trace of the template-enhanced DPA attack on the hypothesized mask bit m.
A similar differential trace for the smartcard B is shown in the lower plot of
Figure 3. Both plots contain distinct peaks even though the masking protection
was fully functional. For completeness, Figure 4 shows a template-enhanced DPA
trace for a false key hypothesis for smartcard B, which shows no peaks.

If the RNG in the test card during the profiling phase is just slightly biased
instead of being broken, then the templates obtained from the test card would
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Fig. 2. Smartcard A: DPA of the masked s-box output bit using the test device and
DPA of the mask bit using the target device

have significant cross-contamination. One may conjecture that as a result, the
probability of error ε would be higher as the bias in RNG becomes smaller.
However, this is not the case—in the appendix, we prove the following counter-
intuitive result.

Theorem 1. If the noise covariance matrix of side channel traces is the same
for two values of a mask bit and enough traces are available from a test card with
a biased RNG (0.5 < ν < 1.0), then the templates prepared from such traces give
the same probability of error as the templates obtained from a test-device with
broken RNG (ν = 1).

In our experiments, we found that the noise covariance matrices of side chan-
nel traces for different values of mask bit are nearly the same. For the actual
covariance matrices obtained in one of our experiments, we performed a Monte
Carlo simulation of how well the signal classification works when templates are
built using different numbers of samples from the test card with different RNG
biases. In this simulations, the samples were generated by sampling from the
noise probability distributions and the RNG bias was simulated by randomly
misclassifying samples into the bins used to build templates. We also performed
an actual experiment where 1000 samples were obtained from the test card and
templates were build for different RNG biases (again simulated by putting sam-
ples randomly in incorrect bins). The results of these experiments are shown in
Figure 5. Three plots are derived from the Monte Carlo simulation involving
1000, 10,000, and 100,000 traces from a simulated test card with biased RNG to
build templates. These three plots show that as the number of traces from the
test card increases, the probability of classification error becomes insensitive to
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Fig. 3. Smartcard B: DPA of the masked s-box output bit using the test device and
DPA of the mask bit using the target device
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Fig. 4. Smartcard B: DPA of the masked s-box output bit using the test device and
DPA of the mask bit using the target device (both with wrong hypothesis)

the RNG bias. The fourth plot is the experimental using 1000 samples from a
test card to build templates. The experimental curve is in excellent agreement
with our analytical results.
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Fig. 5. Probability of correct classification versus RNG bias.

In summary, even with a test card with very small RNG bias, it is possible
to mount template-enhanced DPA attacks; the only effect of a small bias is that
many more samples are needed to build templates that are as good as template
built from a card with completely broken RNG.
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and Andreas Krügersen for the AES implementation with switchable RNG on
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Channel(s). In B.S. Kaliski, Ç. K. Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2002, volume 2535, pages 29–
45. Springer-Verlag, 2002.

[AG01] M.-L. Akkar and C. Giraud. An Implementation of DES and AES Secure
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A Sensitivity of Probability of Success on Bias

Let H0 and H1 denote two hypotheses corresponding to the target bit being equal
to 0 and 1 respectively. Let pH0 and pH1 model the distribution of captured side-
channel emanations under H0 and H1, respectively. Assume that pH0 and pH1

are multivariate Gaussian distributions [CRR02, ARR03] with means m0 and
m1, and variances Σ0 and Σ1, respectively.

Let α be the mixing factor, that is, the samples collected for H0 are distrib-
uted according to the Gaussian mixture distribution (1 − α)pH0 + αpH1 , and
the samples collected for H1 are distributed according to the Gaussian mixture
distribution (1− α)pH1 + αpH0 . As a result of mixing, the mean and covariance
of samples collected for H0 is given by

m̃0 =
∫

s
(

(1 − α)pH0(s) + αpH1(s)
)

ds = (1 − α)m0 + αm1 (3)

Σ̃0 =
∫

(s − m̃0)(s − m̃0)′
(

(1 − α)pH0(s) + αpH1(s)
)

ds

= (1 − α)Σ0 + αΣ1 + α(1 − α)ΔmΔm′ (4)

where A′ denotes the transpose of the matrix A. We note that derivation of
(4) requires tedious but straight-forward algebraic manipulations. Similarly, the
mean and covariance of samples collected for H1 is given by
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m̃1 = (1 − α)m1 + αm0 (5)

Σ̃1 = (1 − α)Σ1 + αΣ0 + α(1 − α)ΔmΔm′ (6)

During the hypothesis testing phase, an adversary would use distorted templates
based on (3)–(6) to classify the target bit from a captured side-channel emanation
s. Specifically, the decision criterion is given by

(s − m̃0)′Σ̃−1
0 (s − m̃0) − (s − m̃1)′Σ̃−1

1 (s − m̃1) > log(|Σ̃1|) − log(|Σ̃0|) (7)

where a decision is made in favor of H1 if the above inequality is true, and in
favor of H0 otherwise.

By assuming Σ0 = Σ1 = Σ5, (7) can be reduced to the following [Tre68]

(m̃1 − m̃0)′Σ̃−1s >
1
2

(
m̃′

1Σ̃
−1m̃1 − m̃′

0Σ̃
−1m̃0

)
(8)

By using (3) and (5) along with the symmetry of inverses of covariance matrices
to cancel common terms, we can further simplify (8) to

Δm′Σ̃−1s >
1
2

(
m′

1Σ̃
−1m1 − m′

0Σ̃
−1m0

)
(9)

Note that Δm′Σ̃−1s is a linear combination of Gaussian variables. As a result,
under the hypothesis H0, Δm′Σ̃−1s is Gaussian distributed with the following
mean and variance

E[Δm′Σ̃−1s] = Δm′Σ̃−1m0 (10)

V [Δm′Σ̃−1s] = Δm′Σ̃−1ΣΣ̃−1Δm (11)

Let Q(x), x � 0 denote the probability of a Gaussian random variable with
mean 0 and variance 1 being larger than x. Under the hypothesis H0 (and by
symmetry, under the hypothesis H1), the probability of error incurred by using
the distorted templates is given by

P (error) = Q
( | 12(m′

1Σ̃
−1m1 − m′

0Σ̃
−1m0

)
− Δm′Σ̃−1m0|√

Δm′Σ̃−1ΣΣ̃−1Δm

)
(12)

We can express the numerator of Q(·) in the above equation solely in terms of
Δm by realizing that m′

1Σ̃
−1m0 is one dimensional and therefore it equals to

its transpose m′
0Σ̃

−1m1.

1
2
(
m′

1Σ̃
−1m1 − m′

0Σ̃
−1m0

)
− Δm′Σ̃−1m0

=
1
2
m′

1Σ̃
−1m1 +

1
2
m′

0Σ̃
−1m0 − 1

2
m′

1Σ̃
−1m0 − 1

2
m′

0Σ̃
−1m1

=
1
2
m′

1Σ̃
−1Δm − 1

2
m′

0Σ̃
−1Δm

=
1
2
Δm′Σ̃−1Δm

5 In our experiments, this assumption holds well.
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Thus, probability of error can be expressed as

P (error) = Q
( 1

2 |Δm′Σ̃−1Δm|√
Δm′Σ̃−1ΣΣ̃−1Δm

)
(13)

Our task is to prove that the argument of Q(·) in the above equation is inde-
pendent of α, and therefore, the probability of error in hypothesis testing phase
is independent of the RNG bias. Our strategy is to factorize the numerator and
denominator of the argument of Q(·) in (13), and show that factors involving α
cancel each other out. The first step towards this factorization is to obtain an
expression for Σ̃−1 in terms of Σ−1 by using the matrix inversion lemma. The
matrix inversion lemma states that for arbitrary matrices A, U, C, and V , with
the only restriction that inverses of A and C exist and the product UCV and
the sum A + UCV are well-defined, the following holds true

(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (14)

Substituting A = Σ, U = α(1 − α)Δm, C = 1, and V = Δm′, we obtain

Σ̃−1 = (Σ + α(1 − α)Δm · 1 · Δm′)−1

= Σ−1 − α(1 − α)Σ−1Δm
(

1 + α(1 − α)Δm′Σ−1Δm)
)

Δm′Σ−1

Let β = Δm′Σ−1Δm. Since β is a one dimensional quantity, it can be factored
out to obtain

Σ̃−1 = Σ−1 − α(1 − α)(1 + α(1 − α)β)Σ−1ΔmΔm′Σ−1 (15)

Now we are ready to factor the numerator.

Δm′Σ̃−1Δm = Δm′Σ−1Δm − α(1 − α)(1 + α(1 − α)β)Δm′Σ−1ΔmΔm′Σ−1Δm

= β(1 − αβ(1 − α)(1 + α(1 − α)β)) (16)

Similarly, to factorize the denominator, we perform the following steps.

Δm′Σ̃−1ΣΣ̃−1Δm

= Δm′Σ̃−1
(

I − α(1 − α)(1 + α(1 − α)β)ΔmΔm′Σ−1
)

Δm

= (Δm′Σ̃−1Δm)
(

1 − αβ(1 − α)
(
1 + α(1 − α)β

))
= β

(
1 − αβ(1 − α)

(
1 + α(1 − α)β

))2

(17)

Using (16) and (17), the numerator and denominator of (13) can be simplified
to give the following expression for probability of error

P (error) = Q
(1

2

√
β
)

(18)

Note that since Σ−1 is a positive definite matrix, β > 0. Furthermore, β only
depends on the statistics of emanations under H0 and H1. In particular, it does
not depend on α.
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B Impact of Classification Error on SNR

Let ν be the probability of correct classification in a DPA attack for a bit X .
If ν �= 1, then the erroneous classification of the bit X can be interpreted as
an additional noise source in the differential trace. If the bit X leaks at times
t∗ and δ denotes the average difference in amplitude of two l-bit wide operands
separated by the Hamming distance one, the expected values of the zero-bit and
one-bit partition are6:

E[pi(t∗)|X = 0] = a +
l − 1

2
· δ + (1 − ν) · δ (19)

E[pi(t∗)|X = 1] = a +
l − 1

2
· δ + ν · δ (20)

where a denotes some operand independent voltage offset and the term l−1
2 · δ

denotes the average algorithmic noise caused by the remaining l − 1 bits of the
operand. The differential trace Δ(t∗) can then be given as

Δ(t = t∗) = E[pi(t∗)|X = 1] − E[pi(t∗)|X = 0] = (2 · ν − 1) · δ (21)

whereas Δ(t �= t∗) approximates zero. A possible expression of the SNR of a
differential trace in DPA attacks was given by Messerges et al. in [MDS99]. We
enhance their SNR description with the additional noise factor (2 · ν − 1) caused
by the misclassification, which yields

SNR =
(2 · ν − 1) · δ ·

√
N√

8 · σ2 + δ2 · (α · l + l − 1)
(22)

where N denotes the number of measured side channel traces, α denotes the
percentage of algorithmic noise7 at times t �= t∗ and σ2 denotes the variance of
non-algorithmic time-invariant noise contained in a single trace. Let us assume
that in case of perfect classification at ν = 1, an adversary would have to measure
N = 100 traces to obtain a differential trace with an acceptable SNR. From the
above formula, it follows that for an arbitrary error ν the adversary will need
( 10
2ν−1 )2 samples to obtain the same SNR. Table 2 provides the number of traces

needed for different values of ε = 1 − ν, using this formula.

6 For simplicity we assume that the power signal is linear proportional to the Hamming
weight of the leaked operand x, i.e. pi(t) = a + δ · HW (x).

7 according to [MDS02] α can be often neglected.
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‘minimum principle’ that solely uses deterministic data dependencies and
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predictions are accompanied and confirmed by experiments. We demon-
strate that the adaptation of probability densities is clearly advantageous
regarding the correlation method, especially, if multiple leakage signals
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1 Introduction

Side channel cryptanalysis exploits physical information that is leaked during
the computation of a cryptographic device. The most powerful leakage con-
sists of instantaneous physical signals which are direct responses on the internal
processing. These instantaneous observables can be obtained by measuring the
power dissipation or the electromagnetic emanation of the cryptographic de-
vice as a function of time. Power analysis, which was first introduced in [9] and
electromagnetic analysis ([8]) are based on the dependency of the side channel
information on the value of intermediate data, which is in turn caused by the
physical implementation.
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Advanced stochastic methods have turned out to be efficient tools to optimize
pure timing and combined timing and power attacks. Using such methods, the
efficiency of some known attacks could be increased considerably (up to a fac-
tor of fifty), some attacks could be generalized and new attacks were conceived
([12,13,14]). The understanding of the source of an attack and its true risk po-
tential is important for a designer of a cryptographic system for implementing
effective and reliable countermeasures that prevent also privileged attacks.

This contribution gives a thorough stochastic approach to optimize the effi-
ciency of differential side channel analysis applied against block ciphers. In our
work, the quantification of side channel leakage is done in a chosen vector sub-
space. Under suitable conditions it requires only measurements under one test
key, and even this test key need not be known. Our approach aims to achieve
the efficiency of the template attacks in the key extraction phase but requires
far less measurements in the profiling phase, e.g., in case of AES we guess that
savings in the order of up to one hundred are feasible. This is surely interest-
ing for designers of cryptosystems in order to assess the susceptibility of their
implementations towards attacks. The mathematical model is supported by an
experimental analysis of an AES implementation on an 8-bit microcontroller.
Further, we show how our model can be generalized to comprehend both mask-
ing countermeasures as well as the usage of multiple physical channels.

1.1 Related Work

Differential side channel cryptanalysis identifies the correct key value by sta-
tistical methods for hypothesis testing. Differential Power Analysis (DPA) ([9])
turned out to be a very powerful technique against unknown implementations.
The single measurements are partitioned accordingly to the result of a selection
function that depends both on known data and on key hypotheses. [9] suggested
to just use the difference of means for the two sets of single measurements. Im-
proved statistics are the student’s T-Test and the correlation method which are
given in [2]. Additional guidelines for testing the susceptibility of an implemen-
tation are presented in [3].

Other contributions assume that the adversary is more powerful, e.g, that
the adversary is able to load key data into the cryptographic device. Profiling
as a preparation step of power analysis was first described by [6]. Probably
the most sophisticated strategy is a template based attack ([4]) which aims to
optimize Simple Power Analysis (SPA) and requires a precise characterization
of the noise. Moreover, physical information can be captured simultaneously by
different measurement set-ups, e.g., by measuring the EM emanation and the
power consumption in parallel ([1]).

2 The Mathematical Model

In this section we introduce a new mathematical model for differential side chan-
nel attacks against block ciphers. We investigate this model (Subsect. 2.1)and
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exploit these insights to derive optimal decision strategies (Subsects. 2.2 and 2.3).
The success probability (or equivalently, the risk potential) and the efficiency of
our approach are considered.

We assume that the adversary (e.g., the designer) measures physical observ-
ables at time t in order to guess a subkey k ∈ {0, 1}s. The letter x ∈ {0, 1}p

denotes a known part of the plaintext or the ciphertext, respectively. We view a
measurement at time t as a realization of the random variable

It(x, k) = ht(x, k) + Rt. (1)

The first summand ht(x, k) quantifies the deterministic part of the measurement
as far it depends on x and k. The term Rt denotes a random variable that
does not depend on x and k. Without loss of generality we may assume that
E(Rt) = 0 since otherwise we could replace ht(x, k) and Rt by ht(x, k) + E(Rt)
and Rt − E(Rt), respectively. We point out that (1) does not cover masking
techniques. A generalization of (1) and the main results in Subsects. 2.2 and 2.3,
however, is straight-forward (cf. Subsect. 2.4). From now on we assume that the
plaintext is known by the adversary but our results can be directly transferred
to ‘known-ciphertext’ attacks.

Example 1. In Sect. 3 an AES implementation targeting one S-Box is analyzed.
Then t is an instant, e.g., during the first round and x, k ∈ {0, 1}8.

2.1 Fundamental Theorems

The central goal of Subsect. 2.2 is to estimate the distribution of the random
vector (It1 (x, k), . . . , Itm(x, k)) where t1 < · · · < tm are different instants that
are part of the side-channel measurements We work out important facts that
will be used in the next subsection.

Definition 1. As usual ‖ · ‖ : IRn → IR denotes the Euclidean norm, that is
‖(z1, z2, ..., zn)‖2 =

∑n
j=1 z2

j . In this work, terms bT and AT stand for the trans-

pose of the vector b and the matrix A, respectively. The term f̃ denotes an
estimator of a value f . Random variables are denoted with capital letters while
their realizations, i.e. values assumed by these random variables, are denoted
with the respective small letters.

Mathematical Model. The random variables Rt, X and K (resp. Rt, X1, X2,
. . . , XN , and K) are defined over the same probability space (W,W , P ), where
W is a sample space, W a σ-algebra consisting of subsets of W and P a proba-
bility measure on W . More precisely, Rt : W → IR; X, X1, . . . , XN : W → {0, 1}p

(random plaintext parts) and K : W → {0, 1}s (random subkey). By assump-
tion, the random variables Rt, X and K (resp. Rt, X1, X2, . . . , XN , and K) are
independent. For the sake of readability in (2), for instance, we suppress the
subscript X,Rt,K=k as this should be obvious.



A Stochastic Model for Differential Side Channel Cryptanalysis 33

Theorem 1. Let k ∈ {0, 1}s denote the correct subkey. Then the following as-
sertions are valid:

(i) The minimum

min
h′ : {0,1}p×{0,1}s→IR

E
(
(It(X, k) − h′(X, k))2

)
(2)

is attained at h′ = ht. If Prob(X = x) > 0 for all x ∈ {0, 1}p (e.g., if X is
equidistributed on {0, 1}p) the minimum is exclusively attained for h′ = ht.
(ii) Let t1 < t2 · · · < tm. Then the minimum

min
h′
1,...,h′

m : {0,1}p×{0,1}s→IR
E
(
‖ (It1(X, k) − h′

1(X, k), . . . , Itm(X, k)−h′
m(X, k)) ‖2)

(3)
is attained at (h′

1, . . . , h
′
m) = (ht1 , . . . , htm).

(iii) For each x ∈ {0, 1}p we have ht(x, k) = EX=x (It(X, k)).

Proof. Clearly, It(X, k)−h′(X, k) = Δh(X, k)+Rt with Δh = ht −h′. Squaring
both sides and evaluating their expectations yields

E
(
(It(X, k) − h′(X, k))2

)
= E

(
Δh(X, k)2

)
+ E

(
R2

t

)
≥ E

(
R2

t

)
since E(Rt) = 0, and since Δht(X, k) and Rt are independent by assumption. If
Prob(X = x) > 0 for all x ∈ {0, 1}p then E(Δh(X, k)2) > 0 for h′ �= ht which
completes the proof of (i). Similarly,

E
(
‖ (It1 (X, k) − h′

1(X, k), . . . , Itm(X, k) − h′
m(X, k)) ‖2)

=
m∑

j=1

E
((

Δh(X, k) + Rtj

)2) ≥
m∑

j=1

E
(
R2

tj

)
,

which verifies (ii), while (iii) follows immediately from (1).

Note that Theorem 1 (ii) says that we may determine the unknown functions
ht1 , . . . , htm separately although we are interested in the joint distribution of
(It1(X, k), . . . , Itm(X, k)). Principally, the 2p+s unknown function values ht(x, k)
could be estimated separately using Theorem 1(iii). Though satisfactory from a
theoretical point of view this approach is impractical.

Considering the concrete implementation a designer (resp., an adversary)
should be able to determine a (small) subset Ft ⊂ F := {h′ : {0, 1}p ×{0, 1}s →
IR} that either contains the searched function ht itself or at least a function h∗

t

that is sufficiently ‘close’ (to be made precise below) to ht. For simplicity we
restrict our attention to the case Ft = Fu;t, where this set of functions is a real
vector subspace that is spanned by u known functions gjt : {0, 1}p×{0, 1}s → IR.
More precisely,

Fu;t := {h′ : {0, 1}p × {0, 1}s → IR |
u−1∑
j=0

β′
jgjt with β′

j ∈ IR} (4)
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We may assume that the functions gjt are linearly independent so that Fu;t
is isomorphic to IRu. In particular, the minimum on the right-hand side of (6)
always exists. Theorem 2 will turn out to be crucial for the following. In the
following h∗

t will always denote an element in Fu;t where (6) and (7) attain their
minimum.

Theorem 2. As in Theorem 1 let k ∈ {0, 1}s denote the correct subkey.
(i) For each h′ ∈ Fu;t we have

E
(
(It(X, k) − h′(X, k))2

)
− E

(
(It(X, k) − ht(X, k))2

)
(5)

= EX

(
(ht(X, k) − h′(X, k))2

)
≥ 0

where EX(·) denotes the expectation with respect to the random variable X, i.e.
the right-hand term equals

∑
x∈{0,1}p Prob(X = x) (ht(x, k) − h′(x, k))2.

(ii) EX

(
(ht(X, k) − h∗

t (X, k))2
)

= min
h′∈Fu;t

EX

(
(ht(X, k) − h′(X, k))2

)
(6)

implies

E
(
(It(X, k) − h∗

t (X, k))2
)

= min
h′∈Fu;t

E
(
(It(X, k) − h′(X, k))2

)
. (7)

(iii) Let t1 < t2 · · · < tm. If h′
j ∈ Ftj for all j ≤ m then

E
(
‖ (It1(X, k) − h′

1(X, k), . . . , Itm(X, k) − h′
m(X, k)) ‖2) (8)

= E
(
‖ (It1(X, k) − ht1(X, k), . . . , Itm(X, k) − htm(X, k)) ‖2)+

m∑
j=1

EX

((
htj (X, k) − h′

j(X, k)
)2)

.

Proof. Assertion (i) can be shown similarly as Theorem 1(i) while (ii) and (iii)
are immediate consequences from (i).

Remark 1.

(i) If X is equidistributed on {0, 1}p and if we interpret ht(·, k) and h′(·, k) as 2p-
dimensional vectors the L2-distance

√
EX((ht(X, k) − h′(X, k))2) between

ht(·, k) and h′
t(·, k) equals (apart from a constant) the Euclidean distance,

and h∗
t (·, k) is the orthogonal projection of ht(·, k) onto Fu;t.

(ii) It is natural to select the function h∗
t ∈ Fu;t that is ‘closest’ to ht, i.e.

that minimizes EX((ht(X, k) − h′(X ; k))2) on Fu;t. Theorem 2 says that h∗
t

can alternatively be characterized by another mimimum property (7), and
that the approximators h̃∗

t1 , . . . , h̃
∗
tm

may be determined separately. Theorem
3 below provides a concrete formula to estimate the unknown coefficients
β∗

0,t, . . . , β
∗
u−1,t of h∗

t with respect to the base g0,t, . . . , gu−1,t.
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(iii) An appropriate choice of the functions g0,t, . . . , gu−1,t, i.e. of Fu;t, is essential
for the success rate of the attack. Of course, the vector subspace Fu;t should
have a small L2-distance to the unknown function ht. An appropriate choice
may require some insight in the qualitative behaviour of the side channel
observables. Clearly, Fu1,t ⊆ Fu2,t implies that h∗

u2,t is at least as good h∗
u1,t

but the number of measurements in the profiling phase increases with the
dimension of Fu;t.

Definition 2. Let V denote an arbitrary set and let φ : {0, 1}p × {0, 1}s → V
be a mapping for which the images φ ({0, 1}p × k′) ⊆ V are equal for all subkeys
k′ ∈ {0, 1}s. We say that the function ht has Property (EIS) (‘equal images
under different subkeys’) if ht = ht ◦ φ for a suitable mapping ht : V → IR, i.e.
ht(x, k) can be expressed as a function of φ(x, k).

Example 2. p = s, φ(x, k) := x � k where � denotes any group operation on
{0, 1}p =: V (e.g. ‘⊕’).

Lemma 1. Assume that ht(·, ·) has property (EIS). Then for any pair (x′, k′) ∈
{0, 1}p × {0, 1}s there exists an element x′′ ∈ {0, 1}p with ht(x′, k′) = ht(x′′, k).

Proof. By assumption, φ ({0, 1}p, k) = φ ({0, 1}p, k′). Consequently, there exists
an x′′ ∈ {0, 1}p with φ(x′′, k) = φ(x′, k′) and hence ht(x′′, k) = ht(x′, k′).

If considerations on the fundamental properties of the physical observables
suggest that ht(·, ·) meets (at least approximately) the invariance property (EIS)
it is reasonable to select functions gjt that allow representations of the form
gjt = gjt ◦ φ with gjt : V → IR. Then

h∗
t = h

∗
t ◦ φ with h

∗
t (y) :=

u−1∑
j=0

βjtgjt(y) (9)

(see Sect. 3.1). As an important consequence it is fully sufficient to determine
h̃∗

t (·, k) ∈ Fu;t f or any single subkey k ∈ {0, 1}s, which is an enourmous advan-
tage over a pure template attack which requires 2p+s templates. An advanced
template attack that exploits Lemma 1 requires 2p templates. If possible, we
recommend to select plaintexts from a uniform distribution so that deviations
|ht(x, k) − h∗

t (x, k)| count equally to the L2-distance for all (x, k). Whether the
invariance assumption (EIS) is really justified for ht(·, ·) may be checked by a
second profiling with another subkey.

2.2 The Profiling Phase

In this subsection we explain how to determine approximators of ht(·, ·), or more
precisely, of h∗

t (·, ·) and the distribution of the noise vector (Rt1 , . . . , Rtm). We in-
terpret the ‘relevant parts’ x1, x2, . . . xN1 (i.e. input for the function ht) of known
plaintexts as realization of independent random variables X1, X2, . . . , XN1 that
are distributed as X . The Law of Large Numbers implies
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1
N1

N1∑
j=1

(it(xj , k) − h′(xj , k))2 N1→∞−→ E
(
(It(X, k) − h′(X, k))2

)
(10)

with probability 1 for any h′ : {0, 1}p × {0, 1}s → IR. Here it(xj , k) denotes the
measurement at time t for curve j which has the plaintext part xj ∈ {0, 1}p.

Theorem 3. (Estimation of ht) Again, let k denote the correct subkey. For any
h′ :=

∑u−1
j=0 β′

jgjt ∈ Fu;t we have

N1∑
j=1

(it(xj , k) − h′(xj , k))2 = ‖it − Ab‖2 (11)

where A = (aij)1≤i≤N1;0≤j<u is a real-valued (N1 × u)-matrix, b ∈ IRu and
i ∈ IRN1 . More precisely, aij := gj(xi, k), b := (β′

0, . . . , β
′
u−1)T and it :=

(it(x1, k), . . . , it(xN1 , k))T . Any solution b∗ = (b∗0, . . . , b
∗
u−1)

T of

AT Ab = AT it (12)

minimizes the right-hand side of (11). If the (u× u)-matrix AT A is regular then

b∗ = (AT A)−1AT it. (13)

Due to (10) we use the approximator h̃∗
t (x, k) =

∑u−1
j=0 β∗

jtgjt(x, k) with β∗
jt := b∗j .

Proof. Equation (11) is obvious whereas (12) is well-known (cf. [7], Subsect.
6.2.1 with X = A, Y = it and B = b; least square estimator) whereas the final
assertions are obvious.

Remark 2. We already know that if ht has the property (EIS) the profiling
need only be done for one subkey k. We point out that the adversary need
not even know this subkey. In fact, for a given measurement vector it the
adversary applies Theorem 3 to all possible subkeys k′ ∈ {0, 1}s and com-
putes the respective coefficient vectors b∗

′
. If k′ �= k Theorem 3 indeed de-

termines an optimal function h̃∗′
t ∈ F ′

u,t which is spanned by the functions
g′jt(x, k) := gjt(x, k) + (gjt(x, k′) − gjt(x, k)) in place of the gjt while the mea-
surement vector it implicitly depends on the (unknown) correct subkey k. Hence
it is very likely that F ′

u,t has a larger L2-distance to ht than Fu;t and, conse-
quently ‖it − Ab∗‖2 < ‖it − Ab∗

′‖2 for all instances t. The adversary just adds
these squared norms for each admissible subkey over several instants t, and
decides for that subkey for which this sum is minimal (see Sect. 3.1 for an ex-
perimental verification). In fact, the determination of k is a by-product of the
profiling phase which costs no additional measurements. At least principally, this
observation could also be used for a direct attack without profiling, which yet
requires a sufficient number of measurements.

Definition 3. Rt denotes the random vector (Rt1 , . . . , Rtm) in the following.
Similarly, we use the abbreviations It(x, k), it(xj , k), ht(x, k) and h∗

t (x, k),
where t stands for (t1, . . . , tm).
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After having determined the approximators h̃∗
t1 , . . . , h̃

∗
tm

the adversary uses a
second set that consists of N2 measurement curves to estimate the distribution of
the m-dimensional random vector Rt = It(X, k) − ht(X, k). We point out that
in general the components Rt1 , . . . , Rtm of Rt are not independent, and unlike
the functions htj they hence cannot be guessed separately. In the most general
case the adversary interpolates the N2 vectors {it(xj , k) − h̃

∗
t(xj , k) | j ≤ N2}

by a smooth probability density f0. In the experimental part of this paper we
assume that the random vector Rt is jointly normally distributed with covariance
matrix C = (cij)1≤i,j≤m, i.e. cij := E(RtiRtj ) − E(Rti)E(Rtj ) = E(RtiRtj )
since E(Rti) = E(Rtj ) = 0. If the covariance matrix C is regular the random
vector Rt has the m-dimensional density f0 := fC with

fC : IRm → IR fC(z) =
1√

(2π)m detC
e−

1
2 zTC−1z (14)

(cf. [7], for instance). Note that the adversary merely has to estimate the com-
ponents cij for i ≤ j since the covariance matrix is symmetric.

2.3 The Key Extraction Phase

By our mathematical model It(x, k) − ht(x, k) = Rt for all (x, k) ∈ {0, 1}p ×
{0, 1}s, and E(Rtj ) = 0 for each j ≤ m. If Rt has the density f0 : Rm →
[0,∞) (e.g., f0 = fC for a suitable covariance matrix C), and if k◦ denotes the
(unknown) correct subkey of the attacked device then for each x ∈ {0, 1}p we
have

It(x, k◦) has density fk◦ with fk◦(z) := f0(z − ht(x, k◦)). (15)

After having observed N3 measurement curves (with known parts x1, . . . , xN3)
the adversary evaluates the product

α(x1, . . . , xN3 ; k) :=
N3∏
j=1

f̃k (it(xj , k
◦)) =

N3∏
j=1

f̃0

(
it(xj , k

◦) − h̃∗
t(xj , k)

)
(16)

for all subkeys k ∈ {0, 1}s where f̃0 denotes the approximation of the exact
density f0 that the adversary has determined in the second step of the profiling
phase. Note that it(xj , k

◦) are observables that depend implicitly on the correct
subkey k◦. Note further that

f̃k (z) = f̃0

(
z − h̃∗

t(x, k′)
)

= f̃k◦
(
z + (ht(x, k◦) − h̃∗

t(x, k′))
)

. (17)

If the profiling phase has been successful ht(x, k◦) − h̃∗
t(x, k′) ≈ h̃∗

t(x, k◦) −
h̃∗

t(x, k′) ≈ ht(x, k◦)−ht(x, k′) and f̃0 ≈ f0. The adversary decides for k′ if the
term α(x1, . . . , xN3 ; k′) is maximal (maximum likelihood principle).

We point out that the correct subkey k◦ also fulfils a minimum property:

min
k′∈{0,1}s

E
(
‖It(X, k◦) − ht(X, k′)‖2) = E

(
‖It(X, k◦) − ht(X, k◦)‖2) . (18)
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The situation is similar to Theorem 1 where the correct function ht(X, ·) attains
a minimum for the given (correct) subkey. Equation (18) can be verified as
Theorem 1. In fact, the left-hand terms in (18) equal

∑m
j=1(EX(htj (x, k◦) −

htj (x, k))2) + E(R2
tj

)). As an alternative to the maximum likelihood approach
described above the adversary may decide for that subkey k′ ∈ {0, 1}s that
minimizes

1
N2

N2∑
j=1

‖it(xj , k
◦) − h̃

∗
t(xj , k

′)‖2 (19)

This key extraction is less efficient than the maximum likelihood approach as
it (explicitly) only considers the deterministic part ht. On the other hand it
saves the second part of the profiling phase which may be costly for large m (cf.
Sect. 3).

To perform the overall attack the adversary subsequently applies (16) or
(19) to obtain the ranking of the candidates for all subkeys. Assuming that one
plaintext-ciphertext pair is known, ‘candidate vectors’ consisting of probable
subkey candidates can be checked.

Template attacks aim at ht itself whereas our approach estimates h∗
t . Hence

the key extraction efficiency of the template attacks gives an upper bound for our
approach. However, if the vector subspace Fu;t has been chosen appropriately
this efficiency gap should be small, especially due to the presence of noise.

We point out that the designer may estimate the risk potential against tem-
plate attacks by a stochastic simulation. If Fu;t was chosen suitably the f̃k′

should be close to the true densities fk′ and in particular of similar shape. In the
simulation the designer yet assumes that the estimated densities f̃k′ were exact,
which corresponds to a template attack with large sample size.

If the attacked device processes several subkeys simultaneously, the efficiency
of the overall attack can be further increased by applying a two-step stochastic
sieving process, viewing the key extraction process as a sequence of statistical
decision problems. The interested reader is referred to [14], Sect. 4 (see also [13],
Sect. 7) where such a sieving algorithm was introduced for a timing attack on a
weak AES implementation. This sieving process is applicable to hardware-based
cryptographic implementations since all subkeys are processed in parallel, but it
is not detailed in this contribution.

2.4 Generalizations of Our Model

Our model in equation (1) is not appropriate if the device under test applies algo-
rithmic masking mechanisms that use (pseudo-)random numbers. However, (1)
allows a straight-forward generalization. We merely have to replace ht : {0, 1}p×
{0, 1}s → IR by hb,t : {0, 1}p×{0, 1}v ×{0, 1}s → IR where the second argument
denotes the random number that is used for masking. Analogously to (3) the
minimum

min
h′

b,t
: {0,1}p×{0,1}v×{0,1}s→IRm

E
(
‖It(X, Y, k) − h′

b,t(X, Y, k)‖2) (20)
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is attained at hb,t where Y denotes a random variable (independent of X and
Rt) that models the random numbers used for masking. Under the reasonable
assumption that the designer has access to these random numbers the profiling
works analogously as in Subsect. 2.2, yielding a density f̃b;0 : IRm → IR. In Defin-
ition 2 the function φ is simply replaced by φb : {0, 1}p×{0, 1}v×{0, 1}s → V . Of
course, in the key extraction phase knowledge of the masking random numbers
y1, . . . , yN3 cannot be assumed. The designer, resp. the adversary, hence decides
for the subkey k′ that maximizes the product

αb(x1, . . . , xN3 ; k) :=
N3∏
j=1

∑
y′∈{0,1}v

Prob(yj = y′)f̃0

(
it(xj , y, k◦) − h̃∗

b,t(xj , y
′, k)
)
(21)

among all k ∈ {0, 1}s (cf. (16)). The mixture of densities on the right-hand side
expresses the fact that the true density also depends on the unknown random
numbers y1, . . . , yN3. If these random numbers are unbiased and independent
then Prob(Yj = y′) = 2−v for all j ≤ N3 and y′ ∈ {0, 1}v. Due to lack of space
we skip a formal proof of (21). The generalized model can be used for high-order
differential side-channel attacks. One possible goal is to quantify the efficiency
of particular masking techniques.

Reference [1] considers the case where signals from several side-channels can
be measured simultaneously. Our model can also be generalized to this situ-
ation in a natural way: We just have to replace the scalar function ht(x, k),
or more generally hb,t(x, y, k), by the q-dimensional vector h[q],b,t(x, y, k) :=
(h1,b,t(x, y, k), . . . , hq,b,t(x, y, k)) where hn,b,t(x, y, k) quantifies the determinis-
tic part of the nth side-channel. Similarly, instead of It and Rt we consider
q-dimensional random vectors I[q],b,t and R[q],b,t for each instant. The correct
vector-valued function h[q],b,t minimizes

E

⎛⎝ m∑
j=1

q∑
n=1

(In,b,tj (X, Y, k) − h′
n,b,tj

(X, Y, k))2

⎞⎠ (22)

among all h′
[q],b,t : {0, 1}p × {0, 1}v × {0, 1}s → (IRq)m.

3 Experimental Analysis

An AES implementation on an 8-bit ATM163 microcontroller was developed
for the experimental evaluation of the efficiency achieved by our new decision
strategies. The AES was implemented in Assembly language and does not include
any countermeasures. The side channel information was gained by measuring
the instantaneous current consumption in the ground line. Four measurement
series were recorded using 2000 single measurements with a different fixed AES
key k = {k1, ..., k16} in each series. The random input data x = {x1, ..., x16}
were chosen independently from a uniform distribution. It is xl ∈ {0, 1}8 and
kl ∈ {0, 1}8 with l ∈ {1, ..., 16}.
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The following list summarizes the steps in the profiling (Steps 1 to 4) and
key extraction phase (Steps 5 to 7). Note that for the minimum principle Step
4 is skipped (N2 = 0) and Step 6 is applied at key extraction. Instead of Step 6
the maximum likelihood principle uses Step 7.

1. Perform N1 + N2 measurements using a static key k and known data
x1, x2, . . ..

2. With regards to the attacked device select for each instant t the functions
gi,t(·, ·) that span the vector subspace Fu;t.

3. Choose a selection function that combines kl and xl and apply Theorem 3 to
a subset of N1 measurements to obtain the estimators h̃∗

t (·, ·). (Optionally:
Repeat Steps 1 to 3 for another test key k2 and compare the results in order
to verify the assumption (EIS).)

4. Choose instants t1 < · · · < tm. Use the complementary subset of N2 measure-
ments to obtain the density f̃0 : IRm → IR. (maximum likelihood principle
only)

5. Perform N3 measurements using the target device with the unknown static
key k◦ and known data x1, x2, . . ..

6. Choose instants t1 < · · · < tm and apply (18) and (19) to guess the correct
subkey k◦

l of the attacked device. (minimum principle only)
7. Apply (16) to guess the correct subkey k◦

l of the attacked device. (maximum
likelihood principle only)

For comparison, even when exploiting (EIS) template attacks require 28 ·N2
single measurements for an AES implementation.

3.1 The Profiling Phase: Estimation of h∗
t

For profiling we chose the selection function S(φ(x, k)) for the AES S-Box S
with φ(x, k) = x ⊕ k where we suppress the byte-number indicating index l
of plaintext and subkey. For the vector subspaces we tested different choices,
that are evaluated regarding their efficiency in Section 3.3. The chosen vector
subspace is applied to the overall time frame, i.e., we do not use a combination
of several vector subspaces at different instants.

In this Section, profiling is presented in more detail for the nine-dimensional
bit-wise coefficient model, referenced as vector subspace F9 = F9;t for all in-
stants t. According to equation (9) with u = 9, Theorem 3 and Lemma 1 the
deterministic side channel contribution ht(φ(x, k)) is approximated by

h̃∗
t (φ(x, k)) = b0t +

8∑
i=1

bit · gi(φ(x, k)) (23)

wherein gi(φ(x, k)) ∈ {0, 1} is the i-th bit of S(φ(x, k)) . The coefficient b0t gives
the expectation value of the non-data dependent signal part and the coefficients
bit with i �= 0 are the bitwise data dependent signal portions. Though the inter-
nal processing of the implementation is deterministic, the measurands are not:
noise is an important contribution to the physical signal. The coefficients bit
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are revealed by solving an overdetermined system of N1 linear equations (see
Theorem 3).

The experimental results show that the resulting coefficients bit differ in am-
plitude, so that the use of the Hamming weight model can not be of high quality.
The coefficients bit were computed on all four measurement series independently.
As it can be exemplary seen in Fig. 1 the deviations of coefficients revealed at
the four series are relatively small. As the four series were done with different
AES keys, these experimental results confirm the assumptions of Lemma 1 say-
ing that it is justified to perform the profiling of h∗

t (·, k) : {0, 1}p → IR for only
one subkey k ∈ {0, 1}s.

-2
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’../../aes_14122004_4/results/bit8.out’

Fig. 1. Coefficient b8,t for all four measurement series as a function of time t. The
signals of bit no. 8 (least significant bit) turned out to be the most significant ones. It
is N1 = 2000.

Profiling Without Knowing the Key. In case that the subkey k is unknown
the estimation of h∗

t may be performed for all possible key values k′ ∈ {0, 1}8 (cf.
Remark 2 in Sect. 2.2). It was experimentally confirmed that the term ‖(it(x, k)−
h̃∗′

t (x, k′))2‖ indeed was minimal for the correct subkey k. By analyzing the
relevant time frame of 6500 instants the difference between the first and the
second candidate was 1.9 times larger than the difference between the second and
the last candidate. However, we note that the usage of the correlation method
[2] to determine k needs less computational efforts.

3.2 The Profiling Phase: Estimation of the Noise

The characterization of the noise was done independently of the estimation of
the coefficients bit. Concretely, as preparation step for the maximum likelihood
principle we used N1 = 1000 for the extraction of the coefficients bit. The com-
putations of the covariance matrix C = (cij)1≤i,j≤m for sets of m points were
done with N2 = 1000 and N2 = 5000. For the case N2 = 5000 we combined
three measurement series, except for the one that is used for the key extraction
later on.
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3.3 The Key Extraction Phase: Minimum Principle

For the minimum principle given by equations (18) and (19) the estimation
of h∗

t is needed, but not the estimation of the noise contribution. If not stated
otherwise, only one measurement series served for the profiling step (N1 = 2000)
and the key extraction is applied at another series.

First, a suitable choice of m points in time t has to be found1. We used
‖b‖ = ‖(b1,t, b2,t, ..., b8,t)‖ as the measure for our decision. Concretely, we chose
the threshold τ = 30 in the following selections for F9.

S1: By selecting all instants with ‖b‖ ≥ τ we obtained seven different signals2

and the number of instants was m = 147. For each signal, most instants are
in series.

S2: At each signal with ‖b‖ ≥ τ we took the time yielding the maximum value
of ‖b‖. Here, we obtained 7 different instants.

S3: We chose only one point in time yielding the maximum value of ‖b‖.
S4: We chose points that fulfill ‖b‖ ≥ τ > vart with vart := empV ar(it(xj , k) :

j ≤ N1) denoting the empirical variance. Here, we obtained m = 100 differ-
ent positions in time, but only at five different signals.

S5: We chose points that fulfill ‖b‖ ≥ τ > vart yielding the same result as
selection S4 and we add additionally all points in time that fulfill ‖b‖ > τ
at the remaining two signals. Altogether, we obtained m = 120.

S6: For each of the seven signals with ‖b‖ ≥ τ we chose three points by visual
inspection, so that the instants chosen are spread over one signal. For the
selection S6 it is m = 21.

The minimum value of equation (19) is computed for all subkeys k′ ∈ {0, 1}8.
In this contribution we assess the efficiency by the average number of single
measurements needed to achieve a certain success rate using a given number N3
of single measurements taken from the same measurement set. The success rate
(SR) was tested by ten thousand random choices of N3 single measurements from
one series. It can be seen in Table 1 that 10 single measurements yield already a
success rate of about 75 % and beyond 30 single measurements the success rate
can be above 99.9 %. The best results were gained at the selections S5 and S6.

Choice of Vector Subspaces. Different vector spaces are evaluated regarding
their efficiency. The choice of high-dimensional vector spaces, e.g, by including
all terms of gi(φ(x, k))gi′ (φ(x, k)) (i �= i′) (see (9) and (23)) did not lead to great
improvements. We observed only weak contributions of second-order coefficients
that even vanish at many combinations. We present results for

F2 = F2;t for all t: the Hamming weight model (u = 2),
F5 = F5;t for all t: a set of four bit-wise coefficients (u = 5) (these are the most

significant bit-wise coefficients of F9),
1 Note, that we do not consider the covariance of the noise at the chosen points in this

approach for key extraction.
2 We assign all instants that occur during one instruction cycle to one signal.
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Table 1. Success Rate (SR) that the correct subkey value is the best candidate as
result of (18) and (19) by using N3 randomly chosen measurements for the analysis at
the set of instants S1 to S6. The vector space used was F9

N3 SR for S1 SR for S2 SR for S3 SR for S4 SR for S5 SR for S6

2 5.57 % 5.64 % 1.06 % 3.31 % 6.35 % 6.36 %
3 12.06 % 11.14 % 1.65 % 7.49 % 13.21 % 13.57 %
5 29.14 % 28.47 % 3.00 % 21.43 % 32.81 % 33.40 %
7 50.39 % 48.20 % 4.39 % 39.41 % 54.23 % 53.88 %
10 75.29 % 73.45 % 8.29 % 65.45 % 78.97 % 78.69 %
15 94.27 % 92.92 % 14.68 % 89.22 % 95.77 % 95.15 %
20 98.57 % 98.31 % 22.26 % 97.59 % 99.17 % 98.82 %
30 99.92 % 99.89 % 39.34 % 99.85 % 99.97 % 99.95 %

Table 2. Success Rate (SR) that the correct key value is the best candidate as result
of (18) and (19) by using N3 randomly chosen measurements in different vector spaces

N3 SR for F2 (τ = 1) SR for F5 (τ = 8) SR for F10 (τ = 30) SR for F16 (τ = 70)
2 2.59 % 4.22 % 5.18 % 4.81 %
3 4.75 % 9.03 % 11.27 % 9.73 %
5 11.63 % 21.97 % 27.28 % 23.69 %
7 21.66 % 37.61 % 47.66 % 41.04 %
10 37.77 % 62.22 % 72.94 % 65.05 %
15 62.46 % 86.36 % 93.57 % 88.69 %
20 80.36 % 95.71 % 98.41 % 96.17 %
30 96.23 % 99.74 % 99.88 % 99.81 %

F10 = F10;t for all t: a set of the bit-wise coefficient model and one carefully
chosen second-order coefficient (u = 10), and

F16 = F16;t for all t: the bit-wise coefficient model and seven consecutive second
order coefficients (u = 16).

For Table 2 the time instants are chosen in the same way as described for F9
with S1 at the beginning of Section 3.3 and the thresholds τ are indicated.
High-dimensional vector spaces require more measurement curves than low-
dimensional ones: There is a trade-off between the number of measurements
used during profiling and the dimension of a suitable vector space. In our case,
F9 (see Table 1 and 2) seems to be a good choice though there is some space
left for optimization, e.g., by using N1 = 5000, N3 = 10, and τ = 10 the success
rate of F10 was 80.19% and superseded the corresponding result for F9 (77.31%).
Another optimization would be to select only contributing functions gi,t(·, ·) for
the chosen vector subspace at the relevant instants.

Comparison with the Correlation Method. Herein, the efficiency gain of
the minimum principle is compared with the correlation method of [2] on base of
the same pool of measurement data. The correlation method checks for the max-
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Table 3. Success Rate (SR) obtained for the correlation method using the 8-bit Ham-
ming weight and the least significant bit (lsb-Bit) as the selection function. The last
column shows the SR if the weighted estimated coefficients bit using F9 are used for
the correlation.

N3 SR (Hamming weight) SR (lsb-Bit) SR (estimated bit)
5 0.82 % 0.51 % 1.12 %
7 1.31 % 0.84 % 2.37 %
10 2.74 % 1.17 % 4.60 %
15 6.04 % 2.11 % 9.33 %
20 9.70 % 3.55 % 16.67 %
30 19.67 % 6.54 % 31.99 %
50 41.27 % 16.53 % 62.84 %
100 82.85 % 45.22 % 96.13 %

imum correlation peak obtained and it does not evaluate joined sets of multiple
instants.

The success rate obtained with the correlation method is illustrated in Ta-
ble 3 and can be compared with selection S3 in Table 1 which was restricted
to the same instant. In comparison, the correlation method yields worse success
rates than the minimum principle. By taking, e.g., N3 = 10 the minimum prin-
ciple yields an improvement by a factor of 3.0 regarding the Hamming weight
prediction and by a factor of 7.1 regarding the best result of one bit prediction
of the correlation method. Even, if the estimated coefficients bit of the minimum
principle are known an improvement by a factor of 1.8 is achieved. (Note that
the relative factor depends on N3.) As the minimum principle uses the adap-
tation of probability densities it is advantageous if compared to the correlation
method that exploits the linear relationship. Moreover, we point out that the
success rate of the minimum principle increases greatly, if multiple signals are
jointly evaluated.

3.4 The Key Extraction Phase: Maximum Likelihood Principle

For the maximum likelihood principle as described in Section 2.3 and equation
(16) both the estimation of h∗

t and the estimation of the noise is needed. The
profiling was done as described in the corresponding parts of Section 3.1 and 3.2.

The m-dimensional random vector Z = (It1(X, k)−h̃∗
t1(X, k), . . . , Itm(X, k)−

h̃∗
tm

(X, k)) is assumed to be jointly normally distributed with covariance matrix
C. The strategy is to decide for the key hypothesis k′ that maximizes equation
(16) for the multivariate Gaussian distribution using N3 measurements which is
equivalent to find the minimum of the expression

∑N3
i=1 zT

i C−1zi.
The analysis was done by using the vector subspace F9 with the selections S2

and S6 defined at the beginning of Section 3.3. Note, that for the single instant
selection S3 the maximum likelihood principle reduces to the minimum principle.

Again, the success rate (SR) was computed using ten thousand random
choices of one measurement series. As shown in Table 4, based on N2 = 1000
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Table 4. Success Rate (SR) that the correct key value is the best candidate as result
of equation (16) by using N3 randomly chosen single measurements for the analysis.
All results are based on F9 with N1 = 1000. If not explicitly stated it is N2 = 1000.

N3 SR for S2 SR for S6 SR for S2 (N2=5000) SR for S6 (N2=5000)
2 6.06 % 4.73 % 7.39 % 6.55 %
3 13.93 % 10.45 % 17.06 % 16.00 %
5 36.30 % 28.04 % 43.70 % 41.43 %
7 61.12 % 51.48 % 70.51 % 68.34 %
10 84.33 % 78.26 % 91.08 % 90.17 %
15 97.97 % 95.86 % 99.14 % 99.25 %
20 99.85 % 99.49 % 99.97 % 99.96 %
30 99.99 % >99.99 % >99.99% >99.99 %

a significant improvement was achieved for the selection S2 regarding Table 1,
but not for the selection S6. This decrease by using the maximum likelihood
principle if N3 < 15 and N2 = 1000 for S6 can be explained by our limited pro-
filing process: the estimation error at the profiling of a 7 × 7 covariance matrix
is significantly lower than the error committed for a 21× 21 matrix on the base
of N2 = 1000. This assessment is confirmed by the corresponding columns in
Table 4 for N2 = 5000. Both the success rates for S2 and S6 were further en-
hanced. As result, a high value for N2 can be crucial for the maximum likelihood
principle, especially if high dimensions are used for the covariance matrix.

The maximum likelihood method needs typically twice the number of mea-
surements during profiling. Therefore, even though key extraction is less efficient
under certain circumstances the ‘minimum principle’ might be preferred. Given
15 measurements, it can be read out from Table 4 that the maximum probability
to find the correct key value is 99.25 %. The resulting probability to decide for
the correct AES key is (0.9925)16 = 0.8865.

The number N3 of measurements can be further reduced if it is tolerated
that the correct key value is ‘only’ among the first best candidates as result of
differential side channel cryptanalyis and a plaintext-ciphertext pair is available.
E.g., if the correct key value is among the first four subkey candidates with high
probability, up to 232 tries remain to localize the correct key value. In case of S2
and N3 = 10 the corresponding success rate that the correct subkey is at least at
the fourth position of the subkey ranking is 97.58 %, if N2 = 1000, and 99.42 %,
if N2 = 5000.

4 Conclusion

This contribution proposes a new mathematical approach to optimize the ef-
ficiency of differential side channel cryptanalysis by stochastic methods. The
quantification of side channel leakage is done in a chosen vector space and does
not even (necessarily) require knowledge of one test key. For the key extraction we
present a ‘minimum principle’ that solely uses deterministic data dependencies
and the ‘maximum likelihood principle’ that additionally incorporates the char-
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acterization of the noise revealed during profiling. We have shown how our model
can be generalized to comprehend both masking countermeasures as well as the
usage of multiple physical channels. The theoretical predictions derived from
our mathematical model are accompanied and confirmed by experiments. We
conclude that the adaptation of probability densities by our methods is clearly
advantageous regarding the correlation method, especially, if multiple leakage
signals at different instants can be jointly evaluated. Though our efficiency at
key extraction is limited by template attacks profiling is much more efficient.
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Abstract. We describe a new variant of the well known Baby-Step
Giant-Step algorithm in the case of some discrete logarithms with a spe-
cial structure. More precisely, we focus on discrete logarithms equal to
products in groups of unknown order. As an example of application, we
show that this new algorithm enables to cryptanalyse a variant of the
GPS scheme proposed by Girault and Lefranc at CHES 2004 conference
in which the private key is equal to the product of two sub-private keys of
low Hamming weight. We also describe a second attack based on a known
variant of the Baby-Step Giant-Step algorithm using the low Hamming
weight of the sub-private keys.

Keywords: Baby-Step Giant-Step algorithm, discrete logarithm, GPS
scheme, binary trees, low Hamming weight.

1 Introduction

In 1976, public key cryptography was introduced by Diffie and Hellman [2]. In
their seminal paper, the authors originally explained how to use a mathematical
assumption, namely the discrete logarithm problem, to obtain a key establishment
protocol.

Since this first result, many identification schemes using the discrete log-
arithm problem have been proposed [4,8,15] and the security of this problem
has been extensively studied (see [9] for a survey). Two major results are the
Baby-Step Giant-Step algorithm due to Shanks [1] and the rho method due to
Pollard [12]. These algorithms, used to recover discrete logarithms, are now the
references to provide lower security bounds for the size of discrete logarithms
since they apply as a generic method in any mathematical structure.

One of the main advantages of discrete-logarithm-based identification or sig-
nature schemes is that, when used with precomputations, they generally require
only few computations for the prover or the signer so that such schemes are well
designed for an integration in low cost chips. For example, in the well known
Schnorr identification scheme [15], a prover using precomputations can be au-
thenticated at the cost of one modular multiplication and one modular addition.

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 47–60, 2005.
c© International Association for Cryptologic Research 2005



48 J.S. Coron, D. Lefranc, and G. Poupard

On the opposite, in a RSA-based [14] identification schemes [3,6], the prover
usually has to compute at least one modular exponentiation.

Another attractive discrete-logarithm-based identification scheme is the GPS
scheme introduced by Girault [4] and proved secure by Poupard and Stern [13].
Like the Schnorr scheme, if used with precomputations, the GPS scheme is very
efficient since, during the execution of the protocol, the prover has only to com-
pute one addition and one multiplication without any modular reduction. With
the appearance of new technologies, like RFID tags or more generally very low
cost chips, in which even a multiplication may be too difficult to compute, em-
bedding cryptographic protocols in such devices is now becoming a new chal-
lenge. One solution may be the use of discrete-logarithm-based schemes since
they already provide efficient solutions for low cost chips. However, to better the
integration of such schemes in very low cost devices, improvements are generally
required and two different approaches can be distinguished.

The first one consists in designing new schemes with new computation re-
quirements. For instance, Okamoto, Tada and Miyaji [11] proposed a new identi-
fication scheme based on the discrete logarithm problem in which a prover using
precomputations has only to compute one modular reduction and one addition.
However, Stern and Stern [17] proved this scheme to be insecure with the sug-
gested parameter sizes. In addition to this cryptanalysis, they also proposed a
variant of the GPS identification scheme, based on a new operation called dove-
tailing, which is more efficient than the classical GPS scheme. Finally, Okamoto,
Katsuno and Okamoto [10] suggested another variant of the GPS identification
scheme in which the original multiplication can be replaced by additions of sev-
eral private keys.

The second approach consists in using existing schemes but with specific pa-
rameters. A classical example may be the use of a low Hamming weight (num-
ber of non zero bits in the binary representation) discrete logarithm to decrease
the computation cost of the associated exponentiation. However, Stinson [18]
proposed some Baby-Step Giant-Step variants for such discrete logarithms. At
CHES 2004 conference, Girault and Lefranc [5] proposed some variants of the
GPS identification scheme, well designed for an integration in RFID tags. One
of these variants is based on the use of specific discrete logarithms equal to prod-
ucts of low Hamming weight numbers. For lack of security guarantees on such
private keys, the authors recalled the state-of-the-art on the different Baby-Step
Giant-Step algorithms and then checked that it was not efficiently applicable
to their new type of private keys. In this paper, we present a new variant of
Baby-Step Giant-Step algorithm to attack such private keys. We believe that
this variant is also of independent interest.

This paper is organized as follows. After recalling some useful variants of
the Baby-Step Giant-Step algorithm in Section 2, we describe in Section 3 our
new algorithm for discrete logarithms equal to products of sub-private keys in
groups of unknown order. In Section 4, we briefly recall the GPS scheme and the
Girault-Lefranc private keys. Then we present two attacks on such private keys:
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the first one is an application of our new algorithm and the second one makes
use of a known variant of the Baby-Step Giant-Step algorithm.

2 Baby-Step Giant-Step Algorithms

In this section, we recall Shanks’ Baby-Step Giant-Step algorithm [1] and some
useful variants. We first specify the notations we use.

Notations. Let G = 〈g〉 be a finite cyclic abelian group generated by the
element g and written multiplicatively. Let n be the order of G. As a consequence,
we have G =

{
gi; i ∈ [[0, n − 1]]

}
. For any value v in G, the discrete logarithm

of v in base g, denoted logg v, is the unique non-negative integer x less than n
such that v = gx.

The discrete logarithm problem is to compute logg v given g and v.
Let � denote the value �log2 n�. Then, the binary representation of x = logg v

requires at most � bits such that we can write

x =
�−1∑
i=0

xi2i,

where xi ∈ {0, 1} for 0 ≤ i ≤ �−1. The Hamming weight of an integer x, denoted
wt(x), is equal to the number of 1’s in its binary representation.

Let t < � be a positive integer. The Hamming weight t discrete logarithm prob-
lem is to compute logg v given g and v with the extra information wt(logg v) = t.

2.1 The Classical Baby-Step Giant-Step Algorithm

One of the most famous and generic algorithms dealing with the discrete loga-
rithm problem is the so-called Baby-Step Giant-Step algorithm. Introduced by
Shanks [1], it is a time-memory trade-off with time complexity O

(√
n
)

group
multiplications.

The algorithm works as follows. Let m = �n1/2�. For any given value v ∈ 〈g〉,
x = logg v is less than n so it can be written as a+b×m with a and b strictly less
than m. From the equality v = glogg v = ga+b×m, we obtain that v × g−bm = ga

for some values a and b less than m. Thus, in the two following lists(
1, g, g2, . . . , gm−2, gm−1)

and (
v, vg−m, vg−2m, . . . , vg−(m−2)m, vg−(m−1)m),

there exists at most two collisions, i.e two couples (ga0 ,vg−b0m) and (ga1 ,vg−b1m)
such that ga0 = vg−b0m and ga1 = vg−b1m. The value x is obtained using the
couple with the smallest bi and x = ai + bim. The time complexity of this
algorithm mainly relies on the computation of the lists both of which contains
m elements. Thus, the time complexity of this algorithm is O

(
�n1/2�

)
group
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multiplications. However, in this generic algorithm, the space requirement is
also O

(
�n1/2�

)
.

In order to decrease such a large space requirement, Pollard [12] proposed two
randomized variants of this algorithm, known as rho and lambda methods. The
generic idea is two find a linear equation over logg v. The space requirement is
then very small and the expected running time of these variants is still O

(
�n1/2�

)
group multiplications.

2.2 Low Hamming Weight Discrete Logarithms

In 1999, Stinson described some variants [18] of the Baby-Step Giant-Step algo-
rithm in the case of the Hamming weight t discrete logarithm problem, i.e the
computation of discrete logarithms for which the Hamming weight is known to
be t.

Without loss of generality, let us assume that � = �log2 n� is even (otherwise
we consider � + 1). This algorithm relies on the concept of splitting system.

Definition 1 (Splitting system). Let t and � be such that 0 < t < �. A
(�,t)-splitting system is a pair (X,B) that satisfies:

– |X | = �, and B is a set of subsets of X, each subset having �/2 elements.
– ∀ Y ⊂ X such that |Y | = t, ∃ B ∈ B such that |B ∩ Y | = t/2.

For example, let t and � be two even integers such that 0 < t < �. Let X =
[[0, � − 1]] and let B = {Bi ; 0 ≤ i ≤ �/2 − 1} where for all 0 ≤ i ≤ �/2 − 1,
Bi = {i+ j mod � ; 0 ≤ j ≤ �/2− 1}. The pair (X ,B) is a (�,t)-splitting system.

Thus, let v ∈ 〈g〉 such that wt
(
logg v

)
= t (assumed to be even). We now

use the above splitting system in the algorithm. Any element of 〈g〉 is now
identified to the set of the positions of the non zero bits involved in the binary
representation of its discrete logarithm. Thus, v is identified to a subset Y ⊂ X
of t elements. The goal of the algorithm is to find a decomposition of Y into two
subsets of t/2 elements using the splitting system.

For all Bi in B
– For all Y j

i ⊂ Bi of t/2 elements, identify the corresponding value Aj
i in

G. Let L1 be the list of pairs (Y j
i ,Aj

i ).
– Consider the set Wi = [[0, � − 1]] \ Bi.
– For all W k

i ⊂ Wi of t/2 elements, identify the corresponding value Bk
i in

G. Let L2 be the list of pairs (W k
i ,v × (Bk

i )−1).
– If two values Aj0

i in L1 and v × (Bk0
i )−1 in L2 meet for one given set

Y j0
i and one given set W k0

i , then output the element of 〈g〉 identified to
Y j0

i ∪ W k0
i ; otherwise go on the loop over Bi.

The time complexity of Stinson’s algorithm is O(�
(�/2

t/2

)
) group exponentia-

tions1 and the space requirement is O
((�/2

t/2

))
.

1 This algorithm can be turned into a randomized Las Vegas variant the time com-
plexity of which is O(√t

(
�/2
t/2

))
.
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A detailed analysis of the number of group multiplications required to find
the result in the worst case is �/2 × (t − 1)

(�/2
t/2

)
group multiplications.

2.3 Discrete Logarithms as Products in Groups of Known Order

This second variant of the Baby-Step Giant-Step algorithm focuses on discrete
logarithms equal to products of integers. More precisely, it addresses the problem
of computing the value x = logg v for a given v ∈ 〈g〉, whenever x = x1 ×
x2 mod n with x1 ∈ X1, x2 ∈ X2. We denote by |X1| and |X2| the respective
cardinalities of X1 and X2.

This variant is described in a technical report of Hoffstein and Silverman [7]
and works as follows. From the equality v = gx = gx1×x2 mod n, we immediately
obtain that

vx−1
2 mod n = gx1 .

As a consequence, in the two following sets
{
vj−1 mod n; j ∈ X1

}
and

{
gi; i ∈

X2
}
, there exists at least one collision, i.e a same value obtained for one

vj−1
0 mod n and one gi0 such that x is equal to j0 × i0 mod n.
The time complexity is O

(
|X1|+ |X2|

)
group exponentiations since it mainly

relies on the construction of two sets containing respectively |X1| and |X2| ele-
ments. In terms of number of group multiplications, without any assumption
on the structure of the sets X1 and X2, the time complexity is O

(
(|X1| +

|X2|) log2 n
)

but this bound can be decreased for some specific choices of those
sets. Finally, the smallest set must be stored so that the space complexity is
O
(
min(|X1|, |X2|)

)
.

3 Discrete Logarithms as Products in Groups of
Unknown Order

We now present a new variant of the Baby-Step Giant-Step algorithm that can
be used to compute discrete logarithms equal to a product in a group of unknown
order. As an application of this method, we propose a cryptanalysis in the next
section.

3.1 Preliminaries

In this section, we consider a finite cyclic abelian group G = 〈g〉, written mul-
tiplicatively, of unknown order n. Let X1 and X2 be two sets of integers, the
problem we address is to compute the discrete logarithm x = logg v for a given
value v ∈ G, whenever x = x1 × x2 mod n with x1 ∈ X1, x2 ∈ X2. We denote
by |X1| and |X2| the respective cardinalities of the two sets X1 and X2.

The variant of the Baby-Step Giant-Step suggested by Hoffstein and Silver-
man and recalled in Section 2.3 cannot be applied, since it requires modular
inversion modulo the unknown order n of the group. Our new variant enables
us to overcome this problem.
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3.2 Overview of the Full Algorithm

We first present the general method used in the algorithm. As for the second
variant of the baby-Step Giant-Step algorithm presented in Section 2.3, we first
consider the general equation in G

vx−1
1 mod n = gx2 . (1)

As explained above, considering directly this equation is no longer interesting
since computing inverses modulo the unknown order is not feasible.

However, we can use a trick that has for example already been used by Shoup
[16]. We denote

π1 =
∏

i∈X1

i,

and we raise Equation 1 to the power π1, so that we obtain vπ1x−1
1 mod n = gπ1x2

which can be rewritten as:

v
∏

i∈X1\{x1} i = gπ1×x2 (2)

With this new equation, the knowledge of the order of g is no longer necessary.
We can now use the classical method like in the other Baby-Step Giant-Step
algorithms. More precisely, in a first time we can compute the two following sets

S1 =
{
v
∏

k∈X1\{i} k; ∀i ∈ X1
}

and S2 = {gπ1×j ; ∀j ∈ X2}.

In the two sets, two values meet for one value v
∏

k∈X1\{i0} k and one value
gπ1j0 such that x is equal to i0 × j0.

However, we must be careful with the actual time complexity of this algo-
rithm. More precisely, let us evaluate the time complexity of the construction
of the set S1; in the different Baby-Step Giant-Step algorithms recalled in Sec-
tion 2, the computation of each element of the relative sets requires (at most) a
modular inversion and a group exponentiation. In our new algorithm, the value
π1 cannot be reduced modulo the unknown order n so that, computing each
element in a classical way is equivalent to computing (|X1| − 1) group exponen-
tiations with log2 n bits exponents. Thus the näıve computation of the full set
S1 has a time complexity O

(
|X1|2

)
group exponentiations. Taking into account

the time complexity required for the computation of S2, we finally obtain a time
complexity O

(
|X1|2 + |X2|

)
group exponentiations, i.e O

(
(|X1|2 + |X2|) log2 n

)
group multiplications.

Since the complexity of the exhaustive search over all the possible x1 ∈ X1
and x2 ∈ X2 is obviously in O

(
|X1|× |X2|

)
group exponentiations, the practical

gain of our algorithm may not be significant (for instance if |X1| � |X2|), with
a näıve computation of S1.

Note that there is no problem with the computation of the set S2 since after
computing one time gπ1 , each element of S2 can be obtained using a single group
exponentiation.

Let us now present how to construct efficiently the set S1.
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3.3 Efficient Construction of S1

The Algorithm. For a better overview of the construction, we consider in the
following a set X of 2q elements denoted by xi, i ∈ [[1, 2q]] for which we want to
obtain the set of values

S =
{
v
∏

xi∈X\{xj} xi ; ∀j ∈ [[1, 2q]]
}
.

The method we present relies on an implicit binary tree structure. The al-
gorithm starts from the root equal to v and it ends with 2q leafs equal to the
elements of S. All the nodes can be computed using the following algorithm:

node(0,0) := v
For i ∈ [[0, q − 1]]

For j ∈ [[0, 2i − 1]]

(Left Son)

expL :=
(2j+2)(2q−i−1)∏

k=1+(2j+1)(2q−i−1)
xk

node(i+1,2j) = (node(i,j))expL

(Right Son)

expR :=
(2j+1)(2q−i−1)∏
k=1+2j(2q−i−1)

xk

node(i+1,2j+1) = (node(i,j))expR

This algorithm iteratively computes

node(i, j) = v

(j×2q−i∏
k=1

xk

)
×
( 2q∏

�=1+(j+1)2q−i
x�

)
for i ∈ [[0, q]] and j ∈ [[0, 2i −1]], i.e v to the power the product of all the xk ∈ X ,
but a “gap” of 2q−i consecutive elements. This property is easily proved using a
recursive argument. As a consequence, for all i ∈ [[0, 2q − 1]] the leaf node(q,i), is

equal to the value v
∏

xj∈X\{xi+1} xj .

Example. Let q = 2. Using the algorithm for the first generation, the left son
of the root, denoted by node(1,0) is equal to vx3x4 and the right son, denoted
node(1,1), is equal vx1x2 . The second generation is described in Fig. 1.

Complexity of the Construction. The advantage of our algorithm is twofold:

1. Once the two sons node(i+1,2j) and node(i+1,2j+1) of node(i,j) are computed,
the node(i,j) is no longer required, so that it can be erased. Thus, as men-
tioned previously, the algorithm uses a binary tree structure but does not re-
quire the storage of the entire tree. As a consequence, the space requirement
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v

vx3x4 vx1x2

vx1x2x3vx1x2x4vx1x3x4vx2x3x4

Fig. 1. Iteration of the algorithm for q = 2

during the algorithm execution is optimal, i.e equal to the space required for
the storage of the set S.

2. The different exponents xk are used only once during each loop over i.
Thus, the time complexity (in terms of group exponentiations) is equal to
O
(
|X | log2 |X |

)
as there are exactly q loops involving |X | group exponentia-

tions. This complexity can also be obtained considering the overall number
of group exponentiations given by:

q−1∑
i=0

2i−1∑
j=0

(2 × 2q−i−1) = 2
q−1∑
i=0

(2q−1) = q × 2q

In terms of group multiplications complexity, without additional assump-
tion on the structure of X, all the exponents we use have log2 n bits so the
complexity is O

(
|X | log2 |X | log2 n

)
group multiplications.

3.4 Complexity of the Full Algorithm

Our new variant of the Baby-Step Giant-Step algorithm described in Section
3.2, is based on the computation of two sets S1 and S2. Using the method of
Section 3.3, the computation of the set

S1 =
{
v
∏

k∈X1\{i} k; ∀i ∈ X1
}

has time complexity O
(
|X1| log2 |X1| log2 n

)
group multiplications and the com-

putation of

S2 = {gπ1×j ; ∀j ∈ X2}

has time complexity O
(
|X2| log2 n

)
group multiplications. Thus, the overall time

complexity, for computing the two sets, is O
((

|X2| + |X1| log2 |X1|
)
log2 n

)
.
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Finally, finding two identical values in the two sets can be done efficiently
(for example if one set is sorted), so that the time complexity of the algorithm
mainly relies on the construction of the sets. Thus, the time complexity of the
full algorithm is also O

((
|X2| + |X1| log2 |X1|

)
log2 n

)
group multiplications.

4 Attacks on GPS with Private Keys from CHES’04

In this section, we briefly recall the basic GPS scheme [4,13]. Next, we recall the
private keys suggested by Girault and Lefranc at CHES 2004 conference and we
finally present two attacks on such private keys. The first one relies on our new
algorithm from Section 3 taking advantage of a first weakness of the private key
and the second attack relies on a second weakness of the private keys.

4.1 The GPS Scheme

We denote by Zn the residue class ring modulo n and Z
∗
n the multiplicative

group of invertible elements in Zn. The GPS identification scheme from [4,13],
is an interactive protocol between a prover and a verifier which contains one or
several rounds of three passes. The security is based on the intractability of the
short discrete logarithm problem defined as follows.

Definition 2. Let n be a composite integer the factorization of which is un-
known. Let g be an element in Z

∗
n of maximal order λ(n). Let S be an integer

such that 2S < λ(n). The short discrete logarithm problem consists in computing
the value s ∈ [[0, 2S [[ given v = gs mod n.

Assumption. The short discrete logarithm problem is polynomially intractable.

During a round of identification, a prover uses his knowledge of a private
value s related to the public value v by the equation v = g−s mod n. More
precisely, in typical applications, a prover holds a private key s and a public key
(n,g,v) such that:

– n = pq is the product of two prime integers such that factoring n is difficult,
– g is an element of Z

∗
n of maximal order λ(n),

– v = g−s mod n.

There are four security parameters S, k, R and m defined as follows:

– S is the binary size of the private key s; S = 160 is a typical choice.
– k is the binary size of the challenges sent to the prover and determines the

level of security of the scheme.
– R is the binary size of the exponents used in the commitment computation.

It typically verifies R = S + k + 80.
– m is the number of rounds the scheme is iterated. Theoretically, m is polyno-

mial in the size of the security parameter; but, in practice, m is often chosen
equal to 1.
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Prover Verifier

choose r ∈ [[0, 2R[[
compute W = gr mod n

W−−−−−−−−−→
choose c ∈ [[ 0, 2k[[

c←−−−−−−−−
check c ∈ [[0, 2k[[
compute y = r + s × c

y−−−−−−−−→ check y ∈ [[0, 2R + 2k+S[[
verify gyvc = W mod n

Fig. 2. The basic GPS identification scheme

Security of the Scheme. The security of the GPS scheme is recalled in the
following Theorem (the proof is given in [13]).

Theorem 1. The GPS identification scheme is a secure identification scheme
under the intractability of the short discrete logarithm problem if m and 2k are
polynomial in |n|, m × 2S+k−R is negligible in |n| and log |n| = o(m × k).

4.2 The Girault-Lefranc Private Keys

As many other discrete-logarithm-based schemes, the GPS identification scheme,
used with precomputations of the commitments W = gr mod n, is a very effi-
cient scheme for the prover. Thus, during the protocol, the computations of the
prover can be reduced to the computation of the value y = r+sc so that it is well
designed for low cost chips. However, in new chips like RFID tags, even comput-
ing a multiplication may be too expensive. Thus, at the CHES 2004 conference,
Girault and Lefranc [5] proposed three solutions to make easier the integration
of the GPS identification scheme in such chips. Their goal was to remove (or at
least reduce) the computation requirement for y = r + sc.

One of these solutions consists in using specific private keys equal to the
product of low Hamming weight sub-private keys. More precisely, they consider
a private key s equal to s1 × s2 with s1 in X1 and s2 in X2 such that both s1
and s2 have a low Hamming weight.

With such private keys, the computation of s×c is then replaced successively
by the computation of s2 × c and s1 × (s2c). Thus, since the Hamming weight of
the sub-private keys s1 and s2 is low, the computation of y using the shift-and-
add paradigm does not involve too many shifts.

Security of Such Private Keys. During this analysis, we require a security
over the private key of 280 group multiplications. However, the level of security
is highly application dependant and some lower levels can be accepted.

The authors give some general security arguments on such private keys. In-
deed, they suggest the use of sub-private keys s1 and s2 such that:
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1. the private key s = s1s2 is sufficiently large, i.e around 160-bit, such that the
classical Baby-Step Giant-Step has a time complexity of around 280 group
multiplications;

2. the average Hamming weight of s = s1s2 is around 64 such that Stinson’s
algorithm requires more than 280 group multiplications.

Finally, since the group generator g is of unknown order λ(n), the second
variant of the Baby-Step Giant-Step algorithm recalled in Section 2.3 cannot be
used. Thus, Girault and Lefranc consider that the best attack on such private
keys is the exhaustive search over s1 and s2 which time complexity is obviously in
O
(
|X1|×|X2|

)
group exponentiations, where |X1| and |X2| denote the respective

cardinalities of X1 and X2. Thus, they suggest to consider two adequate sets X1
and X2 such that |X1| × |X2| � 280.

Numerical Application. In [5], Girault and Lefranc give the following exam-
ple. To obtain a 160-bit private key s with an Hamming weight equal on average
to 64, s2 should be a 142-bit number with 16 random bits equal to 1 chosen
among the 138 least significant ones and s1 a 19-bit number with 5 random bits
equal to 1 chosen among the 16 least significant ones.

With such sub-private keys, the cardinality of X1 is equal to
(16

5

)
� 212 and

the cardinality of X2 is equal to
(138

16

)
� 268; so that the exhaustive search is at

least as infeasible as the classical Baby-Step Giant-Step algorithm for a 160-bit
key.

Then, if we assume that c is a 32-bit number, computing r+s×c in a classical
way involves on average 16 additions of a 160-bit numbers, i.e 2560 bit additions.
Using the structure of the private key equal to a product of low Hamming weight
sub-private keys, then computing s2 × c requires exactly 5 additions of a 32-bit
number, then s1 × (s2c) requires 16 additions of a 51-bit number and adding
s1(s2c) to r requires a final addition of a 192-bit number. Finally, only 1168 bit
additions are required.

4.3 Two Attacks

This first attack relies on our new Baby-Step Giant-Step algorithm described
in Section 3. Thus, to prove the efficiency of our algorithm, we apply it to the
numerical application given in Section 4.2.

In this example, we recall that the two sets X1 and X2 are of cardinalities
respectively upper bounded by 212 and 268. We also recall that the time com-
plexity of our new algorithm is O

(
|X2| + |X1| log2 |X1|

)
group exponentiations.

Thus, applied to the given example, our algorithm recovers the private key s with
about 268 group exponentiations, which is significantly less than the complexity
of the exhaustive search equal to 280 group exponentiations.

A detailed enumeration of the number of group multiplication shows that
the computation of the set S2 in the algorithm of section 4.2 has the highest
complexity; using precomputation in the usual square and multiply exponentia-
tion algorithm leads to a complexity of 273 group multiplications (the exhaustive
search requires around 284 group multiplications).
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Whereas our first attack only takes advantage of the structure of product
of the private keys, we now describe a second attack which takes advantage
of both the product structure and the low Hamming weight of the sub-private
keys.

Indeed, from the basic equation v = gs = gs1×s2 , and denoting gs1 by h, we
then obtain the new equation

v = hs2 .

With this change of base, the discrete logarithm of v in base h is a low
Hamming weight number so that Stinson’s algorithm can now be easily applied.
The attack consists in using Stinson’s algorithm (see section 2.2) for all possible
bases h defined as gi for any i in X1. The complexity of this attack is then
obviously O

(
|X1| × �

(�/2
t/2

))
group exponentiations, � denoting the binary size of

s2 and t its Hamming weight. Note that the space requirement of this attack is
the same as the one of Stinson’s algorithm, i.e O(

(�/2
t/2

)
).

In the numerical application of section 4.2, we recalled that |X1| � 212 and
that s2 is a 138-bit number with a Hamming weight equal to 16. As

(138/2
16/2

)
� 233,

we recover the private key with about 252 group exponentiations.
A detailed analysis of the exact number of group multiplications required by

this attack shows that the private key recovery requires 254 group multiplications
in the worst case.

To keep using Girault-Lefranc private keys, we suggest to consider new types
of sub-private keys. Indeed, s1 should be a 30 bit number with 12 non zero bits
and s2 should be a 130-bit number with 26 non zero bits.

With such sub-private keys, our first algorithm requires around 294 group
multiplications and the complexity of the second attack is then around 280 group
multiplications. However, the computation advantage of the method is obviously
decreased. Using the same consideration as in the numerical application of sec-
tion 4.2, the number of bit additions is then equal to 2100; the practical gain is
less significant, specially with small challenges c.

5 Conclusion

We have proposed a new variant of the Baby-Step Giant-Step algorithm for
discrete logarithms equal to products in groups of unknown order. More precisely,
our algorithm recovers x = x1 × x2 with x1 ∈ X1, x2 ∈ X2 from the given value
gx in time O

(
(|X2| + |X1| log2 |X1|) log2 n

)
group multiplications.

This new variant finds a direct application with the GPS scheme used with
such private keys as described by Girault and Lefranc at CHES 2004 conference.
Thus, whereas the time complexity of the best known attack (the exhaustive
search) on such private key was 284 group multiplications, using our new algo-
rithm, this complexity falls downto 273 group multiplications. Moreover, using
the fact that such private keys require sub-private keys of low Hamming weight,
we have constructed a second attack the time complexity of which is 254 group
multiplications.



A New Baby-Step Giant-Step Algorithm and Some Applications 59

Acknowledgements

The authors wish to thank Aline Gouget and Marc Girault for valuable and
helpful discussions and comments.

References

1. H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, 1993.

2. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

3. A. Fiat and A. Shamir. How to Prove Yourself : Practical Solutions to Identification
and Signature Problems. In A. M. Odlyzko, editor, Advances in Cryptology - Crypto
’86, volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer
Verlag, 1986.

4. M. Girault. Self-Certified Public Keys. In D. W. Davies, editor, Advances in
Cryptology - Eurocrypt ’91, volume 547 of Lecture Notes in Computer Science,
pages 490–497. Springer-Verlag, 1991.

5. M. Girault and D. Lefranc. Public Key Authentication with one Single (on-line)
Addition. In M. Joye and J. J. Quisquater, editors, CHES, volume 3156 of Lecture
Notes in Computer Science, pages 413–427. Springer-Verlag, 2004.

6. L. C. Guillou and J. J. Quisquater. A Practical Zero-knowledge Protocol Fitted
to Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Günther, editor, Advances in Cryptology - Eurocrypt ’88, volume 330 of Lecture
Notes in Computer Science, pages 123–128. Springer-Verlag, 1988.

7. J. Hoffstein and J.H. Silverman. Random Small Hamming Weight Products with
Applications to Cryptography. Technical report, NTRU Cryptosystems.

8. National Institute of Standards and Technologies. Digital Signature Standard
(DSS). Federal Information Processing Standards, Publication 186, november 1994.

9. A. M. Odlyzko. Discrete Logarithms: The Past and The Future. Designs, Codes,
and Cryptography, 19(2/3):129–145, 2000.

10. T. Okamoto, H. Katsuno, and E. Okamoto. A Fast Signature Scheme based on
new on-line Computation. In C. Boyd and W. Mao, editors, Information Security
Conference ’02, number 2851 in Lecture Notes in Computer Science, pages 111–121.
Springer-Verlag, 2003.

11. T. Okamoto, M. Tada, and A. Miyaji. An Improved Fast Signature Scheme without
on-line Multiplication. In M. Blaze, editor, Financial Crypto, volume 2357 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

12. J. M. Pollard. Monte Carlo Methods for Index Computations (mod p). Mathematics
of Computation, 32(143):918–924, 1978.

13. G. Poupard and J. Stern. Security Analysis of a Practical ”on the fly” Authenti-
cation and Signature Generation. In K. Nyberg, editor, Advances in Cryptology -
Eurocrypt ’98, volume 1403 of Lecture Notes in Computer Science, pages 422–436.
Springer-Verlag, 1998.

14. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communication of the ACM, 21(2):120–126, 1978.

15. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In G. Bras-
sard, editor, Advances in Cryptology - Crypto ’89, volume 435 of Lecture Notes in
Computer Science, pages 239–252. Springer-Verlag, 1990.



60 J.S. Coron, D. Lefranc, and G. Poupard

16. V. Shoup. Practical Threshold Signatures. In B. Preneel, editor, Advances in
Cryptology - Eurocrypt ’00, volume 1807 of Lecture Notes in Computer Science,
pages 207–220. Springer-Verlag, 2000.

17. J. Stern and J. P. Stern. Cryptanalysis of the OTM Signature Scheme from FC’02.
In R. N. Wright, editor, Financial Cryptography ’03, volume 2742 of Lecture Notes
in Computer Science, pages 138–148. Springer-Verlag, 2003.

18. D. R. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming
Weight Discrete Logarithm Problem. Mathematics of Computation, 71(237):379–
391, 2002.



Further Hidden Markov Model Cryptanalysis

P.J. Green1, R. Noad2, and N.P. Smart2

1 Department of Mathematics, University of Bristol,
University Walk, Bristol, BS8 1TW, United Kingdom

P.J.Green@bristol.ac.uk
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom

{noad, nigel}@cs.bris.ac.uk

Abstract. We extend the model of Karlof and Wagner for modelling
side channel attacks via Input Driven Hidden Markov Models (IDHMM)
to the case where not every state corresponds to a single observable sym-
bol. This allows us to examine algorithms where errors in measurements
can occur between sub-operations, e.g. there may be an error probability
of distinguishing an add (A) versus a double (D) for an elliptic curve
system. The prior work of Karlof and Wagner would assume the error
was between distinguishing an add-double (AD) versus a double (D).
Our model also allows the modelling of unknown values, where one is
unable to determine whether a given observable is add or double, and is
the first model to allow one to analyse incomplete traces. Hence, our ex-
tension allows a more realistic modelling of real side channel attacks. In
addition we look at additional heuristic approaches to combine multiple
traces together so as to deduce further information.

1 Introduction

The randomization of algorithms as a technique to prevent side channel analysis
has in recent years been a topic of intense research. However, many of the ap-
proaches using randomization have been made in an ad-hoc manner with little
analysis as to whether the randomization introduced actually helps reduce the
risk of side channel attacks.

As a trivial example of such a randomization consider the following two
variants of the right-to-left binary exponentiation algorithm in an additive group.
One is the standard, non-randomized, version whilst the second is a randomized
version requiring a random coin per key symbol (usually a bit).

Non-Randomized Binary Method
Q←O
T←P
For i = 1 to N

If (ki = 1) Q←Q + T
T←2T

Return Q

Randomized Binary Method
Q←O
T←P
For i = 1 to N

If (ki = 1) Q←Q + T
Else if (coini = 0) R←Q + T
T←2T

Return Q

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 61–74, 2005.
c© International Association for Cryptologic Research 2005
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Various authors [4,8,6] have suggested the use of finite state machines or Hidden
Markov Models (HMMs) as a mechanism to analyse the benefit of randomization
techniques in side channel analysis. See [7] for an introduction and partial survey
of the application of HMMs to side channel analysis. The idea is that the hidden
states of the Markov Model represent the states of the algorithm implementing
the countermeasure, whilst the observations represent the side channel itself.

In [4] Karlof and Wagner introduce a concept called an Input Driven Hidden
Markov Model, this is a HMM which for each state of the algorithm associates
an input state which drives the state transition. This input state is used to model
the input of the fixed key to the algorithm. The internal state transitions not
only depend on the current state and the random tape given to the algorithm,
but also the key symbols. We note that this is only a notational simplification
since the inputs in the Karlof/Wagner model can be modelled in a standard
HMM by extending the state space of a standard HMM to consist of not only
the state of the algorithm but also the corresponding key symbol.

The major innovation of the Karlof and Wagner approach was to allow the
modelling of attacks involving multiple traces and the modelling of errors in the
state measurements. However, a major drawback was that each internal state
and observable had to correspond to a single key symbol. To see the advantages
and the disadvantages of this approach we now give an overview of the approach
taken by Karlof and Wagner, as applied to randomized group exponentiation
algorithms, which are after all the main application area of side channel analysis
on public key algorithms.

We shall adopt additive group notation, as is common in elliptic curve cryp-
tography. Suppose we wish to compute Q = kP for a fixed secret integer k and a
(possibly fixed) public group element P . Almost all algorithms process the bits
of k in chunks (e.g. a bit at a time, or in fixed/sliding window segments). In
almost all algorithms the processing of each bit can be reduced to the computa-
tion of either a double D, an add-double AD or a double-add DA. Whether one
has AD or DA depends on the precise group exponentiation algorithm used, for
ease of explanation we shall suppose the algorithm either performs a D or an
AD. In simple side channel analysis whether a D or an AD is performed can
be deduced from the side channel, the observed sequence of D’s and AD’s we
call a trace. Hence, the goal of the attacker is to deduce the value of k given the
sequence of D’s and AD’s observed.

In practice, however, one may not be able to determine correctly the sequence
of D’s and AD’s from the side channel, one may make errors in this observation,
or in fact be unable for certain measurements to determine whether a given
symbol is A or D. In addition since one is assuming a randomized exponentiation
algorithm the attacker could repeat the side channel experiment, assuming the
same k is used on each exponentiation (but not necessarily the same P ). The
attacker then needs to combine the information obtained from multiple traces
in such a way as to obtain the secret k.

Karlof and Wagner propose a heuristic method, which they describe as a
variant of the Viterbi algorithm although it is actually a variant of the Forward-
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Backward (FB) algorithm, to solve the above problem. Using a prior probability
distribution on the key symbols (say for example each bit is equally likely to
be zero or one), they use their FB algorithm and a single trace so as to deduce
an approximation to the posterior probability distribution on the key symbols.
This posterior distribution is then used as the prior distribution for the next
trace to be processed and so on. After the processing of all of the set of multiple
traces one deduces the final estimated posterior distribution on the key symbols,
which the attacker hopes reveals to him the actual key used. This form of belief
propagation reduces an exponential increase in the number of states needed to
process all traces in a parallel manner. However, it is clearly susceptible to the
order in which the traces are fed into the algorithm and it does not work for
some exponentiation algorithms.

A practical problem with the Karlof and Wagner approach is that each ob-
servable, i.e. D or AD, needs to correspond to a single key bit. This is fine when
dealing with noiseless data; however, in measuring a power trace it is unlikely
that we confuse a D with an AD since they take a significantly different period
of time. It is far more likely that we confuse a single D with a single A, and vice
versa, or be unable to distinguish a D from an A at all.

To see the problems that the model of Karlof and Wagner can produce, sup-
pose we used a non-randomized right-to-left binary exponentiation algorithm, as
above. Now if we saw the sequence DAD then the Karlof and Wagner algorithm
would interpret this as a key with two bits. Since the output D corresponds to
one bit, whilst the output AD corresponds to another. However, it could be that
the measuring equipment mistook the A for a D and that the actual sequence
executed was DDD, in other words a key with three bits. Hence, one can see
that the error model of Karlof and Wagner does not fully model the errors that
one can see in a real-life side channel measurement.

The main motivation for looking at these techniques is to handle situations
where one is unable to accurately distinguish an A from a D. This happens
when analysing exponentiation algorithms which have been implemented using
arithmetic techniques which aim to make the distinguishing of an A from a D
as difficult as possible. Such techniques have been proposed by various authors
in particular Brier, Déchéne, Joye, Liardet, Quisquater and Smart [2,3,5].

In this paper we extend the Karlof and Wagner approach to cope with traces
for which each key symbol potentially corresponds to multiple, or zero, observ-
able symbols and where some of the observable symbols may be unknown or
wrong. In particular we model the case where multiple runs of the exponenti-
ation algorithm, with the same secret exponent, can lead to traces of different
lengths. Hence, we need to model the case of variable length data. In Section
3 we present our FB algorithm for coping with a single trace. This approach
extends the state space of the HMM to include a variable which counts how far
one has processed along the output trace, each state transition within the HMM
corresponds to the processing of a single key symbol; however, each transition
may take up a varying number of output symbols. In Section 4 we describe some
heuristic approaches to dealing with multiple traces, we examine the pros and
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cons of each approach. In Section 5 we present some experimental results for our
methods as applied to various exponentiation algorithms.

We end this introduction by thanking John Malone-Lee for various useful
discussions and insight whilst the work in this paper was carried out.

2 Notation

In this section we introduce the notation we will use throughout the paper. In
particular we highlight the difference between our approach and that of Karlof
and Wagner.

If X is a discrete random variable then we let p(X = x) denote the proba-
bility distribution function, which we shorten to p(x) for compactness when the
underlying random variable X is clear. We let p(x|y) denote the probability that
the random variable X is x, given that Y is y, a notation which is extended to
p(x1, . . . , xs|y1, . . . , yt) in the standard way.

We assume we are interested in analysing an exponentiation algorithm with
respect to a given fixed, but hidden, exponent k of at most N symbols, which we
shall call the key. The symbols (usually bits) of k we shall denote by the vector
k = (k1, . . . , kN ). As the algorithm progresses the internal state of the algorithm
passes through a sequence of states q = (q0, . . . , qN ). We assume there is one
internal state transition for each key symbol. When running the exponentiation
algorithm the attacker obtains a sequence of observable outputs y = (y1, . . . , yL).

In the model of Karlof and Wagner the observable outputs are in one-to-
one correspondence with the internal states, hence L = N . The values of the
observables are taken from the set {D, AD}; each internal state corresponds to
one of these symbols and errors in measurement are specified by given the error
probability p0 which is p(yn = AD|qn = D) = p0 and p(yn = D|qn = AD) = p0.
The internal sequence of states x = (x0, . . . , xN ) of the HMM in Karlof and
Wagner’s approach is essentially given by xn = (kn, qn).

In our model the observable outputs are not in one-to-one correspondence
with the internal states, hence L �= N . The observables are taken from the
language O, which is generated from the alphabet {D, A, ∅,⊥}, where ∅ is the
zero-length observable and ⊥ denotes unknown; each internal transition corre-
sponds to a number of these symbols. To keep track of the number of observ-
able symbols consumed by the state transitions we introduce another variable
m = (m1, . . . , mN ), which signals that at internal algorithm state qn the al-
gorithm has output a total of mn observable symbols. In particular we have
L = mN . The internal state of the HMM in our approach is given by the triple
xn = (kn, qn, mn). The precise number of output symbols “consumed” on enter-
ing a given state depends on the previous internal state of the HMM and the
new key bit. To simplify matters we assume that mn depends only on mn−1 and
qn, which is the case in all algorithms under consideration.

Again we assume that internal state corresponds to one of the observables
symbols in O. Errors are then modelled by defining p( observed = oj | expected =
oi) = pi,j , for oi, oj ∈ O,
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3 HMMs with Variable Length Data

In this section we present how to use the FB algorithm to analyse our HMM for
a single trace, where the length of the list of output symbols may not correspond
to the length of the list of internal states. We first present the FB algorithm as
a general tool, we then recap on its application to classic HMM, and finally we
present the modifications needed to cope with our situation.

3.1 Forward-Backward Algorithm

The FB algorithm is an efficient method for computing all marginal sums

tn(xn) =
∑
x0

∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

f(x0, x1, . . . , xN ), (1)

for n = 0, 1, . . . , N , when the function being summed has a factorisation of the
form

f(x0, x1, . . . , xN ) =
N∏

n=1

gn(xn−1, xn). (2)

By substituting (2) into (1) and rearranging the factors and summation signs,
it is easy to see that

tn(xn) = rn(xn)sn(xn)

for all n and xn, where

rn(xn) =
∑
xn−1

gn(xn−1, xn)
∑
xn−2

gn−1(xn−2, xn−1) · · ·

and
sn(xn) =

∑
xn+1

gn+1(xn, xn+1)
∑
xn+2

gn+2(xn+1, xn+2) · · ·

These summations can be computed recursively via

rn(xn) =
∑
xn−1

gn(xn−1, xn)rn−1(xn−1) for n = 1, 2, . . . , N (3)

sn(xn) =
∑
xn+1

gn+1(xn, xn+1)sn+1(xn+1) for n = N − 1, N − 2, . . . , 0 (4)

starting from r0(x0) ≡ 1 and sN (xN ) ≡ 1.

3.2 Classic HMM

In the standard application of the FB algorithm to HMMs, f(x0, x1, . . . , xN )
is the joint distribution of hidden variables (x0, x1, . . . , xN ) and corresponding
observed data y = (y1, y2, . . . , yN). The FB algorithm can then be applied since
the factors of f are

g1(x0, x1) = p(x0)p(x1|x0)p(y1|x1) and gn(xn−1, xn) = p(xn|xn−1)p(yn|xn)
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for n = 2, 3, . . .. Hence, the FB algorithm allows us to compute marginal poste-
riors since

p(xn|y1, y2, . . . , yN) = tn(xn)/
∑
xn

tn(xn).

The application of Karlof and Wagner can be interpreted as taking the inter-
nal states xn to be (kn, qn), where kn is the n-th symbol of the key and qn is the
internal state. The values yn then correspond to the observations made during
the side channel analysis and the probability p(yn|xn) models the error prob-
ability of seeing certain outputs given the internal state of the exponentiation
algorithm. The formulae given to evaluate p(xi|y) given in [4] is then simply an
application of the standard FB algorithm to this situation.

3.3 HMM with Variable Length Data

We now turn to the situation where the indexing of the observable states yi does
not correspond in a one-to-one manner with the indexing of the internal states
xi. The FB method really pays no regard to the indexing of the data, so that,
providing the joint distribution of hidden variables and data can be factorised
in the form (2), we can apply the method.

We now use a HMM in which the state variable xn is a triple (kn, qn, mn),
and we assume a Markov structure, with transition probabilities

p(xn|xn−1) = p(kn)p(qn|qn−1, kn)p(mn|mn−1, qn).

We assume that the distribution of the data y given x0, x1, . . . , xn factorises into
a product

p(y|x0, x1, . . . , xn) =
N∏

n=1

dn(y, xn−1, xn);

the interpretation is that dn is the distribution of the nth ‘chunk’ of data, condi-
tional on xn−1 and xn, or in practice only on (mn−1, mn, qn). The FB algorithm
can then be used, with

g1(x0, x1) = p(q0)p(k1)p(q1|q0, k1)p(m1|m0, q1)d1(y, x0, xn)

(with m0 fixed at 0) and, for n = 2, 3, . . .,

gn(xn−1, xn) = p(kn)p(qn|qn−1, kn)p(mn|mn−1, qn)dn(y, mn−1, mn, qn).

Note that this allows (but does not require) that the data chunk pointers mn are
random and not determined by qn and mn−1. This is a slight extra generalisation
on the situation we are in when analysing exponentiation algorithms.

Given that the gn factors, the forwards and backwards recursions (3) and (4)
are performed and the marginal posteriors can be computed as above:

p(kn, qn, mn|y) = tn(xn)/
∑
xn

tn(xn)
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from which the marginal distribution for kn alone can be found by summing out
mn and qn.

In the above we set m0 = 0, the corresponding condition at the other end of
the sequence, that restores the forwards/backwards symmetry is given as follows:
If we assume that all of the observed data sequence is generated by the N steps
of the HMM, then mN is also known, and is equal to the length of y. The
known values of m0 and mN can then be regarded as part of the observed data
sequence, and their values fixed by specification of the end conditions, so that
r0(x0) = 1 if and only if x0 = (q0, m0) has m0 = 0, and sN (xN ) = 1 if and only
if xN = (kN , qN , mN ) has mN equal to the length of y.

As well as specifying the initial state, q0, as part of the HMM, we also include
a set of permissible terminating states. This allows us to more accurately model
algorithms with specific termination points and gives a corresponding increase
in the accuracy of the calculated belief values.

3.4 Useful Properties

In addition to accommodating errors at the level of individual symbols with a
given probability, our model allows the specification of an error map specifying
different probabilities for each symbol transformation, i.e. the probability of
reading an “A” as a “D” could be 0.5 but the probability of reading a “D” as
an “A” could be only 0.1. The model also allows for symbols to be marked as
unknown - so that in the case of a highly ambiguous reading it is possible to
enter nothing rather than input a potentially misleading value into the HMM.
Both of these types of error are handled in the dn function during the processing
of the FB algorithm.

Some algorithms may terminate without generating an output symbol for all
input symbols - for example, when the remaining symbols in an exponent are all
zero. We can avoid artificial pre-processing of data to fix the length of traces for
such algorithms by using the zero-length observable symbol ∅, and having a cor-
responding terminating state in the algorithms HMM with this observable that
links only to itself. This technique is used when modelling the Liardet–Smart ex-
ponentiation algorithm [5] and the Oswald–Aigner exponentiation algorithm [8].

3.5 Implementation Notes

At each n we need to store and manipulate the tables rn and sn indexed by
xn = (kn, qn, mn). While kn and qn have small sets of possible values, the range
of values of mn for which both rn and sn are non-zero varies with n. However,
this does not cause a problem in practice; since each internal state change will
output between l = miny∈Y |y| and h = maxy∈Y |y| observable symbols, we have
ln ≤ mn ≤ hn, and also l(N − n) ≤ (mN − mn) ≤ h(N − n) by symmetry. This
is exploited to save time in the FB algorithm by providing an initial reduction
in the portion of the state space which has the potential to generate non-zero
belief values.

During the processing of the forward values, we further reduce the possible
range of values for mn+1 at step n based of the range of values for which mn
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generated non-zero beliefs and the possible transitions from qn. This state space
reduction is also performed for mn−1 when calculating the backward values.

4 Modelling with Multiple Traces

Given a single trace we can use belief propagation as in Section 3 to calculate
exact beliefs for each key symbol. However, trying to deal with multiple traces
in this model increases the state space exponentially in the number of traces.
We need a heuristic to combine the results from analysing the traces separately.
This heuristic should make at most a polynomial (in number of traces and input
size) number of calls to the single trace algorithm.

In the single trace version, we calculate the belief for a symbol n from a trace
y and prior key symbol distribution D:

bn(y, D) = p(kn = 1|y, D) =
∑
q∈S

|y|∑
m=0

t
y,D
n ({q, m, 1})∑

xn
t
y,D
n (xn)

,

where t
y,D
n is the same as the tn function in Section 3 but we now make the

dependence on y and D explicit. We now present two heuristic approaches to
dealing with multiple traces, one a natural analogue of that of Karlof and Wagner
to the case of variable length observable data, the second one is based on loopy
belief propagation (see, for example, [11]).

We let Y = {y1, . . . ,y|Y|} denote the set of traces obtained from the side
channel, we let N denote the number of key symbols in k and let D denote the
prior probability distribution on these symbols. The goal of our heuristics is to
output a heuristic posterior distribution, which we also denote by D, which takes
into account the information contained within the set of traces Y.

4.1 Karlof-Wagner

The belief propagation method used by Karlof and Wagner as applied to our
situation is described below.

For all y ∈ Y
For n = 1 . . .N

D′(kn = 1)←bn(y, D)
D←D′

Return D

In other words we compute

p(kn = 1|Y, D) = bn

(
y1, b

(
y2, . . . b

(
y|Y |, D

)
. . .
))

where b(y, D) is shorthand for {bn(y, D)}N
n=0.

This method has the advantage of having a complexity which is linear in
the number of traces, however the final heuristic posterior distribution on the
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key symbols depends heavily on the order in which the traces are processed.
As an example of this problem consider the (non-randomized) right-to-left bi-
nary algorithm on a two bit exponent. Processing traces y1 = ADD and y2 =
DAD should give P (kn = 1) = 1

2 ; However, this method gives the distribution
{0.9, 0.1} when processing ADD first and {0.1, 0.9} when processing DAD first.

4.2 Bitwise Average

We investigated a number of heuristic methods for combining the data from mul-
tiple traces, although some produced results better than the following method,
their complexity was too high for practical use in large examples. The following
method was the one which produced the best results with a reasonable perfor-
mance.

Our new heuristic combining method is as follows: We calculate the beliefs
for each trace, perform a bitwise average to combine them into a new key symbol
distribution and repeat until the distribution converges.

Repeat
D′←D
For all y ∈ Y

For n = 1 . . .N
Dy(kn = 1)←bn(y, D)

D←Avgy∈Y(Dy)
Until D ≈ D′

Return D

In other words we set

D =
{
Avgy∈Y (bn (y, D))

}N

n=0

and repeat until the values in the distribution D have appeared to converge.
Intuitively, this method is inspired by the following technique, one could

think of a factor graph (see, for example, [11]) which connects the corresponding
hidden states in each trace with an averaging function. As this graph contains
loops, we must perform loopy belief propagation - that is, we start with an initial
set of messages, in our case the initial key symbol distribution and the traces, and
iterate until we (hopefully) get convergence. Clearly the output of this heuristic
is independent of the input order of the traces, however it is unclear how many
iterations are necessary and whether the method converges for a given input
sequence.

The method also does not take into account information which can be ob-
tained by considering two or more traces at once, so called cross trace analysis.
As an example of this consider the randomized binary algorithm on a 3 bit expo-
nent, where no errors occur when interpreting the power trace. A trace of DDD
indicates that there are exactly three ‘0’-bits and zero ‘1’-bits. Given a set of
traces {DDD, ADADAD} the output should be 000 with probability one, as the
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first trace shows that all of the As in the second trace are spurious. However, as
there is no interaction between traces the final result is not definite.

We now turn to the discussion of the averaging function Avg(·) in the above
heuristic method. If one uses the arithmetic mean then problems can arise,
as the following example demonstrates: If p(kn = 1|y1, D) = 1 and p(kn =
1|y2, D) = 0.5 averaging these values gives us p(kn = 1|y1, y2, D) = 0.75. How-
ever, p(kn = 1|y1, D) = 1 is saying that the key symbol is definitely 1 whereas
p(kn = 1|y2, D) = 0.5 says that y2 gives no information about the key symbol.
Clearly then we should combine the traces such that p(kn = 1|y1, y2, D) = 1.

Replacing the arithmetic mean with a weighted mean where the weight func-
tion is 0 at x = 0.5 and increases with |x − 0.5| solves this problem by allowing
us to calculate the combined belief as

Avg(b1, b2, . . . , bn) =

{
0.5

∑
i=0..n w(bi) = 0,∑

i=0..n w(bi)bi∑
i=0..n w(bi)

Otherwise.

The most effective function we have found for producing the weight is w(x) =
4x2 − 4x + 1. In the above example the above weighting would give us a new
combined belief of p(kn = 1|y1, y2, D) = 1.

5 Performance of Heuristics

Our main interest was in analysing exponentiation algorithms in the situation
where defences already exist to make it hard to distinguish doubles from ad-
ditions. In such a situation one is interested in how much defence one obtains
against simple power analysis by using the naive (non-randomized) binary algo-
rithm. In addition, there are certain exponentiation algorithms which have been
proposed for precisely the situation where, hopefully, indistinguishable opera-
tions have been implemented. For example in [5] Liardet and Smart propose an
algorithm to be used in conjunction with their indistinguishable addition formu-
lae so as to help mitigate against differential power analysis. They do this by
introducing a small amount of randomization into the exponentiation algorithm
without increasing the run time considerably.

In [10] Walter analyses the Liardet–Smart exponentiation algorithm in the
situation where there are no indistinguishable operations, and from the power
trace one can work out exactly the sequence of additions and doublings which
are carried out. Walter shows that in such a situation, for a 160-bit exponent,
one can break the Liardet–Smart algorithm with ten traces and work effort
around O(264), using R = 5 in the Liardet–Smart algorithm. If one increases
the number of traces to twenty then the work effort goes down to O(240). This
result is achieved by an exact analysis of the Liardet–Smart algorithm.

With our method we were able to investigate various exponentiation algo-
rithms with various error models. To illustrate typical results we used 160-bit
exponent values and two errors models, which we now describe. Clearly other
more complicated error models are allowed in our analysis but for ease of pre-
senting our results we focus on the following two:
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5.1 Error Model A:

Here we used an error model which swapped an A for a D, and vice versa, with
a given fixed probability p0,

p( observed = A| expected = D) = p( observed = D| expected = A) = p0,

p( observed = A| expected = A) = p( observed = D| expected = D) = 1 − p0.

5.2 Error Model B:

This model assumes that a certain fixed proportion p0 of the symbols are unable
to be read.

p( observed = ⊥ | expected = D) = p( observed =⊥ | expected = A) = p0.

p( observed = A| expected = A) = p( observed = D| expected = D) = 1 − p0.

For each algorithm we performed a number of experiments, and produced
the results in Tables 1, 2 and 3, for the standard binary algorithm, the Liardet–
Smart algorithm and the Oswald–Aigner algorithm (OA2). In these tables the
column p represents the average proportion of key bits correctly recovered. Given
this we can compute the amount of additional work needed to recover the key,
given that the HMM algorithm recovers the stated proportion of the key sym-
bols. This workfactor is derived using the low-Hamming weight variant of the
Baby-Step/Giant-Step algorithm for the discrete logarithm problem (DLP) [9].
Namely, if we can derive an approximation to a discrete logarithm such that
proportion p of the N bits are correct, then one can solve for the exact discrete
logarithm in expected time

O

(√
N · p ·

(
N/2

N · p/2

))
,

which may be more efficient than the O(2N/2) technique of using the standard
Baby-Step/Giant-Step algorithm. For 160-bit exponents we obtain an improve-
ment as soon as p > 0.8.

Table 1. Results for the Binary Exponentiation Algorithm

Number of Traces
Error 1 5 10 20 100
Model p0 p p p p p

– 0.0 1.00 1.00 1.00 1.00 1.00
A 0.1 0.66 0.75 0.77 0.79 0.82

0.2 0.59 0.67 0.68 0.69 0.70
B 0.1 0.80 0.87 0.89 0.89 0.90

0.2 0.72 0.77 0.77 0.77 0.78
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Table 2. Results for the Liardet–Smart Exponentiation Algorithm (R = 5)

Number of Traces
Error 1 5 10 20 100
Model p0 p p p p p

– 0.0 0.40 0.62 0.79 0.89 0.97
A 0.1 0.43 0.50 0.55 0.59 0.62

0.2 0.39 0.44 0.47 0.49 0.52
B 0.1 0.43 0.51 0.57 0.63 0.71

0.2 0.39 0.45 0.48 0.51 0.57

Table 3. Results for the OA2 Exponentiation Algorithm

Number of Traces
Error 1 5 10 20 100
Model p0 p p p p p

– 0.0 0.82 0.89 0.95 0.97 0.98
A 0.1 0.59 0.69 0.72 0.77 0.79

0.2 0.54 0.63 0.67 0.70 0.73
B 0.1 0.66 0.79 0.82 0.83 0.84

0.2 0.60 0.71 0.72 0.75 0.76

To compare our heuristic trace combining method to that used by Karlof and
Wagner we present in Table 4 the average proportion of key bits recovered cor-
rectly using our error models, but using the heuristic belief propagation method
of Karlof and Wagner.

From the tables we see that our trace combining method recovers more of
the key than the trace combining method of Karlof–Wagner. Furthermore, the
results in Table 4 for both Liardet–Smart and Oswald–Aigner without errors
show a decrease in accuracy as the number of traces increases. This is due to the
way their heuristic overemphasises the belief values generated by early traces
and causes the belief values to increase very rapidly when given consistent trace
data, but not decrease as rapidly when given evidence to the contrary. With the
Liardet–Smart algorithm an A in the trace indicates that either the current or
previous key bit is 1 whereas a D indicates that the current key bit is marginally
more likely to be 0 than 1. When processing multiple traces, the Karlof-Wagner
heuristic combines these slight biases until rounding errors in the floating point
representation cause a belief of 1 in the key bit being a 0. If a future trace then
indicates that the key bit is actually 1 a contradiction occurs in the forward–
backward algorithm causing it to fail. A non-zero probability of error prevents
the belief values from getting close enough to 1 for such a rounding error to oc-
cur, which explains why the heuristic does not fail in those case. The decrease in
accuracy when processing the Oswald-Aigner algorithm is due to the same rea-
son; a slight bias for a particular key bit value is compounded until it outweighs
strong evidence to the contrary.
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Table 4. Results for the Karlof–Wagner Heuristic

Algorithm
Error Binary L–S OA2
Model p0 1 20 100 1 20 100 1 20 100

– 0.0 1.0 1.0 1.0 0.42 0.00 0.00 0.82 0.39 0.39
A 0.1 0.66 0.72 0.72 0.29 0.48 0.53 0.64 0.76 0.77

0.2 0.61 0.68 0.68 0.21 0.42 0.48 0.58 0.69 0.73
B 0.1 0.76 0.85 0.85 0.27 0.53 0.54 0.66 0.77 0.78

0.2 0.67 0.78 0.78 0.17 0.47 0.50 0.62 0.74 0.75

We also see that Error Model B allows one to recover more of the key than
Error Model A, this is because in Error Model A we feed the algorithm possibly
incorrect information, whilst in Error Model B we only tell it when we are
unsure of certain data values; a value of ⊥ provides only correct information,
whereas an observation error provides misinformation. The ability to mark that
an observable action took place without having to commit to what the action
was would be very useful in practice, where two sub-operations may have similar
power-traces or timing characteristics.

We see that, in the case of the Liardet–Smart algorithm, our general HMM
based method is almost as effective as Walter’s method in the case of no errors
and multiple traces. However, the results for a single trace with no errors appear
to be worse than random guessing! This doesn’t quite tell the whole story, as the
40% (on average) of correct bits have a high level of confidence in correctness
whilst the remaining bits have very low level. Using this level of confidence to
perform a weighted average when combining multiple traces is key to our trace
combining heuristic.

This is the first work to look at the Liardet–Smart algorithm in the case of
noisy trace data, as would happen when the algorithm is used in the context of
indistinguishable addition/doubling formulae as proposed in [5]. In this situation
the Liardet–Smart algorithm is relatively immune to simple power analysis via
our HMM method. This contrasts with the case of the Oswald–Aigner method,
which performs only marginally better than the standard binary method if there
are multiple traces with errors.
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Abstract. This paper investigates performance and energy character-
istics of software algorithms for long integer arithmetic. We analyze and
compare the number of RISC-like processor instructions (e.g. single-
precision multiplication, addition, load, and store instructions) required
for the execution of different algorithms such as Schoolbook multipli-
cation, Karatsuba and Comba multiplication, as well as Montgomery
reduction. Our analysis shows that a combination of Karatsuba-Comba
multiplication and Montgomery reduction (the so-called KCM method)
allows to achieve better performance than other algorithms for modu-
lar multiplication. Furthermore, we present a simple model to compare
the energy-efficiency of arithmetic algorithms. This model considers the
clock cycles and average current consumption of the base instructions to
estimate the overall amount of energy consumed during the execution
of an algorithm. Our experiments, conducted on a StrongARM SA-1100
processor, indicate that a 1024-bit KCM multiplication consumes about
22% less energy than other modular multiplication techniques.

1 Introduction

The reduction of energy consumption is a first-class design goal for embedded
systems, driven mainly by the proliferation of mobile, battery-powered devices
like cell phones, handheld computers, portable media players, and so on. The
clock frequency of microprocessors exploded from 33 MHz in the early 1990s
to more than 3 GHz in 2005. During the same period, the power consumption
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of microprocessors increased by an order of magnitude, even though transistor
sizes shrunk by roughly one half every 18-24 months and the supply voltages
were scaled down from 5 V to less than 1.5 V. It is expected that the increase
in transistor density of microchips will follow Moore’s law for (at least) another
ten years. Unfortunately, progress in battery technology has not kept up with
Moore’s law since the average annual growth in battery capacity is less than
12%. Dramatic improvements in battery technology are not foreseen in the next
years, which means that the gap between power consumption of microprocessors
and available battery capacity will widen in the future.

During the last 15 years, a significant effort has been spent on reducing the
overall power and energy consumption of battery-operated devices. Low-power
hardware design is a well-established area of research and numerous approaches
for power and energy minimization have been proposed. Of fundamental impor-
tance in low-power VLSI design is the availability of supporting EDA tools and
an appropriate design flow that considers power consumption in all phases of a
design. However, since much of the activity of hardware is controlled by soft-
ware, it is also necessary to analyze the software impact on the hardware energy
consumption. A significant problem in this context is the lack of development
tools which enable a software designer to systematically evaluate and reduce
the energy consumption. While hardware designers have a number of different
circuit and gate-level power analysis tools at their disposal, there exist no ad-
equate tools for analyzing the power consumption at high levels of abstraction
or to quantify the power cost of software. On the other hand, most software
development tools allow functional verification and performance profiling, but
provide no support for energy-related cost metrics [23].

Design methodologies for energy-efficient software are a relatively new field
of research, whereby especially the trade-off of performance versus energy has
received large attention. This is, to some extend, also a result of the exponen-
tial growth in processor performance, which allows to realize more and more
computation-intensive applications in software instead of hardware. It was ar-
gued in [23] that software offers a great potential for energy reduction, but soft-
ware savings are more difficult to achieve than hardware savings. A common
finding of previous work [25,26,19,15] is that the energy consumption of soft-
ware is closely tied to the execution time. However, reducing execution time is
not the only way to extend battery lifetime. The software energy optimization
techniques found in recent literature can be divided into three general categories
[19]: reduction of the cost or frequency of memory accesses, selection of the least
expensive instructions or instruction sequences, and processor-specific optimiza-
tions. References [26,19,4] demonstrate with a number of examples that smart
software design can indeed lead to substantial energy savings.

As security and cryptography play an increasingly important role in battery-
operated products, energy and power consumption are evolving to critical con-
straints for embedded cryptographic software. However, while there exists a rich
literature dealing with the performance of cryptographic software [2,3,14,21], the
aspect of energy-efficiency has not been widely researched so far, especially in
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the context of software for public-key cryptography1. With the present paper
we attempt to fill this gap. In the following sections, we analyze and compare
the execution time and energy dissipation of different algorithms for long integer
arithmetic. We show that different algorithms for one and the same arithmetic
operation, e.g. multiple-precision multiplication, can require different amounts
of energy and that these differences are not only given through unequal execu-
tion times, but also through the number of energy-intensive processor instruc-
tions executed by the algorithm. Typical examples of costly instructions (in
terms of energy) in modern RISC processors are multiply instructions as well
as load/store instructions [24]. The use of multiplication algorithms which re-
quire fewer load/store instructions (e.g. Comba’s method [2]) or fewer multiply
instructions (e.g. Karatsuba’s method [11]) can reduce the total energy dissi-
pation compared to the “conventional” schoolbook method [16], even when the
execution times do not vary significantly.

2 Energy Characteristics of the StrongARM SA-1100

Intel’s StrongARM SA-1100 is a high-performance, low-power RISC processor
for portable wireless multimedia devices. The SA-1100 processor incorporates
the efficiency of the ARMv4 instruction set architecture (ISA) [1] along with
the quality of Intel design and process technology [9]. Because of its excellent
performance and energy figures, the StrongARM SA-1100 has found widespread
use in pocket computers and PDAs such as the HP Jornada 720, Sharp Zaurus
SL-5500G, or Compaq iPAQ H3630.

2.1 SA-1100 Instruction Timing

The SA-1100 consists of a 32-bit RISC core with separate instruction and data
caches (of size 16 kB and 8 kB, respectively), a memory management unit
(MMU), and peripheral controllers (DRAM controller, serial ports, etc.) inte-
grated onto a single chip. It can be run at a variety of clock frequencies, ranging
from 39 MHz up to 220 MHz, with a nominal core supply voltage of between 1.5
and 2.0 V [10]. Key characteristics of the processor core are a classic five-stage
pipeline (Fetch, Issue, Execute, Buffer, and Register Write) with static branch
prediction, and a multiply/accumulate (MAC) unit featuring a (32× 12)-bit Wal-
lace tree multiplier. The instruction set of the StrongARM SA-1100 is specified
in the ARM Architecture Reference Manual [1].

The SA-1100 employs an early termination mechanism for multiply and mul-
tiply/accumulate operations, which means that it detects “small” operands and
completes a multiplication more quickly. For example, if bits 31-11 of the first
operand are all 0, then the multiply operation completes in one cycle. When
bits 31-23 are all 0, the multiply spends two cycles in the Execute stage of the
pipeline. In all other cases, it spends three cycles in the Execute stage [8].
1 Contrary to public-key cryptosystems, there exist papers about the energy-efficiency

of block ciphers in software [6] and energy aspects of security protocols [7,18,12].
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Table 1. Average current consumption of SA-1100 instructions (at 206 MHz) [24]

Instruction type Avg. current Avg. energy

Arithmetic/logical instructions 0.178 A 1.296 nJ
Multiply and MAC instructions 0.196 A 1.427–5.709 nJ
Load instructions (cache hit) 0.196 A 1.427 nJ
Store instructions (cache hit) 0.229 A 1.667 nJ

Other instructions 0.170 A 1.238 nJ

The SA-1100 executes “conventional” arithmetic/logical instructions at a
rate of one instruction per clock cycle, i.e. every stage of the pipeline is occupied
for a single cycle. Load instructions, such as LWR, also require one cycle in each
pipeline stage, provided that they hit the data cache. However, the pipeline will
stall for a cycle if the immediately following instruction uses the loaded value
as operand. Store instructions (e.g. STR) normally require one clock cycle in
each pipeline stage when they hit the data cache. Multiply instructions spend
up to three clock cycles in the Execute stage of the pipeline, depending on the
magnitude of the first operand. In addition, the “long” multiply instructions
producing a 64-bit result (e.g. UMULL) require a second cycle in the Buffer stage
of the pipeline [8].

2.2 SA-1100 Power Consumption

The energy consumed by a processor while running a certain program can be
estimated through instruction-level power analysis, first proposed by Tiwari et
al. [25,26]. This technique estimates the total amount of energy drawn during the
execution of a program by summing up the energy consumed by each individual
instruction. Therefore, an instruction-level energy model requires to determine
the energy cost of the processor instructions. Tiwari et al. propose to measure
the average current dissipation while the processor repeatedly executes a single
instruction [25]. Advanced energy models also consider inter-instruction effects
like switching activity of buses, pipeline stalls, or cache misses [26].

Sinha and Chandrakasan [24] developed an instruction-level energy profiling
tool for the StrongARM SA-1100, called JouleTrack. Table 1 shows the average
current consumption of SA-1100 instructions, measured at a clock frequency
of 206 MHz and a supply voltage of 1.5 V. It is stated in [24] that, on average,
arithmetic and logical instructions consume 0.178 A, multiplies 0.196 A, loads
0.196 A, stores 0.229 A, while the other instructions consume about 0.170 A.
The StrongARM’s total variation in current consumption is 0.072 A, which is
38% of the overall average current consumption [24]. Sinha and Chandrakasan
also observed that the current consumptions are pretty uniform and depend only
marginally on addressing modes or operand values. However, other processors
can have a quite different current profile. For example, the current consumption
of the multiply instruction in DSPs will typically be far greater than the current
consumed by other instructions.
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Load and store instructions are more expensive (in terms of current dissi-
pation) than other instructions that involve just register accesses. Reading or
writing a memory location causes switching on highly capacitive address and
data buses, row and column decode logic, and data lines with a high fan-out
[19]. Also multiply instructions generally have an above-average current con-
sumption. The (32× 12)-bit multiplier in the StrongARM SA-1100 is a fairly
large circuit and hence a significant source of switching activities. Moreover, it
must be considered that the energy depends not only on the current consump-
tion, but also on the number of clock cycles that an instruction requires for its
execution. The UMULL instruction, for example, requires three extra cycles until
it leaves the pipeline (two extra cycles in the Execute stage and one extra cycle
in the Buffer stage). Therefore, the energy consumption of UMULL is about 4.4
times higher than the energy of an “ordinary” arithmetic/logical instruction.

The product of average current consumption, supply voltage, and running
time is exactly the energy that the processor dissipates during execution of a
program. Although there is a strong relation between execution time and energy
consumption, we stress the fact that optimizing for low energy is not the same
as minimizing the execution time. Software energy savings can be achieved by
reducing the running time or by reducing the average current dissipation of the
instructions involved in the execution (or by a combination of both).

3 Multiple-Precision Multiplication

In this section we analyze three principal methods to perform a multiple-pre-
cision multiplication: the schoolbook method [16], Comba’s method [2], and
Karatsuba’s method [11]. These three methods form the basis of the algorithms
for Montgomery multiplication discussed in Section 4. The schoolbook method
represents the most straightforward way to realize a multiple-precision multipli-
cation and is covered in many textbooks. However, the two other methods may
perform better in practice. Comba’s method requires fewer memory accesses (in
particular store operations), whereas Karatsuba’s method reduces the number
of multiply instructions.

Before describing the methods in detail, we introduce some notation. We
represent long integers as arrays of w-bit digits. A typical choice for w is the
word-size of the processor, which means w = 32 for the implementation that we
describe in this paper. The bitlength of the integers is denoted by n, and s is
the number of digits necessary to store them, whereby s = �n/w�. For example,
a 256-bit integer requires s = 8 digits on a 32-bit architecture. We shall denote
long integers by uppercase letters and use the corresponding lowercase letters
for the individual w-bit digits, e.g. A = (as−1, . . . , a1, a0) with 0 ≤ ai < 2w.

3.1 Schoolbook Method

The schoolbook method, shown in Algorithm 1, consists of two nested loops,
each looping through the digits of one operand. In each iteration of the outer
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Algorithm 1. Multiple-precision multiplication (schoolbook method)
Input: Two s-digit operands A = (as−1, . . . , a1, a0), B = (bs−1, . . . , b1, b0).
Output: The 2s-digit product P = A · B = (p2s−1, . . . , p1, p0).
1: P ← 0
2: for i from 0 by 1 to s − 1 do
3: u ← 0
4: for j from 0 by 1 to s − 1 do
5: (u, v) ← aj × bi + pi+j + u
6: pi+j ← v
7: end for
8: ps+i ← u
9: end for

loop, a digit bi of the operand B is multiplied by all digits of the operand A, and
the (n + w)-bit results are accumulated according to their weight. The school-
book method is also called operand scanning method since the outer loop moves
through the digits of an operand.

An ordered pair of the form (u, v) represents the 2w-bit (i.e. double-precision)
integer u · 2w + v. The schoolbook method performs an operation of the form
a× b + p + u in its inner loop, whereby a, b, p, and u are all w-bit quantities.
Therefore, the result of this inner-loop operation is at most 2w bits long. This
makes the schoolbook method easy to implement in high-level programming
languages which provide a double-precision integer datatype. For instance, com-
mon extensions of the C and C++ programming language support the datatype
unsigned long long for 64-bit integers. The Java language provides the long
type, which has a precision of 64 bits on all platforms.

The square of a long integer can be computed almost twice as fast as the
product of two distinct integers, which can be observed from Equation (1).

A2 =
s−1∑
i=0

s−1∑
j=0

aj · ai · 2(i+j)·w =
s−1∑
i=0

a2
i · 22·i·w + 2 ·

s−2∑
i=0

s−1∑
j=i+1

aj · ai · 2(i+j)·w (1)

Long integer squaring is typically performed in two steps. In the first step, all
inner-product terms aj · ai with j �= i are calculated and summed up as shown
in Equation (1). The second step doubles the result obtained in the first step
and adds the inner products from the “main diagonal”, i.e. the terms a2

i .

3.2 Comba’s Method

Algorithm 2 illustrates an alternative method to accomplish a long integer mul-
tiplication. This method, first described by Comba [2], also consists of a nested
loop structure with a relatively simple inner loop. The two outer loops of Al-
gorithm 2 move through the digits pi of the product P , and therefore Comba’s
method is also referred to as product scanning method. To obtain the i-th digit pi

of P = A ·B, all inner-product terms aj × bi−j with 0 ≤ j ≤ i are accumulated
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Algorithm 2. Multiple-precision multiplication (Comba’s method)
Input: Two s-digit operands A = (as−1, . . . , a1, a0), B = (bs−1, . . . , b1, b0).
Output: The 2s-digit product P = A · B = (p2s−1, . . . , p1, p0).
1: (t, u, v) ← 0
2: for i from 0 by 1 to s − 1 do
3: for j from 0 by 1 to i do
4: (t, u, v) ← (t, u, v) + aj × bi−j

5: end for
6: pi ← v
7: v ← u, u ← t, t ← 0
8: end for
9: for i from s by 1 to 2s − 2 do

10: for j from i − s + 1 by 1 to s − 1 do
11: (t, u, v) ← (t, u, v) + aj × bi−j

12: end for
13: pi ← v
14: v ← u, u ← t, t ← 0
15: end for
16: p2s−1 ← v

and eventually added to carries from the computation of previous digits. The
store operation corresponding to each digit of the result only takes place in the
outer loop, when the digit is completely evaluated.

Comba’s method performs multiply/accumulate (MAC) operations in its in-
ner loop, which means that two w-bit digits are multiplied and the 2w-bit prod-
uct is added to a cumulative sum. This sum can easily get longer than 2w bits
and hence we need three w-bit registers for its storage. Algorithm 2 represents
these three registers by the triple (t, u, v). The operation carried out at line 7 and
14 is just a w-bit right-shift of (t, u, v). However, the extended precision of the
cumulative sum makes an implementation of Comba’s method rather difficult
when using high-level programming languages like C/C++ or Java, since they
have neither triple-precision data types, nor built-in support for handling carries
in an efficient way. On the other hand, Comba’s method is typically faster than
the schoolbook multiplication when implemented in assembly language.

3.3 Karatsuba’s Method

Karatsuba’s method reduces a multiplication of two s-digit operands to three
multiplications of size s/2, but at the cost of an increased number of additions
[11]. The three half-size multiplications can either be performed with the school-
book method, Comba’s method, or again Karatsuba’s method, provided that the
operands are large enough. A product of two s-digit operands with methods such
as the schoolbook method or Comba’s requires calculating s2 single-precision
multiplications. Karatsuba’s method performs only 3s2/4 single-precision mul-
tiplications. However, when applied recursively, Karatsuba’s method results in
an algorithm with complexity O(slog2 3) where log2 3 ≈ 1.584.
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AH · BH AL · BL

+ AH · BH

+ AL · BL

− (AH − AL) · (BH − BL)

Fig. 1. Graphical representation of Karatuba’s method

In order to explain Karatsuba’s method, let us assume, for simplicity, that
the bitlength n and the number of digits s are both even. The operands A and
B are split into two parts of equal length, whereby AL, BL consist of the s/2
least significant digits, and AH , BH of the s/2 most significant digits of A and
B, respectively. Since A = AH · 2n/2 + AL and B = BH · 2n/2 + BL, the product
P = A ·B can be computed as according to the following equation.

P = AH ·BH ·2n +[AH ·BH +AL ·BL−(AH−AL)·(BH−BL)]·2n/2 +AL ·BL (2)

A graphical representation of Karatuba’s method is given in Figure 1. It is also
possible to do the calculation with the absolute value for (AH −AL) · (BH −BL)
and to use the sign to decide whether this value is added to or subtracted from
AH ·BH + AL ·BL [13]. Note that carries may propagate from the most sig-
nificant digits of AH ·BH , AL ·BL, and (AH −AL) · (BH −BL) when they are
added. Karatsuba squaring is similar to multiplication, but with A = B the
equation reduces to three (s/2)-digit squares that have to be added according to
Figure 1. The middle term (AH −AL)2 is always positive, which simplifies the
implementation of Karatsuba squaring [5].

3.4 Analysis of the Algorithms

Both the execution time and the energy consumption of the algorithms described
in this section depend heavily on the concrete implementation. An implementer
could, for instance, fully unroll the inner and outer loops of the algorithms. In
this case, only the base instructions like multiplies, adds, loads and stores have
to be performed. However, while loop unrolling allows to achieve the best possi-
ble performance, it can significantly increase the code size, especially when the
number of digits is large. On the other hand, an implementation with “rolled”
loops represents the other end of the spectrum. Rolled-loop implementations do
not only execute the base instructions mentioned above, but also instructions
which do not directly contribute to the calculation of the result. We may think
about operations such as incrementing loop counters, branch instructions, regis-
ter moves, or pointer arithmetic. While an implementation with rolled loops has
the benefit of small code-size, it can be significantly slower than an optimized
variant with unrolled loops. This makes it necessary to find a trade-off between
performance (i.e. unrolled loops) and code-size (i.e. rolled loops). One possible
solution is to partially unroll the loops. For instance, the body of the loop can be
replicated multiple times (e.g. 8 or 16 times), which replaces a number of loop
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Table 2. Comparison of base instructions for long integer multiplication algorithms

Algorithm # MUL # ADD # LOAD # STORE

Schoolbook Mul. s2 4s2 2s2+s s2+s

Schoolbook Sqr. 1
2s2+ 1

2s 2s2 + 10s s2+s 1
2s2+ 3

2s

Comba Multiplication s2 3s2 2s2 2s

Comba Squaring 1
2s2+ 1

2s 3
2s2+ 15

2 s−3 s2+s 2s

Karatsuba-Schoolb. Mul. 3
4s2 3s2+4s+2 3

2s2+ 15
2 s+1 3

4s2+ 11
2 s+1

Karatsuba-Schoolb. Sqr. 3
8s2+ 3

4s 3
2s2+19s+2 3

4s2+ 15
2 s+1 3

8s2+ 25
4 s+1

Karatsuba-Comba Mul. 3
4s2 9

4s2+4s+2 3
2s2+6s+1 7s+1

Karatsuba-Comba Sqr. 3
8s2+ 3

4s 9
8s2+ 61

4 s−7 3
4s2+ 15

2 s+1 7s+1

iterations by non-iterated straight-line code. Partial loop unrolling eliminates, or
substantially reduces, the effects of the loop overhead (i.e. incrementing the loop
counter, branch instruction, etc.). In such case, the loop overhead is (almost)
negligible, which means that the execution time and the energy consumption
are primarily determined by the base instructions.

Table 2 summarizes the number of base instructions (i.e. multiplies, adds,
loads, and stores) for the algorithms described before. The schoolbook method
performs exactly s2 iterations of the inner loop. In each iteration, an operation
of the form a× b + p + u is executed, i.e. two w-bit digits are multiplied and
another two w-bit digits are added to the product. Note that adding a single-
precision digit to a double-precision digit actually involves two ADD instructions
since a single-precision addition may produce a carry which has to be processed
properly2. Furthermore, two load instructions (for aj and pi+j) and one store
(for pi+j) are executed in any iteration of the inner loop. The 2w-bit quantity
(u, v) is kept in registers and bi is loaded once per iteration of the outer loop.

Comba’s method also iterates the inner loop exactly s2 times. Therefore, we
have s2 multiplications and 3s2 single-precision additions since the accumulation
of a 2w-bit product to the running sum in (t, u, v) requires one ADD and two ADC
instructions. In any iteration of the inner loop, two operands are loaded from
memory, but the stores only take place in the outer loops. Therefore, Comba’s
method requires only 2s STORE instructions. Both the Comba and the school-
book squaring perform only (s2 + s)/2 MUL instructions (see Equation 1), which
reduces also the number of additions, loads and stores.

A Karatsuba multiplication of two s-digit operands basically consists of three
(s/2)-digit multiplications and five (s/2)-digit additions or subtractions. Table 2
shows the number of base instructions when using the schoolbook method or
Comba’s method for the half-size multiplications (we do not apply Karatsuba’s
trick recursively). Note that the addition or subtraction of the s-digit products

2 More precisely, an ADD and an ADC (add with carry) instruction are required. How-
ever, we ignore this distinction in our analysis and count only the number of single-
precision additions, regardless of whether or not the carry flag is considered.
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Table 3. Running time (in μs) and average current consumption IAVG (in Ampere)

512 bit 1024 bit 1536 bit 2048 bit
Algorithm

Time IAVG Time IAVG Time IAVG Time IAVG

Schoolbook Mul. 13.8μ 0.193 55.0μ 0.193 124μ 0.193 219μ 0.193
Comba Multiplication 11.3μ 0.191 45.1μ 0.190 101μ 0.190 180μ 0.190

Karatsuba-Schoolb. Mul. 11.6μ 0.194 43.7μ 0.193 96.3μ 0.193 169μ 0.193
Karatsuba-Comba Mul. 9.7μ 0.192 36.2μ 0.191 79.5μ 0.191 140μ 0.191

AH ·BH , AL ·BL, and (AH−AL) · (BH−BL) may produce a carry. For simplic-
ity, we count one ADD, one LOAD, and one STORE for the processing of this carry.

Performance and Energy Evaluation. The product of average current con-
sumption, supply voltage, and running time is exactly the energy that a processor
consumes during the execution of a program. Consequently, we have to estimate
the average current and running time in order to analyze the energy efficiency
of the algorithms. However, as already mentioned, the running time depends
heavily on implementation details like loop unrolling. Therefore, we only con-
sider the base instructions (i.e. multiplications, adds, loads, and stores) for the
analysis of the energy efficiency. This is clearly a coarse approach as it ignores
pipeline stalls, cache misses, and, in the case of a rolled-loop implementation,
the impact of “glue instructions” such as loop control, register moves, pointer
management3, and so on. Nonetheless, this approach is capable of making ba-
sic predictions about the execution time and energy consumption, especially for
implementations with fully or partially unrolled loops. Note that our estimation
can be easily refined to consider also other instructions, e.g. branches.

Table 3 shows the average current consumption and the running time of the
multiplication algorithms on a StrongARM SA-1100 processor (at a frequency
of 206 MHz and 1.5 V core supply voltage). The values stem from a theoretical
evaluation with fully unrolled inner loops. We assumed that the average current
of the base instructions is as specified in Section 2 (see Table 1) and that ADD,
LOAD, and STORE execute in one clock cycle, while the MUL instruction requires
four clock cycles, which is actually the case on the SA-1100 when the operands
have a magnitude of 32 bits. The running times differ significantly, while the
average power consumption shows only slight variations. However, it must be
considered that the running time of the algorithms is quite long, and hence even
a current saving of a few milli-Amperes can make a difference in the energy
consumption. For instance, a 1024-bit schoolbook multiplication consumes an
energy of about 15.9 μJ (at 1.5 V), while the Comba multiplication requires
only 12.9 μJ. In other words, Comba’s method requires 3.0 μJ (i.e. 18.9%) less
energy than the schoolbook method. About 7.3% of this 3.0 μJ saving are due
to the 3 mA lower current consumption, and the rest due to the shorter running

3 The ARM architecture supports auto-increment/decrement addressing modes, and
hence the pointer management does not fall into account on ARM processors.
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Algorithm 3. Montgomery multiplication
Input: An s-digit modulus M = (ms−1, . . . , m1, m0), operands A = (as−1, . . . , a1, a0)

and B = (bs−1, . . . , b1, b0) with A,B < M , and the constant M ′ = −M−1 mod 2n.
Output: The Montgomery product Z = A · B · 2−n mod M .
1: P ← A × B
2: Q ← P × M ′ mod 2n

3: Z ← (P + Q × M)/2n

4: if Z ≥ M then Z ← Z − M end if

time. The results for 1536 and 2048-bit operands are similar. Comba’s method
reduces the energy not only because it requires fewer STORE instructions, but
also due to the fact that saved STORE instructions have an above-average current
consumption (see Table 1).

Our theoretical evaluation shows that the Karatsuba-Comba multiplication
is superior to all other methods with respect to running time and energy con-
sumption, even for a short operand length like 512 bits. Besides the theoretical
evaluation, we also implemented the algorithms and simulated them with Joule-
track [24], an instruction-level energy profiler for the StrongARM SA-1100. The
simulation results confirm that Karatsuba-Comba multiplication is faster and
more energy-efficient than the other methods described in this section.

4 Montgomery Multiplication

The Montgomery multiplication algorithm [17] is an efficient method for per-
forming modular multiplication with an odd modulus. Montgomery’s algorithm
replaces the trial division with simple shift operations, which are particularly
suitable for implementations on general-purpose processors.

Given two integers A and B, and the modulus M , the Montgomery multipli-
cation algorithm computes Z = MonMul(A, B) = A · B · R−1 mod M , whereby
A, B < M and R is a constant such that gcd(R, M) = 1. Even though the algo-
rithm works for any R which is relatively prime to M , it is more useful when
the so-called Montgomery residual factor R is a power of two, e.g. R = 2n where
n = �log2(M)�. The Montgomery product A ·B · 2−n mod M of the two integers
A and B can be calculated as shown in Algorithm 3. First, the two operands are
multiplied together to obtain the product P . The following two multiplications
reduce the product modulo M , whereby only the lower part of the result of the
first multiplication is needed, and from the second multiplication only the higher
part. A final subtraction of M can be necessary to bring the result into the range
of [0, M − 1]. The constant M ′ depends only on the modulus M and hence it
can be pre-computed. In summary, a Montgomery multiplication is only slightly
more costly than two conventional multiplications of n-bit integers.

The Montgomery multiplication algorithm calculates the Montgomery prod-
uct A ·B · 2−n mod M instead of the actual residue A ·B mod M , i.e. the result
carries the factor 2−n. Therefore, Montgomery arithmetic requires a conversion
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Algorithm 4. Montgomery multiplication (Coarsely Integrated Operand Scanning)
Input: An s-digit modulus M = (ms−1, . . . , m1, m0), operands A = (as−1, . . . , a1, a0)

and B = (bs−1, . . . , b1, b0) with A,B < M , and the constant m′
0 = −m−1

0 mod 2w.
Output: The Montgomery product Z = A · B · 2−n mod M .
1: Z ← 0
2: for i from 0 by 1 to s − 1 do
3: u ← 0
4: for j from 0 by 1 to s − 1 do
5: (u, v) ← aj × bi + zj + u
6: zj ← v
7: end for
8: (u, v) ← zs + u
9: zs ← v

10: zs+1 ← u
11: q ← z0 × m′

0 mod 2w

12: (u, v) ← z0 + m0 × q
13: for j from 1 by 1 to s − 1 do
14: (u, v) ← mj × q + zj + u
15: zj−1 ← v
16: end for
17: (u, v) ← zs + u
18: zs−1 ← v
19: zs ← zs+1 + u
20: end for
21: if Z ≥ M then Z ← Z − M end if

of operands and a re-conversion of the result in order to get rid of this factor
[16]. We will not further discuss the basics of Montgomery multiplication since
they are covered in a number of papers and textbooks, e.g. in [3,20,14,16].

4.1 Coarsely Integrated Operand Scanning (CIOS)

Koç et al. [14] describe a number of efficient software algorithms for calculating
the Montgomery product on general-purpose processors. One of these methods
is the so-called Coarsely Integrated Operand Scanning (CIOS) method, which
can be phrased as shown in Algorithm 4. The CIOS method may be viewed
as schoolbook multiplication with a “coarse” integration of the Montgomery
reduction, i.e. multiplication and reduction steps are performed in the same outer
loop, but different inner loops. Therefore, the CIOS method has the same inner-
loop operation as the schoolbook method, which makes it simple to implement in
both assembly and high-level programming languages. Koç et al. reported that
the CIOS method achieves better performance than the other methods described
in [14]. Therefore, we use the CIOS method as a “benchmark” for our energy
evaluation. Further details about the CIOS method can be found in [14].
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Algorithm 5. Montgomery reduction (product scanning form) [20]
Input: An s-digit modulus M = (ms−1, . . . , m1, m0), operand P = (p2s−1, . . . , p1, p0)

with P < 2M − 1, and the constant m′
0 = −m−1

0 mod 2w .
Output: The Montgomery residue Z = P · 2−n mod M .
1: (t, u, v) ← 0
2: for i from 0 by 1 to s − 1 do
3: for j from 0 by 1 to i − 1 do
4: (t, u, v) ← (t, u, v) + zj × mi−j

5: end for
6: (t, u, v) ← (t,u, v) + pi

7: zi ← v × m′
0 mod 2w

8: (t, u, v) ← (t,u, v) + zi × m0

9: v ← u, u ← t, t ← 0
10: end for
11: for i from s by 1 to 2s − 2 do
12: for j from i − s + 1 by 1 to s − 1 do
13: (t, u, v) ← (t, u, v) + zj × mi−j

14: end for
15: (t, u, v) ← (t,u, v) + pi

16: zi−s ← v
17: v ← u, u ← t, t ← 0
18: end for
19: (t, u, v) ← (t,u, v) + p2s−1

20: zs−1 ← v, zs ← u
21: if Z ≥ M then Z ← Z − M end if

4.2 Karatsuba-Comba-Montgomery (KCM) Multiplication

The Karatsuba-Comba-Montgomery (KCM) method combines Karatsuba and
Comba-like multiplication techniques with Montgomery reduction [22]. Contrary
to CIOS, the KCM method completely separates the multiplication of A by
B and the reduction of the product modulo M . The KCM method employs
Karatsuba-Comba multiplication for the former [21], while the latter is realized
with a product scanning technique as shown in Algorithm 5 [20]. This algorithm
accomplishes the Montgomery reduction in a similar way as Algorithm 3. The
first outer loop (lines 2-10) of Algorithm 5 calculates the s digits of the product
Q = P ·M ′ mod 2n and stores them in (zs−1, . . . , z1, z0). Thereafter, the second
loop (lines 11-20) produces the Montgomery residue Z = (P + Q ·M)/2n. More
details about Algorithm 5 and the KCM method can be found in [20].

4.3 Analysis of the Algorithms

Each of the two inner loops of the CIOS method is iterated s2 times and hence
s2 MUL instructions are carried out. In addition, s single-precision multiplications
are performed in the outer loop, which results in a total of 2s2 + s MUL instruc-
tions. Only s2 of these 2s2 + s MUL instructions actually contribute to the multi-
plication of A ·B, while the remaining s2 + s MUL instructions contribute to the
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Table 4. Comparison of base instructions for Montgomery multiplication algorithms

Algorithm # MUL # ADD # LOAD # STORE

CIOS Multiplication 2s2+s 4s2+4s+2 4s2+7s+2 2s2+4s+1

CIOS Squaring 3
2s2+ 5

2s 4s2+7s+2 3s2+6s+2 3
2s2+ 11

2 s+1

KCM Multiplication 7
4s2+ s 13

4 s2+8s+4 7
2s2+11s+3 10s+1

KCM Squaring 11
8 s2+ 7

4s 17
8 s2+ 77

44s−5 11
4 s2+ 25

2 s+3 10s+1

Table 5. Running time (in μs) and average current consumption IAVG (in Ampere)

512 bit 1024 bit 1536 bit 2048 bit
Algorithm

Time IAVG Time IAVG Time IAVG Time IAVG

CIOS Multiplication 23.9μ 0.196 92.5μ 0.196 206μ 0.196 364μ 0.196
CIOS Squaring 20.3μ 0.195 76.5μ 0.195 169μ 0.195 297μ 0.195

KCM Multiplication 19.7μ 0.193 73.5μ 0.192 163μ 0.192 284μ 0.192
KCM Squaring 15.3μ 0.194 56.4μ 0.193 123μ 0.193 216μ 0.193

calculation of the Montgomery reduction. Also the reduction technique shown
in Algorithm 5 performs s2 + s MUL instructions. However, the KCM method
uses Algorithm 5 in combination with the Karatsuba-Comba method for the
calculation of the product, and hence the overall number of MUL instructions
is much smaller than in the CIOS method. Furthermore, the KCM method re-
quires only a linear number of STORE instructions, since both Algorithm 5 and
the Karatsuba-Comba method implement a product-scanning technique. The
number of base instructions are summarized in Table 4.

Table 5 shows the running time and the average current consumption of the
CIOS and the KCM method. These values have been obtained through a theoret-
ical evaluation with the base instructions MUL, ADD, LOAD, and STORE as described
in Section 3.4. The KCM method is faster and has a lower average current con-
sumption than the CIOS method, mainly because it requires fewer MUL and
STORE instructions. However, while the current values vary only by 4 mA, the
running times differ significantly. For instance, a 1024-bit CIOS multiplication
has a running time of 92.5 μs, but the KCM method requires only 73.5 μs, which
means that the latter is 19.0 μs (20.5%) faster. The corresponding energy values
differ by 6.0 μJ or 22.1% (27.2 μJ versus 21.2 μJ). About 8% of this saving
of 6.0 μJ is due to the lower average current of the KCM base instructions. The
same percentage holds for 1536 and 2048-bit operands.

In summary, more than 90% of the KCM method’s energy advantage stems
from the shorter execution time, while the remaining part is due to the lower
power consumption. Consequently, there is a close relation between the perfor-
mance and energy consumption of Montgomery multiplication algorithms. We
have also simulated the algorithms with JouleTrack, and the simulation results
confirm the superiority of the KCM method, even for 512-bit operands.
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5 Conclusions

The contribution of this paper is twofold. We aimed at determining how to
implement basic arithmetic algorithms for public-key cryptography with the goal
to minimize the energy consumption. Several different algorithms have been
considered. The higher goal, however, was to pave the way for a systematic
approach to the evaluation of energy costs of arithmetic algorithms.

We performed a theoretical analysis with the help of base instructions (mul-
tiplication, addition, load, and store), and combined it with the actual energy
consumption of these instructions on a specific architecture. Our results show
that a combination of Karatsuba and Comba multiplication with Montgomery
reduction (the KCM method) leads to the best energy efficiency. For example,
a 1024-bit modular multiplication according to the CIOS method requires an
energy of 27.2 μJ on the StrongARM SA-1100. The KCM method, on the other
hand, needs only 21.2 μJ, which corresponds to an energy saving of more than
22%. This energy saving results from the fact that the KCM method requires
fewer energy-intensive instructions like multiply and store instructions.

The power consumption of actual implementations of the considered algo-
rithms was simulated using JouleTrack. We found the relative performance and
energy figures from the simulation in perfect agreement with our theoretical
model. Hence, by analyzing the energy cost of the base instructions, it is pos-
sible to obtain most of the information needed to evaluate the energy-efficiency
of different algorithms for long integer arithmetic.

Acknowledgements. The information in this document reflects only the au-
thor’s views, is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the informa-
tion at its sole risk and liability.
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Abstract. We present a new method for computing the scalar multi-
plication on Koblitz curves. Our method is as fast as the fastest known
technique but requires much less memory. We propose two settings for
our method. In the first setting, well-suited for hardware implementa-
tions, memory requirements are reduced by 85%. In the second setting,
well-suited for software implementations, our technique reduces the mem-
ory consumption by 70%. Thus, with much smaller memory usage, the
proposed method yields the same efficiency as the fastest scalar multi-
plication schemes on Koblitz curves.

Keywords: Elliptic curve cryptosystems, Koblitz curves, scalar multipli-
cation, NAF, polynomial basis, normal basis, change-of-basis, smartcard.

1 Introduction

Elliptic curves cryptosystems (ECC) offer an interesting alternative to standard
prime-field based cryptosystem, because for the same security level, they are
much faster and require less memory [11,13]. In particular, they are well-suited
for implementations on low-end processors and memory-constrained devices such
as smartcards. From the geometrical properties of elliptic curves, one can define
two operations on the points of the curve: point addition and point doubling.
Then, given a base point P and a scalar d, one can compute the scalar multi-
plication Q = dP . It is believed that the discrete logarithm problem on elliptic
curves (EC-DLP), namely finding d from P and Q, is a hard problem, and many
cryptosystems rely on the hardness of the EC-DLP. Since the scalar multiplica-
tion plays a crucial role in such cryptosystems, it is important to implement it
efficiently. In practical cases, we distinguish two types of scalar multiplications.
On the one hand, the scalar multiplication with known base point can be com-
puted very efficiently. On the other hand, when the base point is random, much
more computational effort is required.

A first approach to decrease the computational cost of the scalar multiplica-
tion with unknown base point is to deploy a new representation of the scalar in
order to minimize the number of elliptic operations. The standard technique is
to precompute some small multiples of the base point P and re-use these points
in the scalar multiplication. One of the fastest recoding technique is the width

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 91–105, 2005.
c© International Association for Cryptologic Research 2005
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w non-adjacent form (NAFw), which reduces the number of point additions to
m/(w + 1) on average for a m-bit scalar, provided that 2w−2 points are pre-
computed. Unfortunately, recoding techniques have no influence on the number
of point doublings, and as a consequence, the speed-up which arises from the
NAFw is limited.

A second approach is to use special curves. In particular, on some special
binary curves called Koblitz curves, all point doublings can be replaced by a
much cheaper operation: the Frobenius automorphism [12]. Thus, NAFw tech-
niques and Koblitz curves nicely combine: the NAFw reduces the number of
point additions while point doublings are eliminated thanks to special algebraic
properties of the curve [18]. Since the computational cost of precomputations
grows with 2w−2 whereas that of the scalar multiplication itself decreases with
1/(w + 1), obviously, there is an optimal value for w. In practical situations,
w = 5 is optimal for Koblitz curves.

In [1], a method for computing the scalar multiplication on Koblitz curves
without precomputations was proposed. The technique is faster than the NAF2
on Koblitz curves, but slower than the NAF3 which has one precomputed point.
Additionally, it is well-known that on binary field, with special bases called
normal bases, squares are virtually free. Techniques based on normal basis rep-
resentations have been proposed to speed-up the scalar multiplication on Koblitz
curves, with known point and large memory [4].

We propose a new method which can exploit the speed-up arisen from pre-
computations without actually storing all of the precomputed points: we keep
the full power of precomputations without sacrifice on the side of memory. In
fact, we embed the precomputation process in the scalar multiplication: the com-
putations of the scalar multiplication are re-ordered and the precomputed points
are generated sequentially. In our method, the order of computations does not
play any role in the global efficiency, and operations can be freely re-ordered.
Therefore, our scheme can be performed from right to left, or from left to right,
or even following a random sequence, generalizing the notion of right-to-left or
left-to-right computations. Our algorithm has two different settings. With the
first setting, which is well-suited for hardware implementations, our method is as
fast as the (optimal) NAF5 but requires only one auxiliary point instead of seven,
reducing the memory consumption by 85%. The second setting is well-suited for
software implementations, that is, for general-purpose processors, but requires
two auxiliary points instead of seven, reducing memory consumption by 70%.

2 Preliminaries

In this section, we discuss known facts: we describe the properties of polynomial
and normal basis implementations of binary fields, and introduce Koblitz curves.

2.1 Polynomial Bases vs. Normal Bases

In the field IF2m , elements are represented with respect to a basis (ε0, . . . , εm−1),
where εi ∈ IF2m . Then, the element b ∈ IF2m is represented with the vector with
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binary entries (b0 . . . bm−1)2, corresponding to the polynomial
∑m−1

i=0 biεi. For
efficient implementations, two types of bases are usually considered: polynomial
and normal bases.

In a polynomial basis, εi is the monomial X i of degree i, and operations are
computed modulo an irreducible polynomial Π [X ] of degree m, appropriately
chosen in order to speed-up reduction. Also, there are efficient algorithms for
multiplications and squarings in IF2m using polynomial bases [6]. A normal basis
consists of the m-tuple (β0, . . . , βm−1), where β2

i = βi+1 for i < m − 1 and
β2

m−1 = β0. In other words, powers of two are simple cyclic shifts. Unfortunately,
normal basis multiplications are slow. On the one hand, in hardware, with an
appropriate circuitry and good parameter choices, the penalty arisen from slow
multiplications can be minimized and normal bases yield an elegant and efficient
solution to implement binary fields. On the other hand, in software, polynomial
bases largely outperform normal bases [5].

Even though a full normal basis approach seems too slow to compete with
polynomial basis implementations, with a mixed normal-polynomial approach,
one can benefit from the advantages of both types of bases: fast multiplications
with polynomial bases and fast computation of powers of two with normal bases.
Indeed, there are techniques to convert elements between their normal and poly-
nomial basis representations, using change-of-basis matrices [7]. The conversion
time is roughly the same as one polynomial basis multiplication, and each ma-
trix occupies m2 bits in memory [4]. Note that change-of-basis matrices can be
precomputed off-line and stored in ROM.

2.2 Koblitz Curves

Koblitz curves belong to a special class of elliptic curves defined over binary
fields, and additionally offer a very efficient arithmetic, with no significant secu-
rity flaw compared to general binary curves [12]. They are defined over a binary
field IF2m by the equation:

Ea : y2 + xy = x3 + ax2 + 1, (1)

where a ∈ {0, 1}. We denote by Ea(IF2m) the abelian group of the points of the
Koblitz curve over IF2m , along with the point of infinity O, neutral element of
the addition law.

The main interest of Koblitz curves is that point doublings can be totally
eliminated from the scalar multiplication, and replaced by the efficiently com-
putable Frobenius automorphism Φ : (x, y) �→ (x2, y2). Since the quadratic equa-
tion (x4, y4) + 2(x, y) = μ(x2, y2) where μ = (−1)1−a holds for every point of
Koblitz curves, the Frobenius map can be seen as the complex τ = (μ+

√
−7)/2,

solution of the equation Φ2 + 2 = μΦ. The approach for fast computations
over Koblitz curves is to convert a scalar d to a radix τ expansion such as
d =

∑j
i=0 diτ

i, di ∈ {0,±1}: in the scalar multiplication, point doublings are
replaced by the efficiently computable Frobenius map. However, in order to fully
take advantage of the Frobenius map, the τ expansion must be sparse and short.
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In [18], Solinas proposed two efficient algorithms to satisfy these properties: par-
tial reduction modulo δ = (τm − 1)/(τ − 1) and radix-τ NAF recoding.

One can see radix-τ integers as elements of the quadratic field ZZ[τ ], with
norm |λ| = l20 +μl0l1+2l21. Then the division with remainder γ = κ ·δ+ρ in ZZ[τ ]
satisfies |ρ| ≤ 4/7∗|δ|. Here ζP = (ζ mod δ)P holds for δ = (τm −1)/(τ −1) and
ζ ∈ ZZ[τ ], and thus the radix τ expansion of reduced scalars becomes shorter.

To generate a width w radix τ NAF expansion (TNAFw), one can use the
map Φw : u0 + u1 · τ ∈ ZZ[τ ] �→ u0 + u1 · tw mods 2w ∈ ZZ/2wZZ, where
tw = 2Uw−1U

−1
w mod 2w, Uw is the Lucas sequence Uw, defined by U0 = 0,

U1 = 1 and Uw+1 = μUw − 2Uw−1 for w ≥ 1, and “mods 2w” means the signed
residue modulo 2w. Interestingly, the odd representatives modulo τw correspond
exactly to the odd integers in ZZ/2wZZ by Φw [18]. Therefore, the congruence
classes modulo τw can be easily computed using Φw.

Algorithm 1. TNAFw with partial modular reduction modulo δ [18]

Input: Scalar d ;
Output: TNAFw(s);

1. c0 ← d partmod δ (partial modular reduction); c1 ← 0; i ← 0;
2. while c0 �= 0 or c1 �= 0 do

(a) if c0 is odd then u ← Φw(c0 + c1τ ) else u ← 0;
(b) d

(w)
i ← u; c0 ← c0 − u;

(c) (c0, c1) ← (c1 + μc0/2, −c0/2); i ← i + 1;
3. return (d(w)

i−1 . . . d
(w)
1 d

(w)
0 );

If the scalar is first reduced modulo δ, the length of the TNAFw is at most
m+a+3, and does not exceed m+a with high probability [18]. Since the average
nonzero density of the TNAFw is 1/(w + 1), the scalar multiplication requires
(m+a)/(w +1) point additions. Additionally, the points P, 3P, . . . , (2w−1 −1)P
must be precomputed. Therefore, the total cost of the scalar multiplication using
TNAFw is on average:

CNAF = (m + a) · ECFRB +
(

m + a

w + 1
+ 2w−2 − 1

)
· ECADD + ECDBL (2)

where ECADD, ECFRB and ECDBL stand for the computational cost of point
additions, τ multiplications and point doublings, respectively.

3 Short Memory Scalar Multiplication

We present the basic idea to compute the TNAF5 with memory for only one
auxiliary point instead of the seven usual precomputed points, assuming that a
normal basis is used for representing elements of the underlying field.



Short Memory Scalar Multiplication on Koblitz Curves 95

3.1 Motivation

The general approach to decrease the cost of the scalar multiplication for an un-
known base point is to precompute some multiples of the base point in order to
minimize the number of point additions in the scalar multiplication. This method
is particularly effective on Koblitz curves where point additions only are signif-
icant for the total computational cost. Especially, in the case of the TNAFw

method, for several binary fields of cryptographic interest (m = 163, 233, 283,
409), the width w = 5 is optimal1. Unfortunately, in practical situations, scarce
memory resources might prevent us from choosing the optimal width. For exam-
ple, for IF2163 , IF2233 , IF2283 and IF2409 , the storage of 7 precomputed points occu-
pies 294, 420, 504 and 728 bytes in RAM, respectively. Newer smartcards have
larger RAM space, but the current trend is to develop multi-application cards
with greedy memory requirements on the OS side. Generally, independently from
how much RAM is available, only about 500 bytes are allocated for cryptogra-
phy in total. Thus, having an important part, or even worse, the totality of the
allocated memory occupied by precomputed values can be a serious drawback.
Besides, in hardware and in software, it is advantageous to decrease memory re-
quirements, and as a consequence, decrease the cost of the final device.

We propose a solution to drastically reduce the memory requirements of the
optimal TNAF5 scalar multiplication. Our approach is as follows: we re-group
calculations involving the same precomputed point, which can be discarded im-
mediately after such calculations are completed.

3.2 Sequential Precomputations

Since we aim at discarding precomputed points when they are not needed any-
more, we need a procedure for computing them sequentially.

Definition 1. We call sequential precomputations an ordered sequence of points
where the kth point Pk can be computed from the base point P and the previous
point Pk−1, with one point addition and several τ multiplications.

In [18], the precomputed points 3P, 5P, . . . , (2w−1 − 1)P are calculated by
successively adding 2P . Since the non-trivial point 2P must be readily avail-
able, the precomputations are not sequential in the sense of Definition 1. The
computational cost of this technique is (2w−2 − 1)ECADD + ECDBL. Instead
of u = ±1, . . . ,±(2w−1 − 1), one can take (u mod τw) as coefficients in the
TNAFw. The precomputed points (u mod τw)P can be efficiently calculated
thanks to relationships between the TNAF2 representations of (u mod τw), for
u = 1, . . . , (2w−1 − 1). Then, the computational cost of precomputations can be
reduced to only 2w−2 − 1 point additions [6]. With this technique, each point
(u mod τw)P can be computed independently for w < 5: sequential precompu-
tations are trivially possible for the TNAF2, TNAF3 and TNAF4. However, for
w = 5, it is necessary to store (5 mod τ5)P during the whole precomputation
1 On general curves, one can achieve a greater speed-up by using fractional width

techniques. However, such a method has not been proposed yet for Koblitz curves.
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process, which is unacceptable for our aims: we do not wish to store any non-
trivial point. This is unfortunate because w = 5 is usually the optimal width.
Thus, we have to look for new a technique which allows us to compute the points
sequentially in the TNAF5.

Unlike the standard method which utilizes the TNAF2 representations of
(u mod τ5) for the precomputations, we use the binary expansion of u mod τ5.
Then, we propose a precomputation technique which requires 2w−2−1 point ad-
ditions and several τ multiplications, with memory for only one non-trivial point.

Table 1. Odd representatives modulo τ 5

Case a = 0 Case a = 1
u αu = u mod τ 5 binary exp. of αu αu = u mod τ 5 binary exp. of αu

1 1 1 1 1
3 −τ − 3 τ 2 − 1 τ − 3 τ 2 − 1
5 −τ − 1 −τ − 1 τ − 1 τ − 1
7 −τ + 1 −τ + 1 τ + 1 τ + 1
9 −2τ − 3 −τ 4 + τ − 1 2τ − 3 −τ 4 − τ − 1
11 −2τ − 1 τ 3 + τ 2 − 1 2τ − 1 −τ 3 + τ 2 − 1
13 −2τ + 1 τ 3 + τ 2 + 1 2τ + 1 −τ 3 + τ 2 + 1
15 3τ + 1 −τ 3 − τ 2 + τ + 1 −3τ + 1 τ 3 − τ 2 − τ + 1

Table 1 shows the representatives modulo τ5 and their binary expansion, for
the cases a = 0 and a = 1. Interestingly, one can find sequential relationships be-
tween the representatives: for instance, α11 = τ3 +α3 and α15 = τ −α11. Indeed,
thanks to these relationships, it is possible to compute the points (u mod τ5)P
sequentially: Table 2 presents a practical solution for such sequential precompu-
tations, following the sequence {1, 3, 11, 15, 5, 13, 7, 9}. Then, the computational
cost of our precomputation technique using a normal and a polynomial basis is
respectively:

C(5)
0,n = 7 ·ECADDn + 7 ·ECFRBn and C(5)

0,p = 7 ·ECADDp + 14 ·ECFRBp, (3)

where the indexes n and p stand for the type of basis (normal or polynomial).
In the following, the index 0 in C0 will refer to the cost of precomputations.

3.3 Short Memory Scalar Multiplication with a Normal Basis

On standard elliptic curves, the precomputation work must be done before
the scalar multiplication itself; all precomputed points are stored in RAM. On
Koblitz curves implemented with a normal basis, we will show that this is unnec-
essary. Indeed, when P is known, τ iP can be computed with i-fold cyclic shifts of
the coordinates of P . In other words, the order of the computations of the scalar
multiplication dP =

∑m+a
i=0 diτ

iP does not matter. Especially, one can re-group
calculations involving the same precomputed points, as shown in Algorithm 2.
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Table 2. Sequential computation of (u mod τ 5)P

u αuP = (u mod τ 5)P, u = 0 αuP = (u mod τ 5)P, u = 1

1 F (1, P, −a) = α1P = P F (1, P, −) = α1P = P
3 F (3, P, −) = α3P = τ 2P − P F (3, P, −) = α3P = τ 2P − P
11 F (11, P, α3P ) = α11P = τ 3P + α3P F (11, P, α3P ) = α11P = −τ 3P + α3P
15 F (15, P, α11P ) = α15P = τP − α11P F (15, P, α11P ) = α15P = −τP − α11P
5 F (5, P, −) = α5P = −τP − P F (5, P, −) = α5P = τP − P
13 F (13, P, α5P ) = α13P = P − τ 2α5P F (13, P, α5P ) = α13P = P − τ 2α5P
7 F (7, P, −) = α7P = −τP + P F (7, P, −) = α7P = τP + P
9 F (9, P, α7P ) = α9P = −τ 4P − α7P F (9, P, α7P ) = α9P = −τ 4P − α7P

a The symbol “−” refers to any point, as the third input parameter is not used in
this case.

Algorithm 2. Short memory scalar multiplication on a normal basis

Input: Base point P , scalar d;
Output: Q = dP ;

1. compute d(5) = TNAF5(d); Q ← O; R ← O;
2. for u following the sequence {1, 3, 11, 15, 5, 13, 7, 9} do

(a) R ← F (u, P, R) with Table 2; k ← 0;
(b) for j from 0 to m + a − 1 do

i. if |d(5)
j | = u then

A. R ← τ j−kR; k ← j;
B. Q ← Q + sign(d(5)

j )R;
(c) if u ∈ {3, 11, 5, 7} then R ← τm−kR;

3. return Q;

The average computational cost of Algorithm 2 is:

C(5)
1,n =

m + a

6
· ECADDn +

(
m + a

6
+ 4
)

· ECFRBn + C(5)
0,n. (4)

Where the index 1 in C1 stands for the total computational cost, whereas 0
in C0 stands for the cost of precomputations. It is exactly the same as that of
the standard TNAF5, with 4 additional τ -multiplications arising from step 2(c),
which re-sets the current precomputed point to its original value αuP in order
to evaluate the next precomputed point. Interestingly, Algorithm 2 computes
the scalar multiplication using the (optimal) TNAF5 with only one auxiliary
point, namely the current precomputed point R. In comparison, the standard
TNAF5 requires 7 non-trivial (that is, different from P ) precomputed points.
Thus, for a completely negligible overhead (4 ECFRB), we reduced the memory
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consumption2 by a factor 7. Or, putting it in a different way, for the same memory
consumption as that of the TNAF3, our method is as fast as the TNAF5. Note
that since sequential precomputations are trivially possible for w = 2, 3, 4, our
technique is also applicable to the TNAF, TNAF2, TNAF3 and TNAF4.

4 Short Memory with Change-of-Basis

In the following we show how a mixed normal-polynomial basis approach allows
us to deploy the short memory method not only on hardware implementations
but also on general-purpose processors.

4.1 General Idea

The interest of the latter idea is practically limited by the fact that a nor-
mal basis is necessary in order to efficiently compute multiplications by τ i. In
software, normal basis implementations are much slower than polynomial basis
implementations. At this point, it would be interesting to take the best from
the two approaches: fast computations of Frobenius map with a normal basis
and fast field multiplications with a polynomial basis, and convert between the
two representations when necessary. This mixed approach was already used for
implementing a fast generator of pairs (k, kP ) for signature schemes [4], and for
defeating side channel attacks [16], but never to speed-up the scalar multiplica-
tion itself.

The general idea of our technique is to perform sequential precomputations
with a polynomial basis, but then, convert the auxiliary precomputed point Rp

to its normal basis representation Rn. After that, τ iRn can be computed with
only two cyclic shifts, for any i. The point Rn with shifted coordinates can be
converted back to its polynomial basis representation in order to perform point
additions with the polynomial basis.

We remark an interesting property of this approach: to convert a point Rn

represented with respect to the normal basis to its polynomial basis representa-
tion, one only needs the binary expansion of the coordinates of Rn = (xn, yn).
More precisely, the conversion to the polynomial basis is as follows: if the kth
bit of xn is 1, then add (i.e. xor) the kth line of the change-of-basis matrix to
xp. Of course, the same holds for yn and yp. As a consequence, it is not needed
to explicitly compute τ iRn: the knowledge original (unshifted) binary expansion
of xn and yn is sufficient to convert τ iRn to its polynomial basis representation.
Indeed, if the kth bit of xn is 1, we simply add the (k + i mod m) line of the
change-of-basis matrix to xp, and the same holds for yn and yp.

4.2 Short Memory TNAF5 with Change-of-Basis

Unlike the normal basis short memory method, we use two auxiliary points
instead of just one, in order to avoid additional conversions to the normal basis.
2 By memory consumption, we refer to non-trivial precomputed points: we do not

consider buffers, nor the base point or accumulators.
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More precisely, the auxiliary precomputed point is stored in its polynomial and
normal basis representations. Then, the average computational cost of the scalar
multiplication using Algorithm 3 is:

C(5)
1,cob =

m + a

6
· ECADDp +

(
m + a

6
+ 12

)
· COB + C(5)

0,p, (5)

where COB stands for the computational cost for changing the basis. Note that
the auxiliary precomputed point Rp is represented in affine coordinates, and
thus, it is possible to use mixed projective-affine additions formulas [6].

Algorithm 3. Short memory scalar multiplication with change of basis, w = 5

Input: Base point P , scalar d;
Output: Q = dP ;

1. compute d(5) = TNAF5(d); Q ← O;
2. for u following the sequence {1, 3, 11, 15, 5, 13, 7, 9} do

(a) Rp ← (u mod τ 5)P with affine coordinates, polynomial basis;
(b) Rn ← convert Rp to normal basis;
(c) for j from 0 to m + a − 1 do

i. if |d(5)
j | = u mod τ 5 then

A. Rp ← convert τ jRn to polynomial basis;
B. Q ← Q + sign(d(5)

j )Rp with polynomial basis, mixed coordinates;
(d) if u ∈ {3, 11, 5, 7} then Rp ← convert Rn to polynomial basis;

3. return Q;

On the one hand, in the original TNAF5 scalar multiplication computed with
a polynomial basis, the Frobenius map must be explicitly computed, requiring
3 · (m + a) squarings assuming projective coordinates. On the other hand, the
short memory method does not compute the Frobenius map explicitly, but in-
stead, several conversions to/from the polynomial basis and the normal basis are
needed: one each time the auxiliary precomputed point is updated (i.e. 8), one
before each point addition (i.e. (m + a)/6) and one when the new value of the
auxiliary point requires the previous auxiliary point (i.e. 4). Since squarings and
change-of-basis operations have a small computational cost compared to point
additions, we can expect the original TNAF5 and our method to have similar
running times. In fact, depending on the relative speed of squarings and change-
of-basis operations, the short memory method might be slightly slower or faster
than the TNAF5.

5 Comparisons and Properties

Finally, we discuss side channel attacks, generalize the computation strategy
described in Algorithms 2 and 3, consider the two cases of hardware and software
implementations, and show how the method compares with known techniques.
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5.1 Discussion on Side Channel Attacks

On low-end processors running cryptography, side channel attacks are a serious
threat. By re-grouping calculations involving the same precomputed point, the
short memory method is naturally weaker than other methods, leaking even
more information.

However, there are many situations where side channel analysis is not an is-
sue. Consider EC-DSA, for instance. On the one hand, the signature generation
should be protected against side channel attacks, as it involves secret parame-
ters. Additionally, the signature generation is based on one scalar multiplication
with known base point, which can be computed very efficiently thanks to comb
methods [15]. On the other hand, the signature verification involves compu-
tations with random points, which are much less efficient, and only publicly
available parameters. This is the ideal setting for the (unprotected) short mem-
ory method. Note that the short memory method does not combine well with
interleave methods, but on Koblitz curves, the benefit obtained from interleave
methods is small anyway, because point doublings are already replaced by the
efficiently computable Frobenius automorphism.

In some situations, the base point is random and the scalar should be kept se-
cret. Then, one can still benefit from the advantages of the short memory method
and in the same, protect the scalar multiplication against side channel attacks.
There are two types of side channel attacks based on power consumption analysis:
simple power analysis (SPA) and differential power analysis (DPA). In the frame
of SPA, the attack rely on one single power trace, whereas several power traces
are analyzed with the help of a statistical tool in the case of DPA. To thwart
SPA, one can use side channel atomicity, a technique virtually applicable to any
algorithm [3]. The basic idea of side channel atomicity is to assemble atomic
blocks which are indistinguishable by SPA, and implement every operation with
atomic blocks. DPA can also be defeated with adequate countermeasures: the
random exponent recoding technique applied to Koblitz curves [9] combines well
with our method.

5.2 Recoding and Calculation Strategies

For the sake of simplicity, we introduced our technique with a repeated right-to-
left scanning of the TNAFw in Algorithms 2 and 3. However, since τ multipli-
cations are computed with respect to a normal basis, the order of computations
does not matter: one can compute τ iP or τ−iP with only two cyclic shifts, and
the cost of the latter operation is independent from the cycle length i. In other
words, instead of computing right-to-left, one can compute left-to-right, or even
following a random re-ordering of the operations! Note that such alternative
computation strategies have no influence on efficiency: the auxiliary point R in
Algorithm 2, or Rp in Algorithm 3, is always represented with affine coordinates,
whereas the accumulator Q can be represented with projective coordinates such
as LD-coordinates. Therefore, one can always use mixed affine-projective formu-
las, independently from the computation strategy. In this sense, our technique
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1 -3 -1 30 0 0 0 0 0 01 -3 -1 30 0 0 0 0 0 0

+ - +-

R ← P

τ 10P
τ 3 τ 7τ 7 τ 3P

R ← 3P

τ 73P 3P

Q ← O

3P−τ 73P + 3P−τ 73P − τ 3P + 3P

τ 10P − τ 73P − τ 3P + 3P

Fig. 1. Right-to-Left Computation Strategy

1 -3 -1 30 0 0 0 0 0 01 -3 -1 30 0 0 0 0 0 0

+ - +-

R ← P

τ 10 τ 10P
τ−7τ−7 τ 3P

τ 7

R ← 3P

τ 73P 3P

Q ← O
τ 10P τ 10P − τ 3P τ 10P − τ 73P − τ 3P

τ 10P − τ 73P − τ 3P + 3P

Fig. 2. Left-to-Right Computation Strategy

differs from standard methods were a left-to-right computation strategy is nec-
essary when mixed addition formulas are used.

On-the-Fly Right-to-Left Strategy. In the standard approach, the scalar
is converted to the TNAFw using a right-to-left strategy whereas the scalar
multiplication is computed left-to-right. Thus, the scalar must be stored in both
of its original and TNAFw representations, wasting O(m) bits. With the short
memory method, we are free from the left-to-right constraint for computations,
and as a consequence, it becomes possible to recode the scalar on-the-fly, without
effectively storing the coefficients of the TNAFw. The idea is as follows: each
time the auxiliary precomputed point is updated, the recoding is performed
anew. For each individual recoding, additions (or subtractions) with the auxiliary
point (u mod τw)P are performed only when the corresponding coefficient of
the TNAFw is ±(u mod τw). Of course, one has to repeat the same recoding
several times, but the computational cost of the recoding process is generally
negligible compared to that of the scalar multiplication itself, and in the case of
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the TNAF5, the recoding must be calculated only 8 times, limiting the impact
of the redundancy overhead.

Randomized Computation Sequence. For a given precomputed auxiliary
point (u mod τw)P , the order of computations can be freely chosen. In fact, it can
even be randomized. For w = 5, there are some constraints on the precomputed
auxiliary points themselves: (3 mod τ5)P must be calculated before (11 mod
τ5)P , for instance. But for w < 5, one can compute the points (u mod τw)P
following any order, and then for fixed u, randomize the computation sequence
again. Re-ordering operations can be used in order to prevent side-channel or
fault attacks. However, this idea is based on temporal obfuscation: the order
of the operations is randomized, but not the operations themselves. Therefore,
alone, this technique might be insufficient to defeat side channel attacks, but
combined with other countermeasures, it provides higher security for free.

5.3 Hardware Implementation

In hardware, the cylic shift is virtually free: for example, it can be emulated with
a pointer on the least significant bit. Additionally, there are efficient normal ba-
sis multipliers for hardware implementations [14], and even when a polynomial
basis representation is required for interoperability with other systems, the con-
version from a normal basis to a polynomial basis representation can be carried
out without storing the change-of-basis matrix [10]. Thus, the natural choice
is a normal basis, where our method offers outstanding speed-ups with very
small memory requirements. Alternatively, by combining Frobenius expansions
and the point halving method, one can obtain a non-zero density of 2/7 with
no precomputations [1]. Table 3 summarizes the computational costs and mem-
ory requirements for precomputations of our technique, which has one auxiliary
precomputed point, the TNAF2 and the τ/halve method, which have no pre-
computed tables, and with the TNAF3 and the TNAF5, which have one and
seven precomputed points, respectively. Clearly, the short memory method out-
performs the TNAF2, TNAF3 and the τ/halve techniques. The TNAF5 is as fast
as the short memory, but requires seven points whereas our method needs only
one auxiliary point for precomputations, reducing the memory consumption for
precomputations by 85%.

5.4 Software Implementation

A polynomial basis implementation is usually preferred in software, because field
multiplications are much faster than when using a normal basis. However, the
two approaches can be combined by using a normal basis for computing the
Frobenius map and a polynomial basis for computing point additions.

In Table 4, we estimate the computational cost of the short memory method
with change-of-basis and compare it with standard TNAFw techniques, assuming
mixed affine-LD projective coordinates for the scalar multiplication and affine
coordinates for precomputations, and that the cost of field inversions, field squar-
ings and change-of-basis operation is equivalent to that of 10, 1/7 and 1 field
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Table 3. Speed and Memory Comparisons for Hardware Implementations

IF2163 IF2233 IF2283 IF2409 IF2571

TNAF2 54 add. 78 add. 94 add. 136 add. 190 add.

τ/halve 47 add. 67 add. 81 add. 117 add. 163 add.

TNAF3 42 add. 59 add. 72 add. 103 add. 144 add.
326 bits 466 bits 566 bits 818 bits 1142 bits

TNAF5 34 add. 46 add. 54 add. 75 add. 102 add.
2282 bits 3262 bits 3962 bits 5726 bits 7994 bits

Short Memory 34 add. 46 add. 54 add. 75 add. 102 add.
(Algorithm 2) 326 bits 466 bits 566 bits 818 bits 1142 bits

Table 4. Speed a and Memory Comparisons for Software Implementations

IF2163 IF2233 IF2283 IF2409 IF2571

TNAF2 543 M 776 M 942 M 1362 M 1901 M

TNAF3 437 M 620 M 750 M 1079 M 1502 M
42 bytes 60 bytes 72 bytes 104 bytes 144 bytes

TNAF4 389 M 541 M 650 M 923 M 1274 M
126 bytes 180 bytes 216 bytes 312 bytes 432 bytes

TNAF5 387 M 518 M 612 M 847 M 1150 M
294 bytes 420 bytes 504 bytes 728 bytes 1008 bytes

Short Memory 395 M 520 M 609 M 834 M 1123 M
(Algorithm 3) 84 bytes 120 bytes 144 bytes 208 bytes 288 bytes

a Assumptions for relative costs with multiplication M as reference: squaring
S ≈ M/7, change-of-basis COB ≈ M , inversion I ≈ 10M .

multiplications, respectively. Our estimations show that under our assumptions,
the short memory method is about as fast as the TNAF5, with a small advan-
tage for the TNAF5 for small bitlengths. For example, for the field IF2163 , the
TNAF5 is the fastest, but the difference with the short memory is only about 2%,
and the short memory method requires about 70% less memory. However, for
greater bitlengths, the short memory method is slightly faster than the TNAF5:
the overhead introduced by the change-of-basis operations is smaller than the
speed-up obtained from saving τ multiplications. Note that the situation may
be different in practical implementations, depending on the relative speed of
change-of-basis operations and polynomial basis squarings. In particular, an ef-
ficient change-of-basis method would definitely give the advantage to the short
memory method. The conventional change-of-basis techniques aim at achieving
interoperability between full normal basis implementations and full polynomial
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basis implementations [7]. In the case of the short memory method, we do not
use normal bases for computing field multiplications. In other words, we do not
need to use special normal bases such as optimal or Gaussian normal bases. In-
stead, one might look for normal bases with efficient conversion to polynomial
bases.

6 Conclusion

We proposed a novel technique for computing the scalar multiplication on Kob-
litz curves. Our method keeps the full power of precomputations without ef-
fectively storing all of the precomputed values. In the case of hardware imple-
mentations, our method is as fast as the optimal TNAF5, but reduces memory
consumption for precomputations by 85%. In the case of software implementa-
tions, again, the running time of our method is roughly the same as the TNAF5,
but with 70% less memory for precomputations. Using our technique, one can
deploy the optimal table size of the TNAFw without sacrificing much memory
to store it. Therefore, for environments with very scarce resources, in software or
hardware, the short memory method offers significant improvements compared
to known schemes, using the available memory where it is truly needed.
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Abstract. Implementing public-key cryptography on platforms with
limited resources, such as microprocessors, is a challenging task. Hard-
ware/software co-design is often the only answer to implement the com-
putationally intensive operations with limited memory and power at an
acceptable speed. This contribution describes such a solution for Hyper-
elliptic Curve Cryptography (HECC). The proposed hardware/software
co-design of the HECC system was implemented and co-simulated using
the GEZEL design environment [3]. As a low-cost platform, we chose an
8-bit 8051 microprocessor to which one small hardware co-processor was
added for field multiplication. We show that the Jacobian scalar multi-
plication can be computed in 2.488 sec at 12 MHz on this platform if a
minimal hardware module is added i.e. a hardware multiply-add unit.
This optimal solution provides a factor of 26 speed-up over a software-
only solution.

Keywords: HECC, GF(2m), genus 2 curves, hardware/software co-
design, embedded implementation.

1 Introduction

Public-key cryptosystems are present in almost all spheres of digital communi-
cation e.g. for financial, governmental and medical applications; they form an
essential building block for network security protocols (e.g. SSL/TLS, IPsec,
SSH). The best-known and most commonly used public-key cryptosystems are
based on factoring (RSA) and on the discrete logarithm problem in GF(p) (Diffie-
Hellman, ElGamal, Schnorr, DSA) [18]. They allow secure communications over
insecure channels without prior exchange of a secret key and they also enable
digital signatures. Elliptic Curve Cryptography (ECC), which was proposed in
the mid 1980s by Miller [20] and Koblitz [14], is based on a different algebraic
structure. ECC offers shorter certificates, lower power consumption and better
performance on some platforms. Besides that, ECC offers more “security per
bit” as no sub-exponential algorithm is known that solves the discrete logarithm
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problem in this group. However, only in the past few years has ECC started
replacing some of the RSA applications.

In 1988 Koblitz suggested to use the generalization of Elliptic Curves (EC)
for cryptography, the so-called Hyperelliptic Curves (HEC) [15]. While ECC
applications are highly developed in practice, the use of HEC is still of pure
academic interest. However, one advantage of HECC resides on the fact that
the operand size for HECC is at least a factor of two smaller than the one of
ECC. More precisely, while typical bit-lengths for ECC are at least 160 bits, for
HECC this lower bound is around 80 bits (in the case of genus 2 curves). This
fact makes HECC a very good choice for platforms with limited resources.

Almost all existing HECC implementations consider binary fields and curves
of genus two or three; this choice is motivated by security reasons [9]. Software
implementations were developed on general purpose processors and on embedded
microprocessors e.g. on an ARM [21,26] and some research has been performed
on a hardware implementation. However, this article describes the first HECC
implementation using a hardware/software co-design. More precisely, we have
implemented the HECC divisor multiplication on the 8051 microprocessor, which
uses a small hardware co-processor to optimize the performance. This is the first
step towards exploring all possibilities for hardware/software co-designed HECC
implementations. Such an investigation is of special interest as embedded devices
are believed to be of vital importance for a broad area of pervasive computing
such as sensor networks and wireless applications.

First we examined the pure software i.e. C/assembly implementations. Next
some small extra hardware was added, which facilitates the field operations,
in particular the inversion and multiplication in the binary field. We conclude
that even with very limited hardware resources one can obtain an attractive
performance. We used formulae of Byramjee and Duquesne [8] to achieve opti-
mized divisor doubling operation. For the optimal hardware/software co-design
we used GEZEL as a design environment. GEZEL is especially suitable for the
exploration of domain-specific coprocessor and multiprocessor micro architec-
tures as it can provide cycle-true hardware/software co-simulation with various
embedded core instruction set simulators.

The remainder of this paper is organized as follows. Section 2 lists some rele-
vant previous work in HECC on embedded platforms. In Sect. 3 some background
information on HECC is given. Details of our implementation are specified in
Sect. 4 and results are listed in Sect. 5. Some directions for future work and
conclusions are given in Sect. 6.

2 Previous Work

Algorithms for HECC and implementations have been studied intensively in the
past years. A significant amount of work has been performed on investigating the
formulae for the group operation [17,24,22,8]. Explicit formulae for genus 2 curves
are given by Lange [17] for arbitrary fields and for various types of coordinates.
There exist practical results for both software platforms (general purpose or
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embedded processor) [26,21] and hardware devices, such as FPGAs [7,13]. The
most detailed and complete reference dealing with software as well as hardware
implementations is [24].

For embedded processors, a large amount of work has been performed for
the ARM platform [26,23,4,21]. Pelzl et al. [21] have implemented the group
operation of genus 2 and 3 for HECC on an ARM7 processor. They compared
the results with ECC implementation (with corresponding security) and showed
that HECC performance is comparable to the one of ECC. The performance for
divisor scalar multiplication on the ARM microprocessor for genus 2 was further
optimized in [23] and compared to genuses 3 and 4. They proved that genus 3 is
the fastest, requiring less than 70 ms on an ARM7 running at 80 MHz. The work
of Wollinger et al. [26] considered not just the ARM7TDMI but also the ColdFire
and a PowerPC. In addition, they provided the first thorough comparison of ECC
and HECC on those platforms.

The first complete hardware implementation of HECC was given by Boston
et al. [7]. Wollinger et al. [25] investigated HECC implementation on a VLSI
coprocessor. They used projective coordinates and completed their research on
VLSI platforms started in [6,5]. They compared co-processors using affine and
projective coordinates and concluded that the latter should be preferred for
hardware implementations. They used a curve of a special form (y2 + xy =
x5 +f1x+f0), which allowed for more optimized formulae. In [13] three different
architectures on a FPGA have been examined for vast area of applications.

With respect to the platform, we mention here other relevant experiences
with curve-based cryptography. Woodbury et al. [27] showed that EC point
multiplication can be performed on an 8051 microcontroller in less than 2 sec
as a pure software solution. However, they used a 134-bit OEF at lower security
level. Gura et al. [10] compared ECC and RSA on 8-bit CPUs and proved that
Public-key Cryptography is viable on small devices.

For hardware/software co-design the only relevant work that we are aware
of is the one of Kumar and Paar [16]. They implemented ECC on an 8-bit AVR
microcontroller with some extra hardware for field multiplications. They show
that a 163-bit point multiplication can be calculated in 0.113 sec with a micro-
controller running at 4 MHz. We can compare this to our solution as both imple-
mentations are for similar platforms and the fields offer the same level of security.

3 Hyperelliptic Curve Cryptography (HECC)

We now present the mathematical background for hyperelliptic curves including
the algorithms for efficient arithmetic in the Jacobian group. More details on
the theory of hyperelliptic curves can be found in [19].

3.1 Hyperelliptic Curves

Let GF(2m) be an algebraic closure of the field GF(2m). Here we consider a hy-
perelliptic curve C of genus g = 2 over GF(2m), which is given with an equation
of the form:
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C : y2 + h(x)y = f(x) in GF(2m)[x, y], (1)

where h(x) ∈ GF(2m)[x] is polynomial of degree at most g (deg(h) ≤ g) and
f(x) is a monic polynomial of degree 2g + 1 (deg(f) = 2g + 1). Also, there
are no solutions (x, y) ∈ GF (2m) × GF (2m) which simultaneously satisfy the
equation (1) and the equations: 2v + h(u) = 0, h′(u)v − f ′(u) = 0. These points
are called singular points. For the genus 2, in the general case the following
equation is used y2 + (h2x

2 + h1x + h0)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0.

For our implementation we used the so-called type II curves [8], which are defined
with h2 = 0, h1 �= 1. In particular, the authors recommended to use curves of
the form: y2 +xy = x5 + f3x

3 +x2 + f0, since they combine a simpler arithmetic
with a good security level.

A divisor D is a formal sum of points on the hyperelliptic curve C i.e.
D =

∑
mP P and its degree is degD =

∑
mP . Let Div denotes the group of all

divisors on C and Div0 the subgroup of Div of all divisors with degree zero. The
Jacobian J of the curve C is defined as quotient group J = Div0/P . Here P is the
set of all principal divisors, where a divisor D is called principal if D = div(f),
for some element f of the function field of C (div(f) =

∑
P∈C ordP (f)P ). The

discrete logarithm problem in the Jacobian is the basis of security for HECC. In
practice, the Mumford representation according to which each divisor is repre-
sented as a pair of polynomials [u, v] is usually used. Here, u is monic of degree 2,
degv < degu and u|f −hv−v2 (so-called reduced divisors). For implementations
of HECC, we need to implement the multiplication of elements of the Jacobian
i.e. divisors with some scalar.

3.2 Algorithms for HECC

Divisor Multiplication. The divisor scalar multiplication is achieved by use
of divisor addition and doubling. We used the NAF algorithm to reduce the
number of additions.

Divisor Addition and Doubling. Let the quintuple [U1, U0, V1, V0, Z] stand
for [x2 + u1x + u0, v1x + v0] = [x2 + U1

Z x + U0
Z , V1

Z x + V0
Z ]. This form allows us to

complete both point operations without inversion. Only one inversion and four
multiplication are required at the end to convert back from projective to affine
coordinates. We used the formulae from [8] for doubling and we used the same
approach to get formulae for addition in the case of mixed coordinates. The
addition for type II curve has the same complexity as the one of Lange [17] i.e.
it takes 44M , but doubling has been further optimized to 31M (here M denotes
number of multiplications/squaring). The formulae for the addition are given in
Table 1. The numbers in parenthesis correspond to the case of mixed addition.

Finite Field Arithmetic. We used the polynomial basis representation with
the irreducible polynomial being pentanomial in GF(283). Each element of the
field can be represented as an 11-byte word. The field addition of two vectors in
hardware or software in GF(2m) is simply the xoring of the two vectors. The field
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Table 1. Formulae used for the divisor addition

Step Calculations # mult.
1 Precomputation and resultant r: 12M(6M)

Z = Z1 · Z2, Ũ21 = Z1 · U21, Ũ20 = Z1 · U20,
Ṽ21 = Z1 · V21, Ṽ20 = Z1 · V20,
t1 = U11 · Z2 + Ũ21, t2 = U10 · Z2 + Ũ20,
t0 = U11 · t1 + t2 · Z1, r = t0 · t2 + t21 · U10

2 Compute almost inverse:
t1 = inv1, t3 = inv0

3 Compute almost s: 8M(7M)
t4 = V10 · Z2 + Ṽ20, t5 = V11 · Z2 + Ṽ21,
w2 = t0 · t4, w3 = t1 · t5;
s1 = (t0 + Z1 · t1) · (t4 + t5) + w2 + w3 · (Z1 + U11);
s0 = w2 + U10 · w3

4 Precomputations: 9M

R = Z · r, s0 = s0 · Z, s3 = s1 · Z, R̃ = R · s3;

S3 = s3
2, S = s0 · s1, S̃ = s3 · s1,

˜̃
S = s0 · s3,

˜̃
R = R̃ · S̃;

5 Compute l: 3M

l2 = S̃ · Ũ21, l0 = S · Ũ20, l1 = (S̃ + S) · (Ũ21 + Ũ20)

+l2 + l0, l2 = l2 + ˜̃S;
6 Compute U’: 17M

U0
′ = s0

2 + s1
2 · t1 · (t1 + Ũ21) + t2 · S̃ + R · [t1 · r + s1 · Z];

U1
′ = S̃ · t1 + R2, l2 = l2 + U1

′,
t4 = U0

′ · l2 + S3 · l0, t5 = U1
′ · l2 + S3 · (U0

′ + l1);
Z′ = R̃ · S3, U1

′ = R̃ · U1
′, U0

′ = R̃ · U0
′;

7 Compute V’: 2M

V0
′ = t4 + ˜̃R · Ṽ20;

V1
′ = t5 + ˜̃R · (Ṽ21 + Z);

total 51M(44M)

multiplication is the most costly operation in our system, since it is performed
thousands of times during the course of a single divisor multiplication. While
the inversion algorithm is actually more complex, it is only performed a single
time (for the case of projective coordinates) and hence it is not the bottleneck
in our initial implementation. We discuss our choices for field multiplication in
more detail in Sect. 4.

4 Implementation

4.1 8051 Microprocessor

Here we give a brief overview of the 8051 microprocessor platform. An 8051
is an 8-bit microcontroller originally designed by Intel that consists of several
components: a controller and instruction decoder, an ALU, 128 bytes of internal
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memory (IRAM), up to 64K of external RAM (XRAM) addressed by a 16-
bit DPTR register, and up to 64KB of external program memory or 4KB of
internal program memory (ROM). The 8051 also has 128 bytes of special function
registers (SFRs), which are used to store system values such as timers, serial
port controls, input/output registers, etc. The architecture is shown in Figure 1,
which is based on the Dalton 8051 core from UC Riverside [2].

Decoder

External
RAM

Co−Processor

P0−P3
I/O ports

RAM/SFRs

Internal

ROM

ALU

ProgramController

8051 CORE

Fig. 1. The architecture of the 8051 microprocessor

An external RAM module (XRAM) can be attached to the 8051 core when
the 128 bytes of internal RAM are insufficient, which is often the case in public-
key cryptosystems. The 8051 interfaces to the outside world via a serial port as
well as four input/output register ports, labeled P0 through P3.

It also should be noted that the 8051 in its original form relies on a clock
division principle. That is, the external clock entering into the device is actu-
ally divided by 12 to produce the system clock. Thus, a 12-MHz external clock
would produce an 8051 with a 1-MHz machine clock cycle, with most instruc-
tions requiring 1 or 2 machine cycles. Newer 8051 cores attempt to reduce the
clock division [1]. The clock division principle can serve as an advantage to co-
designed systems in that the coprocessor circuitry can inherently operate at 12x
the internal 8051 machine rate.

4.2 Various Implementation Options

The paper presents two types of HECC implementations on the 8051 processor.
The first type is a pure software implementation - either a pure C model operat-
ing on the 8051 or a mixed C/assembly model in which most of the functions are
performed in C while the GF(283) finite field multiplier is performed in assem-
bly. The second type is a mixed hardware/software model in which some of the
functions are performed in C while the GF(283) finite field operations (multipli-
cation/addition/inversion) are performed in hardware. The hardware operators
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and the 8051 are connected by a memory-mapped interface, over the 8051’s P0,
P1, and P2 I/O port interfaces.

Software C/ASM Implementation. The first implementation is a pure C
implementation, compiled onto the 8051 processor using the Keil suite. This
implementation uses a single function in C to combine the multiplication and
reduction functions. As a first improvement the multiplication routine is replaced
by an assembly code.

Multiplication: In the software implementation, we used a modified form of
Algorithm 4 of [11] to implement fast software multiplication. The algorithm is a
fast comb-based multiplication method with windows implemented for a 32-bit
processor with window size of 4. Based upon initial simulation results, for an
8-bit processor, we found that a window size of 2 provides faster performance.

Reduction: To reduce the multiplication result by the irreducible polynomial,
a fast reduction technique was used. This technique was based on Algorithm 6
of [11]. We have used a similar approach but modified the algorithm to implement
reduction using our GF(283) pentanomial and a word-size of 8 bits.

Inversion: The inversion function for this case is implemented as the Extended
Euclidean Algorithm.

Hardware/Software Implementation. The second type of HECC imple-
mentation is a hardware/software co-design i.e. software routines were enhanced
with binary field operations in hardware. In the first attempt we implemented
a data path which includes a hardware GF(283) multiplier. Figure 2 shows this
data path. The data IO ports from the 8051 processor are 8-bits long and the
multiplication is performed on the GF(283) operands. There is an instruction reg-
ister that controls the HW data path from the 8051 processor. The supported
instructions for the data path of Figure 2 are as shown in Table 2:

Table 2. Instructions for the data path

Instruction Definition
LOADA Load 8-bits of data from the 8051 to Register A of HW data path
LOADB Load 8-bits of data from the 8051 to Register B of HW data path
DOMULT Perform GF(283) mult. on A and B and put the results in C
GETC Return 8-bits of data from Register C of HW data path to the 8051

Due to the fact that the data is transferred back and forth from the CPU
to the HW multiplier there is a lot of I/O overhead. In order to optimize the
total performance we tried to reduce the I/O transfers with minimum additional
memory storage added to the data path. The key observation is that in the
schedule of divisor’s double and add operations (see Table 1) there are many
expressions of the following form: k1 = f3 · t0 + t1.
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Initially for such expression, f3 and t0 were moved to the hardware multiplier,
the multiplication was performed in the hardware, then the result was returned
back to the CPU and the addition with t1 was performed in the SW. In order to
speed up this expression the hardware multiplier was replaced with a GF(283)
“multiply-and-add” data path. For this purpose a hardware adder and a feedback
line that can keep the result of the multiplication in hardware was added to the
original data path and therefore, the number of I/O transfers decreased with
not much of extra hardware. For the new datapath (Figure 3), the instructions
shown in Table 3 were added.

Table 3. The new instructions for the data path

Instruction Definition
MOVE_CTOB Move the data in Register C to Register B
DOADD Perform GF(283) addition on A and B and put the results in C

Moreover, in the software routines that implement the divisor’s double and
add operations, we moved the coprocessor’s instructions up and down in the
schedules of the divisor’s operations, so that we do not have to repeatedly load
the same values into the internal register A of the data path. The performance
gain of these optimizations will be provided in the next section.

In addition, for the best performance in the final HW/SW implementation
of HECC on the 8051 processor, the GF(283) inversion operation was performed
in HW. The same HW datapath is used to implement the inversion algorithm
which consists of repeated multiplications. The details of the hardware GF(283)
multiplication and inversion are given after introducing our design environment.

Design Environment: At this stage we briefly introduce the design environ-
ment GEZEL [3] in which we model the co-designed system. In our applica-
tion, we used the Dalton 8051 ISS to perform cycle-accurate simulations for our
software only (C and C/ASM) implementation. For the hardware/software sys-
tem, we designed our co-processor multiplier using GEZEL’s hardware descrip-
tion language. The language syntax is primarily used to describe the FSMD
(finite state machine plus datapath) system model. Thus, a datapath for the
co-processor was designed and its corresponding control logic was also designed
in the GEZEL language.

After the design of the hardware co-processor, we attached the co-processor
to the input/output ports of the 8051 ISS (P0-P3) using the GEZEL design en-
vironment, and then performed timing and functional verification. GEZEL gave
us the ability to co-simulate the 8051 with clock division circuitry as it interfaced
with a 12 MHz hardware module in a cycle-exact manner. Upon verification of
the functionality of the multiplier co-processor, the GEZEL code was automat-
ically converted to RTL VHDL and input into Synplicity for FPGA synthesis.

Multiplier: In the first version of the multiplier, the multiplier implements
a finite field multiplication and simultaneously a corresponding reduction in a
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Fig. 2. Data path for the initial design

Mult

b

a

c

din
dout

8

84

84

84

8

Add
84

ins
8

Fig. 3. Data path of the new co-processor

bit-serial implementation. A bit-serial implementation was chosen for area com-
pactness as well as to take advantage of the 12x increase in effective clock rate
of the co-processor over the 8051 core. In the second version, the multiplier was
enhanced with the additional “multiply-and-add” instruction and datapath ele-
ment, as described previously.

Inversion: Inversion in binary fields can be replaced by a chain of multiplications
(and squarings). It is of interest if squarings are faster than multiplication such
as for normal bases. First by means of Fermat’s little theorem we have: a−1 =
a2m−2 = (a2m−1−1)2, for all a ∈ GF(2m). The technique to compute this in
optimal way is the basis for the idea of Itoh and Tsujii [12]. Their method is
especially suited for normal basis but can be applied on polynomial basis as well.

Here we consider the case for m odd, so m − 1 is even. Then we can write:

a2m−1−1 =a(2
m−1

2 −1)(2
m−1

2 +1) =(a2
m−1

2 −1)2
m−1

2 a2
m−1

2 −1. In our case for GF(283)
we get: a−1 = a283−2 = (a282−1)2 = ((a241−1)2

41
a241−1)2, which means that we

need to use formula for a2m−1−1, but now m− 1 is odd. In this case: a2m−1−1 =
aa2m−1−2 = a(a2m−2−1)2.

By repeated use of these formulae we can compute the inverse by only 90M .
The total number of multiplications (or squarings) required to compute an in-
verse in GF(2m) is given with:  log2(m− 1)!+ w(m− 1)− 1. Here w(k) denotes
the Hamming weight of some positive integer k.



Hardware/Software Co-design for HECC on the 8051 μP 115

5 Results

Here we give detailed results on all three platforms and we discuss them further.
In Table 4 the timings for all finite field operations are given for hardware and
software. Timings for all basic operations are shown and in the last row, the
“multiply-and-add” operation is also added. One can notice that inversion in
software takes a very long time because it is implemented using the Extended
Euclidean Algorithm. The software implementation of inversion by means of
Fermat would be already much faster, but we decided to move this operation in
hardware anyway. Namely, we concluded that although our software implemen-
tations could possibly be further optimized, it would still be difficult to achieve
an efficient HECC implementation.

Another observation is that the numbers for addition and multiplication in
hardware are the same. The reason for that is because the majority of the time for
multiplication and addition on hardware is spent on the IO transfers. Therefore,
the time to perform single multiplication (83 cycles) or an addition (1 cycle) is
not more than even one 8-bit IO transfer from 8051 to the accelerator. Moreover,
this time (2.3 ms) is also very close to the time it takes to do ab + c (2.5 ms),
and this is for the same reason as well. However, the fact that this operation
is used repeatedly allowed for a speed-up in the new datapath. Sizes of XRAM
and ROM are given in bytes (B).

Table 4. Implementation results for operations in GF(283) for hardware and software
routines

Operation Perf. [
 Cl. Cyc.] Perf. [ms]@12MHz XRAM [B] ROM [B]
Addition (SW) 38 K 3.2 54 608
Multiplication (SW) 650 K 54.1 122 2065
Inversion (SW) 467.2 M 38.9 K 160 2383
Addition (HW) 28.2 K 2.3 53 934
Multiplication (HW) 28.2 K 2.3 53 934
Inversion (HW) 788.5 K 65.7 75 1835
ab + c (HW) 30.5 K 2.5 44 942

The results for the scalar multiplication of divisor for various implementation
options are given in Table 5. FPGA area is given in number of LUTs without
XRAM and ROM which are specified separately. As can be seen in Table 5, a
significant increase in performance is provided by moving the finite-field mul-
tiplication from C to assembly, as shown in the first two rows. An additional
improvement is made when the multiplication is moved into hardware; however
at this point the timing does not improve dramatically because at this point
the inversion algorithm (rather than the finite-field multiplication) is the critical
path element of the system. Moving the inversion into hardware rapidly reduces
the timing (from 52 to 4.1518 seconds). An additional 40% timing reduction oc-
curs after the point operation signal flow graphs are analyzed and manipulated,
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Table 5. Implementation results for divisor multiplication in GF(283) for all three
platforms

FPGA XRAM ROM Perf.[s]
Implementation [
 LUTs] [Bytes] [Bytes] @12MHz
C (Inversion in SW) 3300 820 11754 191.7
C+ASM(Inversion in SW) 3300 820 12284 64.9
C+HW multiplier 3600 820 11754 52
(Fig. 2-Inversion in SW)
C+HW multiplier 3600 927 12789 4.1518
(Fig. 2-Inversion in HW)
C+HW multiplier 3781 936 11524 2.4880

(Fig. 3-Inversion in HW)

and the new “multiply-and-add” operation is created and used. From this table
it can also be seen that the number of LUTs does not change whether inversion is
performed in hardware or software. This is due to the fact that even if inversion
is done in software, the same accelerator is used for field multiplication.

Now we compare our performance results with other work on embedded
processors. Table 6 shows that our result features a practical HECC implemen-
tation in constrained environments. First, it should be mentioned that it is ex-
tremely difficult to compare the performance of cryptographic primitives on dif-
ferent embedded processors, since each processor presents a unique architecture
and memory structure. The discussion below is primarily to reference prior art.

The first two references relate to the ARM7, which is a 32-bit platform and
features completely different architecture than the 8051. Even so, the second
reference is of the same order as ours using frequency scaling for rough normal-
ization. The most suitable comparison to this work is [16] and [10]. Gura et al.
achieve the shown performance using a “faster” 8051, i.e. an 8051 whose clock
division was much less than 12x. They also demonstrate the well-known fact
that the AVR is much faster than the 8051 (though exactly how much faster
is subject to debate). This provides perspective when comparing to the ECC
implementation of Kumar and Paar [16].

Table 6. Implementation results for divisor multiplication on various embedded plat-
forms

Reference PKC Field Platform Frequency [MHz] Performance [ms]
[23] HECC GF(283) ARM7 80 71.56
[4] HECC GF(280) ARM7 80 374
[16] ECC GF(2163) AVR 4 113
[10] ECC GF(2160) 8051 12 4580
this work HECC GF(283) 8051 12 2488
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6 Conclusions and Future Work

This paper shows that even on a small 8-bit processor one can implement hy-
perelliptic curve cryptography efficiently. We have designed a small hardware
module that results in a significant speed-up compared with a software-only so-
lution. We believe that hardware/software co-design offers a new alternative for
low-power and low-footprint devices. We plan to explore other trade-offs between
hardware and software in order to find the best partition. Additional options can
be made available by exploiting parallelism between HECC operations.
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liptic and hyperelliptic curves on embedded μP. ACM Transactions on Embedded
Computing Systems, 3(3):509–533, 2004.

27. A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart-
cards without coprocessors. In Proceedings of Fourth Smart Card Research and
Advanced Applications (CARDIS 2000) Conference, 2000.



SHARK: A Realizable Special Hardware Sieving
Device for Factoring 1024-Bit Integers

Jens Franke1, Thorsten Kleinjung1, Christof Paar2, Jan Pelzl2,
Christine Priplata3, and Colin Stahlke3

1 University of Bonn, Department of Mathematics,
Beringstraße 1, D-53115 Bonn, Germany

{franke, thor}@math.uni-bonn.de
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Abstract. Since 1999 specialized hardware architectures for factoring
numbers of 1024 bit size with the General Number Field Sieve (GNFS)
have attracted a lot of attention ([Ber], [ST]). Concerns about the feasi-
bility of giant monolytic ASIC architectures such as TWIRL have been
raised. Therefore, we propose a parallelized lattice sieving device called
SHARK, which completes the sieving step of the GNFS for a 1024-bit
number in one year. Its architecture is modular and consists of small
ASICs connected by a specialized butterfly transport system. We esti-
mate the costs of such a device to be less than US$ 200 million. Because
of the modular architecture based on small ASICs, we claim that this
device can be built with today’s technology.

Keywords: Integer factorization, GNFS, lattice sieving, RSA 1024 bit,
special hardware.

1 Introduction

The General Number Field Sieve (GNFS) is asymptotically the best known al-
gorithm to factor numbers with large factors. In practice it seems to be the best
algorithm for both software and hardware for factoring 1024-bit numbers, such
as they appear in RSA based cryptographic protocols. The GNFS has two expen-
sive parts: the sieving part and the matrix step. This paper describes SHARK, a
specialized hardware architecture which completes the sieving step of the GNFS
for a 1024-bit number in one year. It is much cheaper than general purpose hard-
ware that solves the same problem (e.g. personal computers). The architecture
consists of 2300 identical isolated machines sieving in parallel. In the following
we describe one of these machines.

We estimate the costs of one machine to be US$ 70 000. It uses lattice sieving.
The actual sieving is done in very fast accessible memory (“cache”). If this
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memory would be extremely cheap, we could construct a machine that sieves in
some extremely large memory chip. Since this kind of memory is expensive we
only use 32 MB of sieving cache memory.

The sieving area is split into many small parts such that each part fits in
the sieving cache. After the sieving of one small part is completed, the machine
moves on to the next part until the whole sieving area has been scanned.

The tricky part is to sort the sieving contributions such that all sieving con-
tributions for a certain part are loaded into the sieving cache just before the
sieving of that part starts. To achieve this, the data produced by the lattices
corresponding to the larger primes of the factor base are sent through a special-
ized transport system with butterfly topology.

The output of the sieve consists of potential sieving reports that still need
to be checked for smoothness. This is done (after a quick compositeness test) by
special hardware devices using the Elliptic Curve Method (ECM). The algorithm
has been adapted for hardware implementations (see [FKPPPSS]). The use of
ECM in special hardware is preferable for lowering the costs of the machine.
However, in this paper we use a choice of parameters with a moderate ECM
support in order to focus on the sieving part of the machine. There are better
choices with much more ECM, as indicated at the end of Section 3. Notice
that the importance of using special hardware for factoring the potential sieving
reports grows with the bit length of the number to be factored.

The estimated costs of computing power for factoring 1024-bit numbers have
been derived from software experiments. Together with the experience from re-
cent factoring records in software (see [RSA576] and [RSA200]), this leads to a
realistic choice of parameters and good estimates for the amount of computing
power and storage needed by each part of the machine.

Section 2 summarizes the necessary background on the GNFS and, in par-
ticular, on lattice sieving. It also discusses parameter choices. The SHARK ar-
chitecture is introduced in Section 3 and an overview of the whole machine
is given. A detailed description of the hardware modules and a cost estimate
is presented in Section 4. We finish with some conclusions and remarks in
Section 5.

2 The General Number Field Sieve and Lattice Sieving

In GNFS we are given two homogeneous polynomials Fi ∈ ZZ[X, Y ], i = 1, 2,
satisfying certain conditions. The task of the sieving step is to collect sufficiently
many coprime pairs of integers (a, b), b > 0, such that both integers Fi(a, b)
decompose into prime factors smaller than a given bound L. Such pairs (a, b)
are also called relations. The number of relations needed depends on the bound
L. Collecting 2π(L) ≈ 2L

log L relations is usually far more than enough. For more
details on GNFS see [LL].

The collection of relations is usually done by a combination of a sieving
technique and a method for factoring smaller numbers, e.g. ECM or MPQS.
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For this purpose we choose two factor bases Fi each consisting of pairs (p, r),
where p < Bi is a prime and r an integer such that p divides Fi(a, b) whenever
p | a − br. The sieving technique identifies pairs (a, b) such that both values
Fi(a, b) are divisible by many primes < Bi. The cofactors (Fi(a, b) divided by all
prime factors < Bi) are subsequently handled by a factoring method for small
numbers. If both decompose into prime factors < L a relation is found.

Our proposed sieving device will carry out the collection of relations by lattice
sieving in the way described in [FK] (see also The lattice sieve by J.M. Pollard
in [LL]). Let the dimensions of the sieving rectangle be I × J and let (q, s) be a
special q, i.e. q is a prime and s an integer such that q divides F1(a, b) whenever
q | a − bs. We consider the lattice Λ(q,s) := {(α, β) ∈ ZZ2 | α ≡ βs (mod q)}
associated to (q, s), calculate a reduced basis (a1, b1), (a2, b2) of Λ(q,s) and define
the sieving rectangle to consist of the points i(a1, b1) + j(a2, b2) for − I

2 ≤ i < I
2

and 0 < j ≤ J .
The factor base elements (p, r) with p ≤ I have to be adapted to the lattice

given by (q, s), yielding (p, r̃). Then we proceed with (p, r̃) the same way as in
line sieving. The factor base elements (p, r) with p > I are handled differently.
First, we transform the elements to obtain vectors v and w which allow us to
quickly identify the points of the intersection of the sieving rectangle and the
lattice Λ(p,r) corresponding to (p, r). This is done by starting at the point (0, 0)
and continuing from there by a sequence of additions of either v or w or v + w
by a simple rule as described in [FK]. At each of these locations we have to add
a contribution of log p to the sieving array. We are interested in those points of
the sieving array where the sum of all contributions is bigger than some bound.

In GNFS we have to perform two sieves, an algebraic sieve and a rational
sieve. Moreover, we perform a trial division sieve which is a modification of
[GLM] described in [FK].

For estimating the costs of a factorization of a 1024-bit number we use the
following parameters which are based on the polynomial pair of degree 5 and 1
of [ST]. The factor base bounds are B1 = 4 · 1010 on the algebraic side (1.7 · 109

prime ideals) and B2 = 2 · 1010 on the rational side (9 · 108 prime ideals). The
size of the sieving rectangle is 220 × 219. If a point of the sieving rectangle
passes both sieves and both cofactors are at most 2125, we check for smoothness
(and aborting as soon as it fails) by quick compositeness tests and ECM. If
this is successful and all factors are at most L = 242 we obtain a relation. We
will do lattice sieving for all 3.7 · 109 special q in [4 · 1010, 1.33 · 1011] which we
estimate to yield 2.7·1011 relations. The last number was obtained by integrating
smoothness probabilities over sieving rectangles. In the whole process, about
1.7 · 1014 numbers are processed by ECM.

If one desires a smaller matrix, more relations are needed. In this case, we
propose to do lattice sieving for all 4.4 · 109 special q in [4 · 1010, 1.5 · 1011] which
we estimate to yield 3.1 · 1011 relations. This increases the number of machines
needed for the sieving from 2300 to 2800.

As for cost estimates for other sieving devices the costs will be reduced if one
spends more effort in finding a good polynomial pair.
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3 SHARK – Architectural Overview

The SHARK machine consists of parts I, II, III and a transport system (see
Figure 1). The sieving area is split into small parts consisting of 214 lattice
points. For the sieving process one byte per point has a sufficient precision to
sum up the logarithms of the primes. Therefore, sieving one part is done in
16 kB of fast accessible memory (comparable to the first level cache of a general
purpose CPU).

III III· · · 1024 · · ·

transport system with
butterfly topology

III’ III’

II I

output

II I

output

· · · 1024 · · ·

�� ��

�� ��

�� ��

�� ��

�� ��

Fig. 1. High-Level Schema of the SHARK Sieving Machine

We split the factor base into small, medium and larger primes which will be
dealt with in the three different parts of the machine. Part III of the machine
takes care of the larger primes, extracts the necessary data for the sieving process
and sends it through a specialized transport system with butterfly topology. The
transport system sends the data only to that part of the machine where it is
needed. Part III has 1024 small units working in parallel, each dealing with just
1/1024 of the sieving area. Therefore, the transport system has 1024 inputs.

Part II of the machine processes the medium primes. Since the lattices corre-
sponding to these primes are much denser, their data do not need to be sent to
all parts of the machine, but can be sorted locally. As visible in Figure 1, part II
consists of 1024 small parts, each dealing locally with a small part of the sieving
area. These 1024 parts do not communicate among each other.

Part I of the machine consists of 1024 small local units that do not communi-
cate among each other. It generates the very dense lattices for the small primes
of the factor base and sieves with these data on 214 lattice points. Additionally,
part I collects the sieving data from part II and part III that are necessary for
the sieving on the 214 lattice points and sieves with these data. The survivors
of this small part of the sieving area are potential sieving reports, and they are
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sent as output to an ECM unit to be checked for smoothness. Then, part I turns
to the next 214 lattice points.

Within one year, 2300 such machines will output about 1.7 · 1014 potential
sieving reports that need to be tested for smoothness, e.g. with the Elliptic Curve
Method (ECM). This could be done by conventional PCs within the required
time.

As soon as special hardware for ECM becomes available (see [FKPPPSS]),
adapting the parameters of SHARK can save up to 50% of the overall costs,
depending on the efficiency of the ECM implementation. E.g. increasing the
bound for cofactors from 2125 to 2163 we only need 1300 machines producing
1.3 · 1016 potential sieving reports to be processed by ECM.

4 Description of the SHARK Modules

The key to the modular architecture is the partitioning of the sieving area and
of the factor base. This algorithmic aspect of the sieving is explained in the first
subsection, whereas the three parts of the machine (I, II and III), reflecting the
partitioning of the factor base, are described subsequently.

4.1 Sieving

In GNFS we have to perform two sieves: an algebraic sieve and a rational sieve.
Notice that we do not need to choose a linear polynomial, the following will also
work with two polynomials of degree > 1. These two sieving tasks are almost
identical except that for the second sieve we only consider the surviving points
of the first sieve. Since we want to know the factorizations of the polynomial
values for the surviving points, we also perform a trial division sieve to recover
the factors found by the sieves.

We divide a sieving task into three phases: the generation of sieving contri-
butions, the actual sieving, and the evaluation of the sieving area.

The first phase is the generation of triples (p, log p, e), where p is a prime,
log p the (scaled) logarithm of p, and e a position in the sieving area. If a prime
ideal has a contribution to a sieve location, a corresponding triple is produced. In
the second phase the contributions are summed up. A sieving array is initialized
by zero and for each triple, log p is added at position e, i.e., for each e the sum∑

(pi,log pi,ei)with ei=e

log pi

is calculated.
The evaluation phase isolates those sieving locations where the contribution

exceeds a certain bound (also depending on the location). For these survivors we
can perform a trial division sieve, creating for each survivor a list of its prime
divisors, in the following way. We clear the sieving array and fill the positions of
the survivors with different identifiers (1, 2, 3, . . .). Afterwards, for each triple the
prime p is stored in the list given by the identifier at position e (if the identifier
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is not zero). Note that the generation of triples is only done once while they are
used twice: log p and e for the actual sieving and p and e for the trial division
sieve.

We will use lattice sieving which means that we often change the lattice
corresponding to a special q. At every change we have to carry out initializations
for all elements of the factor base (see [FK]). These initializations amount to
roughly one inversion and one half of an extended gcd per factor base element.
They are done locally at the places of the machine where the factor base elements
are stored. The machine is divided into (roughly) three parts: Part I deals with
the small elements (p, r) of the factor base (1 < p < 214), part II with the
medium elements and part III processes the large elements (222 < p).

We now describe the general structure of the components of the machine and
their interaction over time. Our sieving area has size 220 × 219. Since we omit
those pairs for which both coordinates are even we will sieve over three subareas
of size 219 × 218. We divide these subareas into 32 parts, each of size 219 × 213.
These are called ranges and have the following meaning: During a certain period
of time all parts of the machine with the exception of part I will prepare data for
the algebraic sieve for the n-th range. In the next period of time these parts will
do the same for the rational sieve for the n-th range while part I will complete
the algebraic sieve for range n using the data prepared in the previous period of
time. The rational sieve for range n will be completed in the next period of time
by part I while the other parts prepare data for the algebraic sieve for range
n + 1 etc. Hence there is a need to buffer the prepared data for two sieves over
a range.

Each range is divided into 1024 parts of size 219 × 23 which we will call do-
mains. There are also 1024 identical parts of the machine (one for each domain),
which will handle sieving contributions of prime ideals of type I and II. The
contributions of prime ideals of type III are processed in a different way. These
prime ideals are split into 1024 parts and for each part all contributions for a
range are prepared and sent to the correct part of the machine. This sorting will
be done by a transport system with butterfly topology.

Sieving for a domain is done in 256 steps handling 214 points each. For this
purpose, data for prime ideals of type II and III (which have to be stored anyway)
are written to the correct array out of 256 arrays. Data for prime ideals of type
I are generated on the fly and combined with the data from the corresponding
array.

We now describe the individual parts in more detail.

4.2 Part III

This part generates triples for prime ideals of type III. It consists of 1024 identical
units each containing 64 MB DRAM and a generation unit. The DRAM is used
to hold the factor bases and related information. For each element (p, r) of the
factor bases we store an 8-tuple (p, r, log p, vx, vy, wx, wy, e) where

(
vx

vy

)
= v and(

wx

wy

)
= w are vectors used to update the contribution location and e is the next
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contribution location for this prime ideal. For our choice of parameters we can
store such an 8-tuple in 25 byte using 36 bit for p and r, 8 bit for log p, 20 bit
for vx, vy, wx, wy and 40 bit for e.

The generation unit has two tasks. After changing a special q it calculates
for each prime ideal the values vx, vy, wx and wy for this lattice and sets e to
the first location where the prime ideal contributes. During the sieving phase it
reads all 8-tuples one by one, generates the triples for all locations in the sieved
domain where this prime ideal has a contribution, and writes the 8-tuple back
to memory (actually only e will change). The generated triples are sent to the
transport system.

For the initialization task the generation unit has to perform calculations
of the complexity of an extended gcd. The actual generation of triples requires
only simple instructions such as conditional additions or load/store operations.
Accessing the DRAM does not need to be faster than in a conventional PC. The
same is true for parts I and II as well.

4.3 Transport System

The transport system has 1024 input channels and 1024 output channels. The
purpose of the transport system is to deliver each triple (p, log p, e) from an input
channel to a certain output channel determined by 10 bits of e. Triples have a
size of at most 80 bit and may arrive simultaneously at different input channels.
We will tolerate a small loss of triples arising from data collisions. For instance,
the loss of one triple out of 240 will at most affect one potential sieving report
per special q.

We now describe a structure which will comply to the requirements above (see
Figure 2). It consists of 11 ·1024 simple nodes connected in a butterfly topology,
i.e., nodes Ni,j and Ni′,j′ (0 ≤ i, i′ < 11, 0 ≤ j, j′ < 1024) are connected if
i′ = i − 1 and either j′ = j or j′ = j xor 2i′

. Data always flow from nodes Ni,j
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Fig. 2. Butterfly Topology of Width 8
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with a higher i to those with a lower i. A typical node consists of two input lines
where each is connected to a small buffer such that they can simultaneously
receive triples, two output lines and a logic which reads a triple from an input
buffer, examines a certain bit of e and delivers this triple to the corresponding
output line. For the nodes Ni,j in the top layer (i.e. i = 10) one of the input
lines is an input channel of the transport system and the other input line is not
connected. The nodes in the bottom layer (i.e. i = 0) send all output to one
output line which is the output channel of the transport system.

In order to avoid long cable lengths, the transport system of width 1024
should not be realized in a plane but in a cube (of side length around 1 meter).
Each of the 1024 inputs receives 80 bit every 50 ns on average, at peak times
every 10 ns. The output rate is more balanced. Using 8 bit wide connections, the
clock rate needs to be 1 GHz, or 100 MHz for 80 bit buses. It is also possible to
balance the inputs using buffers in part III, such that the needed clock rate can
be reduced.

This still might be technically difficult. But for a physical realization it is
not necessary to manufacture a separate chip for each node or to strictly adhere
to the topology. We might also group several nodes on a chip or implement a
different sorting structure as long as the performance is not worse than that
of the butterfly topology. Grouping several nodes will also reduce the costs for
connecting them. Perhaps the whole transport system could be realized as a
mesh which sorts the data.

4.4 Part III’

This part also consists of 1024 identical units each of which handles triples for
one domain of the processed range. Each unit connects directly to an output
channel of the transport system and receives triples which are to be sorted and
stored in a double buffer via a 64 kB cache. The double buffer has a size of
2 · 16 MB DRAM and each half is used to store triples from prime ideals of type
III generated for one domain. They are stored in one of 256 arrays according to
8 bit of e. Since at this stage 18 bit of e are fixed we can omit them and store a
triple in 7 byte. Therefore it is possible to store 9300 triples per array which is
far more than the expected 7700 triples per array on average. The two halves of
the double buffer are written alternately by this part. While one half is written,
the other half is read by part I (see below) at a rate of not more than 4 GBit
per second.

4.5 Part II

Part II again consists of 1024 identical units. Each unit is responsible for the
generation of triples for prime ideals of type II for one domain of the processed
range. Since it will generate triples in a line sieve like fashion, it is essentially
a simplified version of part III and part III’. The output rate is not more than
4 GBit per second.

This unit consists of 8 MB DRAM, a generation unit, a sorter and a 64 kB-
cached double buffer of size 2·12 MB DRAM. The 0.6 million factor base elements
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of type II (size between 214 and 222) can be stored in 8 MB, each using 14 byte.
These 14 byte take into account some auxiliary data needed for line sieving and
the change from one domain of a range to the corresponding domain in the next
range. The generation unit has a slightly easier initialization task than that of
part III but the actual generation tasks are comparable. It sends the generated
triples to a sorting unit which stores them via a 64 kB cache in one half of the
double buffer. For prime ideals of type II 5 byte per triple are sufficient such
that each array can hold 9800 triples which is more than the 7400 needed on
average.

4.6 Part I

This part again appears in 1024 identical units. Each unit has more complex
tasks than the units in the other parts of the machine. It generates triples for
prime ideals of type I, adds up these contributions, adds up the contributions
from prime ideals of type II and III generated by the other parts of the machine,
combines these sums and evaluates them. This process is now described in more
detail.

In this part the sieving for a domain will be done in 2 · 256 steps: first, 256
algebraic sieves, each over an area of 214, and then 256 rational sieves over the
same areas. Each of these sieving steps consists of several phases: first, an ini-
tialization of the sieving caches, then the actual summation of the contributions,
then an evaluation, and finally the trial divison sieve. The speed needed to access
the sieving caches is the same as for conventional processors accessing their first
level cache.

The prime ideals of type I together with auxiliary data are stored in less
than 50 kB DRAM. A generation unit comparable to that of part II accesses
this memory and generates triples for a sieving area of size 214. These triples are
directly sent to a sieving unit which performs the actual sieving in a cache of
214 byte. Since there is no buffering of the triples they have to be generated a
second time during the trial division sieve. The initialization of the cache with
zeros is also done by the sieving unit.

At the same time another sieving unit which also controls a cache of 214

byte reads the triples generated by parts II and III of the machine and does
the actual sieving in this cache. Since parts II/III and part I are processing
on different sieving sides (i.e., algebraic/rational) there will be no conflict in
accessing the double buffers. Reading the triples will also be fast since triples for
an area of size 214 are stored in one array.

Apart from those units described so far there is a more complex evaluation
processor which has 8 MB DRAM. It is also connected to the two sieving units
and to their caches (see Figure 3). During the actual sieving phase it computes
thresholds for the evaluation phase. After all triples have been processed by the
sieving units, the processor evaluates the sieving area by adding up correspond-
ing bytes of the two sieving caches and comparing the result to a previously
computed threshold. Whenever the sum surpasses the threshold the position is
marked in both sieving caches, otherwise it is set to zero (in a sieve on the ratio-
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nal side we also set to zero a position which has not survived the corresponding
algebraic sieve). When this has been done for the whole area of size 214, the trial
division phase begins. The sieving units read (resp. receive) again triples and
send those triples which correspond to a marked position in the sieving area to
the evaluation processor which stores them in its DRAM. After a trial division
sieve on the rational side has been finished, the evaluation processor outputs
the survivors and all data obtained from the trial division sieves for this sieving
area.

RAM I
�� ��
�� �	 gen I siever I

sieving cache I
�� ��

�� �	

evaluator

RAM
�� ��
�� �	

from buffer II

from buffer III

siever II/III

sieving cache II/III
�� ��

�� �	

output

���� ��

������������

��

												

��

��

��

��

��

�����������������

��

���������������

		

































��

��������������������������

��



��

��

��

Fig. 3. Block Diagram of Part I

4.7 Cost Estimates

The width of the transport system is crucial for the costs of the whole machine.
We first give a simple analysis of the behaviour of costs (money × time) for
varying widths. The total costs consist of the costs for the transport system,
the costs for memory and the costs for the ASICs outside the transport system.
The third summand remains constant since doubling the width of the transport
system will double the number of these ASICs but also halve the time spent for
one special q. Furthermore the total memory of the machine remains constant.
This has the consequence that doubling the width of the transport system will
decrease the costs as long as standard memory chips of smaller size get cheaper.
Notice that we want to use standard memory chips, because we assume these to
be cheaper than customized memory ASICs. The first summand always grows
when doubling the width, since a transport system of width 2n+1 consists of two
systems of width 2n and its top layer together with all connections of the top
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layer. There will be a certain width for which minimal costs will be attained. In
our design this will probably be bigger than 1024 but this is technically more
demanding. Therefore we chose a width of 1024.

Apart from a few PCs for controlling the sieving process and collecting the
output, one machine consists of 136 GB DRAM, 160 MB cache and various
ASICs. Most of the ASICs only perform quite simple tasks. Only the evaluator
needs a considerable area (around 20 mm2). We estimate that all ASICs of one
of the 2300 machines occupy a third of the area of a 300 mm wafer. Even taking
into account a whole wafer, the silicon costs including memory are less than
US$ 30 000. Doubling this number for overhead (packaging, cooling, ...) and
adding US$ 10 000 for the PCs and special ECM hardware we obtain US$ 70 000
per machine. Notice that the costs for the ECM hardware for this choice of
parameters are just a few dollars and thus negligible.

At a clock frequency of 1 GHz one machine takes around 20 s per special
q such that 2300 machines are needed for 3.7 · 109 special q. This amounts to
production costs of US$ 160 million (without development). Considering the
ASIC area, we estimate that each machine has a power consumption of at most
30 kW which induces a power bill of US$ 60 million per factorization.

5 Conclusions and Remarks

Conclusions. SHARK appears to be the first proposal for an architecture for
sieving a 1024-bit number within a year which is realizable with conventional
technology and costs less than a thousand million US$. The main difference to
other proposed architectures is (in contrast to a giant monolytic ASIC) its mod-
ular design composed of small ASICs connected by conventional data buses. The
modularity is achieved by dividing the factor base into several parts and sorting
the sieving data with a butterfly transport system. All choices of parameters are
a result of intense software experiments with a complete implementation of the
GNFS for factoring large numbers.

Remarks. Our architecture permits many reasonable modifications: the size of
the transport system could be smaller or larger, the partition of the factor base
in three parts could vary, ECM could be used more intensely to permit less
sieving, many other parameters could be changed. This permits using the ar-
chitecture also for other bit lengths. 768-bit numbers can be sieved by a similar
architecture. While scaling the system for larger numbers, the role of an effi-
cient hardware (like ECM in ASICs, see [FKPPPSS]) to factorize the cofactors
becomes more and more important. The transport system has to become very
large and at some point the complexity of the connections between the layers
will be practically impossible.

Future Work. The efficiency of the machine heavily depends on the different
processing of factor base elements of different size. We will analyse different meth-
ods for processing very large elements, small prime powers and different classi-
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fications of sizes in more than three categories. Some initializations and choices
of parameters can still be optimized. A crucial point for the scalability to larger
numbers than 1024 bit will be the size of the butterfly transport system. We will
investigate different realizations and try to make it larger than 1024 channels.
A large butterfly transport system can also be used for solving the matrix in
GNFS. We will analyse how to optimize the matrix step in this way and how to
lower the size of the butterfly transport system needed for solving the matrix.
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Abstract. Motivated by the goal of factoring large integers using the
Number Field Sieve, several special-purpose hardware designs have been
recently proposed for solving large sparse systems of linear equations
over finite fields using Wiedemann’s algorithm. However, in the context
of factoring large (1024-bit) integers, these proposals were marginally
practical due to the complexity of a wafer-scale design, or alternatively
the difficulty of connecting smaller chips by a huge number of extremely
fast interconnects.

In this paper we suggest a new special-purpose hardware device for
the (block) Wiedemann algorithm, based on a pipelined systolic archi-
tecture reminiscent of the TWIRL device. The new architecture offers
simpler chip layout and interconnections, improved efficiency, reduced
cost, easy testability and greater flexibility in using the same hardware
to solve sparse problems of widely varying sizes and densities. Our analy-
sis indicates that standard fab technologies can be used in practice to
carry out the linear algebra step of factoring 1024-bit RSA keys.

As part of our design but also of independent interest, we describe a
new error-detection scheme adaptable to any implementation of Wiede-
mann’s algorithm. The new scheme can be used to detect computational
errors with probability arbitrarily close to 1 and at negligible cost.

Keywords: Factorization, number field sieve, sparse systems of linear
equations.

1 Introduction

In recent years, various special-purpose hardware implementations of the Num-
ber Field Sieve (NFS) algorithm have been proposed for factoring large (e.g.,
1024-bit) integers. These devices address two two critical steps of the NFS: the
sieving step [1,2,3,4,5,6,7] and the linear algebra step [8,9,10,11].
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This work focuses on the linear-algebra step of the NFS. While the cost of
this step seems to have been reduced to below that of the sieving step (for 1024-
bit composites) by the most recent proposals [10,11], practically these designs
are not fully satisfactory: they require (various combinations of) extremely large
chips, non-local wiring and high-bandwidth chip interconnects, and thus pose
significant technological hurdles.

Below we describe a new systolic design for the NFS linear algebra step, and
specifically for the matrix-by-vector multiplications which dominate the cost of
the Wiedemann algorithm. This design is both more efficient and more realistic
than previous ones. In its simplest form, it consists of a one dimensional chain
of identical chips with purely local interconnects, which from a practical stand-
point makes it an attractive alternative to previous wafer-scale mesh proposals.
For higher efficiency it can be generalized to a two-dimensional array of chips,
but unlike previous proposals, this device has standard chip sizes, purely local
interconnects, and can use standard DRAM chips for some of its components.
In addition, the new design is highly scalable: there is no need to commit to
particular problem sizes and densities during the chip design phase, and there
is no need to limit the problem size to what can be handled by a single wafer.
Since a single chip design of small fixed size can handle a wide range of sparse
matrix problems (some of which may be related to partial differential equations
rather than cryptography), the new architecture can have additional applica-
tions, greatly reduced technological uncertainties, and lower initial NRE cost.

Unlike previous routing based proposals, whose complex data flows required
simulation of the whole device and were not provably correct, the present device
has a simple and deterministic data flow, so that each unit can be simulated inde-
pendently. This facilitates the simulation and actual construction of meaningful
proof-of-concept sub-devices.

We have evaluated the cost of this device for a specific choice of matrix
parameters, which is considered a conservative estimate for the matrix size in
factoring 1024-bit integers using NFS. The estimated area×time cost is 6.5 lower
than the best previous proposal; the concrete cost estimate is 0.4M US$×year
(i.e., excluding non-recurring R&D costs, US$ 0.4M buys enough hardware to
obtain a throughput of one solved linear algebra instance per year).

The present design adapts efficiently and naturally to operations over any
finite field GF(q), since it does not depend on the in-transit pairwise cancellation
of values in GF(2). In particular, it can support the new algorithm of Frey [12,13].
In fact, it can be used with minor modifications over any ground field, such as
the rationals or complex numbers.

Section 2 recalls basic facts about Wiedemann’s algorithm and its context in
the NFS. Section 3 describes the new hardware architecture. In any large-scale
computation the handling of faults is crucial; Section 4 presents a particularly
efficient error detection scheme, which can also be adapted to other implemen-
tations of block Wiedemann. Section 5 gives a preliminary cost analysis for pa-
rameters currently considered as plausible for 1024-bit numbers, and compares
it to previous proposals.
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2 Preliminaries

For an introduction to the NFS algorithm we refer to [14], and for a detailed
account to [15]. Here it is sufficient to keep in mind that the overall running time
of the NFS algorithm is dominated by the sieving step and the linear algebra
step. In this paper we exclusively consider the linear algebra step, defined as
follows. We are given a D ×D matrix A over GF(2), whose columns correspond
to relations found in the preceding sieving step (after some pre-processing). Our
goal is to find a few vectors in the kernel of A, i.e., several sets of relations that
sum to the zero vector. This matrix is large but sparse, with a highly non-uniform
distribution of row densities. As in previously proposed devices [8,9,10,11], we
employ the block Wiedemann algorithm [16,17] for solving sparse systems of
linear equations. Basically, the block Wiedemann algorithm reduces the above
to the problem of computing sequences of the form

Av, A2v, . . . , Atv (1)

for some v ∈ GF(2)D. Such a sequence can be computed by means of t matrix-by-
vector multiplications, where the matrix A remains fixed and the vector varies.
Overall, roughly 2D such multiplications are needed, divided into 2K chains,
where K > 32 is the blocking factor. The resulting products are not explicitly
output after each multiplication; depending on the phase of Wiedemann’s algo-
rithm, only their inner product with some fixed vectors or their (partial) sums
are needed.

Parameters for 1024-bit Composites. At present there is considerable un-
certainty about the size and density of the matrix one would encounter in the
factorization of a 1024-bit composite, for several reasons: freedom in the choice
of the NFS parameters, freedom in the application of pre-processing to the ma-
trix (e.g., to cancel out “large primes”), and lack of complete analysis of this
aspect of the NFS algorithm. For concreteness and ease of comparison, in the
following we shall assume the “large matrix” parameters from [9], namely a size
of D × D for D ≈ 1010 and density of 100 entries per column. This leaves a
generous conservative margin compared to the smaller matrix expected to be
produced by TWIRL [4].

For the sake of concreteness, we propose a concrete instance of our architec-
ture where various design parameters are chosen suitable for the above NFS pa-
rameters. In the following, these concrete parameters are designated by angular
brackets (e.g., D 〈〈= 1010〉〉). Section 5 provides additional details and discusses
the cost of the device for these parameters.

3 The New Architecture

We shall unravel the architecture in several stages, where each stage generalizes
the former and (when appropriately parameterized) improves its efficiency.
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3.1 Basic Scheme

The proposed hardware device is preloaded with a compressed representation of
the sparse matrix A ∈ GF(2)D×D, as will be detailed below. For each multipli-
cation chain, we load the input vector v and iteratively operate the device to
compute the vectors Av, A2v, . . . , Atv and output the appropriate sums or inner
products.

We begin by describing an inefficient and highly simplified version of the
device, to illustrate its high-level data flow.1 This simplified device consists of
D 〈〈= 1010〉〉 stations connected in a pipeline. The i-th station is in charge of
the i-th matrix row, and contains a compressed representation of the 〈〈≈ 100〉〉
non-zero entries in that row. It is also in charge of the i-th entry of the output
vector, and contains a corresponding accumulator W ′[i].

In each multiplication, the input vector v ∈ GF(2)D is fed into the top of
the pipeline, and moves down as in a shift register. As the entries of v pass by,
the i-th station looks at all vector entries vj passing through it, identifies the
ones corresponding to the non-zero matrix entries Ai,j in row i, and for those
entries adds Ai,j · vj to its accumulator W ′[i]. Once the input vector has passed
all stations in the pipeline, the accumulators W ′[·] contain the entries of the
product vector Av. These can now be off-loaded and fed back to the top of the
pipeline in order to compute the next multiplication.

The one-dimensional chain of stations can be split across several chips: each
chip contains one or more complete stations, and the connections between sta-
tions may span chip boundary. Note that since communication is unidirectional,
inter-chip I/O latency is not a concern (though we do need sufficient bandwidth;
the amount of bandwidth needed will increase in the variants given below, and
is taken into account in the cost analysis of Section 5).

3.2 Compressed Row Handling

Since the matrix A is extremely sparse, it is wasteful to dedicate a complete
station for handling each row of A, as it will be idle most of the time. Thus, we
partition A into u 〈〈= 9600〉〉 horizontal stripes and assign each such stripe to a
single station (see Figure 1). The number of rows per station is μ ≈ D/u 〈〈= 220〉〉,
and each station contains μ accumulators W ′[i] with i ranging over the set of
row indices handled by the station.

Each station stores all the non-zero matrix entries in its stripe, and contains
an accumulator for each row in the stripe. As before, the input vector v passes
through all stations, but now there are just u of these (rather than D). Since the
entries of v arrive one by one, each station implicitly handles a μ×D submatrix
of A at each clock cycle.

1 This basic version is analogous to the electronic pipeline-of-adders version of TWIN-
KLE [2], and many of the improvements described in the following have correspond-
ing analogues in the TWIRL architecture [4].
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Fig. 2. Subdivision of a chip into stations and
processors

3.3 Compressed Vector Transmission

For additional efficiency, we add parallelism to the vector transmission. Instead
of each station processing a single entry of v in each clock-cycle, we process v in
chunks of k 〈〈= 32〉〉 consecutive entries.2 The inter-station pipeline is thickened
by a factor of k. The vector v now passes in chunks of k entries over an inter-
station pipeline (in Figure 2 from right to left); in each clock cycle, each station
obtains such a chunk from the previous station (to its right), processes it and
passes it to the next station (to its left). The first (rightmost) station gets a new
part of the vector received from the outside. At each clock cycle, each station
now implicitly handles a μ × k submatrix of A.

Each station is comprised of k processors, each connected to a separate
pipeline line (see Figure 2), and these k processors inside each station are con-
nected via γ 〈〈= 2〉〉 intra-station channels, which are circular shift registers span-
ning the station. The μ accumulators W ′[i] contained in this station are parti-
tioned equally between the k processors.

For processing a k-element chunk of the vector, each of the k processors has to
decide whether the vector element vi it currently holds is relevant for the station
it belongs to, i.e., whether any of the μ matrix rows handled by this station
contains a non-zero entry in column i. If so, then vi should be communicated
to the processor handling the corresponding accumulator(s) and handled there.
This is discussed in the following subsection.

3.4 Processing Vector Elements

Fetching Vector Elements. The relevance of a vector entry vi to a given sta-
tion depends only on i, which is uniquely determined by the clock cycle and the
processor (out of the k) it reached. Consequently, each processor needs to read
the content of one pipeline line (to which it is attached) at a predetermined set of

2 The choice of k depends mainly on the number of available I/O pins for inter-chip
communication.
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clock cycles, specific to that processor, which is constant across multiplications
and easily precomputed. This set of cycles is encoded in the processor as follows.

Each processor contains a fetches table which instructs it when to read the
next vector element from the pipeline. It contains fetch events, represented as
triplets (τ, f, �) where τ is an δu 〈〈= 7〉〉-bit integer, f is a one-bit flag and � is
a �log2(γ)�-bit integer. Such a triplet means: “ignore the incoming vector entries
for τ clock cycles; then, if f = 1, read the input vector element and transmit it on
the �-th intra-station channel”.3 The table is read sequentially, and is stored in
compact DRAM-type memory.

Updating the Accumulators. Once a relevant vector element vi has been
fetched by some processor and copied to an intra-station channel, we still need to
handle it by adding Aj,i ·vi to the accumulator W ′[j], for every row j handled by
this station for which Aj,i �= 0. These accumulators (usually just one) may reside
in any processor in this station. Thus, each processor also needs to occasionally
fetch values from the intra-station channels and process it. Similarly to above,
the timing of this operation is predetermined, identical across multiplications
and easily precomputed.

To this end, each processor also holds an updates table containing update
events represented as a 5-tuple (τ, f, �, j′, x) where τ is an δf 〈〈= 7〉〉-bit integer, f
is a one-bit flag, � is a �log2(i)�-bit integer, j′ is a �log2(μ/k)�-bit integer and x
is a field element.4 Such a 5-tuple means: “ignore the intra-station channels for
τ clock cycles; then, if f = 1, read the element y ∈ GF(q) currently on channel �,
multiply it by x, and add the product to the j′-th accumulator in this processor.”
This table is also read sequentially and stored in compact DRAM-type memory.

During a multiplication, each processor essentially just keeps pointers into
those two tables (which can actually be interleaved in a single DRAM bank),
and sequentially executes the events described therein.

An update operation requires a multiplication over GF(q) and addition of
the product to an accumulator stored in DRAM (which is very compact but has
high latency). These operations occur at non-regular intervals, as prescribed by
the updates table; the processors use small queues to handle congestion, where a
processor gets several update events within a short interval. Crucially, the load
on these queues is known in advance as a side effect of computing the tables. If
some processor is over-utilized or under-utilized, we can change the assignments
of rows to stations, or permute the matrix columns, to even the load.

Handling Dense Rows. All the entries arriving from the intra-station channels
while the updated vector is stored into the DRAM have to be held in the proces-
sor’s queues. As the random-access latency of DRAM is quite large (≈ 70ns), the
entries must not arrive too fast. Some of the rows of A are too dense, and could
cause congestions of the queues and intra-station channels. To overcome this
problem we split such dense rows into several sparser rows, whose sum equals

3 The flag f is used to handle the cases where the interval between subsequent fetches
is more than 2δu − 1.

4 Over GF(2), x = 1 always and can thus be omitted.
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Fig. 3. Arranging the stations into a circle

the original. In this way we also ensure that all stations have a similar load and
handle the same number of rows. This increases the matrix size by an insignif-
icant amount (〈〈≈ 106〉〉 additional rows5), and the post-processing required to
re-combine the split rows is trivial.

Precomputation and Simulation. The content of the two tables used by each
processor fully encodes the matrix entries. These tables are precomputed once for
each matrix A, e.g., using ordinary PCs. Once computed, they allow us to easily
simulate the operation of any processor at any clock cycle, as it is completely
independent of the rest of the device and of the values of the input vectors.
We can also accurately (though inefficiently) simulate the whole device. Unlike
the mesh-based approaches in [9,10,11], we do not have to rely on heuristic
run time assumptions for the time needed to complete a single matrix-vector
multiplication.

3.5 Skewed Assignment for Iterated Multiplication

In the above scheme, once we have started feeding the initial vector v into the
pipeline, after (D/k) + u clock cycles6 the vector v has passed through the
complete pipeline and the vector A · v is stored in the stations. More precisely,
each of the u stations contains μ = D/u consecutive components of v, and we
next want to compute the matrix-by-vector product A · Av. Thus, we need to
somehow feed the computed result Av back into the inter-station pipeline.

To feed the vector Av back into the inter-station pipeline, first we physically
close the station interconnects into a circle as depicted in Figure 3; this can be
done by appropriate wiring of the chips on the PCB. We also place a memory
bank of D/u GF(q) elements at each of the u stations. Collectively, denote these
banks by W . At the beginning of each multiplication chain, the initial vector v
is loaded into W sequentially, station by station.

During a multiplication, the content of W is rotated, by having each station
treat its portion of W as a FIFO of k-tuples: in each clock cycle it sends the last
k-tuple of its portion of W to the next station, and accepts a new k-tuple from the
previous station. Meanwhile, the processors inside each station function exactly
5 Extrapolated from a pre-processed RSA-155 NFS matrix from [18], provided to us

by Herman te Riele.
6 Actually slightly more, due to the need to empty the station channels and processor

queues.
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as before, by tapping the flow of k-tuples of vector elements in W at some fixed
point (e.g., the head of the FIFO in that station). Thus, after D/k clock cycles,
we have completed a full rotation of the content of W and the multiplication
result is ready in the accumulators W . A key point here is that each station sees
the contents of W in cyclic order starting at a different offset, but owing to the
commutativity of addition in GF(q) this does not affect the final result.

Having obtained the matrix-by-vector, we can now continue to the next mul-
tiplication simply by switching the roles (or equivalently, the contents) of the
memory banks W and accumulators W ′: this amounts to a simple local opera-
tion in each processor (note that size and distribution among processors of the
cells W [·] and the cells W ′[·] is indeed identical). Thus, the matrix-by-vector
multiplications can be completed at a rate of one per D/k cycles.

3.6 Amortizing Matrix Storage Cost

Recall that in the block Wiedemann algorithm, we actually execute 2K multi-
plication chains with different initial vectors but identical matrix A. These are
separated into two phases, and in each phase we can handle these K chains in
parallel. An important observation is that we can handle these K chains using
a single copy of the matrix (whose representation, in the form of the two event
tables, has so far dominated the cost). This greatly reduces the amortized circuit
cost per multiplication chain, and thus the overall cost per unit of throughput.

The above is achieved simply by replacing every field element in W and W ′ by
a K-tuple of field elements, and replacing all field additions and multiplications
with element-wise operations on the corresponding K-tuples. The event tables
and the logic remain the same. Note that the input and output of each station
(i.e., the pipeline width) is now k · K field elements.

3.7 Two-Dimensional Chip Array

As described above, each of the processors inside the station incorporates two
types of memory storage: a fixed storage for the representation of the matrix
elements (i.e., the event tables), and vector-specific storage (W and W ′) which
increases with the parallelization factor K. Ideally, we would like to use a large
K in order to reduce the amortized cost of matrix storage. However, this is
constrained by the chip area available for W and W ′.

To obtain further parallelization without increasing the chip sizes, we could
simply run several copies of the device in parallel. By itself, this does not improve
the cost per unit of throughput. But now all of these devices use identical storage
for the matrix representation, and access it sequentially at the same rate, so in
fact we can “feed” all of them from a single matrix representation. In this variant,
the event tables are stored in an external DRAM bank, and are connected to the
chips hosting the processors and chain-specific storage through a unidirectional
pipeline, as illustrated in Figure 4. Note that communication remains purely
local—there are no long broadcast wires.
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Fig. 4. Using external memory to store the matrix A and b parallel devices, each
hosting a circle of stations

This variant splits each of the monolithic chips used by the previous variants
into a standard DRAM memory chip for matrix storage, plus a chain of small
ASIC chips for the processors and the storage of the vectors. By connecting
b 〈〈= 90〉〉 such ASIC chips to each DRAM chip, we can increase the blocking
factor K by a factor of b without incurring the cost of duplicate matrix storage.

4 Fault Detection and Correction

4.1 A Generic Scheme

To successfully complete the Wiedemann algorithm, the device must compute
all the matrix-by-vector multiplications without a single error.7 For the problem
parameters of interest the multiplications will be realized by tens of thousands
of chips operating over several months, and it would be unrealistic to hope (or
alternatively, expensive to ensure) that all the computations will be faultless.
The same concern arises for other special-purpose hardware designs, and also for
software implementations on commodity hardware. It is thus crucial to devise
algorithmic means for detecting and correcting faults.

A simple real time error-detection scheme would be to apply a linear test:
during a preprocessing stage, choose a random d×D matrix B for an appropriate
d, precompute on a reliable host computer and store in the hardware the d× D
matrix C = BA, and verify that Bw′ = Cw whenever the hardware computes
a new product w′ = Aw. Over GF(q) each row of the matrix B reduces the
probability of an undetected error by a factor of q, and thus for q = 2 we need
at least a hundred rows in B to make this probability negligible. Since each one
of the dense 100 × D matrices B and C contains about the same number of 1’s
as the sparse D × D matrix A (with one hundred 1’s per row), this linear test
can triple the storage and processing requirements of the hardware, and meshes
poorly with the overall design whose efficiency relies heavily on the sparseness of
the matrix rows. Note that we cannot solve this problem by making the 100×D
matrix B sparse, since this would greatly reduce the probability of detecting
single bit errors.

7 Note the contrast with the NFS sieving step, which can tolerate both false positive
and false negative errors in its smoothness tests.
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In the following we describe an alternative error-detection scheme, which
provides (effectively) an arbitrarily small error probability at a negligible cost,
under reasonable assumptions. It inspects only the computed (possibly erro-
neous) matrix-by-vector products, and can thus be applied to any implementa-
tion of Wiedemann’s algorithm. We will consider its operation over any finite
field GF(q), though for integer factoring via NFS only q = 2 is of interest.

Detection. Let w0, w1, w2, . . . ∈ GF(q)D denote the sequence of vectors com-
puted by the device, where w0 = v. To verify that indeed wi = Aiv for all i > 0,
we employ the following randomized linear test. For a small integer d 〈〈= 200〉〉,
choose a single vector b ∈ GF(q)D uniformly at random, and precompute on a
reliable computer the single vector ct = btAd (here t denotes transpose). After
each wi is computed, compute also the inner products btwi and ctwi (which are
just field elements). Save the last d results of the latter in a small shift register,
and after each multiplication test the following condition:

b
t
wi = c

t
wi−d . (2)

If equality does not hold, declare that at least one of the last d multiplications
was faulty.

Correctness. If no faults have occurred then (2) holds since both sides equal
btAiv. Conversely, we will argue that the first faulty multiplication wj �= Awj−1
will be detected within d steps with overwhelming probability, under reasonable
assumptions.

Let us first demonstrate this claim in the simplest case of some transient error
ε which occurs in step j. This changes the correct vector Ajv into the incorrect
vector wj = Ajv + ε. All the previous wi for i < j are assumed to be correct,
and all the later wi for i > j are assumed to be computed correctly, but starting
with the incorrect wj in step j. It is easy to verify that the difference between
the correct and incorrect values of the computed vectors wi for i > j evolves as
Ai−jε, and due to the randomness of the matrix A generated by the sieving step
these error vectors are likely to point in random directions in the D-dimensional
space GF(q)D. The device has d chances to catch the error by considering pairs
of computed vectors which are d apart, with the first vector being correct and
the second vector being incorrect. The probability that all these d random error
vectors will be orthogonal to the single random test vector b is expected to be
about q−d, which is negligible; the computational cost was just two vector inner
products per matrix-by-vector multiplication.

The analysis becomes a bit more involved when we assume that the hardware
starts to malfunction at step j, and adds (related or independent) fault patterns
to the computed result after the computation of each matrix-vector product from
step j onwards. Let the result of the i-th multiplication be wi = Awi−1 + εi,
where the vector εi is the error in the output of this multiplication. We consider
the first fault, so εi = 0 for all i < j. Assume that j ≥ d (j < d will be addressed
below). By the linearity of the multiplication and the minimality of j, we can
expand the above recurrence to obtain wi = Aiv +

∑i
i′=j(A

i−i′
εi′) (i ≥ j).
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Plugging this into (2) and canceling out the common term btAiv, we get that
for j ≤ i < j + d, (2) is equivalent to:

b
t
ri = 0 where ri =

∑i

i′=j
(Ai−i′

εi′) . (3)

We assume that each error εi is one of at most (qD)α possibilities for some
α " D/d (e.g., 〈〈α = 105〉〉), regardless of A and b. This suffices to enumerate all
reasonably likely combinations of local faults (corrupted matrix entries, faulty
pipeline connections, errors in GF(q) multipliers, memory bit flips, etc.). We also
make the simplifying (though not formally correct) assumption that A10, ..., Ad−1

are random matrices drawn uniformly and independently.8 Then for any fixed
values of εi, the vectors in the set R = {ri}j+d−1

i=j+10 are drawn uniformly and
independently from GF(q)D (recall that εj �= 0), and thus the probability that
the span of R has dimension less than |R| = d − 10 is smaller than dq−(D−d)

(which is a trivial upper bound on the probability that one of the d− 10 vectors
falls into the span of the others). By assumption, there are at most (qD)αd

possible choices of (εi)
j+d
i=j+1. Hence, by the union bound, the probability that

the span of R has dimension less than d − 10 is at most (qD)αd · dq−(D−d) =
d · qαd logq D+d− D, which is negligible. Conditioned on the span of R having full
rank d−10, the probability of the random vector b being orthogonal to the span
of R is q−(d−10), which is also negligible. Hence, with overwhelming probability,
at least one of the tests (3) for j + 10 < i < j + d will catch the fault in wj .

Startup and Finalization. Note that the test (2) applies only to i > d, and
moreover that our analysis assumes that the first d multiplications are correct.
Thus, for each of the 2K multiplication chains of block Wiedemann, we start
the computation by computing the first d multiplications on a reliable general-
purpose computer, and then load the state (including the queue of ctwi values
for i = 0, . . . , d) into the device for further multiplications.

Also note that in the analysis, the results of the j-th multiplications are
implicitly checked by (2) for i = j, . . . , j +d−1. Thus, in order to properly check
the last d multiplications in each chain, we run the device for d extra steps and
discard the resulting vectors but still test (2).

Recovery. The above method will detect a fault within d clock cycles (with
overwhelming probability), but will not correct it. Once the fault is detected,
we must backtrack to a known-good state without undoing too much work.

8 The sieving and preprocessing steps of NFS yield a matrix A that has nearly full
rank and is“random-looking” except for some biases in the distribution of its val-
ues: A is sparse (with density 〈〈≈ 100/1010〉〉) and its density is decreasing with the
row number. The first few self-multiplications increase the density exponentially and
smoothen the distribution of values, so that A10 has full and uniform density. The
independence approximation is applicable since we are looking at simple local prop-
erties (corresponding to sparse error vectors), which are “mixed” well by the matrix
multiplication. While the resulting matrices do have some hidden structure, realistic
fault patterns are oblivious to that structure.
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Assuming a sufficiently low probability of error, it is simplest to dump a full
copy of the current vector wi from the device into a general-purpose computer,
at regular but generously-spaced intervals; this can be done by another special
station tapping the pipeline. The backup vectors may be stored on magnetic
media, and thus their storage has negligible cost. When a fault is detected,
the faulty component can be replaced (or a spare device substituted) and the
computation restarted from the last known-good backup.

4.2 Device-Specific Considerations

Implementation. The above scheme requires only the computation of two in-
ner products (btwi and ctwi) for each multiplication. In the proposed hardware
device, this is achieved by one additional station along the pipeline, which taps
the vector entries flowing along the pipeline and verifies their correctness by the
above scheme. This station contains the entries of b and c in sequential-access
DRAM. For each of the K vectors being handled, it processes a k-tuple of vector
entries at every clock cycle, keeps the d most recent values of ctwi in a local
FIFO queue at this station, and performs the test according to (2).

Halving the Cost. The storage cost can be halved by choosing b pseudoran-
domly instead of purely randomly; the number of multipliers can also be nearly
halved by choosing b to be very sparse.

Using Faulty Chips. In addition to the above high-level error-recovery scheme,
it is also useful to work around local faults in the component chips: this increases
chip yield and prevents the need to disassemble multi-chip devices if a fault was
discovered after assembly. To this end, the proposed device offers a significant
level of fault tolerance due to its uniform pipelined design: we can add a “bypass”
switch to each station, which effectively removes it from the pipeline (apart
for some latency). Once we have mapped the faults, we can work around any
fault in the internals of some station (this includes the majority circuit area) by
activating the bypass for that station and assigning its role to one of a few spare
stations added in advance. The chip containing the fault then remains usable,
and only slightly less efficient.

5 Cost and Performance

5.1 Cost for 1024-Bit NFS Matrix Step

As explained in Section 2, there is considerable uncertainty about the size and
density of the matrices that would appear in the factorization of 1024-bit com-
posites using the Number Field Sieve. For concreteness and ease of comparison,
throughout Section 3 and in the following we assume the rather conservative
“large matrix” parameters (see Section 2).

Clearly there are many possibilities for fixing the different parameters of
our device, depending on such parameters as desired chip size and number of
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chips. One may even consider combining the above design with the splitting of
the processed matrix into submatrices as put forward in [10], thereby giving up
the homogeneity and purely local communication but decreasing the dimension
of the vectors that have to be handled. In the following we consider a specific
parameter set, which focuses on practicality with today’s technology.

We assume 90nm chip manufacturing technology with DRAM-type process9,
a net chip area of 1 cm2, a per-chip I/O bandwidth of 1024 Gbit/s, and a
clock rate of 1GHz. A DRAM access is assumed to take 70 clock cycles. These
parameters are quite realistic with current technology.

We employ a 300×90 array of ASIC chips. Each column of 300 chips contains
u = 9600 stations (32 per chip). Each station consists of k = 32 processors,
communicating over γ = 2 intra-station channels, with a parallelization factor of
10. Each of the 300 rows, of 90 chips each, is fed by a 108Gbit DRAM module.
Overall, the blocking factor is K = 10 · 90 = 900. This array can complete all
multiplication chains in ≈ 2.4 months.

The total chip area, including the matrix storage, is less than 90 full 30cm
wafers. Assuming a “silicon cost” of US$ 5000 per wafer, and a factor 4 increase
for overheads such as faulty chips, packaging, testing and assembly, the total
cost is under US$ 2M.

Comparison to Previous Designs. A mesh-based design as considered in [11],
adapted to 90nm technology and using 85×85 chips of size 12.25 cm2 each, will
require about 11.7 months to process the above matrix. The higher complexity
of this design limits the clocking rate to 200 MHz only. Comparing throughput
per silicon area, the new device is 6.5 more efficient; it also has much smaller
individual chips and no need for non-local wiring.

Implications for 1024-Bit Factorization. With the above device and matrix
size, the cost of the NFS linear algebra step is 0.4M US$×year, which is sig-
nificantly lower than that of the NFS sieving step using the TWIRL device [4].
Moreover, TWIRL is expected to produce a matrix significantly smaller than the
conservative estimate used above, so the cost of the linear algebra step would be
lower than the above estimate. Since TWIRL, being a wafer-scale design, is also
more technologically challenging, this reaffirms the conclusion that at present
the bottleneck of factoring large integers is the NFS sieving step [9].

5.2 Further Details

To derive concrete cost and performance estimates for the 1024-bit case, several
implementation choices for parameters, such as δu, δf, γ, τ , have been determined
experimentally as follows. For the above problem and technology parameters, and
a large randomly drawn matrix, we used a software simulation of a station to
check for congestions in bus and memory accesses, and chose design parameters
for which such congestions never occur experimentally. Recall that the device’s

9 Amortized DRAM density is assumed to be 0.1μm2 per bit, and the logic is assumed
to have an average density of 1.4μm2 per transistor.
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operation is deterministic and repetitive (see Section 3.4), so the simulation
accurately reflects the device’s operation with the given parameters.

In the following we briefly mention some aspects of the circuit area and
its analysis, as used to derive the above estimate. Note that we employ the
split design of Section 3.7, which puts the matrix storage in plain DRAM chips
and the logic and vector storage in ASIC chips. For these parameters, memory
storage dominates area: approximately 97% of the ASIC chip area is occupied
by the DRAM which stores the intermediate vectors (i.e., W and W ′). Thus,
the suitable chip production process is a DRAM process optimized for maximum
memory density (at the expense of slightly larger logic circuits); similar cases
arose in previous proposals [9,10,11]. Each of the k 〈〈= 32〉〉 processors in each of
the 32 stations in each of the 300 × 90 ASIC chips contains the following logic:

– A K/b-bit register for storing the K/b-tuples of GF(2) elements flowing along
from the inter-station pipeline (≈ 8 · K/b transistors).

– A K/b-bit register for each of the γ 〈〈= 2〉〉 intra-station channels (≈ 8 · γ ·
K/b transistors).

– A FIFO queue of depth 〈〈2〉〉 for storing elements arriving on the inter-station
pipeline along with the number of the internal bus onto which the respective
element is to be written. For this ≈ 2 · 8 · (K + �log2(γ)�) transistors per
queue entry are sufficient.

– A FIFO queue of depth 〈〈4〉〉 for storing elements arriving on the intra-station
channels that have to be XORed to the vector. Each entry consists of a K/b-
tuple of bits for the vector and a row number in the submatrix handled by
the station has to be stored. This occupies ≈ 4 · 8 · (K/b + �log2�D/(ku)��)
〈〈= 4 · 8 · (10 + 15)〉〉 transistors per queue entry.

In addition to the registers and queues, we need some logic for counters (to iden-
tify the end of a vector and to decide when to read another element from a bus),
multiplexers, etc. For the parameters of interest, < 1500 transistors are sufficient
for this. Overall, the 32 × 32 processors on each chip occupy 〈〈≈ 3.2mm2〉〉.

The DRAM needed splits into three parts.

– For storing 2·K/b vectors in GF(2)
D/(uk)�,: 2·K/b·D/(uk) bit 〈〈≈ 650 Kbit〉〉.
– For the fetches table: δu + 1 + �log2(γ)� bits per entry.
– For the updates table: δf + 1 + �log2(γ)� + �log2�D/(uk)�� bits per entry.

Overall, the DRAM on each chip occupies 〈〈≈ 67mm2〉〉. The time for each of
the ≈ 2D/K matrix-by-vector multiplications is ≈ e + D/k clock cycles, where
e gives some leeway for emptying queues and internal buses (for the parameters
we are interested in e " 1000 is realistic).

6 Conclusion

We have described a pipelined systolic design for the matrix-by-vector multi-
plications of the block Wiedemann algorithm, which exhibits several advantages
over the prior (mesh-based) approach. It has lower cost and modest technological
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requirements; specifically, unlike previous proposals it uses standard chip sizes
and purely local communication. The architecture is scalable, and offers the flex-
ibility to handle problems of varying sizes. The operation is deterministic and
allows local simulation and verification of components. We have also described
an efficient error detection and recovery mechanism, which can also be adapted
to other software or hardware implementations of Wiedemann’s algorithm.

For 1024-bit RSA keys, executing the linear algebra step of the NFS using
this device appears quite realistic with present technology, at a cost lower than
that of the NFS sieving step.
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Abstract. In this paper, the evaluation of random bit generators for security ap-
plications is discussed and the concept of stateless generator is introduced. It is
shown how, for the proposed class of generators, the verification of a minimum
entropy limit can be performed directly on the post-processed random numbers
thus not requiring a good statistic quality for the noise source itself, provided that
a sufficient compression is adopted in the post-processing unit. Assuming that
the noise source is stateless, a straightforward entropy estimator to drive an adap-
tive compression algorithm is proposed. Examples of stateless sources are also
discussed.

Finally, an attack scenario against a noise source is defined and an effective
approach to the attack detection is presented. The entropy estimator and the at-
tack detection together guarantee the unpredictability of the generated random
numbers.

Keywords: Random bit source, random numbers, entropy, ring oscillators, jitter.

1 Introduction

Random numbers are extensively used in many cryptographic operations. Public/private
key pairs for asymmetric algorithms are generated from a random bit stream; a random
bit generator (RBG) is also needed for key generation in symmetric algorithms, for
generating challenges in authentication protocols, and for creating padding bytes and
blinding values [1].

Even if, historically, the only requirement for an RBG was to fulfill bunches of
statistical tests aimed to reveal defects in the generated data, nowadays in the techni-
cal community is well accepted that, for random numbers used in cryptography, a flat
statistic is not sufficient and their unpredictability is the main requirement: a potential
attacker must not be able to carry out any useful prediction about the generator’s out-
put even if its design is known. As a consequence, the focus is on the verification of a
minimum entropy requirement and statistical tests are significant only if the statistical
model of the random source under evaluation is known [2].

The German IT security certification authority (BSI) has adopted this approach in
its AIS 31 publication [3] where the physical noise source is separated from the dig-
ital post-processing and, for devices belonging to the functionality class P21, criteria

1 Devices intended for generation of signature key pairs, generation of DSS signatures, gener-
ation of session keys for symmetric encryption mechanisms must belong to the functionality
class P2.

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 147–156, 2005.
c© International Association for Cryptologic Research 2005
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and statistical tests are defined for the noise source output (digitized noise signal) in
order to verify a minimum entropy limit for the post-processor output (internal random
numbers). Namely, the entropy requirement on the final data is guaranteed by defin-
ing a minimum entropy limit for the raw data from the source and, at the same time,
requesting that the adopted post-processing algorithm does not reduce its input entropy.

In this paper we propose to go further ahead with this approach defining an RBG
based on a stateless (memoryless) noise source and a stateless post-processing algo-
rithm. Since the noise source is assumed memoryless, the generated symbols are inde-
pendent and, since the post-processor is also memoryless, the internal random numbers
are independent too. Therefore, the entropy limit can be verified directly after the post-
processor, controlling that the assumed compression ratio in the post-processor is well
chosen with respect to the available entropy per bit from the source. In this scheme,
very fast noise sources, but with a low entropy per bit (“spread” entropy sources), can
be adopted, provided that a sufficient compression is applied. In other terms, the rel-
evant figure of merit becomes the entropy throughput (entropy/second) instead of the
entropy per bit, and the design of the noise source is not anymore constrained by the
statistical quality, but efficiency and robustness can be taken as the main goals.

Moreover, under the hypothesis of independent symbols, a straightforward entropy
estimator can be used to evaluate the amount of entropy produced by the source thus
allowing an adaptive post-processing (compression) and an on-line test of the source. In
fact, even if the source entropy throughput can be evaluated during the characterization
of selected prototypes, tolerances of components, temperature drifts and ageing affect
the statistical properties of the noise source thus requiring an on-line test during the
RBG operation [2].

In addition to technological and environmental variances, attack scenarios when the
generator is operated in a real application should be also considered. In this case, the
effective entropy is basically the attacker’s error rate when observing or forcing the
noise source output. Since the estimation of the attacker’s error rate should be very con-
servative, a strong post-processing is required anyway (minimum compression ratio),
and requesting a high statistical quality for the noise source operated in a controlled
environment loses significance.

In Section 2, the proposed RBG is described focusing on how the hypothesis of
statistical independence for both the raw data and the internal random numbers is ful-
filled. Examples of stateless noise sources are reported in Section 3 while, in Section
4, the important topic of robustness against attacks is discussed proposing an effective
approach to their detection.

2 Stateless Random Bit Generators

Random bit generators used in applications where the unpredictability is a key require-
ment are based on non-deterministic phenomena that act as the source of randomness.
In integrated circuit implementation, electronic noises (thermal and shot) and time jitter
are usually the only available randomness sources.

Every noise source, even if well-designed, produces a bit stream that usually shows
statistical defects due to bandwidth limitation, fabrication tolerances, ageing and tem-
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perature drifts, deterministic disturbances and, in case, signals forced by an attacker.
As a consequence, the noise source should be always followed by a strong digital
post-processing as shown in Figure 1, where the definitions reported in [3] have been
adopted.

A noise source generates an analog signal n(t) which is input into a digitizer. The
digitizer samples the analog signal and converts the sampled values into a stream of
random bits s[i] (digitized noise signal). The non-deterministic source and the digitizer
together form the digitized noise source. The random bits s[i] are then fed into the post-
processing unit which then produces a stream of m-bit random words r[i] (internal
random numbers).

The post-processing unit fulfills two purposes: Firstly, it is necessary to adjust the
probability distribution of the raw random bits s[i] thus overcoming statistical defects
present in the non-deterministic noise source or in the digitizer (e.g. input offset of a
voltage comparator). The probability distribution of the resultant random words r[i] is
much closer to a uniform distribution than that of the input stream s[i].

Secondly, the post-processor is used to increase the entropy per bit of the output
stream. The entropy per bit is increased adopting a compressing function that collects
(“distills”) the entropy in the input stream s[i] to produce a lower speed output stream
with increased randomness.

Due to the presence of mathematical post-processing in an RBG, it is not straight-
forward for a certification authority to discriminate between a truly RBG and a pseudo
random generator which is able to deceive statistical tests producing a uniform proba-
bility distribution without, however, producing any entropy.

In order to guarantee that the generated random numbers are indeed unpredictable
and not just uniformly distributed, the AIS 31 guidelines [3] require, in P2.c), - in ad-
dition to the requirement that the statistical behavior of the internal random numbers
should be inconspicuous - that “the prospects of success for systematic guessing of the
external random numbers2 (realised through systematic exhaustion attacks) - even if
external random number sub-sequences are known - should at best be negligibly higher

2 As shown in Figure 1, random numbers that the RBG external interface delivers to the appli-
cation are named external random numbers.
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than would be the case if the external random numbers had been generated by an ideal
random number generator”.

To certify that this is the case, in P2.d)(vii), [3] states that the sequence of raw
random bits s[i] has “to meet particular criteria or pass statistical tests intended to
rule out features such as multi-step dependencies” and a suite of statistical tests to be
fulfilled is provided. Basically, by testing the random bits before the post-processing
it can be guaranteed that the random words r[i] do indeed have entropy as a physical
non-deterministic noise source is involved in their generation.

Although the AIS 31 has finally focused the attention on the entropy, the described
approach has the disadvantage to consider as the relevant figure of merit the entropy
per bit produced by the source and not its entropy throughput (entropy/second). There-
fore, fast sources but with low entropy per bit, that could produce good quality random
numbers if a sufficient compression is applied and, in general, have a more robust im-
plementation than sources with a better probability distribution, are ruled out.

Moreover, it is not always possible to separate the noise source from the post-
processing. For example, RBG’s based on discrete chaotic systems [4,5] present an
intrinsic pseudo-random behavior superimposed to a random evolution. Therefore, even
if statistical tests applied on the source output s[i] pass, that is not sufficient to state that
a chaotic source produces enough entropy per bit.

The approach proposed in this paper is to consider the noise source only as a source
of entropy, without requiring good statistical properties for it, and to transfer to the post-
processor the task of adjusting the statistic quality and increasing the entropy per bit by
means of a sufficiently high compression. Of course that requires a different procedure
to certify the generator since, in general, the noise source will not pass the AIS 31 suite
of statistical tests as requested in P2.d)(vii).

Actually, this different approach is still compatible with [3], where alternative cri-
teria to statistical tests on the source are also provided. In particular, according to the
alternative criteria - type 1, “the applicant may alternatively submit the following proof:

– Internal random number sequences pass statistical tests specified in P2.i)(vii).
– Clear proof that the internal random numbers achieve the goal set with criterion

P2.d)(vii).
The proof must the provided taking into account the mathematical post-processing
and on the basis of the empirical properties of the digitized noise signal sequence.”

Criterion P2.d)(vii) and the statistical tests specified in P2.i(vii) are aimed “to guarantee
P2.c) for selected prototypes by verifying a minimum entropy limit for each internal ran-
dom bit with a negligibly small error probability”. In other words, criterion P2.d)(vii)
requires that the random stream after the post-processor meets a minimum entropy limit
in order to guarantee the unpredictability of the generated numbers.

Now, if the adopted noise source is assumed to be stateless (memoryless), then the
generated symbols s[i] are independent. As a consequence, if the post-processing unit
is also stateless, the internal random numbers r[i] are independent too and the obtained
entropy per bit can be evaluated from the uniformity of their estimated (empirical) prob-
ability distribution. In particular, a χ2 test with k−1 degrees of freedom can be applied,
where k = 2m is the cardinality of the output alphabet [1]. Obviously, to keep the test
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Fig. 2. A stateless random bit generator

feasible, the output parallelism m must be limited; a typical output interface for a RBG
is 8-bit wide.

The stateless hypothesis can be fulfilled by resetting to a constant value every state
variable both in the source3 and the post-processor4 before the generation of a new bit
s[i] and a new word r[i] respectively, as depicted in Figure 2.

While it is perfectly clear what resetting the digital post-processor means, the im-
plementation of the noise source reset depends on the particular source we adopt and
two examples of stateless sources will be discussed in Section 3.

It is interesting to observe that the source reset before each bit generation is not
strictly necessary. In fact, if a compression factor k is used in the post-processor, the
independence of the input (k · m)-bit sub-sequences {s[(k · m)i + j]}, j = 0, . . . , (k ·
m)− 1, is sufficient to prove the independence of the m-bit output symbols r[i]. There-
fore, resetting the noise source every time a new output word r[i] is generated would be
sufficient.

Nevertheless, the additional hypothesis of independence of each raw bit allows to
adopt the counting of the transitions in the sequence s[i] as a straightforward entropy
estimator (Figure 2) for the source [6]:

Ntrans =
∑

i

(s[i] ⊕ s[i − 1]) . (1)

A lack of transitions with respect to what is expected from an ideal random source
signals a lack of entropy. Using (1), a post-processor with adaptive compressing can be
defined [7], processing raw bits from the source until a minimum number of transitions
has been counted. For example, if 16 transitions must be counted before an 8-bit output
word r[i] is released, that is equivalent to have a mean dynamic compression equal to

3 Resetting the noise source implies resetting the underlying noise process too. Alternatively, a
bit generation frequency sufficiently slower than the noise process bandwidth must be adopted.

4 Patent pending.
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4 for an ideal input sequence, which increases automatically as the entropy from the
source decreases.

The mean compression is chosen according to the entropy throughput expected from
the source. In addition, an upper limit for the compression ratio can be fixed (e.g. k =
16), after that an alarm is asserted thus detecting faults in the source.

Even if the post-processing reset is necessary during the entropy evaluation (certi-
fication), it can be disabled during the normal operation (Figure 2). In fact, if a linear
post-processing algorithm is employed (e.g. a linear-feedback shift register), it can be
easily proved that the output is equivalent to the sum of the reset post-processing output
and the output when the state is maintained and there is no input string from the source
(free evolution). Therefore, the resulting entropy per bit is not lower than that evaluated
during the RBG certification.

3 Examples of Stateless Sources

Even if every noise source can be turned into a stateless source simply switching off
and on again its power supply before the generation of each new bit5, in practice, an ad
hoc designed source is necessary. In particular, a reset state must be implemented where
every memory of the previous generated bit is canceled. A recovery time from the reset
negligible with respect to the bit generation time is the main condition to fulfill.

A first example of stateless noise source can be obtained from the well-know
oscillator-based random bit generator [8,9,10,11] if both oscillators are stopped after
each bit generation (Figure 3), thus avoiding the phase shifting between ffast and fslow.
If digital ring oscillators are employed to implement ffast and fslow, the start-up time
is usually a small fraction of the their oscillating period.

On the trailing edge of a start pulse, both oscillators are enabled and, after Tslow/2,
the fslow raising edge samples ffast and disables both oscillators. A new start pulse is
necessary to trigger the generation of a new bit s[i].

The phase shift between the oscillators is not the only state variable which must
be canceled in this system. In fact, the digitized (a flip-flop in Figure 3) has a memory
and its behavior in commutation depends somehow on the current state (e.g. different
switching timings). As depicted in Figure 3, this further state variable can be easily
canceled resetting the flip-flop too.

An RBG based on this noise source is reported in [12] where an additional feedback
loop is employed to control a starting delay on ffast in order to force the slow oscillator
to sample the fast one close to one of its edges. Such compensation delay is controlled
according to the mean value of the generated bit stream {s[i]} and, as a consequence,
the source is not stateless any more. Anyway, if the feedback loop is stopped once
the steady-state has been reached, thus alternating compensation and normal operation
phases, the stateless hypothesis still holds.

As a second example, a noise source based on a well known chaotic circuit [13] is
depicted in Figure 4. The circuit state is the voltage across the capacitor C and a reset

5 External asynchronous disturbances and signals forced by an attacker are neglected in this
context. An attack scenario and how to detect it is discussed in Section 4.
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state can be easily implemented with an additional switch. In general, that holds for
every chaotic source based on as a switched capacitor circuit.

On the rising edges of the clock clk, the capacitor C is charged with a time constant
τ1 = R1C. When the voltage across C reaches a reference level VR, C is discharged
with a time constant τ2 = R2C. If τ1, τ2 and the clock period are properly chosen, the
circuit shows a chaotic behavior. Every N clock periods an output bit s[i] is generated
and C is reset.

The down-sampling parameter N must be properly chosen in order to obtain a suf-
ficient number of transitions (1). Its value is strictly dependent on the actual divergence
speed of the chaotic circuit (Lyapunov exponent). As a consequence, the transition test
(1) detects whether or not the circuit is actually having a chaotic behavior, i.e. if all the
critical parameters of the circuit are currently in range.

4 Attack Detection in Stateless Noise Sources

An entropy estimator based on the transition counter (1) has been introduced in Section
3, stating that a lack of transitions signals a lack of entropy. Unfortunately, if attack sce-
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narios are taken into account, the inverse implication does not hold. In fact, an attacker
will force the noise source with a pseudo-random disturbance thus deceiving the tran-
sition counter. Therefore, an additional attack detection mechanism is necessary, while
the transition counter is solely intended to detect faults in the noise source.

From the attacker point of view, the actual entropy of the noise source is his error
probability when observing or forcing the generator. An RBG can be observed with the
same techniques employed against cryptographic processors, in particular side-channel
attacks. However, in this case, averaging techniques are not helpful thus limiting the
effectiveness of the attack. On the other hand, since noise sources are based on very
weak random signals, forcing attacks by means of strong disturbances are a threat for
RBG’s and must be taken into account.

The attack model depicted in Figure 5 is assumed in the following: the attacker
can superimpose an own random signal d(t) to the noise output n(t) thus obtaining
a probability distribution that, after the digitizer, is indistinguishable from what the
generator produces in normal conditions. It is then clear that an attack detection is
possible only before the digitization.

Ps

0 1

detection
Attack

Attacker

n(t)
Noise source

Digitized noise source

digitized noise signal

d(t)

s[i]
Digitizer

attack alarm

Pn

Fig. 5. Forcing attack on a noise source

In order to force the source, the attacker shifts the source probability distribution Pn

adding a disturbance ±d̂ and, to obtain an effective entropy reduction (taking into ac-
count the compression in the post-processor), his error probability Pr{s[i] = 1 | d[i] =
−d̂} must be sufficiently small (Figure 6). In other terms, a disturbance amplitude d̂
larger than the Pn standard deviation is required.

Therefore, an attacker cannot force a noise source without increasing its intensity
and the attack detection is based on a source intensity test, assuming that its intensity in
normal conditions is known.

A simple statistical test to detect the attack is counting the number of samples falling
beyond two fixed thresholds as shown in Figure 7, triggering an alarm if the counted
value is too high with respect to the expected value.
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Such approach is general and can be applied to the noise signal n(t) produced by
every kind of stateless noise sources. As an example, for the oscillator-based RBG
discussed in Section 3, the attack detection is implemented adding a second flip-flop
which samples ffast/n, where the down-scaling factor n is chosen according to the
ratio σ(Tslow)/Tfast measured in a controlled environment. If the number of transitions
in this second stream is too high an alarm is generated or, in a borderline condition, the
compression rate can be increased to counterbalance the entropy loss.

5 Conclusions

The concept of stateless random bit generator has been introduced, defining a class
of generators where both the noise source and the post-processing unit are assumed
stateless. The assumption is satisfied introducing a reset state to cancel the memory of
the previous generated bits. The noise source is reset after each bit generation while,
for the post-processor, a reset after a word generation is required. The stateless property
implies the independence of the external random numbers thus allowing to shift the
verification of a minimum entropy limit after the post-processing.

In this approach, the noise source plays the role of entropy source and the rele-
vant figure of merit is its entropy throughput. In other words, the statistic quality of
the source itself is not a requirement, provided that a sufficient compression is imple-
mented in the post-processing algorithm. The independence of the raw bits from the
source allows to define a straightforward on-line entropy estimator to drive an adaptive
compressing thus adapting the compression ratio to the actual entropy available from
the source.

Implementation aspects have been also discussed pointing out that, while the post-
processing reset is not an issue, the implementation of the source reset depends on the
source architecture. Two examples have been provided to clarify the general principle.
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The stateless hypothesis is sufficient to define an entropy estimator only if distur-
bances from an attacker aimed to force the source are not taken into account. As a
consequence, in a real application, a further attack detection mechanism is required and
an effective statistical test on the source before the digitizer has been discussed.
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Abstract. During the last years, several masking schemes for AES have
been proposed to secure hardware implementations against DPA attacks.
In order to investigate the effectiveness of these countermeasures in prac-
tice, we have designed and manufactured an ASIC. The chip features an
unmasked and two masked AES-128 encryption engines that can be at-
tacked independently.

In addition to conventional DPA attacks on the output of registers,
we have also mounted attacks on the output of logic gates. Based on
simulations and physical measurements we show that the unmasked and
masked implementations leak side-channel information due to glitches
at the output of logic gates. It turns out that masking the AES S-Boxes
does not prevent DPA attacks, if glitches occur in the circuit.

Keywords: AES, ASIC, DPA, Masking, Power Analysis.

1 Introduction

Power analysis attacks pose a serious threat to implementations of cryptographic
algorithms. This is why there has been a lot of research during the last years
to develop countermeasures. In particular, there have been quite some efforts to
find methods to protect implementations of the Advanced Encryption Standard
(AES) [10] against differential power analysis (DPA) attacks [7].

A commonly used approach to protect implementations of AES against DPA
attacks is to randomize all intermediate results that occur during the compu-
tation of the algorithm. Usually, this is done by adding a random value to the
intermediate results. This approach is called masking. The first article describing
a masking scheme for AES was published by Akkar et al. in 2001 [2].

During the last years, several alternative masking schemes have been pro-
posed (see [3], [6], [12], [16], and [17]). These publications focus on alternative
methods to mask the AES S-Box. All other operations of AES are linear and
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hence they are easy to mask. Most of the articles that have been published on
masking so far, are mainly theoretical. The security or insecurity of the different
masking schemes has primarily been analyzed by assuming certain power con-
sumption characteristics of the hardware that is used to implement the schemes.

The current article is different. We have designed and manufactured a chip
that features an unmasked version and two masked versions of an AES-128
encryption engine. For the masked versions we have used the approach presented
by Oswald et al. [12] and the original approach of Akkar et al. [2]. We have
restricted our implementation to these two masking schemes for the following
reasons.

The approach presented in [3] is very similar to the one of Oswald et al.
Both schemes are provably secure in theory and therefore we have implemented
only one of them. The masking scheme proposed in [17] has not been considered
because it has been shown in [1] that this scheme does not prevent standard
first-order DPA attacks. The approach of Golić and Tymen [6] seems not to
be suitable for hardware implementations due to its big area requirements. The
approach of Trichina and Korkishko [16] is based on masking at the gate level.
However, we only wanted to compare implementations of masking schemes that
are applied at the algorithm level.

Our chip implementing the unmasked AES processor and the two masked
versions has been designed using a 0.25 μm CMOS technology. In order to per-
form DPA attacks on this chip, we have built a dedicated printed circuit board
(PCB) that provides easy access to the power supply of the chip.

In this article, we present and compare the results of two types of DPA
attacks. The first type of DPA attacks was targeted at intermediate results
of AES that are stored in registers in our AES implementations. Attacks on
registers of an unmasked AES implementation have also been analyzed by Örs
et al. in [11]. Like the attacks of Örs et al., also our attacks on the unmasked
implementation have been successful. As expected, the cipher key of the masked
versions could not be revealed by this type of attack. The second type of DPA
attacks we have performed, was targeted at intermediate results that occur only
at the output of logic gates. This is an important type of attack because in typical
AES hardware implementations not all intermediate results that are suitable for
a DPA attack are stored in registers.

In this article, we present successful DPA attacks of this type on the un-
masked as well as on the masked AES implementations of our chip. Masking
does not prevent this kind of DPA attacks because of glitches that occur in the
masked S-Boxes of our chip. Glitches are switching operations of logic gates that
are caused by timing properties of gates and by interconnection delays.

The fact that glitches lead to a side-channel leakage of masked gates has
already been shown in [8] based on SPICE simulations. Also Suzuki et al. [15]
have recently discussed the effect of glitches on the DPA-resistance of masked
circuits. The current article shows that it is actually possible to exploit the
side-channel leakage of masked AES implementations in practice.
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Fig. 1. Architecture of the AES chip

It is important to point out that it is not necessary to perform higher-order
DPA attacks (see [9] and [18]) in order to exploit this side-channel leakage. All
attacks presented in this article are first-order DPA attacks.

The remainder of this article is organized as follows: Section 2 describes the
architecture of our AES chip. Results of DPA attacks that have been targeted at
the output of registers are discussed in Section 3. Section 4 presents the results
of the attacks on logic gates. This section provides an extensive discussion of
the measurement results and it also analyzes glitches based on simulations. A
summary of the results of the attacks on logic gates is presented in Section 5.
Future research topics and a conclusion are stated in Section 6.

2 Architecture of the AES Chip

The architecture of our AES chip is schematically depicted in Figure 1. Based
on this architecture, AES-128 encryptions can be performed in three different
modes. In the first mode, an unmasked encryption is computed. The second
mode performs a masked encryption based on the masking scheme proposed by
Oswald et al., and the third mode encrypts plaintexts based on the masking
scheme proposed by Akkar et al.

During the design of the chip, special attention has been paid to ensure that
only those parts of the chip are active that are actually needed for the selected
mode—all other parts are completely disabled.
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The main components of the architecture of our chip are the round-key gener-
ation, the data unit, and the mask transformation (see Figure 1). The round-key
generation calculates the round keys as specified in [10]. The data unit im-
plements all round transformations: AddRoundKey, ShiftRows, SubBytes, and
MixColumns. The S-Boxes that are needed for the SubBytes transformation have
been implemented separately for the unmasked mode and for the two masked
modes. We refer to the masked S-Boxes as MOS-Boxes (masked as proposed
in [12]) and MAS-Boxes (masked as proposed in [2]). Our architecture is based
on a 32-bit datapath and therefore, four S-Boxes, four MOS-Boxes, and four
MAS-Boxes are present in the design.

The mask transformation is the third main component of the architecture. It
computes how the input mask (mask X) is altered by the linear transformations
of the AES algorithm. Transformed mask values are required as input for the
MAS-Boxes and the MOS-Boxes, as well as for the mask removal in the final
round of an encryption. The multiplicative mask Y is only required for the
MAS-Boxes.

3 DPA Attacks on Registers

In our architecture, the register labelled “AES state” in Figure 1 stores the AES
state [10] after each round of an AES-128 encryption. If masking is enabled,
this register stores the corresponding masked AES state, i.e. the sum of the
unmasked AES state and the mask stored in the register labelled “mask state”.

For the DPA attacks on this register, we assume that the attacker knows the
ciphertext, i.e. she/he knows the content of the register after the final round of
AES has been computed. In the final round, no MixColumns transformation is
performed. Hence, it is possible to calculate one byte of the AES state of round
nine based on one byte of the ciphertext and one byte of round key ten. We have
exploited this property to successfully mount a DPA attack on the unmasked
implementation of AES.

We have revealed round key number ten by attacking one byte of this key
after the other. The DPA attack was done by formulating hypotheses about
the number of transitions that occur at the output of the register “AES state”
at the moment of time when the ciphertext is stored. The correlation between
the hypotheses and the power consumption of the chip was measured using
Pearson’s correlation coefficient. The cipher key of the unmasked implementation
was found based on 120, 000 measurements.

After the successful DPA attack on the unmasked implementation, we have
performed the same attack on the masked ones. However, using the same hy-
potheses as in the unmasked case, it was not possible to reveal the cipher key
of the masked implementations. Not even an attack based on one millon mea-
surements was successful. This is actually an expected result. The hypotheses of
the attacker do not correlate with the power consumption because the content
of “AES state” register is masked. Table 1 shows a summary of our attacks on
the “AES state” register.
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Table 1. Summary of the attacks on the register storing the (masked) AES state

Attacked AES implementation Number of needed measurements
S-Box 120, 000

MOS-Box not possible with 1, 000, 000
MAS-Box not possible with 1, 000, 000

4 DPA Attacks on Logic Gates

In hardware implementations of cryptographic algorithms, many intermediate
results that can be used for DPA attacks are usually not stored in registers. Our
implementations for example do not store the output of the S-Box operations.
We only store the AES state after each round.

In this section, we discuss DPA attacks on intermediate results that occur
at the output of logic gates. Attacks of this kind cannot be conducted as easily
as attacks on registers. The reason for this is that the transitions occurring
at the output of logic gates are very hard to predict for an attacker. Registers
switch their output only once per clock cycle. This transition of the output value
leads to the power consumption that is attacked. Logic gates in CMOS circuits
however, switch their output potentially several times per clock cycle—there
occur glitches. This is a consequence of the timing properties of logic gates and
the interconnection delays. Information about glitches in CMOS circuits can for
example be found in [14].

We discuss the challenges of performing DPA attacks on logic gates based on
our unmasked AES implementation in Section 4.1. DPA attacks on the masked
implementations of AES are subsequently presented in Sections 4.2 and 4.3.

4.1 Attacks on the Unmasked Implementation

The output of the S-Box operation in the first round is an ideally suited target
for a DPA attack on logic gates. This intermediate result is not directly stored
in a register and it can be calculated based on one byte of plaintext and one byte
of the cipher key. All attacks we discuss in this section are targeted at the logic
gates computing this intermediate result. However, before discussing the attacks
on the actual chip, we analyze and attack the power consumption characteristics
of an unmasked S-Box based on simulations.

Attacking an Unmasked S-Box Based on Simulations. The S-Boxes used
in our architecture have been implemented as proposed by Wolkerstorfer et al.
in [19]. A block diagram of this implementation is shown in Figure 2. In order
to analyze the power consumption of S-Box 1 of our unmasked implementation,
we have performed simulations based on a back-annotated netlist of this S-Box.

Simulations of this kind can be used to determine the number of transitions
that occur at the nodes of the S-Box circuit upon a change of the S-Box input.
Figure 3 for example shows how the output bits of the S-Box change, if the
input switches from 10hex to FFhex. This transition at the input leads to many
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transitions at the output during a time frame of more than 2 ns. As it can be
seen in Figure 3, many glitches occur in our S-Box implementation.

In addition to the transitions at the output of the S-Box, there also occur
many transitions at the internal nodes. In order to assess the overall power
consumption of the combinational circuit implementing the S-Box, we have per-
formed simulations for all possible input transitions (28 ∗ 28 = 216 simulations).
During each simulation, we have counted the number of transitions that occur
at the nodes of the S-Box circuit. This counting was done based on an in-house
tool that has been developed to analyze the switching activity of nodes in com-
binational circuits. Using the output of this tool, we have calculated the average
number of transitions that occur for each of the 256 possible S-Box outputs.

Figure 4 shows the result of these simulations. The upper plot shows the
average number of transitions occurring in the S-Box for each output value. The
capacitive load of the wires in the S-Box do not differ significantly and hence,
this transition count can be used as estimation for the actual power consump-
tion of the S-Box. The lower plot in Figure 4 shows the Hamming weight of
the output values. In many DPA attacks that have been published, hypotheses
about the Hamming weight of an intermediate result have been used to per-
form an attack. Figure 4 however, indicates that the power consumption of our
S-Box implementation is unrelated to the Hamming weight of the output value
of the S-Box. The correlation between the two curves shown in Figure 4 is 0.035.
Therefore, DPA attacks that are based on the Hamming weight model may not
be successful. In order to verify this statement, we have performed DPA attacks
based on our simulations.

For these attacks, we have first generated 100, 000 random plaintexts and
we have randomly chosen a cipher key. Subsequently, we have determined the
number of transitions that occur in the attacked S-Box during the encryption of
the plaintexts. This number of transitions was used as estimation for the power
consumption of the S-Box.

This estimated power consumption was attacked by predicting the Hamming
weights of the intermediate results i1 . . . i12 (see Figure 2) and the Hamming
weight of the S-Box output. However, none of these 13 DPA attacks was suc-
cessful, i.e. the correct key did not lead to the highest correlation.

Subsequently, we have also performed attacks based on predicting each indi-
vidual bit of the 4-bit intermediate results i1 . . . i12 and of the 8-bit S-Box output.
Most of these 56 DPA attacks also failed. However, there were some intermediate
results that lead to successful DPA attacks. For example, a DPA attack based
on bit 2 of i8 revealed the correct key based on 250, 000 measurements.

The value of this bit seems to match the power consumption of the S-Box
quite well. However, we consider this property to be highly specific to our im-
plementation and therefore we do not provide a detailed discussion about which
bits lead to a successful attack and which did not. The transitions that occur in
the circuit implementing the S-Box depend on many factors. The main factor
is the HDL description of the S-Box. However, the transitions occurring in the
S-Box also depend on the used cell library, the placement, the routing and of
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course on the way the synthesizer maps the HDL description of the S-Box to the
cell library.

In our case, the power consumption characteristic of the S-Box shown in
Figure 4 is correlated to bit 2 of i8. Yet, there is no guarantee that this property
is maintained if a different HDL description, synthesizer, placement tool, or
cell library is used. In fact, it may turn out that in a different implementation,
another bit of the intermediate results or even of the S-Box output are correlated
to the power consumption of the S-Box.

The overall conclusion of our simulations is that DPA attacks based on simple
power models, like the Hamming weight, work only for very few intermediate
bits of our S-Box implementation. DPA attacks are only possible, if the power
consumption values that are predicted by the attacker match the actual power
consumption of the S-Box at least to some degree. In the following paragraphs, we
empirically verify these results by performing the same attacks on the actual chip.

Attacking an Unmasked S-Box on the Actual Chip. Using the setup
described in Appendix A, we have encrypted one million random plaintexts
with the unmasked AES implementation on our chip. During each encryption,
the power consumption was recorded with a digital oscilloscope.

Based on these one million power traces, we have performed the same attacks
as in the simulation. This means that we have mounted attacks based on the
bits and the Hamming weights of the intermediate results i1 . . . i12 and of the
S-Box output. The target of all our attacks was S-Box 1 in the first AES round.

We have measured a high correlation between at least one key hypothesis and
the power consumption of the chip in all attacks. However, in almost all attacks
it was not the correct key hypothesis that lead to the peak in the correlation
trace.

Figure 5, for example, shows the result of a DPA attack based on one mil-
lion measurements that was mounted on the least significant bit of the output
of S-Box 1. The black trace shows the correlation we have measured for the
correct key hypothesis, while the gray traces show the correlation for all other
hypotheses. Some of the wrong key hypotheses lead to significant peaks. These
peaks occur in the correct clock cycle, i.e. they occur in the clock cycle when
the attacked S-Box operation is performed.

An attacker observing this result, can learn the moment of time when the
S-Box operation is performed. However, the attacked byte of the cipher key is
not revealed directly. This holds true for almost all attacks we have performed.
In these attacks, it usually took not more than 250, 000 power measurements to
determine in which clock cycle the S-Box operation is performed. However, in
general the correct key could not be revealed—not even based on one million
measurements.

The correct key could only be revealed by very few attacks. Like in the sim-
ulation, the attack on bit 2 of i8 lead to the best results. 140, 000 measurements
were needed in order to successfully perform a DPA attack based on bit 2 of i8.

In addition to the attacks on bits and Hamming weights, we have also per-
formed a DPA attack using a more advanced power model of the S-Box. In fact,
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we have used the average transition count that is shown in Figure 4 as power
model for our attack. This means that instead of predicting a bit of the S-Box
output, we were predicting the number of transitions that occur in the S-Box.
This approach is to some degree comparable to the template attacks described
in [4].

The DPA attack we have performed based on predicting the number of transi-
tions turned out to be very powerful. Only 25, 000 measurements were needed in
order to determine the attacked byte of the cipher key. This result confirms that
it is legitimate to use the transition count as a model for the power consumption
in the context of DPA attacks.

All in all, the results of the DPA attacks on the unmasked implementation
have confirmed the results of our simulations. The big majority of DPA attacks
using simple power models were not successful. Only those attacks using a power
model that at least to a certain degree matches the actual power consumption
of the S-Box, have been successful. The better the used power model was, the
less measurements were needed for the attack. Our results have been confirmed
by DPA attacks on all four unmasked S-Boxes of our chip.

4.2 Attacks on the Implementation of the Scheme by Oswald et al.

After the attacks on the unmasked S-Boxes of the chip, we have performed
attacks on the implementation of the masked S-Boxes that are based on the
approach of Oswald et al. (the MOS-Boxes).

Like in the unmasked case, we have first performed some simulations based
on the back-annotated netlist of a MOS-Box. However, we have not performed
simulated DPA attacks for the MOS-Box. Essentially, we have only derived a
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power model of the MOS-Box based on our simulations. This power model was
created by counting the number of transitions occurring in the MOS-Box during
the encryption of 100, 000 random plaintexts. For each of these encryptions, a
randomly generated mask was used.

Nevertheless, it turned out that the power consumption of the MOS-Box
depends on the data input of the MOS-Box. The 256 possible data inputs lead
to different numbers of transitions in the MOS-Box. In fact, there were signifi-
cant differences and hence, our MOS-Box implementation is leaking side-channel
information.

This can be explained by glitches that occur in the MOS-Box. In [12], Oswald
et al. prove that all intermediate results that occur in their masking scheme
are independent of the plaintexts. However, this proof is done at the algorithm
level. At this level, all the additional intermediate results that occur in an actual
CMOS implementation due to glitches are not considered.

In order to verify that the side-channel leakage is indeed caused by glitches
in our MOS-Box implementation, we have additionally performed a functional
simulation of the MOS-Box circuit. For this simulation, we have used the same
back-annotated netlist as in the previous simulations. However, we have ignored
all the timing information and hence, no glitches occurred in the MOS-Box
during the functional simulation. As expected, the number of transitions that
occurred in the MOS-Box during the functional simulation did not depend on
the input of the MOS-Box. During this simulation, only intermediate results
occurred that have been proven to be independent of the data input of the
MOS-Box.

However, unfortunately the timing characteristics of a circuit cannot be ig-
nored in practice. The DPA attacks we have performed on the MOS-Box imple-
mentations on our chip confirm that the power consumption of the implementa-
tion with glitches actually leaks side-channel information. Like in the unmasked
case, we have used one million measurements to perform the DPA attacks on our
chip. The attacks we have performed first, were based on predicting individual
bits and the Hamming weight of the output of MOS-Box 1 during round one.
The predictions were only based on the plaintexts—the masks are unknown to
the attacker.

Like in the attacks on the unmasked S-Box, it was not possible to determine
byte one of the cipher key based on the attacks on the S-Box output—not even
with one million measurements. However, in all attacks it was again possible to
determine in which clock cycle the attacked MOS-Box operation is performed.
Roughly 250, 000 measurements were needed to obtain this information.

In order to prove that it is possible to successfully attack the MOS-Box im-
plementation with glitches, we have performed a DPA attack using the power
model we had previously derived from the simulation with glitches based on the
back-annotated netlist. Using this power model, it was possible to successfully
attack the MOS-Box implementation based on 30, 000 measurements. Compara-
ble results were also achieved when we targeted the remaining three MOS-Box
implementations on our chip. Hence, DPA attacks on the MOS-Boxes of our chip
can be performed successfully, if a reasonable power model is used.
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4.3 Attacks on the Implementation of the Scheme by Akkar et al.

The implementation of the masked S-Boxes that are based on the approach
of Akkar et al. (the MAS-Boxes) have been attacked in the same way as the
MOS-Boxes in the previous subsection. This means that we have first derived
a power model of a MAS-Box based on simulating its back-annotated netlist.
Like before, this was done by counting the number of transitions occurring in
the MAS-Box during 100, 000 masked encryptions of random plaintexts.

The number of transitions in the MAS-Box depends on the data input—
just like in the case of the unmasked S-Box and the MOS-Box. It is important
to point out that the observed dependency was not only caused by the zero-
value problem [6] of the scheme of Akkar et al. Also non-zero data inputs lead to
significantly different transition counts. These differences can again be explained
by the glitches that occur in the circuit.

In order to verify that also our MAS-Box implementation can be attacked
successfully in practice, we have measured the power consumption of our chip
during one million masked encryptions. Using these power measurements, we
have first performed attacks based on predicting the individual bits and the
Hamming weight of the output of MAS-Box 1 in round one. The masks were
again considered to be unknown to the attacker.

The attacks on the output of MAS-Box 1 have not been successful based on
one million measurements. Yet, it was again possible to determine in which clock
cycle the attacked MAS-Box operation was performed. Compared to the attacks
on the other S-Box implementations, however, significantly more measurements
were needed to obtain this information. It took 900, 000 measurements.

An intuitive argument for this big difference is that our MAS-Box implemen-
tation is significantly bigger than the S-Box or the MOS-Box implementation.
Furthermore, roughly half of the operations in the MAS-Box operate on masks
only. For an attacker, this part of the MAS-Box acts like a big noise engine. No
glitches leading to a data-dependent power consumption can occur in this part
of the MAS-Box. A data-dependent power consumption can only be caused by
glitches in operations that involve the masked data.

Nevertheless, we have been able to successfully perform DPA attacks on the
MAS-Boxes of our chip. Using the power model derived from the simulation of
the MAS-Box, we have successfully attacked all four MAS-Boxes on our chip.
For these attacks, 130, 000 measurements were needed.

5 Summary of the DPA Attacks on Logic Gates

In the previous section, we have discussed different DPA attacks on the unmasked
and on the two masked AES implementations on our chip. The targets of these
attacks were the S-Box operations in the first round of AES.

The main result of the attacks is that all three AES implementations leak
side-channel information. CMOS implementations of the masking schemes pro-
posed in [12] and [2] leak side-channel information due to glitches. We have
analyzed this fact based on simulations of back-annotated netlists of all S-Box
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Table 2. Summary of the DPA attacks on the different S-Box implementations

Number of measurements needed to
S-Box Implementation determine clock cycle determine key

( using power model)
Unmasked S-Box 220,000 25,000
MOS-Box 250,000 30,000
MAS-Box 900,000 130,000

implementations. These simulations have shown that the number of transitions
that occur in the S-Boxes depends on the S-Box input. Even in the masked cases,
this dependency has been observed.

In addition to the simulations, we have performed DPA attacks on an actual
chip. It has turned out that the attacks on the unmasked and the masked im-
plementations lead to similar results. DPA attacks using simple power models,
such as the Hamming weight or the value of a bit, were in general not successful.
However, these attacks revealed in which clock cycle the attacked S-Box opera-
tion is performed. The number of measurements that were needed to obtain this
information from the different AES implementations is shown in column two of
Table 2.

All AES implementations have been successfully attacked using power models
that have been derived based on simulations. The number of measurements that
were needed to perform these attacks are shown in column three of Table 2. The
attacks obviously pose a serious threat to unmasked as well as masked CMOS
implementations of AES S-Boxes.

Designers of AES hardware implementations also need to be aware of the fact
that their design might be susceptible to DPA attacks using simple power models.
In our experiments, an attack on bit 2 of i8 of the unmasked S-Box was successful.
Actually, there is no guarantee that the power consumption of a masked AES
hardware implementation is in general uncorrelated to similar hypotheses of
an attacker. Depending on the implementation, it might also happen that the
power consumption of a masked AES hardware implementation is correlated to
the Hamming weight of the S-Box output.

6 Future Work and Conclusion

In this article, we have shown that it is possible to mount successful first-order
DPA attacks on masked ASIC implementations of AES. The attacks we have
presented are based on power models that have been derived from simulations
of back-annotated netlists.

However, an attacker usually does not have easy access to the back-annotated
netlist of a product. This is why we are currently closely analyzing the charac-
teristics of the side-channel leakage that is caused by glitches. Our goal is to
determine whether or not there exists a general power model that can be used
to attack masked AES S-Boxes. In this context, we also plan to analyze in de-
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tail why our implementation of the MOS-Boxes is not more secure than our
implementation of the MAS-Boxes.

Although, these questions remain unanswered at this time, our experiments
clearly show that masked hardware implementations are not as secure in practice
as one might have expected. We have shown that there is a side-channel leakage
of masked CMOS implementations due to glitches. We have observed this side-
channel leakage in simulations based on back-annotated netlists as well as in
power measurements of an ASIC implementation.

The conclusion of this article is that it is crucial for the DPA resistance of a
design to think about glitches when masking schemes are implemented. Glitches
should either be completely avoided [13] or the used masking scheme needs to
be adapted in a way that it also works in the presence of glitches [5].

Acknowledgements

The analyzed chip with the unmasked and the two masked AES-128 encryption
engines has been designed and implemented in cooperation with the Integrated
Systems Laboratory at the Swiss Federal Institute ofTechnologyZurich.We would
like to thank Frank K. Gürkaynak and Simon Häne for their generous support.
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A Measurement Setup

A dedicated printed circuit board has been developed for mounting the DPA
attacks on our chip (see Figure 6). We use an FPGA as interface between a
standard PC and the chip. The communication between the PC and the FPGA
is performed via an optically decoupled parallel interface.

Measurements are performed as follows. First, the input data of the chip is
loaded into the FPGA via the parallel port. Then, the FPGA loads the data into
the chip and starts an unmasked or masked AES encryption. The chip triggers
a digital oscilloscope, which records the power consumption of the chip during
the encryption.

chip

trigger

clock

PC

optical decoupling

probeFPGA

Fig. 6. Measurement setup for performing DPA attacks on the AES chip
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Abstract. During the last years, several logic styles that counteract
side-channel attacks have been proposed. They all have in common that
their level of resistance heavily depends on implementation constraints
that are costly to satisfy. For example, the capacitive load of complemen-
tary wires in an integrated circuit may need to be balanced. This article
describes a novel side-channel analysis resistant logic style called MDPL
that completely avoids such constraints. It is a masked and dual-rail
pre-charge logic style and can be implemented using common CMOS
standard cell libraries. This makes MDPL perfectly suitable for semi-
custom designs.

Keywords: Side-Channel Analysis, DPA, Hardware Countermeasures,
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1 Introduction

During the last years, many logic styles that counteract side-channel analysis
(SCA) attacks have been proposed. The big advantage of counteracting SCA
attacks at the logic level is that this approach treats the problem right where it
arises. If the basic building blocks, i.e. the logic cells, are resistant against SCA
attacks, a designer can build a digital circuit with an arbitrary functionality
and it will also be resistant against SCA attacks. Having SCA-resistant cells
means that hardware as well as software designers do not need to care about
SCA attacks any more. This greatly simplifies the design flow of a cryptographic
device. Only the designers of the logic cells themselves need to be aware of SCA
attacks.

An asynchronous logic style that makes devices more resistant against SCA
attacks has for example been presented in [13]. However, it has been shown in
[5] that this logic style has some weaknesses.

So far, the most promising logic styles to make devices resistant against SCA
attacks are dual-rail pre-charge (DRP) logic styles that consume an equal amount
of power for every transition of a node in a circuit. The most relevant logic styles

� This work has been supported by the European Commission under the Sixth Frame-
work Programme (Project SCARD, Contract Number IST-2002-507270).

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 172–186, 2005.
c© International Association for Cryptologic Research 2005



Masked Dual-Rail Pre-charge Logic 173

of this kind are SABL [18,19], WDDL [20], and Dual-Spacer DRP [16]. In these
DRP logic styles, the signals are represented by two complementary wires. The
constant power consumption is achieved by guaranteeing that in every clock
cycle one of these two wires is charged and discharged again. Which one of the
two wires performs this charge and discharge operation depends on the logical
value that the wires represent.

Obviously, a constant power consumption can only be achieved, if the comple-
mentary wires have the same capacitive load. Otherwise, the amount of energy
needed per clock cycle would depend on which of the two nodes is switched and
therefore would be correlated to the logical value. Unfortunately, the requirement
to balance the capacitive load of two wires is hard to fulfill in a semi-custom de-
sign flow.

In a semi-custom design flow, so-called EDA tools place and route a digital
circuit automatically. There exist only sub-optimal mechanisms to tailor the
place and route operation such that the capacitive load of two wires is equal.
Such a partial solution is for example parallel routing as introduced by Tiri and
Verbauwhede [21]. However, integrating such mechanisms becomes more and
more difficult for deep submicron process technologies where the transistor sizes
and wiring widths continuously shrink. Hence, the capacitance of a wire more
and more depends on the state of adjacent wires rather than on the length of the
wire and its capacitance to VDD or GND. Therefore, it is very hard to guarantee
a certain resistance against SCA attacks, if a DRP circuit is placed and routed
automatically. Placing and routing a circuit manually, i.e. doing a full-custom
design, significantly increases the design costs.

In this article, we present an approach that can easily be integrated in existing
semi-custom design flows, i.e. there are no constraints for the place and route
operation. The basic idea of our approach is to use masked cells to randomize
the power consumption of cryptographic devices.

So far, masking has mainly been used at the software level. In [3] for example,
Chari et al. analyze a secret sharing scheme where each intermediate bit of the
original calculation is probabilistically split into k shares and every subset of
k − 1 shares is statistically independent of the original bit. A similar approach
is described by Goubin and Patarin in [6] to mask the S-boxes of DES.

Masking on the gate level was considered for the first time in a patent [11]
of Messerges et al. in 2001. However, the masked gates described in [11] are
extremely big because they are built based on multiplexors. A different approach
has been pursued later on by Gammel et al. in [7]. This patent shows how to
mask complex circuits such as crypto cores, arithmetic-logic units, and complete
micro controller systems. Other masked logic styles have been presented in [10]
and in [22] where masked cells are built from standard CMOS cells.

The problem with all the mentioned masked logic styles is that glitches occur
in these circuits. As shown in [9] and in [17], glitches in masked CMOS circuits
reduce the SCA resistance significantly. Therefore, glitches must be considered
when introducing an SCA countermeasure based on masking. In [17], a masked
logic style called random switching logic (RSL) is presented. It avoids glitches
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in the circuit. Yet, RSL needs a careful timing of enable signals. Furthermore, a
new standard cell library must be compiled where all combinational gates have
enable inputs.

In the current article, we present the so-called masked dual-rail pre-charge
logic (MDPL) that uses masking at the gate level and that avoids glitches in the
circuit by using a dual-rail pre-charge approach. There are no constraints for the
place and route process. All MDPL cells can be built from standard CMOS cells
that are commonly available in standard cell libraries.

Section 2 of this article explains the functionality and implementation de-
tails of MDPL cells. Furthermore, the overall architecture of MDPL circuits is
introduced. In Section 3, experimental results of MDPL cells and circuits are
presented. Conclusions are formulated in Section 4.

2 Masked Dual-Rail Pre-charge Logic

Currently the most promising DPA-resistant logic styles require the balancing
of complementary wires. In the following sections, the masked dual-rail pre-
charge logic (MDPL) is introduced, which completely avoids this constraint.
Furthermore, MDPL can be implemented using a commonly available standard
CMOS cell library. Hence, MDPL can be used easily in semi-custom design flows.

2.1 Masking CMOS Logic

Currently, the most widely used logic style to implement digital integrated cir-
cuits is CMOS [23]. A main characteristic of CMOS logic is that it requires
primarily dynamic power while its static power consumption is almost zero. The
dynamic power consumption is caused by transitions of logic signals that occur in
the CMOS circuit. The type and the probability of signal transitions depend on
the logical function of a circuit and on the processed data. As a result, the power
consumption of a CMOS circuit depends on the data that is being processed and
hence, DPA attacks as described in [8] are possible.

In a digital CMOS circuit, there are essentially four transitions that can
occur at a node of the circuit at a given moment of time. These include the
two degenerated events where the node’s value stays the same. Table 1 lists all
transitions that can occur at a node n storing the data value dt−1 at the time
t − 1 and the value dt at the time t. The energy that is dissipated in order
to perform the respective transition is denoted by E00 . . . E11. Each of these
transitions occurs with a certain probability, denoted by p00 . . . p11.

In a DPA attack on a cryptographic device, several power traces or EM traces
of the device are recorded while it operates on different input data. The traces
are then split into two sets according to the value dt at a certain time t. dt

is calculated based on the input data and a key hypothesis. Subsequently, the
attacker determines the difference of the means (DM) of the two sets of traces.
We refer to these means as Mdt=0 and Mdt=1.

Of course, at the time t not only the value of node n performs a transition.
Several other nodes also switch their value at this moment of time. However, the
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Table 1. Transitions of the value d of a node in a CMOS circuit

dt−1 dt Energy Probability
0 0 E00 p00

0 1 E01 p01

1 0 E10 p10

1 1 E11 p11

energy dissipation that is caused by these other nodes can be modeled as gaussian
noise (see for example [12]). Therefore, the expected value of the difference of
the means, E(DMdt), can be calculated as shown in Equation 1.

E(DMdt) = E(Mdt=1) − E(Mdt=0) =
p11E11 + p01E01

p11 + p01
− p00E00 + p10E10

p00 + p10
(1)

In case of standard CMOS logic (E00 ≈ E11 " E10 �= E01), this difference
is different from zero and can therefore be detected by an attacker. At all other
moments of time, except for t, the partitioning of the traces according to dt is
meaningless. Consequently, the expected value for the difference of the means
at these moments of time is zero. Furthermore, if a wrong key value is used to
calculate dt, the partitioning of the traces is again meaningless and also leads to
an expected value of zero. As a result, the attacker in general gets a significant
peak for a single key hypothesis, which is then the correct key.

The straightforward method to prevent an attacker from seeing such a peak
is to use cells with the property that E00 = E01 = E10 = E11. This is in fact
the motivation for using dual-rail pre-charge logic styles such as SABL [18] or
WDDL [20]. DRP logic styles have the property that transitions need the same
amount of energy, if all pairs of complementary wires are perfectly balanced, i.e.
have the same capacitive load. However, as already discussed, this requirement
is very hard or even impossible to guarantee. This is the motivation for MDPL.
MDPL is based on a completely different approach to prevent DPA attacks.

Resistance against DPA attacks at the gate level cannot only be achieved by
consuming the same amount of energy for all transitions, but also by random-
izing the logic signals in the circuit. This is the basic idea of MDPL. Instead of
representing a logical value d by two complementary signals d and d, we repre-
sent d by dm = d⊕m, where ⊕ denotes the addition modulo 2 and m is a mask
value. The mask is randomly generated and updated in every clock cycle.

Table 2 shows all transitions that can occur at a node n storing the masked
value dm when the time moves from t− 1 to t. It also shows the required energy
and the probability of each transition. The probability in line 1 is for example
calculated as follows: 1

4p00 = p(mt−1 = 0) · p(mt = 0) · p(dt−1 = 0) · p(dt = 0).
When a DPA attack is performed on the masked circuit, the power traces

are split according to the value of dt at time t. However, in the circuit now the
masked value dmt is actually processed. In order to calculate E(Mdt=0), the odd
lines are used while E(Mdt=1) is calculated based on the even lines. As shown in
Equation 2, the two expected values are equal. Therefore, the expected value of
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Table 2. Transitions of the value dm of a masked node

Line no. dt−1 mt−1 dmt−1 dt mt dmt Energy Probability
1 0 0 0 0 0 0 E00

1
4p00

2 0 0 0 1 1 0 E00
1
4p01

3 1 1 0 0 0 0 E00
1
4p10

4 1 1 0 1 1 0 E00
1
4p11

5 0 0 0 0 1 1 E01
1
4p00

6 0 0 0 1 0 1 E01
1
4p01

7 1 1 0 0 1 1 E01
1
4p10

8 1 1 0 1 0 1 E01
1
4p11

9 0 1 1 0 0 0 E10
1
4p00

10 0 1 1 1 1 0 E10
1
4p01

11 1 0 1 0 0 0 E10
1
4p10

12 1 0 1 1 1 0 E10
1
4p11

13 0 1 1 0 1 1 E11
1
4p00

14 0 1 1 1 0 1 E11
1
4p01

15 1 0 1 0 1 1 E11
1
4p10

16 1 0 1 1 0 1 E11
1
4p11

the difference of the means E(DMdt) is zero and DPA attacks are not possible
any more.

E(Mdt=0) = E(Mdt=1) =
1
4

(E00 + E01 + E10 + E11) (2)

Note that it is necessary to prevent glitches in a masked CMOS circuit in
order to be resistant against DPA attacks. The fact that glitches lead to a leakage
of side-channel information in masked CMOS circuits has been shown in [9] and
in [17]. In CMOS circuits, the value of a node may switch several times before
it reaches the correct value. The reason is that the input signals of the cell
driving a node in general arrive at different moments of time. Glitches typically
account for a significant amount of the dynamic power consumption of a CMOS
circuit [15] and depend on the data that is processed. MDPL completely avoids
glitches in the masked circuit as it is explained in the next section.

2.2 MDPL Cells

MDPL is a masked logic style that prevents glitches by using the DRP principle.
Hence, for each signal dm also the complementary signal dm is present in the
circuit. Every signal in an MDPL circuit is masked with the same mask m. The
actual data value d of a node n in the circuit results from the signal value dm that
is physically present at the node and the mask m: d = dm ⊕m. In the following,
we show the implementation of an MDPL AND gate. All other combinational
MDPL gates are based on this gate.

An MDPL AND gate takes six dual-rail inputs (am, am, bm, bm, m, m) and
produces two output values (qm, qm). The truth table of an MDPL AND is
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Table 3. Truth table of an MDPL
AND gate

Line no. am bm m qm am bm m qm

1 0 0 0 0 1 1 1 1
2 0 0 1 0 1 1 0 1
3 0 1 0 0 1 0 1 1
4 0 1 1 1 1 0 0 0
5 1 0 0 0 0 1 1 1
6 1 0 1 1 0 1 0 0
7 1 1 0 1 0 0 1 0
8 1 1 1 1 0 0 0 0

Table 4. Truth table of an MDPL OR
gate

Line no. am bm m qm am bm m qm

1 0 0 0 0 1 1 1 1
2 0 0 1 0 1 1 0 1
3 0 1 0 1 1 0 1 0
4 0 1 1 0 1 0 0 1
5 1 0 0 1 0 1 1 0
6 1 0 1 0 0 1 0 1
7 1 1 0 1 0 0 1 0
8 1 1 1 1 0 0 0 0

Fig. 1. Schematic of a CMOS ma-
jority gate

Fig. 2. Schematic of an MDPL
AND gate

shown in Table 3. The outputs of the MDPL AND gate are calculated according
to the following equations: qm = ((am ⊕ m) ∧ (bm ⊕ m)) ⊕ m and qm = ((am ⊕
m) ∧ (bm ⊕ m)) ⊕ m

In Table 3, it can be seen that qm and qm can be calculated by the so-
called majority (MAJ) function. The output of this function is 1, if more inputs
are 1 than 0. Otherwise, the output is 0: qm = MAJ(am, bm, m) and qm =
MAJ(am, bm, m). A majority gate is a commonly used gate and it is available
in a typical CMOS standard cell library. The schematic of a CMOS majority
gate is shown in Figure 1.

In an MDPL circuit, all signals are pre-charged to 0 before the next evaluation
phase occurs. A so-called pre-charge wave is started from the MDPL D-flip-
flops, similar to WDDL [20]. First, the outputs of the MDPL D-flip-flops are
switched to 0. This causes the combinational MDPL cells directly connected to
the outputs of the D-flip-flops to pre-charge. Then, the combinational gates in
the next logic level are switched into the pre-charge phase and so on. Note that
also the mask signals are pre-charged. In Table 3, it can be seen that the pre-
charge wave propagates correctly through the MDPL AND gate (see line 1 and
line 8, respectively). The output signals of the MDPL AND gate are pre-charged
if all inputs are pre-charged. All combinational MDPL gates are implemented in
that way. Therefore, in the pre-charge phase, the pre-charge wave can propagate
through the whole combinational MDPL circuitry and all signals are pre-charged
correctly.
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A majority gate in a pre-charge circuit switches its output at most once
per pre-charge phase and at most once per evaluation phase, i.e. there occur
no glitches. In a pre-charge circuit, all signals perform monotonic transitions
in the evaluation phase (0 → 1 only) and in the pre-charge phase (1 → 0
only), respectively. Furthermore, the majority function is a so-called monotonic
increasing (positive) function. Monotonic transitions at the inputs of such a gate
lead to an identically oriented transition at its output. Hence, a majority gate
performs at most one (0 → 1) during the evaluation phase and at most one
(1 → 0) during the pre-charge phase. Since an MDPL AND gate is built from
majority gates, an MDPL AND gate will produce no glitches.

Figure 2 shows the schematic of an MDPL AND gate. As already discussed,
it is constructed using two CMOS majority gates. An MDPL NAND can be
built by swapping (=inverting) the complimentary wires of the output signal.
An MDPL OR can be generated by swapping the complementary masking wires
(see Table 4) and an MDPL NOR is built by swapping the wires of the mask and
that of the output signal. Note that the swapping of complementary wires does
not invalidate the considerations made for the MDPL AND gate concerning
propagation of the pre-charge wave and glitches. Therefore, also the MDPL
NAND, OR and NOR gates propagate the pre-charge wave correctly and produce
no glitches.

Figure 3 shows the schematic of an MDPL XOR gate that is built using
three MDPL NAND gates. Note that the connections for the mask signals have
been omitted for the sake of clarity. Using two 3-input XOR’s as an MDPL
XOR (like the MAJ gate is used in the MDPL AND) would also lead to a
functionally correct gate. However, it would not be free of glitches since an XOR
is not a monotonic function. The use of the MDPL NAND gates in order to
implement the MDPL XOR gate prevents glitches. Furthermore, also the pre-
charge wave is propagated correctly. An MDPL XNOR is realized by swapping
the complementary wires of the output signal.

The implementation of an MDPL D-flip-flop is shown in Figure 4. The MDPL
XOR gate at the input is used to switch the mask m of the current clock cycle to
the new mask mn of the next clock cycle. Hence, the CMOS D-flip-flop stores a
value at the positive clock edge that is already masked with the mask of the next

Fig. 3. Schematic of an MDPL XOR
gate

Fig. 4. Schematic of an MDPL D-flip-
flop
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clock cycle. Note that the fixed input signals of the MDPL XOR gate still allow
the gate to pre-charge correctly if all other inputs are 0. The MDPL D-flip-flop
must be supplied with the special signals m⊕mn and m ⊕ mn in order to switch
masks.

The two CMOS NOR gates at the output of the MDPL D-flip-flop are re-
quired to start the pre-charge wave when the clock signal clk is 1. During clk = 0,
the circuit is in the evaluation phase and the MDPL D-flip-flop provides the dif-
ferentially encoded data value at its output. In the MDPL D-flip-flop, there is
a timing constraint that must be satisfied: When the positive edge of the clock
signal clk arrives at the cell, the CMOS NOR gates must switch their outputs to
the pre-charge level 0 before the CMOS D-flip-flop stores the new input value at
its output. Otherwise, there may be glitches introduced in the circuit. However,
this timing constraint is satisfied because NOR gates are faster than D-flip-flops.
Additionally, the CMOS D-flip-flop and the CMOS NOR gates are leaf cells of
the clock tree that is build during the design process. Therefore, the skew be-
tween the clock signals connected to the CMOS D-flip-flop and the NOR gates
is minimal.

There is also an implementation of the MDPL D-flip-flop possible that does
not have such a timing constraint. Yet, it is much bigger and requires a doubling
of the clock frequency in order to keep the same data rate. Details can be found
in Appendix A. The fixed inputs of the MDPL XOR gate that is used in the
MDPL D-flip-flop allows an optimization of the flip-flop. This optimization is
presented in Appendix B.

Table 5 summarizes the basic MDPL cells and their respective implementa-
tion with standard CMOS cells. The table also shows the area complexity of the
MDPL cells when the 0.35μm standard cell library C35B3 of austriamicrosys-
tems [1] is used for the implementation. The area requirements of the MDPL
cells are furthermore compared to the area requirements of their standard CMOS
counterparts. Note that for the MDPL D-flip-flop, the optimized implementa-
tion as introduced in Appendix B is considered. The size of an MDPL circuit
compared to the size of a standard CMOS implementation depends on the used
cell types.

Table 5. MDPL cells and their CMOS implementations

CMOS implementation Area (gate equivalents) of Ratio
MDPL cell of MDPL cell MDPL cell std. CMOS cell MDPL

CMOS

Inverter Wire swapping 0 0.67 0
Buffer 2×Buffer 2 1 2
AND, OR (2-in) 2×MAJ (3-in) 4 1.67 2.4
NAND, NOR (2-in) 2×MAJ (3-in) 4 1 4
XOR (2-in) 6×MAJ (3-in) 12 2.33 5.1
XNOR (2-in) 6×MAJ (3-in) 12 2 6
D-Flip-Flop 2×AND, 2×OR (both 2-in)

2×MAJ (3-in), 1×D-FF 17.67 5 3.5
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2.3 MDPL Circuits

The main features of MDPL circuits are that they can be based on a typical
standard cell library and that there are no routing constraints concerning the
balancing of complementary wires. Note that the dual-rail pre-charge property
of MDPL is exclusively used to prevent glitches in the circuit. Hence, comple-
mentary wires are present, but they do not need to be balanced.

The design flow that is used to implement an MDPL circuit is almost the
same as that one used when implementing a standard CMOS circuit. The only
additional tool that is required is a converter that translates the synthesized
CMOS netlist into an MDPL netlist. The MDPL cells in general cannot be used
for synthesis since its masked and dual-rail attributes cannot be handled by typi-
cal state-of-the-art synthesizers. Furthermore, this would require the compilation
of an MDPL synthesis cell library, which causes additional effort.

The converter replaces all CMOS cells by their MDPL versions as indicated in
Table 5. It also adds the complementary wires, swaps a complementary wire pair
if an inverter is present in the CMOS netlist and adds the mask nets. Dedicated
single-rail nets like the clock net must be kept single-rail. We have built such
a converter and have successfully translated and implemented an AES module.
Details of this implementation can be found in Section 3.

The basic architecture of an MDPL circuit is shown in Figure 5. The combi-
national MDPL gates are supplied with the mask signals m and m, the MDPL
D-flip-flops must be supplied with the mask signals m ⊕ mn and m ⊕ mn. Note
that also the mask signals are pre-charged in an MDPL circuit.

Fig. 5. Architecture of an MDPL circuit

The masks of the MDPL circuit are generated by a pseudo random-number
generator (PRNG) that is seeded by a true random-number generator (TRNG)
[2]. An MDPL circuit requires only one new masking bit per clock cycle.

In an MDPL circuit, all masks are dual-rail pre-charge signals. Therefore,
it is not possible to perform SPA attacks an the masks. The complementary
mask networks have approximately the same load. Hence, it is not possible to
determine the masks based on one measurement. If the masks were not encoded
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in this way, SPA attacks would be possible. The mask networks are very big
and hence, it would be possible for an attacker to determine whether a mask is
switched or not.

3 Experimental Results

In this section, we present the results of some practical investigations of MDPL
circuits. We compare how the DPA resistance of the dual-rail pre-charge logic
style WDDL [20] and of MDPL depend on the balancing of complementary wires.
Furthermore, we show the results of an AES module implemented in MDPL.
For our circuit implementations we have used the 0.35μm standard cell library
C35B3 of austriamicrosystems [1].

First, we have studied the effects of unbalanced routing on the dual-rail pre-
charge logic style WDDL and compared them to the behavior of MDPL under
the same condition. As expected, the results show that MDPL is completely
independent to unbalanced routing while it has a significant effect on WDDL.

Figure 6 shows a comparison of the difference-of-mean-energies (DME) of
CMOS, WDDL and MDPL implementations of a NAND gate. The energy con-
sumption of the NAND gates were simulated by Spice simulations (spectre from
Cadence) for all possible input values and input transitions. These energies were
then split into two groups according to the respective output value of the gate.
In a last step, the difference of the means of the energies in both groups were
calculated. The DME value represents the height of the DPA peak if the output
signal of such a NAND gate is attacked.

In case of the CMOS NAND gate, the DME value and thus the hight of
the DPA peak raises linearly with the load at the output of the gate. For the
differential NAND gates implemented in WDDL and MDPL, the effect of an
unbalanced differential output load is also shown in Figure 6. An unbalance of
5% means that the output q has a 5% lower capacitance than the output q of
the cell. The figure clearly shows that the DPA resistance of WDDL depends
significantly on the degree of balancing. MDPL is completely immune to an
unbalanced differential output load – the three lines lie upon each other. The
difference between the MDPL NAND 0% and the WDDL NAND 0% is caused
by charge sharing effects and small imbalances in the MDPL NAND gate which
is more complex than the WDDL NAND gate (more internal nodes).

In a second experiment, we have simulated the power traces of an AES mod-
ule [4] while it encrypts different data blocks. The power traces were then used
in a DPA attack that targeted the intermediate result of the first SubBytes oper-
ation after the initial AddRoundKey operation [14]. More precisely, one output
bit of an 8-bit S-box was used as the selection bit in a standard DPA attack [8].
For the power simulation, the gate-level netlist of the AES module without para-
sitics was used. The power simulation was done for the 256 different input values
of the data byte that corresponds to the key byte under attack.

In Figure 7, the result of the DPA attack on the AES module implemented
in CMOS is shown. The correct key (43d) is clearly identifiable. Figure 8 shows
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Fig. 6. Comparison of the DME of CMOS, WDDL and MDPL implementations of a
NAND gate

Fig. 7. DPA peaks for all key hypothe-
sis for a DPA attack on an AES imple-
mented in CMOS

Fig. 8. DPA peaks for all key hypothe-
sis for a DPA attack on an AES imple-
mented in MDPL

Table 6. Comparison of AES implementations in CMOS and MDPL

CMOS MDPL Ratio MDPL
CMOS

Area (gate equivalents) 3628 16465 4.54
Speed (MHz; worst-case speed corner) 16.91 9.82 0.58

the result of the DPA attack on the same AES implemented using MDPL. In
this case, the correct key cannot be disclosed by the attack.

In Table 6, a comparison of the main properties of the CMOS and the MDPL
implementation of the AES module is shown. The increase in the area is signif-
icant, yet the DPA resistance of the MDPL circuit does not depend on the
balancing of complementary wires. Speed is halved because not only the logic
signals but also the pre-charge wave needs to propagate through the MDPL
circuit.
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4 Conclusions

We presented the DPA-resistant logic style MDPL which has two major advan-
tages: it can be implemented using commonly available standard cells and, most
importantly, its security does not rely on balanced complementary wires. Ex-
perimental results show that MDPL is effective against DPA attacks and that
an unbalanced load of complementary wires does not affect the DPA resistance
of the MDPL cells. The trade-off is in increased area requirements and power
consumption and in a reduced circuit speed.

References

1. austriamicrosystems. http://www.austriamicrosystems.com.
2. Holger Bock, Marco Bucci, and Raimondo Luzzi. An Offset-Compensated

Oscillator-Based Random Bit Source for Security Applications. In Marc Joye and
Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Systems
– CHES 2004, Sixth International Workshop, Boston, USA, August 11-13, 2004,
Proceedings, volume 3156 of Lecture Notes in Computer Science, pages 268–281.
Springer, 2004.

3. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

4. Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong Au-
thentication for RFID Systems using the AES Algorithm. In Marc Joye and
Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Systems
– CHES 2004, Sixth International Workshop, Boston, USA, August 11-13, 2004,
Proceedings, volume 3156 of Lecture Notes in Computer Science, pages 357–370.
Springer, 2004.

5. Jacques J. A. Fournier, Simon Moore, Huiyun Li, Robert D. Mullins, and George S.
Taylor. Security Evaluation of Asynchronous Circuits. In Colin D. Walter, Çetin
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A An MDPL D-Flip-Flop Without Timing Constraints

As mentioned in Section 2.2, the MDPL D-flip-flop can be designed in a way
that it has no timing constraints that must be satisfied. In the original MDPL D-
flip-flop implementation shown in Figure 4, the CMOS NOR gates must switch
the outputs to pre-charge level before the CMOS D-flip-flop stores a new value
at the positive clock edge. Otherwise, the MDPL D-flip-flop may emit glitches
which potentially cause side-channel leakage.

In general, CMOS NOR gates switch significantly faster than CMOS D-
flip-flops. The clock signal connected to the CMOS NOR gates and the CMOS
D-flip-flop arrive nearly at the same time since these cells are leaf nodes of the
clock tree. Therefore, the skew should be minimal. Consequently, the timing
constraint should be satisfied if the clock tree is created correctly.

If it is necessary to avoid such a timing constraint at all, it is possible to use
an MDPL D-flip-flop implementation as shown in Figure 9. This version uses
four CMOS D-flip-flops. One column of the flip-flops stores the pre-charge signal
0, hence these two flip-flops need to be reset in the beginning. The other column
stores the differential encoded data value. Note that for a correct power-on reset
of these two flip-flops, the above one needs to be reset to 0 while the below one
needs to be preset to 1.

Fig. 9. Schematic of an MDPL D-flip-flop with no timing constraints

clk

pre-charge evaluation

Fig. 10. Sequence of pre-charge and evaluation phases in an MDPL circuit using MDPL
D-flip-flops without timing constraints

The sequence of the pre-charge and evaluation phases with respect to the
clock signal when using the MDPL D-flip-flop without timing constraints is
shown in Figure 10. A disadvantage is that the clock rate must be doubled in
order to keep the data rate of the circuit constant. This increases the power
consumption significantly.
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B The MDPL D-Flip-Flop with an Optimized MDPL
XOR

The schematic of the basic MDPL D-flip-flop introduced in Figure 4 can be
optimized. The reason is that two inputs of the used MDPL XOR are fixed to
0 and 1, respectively. Those inputs are connected to two MDPL NAND gates
inside the MDPL XOR. Each of these two MDPL NAND gates can be reduced
to a CMOS AND and a CMOS OR gate as shown in Figure 11. This reduces
the area requirements of the MDPL D-flip-flop (implemented using the 0.35μm
standard cell library C35B3 of austriamicrosystems [1]) from 19 gate equivalents
to 17.67 gate equivalents. AND and OR functions are both monotonic increasing
functions, and so glitches cannot occur in the cell.

Fig. 11. Schematic of an MDPL D-flip-flop with optimized MDPL XOR
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Abstract. It has recently been shown that logic circuits in the imple-
mentation of cryptographic algorithms, although protected by “secure”
random masking schemes, leak side-channel information, which can be
exploited in differential power attacks [14]. The leak is due to the fact
that the mathematical models describing the gates neglected multiple
switching of the outputs of the gates in a single clock cycle. This effect,
however, is typical for CMOS circuits and known as glitching. Hence
several currently known masking schemes are not secure in theory or
practice. Solutions for DPA secure circuits based on logic styles which
do not show glitches have several disadvantages in practice. In this paper,
we refine the model for the power consumption of CMOS gates taking
into account the side-channel of glitches. It is shown that for a general
class of gate-level masking schemes a universal set of masked gates does
not exist. However, there is a family of masked gates which is theoreti-
cally secure in the presence of glitches if certain practically controllable
implementation constraints are imposed. This set of gates should be suit-
able for automated CMOS circuit synthesis.

Keywords: Cryptanalysis, side-channel attacks, power analysis, DPA,
digital circuits, logic circuits, masking, random masking, masked logic
circuits, glitches.

1 Introduction

Cryptanalysis based on side-channel information exploits the information leaked
during the computation of an algorithm. Side-channel information can be con-
tained in the characteristic power consumption, the timing, or the electromag-
netic emanation of the device during the processing of secret information. Power
analysis attacks exploit the fact that, in general, the instantaneous power con-
sumption of a circuit depends on the data being processed by the circuit. The
effect is prominent especially in the widely used CMOS design style. Differential
power analysis (DPA), first introduced in [12], allows the attacker to exploit
correlations between the observable instantaneous power consumption and in-
termediate results involving the secret. During the last years it has become more
and more obvious that it is extremely difficult to protect a security device against
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DPA [1,2,3,4,5,6,8,9,13,14,15,16,18,21,22,23]. In the spirit of power analysis at-
tacks Electromagnetic Emanation Analysis (EMA) extracts secret information
from the electromagnetic radiation emited during the operation of the device [7].

The first class of ad-hoc approaches against power analysis attacks tries to
reduce the signal-to-noise ratio of the side-channel leakage and finally to hide the
usable information in the noise. Suggested methods are detached power supplies
[20], the addition of power noise generators, or the application of a probabilis-
tic disarrangement of the times at which the attacked intermediate results are
processed. The latter can be achieved by inserting random delays or applying
randomizations to the execution path. While such measures certainly increase
the experimental and computational working load of the attacker they do not
render the attack infeasible. In practice, typically several countermeasures are
combined [5,13]. This can reduce the correlation down to a level that makes
a DPA practically impossible. However, higher order differential attacks or the
possibility of obtaining a spatial resolution of the power consumption and an in-
creased signal-to-noise ratio by observing local electromagnetic emanations may
again open a backdoor for professional attackers.

Circuit design approaches, the second class of countermeasures, aim at re-
moving the root cause for side-channel leakage information. In standard CMOS
style circuits the power consumption depends strongly on the the processed
data. In some dynamic and differential logic styles, like Sense Amplifier Based
Logic (SABL) [21], which is based on Differential Cascode Voltage Switching
Logic (DCVLS), the power consumption can be made almost independent of the
processed data. However, data independent power consumption requires a maxi-
mum activity factor and hence maximum power consumption. It is also essential
that the load capacitances of the differential outputs are matched. Remaining
asymmetries (parasitics, cross-coupling) make a DPA still possible. Disadvan-
tages of this circuit style are the lack of standard cell libraries and tools, which
leads to a full-custom design style. Area (power consumption) of a SABL circuit
design are approximately 3.5 times (4.5 times) larger than for a corresponding
CMOS design. As for all two-cycle schemes the performance is reduced by a
factor of two. The Wave Dynamic Differential Logic style (WDDL) adopts the
ideas of SABL. It implements the behavior of a dynamic and differential logic,
but is based on standard CMOS cells [22]. Area and power consumption are ap-
proximately 3.5 times larger than for a CMOS design. The performance is two
times smaller.

Masking approaches, the third class of measures, counteract DPA by random-
izing intermediate results occurring during the execution of the cryptographic
algorithm. The idea behind this approach is that the power consumption of
operations on randomized data should not be correlated with the actual plain
intermediate data [15]. Algorithmic countermeasures in the context of symmet-
ric ciphers based on secret sharing schemes have been independently proposed
by Goubin and Paterin [9] and Chari et al. [4]. A theory of securing a circuit at
the gate level against side-channel attacks (focused on probing) was developed
in [10].
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Masking at algorithm level for asymmetric algorithms [6,17], as well as for
symmetric algorithms, e.g., DES and AES [2,3], has been developed. Crypto-
graphic algorithms often combine Boolean functions (like logical XOR or AND
operations) and arithmetic functions (operations in fields with characteristic big-
ger than two). Masking operations for these two types of functions are referred
to as Boolean and arithmetic masking, respectively. This poses the problem of a
secure conversion between the two types of maskings in both directions [2].

It is appealing to apply the idea of randomizing intermediate results already
on the level of logic gates. Masking at gate level leads to circuits where no wire
carries a value which is correlated to an intermediate result of the algorithm.
Clearly this approach is more generic than the algorithmic approach. Masking
at gate level is independent of the specifically implemented algorithm. Once a
secure masking scheme has been developed the generation of the masked circuit
from the algorithm can be automated, and a computer program can convert the
digital circuit of any cryptographic algorithm to a circuit of masked gates. This
would also relieve the designers or implementers of cryptographic algorithms
from the complex task of elaborating a specific solution against side-channel
leakage for each new implementation variant or algorithm. Various generic mask-
ing schemes have been proposed. In [16] the multiplexor gate (MUX) used in the
implementation of nonlinear operations, like S-boxes, is replaced by a masked
MUX gate. In [11] the basic operations of an arithmetic-logic unit (ALU) are
protected with one or more random masks at each masked gate. In [23] correction
terms for the AND gate in the nonlinear components of the S-box of the AES
are introduced. It has been shown that it is possible to break masking schemes
that rely on one mask using advanced DPA methods [1].

The security analyses of masking schemes, conducted so far, were based on
the implicit assumption that the input signals of any (masked) gate in a combi-
national CMOS circuit arrive at the same time. Recently it has been shown [14],
that this assumption is not sufficient: the output of the gate possibly switches
several times during one clock cycle. The transitions at the output of a gate, pre-
vious to the stable state right before the next clock edge is attained, are known
as glitches. Glitches are a typical phenomenon in CMOS circuits and extensively
discussed in the literature on VLSI design [19]. Because a glitch can cause a full
swing transition at the output of the gate, just like the ‘proper’ transition to the
final value, a glitch is not a negligible higher order effect. As made evident in
[14] glitches do not just add a background noise due to uncorrelated switching
activity – the dissipated energy of nonlinear masked gates is correlated to the
processed values whenever the input values do not arrive simultaneously (forc-
ing the output of the gate to toggle several times). Hence glitches can carry
side-channel information and their effect must be included in the analysis of any
secure masking scheme.

In the next section a model for the power consumption of CMOS gates is
developed which takes into account the side-channel of glitches. Based on this
model the notion of G-equivariance is introduced and it is shown that in the
stated gate and energy models G-equivariance is a necessary condition for ran-
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domized gates to prevent a differential power attack. We will show that in a
class of gates which is preferred for implementation reasons, there exists no G-
equivariant gate that can be used to realize a nonlinear logical function. However,
for a model with weakened conditions an explicit construction of a universal set
of semi-G-equivariant gates is given. The necessary constraints on gate design
and signal routing should be realizable in practice using available design tools.

2 The Glitch Problem

In this section the glitch problem described in [14] is reformulated in a more
theoretical and abstract way. First, the abstraction of the energy consumption
of a single gate, which is the target of a DPA attack, is recapitulated. The most
simple energy model which is commonly used is mentioned and a more general
definition is given. Then the basic attack on such a gate with statistical means
is described. The definitions of randomized gates (in the classical meaning) is
given and it is shown how a DPA may still be successful if the more general
energy model is applicable.

2.1 The General Power Consumption Model of a Gate

In a DPA the attacker tries to find a correlation between externally known (and
guessed) data and internally processed signals. Since he will not be able to gain
these internal signal data directly, he is obliged to use physical effects (the side-
channels) which are again somehow correlated to the internal signals/data. One
of these side-channels is the current consumption. Since we are interested in a
protection of this side channel on gate level, out first step has to be the definition
of a power consumption model of a gate: A gate g with n inputs and one output
will be interpreted as a function g : F

n
2 → F2. Our premise is that the power

consumption during one clock cycle (in a synchronous design) only depends on
the input at the time t0 shortly before the clock edge (the old input) and after
the clock edge (the new input), e.g., at t1 shortly before the next clock edge. We
do not consider dependencies on other signals in the surrounding circuit, like
cross-coupling phenomena. The following definition of an energy function of a
gate suggests itself:

Definition 1. Let g : F
n
2 → F2 be a gate. Denote the input at time t0, at or

shortly before the rising edge of a clock cycle, as a = (a1, . . . , an) ∈ F
n
2 and the

input at time t1, at or shortly before the next rising edge, as x = (x1, . . . , xn) ∈
F

n
2 . Then the energy consumption of the gate during this transition is given by

the real number Eg(a, x) ∈ R. Hence the Energy function of the gate g is
defined to be the map

Eg : F
n
2 × F

n
2 −→ R

(a, x) �−→ Eg(a, x).

The energy function of a gate may be different for individual gates in a circuit,
even if they are functionally equal. The reason is that the energy depends mainly
on the individual capacitive load the gate has to drive.
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The Simplistic Model: In a simplistic energy consumption model (coined on,
e.g., CMOS logic style) one mainly identifies the power consumption of a gate
with the energy needed to drive the output capacitance if the output toggles. The
energy consumption of a gate is described only by its digital output behavior.
Hence it is determined by the output values of g at times t0 and t1 and a
fixed tuple (Eg,0→0, Eg,0→1, Eg,1→0, Eg,1→1) ∈ R

4. If for example at time t0 the
output value of g is 1 and at time t1 it is 0 then the energy for this clock cycle
is Eg,1→0. Hence, in this model the energy function of the gate g is given by:
Eg(a, x) := Eg,g(a)→g(x).

Differential Power Analysis of This Model: Assume we have a crypto-
graphic algorithm with some secret (key) implemented as a CMOS circuit. Fur-
ther assume that there is a gate g : F

2
2 → F2 within this circuit. The input values

of g at time t0 are (a, b) ∈ F
2
2 and later at t1 are (x, y) ∈ F

2
2. Since an attacker

will survey the energy consumption of this gate during several runs of the al-
gorithm with different messages, these values may be seen as random variables
a, b, x, y : Ω −→ F2 on some probability space (Ω, Σ, P ). This gives rise to the
following concatenation

Eg := Eg ◦ (a, b, x, y) : Ω −→ F
2
2 × F

2
2 −→ R

With the knowledge of the secret key (or parts of it), which is called the hypoth-
esis, one may construct a partition of Ω into two disjoint measurable1 subsets
A and B such that Ω = A ∪ B, with the property:

E(Eg|A) �= E(Eg|B),

while this construction done with a wrong hypothesis yields: E(Eg|A) = E(Eg|B).
One classical example, cf. [12], is the partition of Ω into

A = {ω ∈ Ω : g(x(ω), y(ω)) = 1} and B = {ω ∈ Ω : g(x(ω), y(ω)) = 0}

With the simplistic energy model we obtain

E(Eg|A) = αEg,0→1 + ᾱEg,1→1 and E(Eg|B) = βEg,0→0 + β̄Eg,1→0

for α := P ({ω ∈ Ω : g(a(ω), b(ω)) = 0}|A), ᾱ := 1 − α as well as β := P ({ω ∈
Ω : g(a(ω), b(ω)) = 0}|B), β̄ := 1 − β. In general these two expectation values
are not equal (if the hypothesis was correct). This gives rise to the classical DPA.

Remark 1. It is clear that, if Eg,0→0 = Eg,0→1 = Eg,1→0 = Eg,1→1, then in-
deed the two expectation values are always equal, independent of whether the
hypothesis was right or wrong. Hence no DPA is possible. In general terms, if
the energy function

Eg : F
2
2 × F

2
2 −→ F2 is constant, (∗)

1 Although very important, we are not going to specify the measurability any further.
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then the gate does not leak information and a DPA on the gate is not possi-
ble. In practice these conditions are only met if a logic style is chosen for the
implementation which guarantees the constancy of the energy function itself.
This corresponds to the second class of countermeasures (see discussion in the
introduction). If this is not desirable, one still may be able to use the additional
conditions given by a, b, x, y: We only have to fulfill the condition

Eg : Ω −→ R is constant, (∗∗)

which is weaker than the former one. However, if we want to find gates for general
purposes we have to fulfill this condition (**) for any a, b, x, y. Unfortunately,
this is equivalent to condition (*).

Randomized Logic as Countermeasure: In fact, there still may be the
possibility that Eg is constant in some conditional sense, even if Eg is not. This
can be in the class of randomized (masked) gates: Randomizing a signal (in our
context) means substituting one digital signal a ∈ F2 by a number of signals
a1, . . . , an ∈ F2 with a = a1 + · · ·+an so that there exists no correlation between
a and each summand ai. For practical reasons, we will be restricted ourselves to
the case n = 2.

One philosophy is to interpret the randomized signal (a1, a2) as the pair of
the masked signal am = a1 and its mask ma = a2 (cf. notation in e.g. [14]). But
this is just terminology and we will only follow it in our discussion for presenting
the randomized gates as in [14]. However this point of view has an impact on the
philosophy of randomized (or masked) gates: Since the signals a, b are now split
up in two portions, one has to substitute the old gate g : F

2
2 → F2 by a new gate.

The first choice would be g′ : F
2
2×F

2
2 → F2, such that g(a, b)=g′(a1, a2, b1, b2),

with a = a1+a2 and b = b1+b2. But since the output should also be randomized,
one possibility would be g′ : F

2
2 × F

2
2 × F2 → F2, with the property g(a, b) =

g′(am, ma, bm, mb, mc) + mc and a = am + ma, b = bm + mb. This property
defines g′ uniquely. In the following g′ is called the masked lifting of g, since
the output of g′ is the output of c := g(a, b) masked with mc. Fig. 1 shows
an example for a circuit using masked liftings of gates (left hand sketch) and a
realization of a lifting of an AND gate [8,23] (right hand sketch).

Another choice is using two gates (g1, g2) : F
2
2 × F

2
2 → F

2
2 with the property

g(a, b) = g1(a1, a2, b1, b2) + g2(a1, a2, b1, b2). Here g1 and g2 are not uniquely
defined by this equation. But, of course, if g1 is given then g2 will be fixed. The
pair (g1, g2) is called a randomized lifting of g.

Using the simplistic energy consumption model from above

Eg′((ã, b̃, mc), (x̃, ỹ, mz)) = Eg′,g′(ã,b̃,mc)→g′(x̃,ỹ,mz),

where (ã, b̃, mc) ∈ F
2
2×F

2
2×F2 is the input at time t0, (x̃, ỹ, mz) ∈ F

2
2×F

2
2×F2 the

input at time t1 with the abbreviations ã = (am, ma), etc., the energy consump-
tion Eg((a, b), (x, y)) has to be substituted by the (conditional resp. a, b, x, y)
expectation value

E(Eg′ ((ã, b̃, mc), (x̃, ỹ, mz))),
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Fig. 1. Example for a combinational circuit consisting of two masked liftings of gates.
The figure to the right shows a masked AND gate as given in [23,8]. The � and ⊕
symbols denote a logical AND and XOR gate, respectively.

where ã = (am, ma), b̃ = (bm, mb), mc, x̃ = (xm, mx), ỹ = (ym, my), mz are
interpreted as random variables with a = am + ma, etc. An attacker will not
be able to know the exact (microscopic) signals (ã, b̃, mc), (x̃, ỹ, mz), but rather
only the (macroscopic) signals a, b, x, y.

Indeed, if mc, mz : Ω → F2 are uniformly distributed random variables, in-
dependent to the random variables g(a, b), g(x, y) then the masked lifting g′ of
a gate g does not leak information: E(Eg′ ((ã, b̃, mc), (x̃, ỹ, mz))) is independent
of a, b, x, y. This was stated in [23,8].

2.2 Power Consumption of a Gate in the Presence of Glitches

As realized in [14], in realistic CMOS implementations the different signals xm,
mx, ym, my, mz may not arrive at the gate g′ the same time. In the example cir-
cuit of Fig. 1 signal dm may arrive with a delay at the input of gate g′2 compared
to signals md, cm, mc due to the gate delay imposed by g′1. Furthermore, all input
signals of gate g′2 have in general different additional delay contributions due to
the propagation delay caused by wire capacitances. These delays depend on the
route of the signal and are fixed when the circuit is laid out.

Consider the example that the signals arrive in the distinct order ym −→
my −→ mz −→ xm −→ mx. In this case the output value of the gate changes
not only once during the clock cycle but five times leading to the consecutive out-
put transitions c1 := g(am, ma, bm, mb, mc) −→ c2 := g(am, ma, ym, mb, mc) −→
c3 := g(am, ma, ym, my, mc) −→ c4 := g(am, ma, ym, my, mz) −→
c5 := g(xm, ma, ym, my, mz) −→ c6 := g(xm, mx, ym, my, mz). Therefore the
energy consumption will be given by the sum Eg′,c1→c2 +Eg′,c2→c3 +Eg′,c3→c4 +
Eg′,c4→c5 + Eg′,c5→c6 .

Hence a new power model is required such that Eg′((ã, b̃, mc), (x̃, ỹ, mz)) is
given by the sum from above. Unfortunately, with this model, it was shown in
[14] that E(Eg′ ((ã, b̃, mc), (x̃, ỹ, mz))) is not independent of a, b, x, y any more,
opening a door for DPA.
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One can conceive an even worse situation: if a well-equipped attacker is able
to measure the different partial energies of the five transitions the constraints
for a gate to be resistant against DPA are even more difficult to fulfill.

3 Abstraction and Analysis of the Glitch Problem

The last section has motivated the following strategy and definitions. First the
abstract model of the gates together with their energy model will be defined.
Then conditions imposed on the gates will be formulated, which ensure that a
differential power attack cannot be mounted.

3.1 The Power Consumption Model in the Presence of Glitches

Because of glitches the gate g : F
n
2 → F2 can switch up to n times within one clock

period and because every transition of the output consumes an amount of power
Eg,0→0, Eg,0→1, Eg,1→0, or Eg,1→1, the notion of the energy function has to be
generalized. Also, since the four values from above may strongly depend on the
individual gate and its position in a circuit, it makes sense to treat these values
as indeterminates. Therefore, it is natural to value the energy function not in R

but rather in the 4-dimensional vector space V := R ·e00⊕R ·e01⊕R ·e10⊕R ·e11.
For a certain implementation one may concatenate the energy function with the
evaluation function ev : V → R, (x00, x01, x10, x11) �→

∑
i,j xijEg,i→j . We first

give the formal definition of our power consumption model:

Definition 2. Let g : F
n
2 → F2 be a gate with n inputs and one output. The

(partial) energy functions of the gate g are given by:

Eg,i : F
n
2 × F

n
2 × Map({1, . . . , n}, {1, . . . , n, }) −→ V

(ã, x̃, ϕ) �−→ eg(b̃i),g(b̃i+1),

for i = 1, . . . , n. Here b̃i = (bi1, . . . , bin) ∈ F
n
2 is defined by b̃1 := ã and

b(i+1)j :=

{
xj , if ϕ(j) = i,

bij , else,

in particular we have x̃ = b̃n+1.

The map ϕ describes the order of the incoming (changing) input signals. If
ϕ(j) = 1 then signal j changes first and the signal to change next is the one with
ϕ(j) = 2, and so on. Since two or more signals may arrive at the same time the
map ϕ does not need to be a permutation. The old energy description of a gate
can be obtained by fixing ϕ ≡ 1 (or any constant between 1 and n).

The n+1 tuples b̃i are the different input value during the clock cycle at n+1
possible different moments in time: b̃0 = ã is the input value at t0 and b̃n+1 = x̃
is the final input value at t1. b̃1, . . . , b̃n are the consecutive input signals in
between.
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We see the order of the signals ϕ as a constant associated for each single gate
within a circuit. This order is fixed at the design time of the circuit and is given
by parameters such as the depth of logic tree at each input of the gate and the
precise route of the signals.

Remark 2. This definition of the energy consumption of a gate reflects the as-
sumption (idealization) that the implementation of a gate does not have any
usable internal side-channels. This means, for instance, that the gate itself is in-
herently glitch free and there is only one signal change at the output if one
input signal changes. Also the output delay must not depend on the input
value. It can safely be assumed that these prerequisites can be realized in prac-
tice with relatively high accuracy if a masked logic cell is crafted for use in a
library.

3.2 Randomized Signal Pairs

Randomization in our context means splitting up a signal a into a pair (a1, a2)
of signals such that a = a1 + a2 and the individual bits a1 and a2 are unknown,
i.e., random and uniformly distributed. Since we are, first of all, interested in
the randomized realization of (macroscopic) 2-1 gates like AND, OR, etc. we
will restrict ourselves to gates with two (macroscopic) inputs, a, b, which means
four actual inputs a1, a2, b1, b2 for a randomized lifting of the gate. Fig. 2 depicts
a combinational circuit where two normal gates g1(a, b) and g2(d, c) have been
replaced by two randomized liftings of gates (g11(a1, a2, b1, b2), g12(a1, a2, b1, b2))
and (g21(d1, d2, c1, c2), g22(d1, d2, c1, c2)), which have been selected to sustain
the old functionality of the circuit. The following two definitions describe this
situation.
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Fig. 2. Example of a combinational circuit using randomized liftings of gates

Definition 3. A randomized signal pair is a 4-tuple (a1, a2, b1, b2) of random
variables a1, a2, b1, b2 : Ω −→ F2 such that the following properties are fulfilled:

1. a1, a2, b1, b2 are uniformly distributed, i.e., P (a1 = 0) = P (a2 = 0) = P (b1 =
0) = P (b2 = 0) = 1/2.

2. The random variables ai and bj are independent for 1 ≤ i, j ≤ 2.
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Remark 3. The pairs a1, a2 and b1, b2 are in general not independent!

Definition 4. If we define a := a1 + a2 : Ω → F2 and b := b1 + b2 : Ω → F2
then (a, b) : Ω → F

2
2 is a pair of random variables and we say (ã, b̃) is a lifting

of the pair (a, b), where ã := (a1, a2) and b̃ := (b1, b2).

In the following we do not try to find a single gate g′ which exactly lifts
the functionality of a specific gate g. Instead we follow the general strategy to
search for a universal set of lifted gates. That is a family of gates, which have
the property that the energy of the macroscopic transition (a, b) → (x, y) does
not leak information and which can be combined to realize any logical function.

In the next section we give a precise formulation of the necessary conditions
for lifted gates which do not leak information also in the presence of glitches.

3.3 The Criterion of Glitch-Equivariance of Gates

The notion of glitch-equivariant gates will be introduced. Gates satisfying this
criterion do not leak information about the macroscopic transition (a, b) →
(x, y), because they have no flaw in the side-channel of glitches.

Based on the model for the energy function of a masked CMOS gate, Defi-
nition 2, and the notion of a randomized signal pair, Definition 3, the following
definition describes necessary conditions for the resistance of masked gates in a
DPA attack in the presence of gitches.

Definition 5. A gate g : F
2
2 × F

2
2 → F2 is called G-equivariant if for any

ϕ ∈ Map({1, . . . , 4}, {1, . . . , 4}) and i = 1, 2, 3, 4, the expectation values of the
partial energies E(Eg,i((ã, b̃), (x̃, ỹ), ϕ)) ∈ V are independent of any choice of
randomized signal pairs (ã, b̃), (x̃, ỹ).

Since the family of the randomized signal pairs can be very large we need a
simpler criterion in order to decide if a gate is G-equivariant.

Lemma 1. 1) A gate g : F
2
2 × F

2
2 → F2 is G-equivariant if and only if for any

ϕ and i the expectation value E(Eg,i((ã, b̃), (x̃, ỹ), ϕ)) ∈ V is independent of any
choice of randomized signal pairs (ã, b̃), (x̃, ỹ) which are liftings of any constant
pairs (a, b), (x, y).
2) A gate g : F

2
2 × F

2
2 → F2 is G-equivariant if and only if for any ϕ and i =

1, 2, 3, 4, the 24 values are equal:∑
a1+a2=a
b1+b2=b
x1+x2=x
y1+y2=y

Eg,i((a1, a2, b1, b2), (x1, x2, y1, y2), ϕ), with a, b, x, y ∈ F2,

From the definition of G-equivariance it is immediately obvious that gates
satisfying this criterion overcome the problem of side-channel leakage in the
presence of glitches (the dominant effect captured by the stated model). It is a
simple task to perform an exhaustive search on all 216 possible gates g : F

2
2×F

2
2 →

F2 using Lemma 1 to obtain a complete list of all G-equivariant gates.
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Table 1. The Boolean functions of the 50 G-equivariant gates

c, c + ai, c + bi, c + ai + bj , c + aibj , c + ai + aibj , c + bi + ajbi, c + ai + bj + aibj

There are 50 G-equivariant gates. In the algebraic normal forms, given in
Tab. 1, the indices i, j can take on the values 1 or 2 and the constant c is either
0 or 1.

Unfortunately, in the set of G-equivariant gates there are no two gates which
can be paired to a lifting of any nonlinear gate (like AND or OR). Thus we have
shown that:

Theorem 1. There is no universal set of masked gates of the form (g1, g2) with
g1, g2 : F

2
2 × F

2
2 → F2 satisfying the G-equivariance criterion.

4 The Logic Family of Semi-G-equivariant Gates

The negative result from the last section leads to the question, whether the strong
condition of G-equivariance can be mediated for the realization of a masked
CMOS circuit in practice.

Consider the replacement of all simple gates gi with input ai, bi and output
ci by gates g̃i with input ãi = (ai1, ai2), b̃i = (bi1, bi2) and output c̃i = (ci1, ci2).
It is obvious that the pair of correlated signals (say ai1, ai2) of a macroscopic
signal (ai) have always the same gate depth, since they always pass through the
same gates. The requirement for the implementation of a masked gate gi, that
the gate delay for both outputs, (ci1, ci2), should be identical, can be fulfilled
in practice. Under this condition the cumulative gate delay for each signal of
a pair of correlated signal would be equal. The remaining source for different
propagation times of the two correlated signals are different routes leading to
different capacitances at the outputs of the gate. With contemporary routing
technology, however, it is possible to control routing in a way that both signals
paths have the same capacitances (with high accuracy). If these design and
routing constraints are met the signals of each pair of correlated signals arrive
simultaneously at the inputs gate of the next gates. This practically realizable
setup for a CMOS circuit implementation rules out certain combinations of the
arrival times of signals. Specifically, the conditions in Definition 2 can be reduced
to all maps ϕ with ϕ(1) = ϕ(2) (for a1, a2) and ϕ(3) = ϕ(4) (for b1, b2).

Definition 6. A gate g : F
2
2×F

2
2 → F2 is called semi-G-equivariant if for any

ϕ ∈ Map({1, . . . , 4}, {1, . . . , 4}) with ϕ(1) = ϕ(2) and ϕ(3) = ϕ(4) the expecta-
tion value of the partial energies E(Eg,i((ã, b̃), (x̃, ỹ), ϕ)) ∈ V is independent of
any choice of randomized signal pairs (ã, b̃), (x̃, ỹ).

An exhaustive search on all 216 gates yields 58 semi-G-equivariant gates.
The list of 58 semi-G-equivariant gates comprises the 50 gates from Tab. 1 and
additionally the 8 gates given in Tab. 2 below.



198 W. Fischer and B.M. Gammel

Table 2. Boolean function of the additional 8 semi-G-equivariant gates

c + ai + bj + a1b1 + a1b2 + a2b1 + a2b2

The 8 additional semi-G-equivariant gates now allow pairings to liftings of non-
linear gates. A semi-G-equivariant AND gate can be realized, for instance, by
the lifting

AND′(a1, a2, b1, b2) = (a1 + b1, a1 + b1 + a1b1 + a1b2 + a2b1 + a2b2)

using entries of Tab. 1 and Tab. 2. One immediately finds 8 realizations for an
AND gate. Correspondingly, one possible realization of an OR gate is given by

OR′(a1, a2, b1, b2) = (a2 + b2, a1 + b1 + a1b1 + a1b2 + a2b1 + a2b2).

Thus there is a universal set of masked semi-G-equivariant gates. The described
gates could be used to craft a set of library cells suited for an automated masked
CMOS design. Any implementation of a masked semi-G-equivariant gate of
course must avoid unmasked intermediate values on internal cell structures.

5 Conclusions

It has been shown that within the defined gate and energy models G-equivariance
is a necessary condition on randomized gates to withstand a differential power
attack (in an otherwise unconstrained CMOS circuit). However, there exists no
universal set of G-equivariant gates in the considered general class of randomized
gates. If practically controllable implementation constraints are imposed a set
of masked gates, which are theoretically secure in the presence of glitches, can
be constructed. The power model developed in this paper is inevitably a coarse
abstraction of the complicated physical processes of the energy dissipation in an
active CMOS circuit. Next-higher order effects may be related to the transient
behavior of a switching event of a CMOS gate. Such effects may include partial
swings of the outputs of gates (overlapping glitches) or cross-couplings between
neighboring wires which lead to mutual information leakage. Such higher-order
effects, however, are not specific to CMOS circuits, but affect also other circuit
styles, such as dynamic and differential logic styles. Further experimental inves-
tigations will be necessary to quantify the side-channel leakage signal-to-noise
ratio of circuits built with semi-G-equivariant gates, as well as to determine the
factor for the design size increase.
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Abstract. This paper proposes a new fast method for calculating mod-
ular multiplication. The calculation is performed using a new represen-
tation of residue classes modulo M that enables the splitting of the mul-
tiplier into two parts. These two parts are then processed separately, in
parallel, potentially doubling the calculation speed. The upper part and
the lower part of the multiplier are processed using the interleaved modu-
lar multiplication algorithm and the Montgomery algorithm respectively.
Conversions back and forth between the original integer set and the new
residue system can be performed at speeds up to twice that of the Mont-
gomery method without the need for precomputed constants. This new
method is suitable for both hardware implementation; and software im-
plementation in a multiprocessor environment. Although this paper is
focusing on the application of the new method in the integer field, the
technique used to speed up the calculation can also easily be adapted for
operation in the binary extended field GF (2m).

1 Introduction

Modular multiplication is one of the basic arithmetic operations that are ex-
tensively used in many public-key cryptographic applications, such as RSA
[10], ElGamal [5], Diffie-Hellman key exchange [4], DSA [1], and others. Be-
cause of its computational intensity, implementation in dedicated hardware is
required for high-performance systems. Various techniques for speeding up mod-
ular multiplication have been reported in literature. Among them, two major
approaches stand out: One is based on the interleaved modular multiplication
algorithm where the multiplier is processed from the most significant position
[2,3,6,8,11,12]. The other one is based on the Montgomery algorithm where the
multiplier is processed from the least significant position [7,9,13,15]. The tech-
niques for speeding up these two approaches have been developed separately.

This paper proposes a method that takes advantage of these techniques and
the ones that may eventually be devised in the future, to further boost speed.
The key that enables the linking of these two approaches is a new representation
of residue classes modulo M . Assuming M is an n-word odd integer, where the
radix of each word is r = 2k, this new representation maps an integer U in the
range [0, M − 1] to the number U ·R mod M in the same range. R is a constant
of value rαn, coprime to M , where α is a rational number such that 0 < α < 1,
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and, αn is an integer. The novelty in this representation is that the transforma-
tion constant R has a value less than the modulus M , a condition not allowed
by the Montgomery representation. Modular multiplication is then performed
in this new residue system. The new values for the transformation constant en-
able the splitting of the multiplier into two parts which can then be processed
separately, in parallel. The upper part and the lower part of the multiplier can
be processed using the interleaved modular multiplication algorithm and the
Montgomery algorithm, respectively. The possibility of selecting the parameter
α between the values 0 and 1, encompasses the application of this method to all
combinations of algorithms of different performance derived from the interleaved
modular multiplication algorithm and the Montgomery algorithm. If applied to
algorithms with similar performance and the multiplier is split into two equal
parts, it is theoretically possible to achieve the maximum speed of twice that
of these two algorithms when performed individually. The latter condition is
represented with the value of the parameter α so that αn = �n

2 �.
Two other advantages of this new method are: Firstly, compared to the Mont-

gomery method, conversion speed between the original integer set and the new
residue system is potentially doubled; and secondly, precomputation of constants
is no longer necessary.

Due to the parallel processing, the proposed method is suitable for hard-
ware implementation and also for software implementation in a multiprocessor
environment.

The remainder of this paper is organized as follows: Section 2 reviews the in-
terleaved modular multiplication algorithm and the Montgomery algorithm. The
new computation method is introduced in Section 3. Section 4 explains hardware
implementation of the method. Section 5 contains our concluding remarks.

2 Preliminaries

2.1 Interleaved Modular Multiplication Algorithm

Given a modulus M , and two elements of the residue class ring of integers modulo
M , X and Y , we define the ordinary modular multiplication as:

X × Y � X · Y mod M (1)

Let the modulus M be an n-word number, where the radix of each word is
r = 2k. The i-th word (i = 0, 1, · · · , n − 1) of Y is denoted by yi. Namely, Y =∑n−1

i=0 yi · ri. The interleaved modular multiplication algorithm for calculating
the ordinary modular multiplication is shown below [2,3,11].

[Interleaved Modular Multiplication Algorithm]
Input: M : rn−1 < M < rn

X, Y : 0 ≤ X, Y < M
Output: Z = X · Y mod M
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Algorithm:
Z := 0;
for i := n − 1 downto 0 do

Z := r · Z + yi · X ;
qC :=  Z

M !;
Z := Z − qC · M ;

endfor

In this algorithm, the words of the multiplier are processed from the most
significant position first.

2.2 Montgomery Multiplication Algorithm

Montgomery introduced a powerful algorithm for calculating modular multipli-
cation where the multiplier is processed from the least significant position first
[7]. Given an n-word odd modulus M and an integer U in the range [0, M − 1],
the image, or the M -residue of U is defined as X = U ·RM mod M where RM is
a constant coprime to M and RM > M . In order to reduce computation effort,
this constant is usually set to the value of rn. If X and Y are the images of U
and V respectively, the Montgomery multiplication of these two images, X ∗ Y ,
is defined as:

X ∗ Y � X · Y · R−1
M mod M (2)

The result is the image of U · V mod M . If the i-th word of M is denoted
as mi, then M =

∑n−1
i=0 mi · ri. In a similar way, if the number that represents

the partial products is denoted as Z =
∑n−1

i=0 zi · ri, the resulting Montgomery
algorithm is described below.

[Montgomery Multiplication Algorithm]
Input: M : rn−1 < M < rn and gcd(M, 2) = 1

X, Y : 0 ≤ X, Y < M
Output: Z = X · Y · r−n mod M
Algorithm:

Z := 0;
for i := 0 to n − 1 do

Z := Z + yi · X ;
qM := (−z0 · m−1

0 ) mod r;
Z := (Z + qM · M)/r;

endfor
if Z ≥ M then Z := Z − M

The transformations back and forth between the ordinary representation and
the M -residue representation can be performed using the same algorithm pro-
vided that the constant R2

M mod M is precomputed. An integer U can be trans-
formed to the M -residue representation by applying the Montgomery algorithm
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to this integer and the constant R2
M mod M . Transformation of an image X

back into the original integer set can be done by applying the Montgomery
multiplication algorithm to this image and the number 1.

3 A New Modular Multiplication Method

In this section, a new fast method for calculating modular multiplication is
presented. The calculation is performed using a new representation of residue
classes modulo M . In contrast to the M -residue representation introduced by
Montgomery which requires the constant RM to be coprime to M and greater
in value than M , we have changed the condition of RM > M and defined a new
residue class representation using a new constant R = rαn, where R is coprime
to M , and, α is a rational number so that 0 < α < 1 and αn is an integer. The
resulting image of an integer U is X = U · rαn mod M . Given X and Y , two
images of integers U and V respectively, multiplication modulo M in the new
residue system is defined as:

X � Y � X · Y · r−αn mod M (3)

The existence of r−αn mod M is assured by the relative primalty condition
between rαn and M . Since M is odd for cryptographic applications, by utilising
r = 2k, the primalty condition is satisfied.

Transformation from the original representation to the new residue system
is accomplished by performing conventional modular multiplication between the
integer value and the constant rαn. The inverse transformation from the new
residue system back to the original representation can be performed by multi-
plying either of the images with the constant r−αn in modulo M , which can be
done using the Montgomery algorithm as explained at the end of this section.
That the new multiplication modulo M over the images of U and V results in a
image of U · V mod M can easily be demonstrated as follows.

X · Y · r−αn mod M

= (U · rαn) · (V · rαn) · r−αn mod M (4)

= (U · V ) · rαn mod M

Isomorphism between the original integer set ZM with the operation ×,
and the new residue system Z ′

M with the operation �, holds as illustrated in
Fig. 1.

As we will now show, modular multiplication can be efficiently computed
using this new representation of residue classes. Let us consider the multiplier Y
split into two parts YH and YL, i.e. Y = YH · rαn + YL. Then, the multiplication
modulo M of the images X and Y can be computed as follows:

X � Y = (X × YH + X � YL) mod M (5)
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Fig. 1. Mapping between the original residue system and the new residue system

The left term, X × YH , is calculated using the interleaved modular multipli-
cation algorithm that processes YH from the most significant position first, while
the second term, X � YL, is calculated using the Montgomery algorithm which
processes YL from the least significant position first. These two calculations are
performed in parallel. Since the split operands YH and YL are shorter in length
than Y , the calculations X × YH and X � YL are performed faster than the in-
dividual execution of the interleaved modular multiplication algorithm and the
Montgomery algorithm with the unsplit operands.

The correctness of the above formula can be seen using the following equality:

(X × YH + X � YL) mod M

= (X · YH + X · YL · r−αn) mod M

= X · (YH · rαn · r−αn + YL · r−αn) mod M (6)

= X · (YH · rαn + YL) · r−αn mod M

= X · Y · r−αn mod M = X � Y

Below is the algorithm that computes modular multiplication using the new
representation. In this algorithm, A is a variable that stores the multiplicand;
BH and BL are variables that store the upper and the lower parts of the
multiplier respectively. Interleaved modmul (A, BH) is a function that cal-
culates A × BH by using the interleaved modular multiplication algorithm.
Montgomery modmul (A, BL) is a function that calculates A � BL by using
the Montgomery algorithm. {C1; C2; } means that two calculations, C1 and C2,
are performed in parallel.
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[Algorithm KT] (New Modular Multiplication)
Input: M : rn−1 < M < rn, gcd(M, 2) = 1

X, Y ∈ Z ′
M

Output: Z = X · Y · r−αn mod M (Z ∈ Z ′
M)

Algorithm:
Step 1: A := X ; M := M ; S := 0; T := 0;

BH := YH ; BL := YL /∗ Y = YH · rαn + YL ∗/
Step 2: {S := Interleaved modmul(A, BH);

T := Montgomery modmul(A, BL); }
Step 3: Z := (S + T ) mod M ;

When using the interleaved modular multiplication algorithm and the Mont-
gomery algorithm of similar performance, α can be set to the value so that
αn = �n

2 �; the split two parts of the multiplier, YH and YL, are at most �n
2 �-

words wide. This means that, it is theoretically possible to obtain a maximum
acceleration of twice the speed of the original algorithms performed individually,
when these conditions are met. Fig. 2 shows the multiplication procedure with
the parameter α = 1/2.

Transformation of an integer U from the original integer set to the new
residue system can be performed by executing X =Interleaved modmul(U, rαn).
The inverse transformation of an image X from the new residue class repre-
sentation back to the original integer set is accomplished by executing U =
Montgomery modmul(X, 1). When α is set to the value so that αn = �n

2 �, ei-
ther of these transformations can be completed theoretically in half the time
required by the Montgomery method without the need for precomputed con-
stants.
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Fig. 2. New Modular Multiplication with α = 1/2
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4 Hardware Implementation

A modular multiplier based on the algorithm presented in the previous section
consists of six registers, an interleaved modular multiplier, a digit-serial Mont-
gomery multiplier, a modular adder, and a multiplexor. The registers are: A,
which stores the multiplicand; BH and BL which are shift registers and store
the upper and lower parts of the multiplier respectively; M , which stores the
modulus M ; and, S and T , which store the partial results. A block diagram of
this hardware is shown in Fig. 3.

A

Interleaved

Register (M)

Register (S)

Shift-Reg.(B H

Register (A)

) Shift-Reg.(B L)

Modular
Multiplier

Register (T)

Modular Adder

MUX

M

M A

S

T

Montgomery
Multiplier

Digit-Serial

Fig. 3. Block diagram of a multiplier

Various implementations of the interleaved modular multiplier and the Mont-
gomery multiplier are possible depending on the techniques used for speeding
up the calculation. Most of these techniques use redundant representation and
increase the radix, and the different combinations of the multipliers allow for a
wide range of trade-offs between speed and hardware requirements.

When a radix-r interleaved modular multiplier is jointly used with a radix-
r Montgomery multiplier with similar critical path delays, and n is even, the
parameter α can be set to the value 1/2 and registers of equal length can be
used for BH and BL, thus halving the processing time compared to an individual
execution of the interleaved modular multiplier or the Montgomery multiplier
with the unsplit operands.
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Transformation from the ordinary integer set to the new residue class repre-
sentation can be performed with the same hardware provided that the hardware
module which computes the interleaved modular multiplication iterates one extra
cycle compared to that required for modular multiplication. Inverse transforma-
tion from the new residue class representation back to the original integer set
can be performed using the hardware module that computes the Montgomery
multiplication.

The value of the parameter α can be displaced around 1/2 enabling the use of
multipliers of different performance. In this case, the multiplier is then split into
two unequal parts that can be stored in two registers BH and BL of different
length. The value of α can be determined from the difference of performance
between the multipliers. For example, if a radix-2 interleaved modular multiplier
is used with a radix-4 Montgomery multiplier with similar critical path delays,
then α can be set to a number where αn = � 2

3n�. Then, modular multiplication
can be accomplished in about �n

3 � clock cycles. Transformation from the original
integer set to the new residue system, can be performed with the same hardware
by executing the interleaved modular multiplication module twice. In the first
execution, an integer U is multiplied by 2


n
3 �. In the second execution, the result

of the first execution is multiplied by 2

2
3 n�−
n

3 �. Inverse transformation from
the new residue system to the original integer set can be performed by the same
hardware by executing the Montgomery multiplication module once.

The amount of hardware of the proposed multiplier is proportional to n.
Compared to an individual interleaved modular multiplier or a Montgomery
multiplier, the new modular multiplier requires an extra digit modular multiplier,
an extra register, a modular adder and related multiplexors.

The space and time trade-offs for high radix modular multiplications based on
the classical interleaved algorithm and the Montgomery algorithm are detailed
in [14]. For both algorithms, increasing k, i.e. the number of bits of the radix, to
values greater than log(n), where n is the number of words, results in a penalty in
time for producing the quotient bits qC or qM for the next modular reduction in
time that makes this approach unattractive. By contrast, by using our algorithm,
a speedup can be achieved for such values of radices, since the multiplication and
the modular reduction for the split multiplier can be performed by two separate
high-radix digit-serial multipliers processing in parallel. Thus, the number of
iteration is reduced without increasing the time requirements for each cycle.

Furthermore, as there is no need to increase the radix, the design can remain
relatively simple compared to hardware designed using higher radix.

In cryptographic applications, such as in RSA, this approach is much more
attractive than implementing two modular multiplier processors separately be-
cause it has the advantage of producing the outputs sequentially.

5 Concluding Remarks

In this paper, we have presented a fast method for computing modular multi-
plication. We have defined a new residue class representation which enables the
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splitting of the multiplier into two parts which can be processed by using the
interleaved modular multiplication algorithm and the Montgomery algorithm
in parallel, potentially doubling the speed. Transformations back and forth be-
tween the original integer set and the new residue system can be performed at
a maximum of twice the speed of the Montgomery method without the need
for precomputed constants. The dual processing makes it suitable for software
implementation in a multiprocessor environment as well as for hardware imple-
mentation as discussed in Section 4. Finally, although this paper is focused on
application in the integer field, the technique used to speed up the calculation
in the proposed method can also easily be adapted for accelerating modular
multiplication in the binary extended field GF (2m).
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Abstract. The Truncated Multiplication computes a truncated product, a 
contiguous subsequence of the digits of the product of 2 integers. A few 
truncated polynomial multiplication algorithms are presented and adapted to 
integers. They are based on the most often used n-digit full multiplication 
algorithms of time complexity O(n ), with 1<   2, but a constant times faster. 
For example, the least significant half products with Karatsuba multiplication 
need only 80% of the full multiplication time. The faster the multiplication, the 
less relative time saving can be achieved. 

Keywords: Computer Arithmetic, Short product, Truncated product, 
Cryptography, RSA cryptosystem, Modular multiplication, Montgomery 
multiplication, Karatsuba multiplication, Barrett multiplication, Optimization. 

1   Notations 

 Long integers are denoted by A={an−1…a1, a0}=an−1…0 =  d 
iai in a d-ary number 

system, where ai, 0  ai
    d −1 are digits (usually 16 or 32 bits: d = 216

 = 65,536; 
d = 232 = 4,294,967,296) 

 |A| or |A|d denotes the number of digits, the length of a d-ary number. 
|{an−1…a1a0}| = n 

 A || B the number of the concatenated digit-sequence {an−1...a0, bm−1...b0}; 
|A|= n, |B|= m. 

 [x] denotes the integer part of x, and 0  {x} < 1 is the fractional part, such that 
x = [x] + {x} 

 lg n = log 2 n = log n
 / log 2 

 LS stands for Least Significant, the low order bit/s or digit/s of a number 
 MS stands for Most Significant, the high order bit/s or digit/s of a number 
 (Grammar) School multiplication, division: the digit-by-digit multiplication and 

division algorithms, as taught in elementary schools 
 A B, A B denote the MS or LS half of the digit-sequence of A×B (or A·B), respectively 

 A⊗B denotes the middle third of the digit-sequence of A×B 
 M (n) the time complexity of the Toom-Cook type full multiplication, O(n ), with 

1<   2 
  = the speedup factor of the half multiplication, relative to M (n)  
  = the speedup factor of the middle-third product, relative to M (n) 
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2   Introduction 

Many cryptographic algorithms are based on modular arithmetic operations. The most 
time critical one is multiplication. For example, exponentiation, the fundamental 
building block of RSA-, ElGamal- or Elliptic Curve - cryptosystems or the Diffie-
Hellman key exchange protocol [17], is performed by a chain of modular 
multiplications. For modular reduction division is used, which can be performed via 
multiplication with the reciprocal of the divisor, so fast reciprocal calculation is also 
important. Modular multiplications can be performed with reciprocals and regular 
multiplications, and in some of these calculations truncated products are sufficient. 

We present new speedup techniques for these and other basic arithmetic operations. 
For operand sizes of cryptographic applications school multiplication is used the 

most often, requiring simple control structure. Speed improvements can be achieved 
with Karatsuba's method and the Toom-Cook 3- or 4-way multiplication, but the 
asymptotically faster algorithms are slower for these operand lengths [9], [14]. In this paper 
we consider digit-serial multiplication algorithms of time complexity O(n ), 1<   2, 
similar to microprocessor software, that is, no massive-parallel- or discrete Fourier 
transform based multiplications, which require different optimization methods [3]. 

3   Truncated Products 

The Truncated Multiplication computes a Truncated Product, a contiguous 
subsequence of the digits of the product of 2 integers. If they consist of the LS or MS 
half of the digits, they are sometimes called short products or half products. These are 
the most often used truncated products together with the computation of the middle 
third of the product-digits, also called middle product. 

No exact speedup factor is known for truncated multiplications, which are based on 
full multiplications faster than the school multiplication. For half products computed 
by Fourier or Nussbaumer transform based multiplications no constant time speedup 
is known. 

One way to calculate truncated products is implied by covering the corresponding 
area in the multiplication square (Fig. 1) with polygons (like smaller squares or 
triangles), which correspond to partial products of known complexity. Fig. 3 shows a 
covering of a triangle, corresponding to the MS half product, proposed by Mulders 
[19] for polynomials. Covered areas, which don't belong to the truncated product to be 
computed, get ignored when the final digit-sequence is generated. They don't cause 
extra costs beyond the work needed to calculate them (except handling carries), but 
the resulting shapes might correspond to products, which can be faster calculated. (A 
full square, for example, has many dependencies among the digit-products contained, 
so full multiplications could be faster than truncated multiplications of similar size, 
corresponding to narrow and long regions, without that many dependencies.) 

The covering shapes may extend out from the full product square, like in Fig. 10. 
The products in the excess area are calculated with 0-padding the multiplicands, not 
affecting the result. If the covering polygons overlap, the involved area has to be 
processed again and the corresponding digits subtracted from the result digit-sequence 
one fewer times than they were covered. 



 Fast Truncated Multiplication for Cryptographic Applications 213 

 

4   Time Complexity 

Multiplication is more expensive (slower and/or more hardware consuming) even on 
single digits, than addition or store/load operations. Many computing platforms 
perform additive- and data movement operations parallel to multiplications, so they 
don't take extra time. In order to obtain general results and to avoid complications 
from architecture dependent constants we measure the time complexity of the 
algorithms with the number of digit-multiplications performed. 

For the commonly used multiplication algorithms, even for moderate operand 
lengths the number of digit-multiplications is well approximated by n , where  is 
listed in the table below. 

School Karatsuba Toom-Cook-3 Toom-Cook-4 

2 log 3/log 2
 = 1.5850 log 5/log 3

  = 1.4650 log 7/log 4
  = 1.4037 

On shorter operands asymptotically slower algorithms could be faster, when 
architecture dependent minor terms are not yet negligible. (We cannot compare 
different multiplication algorithms, running in different computing environments, 
without knowing all these factors.) For example, when multiplying linear 
combinations of partial results or operands, a significant number of non-multiplicative 
digit operations are executed, that might not be possible to perform in parallel to the 
digit-multiplications. They affect some minor terms in the complexity expressions and 
could affect the speed relations for shorter operands. To avoid this problem, when we 
look for speedups for certain multiplication algorithms, when not all of their product 
digits are needed, we only consider algorithms performing no more auxiliary digit 
operations than what the corresponding full multiplication performs. When each 
member of a family of algorithms under this assumption uses internally one kind of 
black-box multiplication method (School, Karatsuba, Toom-Cook-k), the speed ratios 
among them are about the same as that of the black-box multiplications. 
Consequently, if on a given computational platform and operand length one particular 
multiplication algorithm is found to be the best, say it is Karatsuba, then, within a 
small margin, the fastest algorithm discussed in this paper is also the one, which uses 
Karatsuba multiplication. 

4.1   Complexity Paradox 

We don't consider algorithms with excessive operand mixing, like many linear 
combinations of partial results. They might speedup calculations asymptotically, but at 
certain operand lengths the speed relations among the algorithms could be changed, due to 
the hidden minor terms in the time complexities. For example, consider the complexity of 
truncated multiplications using Karatsuba's method. Let us partition the multiplicands into 
k > 2 digit-blocks and perform one k-way Toom-Cook multiplication step. The digit-
blocks are multiplied with Karatsuba's algorithm of time complexity nlg

 
3. The product (an 

extreme truncated product) takes asymptotically (2k −1) (n/k)lg
 
3 < nlg

 
3 digit-products to  
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calculate. Since the Toom-Cook multiplication algorithm performs more non-
multiplicative operations than Karatsuba (long additions and multiplications / divisions 
with small constants), some minor terms become significant (left out from our 
asymptotical complexity expression), and so we might paradoxically conclude that 
Karatsuba's multiplication is faster than itself. 

5   School Multiplication 

In multiplications C = A·B, the product digits are calculated as ck = i +j=k ai bj for 
indices when ai and bj exist. It is convenient to write the digits of the multiplicands 
on the top and left side of a rectangle, and the digit-products inside, where the 
corresponding rows and columns meet. The digits of the product are then calculated 
by summing up the digit-products inside the rectangle along the diagonals, starting 
with the single entry diagonal at the top right corner, moving left and downward. 
The MS digit is the result only of the last carry: Fig. 1. (We can think this square as 
a “straightened up” product parallelogram, taught in the school for arranging the 
partial products.) 

Fig. 1. School multiplication 

6   Carry 

The digit-products can be 1 or 2 digits long. When calculating the digits of the 
(truncated) product these digit-products are added, so there is usually a carry, 

 a3 a2 a1 a0  

b0 a3b0 a2b0 a1b0 a0b0  

b1 a3b1 a2b1 a1b1 a0b1 c0 

b2 a3b2 a2b2 a1b2 a0b2 c1 

b3 a3b3 a2b3 a1b3 a0b3 c2 

 c7 ← c6 c5 c4 c3 
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propagating to more significant digits. The carry is the largest when all digits of both 
multiplicands are d −1. The diagonal i, i = 0…n −1, in the triangle I in Fig. 2 
contributes to the total (i +1)(d −1)2d 

i. Summing them up from 0 to k (e.g. with  the 
help of the differential of the generator function G( x) = (d −1)2 

 i x 
i+1, a geometric 

series) gives the total of the first k +1 diagonals (see also [16]): 
 

sk = k d k+2 + (d −k −2) d k+1 + 1. 
 
 

IIII

II

IV

0n

n

2n

Fig. 2. Carry in MS half 

If k = n…2n −2, (triangle II in Fig. 2) we embed the multiplication square in a double 
size one, and sum the diagonals there. The products belonging to parts of the diagonals, 
which lie in the triangles III and IV are then subtracted: 

sk − 2d 
nsk−n = (2n − k −1) d 

k+2 + (k −2n +2) d 
k+1 − 2d 

n +1 
= (2n − k −2) d 

k+2 + (d − 2n + k  +1) d 
k+1 + (d 

k+1 − 2d 
n) +1 

Lemma C. The carry is maximal at the main diagonal: sn−1. 

Proof. The above equations show, that the carry sk
 /d k in the upper right triangle is 

increasing, in the lower right triangle, decreasing. The larger of the two middle ones is 
the maximum. Compare d·sn−1 = (n −1) d n+2 + (d −n −1) d n+1 + d   and   sn − 2d 

ns0 = 
(n − 2) d 

n+2 + (d − n +1) d 
n+1 + (d 

n+1
 − 2d 

n) +1. The coefficient of the dominant  d 
n+2 term is 

larger at the former one, proving the proposition for d > 2. For d = 2 direct 
substitution proves it.  [] 

6.1   Guard Digits 

The most often used truncated products of n-digit multiplicands contain either the MS 
half of the product digits (c2n−1, c2n−2, …, cn), or the LS half (cn−1, …, c1, c0). There is no 
problem with the carry at the LS half, but the MS half product is affected by the carry 
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from the LS half. This is the same problem as proper rounding of floating point 
multiplications [16]. 

Other truncated products without the LS digits have also problems with the carry. 
From Lemma C it follows that the largest carry is caused by the LS half products, and 
it can be as large as sn−1 = (n −1) d 

n+1 + (d −n −1) d 
n + 1. That is, the rightmost 2 digits 

of the MS half product can be affected. We can calculate 2 more digits than requested, 
called “guard” digits, with the carry they generate. There is, however, still a chance of 
carry propagation from further to the right. The LS digits all, up to cn−3 can contribute 
sn−3 = (n −3) d n

 
−1 + (d −n +1) d 

n
 
−2 + 1. If the first guard digit cn−1 was d −n +3 or larger, 

the left out LS product could cause a carry propagating even to the digit cn. 
In the middle of cryptographic calculations partial results look uniformly random. 

In this sense, having ignored the LS n −2 product digits, the chance of a possible carry 
to cn is (n −3) /d. It is small at usual settings (0.1% at d = 216, n = 64; and 6.7×10−9 at 
d = 232, n = 32 − corresponding to RSA-1024). We can see the danger of ineffective 
guard digits. If they happen to be too large we calculate a third guard digit, too. A 
carry could only be propagating, if cn−1 = d −1 and cn−2  d −n +4. The chance of this 
is very small: 1.4×10−8 at d = 216, n = 64; and 1.5×10−18 at d = 232, n = 32. In Newton 
iterations or in the Barrett multiplication an occasional error of 1 does not matter, but 
in other situations we cannot allow wrong results even with this low probability. 

Keeping calculating more guard digits when they turn out to be large, the expected 
amount of work to get the exact carry for the MS half product is barely larger than 
2n, but the worst case complexity is O(n2). Stopping at the 2nd or 3rd guard digit and 
calculate the full product when there is a possible carry propagation, gives slightly 
more expected work, but in the worst case only one extra multiplication is performed. 
It is better at sub-quadratic multiplication algorithms. 

Let us denote by T1 and T0 the average time complexity of truncated 
multiplications, providing the product digits {ck,

 ck+1…cm}, k  m, with or without 
proper rounding, respectively. Since the main diagonal is the longest, the reasoning 
above covers the worst case carry, proving 

Lemma G. T1 < T0 + c·m, with c  2.  [] 

Consequently, the LS and MS half products are of equal complexity (within an 
additive linear term). In the sequel we don't distinguish between truncated products 
with or without proper rounding, unless the linear term of the time complexity is in 
question. 

7   Half Products 

With school multiplication half products can be calculated in half of the time of the 
full multiplication, simply by not calculating the digit-products, which are not needed. 

Let M (n) = n  denote the time complexity of the full n-digit multiplication, 
1 <   2; and H (n) denote the time needed for a half product. The construction of 
Fig. 3 leads to the inequality: 

H (n)  M (n−k) + 2H (k). 
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k = ßnn–k  

Fig. 3. Half product computation 

Note. If we chose k = n /2, such that there is no excess area (the small square does not 
cross the diagonal), we get H (n)  M (n /2) + 2H (n /2). Denoting the complexity of 
the resulting algorithm by S (n), we get the recursive equation 
S (n) = M (n /2) + 2 S (n /2). Unfortunately, the solution shows S (n) larger than the 
full multiplication time M (n) if  < lg 3, and when  = lg 3 (Karatsuba), any initial 
speed advantage (for small n values) diminishes very fast with increasing n, giving 
Slg 3(n)  M lg 3(n). See [16]. 

Let us denote the time complexity of the half multiplication algorithm by S (n), 
derived from the covering shown in Fig. 3, with the underlying multiplication 
complexity M (n) = n . 

Looking for a constant speedup ratio, let's chose appropriate  and  factors: 
S (n) =  n , and k =  n. The recurrence relation S (n) = M (n−k) + 2S (k) becomes 

  n  = n (1− ) 
 + 2  n   

  (1) 

1.2 1.4 1.6 1.8 2

0.6

0.7

0.8

0.9

1

Fig. 4. Half product speedup  vs.  
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Theorem H. The time complexity of the half multiplication, based on multiplications 
of time complexity M (n) = n , 1 <   2, is at most  

 M (n), with 

 = (1−  )  / (1−2   )  and   = 2−1/( −1). 

Proof. The value of , which minimizes  is found by differentiation of (1).  [] 

For shorter operands numerical calculations or simulations find the exact speedup 
factors [28]. They were found close to the asymptotic values graphed in Fig. 4. The 
numerical values of these asymptotical speedup factors and the corresponding 
splitting ratios are tabulated below. 

 
 Exponent Speed  Split at  

School 2 0.5 0.5 
Karatsuba 1.585 0.8078 0.3058 
Toom-Cook-3 1.465 0.8881 0.2252 
Toom-Cook-4 1.404 0.9232 0.1796 

 
There are many more ways to cover a product triangle. For example: 
 
 

(1–p–q)·n q·n p·n  

 

q·n p·n(1–p–q)·n  

Fig. 5. Alternative coverings for half products 

The left hand side configuration on Fig. 5 is optimal if q + p = , when it becomes 
the same as Fig. 3, recursively applied in the small triangles. The right hand side 
configuration is actually worse, because of the overlapping triangles. 

8   LS and MS Products 

In the geometric constructions of the half product calculations in the previous section 
there were large squares, with not needed product digits corresponding to their upper 
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right corner. These represent MS truncated products. A natural question is: How 
much must we cut off, such that the truncated product corresponding to the remaining 
part is faster to compute than the whole product? 

(1–p)·n p·n (1–p)·n p·n  

Fig. 6. Cut corner product constructions 

The constructions of Fig. 6 give lower bounds on the size of the largest MS 
truncated products faster computed than the full products. With varying number of the 
small squares on the sides numerical calculations give the following optimum p 
values: 

 Karatsuba Toom-Cook-3 Toom-Cook-4 
Fastest product 0.9402 0.9744 0.9860  

Max  p   0.2174 0.1225 0.0791 
Fastest product 0.9706 0.9895 0.9950  

 Max 2p 0.2176 0.1020 0.0575 
Fastest product 0.9822 0.9944 0.9976  

 
 Max 3p 0.1982 0.0817 0.0419 

The “Fastest product” entries indicate the maximum speedup for MS truncated 
products over full products at the best p value with the corresponding number of little 
side-squares (Fig. 6). With this kind of constructions the gain is not large, at most 6% 
(Karatsuba with 1 small square at the side and a triangle stacked up). 

Proposition S. The MS and LS truncated multiplication of two n-digit numbers is 
faster than the full multiplication if k of the 2n product-digits are computed, k < 61% 
of 2n with Karatsuba multiplication: (1+kp)/2 = 0.6088, k < 56% with Toom-Cook-3 
and k < 54% with Toom-Cook-4.  [] 
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These MS products, which can be faster calculated than the full product, are not 
long enough to improve half multiplications, needing speed improvement at ½ / (1− ). 

9   Middle-Third Products 

Some crypto algorithms could use products containing the middle n digits a ⊗ b of the 
3n digits of the product a×b, when one of the multiplicands is twice longer (2n-digit) 
than the other. The corresponding digit-products are contained in the shaded 
parallelogram in Fig. 7. The simplest way to achieve faster multiplications is to split it 
in half, and combine the 2 half products corresponding to the left and right triangle, 
with time complexity 2 

 M (n). 

0n2n

n2n3n

0

 

Fig. 7. Middle-third product 

Alternatively, an n×n square covers the center of the parallelogram (dotted lines in 
Fig. 7). When we process separately the two small triangles left out: the 
corresponding complexity is better (for the Karatsuba case it is 1.5385): 

2 
 M (n) > M (n) + 2 

 M (n/2) = (1+21−
 ) M (n). 

In [11] a clever speedup was presented for the Karatsuba case. It dissects the operands 
and calculates products of sums, but uses only as many extra addition/load operations 
as the multiplication, so it does not change speed relations. The resulting complexity 
is the same as that of the Karatsuba multiplication. Unfortunately, the idea does not 
directly generalize to asymptotically faster multiplications, so only the second entry is 
improved in the table below for the middle product speedup factors, but the Karatsuba 
case is the most important one in practice. 

The idea is to cut the middle product parallelogram into 4 congruent pieces, as 
shown in Fig. 8. Each smaller parallelogram represents a middle third product, as seen, 
e.g. PURV in the rectangle PQRS. With the notation Aij = {ajn/2−1…ain/2} the 4 middle 
products are MP(A13,B0), MP(A24,B0), MP(A13,B1), MP(A02,B1).  Calculate ,  and : 

 ← MP(A02+A13,B1) 
 ← MP(A13, B0−B1) 
 ← MP(A13+A24,B0) 
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0n2n

n2n3n

0

n/23n/2

P

QR

S

U

V

 

Fig. 8. Karatsuba Middle-third product 

The desired result is ( + ) || ( − ), with carry propagation. That is, the middle third 
product is calculated with 3 half size middle third products and 5 additions, giving the 
same recursion (for power of 2 operand lengths) as at the Karatsuba multiplication. 
(Other lengths are slightly slower.) Let  denote the speedup factor relative to M (n). It 
is summarized in the following table. (The Toom-Cook entries represent new results.) 

School Karatsuba Toom-Cook-3 Toom-Cook-4 
1 1 1.6434 1.6979 

10   Third-Quarter Products 

The third quarter of the product digits (c3n/2−1…cn) contains 3/8 of the digit-products. 
Accordingly, the school multiplier takes 3/8 n 

2 time. It is of the worst shape discussed  
 
 

 

 

kn/2

n/2–k

 

Fig. 9. Third-quarter product computa-
tion 

Fig. 10. Alternative computation for third-quarter 
products 
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here. Narrow, and long, so no much room is left to find dependencies among digit-
products, which would allow faster multiplication algorithms. 

The shaded trapezoid can be cut into a parallelogram and a triangle, as shown in 
Fig. 9, and the corresponding time complexity is 

(  +  ) M (n /2) = (  +  )2−
  M (n). 

It gives the following coefficients: 0.375, 0.6026, 0.9170 and 0.9907. The school 
and the Karatsuba multiplication case are faster than calculating the full triangle, but 
at the Toom-Cook multiplications we are better off taking the containing whole half 
product. (One could try to cover the trapezoid with triangles, which overhang the 
multiplication square, as in Fig. 10. Simple calculations show, that it does not help. 
The complexity is minimal at k = n /2, that is, where the cover is exact.) 

11   Squaring 

All the known multiplication algorithms with time complexity O(n ) speed up almost 
twofold for squaring, which is the case for small operands and the recursion these 
algorithms follow keeps this ratio. Additions and processing overhead in the 
algorithms reduce the achievable speedup ratio to 0.55…0.65. See [28]. (A speedup 
below 0.5 cannot be achieved, since it would yield faster general multiplications with 
the identity 4ab = (a+b)2−(a−b)2 and the corresponding algorithm gives 0.5 
multiplication time for squaring.) 

This is not a truncated product, being represented by a triangle with its hypotenuse 
perpendicular to the main diagonal of the multiplication square. At general products the 
upper-left and lower-right triangles contain different digit-products, but the 
corresponding digit-sequences can be calculated faster than full products, broadening 
the choice of building blocks for truncated products. In this paper we don't use this tool. 

 

Fig. 11. Squaring as half product 
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In the school multiplication the terms aibj and ajbi become the same, aiaj. All 
products are repeated, except the squares aiai, which reduces the number of the 
necessary digit-multiplications (and so the time complexity) from n2 to n (n +1)/2, 
almost twofold, as seen on Fig. 11. 

Karatsuba multiplication cuts the operands into halves, and it does 5 additions and 
3 multiplications on them to get the product. It has a recurrence relation 
M(2n) = 3M(n) + 5cn (see [9], [14]), where the term 5cn comes from 5 additions of n-
digit numbers. Squaring has a similar recurrence equation S(2n) = 3S(n) + 4cn. 
Unfolding the recurrence equation for the multiplication gives: 

M(n) = 3M(n /2)+ 5/2 cn = 9M(n/4)+ 5/2 cn(1+ 3/2) =… 
= 3lg

 
n M(1) + 5cn(3lg

 
n/2lg

 
n−1)  n lg

 
3

 M(1) 

Similarly, S(n)  n lg
 
3

 S(1). If school multiplication is performed below a certain 
operand length, like 8 digits, the recursion is followed only to this length. There the 
ratio S(n)/ M(n) is close to ½, which will be preserved for large n values. (Practical 
values are S(32)/ M(32)  0.6 and S(64)/ M(64)  0.62, with huge n values the ratio 
remaining below 0.65. [28]) 

Toom-Cook multiplications ([9], [14]) are similar. They, too, cut the operands into 
smaller pieces and build the product from them. At the bottom of the recursion 
asymptotically slower multiplication methods get faster, so we turn to them. Their 
relative speedup for squaring is approximately maintained to large operands. 

12   Summary 

The presented fast truncated multiplication algorithms help improving the performance of 
several cryptographic algorithms. (See the accompanying paper Applications of Fast 
Truncated Multiplication in Cryptography.) The most important results in this paper: 

- Carry estimation and exact rounding algorithms for truncated products 
- Proof of equivalent complexity of the LS and MS half products, within a linear 

term 
- Fast truncated long integer multiplication algorithms (half products, middle 

third products, third quarter products) for Toom-Cook type multiplications. 
- Finding the lengths of MS and LS truncated products, which can be faster 

computed than the full product 
- Close to double speed squaring algorithms 
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Using an RSA Accelerator for Modular Inversion
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Abstract. We present a very simple new algorithm for modular inver-
sion. Modular inversion can be done by the extended Euclidean algo-
rithm. We substitute the extended Euclidean algorithm by a standard
(non-extended) Euclidean algorithm that works on integers of approxi-
mately double the length of the modulus. This substitution can be very
useful on smart card coprocessors, since in some cases computations with
longer numbers than necessary can be done at no extra cost. Many smart
card coprocessors have been designed for the RSA algorithm of, say, 1024
bits length. On the other hand, elliptic curve algorithms work with much
smaller numbers, and modular inversion is a much more important prim-
itive in elliptic curve cryptography than in RSA cryptography. On one
smart card coprocessor the new algorithm is more than twice as fast as
the classical algorithm.

Keywords: Smart card coprocessor, modular inversion, Euclidean
algorithm.

1 Introduction

When public key cryptography was first used in low-cost devices such as smart
cards, it turned out that the standard CPU of such a device is too slow to per-
form the necessary cryptographic operations. At that time algorithms that work
in the multiplicative group modulo a long integer such as RSA or Diffie-Hellman
were the most popular public key algorithms. Several coprocessors for perform-
ing operations on long integers have been designed. Most of them have been
optimised for modular multiplications of 512, . . . , 1024 bit length, as required
for public key algorithms in the early nineties of the last century. A variety of
different modular multiplication techniques has been used in such coprocessors,
see [12,14,15,19]. For an overview of modular multiplication techniques see [8].

Depending on the architecture, such a coprocessor performs either operations
modulo numbers of a fixed (maximum) bit length, or the bit length is limited
only by memory resources. Since the required key size for public key systems
increases during the years (see e.g. [10]), coprocessors must deal with larger
numbers than they have been designed for. Solutions for this problem have been
given in [4,13,2].

When elliptic curve cryptography became more popular on smart cards in the
late nineties, implementers had to deal with the opposite problem. Here the key

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 226–236, 2005.
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size is typically in the range of 160, . . . , 256 bits, which is much smaller than the
key size in the RSA algorithm. This means that coprocessors have to deal with
much smaller numbers than they have been designed for. Another problem is
that some coprocessors are optimised for modular multiplication, as required for
the RSA algorithm. But other operations such as modular addition, subtraction
and inversion are more important in EC operations than in the RSA algorithm.
Here we mainly consider elliptic curves over GF(p).

This paper deals with the modular inversion on smart card coprocessors. The
oldest algorithm for computing the modular inverse is the extended Euclidean
algorithm for computing the greatest common divisor (gcd), see e.g. [8]. A binary
algorithm for computing the gcd has been proposed in [18]. Modular inversion
techniques have been investigated under a variety of aspects. The classical gcd
algorithms have been improved and optimised for large numbers on a CPU with
a fixed word length, see e.g. [6,9,16,17]. A hardware-optimised modular inversion
algorithm has been proposed in [11]. Modular inversion algorithms that avoid
the computation of the greatest common divisor have been proposed in [7].

While modular multiplication is hardware supported by a coprocessor on
many smart cards, modular inversion usually has to be coded in software. On
some CPUs a modular inversion may be about 100 times slower than a modular
multiplication.

Therefore it is crucial to use as little modular inversions as possible in EC
operations on smart cards. Techniques for reducing the number of modular inver-
sions in EC operations are well-known, see e.g. [1] or [5] for an overview. Here the
basic idea is to avoid modular inversions by representing the points on a curve in
projective or Jacobian projective co-ordinates instead of affine co-ordinates. We
can also used mixed co-ordinate systems to reduce the number of arithmetic op-
erations. These techniques can be combined with windowing methods to reduce
the number of EC operations. Depending on the details of the implementation,
more inversions may be necessary in this case, see [3].

One of the most well-known EC algorithms is the ECDSA algorithm. Note
that apart from the elliptic curve operations, the ECDSA signing algorithm
requires another modular inversion operation modulo the group order.

When running the ECDSA signing algorithm with 160, . . . , 192 bit length on
a smart card coprocessor, then up to about 20 percent of the run time may be
spent for modular inversions.

Therefore any significant speedup of the modular inversion algorithm on a
smart card coprocessor has a non-negligible effect on the run time of the ECDSA
signing algorithm.

We propose a very simple new modular inversion algorithm that is specially
suited for a coprocessor optimised for RSA cryptography. The new algorithm per-
forms about half the number of operations compared to the classical extended
Euclidean algorithm, but it works with double-length numbers. As we shall see,
the speed of the new algorithm is more than doubled compared to the standard
implementation of the modular inversion on the Infineon SLE66CX322P CPU.
The main reason for this speedup is the fact that basic double-length integer op-
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erations such as addition, subtraction and shifting, are not much more expensive
than single-length operations on this CPU for key sizes of 160, . . . , 256 bits.

The new algorithm may also be useful on other smart card CPUs, since many
of these CPUs combine a highly optimised coprocessor for long-integer arithmetic
with a main processor of much less performance. Therefore instructions such as
register switches, loop control, pointer management or data transfer between
main processor and coprocessor, (called glue instructions in [7],) may take up a
considerable part of the run time of a modular inversion algorithm. Obviously,
less glue instructions are necessary, when fewer operations are performed on
longer integers.

2 Modular Inversion with a Non-extended Euclidean
Algorithm

In this paper we will show the correctness of the following modular inversion
algorithm:

Algorithm NINV. (Modular inversion with a non-extended Euclidean
algorithm)

Input Integers u ≥ 0, v > 1, and an arbitrary extension factor f
with f > 2v.

Output Modular inverse x = u−1 (mod v) with −v < x < v ,
or an error if u is not invertible modulo v.

[1] Put U = fu + 1, V = fv.
[2] While V ≥ f + v do

{T = V, V = U mod V, U = T } .
[3] If V > f − v then return V − f and stop ,

else return ”error” and stop .

Throughout the paper we write u mod v for the integer x satisfying x = u
(mod v), 0 ≤ x < v.

For the analysis of Algorithm NINV we may rephrase Step 2 as follows:

U0 = U = fu + 1 , V0 = V = fv ;
Ui+1 = Vi , Vi+1 = Ui mod Vi ; for i ≥ 0 , Vi > 0 . (1)

Note that this is exactly the process of the Euclidean algorithm applied to U
and V . The number of Euclidean steps in Algorithm NINV is the about the same
as the number of Euclidean steps in the standard Euclidean algorithms applied
to u and v. See [8] for an analysis of the number of Euclidean steps required in
the Euclidean algorithm. The extension factor f can be chosen as a power of two
such that the bit length of the numbers U and V is about twice the bit length of
max(u, v). So Algorithm NINV requires roughly the same number of operations
as the standard (non-extended) Euclidean algorithm, but it has to work with
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integers of double length. On the other hand the overhead for the ‘extended’
part of the Euclidean algorithm is saved. Depending on the details of the smart
card CPU, this may lead to considerable saving of glue instructions.

Before showing the correctness of the algorithm, we first give some motivation
why the algorithm is expected to work. The Euclidean algorithm, when applied
to u and v returns a number d = gcd(u, v). It is well known that the algorithm
can be extended to compute integers λ, μ, |λ| < v, with d = λu − μv. In case
d = 1 the number λ is just the modular inverse we are looking for. When we
apply the Euclidean process to Ũ = fu and V = fv instead of u and v, we obtain
exactly the same sequences of quotients in the modular reduction operations in
both cases, and we also obtain a linear combination gcd(Ũ , V ) = fd = λŨ −μV
with the same values λ, μ as above. Now we introduce a small perturbation by
replacing Ũ by U = Ũ + 1. Assume for a moment that this perturbation does
not change the sequence of quotients in the Euclidean process. Then a remainder
λU−μV = fd+λ would occur in the sequence (Vi) of remainders in the Euclidean
process, and in case d = 1 we could simply read the modular inverse λ from a
remainder of size ≈ f . Although the above assumption is in general not true,
the construction of Algorithm NINV is based on this idea. More specifically, the
following theorem proves the correctness of Algorithm NINV.

Theorem 1. In case gcd(u, v) = 1 there is an integer i such that Vi−1 > 2f −v,
f +v > Vi > f−v and (Vi−f)·u = 1 (mod v) hold. Otherwise every Vi satisfies
either Vi > 2f − v or Vi ≤ v

2 .

The proof of the theorem uses continued fractions. Some basic facts about
continued fractions are stated in the next section. Theorem 1 is proved in
section 4.

The relation between the standard extended Euclidean algorithm and Algo-
rithm NINV can be stated as follows. The standard algorithm computes integers
ui, vi, λi, λ

′
i with λiu ≡ ui, λ′

iu ≡ vi (mod v), starting with u0 = u, v0 = v,
λ0 = 1, λ′

0 = 0 ; and it stops when arriving at some vi with vi = gcd(u, v).
Algorithm NINV stores the numbers Ui = fui + λi and Vi = fvi + λ′

i in two
double-length variables instead. Note that some of the perturbations λi, λ

′
i can

be negative and may spoil the Euclidean quotients. This means that we may
have  Ui/Vi! �=  ui/vi! in some cases, regardless of the size of f . Therefore we
have to modify the analysis of the standard extended Euclidean algorithm to
obtain a proof of Theorem 1.

3 Continued Fractions

Algorithm NINV can most easily be analysed in terms of continued fractions.
We take notation for and standard facts about continued fractions from [8]. A
continued fraction //x1, x2, . . . , xn−1, xn// is defined by:

//x1, x2, . . . , xn−1, xn// = 1/(x1 + 1/(x2 + 1/(. . . (xn−1 + 1/xn) . . .))).
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Continued fractions are closely related to the so-called continuant polynomials
Kn(x1, . . . , xn) defined by:

Kn(x1, . . . , xn) =

⎧⎨⎩
1 If n = 0;
x1 If n = 1;
x1Kn−1(x2, . . . , xn) + Kn−2(x3, . . . , xn) If n > 1.

Then the following explicit formulas hold for continued fractions:

//x1, x2, . . . , xn// =
Kn−1(x2, . . . , xn)
Kn(x1, x2, . . . , xn)

(2)

x0 + //x1, x2, . . . , xn// =
Kn+1(x0, x1, . . . , xn)
Kn(x1, x2, . . . , xn)

(3)

Every real number X has a (regular) continued fraction expansion defined as
follows: Let A0 =  X!, X0 = X −A0, and for all n ≥ 0 such that Xn �= 0 define:

An+1 =  1/Xn!, Xn+1 = 1/Xn − An+1. (4)

For a rational number X there is an integer n such that An+1 is not defined;
and the continued fraction expansion of X is:

X = A0 + //A1, . . . , An//. (5)

For an irrational number X , an infinite continued fraction expansion can be
defined.

For a given X , we define quantities pi, qi by:

p−1 = 1, q−1 = 0, p0 = A0, q0 = 1,

pi+1 = Aipi + pi−1, qi+1 = Aiqi + qi−1 ; i = 0, . . . , n − 1 . (6)

By induction over i we easily obtain:

pi = Ki+1(A0, . . . , Ai) ; i = 0, . . . , n ; (7)
qi = Ki(A1, . . . , Ai) ; i = 0, . . . , n ; (8)

pi

qi
= A0 + //A1, . . . , Ai// ; i = 1, . . . , n . (9)

For a number X , assume that in its continued fraction expansion A0 +
//A1, A2, . . . // the term Ai+1 exists. Then the following facts are well-known,
see e.g. [8].

The number X lies between pi/qi and pi+1/qi+1, and we have:

qi+1 > qi ; |piqi+1 − pi+1qi| = 1 ; (10)∣∣∣∣X − pi

qi

∣∣∣∣ ≤ 1
qiqi+1

<
1
q2
i

. (11)

The last fact means that the rational numbers pi/qi are very close rational
approximations for the number X . They are called the convergents of (the regular
continued fraction expansion for) X .
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The following classical result is due to A. M. Legendre:

Theorem 2. If a rational number p/q with p ∈ Z, q ∈ N, satisfies∣∣∣∣X − p

q

∣∣∣∣ ≤ 1
2q2 ,

then p/q is a convergent of the regular continued fraction expansion for X.

We still need another fact about continued fractions:

Proposition 3. Assume that μ1/λ1 and μ2/λ2 are two convergents of the reg-
ular continued fraction expansion for X satisfying |μ1λ2 − μ2/λ1| = 1. Then
these two convergents are either adjacent in the sequence of convergents for X,
or there is exactly one more convergent (μ2 − μ1)/(λ2 − λ1) between them.

Sketch Proof. W.l.o.g. we assume λ1 < λ2. The Diophantine equation |μ2x −
λ2y| = 1 has exactly two solutions (x, y) satisfying 0 ≤ x < λ2, and we easily
identify these two solutions as (λ1, μ1) and (λ3, μ3), with λ3 = λ2 − λ1, μ3 =
μ2 − μ1. Assume that μ1/λ1 and μ2/λ2 are not adjacent. Then by (10), μ3/λ3
is the convergent preceding μ2/λ2. Now let μ4/λ4 be the convergent preceding
μ3/λ3. By (6) there is an integer A ≥ 1 with λ2 = Aλ3 + λ4. Hence

λ4 ≤ λ2 − λ3 = λ1 .

But since by assumption μ4/λ4 does not precede μ1/λ1 in the series of conver-
gents, these two quantities are equal. �

4 Proof of Theorem 1

Applying the Euclidean Algorithm to U and V as stated in (1) corresponds in a
natural way to the regular continued fraction expansion of the rational number
X = U/V .

Define:

Āi =  Ui/Vi! ,

X̄i = Ui/Vi − Āi = (Ui mod Vi)/Vi = Vi+1/Ui+1 ; i ≥ 0, Vi > 0 . (12)

Comparing (4) with (1) and (12) we see that the quantities Āi, X̄i defined
in (12) are exactly the numbers Ai, Xi that appear in the continued fraction
expansion of X = U/V .

Regarding the quantities pi and qi defined by (6), and using induction over
i, we obtain from (1) and (12):

qiU − piV = (−1)iVi+1 ; i ≥ −1 . (13)

Define d = gcd(u, v). There are coprime integers λ, μ with

λu − μv = d . (14)
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We now assume that u �= 0 (mod v) holds in Algorithm NINV. Otherwise
we have U mod V = 1 and the algorithm terminates with an error as expected.

Since v �= 0, u �= 0 (mod v), we have 0 < d < v. Hence λ �= 0 mod v holds
and λ and μ cannot have opposite signs. So we have μ/λ ≥ 0 in all cases. From
(1) we obtain:∣∣∣∣ |μ||λ| −

U

V

∣∣∣∣ = ∣∣∣∣μλ − U

V

∣∣∣∣ = ∣∣∣∣fd + λ

fλv

∣∣∣∣ ; λ �= 0 (mod v) ;
μ

λ
≥ 0 . (15)

In (14) we may replace λ and μ by λ + kv/d and μ + ku/d for any integer k.
Our goal is now to find values λ and μ with |μ/λ − U/V | < 1/(2λ2) so that

we may apply Theorem 2. A sufficient condition for this is:

− 1
2
df +

1
2

√
(df)2 − 2fv < λ < −1

2
df +

1
2

√
(df)2 + 2fv ; f ≥ 2v . (16)

We easily check that length of the feasible interval for λ given by (16) is always
greater than v/d. So we can always find integers λ, μ, μ/λ ≥ 0 satisfying (14)
and |μ/λ − U/V | < 1/(2λ2). Thus by Theorem 2 we obtain:

Lemma 4. There exist coprime integers λ, μ satisfying λu−μv = gcd(u, v) such
that |μ/λ| is a convergent of the regular continued fraction expansion of U/V .

Let λmax be the highest possible value for λ that satisfies Lemma 4. We want
to calculate an upper and a lower bound for λmax. By (11) and (15), λmax must
satisfy: ∣∣∣∣fd + λmax

fλmaxv

∣∣∣∣ < 1
λ2

max

.

This implies:

λmax < v/d . (17)

On the other hand, every interval of length at least v/d must contain an integer
solution λ to the Dipohantine equation λu − μv = d. Since the feasible interval
for λ given in (16) is sufficiently long, we conclude:

λmax >

(
−1

2
df +

1
2

√
(df)2 + 2fv

)
− v

d
> − v

2d
− v2

4d3f
> −5v

8d
. (18)

Now we choose once and for all the convergent μ/λ satisfying Lemma 4 such
that λ is maximal, i.e. λ = λmax.

We have |u/v − U/V | = 1/V < 1/(2v2), so that by Theorem 2 the rational
number (u/d)/(v/d) is a convergent for U/V too. Furthermore, we have λu/d−
μv/d = 1. Thus Proposition 3 implies:

Lemma 5. Either |μ|
|λ| ,

u/d
v/d or |μ|

|λ| ,
u/d−|μ|
v/d−|λ| ,

u/d
v/d are adjacent convergents of the

regular continued fraction expansion of U/V .
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For the subsequent convergents pi/qi given by Lemma 5, we can now use
(13) to calculate the corresponding values Vi+1; and we will use (17) and (18) to
obtain upper and lower bounds for the values Vi+1. These values are part of the
sequence Vi defined by (1). The result is given in Table 1. Note that the second
entry in Table 1 corresponding to the convergent u/d−|μ|

v/d−|λ| may or may not be
present in the sequence of convergents.

Table 1. Bounds for the intermediate results Vi+1 = (−1)i(qiU − piV ) depending on
the convergents pi/qi

numerator denominator Vi+1 lower bound upper bound
pi qi for Vi+1 for Vi+1

|μ| |λ| fd + λ fd − 5
8v/d fd + v/d

u/d − |μ| v/d − |λ| fd + λ − v/d fd − 13
8 v/d fd

u/d v/d v/d v/d v/d

Proof of Theorem 1

Case 1: d = gcd(u, v) > 1

In this case Table 1 shows that no Vi with v
2 ≤ Vi ≤ 2f − 13

16v exists.

Case 2: d = 1

The first entry of Table 1 shows that a Vi+1 with f − 5
8v < Vi+1 < f + v

and Vi+1 = f + λ exists. From (14) we conclude that λ is a modular inverse of u
modulo v. Let Vj be the entry of the sequence Vi+1, i = 0, 1, . . . corresponding to
the first entry of the table. We still have to show that the entry Vj−1 preceding
Vj is sufficiently large. By (1) there is an integer A ≥ 1 such that we have:

Vj−1 = AVj + Vj+1 . (19)

Here Vj+1 corresponds either to entry two or three of Table 1.

Case 2a: Vj+1 corresponds to entry two of Table 1.

Then there is exactly one more convergent between the convergents |μ/λ| and
u/v of U/V . So we conclude from (13) that |λ|U − |μ|V and vU − uV = v > 0
have the same sign. By (1) and (14) we have λU −μV = f +λ > 0. Thus λ must
be positive in this case. Then by (19) we have:

Vj−1 ≥ Vj + Vj+1 = 2f + 2λ − v > 2f − v.

Case 2b: Vj+1 corresponds to entry three of Table 1 and A > 1 holds in (19).
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Then we have:

Vj−1 ≥ 2Vj + Vj+1 ≥ 2f + 2λ + v > 2f − v .

Case 2c: Vj+1 corresponds to entry three of Table 1 and A = 1 holds in (19).
In this case we will show that the algorithm outputs Vj−1 and that Vj−2

is sufficiently large. Since |μ/λ| and u/v are adjacent convergents of U/V , we
conclude from (13) that |λ|U − |μ|V and vU − uV = v > 0 have opposite sign.
By (1) and (14) we have λU −μV = f + λ > 0. Thus λ must be negative in this
case. Now we compute:

Vj−1 = Vj + Vj+1 = f + λ + v < f + v ;
Vj−2 ≥ Vj−1 + Vj = 2f + 2λ + v > 2f − v .

From this we see that Vj−1 − f = λ + v is a modular inverse of u modulo v of
appropriate size, and that the predecessor Vj−2 of Vj−1 is sufficiently large. �

5 Implementation Results

Algorithm NINV has been implemented on the Infineon SLE66CX322P CPU.
There the Advanced Crypto Engine (ACE), an arithmetic coprocessor for long
integer arithmetic, is used for elliptic curve operations. The coprocessor provides
an arithmetic unit that operates with numbers of up to 1120 bit length in long
mode and 560 bit in short mode. In principle, the coprocessor always performs
elementary operations such as additions, subtractions or shifts on full-length
registers. In elliptic curve cryptography, we hardly ever use numbers of more than
512 bit length, so that the overhead for operating with double-length numbers
is marginal.

In the Table 2 we compare the run time of Algorithm NINV with the run
time of the standard extended Euclidean algorithm for modular inversion as
provided by the manufacturer. In both cases the PLL of the CPU runs in an
asynchronous mode with maximum possible frequency.

The table shows that Algorithm NINV is more than twice as fast as the
standard modular inversion algorithm on the SLE66CX322P CPU.

Our implementation of Algorithm NINV chooses an extension factor f =
3 · 2k, for some integer k with 2k > v. Then we have 2f − v > 2k+2 > f + v and
f − v > 2k+1, so that it suffices to check the bit length of V in steps 2 and 3 of
the algorithm. This trick saves some overhead on the coprocessor.

Table 2. Run time of the standard extended Euclidean algorithm and of Algo-
rithm NINV in milliseconds for various bit lengths

Modular inversion algorithm 160 bit 192 bit 256 bit 320 bit
Extended Euclidean 4.80 ms 5.73 ms 7.46 ms 9.16 ms

Algorithm NINV 2.09 ms 2.43 ms 3.16 ms 4.45 ms
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Algorithm NINV does not specify a modular reduction method. Both im-
plementations listed above perform an integer division by using a simple binary
subtract-and-correct method. They discard the quotient and keep the remainder.
This is adequate here, since the ACE coprocessor can do long integer additions,
subtractions and shifts very fast, and the Euclidean quotients are usually quite
small, see [8].

We have not implemented any of the optimised gcd algorithms [6,9,16] on
the SLE66CX322P CPU, since they have been designed for long integers that
do not fit into a single CPU register.

In principle, Lehmer’s variant [9] of the Euclidean algorithm for long integers
can be used to compute the modular inverse in the same way as in Algorithm
NINV, since it produces the same quotients as the original Euclidean algorithm,
see [8].

6 Conclusion

In practice, many elliptic curve implementations are running on smart card co-
processors that have been designed for RSA cryptography. Taking into account
this special design of the Infineon Advanced Crypto Engine (ACE), we have
more than doubled the speed of modular inversions used in EC cryptography.
This speedup is so significant that it has an observable effect on the speed of
some EC algorithms, such as the ECDSA signing procedure.
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Abstract. We study the problem of implementing multivariate func-
tions defined over finite rings or fields as parallel circuits. Such functions
are essential for building cryptographic substitution boxes and hash func-
tions. We present a modification to Horner’s algorithm for evaluating
arbitrary n-variate functions defined over finite rings and fields. Our
modification is based on eliminating redundancies in the multivariate
version of Horner’s algorithm which occur when the evaluation takes
place over a small finite mathematical structure and may be considered
as a generalization of Shannon’s lower bound and Muller’s algorithm to
word level circuits. If the domain is a finite field GF (p) the complexity
of multivariate Horner polynomial evaluation is improved from O(pn) to
O( pn

2n
). We prove the optimality of the presented algorithm. Our com-

parison of the bit level approach to the optimized word level approach
yields an interesting result. The bit level algorithm is more efficient in
both area consumption and time delay. This suggests that unstructured
functions over finite rings or fields should be implemented using the bit-
level approach and not the commonly used word level implementation
style.

Keywords: Horner’s method, polynomial evaluation, multivariate poly-
nomials, word level, finite fields.

1 Introduction

Essentially all secret and public key schemes are based on arbitrary looking and
highly nonlinear logic function families which are indexed by a fixed length key.
In fact, it is expected that a proper cryptographic function is practically indis-
tinguishable from a function that is randomly picked from the set of all functions
of certain degree. This arbitrariness requires cryptographers to propose highly
complex and structureless functions. A few examples are round subfunctions of
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hash algorithms (e.g. SHA-1 [6], MD5 [11] etc.), and substitution boxes in block
and stream ciphers (e.g. DES [7], AES [8] etc.), or public-key schemes defined
over polynomial rings or finite fields. Earlier constructions were given in terms
of lookup tables which were built by experimentation and extensive statistical
testing. A good example is DES where the substitution boxes have no publicly
known structure. Therefore, one is left with a choice of either using costly lookup
tables or a direct logic implementation. Although less regular and more difficult
to design, the latter choice tends to be much more efficient. Recently proposed
algorithms (e.g. AES, and the 3GPP Standard’s Kasumi block cipher [13]) have
substitution boxes that may be expressed as algebraic functions (e.g. as inversion
in a binary finite field). This makes it possible to use the algebraic structure (e.g.
use composite or tower field representation) to have more efficient substitution
computations. Another good example is algebra on elliptic curves defined over
optimal extension fields (e.g. GF (pk) where typically p fits into a word and is
of pseudo-Mersenne form). Such arithmetic is commonly implemented in two
levels: polynomial arithmetic to implement the operations in the field extension,
and then GF (p) arithmetic to support the coefficient operations.

In this context we pose the following question: Assume we are given a mul-
tivariate function (or polynomial) f of fixed degree defined over a finite ring Zn

(or field GF (p)) randomly picked1 from the set of all such functions. What is
the best choice for a parallel circuit implementation of f :

1. a binary logic realization of the function f (bit-level approach), or
2. a realization of f over Zn (or GF (p)) (word-level approach)?

Intuitively, the later (word level) approach is attractive since it allows one to
use the present mathematical structure in the implementation. However, since
any circuit contructed from optimal binary logic implementations of word level
function blocks can be re-optimized at the binary operator level as a whole, the
potential of significant size advantage of the latter may overwhelm the design
convenience of the former. In this paper we will obtain a measure of the rel-
ative merits of optimal binary versus optimal word level implementations for
unstructured functions defined over a finite field or ring.

The remainder of this paper is as follows. We present a brief background on
multivariate function (or polynomial) evaluation in the next section and intro-
duce related notation and the multivariate formulation of Horner’s algorithm.
Then a generalization of Horner’s algorithm to higher characteristic fields and
rings is developed. We also present specialized optimization techniques based on
the field/ring structure. The paper concludes by comparing the bit-level algo-
rithm with the word-level approach in terms of bit-complexities.

1 It is important to note that, the functions we use in cryptography are not always
random and thus may permit more efficient computation. The work in this paper
focuses on arbitrarily chosen functions and hence may be more suitable for the
implementation of substitution boxes defined over finite rings or fields.
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2 Background

The problem of function (or polynomial) evaluation has a rich history. The
prominent polynomial evaluation algorithm attributed to Horner [3] has found
its way into many applications due to its simplicity and efficiency. The univari-
ate Horner’s algorithm was shown by Ostrowski [9] to be optimal in the number
of additions in the straight line algorithm in 1954. More than a decade later in
1966 Pan [10] proved its optimality in the number of multiplications as well. Fur-
thermore, in [1] Borodin proved the uniqueness of Horner’s algorithm, i.e. that
all algorithms of similar complexity reduce to Horner’s algorithm, as initially
conjectured by Ostrowski.

Although Horner’s algorithm is optimal for evaluating polynomials with arbi-
trary coefficients there are more efficient algorithms for evaluating polynomials
by allowing precomputation on the coefficients. For example, the polynomial
p(x) = xn can be computed by using only log2 n multiplications and no addi-
tions. Similar algorithms can be derived for polynomials with less structure. In
fact, when precomputation is allowed the evaluation can be achieved using only
about n

2 multiplications [4].
Using the multivariate version of Horner’s method it is possible to efficiently

implement boolean functions. In an early result Shannon proved [12] a lower
bound as O(2n

n ) on the size of circuits implementing arbitrary boolean func-
tions of n variables. Optimally solving this problem, Muller gave an explicit
construction based on a modification on Horner’s method which satisfies the
lower bound[5].

3 Preliminaries

We consider the problem of evaluating multivariate polynomials over Zm using
Horner’s method. In the univariate case a polynomial of degree r − 1 over Zm is
represented as

u(x) = u0 + u1x + u2x
2 + . . . + ur−1x

r−1 , ui ∈ Zm .

The most general polynomial one need consider is such that r = order(Zm) as
any other polynomial may be reduced to this. A naive evaluation of u(x) would
require r − 1 additions and 2r − 3 multiplications in Zm. By the application of
Horner’s method, however, the following paranthesization is obtained.

u(x) = u0 + x(u1 + x(u2 + x(u3 + . . . + x(ur−2 + xur−1)) . . .)

Now the polynomial can be evaluated by computing only r−1 additions and r−1
multiplications without using any temporary storage. A parallel implementation
introduces a delay of

T = (r − 1)TA + (r − 1)TM

where TA and TM denote the delay of two input addition and multiplication
operations in Zm.
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4 The Multivariate Case

A multivariate polynomial of n variables may be represented in sum of products
representation as follows

u(x1, x2, . . . , xn) =
rn∑
i=1

ui

n∏
j=1

x
ij−1
j

where ij denotes the j-th digit in the base r representation of i. Here again, the
most general such polynomial involves each literal, xj up to only the power r − 1
as any other polynomial is reducible to this case. It is for this reason that a natural
description of the “degree” of such polynomials is the maximum degree of any
literal versus the commonly used measure of a polynomial’s total degree. We set
u(1)(x1, x2, . . . , xn) = u(x1, x2, . . . , xn) and expand it in powers of x1 as follows

u(1)(x1, x2, . . . , xn) =
r−1∑
i=0

u(2)(x2, . . . , xn)xi
1 .

With the expansion we can now treat the summation as an (r − 1)-st degree
univariate polynomial of an indeterminate x1. This enables us to use Horner’s
method as introduced earlier to evaluate the polynomial using r− 1 additions and
r−1 multiplications assuming the values of the coefficients are available. Note that
the coefficients are still polynomials, however, the x1 indeterminate is eliminated.
The same expansion can now be applied on the r coefficients u(2)(x2, . . . , xn) with
x2 as the indeterminate. We repeatedly expand the coefficients in the same fashion
until polynomials in only xn are obtained. The expansion will be repeated n times
and in each step a level is obtained with one less variable in which the number of
coefficients will grow by a factor of r as shown in Table 1. The process is recursively
iterated as follows.

u(k)(xk, . . . , xn) =
r−1∑
i=0

u(k+1)(xk+1, . . . , xn)xi
k , k = 1, 2, . . . , n .

The total number of additions or multiplications is found as

C =
n∑

i=1

(r − 1)ri−1 = rn − 1 .

We summarize this result in the following theorem.

Theorem 1 (Multivariate Horner). The evaluation of an n-variate polyno-
mial over Zm of maximum degree (r − 1) in all variables requires at most rn − 1
additions and rn − 1 multiplications in Zm.

A parallel implementation of n levels creates a total delay of

T = n(r − 1)TA + n(r − 1)TM .
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Table 1. Number of coefficient polynomials introduced in each level

Level #Coefficient #Mult
Polynomials or #Add

1 r (r − 1)
2 r2 (r − 1)r
3 r3 (r − 1)r2

...
...

...
n rn (r − 1)rn−1

5 Our Contribution

We follow the same strategy as in Horner’s algorithm, however, we make a key
observation. In the last level in Table 1 the number of coefficients is given as
rn. These coefficients are univariate polynomials in xn with maximum degree of
r − 1. However, the number of unique polynomials of this degree in Zm is mr. If
rn > mr then many of the coefficients which we counted as distinct are redun-
dant. In the worst case the number of distinct coefficients for level n is therefore
mr. The same argument can be made for level n−1. In this level, the coefficients
are polynomials in xn−1 with r coefficients that are polynomials in xn. The num-
ber of unique polynomials in this level is therefore m2r. The number of unique
polynomials for each level is shown in Table 2. In the table we observe that the
number of coefficient polynomials increases while the number of unique poly-
nomials decreases with increasing levels. This suggests an optimization strategy
which would compute the recursion using Horner’s method until the number
of coefficient polynomials exceeds the number of unique polynomials. Then for
the remaining levels we compute all unique polynomials. Before continuing our
analysis we find it instructive to illustrate our optimization strategy on a simple
example:

Example 1. Let Zm = Z2 and f = f(x1, x2, x3, x4) represent a multivariate
polynomial f : (Z2)4 �→ Z2 explicitly given as

f = x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x3 + x3x4

+ x2x4 + x3x4 + x3 + x2 + x1 + 1 .

Applying Horner’s algorithm we convert the polynomial into the following rep-
resentation2

f = 1x1 [1x2{1x3(1x4 + 1) + (1x4 + 0)} + {1x3(0x4 + 1) + (1x4 + 1)}]
+ [1x2{1x3(1x4 + 0) + (1x4 + 1)} + {1x3(1x4 + 1) + (0x4 + 1)}]

We make out point by simply focusing on the last level of computation. Now
note that in the last level we have 8 polynomial evaluations of the form ax4 + b

2 We use different kinds of parantheses to hint the computations that take place in
each level.
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where a, b ∈ Z2. However, there can be only 22 such polynomials. Hence, a blind
implementation of Horner’s algorithm will be redundant. Since our algorithm is
generic (and therefore should not depend on the particular choice of polynomial
coefficients) in the last level we compute all possible polynomials in x4, and
simply wire the outputs to as many locations as required in the last level of the
circuit evaluating f .

To compute all unique polynomials in level n, in which all polynomials are
univariate over xn, we use r−1 multiplications and r−1 additions per polynomial
evaluation and (r − 1)mr in total. Similarly in level n − 1, all polynomials are
now (since all polynomials over xn are already computed) univariate over xn−1.
There are r coefficients with mr choices for each coefficient. Hence there are
(mr)r = mr2

polynomials requiring (r − 1)mr2
additions and multiplications.

This process is repeated until the first level is reached. The resulting complexities
for each level are shown in Table 2.

To find the level k in which the number of coefficients exceeds the number
of unique polynomials we need to find the smallest value of k satisfying the
following inequality

rk ≥ mrn−k+1
. (1)

By taking the logarithm of both sides the following inequality is obtained

krk ≥ rn+1 logr m . (2)

Let the right-hand-side be called c. Taking the logarithm of both sides with
respect to base r and solving for equality we obtain

k = logr c − logr k .

Now we may substitute the value of k in the logarithm on the right-hand-side.

k = logr c − logr(logr c − logr k) .

We may continue in the same fashion substituting infinitely many times.

k = logr c − logr(logr c − logr k(logr c − logr k(logr c − logr(. . .) . . .) .

Table 2. Number of coefficient polnomials and unique polynomials at each level

Level #Coefficient #Mult #Unique #Mult
Polynomials or #Add Polynomials or #Add

1 r (r − 1) mnr (r − 1)mrn

2 r2 (r − 1)r m(n−1)r (r − 1)mrn−1

3 r3 (r − 1)r2 m(n−2)r (r − 1)mrn−2

...
...

...
...

...
n − 2 rn−2 (r − 1)rn−3 m3r (r − 1)mr3

n − 1 rn−1 (r − 1)rn−2 m2r (r − 1)mr2

n rn (r − 1)rn−1 mr (r − 1)mr
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Note that by each new term the value of k becomes more precise. At the same
time the contribution of these terms shrink logarithmically. Since we are inter-
ested in only integer values of k it suffices to approximate k by neglecting the
terms after only two levels of substitution.

k ≈ logr c − logr(logr c) . (3)

The exact solution of (2) is defined in terms of the Lambert-W function [2]

k ≥ W (log r
rn+1

logm r
)/ log r (4)

where W (x) is defined as the inverse of the map x → xex.
Now we can compute the total number of operations by simply summing the

entries in the third column from the first level through level k and the entries in
the last column from level k + 1 through level n in Table 2.

C =
k∑

i=1

(r − 1)ri−1 +
n−k∑
i=1

(r − 1)mri

(5)

= (rk − 1) + (r − 1)(mr + mr2
+ mr3

+ . . . + mrn−k

).

Ignoring the smaller order terms in the super-exponential summation the com-
plexity may be approximated as follows

C ≈ rk + rmrn−k

.

Using (3) and rn−k directly obtained from (2) the complexity is further simplified
as

C =
c

logr c
+ rm

n logm r
r

=
rn+1 logr m

(n + 1) + logr(logr m)
+ r

n
r +1 (6)

Hence, both the addition and multiplication complexities grow by O( rn

n ).

Theorem 2 (Modified Horner). Given rn > mr the evaluation of an n-
variate polynomial over Zm of maximum degree n(r − 1) requires at most O( rn

n )
additions and multiplications in Zm.

In the improved algorithm a parallel implementation of n levels creates a total
delay of

T = k(r − 1)(TA + TM ) + (n − k)(r − 1)(TA,const + TM,const) .

Here TA,const and TM,const denote delays of constant addition and multiplication
in Zm, respectively.

The structure that results is depicted in Figure 1. The product and the
summation symbols indicate blocks implementing multiplication and addition
in Zm, respectively. Note that, in each level up to the k − 1 level the fan-out of
the polynomial implementing arithmetic blocks is unity while for higher levels
(i.e. k, k + 1, . . . , n) the fan-out may be greater than one.
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x 2 x 2
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Fig. 1. Block diagram of a generic circuit implementing the modified Horner algorithm

6 Polynomials over Prime Fields

For polynomials over prime fields GF (p) the polynomial degree is bounded by
p−1 as any polynomial of higher degree may be reduced using Fermat’s Theorem:
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xp−1 = 1 mod p. Substituting m = p and r = p in (6) we obtain the total number
of additions and multiplications as 3

C ≈ pn+1

n + 1
(7)

Hence, both the addition and multiplication complexities grow by O(pn

n ). On the
other hand, using k = (n+1)− logp(n+1) derived from (3) the time complexity
simplifies as follows

T = ((n+1)−logp(n+1))(p−1)(TA+TM )+(logp(n+1)−1)(p−1)(TA,const+TM,const) .

Theorem 3 (Modified Horner over GF (p)). Given n > p the evaluation
of an n-variate polynomial over GF (p) requires at most O(pn

n ) additions and
multiplications in GF (p) with a delay of O((p − 1)(n − logp n)).

7 Optimality

Consider a parallel implementation of a function in GF (p) of size s which denotes
the total number of addition and multiplication components used in the circuit.
The total number of circuits that can be built using s components is

(((s + p + n)2)s)

since each of the s components can have either the output of another component
(s choices) a constant (p choices) or a literal (n choices) connected as input. To
build an arbitary function, the number of circuits must exceed the number of
n-variate functions over GF (p). This leads to the following inequality.

((s + p + n)2)s ≥ ppn

Substituting s = pn

2n we see that (although close) the inequality is still not
satisfied

(
pn

2n
+ p + n)

pn

2n ≈ ppn

2n
�≥ ppn

Hence we found a lower bound on the circuit complexity any circuit must satisfy
to evaluate an arbitrary n-variate function over GF (p).

Theorem 4 (Lower Bound on Circuit Size). Any circuit evaluating an ar-
bitrary n-variate polynomial over GF (p) requires at least Ω(pn

2n ) adders and mul-
tipliers in GF (p).

The bound can be made tighter by more careful analysis but if suffices for our
purposes. With Theorems 3 and 4 it directly follows that the presented modifi-
cation to Horner’s algorithm for multivariate polynomials over GF (p) is asymp-
totically optimal.
3 In the p = 2 case, the multiplications in the second summation disappear since they

are constant multiplications by either 0 or 1.



246 B. Sunar and D. Cyganski

8 Comparison to Muller’s Algorithm

The Muller construction [5] gives a method for evaluating arbitrary n-variate
polynomials over GF (2) with O(2n+1

n+1 ) complexity (see (7)). We may consider the
task of evaluating an n-variate polynomial over GF (p) as equivalent to evaluating
(log2 p) polynomials of (n log2 p)-variables over GF (2). In this case the bit-level
algorithm implementing a polynomial evaluation over GF (p) has bit-complexity

CB = O

(
(log2 p)

2n log2 p+1

n log2 p + 1

)
= O

(
2pn

n

)
.

On the other hand the complexity equation (7) derived in this paper may be
expressed in bit operations rather than operations in GF (p). Then assuming a
GF (p) multiplication operation takes (log2 p)2 bit operations we obtain the bit
complexity as follows

CW = O

(
pn+1

n + 1
(log2 p)2

)
.

Interestingly, the bit-level algorithm seems to be a constant p
2 (log2 p)2 times

more area efficient4. Note that in the GF (p) case we are limiting our algorithms
to operate on groups of log2 p bits whereas Muller’s algorithm operates on in-
dividual bits. Due to the fine grained approach Muller’s algorithm has more
opportunity for optimization.

We see a similar picture in the time complexities. We may assume both the
GF (p) multiplication and the addition circuits compute the result in
O(log2 log2 p) two-input gate delays where p > 2 using a fast addition circuit.
Thus ignoring the constant operations the overall computation takes

TW = O((p − 1)(log2 log2 p)(n − logp n)).

gate delays in the word-level approach. The bit-level approach yields a time
complexity of

TB = O(n log2 p − log2(n log2 p)).

gate delays. The bit-level algorithm seems to be roughly (p−1)(log2 log2 p)
log2 p times

faster than the GF (p) algorithm.

9 Further Optimizations

Up until now we have not used any special properties of the ring structure. One
strategy that comes to mind is to use Euler’s Theorem to reduce the polynomial
degree r. For relatively prime integers a and m Euler’s Theorem is simply stated
as aφ(m) = 1 (mod m). When the degree r of u(x) is larger than φ(m), then
by restricting x1, x2, . . . , xn to integers that are relatively prime to m we obtain
the following strategy:
4 This figure may be reduced by employing fast (FFT based) methods to realize GF (p)

multiplications.
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– First compute

u′(x1, x2, . . . , xn) = u(x1, x2, . . . , xn) mod (xφ(m)
1 , x

φ(m)
2 , . . . , xφ(m)

n )

offline.
– Evaluate u(x1, x2, . . . , xn) by evaluating u′(x1, x2, . . . , xn).

With this strategy the direct application of the modified Horner’s algorithm has
complexity O(φ(m)n

n ).
It is possible to obtain further improvements by using the factorization of the

modulus m to use efficient residue arithmetic. For instance, if m is factorized into
distinct prime powers as m = pe1

1 pe2
2 · · · pet

t , then we may achieve the evaluation
in two steps:

– Evaluate u(x) with respect to moduli pe1
1 , pe2

2 , . . . , pet
t .

– Use the Chinese Remainder Theorem (CRT) to assemble the result w.r.t.
modulus m.

Note that this evaluation procedure may provide more than the standard
speedup obtained by the CRT. If we know that x1, x2, . . . , xn are not divisible by
any prime factor of m then the t polynomial evaluations may be performed by
evaluating u′(x) = u(x) mod xφ(pei

i ) for i = 1, 2, . . . , t. Then the total complexity
becomes

C =
1
n

∑
i=1..t

φ(pei

i )n =
1
n

∑
i=1..t

(pei

i − pei−1
i )n

To gain more insight we assume roughly equal sized partitions, i.e. pei

i ≈ m/t
and simplify the complexity further to

C ≈ 1
n

∑
i=1..t

(m/t)n =
mn

ntn−1

Note that this complexity figure gives the number of addition and multiplication
operations carried out in rings roughly of size m/t which is much smaller in size
than Zm. Hence there is additional improvement in the bit-complexities. Never-
theless, we observe that the complexity O( mn

ntn−1 ) is exponentially improved by
growing t. The complexity of residue computations and the CRT re-construction
are not included in this partial result. The complexity of these additional oper-
ations is a strong function of the prime power decomposition of the modulus.
However, for a large modulus the result, i.e. C, is expected to dominate the
overall complexity.

10 Conclusion

We presented a means of improving the parallel implementation complexity of
evaluating unstructed n-variate polynomials over finite rings and fields. Our
modification is based on eliminating redundancies in the multivariate version
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of Horner’s algorithm which occur when the evaluation takes place over a small
finite mathematical structure and may be considered as a generalization of Shan-
non’s lower bound and Muller’s algorithm to word level circuits.

We presented two strategies for further improving the multivariate version of
Horner’s algorithm which utilize the ring structure by employing residue arith-
metic via the Chinese Remainder Theorem. It turns out that by restricting the
inputs to integers relatively prime to m, exponential improvement can be ob-
tained. Of course, this statement is based on the assumption that m is highly
composite.

If the domain is a finite field GF (p) the complexity of multivariate Horner
polynomial evaluation is improved from O(pn) to O(pn

2n ). We prove the optimality
of the presented algorithm and show that the bit-level algorithm provides a
constant times better time and space complexities than the word-level approach.
The lesson taught by this exercise is that the currently popular implementation
style which favors the word-level approach diverges from optimality as the order
of the finite field increases. We have shown that the bit-level approach provides
significant time and area savings provided that the function is chosen arbitrarily,
which is the case for substitution boxes in cryptographic applications. We should
point out that our result will not apply to highly structured specialized functions
since there is significantly more opportunity for optimization by using the special
structure of the function.
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Abstract. Although many wireless portable devices offer more resistance to bus 
probing and power analysis due to their compact size, susceptibility to electro-
magnetic (EM) attacks must be analyzed. This paper demonstrates, for the first 
time, a real EM-based attack on a PDA running Rijndael and elliptic curve 
cryptography. A new frequency-based differential EM analysis, which com-
putes the spectrogram, is presented. Additionally a low energy countermeasure 
for symmetric key cryptography is presented which avoids large overheads of 
table regeneration or excessive storage. Unlike previous research the new dif-
ferential analysis does not require perfect alignment of EM traces, thus support-
ing attacks on real embedded systems. This research is important for future 
wireless embedded systems which will increasingly demand higher levels of  
security. 

1   Introduction 

As more security applications migrate to the wireless device, resistance to attacks on 
the PDA or cellphone will become a necessity. These attacks may not only arise from 
device theft or loss but also during everyday use where unintentional electromagnetic 
(EM) waves radiated from the wireless device during cryptographic computations 
may leak confidential data to a nearby attacker. Researchers have already demon-
strated that this EM attack is viable[7,10] on an 8-bit processor running at 4MHz in a 
smartcard. For example an attack may be successful in obtaining the secret keys 
stored in confidential memory in a wireless device. This attack may be possible 
through loss or theft of the device, or alternatively through temporary access to the 
device by monitoring the EM waves emanating from the device while performing 
cryptographic computations. In the latter case the attack may be able to extract the 
encryption keys, making future wireless communications insecure. Nevertheless large 
overheads in energy to achieve resistance to these attacks may not be practical for 
wireless embedded systems. Outside of smartcard research (which in the past has 
typically been limited to cheaper 8-bit or 16 bit processors) [5,12,1,4], few research-
ers have examined secure implementations of cryptographic software (such as 
Rijndael[6] which has become a popular new standard) under the threat of EM attacks 
on 32-bit processors. The cryptographic algorithms which are essential for these ap-
plications are typically run by embedded processors in these wireless devices. Unfor-
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tunately cryptographic algorithms are already known to consume a significant amount 
of energy [2]. Even worse, cryptographic algorithms which are resistant to attacks are 
known to have latency overheads up to 1.96 times[3]. Although these attack resistant 
algorithms have been developed for smartcard applications (where energy dissipation 
is not viewed as important), there is an important need to study EM attacks and en-
ergy optimized countermeasures on wireless portable devices, such as PDAs, cell-
phones, etc. 

2   Previous Research 

Typically in symmetric encryption the plaintext and key are exclusive or’d together 
and then indexed into a table, as in the table method of the Rijndael advanced encryp-
tion standard[6]. The attacker may have control over the plaintext and by guessing the 
8-bit key value, can partition EM or power traces according to a bit in the data at the 
output of the table. By taking the difference of the average of the partitioned traces 
and by recording the height of the differential for each key guess, the attacker can 
determine the correct key (since it will have the highest differential value). In elliptic 
curve cryptography (ECC) the data at the output of a double operation can be simi-
larly partitioned according to the guess of the scalar key bit as described in [19]. Al-
though EM attacks on smart cards have been investigated [10,8], EM attacks on other 
embedded systems have not been widely researched, apart from far field EM emana-
tions from a Palm-Pilot and SSL accelerator[29,30]. Previous research studied the 
correlation of EM variation with data values being manipulated (known as differential 
EM analysis, DEMA, or DPA for differential power analysis [1]) and instruction 
sequencing (known as simple EM analysis or SEMA). In the former case, DEMA, the 
DES encryption[10] was analyzed. Differential EM attacks on embedded low power 
processors have not been reported in the literature. Higher order (nth order) differential 
attacks[16] are an extension of the 1st order differential analysis which involve using 
joint statistics on multiple (n) points within power traces. These higher order differen-
tial analyses have been shown to provide more security, since they require more EM 
or power traces[16,10]. For example research with real EM measurements using a 8-
bit processor running at 4MHz in a smart card, demonstrated 2nd order DEMA [10] on 
a 2-way exclusive-or-based secret sharing scheme using 500 EM traces. However no 
known results using real EM measurements have been obtained for an attack on ECC. 
In most cases, good EM or power trace alignment of the attack point is required since 
most previous differential analyses are performed in the time domain. The exception 
to this is [17] where the fast fourier transform is calculated, however transformation 
back into the time domain occurs before differential analysis is performed. This paper 
will use the terms DEMA or DPA to denote time domain differential analysis. 

Previously researched countermeasures have been suggested such as random se-
quencing of instructions (desynchronization), secret splitting[9], duplication 
method[14], multiplicative masking[15] and random masking[3]. Secret splitting 
involves splitting the secret data into smaller pieces and combining them with random 
data [9]. To attack the splitting method, a kth order differential attack is required[9]. 
The duplication method[14] was used to support secure computations with multiple 
split variables for input to the S-box. These researchers also used table duplication 
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such that one table contained a randomly-chosen secret transformation on x, A[x], and 
the alternate table contained A[x]+S[x], where + represents exclusive or operation. 
Multiplicative masking was also defeated by a DPA attack[15]. In the masking coun-
termeasure, each secret piece of data is exclusive-or’d with a random data value 
(called a mask). To thwart a DPA attack the random data value must be changed peri-
odically. However this involves remasking the tables (or exclusive-or the complete 
table data with a mask) within the algorithm. Some researchers have investigated 
storing a limited number of masked tables [14] (called the ‘fixed-value’ masking). 
However results using real EM or power  measurements were not performed. Coun-
termeasures for power or EM analysis of ECC include i) indistinguishable formulas 
for point operations, ii) identical operation sequences regardless of key bits, and iii) 
random addition chains. In general the first approach, i), restricts the ECC to specifi-
cally chosen curves [24,18] and is generally vulnerable to differential attacks [22]. 
The second approach, ii), includes algorithms like the double-and-always add algo-
rithm [19] and others [18, 21, 31], which thwarts simple analysis attacks but can be 
attacked using differential analysis.   The random addition chains approach, iii), util-
izes sequences of additions, subtractions, and doublings that can mutate ran-
domly[26].  Other general approaches to resisting differential analysis of ECC include 
randomizing the base point (such as point blinding [19]) and randomizing the scalar 
[19,25].  Countermeasures designed for thwarting differential analysis of sliding win-
dow implementations of ECC include [23]. In general there are few publications re-
porting differential analysis of ECC using real power or EM. 

Unlike previous research, this paper presents results of EM analysis on a real em-
bedded system, a wireless Java-based PDA. Rijndael and elliptic curve scalar multi-
plication are used to demonstrate a new differential attack based solely upon analysis 
in the frequency domain. Furthermore analysis is performed in the presence of a 
countermeasure for table-based symmetric key cryptography suitable for PDA like 
devices. Comparison to previously researched attacks show that frequency based 
analysis is crucial for real embedded systems, since previous time domain analysis 
were not successful in finding the correct key in all cases. A most-significant-bit dif-
ferential attack is found to be stronger for ECC than attacking any bit as previously 
described in [19]. The EM analysis attack is demonstrated for the first time on ECC 
running on a PDA. The next section will describe the proposed frequency based dif-
ferential analyses techniques and the following section will present the experimental 
results. 

3   Differential Analysis in the Frequency Domain 

This paper proposes an extension of the existing differential side channel attack, 
where instead of performing analysis in the time domain, the frequency domain is 
used. In general instead of computing the differential signals in the time domain (as in 
[4] and in almost all previous research), the computation is performed in the fre-
quency domain. Analyzing signals captured in the frequency domain solves the prob-
lem of misalignment (or time-shifts) in traces since fast fourier transform (FFT) 
analysis is time-shift invariant. Frequency analysis is important for attacking real 
embedded systems where uncorrelated temporal misalignment (or time-shifting) of 
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traces (typically caused by the triggering signals or the Java operating system) is a big 
concern. Additionally, frequency analysis may reveal loops and other repeating struc-
tures in an algorithm that is not possible with time domain analysis.  However there 
are two problems with using frequency domain signals in differential analysis.  First, 
it reveals no information of when data-dependant operations occur.  This timing in-
formation is very useful as it helps an adversary focus the signal analysis on these 
data-dependant operations.  Secondly, any peaks in frequency domain due to an event 
that occurs in a short duration may be discernable if the acquisition duration is a lot 
longer.  The solution of these problems is to use spectrogram, DSA, which is a time 
dependant frequency analysis. 

The following terminology is used to describe the algorithms which follow, spe-
cifically SPECGRAM, DSA: i {0,…,n-1} is the trace number; b {0,1} is the set 
number; Ti

b is the EM signal of set b and trace i; t {0,…,m-1} is time; s {0,…,p-1} 
is the frame number in spectrogram; w is window size; f {0,…,wp/2-1}= 
{0,…,m/2-1}. 

V

w
F

w
s

w
sb

iV

)))*w(s*w:(sb
i(TF

psnib

(T)

return :4

)
2

(HAMMING)1
2

*)1(:
2

*(            :3

11FFT             :2

:},,0{ s,each for :}1,,0{  i,each for  and  }1,0{  b,each for :1

SPECGRAM

•←−+

−+←

∈−∈∈

sreturn :5

 )*)(abs(               :4

)*(abs if       :3

:}1
2

,,0{ ,each for  :2

0),0(Mean)1(Mean,1,0SD_DOM),( :1

),1,0(DSA

R(f)D(f)ss

R(f)(D(f))

wp
ff

sPPD)P(PRTSPECGRAMP

TT

κ
κ

κ

−+←

>

−∈

←−←←←

 

There are two main components of creating a spectrogram for each window in a 
time domain trace.  The first component is taking the FFT, which results in a fre-
quency domain signal. The second component is taking a dot product between the 
frequency signal and a Hamming window.  The application of the Hamming function 
suppresses the Gibbs’ phenomena in spectral windowing.  The creation of the spec-
trogram is detailed in the DSA algorithm above. When only one window whose width 
is equivalent to the duration of the time domain trace is used, the power spectral den-
sity can be used to perform differential analysis in the frequency domain[28]. Each 
signal trace is measured over an interval of m time points.  A spectrogram applied on 
p time windows with w time points would have w/2 frequency points in each window 
(assuming w is an even number) and wp/2 points in total, according to the Nyquist 
criterion.   
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An important part of the differential analysis is locating the significant peaks in a 
differential signal.  The routine SD_DOM is the standard deviation of the difference 
of means. The differential peaks that exceed a constant multiple  of SD_DOM are 
considered to be significant. The analysis methodology involves first using DSA on a 
time frame to locate possible areas of attack. Next the attacker can focus in on smaller 
time frames which show interest. For ECC attacks, the most-significant-bit is chosen 
to perform the partitioning into the two sets (Vb, Pb, Tb).  

The next section will present the results of the DSA, proposed countermeasure (see 
appendix), and previous attack techniques on Rijndael and ECC running on a wireless 
PDA. 

4   Experimental Results 

A high sample rate oscilloscope, a 1-cm loop EM probe, wide band amplifier, and a 
PDA (which was opened to expose the packaged chip over which the probe was 
placed) were used to acquire EM traces. Figure 1 is a photograph of a single loop EM 
probe over the chip in the PDA. The Rijndael (de)encryption algorithm (implemented 
using the table-based method of [6]) was used to illustrate the EM attack and coun-
termeasure verification. Additionally analysis of an Elliptic Curve point multiplica-
tion (using 192bit prime field with Jacobi projective coordinates as standardized in 
FIPS 186-2[27]) was performed using the new differential analysis techniques, DSA. 
Both the Rijndael and ECC code were written in Java and loaded onto the PDA de-
vice. A trigger signal was generated from the PDA using the Java code to turn the 
light emitting diode (LED) on and off. The voltage across the terminals of the LED 
was used to trigger the scope. 

 

Fig. 1. EM Probe over chip in PDA device 

Figure 2 illustrates the difference between capturing EM signals from a single 
processor evaluation board (where assembly code can be written and executed di-
rectly on the processor) in a) and EM signals from a real embedded device with oper-
ating system and executing Java code in b). In the PDA experiment, Rijndael was run 
with the same input data for capturing of over 1000 EM traces.  The PDA captured 
the end of the Rijndael algorithm, whereas the evaluation board captured a different 
part of the algorithm. It is clear that there is little difference between the average sig-
nal and the raw EM signal in figure 2a). However in figure 2b) it is clear that there is 
significant difference between EM signals running on a Java-based PDA device 
(where the averaged signal appears as a straight line at zero). 
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a) b)  

Fig. 2. Averaged (blue) versus raw EM signal (red/green) from single processor evaluation 
board in a) and Java-based PDA device in b) 

a) b)  

Fig. 3. SEMA attack on Rijndael in PDA device with 10 rounds a), and 12 rounds in b) 

a) b)  

Fig. 4. EM signal of ECC on PDA over iteration 10 and 30 in a),b) respectively 

Figure 3a) presents a single EM trace of 128 bit Rijndael captured by the scope 
from the EM signals emanating from the chip in the PDA device. Each of the 10 
rounds can be seen in the figure, thus illustrating a SEMA attack on the device. The 
EM signals at the end are created by the timer interrupt. A thread is created to call the 
Rijndael encryption algorithm. After Rijndael’s execution has completed, the thread is 
programmed to sleep. Therefore, there are minimum EM signals as shown in the 
graph when the thread is in the sleep mode. However the timer interrupt occurs every 
few milliseconds to check if a thread needs to be activated (evident from the last EM 
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burst, which is not part of the Rijndael algorithm). Figure 3b) illustrates scope capture 
of EM signals from PDA running a 192 bit Rijndael, where 12 rounds are evident. 

The EM trace and EM average of elliptic curve cryptography running on the PDA 
is shown in figure 4. For example different iterations of the same point double routine 
in the ECC algorithm are shown in figure 4a) and figure 4b). Clearly there are signifi-
cant differences in the EM trace (since the averaged EM trace has a much lower am-
plitude). 

4.1   Differential EM Results for Rijndael 

EM traces were acquired from the PDA while it was executing a Java-based imple-
mentation of the table-based method of the Rijndael algorithm[6]. Results are pre-
sented for the proposed DSA and previously researched DEMA. Additionally the 
proposed split mask countermeasure (detailed in the appendix) is also analyzed. Dif-
ferential traces and plots of all keys versus peak height are provided. 

a)  

b)  

Fig. 5. DSA on Rijndael for correct key in a) and incorrect key in b) over 1ms time period 

According to section 3’s DSA algorithm, the spectrogram is calculated for each 
EM trace. Then the set of spectrograms is partitioned into two groups based upon a 
key guess. The mean of each group of spectrograms is calculated. Finally the differ-
ence of these two means will be called the differential spectrogram trace. The differ-
ential spectrogram trace, is illustrated in figure 5a) for a correct key guess partitioning 
of EM traces (where partitioning was based upon the least significant bit at the output 
of the first Sbox table). Time intervals of 0.1ms were used to create this spectrogram. 
In between the 0.1 time intervals is the plot of the differential signal over a range of 
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frequencies. A total of 1303 EM traces were acquired with the scope set at 25M sam-
ples/sec. Each EM trace had 25,000 sample points. Figure 5b) illustrates the analysis 
of the same set of EM traces, however partitioned for an incorrect key guess. Plus or 
minus two standard deviations are shown as red in the figures and the actual differen-
tial spectrogram trace is shown in blue. Clearly Figure 5a) indicates significant differ-
entials over the region of 0.7 to 0.9 ms. 

Figure 6a) illustrates the results of the previously researched DEMA applied to the 
same set of acquired EM traces. This differential trace, which is computed solely in the 
time domain, does not show any significant spike outside of the two standard devia-
tions. These insignificant results were further confirmed by computing the DEMA for 
all possible key guesses, and plotting the maximum absolute peak value of the differ-
entials for each key, as shown in figure 6b), where the correct key is not evident. 

a) b)
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Fig. 6. DEMA of Rijndael for correct key over 1 ms and all keys plot in b) 

The DSA algorithm as detailed in section 3, returns the sum of the absolute part of 
the differential trace which was outside of the two standard deviations across the 
frequency spectrum (in each time region) of the spectrogram.  The plot of this value 
versus key value is shown in figure 7a). The correct key is clearly evident using DSA 
since it has the highest value. Figure 7b) provides the same plot but obtained from 
analyzing the EM traces acquired from Rijndael with the proposed split mask coun-
termeasure (see appendix). Results show that the correct key is not even close to 
highest peaks in figure 7b), hence the countermeasure is effective against this differ-
ential spectrogram analysis. The previously researched second order analysis tech-
niques in [17], which are also known to be time-shift invariant, were used to attack 
the countermeasure. However they were also not successful in attacking the counter-
measure even though over 2000 EM traces were used. 

It was not possible to accurately measure the energy of the PDA device while it was 
computing the cryptographic algorithm because the power pins of the chip were too 
small to access, and the fraction of battery energy was also too small to measure. 
Hence to obtain the energy measurements, a separate processor evaluation board was 
used which contained a 32-bit ARM7TDMI RISC processor core on one chip separate 
from the memory. The proposed countermeasure, implemented with one extra mask 
table, provided 1.7 times increase in energy over Rijndael with no countermeasure  and 
5.2 times less energy than the countermeasure in [3] where table regeneration is re-
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quired when a new mask is applied. When two mask tables were used in the proposed 
split mask countermeasure, the energy dissipation was 2.4 times more than the 
Rijndael without a countermeasure, and 3.7 times less energy than the countermeasure 
in [3]. Since these results did not represent the energy dissipation of the memory, and 
since it is well known that memory energy dissipation is significant and often domi-
nates, an analysis was performed with static RAM models from [11]. For example with 
(1/5)th the number of masks, [13] dissipates up to 10.4 times more energy than the 
proposed countermeasure. The proposed countermeasure, with one or two extra mask 
tables, requires significantly less memory when supporting the same number of masks. 
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Fig. 7. All keys plot for Rijndael using DSA in a) with split mask countermeasure in b)  

4.2   Differential EM Results for Elliptic Curve Cryptography 

Over 1300 EM traces of the 192bit prime field (projective coordinates) elliptic curve 
point double operation were captured. The DSA and DEMA differential traces are 
presented for both correct and incorrect scalar key bit guesses. All differential results 
presented in this section were obtained from partitioning based upon the most signifi-
cant bit of the x-coordinate of the input point of the point double operation, unless 
otherwise stated. Each EM trace of the elliptic curve point double routine contained 
25K sample points over 2ms. 

a) b)  

Fig. 8. DEMA of ECC double with correct a), incorrect b) scalar key bit guess 



 EM Analysis of Rijndael and ECC on a Wireless Java-Based PDA 259 

 

a) b)  

Fig. 9. DSA of ECC double with correct a), incorrect b) scalar key bit guess 

a)  b)  

Fig. 10. DEMA a), DSA b) for correct scalar key bit partitioning on 2nd MSB 

Figure 8 shows the previously researched DEMA generated with our EM traces 
when a correct and incorrect scalar bit is chosen in a) and b) respectively. The three 
standard deviations (SD) were chosen to encompass the incorrect scalar key bit. The 
differential signals (in black) above and below the 3 standard deviations were consid-
ered to be significant.  Figure 8a), which shows the DEMA for a correct scalar key 
bit, features multiple significant peaks. The peaks are likely corresponding to the time 
of finite field computations on the x-coordinate of the input point. 

Figure 9 is the differential EM spectrogram, DSA, for ECC double operation with 
a correct and incorrect scalar bit guess in a) and b) respectively.  Again the 3 standard 
deviations are chosen to encompass the incorrect scalar key bit differential in figure 
9b).  The standard deviation of difference of means always peaked at 0 frequency, 
indicating that there is considerable fluctuation of EM signals over different traces.  
This is indicated in the figures by the long vertical green and red standard deviation 
lines at the 0.1ms time intervals (0,0.1,0.2, ..etc). Clearly, figure 9a) features many 
significant peaks above and below the 3 standard deviation curves.  Furthermore, 
peaks in figure 9a) correlate with differential EM peaks in figure 8a), such as those 
that appear at 0.7ms and 1.1ms.  This is expected as the differential EM signal and 
differential EM spectrogram are simply two different perspectives of looking at the 
same events unfolding on the PDA device. 

Figure 10a) shows the results of performing the differential EM analysis with cor-
rect bit partitioning using second most significant bit (MSB), instead of the first most 
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significant bit as used with previous results.  Clearly, the amplitude of the peaks in the 
differential signals diminishes significantly (compared to results using the most sig-
nificant bit in figure 8a). Results using the third most significant bit with correct sca-
lar key bit partitioning did not reveal any significant differential signals at all. This is 
because the chance of overflow is not as high if the 2nd or 3rd MSB is one, hence the 
probability of overflow does not correlate as closely to bits other than MSB.  This 
demonstrates the impact of overflow in sub-operations within point doubling on the 
resulting EM signals.  Clearly, MSB of the input coordinates works better than other 
bits.  Figure 10b) shows a similar situation using the spectrogram.  The 2nd MSB with 
correct scalar key bit partitioning in figure 13b) indicates some diminished signifi-
cance at 0.7 ms and 1.1 ms. 

5   Discussions and Conclusions 

This paper presents for the first time a new differential frequency analysis approach 
using real EM measurements of a real embedded system, a Java-based wireless PDA. 
Additionally a countermeasure suitable for wireless embedded devices was presented. 
In the Rijndael analysis, the previously researched DEMA was not successful in ob-
taining the correct key on the PDA, likely since DEMA requires good EM trace align-
ment for DEMA to work (which is not present on the PDA since it is a larger embed-
ded device running Java with an operating system). If differential spikes are slightly 
out of alignment in time, they may cancel out rather than reinforce when averaging. 
The spikes analyzed in DPA or DEMA can be as small as 5 sample points wide, so a 
misalignment of 1 or 2 sample points can already cause significant loss of information 
when traces are averaged together. DSA, which is less vulnerable to the effects of 
time-shift, was successful in obtaining the correct key from the PDA device. A coun-
termeasure is shown to defeat the first order DEMA and DSA attacks in Rijndael. 
Similar to [3], the proposed countermeasure has the potential for attack through a 2nd 
order DEMA, however unlike [3], the proposed countermeasure can increase the 
security by increasing the number of extra tables. The split mask countermeasure can 
trade off memory for security, thus thwarting a nth order DPA  for (n) extra tables (n 
>=3). A previously researched 2nd order analysis technique [17], which is also known 
to be time-shift invariant, was not successful in attacking the countermeasure after 
using over 2000 EM traces. In this case it is possible that a larger number of EM 
traces would be required. For the first time an attack of an elliptic curve algorithm 
was presented using real EM traces. Both the DEMA and DSA attacks were 
successful on the elliptic curve algorithm only when the 1st and 2nd most significant 
bits of the elliptic point data were used for partitioning. This attack worked since the 
MSB’s were correlated with EM activity from the overflow or underflow computa-
tions (ie. those of modular reduction, etc). This is unlike previous research such as 
[19] where time alignment of traces was required to correlate any bit of the elliptic 
point data to the simulated power traces [19]. It is likely that the time misalignment 
was too large or the number of EM traces too small to successfully apply DSA to 
attack the data value (or correlate the EM trace with any bit of the elliptic point data 
as in [19]). It is interesting to note that a possible countermeasure for the MSB differ-
ential analysis attack of ECC is to use the same algorithm for finite field computations 
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regardless of whether an overflow occurs or not.  As discussed earlier, spectrogram 
could pinpoint a time segment where there are more significant spikes which is im-
portant for determining where the activity of interest is in the traces. Differential 
analysis using spectrogram may be unsuccessful if the window size and the fraction of 
window overlap are unsuitably chosen and thus should be determined experimentally. 
Similar to previous research [17], DSA requires a Fast Fourier Transform, however 
unlike [17], this paper proposes a 1st order analysis where all computations are done 
in the frequency domain. The extension of DSA to higher order analysis is the subject 
of future work, however the 2nd order technique in [17] with over 2000 EM traces was 
not successful, hence supporting the belief that higher order analysis attacks are very 
difficult to launch. In summary the new proposed analysis techniques were successful 
in obtaining the correct key from both Rijndael (a symmetric key encryption standard) 
as well as elliptic curve cryptography (a public key cryptographic standard).  They are 
general and applicable to other cryptographic algorithms, power as well as EM, and 
other embedded systems. 

Using real EM measurements from a PDA device executing Java-based cryptogra-
phy, a new frequency-based (time-shift invariant) differential analysis was demon-
strated. Previous differential analysis techniques requiring alignment of traces in the 
time domain were not successful in correlating EM signals to bits of the data. Results 
show that a low energy countermeasure for Rijndael supporting scalable security 
without large overheads of table regeneration or excessive storage was able to thwart 
the new differential techniques, but could not successfully be attacked by higher order 
techniques [17] with over 2000 EM traces. This research is crucial for supporting low 
energy security for embedded systems which will be prevalent in wireless embedded 
devices of the future. This research was supported in part by grants from NSERC and 
CITO. 
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Appendix: Split Mask Countermeasure  

This section will describe a proposed countermeasure which will thwart the first order 
analysis attack of the previous section on some symmetric key encryption algorithms, 
such as Rijndael, DES, CAST. The proposed split mask countermeasure stores ran-
domly masked data in the S-box (masked S-box table, S’[x]). Unlike previous re-
search [13,14], each addressed data in the table uses a different random mask (S’[x] = 
S[x]+r[x], where + is exclusive or operation , r[x]= random mask, which is different 
for each table address, x). A second corresponding table (called the mask table, 
M[x]=m+r[x], m is a fixed random value) is used to store a corresponding mask for 
each address. Since tables are generated only once, this value m along with mask of 
the round keys is used to precompute tables before the cryptographic algorithm is 
downloaded to the device.  To avoid a first order DPA, the exclusive or of the S-box 
masked table and mask table, S’[x] +M[x]=m+S[x] ,  is never computed during the 
execution of the encryption algorithm. Figure A.1 illustrates the computations per-
formed on the mask tables before they are merged with the masked substitution tables 
to avoid a 1st order DPA or DEMA or differential frequency analysis.  

For example, in the table method of Rijndael (described in [6] for fast implementa-
tion on 32bit processors), all masked S-box tables are accessed and their results are 
exclusive-or’d together (as would normally be done for unmasked S-box tables in the 
original algorithm). Next all corresponding mask table outputs are exclusive-or’d 
together. Finally the exclusive-or result from the S-box masked tables is exclusive 
or’d with the exclusive-or result of the mask tables. Figure A.1 illustrates the compu-
tations required in the scheme for Rijndael, where S1’, S2’, S3’, S4’ and  M are the 
masked S-box tables and the mask table, respectively. Note that there is only one 
mask table, M, which is accessed four times (so it is shown four times) in figure A.1. 
In the table method of Rijndael one would normally compute : t0 = S1({s0}b3) + 
S2({s1}b2) + S3({s2}b1) + S4({s3}b0) + rki. However with this countermeasure one would 
compute : t0a = S1’({s0}b3) + S2’({s1}b2) + S3’({s2}b1) + S4’({s3}b0)  and t0b = M({s0}b3) + 
M({s1}b2) + M({s2}b1) + M({s3}b0)  (where {w}b refers to byte b of the 32bit word w). 
Then one would merge them as : t0 = t0a+ t0b and  t0=t0 + rki  (where t0 value is then 
combined with the masked round key for input to the next set of tables, which may 
also have masked inputs). A similar implementation for DES and other cryptographic 
algorithms is also possible. Similar to previously researched countermeasures [3,16], 
a 2nd order DEMA attack on this countermeasure may be possible. However a 1st 
order DEMA is thwarted since the data values output from the S-box tables have been 
decorrelated through random masking. The 2nd order DEMA could use statistical 
processing of EM samples of both the output of the S-box masked table and the out-
put of the mask table to launch an attack. However unlike previous countermea-
sures[3,16], by increasing the number of tables, an increase in the order of the re-
quired DEMA attack occurs, hence the security of this countermeasure scales with the 
number of tables. For n mask tables (M1, M2… , Mn ), and one S-box masked table, 
(S’ ) a (n+1)th order DEMA attack is required (where m= r [x]+M1[x] +M2[x]… 
+Mn[x], for all x , thus splitting mask m into n+1 masks ). For example with 2 extra 
mask tables (M1,M2 where m=r[x]+M1[x]+M2[x], for all x), a 3rd order DEMA may 
possibly be launched. The higher order attack typically will require many more EM 
traces and thus provides an increase in difficulty of launching the attack. Note that 
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once again, even with n tables, to avoid a first order DEMA, the exclusive or of the S-
box masked table and mask table, specifically S’[x]+ M1[x] +M2[x]… +Mn[x]=m+S[x]  
is never computed.  

The proposed split mask countermeasure is similar to the duplication method [14] 
however unlike [14] the second table does not hold the random mask of the S-box 
entry, r[x]. The duplication method [14] also used two tables whereas this counter-
measure can increase the number of tables supporting higher order DPA.  Addition-
ally these masked tables and set of mask tables would produce a masked value unlike 
[14] which would produce an unmasked value.  

sj / tj
tj / sj

rki

S1' S2' S3' S4'

M M M M

 

Fig. A.1. Partial Rijndael Implementation of countermeasure 
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Abstract. Nearly half a century ago, military organizations introduced
“Tempest” emission-security test standards to control information leak-
age from unintentional electromagnetic emanations of digital electron-
ics. The nature of these emissions has changed with evolving technology;
electromechanic devices have vanished and signal frequencies increased
several orders of magnitude. Recently published eavesdropping attacks
on modern flat-panel displays and cryptographic coprocessors demon-
strate that the risk remains acute for applications with high protection
requirements. The ultra-wideband signal processing technology needed
for practical attacks finds already its way into consumer electronics.
Current civilian RFI limits are entirely unsuited for emission security
purposes. Only an openly available set of test standards based on pub-
lished criteria will help civilian vendors and users to estimate and manage
emission-security risks appropriately. This paper outlines a proposal and
rationale for civilian electromagnetic emission-security limits. While the
presented discussion aims specifically at far-field video eavesdropping in
the VHF and UHF bands, the most easy to demonstrate risk, much of
the presented approach for setting test limits could be adapted equally
to address other RF emanation risks.

Keywords: Eavesdropping, emission security, Tempest, protection
standards, video displays, side channels.

1 Introduction

Electronic equipment can emit unintentional radio signals from which eavesdrop-
pers may reconstruct processed data at some distance. The civilian computer-
security community became aware of the risk through van Eck’s demonstration
of how to eavesdrop on video displays with modified TV sets [1]. More recent
studies have shown that not only are contemporary CRT monitors still vul-
nerable [2], but so are flat-panel displays with digital interfaces [3]. Modular
exponentiation parameters in an SSL accelerator module inside a closed server
have been reconstructed from emanations picked up at 5 m distance [4].

Since about 1960, NATO governments have paid considerable attention to
limiting compromising emanations of computers that handle classified informa-
tion. They developed test standards and procured conforming protected prod-
ucts. The relevant standards and their rationales are still classified documents

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 265–279, 2005.
c© International Association for Cryptologic Research 2005
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350 MHz, 50 MHz BW, 12 frames (160 ms) averaged

μV

10 15 20

Fig. 1. Text signal received from a Toshiba 440CDX laptop at 10 m distance through
two intermediate offices (3 plasterboard walls) using an omnidirectional antenna, a
Dynamic Sciences R-1250 AM wideband receiver, a digital storage oscilloscope and
postprocessing on a PC involving cross-correlation controlled periodic averaging. The
calibration bar shows the rms voltage of a sine wave on the antenna input that would
generate an equally strong signal. [3]

and conforming products remain export controlled. Although “Tempest”-certi-
fied equipment is, in principle, available to non-military customers, its use in
civilian applications remains marginal.

Without open standards, emission security remains largely ignored in non-
military applications, smartcard microcontrollers being a notable recent excep-
tion. There may be several reasons. Firstly, secret military specifications restrict
the choice of suppliers to a small number of defense contractors with the neces-
sary clearances and exclude the mass-market industry. In the absence of public
literature, civilian product designers receive no training in emission security.
Opportunities for simple low-cost countermeasures that require little more than
awareness of the nature of such risks early in a design process are therefore
missed. Secondly, with secret emission limits, users have no idea what level of
protection is tested and how the unknown tradeoffs made in these specifica-
tions fit into their overall security concept and budget. And finally, academic
researchers may simply find it less appealing to try advancing a field in which
most existing work remains secret and much of the state of the art has to be
reinvented first.

Recent Freedom-of-Information-Act requests to declassify the US “Tempest”
standards resulted only in excerpts that describe some terminology and widely
known EMC test and calibration methods [5,6,7,8,9]. The actual conformance
limits and full test procedures remain unavailable, along with the literature that
justifies the design of these standards.

Today, most information-processing facilities with high protection require-
ments use civilian off-the-shelf technology, procured according to open stan-
dards. This calls, in my opinion, for a new generation of emission-security test
standards that is based entirely on published data and experimental techniques.
Their development should follow the established procedures of international stan-
dardization. Any underlying data should be open to scrutiny by academic peer
review, to prevent that any tradeoffs that have to be made could be influenced
by conflicting concerns of the signal-intelligence community. A model for such an
effort could be the work that led to international standards on electromagnetic
compatibility [14].
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Designing a comprehensive family of open emission-security standards will
require a substantial interdisciplinary research effort. While similar principles
can be applied to a wide range of information-leaking channels, the specific
parameters, test procedures, and appropriate economic tradeoffs can vary by
orders of magnitude across different applications, countermeasures and signal
types.

In the space of this paper, we will have to restrict the discussion, as an
example, to one single class of signal, namely the radiated RF leakage of video
signals. This remains a particularly easy to demonstrate risk, especially because
of the redundancy offered by a repetetive signal, and because the eavesdropper
needs to find only a small number of parameters to exploit the signal (namely,
the rough pixel-clock frequency and the precise line and frame frequencies).

2 Existing Public Standards

No public emission-security standards exist today. Two types of electromagnetic-
emission limits for information technology have been widely accepted by the
market already, but – as this section will show – neither was designed to reduce
the risk of information-carrying emanations, nor is any of them even remotely
suited to do so.

2.1 Ergonomic Standards

Since about 1992, “low radiation” CRT computer monitors with improved elec-
tromagnetic shielding have been on the market. They confirm to standards aimed
at reducing the exposure of humans to electromagnetic fields, to address fears
about their potential biological effects [11,12]. The TCO’92 specification devel-
oped by the Swedish Confederation of Professional Employees (TCO) limits only
low-frequency fields below 400 kHz, which are those generated by CRT deflection
coils. Compromising emanations are typically significantly weaker and occur at
much higher frequencies in the HF/VHF/UHF bands (3 MHz–3 GHz). Therefore,
a TCO’92 conformance test will provide no information about emission-security
properties of a video-display system.

2.2 Radio-Frequency Interference Standards

The second class of civilian electromagnetic emanation standards is aimed at
minimizing interference with radio communication services. The international
specification CISPR 22 [13] is today a legal requirement in most industrialised
countries. This standard imposes the following radiated emission limits for “Class
B” devices:

– Electric fields must not exceed 30 dBμV/m at 10 m distance in any 120 kHz
passband in the frequency range 30–230 MHz.

– Electric fields must not exceed 37 dBμV/m at 10 m distance in any 120 kHz
passband in the frequency range 230–1000 MHz.
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The field strength is determined with a special AM measurement receiver with
a quasi-peak detector specified in [14]; the output of such a detector rises with
a time constant of only 1 ms and falls with a time constant of 550 ms. Less
strict “Class A” limits are defined for devices that are only used in industrial
environments. The standard also limits emissions below 30 MHz via power and
communications cables.

A brief look at the motivation and design of the radio-interference test stan-
dards helps to understand why they are not suited for emission security pur-
poses. Radio broadcasters aim at ensuring a minimum field strength of about
50–60 dBμV/m throughout their primary reception area [16]. The CISPR limits
were selected about 20 dB below that level to ensure that, at 10 m distance, the
interference from a device will not limit the received signal-to-noise ratio to less
than 20 dB.

The quasi-peak detector is used as a psychophysical estimation tool. It pro-
vides a measure of the approximate annoyance level that impulses of various
strengths and repetition frequencies cause for human users of analog audio and
television receivers. Strong disturbance impulses are tolerated if they occur suf-
ficiently rarely, and even weak disturbances can be annoying at high repetition
rates.

3 Considerations for Emission Security Limits

Eavesdroppers can work with significantly lower signal levels than what might
cause interference with radio and TV reception. They are concerned about how
the emitted compromising signal compares in strength to the background noise,
not to a broadcasting station. They can be expected to

– use high-gain antennas directed towards the emitting target device,
– look for the broadband impulses from digital signals in a quiet part of the

spectrum, without interference from broadcasting stations,
– use notch filters to suppress strong narrow-band sources that interfere with

the eavesdropped signal,
– use signal-processing techniques such as periodic averaging, cross-correlation,

digital demodulation, and maximum-likelihood symbol detection, in order to
separate the wanted information-carrying signal from unwanted background
noise.

The emission limits, therefore, have to be based on an understanding of
reasonable best-case assumptions of

– the minimal background noise that the eavesdropper faces even under good
receiving conditions,

– the gain from antenna types that can be used covertly,
– the gain from the use of suitable detection and signal-processing methods

for the signal of interest,
– the closest distance between antenna and target device for which protection

is needed.
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The goal of an emission-security test standard is to provide an upper bound
for the signal-to-noise ratio S/N that a radio-frequency eavesdropper could
achieve in practice. We then need a model that relates such a value to the
outcome of practically repeatable measurements that can be performed as part
of a security evaluation in a controlled test environment. If we combine the ma-
jor factors that attenuate a compromising signal for an eavesdropper, compared
to a laboratory measurement, with the major factors by which an eavesdropper
can boost the signal, we obtain such a model in form of the formula

S/N =
ÊB · Ga · Gp

ad · aw · En,B · fr
, (1)

where

ÊB is the maximum field strength that the test standard permits,
B is the impulse bandwidth [14,17] of the receiver used in the test,
ad is the free-space path loss caused by placing the eavesdropper’s antenna

at distance d from the target device, instead of the antenna distance
d̂ used during the test,

aw is any additional attenuation in the radiation path (e.g. building walls),
Ga is the gain of the best directional antenna that is feasible for use by

the eavesdropper,
Gp is the processing gain that can be achieved with signal processing,

En,B is the field strength of natural and man-made radio noise at the loca-
tion of the eavesdropping antenna within a quiet band of width B,

fr is the noise factor of the eavesdropper’s receiver.

The expected noise levels and attenuation values in the above equation are
random variables, which, in the absence of better data, have to be modeled
as being normally distributed with some mean and variance determined from
the statistical evaluation of a large number of measurements in various envi-
ronments. For the other parameters, reasonable estimates based on practical
demonstrations have to be made, so that an emission limit ÊB can be selected
that will keep the eavesdropper’s signal-to-noise ratio below an acceptable level
with sufficient probability. Different types of target signal are located in differ-
ent frequency bands and permit different processing gains. Therefore, the above
parameters will have to be estimated separately for each signal type of inter-
est. General emission limits would have to consider for each frequency band
the lowest acceptable source signal strength ÊB for all types of compromising
signals.

3.1 Radio Noise

A standard survey-data reference for the noise levels to be expected in vari-
ous environments throughout the radio spectrum exists in the form of ITU-R
Recommendation P.372 [18], which summarizes the results from numerous noise
intensity measurements and categorizes their origin.
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Fig. 2. Expected electric field noise levels En,1 MHz excluding transmitter stations
based on data from ITU-R P.372 [18]. The curves are for a receiver bandwidth of
1 MHz. Add 3/7/10/13/17/20 dB for bandwidths of 2/5/10/20/50/100 MHz, respec-
tively. Subtract 37/20/9 dB for the 0.22/9/120 kHz bandwidth used in CISPR 16
measurements.

The mean noise levels are provided in ITU-R P.372 in form of an external
noise factor fa = Pn,B/kT0B which compares the noise energy picked up over
a bandwidth B by an antenna with the thermal noise energy from a resistor at
room temperature T0 (k is Boltzmann’s constant).

Using the signal-power to field-strength relationship of an omnidirectional
antenna (for details see [2, p. 91]), we can convert these noise figures into equiva-
lent field strengths, which is the unit commonly used in electromagnetic emission
standards.

Figure 2 uses these values, and others from [18], to estimate electric field
levels at both quiet rural sites and business districts for 1 MHz bandwidth. In
measurements, the receiver bandwidth will have to be smaller than the center
frequency, therefore the shown curves are directly applicable only for frequen-
cies of about 2 MHz and higher. For lower frequencies, lower bandwidths will
have to be used. For noise, the received power increases proportional to the
bandwidth of the receiver (10× larger bandwidth leads to 10 dB higher field
strength).

It is worth noting that these are out-door levels and that this background
noise might be attenuated if the eavesdropper and the target device are both
located in the same building.
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3.2 Radio Signal Attenuation

In free space (vacuum, dry air, etc.) the power flux density (power per area)
of a radio signal drops with the square of the distance from a point source,
because preservation of energy requires that the power flux density remains
constant when it is integrated over the closed surface of a volume that contains
the transmitter. The power flux density is proportional to the square of the
electric field strength, therefore, the electric field strength will at distance d be
reduced by a factor

ad = d/d̂ (2)

compared to the value at a reference distance d̂. In other words, increasing the
distance to a transmitter in free space by a factor of 10 will reduce the signal
strength by 20 dB.

Compared with the available references on out-door radio noise, somewhat
less clear data is available in the literature on the in-door radio signal atten-
uation by building materials. Two survey publications [19,20] provide data for
the frequency range of 900 MHz to 100 GHz. However, this data shows only
a few trends and mostly documents a significant variability between different
buildings.

A model in [19] suggests for 900 MHz a path loss of ad · aw = (d/d̂)1.65

for typical wall spacings and materials for an office environment on the same
floor. An additional loss factor of 0/9/19/24 dB has to be added if the two
antennas are 0/1/2/3 floors apart in a building. In large open rooms, attenuation
is dominated by free-space loss (ad ·aw = (d/d̂)1). In corridors it is slightly lower
(ad · aw = (d/d̂)0.9), because walls can reflect the signal or act like a wave
guide. The literature survey in [20] lists a number of alternative, but similar,
models that have been used to describe attenuation in buildings, e.g. where the
exponent applied to d/d̂ increases from 1 to 6 as the distance increases from
1 m to 40 m. It also features measurements of individual building components,
e.g. 3.8 dB for a double plasterboard wall or 7 dB for a 200 mm concrete block
wall. Less data is available for VHF frequencies (30–300 MHz), for example [21],
which suggests that building attenuation aw is mostly in the range 5–45 dB.
This reference also notes that VHF field strength can vary inside buildings by
as much as 20 dB within a meter, which agrees with my own experience from
eavesdropping demonstrations with handheld antennas inside office buildings.

Given the wide variability of radio-signal attenuation encountered in build-
ings, it seems not prudent to base a protection standard on any higher value
for aw than what is encountered in the lower decile of the available statistics,
namely in the region of aw = 5 dB, a typical attenuation provided by 1–2 walls.

3.3 Antenna Gain

The compact broadband antennas that are commonly used for radio-interference
compliance measurements, such as biconical, log-periodic, log-spiral, or double-
ridged-horn designs, have only little directional gain Ga, typically about 2–6 dBi
(“dBi” refers to a decibel gain compared to an isotropic antenna).
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One of the most practical families of high-gain antennas for the UHF and
higher VHF frequency range is the Yagi-Uda type, some forms of which are well
known through their widespread use for domestic terrestrial UHF TV reception.
Such an antenna is half as wide as the wavelength λ and can be designed such
that its gain is

Ga = 7.8 dB · log10
l

λ
+ 11.3 dBi, (3)

where l is the length of the antenna [23, p. 458]. Increased gain and length of an
antenna comes with reduced bandwidth. For the frequencies (200–400 MHz) and
bandwidths (50 MHz) that are often best suited for video-signal eavesdropping,
Yagi antennas with four elements seem to be an acceptable compromise, with a
gain of 8.6 dBi and a length l ≈ λ/2. Further gain can be achieved by connecting
a group of Yagi antennas together, and each doubling of their number will in
practice increase the directional gain by 2.5–2.8 dB.

As a practical example, a 2×3 group of six Yagi antennas with four elements,
each tuned for the 350 MHz center frequency from Fig. 1, would be 0.43× 1.3×
1.1 m large [2, p. 95] and could be hidden and handled quite easily behind a
window or inside a suitable vehicle. It would provide a gain of about Ga = 16 dBi.
Doubling the reception frequency roughly quadruples the number of dipoles that
can fit into the same space, leading to 5–6 dB more gain.

3.4 Processing Gain

Averaging is a practical and highly effective technique for increasing the signal-
to-noise ratio of a periodic signal, such as that generated by the image-refresh
circuitry in a video display system.

If Xi are independent random variables, then the variance of their sum will
be the sum of their variances: Var(

∑
i Xi) =

∑
i Var(Xi). The variance of a

radio-signal voltage corresponds to its average power. If we add two sine waves
with a random phase relationship together, the expected power of the result is
the sum of the powers of each input signal. However, if we add two identical sine
waves together, their voltage will add up and thus their power quadruple.

Similarly, adding two recorded segments of independent noise together will
double the power of the noise and increase its root-mean-square voltage by a
factor of

√
2 = 3 dB. On the other hand, adding two phase-aligned repetitions

of the same waveform together will increase its voltage by a factor of 2 = 6 dB
(and will therefore quadruple its power). When two recorded signals contain
both independent noise and a wanted phase-aligned signal, then adding the two
together will increase the signal-to-noise ratio by 3 dB. (Dividing by the number
of added signals, to complete the average calculation, will not affect the SNR.)

This can be generalized to a processing gain of

Gp =
√

N = 3 dB · log2 N = 10 dB · log10 N (4)

when N repetitions of a signal can be observed and added up with correct phase
alignment.
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How many frames of a video signal can be averaged in practice depends on
a number of factors:

– When the screen content is stable for a time period T , then obviously up to
fvT frames can be received, where fv is the frame rate or vertical deflection
frequency of the screen. T can range in practice, depending on user behavior,
from a few seconds to many minutes or longer, limiting N to about 102–106.

– Periodic averaging of a video signal can only be successful if the refresh
frequency fv can be determined with a relative error of less than [2xtyt(N −
1)]−1, where xtyt is the total number of pixels including those representing
the blanking intervals, if we demand that pixel intervals in the first and
last averaged frame overlap by at least half a pixel time [2]. The frequency
of crystal oscillators used in graphics cards wanders out of such a tight
frequency tolerance within a small number of seconds, limiting N to less
than 103 for averaging based on a manually adjusted vertical sync signal
generated in an independent oscillator.

– An alternative to reconstructing the sync signal and averaging in real-time
is to record the receiver output and then search for peaks in the auto-
correlation of this signal. This way, the precise repetition frequency can be
determined in a more compute-intensive post-processing step (as was done
in Fig. 1). The number of frames will here be limited by the available acqui-
sition memory. Storage oscilloscopes offer today 16–64 MB, which limits N
to 101–102 frames. The available memory and processing power can be ex-
pected to grow further with Moore’s law. They are limited in purpose-built
hardware only by the eavesdropper’s budget. With enough signal process-
ing power available, this auto-correlation – which will only be evaluated for
peaks near the expected frame time f−1

v – could even be performed in real-
time, leading not only to unlimited integration time but also to real-time
monitoring of the result.

3.5 Bandwidth

A further consideration is the receiver bandwidth. We can expect an eavesdrop-
per to work with a bandwidth B somewhere near the pixel frequency fp of the
video mode, as this is necessary to separate the impulses received from individ-
ual pixels and reconstruct the full video bandwidth. For larger fonts, text might
remain intelligible with somewhat lower bandwidths.

In general, independent of the bit rate or pixel frequency of an eavesdropped
digital signal, a higher bandwidth will lead to an improved signal-to-noise ratio.
This is, because the compromising emanations of digital waveforms are in the
form of switching impulses, which are inherently ultra-wideband signals. The fre-
quency components of an impulse are correlated and therefore received impulse
voltages will grow linearly with B (20 dB for every ten-fold increase in band-
width), whereas thermal noise and narrow-band background signals are usually
not correlated and their voltage will therefore only grow proportional to

√
B. As

a result, in the best case, the signal-to-noise ratio can grow proportional to
√

B.
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In practice, the ratio will grow somewhat less, because some of the unwanted
background noise (for example emissions from other nearby computers) also has
the form of broadband impulses. A reason for keeping the bandwidth small in an
eavesdropping receiver is that this will make it more likely to find a quiet window
in the radio spectrum that is not used continuously by powerful narrow-band
transmitters such as radio and TV broadcast stations. Overall, a bandwidth in
the order of B = 50 MHz would be a typical practical compromise for a readable
video signal.

3.6 Signal-to-Noise Ratio

For the reconstruction of human readable text, a signal-to-noise ratio of at least
10 dB is necessary [2]. This requirement could perhaps – especially with much
larger fonts – be reduced by a few dB when a symbol detector is used to auto-
matically recognize characters, but the additional gain achievable here depends
a lot on the font and will be significantly below the square-root of the number of
pixels per character, as many characters such as i,l,I,1 or o,c,e differ only in
a few pixels. Therefore, a SNR of not more than 0 dB seems to be a reasonable
security requirement.

4 Suggested Emission Limits

Based on all these considerations, we can now bring together possible values for
equation (1). A calculation like the following example illustrates how a rationale
for the emission limits in a compromising emanations test standard for video
signals could look like:

– We measure field strength in the laboratory tests at a distance of d̂ = 1 m,
which is already common practice in military EMC standards, e.g. [15].

– We assume our eavesdropper uses a directional Yagi antenna array like the
one described in section 3.3 with Ga = 16 dBi.

– We assume that an attacker will not get closer than d = 30 m with this type
of antenna, therefore ad = 30 dB. In a quiet rural site, securing the area 30 m
around a device should be feasible, whereas in an urban environment, space
is typically more confined, but noise levels are also 10 dB higher, providing
the same protection against attackers at 10 m distance. If the threat model
includes attackers in nearby rooms in the same building (d = 3 m), the
resulting test limits will have to be lowered 10 dB further.

– We want to ensure protection even for rooms whose attenuation by build-
ing materials is located in the lowest decile of the available statistics and
therefore use aw = 5 dB.

– We assume the attacker uses a receiver with a noise figure of fr = 10 dB (the
value given for the Dynamic Sciences R-1250 wideband Tempest receiver)

– We assume a receiver (impulse) bandwidth of B = 50 MHz.
– We assume that an attacker will in practice have difficulties with aligning

the antenna, tuning to a suitable center frequency, and synchronizing to the
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exact frame rate if there is no visibly usable signal after averaging N = 32
frames and therefore we assume a possible processing gain of Gp = 15 dB.

– From Fig. 2 we can see that for the HF and VHF frequency range of
3 MHz to 300 MHz the background noise level En,1 MHz remains above about
10 dBμV/m, even at a quiet receiver site. Above 200 MHz thermal noise
from the antenna itself becomes the limiting factor, increasing with 20 dB
per decade. After adjusting the bandwidth, we get En,50 MHz = 27 dBμV/m.

When we require S/N ≤ 0 dB and use all of the just listed parameters in
(1), we end up with

Ê50 MHz ≤ S/N · ad · aw · En,50 MHz · fr

Ga · Gp

= 0 dB + 30 dB + 5 dB + 27 dBμV/m + 10 dB − 16 dBi − 15 dB
= 41 dBμV/m.

4.1 Feasibility of Verification

It would be desirable if the suggested limits were verifiable with off-the-shelf
EMC measurement equipment, such as a normal spectrum analyzer. Unlike a
sophisticated eavesdropper, a spectrum analyzer will not be able to utilize the
processing gain offered by periodic averaging. Therefore, eavesdroppers can still
use signals that are not visible on a spectrum analyzer. To compensate for this,
we have to bring during spectrum analyzer tests the antenna as close as possible
to the equipment under test, that is d̂ = 1 m, even if that means that we might
encounter some near-field effects.

Like the eavesdropper, the test procedure should work at as high a bandwidth
as possible to make use of the fact that impulse voltage will grow proportional
to B, whereas noise voltage grows proportional with

√
B. A wide-band receiver

suitable for video eavesdropping uses extra-high intermediate frequencies in or-
der to provide large bandwidths of 50 MHz and more. Measurements at such
bandwidths are not possible with commonly used spectrum analyzers, whose in-
termediate frequencies only allow a maximum impulse bandwidth of 5 or 1 MHz.
The corresponding limits would be 20 or 34 dB lower, respectively:

Ê5 MHz = 21 dBμV/m
Ê1 MHz = 7 dBμV/m

The limits have to be above the receiver noise floor of a spectrum analyzer to
be verifiable. For example, the Agilent E4402B spectrum analyzer with preampli-
fier has, according to manufacturer claims [24, p. 235], at a resolution bandwidth
of 1 kHz a noise level of −133 dBm. This corresponds to 4 dBμV at 1 MHz and
11 dBμV at 5 MHz. The antenna factor (ratio between field strength in V/m and
voltage) for a typical passive measurement antenna at frequencies up to 100 MHz
is not more than 10 dB. Therefore, the noise floor of the above spectrum ana-
lyzer corresponds to field strengths of 14 dBμV/m at 1 MHz and 21 dBμV at
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5 MHz bandwidth. This makes spectrum analyzer verification of the electric field
strength limits problematic at a bandwidth of 1 MHz, and just about feasible
at 5 MHz, at least with passive antennas. Active antennas designed for use in
anechoic chambers1 might therefore have to be used instead, which offer a 20 dB
lower antenna factor and a sensitivity of 6 dBμV/m at 1 MHz.

Growing antenna factors make the limit of Ê5 MHz = 21 dBμV/m also prob-
lematic to verify for frequencies above 100 MHz, but the eavesdropper would ex-
perience thermal noise as well here at the assumed quiet receiver site. Therefore
it seems acceptable to increase the limit proportional to the frequency, starting
at 100 MHz, up to at least 1 GHz. For higher frequencies, the eavesdropper can
use parabolic antennas with higher gain to overcome the thermal noise.

4.2 Comparison with Limits in Other Standards

In order to compare these proposed limits with those defined in CISPR 22
Class B, we have to take into account the different bandwidths and antenna
distances. To increase the impulse bandwidth from 120 kHz to 5 MHz, we have
to raise the permitted field strength by 32 dB, in order to keep the equiva-
lent spectral density constant. The limits have to be raised further by 20 dB to
convert the measurement distance from 10 m to 1 m.

This way, we can compare the emission security test limits proposed here
with the established EMC emission limits. Radiated VHF field strength has to
be 61 dB lower than allowed in CISPR 22. This corresponds to a reduction of the
maximum tolerated eavesdropping distance by a factor of 103. In other words,
the CISPR 22 EMC limits do not prevent devices from emitting pulses that
could, under ideal conditions, be received kilometers away.

We can conclude from this that a shielded room with an attenuation of
60 dB across the HF/VHF/UHF frequency range for radiated emissions should
provide adequate protection, if everything operated inside it complies with the
CISPR 22 Class B limits, as can be expected from all currently available office
equipment. It is worth stressing that this entire analysis concentrates on VHF
video emanations. It should be applicable to similar high-speed digital signals
such as those from system busses, but it does not take into account any low-
frequency magnetic or acoustic emanations from electromechanic equipment, as
they might have been a concern, for example, with some historic printers.

If the protection provided by the shielded room must be effective immediately
outside the room at a very quiet site (d = 0.3 m), and not only in 30 m distance,
then another 40 dB attenuation is required, leading to the 100 dB attenuation
defined in the NSA specification for shielded enclosures [10].

The US military EMC standard MIL-STD-461E [15] provides in its require-
ment R102 for mobile Army and Navy equipment radiated electric limits field
limits similar to those suggested here, namely measured at 1 m distance not
more than 24 dBμV/m from 2 to 100 MHz, and then increasing with 20 dB
per decade up to 18 GHz. However, the measurement bandwidth is with 10 kHz

1 e.g., Rohde & Schwarz AM524 low-noise active antenna system.
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up to 30 MHz, 100 kHz in the 30–1000 MHz range and 1 MHz for frequencies
above 1 GHz comparable to what CISPR 22 uses, and therefore still 37 dB less
sensitive for broadband impulse signals than the limits proposed here.

The different emission-control standards can also be compared via the spec-
tral density of the strongest radiated impulse that they permit (measured at
100 MHz and 1 m distance). It has 68 dBμV/(m · MHz) under CISPR 22 Class
B, 44 dBμV/(m · MHz) with MIL-STD-461E/R102, and 7 dBμV/(m · MHz) for
the emission-security limit proposed here.

Dropping the logarithmic scales and the dependence on a measurement dis-
tance, we can also compare the radiated impulse emission limits in terms of the
peak effective isotropic radiated power (EIRP) permitted within a given band-
width. For a 50 MHz wide band, this would be about 0.5 mW under CISPR 22
Class B, 2 μW under MIL-STD-461E/R102, and 0.3 nW under the limit pro-
posed here. For comparison, the peak EIRPs observed during clearly readable
eavesdropping demonstrations in [2] were in the range 10–240 nW. The 10 dB
stricter limit to protect even against an eavesdropper in a neighbor room in an
urban environment would be 30 pW.

4.3 Other Considerations

The general measurement procedure and setup (use of a wood table over a
ground plane, arrangement of cables and impedance stabilization networks, etc.)
in an emission security standard could be adopted largely from existing EMC
specifications such as CISPR 22 or MIL-STD-461E. Some changes that would
have to be made include:

– CISPR 16-1 suggests that the ambient noise levels at a test site should be
6 dB below the measurement limits, for perfect results even 20 dB below.
While CISPR 22 describes the use of an open area test site, this will hardly
be feasible with the emission security limits proposed here. A well-shielded
anechoic chamber will be required instead as a measurement site, to remain
at least 6 dB below the measurement limits.

– While the CISPR 22 limits are for a quasi-peak detector, emission security
tests should be performed with peak detectors, because rather than perceived
annoyance, the separability from noise is the concern. The video bandwidth
should not be limited in spectrum analyzer measurements.

The HF/VHF/UHF emission limits suggested here are justified based on
video signal eavesdropping, but they are also likely to provide adequate pro-
tection against other forms of radiated compromising emanations above about
5 MHz. It seems unlikely that other emanations will offer substantially higher
processing gain than video signals, except perhaps carefully encoded intentional
broadcasts by malicious software. In addition, the suggested limits are already
very close to what seems technically feasible in the form of generic limits on spec-
tral energy as it can be measured with EMC broadband antennas and spectrum
analyzers in anechoic chambers.
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Different measurement techniques can be used in order to apply the same
limits to specific signals that are suspected of being emitted. In the case of a
periodic signal, such as the output of a video refresh circuit, it is possible to use
a wide-band receiver, just as an eavesdropper would, together with a suitable
storage oscilloscope that is triggered from the vertical sync signal. Averaging
N = 1024 frames (about 12 s of video signal) will lead to a processing gain of
30 dB. If all 1024 lines of the test image are identical and averaged as well, this
will lead to another 30 dB gain, making the measurement in principle better
than one that took place inside a shielded room with 60 dB attenuation.

The limits discussed here are aimed at products in which emission security is
achieved by signal suppression and shielding. Other eavesdropping countermea-
sures, such as jamming, would require rather different protection standards.

5 Conclusions

We outlined design considerations for a security standard on radiated compro-
mising emanations from video systems. Due to the redundancy of a periodic
signal and due to the ultra-wideband nature of compromising emanations from
digital baseband signals, meaningful emission limits end up near the perfor-
mance limits of modern spectrum analyzers. If the protection is to be achieved
by shielding and attenuation, the permitted signal power must be several million
times lower than what civilian radio-interference standards permit.
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Abstract. Electromagnetic analysis (EMA) can be used to compromise secret
information by analysing the electric and/or magnetic fields emanating from a
device. It follows differential power analysis (DPA) becoming an important side
channel cryptanalysis attack on many cryptographic implementations, so that con-
stitutes a real threat to smart card security. A systematic simulation methodology
is proposed to identify and assess electromagnetic (EM) leakage characteristics
of secure processors at design time. This EM simulation methodology involves
current flow simulation, chip layout parasitics extraction, then data processing to
simulate direct EM emissions or modulated emissions. Tests implemented on syn-
chronous and asynchronous processors indicates that the synchronous processor
has data dependent EM emission, while the asynchronous processor has data de-
pendent timing which is visible in differential EM analysis (DEMA). In particular,
DEMA of amplitude demodulated emissions reveals greater leakage compared to
DEMA of direct emissions and DPA. The proposed simulation methodology can
be easily employed in the framework of an integrated circuit (IC) design flow to
perform a systematic EM characteristics analysis.

Keywords: EM side-channel analysis; smart card; design time security
evaluation.

1 Introduction

Smart cards are widely used for authentication and securing transactions. Their crypto-
graphic operations are based on symmetrical or asymmetrical cryptographic algorithms
such as triple DES, AES or RSA. But even if the cryptographic algorithms and the pro-
tocols are secure, information about secret data may leak through side-channels such
as timing of computation [1], power consumption [2], as well as electromagnetic radi-
ation [3]. In the EM side-channel, a smart card emits different amounts of EM emis-
sion during the computation depending on the instructions and data being executed.
Some sophisticated statistical techniques such as differential electromagnetic analysis
(DEMA) [3, 4, 5] can detect variations in EM emission so small that individual key bits
can be identified. This means secret key information can be recovered from the secure
devices.

To keep these devices secure against the EM side-channel attacks, a huge amount
of research has been undertaken. However, in common industrial practise, the security
evaluation of the secure device designs is only performed after chips are manufactured.

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 280–292, 2005.
© International Association for Cryptologic Research 2005
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This post-manufacture analysis is time consuming, error prone and very expensive. This
has driven the study of the design-time security evaluation which aims to examine data-
dependent EM characteristics of secure processors, so as to assess their security level
against EM side-channel analysis attacks.

The most straightforward way to simulate EM waves propagating in a circuit is to
use a 3D or planar EM simulator, which involves solving Maxwell’s equations for the
electric and magnetic vector fields in either the frequency or time domain. However a
full-wave 3D simulator incorporating characterised nonlinear1 semiconductor devices is
too time consuming to be practical for chip-level analysis. Various types of field sensors,
namely electric or magnetic field sensor measuring in near or far field, used by attack-
ers also increase the challenges in EMA simulation. Different types of sensors measure
different types of field, so they require different simulation methods. Furthermore, the
modulated EM emissions [4] have begun arousing attention in the cryptanalysis com-
munity as well as the direct EM emissions that are normally exploited in EM analysis
attacks [5]. Modulated emissions occur when a data signal modulates carrier signals
which then generate EM emissions propagating into the space. Different modulation
mechanisms require different demodulation manners.

In this paper, we present a design time security evaluation methodology for EM
side-channel analysis. It first partitions an electronic system under test into two parts:
the chip and the package. The package is simulated in an EM simulator and modelled
with lumped parameters R, L and C. The chip incorporating the package lumped param-
eters is then simulated in circuit simulators. This mixed-level simulation obtains current
consumption of the system under test accurately and swiftly. Next, the security evalua-
tion methodology involves a procedure of data processing on the current consumption
to simulate EM emissions. Different methods of data processing are required to tar-
get corresponding types of sensors. Furthermore, to simulate modulated EM emissions,
demodulation in amplitude or angle is incorporated into the simulation flow.

The rest of the paper is organised as follows. In Section 2, we present our simula-
tion methodology of system partitioning and simulation procedures incorporating dif-
ferent types of EM emissions and different field sensors. In Section 3, we demonstrate
simulation results for two processors on our test chip from which data dependent EM
characteristic is successfully identified and verified by measurement results. Section 4
presents a brief conclusion.

2 Simulation Methodology for EM Analysis

2.1 System Partitioning

As described in Section 1, a 3D full-wave field simulator incorporating large number
of semiconductor devices is too time consuming to be practical for chip-level analysis.
Our simulation approach is to partition an electronic system into two parts. The first part
is the chip, simulated in circuit simulators like SPICE, which is fundamentally flawed
because wave coupling is not accurately represented even if transmission lines are used
for the interconnects. However, the chip dimensions are small enough (compared to the

1 Some examples of nonlinear components are Diode, BJT and MOSFET.
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wavelength) to tolerate the errors2. The second part is the package and even the printed
circuit board (PCB), which can be accurately simulated by a (3D or planar) EM sim-
ulator and be modelled with lumped components (R, L and C). The lumped elements
will then be incorporated into the same circuit simulator to achieve the response of the
entire system.

2.2 Simulation Procedure

The procedure to perform an EMA simulation on a chip design is shown in Figure 1.
The EM analysis simulation flow is similar to that of power analysis which measures
the global current of a device. However EM analysis may focus on a smaller block such
as the ALU or the memory. In this case, a Verilog/SPICE co-simulation can be used
where the partitioning function provides an easy means to select the desired block(s)
to test. With Verilog/SPICE co-simulation, various instructions are easily executed and
modified through testbench files written in Verilog. Accurate simulation of current con-
sumption is achieved in the SPICE-like simulation. Once the current data Idd(t) for the
desired block(s) or a whole processor is collected, it is passed to MATLAB™ and is
processed to implement DEMA according to the sensor types and emission types.

The data process procedure for EM analysis is shown in the shadowed box in Fig-
ure 2. It includes synchronising and re-sampling of two sets of current consumption
data when the processor under test is computing with different operands. We perform
signal processing on each set of current consumption data according to the types of EM
emissions to be measured and according to the types of field sensors to measure the EM
emissions.

Direct vs Modulated EM Emissions. EM emissions can be generally categorised into
two types: direct emissions and modulated emissions [4]. Direct emissions are caused
directly by current flow with sharp rising/falling edges. To measure direct emissions
from a signal source isolated from interference from other signal sources, one uses tiny
field probes positioned very close to the signal source and special filters to minimise
interference. To get good results may require decapsulating the chip.

Modulated emissions occur when a data signal modulates carrier signals which then
generate EM emissions propagating into the space. A strong source of carrier signals are
the harmonic-rich square-wave signals such as a clock, which may then be modulated
in amplitude, phase or some other manner. The recovery of the data signals requires a
receiver tuned to the carrier frequency with a corresponding demodulator.

• Amplitude Modulation
In a circuit, the data signal may couple to a carrier signal (e.g. clock harmonics)

due to E field capacitive coupling or H field magnetic coupling, which generates
a sum of the data signal and the carrier signal. Once these two coupled signals go
through a square-law device (e.g. a transistor), the product of the two signals is
generated.

2 The velocity of electromagnetic propagation is limited by the laws of nature, and in silicon-
dioxide it is approximately 1.5×108 m/s . Fast signal edges in smart card chips with an edge
rate of under 1ns have to be considered as “high speed” only when the longest chip dimension
is beyond 50mm, as a rule of thumb.
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For instance, an n-channel transistor operates in the saturation region when
VDS > VGS −VTn, its drain current remains approximately constant as: IDSn(sat) [6]:

IDSn(sat) =
βn

2
(VGS −VTn)2 (1)

where the constant βn denotes the n-channel transistor gain factor, VGS denotes the
gate-source voltage and VT n denotes the threshold voltage.
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If the input VGS is a clock signal (Vclock) coupled with a data signal (Vdata):
VGS =Vdata +Vclock, in which the square-wave clock signal Vclock can be represented
as a Fourier series with the fundamental frequency f and all the odd harmonics:

∞
∑

n=1,3,5...

4
nπ sin(2πn f t).

The saturation current IDSn(sat) becomes:

IDSn(sat) =
βn

2

[
Vdata +

(
∞

∑
n=1,3,5...

4
nπ

sin(2πn f t)

)
−VTn

]2

(2)

Expanded, IDSn(sat) contains items of interest as the product of sinusoidal signals

and the coupled data signal: βn

∞
∑

n=1,3,5...

4
nπ sin(2πn f t)Vdata.

This process is amplitude modulation (AM), where the coupled data signal Vdata

modulates clock harmonics with diminishing magnitude. If the current IDSn(sat) is
picked up by an EM sensor and fed into a bandpass filter tuned to a certain clock
harmonic frequency, the signal Vdata can be recovered. This process is amplitude
demodulation.

Amplitude modulation can also occur in a transistor when the digital gate input
VGS is itself a square-wave, harmonic-rich signal. For example, in one cryptographic
execution run, the input VGS1 is 00111100..., while in another run, the input at the
same gate becomes VGS2 as 01010101.... Then VGS1 and VGS2 have Fourier series
expressions different at some carrier frequencies. If a demodulator is tuned to one of
these carrier frequencies, the difference of the coefficients in the Fourier series can be
detected and viewed as a manifestation of the difference in VGS1 and VGS2. This type
of AM modulation mechanism is dominant for deep-submicron technologies3. In
deep submicron processes, the dependence of saturation drain current IDSn(sat)on gate
source voltageVGS is better modelled by a linear rather than a quadratic relationship.

• Angle Modulation (phase or frequency modulation)
Coupling of circuits can also result in changes in the angle (frequency or the

phase) of the carrier signals. If there is a coupling between a data line and the
internal clock circuitry, e.g. its voltage controlled oscillator (VCO), this coupling
can affect the output clock frequency by affecting the VCO control voltage. The
resulted clock frequency variation may be visible as data-dependent timing in dif-
ferential EM analysis.

Exploiting modulated emissions can be easier and more effective than working with
direct emission [4]. Some modulated carriers could have substantially better propaga-
tion than direct emission, which may sometimes be overwhelmed by noise. The modu-
lated emission sensing does not require any intrusive/invasive techniques or fine grained
positioning of probes.

Depending on the types of EM emissions in EMA attacks: direct emissions or modu-
lated emissions, EMA simulation may require demodulation of corresponding manners
of the modulation.

3 Gate lengths below 0.35 μm are considered to be in the deep-submicron region.
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EM Field Measurement Equipment. A number of sensors can be used to detect the
EM signals in EMA attacks. They are divided into those detecting electric and those
detecting magnetic fields in near-field4, or those detecting far-field EM-field. In EM
analysis attacks on small devices with weak EM emissions such as a smart card, near-
field sensors are more appropriate.

An example of near-field electric field sensors is a monopole antenna. It generally
measures the near-field electric component around current-carrying conductor where
electric field magnitude E ∝ I. Near-field magnetic field sensors generally measure
the near-field magnetic component around current-carrying conductor where magnetic
field magnitude B ∝ I.

The simplest magnetic field sensor is a loop of wire. An EM field is induced in the
loop due to a change in magnetic flux through the loop caused by a changing magnetic
field produced by an AC current-carrying conductor. This is the transformer effect. The
induced voltage is:

V = −
∫

S

∂B
∂t

·ds (3)

over surface S using area element ds. We can rewrite it into the following equation,
which says the measurement output is proportional to the rate of change of the current
which causes the magnetic field.

V = M
dI
dt

(4)

where M denotes the mutual inductance between the sensor and the concerned circuit.
This type of field sensor senses the change of magnetic flux, so we use the rate of

change of the current dI/dt to track EM emission. Simulation for this type of sensor
involves differential calculus on current consumption data.

There are also far-field electromagnetic field sensors such as log-periodic anten-
nas. They generally measure far-field electromagnetic field and often work with other
equipment to harness modulated emissions. For example, an amplitude modulation
(AM) receiver tuned to a clock harmonic can perform amplitude demodulation and
extract useful information leakage from electronic devices [4].

This is not an exhaustive list of field sensors, but provides a view that different types
of sensors measure different types of field, so that require different approaches in EM
simulations.

Low-Pass Filtering Effect of EM Sensors. The last step of data processing procedure
as shown in the shadowed box in Figure 2 is the low-pass filtering. Considering the
inductance in field sensors, and the load resistance from connected instruments (e.g.
an amplifier or an oscilloscope), an RL low-pass filter is formed as shown in Figure 3.
Its 3dB cutoff 5 frequency is calculated as fcutoff = R/2πL. Due to this RL low-pass
filtering effect, the two sets of processed current consumption data have to be low-pass
filtered at the end of the EMA data processing procedure.

4 Near-field refers to a distance within one sixth of the wavelength from the source (r < λ/2π),
while far-field refers to a distance beyond it (r > λ/2π).

5 The frequency at which the output voltage is 70.7% of the input voltage.
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IN L
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Fig. 3. RL low-pass filter

Finally, DEMA is performed by subtracting one EMA trace from another. Security
weakness will be manifested as pulses in the DEMA trace, revealing data-dependent
EM characteristics of the tested design. The term DEMA here (and further in this paper)
refers to the variation (difference) in the EM emissions, instead of statistical treatment
correlating the variation to hypothetical data being manipulated as in a real DEMA
attack [3]. This is because the proposed methodology is to evaluate data-dependent EM
characteristics of secure processor designs, which are the fundamental weakness a real
DEMA attack exploits and can be identified with deterministic data.

3 Evaluation Results of the Simulation Methodology

3.1 EM Simulation Setup

DEMA simulation has been carried out on a test chip, fabricated in UMC 0.18μm six
metal CMOS process as part of the G3Card project [7, 8]. Figure 4 shows a picture of
the test chip which contains five 16-bit microcontroller processors with different design
styles. This paper addresses the synchronous processor (S-XAP) on the top left corner
and the dual-rail asynchronous processor (DR-XAP) in the middle.

We target simple instructions (e.g. XOR (exclusive OR), shift, load, store etc) which
can give a good indication of how the hardware reacts to operations of cryptographic
algorithms. A short instruction program runs twice with operands of different Hamming
weight. The first run sets the I/O trigger port high by storing ‘1’ into memory, computes
‘00 XOR 55’, and sets the I/O trigger port low by storing ‘0’ into memory, while the
second run sets the I/O port high, computes ‘55 XOR 55’, and sets the I/O port low.

3.2 EM Simulation of a Synchronous Processor

Figure 5 shows the EMA simulation over the S-XAP processor. We simulate direct
EM emission picked up by an inductive sensor. On the graph we plot the EM traces
of the processor for ‘00 XOR 55’ and ‘55 XOR 55’, as well as the differential EM
plot of EMA1 - EMA2 (DEMA). The EM traces (EMA1 and EMA2) are superposed
and appear as the top trace in Figure 5. The differential EM trace (DEMA) is shifted
down from the centre by 6× 1011 unit to clearly show its relative magnitude. The EM
emission magnitude is computed through dI/dt as discussed in Section 2.2, thus has
units of μA/s.
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Fig. 5. EMA simulation over S-XAP processor executing XOR with different operands

The measurement of EM emissions on the same processor performing the same
code is shown in Figure 6. The EM emissions are picked up by an inductive sensor
over 5000 runs to average out the ambient noise (although 200 runs are enough), then
are monitored on an oscilloscope. The inductive head in use has resistance R = 5.42 ,
inductance L = 9.16μH. When delivering power into a 4K load, the 3dB cutoff is
calculated as 70MHz. The measurement results demonstrate the EM traces are around
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Fig. 6. EMA measurement over S-XAP processor executing XOR with different operands (exper-
imental graph)

50MHz, complying to the explanation of the RL low-pass filtering effect in Section 2.2,
and the parameters have been used in the EMA simulation shown in Figure 5.

Both the measurement and the simulation results observe the differential trace peaks
when the processor is executing XOR logic operations. This means data dependent
EM emission is leaking information related to key bits at those instances, thus means
vulnerability in EMA attacks. The agreement in the measurement and the simulation
results verified the validity of the proposed EMA simulation approach. The simulated
EM traces in Figure 5 are lower in shape compared to those measured around the circled
places, as the simulation includes no power contribution from memory accesses.

To gain a perception of the DPA attack versus the DEMA attack, Figure 7 demon-
strates DPA measurement over S-XAP processor performing the same code. Although
only 4 measurement runs to average out noise, data dependent power consumption can
clearly identify when the processor is executing XOR logic operations. The peak to
peak in the differential trace (DPA) is about 6% of the peak to peak of the original
signals (Power Analysis 1 and Power Analysis 2). As a comparison, the peak to peak
DEMA is about the same level of the peak to peak of the original signals (EMA 1 and
EMA 2) in Figures 5 and 6, indicating the same level of information leakage in the EM
side-channel and in the power channel.

3.3 EM Simulation of an Asynchronous Processor

We then perform EMA simulation on processor DR-XAP which is designed in a dual-
rail asynchronous style with return-to-zero handshaking protocol. This balanced asyn-
chronous circuitry was believed to be secure since power consumption should be data
independent [8]. Figure 8 shows the EMA simulation result. On the graph we superpose
the EM traces of the processor for ’00 XOR 55’ and ’55 XOR 55’, and put the DEMA
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trace at the bottom. The DEMA trace exhibits a wobble at only about 1% magnitude
of that of the original traces (EMA1 and EMA2). This matches with the projection
that asynchronous design with dual-rail coding and return-to-zero handshaking is much
more secure against side-channel analysis attacks.

The measurement result in Figure 9 also indicates no information leakage along
the logic operation. Comparing Figure 8 and 9, we observe again lower magnitude in
shape around the circled places in simulation, resulted from no memory accesses power
consumption in simulation.
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Performing EMA simulation on modulated emissions on the asynchronous proces-
sor, we achieved more intriguing results. We collected the current consumption data as
we did in direct emission simulation, then we processed the data with amplitude de-
modulation. The carrier used to demodulate the EM signal is the 17th clock harmonic
(The asynchronous XAP executes at a speed around 10 to 50MHz. Here take a carrier
whose fundamental is 20MHz). From the simulation results shown in Figure 10, we
observed greater level of differential signals compared to Figure 8. The peak to peak of
the differential trace (DEMA) is about 32% of the peak to peak of the original signals
(EMA 1 and EMA 2).

The reason why the amplitude demodulated EMA reveals stronger differential sig-
nals is demonstrated in a simple example shown in Figure 11. The pulse in subplot (a)
is a modulating signal. Subplot (b) shows the AM modulation with a sinusoidal carrier
and its product detection based demodulation [9]. The pulse appears on the negative
side of the modulation, and demodulated as a negative pulse. Subplot (c) shows the
modulating signal with same magnitude and period, but time shifted a bit. Subplot (d)
shows its AM modulation with the same sinusoidal carrier as in (b). The pulse appears
on the positive side of the modulation, and demodulated as a positive pulse. The sign
opposition in the raw traces can result in large peaks in their difference.

In a similar way, data dependent timing in the program execution caused significant
peaks in the differential trace shown in Figure 10, although no obvious time shift is
observed in the raw traces (AM demodulated EMA 1 and 2), because low-pass filtering
has obscured the time shift. We however see higher peaks in Figure 10 around the sec-
ond STORE operation, as a result of the time shift accumulated in previous operation.
This data dependent timing caused EM information leakage is much higher in the tested
asynchronous design than the synchronous design, as a result of the lack of clock i.e.
synchronisation. The amplitude demodulated EMA simulation reveals an unexpected
weakness in the tested asynchronous design against EM side-channel attacks, which
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provides a good example of usefulness of the design-time evaluation in the secure pro-
cessor design flow.

4 Conclusion

A simulation methodology for EMA has been proposed on the basis of an analytical in-
vestigation of EM emissions in CMOS circuits. This simulation methodology involves
simulation of current consumption with circuit simulators and extraction of IC layout
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parasitics with extraction tools. Once collected, the data of current consumption is pro-
cessed with MATLAB to simulate EMA.

Testing has been performed on synchronous and asynchronous processors and the
results have demonstrated that DPA and DEMA of direct emissions reveal about the
same level of leakage. While DEMA of amplitude demodulated emissions reveals
greater leakage, suggesting better chances of success in differential EM analysis at-
tacks. The comparison between the EMA on synchronous and asynchronous processors
indicates that the synchronous processor has data dependent EM emissions, while the
asynchronous processor has data dependent timing which is visible in DEMA.

The proposed simulation methodology can be easily employed in the framework of
an integrated circuit design flow. To the best of our knowledge, the proposed simulation
methodology for EMA is the first available assessment of EM leakage characteristics of
cryptographic processors at design time. It moves one step closer to a complete security-
aware design flow for cryptographic processors which aims to cover all known side-
channel analysis attacks.
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Abstract. Differential Power Analysis (DPA) is a powerful cryptana-
lytic technique aiming at extracting secret data from a cryptographic
device by collecting power consumption traces and averaging over a se-
ries of acquisitions. In order to prevent the leakage, hardware designers
and software programmers make use of masking techniques (a.k.a. data
whitening methods). However, the resulting implementations may still
succumb to second-order DPA. Several recent papers studied second-
order DPA but, although the conclusions that are drawn are correct, the
analysis is not.

This paper fills the gap by providing an exact analysis of second-
order DPA as introduced by Messerges. It also considers several general-
izations, including an extended analysis in the more general Hamming-
distance model.

Keywords: Side-channel analysis, differential power analysis, second-
order attacks.

1 Introduction

Undoubtedly, power analysis attacks constitute a cheap yet powerful cryptana-
lytic approach for extracting secret data from smart cards or other embedded
crypto-enabled devices. Among them, Differential Power Analysis (DPA) as sug-
gested in [8] presents the practical advantage of allowing data extraction even
though the attacker has only a weak knowledge of the device being attacked.
However, the original statistical technique behind DPA may require the acqui-
sition of many power traces to average away random and computational noises.
Many first-order variations of DPA, as well as other approaches such as direct
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correlation (e.g., [5]), have emerged since [8] that lead to performance improve-
ments by lowering the number of recorded power traces.

The commonly suggested way to thwart first-order power analysis is random
masking [6] a.k.a data whitening wherein intermediate computations are handled
under a probabilistic form to defeat statistical correlation. In fact, Boolean and
arithmetic maskings are certainly the most intensively used approach to protect
power-sensitive cryptographic software as it appears that data randomization
usually works well in practice, even when hardware countermeasures are not
available. It is known, however, that masking can be defeated if the attacker
knows how to correlate power consumption more than once per computation.
This is known as second-order, or more generally higher-order, power analysis
and was originally suggested by Messerges in [12]. These attacks are known to be
more complex and delicate to carry out because they usually require the attacker
to have a deeper knowledge of the device, although this might be alleviated in
particular cases [16]. Investigating second-order power attacks, however, is of
major importance for practitioners as it remains the only known way that is
powerful enough to break real-life, DPA-protected security products.

Amazingly, second-order power analysis has remained essentially empirical
so far and has never been investigated analytically, i.e., by the means of a direct
mathematical reasoning. Second-order attacks are often described in a specific
statistical setting that relies on first-order DPA one way or another, thereby leav-
ing expected observations vague and cost estimations without a clear statement.
This paper adopts a totally different approach. We formally compute what one
expects from second-order attacking any randomized algorithm and express the
amplitude of observed peaks as a function of hardware-dependent parameters.
Although we essentially consider the case of Boolean masking, our results extend
in several directions.

The rest of this paper is organized as follows. The next section reviews the
concept of power analysis, including SPA, DPA and its higher-order generaliza-
tions. Section 3 is the core of our paper. We explain why and when second-order
DPA works and carefully evaluate the height of the expected DPA peak. Next,
in Section 4 we extend our main result from the Hamming-weight model to
the Hamming-distance model. An experimental validation on a 1st-order pro-
tected implementation of RC6 is provided in Section 5. Finally, we conclude in
Section 6.

2 Power Analysis

The power consumption of a (cryptographic) device can be monitored with an
oscilloscope by inserting a resistor between the ground or Vcc pins and the
actual ground. As the power consumption may vary depending on the manipu-
lated data, some secret information may leak. This is the basic idea behind power
analysis, and differential power analysis [8] in particular. In addition to power
consumption, other side channels have been considered, including timing [11]
and electromagnetic radiation (EM) [7,14,3].
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2.1 SPA Attacks

In simple power analysis (SPA) attacks, an adversary tries to relate the power
consumption to the data being handled from essentially a single power consump-
tion trace (which may in turn be obtained as the average trace for a number of
traces corresponding to identical data, to reduce the noise level).

To be successful in this kind of attack, however, the adversary should have
(or get) the knowledge of implementation details of the system being attacked.

2.2 DPA Attacks

Differential power analysis (DPA) attacks are more powerful due to their generic
nature. In this kind of attack, an adversary collects several power consumption
traces for different inputs and applies statistical techniques to retrieve secret
information.

As an illustration, consider the following example. Suppose that at some
point, an intermediate value, say I(x, s), only depends on known data x and on
a small portion of secret data s (i.e., small enough so that all possible values for
s can be exhausted). Then for each possible value ŝ for s, the attacker prepares
two sets, S0(ŝ) and S1(ŝ), defined as:

Sb(ŝ) =
{
x | g(I(x, ŝ)) = b

}
for b ∈ {0, 1} (1)

where g is an appropriate Boolean selection function (see later). The next step
consists in averaging the corresponding power consumption traces. With 〈·〉 de-
noting the average operator and C (t) denoting the power consumption of the
device under analysis at time period t, the adversary evaluates the (first-order)
DPA trace

Δ1(ŝ, t) = 〈C (t)〉x∈S1(ŝ) − 〈C (t)〉x∈S0(ŝ) . (2)

Hence, Δ1(ŝ, t) is the difference of the average power consumption for sets S1(ŝ)
and S0(ŝ), for each time period t. Assuming that (i) the intermediate data I(x, s)
always occurs at the same time period t = τ , and (ii) there are sufficiently many
values for x so that I(x, ŝ) is close to the uniform distribution, the DPA trace
Δ1(ŝ, t) exhibiting the highest peak (at time period τ) is likely the one for which
ŝ = s. This way, the adversary recovers the value of secret data s.

Why does this work? Basically, the purpose of DPA is to magnify the effect
of a single bit within a machine word. Suppose that a random word in a Ω-
bit processor is known. Suppose further that the associated power consumption
obeys the Hamming-weight model, which means that power variations are corre-
lated to the Hamming weight (i.e., number of non-zero bits) of the manipulated
data words. If the selection function g(w) used to construct the sets S0(ŝ) and
S1(ŝ) (see Eq. (1)) returns the value of a bit in the representation of word w,
it follows that the words I(x, ŝ) of set S0(ŝ) have an average Hamming weight
of (Ω − 1)/2 whereas the words I(x, ŝ) of set S1(ŝ) have an average Hamming
weight of (Ω + 1)/2. As a result, the DPA trace has the property of causing a
DPA peak when the selection bit, g(I(x, s)), is handled.
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2.3 Higher-Order DPA Attacks

kth-order DPA attacks generalize (first-order) DPA attacks by considering si-
multaneously k samples — within the same power consumption trace— that
correspond to k different intermediate values.

The main application of higher-order DPA attacks is to attack systems pro-
tected against first-order DPA [12]. A method commonly used to thwart (first-
order) DPA attacks is the so-called data whitening method. Each intermediate
sensitive data is xor-ed with a random value, unknown to the adversary. Back
to our illustration of Section 2.2, this means that the value of w = I(x, s) is
xor-ed with a random value r. Therefore, the adversary sees no longer a DPA
peak in Δ1(s, t) (cf. Eq. (2)) when t = τ and the attack fails.

However, if the adversary knows the time periods, τ1 and τ2 (τ1 �= τ2), when
the values of r and of w⊕ r are manipulated, respectively, then she can evaluate

Δ2(ŝ) =
〈
|C (τ2) − C (τ1)|

〉
x∈S1(ŝ) −

〈
|C (τ2) − C (τ1)|

〉
x∈S0(ŝ) . (3)

The value ŝ for which Δ2(ŝ) is maximal (in absolute value) is likely ŝ = s and
again the adversary recovers the value of secret data s [12].

In case the adversary only knows the offset δ = τ2 − τ1 (but not τ1 nor τ2),
the previous attack can be extended as follows (cf. “known-offset 2DPA” of [16]).
The adversary evaluates the second-order DPA trace

Δ2(ŝ, t) =
〈
|C (t + δ) − C (t)|

〉
x∈S1(ŝ)

−
〈
|C (t + δ) − C (t)|

〉
x∈S0(ŝ) .

Again, under certain assumptions, the second-order DPA trace exhibiting the
highest DPA peak will likely uncover the value of s.

3 Evaluating Second-Order DPA Peaks

3.1 Basic Result

Let H(x) denote the Hamming weight of x. A simple model for power leak-
age is the (generalized) Hamming-weight model. This model assumes that the
(instantaneous) power consumption C is linearly related to Hamming weight:

C (t) = ε H(w) + � , (4)

for some hardware-dependent constants ε and �, and where w is the n-bit word
manipulated at time period t.

Define, for n ≥ 1,1

En = 2−2n
∑

w,r∈{0,1}n

|H(w ⊕ r) − H(r)| .

1 Note that the expression of En simplifies to En = 2−2n
∑

w,r∈{0,1}n |H(w) − H(r)|.
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Then, with the notations of Section 2.3, we get〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=0
= |ε|

〈
|H(w ⊕ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=0

= |ε|
〈
|H(w ⊕ r) − H(r)|

〉
w,r∈{0,1}n−1

= |ε|En−1 . (5)

Moreover, since

En =
1
2
〈
|H(w ⊕ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=0
+

1
2
〈
|H(w ⊕ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=1

=
1
2

En−1 +
1
2
〈
|H(w ⊕ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=1
,

we also get 〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=1
= |ε| (2En − En−1) . (6)

Subtracting Eqs (6) and (5), we obtain

D2 :=
〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=1
−
〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=0

= 2|ε| (En − En−1) . (7)

It turns out that there is a nice closed formula for En:

Proposition 1. For any integer n ≥ 1, we have

En = 2−2n n

(
2n

n

)
. (8)

Proof. From
∑2n

t=0

(2n
t

)
= 22n and since

∑n
t=0

(2n
t

)
=
∑2n

t=n

(2n
t

)
, we get

n∑
t=0

(2n
t

)
= 1

2

(
22n +

(2n
n

))
= 22n−1 +

(2n−1
n

)
,

and similarly,
∑n−1

t=0

(2n−1
t

)
= 1

2

∑2n−1
t=0

(2n−1
t

)
= 22n−2. Hence, by Lemma 1 (on

page 298), we have

22nEn =
∑

−n≤t≤n

|t|
( 2n
n−t

)
= 2

n∑
t=0

(n − t)
(2n

t

)
= 2

n−1∑
t=0

n
(2n

t

)
− 2

n−1∑
t=0

t
(2n

t

)
= 2n

n−1∑
t=0

(2n
t

)
− 4n

n−2∑
t=0

(2n−1
t

)
= 2n

([
22n−1 +

(2n−1
n

)
−
(2n

n

)]
− 2
[
22n−2 −

(2n−1
n−1

)])
= 2n

(2n−1
n

)
= n
(2n

n

)
. $%
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Therefore En −En−1 = 2−2n+1
(2n−2

n−1

)
, and we find the exact value of D2 and

its asymptotic behavior, using equation (7):

D2 = |ε| 2−2n+2
(

2n − 2
n − 1

)
≈ |ε|√

πn
(9)

as asymptotic value for D2.2 If there are sufficiently many acquisitions, it also
represents an asymptotic value for Δ2(ŝ) (cf. Eq. (3)). This approximation for
D2 is already close for small values of n. It follows, for example, that one may
expect peaks of size ≈ |ε|√

π16
= 0.141 |ε|, for n = 16 (this has to be compared

with the exact value of 0.144 |ε|, see Table 1).

3.2 Optimizing Peak Values

The higher-order DPA attacks, as described in Section 2.3, use the absolute
difference between the power consumption at different time periods as the basic
quantity for the analysis. This quantity fits well with the Hamming-weight model
and we have shown how to determine the expected peak value in an exact way. A
natural question is which other quantities can be used, and in particular, which
quantities give rise to higher peak values.

In this section we analyze the peak values obtained for the following gener-
alization of Eq. (7):

D2
(α)

=
〈
|C (τ2) − C (τ1)|α

〉
w,r∈{0,1}n

g(w)=1
−
〈
|C (τ2) − C (τ1)|α

〉
w,r∈{0,1}n

g(w)=0

for arbitrary α. Extending our basic result for this case yields

D2
(α)

= 2|ε|α (E(α)
n − E

(α)
n−1) , (10)

where E
(α)
n is defined as:

E(α)
n = 2−2n

∑
w,r∈{0,1}n

|H(w ⊕ r) − H(r)|α . (11)

Next we show how to find closed formulas for E
(α)
n for various values of α,

from which we may then determine the corresponding expected peak values.

Lemma 1. For any integer n ≥ 1,

∑
w,r∈{0,1}n

|H(w ⊕ r) − H(r)|α =
∑

−n≤t≤n

|t|α
(

2n

n − t

)
.

2 This expression corrects the analysis given in [12] and in the subsequent papers.
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Proof.∑
w,r∈{0,1}n

|H(w ⊕ r) − H(r)|α =
∑
h

∑
r∈{0,1}n

H(r)=h

∑
i

∑
w∈{0,1}n

H(w⊕r)=i

|H(w ⊕ r) − H(r)|α

=
n∑

h=0

(
n
h

) n∑
i=0

(
n
i

)
|i − h|α =

∑
−n≤t≤n

|t|α
n−t∑
i=0

(
n

t+i

)(
n
i

)
=

∑
−n≤t≤n

|t|α
( 2n
n−t

)
. $%

Theorem 1. For any integer n and α ≥ 0:

E(α)
n =

⎧⎪⎪⎨⎪⎪⎩
1 , α = 0 ,

2−2n n
(2n

n

)
, α = 1 ,

n
(
nE

(α−2)
n −

(
n − 1

2

)
E

(α−2)
n−1

)
, α ≥ 2 .

Proof. By induction on α. Cases α = 0 and α = 1 have been proved already. For
the case α ≥ 2, we have:

E(α)
n = 2−2n ∑

−n≤t≤n

|t|α
( 2n
n−t

)
= 2−2n

∑
0≤t≤2n

|n − t|α
(2n

t

)
= 2−2n ∑

0≤t≤2n

|n − t|α−2 (n − t)2
(2n

t

)
= n2 2−2n ∑

0≤t≤2n

|n − t|α−2
(2n

t

)
− 2−2n

∑
0≤t≤2n

|n − t|α−2(2n − t)t
(2n

t

)
= n2E(α−2)

n − 2−2n ∑
1≤t≤2n−1

|n − t|α−2 2n(2n − 1)
(2n−2

t−1

)
= n
(
nE(α−2)

n − 2(2n − 1)2−2n ∑
0≤u≤2(n−1)

|n − 1 − u|α−2
(2(n−1)

u

))
= n
(
nE(α−2)

n − (n − 1
2 )E(α−2)

n−1

)
. $%

Alternatively, we have the following equivalent formulation:

Theorem 2. For any integer n and β ≥ 0:

E(2β)
n = Pβ(n) and E(2β+1)

n = Qβ(n) 2−2nn

(
2n

n

)
where

Pβ(n) =

{
1 , β = 0 ,

n
(
nPβ−1(n) − (n − 1

2 )Pβ−1(n − 1)
)
, β ≥ 1 ,

(12)

and

Qβ(n) =

{
1 , β = 0 ,

n
(
nQβ−1(n) − (n − 1)Qβ−1(n − 1)

)
, β ≥ 1 .

(13)

$%
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Polynomials Qβ(n) (resp. Pβ(n)) are known as the Gandhi polynomials
(resp. ‘companion’ Gandhi polynomials) — except that the Gandhi polynomi-
als do not have alternating signs for the coefficients (but this difference is not
essential). See [1,2] and the references therein.

For illustration, we list below the so-obtained expression for E
(α)
n for the first

few values of α.

Proposition 2. We have:

E(0)
n = P0(n) = 1

E(1)
n = Q0(n) 2−2n n

(2n
n

)
= 2−2n n

(2n
n

)
E(2)

n = P1(n) = n/2

E(3)
n = Q1(n) 2−2n n

(2n
n

)
= 2−2n n2(2n

n

)
E(4)

n = P2(n) = n(3n − 1)/4

E(5)
n = Q2(n) 2−2n n

(2n
n

)
= 2−2n n2(2n − 1)

(2n
n

)
E(6)

n = P3(n) = n(15n2 − 15n + 4)/8

E(7)
n = Q3(n) 2−2n n

(2n
n

)
= 2−2n n2(6n2 − 8n + 3)

(2n
n

)
E(8)

n = P4(n) = n(105n3 − 210n2 + 147n − 34)/16

E(9)
n = Q4(n) 2−2n n

(2n
n

)
= 2−2n n2(24n3 − 60n2 + 54n − 17)

(2n
n

)
E(10)

n = P5(n) = n(945n4 − 3150n3 + 4095n2 − 2370n + 496)/32 .

$%

As a result, we find the following peak values:

D2
(α) ≈ |ε| 1√

π
n−1/2, for α = 1

D2
(α)

= |ε|2, for α = 2

D2
(α) ≈ |ε|3 1√

π
n1/2, for α = 3

D2
(α) ≈ |ε|4 3√

π
n , for α = 4 .

So the pattern that emerges is:

D2
(α) ≈ |ε|α cα n(α−2)/2 , (14)

where cα denotes a constant depending on α. Thus depending on the values of
|ε| and n it may determined for which α the largest peak value is reached.

In Table 1, we tabulate the expected height, D2
(α)

, of the second-order DPA
peaks for various values of n and α. We see for α = 1 that larger values for n
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Table 1. Exact values of D2
(α)

for some common sizes of n

n α = 1 α = 2 α = 3 α = 4

8 0.209 |ε| |ε|2 4.61 |ε|3 22 |ε|4
16 0.144 |ε| |ε|2 6.65 |ε|3 46 |ε|4
32 0.101 |ε| |ε|2 9.49 |ε|3 94 |ε|4
64 0.071 |ε| |ε|2 13.48 |ε|3 190 |ε|4

160 0.045 |ε| |ε|2 21.37 |ε|3 478 |ε|4
256 0.035 |ε| |ε|2 27.05 |ε|3 766 |ε|4
512 0.025 |ε| |ε|2 38.28 |ε|3 1534 |ε|4

1024 0.018 |ε| |ε|2 54.15 |ε|3 3070 |ε|4

(i.e., the bit-length manipulated by the processor) yields lower (second-order)
DPA peaks. More surprisingly, for α = 2, the height of the DPA peaks does not
depend on n, and for larger values of α (two last columns in Table 1) the height
increases with the value of n.

The results listed in Table 1 are useful for practical purposes assuming that
sufficiently many acquisitions are available. To see how fast D2

(α)
actually con-

verges to its expected value as a function of α, we determine the relevant signal-
to-noise ratio (SNR), following, e.g., [13]. In the present paper, we are concerned
with so-called algorithmic noise only, so the value of SNR tells us how many
traces we need (for different values of input data x) to get a successful DPA
attack.

Consider the following random variable D:

D := D(ŝ) = (2g(ŵ) − 1) |ε|α |H(w ⊕ r) − H(r)|α ,

where r is a uniformly random n-bit string, w = I(x, s) with x representing the
input data, and ŵ is the outcome corresponding to the guessed secret ŝ, that is,
ŵ = I(x, ŝ). The process of evaluating quantity Δ2(ŝ) (and its generalization for
arbitrary α) may be viewed as sampling the random variable D.

The expected value of D is equal to D2
(α)

, and since D2 = |ε|2α |H(w ⊕ r)−
H(r)|2α, we obtain for the variance of D:

var(D) = 〈D2〉 − 〈D〉2 = |ε|2α
(
E(2α)

n − 4(E(α)
n − E

(α)
n−1)

2) .

Noting that the variance of D is independent of ŝ, we take as the relevant signal-
to-noise ratio (for one signal):

SNR :=
〈D〉√
var(D)

=
2
(
E

(α)
n − E

(α)
n−1

)√
E

(2α)
n − 4

(
E

(α)
n − E

(α)
n−1

)2 . (15)

From this formula for SNR, we get the following results. Firstly, SNR is
independent of ε; this corresponds to the results found in, e.g., [13], where SNR
is also independent of ε if there is no (non-algorithmic) noise. Secondly, SNR
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drops off to 0 quickly as n gets larger, which was also observed in [13]. Finally,
however, by evaluating SNR for fixed values of n, n ≥ 3, searching for the optimal
value of α we have found that SNR is maximized consistently at α = 3, where
SNR at α = 3 is about 1.55 times higher than at α = 1.

3.3 Analysis of Other Correlated Operations

So far, we have focused on the use of ⊕-masking, which is the basic way of imple-
menting data whitening. Since many attacks are proposed to defeat ⊕-masking
it is conceivable that implementors try other forms of masking, hoping to avoid
such DPA attacks. For example, w ⊕ r may be computed using the following
formula: (w ∧ r) ∨ (w̄ ∧ r̄). Our calculations show that in such a case the medi-
cine is worse than the disease, as a second-order DPA for the ∧ operation yields
better peaks than for ⊕ operation.

We illustrate this by determining D2 (cf. Eq. (7)) where τ1 is the time period
when r is manipulated and τ2 is the time period when w ∧ r is manipulated.

We have:〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=0
= |ε|

〈
|H(w ∧ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=0

=
|ε|
2

(〈
|H(w ∧ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=0,g(r)=0
+
〈
|H(w ∧ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=0,g(r)=1

)
=

|ε|
2

(〈
|H(w ∧ r) − H(r)|

〉
w,r∈{0,1}n−1 +

〈
|H(w ∧ r) − H(r) − 1|

〉
w,r∈{0,1}n−1

)
.

and 〈
|C (τ1) − C (τ2)|

〉
w,r∈{0,1}n

g(w)=1
= |ε|

〈
|H(w ∧ r) − H(r)|

〉
w,r∈{0,1}n

g(w)=1

= |ε|
〈
|H(w ∧ r) − H(r)|

〉
w,r∈{0,1}n−1 .

Therefore, we get

D2 =
|ε|
2

(〈
|H(w∧r)−H(r)|

〉
w,r∈{0,1}n−1 −

〈
|H(w∧r)−H(r)−1|

〉
w,r∈{0,1}n−1

)
.

To find the peak values we use the following lemma.

Lemma 2. For any integer n ≥ 1,

2−2n
∑

w,r∈{0,1}n

|H(w ∧ r) − H(r)| =
n

4
,

and
2−2n

∑
w,r∈{0,1}n

|H(w ∧ r) − H(r) − 1| =
n

4
+ 1 .
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Proof. We only prove the first part.∑
w,r∈{0,1}n

|H(w ∧ r) − H(r)| =
∑
h

∑
r∈{0,1}n

H(r)=h

∑
i

∑
w∈{0,1}n

H(w∧r)=i

|H(w ∧ r) − H(r)|

=
n∑

h=0

(
n
h

)
2n−h

h∑
i=0

(
h
i

)
|i − h| =

n∑
h=0

(
n
h

)
2n−h

h∑
i=0

(
h
i

)
(h − i)

=
n∑

h=0

(
n
h

)
2n−h h

h∑
i=0

[(
h
i

)
−
(
h−1
i−1

)]
=

n∑
h=0

(
n
h

)
2n−h h

h∑
i=0

(
h−1

i

)
=

n∑
h=0

(
n
h

)
2n−hh 2h−1 = 2n−1

n∑
h=0

(
n
h

)
h = n 22n−2 . $%

Hence, the resulting expected peak value becomes

D2 = −|ε|/2 . (16)

This results in a higher peak value compared to the peak for ⊕-masking (cf.
Eq. (9)).

Other binary operations such as logical or can be handled as well using basic
properties such as H(w ∨ r) = H(w) + H(r) − H(w ∧ r).

4 Extension to the Hamming Distance Model

The basic assumption for the Hamming-weight model is that the power con-
sumption for an operation on some data word w is linearly related to H(w). In
terms of electronics this would mean, however, that the hardware state just prior
to the moment that a data word is handled is (re)set to all-zero (or, all-one).
This is the case only for a few types of electronic circuits, e.g., those that use
precharged logic.

In many cases it is necessary to assume that the actual power consumption
is linearly related to the Hamming distance to an (unknown) hardware state
that existed just prior the moment when data word w is handled. For instance,
each time an instruction I within a fixed program is executed involving w, what
actually happens is that the CPU must fetch the opcode from memory (by
sending the program counter over the bus and receiving the opcode in return, and
decoding it). The values of the program counter and the opcode are fixed (for I)
and therefore the power consumption incurred by transferring these values over
the bus is the same each time I is executed. Subsequently, when w is handled,
the energy required for transferring w over the bus will be related to the number
of bits that need to switched. See [5] for more details.

So, we assume that there exist two reference values R1 and R2, that represent
the states prior to the time periods τ1 and τ2, respectively. The power consump-
tion at these time periods is therefore related to H(R1 ⊕ r) and H(R2 ⊕ w ⊕ r),
respectively.

We now show that the same DPA trace as before will enable us to recover
the secret value, without using any knowledge about the values of R1 and R2.
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Let R′
1 denote R1 but with the bit indicated by g omitted, and similarly for

R2. Let also δ = g(R2)− g(R1). Then, noting that for any fixed R1 and R2, and
for any δ:〈

|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r) + δ|
〉

=
〈
|H(w ⊕ r) − H(r) + δ|

=
〈
|H(w) − H(r) + δ| ,

it follows that〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=0
= |ε|

〈
|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r)|

〉
w,r∈{0,1}n

g(w)=0

=
|ε|
2

(〈
|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r)|

〉
w,r∈{0,1}n

g(w)=0,g(r)=0
+

〈
|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r)|

〉
w,r∈{0,1}n

g(w)=0,g(r)=1

)
=

|ε|
2

(〈
|H(R′

2 ⊕ w ⊕ r) − H(R′
1 ⊕ r) + δ|

〉
w,r∈{0,1}n−1+〈

|H(R′
2 ⊕ w ⊕ r) − H(R′

1 ⊕ r) − δ|
〉

w,r∈{0,1}n−1

)
= |ε|

〈∣∣H(w) − H(r) + |δ|
∣∣〉

w,r∈{0,1}n−1
.

Similarly, letting δ′ = 1 − g(R2) − g(R1), we have〈
|C (τ2) − C (τ1)|

〉
w,r∈{0,1}n

g(w)=1
= |ε|

〈
|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r)|

〉
w,r∈{0,1}n

g(w)=1

=
|ε|
2

(〈
|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r)|

〉
w,r∈{0,1}n

g(w)=1,g(r)=0
+

〈
|H(R2 ⊕ w ⊕ r) − H(R1 ⊕ r)|

〉
w,r∈{0,1}n

g(w)=1,g(r)=1

)
=

|ε|
2

(〈
|H(R′

2 ⊕ w ⊕ r) − H(R′
1 ⊕ r) + δ′|

〉
w,r∈{0,1}n−1+〈

|H(R′
2 ⊕ w ⊕ r) − H(R′

1 ⊕ r) − δ′|
〉

w,r∈{0,1}n−1

)
= |ε|

〈∣∣H(w) − H(r) + |δ′|
∣∣〉

w,r∈{0,1}n−1
.

Define, for n ≥ 1,

En,m = 2−2n
∑

w,r∈{0,1}n

|H(w) − H(r) + m| . (17)

These sums may be evaluated using the following recurrence relation:

f(0, m) = |m|
f(n, m) = f(n − 1, m − 1) + 2f(n − 1, m) + f(n − 1, m + 1)
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where
f(n, m) =

∑
w,r∈{0,1}n

|H(w) − H(r) + m| ,

for any integers n, m, n ≥ 0.
In particular, the first few terms are:

f(n, 0) = n

(
2n

n

)
, f(n, 1) = (n + 1)

(
2n

n

)
, f(n, 2) =

n2 + 5n + 2
n + 1

(
2n

n

)
.

Noting that |δ′| = 1 − |δ|, we then have:

D2 = |ε|(En−1,1−|δ| − En−1,|δ|) , (18)

which generalizes the previous results (compare with Eq. (7)).
If g(R1) = g(R2) we get the same result as before. If g(R1) = 1 − g(R2) we

get the same result as before, except that the sign is inverted. So we are actually
able to get 1 bit of information on the values R1 and R2 as well.

By varying the selection function g to target other bits, all the bits of R1⊕R2
can be recovered this way.

5 Experimental Results and Observations

The experimental validation of our results led us to choose the RC6-w/r/b block-
cipher [15], in which the word size w = n, the number of rounds r and the length
b of the encryption key in bytes are easily customizable. Besides, RC6 contains
no fixed-length substitution boxes that would have limited the testing of the
range n ∈ [8, 1024]. Arithmetic operations (+,−,×) are defined modulo 2n. The
encryption software takes as input a plaintext m ∈ {0, 1}4n stored in four n-bit
input registers A, B, C, D, and an extended key S0, . . . , S2r+3 where Si ∈ {0, 1}n.

The protection against first-order attacks relies on a data whitening tech-
nique mixing boolean and two forms of arithmetic masking. We denote by 〈〈x〉〉
the variable x randomized by a boolean mask, i.e., 〈〈x〉〉 = (x ⊕ ρ, ρ) for some
ρ ∈ {0, 1}n. Similarly, we note [[x]] = (x + ρ′, ρ′) an arithmetic randomization
of x modulo 2n. We make use of Goubin’s conversion technique [6] to compute

1. B = B + S0 and D = D + S1

2. for i = 1 to r do
(a) t = (B × (2B + 1)) <<< log2 n and u = (D × (2D + 1)) <<< log2 n
(b) A = ((A ⊕ t) <<< u) + S2i and C = ((C ⊕ u) <<< t) + S2i+1

(c) (A, B, C, D) = (B, C, D, A)
3. A = A + S2r+2 and C = C + S2r+3

Fig. 1. Encryption with RC6-n/r/b
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[[x]] from 〈〈x〉〉 securely, and on a technique due to Coron and Tchoulkine to come
back to boolean masking [[x]] �→ 〈〈x〉〉 (provably) without first-order information
leakage. Conversions [[x]] �→ 〈〈x〉〉 rely on a precomputed look-up table of con-
stants embedded into the code. We chose to re-randomize the output after each
conversion.

Dealing with rotations. RC6 involves circular rotations with variable offset
denoted by x <<< u such that 2n − 1 <<< u = 2n − 1 for any u ∈ {0, 1}n and
x <<< u = x×2u mod n mod (2n − 1) for any x �= 2n −1 and any u ∈ {0, 1}n. We
suggest a technique to compute 〈〈x <<< u〉〉 from 〈〈x〉〉 and 〈〈u〉〉. First, we apply
Goubin’s conversion to 〈〈u〉〉 with respect to word size log2 n, thereby computing
securely [[u]]o = (u − α mod n, α) where α is randomly taken from {0, 1}log2 n.
Now if 〈〈x〉〉 = (x⊕ρ, ρ), we rotate the two shares twice each by u−α mod n and
then α bit positions to the left:

〈〈x〉〉, [[u]]o �→ 〈〈x <<< u〉〉 = 〈〈((x ⊕ ρ) <<< (u − α)) <<< α, (ρ <<< (u − α)) <<< α〉〉 .

Description of our 1-st-order-protected RC6. We assume that the ex-
tended key is stored as [[S0]], . . . , [[S2r+3]] where each Si ∈ {0, 1}n is arithmetically
randomized3. We show how to protect all the internal steps. The computation
B = B + S0 in Step 1 consists in randomly masking B into [[B]], computing
[[B + S0]] from [[S0]], [[B]] and then converting [[B]] into 〈〈B〉〉. The same is done
for D. We also randomly mask A and C into 〈〈A〉〉 and 〈〈C〉〉. In Step 2a, we
convert 〈〈B〉〉 �→ [[B]], securely compute [[B × (2B + 1)]] from [[B]] = (B1, B0) as
[[B × (2B + 1)]] = (B1 × (2B1 + 1) − γ × B0, B0 × (4B1 + 2B0 + γ + 1)) for a
random γ ∈ {0, 1}n, convert this into 〈〈B × (2B + 1)〉〉 and rotate each share by
log2 n bits to get (t). We apply the same process to compute u. In Step 2b, we
compute 〈〈A〉〉, 〈〈t〉〉 �→ 〈〈A⊕ t〉〉 and convert 〈〈u〉〉 �→ [[u]]o. Then from 〈〈A⊕ t〉〉, [[u]]o we
get 〈〈(A⊕ t) <<< u〉〉 which we convert into [[(A⊕ t) <<< u]] to add it to [[S2i]]. The
result is stored as [[A]] which we convert into 〈〈A〉〉. We do the same for register
C. Lastly, Step 3 consists in converting 〈〈A〉〉 into [[A]], adding it to [[S2r+2]] and
subtracting the two shares to get A (the same applies to C). From 〈〈B〉〉, 〈〈D〉〉, we
recover B and D.

Attack strategy. Assuming that we know subkeys S0, . . . , S2j−2, S2j−1 for
some j ∈ [0, r − 1], we recover subkeys S2j , S2j+1 involved in the j-th round. As
our technique applies to boolean masking, we focus on the last computation of
Step 2b that converts [[A]] �→ 〈〈A〉〉 just after S2j has been added to A. Noting
〈〈A〉〉 = (A1, A0), we know that our conversion routine handles A1 first and then
A0 two clock cycles later. This gives us an offset δ = 2 and power traces will
reveal S2j . We apply the same technique to the conversion [[C]] �→ 〈〈C〉〉 in the
same round to get S2j+1. We mention for concreteness that similar strategies
apply to Steps 1, 3 to get S0, S1, S2r+2, S2r+3.

3 Each [[Si]] involves its own randomness. In our implementation, [[Si]] is re-randomized
after use and updated in volatile memory for later calls to RC6.
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Data Treatment and Observations. The execution of our code is simulated
with Mathematica 5.0 and power traces generated with ε = 1 and � = 0. We
chose r = 8 and j = 5 arbitrarily, α = 3 to maximize the SNR, and the selection
function g(w) is the most significant bit of w. The value of 〈〈A〉〉 when converting
[[A]] �→ 〈〈A〉〉 in the 5-th round is identical to the value of 〈〈B〉〉 before the conversion
〈〈B〉〉 �→ [[B]] in Step 2a of round 6. The conversion routine from boolean to
arithmetic masking also admits an offset of two cycles. Therefore, power traces
present two attack locations and two (potential) simultaneous peaks.

Fig. 2. Second-order DPA trace Δ2(ŝ, t) with wrong guess s �= ŝ (left) and correct
guess s = ŝ (right). About 3000 power traces are enough to see peaks for n = 8 (top).
More than 20000 power traces are necessary for n = 16 (bottom), indicating a loss of
efficiency as n grows. Arrows indicate attack locations in the 5-th and 6-th rounds.

For n = 8, we measure peaks of height 5.52 to be compared with the theoret-
ical value of 4.61. For n = 16, we observe peaks at 6.45 for an expected height of
6.65. Standard deviations are 0.82 and 1.60 respectively. This seems to confirm
our theoretical results. Experiments for n ≥ 32 show that a much larger number
of power traces are needed to mount a practical attack.

6 Conclusions

We provided a formal exploration of second-order attacks by estimating the ex-
act height of expected peaks. Our results allow to anticipate the efficiency of
second-order attacks on a given hardware by providing a theoretical measure-
ment of information leakage as a function of hardware-dependent parameters.
We believe that our results constitute the theoretical basis of practical general-
purpose second-order power attacks. We see many open issues for future research,
in particular how to extend our results to take non-algorithmic noise into ac-
count.
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Abstract. We demonstrate that masking a block cipher implementation
does not sufficiently improve its security against side-channel attacks.
Under exactly the same hypotheses as in a Differential Power Analysis
(DPA), we describe an improvement of the previously introduced higher-
order techniques allowing us to defeat masked implementations in a low
(i.e. practically tractable) number of measurements. The proposed tech-
nique is based on the efficient use of the statistical distributions of the
power consumption in an actual design. It is confirmed both by theoret-
ical predictions and practical experiments against FPGA devices.

Keywords: cryptographic devices, side-channel analysis, DPA, high-
order power analysis, masking countermeasure, block cipher, FPGA.

1 Introduction

Since their publication in 1998 [9], power analysis attacks have attracted signifi-
cant attention within the cryptographic community. Although less general than
classical cryptanalysis, because they usually target one specific implementation,
they have been particularly efficient to break a wide variety of devices, including
smart cards, ASICs and FPGAs [12,16,20]. As a straightforward consequence,
countermeasures against these attacks are of great practical interest.

In the open literature, the masking technique is among the most popular
suggested ways to protect an implementation against Differential Power Analysis
[1,6,7,18]. However, several works have shown that such protected devices are
still sensitive to higher-order attacks, originally described in [13]. In particular,
a recent advance [24] suggested that higher-order power analysis is possible,
without any additional hypothesis than usually assumed for first-order attacks.
They proposed a way to combine the leakages corresponding to the masked
data and its mask even if their respective position within the sampled data
is unknown. [21] proposed an extension of these attacks by considering a more
general power consumption model. Although these papers provide indications for
the practical implementation of the attack, the number of observations required
to retrieve the secret key is generally large (at least significantly larger than in a
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first-order power analysis attack). As a consequence, masking is usually believed
to improve the actual security of an implementation.

In this paper, we demonstrate that masking a block cipher implementation
does not sufficiently improve its security against a side-channel opponent. Un-
der exactly the same hypotheses as in a Differential Power Analysis, we provide
strong evidence that a masked block cipher implementation can be defeated by
an improved higher-order attack, using a low (i.e. practically tractable) number
of measurements. The proposed technique is based on the efficient use of the
statistical distributions of the power consumption in an actual design. Based
on these distributions, we describe how to recover the secret key of a masked
block cipher implementation, applying a maximum likelihood approach, as sug-
gested in [2]. We confirm our assertions both by theoretical predictions, using
the formalism of attacks introduced in [16,20], and practical experiments against
real world Field Programmable Gate Array (FPGA) designs. Remark that our
results focus on the extraction of information from the available power traces.
For simplicity purposes, we assumed the mask and masked data to be computed
in parallel and did not discuss possible synchronization issues. However, the
extension to other contexts is straightforward using the techniques introduced
in [24].

The rest of the paper is structured as follows. Sections 2 and 3 respectively
describe the masking countermeasure and our power consumption model. The
description of the improved higher-order attack is in Section 4. Simulated attacks
are in Section 5 and Section 6 provides the experimental results against a masked
block cipher FPGA implementation. Conclusions are in Section 7.

2 The Masking Countermeasure

The idea of masking the intermediate values inside a cryptographic algorithm
is suggested in several papers as a possible countermeasure to power analysis.
The technique is generally applicable if all the fundamental operations used in
a given algorithm can be rewritten in the masked domain. This is easily seen to
be the case in classical algorithms such as the DES [14] or AES [15]. Although
these methods have been originally applied at the algorithmic level as well as at
the gate level, it has been shown recently that masking at the gate level involves
critical security concerns. Reference [10] notably demonstrates that the glitching
activity of masked logic gates offers a previously neglected leakage source that
seriously affects the security of the countermeasure. For this reason, this paper
will mainly discuss the algorithmic level protection, using precomputed tables.

In the following sections, we question the security of the masking counter-
measure with respect to higher-order power analysis attacks. For this purpose,
we start by giving a simple description of our target implementations. An un-
masked block cipher design is represented in Figure 1, where the bis represent
known input values, the kis are the secret encryption key bits and the S blocks
are non-linear substitution boxes (let Ns be the number of such S-boxes). In
accordance with the structure of most present block ciphers [3,4,14,15], we do
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S

[k0...ki]

b0 S(k0     b0)

Sb1 S(k1     b1)

Sb2 S(k2     b2)

Sbi S(ki     bi)

Fig. 1. Unprotected scheme

not loose in generality by focusing our attention to this combination of key ad-
ditions and non-linear S-boxes. Remark that the bit-widths are not specified on
the scheme.

Our protected implementation is represented in Figure 2. The masking prin-
ciple is as follows. After having XORed the random mask to the initial data,
both the mask and the masked data are sent through a non-linear S-box. S is
the original S-box from the algorithm and S′ is a precomputed table such that
we have:

S(b ⊕ k ⊕ r) = S(b ⊕ k) ⊕ S′(r, b ⊕ k ⊕ r) = S(b ⊕ k) ⊕ q

As a consequence, the output values are still masked with a random mask q.

S

S'

b

r

k

S(b     r     k) = S(b     k)     q 

S'(r , b     r     k) = q

Fig. 2. Masked scheme

3 Power Consumption Model

Power analysis attacks generally target CMOS devices for which it is reasonable
to assume that the main component of the power consumption is the dynamic
power consumption. For a single CMOS gate, we can express it as follows [19]:

PD = CLV 2
DDP0→1f (1)

where CL is the gate load capacitance, VDD the supply voltage, P0→1 the prob-
ability of a 0 → 1 output transition and f the clock frequency. Equation (1)
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specifies that the power consumption of CMOS circuits is data-dependent. As
a consequence, a reasonable hypothesis for the power consumption model is:
let x and x′ be two consecutive intermediate values of the running algorithm in
the target device, let t be the time at which x switches into x′, then the power
consumption of the device at this time is proportional to the Hamming weight
WH(x ⊕ x′).

This hypothesis, usually denoted as the Hamming distance power consump-
tion model, is generally true for any CMOS circuit and is specifically applicable to
FPGAs. However, in certain particular contexts, more specific hypotheses hold.
For example, in processors with precharged buses, the power consumption may
depend on the Hamming weight of the data on the bus [5]. We note that most
of our conclusions remain applicable, independently of the power consumption
model and target device selected.

4 Attack Description

Let us describe the proposed technique with the single S-box scheme of Figure
3, where the inputs b, r and k are Nb-bit wide. First, we express the power

S

S'

b      k

r

S(b     r     k) = S(b     k)     q 

S'(r , b     r     k) = q

Nb

Nb

Fig. 3. Illustrative 4-bit scheme

consumption of one pair of S and S’ boxes in case of a pipeline block cipher im-
plementation and denote it as a random variable O, standing for observations.
That is, we assume that the structure displayed in Figure 3 is fed with a new
input at each clock cycle. As explained in the previous section, the power con-
sumption is a function of any two consecutive values. If b⊕k switches into b′⊕k
and q switches into q′, we have:

O = WH
[(

S(b ⊕ k) ⊕ q
)
⊕
(
S(b′ ⊕ k) ⊕ q′

)]
+ WH

[
q ⊕ q′

]
Defining the random variable Σ = S(b⊕k)⊕S(b′⊕k), where Σ stands for secret
state and the random variable R = q ⊕ q′, where R stands for random state, it
is therefore possible to rewrite the observations as:

O(Σ, R) = WH
[
Σ ⊕ R

]
+ WH

[
R
]

We note again that the observations could be expressed in exactly the same
way in the Hamming weight power consumption model1. We note also that the
1 We would find O = WH

[
S(b ⊕ k) ⊕ q

]
+ WH

[
q
]
, which yields Σ = S(b ⊕ k), R = q.
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operator used to combine the two leakage contributions is a ‘+’ because in our
analysis, the masked data and its mask are loaded on the register at the same
time. But in other contexts, we may choose a ‘−’ as in [13], or a ‘×’ as in [21,24].
Actually, no matter what operator we use, the main point is to gather the two
(or more in case of higher-order masking) statistical distributions of the power
consumption so that the combined statistical distribution is key-dependent.

Indeed, while it is not possible to predict the observations, because they
depend on unknown mask and key values, we can still analyze their statistical
behavior. For a fixed value of the secret state Σ = σi, we can determine all the
possible observations, for all the different possible random states R = rj . From
this analysis, it is therefore possible to derive the probability density functions
P [O = oi|Σ = σi], for all the possible secret states.

In practice, because the observations are a sum of two Hamming weight
values, they are distributed as binomials and the number of possible distributions
for P [O|Σ = σi] equals Nb+1. As a simple illustration, if Nb = 4, the five possible
distributions of the observations are given in Figure 4.

4      3           5      2     4     6     1     3           5     7 0     2     4     6     8

16/16

8/168/16

8/16

4/16 4/16 6/16 6/16

2/16 2/16

6/16

1/16 1/16

4/16 4/16

Fig. 4. Probability density functions P [O|Σ = σi] with Nb = 4

The important consequence is that, knowing a secret state σi, we know the
probability of making an observation oi. This provides us with the tool to mount
a new attack, based on a maximum likelihood approach.

Remark: The distributions P [O|Σ =σi] all have the same mean value, E(O|Σ =
σi) = Nb and only differ in their variances. This fact allows to understand the
origin of previous attacks, as the one in [24], where it is proposed to square the
power consumption traces in order to obtain key-dependent measurements. The
reason is that the mean of the squared power trace is a function of the mean
and the variance of the initial power trace:

E
(
(O|Σ = σi)2

)
= E

(
(O|Σ = σi)

)2
+ V (O|Σ = σi)

It is also clear that the information contained in the expectation of the squared
power trace is poor compared to what can be obtained using the complete sta-
tistical distribution of the observations.

Now, using the usual framework of side-channel attacks, we would like to
find the secret key k, using a serial of observations o1, o2, ..., on, obtained by
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feeding the encryption device with a serial of input texts b0, b1, ..., bn (the input
transition b0 → b1 gives rise to the observation o1).

For this purpose, we first remark that, knowing the sequence of input texts
b0, b1, ..., bn, each key candidate ki ∈ [0, 2Nb − 1] specifies one sequence of secret
states. Therefore, we have 2Nb possible chains of states denoted as:

Σ∗(k0) := {σ1(k0), σ2(k0), ..., σn(k0)};
Σ∗(k1) := {σ1(k1), σ2(k1), ..., σn(k1)};
Σ∗(k2) := {σ1(k2), σ2(k2), ..., σn(k2)};

...

In practice, these state sequences cannot be observed directly, but only through
the power consumption of the device, i.e. the sequence of observations O∗ :=
{o1, o2, ..., on}. Then, for each possible secret state chain, we compute the prob-
abilities P [O∗|Σ∗(kj)]. Assuming that the observations are independent (which
is reasonable since the attacker feeds the devices with random input texts), it
yields:

P [O∗|Σ∗(k0)] = P [O = o1|Σ = σ1(k0)] × P [O = o2|Σ = σ2(k0)] × ...

P [O∗|Σ∗(k1)] = P [O = o1|Σ = σ1(k1)] × P [O = o2|Σ = σ2(k1)] × ...

P [O∗|Σ∗(k2)] = P [O = o1|Σ = σ1(k2)] × P [O = o2|Σ = σ2(k2)] × ...

...

The chain with the highest probability gives us the most likely key. That is, if
the attack is successful, the correct key corresponds to:

argmax
∀ kj

P [O∗|Σ∗(kj)]

We note that the proposed approach is similar to the one in [8], where it is
demonstrated that Hidden Markov Models may be of great help to describe
discrete time processes where a state sequence is hidden. Remark finally that,
in order to keep the probabilities P [O∗|Σ∗(kj)] within practical boundaries (for
large n’s, these probabilities are smaller than the machine-ε), we use a step by
step normalization.

5 Simulated Attacks

The previous section described a higher-order power analysis attack against a
single S-box scheme, without considering any kind of noise in the measurements.
However, in practice, side-channel attacks are usually affected by different kinds
of noises. First, block ciphers are made of the application of several S-boxes in
parallel, combined with other components such as a diffusion layer (this is typi-
cally the case of the AES Rijndael [15]). These “other components” that are not
directly targeted by our attack may therefore cause additional power consump-
tion that we denote as the “algorithmic noise”. Algorithmic noise exists if these
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components use different resources in the circuit, which is typically the case of
parallel implementations in FPGAs. Second, real life observations are usually
affected by different types of “physical noises”. It includes all the possible im-
perfections of our model appearing during the measurement process.
In order to evaluate the efficiency of the proposed attack, this section considers
attacks using “perfect measurements”, without any kind of physical noise. This
formalism has been introduced in [16,20] and was denoted as “attacks using sim-
ulated data”. Such attacks basically use simulated measurements generated by
computing the number of transitions in the targeted design. The measurements
are perfect in the sense that they perfectly fit to the power consumption model.
As a matter of fact, the number of measurements required to have a successful
attack using simulated data lower bounds this number when real measurements
are considered. Still, these simulated experiments allow us to clearly evaluate the
effect of algorithmic noise and to compare our attack to a classical Correlation
Power Analysis against an unprotected block cipher implementation.

Remark that, as far as noise is concerned, the probability distributions
P [O|Σ = σj ] are not discrete anymore. However, the previous techniques still
hold assuming that the probability density functions (or pdf’s) become weighted
sums of Gaussians. For example, let us assume that we target a single 4-bit S-
box as in the previous section and that for a particular secret state σj , the pdf
is represented in the left part of Figure 5. If we now consider that the target

2 4 6

4/16

6 8 10

8/16

4/16 4/16

8/16

4/16

Fig. 5. Probability density functions P [O|Σ = σj ] with Nb = 4, without or with noise

implementation contains another masked 4-bit S-box (i.e. Ns = 2), producing
algorithmic noise of mean Nb and variance Nb/2, we obtain the right part of the
figure2. In general, finding the noise pdf’s can simply be achieved by computing
the mean and variance of the observations, as we know the signal pdf’s. We now
present a number of attacks using simulated data.

We define the parameters of our simulated attacks as follows. First, we use the
4-bit S-boxes of the Serpent algorithm [3] and a secret key k = 5. In our target
implementations, we consider Ns S-boxes implemented in parallel. The number
of plaintexts generated in the attacks is n and for each number of plaintexts, we
observe the probabilities P [O∗|Σ∗(ki)], for ki ∈ [0, 15]. The attack is considered
successful when

∏n
i=1 P [O = oi|Σ = σi(kj)] is maximum for k = 5.

2 Note that modelling the algorithmic noise as Gaussians is reasonable since they
approximate the binomial behavior of the Hamming distance values.
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Fig. 6. A simulated higher-order attack with Ns = 8.

As a matter of fact, an attack against a single S-box scheme is nearly imme-
diate: due to the discrete probabilities, a secret state such that P [O = oi|Σ =
σj ] = 0 happens fast and only the correct key will remain with a non-zero prob-
ability after a few (in practice, less than 10) generated plaintexts. Much more
relevant is the investigation of a simulated attack with different amounts of al-
gorithmic noise in the design, i.e. different Ns values. A simulated attack with
Ns = 8 is represented in Figure 6 and is successful after roughly 4000 generated
texts. Other simulated attacks are in Appendix, Figures 8, 9, 10. From these
figures, it is clear that the masked designs can be targeted by our attack with
reasonable resources (e.g. less than 25 000 measurements), even if algorithmic
noise is inserted. For comparison purposes, we also simulated first-order corre-
lation attacks (like the ones in [16,20]) against the unprotected design of Figure
1, with the same parameters, i.e. same size and number of S-boxes. They are
represented in Appendix, Figures 11, 12, 13, 14 and allow to measure the addi-
tional security provided by the masking. Comparisons will be discussed in the
conclusions.

6 FPGA Results

We confirmed these simulated experiments with a real attack, against an FPGA
implementation of the scheme in Figure 2, with Ns = 8 S-boxes3. Our target
device was a Xilinx Spartan II FPGA [25] and the random mask values ri’s were
generated with an on-chip LFSR.

Compared to simulated attacks, the main additional constraint was to cor-
rectly estimate the statistical characteristics (mean, variance) of the experimen-
3 Due to area constraints, we did not target a standard algorithm such as the AES

Rijndael. Indeed, as already mentioned, e.g. in [17,18], the hardware cost of masking
a block cipher is a real concern for efficient hardware implementations.
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tal signals. Indeed, in a real-world context, those values do not correspond to
number of bit switches anymore, but to actual power consumption ones. That
is, for example, the distance between the different gaussians in Figure 5 do not
correspond to 2 bit switches anymore but to the power consumption of 2 bit
switches. As a consequence, building the real pdf’s P [O|Σ = σj ] from their dis-
crete counterpart can be done with some steps and assumptions more than in
Section 5.

First, we considered the measured observations to be a mixture of gaus-
sians, as the one in the right part of Figure 5. We then assumed that the mean
value of the observations Emeas corresponded to the mean value of the gaussian
mixture.

Second, we had to determine the distance between the different gaussians,
i.e. we had to evaluate the mean power consumption of one single bit switch
in the design, denoted as m. For this purpose, we implemented a wide register
inside our target FPGA and we measured the power consumption for different
numbers of switching bits. Then, we derived the mean value of each gaussian
in the mixture, denoted as Ei, i ∈ [1, 2Nb + 1]. It yields Ei+1 − Ei = m, ∀i ∈
[1, 2Nb].

Finally, we had to evaluate the variance of the gaussians. We assumed that
all of them have the same value v, as in Section 5. Then we measured the
variance of the measured observations Vmeas, corresponding to the variance of the
gaussian mixture. Knowing the different gaussian means Ei’s from the previous
experiments, we extracted v from [23]:

Vmeas =
x∑

i=1

wi ∗ (v + E2
i ) − E2

meas

where x is the total number of gaussians in the mixture (i.e. 2Nb + 1), and the
wi’s are weights depending on the probability of apparition of each gaussian.

We built the real pdf’s for P [O|Σ = σj ] from these values and mounted
a practical attack. It is represented in Figure 7, where we observe that the
correct key is distinguishable after roughly 12 000 generated texts. As usu-
ally observed in side-channel attacks, practical experiments require significantly
more samples than predicted because of noise and model imperfections. Still,
the masked countermeasure was defeated in a remarkably low number of mea-
surements.

In practice, we note that the attack is very sensitive to the correct evaluation
of the signal mean values, for which imprecisions may lead to the selection of
a wrong key candidate. The signal variance in itself does not affect the attack
result, but its good evaluation allows the correct key candidate to be faster
distinguished. For this purpose, we generally used a slightly larger value than
the estimated v, e.g. 2v or 4v.

Remark that the parameters m and v where naively estimated using a second
programmable device. However, we also evaluated them successfully using an
approach based on machine learning methods [11]. In practice, the presented
attack is possible even if a second device is not available.
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Fig. 7. A real attack against a masked FPGA design with Ns = 8

7 Conclusions

We proposed an improved higher-order technique to bypass the masking coun-
termeasure. As a main result, it is demonstrated that such a countermeasure is
not sufficient to protect an implementation from knowledgeable side-channel at-
tackers. In practice, we recovered the secret key of a masked block cipher FPGA
implementation in a low (i.e. practically tractable) number of measurements.
We point out the following concluding remarks:

1. The attack was successfully applied to a parallel FPGA implementation
which usually appears to be a challenging target for side-channel attacks.
However, it could be straightforwardly applied to other devices, e.g. micro-
processors. In such contexts, the algorithmic noise is usually reduced (due
to the size of the buses, limited to 8 or 32 bits). For example, we estimated
that an attack against an 8-bit processor would be successful after roughly
50 simulated measurements.

2. The presented attack is most fairly compared to the ones in [21,24]. For
example, [21] considers a similar FPGA implementation to ours and targets
a single S-box scheme (i.e. Ns = 1) in approximately 130 000 measurements.
We target a Ns = 8 scheme in 12 000 traces.

3. Reference [13] presents experiments allowing a secret key to be recovered
from a smart card implementation of the scheme in Figure 2, in about 2500
measurements. However, this attack is based on a Hamming weight power
consumption model. It also requires access to the power consumption of the
random mask and masked data separately, which involves these values to
be computed sequentially. As the target is an 8-bit processor, it should be
compared to an attack against a single S-box scheme, for which we would
be successful in roughly 50 simulated measurements.
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4. Compared to unprotected designs targeted by, e.g. a Correlation Power Anal-
ysis, a higher-order attack against a masked design still requires more traces.
However, the gap between both attacks has been significantly reduced. In
practice, the required number of measurements for a successful attack is not
unrealistic anymore, even if large hardware implementations are considered.
Note that the implementation cost of such large masked designs is another
serious drawback, as mentioned in [17,18].

5. An open question is to know how much does the addition of noise affect a
higher-order attack and how does it exactly compare to a first-order attack.

6. As a possible improvement, we finally suggest that a better estimation of
the statistical distributions of the power consumption in the design is worth
investigating. For example, the use of machine learning methods could be
considered in this respect, as suggested in the previous section.

Acknowledgements.The authors would like to thank Cédric Archambeau for
useful comments on previous versions of this paper.
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A Other Simulated Attacks
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Fig. 8. A simulated higher-order attack with Ns = 2
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Fig. 9. A simulated higher-order attack with Ns = 4
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Fig. 10. A simulated higher-order attack with Ns = 16
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Fig. 11. A simulated correlation attack with Ns = 2
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Fig. 12. A simulated correlation attack with Ns = 4

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

co
rr

el
at

io
n

N
S
=8 

correct key candidate 

Fig. 13. A simulated correlation attack with Ns = 8
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Fig. 14. A simulated correlation attack with Ns = 16
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Abstract. In this paper we identify shortcomings of the TCG speci-
fication related to the availability of sealed data during software and
hardware life cycles, i.e., software update or/and hardware migration. In
our view these problems are major obstacles for large-scale use of trusted
computing technologies, e.g., in e-commerce, as adopters are concerned
that the use of this technology might render their data inaccessible.

We propose both software and hardware solutions to resolve these
problems. Our proposals could be easily integrated into the TCG spec-
ification and preserve the interests of involved parties with regard to
security and availability as well as privacy.

1 Introduction

The increasing global connectivity and distributed applications both for business
and personal use require IT-systems that guarantee confidentiality, authenticity,
integrity, privacy, as well as availability. On the technical side, cryptographic
and IT security research provide a variety of technical security measures such
as encryption and strong authentication mechanisms, firewalls and so forth, to
achieve these security targets. However, these measures provide only partial so-
lutions as long as the underlying computing platforms still suffer from security
problems.

These issues are addressed by a new generation of computing platforms em-
ploying both supplemental hardware and software. Concretely, these initiatives
are the TCG (Trusted Computing Group), an IT-industry alliance, and Mi-
crosoft’s NGSCB (Next-Generation Secure Computing Base); however, so far
only the TCG has published specifications [17,16].

According to the TCG the primary goal of this architecture is to improve
the security and the trustworthiness of computing platforms [4,5,12,13]. To this
end, the conventional PC architecture is extended by new mechanisms to (i)

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 324–338, 2005.
c© International Association for Cryptologic Research 2005
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protect cryptographic keys, (ii) authenticate the configuration of a platform (at-
testation), and (iii) cryptographically bind confidential data to a certain system
configuration (sealing), i.e., the data can only be accessed (unsealed) if the cor-
responding system can provide the specific configuration for which the data has
been sealed.

In this paper we identify shortcomings of the TCG specification related to
software and hardware life cycles and propose solutions to resolve these problems.
More precisely, we are concerned with the following two problem areas regarding
the management of sealed data:

First, the TCG specification defines the sealing functionality in a way that
an update or security patch to the trusted computing base can render sealed
data inaccessible, even when keeping the same level of security. We propose
possible solutions to this problem that preserve security for all involved parties,
i.e. owners, users, and remote parties (e.g. content providers), in the sense of
multilateral security.

Second, the TCG specification contains a (optional) protocol to partially
migrate the TPM-internal data to another TPM of the same vendor (lock-in).
However, to our knowledge this protocol is not implemented in any of the existing
TPMs. Our proposal allows to securely migrate all data to a different platform
without requiring to either tolerate loss of potentially important data or involve
all remote parties while at the same time avoiding potential privacy violations.

Our proposals are based on exercising decentralized control of the update or
migration procedure where a party trusted by both the system owner as well as
remote parties ensures that their respective interests are served.

This paper is structured as follows: In Section 4 we give a summary of the
TCG specification as far as needed for the purpose of this paper. We continue
in Section 5 with a brief description of the problems regarding the handling of
sealed data during software and hardware life-cycles. Section 6 describes a basic
system model that we consider suitable to support our solution proposals. In
Sections 7 and 8 we describe our proposals for solutions to the software update
and the hardware migration problems.

2 Related Work

To our knowledge, only few articles are publicly available that discuss improve-
ments of the TCG specification in the context of platform changes and migration.

In [15] the authors present a security measurement architecture for Linux
that measures all executable content upon loading and protects the table of
measurements using the TPM’s functionality. Remote parties can first verify
the integrity of the table of measurements using remote attestation, and can
then decide if the current platform configuration is trustworthy. This is applied
to remote access where a client configuration is verified before allowing it to
access the network [14]. However, platform updates and platform migration is
not addressed in [15,14], and, as the PCR values are employed to protect the
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current list of measurements, working with sealed data seems difficult, or results
in the same problems as discussed in Section 5.

Property-based attestation as proposed in [10,8] extends the remote attesta-
tion protocol such that, on a more abstract operating system layer, properties
are attested instead of binary representations of platform configurations. While
[10,8] focus on remote attestation, we will show in Section 7.3 that this approach
is also well-suited for what we call property-based sealing.

3 Conventions

Basic Notation. A (public key) encryption scheme is denoted with the tuple
(Enc(), Dec()) for encryption and decryption algorithms. The tuple (PK X ,SKX)
denotes the public and private key of a party X . Further, a digital signa-
ture scheme is denoted by a tuple (Sign(), Verify()) of signing and verification
algorithms. With σ ← SignSKX

(m) we denote the signature on a message
m using the signing key SKX . The return value of the verification algorithm
ind ← VerifyPKX

(σ) is a Boolean value ind ∈ {true, false}. A certificate on a
quantity Q with respect to a verification key PKX is a signature generated by
applying the corresponding signing key (not something complex such as a X.509
certificate). A hash function is denoted by Hash().

Roles. Throughout the paper we refer to the following subjects/roles:

– Owner : The owner O of a system P , e.g. a PC, is an entity who defines,
by its security policy SPO, the allowed configurations of the underlying
platform, also including patches/updates. Typical examples are an enterprise
represented by an administrator or an end-user owning a personal platform.

– User : The user U of a computing platform P is an entity interacting with
P under the platform’s security policy SPO. Examples are employees using
enterprise-owned hardware; user and owner might also be identical.

– Remote party: This refers to any party trying to assess the trustworthiness of
a system, e.g. for licensing content to the system’s owner. The remote party’s
security policy SPR defines access control rules attached to the content. An
example might be a party licensing classified data to the system’s owner that
wants to ensure that its access policy is also enforced locally.

4 Main Aspects of the TCG Specification

In this section we briefly review the main functionalities of the trusted computing
technology proposed in specifications version 1.1b [17] and 1.2 [16] of the Trusted
Computing Group (TCG).

The main components of the TCG proposal are a hardware component
Trusted Platform Module (TPM), a kind of (protected) pre-BIOS (Basic I/O
System) called the Core Root of Trust for Measurement (CRTM), and a support
software called Trusted Software Stack (TSS) which performs various functions
like communicating with the rest of the platform or with other platforms.
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Trusted Platform Module. A TPM is the main component of the specifica-
tion providing a secure random number generator, non-volatile tamper-resistant
storage, key generation algorithms, cryptographic functions like RSA encryp-
tion/decryption, and the hash function SHA-11. A TPM can be abstractly de-
scribed by the tuple (EK ,SRK , T ): the endorsement key EK , an encryption
key that uniquely identifies each TPM; the Storage Root Key SRK or Root of
Trust for Storage (RTS), uniquely created inside the TPM. Its private part never
leaves the TPM, and it is used to encrypt all other keys created by the TPM;
the TPM state T contains further security-critical data shielded by the TPM
(see Section 8.1).

The TPM provides a set of registers called Platform Configuration Registers
(PCR) that can be used to store hash values. The hardware ensures that the value
of a PCR register can only be modified as follows: PCRi+1 ← SHA1(PCRi|I),
with the old register value PCRi, the new register value PCRi+1, and the input
I (e.g. a SHA-1 hash value). This process is called extending a PCR.

There are three different types of asymmetric keys a TPM can create:

– Migratable keys (MK): Migratable keys are those cryptographic keys that
can only be trusted by the party who generates them (e.g. the user of the
platform). However, a third party has no guarantee that such key has indeed
been generated on a TPM.

– Non-migratable keys (NMK): Contrary to a migratable key, a non-migratable
key is guaranteed to be kept in a TPM-shielded location. A TPM can create
a certificate stating that a key is an NMK.

– Certified-migratable keys (CMK): Introduced in version 1.2 of the TCG spec-
ification, this type of key allows a more flexible key-handling. Upon creation
of such a key with the TPM CMK CreateKey command, a trusted Migration
Authority (MA) can be selected, to which decisions to migrate the key are
delegated. To migrate a CMK to another platform, the TPM command
TPM CMK CreateBlob expects a certificate of an MA approving of the mi-
gration to the destination. Another trusted party, the Migration Selection
Authority (MSA) may be involved in the process, which only controls the
migration, but never gets in contact with any migrated data. In both cases
the certificate of the CMK that is used by the owner/user to prove that it
was really created by a TPM contains information about the identity of the
MA resp. MSA.

Based on this functionality, the TCG specification defines four mechanisms
called integrity measurement, attestation, sealing, and maintenance which are
explained briefly in the following:
1 SHA-1 [6] generates 160-bit hash values from an input of (almost) arbitrary size.

One of the stated security goals for SHA-1 is: finding any collision must take 280

units of time. Recently, Wang et. al. [18] claimed an algorithm to find such collisions
in time 269, see also [3]. Though attacking SHA-1 would be challenging, SHA-1
clearly has failed its stated security goals. In contrast to some applications, full
collision-resistance is essential in Trusted Computing. Hence, we anticipate revised
specifications to switch to another hash function.
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Integrity Measurement & Platform Configuration. Integrity measure-
ment is done during the boot process by computing a cryptographic hash of the
initial platform state. For this purpose the CRTM computes a hash of (“mea-
sures”) the code and parameters of the BIOS and extends the first PCR register
by this result. A chain of trust is established if an enhanced BIOS and boot-
loader also measure the code they are transferring control to, e.g. the operating
system. The security of the chain relies strongly on explicit security assumptions
about the CRTM. Thus, the PCR values PCR0, . . . ,PCRn provide evidence of
the system’s state after boot. We call this state the platform’s configuration,
denoted by Si := (PCR0, . . . ,PCRn).

Attestation. The TCG attestation protocol is used to give assurance about the
platform configuration Si to a remote party. To guarantee integrity and freshness,
this value and a fresh nonce provided by the remote party are digitally signed
with an asymmetric key called Attestation Identity Key (AIK) that is under
the sole control of the TPM. A trusted third party called Privacy Certification
Authority (Privacy-CA) is used to guarantee the pseudonymity of the AIKs. In
order to overcome the problem that this party can link transactions to a certain
platform, version 1.2 of the TCG specification defines a cryptographic protocol
called Direct Anonymous Attestation DAA [1], eliminating this CA.

Sealing. Data D can be cryptographically bound to a certain platform con-
figuration S0 by using the TPM Seal command. Given an asymmetric key pair
(SK ,PK ), we denote this function abstractly with [D ]PK

S0
← Seal(S0,PK ,D)

meaning that D is sealed for the configuration S0. The TPM Unseal command
releases the decrypted data only if for the current configuration S′

0 holds S′
0 = S0,

or, abstractly, D = Unseal([D ]PK
Si

) ⇔ ([D ]PK
S0

← Seal(S0,PK ,D) ∧ (Si = S0)).
According to the current TCG specification [16], TPM Seal only accepts

NMKs and it is unclear how the CMKs can be used. As we will see in Section 7
sealing using CMKs would be useful.

Maintenance. The maintenance functions can be used to migrate the SRK
to another TPM: The TPM owner can encrypt the SRK under a public key of
the TPM vendor using the TPM CreateMaintenanceArchive command. In case
of a hardware error the TPM vendor can extract the encrypted SRK from the
maintenance archive, decrypt it, and load it into another TPM.

Unfortunately, the maintenance function is only optional and, to our knowl-
edge, not implemented by currently available TPMs. Furthermore, the mainte-
nance function works only for TPMs of the same vendor.

5 Problem Description

The integrity measurement mechanism securely stores the platform’s initial con-
figuration into the registers (PCRs) of the TPM. Any change to the measured
software components results in changed PCR values, making sealed data inacces-
sible under the changed platform configuration. While this is desired in the case
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of an untrustworthy software suite or malicious changes to the system’s software,
it may become a major obstacle for applying patches or software updates. Such
updates do generally not change the mandatory security policy enforced by an
operating system (in fact, patches should close an existing security weakness not
included in the system specification). Nevertheless, the altered PCR values of
the operating system make the sealed information unavailable under the new
configuration.

We see here a major issue with the current TCG proposal, since the semantic
of the sealing operation is too restrictive to efficiently support sealed information
through the software life-cycle including updates / patches. The main problem
is the lack of a mapping between the security properties provided by a platform
configuration and its measurements. This difficulty is also pointed out in [13]:
“[. . . ] to recognize which reported PCR values were good, given the myriad
platforms, operating system versions, and frequent software patches”.

A further problem we see with the TCG’s proposal is how to handle hardware
replacements in a computing platform. Such replacements are necessary due
to outdated or faulty hardware. In corporate contexts, hardware is typically
replaced every few years. Any sealed data bound to a given TPM cannot directly
be transferred to another TPM, because it is encrypted with a key protected
by the SRK, which in turn is stored within the TPM. While this is intended to
prohibit unauthorized copying, it also effectively prohibits the owner of a system
to migrate the data to a replacement hardware.

In our opinion the existing mechanisms offered by the TCG specification are
insufficient:

Shortcomings of Certified Migratable Keys: CMKs allow platform owners
to migrate keys to another platform (see Section 4). Unfortunately, migration au-
thorities (MA) have to explicitly certify every single key that the platform owner
may want to migrate. Thus, complete migration of a TPM to another platform
would require an enormous amount of certificates and thus traffic. In our opin-
ion, it is unreasonable to assume that migration authorities can guarantee both
availability and security of their services under these conditions. Another draw-
back is that CMKs cannot be used as encryption keys for the sealing operation.
Thus, data bound to a configuration cannot be migrated using this approach.

Shortcomings of Maintenance Procedure: Although the maintenance func-
tion defined in the TCG specification protects platform owners against loss of
data, its current instantiation is unsatisfying: First, this mechanism is only op-
tional and not implemented until now. Second, the maintenance function requires
interaction with the TPM vendor. In our opinion, this fact is problematic from
both availability and free-enterprise perspectives: First, in case of a hardware
failure all data controlled by the TPM is affected, thus TPM vendors are in
the position to ask for high fees. Moreover, the TPM owner is lost if the TPM
vendor does not exist anymore. Second, the maintenance function does not allow
platform owners to migrate to a TPM of a different vendor.



330 U. Kühn et al.

6 Basic System Model

In this section, we propose an abstract system model that provides a practical
solution to the missing link problem between the security properties offered by
a platform and its configuration.

Typically, remote parties offering content do not want to limit the usability of
the content to only one platform configuration. Instead, they require that their
policy SPR attached to the content cannot be circumvented. Since such policies
can become rather complex, we propose a three-layered security architecture to
enforce them:

– Application layer: Remote parties can attach a piece of restricted code, a
policy checker, to their content that decides whether the requirements of the
policy SPR are fulfilled or not. Hence it is not necessary to define a general
policy language be used by all remote parties. Instead, remote parties can
explicitly or implicitly code the policy to be enforced into the policy checker.
Note that the purpose of the policy checker is similar to what is called a
trusted viewer [7]: The policy checker verifies that the underlying platform
fulfills the necessary properties, and can enforce a complex security policy.

– Operating-system layer: The operating system layer performs all tasks of
a usual operating system that cannot violate security policies of the involved
parties. This includes resource sharing (e.g. filesystems and user interfaces)
and non-critical device drivers.

– Security-kernel layer: As the policy checker enforces the security poli-
cies, the underlying TCB “only” has to guarantee that unauthorized entities
cannot manipulate the platform such that enforcement mechanisms can be
bypassed. This includes a strict separation between applications (isolation).
Here the sealing mechanism provided by the underlying trusted computing
hardware helps to ensure these elementary security properties. The security
kernel has to be trusted by all involved parties.

Obviously existing monolithic operating systems are not capable of fulfilling
these security requirements (e.g. they do not at all provide a secure isolation be-
tween processes). We therefore suggest a small Trusted Computing Base (TCB)
that offers the properties of the security-kernel layer. Examples of such architec-
tures are [2,9,11].

The advantage of this architecture is that the PCR values used by the under-
lying trusted computing technology (e.g. sealing, attestation) depends only on
the code of the security-kernel. Applications, e.g. a web server, and the operat-
ing system layer can use more abstract services like property-based attestation
[10,8] provided by the TCB. This way changes of these higher layers (e.g. due to
patches) do not change the PCR values, keeping the architecture more flexible.

The reader should note that the software-based proposals in the following
sections assume the existence of such a security architecture providing a trusted
computing base that securely isolates different processes from each other. This
implies that the solutions do not translate to legacy operating systems, e.g. Linux
or Microsoft Windows, without weaker security guarantees.
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7 Platform Updates

In our system model, updates of components outside of the TCB are easy as
no PCR values are affected. However, as discussed in Section 5, a configuration
change of the TCB involves more work. We consider the following security and
usability requirements that must be fulfilled by a computing platform providing
the sealing functionality:

– Security. A platform of configuration S0 can access sealed data [D ]PK
S0

only
if the attached security policy SPR defines S0 to be trustworthy. This rep-
resents the interests of the remote parties.

– Availability. Information sealed to a platform enforcing the security policy
SP should be available under all platforms that are capable of enforcing SP .
Thus, a software patch should not make the information inaccessible.

In the following, we propose three solutions to the platform update prob-
lem. The first one is based on an extended software function offered by the
operating system layer and allows to reuse existing TPM’s. The second solution
(Section 7.2) extends the TCG specification by a TPM command but allows
more flexible handling of sealed data. In Section 7.3 we discuss the advantages
of a property-based sealing mechanism and show how it can be implemented.

7.1 Software-Supported Updates

To guarantee availability of sealed data when the TCB’s configuration Si is
changed to a Sj offering the same security properties, the TCB must provide a
service we call Update Manager (UM). The main task of the UM is to seal the
data for the new configuration Sj before the TCB update happens. Note that
the UM has to be invoked whenever components of the TCB are to be changed.

There are several requirements on the UM to correctly update sealed data:

1. The sealed data [D ]PK
Si

must be available to the update manager, i.e. in
a central store, so that the UM can re-seal them. Alternatively the TCB
could be implemented such that it uses only one sealed cryptographic key to
encrypt all data under configuration Si. As a consequence, only one sealed
key has to be updated by the UM.

2. The PCR values for the new configuration Sj must be known to the UM.
This implies that the binary representation of the module to be updated is
available such that the UM can pre-calculate the expected configuration.

3. Only data that is sealed for Si can be updated. This implies that the UM
cannot update data sealed for a different configuration S′

i.
4. The update manager must have some means to ensure that the new config-

uration Sj offers the same security properties as the old one with respect
to SPR. Several solutions to this problem are imaginable. We suggest to
introduce a trusted party that is responsible for certifying that two confi-
gurations Si and Sj offer the same security properties. The identity of the
trusted party could be, e.g., hard-coded into the TCB resulting in a unique
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platform configuration that depends on this party. Thus, by sealing data for
that configuration, remote parties explicitly agree with the TTP selected by
the platform owner.

5. The whole process must be failsafe, i.e. the process must recover if it is
disturbed, e.g. due to user-interruption or power-failure.

Remark 1. The underlying assumption of our model is that the TCB is small
and independent enough such that updates appear only rarely. However, on a
system not conforming to our system model, such as typical monolithic systems,
severe problems may occur: First, system updates occur frequently, since the
TCB is very complex and device drivers are part of it. Second, the UM would
need to ensure that the update process does not violate any policy required
by the respective remote party. Therefore, the UM has to know which security
assurances are necessary for which sealed data. Currently, there is no means in
the TCG proposal to specify the required assurances for sealed information.

The update process proposed above has the drawback that data can only be
updated if it can be accessed under the current configuration. This complicates
updates of core components like the BIOS or the bootloader, since sealed data for
every possible configuration needs separate handling before the new component
is installed. The solutions in the next two sections avoid this shortcoming.

7.2 Hardware-Supported Updates

Our second proposal is based on a new TPM command TPM UpdateSeal that
re-seals data for another platform configuration based on an update certificate.
This TPM command works independently of the current platform configuration.
Thus, it is possible to update all sealed data under one configuration, regardless
of whether the current configuration can access the sealed data. We expect that
such a command could be easily integrated into existing TPM designs.

We assume that a trusted party called Update Certification Authority (UCA)
with a key pair (SKUCA,PKUCA). It issues update certificates certupdate :=
SignSKUCA

(Si, Sj) that vouch for configurations Si and Sj offering the same se-
curity properties.2 Obviously, the UCA has to be trusted by all involved parties
to fulfill the requirements of a secure update function. In the sense of multilateral
security, both the user/owner and the remote party have to agree on an UCA
before data is sealed. Our solution can be applied in two different ways:

– The TPM internally binds the identity IUCA = Hash(PKUCA) of the UCA
to the CMK key pair (SK ,PK ). By means of a certificate (a signature) on
(PK , IUCA) by the TPM, remote parties can verify that the data encrypted
under this key can be updated based on certificates of that UCA. As this is
based on certified migratable keys (CMKs), using a UCA instead of an MA,
we require them to be usable as sealing keys.3

2 A UCA could be, e.g., an existing authority already involved in software certification.
3 Here a new type of updatable sealing key could be introduced that has exactly this

functionality.
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– Remote parties can define the UCA that is allowed to update data they have
sealed by securely binding an identifier of the UCA to the data to be sealed
(like the platform configuration under which the data can be accessed).

To provide multilateral security, the user or platform owner should be par-
ticipating in defining the UCA. Otherwise, remote parties could force them to
accept an untrusted one. Therefore, we prefer the first approach.

We now specify the proposed TPM command. Let the following entities and
quantities be given: a TPM, a UCA with public key PKUCA, and an update
certificate certupdate := SignSKUCA

(Si, Sj).
As prerequisites, let the user/owner have identified a UCA by IUCA∗ =

Hash(PKUCA∗) upon creation of a new CMK key pair (SK ,PK ) used for seal-
ing, and let the CMK certificate certcmk state that PK is generated by a valid
TPM and that it can be updated based on certificates issued by UCA∗.

Command specification (TPM UpdateSeal).

Parameters: [D ]PK
S0

sealed with PK bound to IUCA∗ , certupdate , PKUCA

Command Description: The TPM

1. checks the update certificate’s validity: VerifyPKUCA
(certupdate)

?→ true.
2. checks that Hash(PKUCA) = IUCA∗ .
3. checks certupdate covers [D ]PK

S0
, i.e. that S0 = Si.

4. returns an error if any of the above checks fails,
5. computes and returns [D ]PK

Sj
.

This proposed TPM command allows users/owners to control who is responsible
for the creation of update certificates. Further, it is multilaterally secure with
regard to remote parties who can decide if they are willing to accept the UCA.

7.3 Property-Based Sealing

While the TCG-specified trusted boot process allows to efficiently detect changes
to the code, it neither allows any conclusion if a certain set of PCR values cor-
responds to a trustworthy system, nor does it provide any evidence if a change
in the values represents a property-preserving update or an attempt to subvert
the system. Since the software-supported and the hardware-supported update
function are based on this so-called binary attestation, they both have the draw-
back that sealed data has to be re-sealed whenever the platform’s configuration
intentionally changes.

In [10,8], property-based attestation builds on attestation of abstract proper-
ties instead of binary representations of the platform configuration. Informally, a
property of a platform describes an aspect of its behavior with respect to certain
requirements, such as security-related requirements, e.g., that a platform has
built-in measures for Multi-Level Security (MLS) mechanism, or built-in pri-
vacy preserving measures conforming to privacy laws; or, more suitable to our
context here, a property could be the fact that the TCB guarantees the secure
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execution of a policy checker (see Section 6). In general a property can be viewed
as a model, and any platform complying to this model is said to provide this
property.

Providing property-based sealing allows to bind data to properties instead of
hash values of binaries. This approach has several advantages: First, if data is
only bound to an abstract property, it is no longer necessary to re-seal the data
during software upgrade if the underlying property does not change. Second,
the UCA (see Section 7.2) would only certify that a software release provides
a certain property instead of issuing update certificates between each two such
releases. Third, property-based sealing allows users to use sealed data under
several different platform configurations providing the same properties. Fourth,
remote parties do not have to care about the concrete platform configuration of
the user, since they only have to bind the data to the desired property. Fifth,
remote parties are unable to discriminate certain platform configurations (e.g.
Open-Source software) since the concrete configuration is kept secret.

In practice, property-based services can be provided by a small TCB (see
Section 6) that depends on conventional binary attestation. As a result the large
amount of applications that are using this service (e.g. a web server) do not have
the problems with sealed data discussed in Section 5. In Appendix A we describe
a possible realization of property-based sealing based on update certificates.

The difficulty with property-based attestation and sealing is to define the
concrete semantics of a property, different remote parties may desire to bind their
data to different properties, and a concrete platform configuration may provide
properties that do not exactly match those desired properties. Our system model
(see Section 6) moves the handling of complex property analyses to policy checker
executed on the application-layer, so the only remaining property the TCB has
to provide is to guarantee a secure execution of the policy checker.

8 Migrating to Another Hardware Platform

In Section 5 we discussed the shortcomings of the currently-specified mainte-
nance mechanism. To remedy this we propose to extend the TCG specification
by a multilateral-secure migration mechanism that fulfills the following require-
ments:

– Completeness: Platform owners should be able to move the secret state
Ts (see Section 8.1) of a source TPM s to a destination TPM d. This implies
that the source TPM is reliably cleared afterwards, so that only a single
instance of the state exists.

– Security: Migration from TPM s to TPM d should only be possible if TPM d

has the same level of security as TPM s.
– Fairness: The specification must not dictate the involved parties which TTP

defines the security relations between different TPMs. Moreover, migration
should be possible without the need to interact with the TPM vendors.

To fulfill these requirements, we suggest reasonable modifications and exten-
sions of the current TCG specification, among them that all security-critical
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TPM-data can be securely extracted in a non-discriminating manner. Section
8.2 describes how the idea underlying certified migratable keys (CMKs) can be
used in a fail-safe protocol to securely migrate the state of a TPM to another
one that provides the same security properties.

8.1 Sharing the TPM’s State

Migration of a TPM’s state to another TPM is only meaningful if all security-
critical parts of the TPM’s state can be migrated. The maintenance mechanism
allows platform owners to export TPM-protected storage, including the SRK
and the owner’s authorization data. Unfortunately, the current TCG specifi-
cation [16] does neither define mechanisms to securely export the state of the
non-volatile (NV) memory, nor the values of the monotonic counters (MC). Cur-
rently, if migration is an issue, these protected resources cannot be used to store
security-critical data.

Therefore we suggest to extend the TCG specification such that all resources
offered by the TPM can be exported in order to make migration possible.4

8.2 Migration Protocol

The purpose of our migration protocol is to allow platform owners to migrate
a TPM’s contents while not breaking the security guarantees it provides. Our
migration protocol is based on the idea of making Storage Root Keys (SRK)
migratable under tightly controlled circumstances similar to Certified Migratable
Keys (CMK): For this, we introduce a trusted party called TPM Migration
Authority (TMA). Its purpose is to decide about the migration of the SRK; the
TMA shall be bound to the SRK upon its creation by the TPM TakeOwnership
command.

The decision whether a TPM provides at least the same level of security as
another TPM is highly security-critical since if TPM owners were capable of
migrating their data to a less secure TPM, remote parties could not trust TPMs
at all. Therefore, a TMA needs to be trusted by both the platform owner and
remote parties. In practice, a TMA could be an institution that does security
evaluation and certification. For privacy reasons the choice of a TMA should
remain with the involved parties only. Since remote parties need to know this
TMA, we further suggest to include the TMA’s identity (e.g. a hash of its public
key) into the AIK certificates.

The parties involved are a source TPM s = (EK s, Ts,SRK s), a destination
TPM d = (EK d, Td,SRK d) and a TMA identified by PKTMA. We explicitly
assume that the complete TPM state T including NV and MC can be extracted
encrypted under the TPM’s SRK (see Section 8.1).

4 This would also solve another problem stemming from the NV and MC being limited
resources: An operating system might allocate all these resources, so that other
operating systems installed on the same system would be precluded from using them.



336 U. Kühn et al.

We assume as prerequisites:

– Upon taking ownership of TPM s, a TMA is identified by Hash(PKTMA∗).
– The owner of TPM s has obtained from the TMA a migration certificate

certmig = SignPKTMA
(Hash(EKTPM s), Hash(EKTPMd

)) on the hashes of the
endorsement keys of the TPMs. To do so, the owner proves the authenticity
of both TPMs by sending the corresponding vendor certificates on TPM to
the TMA.

Then the migration protocol consists of the following steps, involving a new
command Migrate():

1. The owner extracts the encrypted TPM state CTs := EncPKSRKs
(Ts) (see

Sect. 8.1).
2. The owner extracts the endorsement key EK ′

TPMd
from the destination

TPM d.
3. Upon invocation of Migrate(certmig ,EKTPMd

,PKTMA), TPM s checks that
– certmig is valid, i.e. VerifyPKTMA

(certmig) → OK,
– the TMA issuing certmig has the correct identity, i.e. Hash(PKTMA) =

Hash(PKTMA∗),
– the contents of certmig is consistent with its endorsement key EKTPM s

resp. the supplied EKTPMd
using the respective hash values.

4. TPMs encrypts SRK s under EK d, yielding CSRK s := EncEKd
(SRK s). This

is sent to the platform with TPMd.
5. TPM s switches into a persistent state that allows only two TPM com-

mands: The command TPM ExtractMigrationData, which returns CSRK s

(the SRK encrypted under TPM d’s endorsement key), and the command
TPM OwnerClear, which deletes the state Ts and SRK s.

6. The encrypted TPM state and SRK, i.e. CTs and CSRK s
, are loaded into

TPM d. If an error occurs, steps 5 and 6 can be repeated.
7. After successful migration to TPM d the owner invokes TPM OwnerClear on

TPM s to clear its state and SRK.

9 Summary and Conclusion

In this paper we addressed problems arising from management of sealed data
with respect to software as well as hardware life-cycles that result from the
current TCG specification. In our view these problems are major obstacles for
large-scale use of trusted computing technologies, e.g. in e-commerce applica-
tions.

Our proposed solutions to both problem areas are based on the principle of
multilateral security and decentralized control, where only the involved parties
agree on trusted parties that help to mediate between the interests of the involved
parties, without a central authority like the TCG prescribing a trusted party.
Furthermore, this principle protects the privacy of a system’s owner and user as
well as the security interests of remote parties.
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For the problem of maintaining availability of sealed data after a software
update we proposed a several solutions, one purely in software, a second by
augmenting the TPM with an additional command, and a third one based on
abstract (security) properties. While the software solution would work with cur-
rent hardware, it imposes several strict requirements on the operating system
design. The other solutions would open up room for advanced trusted computing
concepts using abstract security properties.

Our proposal for a hardware migration method would allow to move the
contents of one TPM to another one providing multilateral security. It requires
some changes to the TPM, but these should be easy to integrate into the design
while respecting the security interests of all involved parties.

To conclude, our proposals can resolve the identified shortcomings in the cur-
rent TCG specifications regarding management of sealed data during software
and hardware lifecycles. We suggest to introduce them into the TCG standard-
ization process.

An interesting line of research might be to design protocols that employ zero-
knowledge techniques so that a platform owner and remote party can agree on
update and migration authorities without revealing the actual authority. Here a
remote party could issue a list of authorities it trusts, and the platform owner
gives a zero-knowledge proof of membership for the authority of his choice.
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9. A.-R. Sadeghi and C. Stüble. Taming “trusted computing” by operating system
design. In Information Security Applications, volume 2908 of Lecture Notes in
Computer Science, pages 286–302. Springer-Verlag, Berlin Germany, 2003.
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A Property-Based Sealing Using Update Certificates

In practice, properties could be represented by a random but fixed value, while
the mapping value → property defines the property assigned to that value. These
values can be used in the sealing process to define the PCR values S∗ of virtual
configurations which now describe properties instead of concrete binary systems.
If the TPM UpdateSeal command (or an extension to TPM Unseal with similar
functionality) is available, it can be employed to translate between a property
Pi and a concrete configuration Si. This translation would work as follows:

– Remote parties seal data for a property Pi represented by the virtual config-
uration S∗, along with information which UCAs are allowed to certify that a
concrete configuration actually implements the security properties, resulting
in a sealed blob [D ]PK

S∗ .
– Given a configuration Si that actually implements the security properties of

S∗, one obtains a certificate stating this fact. This certificate has the same
format as the update certificates of Section 7.2, i.e. U = SignSKUCA

(S∗, S0).
– The TPM updateSeal command is used to translate [D ]PK

S∗ into a sealed blob
[D ]PK

S0
which can then directly be used.

This way, also the update problem for patched system software would just
vanish, as all that is necessary to update to another concrete configuration Sj

also implementing the properties of S∗ is to obtain a certification of this fact.
Only [D ]PK

S∗ would be kept in long-term storage, possibly caching [D ]PK
S0

.
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Abstract. Data remanence is the residual physical representation of
data that has been erased or overwritten. In non-volatile programmable
devices, such as UV EPROM, EEPROM or Flash, bits are stored as
charge in the floating gate of a transistor. After each erase operation,
some of this charge remains. Security protection in microcontrollers and
smartcards with EEPROM/Flash memories is based on the assumption
that information from the memory disappears completely after erasing.
While microcontroller manufacturers successfully hardened already their
designs against a range of attacks, they still have a common problem
with data remanence in floating-gate transistors. Even after an erase
operation, the transistor does not return fully to its initial state, thereby
allowing the attacker to distinguish between previously programmed and
not programmed transistors, and thus restore information from erased
memory. The research in this direction is summarised here and it is shown
how much information can be extracted from some microcontrollers after
their memory has been ‘erased’.

1 Introduction

Data remanence as a problem was first discovered in magnetic media [1,2]. Even
if the information is overwritten several times on disks and tapes, it can still
be possible to extract the initial data. This led to the development of special
methods for reliably removing confidential information from magnetic media.

Semiconductor memory in security modules was found to have similar prob-
lems with reliable data deletion [3,4].

Data remanence affects not only SRAM, but also memory types like DRAM,
UV EPROM, EEPROM and Flash [5]. As a result, there is possibility that some
information still can be extracted from memory that has been erased. This could
create problems with secure devices where designers assumed that all sensitive
information is gone once the memory is erased.

In some smartcards and microcontrollers, a password-protected boot-loader
restricts firmware updates and data access to authorised users only. Usually, the
on-chip operating system erases both code and data memory before uploading
new code, thus preventing any new application from accessing previously stored
secrets. If the passwords or secret keys can be extracted afterwards, it could cre-
ate serious problems for confidentiality of the previously encrypted information.

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 339–353, 2005.
c© International Association for Cryptologic Research 2005
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Chip manufacturers do not publish data about remanence effects for their
memory chips. The only parameter they specify is data retention – the time
during which the memory content is preserved. This is almost the opposite of
data remanence. Data retention time can be used roughly to estimate the data
remanence effect, but this works only for devices within the same family [4].

Therefore, a series of experiments was performed to check whether it is fea-
sible to extract information from erased EPROM, EEPROM and Flash memory
devices using low-cost methods. The results should be of considerable concern
to designers of embedded security applications.

2 Background

Unlike SRAM, which has only two stable logic states, EPROM, EEPROM and
Flash cells store analog values in the form of a charge on the floating gate of a
MOS transistor. The floating-gate charge shifts the threshold voltage of the cell
transistor and this is detected with a sense amplifier when the cell is read. The
maximum charge the floating gate can accumulate varies from one technology
to another and normally is between 103 and 105 electrons. For standard 5 V
EEPROM cells, programming causes about a 3.5 V shift in the threshold level.
Some modern Flash memory devices employ multiple level detection, thus in-
creasing the capacity of the memory [6]. There are also memory devices with a
fully analog design, which store charges proportional to the input voltage [7].

Table 1. Characteristics of different memory types used in microcontrollers

Static
RAM

Mask
ROM

OTP
EPROM

UV
EPROM EEPROM Flash

EEPROM NVRAM

Read time FAST
≈ 10 ns

FAST
≈ 5 ns

MED
≈ 50 ns

MED
≈ 50 ns

MED
≈ 50 ns

FAST
≈ 20 ns

MED
≈ 50 ns

Write time FAST
≈ 10 ns N/A SLOW

≈ 10 ms
SLOW
≈ 10 ms

SLOW
≈ 1 ms

MED
≈ 10 μs

FAST
≈ 50 ns

Data
retention

> 5 years
(battery) N/A > 10

years
> 10
years

> 40
years

> 100
years

> 40
years

Cell size 6T 1T 1T 1T 2T 1T 10T

Low
voltage Yes Yes No No No No No

Endurance
(cycles) N/A N/A 1 100 103–106 104–106 N/A

Cost HIGH LOW MED HIGH MED LOW HIGH

There are two basic processes that allow placing electrons on the floating
gate – Fowler-Nordheim tunnelling and channel hot electron (CHE) injection
[8]. Both processes are destructive to the very thin dielectric insulation layer
between the floating gate and the channel of a transistor. This oxide layer is re-
sponsible for preserving the charge on the floating gate. As a result, the number
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of possible write/erase cycles is limited, because the floating gate slowly accumu-
lates electrons, causing a gradual increase in the storage transistor’s threshold
voltage and programming time. After a certain amount of program/erase cycles
(typical values are represented in Table 1) it is no longer possible to erase or
program the cell. Another negative effect (which is the main failure mode for
Flash memory) is negative charge trapping in the gate oxide. It inhibits CHE
injection and tunnelling, changes the write and erase times of the cell, and shifts
its threshold voltage.

The amount of trapped charge can be detected by measuring the gate-induced
drain leakage current of the cell, or its effect can be observed indirectly by
measuring the threshold voltage of the cell. In older devices, which had the
reference voltage for the sense amplifier tied to the device supply voltage, it
was often possible to do this by varying the device supply voltage. In newer
devices, it is necessary to change the parameters of the reference cell used in
the read process, either by re-wiring portions of the cell circuitry or by using
undocumented test modes built into the device by manufacturers.

Another relevant phenomenon is overerasing. If the erase cycle is applied to
an already-erased cell, it leaves the floating gate positively charged, thus turning
the memory transistor into a depletion-mode transistor. To avoid this problem,
some devices, for example Intel’s original ETOX [9], first program all cells to 0
before erasing them to 1. In later devices, this problem was solved by redesigning
the cell to avoid excessive overerasing. However, even with this protection, there
is still a noticeable threshold shift when a virgin cell is programmed and erased.

The changes in the cell threshold voltage caused by write/erase cycles are
particularly apparent in virgin and freshly-programmed cells. It is possible to
differentiate between programmed-and-erased and never-programmed cells, es-
pecially if the cells have only been programmed and erased once, since virgin
cell characteristics will differ from the erased cell characteristics. The changes
become less noticeable after ten program/erase cycles.

Programmed floating-gate memories cannot store information forever. Vari-
ous processes (such as field-assisted electron emission and ionic contamination)
cause the floating gate to lose the charge, and these go faster at higher tem-
peratures. Another failure mode in the very thin tunnel oxides used in Flash
memories is programming disturb, where unselected erased cells adjacent to se-
lected cells gain charge when the selected cell is written. This is not enough to
change the cell threshold sufficiently to upset a normal read operation, but could
cause problems to the data retention time and should be considered during mea-
surement of the threshold voltage of the cells for data analysis and information
recovery. Typical guaranteed data retention time for EPROM, EEPROM and
Flash memories are 10, 40 and 100 years, respectively.

3 Experimental Method

Obviously, in a floating gate memory cell, the floating gate itself cannot be ac-
cessed. Its voltage is controlled through capacitive coupling with the external
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nodes of the device. Often, the floating-gate transistor is modelled by a capac-
itor equivalent circuit called the capacitor model [10]. In practice, write/erase
characteristics for many EEPROM/Flash memories are close to that of a charge/
discharge of a capacitor. Meanwhile there are some differences in how the charge/
discharge process takes place in real memory cells. There is an initial delay be-
tween the time the voltages are applied to the cell, and the charge starting to
be removed or injected. This delay is caused by the need for very high electric
fields to be created inside the floating-gate transistor to start the injection or
tunnelling process. Some EEPROM cells have been reported to have nonunifor-
mity during the erase operation [11]. As a result, it might take longer to erase
a half-charged cell than a fully-charged cell. In addition, an ideal capacitor dis-
charges exponentially: q = q0 · e−t/τ . Applied to the floating gate, that would
mean that after t = 10τ the charge is totally removed from the cell. In practice
this does not happen, because the parameters of the cell’s transistor change as
the charge is removed from its floating gate. All the above-mentioned problems
could seriously affect data remanence in floating-gate memories.

The main difficulty with analysis of the floating-gate memory devices, espe-
cially EEPROM and Flash, is the variety of different designs and implementa-
tions from many semiconductor manufacturers. There are hundreds of different
types of floating-gate transistor, each with its own characteristics and peculiar-
ities. It means that for security applications where data remanence could cause
problems, careful testing should be applied to the specific non-volatile memory
device used in the system.

Fig. 1. The test board for data remanence evaluation
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Fig. 2. Test setup for semi-invasive analysis

Some microcontrollers with different memory types to investigate the possible
influence of data remanence on EPROM, EEPROM and Flash memories were
tested. For that purpose I built a special test board controlled by a PC via a
parallel interface (Figure 1). The board has two programmable power supplies
for generating VDD and VPP voltages, a programming interface with bidirectional
voltage level converters, and sockets for microcontroller chips. That allowed me
to control the voltages applied to the chip under test with 100 μV precision and
apply any signals within a 1 μs time frame.

Recently introduced semi-invasive attack methods [15] might also be helpful
for testing data remanence effect in floating-gate memory devices. These methods
are more effective in some applications as they do not require physical access to
the internal wires inside the chip thus reducing the preparation time. However,
partial or full decapsulation of the sample is required [16]. For such analysis,
a low cost laser diode pointer with external power control was mounted on
the autofocus module optical port of a Mitutoyo FS60Y microscope. Computer
controlled Newport PM500-XYZ motorised stage was used for moving the sample
under test (Figure 2). Using 100× objective on the microscope it was possible
to focus the red laser beam (650 nm) down to 0.5 μm (Figure 3). Although the
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Fig. 3. Focusing the laser with a 100× objective

laser used was classified as a class 2M laser device, an ordinary digital camera
mounted on the microscope was used for navigation to avoid necessity of looking
at the laser beam with unprotected eyes.

4 Non-invasive Results

The first experiment was performed on the Microchip PIC12C509 microcon-
troller [12] with UV EPROM. The chip was programmed with all 0’s (charged
cell state) and exposed to UV light for different periods of time. Then it was
read in the test board at different power supply voltages to estimate the thresh-
old level for each EPROM cell in the memory array. The reference voltage was
assumed to be tied to the power supply line and therefore the threshold level of
the transistor is proportional to the power supply voltage VTH = K · VDD. The
fact that the exact threshold voltage of the transistor is not measured does not
affect the results because an attacker is normally interested in the relative erase
timing between the memory and the security protection. Once the security fuse
is erased, the memory can be easily read. The same test was applied to a chip
with a programmed security fuse. The results are presented in Figure 4. As can
be seen from the graph, the memory gets fully erased before the security fuse is
erased. However some security flaws still could exist. Although nothing could be
extracted directly by reading the memory when the fuse is erased, power glitch
tricks could work. For example, after seven minutes of exposure to the UV light
(253 nm peak, 12 mW/cm2) the memory content can be read non-corrupted at
VDD below 2.2 V, but the security fuse remains active up to 4.8 V. If the at-
tacker works out the exact time when the data from memory is latched into the
output shift register and the time when the state of the security fuse is checked,
he might be able to extract the memory contents by reducing the power supply
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down to 2 V for the data latching and increasing it to 5 V to make the security
fuse inactive.

There is another trick that makes recovery of memory contents possible, even
when there is no overlap between the erased security fuse and non-corrupted
memory content at the time of erasure. For example, I found that newer samples
of the same chip will start to corrupt the memory before the security fuse is
erased (Figure 4). In this case a power glitch cannot be used to recover informa-
tion from the memory. What can be done instead is a careful adjustment of the
threshold voltage in the cell’s transistor. It is possible to inject a certain portion
of charge into the floating gate by carefully controlling the memory program-
ming time. Normally, the programming of an EPROM memory is controlled
by external signals and all the timings should be supplied by a programmer
unit. This gives an opportunity for the attacker to inject charge into the float-
ing gate thus shifting the threshold level enough to read the memory contents
when the security fuse is inactive. Such a trick is virtually impossible to apply
to modern EEPROM and Flash memory devices for several reasons. Firstly, the
programming is fully controlled by the on-chip hardware circuit. Secondly, the
programming of EEPROM and Flash cells is normally performed by using much
faster Fowler-Nordheim tunnelling rather than CHE injection. As a result it is
very hard to control the exact amount of charge being placed into the cell. Also,
the temperature and the supply voltage affect this process making it even harder
to control.
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The next experiment was done to the Microchip PIC16F84A microcontroller
[13] which has Flash program memory and EEPROM data memory. A similar
test sequence was applied with the only difference that electrical erasing was
used (Figure 5). A huge difference in the memory behaviour can be observed.
The memory erase starts 65 μs after the ‘chip erase’ command was received and
by 75 μs the memory is erased. However, this time changes if the temperature
or the supply voltage is changed. For example, if the chip is heated to 35 ◦C
the memory erase starts at 60 μs and is finished by 70 μs. The security fuse
requires at least 125 μs to be erased giving at least five times excess for reliable
memory erase. Reducing the power supply voltage increases the erase time for
both the memory and the fuse erase, so that the ratio remains practically the
same. It should be mentioned that unless terminated by the hardware reset, the
chip erase operation lasts for at least 1 ms. Both this fact and the fast erase time
give an impression that EEPROM and Flash memories have fewer problems with
data remanence and therefore should offer better security protection. I decided
to investigate whether this is true or not.

In my early experiments with the security protection in PIC microcontrollers,
I noticed that the same PIC16F84 chip behaves differently if it is tested right after
the erase operation was completed. As this microcontroller is no longer in use and
has been replaced by the PIC16F84A, the testing was applied to the new chip.

As can be seen from Figure 5, the memory is completely erased and read as
all 1’s well before the end of the standard 10 ms erase cycle. The threshold of
the cell’s transistors becomes very low after the erase and cannot be measured
the same way as with UV EPROM because the chip stops functioning if the
power supply drops below 1.5 V. With the power glitch technique, it is possible
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to reduce the supply voltage down to 1 V for a short period of time – enough
for the information from memory to be read and latched into the internal buffer.
But this is still not enough to shift the reference voltage of the sense amplifier
low enough to detect the threshold of the erased cells. To achieve the result
another trick was used in addition to the power glitch. The threshold voltage of
all the floating gate transistors inside the memory array was shifted temporarily
by VΔ = 0.6–0.9 V, so that VTH = K · VDD − VΔ. As a result it became possible
to measure the threshold voltage of an erased cell which is close to 0 V. This
was achieved by precisely controlling the memory erase operation, thus allowing
the substrate and control gates to be precharged and terminating the process
before the tunnelling is started. As a result, the excess charge is trapped in
the substrate below the floating gate, and shifts the threshold of the transistor.
The process of recombination of the trapped excess charge could take up to one
second, which is enough to read the whole memory from the device. This can be
repeated for different supply voltages combined with power glitches, in order to
estimate the threshold of all the transistors in the memory array.
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Fig. 6. Change of the threshold voltage during erasure for programmed and previously
erased cells (left) and for previously programmed cells after the second erase cycle
(right) in PIC16F84A

Applying the above test to differently programmed and erased chips, the
diagrams for threshold voltage dependence in the Flash program memory from
different factors such as the number of erased cycles (Figure 6, left) and memory
address (Figure 6, right) were built. As can be seen, the charge is not entirely
removed from the floating gate even after one hundred erase cycles thus making it
possible for the information to be extracted from the memory. This was measured
on a sample after 100 program/erase cycles to eliminate the effect of the threshold
shift taking place in a virgin cell. At the same time the memory analysis and
extraction is complicated by the fact that the difference in threshold voltages
between the memory cells is larger than within the same cell after single erase
cycle. The practical way to avoid this problem is to use the same cell as a
reference and compare the measured threshold level with itself after the extra
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erase operation is applied to the chip. Very similar results were received for the
EEPROM data memory inside the same PIC16F84A chip. The only difference
was that the threshold voltage after ten erase cycles was very close to that of the
fully erased cell, thus making it almost impossible to recover the information if
the erase operation was applied more than ten times.

In the next test, the chip was programmed with all 0’s before applying the
erase operation. As a result it was practically impossible to distinguish be-
tween previously programmed and non-programmed cells. That means that pre-
programming the cells before the erase operation could be a reasonably good
solution to increase the security of the on-chip memory.

One more thing should be mentioned in connection with hardware security.
Some microcontrollershave an incorrectly designed security protection fuse, which
gets erased earlier than the memory. As a result, if the ‘chip erase’ operation is
terminated prematurely, information could be read from the on-chip memory in a
normalway.Thatwasthecase,forexample, fortheAtmelAT89C51microcontroller.
When this became known in the late nineties, Atmel redesigned the chip layout
and improved security to prevent this attack, so that chips manufactured since
1999 do not have this problem. Nowadays, most microcontroller manufacturers
design their products so that the security fuses cannot be erased before the main
memory is entirely cleared, thus preventing this low cost attack on their devices.

5 Semi-invasive Results

The first experiment was performed on the PIC16F84A microcontroller to check
whether it would be possible to extract any information from previously erased
memory using semi-invasive methods with the setup mentioned in Section 3.

The location of the memory was initially found under a normal optical mi-
croscope. Then, using a proprietary laser scanning setup [16], areas sensitive to
the ionisation with laser radiation (bright areas) were found (Figure 7).
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A standard Flash memory array consists of the current source, memory cells,
row and column selectors and a sense amplifier consisting of an amplifier and a
comparator to the reference cell signal which will distinguish between 0 and 1
[8]. Obviously, if we are interested in restoring the state of previously erased or
discharged cell we have to either reduce the current flowing through the cell, or
increase the reference voltage of the read sense amplifier, or reduce the coefficient
of the amplification itself.

Because the laser can only generate the current in p-n junctions, it is not
possible to manipulate the transistor in all of the desired ways. However, for
most memories built with NMOS technology this will work quite well as the
laser will inject current with the opposite polarity to the current sent through
the memory cells.

In my experiments I erased the data EEPROM memory for the time necessary
for the memory to be read back fully erased at minimum and maximum power
supply voltages. Then the sample was placed under a microscope and several
areas were tested with a laser pointer beam with powers ranging from 10 μW
to 5 mW. Better results were received when either the area close to the column
selector or the area close to the input of the sense amplifier was exposed to the
laser beam. For each memory bit the value of the laser power corresponding to the
change of its value from 1 to 0 was stored in the file. Due to the reason mentioned
in the previous chapter it was not possible to extract the memory contents
directly by adjusting the reference voltage of the sense amplifier. Therefore,
after the first measurement an extra memory erase operation was performed
and the next measurement was done. Comparing the results for each memory
cell revealed its content because a previously programmed cell had changed its
threshold value while a non-programmed cell had not.

Going back to Figure 5 it can be noticed that when more than 75 μs has
elapsed since the erase command the contents of the memory cannot be read
directly. Using the above technique I was able to reliably extract the information
from the memory after a 150 μs erase pulse. This is still well below the standard
10 ms erase operation but is sufficient to erase the security fuse so that the
attacker can perform a ‘chip erase’ operation and then extract the information
from the memory.

The most important advantage of the semi-invasive technique is that it is
independent of the power supply voltage and uses only laser power alteration to
measure the threshold voltage of the memory transistors. This overcomes certain
protections used in modern secure chips where either voltage monitors or voltage
stabilisers are used.

The next step in my research was to test whether such a semi-invasive tech-
nique would work for modern submicron chips. As a target for my next experi-
ments I chose the Atmel ATmega8 microcontroller [17] which employs 0.35 μm
technology (Figure 8). It has three metal layers and as a result there is very little
information that can be gained from direct optical observation of the chip under
a microscope. To solve this problem and find the memory components on the die
it was deprocessed using a wet chemical etching technique. The same die with
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Fig. 8. Optical image of EEPROM area in the ATmega8 microcontroller before and
after wet chemical etching
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Fig. 9. Laser-scanned image of the ATmega8 EEPROM area

the top metal layer removed is shown in Figure 8. As a result of this operation
all of the memory arrays located on the chip die were recognised.

To find the active areas for the laser injections, the previously mentioned
laser scanning technique was used. However, as the chip was built with smaller
technology and a large part of its surface is covered with metal wires, only a
small part of the die was sensitive to the laser beam (Figure 9) and the injected
current was significantly smaller than in case of PIC16F84A chip which has
0.9 μm technology. In addition, the chemical-mechanical polishing used in the
production of ATmega8 die reduces the transparency of the layers and only a
small fraction of light reaches the active area on the chip (Figure 10). All these
facts made the analysis and further testing of this chip more difficult.
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Fig. 10. Focusing the laser on the ATmega8 die using a 100× objective

The ATmega8 microcontroller employs a very reliable security protection
feature which ensures that the memory is erased well before the security fuse
that prevents external access to the memory. In my experiments, I was able
to extract information from the erased memory only if the erase pulse was less
than 100 μs long, whereas the standard ‘chip erase’ operation takes 10 ms. It was
still impossible to read the memory contents even after a 70 μs long erase pulse
at both minimum and maximum power supply voltages, but this is still not
enough to overcome the security protection. However, semi-invasive methods
again showed their advantages, especially because I was not able to find any
non-invasive approach for extracting the information from an erased ATmega8
microcontroller.

6 Countermeasures

To avoid data remanence attacks in secure applications, the developer should
follow some general design rules that help to make data recovery from semicon-
ductor memories harder [5]:

– Cycle EEPROM/Flash cells 10–100 times with random data before writing
anything sensitive to them, to eliminate any noticeable effects arising from
the use of fresh cells.

– Program all EEPROM/Flash cells before erasing them to eliminate de-
tectable effects of residual charge.

– Remember that some non-volatile memories are too intelligent, and may
leave copies of sensitive data in mapped-out memory blocks after the active
copy has been erased. That also applies to file systems, which normally
remove the pointer to the file rather than erasing the file itself.

– Use the latest highest-density storage devices, as the newest technologies
generally make data recovery more difficult.
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– Using memories covered with top metal layer or built with modern deep sub-
micron technologies helps against semi-invasive attacks because such attacks
require the laser beam to reach the transistor active areas.

Using encryption, where applicable, also helps to make data recovery from
erased memory more difficult. Ideally, for secure applications, each semiconduc-
tor memory device should be evaluated for data remanence.

7 Conclusions

Floating-gate memory devices, such as UV EPROM, EEPROM and Flash, have
data remanence problems. From some samples, information can still be recovered
after 100 erase cycles. Even if the residual charge cannot be detected with exist-
ing methods, this might be possible in the future with new technologies. Hard-
ware designers should pay attention to the evaluation of components planned to
be used in systems sensitive to data remanence.

Fortunately, the presented techniques for extracting erased memory can be
applied only to a limited number of chips with EEPROM or Flash memory.
Firstly, some microcontrollers, such as the Texas Instruments MSP430 family
[14], have an internally stabilised supply voltage for the on-chip memory. Chang-
ing the power supply from 1.8 V to 3.6 V does not affect a memory read operation
from partially erased cells. Secondly, most microcontrollers fully reset and dis-
charge the memory control circuit if the chip is reset or the programming mode
is re-entered. But still, if the memory contents do not disappear completely, this
can represent a serious threat to any security based on an assumption that the
information is irrecoverable after one memory erase cycle. Where non-invasive
methods fail, invasive methods could still succeed. For example, the memory
control circuit can be modified using a focused ion-beam workstation to directly
access the reference voltage, the current source or the control gate voltage. Fi-
nally, some chips program all the memory locations before applying the erase
operation. This makes it almost impossible to extract any useful information
from the erased memory.

Semi-invasive methods have once again shown their use in hardware security
analysis. However, they have some limitations, especially for modern deep submi-
cron technologies, where multiple metal layers and small transistor size prevent
easy and precise analysis. Further improvements to these methods might in-
volve approaching the die from its reverse side but this requires the use of more
expensive equipment.
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Abstract. Wave dynamic differential logic combined with differential routing 
is a working, practical technique to thwart side-channel power attacks. 
Measurement-based experimental results show that a differential power analysis 
attack on a prototype IC, fabricated in 0.18μm CMOS, does not disclose the 
entire secret key of the AES algorithm at 1,500,000 measurement acquisitions. 
This makes the attack de facto infeasible. The required number of 
measurements is larger than the lifetime of the secret key in most practical 
systems. 

Keywords: side-channel attack (SCA), differential power analysis  (DPA), 
countermeasure, dual rail with precharge, wave dynamic differential logic 
(WDDL), differential routing, parasitic capacitance matching. 

1   Introduction 

A prototype IC has been fabricated in 0.18μm CMOS to demonstrate the secure 
digital design flow [11]. This design flow creates correct-by-construction side-channel 
power attack resistant integrated circuits. It starts from any HDL design and does not 
need custom layout, iterative design processes, or complex algorithm-specific 
countermeasures. It is based on employing logic cells with a single switching event 
per clock cycle and a place and route approach that balances the interconnect 
capacitance of the output wires. 

Side-channel power attacks can be mounted on ASICs, FPGAs, DSPs and 
microprocessors because in standard CMOS technology, power is only drawn from 
the power supply when a 0 to 1 output transition occurs. Therefore, by measuring the 
power supply current during the encryption, and then performing statistical analysis of 
the measured power traces, the secret key can readily be determined. The secure 
digital design flow pursues a constant power dissipation by balancing the power 
consumption of the logic gate. When the power dissipation of the smallest building 
block is constant and independent of the signal activity, no information is leaked 
through the power supply. As a result, it protects against all power attacks including 
simple power analyses, differential power analyses and higher order power analyses.  
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Two functionally identical coprocessors have been fabricated on the same die. The 
first ‘secure’ coprocessor is implemented using WDDL and differential routing. The 
second ‘insecure’ coprocessor is implemented using regular standard cells and regular 
routing techniques. We fabricated two functionally identical coprocessors to allow us 
to compare the side-channel attack resistance of a typical IC versus one with special 
circuit techniques. Measurement-based experimental results show that a DPA attack 
on the insecure coprocessor requires only 8,000 measurements to disclose the entire 
128-bit secret key. The same attack on the secure coprocessor still does not disclose 
the entire secret key at 1,500,000 measurements.  

The remainder of the paper is organized as follows. The next section describes the 
prototype IC. It also discusses in brief the secure digital design flow and the architecture 
of the AES cryptographic engine. In section 0, our measurement setup is presented and 
an attack is mounted on the fabricated IC to assess the increase in DPA resistance of the 
secure coprocessor. This section also presents area, timing and power numbers. Section 
0 presents related state-of-the-art. Finally, a conclusion will be formulated. 

2   Prototype IC 

The prototype IC, depicted in figure 1, consists of two functionally-identical 
coprocessors and is fabricated on the same die using a TSMC 6M 0.18μm process. An 
insecure coprocessor serving as benchmark is implemented using standard cells and 
regular routing techniques. A secure coprocessor is implemented through the secure  
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Fig. 1. IC micrograph: secure coprocessor using WDDL and differential routing (left); and 
insecure coprocessor using standard cells and regular routing (right) 
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digital design flow using WDDL and differential routing. Both coprocessors have 
been implemented starting from the same synthesized gate level netlist. The WDDL 
gates have been derived from the commercial static CMOS standard cell library used 
in the regular insecure design.  

The IC, which is used for embedded cryptographic and biometric processing, 
consists of four components: an AES based cryptographic engine, a fingerprint-
matching oracle, a template storage, and an interface unit. The coprocessor is part of a 
portable biometric and cryptographic authentication device that is called ThumbPod 
[5]. Architectural partitioning has been performed to divide the system into insecure 
(LEON SPARC V8 processor) and secure (coprocessor) modules, such that the 
processing and storage of all sensitive information is done on the secure module [6]. 
This ensures that the entire system does not need to be protected. Only the secure 
module must be protected for the system to remain secure. 

2.1   Secure Digital Design Flow 

The secure digital design flow is completely supported by mainstream EDA tools and 
uses a commercially available static CMOS standard cell library. The differences with 
a regular synchronous CMOS standard cell design flow are minor. The secure digital 
design flow starts from a normal design in a hardware description language (HDL) 
and only a few key modifications are incorporated in the backend of the design flow. 
A cell substitution phase and an interconnect decomposition phase parse intermediate 
design files. The former procedure modifies the gate level description, the latter 
duplicates and translates the interconnect wires. The additional steps only required six 
minutes of CPU time for the prototype IC. 

The design flow is based on a constant power dissipating logic: in one clock cycle 
the power consumption of each individual logic gate is constant and independent of 
its input signals. In other words, 0 to 0, 0 to 1, 1 to 0, and 1 to 1 output transitions all 
draw the same power from the supply. Two conditions must be satisfied to have 
constant power dissipating logic: a logic gate must have exactly one charging event 
per clock cycle; and the logic gate must charge a constant capacitance in that event.  

Dynamic differential logic, also known as dual rail with precharge logic, has a 
single charging event per cycle. The design flow uses wave dynamic differential logic 
to implement dynamic differential behavior using static CMOS standard cells [13]. A 
WDDL gate consists of a parallel combination of two positive complementary gates. 
In the precharge phase, both true and false inputs are set to 0. This puts the output of 
the gate at 0. This 0 precharge value travels as the input to the next gate, creating a 
precharge ‘wave’. In the evaluation phase, each input signal is differential and the 
WDDL gate calculates a differential output. Special registers and input converters 
launch the precharge value. They produce an all-zero output in the precharge phase 
but let the differential signal through during the evaluation phase. 

Besides a 100% switching factor, it is essential that a fixed amount of capacitance 
is charged during the transition. Thus, the total load at the true output of the 
differential gate should match the total load at the false output. With shrinking 
channel-length of the transistors, the interconnect capacitances have become the 
dominant capacitance. Hence, the issue of matching the interconnect capacitances of 
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the signal wires is crucial. The best strategy to achieve matched interconnect 
capacitances is differential routing [12]. The true and false output signals are routed at 
all times with parallel routes in adjacent tracks of the routing grid, on the same layers, 
and of the same length. Independent of the placement, the two routes have the same 
first order parasitic effects.  

2.2   AES-Based Cryptographic Engine 

The cryptographic engine consists of an AES core with multiple modes of 
operation. The datapath is based on a single round of the AES-128 algorithm which 
consists of byte substitution, shift row, mix column, and key addition phases along 
with on-the-fly key scheduling in (see figure 2). Byte substitution is implemented 
using look-up tables. A full encryption of 128-bit data using a 128-bit key takes 
precisely eleven cycles. For a detailed discussion on the architecture, the reader is 
referred to [4].  

KEY
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XORSUB
SHIFT
ROW
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KEY

DIN

DOUT

RA

RB RC

 

Fig. 2. Architecture of AES core 

3   DPA Resistance Assessment 

3.1   Measurement Setup 

The measurement and analysis setup is depicted in figure 3. The core supply current 
is measured between the PCB decoupling capacitances and the IC. A CT1 current 
probe from Tektronix [10] with a 25KHz to 1GHz bandwidth measures the supply 
current variations. For every mA, it provides 5mV output to the HP54542C 
oscilloscope [1]. The oscilloscope filters the waveform transients at 500MHz and 
digitizes with a 2GHz sampling frequency. With a standard GPIB interface, we 
have made up to 400 measurements a second, including data transfer. Such a setup 
only requires four minutes to make 100,000 power measurements. A ‘measurement’ 
refers here to multiple data points which are used as one acquisition in a side-
channel attack.  

To facilitate the synchronization of the measurements, we have access to the 
encryption start signal. A clock of 50MHz is provided to the coprocessor under attack. 
During the attack, only the AES core processes data. This means that for the attack on 
the insecure processor, the other circuits and modules are quiet, while for the attack 
on the secure processor, the other circuits and modules are constantly charging and 
precharging in the same manner. 



358 K. Tiri et al. 

leon sparc coprocessor IC

synchr. 
signal 

current probe 

 

Fig. 3. DPA measurement and attack setup 

Figure 4 shows the encryption start signal and the supply current of the AES 
coprocessors in output feedback (OFB) mode. The supply current of the insecure 
coprocessor exhibits large variations. It broadcasts the eleven encryption rounds and a 
high power peak exposes the starting point of each new encryption. The power 
consumption profile of the secure implementation on the other hand is invariant and 
does not reveal any information in a simple power analysis. In each clock cycle, 
nominally the same total load capacitance is charged and thus the same power is 
consumed, regardless of the operation been performed. 

3.2   Differential Power Analysis 

The DPA attack is performed as the AES core encrypts a plaintext P, using a key K, 
to produce a ciphertext C11 after eleven rounds. Note that the original K is broken up 
into different round keys (K1 through K11), where K11 is the round key for round 
eleven. Once K11 is deduced, it is easy to trace it back to find the original key K. 

The influence of the datapath on the power consumption of the AES core is 
estimated through the Hamming distance of two successive values of register RB, (see 
figure 2) or in other words, through the number of changing state bits in a clock cycle. 
Most AES operations work with bytes and eight state bits can be calculated using a 
guess on one key byte. Using the same measured data, each of the sixteen bytes of the 
128-bit key is cracked separately in the following manner.  

We compare the estimations and the measurements with the correlation test [2]. 
The correct key guess is the one that results in the highest correlation coefficient 
between the vector of Hamming distances and the vector of representative 
measurements, for which we use the maximum supply current in a clock cycle.  
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encryptionencryption

supply current supply current 

 

Fig. 4. Transient measurement (2 encryptions, 22 clock cycles) of encryption start signal (top) 
and core supply current (bottom): insecure coprocessor (left); and secure coprocessor (right) 

We choose to attack register RB as it transitions from round eleven to the 
following round. As shown in figure 5, RB in round eleven (D11) can be found by 
tracing back the signal obtained after xor-ing the final ciphertext (C11) and a key guess 
(K11) through both the shift row operation and the substitution box. RB in the next 
round, during which we perform the supply current measurement, is the known final 
ciphertext (C11).  

Each key byte (0 to 15) of K11 can be a value between 0x00 and 0xFF, for a total of 
256 possibilities. Thus, for each key byte, there are 256 power estimations, one of 
which is the correct estimation. Of course the correlation may be inaccurate for only a 
few measurements (i.e., sets of Pmeasurement and C11). Hence thousands of different 
(Pmeasurement,C11) pairs were measured using the same key (and hence the same K11) in 
order to filter out the noise and provide a truthful correlation. 

The correct key is found by evaluating:  

max fcost(K11) = corr(Pmeasurement,Pestimation) (1) 
 K11 
 where  Pmeasurement = max(Isupply,11+1) 
  Pestimation = HamDist(D11,C11) 
  D11 = sub-1(shiftrow-1(K11 ⊗ C11)) 

For the secure design, we only need to look at one round, as all signals are at 0 at 
the start of the evaluation phase. The number of changing bits of RB in round 
eleven, during which we also carry out the measurements, is the Hamming weight 
of RB. 
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Fig. 5. AES core: round 11 (top); and round 11 + 1 (bottom) 

Figure 6 shows the encryption start signal and the core supply current during the 
attack. The supply current of the insecure coprocessor reveals the encryption 
operation by showing exactly eleven peaks. The secure coprocessor has a continuous 
current whether or not data is being processed, either cryptographic or other. It has an 
identical power consumption profile in figures 4 and 6. If an attacker does not have 
access to the encryption start signal, it is almost impossible to know when the IC is 
encrypting.  

For the actual attack, we only measure the round of interest. The dynamic range is 
set to cover the variation of the maximum current. The other irrelevant samples may 
be clipped. For the remainder of this manuscript, we will refer to the maximum value 
of one acquisition as the measurement. 

encryptionencryption

supply current supply current 

 

Fig. 6. Transient measurement of encryption start signal and core supply current for single 
encryption: insecure coprocessor (left); and secure coprocessor (right) 
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3.3   DPA Resistance 

The resistance against DPA is quantified with the number of measurements to 
disclosure (MTD). This number expresses how many measurements are necessary to 
correctly distinguish the correct secret key from all the other wrong key guesses.  

We define MTD as the cross-over point between the correlation coefficient of the 
correct key and the maximum correlation coefficient of all the wrong keys guesses. 
For both coprocessors, an example of an attack on one key byte is shown in figure 7. 
MTD is depicted in the ‘Correlation vs. Number of Measurements’ graphs as the point 
where the black line (correct key) crosses the grey envelope (wrong keys). The results 
for the other fifteen key bytes are similar. The maximum number of measurements we 
took is 15,000 for the insecure coprocessor and 1,500,000 for the secure coprocessor.  

For the insecure implementation, the correct key bytes are found very easily. On 
average, 2,000 measurements are required to disclose a key byte. In one case, a mere 
320 samples were sufficient to mount a successful attack. There is also a large 
resolution. In the top right plot of figure 7, there is no doubt about the correct key guess. 
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Fig. 7. Cracking the secret key: insecure coprocessor 15K measurements (top); and secure 
coprocessor using 1.5M measurements (bottom) 
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The secure coprocessor on the other hand substantially reduces this resolution of 
correlation, as shown by the small correlation peaks in the ‘Correlation vs. Key 
Guess’ graph in figure 7. Our measurements show that out of sixteen keys bytes, 
WDDL effectively protects five key bytes. One and a half million measurements are 
not sufficient to disclose the correct key bytes. One example is shown on the bottom 
of figure 7. The eleven key bytes that are found require on average 255,000 
measurements, an increase of more than two orders of magnitude when compared 
with the insecure coprocessor.  One example is shown in figure 8. 

The analysis also revealed that for a dual rail design, the correlation coefficient of 
the correct key guess can be negative, as shown in figure 8. This means that less 
power is consumed as more bits change. This implies that the 0 to 1 switching of the 
false net uses more power than the 0 to 1 switching of the true net. The parasitic 
capacitances affected by the false signals are larger than the ones affected by the true 
signals. On the other hand, for the five bytes that have not been found, the 
capacitances have an almost perfect matching between the differential nets. Hence it 
is crucial to guarantee matched capacitances consistently for all the logic.  
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Fig. 8. Negative correlation coefficient 

Shielding the differential routes on either side with a power line improves the 
matching. This eliminates the cross-talk to adjacent wires in the same metal layer. 
Alternatively, increasing the distance between different differential pairs would 
reduce the effect, or an improved iterative design flow could be used to identify and 
correct mismatches.  

Table 1 summarizes the results. WDDL and differential routing is a functional 
technique to thwart power attacks. The trade-off is a three times increase in area, and 
a four times increase in power consumption and minimum clock period.  

Recall from section 0 that security partitioning, the careful division of the 
architecture into two parts (a secure and a non-secure part) [6], minimizes the cost for 
complex systems. Only the relatively small part that processes sensitive information  
 



 Prototype IC with WDDL and Differential Routing – DPA Resistance Assessment 363 

Table 1. IC results summary 

Parameter Unprotected AES Protected AES 

Gate Count (eq. gates) [K] 79 245 

Area [mm2] 0.79 2.45 

Maximum Frequency (@1.8V) [MHz] 330.0 85.5* 

Maximum Throughput (@1.8V) [Gb/s] 3.84 0.99 

Power Consumption (@1.8V, 50 MHz) [mW] 54 200† 

Measurements to Disclosure‡   

 min    320       21,185 

 mean 2,133     255,391 

 max 8,168  1,276,186  

 Key bytes not found (@1.5M Meas.) n/a 5 
*Duty factor of clock > 50% to guarantee precharge of all gates 

†Estimation based on area ratio AES vs. Entire System 
‡Based on correctly guessed key bytes 

 

requires realization in a coprocessor with specialized logic and routing. This 
minimizes the area and reduces the power and time penalty. Even with these 
penalties, the secure coprocessor still runs orders of magnitude faster and expends less 
energy than a software implementation on the main processor.  

The protected AES achieves a figure of merit, obtained by normalizing the 
throughput with the power consumption, of 2.9Gb/s/W. On the other hand, an 
unprotected AES implemented with C code on an embedded Sparc processor 
attains a mere 0.0011Gb/s/W (gcc, 1mW/MHz @120Mhz Sparc, 0.25μm CMOS). 
Research papers on algorithmic countermeasures unfortunately do not document 
the overhead in cycle count (and in byte code). Given a likely penalty of a factor 2 
to 3, the figure of merit of the protected coprocessor is 4 orders of magnitude 
better than a software implementation of an algorithmic countermeasure on a 
microprocessor. 

As future work, we foresee the need to explore the EMA resistance and the impact 
of ‘noisy’ regular components. Electromagnetic Analysis (EMA) is the equivalent of 
a power attack but instead uses the electromagnetic fields. The electromagnetic fields 
are generated by the (dis)charging gates. Since ideally each gate uses always the 
same amount of charge, a significant increase in EMA resistance is also expected. 
The impact of regular components, which process the insensitive data, causes a 
substantial increase in power variations. In figures 4 and 6, the maximum current has 
only minimal variations for the secure implementation while it has large variations 
for the regular implementation. Consequently, if both a secure and a regular 
component are present on an IC, the dynamic range of the measurements must be set 
to cover the maximum variation of the maximum current. As a result, the 
measurements of the side-channel information leaked by the secure module will be 
much less accurate and possibly within the quantization error. This analysis is 
possible with the prototype IC, as both the secure and the insecure processor can be 
operated at the same time.  
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4   Related Work 

To our knowledge, this work is the first to deliver and demonstrate a working, 
practical DPA countermeasure implemented and tested in actual silicon. All other 
published techniques have never been implemented in silicon, or have never been 
measured and attacked, or did not offer any significant DPA resistance.  

A dual rail asynchronous chip has been presented previously [3]. The 
implementation, however, did not provide a significant increase in DPA resistance. This 
failure has been attributed to unbalanced signal paths caused by routing differences. 
Note that if asynchronous logic is used to increase the DPA resistance, dual rail encoded 
asynchronous logic must be used. Because of the dual rail logic, there is also a factor 
three area increase compared with a single ended synchronous benchmark [8].  

Algorithmic countermeasures are mathematically DPA resistant. In practice, 
however, proposed solutions actually have been insecure [7]. To the best of our 
knowledge, published results of algorithmic countermeasures have never been 
successfully demonstrated on any platform with an actual measurement-based DPA 
resistance assessment. We are aware of one silicon implementation of an algorithmic 
countermeasure [9]. Measurements and assessment of the DPA resistance, however, 
have not yet been performed. 

5   Conclusions 

We have presented a secure coprocessor that does not leak information through the 
power supply, which is a major and easy to access side-channel leakage source. Built 
in a 0.18μm CMOS technology, we believe that this is the first IC that is practically 
immune to DPA attacks. Its immunity has been experimentally verified and compared 
to a second IC that is built with a regular standard cell approach. The design approach 
relies on WDDL, a logic style that has a single switching event per cycle, and 
differential routing, a place and route technique that controls the load capacitance. An 
actual power attack has been mounted on the IC to experimentally assess the increase 
in DPA resistance. Experimental results showed that 1,500,000 acquisitions are not 
sufficient to fully disclose the 128-bit secret key. This makes the attack de facto 
infeasible. The required number of measurements is larger than the lifetime of the 
secret key in most practical systems. 
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Abstract. In this paper, we propose new models for directly evaluating
DPA leakage from logic information in CMOS circuits. These models are
based on the transition probability for each gate, and are naturally ap-
plicable to various actual devices for simulating power analysis. We also
report the effectiveness of the previously known enhanced DPA on our
model. Furthermore, we demonstrate the weakness of previously known
hardware countermeasures for both our model and FPGA and suggest
secure conditions for the hardware countermeasure.

1 Introduction

SPA (Simple Power Analysis) and DPA (Differential Power Analysis), proposed
by P.Kocher, have become a threat to the security of cryptographic implementa-
tion such as SmartCard [1]. Ever since these proposals, cryptographic researchers
have begun to consider not only mathematical attacks but side-channel attacks
as well. This work has resulted in several proposed countermeasures, particularly
against DPA. These countermeasures can be roughly classified into the following
two groups:

– Algorithmic level
– Circuit level

Coron addresses countermeasures for public-key encryption algorithms [2]. Em-
ploying masked data with random numbers, Akkar uses countermeasures for
block ciphers [3]. We consider the above mentioned examples to be algorithmic.
On the other hand, SABL (Sense Amplifier Based Logic) [4][5] based on the
DCVSL (Differential Cascode Voltage Switch Logic), SDDL (Simple Dynamic
Differential Logic) based on the CMOS circuit using the SABL methodology,
and WDDL (Wave Dynamic Differential Logic) [6] belong to the circuit level.

Generally, ASICs, such as microprocessors and cryptographic co-processors,
are implemented based on the CMOS technology. We believe that countermea-
sures at the circuit level, such as WDDL and Masked-AND [7], are the most
fundamental techniques because these are related to power consumption and are
applicable to various cryptographic algorithms.

The manner in which the effectiveness of a countermeasure can be demon-
strated is important. In this paper, we consider a methodology for the security
evaluation of CMOS circuits at the outset. Some attempts have already been
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made to systematically analyze DPA leakage [8][9][10]. Constructing a power
consumption model is an effective method for the analysis of the effectiveness of
countermeasures. For instance, the model based on the analog characteristics of
CMOS circuits [8], the model based on the Hamming weight [9], and the sim-
plification model in Ref. [8] based on the transition of data registers [10] were
proposed in 1999, 2000, and 2002, respectively. Each model is complex or insuf-
ficient in terms of the reason for the leakage, because the aim of the model is to
simulate power consumption itself or to determine the bias of data, not the bias
of power consumption. We now present new models that determines the origin
of the leakage. These models are based on signal transition probability for each
gate(see also [11]), and are not only more accurate than the digital model [9] but
are also more easily applicable than the analog models [8][10]. We will point out
that the evaluation results of some primitive logics using our models are very
similar to the actual power analysis using FPGA.

Next, we discuss the relation between enhanced DPAs and our leakage model.
Recently, various analysis technics were proposed as enhanced DPA [12][13]. The
countermeasure should satisfy the requisite tolerance for these technics. In this
paper, we also discuss the effectiveness of the previously known enhanced DPAs
from the viewpoint of our model.

Finally, we demonstrate the weakness of previously known hardware coun-
termeasures for both our model and FPGA and suggest secure conditions on the
CMOS logic circuit.

2 Leakage Model for CMOS Circuit

The current evaluation model against DPA is constructed by simulating the
power consumption of the circuit. In general, there are two approaches. One
method constructs a detailed model of a characteristic of the analog device
[8][10]. In this case, the power consumption can be estimated with high ac-
curacy. However, the estimation of the power consumption is largely dependent
on the device; thus, it tends to become complex. The other method roughly es-
timates the power consumption assuming a certain digital model; for example,
it estimates the power consumption based on the Hamming weights [12]. In this
approach, it is possible to construct simple models and evaluate power consump-
tion without device dependency. However, the result might not accurately reflect
the behavior of the actual device.

In the following section, we propose a more detailed model that improves on
the flipping model introduced in Ref. [15] for CMOS circuits. Hereafter, we refer
to this model as the leakage model. The primary concept of the model is mainly
to evaluate only the leakage information for DPA. Power consumption itself is
not considered in this model.

2.1 Leakage Model Based on Transition Probability

Power consumption in CMOS circuits is summarized by the following equa-
tion [16]:
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Ptotal = pt · CL · V 2
dd · fclk + pt · Isc · Vdd · fclk + Ileakage · Vdd, (1)

where CL is the loading capacitance, fclk is the clock frequency, Vdd is the supply
voltage, pt is the transition probability of the signal, Isc is the direct-path short
circuit current, and Ileakage is the leakage current.

The first term results from the charge/discharge of the loading capacitance.
The second term depends on Isc, which arises when both the NMOS and PMOS
transistors are simultaneously active. The third term represents power consump-
tion caused by the leakage current, which is primarily determined by the char-
acteristics of the CMOS process.

DPA is an attack in which the attacker estimates the intermediate value in
the encryption/decryption process, classifies the patterns of power consumption
based on this estimate, and obtains the secret information from the measured
differences. Here, only pt is dependent on the intermediate value in Eq.(1). Other
parameters are fixed when the circuit is constructed. We assume that the power
difference in DPA measurements occurs because the transition probability of the
signal is biased according to the intermediate value. A detailed discussion of the
bias of the transition probability is presented below.

Generally, the signal transitions also depend on the delay in the transistors
and the wiring in the CMOS device as well as on the logic functions of the
circuits. Thus, we consider the leakage model in either of the following cases:

– Static Model : An ideal circuit with no delay and transient hazard in tran-
sistor and wiring.

– Dynamic Model : A real circuit wherein a transient hazard is generated due
to the delay.

In order to clarify the discussion, we analyze the generalized circuit as shown
in Fig. 1. This circuit is constructed with k gates and n inputs x1,x2,...,xn and
feedback paths from the combinational circuit to the registers. The transition of
the output signal at the ith gate is expressed as

Δf(i) = f(i)(x1 ⊕ Δx1, · · · , xn ⊕ Δxn) ⊕ f(i)(x1, · · · , xn), (2)

where Δx is a transition of the input signal and fi is a Boolean function at the
output of the ith gate. In the following section, we define the leakage model by
considering the bias of the probability of Δf(i) = 1 in cases where α = 0 or
α = 1, with α being the value of the signal used by the attacker for grouping.
We will refer to this signal a selection bit.

2.2 Static Leakage Model

We assume that x1,x2,...,xn in Fig. 1 are independent variables 1. In the static
model, the expectation of the transition frequency in one clock cycle is expressed
1 These are not strictly independent, but any variation from independence is neg-

ligible when the bias of the transition probability for each gate is discussed in a
cryptographic circuit.
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as

N stc
α =

k∑
i=1

pstc
α,(i), (3)

where pstc
α,(i) is the transition probability at the output of the ith gate corre-

sponding to the value of the selection bit α.

Definition 1. (Static Leakage). Static leakage N stc
diff in the combinational

circuit is

N stc
diff = N stc

α=1 − N stc
α=0 =

k∑
i=1

(pstc
α=1,(i) − pstc

α=0,(i)), (4)

where pstc
x,(i) is the transition probability of Δf(i) = 1 under the condition that

Δx1, ..., Δxn are n independent variables.

If N stc
diff �= 0, it is possible that the correlation peak is observed in DPA measure-

ments from Eq. (1). Generally, a normal nonlinear logic using a CMOS standard
cell library has N stc

diff �= 0. Some examples are provided below.

Example 1: AND-XOR. We consider the static leakage in Fig. 2 (a) with random
inputs. If the selection bit is x1, we get

Δf(1) = x1 · Δx2 ⊕ x2 · Δx1 ⊕ Δx1 · Δx2,

Δf(2) = x2 · x3 · Δx4 ⊕ x3 · x4 · Δx2 ⊕ x4 · x2 · Δx3 ⊕ x2 · Δx3 · Δx4

⊕ x3 · Δx4 · Δx2 ⊕ x4 · Δx2 · Δx3 ⊕ Δx2 · Δx3 · Δx4,

Δf(3) = Δf(1) ⊕ Δf(2). (5)

Namely,

Δfx1=1,(1) = Δx2 ⊕ x2 · Δx1 ⊕ Δx1 · Δx2,

Δfx1=0,(1) = x2 · Δx1 ⊕ Δx1 · Δx2.

xi = 1 and Δxi = 1 occur with a probability 1/2. Here, the input states
(x2, Δx1, Δx2) that assume Δfx1=1,(1) = 1 are (0,0,1), (1,0,1), (1,1,0), and
(1,1,1). Hence, we have
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pstc
x1=1,(1) = 1/2, pstc

x1=0,(1) = 1/4.

Similarly,

pstc
x1=1,(2) = 7/32, pstc

x1=0,(2) = 7/32, pstc
x1=1,(3) = 7/16, pstc

x1=0,(3) = 5/16.

Thus, the static leakage in Fig.2 (a) is

N stc
diff = 3/8.

The fact that AND-XOR is a basic element for S-boxes implies that a normal
implementation of a block cipher necessarily has static leakage.

Example 2: n-AND. Under a condition similar to that in Example 1, the static
leakage of n-input AND gates shown in Fig. 2 (b) is

N stc
diff = (2n−1 − 1)/22n−2,

where the selection bit α ∈ {x1, · · · , xn}.

Example 3: Buffer Tree. The static leakage of two-input AND gates connected
to n buffers (Fig. 2 (c)) is

N stc
diff =

1
4
· n,

where the selection bit is x1 or x2. Stated simply, the static leakage at the gate
with a large fan-out is amplified.

Based on Definition 1, the static leakage has the property described in the
following section.

Property 1: Consecutive Static Leakage. An equal amount of static leakage
occurs both in the cycle when the selection bit appears and in the next cycle.

Based on Eq. (2), it is evident that the transitions related to the selection bit
occur in the cycle when the selection bit appears and in the next cycle as well. In
cryptographic circuits, Δx1,...,Δxn are generally independent random variables.
Thus, two static leakages of equal amounts occur for two consecutive cycles
because two biased state transitions occur (random state → state dependent on
α, state dependent on α → random state). This implies that two similar DPA
peaks are observed for two consecutive clock cycles in the DPA measurements if
the target device is ideal.

2.3 Dynamic Leakage Model

In an actual cryptographic circuit, the delay time depends on the signal route. In
addition, each route tends to be non-uniform. Such non-uniformity is particularly
remarkable in the circuits designed with automatic synthesis/layout.
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As in Section 2.2, we consider the transition probability in Fig. 1. We assume
that the transitions Δx1, ..., Δxn of the registers reach each gate at different
times. Here, the transition of the Boolean function Δf(i) occurs only when tran-
sitions of the registers reach the ith gate. Based on these facts, we can evaluate
the transition probability at a certain timing by supposing that only the transi-
tion corresponding to the timing is a variable and that others are 0. We define
Dynamic Leakage using this probability.

Definition 2. (Dynamic Leakage). Let Δt be a time interval that an attacker
can observe. Dynamic leakage Ndyc

diff in Δt on the combinational circuit is

Ndyc
diff = Ndyc

α=1 − Ndyc
α=0 =

k∑
i=1

∑
e∈E(i)

(pdyc
α=1,(i)(e) − pdyc

α=0,(i)(e)), (6)

where E(i) is the set of events with the possibility that transition occurs in the
state after α appeared at the ith gate in Δt, and pdyc

α,(i)(e) is the probability of
Δf(i) = 1 under the condition that the transition of the input signal correspond-
ing to e is a variable and the others are 0.

Here, we consider the relation between the transitions of the registers Δx1,...,
Δxn and the event e ∈ E(i) that depends on the selection bit α. If the circuit
has not been redundantly constructed and Δt ≥ 2 cycles, E(i) contains at least
n events corresponding to the transitions of the registers in the state wherein α
appeared. This does not depend on the order of the signal transitions. It should
be noted that these events are distributed between two cycles according to the
delay time, which was fixed when the circuit was constructed, for each signal to
propagate. Additionally, it is possible for two or more transitions to occur by the
same transition of the register if the propagation route is different. In this case,
the transitions corresponding to each route are treated as independent variables
in Eq. (2). In the following section, we evaluate the dynamic leakage in Fig. 2.

Example 4: AND-XOR. We consider the circuit, shown in Fig. 2(a), on the
dynamic model. If Δt ≥ 2 cycles, we get

E(1) = {e(Δx1), e(Δx
′
2)}, E(2) = {e(Δx

′′
2 ), e(Δx3), e(Δx4)},

E(3) = {e(Δx1), e(Δx
′
2), e(Δx

′′
2 ), e(Δx3), e(Δx4)}.

Based on Eq.(6), Δf3 at each event is

Δf(3)(e(Δx1)) = x2 · Δx1, Δf(3)(e(Δx
′
2)) = x1 · Δx

′
2, Δf(3)(e(Δx

′′
2 )) = x3 · x4 · Δx

′′
2 ,

Δf(3)(e(Δx3)) = x4 · x2 · Δx3, Δf(3)(e(Δx4)) = x2 · x4 · Δx3.

If x1 is the selection bit, we have

pdyc
x1=1,(3)(e(Δx

′
2)) = 1/2, pdyc

x1=0,(3)(e(Δx
′
2)) = 0.
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Similarly, in Δf(1) , we have

pdyc
x1=1,(1)(e(Δx

′
2)) = 1/2, pdyc

x1=0,(1)(e(Δx
′
2)) = 0.

The dynamic leakage of Fig. 2(a) is Ndyc
diff = 1.

It should be noted that the difference between x1 and x
′
2 at the delay time

determines the timing whereby dynamic leakage occurs in the circuit. Ndyc
diff oc-

curs during the cycle when the predicted x1 appears if x
′
2 is slower than x1, and

it occurs during the next cycle if the delay condition is converse.

Example 5: n-AND. Under a condition similar to that in Example 4, the dynamic
leakage, shown in Fig. 2 (b), is

Ndyc
diff = (n − 1)/2n−1,

where x ∈ { x1 ,..., xn } .

Finally, we describe a property common to static and dynamic leakage.

Property 2. (Complementary Leakage from AND- and OR-Gate). The
static/dynamic leakages of an equal amount but of opposite polarity occur from
thw AND- and OR-gate(or, the NAND- and NOR-gate) respectively, under the
same input and delay time condition.

This implies that there is the possibility that the leakage of the entire circuit
is counterbalanced. In actuality, a countermeasure using this property has been
proposed [17].

3 Enhanced Leakage Models

Thus far, some analysis technics that enhance standard DPA have been pro-
posed. Here, we define the leakage model corresponding to these enhanced DPA
and consider the effectiveness of each technic from the viewpoint of our model. In
particular, we focus on Messerges’s second-order DPA (M-2DPA) [12] and Wad-
dle’s second-order DPA (W-2DPA) [13] which are basically enhanced versions of
DPA.

3.1 Standard Second-Order Attack

In standard DPA, the attacker analyzes power traces according to the average
power difference at a specific time. On the other hand, in M-2DPA, the attacker
analyzes power traces between two points. First, we define the leakage model of
M-2DPA based on the signal transition in the following section.
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Definition 3. (Leakage by Messerges’s Second-Order DPA). Let N(t) be
an expectation of the transition frequency at time t in the combinational circuit.
Leakage by Messerges’s second-order DPA N2nd

diff is

N2nd
diff = (Nα=1(t′) − Nα=1(t)) − (Nα=0(t′) − Nα=0(t)). (7)

M-2DPA is an evaluation method that analyzes the correlation of the signal
transition of two points. This implies that the correlation of the power con-
sumption of two specific circuit components is evaluated. Moreover, this also
implies that the correlation between cycles in the same circuit is evaluated if the
combinational circuit is constructed with the loop architecture.

Next, we consider the condition to be secure against M-2DPA in CMOS
logic circuits considering this leakage model. If a certain circuit is secure against
standard DPA, the secure condition Ndiff = 0 is satisfied at any time in Eqs.
(5) and (8). In this case, we have Nα=1(t) = Nα=0(t) and Nα=1(t′) = Nα=0(t′).
Thus, this circuit obviously satisfies N2nd

diff = 0. This implies that if the CMOS
logic circuit is secure against standard DPA, it is also secure against M-2DPA.
On the other hand, if a certain circuit is insecure against the standard DPA,
we have Nα=1(t) − Nα=0(t) = kt(�= 0) and Nα=1(t′) − Nα=0(t′) = kt′ at any
two points t and t′, where kt and kt′ are the leakages against the standard DPA
at each time. In this case, if kt′ = kt �= 0 is satisfied at any point, this circuit
satisfies N2nd

diff = 0. However, the circuit wherein equal leakage occurs at any
point of time is not realistic. Namely, if the circuit is insecure against standard
DPA, it is also insecure against M-2DPA in real circuits.

Taking the abovementioned facts into consideration using our models, we
arrive at the following conclusion:

– Messerges’s second-order DPA is an attack that is essentially equivalent to
the standard DPA in CMOS logic circuits.

M-2DPA is useful only when the spike is made easily visible, the DPA trace with
intuitive understanding is obtained, or the number of samples is decreased. In
the construction of the hardware countermeasure, we have to consider only the
the standard DPA.

3.2 Attack by Squaring Power Traces

Zero-Offset 2DPA, which was proposed by Waddle et al., is an analysis technic,
which is characterized by the use of squaring power traces [13]. We will refer
to this technic as the W-2DPA. In this section, we consider the effectiveness of
W-2DPA from the viewpoint of our model.

Definition 4. (Leakage by Waddle’s Second-Order DPA). Let S(t) be the
set of transition frequencies with a possibility to occur at time t in the combina-
tional circuit. Let ps(t) be the probability that the transition occurs in s gates at
time t. The leakage by Waddle’s Second-Order DPA Vdiff is

V (t) =
∑

s∈S(t)

(s2 · ps(t)), (8)
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Vdiff = Vα=1(t) − Vα=0(t). (9)

Here, we compare the secure condition of W-2DPA and standard DPA. Based
on Definition 4, it is necessary to satisfy the following equation for Vdiff = 0.∑

s∈S(t)

(s2 · pα=1,s(t)) =
∑

s∈S(t)

(s2 · pα=0,s(t)) (10)

In standard DPA, on the other hand, if
∑

(s·pα=1,s(t)) is equal to
∑

(s·pα=0,s(t)),
Ndiff = 0 is satisfied. Thus, each secure condition is obviously different. This
consideration suggests the following conclusion.

– Waddle’s second-order DPA can detect the bias of the distribution of the
transition probability in CMOS logic circuits.

W-2DPA is an analysis technic that is essentially different from standard DPA,
and we must consider this technic in the construction of the hardware counter-
measure. Actually, masked CMOS logics are weak against W-2DPA, even if the
static model is assumed. These results are described in Section 4.

Next, we enhance Definition 4 more effectively. Generally, it is difficult to
compute ps(t) in the entire circuit when the dynamic model is assumed. There-
fore, we enhance Definition 4 such that it is applicable to the actual device for
simulating power analysis.

Definition 5. (Enhanced Leakage by Waddle’s Second-Order DPA).
Let Δt be a time interval that an attacker can observe. Let TC be the transition
count to occur in Δt for the combinational circuit. Let Nm be the number of
observed samples corresponding to α. Leakage by Waddle’s Second-Order DPA
V ′

diff is

V ′
diff = (

∑
TC2

Nm
)α=1 − (

∑
TC2

Nm
)α=0 (11)

Our models which are based on the transition probability can evaluate the
security strength of the circuit in advance by extracting the transition of each
gate from the netlist 2 for the logic simulation. In Ref. [14], we point out that
the evaluation results of logic simulation using our models are very similar to
the actual circuits without countermeasures.

4 Evaluation for Previously Known Countermeasures

There are two approaches to the construction of countermeasures at the circuit
level. The first approach uses complementary behavior and makes power con-
sumption independent of data. The second uses data masking in combinational
circuits and renders intermediate data unpredictable. In this section, we review
a typical example based on each approach and evaluate each countermeasure by
using our leakage models.
2 A netlist is a text description of the circuit connectivity. It is basically a list of

connectors, a list of instances (gates). In addition, the netlist can contain delay
information.
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(a) (b) (c)

Fig. 3. Components of previously known countermeasures (a) WDDL, (b) Masked-
AND, (c) MAND

4.1 Previously Known Countermeasures on the CMOS Circuit

Wave Dynamic Differential Logic. Tiri et al. proposed Wave Dynamic
Differential Logic (WDDL) [6] which is based on dynamic and differential logic
and constructed with CMOS standard cell libraries. Figure 3 (a) shows the basic
components of WDDL. As the first step, WDDL executes a precharge at the
beginning of the combinational logic. It only contains three logic gates, i.e., AND,
OR, and NOT. In addition, they proposed a method for the implementation of
WDDL using FPGA.

Masked-AND Operation. Figure 3 (b) shows the Masked-AND operation as
proposed by Trichina [7]. Masked-AND is a method of calculating “(a · b) ⊕ rz”
using the above 5 input data, x, y, rx, ry and rz. Hence, the computations, as
shown in Fig. 3 (b), can be performed without compromising on the bits of actual
data. In addition, Blömer et al. insist that this approach is ”Provably Secure”
against DPA in Ref. [19].

MAND. Figure 3 (c) describes MAND proposed by Shimizu [18]. It is based
on data masking and is characterized by the use of a dual-rail circuit.

4.2 Analysis for Complementary Logics

Based on Property 2, a complementary logic has the possibility of counterbalanc-
ing the leakage. WDDL is a method that refines this consideration. We consider
the circuit shown in Fig. 3 (a). At the end of the precharge phase (prch = 0), all
output signals of the WDDL gates are at 0. Thus, the transitions for each gate
in the evaluation phase (prch = 1) are equal to the wire value. In the case of the
WDDL-AND gate,

Δf(AND) = a · b Δf(OR) = ā | b̄ = a · b ⊕ 1

Based on this, we obtain N stc
diff = 0 because a transition occurs only at either one

of the gates without any relation to the value of a or b.
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Next, we consider the dynamic model. Here, we assume that the transition
Δb arrives at the gates later than transition Δa. Table 1 shows the transition
probability of each CMOS gate corresponding to each selection bit in this con-
dition.

On the basis of the data listed in Table 1, if Δt in Definition 2 is long enough
and both e(Δa) and e(Δb) occur for that time, Ndyc

diff = 0 is satisfied without any
relation to the selection bit. However, if the attacker can observe power traces
in Δt that contains e(Δa), and not contain e(Δb) 3, he can detect the bias of
the transition frequency. It should be noted that it is difficult to observe the
opposite case(only containing e(Δb)) because of some capacitance in the actual
device. In the example of Table 1, the dynamic leakage of the WDDL-AND gate
is Ndyc

diff = −1 in evaluation phase when a is the selection bit. Although it is
necessary to consider all arrival sequences of input signals when conducting a
more detailed evaluation, we omit the details here. In the precharge phase, the
dynamic leakage of the WDDL-AND gate is Ndyc

diff = 1 for Table 1 when b is the
selection bit and Δt contains e(Δa), and not contain e(Δb). It is noteworthy
that the polarity of the leakage changes in the evaluation and precharge phases.
In addition, the reason for the leakage of W-2DPA is similar to that mentioned
above.

A similar observation applies to other countermeasures using complemen-
tary logic. On the basis of this consideration, the secure condition concerning
complementary gates (logic) against DPA and W-2DPA is as follows:

– All input signals reach each complementary gate (logic) simultaneously.

Generally, it is difficult to implement this condition via circuits. In particular, it
is not guaranteed in the LSI designed by the automatic synthesis/layout.

4.3 Analysis for Masked CMOS Logic

Generally, in order to extract the absolutely necessary results (e.g., a · b) from
the masked operation results (e.g., (a⊕ rx) · (b⊕ ry)), the DPA countermeasures
based on data masking need to operate some unnecessary terms (e.g., (a ⊕
rx) · ry). Several methods have been proposed regarding the manner in which
the operations should be divided. In this section, we will consider and evaluate
Masked-AND [7] and MAND [18].

Masked-AND. When evaluating the Masked-AND circuit with Definition 1, it
satisfies N stc

diff = 0 because the wire value of each gate is randomized as mentioned
in Ref. [19]. On the other hand, when evaluating the circuit with Definition 2,
there is a possibility that Ndyc

diff �= 0. In Ref. [20], we analyze the abovementioned
facts in more detail.

For this example, the output of gate 6 in Fig. 3 (b) is expressed as x ·ry ⊕ rx ·
ry⊕z. Here, if we assume that the signal transition occurs in order of x, rx and ry ,
3 This implies that the attacker observes by using a higher sampling rate for the

oscilloscope.
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the transition of gate 6 caused by e(Δry) can be expressed as x ·Δry ⊕rx ·Δry =
a · Δry . It follows that pdyc

a=1,(6)(e(Δry)) = 1/2, pdyc
a=0,(6)(e(Δry)) = 0. Thus, the

leakage from gate 6 brought about by e(Δry) is Ndyc
diff = 1/2. Furthermore, since

an XOR-gate propagates transitions of its input signal, gate 7 whose input is
the output of gate 6 causes the same leakage as that of gate 6. The same is also
the case with gate 8.

As mentioned above, it can be stated that the Masked-AND circuit may
have the bias of signal transition according to secret information when a certain
delay condition is met. The leakage in the dynamic model of Masked-AND is
also analyzed in Ref. [21], where a similar result is obtained.

Next, we discuss evaluating the Masked-AND circuit with Definition 5. For
simplicity, we consider only four AND-gates in Fig. 3 (b) here. Table 2 lists the
transition counts and their event probability when the selection bit is a, where
s ∈ {0, 1, 2, 3, 4} is the total transition count of these AND-gates.

The following can be qualitatively inferred from Table 1: If both a and b are
0, the four AND-gates from gate 1 to gate 4 in Fig. 3 (b), execute the same
logical operation and often exhibit similar behavior. On the other hand, they
often behave differently if a or b is not 0. Actually, the event probability of
s = 4 is p4 = 7/64 when a = 0, while it is p4 = 1/32 when a = 1. In a similar
manner, the event probability differs depending on a predictable signal value.
Quantitatively, from Table 1 and Definition 5, V ′

diff = −5/8 when the selection
bit is a or b. Therefore, the Masked-AND circuit can be attacked with W-2DPA.

MAND. The same observation applies to MAND. Here, we describe the case
that is not secure against W-DPA even if it is secure against standard DPA. We
focus on the delay relation between the MUX data signals and the MUX select
signals in MAND, and consider the leakage separately in the following two delay
conditions:

– Condition 1 : “delay(y), delay(ry) < delay(x), delay(rx)”
(or “delay(x), delay(rx) < delay(y), delay(ry)”)

– Condition 2 : “delay(x) < delay(y) < delay(rx)” and
“delay(x) < delay(ry) < delay(rx)”
(or “delay(rx) < delay(y) < delay(x)” and
“delay(rx) < delay(ry) < delay(x)”)

Condition 1 states that transitions according to x and rx occur at the events of
the select signals. In addition, the condition in parentheses is a similar one, ex-
cluding the cycle when the transition occurs. Condition 2 states that transitions
according to either x or rx occur at the events of the select signals.

First, we evaluate the leakage in Condition 1. The transitions of ψ1 and ψ2
at the events of the select signals are

Δψ1(e(Δy)) = x · Δy ⊕ rx · Δy = a · Δy,

Δψ2(e(Δry)) = x · Δry ⊕ rx · Δry = a · Δry.
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Namely, if the selection bit is a, we have

pdyc
a=1,(ψ1)

(e(Δy)) = 1/2, pdyc
a=0,(ψ1)

(e(Δy)) = 0,

pdyc
a=1,(ψ2)

(e(Δy)) = 1/2, pdyc
a=0,(ψ2)

(e(Δy)) = 0.

Thus, we evaluate the dynamic leakage of MAND as Ndyc
diff = 1. On the other

hand, if the selection bit is b, it is evident that Ndyc
diff = 0.

Next, the transitions of ψ1 and ψ2 at the events of the select signals in
Condition 2 are

Δψ1(e(Δy)) = x · Δy ⊕ r′x,

Δψ2(e(Δry)) = x · Δry ⊕ r′x,

where r′x is the wire value of rx at the previous state one cycle. In this case, it is
evident that Ndyc

diff = 0 with any selection bit because random numbers are not
canceled. Thus, MAND is secure against standard DPA under Condition 2.

Finally, we evaluate the leakage against W-2DPA. We show the probability
distribution of MAND in the static model in Table 3. On the basis of this table,
we have V ′

diff = −1/4. Thus, MAND is insecure against W-2DPA even if the
static model is assumed.

Additionally, we consider the leakage against W-2DPA in Condition 2, which
is secure against standard DPA. Although the data signal transitions influence
both ψ1 and ψ2, the transitions of select signals influence only either one of
the two. Since W-2DPA is an attack that paid attention to the distribution of
the transition probability at the entire circuit, we consider the influence of the
data signal transition here. The transitions of ψ1 and ψ2 at the events of the
data signals in Condition 2 are Δψ1(e(Δrx)) = Δrx · y ⊕ Δrx, Δψ2(e(Δrx)) =
Δrx · ry ⊕ Δrx. Thus, the transition count is s ∈ {0, 2} at (e(Δrx)), assuming
b = 0. Furthermore, each event probability is p0 = 3/4 and p2 = 1/4. On
the other hand, the transition count is s ∈ {0, 1} at (e(Δrx)) assuming b = 1
and each event probability is p0 = 1/2 and p2 = 1/2. Therefore, since we have
V ′

diff = −1/2, Condition 2 is insecure against W-2DPA even if it is secure against
the standard DPA.

5 Experimental Results and Considerations

We evaluate the effectiveness of the previously known countermeasures by using
FPGA. In this section, we show experimental results of elementary bricks of
previously known countermeasures implemented on FPGA. The evaluation en-
vironment is the general one shown in Table 4. An XCV1000-6-BG560C FPGA
of Xilinx Inc. is mounted on the target board. Additionally, automatic place-
and-route tools were used for all layout design.

5.1 Standard DPA

Figure. 4 shows the experimental results of standard DPA for each countermea-
sure (i.e., normal-AND, WDDL, Masked-AND, and MAND).
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Table 1. Transition probability of the
WDDL-AND gate

α CMOS gate prch = 1 prch = 0
e(Δa) e(Δb) e(Δa) e(Δb)

a = 1 AND 0 1/2 1/2 0
OR 0 1/2 0 1/2

a = 0 AND 0 0 0 0
OR 1 0 1/2 1/2

b = 1 AND 0 1/2 1/2 0
OR 1/2 0 1/2 0

b = 0 AND 0 0 0 0
OR 1/2 1/2 0 1

Table 2. Probability distribution of
Masked-AND

Selection bit Transition count Event probability
α s ps

0 5/32
1 3/8

a = 1 2 5/16
3 1/8
4 1/32
0 19/64
1 3/16

a = 0 2 11/32
3 1/16
4 7/64

Table 3. Probability distribution of
MAND

Selection bit Transition Count Event probability
α s ps

0 1/4
a = 1 1 1/2

2 1/4
0 3/8

a = 0 1 1/4
2 3/8

Table 4. Evaluation environment

Design environment

Language Verilog-HDL
Simulator Verilog-XL
Logic synthesis Synplify version 7.7
Place and Route ISE version 6.3.03i

Measurement environment

Target FPGA XCV1000-6-BG560C
Oscilloscope Tektronix TDS 7104

In Fig. 4, the average power enlarges at time t4 and time t5 when the WDDL
circuit is activated. The first half (t4) is an evaluation phase, and the latter half
(t5) is a precharge phase of WDDL. Figure. 5 is a magnified view of the WDDL
part in Fig. 4. There appears a small downward peak at time t4 and a small
upward peak at time t5, each of which are caused by timing differences between
the input signal a and input signal b because automatic place-and-route tools
were used. These peaks are in good agreement with the forecast by the evaluation
based on our leakage model.

The Masked-AND circuit is activated at time t7 where an upward peak (as
shown in the considerations in Section 4.3) is observed. Since this peak is caused
by transient hazards, it is relatively small as compared to that of the normal-
AND.

At time t9, the MAND circuit is activated and an upward peak appears. As
mentioned above, automatic place-and-route tools were used; thus, Condition 1
and Condition 2 shown in Section 4 are mixed. Therefore, leakage from Condition
1 can be observed. Here too, as in the Masked-AND case, the peak is relatively
small as compared to that of the normal-AND because it is caused by transient
hazards.

In Fig. 6, the same MAND circuit as that in Fig. 4 is activated at time t1.
As evident from standard DPA traces in Fig. 6 at time t1, leakage is observed
when the selection bit is a, but it is not observed when the selection bit is b. The
MAND circuit that satisfies Condition 2 is activated between time t3 and time
t8 The MAND circuit that satisfies Condition 2 4. In this case, it is evident that
leakage is not observed by standard DPA even if the selection bit is a. These
results are in good agreement with the forecast in Section 4.

4 The condition is created by supplying input signals one by one for every clock cycle.
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Fig. 6. Standard DPA and W-2DPA results for MAND (10000 sample)

5.2 W-2DPA

Fig. 7 shows the experimental results of W-2DPA for each countermeasure (i.e.,
normal-AND, WDDL, Masked-AND, and MAND). The sample data used for
the analysis is the same as the one used for standard DPA (Fig. 4). Fig. 8 is
a magnified view of the WDDL part in Fig. 7. Peaks in Fig. 5 and Fig. 8 look
similar, as indicated in the considerations in the previous section.

It should be noted that the peaks of Masked-AND and MAND are static
in this case; hence, they are as large as that of normal-AND. In the case of
starndard DPA, peaks of Masked-AND and MAND are caused by transient
hazards; hence, they are not so large. In Fig. 6, W-2DPA traces between time
t3 and time t8 show the experimental results of W-2DPA for the MAND circuit
that satisfies Condition 2. While standard DPA traces show no peaks at time
t8, W-2DPA traces show a downward peak if the selection bit is b. This too is
in good agreement with the considerations based on our leakage model.

AND WDDL

Masked-AND MAND

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

TIME

W-2DPA

Trace

Average

Power

Fig. 7. W-2DPA result (200000 sample) Fig. 8. Magnified view of the
WDDL part in Fig.7
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6 Toward a Perfect Countermeasure

Secure conditions of CMOS logic circuits against standard DPA and W-2DPA
are Ndiff = 0 and V ′

diff = 0 without dependence on any selection bits.
The approach by complementary logics is very effective although the prob-

lem of the signal delay persists. Actually, the leakage of WDDL is the least
in our experimental results. We predict that a manual layout strengthens
WDDL.

The approach by data masking requires both main operation (e.g., x · y)
and cancel operation (e.g., x · ry, y · rx, and rx · ry). When these operations are
separately implemented by the CMOS logic gate, the probability distribution of
the transition count in the entire circuit is different depending on sensitive in-
formation (see Section 5). A consideration of both the static model and dynamic
model reveals that this fact occurs. Therefore, we suppose that it is difficult
to resist various power analysis by the approach of data masking in a general
CMOS gate. The solution to this is to construct a special CMOS gate, which is
improved at the transistor level and satisfies secure condition. For further details
of a countermeasure based on this consideration, see Ref. [11].

7 Conclusion

In this paper, we proposed leakage models of the CMOS logic circuits based on
signal transition. These models are naturally applicable to various actual devices
for simulating power analysis.

In addtiton, we evaluated the effectiveness of Messerges’s second-order DPA
(M-2DPA) and Waddle’s second-order DPA (W-2DPA) from the viewpoint of
our model. Thus, we demonstrated that M-2DPA is essentially equivalent to
the standard DPA, and W-2DPA can detect the bias of the distribution of the
transition probability in CMOS logic circuits.

Moreover, we analyzed previously known countermeasures by both our mod-
els and FPGA, and confirmed that the DPA traces on FPGA corresponded to the
result obtained using our models. We emphasize the occurrence of the leakage
in the previously known countermeasures. In particular, we pointed out that the
masked CMOS logics have the similar weakness to standard CMOS logic with-
out countermeasure against W-2DPA because the distribution of the transition
probability are statically different.
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Abstract. Several types of logic gates suitable for leakage-proof compu-
tations have been put forward [1,2,3,4]. This paper describes a method,
called “backend duplication” to assemble secured gates into leakage-proof
cryptoprocessors. To the authors’ knowledge, this article is the first CAD-
oriented publication to address all the aspects involved in the backend
design of secured hardware. The “backend duplication” method achieves
the place-and-route of differential netlists. It allows for 100 % placement
density and for balanced routing of dual-rail signals. Wires of every other
metal layer are free to make turns. In addition, the method does not re-
quire any modification to the design rules passed to the router. The
“backend duplication” method has been implemented in 0.13 μm ASIC
technology and successfully tested on various ciphers. The example of
the design of a DES module resistant against side-channel attacks is
described into details.

Keywords: Information leakage, secured backend, differential signals.

1 Introduction: Using Differential Logic to Thwart SCA

It has been shown that sensitive information can be extracted from cryptographic
hardware either by spying physical quantities or by injecting faults. The first type
of attack is often referred to as “side-channel attack” (SCA [5,6,7]), whereas the
second one is also known as “fault attack” (FA). Two classes of countermeasures
against SCA have been put forward. The first idea is to shield the hardware at
the algorithmic level: the data manipulated by the cryptoprocessor is masked or
protected by secret-sharing methods. The second idea is to build the hardware
using only leakage-proof gates, so as make sure that the overall cryptoprocessor
is, in turn, leakage-proof.

This article focuses on the implementation of the latter class of counter-
measures. Many leakage-proof logic styles have been published. The level of
protection the secured gates provide depends upon their specification:

1. SABL [1] is a logic consuming a nearly constant current.
2. WDDL [2] uses dual gates pairs to ensure a constant activity, although the

power consumed by each gate of the pair is not the same.
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3. Speed-independent (SI) logic presented in [3] features a consumption inde-
pendent on the input data configuration. It also shields against the leakage
of the signal transitions timing by synchronizing the inputs.

4. Refinements [4] of the previous solution also ensure that parasitic capaci-
tances are unconditionally unloaded between two computations.

Some of those methods, for instance methods 3 and 4 above (nicknamed “SI-
WDDL” in the rest of this article) can also embed an error-detection feature.
The mechanism, based on an alarm propagation, is explained in [3]. Nevertheless,
resistance to faults injection is not covered in this paper.

The logical part (coding, functionality verification, refinements for synthesis)
in a design targeting FPGA or ASIC implementation is called frontend. The
physical part (mainly consisting in place-and-route, but extensive description is
provided in Sect. 2) is called backend. The common point to the secure gates
listed above is the use of differential logic with a 4-phase protocol, such as “re-
turn to zero” (RTZ) or any variation [8]. It has already been stressed that the
security of individual gates can extend to a netlist of gates only provided that the
interconnect is kept differential [9]. Nonetheless, most articles evade the question
of the implementation of a secure backend design.

Given the complexity of backend flows in sub-micron technologies, a simple
way to realize the secure backend is necessary. We provide in this article a
method, called “backend duplication”, that integrates the secure place-and-route
into any preexisting backend flow without modifying the design rules.

The rest of the article is organized as follows: the “backend duplication” is
presented in Sect. 2. The method is applied to some secured gates primitives
in Sect. 3. A case study, namely a DES cryptoprocessor, is provided in Sect. 4.
This example was actually fabricated in HCMOS9GP 0.13 μm technology from
STMicroelectronics using the method presented in this paper. This section con-
tains an evaluation of the cost and of the security increase provided by the use
of the “backend duplication”. Finally, Sect. 5 concludes the article.

2 The “Backend Duplication” Method

2.1 Regular “Place-and-Route” ASIC Design Flow

In a standard cell flow, cryptographic functions are synthesized into a netlist of
primitive gates. Then, the gates are placed into rows (see Fig. 1(a)). In each row,
the gates are abutted, so that they share the ground (VSS) and the power (VDD)
lines. When two gates are not placed side by side, a “filler” cell can be added
in-between to ensure the continuity of the supply lines. In sub-micron technolo-
gies, there are enough levels of metal to allow the routing of the interconnect
over the standard cell rows. For this reason, the rows are themselves abutted.
Thus, the supply lines are shared between adjacent rows. This is achieved by
flipping upside-down every other row: the ground (resp. the power) of one row
is merged with the ground (resp. the power) of the lower (resp. the upper) row,
(see Fig. 1(b)).
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Fig. 1. Illustration of the regular (and unsecure) “Place-and-Route” ASIC design flow

Sub-micron technologies allow for 45 degree wire routes, but this feature is
not yet implemented in commercial routers: currently, the routing is still Man-
hattan. Moreover, the most popular routers are also grid-based. Metal wires are
only instantiated along a virtual routing tracks superimposed on the floorplan
(see Fig. 1(c)). It is thus customary to attribute a preferred direction to every
routing layer. However, routers consider the preferred direction only as a recom-
mendation. The convention we use in this paper is that odd metal levels (metal
1, metal 3, and so forth) are preferentially routed vertically, whereas even metal
levels are preferentially routed horizontally.

2.2 The “Backend Duplication” Method Overview

The “backend duplication” addresses the strengthening against SCA of sensi-
tive ASICs (smartcards, hardwired cryptoprocessors, etc.) It consists in a single
manipulation of the backend layout to ensure the security of its interconnect.
However, this method shall not be confused with the tailored duplication method
for software or dedicated hardware implementations [10].

The basic idea of the “backend duplication” method is to apply a regular
backend flow on a single-ended (as opposed to duplicated) netlist, taking care to
leave enough room on the floorplan for the duplication of the placed-and-routed
netlist. The duplication basically demands that every other row be kept free,
which is typically achieved by obstructing every other row for placement.

The next aspect concerned with duplication is the interconnect. To make
it possible to duplicate the interconnect, the vertical wires, that connect every
other row, are forced to occupy only one routing channel in two. This ensures
that a simple right shift of the vertical routing by a routing pitch (i.e. the distance
separating two routing tracks) does not create electrical shorts. As a consequence,
vertical wires must be straight. If they were able to make turns, they would cross
the adjacent routing tracks that are kept free for the duplicated vertical routes.
On the contrary, wires of the “horizontal routing layers” are left free to make
turns, as long as they remain in their placement row. Indeed, if the horizontal
routing is confined within one row over two, the duplication of the “horizontal”
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wires in the upper or the lower rows does not interfere with the wires in the
current row.

The constraints imposed to the place-and-route tool summarize as follows:
as the design must be translated vertically by the height of one placement
row (ROW HEIGHT) for placement reasons and horizontally by one routing pitch
(PITCH) for routing reasons, the whole placed-and-routed design is scheduled to
move by a (δx, δy) = (PITCH, ROW HEIGHT) vector translation. In backend taxon-
omy, this translation actually coincides with the minimum “placement site”.

At that point, the result of the duplication is two identical netlists inter-
leaved one into the other. Notice that the netlists cannot be “de-interleaved”
because they are not independent: some signals must be exchanged locally be-
tween abutted gates. As we will see in Sect. 3, it happens for the inverter gate
in SABL and WDDL (Tab. 1(b)) and for all gates in SI-WDDL (Fig. 7).

The chip finishing steps shall not delete the indistinguishability of the two
netlists. For instance, the dummies generator must be constrained to add dum-
mies (metal pieces added randomly to fulfill the minimum density design rules)
only in the rows in which placement is allowed. Afterwards, dummies are du-
plicated and translated by a placement site: they end up in the same routing
environment as initially (no short is created) since the routing was duplicated
in the same manner.

2.3 The Constraints Required by the “Backend Duplication”

As mentioned above, the “backend duplication” method is implemented by (1)
constraining the design and (2) duplicating the placed-and-routed design. The
constraints can be generated automatically by a script setting the following
obstructions:

– placement blockages one row over two and on the rightmost placement
site of the placeable row,

– routing blockages of one track channel over two for vertical metals and
over the rows already marked obstructed for standard cell placement for
horizontal metals.

Figure 8(a) illustrates these constraints on a 16 × 2-site piece of floorplan. As
far as the routing is concerned, these constraints are more flexible than the ones
proposed in the “fat wire” method [9], since only vertical wires are forced to re-
main strictly straight. The metals whose preferred routing direction is horizontal
are free to zigzag, provided they stay within their row. This degree of freedom
is not negligible, since there are typically around 12 routing channels per row.
This allows for both a more successful and a faster routing.

2.4 Insertion into an Existing Design Flow

As seen in Sect. 2.3, the “backend duplication” method need not redefine the de-
sign rules. It only relies on constraints on the CAD software. A typical backend
flow includes the steps shown in Fig. 2. The insertion of the “backend duplica-
tion” consists in adding three steps (i, ii and iii).
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- Floorplanning
- Place-and-route
- Clock tree generation
- Scan chain optimization
- Antenna effects correction
- Custom steps, like ECO or SI fix
- Dummies placement

: Obstructions implementation

: Duplication

i

ii

iii

Flow compatible with the “backend
duplication”. Added steps:Regular backend flow:

: Floorplan dimensioning

Fig. 2. Typical backend flow and modifications (steps i, ii and iii) to implement the
“backend duplication” method

i. Floorplan dimensioning. As a matter of fact, the floorplan of an design
block is made up of two parts: the core, devoted to the standard cells placement
and the die, that covers the core and an extra channel surrounding it. It is used
for example to route a supply ring. The core horizontal dimension must be an
even number of the routing PITCH and the vertical dimension an even number of
ROW HEIGHT. This condition ensures that the placement and the routing within
the core do not extend out of the core after duplication.

The core can either be checked and repaired if one of the figures is odd or
generated automatically. To end up with a core of density d and of aspect ratio
r, the first step is to generate a core of density d/2 and of aspect ratio r/2 before
duplication. Then the core dimensions (x, y) are retrieved, and a new core with
the dimensions:

x′ =
⌈

x

2 × PITCH

⌉
× 2 × PITCH , y′ =

⌈
y

2 × ROW HEIGHT

⌉
× 2 × ROW HEIGHT

is regenerated. Its density is slightly less than d and its aspect ratio roughly
equal to r.

ii. Obstructions Instantiation. The constraint script described previously in
Sect. 2.3 can be generated automatically as soon as the floorplan dimensions are
known. This script is sourced after floorplanning and before place-and-route.

iii. Duplication. As far as standard cells are concerned, the duplication consists
in a translation by a placement site followed by an horizontal flipping of each
row.

The routing duplication is a bit more complex than a mere translation. In-
deed, the design pins extend over the core to reach the die boundary. If the
routing was simply translated, the duplicated design would have pins both in-
side and outside the die. To avoid this shortcoming, the routing extremities (u, v)
of every wire undergo this transformation:
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– if (u, v) belongs to the core, then (u′, v′) = (u + PITCH, v + ROW HEIGHT),
– otherwise (u′, v′) = (u, v).

Additionally, to prevent shorts, the constraints described in Sect. 2.3 actually
extend till to die limits and the routing channels that are entirely outside the
core are obstructed. These transformations are illustrated on Fig. 8(b).

The information needed to apply the duplication is the orientation and posi-
tion of standard cells and the routing coordinates. The design exchange format
(DEF) typically contains all this information. Given the simplicity of the DEF
syntax and the availability of parsers [11], the duplication can be implemented
easily.

It is also a good idea to apply the duplication on the Verilog netlist: it consists
in duplicating all wires and all leaf instances (i.e. standard cells). Verilog parsers
are easy to write, even from scratch. The key benefit of generating the duplicated
Verilog netlist is to enable LVS verification.

2.5 Comparison with Related Works

K. Tiri [12] noticed that the balancedness of the routing is crucial to effectively
protect a differential circuit against SCA. The solution put forward in [9] is
based on “fat wires” routing: a large wire is first routed and then split into two
minimum-sized wires. This method implies that:

– Specific design rules must be written for the “fat wires”.
– The only way for a wire to turn is to change layers.
– For the “fat wire” to access the pins of standard cells, their layout must be

redefined.

The “backend duplication” implies none of these assumptions.
The experimental DPA [6] of F.G. Bouesse et al. [13] also showed that the

weakest nodes in a differential layout correspond to unbalanced pairs. The back-
end correction flow described in [14] is iterative: the design is successively routed
and analyzed, until every dual-rail pair is balanced. The analysis consists in the
collection for every node of the sum of the parasitic elements extracted after
every routing (more details in Sect. 4.2). This method requires a complex strat-
egy to constrain the router and a non trivial algorithm to guide the iterative
process towards a convergence point. On the contrary, the routing generated by
“backend duplication” is balanced by design. However, the “backend duplica-
tion” only handles pairs of signals, whereas the iterative method [14] can route
both dual and single-rail signals (data is dual-rail; acknowledge is single-ended.)

3 Suitability of the “Backend Duplication” Method with
some Logic Styles

3.1 Backend Duplication for WDDL

The wave dynamic differential logic (WDDL, [2]) is a design style that uses
standard cells by pairs, in such a way that at any step of the computation,
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one and only one of the two gates has a transition. This behavior masks the
fluctuations of the power consumption due to irregular activity: the activity of a
WDDL circuit is constant. The computations are split into successive precharge
and evaluation steps. A Boolean function ei∈{0,1,··· } �→ f(ei) is computed using
the two dual gates fT (ei) and fF (ei) that satisfy:{

During precharge: ∃i, fT (ei) = fF (ei) ,

During evaluation: ∀i, fT (ei) = fF (ei) .
(1)

Table 1(a) provides some examples of dual gates pairs suitable for WDDL.
If the condition on the precharge in (1) cannot be met, the identity shown in
Tab. 1(b) solves the problem out. The truth table of two dual gates (refer to

Table 1. Duality: definition, examples (a) and WDDL identity for the invertor (b)

(a) Regular gate Dual gate

Definition f(ei) f(ei)

Examples
NOT NOT

NAND NOR

Π Σ ei Σ Π ei

(b)

e1

e0 e0

e1

e0

e1

e1

e0

⇔

Dual invertor

Regular invertor

Table. 2) shows a symmetry, that can also be observed at the transistor level, as
shown in Table. 3.

Table 2. Truth table of the
two dual functions NAND/NOR

NAND NOR

e0 e1 e0 · e1 e0 + e1

0 0 1 x

x

1

0 1 1 0

1 0 1 0

1 1 0 0

Table 3. Illustration of the NAND/NOR dual gate cou-
ple symmetry{fT , (N, P), MX} ↔ {fF , (P, N), R0}

Regular gate fT (NAND) Dual gate fF (NOR)

Orientation: or MX Orientation: or R0

VDD

VSS

A1 B1

A1

B1

Y1

x

x

VDD

VSS

A0 B0

A0

B0

Y0

The symmetry illustrated in Table. 3 suggests that standard cells are ready
to be used in a WDDL flow using the “backend duplication” method. This is
actually only partially true: the structures in transistors indeed perfectly su-
perimpose, but in practice, PMOS (symbol: ) are drawn wider than NMOS
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(symbol: .) For this reason, in a commercial standard cell library, the pins
of a gate (regular orientation: or R0) and of the X-symmetric (orientation:

or MX) of its dual do not match exactly. Nevertheless, as they are located on
the routing grid, they usually overlap.

Fortunately, it is easy to work around this difficulty. The procedure begins
with an enlargement of the pins. Then, the pins are merged considering the
intersection of the enlarged pins. The routing obstructions are basically made
up of the metal not included in the union of the newly created pins:{

PIN= PIN(NAND) ∩ PIN(NOR), ( in Fig. 5)
OBS= (OBS(NAND) ∪ OBS(NOR)) ∪ (PIN(NAND) ( PIN(NOR)) . ( in Fig. 5)

This procedure can be applied on the sole abstract view of the standards cells.
Thus a simple LEF parser [11] can be used turn a standard cell library into a
WDDL-compliant library. Instead of describing the parser into details, a graph-
ical example on the NAND/NOR and AND/OR gate couples is shown in Fig. 5.

As far as cell placement duplication is concerned, the method presented in
step iii (refer to Sect. 2.4) demands that, in addition to the duplication and the
flipping, the gate be replaced by its dual.

3.2 Backend Duplication for Other Logic Gates

In order to apply the “backend duplication” method to SABL or SI-WDDL, the
gates must be split into two parts: one computing true values, the other false
values.

The splitting is straightforward for SABL, as shown in Fig. 6.
As for SI-WDDL, the division is a bit less trivial, but is sane since it forces the

symmetry of the transistor schematic to be kept in layout view. The placement
of each building block of the cell along with the indication of their orientation
is provided in Fig. 7.

For both SABL and SI-WDDL, the gate pins must be designed in such a way
they are left unchanged in a symmetry y ← ROW HEIGHT− y (or R0 ↔ MX). This
condition ensures that a connection to the pin of a regular gate (placed first)
also arrives on a pin of the other half of the gate (placed while duplicating the
backend at step iii). Additionally, the routing converges faster if the pins are
placed on every other vertical routing track: the pins are better accessed if they
are not below a vertical routing obstruction.

4 Implementing a Duplicated Netlist

4.1 The Example of a Secured DES Cryptoprocessor Design

In this section, we explain how a placed-and-routed netlist obtained by the “back-
end duplication” method can be embedded into a whole design. First of all, let us
notice that after duplication, even global signals are duplicated: the duplicated
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Fig. 3. Secured DES architecture. The duplicated datapath (SDES DATAPATH), for ex-
ample implemented in SI-WDDL logic, is obtained according to the method de-
scribed in Sect. 2. The regular control (DES CONTROL) is encapsulated into a wrapper
(SDES CONTROL) that can interface to the dual-rail datapath of DES.

backend has two clocks and two resets, that must be shorted together. The two
scan chains can either be joined or be considered independently.

Most often, the whole cryptoprocessor need not be secured. The reason is that
when implementing a non proprietary algorithm such as DES, the computation
steps are public. As a consequence, the control leaks non confidential information.
In most designs, the control (algorithm steps) can be clearly dissociated from
the datapath (data processing).

It is relevant to derive the control of the duplicated datapath (dual-rail en-
coding, RTZ protocol) from the original control of the insecure datapath (single-
ended, no RTZ): it allows to debug a single-ended control, which is easier to
understand and faster to simulate. The method to update the regular control to
make it compatible with the duplicated datapath requires that:

– The state machine can be frozen: it has an enable input. This enable forces
the state machine to work twice as slow as initially to mimic RTZ.

– The control is wrapped by a converter single-to-dual rail for the datapath
inputs and dual-to-single rail for its outputs. In addition to converting the
control signals exchanged between the datapath and the control, the control
wrapper also converts the datapath input and output data. Thus, seen from
the outside, the cryptoprocessor keeps a single-ended interface. However, the
internal architecture of the datapath is dual-rail RTZ secure logic obtained
by “backend duplication”.
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When the control is disabled (enable = 0), all the input signals of the data-
path (provided by the control wrapper) are set to the precharge state (e.g. 00).
This solution emulates the dual-rail RTZ protocol required by the duplicated
architecture of the datapath. Moreover, this architecture is well suited for asyn-
chronous gates implementations, such as SI-WDDL, because the datapath inputs
(both data and control) are kept behind a register barrier, which guarantees that
those signals are glitch-free. This condition is mandatory for SI-WDDL logic to
work securely.

The schematic of Fig. 3 shows the secure architecture of a DES module. Let
us notice that the control input signals (a simple start command, named GO in
Fig. 3) is memorized as GO Q over the two phases (precharge and evaluation), to
prevent it from being discarded if it arrives when the control is disabled. The
GO command can actually be activated at any time, because the cryptoprocessor
environment is not aware of the RTZ behavior of the secured DES.

4.2 Method Cost and Security Evaluation

The method overhead is assessed below:

– The circuit frequency is unchanged, but every encryption takes twice more
time to execute because of the RTZ protocol.

– The area increase of the datapath depends on which secured gates are
used. If WDDL gates are chosen, SDES DATAPATH is simply twice as large
as DES DATAPTH. If SI-WDDL gates are chosen, we obtain a 15 times area
increase1. The overhead of the control area is 14%: the area of the module
DES CONTROL (resp. SDES CONTROL) is 12 942 μm2 (resp. 14 788 μm2.)

The increase of security can be assessed by the ratio of the two dual lines rout-
ing capacitances and resistances. The capacitance “C” accounts for the power
dissipation occurring at every transition: 1

2 × C × (VDD − VSS)2. The resis-
tance “R” is responsible for the delay R × C of the transition propagation.
The wire pairs are all the more balanced as the ratios C(true)/C(false) and
R(true)/R(false) do not spread much around 1. Figure 4 shows the reparti-
tion of those ratios for the 2 211 internal wire couples of SDES DATAPATH. The
three data samples correspond to a dual placed-and-routed design, obtained
by the “backend duplication” method, a dual placed and regular routed de-
sign, and a regular placed-and-routed design. Both the capacitances and resis-
tances were obtained using the RC extractor tool of Cadence SOC/Encounter.
The technological information was produced by the Cadence coyote field
solver.

The resistance of a “backend duplicated” circuit against EMA [7] has not
been evaluated yet.

1 The SI-WDDL gates were not optimized: a much better ratio can probably be ob-
tained, even without any trade-off on the gate symmetry.
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Fig. 4. Ratio of the capacitances and the resistances of SDES DATAPATH dual nets

5 Conclusion
Securing a cryptoprocessor against physical attacks (either SCA or FA) can be
done at the algorithmic or at the implementation level. This paper focuses on
the countermeasures on the hardware implementation. Many types of primitive
gates suitable for secure computation have been proposed [1,2,3,4], but the issue
of building cryptoprocessor out of them is seldom addressed. To the authors’
knowledge, only the “fat wire” method [9] partially tackles this problem.

We provide a complete description of a backend flow compatible with all of
the above-mentioned gates. The method we describe can apply to all existing
flows and requires no modification of the design rules.

The “backend duplication” method is illustrated on the example of a DES
cryptoprocessor. This example also shows that the method is compatible with a
secure partitioning of the design: only the datapath is duplicated. The emphasis
is placed on the insertion of the duplicated datapath into the whole DES, whose
interface remains unchanged. This case study proves that the hardening of a
cryptoprocessor can be fully automated and that the integration of the “backend
duplication” method into an existing flow is seamless.
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A Appendix: Graphical Illustrations of the “Backend
Duplication” Method

Figures 5, 6 and 7 show how WDDL, SABL and SI-WDDL gates must be trans-
formed prior to being used in the “backend duplication” design flow.

Figure 8 illustrates the “backend duplication” (steps ii and iii) on a floor-
plan suitable for the duplication (step i was already executed: the floorplan
dimensions are even.)
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Abstract. Although identity based cryptography offers many functional
advantages over conventional public key alternatives, the computational
costs are significantly greater. The core computational task is evaluation
of a bilinear map, or pairing, over elliptic curves. In this paper we pro-
totype and evaluate polynomial and normal basis field arithmetic on an
FPGA device and use it to construct a hardware accelerator for pair-
ings over fields of characteristic three. The performance of our prototype
improves roughly ten-fold on previous known hardware implementations
and orders of magnitude on the fastest known software implementation.
As a result we reason that even on constrained devices one can use-
fully evaluate the pairing, a fact that gives credence to the idea that
identity based cryptography is an ideal partner for identity aware smart-
cards.
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1 Introduction

The notion of identity based cryptography was first proposed by Shamir [25] in
1984. Essentially it allows a user identity, an arbitrary string, to play the role of
a public key rather than have the key derived from a relationship with private
information as would be the case in traditional schemes such as RSA. This can
vastly reduce the amount of certification infrastructure required and generally
presents a rich set of functional and security characteristics that are difficult
or impossible to realise with other solutions. The first efficient Identity Based
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Encryption (IBE) scheme was presented by Boneh and Franklin [8] who followed
the idea of Sakai, Ohgishi and Kasahara [23] in basing their scheme on bilinear
maps, or pairings, over elliptic curves.

Although pairing and identity based cryptography has sparked a wealth of
research into cryptographic schemes [7,11] and proof techniques, it has remained
an ongoing task to reduce the computational cost that underpins such work.
Theorists have generally worked under the gross assumption that a pairing takes
around ten times as long to compute than the major computational task in
elliptic curve cryptography (ECC), the point multiplication. Although in reality
this ratio is significantly lower, the cost of pairing evaluation still constitutes
a major hurdle. This is particularly true in constrained environments such as
smart-cards which, due to their use as identity-aware tokens, seem a natural
partner for identity based cryptography.

Recently, Gemplus announced that it had developed a smart-card hosted IBE
implementation in partnership with the market leaders Voltage Security [27]. Al-
though details are scarce, it seems probable that they use an existing core for Fp

arithmetic to accelerate a software implementation of the BKLS algorithm [4].
This seems the natural decision given the increasing flexibility in parameter-
isation [19, 3, 5] and expertise related to implementing arithmetic in Fp accu-
mulated from building conventional ECC and RSA based systems. However, in
the short term at least it is attractive to consider working over fields of char-
acteristic three since when parameterised using suitable supersingular elliptic
curves, the resulting system boasts a higher security multiplier [12], given by
the MOV embedding degree [20]. Additionally, there are some specialised, high-
performance algorithms for computing pairings in this context: the Duursma-Lee
algorithm [10], recently improved upon by Kwon [18] and Barreto et al. [2], uses
a closed formula for the pairing which is efficient as long as the underlying field
arithmetic in F3m is also efficient. To this end, previous work has considered
the possibility of using polynomial [22, 6] and normal bases [13] to implement
said arithmetic. However, such work has focused mainly on arithmetic perfor-
mance rather than placing the designs in context to actually compute IBE re-
lated functions, the exception being Kerins, Popovici and Marnane [17] who
quote estimated timings for FPGA hosted pairing hardware using a BKLS style
algorithm.

In this paper, our main aims are three-fold: to evaluate the performance and
cost of constructing hardware polynomial and normal basis arithmetic in F3m ;
to investigate the possibility of construct a hardware accelerator that is small
enough for use in constrained environments; to prove pairings over F3m using
the closed form family of algorithms are a viable alternative to the use of Fp and
BKLS. We prototype our work on an FPGA device and present experimental
results of the performance and cost comparisons with previous work in this area.
We organise our work as follows: in Section 2 we give an overview of pairings
before using Section 3 to present details of arithmetic in F3m . We then discuss
the details of our accelerator architecture and present experimental results in
Section 4 before concluding in Section 5.
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Algorithm 1. The Duursma-Lee algorithm [10] for calculating the Tate
pairing in characteristic three.
Input : point P = (x1, y1), point Q = (x2, y2)
Output: fP (φ(Q)) ∈ F

∗
q6/F

∗
q3

f ← 1
for i = 1 upto m do

x1 ← x3
1

y1 ← y3
1

μ ← x1 + x2 + b
λ ← −y1y2σ − μ2

g ← λ − μρ − ρ2

f ← f · g
x2 ← x

1/3
2

y2 ← y
1/3
2

return f

2 An Introduction to Pairings

To provide a concrete case for discussion, we use the example of pairings where
the base field is of characteristic three, i.e. Fq where q = 3m. To allow inves-
tigation of both polynomial and normal bases we consider cases m = 97 and
m = 89 respectively. Let E be an elliptic curve over a finite field Fq, and let O
denote the identity element of the associated group of rational points E(Fq). For
a positive integer l|#E(Fq) coprime to q, let Fqk be the smallest extension field
of Fq which contains the l-th roots of unity in Fq. Also, let E(Fq)[l] denote the
subgroup of E(Fq) of all points of order dividing l, and similarly for the degree
k extension of Fq. Setting k = 6, we parameterise Fq6 as the quadratic extension
Fq6 = Fq3 [σ]/(σ2 + 1). Further, we set Fq3 = Fq[ρ]/(ρ3 − ρ − 1). For efficient
arithmetic in these fields, we to the work of Granger et al. [14].

Our choice of prime values for m is motivated by well known security con-
siderations; both our choices offer an security level which is roughly equivalent
to 800−−900-bit RSA. Using a polynomial basis with m = 97 provides us with
a curve which is well known in the literature and hence a good reference against
which to compare our results. However, one can only construct a type-two nor-
mal basis where 2m + 1 is also prime: the most efficient type-one basis is never
available. This limits our choices significantly. We settled on m = 89 since it is
the closest choice to m = 97 for which affords a suitable parameterisation. For
both our choices of m, we use the curve E : Y 2 = X3 − X + 1. In the case
of m = 89 this has an unattractively large cofactor [13]: this parameterisation
problem alone might be viewed as a reason not to use a normal basis represen-
tation; we stress that our aim in selecting these parameters is performance and
cost comparison only.
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Algorithm 2. The Kwon-BGOS algorithm [18] for calculating the Tate
pairing in characteristic three.
Input : point P = (x1, y1), point Q = (x2, y2)
Output: fP (φ(Q)) ∈ F

∗
q6/F

∗
q3

f ← 1
x2 ← x3

2
y2 ← y3

2
d ← mb
for i = 1 upto m do

x1 ← x9
1

y1 ← y9
1

μ ← x1 + x2 + d
λ ← y1y2σ − μ2

g ← λ − μρ − ρ2

f ← f3 · g
y2 ← −y2
d ← d − b

return f

The Reduced Tate Pairing. For a thorough treatment of the following, we
refer the reader to [4] and also [12], and to [24] for an introduction to divisors.
The reduced Tate pairing of order l is the map

el : E(Fq)[l] × E(Fqk )[l] → F
∗
qk/(F∗

qk)l,

given by el(P, Q) = fP,l(D). Here fP,l is a function on E whose divisor is equiva-
lent to l(P )−l(O), D is a divisor equivalent to (Q)−(O), whose support is disjoint
from the support of fP,l, and fP,l(D) =

∏
i fP,l(Pi)ai , where D =

∑
i aiPi. It

satisfies the following properties:

– For each P �= O there exists Q ∈ E(Fqk )[l] such that el(P, Q) �= 1 ∈
F
∗
qk/(F∗

qk)l (non-degeneracy).
– For any integer n, el([n]P, Q) = el(P, [n]Q) = el(P, Q)n for all P ∈ E(Fq)[l]

and Q ∈ E(Fqk)[l] (bilinearity).
– Let L = hl. Then el(P, Q)(q

k−1)/l = eL(P, Q)(q
k−1)/L.

– It is efficiently computable.

The non-degeneracy condition requires that Q is not a multiple of P , i.e. that Q
is in some order l subgroup of E(Fqk) disjoint from E(Fq)[l]. When one computes
fP,l(D), the value obtained belongs to the quotient group F

∗
qk/(F∗

qk)l, and not
F
∗
qk . In this quotient, for a and b in F

∗
qk , a ∼ b if and only if there exists c ∈ F

∗
qk

such that a = bcl. Clearly, this is equivalent to

a ∼ b if and only if a(qk−1)/l = b(qk−1)/l,
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and hence one ordinarily uses this value as the canonical representative of each
coset. The isomorphism between F

∗
qk/(F∗

qk)l and the elements of order l in F
∗
qk

given by this exponentiation makes it possible to compute fP,l(Q) rather than
fP,l(D).

The Modified Tate Pairing. Duursma and Lee introduced their algorithm
[10] in the context of pairings on a family of supersingular hyperelliptic curves.
The performance of their method was improved upon by Kwon [18] and Barreto
et al. [2] who also provide similar algorithms for other characteristics.

Let q = 3m and E(Fq) : Y 2 = X3 −X + b, with b = ±1, and let P = (x1, y1)
and Q = (x2, y2) be points of order l. Let Fq3 = Fq[ρ]/(ρ3 − ρ − b), with b =
±1 depending on the curve equation, and let Fq6 = Fq3 [σ]/(σ2 + 1). Then the
modified Tate pairing on E is the mapping fP (φ(Q)) where φ : E(Fq) → E(Fq6)
is the distortion map φ(x2, y2) = (ρ − x2, σy2). The methods for computing
the Duursma-Lee and Kwon-BGOS algorithms are shown in Algorithm 1 and
Algorithm 2 respectively. Note that the final result is powered by q3 − 1 to form
a compatible result with the BKLS [4] algorithm.

3 Arithmetic in F3m

The finite field F3m is isomorphic to F3[X ]/(p) and F3(α) where p is an irreducible
polynomial of degree m in F3[X ] and α is a root of p. We will identify these three
fields, but our notation will be tailored toward F3(α). In a polynomial basis F3(α)
is regarded as an m-dimensional vector space over F3 with basis

(α0, α1, . . . , αm−1) .

For an element â ∈ F3(α) we will simply write the elements in a polynomial, or
standard basis as

â =
m−1∑
i=0

âi · αi .

Arithmetic in a polynomial basis is fairly straightforward when based on con-
ventional polynomial arithmetic. When discussing implementation of such arith-
metic, it is often useful to denote elements as a vector of coefficients such as

â = (â0, â1, â2, . . . , âm−1) ,

so that physical operations such as shifting and rotation of coefficients is more
naturally expressed. We use the notation â(i) to denote the (left) rotation of the
coefficients in such a vector by distance i. That is, we write

â(i) = (âi+0, âi+1, âi+2, . . . , âi+m−1).

where in all cases, coefficient indices are reduced modulo m. Using this notation,
â
(i)
j represents the j-th coefficient of the rotated element â(i).
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In a normal basis, things are slightly more involved. Given an irreducible
polynomial p of degree m and with root α, the full set of roots of p in F3(α) is

B = (α, α3, α32
, . . . , α3m−1

).

If the elements of B are linearly independent then the set of roots forms a basis
of F3(α) over F3 and this basis, p and α are all called normal. To construct such
as basis, and the matrix M which determines how the multiplication operation
works, we use the techniques of Granger et. al [13] based on work by Nöcker [21].
For an element ā ∈ F3(α) we write

ā =
m−1∑
i=0

āi · α3i

but again, for brevity, we often denote a normal basis field element using the
coefficient vector and rotated coefficient vector notation as described above.

When using both polynomial and normal basis representations, we hold a
polynomial over F3 of degree m as a 2m length vector of bits. Two sequential
bits are used to hold each coefficient so that

a = (aL
0 , aH

0 , aL
1 , aH

1 , . . . , aL
m−1, a

H
m−1)

where
aL

i = ai mod 2
aH

i = ai div 2 .

For concreteness, we set the defining polynomial for our polynomial basis to
α97 + α16 + 2 and the normal polynomial p that defines M in our normal basis
to α89 + α88 + 2α87 + α84 + 2α83 + 2α82 + α81 + α72 + α71 + α70 + 2α69 + α66 +
2α65 + 2α64 + α63 + 2α54 + α35 + α34 + 2α33 + α30 + 2α29 + 2α28 + α27 + 2α18 +
2α17 + 2α16 + α15 + 2α12 + α11 + α10 + 2α9 + 1.

3.1 Addition and Subtraction

The most basic operations on field elements are addition and subtraction. These
are made reasonably straightforward because they can be performed component-
wise with no interaction with other coefficients. Given that our coefficients are
held using two bits, we can construct cells for the required arithmetic using
simple logical operations. Following Harrison et al. [15], the addition ri = ai + bi

of two coefficients ai and bi can be specified using

rH
i = (aL

i ∨ bL
i ) ⊕ t

rL
i = (aH

i ∨ bH
i ) ⊕ t

where
t = (aL

i ∨ bH
i ) ⊕ (aH

i ∨ bL
i ).

Subtraction, and hence multiplication by two, are equally efficient since the
negation of an element a simply swaps the bits aH

i and aL
i over and can therefore

be implemented by the same function as addition.



404 P. Grabher and D. Page

3.2 Cubing and Cube Roots

When working in characteristic three, cubing is an important operation since
curve and pairing arithmetic is often manipulated to utilise cubing rather than
a more costly multiplication. In addition, the cube root operation is important
in the Duursma-Lee algorithm if pre-computation is avoided.

When using a normal basis, the cube and cube root operations are very
efficient in characteristic three: both can be achieved by cyclic shifting the coef-
ficients in an elements so that for an element ā

ā3 = (ām−1, ā0, . . . , ām−3, ām−2),
3
√

ā = (ā1, ā2, . . . , ām−1, ā0).

Clearly these rotations can be easily implemented in a hardware circuit, where
they reduce to wired permutation of bits with no actual computational overhead.

In a polynomial basis, cubing is a linear operation in the same way squaring
is linear in characteristic two [22, 6]. That is, we have

(âiα
i)3 = â3

i α
3i = âiα

3i .

Therefore, we can implement it using by simply thinning the coefficients, i.e.
padding them with zeros, before performing a reduction. Cube root is somewhat
more involved but since our chosen field is of the right form, we can utilise the
method highlighted by Barreto [1]. Specifically, since our defining polynomial for
m = 97 is α97 +α16 +2 we have that 97 = 3u+1 and 16 = 3v+1 so that u = 32
and v = 5. Hence, for an element â = t0 + t1 + t2 where

t0 =
∑u

i=0 â3iα
i

t1 =
∑u−1

i=0 â3i+1α
i

t2 =
∑u−1

i=0 â3i+2α
i

we have that

3
√

â = t0 + t�2u+1
1 − t�u+v+1

1 + t�2v+2
1 − 2t�u+1

2 − 2t�v+1
2

given that for t ∈ F3m , t�n denotes tαn, the value t shifted left by n coefficients
and suitable reduced.

3.3 Multiplication

In addition to component-wise addition and subtraction, for normal basis multi-
plication we also require a component-wise multiplication of the form ri = ai ·bi.
This can be performed using similarly inexpensive logical operations

rH
i = (aL

i ∧ bH
i ) ∨ (aH

i ∧ bL
i )

rL
i = (aL

i ∧ bL
i ) ∨ (aH

i ∧ bH
i ) .
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Armed with a function to perform this operation, we construct a general multi-
plication result of the form c̄ = ā · b̄ using

c̄k =
m−1∑
i=0

āk+i ·
m−1∑
j=0

Mi,j · b̄k+j

where in all cases, coefficient indices are reduced modulo m. The sparse matrix
M in this description is constructed from the normal polynomial p and essentially
dictates how reduction behaves for the field. We developed a compiler that takes
M and automatically produces circuitry to implement the three phases of the
above formula: an addition phase to compute the terms Mi,j · b̄k+j , keeping
in mind that Mi,j ∈ {0, 1, 2}; a multiplication phase to multiply āk+i by the
summed terms; and accumulation phase sum all the multiplied terms and form
c̄k. Such circuitry generates a single coefficient and hence requires m clock cycles
to complete a multiply; we can place several of them working in parallel to
accelerate the multiplication [13].

There has already been plenty of previous work dedicated to hardware poly-
nomial basis multiplication methods in characteristic three [22,6,17]. We follow
the approach of Bertoni et al. [6] in employing a digit-serial approach. In a sim-
ilar way that a normal basis is scalable since we can utilise D parallel coefficient
calculation circuits, a digit-serial multiplier allows us to scale the digit-size D in
order to find a suitable balance between size and speed.

3.4 Inversion

Inversion is generally the most expensive operation when dealing with finite
field arithmetic, so much so that in systems like ECC every effort is made to
construct higher level operations so that inversion is not required. Due to the cost
of constructing dedicated hardware for limited return, we implement inversion
in software using our hardware for other operations in F3m . To avoid the extra
hardware cost described by Kerins et al. [17], we implement inversion using the
relationship

a−1 = a3m−2.

using a ternary expansion of the exponent since cubing operations are so inex-
pensive. In a polynomial basis this could be improved upon incrementally by
using a translation of the standard binary Euclidean algorithm [15]. Since we
only require inversion once in the final powering, we leave this issue for further
work.

3.5 Exponentiation

Generally, we avoid exponentiation of pairing values by arbitrary exponents since
one can use the bilinearity property to push the operation inside the pairing as a
point multiplication which is more efficient, see the work of Granger et al. [14] for
efficient methods in this area. However, we do need to consider the final powering
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PowerPC MicroBlaze

Registers

F3m ALU

USB Ethernet LCD ATA PCMCIA

Fig. 1. A block diagram of our experimental architecture as hosted on a Xilinx ML300
prototyping device. Note that FPGA hosted elements are shown in dashed boxes while
dedicated elements are shown in solid boxes.

of the pairing output by q3 − 1 in order to yield a value compatible with BKLS.
To power the pairing output f by the required exponent, we decompose the
operation into

f33m · f−1

the first term of which is simply three applications of the q-frobenius and the
second is an inversion. Thanks to our field arithmetic, the inversion is reasonably
efficient essentially because it can be done directly [14] rather than using an
iterative method.

4 Architecture and Results

4.1 Architecture

Our design was realised using VHDL synthesised with a combination of Xilinx
EDK 7.1 and ISE 7.1. Our experimental platform was a Xilinx ML300 prototyp-
ing board which hosts a Virtex-II PRO FPGA (XC2VP4FF672-6) device with
4928 slices. Our philosophy with this design was to treat the F3m arithmetic as
a kind of co-processor, which is controlled by a more general purpose processor
rather than hardwiring logic to directly compute the pairing. By swapping the
co-processor we can provide arithmetic in either polynomial or normal bases; the
FPGA size prevented making both available in one design. Since the instructions
that are issued to the co-processor are executed synchronously, one might view
this as a kind of instruction set extension. With this approach, we can easily im-
plement other higher level operations based on the same field arithmetic, such as
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Table 1. Cost and performance characteristics of hardware based field, point and
pairing arithmetic using polynomial and normal bases, clocked at low and maximum
frequencies

F397 in Polynomial Basis
Slices Cycles Instructions Speed

At 16 MHz At 150 MHz
Add 112 3 1 - -
Subtract 112 3 1 - -
Multiply 946 28 1 - -
Cube 128 3 1 - -
Cube Root 115 3 1 - -
Point Doubling - 220 15 13.8μs 1.5μs
Point Tripling - 52 9 3.3μs 0.4μs
Point Addition - 366 22 22.9μs 2.4μs
Pairing
Duursma-Lee - 59946 7857 3746.6μs 399.4μs
Kwon - 64602 9409 4037.6μs 430.7μs
Powering - 4941 397 308.8μs 32.9μs
Total 4481 - - - -
F389 in Normal Basis

Slices Cycles Instructions Speed
At 16 MHz At 85 MHz

Add 102 3 1 - -
Subtract 102 3 1 - -
Multiply 1505 48 1 - -
Cube 0 3 1 - -
Cube Root 0 3 1 - -
Point Doubling - 360 15 22.5μs 4.2μs
Point Tripling - 72 9 4.5μs 0.8μs
Point Addition - 606 22 37.9μs 7.1μs
Pairing
Duursma-Lee - 89046 7857 5563.3μs 1047.6μs
Kwon - 93702 9409 5856.3μs 1102.4μs
Powering - 7941 397 496.3μs 93.4μs
Total 4233 - - - -

the ECC point multiplication over E(F3m) which is also required in most pairing
based schemes.

As such, we combine our arithmetic in F3m with a register file, backed by
BlockRAM, of 32 registers each able to store an element of F3m which total under
1 kilobyte for our choices of m. We control this combined data-path with a Xilinx
MicroBlaze soft-core, a 32-bit, 3-stage pipelined RISC processor which interfaces
to the logic using the Fast Simplex Link (FSL) interface. The MicroBlaze code
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to control the co-processor was compiled using a re-targeted GCC tool-chain;
we were able to achieve fast development times as a result. In short, the FPGA
of our prototyping board is filled, as described by Figure 1, with what could be
considered an embedded processor with a co-processor for arithmetic in F3m .
The obvious real-world analogy of this type of architecture is a smart-card with
an associated co-processor.

4.2 Results

Having selected our fields for polynomial and normal bases so that they were as
close as possible in size, we took the approach of utilising as equal an amount
of the FPGA as possible to make comparison easier. Since our multiplier ar-
chitecture in both cases allows for scalability by altering the digit-size D, we
parameterised the polynomial basis multiplier with D = 4 and the normal basis
multiplier with D = 2, choices that resulted in roughly the same area cost.

Table 1 shows the performance of our arithmetic and higher level functions
at a modest clock speed that could be useful in a constrained environment and
the fastest possible speed resulting from our synthesis results. A given arithmetic
operation essentially requires n + 2 cycles, 1 cycle for the instruction fetch and
decode, n for the execution and 1 to write-back the result into the register file.
As well as cycle and wall-clock timings, we quote the number of instructions
issued by the MicroBlaze core to the ALU. The area costs are inclusive of all
system elements bar the instruction memory and register file which are backed by
BlockRAM. The MicroBlaze core, FSL interface and debugging unit consumes
roughly 1300 slices; the finite state machine to control the ALU consumes roughly
500 slices; the ALU logic consumes roughly 1700 slices depending on which
elements are included. Note that our upper clock speed was bounded by 150
MHz since this was the maximum permitted by use of the MicroBlaze.

In terms of field arithmetic, we find that the polynomial basis representation
is generally faster since although the cube and cube root circuits are more com-
plex, the dominant feature was the multiplier. The critical path of the normal
basis multiplier was far longer, forcing a lower clock speed, and the design much
larger, meaning the polynomial multiplier could employ a larger, more efficient
digit-size. Using these results and by simply looking at the algorithms, it is clear
that the Duursma-Lee algorithm will be faster than that of Kwon-BGOS since
although the later removes the need for a cube root in Fq, it requires a cubing
in Fqk . Thanks to the single-cycle cube root implementations, the cube in Fqk

will inevitably be slower. Table 1 confirms this by quoting results for evaluating
the pairing and for the final powering: one should view a pairing as being the
combination of these two if the goal is compatibility with other algorithms.

Note that although the Kwon-BGOS algorithm is marginally slower it offers
an attractive trade-off since we can omit the cube root logic from our design and
save the associated slices. Also note that because of the fast cube root method of
Barreto [1], the perceived advantage of a normal basis in being able to perform
fast cube root operations is eliminated: the multiplier is the dominant cost as a
result.
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4.3 Analysis

In characteristic three, given our constrained setting, an efficient way to perform
point multiplication using minimal pre-computation is to use the generalised
non-adjacent form (GNAF) [9, 26], to construct a signed ternary expansion of
the exponent d (mod l). Such a representation is easy to compute and reduces
the average density of non-zero trits from two thirds to one half. Using A to
denote point addition and T to denote point tripling, the cost of an average
point multiplication is

log(d)
log(3)

T +
log(d)
2 log(3)

A.

The Boneh-Franklin IBE scheme [8] is perhaps the most definitive example of
the use of pairings within a concrete scheme. The trust authority or TA has a
public key PTA = s · P for a master secret s. A users public key is calculated
from the string ID using a hash function as PID = H1(ID). The corresponding
secret key is calculated by the TA as SID = s ·PID. To encrypt the message M ,
one selects a random r and computes the tuple

C = (U, V ) = (r · P, M ⊕ H(e(PID, PTA)r)),

to decrypt C = (U, V ), one computes the result

M = V ⊕ H(e(SID, U)).

Considering our faster implementation using polynomial basis and Duursma-
Lee algorithm with a modest clock speed of 16 MHz, we use P to denote the
combination of pairing and final powering, M a point multiplication and E a field
exponentiation. Using this notation we see that encryption costs 2M + P while
decryption costs P . Although we do not consider it as an option, given some
extra storage the pairing required for encryption can be pre-computed which
results in the cost being M+E . Using these costs and our timings from Table 1,
we find that using our architecture we can perform Boneh-Franklin encryption
in ≈ 7ms and decryption in ≈ 4ms.

This performance is easily enough for practical applications since a given
scheme will typically try to minimise the number of pairings executed. Thus,
one can consider making a trade-off between performance and cost to reduce
the device size. For example, we can remove the cube root logic as described
above and utilise the Kwon-BGOS algorithm. Additional optimisations in this
direction include: reduction of the digit-size in our multiplication units; sharing
a group of addition cells between the addition and multiplication operations, at
the moment we place individual copies for each; improving the register allocation
strategy or spilling values to the main memory so as to reduce the size of our
register file containing Fq elements; and further turning of the MicroBlaze to
eliminate the debug and RS232 logic used for development purposes only.
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5 Conclusions

We have presented an accelerator for arithmetic in F3m and used it to implement
the Tate pairing, a primitive which is of increasing importance in cryptographic
schemes. Unlike previous work, we investigate both polynomial and normal basis
representations of field elements and both the Duursma-Lee and Kwon-BGOS
algorithms to compute the pairing. Our results demonstrate roughly a ten-fold
improvement on the only other known hardware implementation [17] and orders
of magnitude better than the fastest known software implementations.

The issue of size of slightly harder to quantify due to the use of FPGA as
a target. Although our design is clearly still unrealistically large to place on a
smart-card for example, we have demonstrated that our performance margin
is so great, trade-offs that significantly reduce the area are viable. We leave
the realisation of such optimisations for further work which might also include
other marginal issues: acceleration of inversion in F3m using Euclidean tech-
niques rather than by powering, perhaps by using extra hardware [17]; some
comparison with existing, proprietary smart-card hosted implementations of the
Tate pairing [27].
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Abstract. In this paper the benefits of implementation of the Tate pair-
ing computation on dedicated hardware are discussed. The main obser-
vation lies in the fact that arithmetic architectures in the extension field
GF (36m) are good candidates for parallelization, leading to a similar cal-
culation time in hardware as for operations over the base field GF (3m).
Using this approach, an architecture for the hardware implementation of
the Tate pairing calculation based on a modified Duursma-Lee algorithm
is proposed.

Keywords: Tate pairing, hardware accelerator, characteristic three, tower
fields.

1 Introduction

In recent years an ever increasing number of pairing based cryptosystems have
appeared in the literature, see [8]. In turn this has driven research into efficient
algorithms for the implementation of bilinear pairings on elliptic curves. The
Tate pairing (originally introduced to cryptography by Frey and Rück in [10])
has attracted attention as an efficiently computable bilinear pairing and over
supersingular elliptic curves it achieves its maximum security in characteristic
three.

Until 2002 the best method of Tate pairing computation on elliptic curves was
via the algorithm of Miller [21]. In 2002 the work of Galbraith et al. and Barreto
et al. furthered this development so that the Tate pairing became easier to
compute in practice [11,1]. As described in the BKLS/GHS algorithms, prudent
choice of points, by use of a distortion map of the type discussed in [27], as well
as a triple-and-add algorithm in characteristic three greatly simplifies the pairing
calculation. The utilization of so called tower fields of GF (3m) for arithmetic in
GF (36m) was proposed in [11,23].

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 412–426, 2005.
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In 2003 further improvements in the implementation of the Tate pairing were
described by Duursma and Lee in [9], leading to the Duursma-Lee algorithm for
Tate pairing computation. Here, the pairing computation was extended to more
general hyperelliptic curves. Also, the distortion map was incorporated into the
operation of the algorithm itself, as well as modifying the loop of the BLKS/GHS
algorithms, to yield a more efficient implementation. Further enhancements to
the Duursma-Lee algorithm for supersingular elliptic curves over fields of char-
acteristic three were described in [20,25,12]. As will be described in this paper,
this modified Duursma-Lee algorithm described in [20] is an excellent candidate
for implementation on dedicated hardware. Further work on even more efficient
general pairing algorithms appeared recently in [3].

Despite the large body of work regarding improving the algorithmic efficiency
of the Tate pairing computation, to date the hardware implementation of such
algorithms, particularly over characteristic three, have received scant attention
in the literature. This is somewhat surprising given the well known speed and
security advantages of dedicated cryptographic hardware [24]. The main contri-
bution of this paper is the description of how the modified Duursma-Lee algo-
rithm in characteristic three can be efficiently implemented in hardware, and a
number of conclusions are then derived about the expected calculation time of
such an architecture. The architecture described in this paper has application as
a hardware accelerator for pairing based cryptographic protocols in an internet
server, where high speed pairing calculation is the primary design consideration.

2 Related Work

Hardware architectures for polynomial basis arithmetic in characteristic three
have appeared in [23,5,16,18] while architectures for normal basis arithmetic
have appeared in [13]. In hardware and indeed software, the basis representation
is a significant design choice. For this paper, the polynomial basis representation
of GF (3m) ∼= GF (3)[x]/f(x) was chosen, where f(x) is a degree m irreducible
polynomial over GF (3). Polynomial basis multiplication in GF (3m) is possible
in d = �m/D� clock cycles for a digit size D following the architectures outlined
by Bertoni et al. in [5]. The coefficient serial multiplier discussed in [16,18] is
a special case of this. As will be described in Section 3 the primary required
operations over GF (3m) for the modified Duursma-Lee algorithm are addition,
subtraction, multiplication and cubing.

It has been outlined in [5,16,18,13] that addition and subtraction (and also
negation as a special case) can be efficiently performed in hardware by small
combinational gate circuits, using various two bit binary encoding of GF (3)
elements and that the gate delay for these addition and subtraction architectures
is low. This implies that additive operations in GF (3m) arithmetic hardware
can be performed almost for free. Arithmetic in GF (3) can be performed in
two 4:1 FPGA lookup tables using 2-bit encoding [16] and will not significantly
contribute to a processor’s calculation time. In hardware, elements of GF (3m)
can be represented in 2m bits, hence additive operations over GF (3m) cost 4m
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4:1 FPGA lookup tables. This is a relatively small hardware cost compared to
that of multiplicative architectures (see Section 4.2).

In [5] a digit serial multiplier over GF (3m) is described. This considers mul-
tiplication over GF (3m) as a series of matrix-vector multiplications with coeffi-
cients in GF (3). This can also be implemented efficiently in hardware assuming
a low weight irreducible polynomial f(x) ∈ GF (3)[x] (trinomial or pentanomial)
has been used to define arithmetic in GF (3m). Under this assumption cubing
circuitry in GF (3m) can also be efficiently implemented in much less hardware
than general multiplication and cubing can be performed in a single clock cycle.
An efficient algorithm and hardware architecture for inversion in GF (3m) in 2m
clock cycles based on the extended Euclidean algorithm appeared recently in
[16,18]. Few full hardware processor architectures for Tate pairing calculation
in characteristic three have appeared in the literature. However, an FPGA im-
plementation of a pairing based cryptosystem coprocessor architecture based on
the binary BLKS/GHS algorithm appears in [19].

3 Tate Pairing Calculation by Modified Duursma-Lee
Algorithm

This section presents an outline of the modified Duursam-Lee algorithm along
with some observations regarding its efficient calculation in hardware.

3.1 The Tate Pairing

Following from [1,2,3] the modified Tate pairing is defined on the supersingular
elliptic curve E± in affine coordinates defined over a Galois field GF (3m), where
in practice m is generally prime

E± : y2 = x3 − x ± 1 (1)

The set of points on E±, along with the point at infinity O, form a group of
order #E± under the well known chord-tangent law of composition [26]. The
curve (1) is chosen so that it contains a large cyclic subgroup of prime order l.
Also l2 does not divide #E± but l divides 36m − 1 and not any 3jm − 1, j < 6.
In order to resist discrete logarithm solving attacks it is recommended that l is
at least 150 bits long [6].

Now E±(GF (3m)) contains an l-torsion group E±[l](GF (3m)) and similarly
E±(GF (36m)) contains an l torsion group E±[l](GF (36m)). Following [1] for
our purposes, the Tate pairing of order l is defined as a bilinear map between
E±[l](GF (3m)) and E±[l](GF (36m)) to an element of the multiplicative sub-
group of GF (36m), i.e. GF (36m)∗

E±[l](GF (3m)) × E±[l](GF (36m)) → GF (36m)∗ (2)

It is only defined up to lth powers of unity; to obtain a unique value in GF (36m)
suitable for cryptographic applications it is necessary to raise it to the power
ε = (36m − 1)/l.
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Now consider P = (xp, yp), R = (xr, yr) ∈ E±[l](GF (3m)), i.e. xp, yp, xr, yr ∈
GF (3m). The pairing is efficiently computed in practice by considering the point
φ(R) ∈ E±[l](GF (36m)) where φ is a distortion map of the type introduced in
[27]. The distortion map φ is defined as

φ(R) = φ((xr , yr)) = (ρ − xr, σyr) (3)

where ρ, σ ∈ GF (36m) such that ρ3 − ρ ∓ 1 = 0, (ρ3 − ρ − 1 = 0 for E+ (1) and
ρ3 − ρ + 1 = 0 for E− (1)) and σ2 + 1 = 0. Following [9,2,20] the modified Tate
pairing is now defined on points P, R ∈ E[l](GF (3m)) as

ê(P, R) = e33m−1(P, φ(R))ε1 = el(P, φ(R))ε = τ ∈ GF (36m) (4)

The calculation of (4) is performed in two stages. First the modified pair-
ing e33m−1(P, φ(R)) = t ∈ GF (36m)∗ is evaluated. This is performed by the
modified Duursma-Lee algorithm illustrated as Algorithm 1. Then the result-
ing t ∈ GF (36m) is raised to the Tate power ε1, i.e. τ = tε1 . Tate power
ε1 = ε/33m = 33m − 1 as the Duursma-Lee algorithm benefits from the equiva-
lence property of the Tate pairing.

Algorithm 1: The Modified Duursma-Lee Algorithm (char 3)
input: P = (xp, yp), R = (xr, yr) ∈ E±[l](GF (3m))
output: t = e33m−1(P, φ(R))) ∈ GF (36m)∗

01 initialize : t, γ,∈ GF (36m),
α = xp, β = yp, x = x3

r , y = y3
r , μ = 0 ∈ GF (3m)

d = (±m) mod 3 ∈ GF (3) (* +m ↔ E+, −m ↔ E− *)
02 for i in 0 to m − 1 loop
03 α = α9,β = β9 (* arithmetic in GF (3m) *)
04 μ = α + x + d (* arithmetic in GF (3m) *)
05 γ = −μ2 − βyσ − μρ − ρ2 (* arithmetic in GF (36m) *)
06 t = t3 (* cubing in GF (36m) *)
07 t = tγ (* multiplication in GF (36m) *)
08 y = −y (* arithmetic in GF (3m) *)
09 d = (d ∓ 1) mod 3 (* d = d − 1 ↔ E+, d = d + 1 ↔ E− *)
10 end loop
return: t

3.2 A Tower Field Representation for GF (36m)

As discussed in Section 2, efficient hardware architectures exist for addition,
subtraction, cubing and multiplication in the base field GF (3m). However, as
seen from Algorithm 1, the principal complexity in performing the modified
Tate pairing (4) lies in the implementation of efficient arithmetic in GF (36m)
as well as GF (3m). The suggestion of constructing the field GF (36m) as an
extension field of GF (3m) appeared in [11,1] and is prudent for hardware imple-
mentation. The suggestion of the application of Karatsuba multiplication to this
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arithmetic hardware appeared in [23]. In [12] much of the arithmetic developed
in this section is explicitly described. Tower fields have previously been used in
the implementation of Galois field arithmetic for elliptic curve cryptography in
[7,14,22].

The choice of basis for construction of GF ((36m)) from GF (3m) is motivated
by a desire to simplify as much as possible the GF (36m) elements ρ and σ used
in the distortion map φ (3), appearing in Step 05 of Algorithm 1. Elements
of a ∈ GF (36m) are represented as a =

∑5
i=0 aiζ

i where ai ∈ GF (3m). The
basis {ζ0, ζ1, ζ2, ζ3, ζ4, ζ5} = {1, σ, ρ, σρ, ρ2, σρ2} is equivalent to a tower field
extension of GF ((3m)6) ∼= GF (((3m)2)3) where σ and ρ are zeros of σ2 + 1 and
ρ3 − ρ ∓ 1 as defined by the distortion map i.e.

GF (32m) ∼= GF (3m)[y]/g(y) (5)

where g(y) = y2 +1 is an irreducible polynomial over GF (3m) (provided that m
and 2 are coprime) and

GF (36m) ∼= GF (32m)[z]/h±(z) (6)

where h±(z) = z3−z∓1 is an irreducible polynomial over GF (32m). Polynomial
h+(z) = z3 − z − 1 is used for E+ and h−(z) = z3 − z + 1 for E− (1) provided
that m and 3 are coprime.

In this basis the elements GF (36m) elements σ and ρ required by the distor-
tion map so that σ2 + 1 = 0 ∈ GF (36m) and ρ3 − ρ ∓ 1 = 0 ∈ GF (36m) are
represented by

σ = 0ζ0 + 1ζ1 + 0ζ2 + 0ζ3 + 0ζ4 + 0ζ5 = (0, 1, 0, 0, 0, 0)

and
ρ = 0ζ0 + 0ζ1 + 1ζ2 + 0ζ3 + 0ζ4 + 0ζ5 = (0, 0, 1, 0, 0, 0)

The implementation of multiplication by σ and ρ in Step 05 of Algorithm 1
becomes much simpler in hardware. Consider calculation of γ ∈ GF (36m)

γ = −μ2 − βyσ − μρ − ρ2

= (−μ2)ζ0 + (−βy)ζ1 + (−μ)ζ2 + (0)ζ3 + (−1)ζ4 + (0)ζ5 (7)

Now calculation of γ involves only two multiplications of μ2 and βy in the
GF (3m) subfield which can be carried out in parallel. The GF (3m) negation
operation does not need to be clocked and can be carried out by a small amount
of combinational gate circuitry. Calculation of μ from Step 04 of Algorithm 1
requires only addition over GF (3m) which can also be carried out un-clocked
using a small amount of combinational logic. Multiplication of the respective
GF (3m) elements by ζ in (7) can be performed by a simple rewiring in hard-
ware. As elements of GF (3m) are represented by 2m bits in hardware elements
of GF (36m) are represented in 12m bits.

A further advantage of using this representation from a hardware perspective
is that cubing and full multiplication in GF (36m) (Steps 06, 07 Algorithm 1)
can also be performed using only simpler cubing and multiplication operations
respectively over the base field GF (3m) and similarly all these simpler operations
can be carried out in parallel.
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Multiplication. Consider multiplication c = ab of two elements a =
∑5

i=0 aiζ
i

and b =
∑5

j=0 bjζ
j of GF (36m) where ai, bj ∈ GF (3m). In the equivalent tower

field representation from (5) and (6) elements a ∈ GF (36m) are represented as
triples of elements of GF (32m)

a = (a0 + a1σ)︸ ︷︷ ︸
ã0

+ (a2 + a3σ)︸ ︷︷ ︸
ã1

ρ + (a4 + a5σ)︸ ︷︷ ︸
ã2

ρ2

In this representation multiplication of GF (36m) elements a =
∑2

i=0 ãiρ
i and

b =
∑2

j=0 b̃jρ
j , ãi, b̃j ∈ GF (32m) is performed by Karatsuba multiplication [15]

of a and b over GF (32m) to form a degree 4 polynomial d =
∑4

k=0 d̃kρk over
GF (32m) ⎡⎢⎢⎢⎢⎣

d̃0

d̃1

d̃2

d̃3

d̃4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ã0b̃0

(ã1 + ã0)(b̃1 + b̃0) − ã1b̃1 − ã0b̃0

(ã2 + ã0)(b̃2 + b̃0) + ã1b̃1 − ã2b̃2 − ã0b̃0

(ã2 + ã1)(b̃2 + b̃1) − ã2b̃2 − ã1b̃1

ã2b̃2

⎤⎥⎥⎥⎥⎦ (8)

Polynomial d from (8) is then reduced modulo the irreducible polynomial
h±(z) (6) over GF (32m) to form c =

∑2
i=1 c̃iρ

i as illustrated in (9) for h+(z)
and in (10) for h−(z)⎡⎣ c̃0

c̃1
c̃2

⎤⎦ =

⎡⎣ d̃0 + d̃3

d̃1 + d̃3 + d̃4

d̃2 + d̃4

⎤⎦ (9)

⎡⎣ c̃0
c̃1
c̃2

⎤⎦ =

⎡⎣ d̃0 − d̃3

d̃1 + d̃3 − d̃4

d̃2 + d̃4

⎤⎦ (10)

As seen from (8) the composition stage of multiplication in GF (36m) is per-
formed in six multiplications, seven additions and six subtractions in GF (32m)
while the reduction stage is performed in either five additions for h+(z) (10)
or three additions and two subtractions for h−(z) in GF (32m). Addition and
subtraction in GF (32m) are performed coefficient-wise so are easy and cheap to
perform in hardware using arrays of simple gate circuits as previously discussed.
The hardware complexity in GF (36m) multiplications lies in the required six
multiplications in GF (32m). From the dataflow diagram for (8) illustrated as
Figure 1 it is seen that the six required GF (32m) multiplications can be carried
out in parallel.

Multiplication c̃ = ãb̃ ∈ GF (32m) (5) of elements ã = a0 + σa1 and b̃ =
b0 + σb1, a1, a0, b1, b0 ∈ GF (3m) is performed by Karatsuba multiplication in
three multiplications, two additions and three subtractions in GF (3m), see (11).[

c0
c1

]
=
[

a0b0 − a1b1
(a1 + a0)(b1 + b0) − a1b1 − a0b0

]
(11)

Here both the polynomial composition and reduction steps are performed simul-
taneously by the observation that σ2 = −1 ∈ GF (32m) from g(y) in (5). Again,
additive operations in GF (3m) are easily performed by simple gate circuits and
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Fig. 1. Dataflow for Karatsuba composition stage of multiplication in GF (36m) ∼=
GF (32m)[z]/h±(z)

multiplication in GF (3m) can be performed as discussed in Section 2. As illus-
trated from Figure 2 the three required GF (3m) multiplications can be carried
out in parallel.

Fig. 2. Dataflow for Karatsuba multiplication in GF (32m) ∼= GF (3m)[y]/(y2 + 1)

This implies, that by this method, multiplication in GF (36m) requires eigh-
teen multiplications in the base field GF (3m) plus a number of additive op-
erations. The advantage of implementing this operation in dedicated hardware
over serial general purpose processors lies in the fact that all eighteen GF (3m)
multiplications can be carried out in parallel. By parallelizing this operation the
calculation time for multiplication in GF (36m) can be made very close to that in
GF (3m). Due to the large number of GF (3m) additions/subtractions required
(124 in total), it may be impractical to implement these as pure combinational
logic. Depending on hardware resource usage considerations, it may be more
prudent to implement a smaller number of additive gate circuits and schedule
the required operations through these in an extra few clock cycles. Therefore, us-
ing the digit serial multiplier of Bertoni et al. [5] the hardware implementation
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of multiplication in GF (36m) can be performed in �m/D� + nm clock cycles,
where nm is the relatively small number of extra clocks required for schedul-
ing the additions/subtractions and register read/write operations. For ease of
implementation these would be controlled via finite state machines.

Cubing. Cubing c = a3 ∈ GF (36m) ∼= GF (32m)[z]/h±(z) (6) of an element
a =

∑2
i=0 ãiρ

i, ãi ∈ GF (32m) is performed by (12) for GF (36m) generated by
polynomial h+(z) and by (13) for GF (36m) generated by polynomial h−(z).⎡⎣ c̃0

c̃1
c̃2

⎤⎦ =

⎡⎣ ã3
0 + ã3

1 + ã3
2

ã3
1 − ã3

2
ã3
2

⎤⎦ (12)

⎡⎣ c̃0
c̃1
c̃2

⎤⎦ =

⎡⎣ ã3
0 − ã3

1 + ã3
2

ã3
1 + ã3

2
ã3
2

⎤⎦ (13)

Each involves three cubing operations, two additions and a subtraction in GF (32m).
As illustrated in Figures 3 and 4 in both cases the three GF (32m) cubing oper-
ations can be carried out in parallel.

Fig. 3. Dataflow for cubing in GF (36m) ∼=
GF (32m)[z]/h+(z)

Fig. 4. Dataflow for cubing in
GF (36m)[z] ∼= GF (32m)[z]/h−(z)

From(12)and(13)themain complexity of cubing inGF(36m)∼= GF(32m)[z]/h±(z)
lies in performing the cubing operation in the field GF (32m) ∼= GF (3m)[y]/g(y)
(5). Consider an element ã = a0 + σa1 ∈ GF (32m) generated by g(y) = y2 + 1,
where a1, a0 ∈ GF (3m). Now c̃ = c0 + σc1 = ã3 ∈ GF (32m) is calculated by[

c0
c1

]
=
[

a3
0

−a3
1

]
(14)

which involves two cubing operations in GF (3m) which again can be performed
in parallel. So the cubing operation in GF (36m) can be efficiently calculated
in hardware by performing six GF (3m) cubing operations in parallel as well
as three GF (3m) negation operations and six addition/subtraction operations.
Following from [5] GF (3m) cubing can be performed efficiently in a single clock
cycle and the additive operations can be performed by simple combinational
gate circuits. Using this type of parallel cubing architecture with six GF (3m)



420 T. Kerins et al.

cubing circuits GF (36m) cubing is performed in a single clock cycle and the six
additive operations are performed by simple un-clocked gate circuits previously
discussed.

Fig. 5. Hardware rewiring for GF (36m) basis change from {ζi} to {ξj}

Raising to Tate Power. The basis {ζ0, ζ1, ζ2, ζ3, ζ4, ζ5} = {1, σ, ρ, σρ, ρ2, σρ2}
of GF (36m) over GF (3m) described by the distortion map, as previously dis-
cussed, is converted to the other basis {ξ, ξ1, ξ2, ξ3, ξ4, ξ5} = (1, ρ, ρ2, σ, σρ, σρ2)
described by the distortion map by a simple rewiring in hardware as illustrated
in Figure 5 . This is analogous to the tower field representation

GF (33m) ∼= GF (3m)[y]/h±(y) (15)

where h±(y) = y3 − y ∓ 1 is an irreducible polynomial over GF (3m) (E+ ↔
h+, E− ↔ h−)

GF (36m) ∼= GF (33m)[z]/g(z) (16)

where g(z) = z2 + 1 is an irreducible polynomial over GF (33m).
In this basis a ∈ GF (36m) is represented by a pair of elements ǎ0, ǎ1 ∈

GF (33m)
a = (a0 + a1ρ + a2ρ

2)︸ ︷︷ ︸
ǎ0

+ (a3 + a4ρ + a5ρ
2)︸ ︷︷ ︸

ǎ1

σ

As described in [12] raising a =
∑5

i=0 aiξi ∈ GF (36m) to the Tate power ε1 =
33m − 1 in this basis can be performed in a much more efficient manner than
typical multiply-and-accumulate methods of exponentiation by the observation
that for m odd

a33m

= (ǎ0 + σǎ1)3
3m

= ǎ0 − σǎ1 (17)

as σ2 = −1 ∈ GF (33m). Thus (17) implies that c = aε1 ∈ GF (36m) is calculated
by

c = č0 + σč1 =
ǎ0 − σǎ1

ǎ0 + σǎ1
=
[
1 + ǎ2

1ν
−1]+ σ

[
1 − (ǎ0 + ǎ1)2ν−1] (18)

where ν = (ǎ2
0 + ǎ2

1) ∈ GF (33m). Thus raising to the Tate power ε1 involves five
multiplications, three additions and a subtraction and an inversion in GF (33m).
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Multiplication in the field GF (33m) (15) is carried out in a similar manner to
that outlined in (8),(9) and (10) except in this case the base field is GF (3m).
The six required GF (3m) multiplications can be carried out in parallel and the
additive operations are carried out by the gate circuits previously discussed.
The calculation time for multiplication in GF (33m) is given as �m/D� + nm.
Inversion in GF (33m) is carried out by arithmetic in GF (3m) as illustrated in
Appendix A. As this operation is performed only once, optimizing the calcula-
tion is not as important as for the GF (36m) multiplication and cubing previously
discussed.

4 A Hardware Architecture for Tate Pairing Calculation
Based on Duursma-Lee Algorithm

This section considers a prospective hardware implementation for Tate pair-
ing calculation ê(P, R) = τ (4) over elliptic curves (1) based on Algorithms 1
considering the observations from Section 3.2 on the efficient calculation time
achievable by parallelizing GF (36m) arithmetic.

4.1 Observations on the Modified Tate Pairing Calculation

It is interesting to consider the number of clock cycles required for the main
iteration loop (Steps 03-09) of Algorithm 1 on a dedicated hardware architecture.
Here eighteen GF (3m) digit size multipliers (digit size D, d = �m/D�) and six
GF (3m) cubing circuits are available in parallel, along with a suitable amount
of simpler GF (3m) arithmetic circuits for performing addition, subtraction and
negation. Also required on such an architecture are 2m bit registers for storage
of elements of GF (3m) and 12m bit bus lines for elements of GF (36m). The
calculation time for an iteration of Algorithm 1 using this type of architecture
is illustrated in Table 1. An extra two clock cycles are added to the calculation
time of each operation for register read/write operations.

From Table 1 the modified Duursma-Lee Algorithm, Algorithm 1, can be
performed on the type of dedicated hardware discussed in Section 3 in θDL =
m(2�m/D� + 17 + nm) clock cycles. After e33m−1(P, φ(R)) = t ∈ GF (36m)

Table 1. Number of clock cycles required for an iteration of the Modified Duursma-Lee
algorithm implemented on a parallel GF (3m) hardware architecture

step operations logic clock cycles
03 α = α3, β = β3 ×2 GF (3m) cube 1+2

α = α3, β = β3 ×2 GF (3m) cube 1+2
04 μ = α + x + d combinational 0+2
05 γ see (7) ×2 GF (3m) mul d + 2
06 t = t3 ×6 GF (3m) cube 1 + 2
07 t = tγ ×18 GF (3m) mul d+nm+2

08 09 y = −y, d = d ∓ 1 combinational 0+2
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has been performed, it is then necessary to raise this GF (36m) element to the
Tate power ε1 using (18). This generates the required unique result τ = tε1 ∈
GF (36m). This operation can be efficiently performed on much of the same
underlying hardware as required for Algorithm 1. The only operations required
are multiplication, additive operations and a single inversion in the base field
GF (3m). Performing the GF (3m) multiplications as required in parallel implies
that (18) can be performed in θTP = 9(�m/D� + nm) + 2m clock cycles.

Assuming a worst case situation, where the register read/write operations and
scheduling through the simple gate circuits take the same number of clock cycles
as a multiplication operation (i.e. nm ≈ �m/D�) using this type of hardware
architecture the number of clock cycles for calculation of (4) is given by

θTATE ≈ θDL + θTP

≈ m(2�m/D� + 17 + nm) + 9(�m/D� + nm) + 2m
≈ 3m(�m/D� + 17) + 18�m/D� + 2m

(19)

4.2 Implementation Aspects

The question remains : How practical is the parallel architecture as discussed in
Section 4.1? The primary hardware complexity in this type of architecture is the
implementation of the GF (36m) multiplier circuit using eighteen GF (3m) digit
serial multipliers in parallel.

In order to gauge the feasibility of the architecture, the GF (3m) multiplier
and cubing cores were captured in the VHDL hardware design language and
prototyped on the Xilinx Virtex2Pro125 device [28] for the field GF (397) ∼=
GF (3)[x]/x97 + x16 + 2. The FPGA resource usage of the GF (397) digit serial
multiplier for digit sizes D = 1, 4, 8, 12 is 1,006 (1% device), 1,821 (3% device),
2,655 (8% device) and 4,335 (12% device) FPGA slices, respectively. The fast
GF (397) cubing circuitry was also implemented on this target technology and
occupied 514 slices (0.5%). The GF (3m) inverter architecture of occupied 2210
(4% device) FPGA slices.

The GF (36m) parallel multiplier is the most complex part of the proposed ar-
chitecture. It was implemented on the target technology, using eighteen GF (397)
multipliers with a digit size of D = 4, and all of the additive operations were
performed in parallel (multiplication in �97/4� = 25 clock cycles). In this case,
all of the arithmetic was hardwired into the design. In total, it occupied 32,403
FPGA slices (inc. routing) which represents 58% of the target device. A post
place and route clock frequency of 29.3 MHz was achieved for the GF (36m)
multiplier and this translates into a calculation time of 0.9 μs. This preliminary
result indicates that a parallel GF (397) multiplier using eighteen GF (397) mul-
tipliers with a digit size of D = 4 can be accommodated on the target device.
The six required GF (397) cubing circuits and inversion circuit in total occupy
approximately 7% of the device. This leaves the remaining 35% of the device
for storage registers, control and arrays of gate circuits for the simple GF (3m)
addition and subtraction logic.
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The data path for the parallel multiplier, the principal complexity of this
processor architecture, has already been fully implemented. The simpler parallel
cubing logic can be implemented in a similar manner. In our experience the ad-
dition of a register bank for storage, and control via finite state machines (as in
[17,19]) is a straightforward matter. Using this method of control some redesign
of hardware is involved to accommodate future algorithmic improvements. How-
ever, the ability to reconfigure the target FPGA makes such possible changes
easy to accommodate. Using the pessimistic (19) for the required number of clock
cycles this implies that calculation of (4) on E+ from (1) over GF (397) with a
digit size of D = 4 could be performed in 12,866 clock cycles. A conservative
estimated 15 MHz clock frequency for the entire processor (data path, control
and memory) implies a calculation time for (4) over E+(GF (397)) of 0.85 ms.
This represents a considerable improvement over the calculation times of 4.05 ms
and 4.33 ms reported for optimized software implementations on serial general
purpose processors [12,4].

The proposed architecture could also be adapted, (with a small amount of
extra control) to also perform scalar multiplication on [k]P ∈ E±(GF (3m)) and
exponentiation tk ∈ GF (36m) as required in most pairing based protocols. Using
the formulae in [1], point cubing is performed by four cubings in GF (3m) and
point addition is performed by an inversion, two multiplications and a cubing
in GF (3m) (neglecting the cost of the simpler additive operations). Assuming
k ≈ m = 97 (Hasse’s Theorem [6]), the base three representation of k is approx-
imately 97 trits [11]. In general, k is chosen so that these are mostly zero (say
25% nonzero). Under these assumptions [k]P ∈ E+(GF (397)) is performed in
approximately 0.5 ms using a serial triple-and-add algorithm at the same clock
frequency. Using a cube-and-multiply method for tk ∈ GF ((397)6) this is per-
formed using the parallel multiplier and cubing circuitry previously discussed in
approximately 0.1 ms.

5 Conclusions

In this paper the suitability of the modified Duursma-Lee algorithm for imple-
mentation in dedicated hardware has been illustrated. Prudent choice of basis
construction for the fields GF (36m) allows the efficient implementation of mul-
tiplication and cubing operations and only arithmetic in the GF (3m) subfield
is required. Multiplication in GF (36m) can be performed by eighteen GF (3m)
multipliers in parallel along with and cubing in GF (36m) can be performed by
six GF (3m) cubing circuits in parallel, along with some combinational logic for
additive operations. This leads to a low number of clock cycles for arithmetic
in GF (36m) compared to those required on serial processors. Modern FPGA
devices such as the Virtex2Pro currently have enough resources to contain an
implementation of this type of parallel hardware for calculation of the modified
Duursma-Lee algorithm. Assuming pessimistic operating parameters this type
of dedicated parallel hardware is projected to drastically reduce the calculation
time currently possible using optimized software implementations.
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Appendix A

Element č = c0 + c1ρ + c2ρ
2 = ǎ−1 the inverse of ǎ = a0 + a1ρ + a2ρ

2 ∈
GF (33m) is calculated efficiently by the observation that čǎ = 1 ∈ GF (33m). The
GF (3m) coefficients of č ∈ GF (33m) defined by h±(y) from (15) are calculated
as illustrated in (20) for h+(y) :⎡⎣ c0

c1
c2

⎤⎦ = δ−1
+

⎡⎣a2
0 + a2

2 − a0a2 − a1(a1 + a2)
−a0a1 + a2

2
a2
1 − a0a2 − a2

2

⎤⎦ (20)
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where δ+ = (a0 − a2)a2
0 + (−a0 + a1)a2

1 + (a0 − a1 + a2)a2
2 and by (21) for

polynomial h−(y) :⎡⎣ c0
c1
c2

⎤⎦ = δ−1
−

⎡⎣a2
0 − a2

1 + (a1 − a0)a2 + a2
2

−a0a1 − a2
2

a2
1 − a0a2 − a2

2

⎤⎦ (21)

where δ− = (a0 − a2)a2
0 + (−a0 − a1)a2

1 + (a0 + a1 + a2)a2
2 ∈ GF (3m)

Calculation of δ+ and δ− from (20) and (21) involves six multiplication oper-
ations in GF (3m) then these are inverted in 2m clock cycles using the GF (3m)
inversion architecture discussed in [16,18]. The calculation of č in (20) and (21)
then involves a further six GF (3m) multiplication operations. In hardware this
operation can be partly parallelized by performing three multiplication opera-
tions in parallel. This implies that inversion in GF (3m) can be performed in
4(�m/D� + nm) + 2m clock cycles.
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Abstract. Two new FPGA designs for the Advanced Encryption Standard 
(AES) are presented. The first is believed to be the fastest, achieving 25 Gbps 
throughput using a Xilinx Spartan-III (XC3S2000) device.  The second is 
believed to be the smallest and fits into a Xilinx Spartan-II (XC2S15) device, 
only requiring two block memories and 124 slices to achieve a throughput of 
2.2 Mbps. These designs show the extremes of what is possible and have 
radically different applications from high performance e-commerce IPsec 
servers to low power mobile and home applications. The high speed design 
presented here includes support for continued throughput during key changes 
for both encryption and decryption which previous pipelined designs have 
omitted. 

Keywords: Advanced Encryption Standard (AES), Field Programmable Gate 
Array (FPGA), finite field, design exploration, high throughput, pipelined, low 
area, Application Specific Instruction Processor (ASIP). 

1   Introduction 

The research objective is to explore the design space associated with the Advanced 
Encryption Standard (AES) algorithm and in particular its Field Programmable Gate 
Array (FPGA) hardware implementation in terms of speed and area. 

The Rijndael cipher algorithm developed by Vincent Rijmen and Joan Daemen 
won the competition run by the US government (NIST) in 2000 to select a new 
commercial cryptographic algorithm and was accorded the accolade the Advanced 
Encryption Standard (AES).  This algorithm is documented in the freely available US 
government publication, FIPS-197 [1]. 

Subsequently, the AES has been the topic of much research to find suitable 
architectures for its hardware implementation.  Architectural choices for a given 
application are driven by the system requirements in terms of speed and the resources 
consumed. This can simply be viewed as throughput and area, however, latency may 
also be important as may the cipher’s mode of operation. The FIPS-197 specification 
details a number of modes of operation for the cipher, for example, the simplest is the 
Electronic Code Book (ECB). Additional resilience to attack can be gained by using 
one of the feedback modes, for example, Output Feed Back (OFB) mode 
unfortunately such modes also limit the effectiveness of pipelining. 
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The use of FPGA has been expanding from its traditional role in prototyping to 
mainstream production. This change is being driven by commercial pressures to 
reduce design cost, risk and achieve a faster time to market. Advances in technology 
have resulted in mask programmed mass produced versions of FPGA fabrics being 
offered by the leading manufacturers which, for some applications, remove the 
necessity to move prototype designs from FPGA to ASIC whilst still achieving a low 
unit cost. 

Previous attempts [2,3] at high speed pipelined design have been to use what is an 
effectively ASIC number-of-gates-in-critical-path design flow to place the pipeline 
cuts. This is fine where the target device is an ASIC, however, does not result in 
optimal pipeline cut placement for a given FPGA fabric. This paper presents an 
alternative flow specific to FPGA which results in optimal pipeline placement thus 
increased performance. The new high speed design reported here achieves a 
throughput of 25 Gbps on a Xilinx Spartan-III FPGA and has applications in the area 
of hardware accelerators for IPsec servers. 

An additional novelty of the new high speed design presented in this paper is that 
the key may be periodically changed without loss of throughput and the operating 
mode may be changed between encryption and decryption at will. This enables the 
design to support a mode of operation where a batch of blocks may be encrypted or 
decrypted for each of a number of differently keyed concurrent channels without loss 
in throughput. 

Reported low area architectures [4,5] have been based around a 32-bit datapath.  
As the AES operations MixColumns and KeyExpansion are fundamentally 32-bit it 
was previously believed that this was optimal.  An ASIC design by Feldhofer et al [6] 
used an 8-bit datapath married to a 32-bit MixColumns operator.  However, even 
MixColumns may be rewritten in an 8-bit form accepting a higher control overhead 
and reduced throughput.  To the authors’ knowledge, no 8-bit Application Specific 
Instruction Processor (ASIP) for AES has been reported in the literature.  The results 
from the design of such a processor, which is believed to be the smallest, are 
documented in this paper. This design only occupies 60% of the smallest available 
Xilinx Spartan-II device (XC2S15) and achieves a throughput of 2.2 Mbps which is 
suitable for numerous applications in the mobile and home communications areas.  
This 8-bit design was compared to the two latest reported low area FPGA designs 
[4,5] which were based on a 32-bit architecture.  Brief details of these designs are 
included together with their area cost results.  A rival ‘PicoBlaze’ implementation is 
also presented as a benchmark to demonstrate the performance of a soft core 
microcontroller based design. 

This paper concludes with a discussion on the relative merits of each architecture. 

2   The Design 

The intention here is to contrast a number of different architectures from the highest 
speed to the lowest area. An FPGA design flow is used throughout and performance 
results are presented together with comparison with the previously known best 
designs. The designs presented all support a 128-bit key.  Xilinx ISE version 6.3 was 
used for the design flow and the results quoted are from post place and route figures 
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including all input and output delays. The new designs were coded in VHDL and 
validated using ModelSim. 

2.1   Fully Parallel Loop Unrolled Architecture 

FPGAs are particularly fast in terms of throughput when designs are implemented 
using deep pipeline cuts [2, 3, 7, 8, 9, 10, 11, 12].  The attainable speed is set by the 
longest path in the design so it is important to place the pipeline cuts such that the 
path lengths between the pipeline latches are balanced. 

First, the algorithm must be converted into a suitable form for deep pipelining 
[2,7]. This is achieved by removing all the loops to form a loop-unrolled design where 
the data is moved through the stationary execution resources.  On each clock cycle, a 
new item of data is input and progresses over numerous cycles through the pipeline 
resulting in the output of data each cycle, however, with some unavoidable latency. 

One of the key optimisations was to express the SubBytes operation in 
computational form rather than as a look-up table.  Earlier implementations used the 
look-up table approach (the “S” box) but this resulted in an unbreakable delay due to 
the time required pass through the FPGA block memories.  The FIPS-197 
specification provided the mathematical derivation for SubBytes in terms of Galois 
Field (28) arithmetic. This was efficiently exploited by hardware implementations 
using composite field arithmetic [2,7] which permitted a deeper level of pipelining 
thus improved throughput. 

The method of placement of pipeline latches (or cuts) was to consider the synthesis 
estimates for various units within the design. In particular, for Xilinx FPGAs, the 
number of cascaded 4-input LUTs in the critical path together with routing delays 
dominate the minimum cycle period.  The first stage of optimisation is to consider the 
routing delay as constant and only consider change in the number of cascaded LUTs.  
In further optimisation design cycle iterations, the secondary effects of excessive 
routing delays and fan out load were considered. 

A simple function, such as the reduction-OR of a bit vector, can be used to 
generate LUT-levels versus cycle time results for the internal fabric of a specific 
 

Table 1. Virtex-E performance versus logic levels 

Logic Levels Path Delay, ns Max Clock Freq, MHz 

1 
2 
3 
4 
5 
6 
7 
8 

2.176 
3.321 
4.466 
5.611 
6.756 
7.901 
9.046 

10.191 

459.6 
301.1 
223.9 
178.2 
148.0 
126.6 
110.5 
98.1 
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technology.  Table 1 shows such results for Xilinx Virtex-E.  As can be seen from the 
table having pipeline registers between each LUT would yield the fastest design, 
however, there is a compromise in terms of the amount of fan-in required by the logic 
expressions in the design, the acceptable latency and realistic routing. 

The Virtex FPGA slice consists of two LUTs and one D-type flip-flop (FD) so a 
single level of logic between FDs would under utilise cells resulting in an 
approximate factor of two increase in the design area thus an impact on speed due to 
the larger distances. Similarly, two levels of logic between FDs would not provide 
sufficient flexibility (number of input terms in an expression) for the AES algorithm 
thus is likely to result in a significant increase of area. Further, with only two LUT 
levels routing, propagation time, fan-out and congestion from a lack of suitable 
routing resources are very likely to dominate the cycle time. This leaves three logic 
levels as the aiming point for pipeline register placement. 

There is a further complication in that the slice architecture includes a number of 
multiplexer (MUX) resources in addition to the LUTs these can be used to implement 
2-input XOR and 2-input MUX functions without recourse to an extra level of LUTs.  
This factor must also be considered when placing the pipeline cuts. 

For a given set of pipeline cuts the synthesis results may be examined to verify that 
the critical path contains the correct number of cascaded LUTs.  This design process 
yielded the following optimal cut set; Figure 1 shows the composite field 
implementation of SubBytes [2] followed by ShiftRows (SR) and MixColumns (M) 
operations.  The number of LUT-levels is shown adjacent to each design unit and the 
total in a given pipeline step (represented by the dashed lines) at the bottom of the 
diagram.  From an initial implementation it was found that additional time had to be 
allowed for the excessively long routing associated with the ShiftRows operation.  
Thus both the ShiftRows and its inverse require extra time compared to the remainder 
of the design. The excess time is approximately equivalent to a time associated with 
using two LUTs. The circuit shown can perform both encryption and decryption 
operations. 

 

Fig. 1. Block diagram for each middle round 

The same treatment was given to the placement of pipeline cuts in the final round 
(Figure 2) which conveniently turned out to require one less cut than the middle 
rounds. This was used to accommodate the single cut required for the first round to 
yield a regular timing pattern. 
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Fig. 2. Block diagram for final round 

The key expansion also required implementing and in some previous designs had 
been overlooked. One key design decision was how frequently the key must be 
changed and whether continued throughput is required. In this design, it was decided 
that throughput should be maintained during key changes and that it was desirable to 
change between encryption and decryption on each cycle with key changes made on 
similar order to the latency. 

 

Fig. 3. Block Diagram of KeyExpander 
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Fig. 4. Placement of design on Virtex-E (XCV2000E) 

Table 2. Performance comparison of this work with previous designs 

Design 
FPGA 
Part 

Freq.
MHz

Thro’put
Mbps 

Latency
ns 

Area 
slices 

Mbps / 
slice 

Data 
path 

Jarvinen et al [9] 
 

Virtex-E 
XCV1000e-8 129.2 16,500  11,719 1.408 Enc 

Saggesse et al [10] Virtex-E 
XCV2000e-8 158 20,300  

5810 + 
100BRAM

1.091 Enc 

Standaert et al [11] Virtex-E 
XCV3200e-8 145 18,560  15,112 1.228 Enc 

Hodjat et al [3] 
Excl. key expand 

Virtex-II Pro
XC2VP20 169.1 21,640 420 

9,446 
Excl. KE 2.290 Enc 

Zambreno et al [8] Virtex-II 
XC2V4000 184.1 23,570 163 16,938 1.391 Enc 

Zhang (r=7), [2] 
Excl. key expand 

Virtex-E 
XCV1000E-8 168.4 21,556 416 

11,022
Excl. KE 1.956 

Enc/ 
Dec 

This work, 3LUT cut, 
key change support 

Virtex-E 
XCV2000E-8 184.8 23,654 379 16,693 1.417 

Enc/ 
Dec 

This work, 3LUT cut, 
key change support 

Spartan-III 
XC3S2000-5 196.1 25,107 357 17,425 1.441 

Enc/ 
Dec 

The pipeline cuts chosen meant that a given data item will pass completely through 
the AES cipher in 70 cycles. One issue with the AES KeyExpansion is that the 
decryption process starts with the final RoundKey and the only method of obtaining 
the final RoundKey is to progress through the entire key expansion. This issue was 
resolved by having separate encryption and decryption RoundKey registers and the 
new key being supplied suitably in advance to its data (140 cycles). Although the 
additional registers occupy a sizable amount of area it does permit maintaining 
throughput during key changes. The KeyExpander takes 10 cycles to fully generate 
the required set of RoundKeys. In order to match the latency through the main 
datapath, the KeyExpander was placed in a separate clock domain running at 1/7 of 



 AES on FPGA from the Fastest to the Smallest 433 

 

the datapath clock. This allowed for many more levels of logic in the KeyExpander 
without it forming part of the critical path. 

The architecture for the KeyExpander is shown in Figure 3. The InvMixColumns 
unit (M-1) is included to maintain the order of the operations the same for both 
encryption and decryption. This is referred to in the FIPS-197 specification as 
“Equivalent Decryption”. There is no pipelining in the KeyExpander and it evaluates 
one RoundKey every clock cycle (in its clock domain). The “RCON” values, defined 
in the FIPS-197 specification, are computed using repeated finite field doubling 
(FFM2 unit). Four non-pipelined, forward transform only, versions of the SubBytes 
operation were implemented using composite field arithmetic (S units).  The output 
RoundKeys are registered to permit correct operation given key changes and selection 
between encryption and decryption (rk1 to rk10 for encryption and dk1 to dk9 for 
decryption). The first RoundKey (rk0) is obtained by directly registering the key 
input. 

The placement of the design on a Virtex-E is shown in Figure 4 and the 
comparative results in Table 2. When comparing the quoted performance figures it is 
important to recognise the differences caused by changes in FPGA technology or 
more importantly with the level of support for key agility, encryption and decryption.  
Some designs did not include the key expansion in the results and other only 
supported the encryption datapath. This design shows an improvement in throughput 
over the previously known best design [2] of approximately 10% using the same 
FPGA technology. However, further savings can be made by moving from the Virtex-
E to the lower cost Spartan-III devices with an increase in performance due to the 
more modern technology. The design achieves 25 Gbps throughput on the Spartan-III 
XC3S2000-5 device. 

Further improvement in throughput, of say 20%-30%, is possible by adopting a 2-
LUT cut, however factors such as fanout and congestion are likely to be a significant 
obstacle to obtaining an improved throughput-area figure. 

Traditionally, such pipelined designs [3, 8, 9, 10, 11] only demonstrated any key 
agility in encryption only modes such as Counter mode (CTR).  However, this design 
supports key agility for both encryption and decryption thus can support Electronic 
Code Book (ECB) mode.  In a multi channel environment the key can be changed 
once ever 70 cycles thus support batch processing for a number of differently keyed 
concurrent channels without loss in throughput. 

Further, it is a relatively simple task to extend the design by pipelining the key 
expansion, repeating its instantiation for all ten rounds and include registers 
(equivalent to approximately 15232 flip-flops) to support key changes each cycle.  
This would, in a multi channel environment, support any of the feedback modes, 
including Cipher Block Chaining (CBC) thus gaining improved security. 

2.2   Round Based Architecture Using 32-Bit Datapath 

There already exist a number of good 32-bit based designs [4, 5, 13].  In these designs 
the AES is implemented by breaking up a round into a number of smaller 32-bit wide 
operations.  Thus a number of cycles is required to complete each round. 

Such designs are based around a store for the “state” data (16 bytes for 128-bit) 
and look-up tables to perform the required AES operations of SubBytes and 
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MixColumns.  One of the optimisations documented in the FIPS-197 specification is 
to combine the look-up table for the MixColumns and SubBytes operation into a 
single one.  This is often referred to as the “T-box”. 

One of the key optimisations used by Rouvroy [5] was to exploit the larger (18kbit) 
block memories afforded by the Spartan-III and Virtex-II series FPGAs.  This allowed 
for 4 off 32 bit x 256 word look up tables (ROMs) to be implemented per (dual port) 
block memory.  So the required number of 8 off 32 bit x 256 word lookup tables can 
be implemented in two block memories, providing the four address buses needed (8-
bits data in + 3-bits mode).  The contents of the look up tables were chosen to provide 
convenient access to SubBytes and InvSubBytes required by the key expander and the 
finite field multiplications of the SubBytes table required for the combined SubBytes 
– MixColumns operation.  The operation is completed by computing the exclusive-or 
of the four partial “T-box” values.  The values stored are given by the following 
expression for the 8-bit value, a, using the SubBytes transformation and finite field 
multiplication by the given constant: 

•
•
•
•

•

•

=

)(11

)(13

)(9

)(14

)(3

)(

)(

)(2

)(

aISB

aISB

aISB
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aSB

aISB

aSB

aSB

aT  (1) 

A further block memory was used to store the RoundKeys together with several 
multiplexers to route the data and key. 

The following results (Table 3) were quoted together with a comparison with the 
previous design by Chadoweic and Gaj [4].  However, the figures quoted for  
 

Table 3. Performance of existing 32-bit FPGA designs 

 Chodowiec & 
Gaj [4] 

Rouvroy 
et al [5] 

Pramstaller
 et al [13] 

Rouvroy 
et al [5] 

Device XC2S30-6 XC3S50-4 XCV1000E XC2V40-6 

Slices 222 163 1125 146 

Throughput (Mbps) 166 208 215 358 

RAM blocks 3 3 0 3 

Throughput / Area(kbps / 
slice) ignoring block ram 750 1260 191 2450 

Bits of block ram used 9600 34176 0 34176 

Equiv slices for block ram 300 1068 0 1068 

Total equiv. slices (area) 522 1231 1125 1214 

Throughput / Area 
(kbps / slice) 318 169 191 295 
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throughput versus area failed to take into account the size of the block memories.  
This is of particular importance as the block memories on the Spartan-II are 4 kbit 
whereas those found on the Spartan-III and Virtex-II are 18 kbit.  If these costs are 
taken into account then the result is substantially changed. 

The cost of using a block memory in terms of an equivalent number of slices is still 
a matter of some debate.  One option would be to make the comparison based on the 
physical area occupied by a slice and a block memory but quotable figures are not 
forthcoming from the manufacturers.  An alternative is to consider the number of 
slices required to implement the equivalent distributed memory, however, this varies 
depending on the functionality required (for example single or dual port).  Such 
estimates vary between 8 and 32 bits/slice.  For this analysis a worst case figure of 32 
bits/slice was used.  The relative merits of the various designs and thus conclusions 
remain unchanged when the analysis was repeated for the lower estimate. 

2.3   Application Specific Processor Architecture Using 8-Bit Datapath 

The objective was to develop a small AES implementation.  One option was to use 
the freely available Xilinx PicoBlaze soft core processor [14] for which the first 
version only requires 76 slices.  However, for a practical design a small memory was 
needed thus the larger 96 slice KCPSM3 was selected.  Additionally, the size of the 
ROM required to implement 365 instructions for the AES had to be considered 
together with an implementation for SubBytes.  This results in a final design using the 
PicoBlaze of 119 slices plus the block memories which are accounted for here by an 
equivalent number of slices (once again 32 bits per slice was used).  The resulting 
design had an equivalent slice count of 452 and with a 90.2 MHz maximum clock.  
Key expansion followed by encipher took 13546 cycles and key expansion followed 
by decipher 18885 cycles.  The average encipher-decipher throughput was 0.71 Mbps. 

 

Fig. 5. ASIP Architecture 
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An application specific instruction processor (ASIP) was developed based around 
an 8-bit datapath and minimal program ROM size.  Minimisation of the ROM size 
resulted in a requirement to support subroutines and looping.  This added area to the 
control portion of the design but the saving was made in terms of the size of the 
ROM.  The total design, including an equivalent number of slices for the block 
memories only occupies 259 slices to give a throughput of 2.2Mbps. 

The datapath consisted of two processing units, the first to perform the SubBytes 
operation using resource shared composite field arithmetic and the second to perform 
multiply accumulate operations in Galois Field 28.  A minimal set of instructions was 
developed (15 in total) to perform the operations required for the AES.  The processor 
(Figure 5) used a pipelined design permitting execution of a new instruction every 
cycle. 

Figure 6 is a pie chart depicting the balance of area between the various design 
units.  Of the processor hardware approx 60% of the area is required for the datapath 
and 40% for the control. 
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Fig. 6. Slice utilization versus design unit 

As a good FPGA based 8-bit datapath for comparison could not be found, Table 4 
shows comparison of this design with the state-of-the-art 32-bit designs using the 
relatively low cost Xilinx Spartan FPGAs.  The two reference designs both quote 
throughput figures for a mode of operation where the key remains constant thus the 
time taken for key expansion was not included.  A throughput figure was calculated 
for each design inclusive of the time taken for key expansion.  The average for 
encipher and decipher was then calculated and is reported in Table 4 as the average 
throughput. 

Figure 7 shows the placement of this design on a Spartan-II (XC2S15) part.  The 
design requires 124 slices and two block memories.  One memory formed the 
program ROM and the second was used as the ASIP’s main memory (RAM).  The 
AES application only required 360 bits of RAM thus the block memory was only 
partially utilized and could have be implemented as distributed memory with a cost of 
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42 additional slices and would then free up one of the block memories.  There are also 
some concerns over the particular vulnerability of the block memories to power 
attacks so avoiding their use for key and data storage may be desirable.  However, 
even avoiding use of the block memories does not negate such risks. 

Table 4. Comparison with other designs using low cost FPGAs 

 This 
design 

Picoblaze 
based 

Chodowiec
& Gaj [4] 

Rouvroy et 
al [5] 

FPGA Spartan-II
XC2S15-6 

Spartan-II
XC2S15-6 

Spartan-II
XC2S30-6 

Spartan-III 
XC3S50-4 

Clock Frequency (MHz) 67 90 60 71 
Datapath Bits 8 8 32 32 
Slices 124 119 222 163 
No. of Block RAMs used 2 2 3 3 
Block RAM Size (kbits) 4 4 4 18 
Bits of block RAM used 4480 10666 9600 34176 
Est. equiv. slices for memory 140 333 300 1068 
Total Equiv. Slices (area) 264 452 522 1231 
Max Throughput (Mbps) - - 166 208 
Ave. Throughput (Mbps) 2.2 0.71 69 87 
Throughput/slice (kbps/slice) 8.3 1.9 132 70 

Summary Smallest Software Best 
speed/area 

Fastest 

 

Fig. 7. Placement of low area design on Spartan-II (XC2S15) 
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3   Conclusions 

This paper has presented a number of FPGA implementations from the fastest to the 
smallest.  In terms of speed to area ratio the unrolled designs perform the best as there 
is no controller overhead.  However, such designs are very large and need a 1 – 2 
million gate device but achieve throughputs up to 25 Gbps.  These designs have 
applications in fixed infrastructure such as IPsec for e-commerce servers. 

The low area design described here achieves 2.2 Mbps which is sufficient for most 
wireless and home applications.  The area required is small thus fundamentally low 
power so has utility in the future mobile area.  The design requires just over half the 
available resources of the smallest available Spartan-II FPGA. 
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7. Standaert (VirtexE) EncOnly     
8. Jarvinen (Virtex-E) EncOnly     

 

Fig. 8. Throughput versus area for the different FPGA designs 

The advantage of the 8-bit ASIP over the more traditional 8-bit microcontroller 
architecture (PicoBlaze) is shown by the approximate factor of three improvement in 
throughput and 40% reduction in area (including estimated area for memories). 

The 32-bit datapath designs occupy the middle ground between the two extremes 
and have utility where moderate throughput in the 100 – 200 Mbps is required. 
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The advantage of an FPGA specific optimisation over an ASIC number-of-gates 
approach has been demonstrated by the speed improvement made in the loop unrolled 
design. 

The best architectural decision is to select the design of the lowest possible area 
meeting the throughput and operating mode requirement for the system being 
developed. Figure 8 shows the different designs in terms of their throughput and 
area. 
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Abstract. A key step in the Advanced Encryption Standard (AES)
algorithm is the “S-box.” Many implementations of AES have been pro-
posed, for various goals, that effect the S-box in various ways. In partic-
ular, the most compact implementations to date of Satoh et al.[14] and
Mentens et al.[6] perform the 8-bit Galois field inversion of the S-box
using subfields of 4 bits and of 2 bits. Our work refines this approach
to achieve a more compact S-box. We examined many choices of ba-
sis for each subfield, not only polynomial bases as in previous work,
but also normal bases, giving 432 cases. The isomorphism bit matrices
are fully optimized, improving on the “greedy algorithm.” Introducing
some NOR gates gives further savings. The best case improves on [14]
by 20%. This decreased size could help for area-limited hardware imple-
mentations, e.g., smart cards, and to allow more copies of the S-box for
parallelism and/or pipelining of AES.

1 Introduction

The Advanced Encryption Standard (AES) was specified in 2001 by the National
Institute of Standards and Technology [10]. The purpose is to provide a standard
algorithm for encryption, strong enough to keep U.S. government documents
secure for at least the next 20 years. The earlier Data Encryption Standard
(DES) had been rendered insecure by advances in computing power, and was
effectively replaced by triple-DES. Now AES will largely replace triple-DES for
government use, and will likely become widely adopted for a variety of encryption
needs, such as secure transactions via the Internet.

A wide variety of approaches to implementing AES have appeared, to satisfy
the varying criteria of different applications. Some approaches seek to maximize
throughput, e.g., [7], [16] and [3]; others minimize power consumption, e.g., [8];
and yet others minimize circuitry, e.g., [13], [14], [17], and [2]. For the latter goal,
Rijmen[12] suggested using subfield arithmetic in the crucial step of computing
an inverse in the Galois Field of 256 elements—reducing an 8-bit calculation to
several 4-bit ones. Satoh et al.[14] further extended this idea, using the “tower
field” approach of Paar[11], breaking up the 4-bit calculations into 2-bit ones,
which resulted in the smallest AES circuit to date.

Mentens et al.[6] recently examined whether the choice of representation
(basis in each subfield) used by [14] was optimal. They compared 64 different
choices (including that in [14]), based on the number of ‘1’ entries in the two

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 441–455, 2005.
c© International Association for Cryptologic Research 2005
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transformation matrices used in encryption and on the number of binary XOR
operations used in one of the 4-bit operations in the subfield. Based on these
criteria, they determined that a different choice is better than that in [14], and
estimated the improvement at 5%.

The current work improves on the compact implementation of [14] and ex-
tends the work of [6] in the following ways. Many choices of representation (432
different isomorphisms) were compared, including all those in [6]. The cases in
[6] use a polynomial basis in each subfield (as in [14]), while we also consider a
normal basis for each subfield. It turns out the best case uses all normal bases.
And while [14] used the popular “greedy algorithm” to reduce the number of
gates in the bit matrices required in changing representations, we fully optimized
each matrix by an exhaustive tree-search algorithm, resulting in the minimum
number of gates. (Based on our fully optimized matrices, comparisons of ma-
trices using the simple “number of ‘1’ entries” criterion of [6] gives incorrect
comparisons in 37% of the cases, and even the greedy algorithm gives incorrect
comparisons in 20% of the cases.) We included logic optimizations both at the
hierarchical level of the Galois arithmetic and at the low level of individual logic
gates. We were thus able to replicate the very compact merged S-box reported in
[14], which includes both the S-box function and its inverse, including a Galois
inverter and all four transformation matrices as well as multiplexors for select-
ing which input and output transformations are used[15]. Hence our comparisons
of the different cases are based on complete, optimized implementations of the
merged S-box (rather than the two criteria of [6]), and it turns out the best case
for the merged architecture is also the best for the architecture with a separate
S-box and inverse S-box. Also, although the bit operations of Galois arithmetic
correspond directly to XOR and AND (or NAND) gates, here certain combi-
nations of operations are implemented more compactly using XOR and OR (or
NOR) gates. These refinements combine to give a merged S-box circuit that is
20% smaller than in [14], a significant improvement.

1.1 The Advanced Encryption Standard Algorithm

The AES algorithm, also called the Rijndael algorithm, is a symmetric block
cipher, where the data is encrypted/decrypted in blocks of 128 bits. Each data
block is modified by several rounds of processing, where each round involves four
steps. Three different key sizes are allowed: 128 bits, 192 bits, or 256 bits, and the
corresponding number of rounds for each is 10 rounds, 12 rounds, or 14 rounds,
respectively. From the original key, a different “round key” is computed for each
of these rounds. For simplicity, the discussion below will use a key length of 128
bits and hence 10 rounds.

There are several different modes in which AES can be used [9]. Some of
these, such as Cipher Block Chaining (CBC), use the result of encrypting one
block for encrypting the next. These feedback modes effectively preclude pipelin-
ing (simultaneous processing of several blocks in the “pipeline”). Other modes,
such as the “Electronic Code Book” mode or “Counter” modes, do not require
feedback, and may be pipelined for greater throughput.
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The four steps in each round of encryption, in order, are called SubBytes
(byte substitution), ShiftRows, MixColumns, and AddRoundKey. Before the first
round, the input block is processed by AddRoundKey. Also, the last round skips
the MixColumns step. Otherwise, all rounds are the same, except each uses a
different round key, and the output of one round becomes the input for the next.
For decryption, the mathematical inverse of each step is used, in reverse order;
certain manipulations allow this to appear like the same steps as encryption with
certain constants changed. Each round key calculation also requires the SubBytes
operation. (More complete descriptions of AES are available from several sources,
e.g., [10].)

Of these four steps, three of them (ShiftRows, MixColumns, and AddRound-
Key) are linear, in the sense that the output 128-bit block for such steps is just
the linear combination (bitwise, modulo 2) of the outputs for each separate input
bit. These three steps are all easy to implement by direct calculation in software
or hardware.

The single nonlinear step is the SubBytes step, where each byte of the input
is replaced by the result of applying the “S-box” function to that byte. This
nonlinear function involves finding the inverse of the 8-bit number, considered
as an element of the Galois field GF(28). The Galois inverse is not a simple cal-
culation, and so many current implementations use a table of the S-box function
output. This table look-up method is fast and easy to implement.

But for hardware implementations of AES, there is one drawback of the
table look-up approach to the S-box function: each copy of the table requires
256 bytes of storage, along with the circuitry to address the table and fetch
the results. Each of the 16 bytes in a block can go through the S-box function
independently, and so could be processed in parallel for the byte substitution
step. This effectively requires 16 copies of the S-box table for one round. To
fully pipeline the encryption would entail “unrolling” the loop of 10 rounds into
10 sequential copies of the round calculation. This would require 160 copies of
the S-box table (200 if round keys are computed “on the fly”), a significant
allocation of hardware resources.

In contrast, this work describes a direct calculation of the S-box function
using sub-field arithmetic, similar to [14]. While the calculation is complicated
to describe, the advantage is that the circuitry required to implement this in
hardware is relatively simple, in terms of the number of logic gates required.
This type of S-box implementation is significantly smaller (less area) than the
table it replaces, especially with the optimizations in this work. Furthermore,
when chip area is limited, this compact implementation may allow parallelism
in each round and/or unrolling of the round loop, for a significant gain in speed.

The rest of the paper describes our specific algorithm in detail. (See [1] for a
thorough, detailed presentation of the 432 different versions considered in find-
ing the best one.) Section 2 explains the basic idea of the algorithm and the
resulting structure of the Galois inverter. Section 3 discusses ways to optimize
the calculation, Section 4 describes the changes of representation, and Section 5
describes the results. Finally, Section 6 summarizes the work.
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2 The S-Box Algorithm Using Subfield Arithmetic

The S-box function of an input byte (8-bit vector) a is defined by two substeps:

1. Inverse: Let c = a−1, the multiplicative inverse in GF(28) (except if a = 0
then c = 0).

2. Affine Transformation: Then the output is s = M c ⊕ b, with the constant
bit matrix M and byte b shown below:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s7
s6
s5
s4
s3
s2
s1
s0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c7
c6
c5
c4
c3
c2
c1
c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where bit #7 is the most significant, with all bit operations modulo 2.

The second, affine substep is easy to implement; the algorithm for the first
substep, finding the inverse, is described below. (Some familiarity with Galois
arithmetic is assumed. A succinct introduction to Galois fields is given in [5]; for
more depth and rigor, see [4]. Also, [1] conveys just enough theory to understand
this algorithm.)

The AES algorithm uses the particular Galois field of 8-bit bytes where the
bits are coefficients of a polynomial (this representation is called a polynomial
basis) and multiplication is modulo the irreducible polynomial q(x) = x8 + x4 +
x3 + x + 1, with addition of coefficients modulo 2. Let A be one root of q(x);
then the standard polynomial basis is [A7, A6, A5, A4, A3, A2, A, 1]. (Note: we will
usually use uppercase Roman letters for specific elements of GF(28), lowercase
Greek letters for elements of the subfield GF(24), uppercase Greek letters for
the sub-subfield GF(22), and lowercase Roman letters for bits in GF(2).)

Direct calculation of the inverse (modulo an eighth-degree polynomial) of a
seventh-degree polynomial is not easy. But calculation of the inverse (modulo
a second-degree polynomial) of a first-degree polynomial is relatively easy, as
pointed out by Rijmen [12]. This suggests the following changes of representation.

First, we represent a general element G of GF(28) as a linear polynomial
(in y) over GF(24), as G = γ1y + γ0, with multiplication modulo an irreducible
polynomial r(y) = y2 + τy + ν. All the coefficients are in the 4-bit subfield
GF(24). So the pair [γ1, γ0] represents G in terms of a polynomial basis [Y, 1]
where Y is one root of r(y).

Alternatively, we could use the normal basis [Y 16, Y ] using both roots of
r(y). Note that

r(y) = y2 + τy + ν = (y + Y )(y + Y 16) , (1)

so τ = Y + Y 16 is the trace and ν = (Y )(Y 16) is the norm of Y .
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Second, we can similarly represent GF(24) as linear polynomials (in z) over
GF(22), as γ = Γ1z + Γ0, with multiplication modulo an irreducible polynomial
s(z) = z2 + T z + N , with all the coefficients in GF(22). Again, this uses a
polynomial basis [Z, 1], where Z is one root of s(z); or we could use the normal
basis [Z4, Z]. As above, T is the trace and N is the norm of Z.

Third we represent GF(22) as linear polynomials (in w) over GF(2), as Γ =
g1w + g0, with multiplication modulo t(w) = w2 + w + 1, where g1 and g0 are
single bits. This uses a polynomial basis [W, 1], with W one root of t(w); or a
normal basis would be [W 2, W ]. (Note that the trace and norm of W are 1.)

This allows operations in GF(28) to be expressed in terms of simpler opera-
tions in GF(24), which in turn are expressed in the simple operations of GF(22).
In each of these fields, addition (the same operation as subtraction) is just bitwise
XOR, for any basis.

In GF(28) with a polynomial basis, multiplication mod y2 + τy + ν is given
by

(γ1y + γ0)(δ1y + δ0) = (γ1δ0 + γ0δ1 + γ1δ1τ)y + (γ0δ0 + γ1δ1ν) . (2)

From this it is easy to verify that the inverse is given by

(γ1y + γ0)−1 = [θ−1 γ1] y + [θ−1 (γ0 + γ1τ)] (3)
where θ = γ2

1ν + γ1γ0τ + γ2
0 .

So finding an inverse in GF(28) reduces to an inverse and several multiplications
in GF(24). Analogous formulas for multiplication and inversion apply in GF(24).
Simpler versions apply in GF(22), where the inverse is the same as the square
(for Γ ∈ GF(22), Γ 4 = Γ ); note then that a zero input gives a zero output, so
that special case is handled automatically.

The details of these calculations change if we use a normal basis at each level.
In GF(28), recall that both Y and Y 16 satisfy y2 +τy+ν = 0 where τ = Y 16 +Y
and ν = (Y 16)Y , so 1 = τ−1(Y 16 + Y ). Then multiplication becomes

(γ1Y
16 + γ0Y )(δ1Y

16 + δ0Y ) = [γ1δ1τ + θ] Y 16 + [γ0δ0τ + θ] Y (4)
where θ = (γ1 + γ0)(δ1 + δ0)ντ−1 ,

and the inverse is

(γ1Y
16 + γ0Y )−1 = [θ−1 γ0] Y 16 + [θ−1 γ1] Y (5)

where θ = γ1γ0τ
2 + (γ2

1 + γ2
0)ν .

Again, finding an inverse in GF(28) involves an inverse and several multiplica-
tions in GF(24), and analogous formulas apply in the subfields.

These formulas can be simplified with specific choices for the coefficients in
the minimal polynomials r(y) and s(z). The most efficient choice is to let the
trace be unity, so from here on we let τ = 1 and T = 1. (This is better than
choosing the norm to be unity—we can’t have both, and neither can be zero.)

The above shows that both polynomial bases and normal bases give compa-
rable amounts of operations, at this level; both types remain roughly comparable
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at lower levels of optimization. (Of course, one could choose other types of basis
at each level, but both polynomial and normal bases have structure that leads
to efficient calculation, which is lacking in other bases.) We considered all of the
subfield polynomial and normal bases that had a trace of unity. There are eight
choices for the norm ν that make r(y) = y2 + y + ν irreducible over GF(24), and
two choices for N that make the polynomial s(z) = z2 + z + N irreducible over
GF(22). Each of these polynomials r(y), s(z), and t(w) has two distinct roots,
and for a polynomial basis we may choose either, or for a normal basis we use
both. So altogether there are (8 × 3) × (2 × 3) × (1 × 3) = 432 possible cases
(including the all-polynomial case used in [14]).

We compared all of these cases, in terms of complete implementations of
the merged S-box architecture of [14], including all low-level optimizations ap-
propriate to each case. The most compact was judged to be the one giving the
least number of gates (using a 0.13-μm CMOS standard cell library[15]) for the
merged S-box, where the encryptor and decryptor share a GF(28) inverter. As it
happens, this is also the best case for an architecture using a separate encryptor
and decryptor (each with an inverter).

The most compact case uses normal bases for all subfields. Here we will give
the relevant Galois elements as hexadecimal numbers, for bit vectors in terms of
the standard polynomial basis for GF(28) (powers of A). For GF(28), the norm
ν = 0xEC, and Y = 0xFF, so the basis is [0xFE,0xFF] (recall that for each
of the normal bases, the sum of the two elements is the trace, which is unity).
For GF(24), N = 0xBC and Z = 0x5C, so the basis is [0x5D,0x5C]. (These two
levels are related by ν = N2Z.) And for GF(22), W = 0xBD, and the basis is
[0xBC,0xBD]. (Those two levels are related by N = W 2 and W = N2.)

2.1 Hierarchical Structure

Here we show the structure of this best-case inverter. To clarify the subfield
operations needed, we will use ⊕ and ⊗ for addition and multiplication in the
subfield. In GF(28) the only operation required is the inverse; the normal basis
inverter is shown in Figure 1 and the polynomial basis inverter in Figure 2, for
comparison. The operations required in the subfield GF(24) include an inverter
(same form as in GF(28)), three multipliers, two adders (bitwise XOR), and the
combined operation of squaring then scaling (multiplying) by the norm ν. Note:
in GF(22) inversion is the same as squaring, which is free with a normal basis:

(g1W
2 + g0W )−1 = (g1W

2 + g0W )2 = g0W
2 + g1W . (6)

The GF(24) multiplier is shown in Figure 3 for a normal basis; the polynomial
basis version has the same operations in a slightly different arrangement. The
operations required in the subfield GF(22) include three multipliers, four adders,
and scaling by the norm N . The GF(22) multiplier has the same structure, except
lacks scaling by the norm (since the norm of W is 1), and in GF(2), ⊗ means
AND.

The other operation needed in GF(24) is the combined operation of squaring
then scaling by ν (the “square-scale operation”). The form of this operation
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ν⊗γ2

γ−1

⊗

⊗

⊗
⊕

⊕
 4

 4

γ0

γ1

δ0

δ1

Fig. 1. Normal GF(28) inverter: (γ1Y
16 + γ0Y )−1 = (δ1Y

16 + δ0Y ). The datapaths
all have the same bit width, shown at the output (4 bits here); addition is bitwise
exclusive-OR; and sub-field multipliers appear below. The GF(24) inverter has the
same structure. In GF(22) inverting is free: a bit swap.

ν⊗γ2

γ−1

⊗

⊗

⊗
⊕⊕  4

 4

γ0

γ1

δ0

δ1

Fig. 2. Polynomial GF(28) inverter: (γ1y+γ0)−1 = (δ1y+δ0). The GF(24) inverter has
the same structure. In GF(22) inverting (same as squaring) requires only one XOR.

⊕

⊕

⊕

⊕ Ν⊗Γ

⊗

⊗

⊗  2

 2

Γ1

Γ0

Δ1

Δ0

Φ1

Φ0

Fig. 3. Normal GF(24) multiplier: (Γ1Z
4 + Γ0Z) ⊗ (Δ1Z

4 + Δ0Z) = (Φ1Z
4 + Φ0Z).

The GF(22) multiplier has the same structure except lacks the scaling by N , since the
norm in the subfield is 1.

varies, depending not only on the type of basis in GF(24), but also on the
representation ν in that basis; there are a dozen different versions. Here scaling
the square of γ = Γ1Z

4 + Γ0Z by ν = N2Z gives

ν ⊗ (Γ1Z
4 + Γ0Z)2 = [(Γ1 ⊕ Γ0)2]Z4 + [(N ⊗ Γ0)2]Z . (7)

The only “new” operation required in the subfield GF(22) is squaring, but this
is the same as inversion, and for a normal basis is free.

The remaining operation needed in the subfield GF(22) is scaling by N = W 2

(since squaring is free, this also give the square-scale operation in the GF(24)
inverter):
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N ⊗ (g1W
2 + g0W ) = [g0]W 2 + [g0 ⊕ g1]W , (8)

requiring a single XOR.
Also, combining the multiplication in GF(22) with scaling by N gives a small

improvement; this combination appears in the GF(24) multiplier:

N ⊗ (g1W
2 + g0W ) ⊗ (d1W

2 + d0W )
= [f ⊕ ((g1 ⊕ g0) ⊗ (d1 ⊕ d0))]W 2 + [f ⊕ (g1 ⊗ d1)]W (9)

where f = g0 ⊗ d0 .

3 Inverter Optimizations

Here we will show the optimizations in the GF(28) inverter for this best case.
There are similar optimizations for other cases, described in [1]. All these opti-
mizations were carefully calculated by hand, and so should be at least as good
as versions given by automatic optimization tools.

3.1 Common Subexpressions

Eliminating redundancy where low-level subexpressions appear more than once
in the above hierarchical structure reduces the size of the Galois inverter.

As [14] mentions, one place this occurs is when the same factor is input to
two different multipliers. Each multiplier computes the sum of the high and low
halves of each factor (see Figure 3), so when a factor is shared then this addition
in the subfield can be removed from one of the multipliers. For example, a 2-
bit factor shared by two GF(22) multipliers saves one XOR (addition in the
1-bit subfield). Moreover, since each GF(24) multiplier includes three GF(22)
multipliers, then a shared 4-bit factor implies three corresponding shared 2-bit
factors in these subfield multipliers. So each shared 4-bit factor saves five XORs
(one 2-bit addition and three 1-bit additions).

The normal-basis inverters for GF(28) and GF(24) share all three factors
among the three multipliers; however, the corresponding polynomial-basis in-
verters each have only two shared factors (see Figures 1 and 2). This gives an
advantage of five XORs to using a normal basis in GF(28), from the additional
shared factor.

A more subtle saving occurs in the GF(24) inverter. There the bit sums com-
puted for common factors can be used in the following square-scale operation,
which saves one XOR. A similar optimization occurs in the GF(28) inverter;
combining the bit sums for shared input factors with parts of the square-scale
operation saves three XORs.

3.2 Logic Gate Optimizations

Mathematically, computing the Galois inverse in GF(28) breaks down into oper-
ations in GF(2), i.e., the bitwise operations XOR and AND. However, it can be
advantageous to consider other logical operations that give equivalent results.
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For example, for the 0.13-μm CMOS standard cell library considered[15], a
NAND gate is smaller than an AND gate. Since the AND output bits in the
GF(22) multiplier are always combined by pairs in a following XOR, then the
AND gates can be replaced by NAND gates. That is, [ (a ⊗ b) ⊕ (c ⊗ d) ] is
equivalent to [ (a NAND b) XOR (c NAND d) ]. This gives a slight size saving.

Also, in this library an XNOR gate is the same size as an XOR gate. This
is useful in the affine transformation of the S-box, where the addition of the
constant b = 0x63 means applying a NOT to some output bits. In most cases,
this can be done by replacing an XOR by an XNOR in the bit-matrix multiply,
so is “free.”

While the above logic optimizations are not original, here is one we have
not seen elsewhere. Note that the combination [a ⊕ b ⊕ (a ⊗ b) ] is equivalent
to [ a OR b ]. In the few places in the inverter where this combination occurs,
we can replace 2 XORs and an AND by a single OR, a worthwhile substitution.
(Actually, 2 XORs and a NAND are replaced by a NOR, smaller than an OR.)
In fact, the NOR gate is smaller than an XOR gate, so even when some rear-
rangement is required to get that combination, it is worthwhile even if the NOR
ends up replacing only a single XOR. Our implementation uses 6 NORs in the
GF(28) inverter (including two in the GF(24) inverter).

4 Changes of Representation

This algorithm involves two different representations, or isomorphisms, of the
Galois Field GF(28). The standard AES form uses a vector of 8 bits (in GF(2))
as the coefficients of the 8 powers of A, the root of the defining polynomial
q(x) = x8 + x4 + x3 + x + 1. The subfield form for GF(28) uses a pair of 4-
bit coefficients (in GF(24)) of Y 16 and Y (for a normal basis), the roots of
r(y) = y2 + y + ν. Then each element of GF(24) is a pair of two-bit coefficients
(in GF(22)) of Z4 and Z, the roots of s(z) = z2 + z + N . And in GF(22),
each element pair of one-bit coefficients (in GF(2)) of W 2 and W , the roots of
t(w) = w2 + w + 1. So the subfield representation uses pairs of pairs of pairs of
bits.

One approach to using these two forms, as suggested by [13], is to convert
each byte of the input block once, and do all of the AES algorithm in the new
form, only converting back at the end of all the rounds. Since all the arithmetic
in the AES algorithm is Galois arithmetic, this would work fine, provided the
key was appropriately converted as well. However, the MixColumns step involves
multiplying by constants that are simple in the standard basis (2 and 3, or A
and A + 1), but this simplicity is lost in the subfield basis (in our best basis,
2 and 3 become 0xA9 and 0x56). For example, scaling by 2 in the standard
basis takes only 3 XORs; the most efficient normal-basis version of this scaling
requires 18 XORs. Similar concerns arise in the inverse of MixColumns, used in
decryption. This extra complication more than offsets the savings from delaying
the basis change back to standard. Then, as in [14], the affine transformation
can be combined with the basis change (see below). For these reasons, it is most
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efficient to change into the subfield basis on entering the S-box and to change
back again on leaving it.

Each change of basis means multiplication by an 8× 8 bit matrix. Letting X
refer to the matrix that converts from the subfield basis to the standard basis,
then to compute the S-box function of a given byte, first we do a bit-matrix
multiply by X−1 to change into the subfield basis, then calculate the Galois
inverse by subfield arithmetic, then change basis back again with another bit-
matrix multiply, by X . This is followed directly by the affine transformation
(substep 2), which includes another bit-matrix multiply by the constant matrix
M . (This can be regarded another change of basis, since M is invertible.) So we
can combine the matrices into the product MX to save one bit-matrix multiply,
as pointed out by [14]. Then adding the constant b completes the S-box function.

The inverse S-box function is similar, except the XOR with constant b comes
first, followed by multiplication by the bit matrix (MX)−1. Then after finding
the inverse, we convert back to the standard basis through multiplication by the
matrix X .

For each such constant-matrix multiply, the gate count can be reduced by
“factoring out” combinations of input bits that are shared between different
output bits (rows). One way to do this is known as the “greedy algorithm,”
where at each stage one picks the combination of two input bits that is shared by
the most output bits; that combination is then pre-computed in a single (XOR)
gate, which output effectively becomes a new input to the remaining matrix
multiply. The greedy algorithm is straightforward to implement, and generally
gives good results.

But the greedy algorithm may not find the best result. We used a brute-
force “tree search” approach to finding the optimal factoring. At each stage,
each possible choice for factoring out a bit combination was tried, and the next
stage examined recursively. (Some “pruning” of the tree is possible, when the
bit-pair choice in the current stage is independent of that in the calling stage
and had been checked previously. The C program is given in [1].) This method
is guaranteed to find the minimal number of gates; the big drawback is that one
cannot predict how long it will take, due to the combinatorial complexity of the
algorithm.

The “merged” S-box and inverse S-box of [14] complicates this picture, but
reduces the hardware overall when both encryption and decryption are needed.
There, a block containing a single GF(28) inverter can be used to compute either
the S-box function or its inverse, depending on a selector signal. Given an input
byte a, both X−1 a and (MX)−1 (a+b) are computed, with the first selected for
encryption, the second for decryption. That selection is input into the inverter,
and from the output byte c, both (MX) c + b and X c are computed; again the
first is selected for encryption, the second for decryption.

With this merged approach, these basis-change matrix pairs can be optimized
together, considering X−1 and (MX)−1 together as a 16 × 8 matrix, and simi-
larly (MX) and X , each pair taking one byte as input and giving two bytes as
output. (Then (MX)−1 (a+b) must be computed as (MX)−1 a+[(MX)−1 b].)



A Very Compact S-Box for AES 451

Combining in this way allows more commonality among rows (16 instead of 8)
and so yields a more compact “factored” form. Of course, this also means the
“tree search” optimizer has a much bigger task and longer run time. (Using an
Intel Xeon processor under Linux, optimization times for a 16× 8 matrix varied
from a few minutes to many weeks.)

The additive constant b of the affine transformation requires negating specific
bits of the output of the basis change. (Actually, for the merged S-box, the
multiplexors we use are themselves negating, so it is the bits other than those
in b that need negating first.) As mentioned in Section 3.2, this usually involves
replacing an XOR by an XNOR in the basis change (both are the same size in
the CMOS library we consider), but sometimes this is not possible and a NOT
gate is required.

The change of basis matrix X for our best case is given below :

X =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (10)

The other three matrices are easily computed from X . The combined 16 × 8
bit matrices for the merged architecture, fully optimized by our tree search
algorithm, are given in [1]

At this time, not all of the matrices for all of the cases considered below
have been fully optimized, but the data so far indicate how full optimization can
improve on the greedy algorithm. For the architecture with separate encryptor
and decryptor, all cases have been fully optimized: of 1728 matrices (8 × 8)
optimized, 762 (44%) were improved by at least one XOR, and of those, 138
(18% of improved ones) were improved by two XORs, and 11 (1.4% of improved
ones) were improved by three XORs. For the merged architecture, the top 27
cases have been optimized (we gave up on one matrix in case 28 after estimating
optimization would take 5 years). Of 55 matrices (16 × 8) optimized, 24 (44%)
were improved by one XOR, 10 (18%) were improved by two XORs, and 6 (11%)
were improved by three XORs, so altogether 73% were improved.

With so many optimized matrices, we could evaluate how well matrix com-
parisons based on the greedy algorithm or on the number of ‘1’ entries correctly
predicted the comparisons between the corresponding fully optimized matrices.
We called a prediction incorrect when it predicted that one matrix was better
than another, but the fully optimized version turned out worse or the same (or
predicted same when one was better). For the 1492128 comparisons among the
1728 optimized 8 × 8 matrices, the greedy algorithm gave incorrect predictions
for 19.9% of comparisons while the number of ‘1’s incorrectly predicted 37.5%.
The results for the 1485 comparisons among the 55 optimized 16 × 8 matrices
were more dramatic: the greedy prediction was incorrect for 30.7% and the ‘1’s
prediction incorrect for 43.7%.
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Since we have not yet fully optimized the (16× 8) matrices for all of the 432
possible cases, it is remotely possible that some other case could turn out to be
better than the case we call “best.” We have optimized all cases whose estimated
size, based on the greedy algorithm, was within 9 XORs of the actual size of our
best case (except in one case, where only 1 of the 2 matrices was optimized; it
improved by 2 XORs). So far, the best improvement in a single 16 × 8 matrix
is 3 XORs, and the best improvement in the pair of matrices for a single case
is 5 XORs. For some other case to be best, full optimization must improve a
matrix pair, beyond what the greedy algorithm found, by at least 10 XORs. We
consider this highly unlikely, and so are confident that we have indeed found the
best of all 432 cases.

5 Implementation Results

The size of our best S-box is shown in Table 1, for three architectures: merged
S-box and inverse S-box (one inverter, all four tranformation matrices, and two
8-bit selectors), only S-box (for just encrypting), and only inverse S-box (for
just decrypting). Results are shown by number and type of logic operations,
and also by total “gates,” where the number refers to the equivalent number
of NAND gates, using our standard cell library. We use the equivalencies 1
XOR/XNOR = 7

4 NAND gates, 1 NOR = 1 NAND gate, 1 NOT = 3
4 NAND

gate, and 1 MUX21I = 7
4 NAND gates [15]. Our merged S-Box, equivalent in

size to 234 NANDs, is an improvement of 20% over that of Satoh et al. at
294 NANDs[14]. While Mentens et al.[6] use a different cell library, if we just
compare equivalent NANDs our merged S-box is 14% smaller than their S-box
at 272 NANDs.

Table 2 shows the effects of different levels of optimization of the inverter.
Note in particular that the NOR substitution discussed in 3.2 further reduces the
inverter by 9%. Table 3 show how different choices of basis affect the results. For
fair comparisons, since we have not calculated fully optimized matrices and the
NOR substitution improvements for all four bases shown, we show our imple-
mentations using greedy-algorithm matrices and exclude the NOR substitution.
Our best basis is the only one of the four that uses normal bases.

Table 1. Best Case Results. Here are our best results for a complete implementation
of a merged S-box & inverse, S-box alone, and inverse S-box alone. All use our best
case basis with all optimizations.

best XOR NAND NOR NOT MUX total gates
merged 94 34 6 2 16 234
S-box 80 34 6 0 0 180

(S-box)−1 81 34 6 0 0 182
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Table 2. Levels of Optimization. Here the first line shows the inverter based on the
hierarchical structure (of 2.1); the next shows the improvement due to the removal of
common subexpressions (of 3.1); the last shows the additional improvement from the
NOR substitution (of 3.2). All use our best basis.

inverter XOR NAND NOR total gates
hierarchical 88 36 0 190

w/ low-level opt. 66 36 0 152
w/ NOR subst. 56 34 6 138

Table 3. Choice of Basis. Here we compare four different choices of basis: our best
case, the best case of Mentens[6], the basis used by Satoh et al.[14], and our worst case.
Each shows our complete implementation of a merged S-box & inverse, S-box alone,
and inverse S-box alone. For comparison, all use the same level of optimization (using
greedy-algorithm matrices and excluding the NOR substitution).

basis type XOR NAND NOT MUX total gates
merged 107 36 2 16 253

ours S-box 91 36 0 0 195
(S-box)−1 91 36 0 0 195
merged 118 36 0 16 271

Mentens S-box 96 36 0 0 204
(S-box)−1 97 36 0 0 206
merged 119 36 3 16 275

Satoh S-box 100 36 0 0 211
(S-box)−1 99 36 0 0 209
merged 131 36 0 16 293

worst S-box 107 36 0 0 223
(S-box)−1 106 36 0 0 222

The merged S-box and inverse was implemented as a Verilog module, shown
in [1], including all our optimizations. While this compact implementation is
intended for ASICs, we tested this implementation using an FPGA. Specifically,
we used an SRC-6E Reconfigurable Computer, which includes two Intel proces-
sors and two Virtex II FPGAs. As implemented on one FPGA, the function
evaluation takes just one tick of the 100 MHz clock, the same amount of time
needed for the table look-up approach.

We also implemented a complete AES encryptor/decryptor on this same sys-
tem, using our S-box. Certain constraints (block RAM access) of this particular
system prevent using table lookup for a fully unrolled pipelined version; 160
copies of the table (16 bytes/round × 10 rounds) would not fit (we precompute
the round keys). So for this system, our compact S-box allowed us to implement
a fully pipelined encryptor/decryptor, where in the FPGA, effectively one block
is processed for each clock tick. (In fact, we could even fit all 14 rounds needed
for 256-bit keys.)
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6 Conclusion

The goal of this work is an algorithm to compute the S-box function of AES,
that can be implemented in hardware with a minimal amount of circuitry. This
should save a significant amount of chip area in ASIC hardware versions of AES.
Moreover, this area savings could allow many copies of the S-box circuit to fit
on a chip for parallelism within each round, and perhaps enough to “unroll” the
loop of 10 rounds for full pipelining (for non-feedback modes of encryption), on
smaller chips.

This algorithm employs the multi-level representation of arithmetic in GF(28),
similar to the previous compact implementation of Satoh et al[14]. Our work
shows how this approach leads to a whole family of 432 implementations, de-
pending on the particular isomorphism (basis) chosen, from which we found the
best one. (A detailed exposition of this nested-subfield approach, including speci-
fication of all constants for each choice of representation, is given in [1].) Another
improvement involves replacing some XORs and NANDs with NORs. And in fac-
toring the transformation (basis change) matrices for compactness, rather than
rely on the greedy algorithm as in prior work, we fully optimized the matrices,
using our tree search algorithm with pruning of redundant cases. This gave an
improvement over the greedy algorithm in 73% of the 16 × 8 matrices and 44%
of the 8 × 8 matrices that we optimized.

Our best compact implementation gives a merged S-box that is 20% smaller
than the previously most compact version of [14]. We have shown that none of
the other 431 versions possible with this subfield approach is as small. (We did
not examine issues of timing, latency and delay, but these should be compara-
ble with [14].) This compact S-box could be useful for many future hardware
implementations of AES, for a variety of security applications.
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