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Preface

These are the proceedings of the 7th Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2005) held in Edinburgh, Scotland from August 29 to
September 1, 2005. The CHES workshop has been sponsored by the International
Association for Cryptologic Research (IACR) for the last two years.

We received a total of 108 paper submissions for CHES 2005. The double-
blind review process involved a 27-member program committee and a large num-
ber of external sub-referees. The review process concluded with a two week dis-
cussion process which resulted in 32 papers being selected for presentation. We
are grateful to the program committee members and the external sub-referees
for carrying out such an enormous task. Unfortunately, there were many strong
papers that could not be included in the program due to a lack of space. We
would like to thank all our colleagues who submitted papers to CHES 2005.

In addition to regular presentations, there were three excellent invited talks
given by Ross Anderson (University of Cambridge) on “What Identity Systems
Can and Cannot Do”, by Thomas Wille (Philips Semiconductors Inc) on “Se-
curity of Identification Products: How to Manage”, and by Jim Ward (Trusted
Computing Group and IBM) on “Trusted Computing in Embedded Systems”. It
also included a rump session, chaired by Christof Paar, featuring informal talks
on recent results.

The focus of CHES 2005 was similar to that of the earlier CHES workshops
with the addition of a few new topics of emerging interest among which were
smart card attacks and architectures, tamper resistance on the chip and board
level, true and pseudo random number generators, special-purpose hardware for
cryptanalysis, embedded security, cryptography for pervasive computing (e.g.,
RFID, sensor networks), device identification, non-classical cryptographic tech-
nologies, and side channel cryptanalysis. Special attention was paid to trusted
computing platforms.

Special compliments go out to Colin D. Walter, the general chair and local
organizer of CHES 2005, who brought the workshop to the beautiful historic
town of Edinburgh, Scotland making it as much of a cultural event as a stimu-
lating technical gathering. Christof Paar held the publicity Chair of CHES and
was helpful at all stages of the organization. We would like to thank our corpo-
rate sponsors Cryptography Research Inc., escrypt GmbH, Gemplus, IBM, and
RSA Security, who made it possible to have a lively event with their generous
contributions. We would like to thank our dedicated webmaster Jens-Peter Kaps
for maintaining the CHES website and review system even when he was travel-
ling. Finally, we would like to thank the CHES steering committee members for
giving us the honor of being part of such an influential conference.

August 2005 Josyula R. Rao and Berk Sunar
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Resistance of Randomized Projective
Coordinates Against Power Analysis

William Dupuy and Sébastien Kunz-Jacques

DCSSI Crypto Lab,
51, bd de Latour-Maubourg, 75700 PARIS 07 SP
william.dupuy@laposte.net
kunzjacq@yahoo.fr

Abstract. Embedded devices implementing cryptographic services are
the result of a trade-off between cost, performance and security. Aside
from flaws in the protocols and the algorithms used, one of the most
serious threats against secret data stored in such devices is Side Channel
Analysis.

Implementing Public Key Cryptography in low-profile devices such as
smart cards is particularly challenging given the computational complex-
ity of the operations involved. In the area of elliptic curve cryptography,
some choices of curves and coefficient fields are known to speed up com-
putations, like scalar multiplication. From a theoretical standpoint, the
use of optimized structures does not seem to weaken the cryptosystems
which use them. Therefore several standardization bodies, such as the
NIST, recommend such choices of parameters. However, the study of
their impact on practical security of implementations may have been
underestimated.

In this paper, we present a new chosen-ciphertext Side-Channel Attack
on scalar multiplication that applies when optimized parameters, like
NIST curves, are used together with some classical anti-SPA and anti-
DPA techniques. For a typical exponent size, the attack allows to recover
a secret exponent by performing only a few hundred adaptive power
measurements.

1 Introduction

The use of elliptic curves for cryptographic purposes was proposed by Miller [10]
in 1985 and Koblitz [8] in 1987. Since then, it became an essential part of public
key cryptography. In particular, many cryptosystems rely on the intractability
of the discrete logarithm problem (DLP) on elliptic curves. The main advantage
of this problem is that it is believed to be harder to solve than other number-
theoretic problems. As a consequence, for a similar security level, it is possible
to use smaller objects than with integer factorization for example. This property
is especially attractive for embedded systems, where storage requirements and
computation times are critical.

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 1-14, 2005.
© International Association for Cryptologic Research 2005



2 W. Dupuy and S. Kunz-Jacques

Cryptosystems relying on DLP on elliptic curves use the scalar multiplication
operation in some large elliptic curve group (G, +)

PeG— kP (1)

where k is a secret data. Because of DLP hardness, it is believed to be infeasible
to compute k from the knowledge of one or several pairs (P, kP).

In a situation where no reasonable attack on a cryptographic algorithm is
known, Kocher first observed in 1996 [9] that the measurement of the algorithm
computation time could still reveal secret information. This paved the way to
Side Channel Attacks that take advantage of the measurement of physical signals
emitted by a cryptographic device during a computation to gain access to secret
data.

Since then, several examples of Side Channel Attacks led to various coun-
termeasures being developed. Concerning scalar multiplication in EC groups,
the use of scalar multiplication algorithms with a regular computation flow like
double-and-add always or Montgomery Ladder is an answer to Simple Power
Analysis (SPA), while randomized projective coordinates, first proposed by [4],
are used to counter Differential Power Analysis (DPA).

In this paper, we present a new side-channel attack against scalar multipli-
cation implementing these countermeasures, when the EC group used is chosen
among the NIST [12], ANSI [1] or SEC [13] recommended curves. It is a Goubin-
style attack [6] that uses distinguished points whose presence can be detected
along the computation by an observation of power traces despite the random-
ization countermeasure. It leverages the particular shape of the underlying coef-
ficient fields.

The paper is organized as follows. We first briefly review some facts about
elliptic curves in section 2. Then section 3 presents some classical Side Channel
Attacks and common countermeasures to prevent them. Finally, sections 4 and
5 present the details of our attack.

2 Elliptic Curves

2.1 Elliptic Curve Equation
Let K be a finite field of characteristic p. Over this field, we set the equation (E)

y2 + a1y = x3 + a2x2 + asx + ag

The elliptic curve (C) associated to (E) is the set of all points of K? satisfying
(E), together with a particular point O called point at infinity. K is the coefficient
field of the curve.

Up to an affine change of variables, if p = 2, we can set a3 = 1 and a4 = 0.
The equation can then be rewritten y? + xy = 2 + a2z + ag. If p > 3, we can
set a; = az = 0 and then (E) becomes 3% = 2° + a4z + ag.

Together with an addition law, this set forms a commutative group. We do
not describe the group law here since it does not play any role in the attack we
present.
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2.2 Affine and Projective Representation

A point on a curve of equation (F) is a solution of (F). Therefore the simplest
representation of a point on a curve of equation (E) is the corresponding solution
of (E) in K2. This is the affine representation.

Nevertheless, other representations can be preferred. We are mainly inter-
ested in projective coordinates. Given P = (x,y) in affine coordinates, its repre-
sentation in projective coordinates is P = (zZ,yZ, Z) for any Z € K*. If a finite
solution of (F) is represented by (a, 3,7), then v # 0. The point at infinity O is
represented by (0, 3,0) for any 3 # 0.

The projective representation is not unique. In fact, for some finite solution
(z,y) of (E) with  # 0 and y # 0, any of the three projective coordinates can
take an arbitrary value in K*. This observation is the basis of the randomized
projective coordinates countermeasure, which we will describe in section 3.2.
Projective representation is also used to increase the efficiency of point addition
computations since for example, it allows to compute the group law without
having to perform modular inversion in the coefficient field.

2.3 Recommended Coefficient Fields for NIST Elliptic Curves

Curves recommended by standardization bodies such as NIST, ANSI, or SEC
are usually defined over F,, or Fao[z]/(P) where P a primitive polynomial. We
focus on NIST recommended curves from now on. Other standardized curves
present similar properties as the ones of the NIST.

Curves Defined on Binary Fields. The coefficient field is here of the form
Fy[z]/(P). The primitive polynomials standardized by the NIST are:

Pogs(z) = 2®3 + 2™ 4+ 1
Pogs(z) = 2™ + 22 + 27 + 25 + 1
Pygg(z) = 2% + 287 4+ 1
Psi(x) = 2 0 4 a5 a2 41
We can notice that these polynomials are very sparse. This has to do with
hardware efficiency.

Curves Defined on Prime Order Fields. For these curves, the coefficient
field is F,,, with p among

Prog = 2192 _ 964 |
Pogs = 2224 _ 996 |1
Pass = 2256 _ 9224 | 9192 | 996 _ |
Pagy = 2584 128 _ 996 | 932
psa1 =271 — 1

As in the binary case, the sparse form of these primes simplifies and speeds
up operations in the coefficient field.
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2.4 Scalar Multiplication

As already mentioned, cryptosystems relying on discrete logarithm on elliptic
curves make a consistent use of scalar multiplication. Given a public point P on

the elliptic curve, and a secret scalar k, this operation consists in computing kP.
n—1

Let us write k = Z k;2%. The most basic algorithm that computes kP given

=0
P and a ”"black-box” implementation of the group law is the following:

[double-and-add from MSB to LSB]
INPUT: P in C

R=0
for i from n-1 to O
R <- 2R
if k_i=1
R <- R+P
end for;
RETURN R

3 Side Channel Attack and Common Countermeasures

3.1 Classes of Attacks

SPA: Simple Power Analysis applies when the sequence of operations performed
during some computation depends on a secret value. When the operations used
are sufficiently complex, they can be easily detected by physical measures and
the sequence of operations performed can be retrieved.

For instance, in a double-and-add algorithm, an addition is performed only if
the corresponding bit of k is set to 1. Assuming that doubling and adding have
noticeably different power consumption signatures, one observation of a power
consumption curve can be enough to extract the secret exponent value.

DPA: Differential Power Analysis was introduced by [3] on DES implementa-
tions, but it applies to public-key cryptography as well.

For DPA to work, some intermediate value v manipulated by a cryptographic
device must depend on known input and output values and on a few secret bits.
The power consumption of some operation manipulating v is measured for several
input values. To each value k of the secret bits involved corresponds a partition
of the input and output messages into subsets leading to the same value for v. A
guess for k can be checked as follows: if the value of k is correct, averaging the
power consumption inside these subsets should yield noticeably different results
among subsets. If it is wrong, results should be roughly identical no matter the
subset chosen.
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Goubin-Style Attacks. L. Goubin [6] first noticed that some properties of
intermediate values may be invariant under randomization. For example, if a
coordinate of some projective point representation is zero, it remains equal to
zero whatever the randomization applied. If such a remarkable property can
be detected, an attack can be built as follows: input values are chosen so that
a remarkable value appears during the computation only if some hypothesis
about a secret is correct. The measure then allows the attacker to test his
hypothesis.
The attack we present follows this framework.

3.2 Countermeasures

Many countermeasures have been developed to make the attacks presented in
section 3.1 impractical. Most widely used ones are presented here.

Regularization of the Instructions Flow. For an algorithm to be protected
against SPA, its instruction flow must not depend on secret values. Double-and-
add always, or Montgomery ladder [11] are examples of such algorithms:

[Double-and-add always from MSB to LSB]
INPUT: P in C
R[0]=0
for i from n-1 to O
R[0]<- 2R[0]
R[1]<- R[O]+P
R[0]<- R[k_i]
end for;
RETURN R[0]

[Montgomery ladder]

INPUT: P in C

R[0]=0;R[1]=P

for i from n-1 to O
R[1-k_il<- R[k_i]J+R[1-k_i]
Rlk_il<- 2R[k_i]

end for;

RETURN R[0]

Randomization of Data Representation. is targeted at DPA. If the rep-
resentation of temporary values is randomized, an intermediate value does not
depend only on inputs and key bits, but also on some random data out of control
of the attacker. Consequently, aggregating measures is no longer possible.

In the case of scalar multiplication, expressing a point in randomized projec-
tive (or Jacobian) form, as suggested by Coron [4], is a common instantiation of
this countermeasure.
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Randomization of the computation flow In order to prevent Goubin-style
attacks, randomness can be introduced in the sequence of operations performed.
Here are two examples of techniques applied to the scalar multiplication P — kP:

— Point blinding The hardware computes k(P 4+ R) and kR, for some
random point R, separately [4] or together using a trick due to Shamir [7].

— Random exponent If g is the order of the underlying group, then ¢P = 0.
Therefore if (k + rq) P is computed instead of kP for some random value r,
the final result is unchanged, but the binary representation of the secret key
is scrambled by the addition of rq all along the computation.

4 The Attack: Theory

4.1 Assumptions on the Target Device

We aim at retrieving the n-bit secret scalar k stored in a cryptographic device
performing scalar multiplication P — kP for any point P of our choice, on an
elliptic curve whose coefficient field is defined by a sparse polynomial for the

binary field case or a ”"sparse” prime for the prime field case (see 2.3).
n—1

An element e in the coefficient field can always be written e = Z e;u’ with

i=0
u=2if K=Fp, and u = z if K =Fgn = F[x]. Since we will observe Hamming
weights during the attack, we assume that our target crypto device represents e
in the standard way by the binary string {e;}.
The secret scalar, on the other hand, is an object of Z/qZ where ¢ is the
number of elements of the chosen elliptic curve group. We will write

n—1
k=Y k2
=0

The attack we propose applies to implementations having the following prop-
erties:

— Points are represented with randomized projective coordinates.
— No randomization of the computation flow is performed.

We focus on double-and-add always from the MSB to the LSB or on the
Montgomery ladder. However, the particular choice of the scalar multiplication
algorithm used is irrelevant, and we target more generally algorithms that per-
form one computation step per exponent bit. We suppose that in step j the point
K; P is manipulated, with

n—1
Kj = Z ki2i7(n717j)
i=n—1—j
On the measurement side, we assume we have access to the Hamming weights
of the values manipulated, up to some noise.
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4.2 Overview of the Attack

Suppose that some special point Py can be distinguished from a random point,
for example by power analysis. Since we assumed in section 4.1 that on input P
and during step j, the multiplication algorithm manipulates

n—1
K;pP=| Y k2010 p

i=n—1—j

asking for the computation of k.(1/K;Py) makes Py appear at the j-th step of
computation. Because K; = 2K;_; +k,_1_;, assuming K;_ is known, the value
of the next unknown bit k,,_1_; can be recovered as follows:

Assume that k,—1—; = 0 and that conse-
quently K; = 2K;_1. Observe the computation of
k(1/K;)Py. If Py is detected at step j, the hypothe-
sis on bit k,_1_; was correct. Otherwise, k,—1—; =1
and Kj = 2Kj_1 + 1.

The above applies for j = 0 as well with K_; = 0.

For each bit, several computations might be performed to improve the relia-
bility of the guess of k,—;. Then, by iterating this algorithm, the whole secret k
can be extracted.

4.3 Using Hamming Weights to Build a Distinguishable Point

We choose a point of the form
PO = (UA, y)

in affine coordinates, with A as small as possible. Its representation in projective
form is Py : (X =uZ,Y = yZ, Z) for some random Z € K*.

For each value of A we can expect that there is a point with abscissa u* with
probability 1/2 : in I, this is the case if and only if 232 1422 +b is a square, while
in [y, it depends on whether the polynomial p(y) = 3 + 2y + 23* + a2® +b
has roots. For all NIST curves, A can be chosen < 5.

Detecting the Distinguishable Point. Because of the form of common co-
efficient fields such as NIST fields, we show in sections 4.4 and 4.5 that for a
random Z, X = u*Z is close to Z rotated by A bits on the left (Z <<< )),
therefore

U = Ham(X) — Ham(Z)

is small. At the opposite, for a random point where coordinates are uncorrelated,
U has mean 0 and variance V(U) = 2(n/4) = n/2. Therefore,

We measure U to discriminate Py from a random
point.
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As usual, increasing the number of experiments decreases the error probabil-
ity; several scalar multiplications lead to as many observations of U as necessary.
Statistical tests can then be performed as described in section 5.1 to make a de-
cision according to the observations.

Now, let us estimate the Hamming distance between u*Z and (Z <<< )
on both fields types.

4.4 Binary Fields

Let P(x) = 1+a:"+zg:1 ™ with 1 < my; < myy1 < n be a primitive polynomial
over Zso[X] of degree n. Let e = n—deg(P(z) —z™) = mj. We assume that e > ;
this is true for NIST curves which satisfy e > n/2. More generally, multiplication
optimization in Fon = Fa[z]/(P) commands to choose e large.

Let Z € Fon. Remember that elements of Fon are represented in the usual
polynomial base. For \ < e, set Z = Z; + 2"~ *Zy with deg(Z;) < n — A and
deg(Z) < A : (Z <<< \) =271 + Zs.

227 and (Z <<< \) mod P are related by:

N =2 N2 @ a2y
=22, ® (2" — P)Z
=(Z<<<NDZ2@ (2" — P)Zy
I
=(Z<<<N)® Zﬂcm Zs
=1

Since A < e, the above result is the reduced expression of the difference mod
P. Each term ™ Z5 is a A-bit pattern that can affect at most a A-bit window
of the difference. Therefore at most I\ bits differ from Z and 2*Q.

Under the assumption that the A-bit windows do not overlap, the exact com-
putation of the probability law of Ham(2*@Q) — Ham(Q) can be carried out; this
is useful to improve the attack (see section 5.1, Neyman-Pearson). The computa-
tion is performed in appendix A.1. The non-overlapping assumption is satisfied
for the NIST curves Ps33 and Pygg.

4.5 Prime Fields

We work here in ), with p is prime. This case is more complex than the binary
case because of the carry propagations that occur while adding values mod p.

Let e be the the greatest integer such that 2™ — 1 — p < 2"7¢. For all NIST
curves, e > 32. Distinguished points for curves on prime fields satisfy A < 3:
thus we always have e — A > 29.

Let Z € Fp,, Z = Z1 + 2" 27, with Z; < 2"~ and Z» < 27

(Z << )\) = 2>‘Zl + Z5 and
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N7 =227, + 2"y [p]
=227, + (2" — p)Z2 [p)
=(Z<<<AN)+Alp] withA=(2"-1-p)Z

Since Zo < 2* and 2" —1 —p < 277 ¢, A < 2" (=) Since p > 2 — 2n—¢,
with probability around 1 —2¢7* > 1 — 272 (Z <<< \) + A, viewed as an
integer, is reduced mod p (i.e. it lies in the interval [0, p—1]). We can thus forget
reduction mod p and study the effect of adding A to (Z <<< A) in Z.

Sparse primes like NIST primes satisfy relations of the form 2" — 1 — p =
Zle €; 2™, with I small and €; = £1 (see section 2.3; in the NIST case, I < 3).
Therefore A = Zle €; 2™ Zy. A is composed of I A\-bit blocks; we now assume
as in the binary case that these blocks do not overlap, and this hypothesis is
fulfilled for all NIST curves mod p.

On average, carries beyond A-bit blocks of multiples of Z (“block carries”)
do not change U = Ham(Z <<< \) — Ham(2}Z), and have a small influence on
V(U) as shown in appendix A.2. Since inside each block the Hamming weight
is not changed on average, E(U) = 0 as in the binary case. Excluding the block
carries, at most I\ bits differ between 2*Z and Z.

5 The Attack: Practice

5.1 Statistical Tests

During the course of the attack, we target some specific bit k,,—; manipulated
during step j + 1. We compute m times k.(1/(2K;)P,) and collect m measures
Ui, 1 < i < m, of U. We must then choose a guess for k,,_; depending on
S = (Ur,...,Un). Let Dy, be the law of U if k,,—; = h, Pp,(U = k) = pro and
PDl(U = k) = Dk,1-

Neyman-Pearson Test. It is well known from the Neyman-Pearson lemma
that the test that has the smallest error probability if both hypothesis on ky,_;
are equally likely, consists in computing the probability of the sample S observed
according to both hypotheses, and to select the hypothesis k,—; = h for which
the probability of the sample is the highest; this is the hypothesis that explains
best the observed value. Knowing the py 5, one can compute the probability of
S under hypothesis i through

Pp,(S) = Prn = pu, hPUsk - - DU R (2)

Test Based on a Variance Estimator. While the Neyman-Pearson test on
S is optimal, it requires the exact knowledge of Dy and D;. A slightly less
efficient, but simpler test consists in estimating the variance of S. If k,,_; = 0,
V(U) = Vo = (IN)/2 (binary case) or (I(A 4+ 1))/2 (prime case), whereas if
kn,j = ].7 V(U) = V1 = n/2
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After m experiments, V(U) is estimated by V = 5}/ St UZ. The probability
P}, that V takes some specific value under Dy, is then computed by approximating
both laws Dy and D; by normal laws!: the law of V under Dy, is approximated
by Vi,/m times a x2 with m degrees of freedom. The Neyman-Pearson decision
rule is then used on V: k,_; = 0 is decided if and only if Py > P;.

Necessary Number of Experiments. The error probability of the Neyman-
Pearson decision rule on some function f of the observation S for one experiment
depends on the statistical distance between f(Dy) and f(D1)

> IPpy (£(S) = k) = Pp, (f(S) = k)|

k

and similarly, on several experiments, the distance between f(Dg) x ... f(Dp)
and f(Dy) x ... x f(D;1) could be computed. However, this is not practical.
Some approximations exist, like the Kullback-Leibler distance, or the Square
Euclidean Imbalance (see [2] or [5]). Very roughly, they state that for a con-
stant error rate the number of experiments depends on the distributions like
(SulPo (F(S) = k) = Po, (F(S) = K?) .

Practically, we prefer adaptive strategies that estimate on the fly the error
probability.

Adaptive Strategies. If m measures are performed, resulting in some obser-
vation S of probability P; under Dy, the probability that hypothesis h actually
holds is P P

0 1
Py 1 P, and P(h=1|5)= Py + P,

During a series of m experiments, m being a fixed value, the probability ratio
P(h = 0]S)/P(h = 1]S) = Po/P; indicates the confidence in the decision made.
In the experiments we perform, some threshold 6 > 1 is set. We perform more
experiments as long as 1/6 < Po/P1 < 6. If Py > 6P; we decide h = 0, and
if P; > 6Py we decide h = 1. Since the number of experiments is computed
adaptively, experiments are no longer independent and for example (2) is not
strictly true anymore. However we assume that the confidence estimation Py /P4
is still meaningful.

P(h=0|S) =

Recovering the Whole Key. Even if the error probability for each bit guess is
small, since we are dealing with large secret values (at least 192 bits), the proba-
bility that at least one error occurs during the attack is high. Additionally, after
one error at step j, since next experiments rely on the value of K, subsequent
tests will fail to detect Py and with high probability, the next guessed bits will
be equal to 1.

Of course, one way to overcome this problem is to have a very low error prob-
ability per bit. However, more subtle approaches can be devised: for example, if

! this is justified by the central limit theorem for D;; for Do, this can be considered
as an heuristic hypothesis.
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a long run of ones is guessed, one can attempt to restart from the computation
step where the run begins.

5.2 Experimental Results

We simulated a Montgomery Ladder using randomized projective coordinates
on the various NIST curves. We used the most basic variance estimator, with
no backtracking in case of long runs of ones. We looked for the number of mea-
surements required to guess the whole secret scalar with a success probability of
90%. No noise was added to the measurements, unlike in a real setting.

The number of measurements that had to be performed in order to reach a
confidence level of 90% does not grow linearly in the size of the scalar. In fact,
it depends on I); this is to be expected because of the expression of V(U) under
the hypothesis k,_1—; = 0.

Current results are summarized in table 1 below.

Table 1. Experiments Required for a 90% Confidence Level

Curve Total number of experiments Experiments per bit A I
D192 1117 6 2 2
P224 2347 10 6 6
P256 2729 11 4 12
D384 2519 7 1 3
P521 1305 3 n.a. O
Ba3s 482 2 1 1
Bags 1854 7 5 15
Buoo 789 2 1 1
Bsn1 2219 4 5 15

6 Conclusion

In this paper, we presented a new chosen-ciphertext Side-Channel Attack on
elliptic curve scalar multiplication. It does not apply to any elliptic curve, but
rather to curves whose coefficient fields are chosen to enable efficient implemen-
tations on resource-constrained hardware; unfortunately, this kind of hardware
is precisely the target of choice for Side-Channel Attacks.

The attack is able to defeat some widely used countermeasures like anti-SPA
scalar multiplication algorithms and projective coordinate randomization. It is
stopped by more complex defenses like point blinding and scalar randomization;
these countermeasures do not however come for free in hardware. The attack
might also be prevented if the cryptanalyst cannot have full control over the
scalar multiplication input.

Practically, basic simulations show that the attack is able to recover a secret
scalar with a success rate of 90% on any NIST curve using no more than 11
power measurements per bit guessed, using a very simple statistical test. This
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lead us to think that it is a practical threat that should be taken into account
by implementors.
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A Computation of the Probability Law of U

A.1 Binary Case

In that section, we compute the exact probability law of the Hamming weight
difference between 2*Z and Z <<< A, under the assumption that the A-bit
windows do not overlap.

We use the same notations as in 4.4: Fan = F3[X]/(P) and Z is a random

uniform value in Fo». For some A < n — ky,

U = Ham(Z) — Ham(z2)
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is the random variable whose law we want to compute. We saw in section 4.4
that if Z = Z; + 2" *Z, with deg(Z1) < n — X and deg(Z2) < A, then

I
7 =(Z <<< \) @ Zxki.Zg

i=1

Set (Z <<< A) = Z?;Ol zix'. Then Zy = Zj‘;ol z;x?. Let U; be the con-
tribution of the j-th bit of Zy, 2, to U. Under the non-overlapping condition,
U=Uy+...+Ux_1 and

I
Uj = Ham(Z <<< A\) — Ham ((Z <K< A) Bz Zx’““)

i=1

I I
=2 ) (2245~ 1) = 2 (2 D ki — 21)

i=1 i=1

and for each 4,7, z; and zj,4; are independent because k; # 0. If W is a
binomial random variable B(I,1/2),

PUj=k)=_PRW—I=k) ifk#0

N =N =

1
+, PEW =1)

In particular, E(U;) = 0, and V(U;) = I/2. Now Up,...,Ux_1 depend on
different bits of Z and are therefore independent: the law of U is simply the law
of the sum of A\ independent ”copies” of Uy, for example. In order to implement
a Neyman-Pearson test on outcomes of U, its law can therefore be derived by

computing the A-th convolution power of the law of Uy. In order to perform
variance tests, we only need E(U) = 0, and V(U) = I)\/2.

A.2 Large Prime Case

In the prime field case, we want to approximate the law of U = Ham(Z) —
Ham(2*Z), where 0 < Z < p is random and the Hamming weight is computed
on reduced representations mod p.

In section 4.5, we proved that the law of U is very close to the law of

U' = Ham(Z') — Ham(Z' + A)

with Z’ a random value in [0, 2" — 1],

I
A= (2" —p—1)(Z mod2") = Zsi 2™Mi (7' mod 2)
i=1
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and ¢; = £1. Set Z' mod 2* = Z}. X copies of Z} are added or subtracted
at [ different A-bit windows in Z. For the prime numbers we consider, m;41 —
m; > X\ and we will therefore assume that these windows do not overlap, and
even more, that no carry can propagate from one window to the other. We
will handle separately bit differences occurring inside these windows and bit
differences outside them, caused by carries overflowing the windows. The first
category of bit differences will be enumerated by a random value U/, and the
second one by U: U' = U, 4+ U]. We will assume that U] and U] are independent.

The contribution ¢; of each A-bit window to U/ is a random binomial value
satisfying ¢;/2 — 1 ~ B(A,1/2), and these contributions are independent be-
cause they involve independent bits of Z’ (and although they both involve Z3).
Therefore U/ /2 — 1 ~ B(I\,1/2).

Let us focus on the contribution ¢, of a term 2™ Z} to U], corresponding
to a case g; = 1. With probability 1/2, no carry occurs and ¢, = 0. If a carry
occurs, ¢, contributes to U/ in the following way:

Contribution 1 0 -1 —
Probability 1/41/8 1/16 2~ (+2)

For example, in the second case of the above table, two bits 01 in Z’ are
changed by the carry into 10.

In fact, co = b(1 — Z) where b is a Bernoulli variable that is equal to one
if and only if a carry occurs, P(Z = i) = 27! for i > 0, and b and Z are
independent. With the help of this expression, one can check that E(¢,) = 0 and
V(c,) = 1/2. We would have obtained the same result for e; = —1, although ¢
would be changed into —cg.

Finally, in the simplified model corresponding to the assumptions we made,
E(U) =0 and V(U) = (I(A+ 1))/2. Also note that the modeling above can be
used to compute the probability law of U.
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Abstract. We introduce two new attacks: the single-bit template attack
and the template-enhanced DPA attack. The single-bit template attack
can be used very effectively to classify even single bits in a single side
channel sample with a high probability of correctness. The template-
enhanced DPA attack, combines traditional DPA with single-bit tem-
plate attacks to show that if an adversary has access to a test card
with even a slightly biased RNG, then he/she can break protected cryp-
tographic implementations on a target card even if they have perfect
RNGs. In support of our claim, we report results from experiments on
breaking two implementations of DES and AES protected by the masking
countermeasure running on smartcards of different manufacturers.

In light of these results, the threat of template attacks, generally
viewed as intrinsically difficult to mount, needs to be reconsidered.

1 Introduction

Several side channel cryptanalytic techniques, such as those based on measuring
timing, power consumption and electromagnetic emanations have been used ef-
fectively to launch a wide range of attacks such as simple power analysis (SPA),
differential power analysis (DPA), higher order DPA, template attacks and multi-
channel attacks [Koc96,KJJ99, AARR02,CRR02,ARRO03] against a wide variety
of cryptographic devices. While countermeasures, even provably secure ones,
have been developed for some attacks such as DPA, the perceived difficulty (in
terms of the work effort required by an adversary) of launching other attacks
has led developers to discount their feasibility.

This is particularly true for template attacks. For instance, the very high
successful classification results that can often be achieved with the analysis of
a single side channel sample, make template attacks the ideal choice to attack
ciphers, such as stream ciphers, which use ephemeral keys. However, until now all
published works [CRR02,RO04] used template attacks to classify the state of a
byte, e.g., a key byte in RC4. This makes the process of creating templates quite
tedious since 256 templates need to be created for each byte. Further, templates
for the full attack cannot be precomputed as the templates for a subsequent key

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 15-29, 2005.
© International Association for Cryptologic Research 2005
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byte need to be created for each likely hypothesis for the earlier key bytes, i.e.,
the template building process can only be guided by partial attack results. In
this paper, we show that this apparent difficulty is not intrinsic and present two
new attack techniques to surmount it.

1.1 Contributions

Our first contribution is the single-bit template attack technique. For a given
bit, this attack uses DPA to build templates. It relies on our experimental ob-
servation that templates can be built from peaks observed in a DPA attack and
these templates can predict the value of a single DPA-targeted bit in a single
side channel sample with high probability. Thus, even though the specific com-
putation yielding the single sample uses byte sized variables, the template can
predict a single bit from those variables.

This technique immediately yields attacks where an adversary precomputes
a large number of single-bit templates using several different DPA attacks on a
test device and uses these precomputed templates and their classification proba-
bilities to attack a single sample from an identical target device. These templates
provide the best guess for each of the DPA-targeted bits and the template clas-
sification probabilities can be used to guide a weighted brute force search for
the key. With enough precomputed templates, the entropy of the key is reduced
substantially making the weighted brute force search practical. For example, in
an experiment on a DES implementation, just attacking the 32-bits of S-box
output in the first round, reduced the key entropy by over 16 bits. Clearly, by
building templates, for DPA attacks carried on other variables in other rounds,
the key entropy could be further reduced.

Reflecting further on the single-bit template attack, it should be evident,
that knowledge of a single-bit template is comparable to having some partial
knowledge about the key used in a card. Possession of several such single-bit
templates is akin to having a master key that can be used to break any of a
collection of cards from the same mask. This is true even for cards that are
protected by DPA countermeasures such as secret sharing and random masking
[GP99, CJRT99, AGO1], if single-bit templates for the bits being processed in
such cards can be built.

The second major contribution of this paper is to introduce template-en-
hanced DPA attacks which can be used to attack DPA protected cards under
some assumptions. The problem with such cards is that single-bit templates
(as described earlier) cannot be built, since in principle, the DPA protection
renders DPA (the first step in building single-bit templates) infeasible. However,
in practice, this is not a limitation, as there are multiple ways to get hold of a
test card with a (slightly) biased RNG. For example, an adversary in collusion
with the designers, testers and maintainers of card software may have hooks
to add code to disable specific RNG registers on their own test cards while
changes to deployed cards in the field may be much more tightly controlled and
impossible for an adversary. Some production cards may fail the RNG tests at
fabrication time and may be discarded only to be picked up by an adversary.
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In our experience, we have sometimes encountered even production cards with
slight RNG bias (to the tune of 3-4%). Therefore, if cards are not tested or
tested to wide tolerance limits, then it is highly likely that several cards in the
field may have slightly biased RNGs. As a last resort, an attacker could mount
an intrusive attack to disable the RNG on his own test card.

Given a test card with a (slightly) biased RNG, an adversary can successfully
perform multiple DPA attacks on the test card to build single-bit templates. The
DPA peaks in these attacks would occur at locations where the masked value of
the predicted variable bit (such as an S-box output bit) occur, since the masking
is imperfect. Single-bit templates built using these DPA peaks would then be
able to classify corresponding bits of the masked variables used in any card,
including cards that have a perfect RNG. The template-enhanced DPA attack
works by setting the DPA selector function to be the XOR of the standard
DPA selector function (e.g., an S-box output bit for a key hypothesis) and the
classification obtained by the single-bit templates (such as the masked S-box
output bit). Depending on the effectiveness of the template classification, this
DPA selector function will have high correlation with the mask bit being used.
Thus for the right key hypothesis, this attack will show DPA peaks at locations
where the random mask is being used.

We demonstrate such a single-bit template attack for two DPA protected
implementations: a protected DES implementation on a 6805 based smartcard
and a protected AES implementation on an AVR architecture. We also report a
surprising result that indicates that in practice, the bias of the RNG in the test
card has little relevance to the effectiveness of the template-enhanced DPA attack.
The RNG bias only affects the effort required to build single-bit templates. The
classification error with single-bit templates built using a slightly biased RNG is
not significantly worse than the classification error using templates built using
a completely broken (fixed at 0) RNG.

The paper is organized as follows: In Section 2, we introduce single-bit tem-
plate attacks. In Section 3, we introduce the template-enhanced DPA attacks
and show how it can be uses to attack two smartcards of different architecture?,
which run protected implementations of DES and AES.

2 Single-Bit Template Attack

We extend earlier work on template attacks [CRR02, RO04] that focused on
classifying a byte in a computation, e.g., a byte of key used in RC4, by showing
how template attacks can be applied to classify single bits in a computation from
a single side channel sample.

A template attack begins by selecting variables occurring in the computa-
tion for which templates would be built. Furthermore, it requires a selection
of significant points for each of the selected variables that are included in the
corresponding template. Having a good selection criterion for significant points

1 Smartcard A is an ST19 based on the 6805 architecture and smartcard B is an Atmel
ATmegal63 based on the AVR architecture.
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is critical to the success of template attacks and this problem has been well
studied: ideally, the significant points should have high variance with respect to
the particular variable of interest. For example, Bohy et al. [BNSQO03] suggest
Principal Component Analysis (PCA) while Rechberger et al. [RO04] suggest
a simpler and computationally less expensive approach that resembles classical
DPA. For the single-bit template attack, we let DPA attacks guide the selection
of both the bits in the computation for which templates are built and significant
points included in these templates. Templates are built for the bits for which a
DPA attack is successful and the significant points included in a template are
the points with the top N highest DPA-peaks.

We illustrate the attack by means of an example. Consider an unprotected
implementation of DES on smartcard A. Consider the 32 s-box output bits of
the DES computation in round one. For the unprotected DES implementation,
one can easily perform DPA for each of the 32 output bits. Correspondingly,
we built a pair of templates for each output bit corresponding to the bit being
equal to 0 and 1 respectively. In order to build these templates, we performed a
DPA of each output bit using the improved DPA metric described in [ARRO03]
which results in a higher signal-to-noise ratio (SNR) than the standard DPA.
The improved metric is computed by using the following formulas:

2 ”%I. 0 ‘7?1- 1
HH; — KH, J\; + NL
MHi = 2 2 - ln( 2 ’ 2 !

THy 0 + THy 1 TH, 0 + THy 1

No Ny No N1

(1)

where pg is the difference of sample means of signals in the 0-bin and the 1-
bin respectively for a hypothesis H. Similarly, 0'12%0 and ofq,l are the sample
variances of the signals in the 0-bin and the 1-bin respectively for a hypothesis
H. H; denotes a hypothesis where a subkey is assumed to be ¢, and H, is a
special hypothesis (null hypothesis) where signals are partitioned in the 0-bin
and the 1-bin randomly.

Figure 1 displays the improved metric of s-box 1, bit 0. The figure reveals
several points in time that clearly correlate with the selected s-box output bit. In
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Fig. 1. Improved DPA metric of s-box 1, bit 0 of the test device. Time in us.
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Table 1. s-box output bit classification success rates and entropy loss

s-box s-box s-box s-box s-box s-box s-box s-box

1 2 3 4 5 (] 7 8
bit 0 1.00 091 088 093 077 072 0.80 0.84
bit 1 098 088 092 094 100 092 097 0.77
bit 2 075 089 099 092 095 083 0.90 0.79

bit 3 090 091 072 08 083 086 1.00 0.89

f;lstsmpy 257 210 213 230 228 150 261  1.35

our experiments, we chose the 50 highest peaks from this DPA metric to select
significant points and built a pair of templates for these points for each s-box
output bit using a single set of 1400 side channel samples.

To estimate classification success rate, we classified the state of the 32 s-
box output bits using a single set of another 100 random side channel samples
measured from the same device. The classification success rates g, ; for the i-th
s-box and j-th bit, 1 < i < 8 and 0 < 5 < 3, together with the corresponding
entropy loss are shown in Table 1. The classification success rates ranged from
0.72 to 1.00; in the worst case s-box 3, bit 3 and s-box 6, bit 0 were predicted
correctly for only 72 of the 100 samples. From these results, the probability that
the entire 32-bit output of all s-boxes is classified correctly is H?:l H:;:o NS:b; =
0.0154 which although small is still 66-million times higher than a random guess.

These results can also be viewed in terms of entropy loss. For a particular
bit, if the classification success rate is p, then its corresponding entropy loss
is given by 1+ (1 — p)logy(1 — p) + plog,y(p). To compute the entropy loss for
multiple bits we can add the individual losses (this corresponds to the worst case
where classification of different bits is independent). From this formula, we can
see that 16.8-bits of entropy has been lost from the 48-bits of the DES key used
in the first round (out of a maximum possible loss is 32-bits if the classification
was perfect). The loss of entropy of the keyspace can be translated into reduced
expected computational cost of a guided exhaustive search through the entire
keyspace that examines more likely keys earlier than the less likely keys.

For DES implementations, the attack can be improved substantially. Tem-
plates can be built not just for round 1, s-box output bits but also for other
bits such as the data bits fed to the second round. These templates will further
narrow down the possibilities for the 48 key bits used in the first round. In addi-
tion, templates can be built for the corresponding DPA attacks on the last two
rounds of DES (which utilize another 48-bit size subset of the key) and so on.
Depending on the implementation, single-bit templates can also be built directly
for the key bits that are likely to be highly effective since the same key bits show
up in multiple locations in a round and across multiple rounds.

To summarize, single-bit template attacks are capable of classifying a sin-
gle bit in a single side channel sample with high probability even though the
influence of a single bit on the side channel signal is generally very little at
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a particular instance of time, and is superimposed by several sources of noise
including that from other adjacent bits. Cryptographic algorithms with high
contamination properties [CRR02], such as DES, are ideally suited for single-bit
classification. Multiple precomputed single-bit templates can lead to practical
guided keyspace search algorithms using only a single sample from the target
device. Moreover, single-bit attacks when combined with other attacks can result
in much more devastating attacks as we show in the next section.

3 Attacking the Masking Countermeasure:
Template-Enhanced DPA

The proposed attack consists of two steps: a profiling phase and a hypothesis
testing phase. In the profiling phase, the adversary, who is in possession of a test
card with a biased RNG, builds templates, and in the hypothesis testing phase,
the adversary uses these prebuilt templates to mount a DPA-like attack on a
target card which is identical to the test card, but has a perfect RNG.

3.1 Profiling Phase

We assume that the adversary has a test card with a biased RNG that produces
0 bits with some biased probability v # 0.5, and that the adversary only faces
masking countermeasures such as the duplication method [GP99]?3. A masking
countermeasure generally blinds all intermediate key-dependent variables with
randomly generated masks. The original values of the intermediate variables
can be recovered from their blinded values by applying the inverse mask. Non-
linear functions such as the s-boxes in DES and AES cannot be dealt with this
way; they are typically handled by creating masked tables in RAM. While the
unmasked s-box output s(z @ k) never occurs as a run-time variable during the
execution of the algorithm, both the masked output s(z @ k) @ m and the mask
m do occur and thus leak in the side channel sample.

As an illustration, consider the upper plots of Figures 2 and 3 that show DPA
attacks on two test cards, one with a protected DES implementation, and another
with a protected AES implementation. The target of both attacks was the bit
0 of s-box 1 in round one. The differential samples were obtained by switching
off the RNGs of the test cards (v = 1). Both plots show peaks at points in time
when the masked s-box output bit leaks. Note that the differential trace from the
AES implementation contains less peaks compared to the DES implementation
due to the lower contamination properties of AES.

The first step in the profiling stage is to perform exhaustive DPA attacks on
the test card using as many samples as possible. In a card with a biased RNG,
where the mask is not perfectly random, such an attack will succeed since the

2 We make this simplifying assumption just for the sake of exposition, the attacks
would work if bad RNG has different biases for different bits in a random byte.

3 We assume other countermeasures, such as the desynchronization of side channel
samples due to random wait states etc., have been removed using signal processing.
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DPA prediction of an algorithmic bit (e.g., s-box output bit s(x @ k)) would be
correlated with the masked value of that bit. A successful DPA attack will give
us the subkey k (in fact we will get all the subkeys) and also reveal the points
of time ¢* when targeted masked algorithmic bit (e.g., masked s-box output bit
s(x @ k) ®m) leaks.

The second step of the profiling phase is to create single-bit templates based
on each of the DPA attacks. For each DPA attack, the adversary builds a pair of
templates for the masked bit being 0 and 1 by using the collected samples at the
points where the DPA peaks appear. It may seem that building the template
pairs will require that the adversary knows which of the IV collected samples
have the masked bit 0 and which have the masked bit 1. This is not possible in
general, unless the RNG is completely broken in a known way (e.g., fixed at 0).
Instead the adversary blindly assumes that the bit is exactly the same as the
DPA prediction and builds the templates anyway.

Clearly, if the RNG is not fixed at 0, but has a probability v of outputing a
0 bit, the templates built by an adversary have significant errors. For example
when v > 0.5, then the 0-bit template will be built using roughly v+ N/2 samples
that are actually 0 samples and roughly (1 — v) *« N/2 samples that are actually
1’s. When v < 0.5, then the templates are inverted: the 0 template is built using
more 1 samples than 0 samples. Such templates are equally useful since they
will consistently predict the bit incorrectly with high probability. When v = 0.5,
DPA will not work and the templates as described here cannot be built.

We will show later in the paper that even though significant errors are intro-
duced in the templates when the RNG is very slightly biased, i.e., when v is close
to 0.5, if enough signals are used to build these templates, then the performance
of the template-enhanced DPA attack is not significantly impacted—the attack
works almost as well as an attack using perfect templates (v = 1).

3.2 Hypothesis Testing Phase

Once the adversary has built templates to classify masked s-box output bits in
DES or AES using a test device with imperfect RNG, he/she is given a target
device to attack that is identical to the test device, except for the fact that its
RNG is perfect.

The adversary can make a hypothesis regarding the secret key k used in the
target device, and for a particular side channel sample, use the key hypothesis
to predict the unmasked output bit s(z @ k). Furthermore, the adversary can
use template classification to predict the masked output bit s(z @ k) @ m. These
two together can be used to predict the mask bit m itself*

m=[s(zdk)] © [s(zok)Om] (2)
N~ 7 ~ ~ 4
prediction template classification

Since the mask bit m is an intermediate variable in the algorithm, it will leak
at some instances of time in the side channel sample. The idea is to perform

4 We assume that boolean masking is used.
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a DPA-like attack on the prediction of m according to the equation above. If
the hypothesized value of k is correct, peaks will show up in the corresponding
differential trace at points in time when the mask bit m leaks.

The number of samples required to perform this attack depends on two main
factors: the number of samples required to perform a DPA attack based on a
perfect prediction for m and the template classification error probability €. The
first factor is a function of the leakage properties of m in the smart-card, while
the second factor is dependent on the quality of single-bit templates. A higher
value of € results in worse SNR of the differential sample since classification errors
make the predicted and actual values of the mask m less correlated. To estimate
the impact of classification error €, we modified the SNR model proposed by
Messerges et al. in [MDS99] to account for the additional noise caused by the
misclassification (details are given in the Appendix). Table 2 shows the impact
of € on the proposed template-enhanced DPA attack. This table assumes that
a certain SNR ratio is obtained using 100 side-channel samples with perfect
classification and computes how many side-channel samples would be needed
to achieve the same SNR with different values of e. Given the classification
results obtained for single-bit templates in the earlier section, where all error
probabilities were less than 0.3 and many were under 0.1, it would be reasonable
to assume that the template-enhanced DPA attacks would be a factor of 1.5 to
6 more expensive (in terms of the number of required samples) than the regular
DPA attacks.

Table 2. Number of measurements N required to achieve a constant SNR in a
template-enhanced DPA attack for different template classification errors e

e 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.48 0.49
N 100 123 156 204 278 400 625 1,111 2,500 10,000 62,500 250,000

3.3 Results

We performed the proposed template-enhanced DPA attack on two smardcards:
a protected DES implementation on the smartcard A and a protected AES
implementation on the smartcard B. For each smartcard, in the profiling phase,
the templates were built with the RNG turned off (v = 1). In the hypothesis
testing phase, traces were obtained with the RNG on and working perfectly
(v =0.5). For the smartcard A, the lower plot in Figure 2 shows the differential
trace of the template-enhanced DPA attack on the hypothesized mask bit m.
A similar differential trace for the smartcard B is shown in the lower plot of
Figure 3. Both plots contain distinct peaks even though the masking protection
was fully functional. For completeness, Figure 4 shows a template-enhanced DPA
trace for a false key hypothesis for smartcard B, which shows no peaks.

If the RNG in the test card during the profiling phase is just slightly biased
instead of being broken, then the templates obtained from the test card would
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DPA of the masked s-box output bit of the test device
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Fig. 2. Smartcard A: DPA of the masked s-box output bit using the test device and
DPA of the mask bit using the target device

have significant cross-contamination. One may conjecture that as a result, the
probability of error € would be higher as the bias in RNG becomes smaller.
However, this is not the case—in the appendix, we prove the following counter-
intuitive result.

Theorem 1. If the noise covariance matrix of side channel traces is the same
for two values of a mask bit and enough traces are available from a test card with
a biased RNG (0.5 < v < 1.0), then the templates prepared from such traces give
the same probability of error as the templates obtained from a test-device with
broken RNG (v =1).

In our experiments, we found that the noise covariance matrices of side chan-
nel traces for different values of mask bit are nearly the same. For the actual
covariance matrices obtained in one of our experiments, we performed a Monte
Carlo simulation of how well the signal classification works when templates are
built using different numbers of samples from the test card with different RNG
biases. In this simulations, the samples were generated by sampling from the
noise probability distributions and the RNG bias was simulated by randomly
misclassifying samples into the bins used to build templates. We also performed
an actual experiment where 1000 samples were obtained from the test card and
templates were build for different RNG biases (again simulated by putting sam-
ples randomly in incorrect bins). The results of these experiments are shown in
Figure 5. Three plots are derived from the Monte Carlo simulation involving
1000, 10,000, and 100,000 traces from a simulated test card with biased RNG to
build templates. These three plots show that as the number of traces from the
test card increases, the probability of classification error becomes insensitive to
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DPA of the masked s—box output bit of the test device
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Fig. 3. Smartcard B: DPA of the masked s-box output bit using the test device and
DPA of the mask bit using the target device
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Fig. 4. Smartcard B: DPA of the masked s-box output bit using the test device and
DPA of the mask bit using the target device (both with wrong hypothesis)

the RNG bias. The fourth plot is the experimental using 1000 samples from a
test card to build templates. The experimental curve is in excellent agreement
with our analytical results.
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Fig. 5. Probability of correct classification versus RNG bias.

In summary, even with a test card with very small RNG bias, it is possible
to mount template-enhanced DPA attacks; the only effect of a small bias is that
many more samples are needed to build templates that are as good as template
built from a card with completely broken RNG.

Acknowledgments: We would like to thank Helmut Scherzer for providing us
with a protected DES implementation with a switchable RNG on smartcard A
and Andreas Kriigersen for the AES implementation with switchable RNG on
smartcard B.
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A Sensitivity of Probability of Success on Bias

Let Hy and H; denote two hypotheses corresponding to the target bit being equal
to 0 and 1 respectively. Let py, and py, model the distribution of captured side-
channel emanations under Hy and H;, respectively. Assume that py, and pg,
are multivariate Gaussian distributions [CRR02, ARR03] with means mg and
my, and variances g and 3, respectively.

Let a be the mixing factor, that is, the samples collected for Hy are distrib-
uted according to the Gaussian mixture distribution (1 — a)py, + apm,, and
the samples collected for H; are distributed according to the Gaussian mixture
distribution (1 — a)pp, + app,. As a result of mixing, the mean and covariance
of samples collected for Hy is given by

my = /s((l — a)pm, (s) + apm, (s))ds =(1—a)mg + am; (3)

o= /(s —my)(s — mg)’ <(1 — a)pm, (s) + apm, (s)) ds
=(1-a)Xs+aX; +a(l —a)AmAm’ (4)

where A’ denotes the transpose of the matrix A. We note that derivation of
(4) requires tedious but straight-forward algebraic manipulations. Similarly, the
mean and covariance of samples collected for H; is given by
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m; = (1 — a)m; + amy (5)
3 =(1-a)% +aX+ a(l — a) AmAm’ (6)
During the hypothesis testing phase, an adversary would use distorted templates

based on (3)—(6) to classify the target bit from a captured side-channel emanation
s. Specifically, the decision criterion is given by

(s — 1i20)'Sg ! (s — o) — (s — 1i1) Sy (s — 1) > log(|Z1]) — log(1Zol)  (7)

where a decision is made in favor of H; if the above inequality is true, and in
favor of Hy otherwise.
By assuming 3o = X; = 3%, (7) can be reduced to the following [Tre68]

~ ~ S 1/, <1~ S~
(m; —my)'E"'s > 5 (m’lE_lml — mf)E_lmo) (8)

By using (3) and (5) along with the symmetry of inverses of covariance matrices
to cancel common terms, we can further simplify (8) to

- 1 - -
Am'S s > N (m’lﬁflml — m{)E*lm()) 9)

Note that Am’E"!s is a linear combination of Gaussian variables. As a result,
under the hypothesis Hy, Am’X~!s is Gaussian distributed with the following
mean and variance
E[Am'S"1s] = Am'S"'m, (10)
V[AmM'E"ls] = Am'S'EE " Am (11)
Let Q(z),z > 0 denote the probability of a Gaussian random variable with
mean 0 and variance 1 being larger than x. Under the hypothesis Hy (and by

symmetry, under the hypothesis H7), the probability of error incurred by using
the distorted templates is given by

B \%(mﬁf]*lml - mgiflmo) — Am’iflmo\
Plerron) = Q( \/Am’flflﬁiflAm )

We can express the numerator of Q(-) in the above equation solely in terms of
Am by realizing that mj3~!my is one dimensional and therefore it equals to

(12)

its transpose m{ X~ lm;.

1 - . -
) (m'lEflml — méEilmo) — Am’'Y " 'm,
1 I —1 1 I —1 1 I —1 1 I —1
:2m1§] m1+2m0§] m0—2m12 m0—2m02 m;
1 = 1 =
= 2m'IE*lAm— 2m6§]*1Am
1 .
= 2Am’2_1Am

5 In our experiments, this assumption holds well.
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Thus, probability of error can be expressed as
;|Am’2~3*1Am| )
\/Am’f]—lilf)—lAm
Our task is to prove that the argument of Q(-) in the above equation is inde-
pendent of «, and therefore, the probability of error in hypothesis testing phase
is independent of the RNG bias. Our strategy is to factorize the numerator and
denominator of the argument of Q(-) in (13), and show that factors involving o
cancel each other out. The first step towards this factorization is to obtain an
expression for 37! in terms of X! by using the matrix inversion lemma. The
matrix inversion lemma states that for arbitrary matrices A, U, C, and V, with

the only restriction that inverses of A and C exist and the product UCV and
the sum A + UCV are well-defined, the following holds true

(A+UcV)t=A"t A lU(C 4+ VAU vAT! (14)
Substituting A =3, U = a(l — a)Am,C =1, and V = Am’, we obtain

P(error) = Q( (13)

2= (T+a(l—-a)Am-1-Am’)~?

="' —a(l- a)z—lAm(l +a(l - a)Am’z—lAm)> Am's"!
Let 3 = Am’S "' Am. Since 3 is a one dimensional quantity, it can be factored
out to obtain
>l —a(l-a)(l+a(l —a)f)E ' AmAm'S ! (15)
Now we are ready to factor the numerator.
Am'ES7'Am = Am'ES 7 Am — a(1 — )(1 + a1 — a)8)Am'S ' AmAmM'S " Am
=B(1—-af(l—a)(l+a(l —a)8)) (16)
Similarly, to factorize the denominator, we perform the following steps.
Am'EST'EE ' Am
= Am'sS™! (1 —a(l—a)(l+a(l - a)B)AmAm’E_l) Am
o (17)
= (Am'Z"" Am) (1 —af(l—a)(l+a(l— a),@))

:,3(1 —a5(1—a)(1+a(1—a)ﬁ))2

Using (16) and (17), the numerator and denominator of (13) can be simplified
to give the following expression for probability of error

P(error) = Q(;\/ﬂ) (18)

Note that since 37! is a positive definite matrix, 8 > 0. Furthermore, 3 only
depends on the statistics of emanations under Hy and H;. In particular, it does
not depend on a.
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B Impact of Classification Error on SNR

Let v be the probability of correct classification in a DPA attack for a bit X.
If v # 1, then the erroneous classification of the bit X can be interpreted as
an additional noise source in the differential trace. If the bit X leaks at times
t* and § denotes the average difference in amplitude of two [-bit wide operands
separated by the Hamming distance one, the expected values of the zero-bit and

one-bit partition areS:
. -1
Ep;t))X =0=a+ 9 O+ (1—w)-d (19)
-1
Ep;t)X =1=a+ 9 “64v-b (20)

where a denotes some operand independent voltage offset and the term 151 -0
denotes the average algorithmic noise caused by the remaining [ — 1 bits of the

operand. The differential trace A(t*) can then be given as

Alt = t%) = Elp(t)|X = 1] - E[pi(t")[ X = 0] = 2-v—1)-5  (21)

whereas A(t # t*) approximates zero. A possible expression of the SNR of a
differential trace in DPA attacks was given by Messerges et al. in [MDS99]. We
enhance their SNR description with the additional noise factor (2-v —1) caused
by the misclassification, which yields

_ (2-v—1)-6-V/N
V802482 (al4+1—1)

where N denotes the number of measured side channel traces, a denotes the
percentage of algorithmic noise” at times t # t* and o? denotes the variance of
non-algorithmic time-invariant noise contained in a single trace. Let us assume
that in case of perfect classification at v = 1, an adversary would have to measure
N = 100 traces to obtain a differential trace with an acceptable SNR. From the
above formula, it follows that for an arbitrary error v the adversary will need
(2,/121 )2 samples to obtain the same SNR. Table 2 provides the number of traces
needed for different values of € = 1 — v, using this formula.

SNR (22)

5 For simplicity we assume that the power signal is linear proportional to the Hamming
weight of the leaked operand z, i.e. p;(t) = a+ 6 - HW (x).

" according to [MDS02] « can be often neglected.
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Abstract. This contribution presents a new approach to optimize the
efficiency of differential side channel cryptanalysis against block ciphers
by advanced stochastic methods. We approximate the real leakage func-
tion within a suitable vector subspace. Under appropriate conditions
profiling requires only one test key. For the key extraction we present a
‘minimum principle’ that solely uses deterministic data dependencies and
the ‘maximum likelihood principle’ that additionally incorporates the
characterization of the noise revealed during profiling. The theoretical
predictions are accompanied and confirmed by experiments. We demon-
strate that the adaptation of probability densities is clearly advantageous
regarding the correlation method, especially, if multiple leakage signals
at different times can be jointly evaluated. Though our efficiency at key
extraction is limited by template attacks profiling is much more efficient
which is highly relevant if the designer of a cryptosystem is bounded by
the number of measurements in the profiling step.

Keywords: Differential Side Channel Cryptanalysis, Stochastic Model,
Minimum Principle, Maximum Likelihood Principle, Power Analysis,
DPA, Electromagnetic Analysis, DEMA, Template Attack.

1 Introduction

Side channel cryptanalysis exploits physical information that is leaked during
the computation of a cryptographic device. The most powerful leakage con-
sists of instantaneous physical signals which are direct responses on the internal
processing. These instantaneous observables can be obtained by measuring the
power dissipation or the electromagnetic emanation of the cryptographic de-
vice as a function of time. Power analysis, which was first introduced in [9] and
electromagnetic analysis ([8]) are based on the dependency of the side channel
information on the value of intermediate data, which is in turn caused by the
physical implementation.
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Advanced stochastic methods have turned out to be efficient tools to optimize
pure timing and combined timing and power attacks. Using such methods, the
efficiency of some known attacks could be increased considerably (up to a fac-
tor of fifty), some attacks could be generalized and new attacks were conceived
([12,13,14]). The understanding of the source of an attack and its true risk po-
tential is important for a designer of a cryptographic system for implementing
effective and reliable countermeasures that prevent also privileged attacks.

This contribution gives a thorough stochastic approach to optimize the effi-
ciency of differential side channel analysis applied against block ciphers. In our
work, the quantification of side channel leakage is done in a chosen vector sub-
space. Under suitable conditions it requires only measurements under one test
key, and even this test key need not be known. Our approach aims to achieve
the efficiency of the template attacks in the key extraction phase but requires
far less measurements in the profiling phase, e.g., in case of AES we guess that
savings in the order of up to one hundred are feasible. This is surely interest-
ing for designers of cryptosystems in order to assess the susceptibility of their
implementations towards attacks. The mathematical model is supported by an
experimental analysis of an AES implementation on an 8-bit microcontroller.
Further, we show how our model can be generalized to comprehend both mask-
ing countermeasures as well as the usage of multiple physical channels.

1.1 Related Work

Differential side channel cryptanalysis identifies the correct key value by sta-
tistical methods for hypothesis testing. Differential Power Analysis (DPA) ([9])
turned out to be a very powerful technique against unknown implementations.
The single measurements are partitioned accordingly to the result of a selection
function that depends both on known data and on key hypotheses. [9] suggested
to just use the difference of means for the two sets of single measurements. Im-
proved statistics are the student’s T-Test and the correlation method which are
given in [2]. Additional guidelines for testing the susceptibility of an implemen-
tation are presented in [3].

Other contributions assume that the adversary is more powerful, e.g, that
the adversary is able to load key data into the cryptographic device. Profiling
as a preparation step of power analysis was first described by [6]. Probably
the most sophisticated strategy is a template based attack ([4]) which aims to
optimize Simple Power Analysis (SPA) and requires a precise characterization
of the noise. Moreover, physical information can be captured simultaneously by
different measurement set-ups, e.g., by measuring the EM emanation and the
power consumption in parallel ([1]).

2 The Mathematical Model

In this section we introduce a new mathematical model for differential side chan-
nel attacks against block ciphers. We investigate this model (Subsect. 2.1)and
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exploit these insights to derive optimal decision strategies (Subsects. 2.2 and 2.3).
The success probability (or equivalently, the risk potential) and the efficiency of
our approach are considered.

We assume that the adversary (e.g., the designer) measures physical observ-
ables at time ¢ in order to guess a subkey k € {0,1}*. The letter x € {0,1}?
denotes a known part of the plaintext or the ciphertext, respectively. We view a
measurement at time ¢ as a realization of the random variable

(2, k) = hy(z, k) + Ry (1)

The first summand h(z, k) quantifies the deterministic part of the measurement
as far it depends on x and k. The term R; denotes a random variable that
does not depend on x and k. Without loss of generality we may assume that
E(R;) = 0 since otherwise we could replace h¢(z, k) and Ry by he(z, k) + E(Ry)
and R; — E(Ry), respectively. We point out that (1) does not cover masking
techniques. A generalization of (1) and the main results in Subsects. 2.2 and 2.3,
however, is straight-forward (cf. Subsect. 2.4). From now on we assume that the
plaintext is known by the adversary but our results can be directly transferred
to ‘known-ciphertext’ attacks.

Example 1. In Sect. 3 an AES implementation targeting one S-Box is analyzed.
Then ¢ is an instant, e.g., during the first round and z, k € {0, 1}5.

2.1 Fundamental Theorems

The central goal of Subsect. 2.2 is to estimate the distribution of the random
vector (I, (x,k),..., Iy, (x,k)) where t; < --- < t,,, are different instants that
are part of the side-channel measurements We work out important facts that
will be used in the next subsection.

Definition 1. As usual || - ||: R* — IR denotes the Fuclidean norm, that is
(21, 22, ey 20) |2 = Z;”Zl ij In, this work, terms b" and AT stand for the trans-

pose of the vector b and the matriz A, respectively. The term f denotes an
estimator of a value f. Random variables are denoted with capital letters while
their realizations, i.e. values assumed by these random wvariables, are denoted
with the respective small letters.

Mathematical Model. The random variables R;, X and K (resp. Ry, X1, Xo,
..., Xn, and K) are defined over the same probability space (W, W, P), where
W is a sample space, YW a og-algebra consisting of subsets of W and P a proba-
bility measure on W. More precisely, Ry: W — R; X, X3,..., Xy: W — {0,1}?
(random plaintext parts) and K: W — {0,1}* (random subkey). By assump-
tion, the random variables R;, X and K (resp. Ry, X1, Xs,..., Xy, and K) are
independent. For the sake of readability in (2), for instance, we suppress the
subscript x g, k=t as this should be obvious.
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Theorem 1. Let k € {0,1}° denote the correct subkey. Then the following as-
sertions are valid:

(i) The minimum

i E ((L(X,k) = W'(X,K)°) 2
i B (RO - KX ) ®)
is attained at h' = hy. If Prob(X = x) > 0 for all x € {0,1}? (e.g., if X is
equidistributed on {0,1}?) the minimum is exclusively attained for h' = hy.

(ii) Let t1 < ta--- < ty,. Then the minimum

. N ! 2
B e {Or,r%i%X{O,I}SHIRE(H (Itl(Xv k) hl(X7 k)a-~-7Itm(Xa k) hm(X7 k)) || )
(3)

is attained at (hy,...,h.,) = (hyy,---, he,,)-
(iii) For each x € {0,1}? we have hy(z,k) = Ex—, (I;(X, k)).

Proof. Clearly, I;( X, k) — 1 (X, k) = Ah(X, k) + Ry with Ah = hy —h’. Squaring
both sides and evaluating their expectations yields

E ((It(X, k) — W(X, k))Q) = E (AW(X,k)?) + E (R2) > E (R?)

since E(R;) = 0, and since Ahy(X, k) and R; are independent by assumption. If
Prob(X = z) > 0 for all z € {0,1}? then E(Ah(X,k)?) > 0 for b’ # h; which
completes the proof of (i). Similarly,

E (|| (I, (X, k) = By (X, k), oo Ly (X R) = By (X R) 12)
_ZE(Ah(Xk )+ Ry ) ZE(Rf)

which verifies (ii), while (iii) follows immediately from (1).

Note that Theorem 1 (ii) says that we may determine the unknown functions
ht,y ..., h:,, separately although we are interested in the joint distribution of
(I, (X, k), ..., I, (X,k)). Principally, the 2°** unknown function values h(z, k)
could be estimated separately using Theorem 1(iii). Though satisfactory from a
theoretical point of view this approach is impractical.

Considering the concrete implementation a designer (resp., an adversary)
should be able to determine a (small) subset F, C F := {h': {0,1}? x {0,1}* —
IR} that either contains the searched function h; itself or at least a function hj
that is sufficiently ‘close’ (to be made precise below) to h;. For simplicity we
restrict our attention to the case F; = F,.+, where this set of functions is a real
vector subspace that is spanned by u known functions gj;: {0,1}?x{0,1}* — IR.
More precisely,

u—1

Fuw = {N': {0,1}7 x {0,1}* = R | Y _ Big;; with 3] € R} (4)

=0
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We may assume that the functions gj; are linearly independent so that F
is isomorphic to IR". In particular, the minimum on the right-hand side of (6)
always exists. Theorem 2 will turn out to be crucial for the following. In the
following h} will always denote an element in F,,,; where (6) and (7) attain their
minimum.

Theorem 2. As in Theorem 1 let k € {0,1}° denote the correct subkey.
(i) For each h' € F,,; we have

E ((It(X, k) — W(X, k;))2) _E ((It(X, k) — hy(X, k))Q) (5)
:Examammeme)zo

where Ex(-) denotes the expectation with respect to the random variable X, i.e.
the right-hand term equals 3, c (o 130 Prob(X = 2) (he(z, k) — W (=, k).

(i) Ex ((u(X,8) = b (X,8)*) = min Ex ((h(X,k) = '(X,1))") (6)

h’E.’Fu,;t

implies

E ((L(X, k) = hj (X, K)*) = Jin (k) =m0 (@)

(#ii) Let t1 < ta--+ < tp,. Ifh; € Fy; for all j <m then

E (I (2 (X, k) = hy(X, k), I, (X, F) — ( ) 11%) (8)
= E (|| (11, (X, k) — ha, (X, k) T, (X k) = he, (XS R) |?) +

S B (e, (X, ) — (X, k>)2) |
j=1

Proof. Assertion (i) can be shown similarly as Theorem 1(i) while (ii) and (iii)
are immediate consequences from (i).

Remark 1.

(i) If X is equidistributed on {0, 1}? and if we interpret h;(-, k) and b/ (-, k) as 2P-
dimensional vectors the L2-distance \/Ex ((h¢(X, k) — I/(X,k))2) between
h(-, k) and hi(-, k) equals (apart from a constant) the Euclidean distance,
and hy (-, k) is the orthogonal projection of h(-, k) onto F..

(ii) It is natural to select the function hf € F,. that is ‘closest’ to hy, i.e.
that minimizes Ex ((hi(X, k) — h'(X;k))?) on F,.;. Theorem 2 says that h}
can alternatively be characterized by another mimimum property (7), and
that the approximators ht . h ¢ may be determined separately. Theorem
3 below provides a concrete formula to estimate the unknown coefficients
B3 ts- -+ By of hy with respect to the base got, ..., gu—1,-
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(iii) An appropriate choice of the functions go ¢, - . ., u—1.¢, i-€. of Fy.t, is essential
for the success rate of the attack. Of course, the vector subspace F,;; should
have a small L2-distance to the unknown function h;. An appropriate choice
may require some insight in the qualitative behaviour of the side channel
observables. Clearly, F,, + C Fu, + implies that h}, , is at least as good hy,, ;
but the number of measurements in the profiling phase increases with the
dimension of F ;.

Definition 2. Let V' denote an arbitrary set and let ¢: {0,1}P x {0,1}* — V
be a mapping for which the images ¢ ({0,1}? x k') CV are equal for all subkeys
k' € {0,1}5. We say that the function hy has Property (EIS) (‘equal images
under different subkeys’) if hy = hy o ¢ for a suitable mapping hy: V — R, i.e.
hi(x, k) can be expressed as a function of ¢(x, k).

Ezample 2. p = s, ¢(z,k) := ¢ ® k where ® denotes any group operation on
{0,1}P =V (e.g. ‘@).

Lemma 1. Assume that hi(-,-) has property (EIS). Then for any pair (2, k') €
{0,1}F x {0,1}5 there exists an element & € {0, 1} with hy(a', k') = hy(z", k).
Proof. By assumption, ¢ ({0,1}7, k) = ¢ ({0,1}?, k’). Consequently, there exists
an z” € {0,1}? with ¢(2”, k) = ¢(a', k') and hence hy(x”, k) = he(a', k).

If considerations on the fundamental properties of the physical observables
suggest that h:(-, -) meets (at least approximately) the invariance property (EIS)
it is reasonable to select functions g;; that allow representations of the form
gjt = gjr © ¢ with g;;: V' — IR. Then

u—1
hi = ht* o ¢ with ht* (y) == Z ﬂjtgjt(y) (9)
j=0

(see Sect. 3.1). As an important consequence it is fully sufficient to determine
%2‘(, k) € Fy for any single subkey k € {0,1}°, which is an enourmous advan-
tage over a pure template attack which requires 2P7* templates. An advanced
template attack that exploits Lemma 1 requires 2P templates. If possible, we
recommend to select plaintexts from a uniform distribution so that deviations
|hi(z, k) — hi(z, k)| count equally to the L2-distance for all (z, k). Whether the
invariance assumption (EIS) is really justified for h:(-,-) may be checked by a
second profiling with another subkey.

2.2 The Profiling Phase

In this subsection we explain how to determine approximators of h(-, -), or more
precisely, of hy (-, -) and the distribution of the noise vector (Ry,, ..., Rt,,). Wein-
terpret the ‘relevant parts’ x1, za, ... xy, (i.e. input for the function h;) of known
plaintexts as realization of independent random variables X1, Xs,..., X, that
are distributed as X. The Law of Large Numbers implies
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Ny
o D Gy ) = ey, ) 5 B (1060 - WX R)) (10
j=1

with probability 1 for any A': {0,1}? x {0,1}* — IR. Here i;(z;, k) denotes the
measurement at time ¢ for curve j which has the plaintext part z; € {0, 1}7.

Theorem 3. (Estimation of hy) Again, let k denote the correct subkey. For any
B o= Z}:ol B:9jt € Fur we have

Ny

> (ielwy k) — b (2, k))* = [Jie — Ab]? (11)

Jj=1

where A = (a;j)1<i<Ny0<j<u 5 a real-valued (N1 X u)-matriz, b € R" and

i € RN'. More precisely, a;; = gj(xi,k), b :== (8h,...,08,_1)" and i, :=
(i¢(w1,k), ... ie(zN,, k)T . Any solution b* = (b}, ..., b5_1)T of
AT Ab = AT4, (12)

minimizes the right-hand side of (11). If the (u x u)-matriz AT A is regular then
b* = (AT A)~1AT4,. (13)
Due to (10) we use the approzimator b} (z, k) = Z;L:_& B;5:95t(x, k) with 37, == bj.

Proof. Equation (11) is obvious whereas (12) is well-known (cf. [7], Subsect.
6.2.1 with X = A, Y = 4; and B = b; least square estimator) whereas the final
assertions are obvious.

Remark 2. We already know that if h; has the property (EIS) the profiling
need only be done for one subkey k. We point out that the adversary need
not even know this subkey. In fact, for a given measurement vector ¢; the
adversary applies Theorem 3 to all possible subkeys k' € {0,1}* and com-
putes the respective coefficient vectors b If K # k Theorem 3 indeed de-
termines an optimal function h¥ € F.,+ which is spanned by the functions
G (@, k) := gje(x, k) + (g5t (x, k') — gje(, k)) in place of the g;; while the mea-
surement vector 4; implicitly depends on the (unknown) correct subkey k. Hence
it is very likely that ]-',’L’t has a larger L2-distance to h; than F,.; and, conse-

quently i — Ab*||2 < [|3; — Ab*'||? for all instances ¢. The adversary just adds
these squared norms for each admissible subkey over several instants ¢, and
decides for that subkey for which this sum is minimal (see Sect. 3.1 for an ex-
perimental verification). In fact, the determination of k is a by-product of the
profiling phase which costs no additional measurements. At least principally, this
observation could also be used for a direct attack without profiling, which yet
requires a sufficient number of measurements.

Definition 3. R; denotes the random wvector (Ry,,..., Ry, ) in the following.
Similarly, we use the abbreviations I(z,k), i¢(z;, k), he(x, k) and hi(z, k),
where t stands for (t1,...,tm).
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After having determined the approximators hf . h* the adversary uses a
second set that consists of Ny measurement curves to estlmate the distribution of
the m-dimensional random vector Ry = I (X, k) — he(X, k). We point out that
in general the components Ry, ,..., R of Ry are not independent, and unlike
the functions Ay, they hence cannot be guessed separately. In the most general

case the adversary interpolates the Ny vectors {is(z;, k) — ﬁ:(:rj7 k)| j < Na}
by a smooth probability density fo. In the experimental part of this paper we
assume that the random vector R; is jointly normally distributed with covariance
matrix C' = (Cij)1§i7j§"l7 i.e. Cij = E(RflRt]) - E(Rfl)E(Rt]) = E(RflRt])
since E(R;;) = E(Ry,;) = 0. If the covariance matrix C' is regular the random
vector R; has the m-dimensional density fo := fc with
m 1 —12Tc7 12
. N _ ;
fo: R R fo(z) \/(27()‘“ det C e (14)

(cf. [7], for instance). Note that the adversary merely has to estimate the com-
ponents c;; for i < j since the covariance matrix is symmetric.

2.3 The Key Extraction Phase

By our mathematical model It(z, k) — he(x, k) = Ry for all (z,k) € {0,1}P x
{0,1}*, and E(R;;) = 0 for each j < m. If Ry has the density fo: R™ —
[0,00) (e.g., fo = fc for a suitable covariance matrix C), and if k° denotes the
(unknown) correct subkey of the attacked device then for each x € {0,1}" we

have
I¢(z,k°) has density fro with fro(2) := fo(z — he(z, k°)). (15)

After having observed N3 measurement curves (with known parts z1, ..., zn,)
the adversary evaluates the product

a(‘r13"'3xN3’ ka ’Lt (Ej7 HfO (Zt l.j) 7‘:(%7/“» (16)

for all subkeys k € {0,1}* where fO denotes the approximation of the exact
density fy that the adversary has determined in the second step of the profiling
phase. Note that i¢(x;, k°) are observables that depend implicitly on the correct
subkey k°. Note further that

Jo (@) = Jo (2= hi(@,k) = fie (2 + (he(w, k) = Ri(@, k). (17)

If the profiling phase has been successful hy(z, k°) — hi(z, k') ~ h}(z,k°) —
hi(z, k') ~ hy(z,k°) — hy(x, k') and fo ~ fo. The adversary decides for &’ if the
term a(xy,...,zN,; k') is maximal (maximum likelihood principle).

We point out that the correct subkey k° also fulfils a minimum property:

min B (LX) = (X K)P) = B (IL(X.K) = (X R)) . (18)
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The situation is similar to Theorem 1 where the correct function h (X, -) attains
a minimum for the given (correct) subkey. Equation (18) can be verified as
Theorem 1. In fact, the left-hand terms in (18) equal ZTZl(EX(htj (x,k°) —
he, (2, k))?) + E(Rfj)) As an alternative to the maximum likelihood approach
described above the adversary may decide for that subkey k' € {0,1}® that
minimizes

No

1 . o ~x

Ny D llde(a, k°) = hy (25, K| (19)
j=1

This key extraction is less efficient than the maximum likelihood approach as
it (explicitly) only considers the deterministic part h;. On the other hand it
saves the second part of the profiling phase which may be costly for large m (cf.
Sect. 3).

To perform the overall attack the adversary subsequently applies (16) or
(19) to obtain the ranking of the candidates for all subkeys. Assuming that one
plaintext-ciphertext pair is known, ‘candidate vectors’ comsisting of probable
subkey candidates can be checked.

Template attacks aim at h, itself whereas our approach estimates h;. Hence
the key extraction efficiency of the template attacks gives an upper bound for our
approach. However, if the vector subspace F,: has been chosen appropriately
this efficiency gap should be small, especially due to the presence of noise.

We point out that the designer may estimate the risk potential against tem-
plate attacks by a stochastic simulation. If F,; was chosen suitably the fi
should be close to the true densities fi and in particular of similar shape. In the
simulation the designer yet assumes that the estimated densities fi, were exact,
which corresponds to a template attack with large sample size.

If the attacked device processes several subkeys simultaneously, the efficiency
of the overall attack can be further increased by applying a two-step stochastic
sieving process, viewing the key extraction process as a sequence of statistical
decision problems. The interested reader is referred to [14], Sect. 4 (see also [13],
Sect. 7) where such a sieving algorithm was introduced for a timing attack on a
weak AES implementation. This sieving process is applicable to hardware-based
cryptographic implementations since all subkeys are processed in parallel, but it
is not detailed in this contribution.

2.4 Generalizations of Our Model

Our model in equation (1) is not appropriate if the device under test applies algo-
rithmic masking mechanisms that use (pseudo-)random numbers. However, (1)
allows a straight-forward generalization. We merely have to replace h;: {0, 1}P x
{0,1}* = R by hps: {0,1} x {0,1}" x {0,1}* — IR where the second argument
denotes the random number that is used for masking. Analogously to (3) the
minimum

i E(|I.(X,Y,k) — h, (X,Y,k)|? 20
h’byt:{O,l}?x{g,lll?)x{o,l}s—»]l{m (1174 ) — i %) (20)
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is attained at hp: where Y denotes a random variable (independent of X and
R;) that models the random numbers used for masking. Under the reasonable
assumption that the designer has access to these random numbers the profiling
works analogously as in Subsect. 2.2, yielding a density fy,o: IR™ — IR. In Defin-
ition 2 the function ¢ is simply replaced by ¢p: {0,1}?x{0,1}x{0,1}* — V. Of
course, in the key extraction phase knowledge of the masking random numbers
Y1, - .-, YNs cannot be assumed. The designer, resp. the adversary, hence decides
for the subkey &’ that maximizes the product

ab(xlw"vx]\ka _H ZPI‘Ob _y fO(zt(‘rjayvk ) Ez,t(xjvylvk)> (2]‘)

J=1y'e{o,1}v

among all & € {0,1}® (cf. (16)). The mixture of densities on the right-hand side
expresses the fact that the true density also depends on the unknown random
numbers yi,...,yn,. 1f these random numbers are unbiased and independent
then Prob(Y; = y’') =277 for all j < N3 and y’ € {0,1}". Due to lack of space
we skip a formal proof of (21). The generalized model can be used for high-order
differential side-channel attacks. One possible goal is to quantify the efficiency
of particular masking techniques.

Reference [1] considers the case where signals from several side-channels can
be measured simultaneously. Our model can also be generalized to this situ-
ation in a natural way: We just have to replace the scalar function h:(x, k),
or more generally hy¢(z,y,k), by the g-dimensional vector hg (2, y, k) =
(h1pe(z,y, k), ... hgpe(x,y, k) where hypi(z,y, k) quantifies the determinis-
tic part of the n'" side-channel. Similarly, instead of I; and R; we consider
g-dimensional random vectors [ [a],b.t and Rjg ¢ for each instant. The correct
vector-valued function hjg ;¢ minimizes

ZZ bty (X, Yo k) =y (XY K))? (22)
among all h bt : {0,137 x {0,1}? x {0,1}* — (R®)™

3 Experimental Analysis

An AES implementation on an 8-bit ATM163 microcontroller was developed
for the experimental evaluation of the efficiency achieved by our new decision
strategies. The AES was implemented in Assembly language and does not include
any countermeasures. The side channel information was gained by measuring
the instantaneous current consumption in the ground line. Four measurement
series were recorded using 2000 single measurements with a different fixed AES
key k = {ki,...,k16} in each series. The random input data x = {z1,..., 716}
were chosen independently from a uniform distribution. It is z; € {0,1}® and
k; € {0,1}® with [ € {1,...,16}.
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The following list summarizes the steps in the profiling (Steps 1 to 4) and
key extraction phase (Steps 5 to 7). Note that for the minimum principle Step
4 is skipped (N2 = 0) and Step 6 is applied at key extraction. Instead of Step 6
the maximum likelihood principle uses Step 7.

1. Perform N; 4+ Ny measurements using a static key k and known data
r1,x2,. ...

2. With regards to the attacked device select for each instant ¢t the functions
gi.+(+,-) that span the vector subspace Fy..

3. Choose a selection function that combines k; and z; and apply Theorem 3 to
a subset of N measurements to obtain the estimators iy (-,-). (Optionally:
Repeat Steps 1 to 3 for another test key ko and compare the results in order
to verify the assumption (EIS).)

4. Choose instants t; < --- < t;;,. Use the complementary subset of N measure-
ments to obtain the density fo: R™ — IR. (maximum likelihood principle
only)

5. Perform N3 measurements using the target device with the unknown static
key k° and known data a1, o, .. ..

6. Choose instants t; < --- < ¢, and apply (18) and (19) to guess the correct
subkey kp of the attacked device. (minimum principle only)

7. Apply (16) to guess the correct subkey k7 of the attacked device. (maximum
likelihood principle only)

For comparison, even when exploiting (EIS) template attacks require 28 - Ny
single measurements for an AES implementation.

3.1 The Profiling Phase: Estimation of h}

For profiling we chose the selection function S(¢(x,k)) for the AES S-Box S
with ¢(z,k) = x @ k where we suppress the byte-number indicating index [
of plaintext and subkey. For the vector subspaces we tested different choices,
that are evaluated regarding their efficiency in Section 3.3. The chosen vector
subspace is applied to the overall time frame, i.e., we do not use a combination
of several vector subspaces at different instants.

In this Section, profiling is presented in more detail for the nine-dimensional
bit-wise coefficient model, referenced as vector subspace Fy = Fy,; for all in-
stants t. According to equation (9) with u = 9, Theorem 3 and Lemma 1 the
deterministic side channel contribution h:(¢(z, k)) is approximated by

8

By (¢ k) =bot + Y _ bit - gi(d(, k) (23)

i=1

wherein g;(¢(x, k)) € {0, 1} is the i-th bit of S(é(x, k)) . The coeflicient by, gives
the expectation value of the non-data dependent signal part and the coefficients
bi+ with ¢ # 0 are the bitwise data dependent signal portions. Though the inter-
nal processing of the implementation is deterministic, the measurands are not:
noise is an important contribution to the physical signal. The coefficients b;;
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are revealed by solving an overdetermined system of Np linear equations (see
Theorem 3).

The experimental results show that the resulting coefficients b;; differ in am-
plitude, so that the use of the Hamming weight model can not be of high quality.
The coefficients b;; were computed on all four measurement series independently.
As it can be exemplary seen in Fig. 1 the deviations of coefficients revealed at
the four series are relatively small. As the four series were done with different
AES keys, these experimental results confirm the assumptions of Lemma 1 say-
ing that it is justified to perform the profiling of h(-,k): {0,1}? — IR for only
one subkey k € {0,1}°.

10
*../../aés_14122004_1/results/bit8.out’
’../../aes_14122004_2/results/bit8.out’

’../../aes_14122004_3/results/bit8.out’ ----------
’../../Jaes_14122004_4/results/bit8.out’

Fig. 1. Coefficient bg: for all four measurement series as a function of time ¢. The
signals of bit no. 8 (least significant bit) turned out to be the most significant ones. It
is N1 = 2000.

Profiling Without Knowing the Key. In case that the subkey k is unknown
the estimation of A} may be performed for all possible key values &k’ € {0, 1} (cf.
Remark 2 in Sect. 2.2). It was experimentally confirmed that the term || (4;(z, k) —
nY (z,k))?|| indeed was minimal for the correct subkey k. By analyzing the
relevant time frame of 6500 instants the difference between the first and the
second candidate was 1.9 times larger than the difference between the second and
the last candidate. However, we note that the usage of the correlation method
[2] to determine k needs less computational efforts.

3.2 The Profiling Phase: Estimation of the Noise

The characterization of the noise was done independently of the estimation of
the coefficients b;;. Concretely, as preparation step for the maximum likelihood
principle we used N1 = 1000 for the extraction of the coefficients b;;. The com-
putations of the covariance matrix C' = (¢;5)1<i,j<m for sets of m points were
done with Ny = 1000 and N = 5000. For the case Ny = 5000 we combined
three measurement series, except for the one that is used for the key extraction
later on.
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3.3 The Key Extraction Phase: Minimum Principle

For the minimum principle given by equations (18) and (19) the estimation
of h} is needed, but not the estimation of the noise contribution. If not stated
otherwise, only one measurement series served for the profiling step (N7 = 2000)
and the key extraction is applied at another series.

First, a suitable choice of m points in time ¢ has to be found!. We used
6]l = [|(b1,t, b, ..., bs )| as the measure for our decision. Concretely, we chose
the threshold 7 = 30 in the following selections for Fy.

Si: By selecting all instants with ||b]| > 7 we obtained seven different signals?
and the number of instants was m = 147. For each signal, most instants are
in series.

Sa: At each signal with [|b]| > 7 we took the time yielding the maximum value
of ||b]|. Here, we obtained 7 different instants.

S3: We chose only one point in time yielding the maximum value of ||b]|.

Sa: We chose points that fulfill ||b]| > 7 > var, with var, :== empVar(ii(x;, k) :
j < Nj) denoting the empirical variance. Here, we obtained m = 100 differ-
ent positions in time, but only at five different signals.

Ss: We chose points that fulfill ||| > 7 > wvar; yielding the same result as
selection Sy and we add additionally all points in time that fulfill ||b|| > 7
at the remaining two signals. Altogether, we obtained m = 120.

Se: For each of the seven signals with ||b]| > 7 we chose three points by visual
inspection, so that the instants chosen are spread over one signal. For the
selection Sg it is m = 21.

The minimum value of equation (19) is computed for all subkeys k" € {0, 1}®.
In this contribution we assess the efficiency by the average number of single
measurements needed to achieve a certain success rate using a given number N3
of single measurements taken from the same measurement set. The success rate
(SR) was tested by ten thousand random choices of N3 single measurements from
one series. It can be seen in Table 1 that 10 single measurements yield already a
success rate of about 75 % and beyond 30 single measurements the success rate
can be above 99.9 %. The best results were gained at the selections S5 and Sg.

Choice of Vector Subspaces. Different vector spaces are evaluated regarding
their efficiency. The choice of high-dimensional vector spaces, e.g, by including
all terms of g;(éd(x, k))gi (H(x, k)) (i # ') (see (9) and (23)) did not lead to great
improvements. We observed only weak contributions of second-order coefficients
that even vanish at many combinations. We present results for

F, = Fyy for all t: the Hamming weight model (u = 2),
F5 = Fs,4 for all t: a set of four bit-wise coeflicients (u = 5) (these are the most
significant bit-wise coefficients of Fy),

! Note, that we do not consider the covariance of the noise at the chosen points in this
approach for key extraction.
2 We assign all instants that occur during one instruction cycle to one signal.
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Table 1. Success Rate (SR) that the correct subkey value is the best candidate as
result of (18) and (19) by using N3 randomly chosen measurements for the analysis at
the set of instants S; to Sg. The vector space used was Fo

N3 SR for S1 SR for S2 SR for S3 SR for 54 SR for S5 SR for Sg

2 557T% 564% 106% 331% 635% 6.36%
3 1206 % 11.14% 165% 749% 1321 % 1357 %
5 2914 % 2847 % 3.00% 2143 % 3281 % 3340 %
7 5039 % 4820 % 439 % 3941 % 5423 % 53.88 %
10 7529 % 7345 % 829 % 6545 % 7897 % 78.69 %
15 9427 % 9292 % 14.68 % 89.22 % 95.77 % 95.15 %
20 9857 % 9831 % 2226 % 9759 % 99.17 % 98.82 %
30 99.92% 99.89 % 39.34 % 99.85 % 99.97 % 99.95 %

Table 2. Success Rate (SR) that the correct key value is the best candidate as result
of (18) and (19) by using N3 randomly chosen measurements in different vector spaces

N3 SR for F> (1 =1) SR for F5 (7 = 8) SR for Fip (7 = 30) SR for Fig (7 = 70)

2 2.59 % 4.22 % 5.18 % 4.81 %
3 4.75 % 9.03 % 11.27 % 9.73 %
5 11.63 % 21.97 % 27.28 % 23.69 %
7 21.66 % 37.61 % 47.66 % 41.04 %
10 37.77 % 62.22 % 72.94 % 65.05 %
15 62.46 % 86.36 % 93.57 % 88.69 %
20 80.36 % 95.71 % 98.41 % 96.17 %
30 96.23 % 99.74 % 99.88 % 99.81 %

Fio = Fioy for all t: a set of the bit-wise coefficient model and one carefully
chosen second-order coefficient (v = 10), and

Fi6 = Fiey for all t: the bit-wise coefficient model and seven consecutive second
order coefficients (u = 16).

For Table 2 the time instants are chosen in the same way as described for Fy
with S; at the beginning of Section 3.3 and the thresholds 7 are indicated.
High-dimensional vector spaces require more measurement curves than low-
dimensional ones: There is a trade-off between the number of measurements
used during profiling and the dimension of a suitable vector space. In our case,
Fy (see Table 1 and 2) seems to be a good choice though there is some space
left for optimization, e.g., by using N3 = 5000, N3 = 10, and 7 = 10 the success
rate of Fig was 80.19% and superseded the corresponding result for Fy (77.31%).
Another optimization would be to select only contributing functions g; +(-, -) for
the chosen vector subspace at the relevant instants.

Comparison with the Correlation Method. Herein, the efficiency gain of
the minimum principle is compared with the correlation method of [2] on base of
the same pool of measurement data. The correlation method checks for the max-
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Table 3. Success Rate (SR) obtained for the correlation method using the 8-bit Ham-
ming weight and the least significant bit (Isb-Bit) as the selection function. The last
column shows the SR if the weighted estimated coefficients b;; using Fy are used for
the correlation.

N3 SR (Hamming weight) SR (Isb-Bit) SR, (estimated b;;)

5 0.82 % 0.51 % 1.12 %
7 1.31 % 0.84 % 2.37 %
10 2.74 % 1.17 % 4.60 %
15 6.04 % 211 % 9.33 %
20 9.70 % 3.55 % 16.67 %
30 19.67 % 6.54 % 31.99 %
50 41.27 % 16.53 % 62.84 %
100 82.85 % 45.22 % 96.13 %

imum correlation peak obtained and it does not evaluate joined sets of multiple
instants.

The success rate obtained with the correlation method is illustrated in Ta-
ble 3 and can be compared with selection S5 in Table 1 which was restricted
to the same instant. In comparison, the correlation method yields worse success
rates than the minimum principle. By taking, e.g., N3 = 10 the minimum prin-
ciple yields an improvement by a factor of 3.0 regarding the Hamming weight
prediction and by a factor of 7.1 regarding the best result of one bit prediction
of the correlation method. Even, if the estimated coefficients b;; of the minimum
principle are known an improvement by a factor of 1.8 is achieved. (Note that
the relative factor depends on N3.) As the minimum principle uses the adap-
tation of probability densities it is advantageous if compared to the correlation
method that exploits the linear relationship. Moreover, we point out that the
success rate of the minimum principle increases greatly, if multiple signals are
jointly evaluated.

3.4 The Key Extraction Phase: Maximum Likelihood Principle

For the maximum likelihood principle as described in Section 2.3 and equation
(16) both the estimation of A} and the estimation of the noise is needed. The
profiling was done as described in the corresponding parts of Section 3.1 and 3.2.

The m-dimensional random vector Z = (I3, (X, k)—h; (X, k),... I, (X, k)—
ﬁfm (X, k)) is assumed to be jointly normally distributed with covariance matrix
C. The strategy is to decide for the key hypothesis k&’ that maximizes equation
(16) for the multivariate Gaussian distribution using N3 measurements which is
equivalent to find the minimum of the expression va:”"l ziTC’*lzi.

The analysis was done by using the vector subspace Fy with the selections So
and Sg defined at the beginning of Section 3.3. Note, that for the single instant
selection S3 the maximum likelihood principle reduces to the minimum principle.

Again, the success rate (SR) was computed using ten thousand random
choices of one measurement series. As shown in Table 4, based on No = 1000
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Table 4. Success Rate (SR) that the correct key value is the best candidate as result

of equation (16) by using N3 randomly chosen single measurements for the analysis.
All results are based on Fo with N1 = 1000. If not explicitly stated it is N2 = 1000.

N3 SR fOI" SQ SR fOI‘ SG SR fOI" SQ (N2:5000) SR fOI" SG (N2:5000)

2 6.06% 4.73% 7.39 % 6.55 %

3 1393% 1045 % 17.06 % 16.00 %
5 36.30 % 28.04 % 43.70 % 41.43 %
7 6112 % 5148 % 70.51 % 68.34 %
10 84.33 % 78.26 % 91.08 % 90.17 %
15 9797 %  95.86 % 99.14 % 99.25 %
20 99.85 % 99.49 % 99.97 % 99.96 %
30 99.99 % >99.99 % >99.99% >99.99 %

a significant improvement was achieved for the selection S5 regarding Table 1,
but not for the selection Sg. This decrease by using the maximum likelihood
principle if N3 < 15 and Ny = 1000 for Sg can be explained by our limited pro-
filing process: the estimation error at the profiling of a 7 x 7 covariance matrix
is significantly lower than the error committed for a 21 x 21 matrix on the base
of Ny = 1000. This assessment is confirmed by the corresponding columns in
Table 4 for Ny = 5000. Both the success rates for Sy and Sg were further en-
hanced. As result, a high value for Ny can be crucial for the maximum likelihood
principle, especially if high dimensions are used for the covariance matrix.

The maximum likelihood method needs typically twice the number of mea-
surements during profiling. Therefore, even though key extraction is less efficient
under certain circumstances the ‘minimum principle’ might be preferred. Given
15 measurements, it can be read out from Table 4 that the maximum probability
to find the correct key value is 99.25 %. The resulting probability to decide for
the correct AES key is (0.9925)16 = 0.8865.

The number N3 of measurements can be further reduced if it is tolerated
that the correct key value is ‘only’ among the first best candidates as result of
differential side channel cryptanalyis and a plaintext-ciphertext pair is available.
E.g., if the correct key value is among the first four subkey candidates with high
probability, up to 232 tries remain to localize the correct key value. In case of S
and N3 = 10 the corresponding success rate that the correct subkey is at least at
the fourth position of the subkey ranking is 97.58 %, if Ny = 1000, and 99.42 %,
if No = 5000.

4 Conclusion

This contribution proposes a new mathematical approach to optimize the ef-
ficiency of differential side channel cryptanalysis by stochastic methods. The
quantification of side channel leakage is done in a chosen vector space and does
not even (necessarily) require knowledge of one test key. For the key extraction we
present a ‘minimum principle’ that solely uses deterministic data dependencies
and the ‘maximum likelihood principle’ that additionally incorporates the char-
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acterization of the noise revealed during profiling. We have shown how our model
can be generalized to comprehend both masking countermeasures as well as the
usage of multiple physical channels. The theoretical predictions derived from
our mathematical model are accompanied and confirmed by experiments. We
conclude that the adaptation of probability densities by our methods is clearly
advantageous regarding the correlation method, especially, if multiple leakage
signals at different instants can be jointly evaluated. Though our efficiency at
key extraction is limited by template attacks profiling is much more efficient.
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Abstract. We describe a new variant of the well known Baby-Step
Giant-Step algorithm in the case of some discrete logarithms with a spe-
cial structure. More precisely, we focus on discrete logarithms equal to
products in groups of unknown order. As an example of application, we
show that this new algorithm enables to cryptanalyse a variant of the
GPS scheme proposed by Girault and Lefranc at CHES 2004 conference
in which the private key is equal to the product of two sub-private keys of
low Hamming weight. We also describe a second attack based on a known
variant of the Baby-Step Giant-Step algorithm using the low Hamming
weight of the sub-private keys.

Keywords: Baby-Step Giant-Step algorithm, discrete logarithm, GPS
scheme, binary trees, low Hamming weight.

1 Introduction

In 1976, public key cryptography was introduced by Diffie and Hellman [2]. In
their seminal paper, the authors originally explained how to use a mathematical
assumption, namely the discrete logarithm problem, to obtain a key establishment
protocol.

Since this first result, many identification schemes using the discrete log-
arithm problem have been proposed [4,8,15] and the security of this problem
has been extensively studied (see [9] for a survey). Two major results are the
Baby-Step Giant-Step algorithm due to Shanks [1] and the rho method due to
Pollard [12]. These algorithms, used to recover discrete logarithms, are now the
references to provide lower security bounds for the size of discrete logarithms
since they apply as a generic method in any mathematical structure.

One of the main advantages of discrete-logarithm-based identification or sig-
nature schemes is that, when used with precomputations, they generally require
only few computations for the prover or the signer so that such schemes are well
desi