
Secure Sessions from Weak Secrets

Bruce Christianson1, Michael Roe2, and David Wheeler3

1 Computer Science Department, University of Hertfordshire, Hatfield
2 Microsoft Research Limited, Cambridge

3 Computer Laboratory, University of Cambridge,
England, Europe

Abstract. Sometimes two parties who already share a weak secret k
such as a password wish to share also a strong secret s such as a ses-
sion key without revealing information about k to an active attacker.
We assume that both parties can generate strong random numbers and
forget secrets, and present new protocols for secure strong secret sharing,
based on RSA, Diffie-Hellman, and El-Gamal. As well as being simpler
and quicker than their predecessors, our protocols also have stronger
security properties. In particular, our protocols make no cryptographic
use of s and so do not impose subtle restrictions upon the use which is
subsequently made of s by other protocols. Neither do we rely upon the
existence of hash functions with serendipitous properties. In the course
of presenting these protocols, we also consider how to frustrate some new
types of cryptographic and system attack.

1 Introduction

Sometimes there is a requirement to establish a secure session between two par-
ties who initially share only a weak long-term secret. “Secure” includes the re-
quirement that the parties can be sure that they are talking to each other, as well
as properties of integrity and secrecy. By “weak secret” we mean a secret that is
chosen from a moderately small set, so that an attacker could search through all
possible values. Passwords are often weak secrets, as the total number of words
in a dictionary is searchable.

A weak secret cannot be used directly as a cryptographic key to secure the
session, as this is vulnerable to a known plaintext attack. If the attacker knows
(or can guess with high probability of being right) the message plaintext m
corresponding to a known encrypted text Ek(m) then they can search through
all possible values of the password until they find the value k which decrypts the
cyphertext to m. This reveals the password, which can then be used to decipher
the session.

Suppose that the parties who wish to communicate have good random num-
ber generators. This means that they can generate secrets which are strong
(chosen from a set which is too large to search) but not shared. We would like
to have a protocol which starts with a weak shared secret and a pair of strong
non-shared secrets and which ends up with a secret which is both strong and

B. Christianson et al. (Eds.): Security Protocols 2003, LNCS 3364, pp. 190–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Secure Sessions from Weak Secrets 191

shared. We refer to such a protocol as a Strong Secret Sharing Password (S3P)
Protocol.

Previous attempts at solving this problem include Bellovin and Merritt’s En-
crypted Key Exchange [3], Jablon’s SPEKE [9], and Lucks’ Open Key Exchange
[12]. A related, but slightly different approach is taken by Gong et al in [7].

In the next section, we give a careful specification of the properties which
we desire S3P protocols to have, and of the assumptions under which we believe
our protocols to have these properties. In Section 3, we present an S3P protocol
based on RSA and show that it resists a number of attacks, some known and
some novel. In section 4 we consider various DH-based S3P protocols which
have stronger security properties than the conventional versions, and discuss
some novel threats. In section 5 we consider the implications of using EG in
place of DH when the requirement is to transfer an existing secret rather than
to agree a new one. In section 6, we discuss what should be done when an active
attack is detected, and introduce the notion of a robust protocol wrapper. In the
final section we summarize our conclusions.

2 S3P Protocol Properties and Assumptions

In this section, we give a careful specification of the properties which we de-
sire S3P protocols to have, and of the assumptions under which we believe our
protocols to have these properties.

The S3P protocols described in this paper are peer-to-peer protocols, which
operate directly between two principals rather than between a principal and a
server. In accord with tradition, we assume that the two parties trying to operate
the S3P protocol are unambiguously known to each other as A and B.

2.1 Properties

We turn now to describing the features which we desire the S3P protocol to have.
At the start of the protocol A and B share a weak secret k. Following a run of
the protocol which A believes to have ended correctly, it should be the case that
B really did participate in that run of the protocol, and that the two of them
really do now share a fresh strong secret s. The corresponding statement should
also be true for a run which B believes to have ended correctly. The protocol
should not reveal information about the weak secret k in any case.

The protocol should be secure against active attacks in which the attacker
creates or modifies messages. Leakage or cryptographic compromise of a strong
secret s shared using a protocol run should not reveal information about the
password k. If several strong secrets si are shared by different runs using the
same password k then obtaining one such si should not help an attacker to
obtain sj with j �= i.

An attacker should not be able to obtain any information about whether
a guessed value of the password is correct without making an active attack:
effectively the attacker should be forced to masquerade as one of the partici-
pants to the other. An active attack should be detectable by at least one of the

192 B. Christianson, M. Roe, and D. Wheeler

genuine participants, unless the guessed value is correct, and each such failed
attack should eliminate no more than one possible value of the password (ie
the unsuccessful guess) from the attacker’s list of possible password values. Ap-
proaches such as [1] do not satisfy this requirement. Finally, if the password is
compromised (by whatever means) this should not assist the attacker to obtain
strong secrets agreed using the protocol with that password prior to the point of
compromise, or to obtain subsequently agreed strong secrets by passive attack.

2.2 Assumptions

We assume that neither party can reliably maintain the integrity of a strong
secret s from one protocol run to another: in other words if A tries to use a strong
secret from one run in another run, then there is a good chance that s either leaks,
or is forgotten, or changes (or is changed) without A noticing that it has. This
assumption may correspond to the fact that the parties move frequently from
one piece of hardware to another, or may be because the hardware is initialized
in some way between protocol runs to erase secret information. We discuss this
issue further in section 6.

We assume that both parties can reliably maintain the integrity of public,
slowly varying data such as software and public keys: other protocols are avail-
able to assist with this [11].

The protocols which we consider include the operations “generate a random
bit pattern n” and “forget the bit pattern m”. We assume that both ends have
good irreproducible random bit generators and can forget secrets. By the first
assumption we mean that our threat model does not consider the possibility of
an attacker determining n by examining other bit patterns produced (previously
or subsequently) by the same or other generators. By the second assumption
we mean that our threat model does not consider the possibility of an attacker
subsequently determining m from from an examination of the hardware which
has been instructed to forget it. Note that the hardware which must forget
includes the random generator. This assumption is probably the most difficult
requirement to realize in practice.

We wish to make no assumptions about what the strong shared secret will be
used for. The S3P protocol run used to agree the strong shared secret s ends as
soon as both parties can be sure that s has been appropriately shared. In the light
of known chosen protocol attacks [10] we wish to impose no restrictions upon
the nature of the cryptographic protocols or algorithms to which s is handed off
for subsequent use, or upon the length of s itself. It may be intended to reveal
s (for example s may be used as a one-time pad) or it may be that s is not
intended to be used as a key at all, but as a salt or initial value. In particular,
the S3P protocol should not assume that s is strong: it may be feasible for an
attacker to search for s in the time available between steps of the protocol. This
may be because s is required to be weak (less than 40 bits, suppose) or because
the protocol is running very slowly (the messages may be carried by a diskette
sent through the post, for example.)

Secure Sessions from Weak Secrets 193

2.3 System Context

In the protocol descriptions that follow, we omit from each message the header
information identifying which protocol is being used, which parties it purports
to operate between, which run of the protocol the message relates to, and the
sequence number of the message within that protocol run. These data will be
conveyed by the outer wrapping protocol, which will be discussed in section 6.
Also, we have not yet specified explicitly what conditions cause a participant to
treat a particular run as having failed (eg receiving an incorrect bit pattern or
timing out.) We shall also consider these points further in section 6, but first we
describe the inner S3P protocols themselves.

3 RSA Based Protocol

In this section, we present new S3P protocols based on RSA. Correct protocols
of this form have previously resisted construction, to the point where some have
doubted their possibility. We show that this RSA-S3P protocol resists the known
attacks as well as some novel ones.

3.1 Basic RSA-S3P Protocol Description

A generates an RSA modulus N = pq with p, q prime and so that (p−1)/2, (q−
1)/2 each contains a large prime factor. We assume that the bit-lengths of p, q
and N are prescribed exactly.

We assume that there is a publicly known function e which converts a pass-
word k into a large prime number e(k) suitable for use as an RSA exponent. By
large we mean that the bit length of e(k) is strictly larger than that of N by
some suitable algorithm. For example, supposing that the password k is encoded
in such a way that the bit length of k is small relative to that of

√
N , then one

suitable algorithm would be to search through ascending values of i until a prime
of the form 1 + k(a + ib) is found, where a, b are published co-prime constants
guaranteed to exceed N .

The RSA-S3P protocol runs as follows:

A → B : N (1)
B → A : ze(k) + 2e(k) mod N (2)
A → B : na (3)
B → A : nb (4)

Here z = c|s|na|nb where s is the session key, c is a strong random number called
a confounder, and na, nb are random numbers called nonces. The vertical bar |
denotes concatenation of bit strings, with the high order bits on the left.

Note that a fresh key N is required for each run of the protocol, but the
function e(k) can remain constant. Only A need verify the strength of the public
key N , although B must check that N has the correct bit-length. A must forget

194 B. Christianson, M. Roe, and D. Wheeler

d(k), the decryption key corresponding to e(k), as well as p and q. Both A and
B must forget c. B must forget the whole of z if the protocol fails at step (3).

In the RSA protocol, the key s and all nonces are chosen by B. Although s
need not be strong, it must contain no redundancy and must not be predictable.
Prior knowledge of the value of s which B will choose allows an attacker mas-
querading as A to determine k. Also note that s must appear random and so
can’t be a public key. Although the confounder c must be strong, the nonces
na and nb need not be strong, although they should be significantly harder to
predict than k.

Jolyon Clulow points out that A must reject an offered value of 0 in message
(2), or an attacker can force z = N − 2 without knowing or learning k.

3.2 Design Discussion

The presence of c prevents an attacker using a compromised session key and a
copy of message (2) to search for k.

It is vital that there be no redundancy in the plaintext z = c|s|na|nb which
is encrypted in message (2). If there were, then an attacker masquerading as
A could use this to search for k in time to generate message (3) correctly and
complete the protocol run. Note that consequently z must be a random number
in the range 1 . . .N . The statistical distribution of the high order bits of c is
thus skewed, because N is not a power of 2. However, this effect dies away
exponentially with bit order, so the low order bits of c plus all bits of s cannot
contain enough skew to be useful to an enemy after any achievable number of
protocol runs. It must be infeasible for an attacker to search over the low-order
bits of c. Otherwise after s is revealed for a completed run, passive search would
reveal k by a match on message (2).

The purpose of messages (3) and (4) is to convince A and B that they are not
experiencing an active attack. Instead of using the nonces na and nb in messages
(3) and (4), we could use cryptographic hashes of them instead. But nothing
is gained by doing this, and it requires us to exhibit a cryptographic algorithm
with suitable subtle properties, a commitment which we prefer to avoid. (3) and
(4) by an attacker masquerading as B, who finds s in time to send message (4).
Effectively, if s is used in this way and is not sufficiently strong, then the attacker
gets an undetected guess at k.

It is tempting to try and shorten the protocol run to three messages by
combining the texts of messages (2) and (4) into a single message. This doesn’t
work, because there must be no redundancy in message (2).

3.3 Number-Theoretic Attacks

Factorization of N by an attacker gives the attacker k and, worse, allows the at-
tacker to obtain old values of s. The public key N must therefore be many times
longer than s, consequently a large number of bits is available for na, nb and c.
However the protocol must specify the exact bit-length of N , and B must check
that N has the correct number of bits, in order to ensure that an attacker does
not insert an extra factor into N in order to gain residue information about e(k).

Secure Sessions from Weak Secrets 195

The term 2e(k) in the second message is required to block the Bleichenbacher
attack: if this term is omitted, then an attacker masquerading as B can send
ze mod N in message (2), where e =

∏
i e(ki) and the ki are candidate passwords.

Comparison of na with ze/e(ki) for each i now reveals the correct ki, and this can
even be done in time for the false B to generate message (4) correctly and finish
the protocol run. Variations are possible in message (2), for example using 3e(k)

as the added term or using the exclusive-or ⊕ in place of modulo−N addition.
We turn now to a consideration of the constraints on the function e(k).

Suppose that e is a fixed prime, and consider a modified form of the RSA-
S3P protocol where message (2) contains ze + k mod N in place of ze(k). If an
attacker masquerading as A can choose N = pq where p is a prime of the form
r.e + 1, then the Euler totient φ(N) = re(q − 1) so for almost all values of z we
have (ze)r(q−1) = 1 (mod N). Exhaustive search following a single foiled active
attack now reveals k.

This attack on the modified protocol can be blocked by making the require-
ment that e > N , which ensures that e is relatively prime to φ(N).

Suppose pi are small odd primes and the attacker would like to find i with
pi = e(k). Define p = 1 + 2

∏
i even pi, q = 1 + 2

∏
i odd pi and arrange the

indexing of pi so that p and q are prime. Setting N = pq we have (almost
certainly) that pi|e(k) iff (ze(k))P/pi = 1 (mod N) where P = 4

∏
all i pi.

Other number-theoretic attacks are considered by Patel [13].
To block attacks of this form it suffices to ensure that e(k) > N for all

k, since the bit-length of N is prescribed by the protocol and checked by B.
Alternatively, we could just insist that all e(k) have a one somewhere in the high
order bits. This still allows an attacker to eliminate two values of k per active
attack, but no more.

We also need to ensure that the mapping from k to e(k) is, as nearly as
possible, one-to-one. The fact that a and b are relatively prime and ab > N
ensures this. The density of primes below N implies that a prime will be found
on average for i of order lnN and almost always for i very much less than

√
N .

There are other subtle constraints upon the algorithm for e. For example, if the
function e(k) were instead defined to be the first prime after a + b.k, then the
density of prime numbers implies that e(k) = a+b.k+i for small i. The fact that
i is typically bounded by a small multiple of lnN gives the attacker information
about e(k) mod b. An attacker pretending to be A can choose N to contain a
factor of the form br+1, and hence deduce information about z mod br+1 which
can be used to recover z from message (2) with a greater probability of success
than guessing k.

4 Diffie-Hellman Based Protocol

In this section 4 we consider various DH-based S3P protocols which have stronger
security properties than the conventional versions, and which make less use of
superencypherment. We also discuss some novel threats.

196 B. Christianson, M. Roe, and D. Wheeler

4.1 Basic DH-S3P Protocol Description

Let q be a publicly known large prime of prescribed length, and let g be a publicly
known residue modulo q. To prevent various known subtle attacks [3,9,13] we
assume that p = (q − 1)/2 is a prime and g is a generator modulo q, so that gn

has period 2p. Note that in case p mod 4 = 1 we can take g = 2 [8, Theorem
95]. We assume that k has a smaller bit-length than q and is encoded in such
a way that any two candidate values for k differ in at least three bit positions.
The last requirement is for technical reasons which will be discussed later, but
can be guaranteed by adding a small amount of redundancy to k.

A and B select strong random numbers x, y respectively. By strong we mean
that exhaustive search is infeasible. The basic version of the DH-S3P protocol
runs as follows:

A → B : gx + k mod q (1)
B → A : gy mod q | nb (2)
A → B : na (3)

where we write g2xy mod q = z = c|s|na|nb with semantics as in the RSA pro-
tocol.

Both A and B should check to ensure that z �= 0 and z �= 1. If z = 0 or z = 1
then the run fails, since otherwise an active attacker could masquerade as B by
using these values in message (2).

The nonces na, nb and the confounder c need not be strong, although they
should be significantly harder to predict than k. We require that x, y strong and
large relative to log2 q.

A must forget x and gx, while B must forget y. Both A and B must forget
c. A must forget the whole of z if the protocol run fails at message (2). The DH
protocol ensures that s appears random, but does not allow it to be chosen or
predicted by A or B.

4.2 Design Discussion

Whereas the RSA-based protocol required four messages, the Diffie-Hellman
variant can be done in three, effectively by combining both texts uttered by B
in the same message. Consequently, in marked contrast to the RSA case, the
second message in the DH protocol contains verifiable redundancy in the form
of nb. The reason an attacker cannot use this to break the protocol is that the
redundancy is only detectable by an entity who knows x or y. These are not
searchable by hypothesis, and the value of x is not deducible from message (1)
even with a guessed value for k.

As with RSA, eventual cracking of the chosen public key will give the attacker
k and, worse, allow the attacker to obtain old values of s. For this reason the
public parameter q must be many times longer than s, and so a large number of
bits is again available for na, nb and c.

The purpose of the Hamming-distance restriction alluded to earlier upon the
encoding of k is to prevent the attacker testing multiple values of k in a single

Secure Sessions from Weak Secrets 197

run. If g = 2, then the attacker knows the discrete logarithms of small powers of
2, and can use this fact to test simultaneously a set of candidates for k, each of
which differs in only one bit from some value k0. The attacker sends k0 as the
first message and inspects g2ix for all i less than the bit-length of k, to see if one
contains nb. If all candidate values for k are at least three bits apart then this
attack is defeated. For example including a Hamming code would add only 10
bits to a 1,000 bit k.

4.3 Choosing the Modulus

In this sub-section, we consider possible alternative approaches to the choice of
q and g. This in turn leads to some variations on the DH-based S3P protocols.

To avoid narrowing attacks, we require that q be a prime of the form 2p + 1
for some prime p, and that g be a primitive root modulo q. Such parameters are
relatively expensive to generate, and in the DH protocol both A and B must
check that q, g are suitable values, since using poor values can reveal k. In the
RSA case only A need check. However, while the RSA protocol needs a new key
N for each run, the DH protocol can use same parameters g and q many times.
Consequently the parameters g and q could be relatively long-term and chosen
by A and B jointly prior to the first run of the protocol, or else chosen, certified
and published by some party, protocol or algorithm trusted for this purpose by
both A and B.

Alternatively, A could choose the public parameters q, g and send them to
B in the first message. B must carry out a deterministic test to verify that the
parameters have the required properties. A deterministic test should be used,
since many non-deterministic tests assume random rather than malicious choice
of candidate primes. To enable B to carry out such a test efficiently A can send
a witness along with the parameters. However, we still need q to be many times
longer than s. If A chooses q, g each run then it may be more efficient to find a
prime q of the more general form q = rp + 1 where p is a large prime and r is
relatively small, since these primes can be sieved for more quickly, although it is
then more difficult to find a generator g. The previous case corresponds to r = 2,
whereas for this case r = 2n for a small n might be better. To avoid narrowing
attacks when q is of this more general form, take grxy mod q = z = c|s|na|nb to
force z into the large subgroup, and check z �= 1 and z �= 0. Another option is
to replace gy mod q by gy + k mod q in message (2).

A further possibility is where a fresh q of the prescribed length is chosen in
some way for each particular run of the protocol. For example, the value of q
may depend in a deterministic way upon both k and an unpredictable random
value r, so that q = q(k, r), where r is produced during or just prior to the
protocol run. This unpredictable value of r need not be kept secret, and may
published by a beacon, or agreed by A and B using some other protocol. In this
case the protocol requires no superencypherment by k at all. The first message
contains just gx mod q with the provision that trial values for x must be picked
and discarded until one is found for which the high order bit of gx mod q is zero,
and similarly for y. This ensures that the protocol run gives no information

198 B. Christianson, M. Roe, and D. Wheeler

about which q was used, and hence leaks no information about k. By forcing all
q(k, r) to have high-order bits 100 . . .0 for some fixed number of zeros, we can
make the probability of a high order one in gx mod q as small as desired.

4.4 Modified DH-S3P Protocol

We conclude this section by considering in more detail the case where the random
number r is produced during the S3P protocol run itself. The simplest method
is for A to send r in the first message along with gx mod q. However the protocol
which follows is designed to illustrate a more paranoid scenario. We assume that
A and B wish to use part of the value of s to settle a bet [15]. Even if they have
no doubt of one another’s honesty, they must be able to prove to a sceptical
third party that neither of them has the capability to influence the value of the
shared secret s in a predictable way. The random values such as x, y actually
generated during the course of the protocol run must be destroyed, and so cannot
subsequently form part of an audit trail.

A picks strong random numbers m, x and y′. B picks strong random num-
bers m′, x′ and y. In the protocol description which follows, q = q(0|m, k), q′ =
q(1|m′, k) and g, g′ are the corresponding generators. We assume that q =
r.p + 1, q′ = r′.p′ + 1 for large primes p, p′. The functions unzip0 and unzip1
denote the even and odd-numbered bits respectively.

The DHm-S3P protocol runs as follows:

A → B : m | gx mod q (1)

B → A : m′ | unzip0 ((g′)x′
mod q′ | gy mod q) (2)

A → B : (g′)y′
mod q′ (3)

B → A : unzip1 ((g′)x′
mod q′ | gy mod q) | nb (4)

A → B : na (5)

Here z = c|s|na|nb = (grxy mod q) ⊕ (g′r
′x′y′

mod q′) where ⊕ denotes bitwise
XOR. Effectively the DHm-S3P protocol runs two instances of the basic protocol
back to back, but reveals information only about the exclusive-or of the two
results. This means that an attacker must crack discrete log for both q and
q′ simultaneously, rather than searching log tables one at a time. The unzip
functions force A to commit y′ before learning grxy, but after B commits to y.

5 El Gamal Based Protocol

In this section we consider the implications of using EG in place of DH, when
the requirement is to transfer an existing secret rather than to agree a new and
unpredictable secret. The EG variation of the S3P protocol allows B to pick
the session key and nonces, as was the case in the RSA protocol. The EG-S3P
protocol runs as follows:

Secure Sessions from Weak Secrets 199

A → B : gx + k mod q (1)
B → A : gy mod q | z · g2xy mod q | nb (2)
A → B : na (3)

where z = h|s|na|nb as for the DH protocol, except that instead of the confounder
c, z contains a known fixed bit pattern h chosen so that it is not invariant under
shifts or subtraction from q. The constraints on h will be further discussed below.
The password k is encoded as in the DH protocol. As in the Diffie-Hellman case,
A and B should check that g2xy �∈ {0, 1}. A should also check that z contains
the expected value for h.

A must forget x and gx, while B must forget y. A must forget the calculated
value of g2xy and z if the protocol run fails at message (2). Apart from this, h
need not be kept secret. The EG protocol allows s as well as na, nb to be chosen
by B so as to contain redundancy or known text.

The El Gamal variant shares some features with the RSA case and some
with the DH case. As with DH, it is a three-message protocol and the middle
message must contain redundancy. In the RSA protocol the value of s is chosen
by B but s must contain no redundancy discernible to the attacker: otherwise
k is in danger. The DH protocol ensures that s appears random, but does not
allow it to be chosen or predicted by the participants. The EG protocol allows
B to choose s, and for s to contain redundancy in any form desired. Indeed
for the EG protocol even prior knowledge of s by the attacker does not assist
in an active attack against k. Also, in the EG protocol na and nb may contain
redundancy or known text. As with the other protocols, the nonces na and nb

need not be strong, although they should be significantly harder to predict than
k. However in the EG protocol h is not a confounder at all. Instead, it contains
redundancy to prevent a person in the middle modifying messages (2) and (3) in
such a way that the protocol appears to complete successfully, but with A and
B disagreeing on s. For example an attacker can multiply z by two in the second
message and shift nb and na one bit to the left and right respectively, with a
50% chance of escaping detection. The result is that s is shifted left one bit in
transmission. Division and complementation are also possible. Such attacks can
be prevented by placing a fixed bit pattern in h, for example a single 1-bit with
n 0-bits on either side will suffice, provided 2−n is small relative to the chance
of guessing k.

The EG protocol, like the DH protocol, can use the same parameters g and
q many times. As in the DH protocol, both A and B must check that q, g are
suitable values, since using poor values will reveal k. As with RSA and DH,
eventual cracking of the chosen public key will give the attacker k and, worse,
allow the attacker to obtain old values of s. For this reason the public key must
be many times longer than s, and so a large number of bits is available for
na, nb, h.

An alternative approach (which we do not pursue here) is to obtain na, nb

from g2xy as in the DH protocol, rather than from z.

200 B. Christianson, M. Roe, and D. Wheeler

6 System-Level Considerations

In this section, we discuss what should be done when an active attack is detected,
and introduce the notion of a robust protocol wrapper. We also discuss the
system context for the deployment of S3P protocols, and the hardware support
required.

6.1 Action Following a Detected Attack

An important feature of all the S3P protocols we consider is that it is not ac-
ceptable to ignore an active attack. If active attacks are ignored, the attacker
can make one active attack for each possible k, and will eventually succeed. If
suitable emergency action is taken in the event of an active attack being detected
(eg switching to a more expensive but physically secure channel, or to another,
previously agreed, password, after a certain number of failed runs), then the at-
tacker never gets enough information to improve his chances of guessing correctly
by more than some previously agreed security parameter.

In an extreme case we can confine the attacker to two guesses, one with each
of A and B. In a less extreme case, with (say) a million equally likely values
for k, we could choose to allow the attacker 32 guesses with each of A and B.
The attacker has less than a one in ten thousand chance of obtaining the true
value of k. Of course, this strategy requires some assumptions about the physical
locations of A and B, and their ability to remember the number of active attacks
detected over an appropriate time scale such as the expected life of the long term
password k. We also need to specify, in any particular system context, how these
numbers are stored and whether they are secret.

In particular, if the protocol is used by many pairs of participants, then an
attacker can make a small number of attacks against each of a very large number
of passwords, and will almost certainly succeed against one. The effects of this
form of penetration, and the countermeasures for containing it, depend upon
the interactions between the system-level protocols for which the strong shared
secrets are used.

An attractive alternative to using a deterministic counter and a threshold
is to invoke emergency action with a certain constant probability after each
detected attack. For example, if we set this probability at 2% then the alarm
will almost certainly be raised after 70 detected attacks, regardless of who detects
them. Since we assume that all parties who use the S3P protocols are able to
generate good random numbers, this stochastic technique imposes no new system
constraints.

6.2 Robust Protocol Wrappers

The primary system context which we consider for the S3P protocol is one of
paranoia rather than hostility. In other words, we assume that the world is full
of very clever and hardworking attackers, but at the same time we are confident
that things will go right most of the time. In effect, we assume that the S3P

Secure Sessions from Weak Secrets 201

protocol is nested inside another protocol, which we call the wrapper, and that
the outer wrapping protocol works nearly all the time unless there really is an
active attack by an extraordinarily malicious and ingenious entity. The inner S3P
protocol is intended both as a trip-wire to indicate whether the outer wrapper
has been deliberately breached, and as a last-ditch defence.

A primary purpose of the outer protocol wrapper is to ensure that the inner
S3P protocol is under no accidental misapprehension about whether an offered
bit pattern represents an attempt to engage in the S3P protocol, and if so in
which run, at what stage, and as whom. A similar two-layer scheme for distin-
guishing accident from malice was used by Lomas and Christianson [11] and a
related notion of robustness is discussed by Anderson and Needham [2]. The S3P
run must fail if any such presented bit pattern is incorrect, otherwise the enemy
gets a free guess.

We also assume that “eventually” a run of the protocol which does not pro-
ceed will be regarded as having failed by at least one of the participants. However
this timeout may be very long. One reason for this is that we do not wish to
have too many false alarms, but there is another reason. We wish also to allow a
system context in which a run of the S3P protocol is transported by a slow non-
cryptographic outer protocol such as fax, snail-mail, or sneakernet. This gives
rise to two further considerations: re-entrancy and interactive breaking.

If an S3P protocol run can take a long elapsed time, then the S3P protocol
must be re-entrant. The total number of active runs (plus the number of pre-
viously detected failures) must be less than the threshold value for the number
of active attacks which we are prepared to tolerate. This ensures that all runs
which terminate successfully are safe. In particular, runs can be pipelined or
used back-to-back between the same two parties on tamper-proof hardware such
as smart cards which are kept locked up when not in use.

The possibility of a long elapsed time also provides one motivation for our
consideration of the possibility that a value of s could be broken between steps
of the S3P run, for example if it were used to encrypt a known plain text as
part of the S3P protocol. In any protocol involving key agreement, it is possible
to specify the agreement of a much longer shared key than required, and to
forget all but the required number of bits. Many applications of other published
protocols would benefit from doing this.

Just as we do not assume s to be strong, neither do we require k to be weak:
although the S3P protocols were originally designed to work with passwords k
drawn from a space of order 220 possibilities, the protocols also have particularly
nice properties when a 40-bit shared key k is being traded up to a series of 120-bit
keys si.

6.3 Tamper-Proof Hardware Platform

One possible system context for S3P is where we wish to ensure that the right
person is using a particular box. The box may be designed to be used by several
different people (eg a workstation in a shared area) or by only one person (eg
a mobile telephone or a hand-held authenticator). The box may be stateful (eg

202 B. Christianson, M. Roe, and D. Wheeler

able to retain session keys) or stateless (all mutable information is deliberately
erased between uses). However a box may be stolen or tampered with. We wish
to ensure that the box can only be used by a person who knows the correct
password.

To deploy the S3P protocol we assume that the box is tamper-evident, and
unviable to forge. We assume that the user checks the tamper-evident seal before
entering the password at the start of each run. We assume that the box forgets
the password once the S3P protocol run ends or fails, and that while the run
is in progress the box is tamper-proof, in the weak sense that that the box
will irrevocably destroy (forget) secrets rather than allow them to be read. This
property might require that the box is used in a different environment from the
one in which it is stored between runs.

Under these assumptions, the S3P protocol suffices to ensure that the box
cannot be used by a person who does not know the password. In the case where
the box may be used by more than one person, each user may have a different
password. Note that tamper-proofing is not required except while the protocol is
running. Tamper-evidence suffices the rest of the time even in the stateful case.
State which persists between runs can therefore be used to support the outer
wrapping protocol, so long as the state of the box between runs can reveal no
information about the password. However the inner protocol must not rely upon
the outer protocol preserving state correctly. This point will be illustrated at the
end of the section by discussion of a reflection attack.

6.4 Blocking Reflection Attacks

We conclude this section with a brief consideration of how to block a reflection
attack. The inner S3P protocol is assumed to be stateless, and so a new run
cannot reliably determine which other protocol runs are still active when it
begins. Suppose that A attempts to run the protocol with B. The attacker takes
the first message from A and replays it to A as if it came from B initiating a
different run of the protocol. A’s reply to this is in turn reflected as a reply to
A’s initial message, and so on for the subsequent messages. If A is not careful,
she will end up sharing a fresh strong secret with herself, rather than with B, in
violation of our requirement that the other intended participant must actually
be involved in any apparently successful run.

Of course, this attack cannot actually succeed against the protocols as we
have described them here, since A always sends the odd-numbered messages
and B the even. But suppose we wish to allow either party to initiate the pro-
tocol, possibly re-entrantly, so that A may legitimately use k to speak the lines
attributed to B in the script.

We can block the reflection attack by associating the nonces firmly with
principals. In respect of each password, one party is (by mutual agreement)
the a−end and the other is the b−end. Suppose that Carol is the a−end
and that Ted is the b−end. Then whenever Carol has to place a nonce in a
message she always uses na, regardless of whether she is playing the part of A
or of B.

Secure Sessions from Weak Secrets 203

7 Discussion

The protocols given in this paper are provocatively weak. For example, we use
bit selection in place of a hash function, modulo addition to perform superen-
cypherment, and a base of 2 for certain exponentiations.

This weakness is quite deliberate. From a practical point of view, our pro-
tocols could doubtless be strengthened by the judicious inclusion of “one-way”
hash functions, or the use of more complex forms of superencypherment and con-
volution. We have instead put forward very concrete versions of the protocols,
with primitives which rely upon specific number-theoretic relations between, for
example, modular exponentiation, and addition or “unzip”. Following Ockham,
we wish to understand these simple protocols before we propose anything more
complicated.

We have not provided correctness proofs for these protocols here. This is an
area in which we anticipate future progress. The major present difficulty lies
in determining precisely how the threat model interacts the desired properties
of the protocol with those of the underlying cryptoalgorithm. For example, one
standard reductio approach might be to prove that, if the RSA-protocol reveals
more information than it should about k, then it also gives an attacker the ability
to decrypt unpredictable RSA cyphertexts. However attacks in the spirit of Ble-
ichenbacher show that such an outcome need not constitute a break of the RSA
cryptoalgorithm, and hence ought not simply to be presumed counterfactual.
Conversely, a protocol continues to satisfy the assertion of a correctly proved
predicate, even after the protocol has been broken by another means.

On the positive side, cryptographic innovations which we claim for this paper
include the successful use of RSA as a vehicle for encrypted key exchange, section
4.4. As a minor point, we also draw attention to the lack of superencypherment
by k in the second message of the basic version of our DH protocol. However,
we regard as primary our original contribution to consideration of the system
context given in section 6, including the introduction of robust protocol wrappers
and their application to the case of “stateless” platforms.

The protocols in this paper owe an obvious debt to the original discus-
sion by Bellovin and Merritt [3], which opened up a number of fertile research
directions. We make no attempt to give a systematic account of all this re-
lated work here. (An excellent roadmap is provided by Jablon’s website at
http://www.IntegritySciences.com.)

Some of the material in this paper appeared in preliminary form in University
of Cambridge Computer Laboratory Technical Report 458 (1998). We would
like to thank Daniel Bleichenbacher, David Jablon, David Wagner and everyone
else who provided attacks and related comments on these early versions of the
protocols.

8 Conclusions

Although the primary purpose of the S3P protocol is to share strong secrets, the
design of the protocol does not assume that s is strong. The S3P protocol can also

204 B. Christianson, M. Roe, and D. Wheeler

be used simply to allow a remote authentication service to authenticate a user to
a “stateless” host which is local to the user. In this case s may be an authenticator
for the audit trail. In our design we make no restrictions upon what the shared
secret s is used for once the S3P protocol run has ended: s may be revealed,
used as a one-time pad, a cryptographic key, as a salt or an initial value. At a
slightly more general level, we remark that it appears very difficult abstractly to
model security protocols in a formal way that takes adequate account both of the
cryptographic properties assumed, and of the security service provided. Protocols
may legitimately be used in ways not explicitly considered by their designers,
and the safety of the resulting applications can depend in an unknown way upon
the safety of obscure number-theoretic hostages which were abstracted away in
the construction of the threat model.

Our S3P protocols make no use of hash functions or symmetric cryptography.
However our protocols rely completely for their properties upon the security of
the public key systems used. Consequently it is necessary for the moduli to be
uncrackable for at least the lifetime of all secrets (weak or strong) used or agreed
with that modulus. This provides a sufficient number of bits to provide a strong
secret and a strong confounder, together with two nonces. In contrast with the
confounder, the nonces can be searchable, so long as the most likely nonce is
less likely than some system threshold parameter. Again, we remark at a general
level the need to balance the bit-budget carefully when tuning the performance
of security protocols which use public key cryptography.

Our S3P protocols also rely upon the ability of those using them to gener-
ate irreproducible random bit patterns, and to delete information irrecoverably.
These are both interesting technical challenges. In particular the task of finding
a suitable source of randomization, upon which (in the context of a particular
system) it would be impractical to eavesdrop is one which would repay further
study. As a final remark of a general nature, we stress the importance of explicit
consideration, when specifying the threat model, not only of the hardware plat-
form supporting the security protocol, but also of the system context, and the
security policy under which the hardware will be configured.

28 January 1998; revised July 1998, January & November 1999, June 2000,
October 2004. Contact: b.christianson@herts.ac.uk

References

1. Anderson, R., Lomas, M., 1994, Fortifying Key negotiation Schemes with Poorly
Chosen Passwords, Electronics Letters, 30(13) 1040–1041.

2. Anderson, R., Needham, R., 1998, Programming Satan’s Computer, Springer
LNCS 1000.

3. Bellovin, S.M., Merritt, M., 1992, Encrypted Key Exchange: Password-Based Pro-
tocols Secure Against Dictionary Attacks, Proc IEEE Computer Society Sympo-
sium on Research in Security and Privacy, Oakland 92, 72–84.

4. Diffie, W., Hellman, M., 1976, New Directions in Cryptography, IEEE Transac-
tions on Information Theory, 22(6) 644–654.

Secure Sessions from Weak Secrets 205

5. ElGamal, T., 1985, A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms, IEEE Transactions on Information Theory, 31(4) 469–472.

6. Gong, L., 1995, Optimal Authentication Protocols Resistant to Password Guess-
ing Attacks, Proc 8th IEEE Computer Security Foundations Workshop, 24–29.

7. Gong, L., Lomas, M., Needham, R., Salzer, J., 1993, Protecting Poorly Chosen
Secrets from Guessing Attacks, IEEE Journal on Selected Areas in Communica-
tions, 11(5) 648–656.

8. Hardy, G.H., Wright, E.M., 1978, An Introduction to the Theory of Numbers,
5th edition, Oxford University Press.

9. Jablon, D.P., 1996, Strong Password-Only Authenticated Key Exchange, Com-
puter Communications Review, 26(5) 5–26.

10. Kelsey, J., Schneier, B., Wagner, D., 1998, Protocol Interactions and the Chosen
Protocol Attack, Security Protocols 5, Springer LNCS 1361, 91–104.

11. Lomas, M., Christianson, B., 1995, To Whom am I Speaking? Remote Booting
in a Hostile World, IEEE Computer, 28(1) 50–54.

12. Lucks, S., 1998, Open Key Exchange: How to Defeat Dictionary Attacks Without
Encrypting Public Keys, Security Protocols 5, Springer LNCS 1361, 79–90.

13. Patel, S., 1997, Number Theoretic Attacks on Secure Password Schemes, Proc
IEEE Computer Society Symposium on Research in Security and Privacy, Oak-
land 97, 236–247.

14. Rivest, R., Shamir, A., Adleman, L., 1978, A Method for Obtaining Digital Sig-
natures and Public Key Cryptosystems, Communications of the ACM, 21(2) 120–
126. Operating Systems Review, 29(3) 22–30.

15. Wheeler, D., 1997, Transactions using Bets, Security Protocols 4, Springer LNCS
1189, 89–92.

	Introduction
	S3P Protocol Properties and Assumptions
	Properties
	Assumptions
	System Context

	RSA Based Protocol
	Basic RSA-S3P Protocol Description
	Design Discussion
	Number-Theoretic Attacks

	Diffie-Hellman Based Protocol
	Basic DH-S3P Protocol Description
	Design Discussion
	Choosing the Modulus
	Modified DH-S3P Protocol

	El Gamal Based Protocol
	System-Level Considerations
	Action Following a Detected Attack
	Robust Protocol Wrappers
	Tamper-Proof Hardware Platform
	Blocking Reflection Attacks

	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

