
Architecture of a Semantic XPath Processor

Application to Digital Rights Management

Rubén Tous, Roberto Garćıa, Eva Rodŕıguez, and Jaime Delgado

Universitat Pompeu Fabra (UPF), Dpt. de Tecnologia, Pg. Circumval.lació,
8, E-08003 Barcelona, Spain

{ruben.tous, roberto.garcia, eva.rodriguez, jaime.delgado}@upf.edu

Abstract. This work describes a novel strategy for designing an XPath
processor that acts over an RDF mapping of XML. We use a model-
mapping approach to represent instances of XML and XML Schema in
RDF. This representation retains the node order, in contrast with the
usual structure-mapping approach. The processor can be fed with an un-
limited set of XML schemas and/or RDFS/OWL ontologies. The queries
are resolved taking into consideration the structural and semantic con-
nections described in the schemas and ontologies. Such behavior, schema-
awareness and semantic integration, can be useful for exploiting schema
and ontology hierarchies in XPath queries. We test our approach in the
Digital Rights Management (DRM) domain. We explore how the pro-
cessor can be used in the two main rights expression languages (REL),:
MPEG-21 REL and ODRL.

1 Introduction

1.1 Motivation

Usually XML-based applications use one or more XML schemas. These schemas
are mainly used for instance validity check. However, it is sometimes necessary
to consider the inheritance hierarchies defined in the schemas for other purposes,
e.g. when evaluating queries or conditions that can refer to concepts not directly
present in the data, but related to them through an inheritance chain. Today
it is also becoming common the use of RDFS[25]/OWL[24] ontologies to define
semantic connections among application concepts. All this structural and se-
mantic knowledge is hard to access for developers, because it requires a specific
treatment, like defining multiple extra queries for the schemas, or using complex
RDF[26] tools to access the ontologies information.

To overcome this situation we present the architecture of a schema-aware and
ontology-aware XPath processor. The processor can be fed with an unlimited
set of XML schemas and/or RDFS/OWL ontologies. The queries are resolved
taking in consideration the structural and semantic connections described in the
schemas and ontologies. We use a model-mapping approach to represent instances
of XML and XML Schema in RDF. This representation retains the node order,
in contrast with the usual structure-mapping approach, so it allows a complete
mapping of all XPath axis.

K. Bauknecht et al. (Eds.): EC-Web 2005, LNCS 3590, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 R. Tous et al.

1.2 Related Work. Model-Mapping vs. Structure-Mapping

The origins of this work can be found in a research trend that tries to exploit
the advantages of an XML-to-RDF mapping [1][2][3][4][5][6][7]. However, the
concepts of structure-mapping and model-mapping are older. In 2001, [8] defined
these terms to differentiate between works that map the structure of some XML
schema to a set of relational tables and works that map the XML model to a
general relational schema respectively.

More recently, [4] takes a structure-mapping approach and defines a direct
way to map XML documents to RDF triples ([2] classifies this approach as Direct
Translation). [1], [2], and [3] take also a structure-mapping approach but focus-
ing on defining semantic mappings between different XML schemas ([2] classifies
their own approach as High-level Mediator). They also describe some simple map-
ping mechanisms to cover just a subset of XPath constructs. Other authors like
[5] or [6] take a slightly different strategy (though within the structure-mapping
trend) and focus on integrating XML and RDF to incorporate to XML the infer-
encing rules of RDF (strategies classified by [2] as Encoding Semantics). Finally
it’s worth mention the RPath initiative [7], that tries to define an analogous
language to XPath but for natural (not derived from XML) RDF data (this last
work doesn’t pursue interoperability between models or schemas).

The target to achieve a semantic behavior for XPath/XQuery has also been
faced in [23]. This approach consists also in translating the XML schemas to
OWL, but the authors define an XQuery variant for the OWL data model called
SWQL (Semantic Web Query Language). The difference between this approach
and ours is that our work does not need a translation between the semantic
queries (instances of SWQL in the related approach) and XPath/XQuery ex-
pressions. We have developed a new XPath processor that manipulates conven-
tional queries but taking in consideration the semantic relationships defined in
the schemas and/or ontologies.

2 Architecture of the Semantic XPath Processor

2.1 Overview

Figure 1 outlines how the processor works. The key issue is the XML-to-RDF
mapping, already present in other works, but that we face from the model-
mapping approach. In contrast with the structure-mapping approach, that maps
the specific structure of some XML schema to RDF constructs, we map the XML
Infoset [9] using RDFS and OWL axioms. This allows us to represent any XML
document without any restriction and without losing information about node-
order. We use the same approach with XSD, obtaining an RDF representation
of the schemas. Incorporating alternative OWL or RDFS ontologies is straight-
forward, because they are already compatible with the inference engine. In the
figure we can see also that an OWL representation of the XML model is neces-
sary. This ontology allows the inference engine to correctly process the different
XPath axis and understand how the XML elements relate to the different XSD
constructs.



Architecture of a Semantic XPath Processor 3

Fig. 1. Semantic XPath processor architecture overview

2.2 An OWL Ontology for the XML Model (XML/RDF Syntax)

We have tried to represent the XML Infoset [9] using RDFS and OWL axioms. A
simplified description of the ontology in Description Logics syntax (SHIQ-like
style [17]) would be:

Document �Node

Element �Node

TextNode �Node

childOf �descendant

parentOf �ancestor

childOf =parentOf−

T rans(ancestor)
ancestor �ancestorOrSelf

self �descendantOrSelf

self �ancestorOrSelf

self =sameAs

immediatePrecedingSibling �precedingSiblinng

immediateFollowingSibling �followingSibling

immediatePrecedingSibling =immediateFollowingSibling−

T rans(followingSibling)

2.3 XPath to RDQL Translation Algorithm

RDQL [13] is the popular RDF query language from HP Labs Bristol. Each
XPath axis can be mapped into one or more triple patterns of the target RDQL
query. Analogously each nodetest and predicate can be mapped also with just
one or more triple patterns. The output RDQL query always takes the form:



4 R. Tous et al.

SELECT *
WHERE
(?v1, <rdf:type>, <xmloverrdf:document>)
[triple pattern 2]
[triple pattern 3]
...
[triple pattern N]

The translation can be deduced from the XPath formal semantics. For ex-
ample, the following axis is described as:

Afollowing(x) = {x1 | x1 ∈ Adescendant−or−self (x2)
∧ x2 ∈ Afollowing−sibling(x3)}
∧ x3 ∈ Aancestor−or−self (x)}

So the following axis must be translated to:

(?vi-2, <xmloverrdf:ancestor-or-self>, ?vi-3)
(?vi-1, <xmloverrdf:following-sibling>, ?vi-2)
(?vi, <xmloverrdf:descendant-or-self>, ?vi-1)

2.4 Example Results

An example query could be:

/child::movies/child::movie/child::title
(in abbreviated form /movies/movie/title)

That is translated to:

SELECT *
WHERE

(?v1, <rdf:type>, <xmloverrdf:document>)
, (?v2, <xmloverrdf:childOf>, ?v1)
, (?v2, <xmloverrdf:hasName>, "movies")
, (?v3, <xmloverrdf:childOf>, ?v2)
, (?v3, <xmloverrdf:hasName>, "movie")
, (?result, <xmloverrdf:childOf>, ?v3)
, (?result, <xmloverrdf:hasName>, "title")

3 Incorporating Schema-Awareness

3.1 Mapping XML Schema to RDF

Having an XML instance represented with RDF triples opens a lot of possi-
bilities. As we have seen before, we can use OWL constructs (subPropertyOf,



Architecture of a Semantic XPath Processor 5

transitiveProperty, sameAs, inverseOf, etc.) to define the relationship between
the different properties defined in the ontology. In our ontology for the XML
model, the object of the hasName property is not a literal but a resource (an
RDF resource). This key aspect allows applying to hasName all the potential of
the OWL relationships (e.g. defining ontologies with names relationships). So, if
we want our XPath processor to be schema-aware, we just need to translate the
XML Schema language to RDF, and to add to our XML/RDF Syntax ontology
the necessary OWL constructs that allow the inference engine to understand
the semantics of the different XML Schema components. The added axioms in
Description Logics syntax (SHIQ-like style [17]) would be:

hasName �fromSubstitutionGroup

T rans(fromSubstitutionGroup)
hasName �fromType

T rans(fromType)
fromType �subTypeOf

3.2 A Simple Example of Schema-Aware XPath Processing

The next example ilustrates the behaviour of our processor in a schema-related
XPath query. Take this simple XML document:

<A>
<B id=’B1’ />
<B id=’B2’>
<C id=’C1’>
<D id=’D1’></D>

</C>
</B>
<B id=’B3’/>

</A>

And its attached schema:

<schema>
<complexType name=’BType’>

<complexContent>
<extension base=’SUPERBType’></extension>

</complexContent>
</complexType>
<element name=’B’

type=’BType’ substitutionGroup=’SUPERB’ />
</schema>

When evaluating the XPath query //SUPERB, our processor will return the
elements with IDs ’B1’, ’B2’ and ’B3’. These elements have a name with value



6 R. Tous et al.

’B’, and the schema specifies that this name belong to the substitution group
’SUPERB’, so they match the query. Also, when evaluating the query //SU-
PERBType, the processor will return ’B1’, ’B2’ and ’B3’. It assumes that the
query is asking for elements from the type SUPERBType or one of its subtypes.

4 Implementation and Performance

The work has been materialised in the form of a Java API. We have used the
Jena 2 API [11] for RDQL computation and OWL reasoning. To process XPath
expressions we have modified and recompiled the Jaxen XPath Processor [10].
An on-line demo can be found at http://dmag.upf.edu/contorsion.

Though performance wasn’t the target of the work, it is an important aspect
of the processor. We have realised a performance test over a Java Virtual Machine
v1.4.1 in a 2GHz Intel Pentium processor with 256Mb of memory. The final
delay depends mainly on two variables, the size of the target documents, and
the complexity of the query. Table 1 shows the delay of the inferencing stage
for different document depth levels and also for some different queries.

The processor behaves well with medium-size documents and also with large
ones when simple queries are used (queries that do not involve transitive axis),
but when document size grows, the delay related to the complex queries increases
exponentially. Some performance limitations of the Jena’s OWL inference engine
have been described in [18]. We are now working on this problem, trying to obtain
a more scalable inference engine. However, the current processor’s performance
is still acceptable for medium-size XML documents.

Table 1. Performance for different document depth levels

expression 5d 10d 15d 20d

/A/B 32ms 47ms 47ms 62ms
/A/B/following-sibling::B 125ms 46ms 48ms 47ms
/A/B/following::B 125ms 62ms 63ms 47ms
/A//B 172ms 203ms 250ms 219ms
//A//B 178ms 266ms 281ms 422ms

5 Testing in the DRM Application Domain

The amount of digital content delivery in the Internet has made Web-scale
Digital Rights Management (DRM) a key issue. Traditionally, DRM Systems
(DRMS) have dealt with this problem for bounded domains. However, when
scaled to the Web, DRMSs are very difficult to develop and maintain. The so-
lution is interoperability of DRMS, i.e. a common framework for understanding
with a shared language and vocabulary. That is why it is not a coincidence that
organisations like MPEG (Moving Picture Experts Group), OMA (Open Mobile
Alliance), OASIS (Organization for the Advancement of Structured Informa-
tion Standards), TV-Anytime Forum, OeBF (Open eBook Forum) or PRISM
(Publishing Requirements for Industrial Standard Metadata) are all involved in



Architecture of a Semantic XPath Processor 7

standardisation or adoption of rights expression languages (REL). Two of the
main REL initiatives are MPEG-21 REL [22] and ODRL [20].

Both are XML sublanguages defined by XML Schemas. The XML Schemas
define the language syntax and a basic vocabulary. These RELs are then sup-
plemented with what are called Rights Data Dictionaries [21]. They provide the
complete vocabulary and a lightweight formalisation of the vocabulary terms se-
mantics as XML Schemas or ad hoc ontologies. ODRL and MPEG-21 REL have
just been defined and are available for their implementation in DRMS. They
seem quite complete and generic enough to cope with such a complex domain.
However, the problem is that they have such a rich structure that they are very
difficult to implement. They are rich in the context of XML languages and the
”traditional” XML tools like DOM or XPath. There are too many attributes,
elements and complexTypes (see Table 2) to deal with.

Table 2. Number of named XML Schema primitives in ODRL and MPEG-21 REL

Schemas xsd:attribute xsd:complexType xsd:element Total
ODRL EX-11 10 15 23 127

DD-11 3 2 74
MPEG-21 EL-R 9 56 78 330

REL-SX 3 35 84
REL-MX 1 28 36

5.1 Application to ODRL License Processing

Consider looking for all constraints in a right expression, usually a rights license,
that apply to how we can access the licensed content. This would require so many
XPath queries as there are different ways to express constraints. For instance,
ODRL defines 23 constraints: industry, interval, memory, network, printer, pur-
pose, quality, etc. This amounts to lots of source code, difficult to develop and
maintain because it is very sensible to minor changes to the REL specs. Hopefully
there is a workaround hidden in the language definitions.

As we have said, there is the language syntax but also some semantics. The
substitutionGroup relations among elements and the extension/restriction base
ones among complexTypes encode generalisation hierarchies that carry some
lightweight, taxonomy-like, semantics. For instance, all constraints in ODRL
are defined as XML elements substituting the o-ex:constraintElement, see Fig-
ure 2. The difficulty is that although this information is provided by the XML
Schemas, it remains hidden when working with instance documents of this XML

odd:industry odd:interval odd:memory odd:network odd:printer odd:purpose odd:quality

oex:constraintElement

... ...

substitutionGroup

Fig. 2. Some ODRL constraint elements defined as substitutionGroup of constraintEle-

ment



8 R. Tous et al.

Schemas. However, using the semantics-enabled XPath processor we can profit
from all this information. As it has been shown, the XML Schemas are trans-
lated to OWL ontologies that make the generalisation hierarchies explicit, using
subClassOf and subPropertyOf relations. The ontology can be used then to carry
out the inferences that allow a semantic XPath like “//o-ex:constraintElement”
to retrieve all o-ex:constraintElement plus all elements defined as its substitu-
tionGroup.

5.2 Application to the MPEG-21 Authorisation Model

MPEG-21 defines an authorisation algorithm that is a decision making process
resolving a central question ”Is a Principal authorized to exercise a Right such a
Resource?”. In this case, the semantic XPath processor help us when determining
if the user has the appropriate rights taking into account the rights lineage
defined in the RDD (Rights Data Dictionary).

In contrast with ODRL, that uses XMLSchemas both for the language and
dictionary definitions, MPEG-21 has an ontology as dictionary (RDD). The se-
mantics that it provides can also be integrated in our semantic XPath processor.
To do that, the MPEG-21 RDD ontology is translated [19] to the ontology lan-
guage used by the Semantic XPath Processor, i.e. OWL. Once this is done, this
ontology is connected to the semantic formalisation build up from the MPEG-21
REL XML Schemas. Consequently, semantic XPath queries can also profit from
the ad hoc ontology semantics. For instance, the acts taxonomy in MPEG-21
RDD, see Figure 3, can be seamlessly integrated in order to facilitate license
checking implementation. Consider the following scenario: we want to check
if our set of licenses authorises us to uninstall a licensed program. If we use

Fig. 3. Portion of the acts taxonomy in MPEG-21 RDD

XPath, there must be a path to look for licenses that grant the uninstall act,
e.g. “//r:license/r:grant/mx:uninstall”. Moreover, as it is shown in the taxonomy,
the usetool act is a generalisation of the uninstall act. Therefore, we must also
check for licenses that grant us usetool, e.g “//r:license/r:grant/mx:uninstall”.
An successively, we should check for interactwith, do and act.



Architecture of a Semantic XPath Processor 9

However, if we use a semantic XPath, the existence of a license that grants
any of the acts that generalise uninstall implies that the license also states that
the uninstall act is also granted. This is so because, by inference, the presence of
the fact that relates the license to the granted act implies all the facts that relate
the license to all the acts that specialise this act. Therefore, it would suffice to
check the semantic XPath expression “//r:license/r:grant/mx:uninstall”. If any
of the more general acts is granted it would match. For instance, the XML tree
/r:license/r:grant/dd:usetool implies the trees /r:license/r:grant/dd:install and
/r:license/r:grant/dd:uninstall.

6 Conclusions and Future Work

In this paper we have described a novel strategy for designing a semantic XPath
processor that acts over an RDF mapping of XML. We use a model-mapping
approach to represent instances of XML and XML Schema in RDF. This repre-
sentation retains the node order, in contrast with the usual structure-mapping
approach. The obtained processor resolves the queries taking into consideration
the structural and semantic connections described in the schemas and ontologies
provided by the user. It can be used to express schema-aware queries, to face
interoperability among different XML languages or to integrate XML with RDF
sources.

In the context of DRM implementation, the Semantic XPath Processor has
shown its benefits. First of all, less coding is needed. The Semantic XPath pro-
cessor allows reusing the semantics hidden in the XML Schemas so we do not
need to recode them. Moreover, the code is more independent from the under-
lying specifications. If there is a change in the specifications, which causes a
modification of the XML Schemas, it is only necessary to regenerate the corre-
sponding ontologies. Now we are working to embed the processor in an XQuery
implementation to achieve the semantic behaviour also for XQuery expressions.

References

1. A. Y. Halevy, Z. G. Ives, P. Mork, I. Tatarinov: Piazza: Data Management In-
frastructure for Semantic Web Applications, 12th International World Wide Web
Conference, 2003

2. Cruz, I., Xiao H., Hsu F. An Ontology-based Framework for XML Semantic Inte-
gration. University of Illinois at Chicago. Eighth International Database Engineer-
ing and Applications Symposium. IDEAS’04. July 7-9, 2004 Coimbra, Portugal.

3. B.Amann,C.Beeri,I.Fundulaki,and M.Scholl.Ontology-Based Integration of XML
Web Resources. In Proceedings of the 1st International Semantic Web Conference
(ISWC 2002),pages 117-131,2002.

4. M.C.A.Klein. Interpreting XML Documents via an RDF Schema Ontology. In Pro-
ceedings of the 13th International Workshop on Database and Expert Systems
Applications (DEXA 2002),pages 889-894, 2002.

5. L.V.Lakshmanan and F.Sadri.Interoperability on XML Data. In Proceedings of
the 2nd International Semantic Web Conference (ICSW 03), 2003.



10 R. Tous et al.

6. P.F.Patel-Schneider and J.Simeon.The Yin/Yang web:XML syntax and RDF se-
mantics.In Proceedings of the 11th International World Wide Web Conference
(WWW2002), pages 443-453,2002.

7. RPath - RDF query language proposal http://web.sfc.keio.ac.jp/ km/rpath-eng/
rpath.html

8. M. Yoshikawa, T. Amagasa, T. Shimura and S. Uemura, XRel: A Path-Based
Approach to Storage and Retrieval of XML Documents using Relational Databases,
ACM Transactions on Internet Technology, Vol. 1, No. 1, June 2001.

9. XML Information Set (Second Edition) W3C Recommendation 4 February 2004
http://www.w3.org/TR/xml-infoset/

10. Jaxen: Universal Java XPath Engine http://jaxen.org/
11. Jena 2 - A Semantic Web Framework http://www.hpl.hp.com/semweb/jena.htm
12. RDF/XML Syntax Specification (Revised) W3C Recommendation 10 February

2004 http://www.w3.org/TR/rdf-syntax-grammar/
13. RDQL - A Query Language for RDF W3C Member Submission 9 January 2004

http://www.w3.org/Submission/RDQL/
14. XML Path Language (XPath) 2.0 W3C Working Draft 23 July 2004

http://www.w3.org/TR/xpath20/
15. Dave Reynolds. Jena 2 Inference support http://jena.sourceforge.net/inference/
16. OWL Web Ontology Language Overview. W3C Recommendation 10 February 2004

http://www.w3.org/TR/owl-features/
17. Ian Horrocks, Ulrike Sattler and Stephan Tobies. Practical reasoning for expres-

sive description logics. In Proc. of the 6th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR99), number 1705 in Lecture Notes in Artificial
Intelligence, pages 161180. Springer, 1999.

18. Dave Reynolds. Jena 2 Inference support http://jena.sourceforge.net/inference/
19. J. Delgado, I. Gallego and R. Garcia. Use of Semantic Tools for a Digital Rights Dic-

tionary. E-Commerce and Web Technologies: 5th International Conference, 2004.
LNCS Volume 3182 (338-347) Springer-Verlag.

20. R. Iannella. Open Digital Rights Language (ODRL), Version 1.1. World Wide Web
Consortium 2002 (W3C Note). http://www.w3.org/TR/odrl.

21. G. Rust and C. Barlas. The MPEG-21 Rights Data Dictionary. IEEE Transactions
on Multimedia, 2005 volume 7 number 2.

22. X. Wang and T. DeMartini and B. Wragg and M. Paramasivam. The MPEG-21
Rights Expression Language. IEEE Transactions on Multimedia 2005 volume 7
number 2.

23. Lehti and Fankhauser (2004). XML Data Integration with OWL: Experiences &
Challenges, SAINT 2004: 160-170.

24. OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommen-
dation, 10 February 2004. http://www.w3.org/TR/owl-semantics/.

25. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation,
10 February 2004. http://www.w3.org/TR/rdf-schema/ .

26. Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C
Recommendation, 10 February 2004. http://www.w3.org/TR/rdf-concepts/.


	Introduction
	Motivation
	Related Work. Model-Mapping vs. Structure-Mapping

	Architecture of the Semantic XPath Processor
	Overview
	An OWL Ontology for the XML Model (XML/RDF Syntax)
	XPath to RDQL Translation Algorithm
	Example Results

	Incorporating Schema-Awareness
	Mapping XML Schema to RDF
	A Simple Example of Schema-Aware XPath Processing

	Implementation and Performance
	Testing in the DRM Application Domain
	Application to ODRL License Processing
	Application to the MPEG-21 Authorisation Model

	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




