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Preface

This volume constitutes the proceedings of the 18th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2005), which was held
during 22–25 August 2005 in Oxford, UK. TPHOLs covers all aspects of theorem
proving in higher order logics as well as related topics in theorem proving and
verification.

There were 49 papers submitted to TPHOLs 2005 in the full research cat-
egory, each of which was refereed by at least three reviewers selected by the
program committee. Of these submissions, 20 research papers and 4 proof pearls
were accepted for presentation at the conference and publication in this volume.
In keeping with longstanding tradition, TPHOLs 2005 also offered a venue for
the presentation of work in progress, where researchers invited discussion by
means of a brief introductory talk and then discussed their work at a poster
session. A supplementary proceedings volume was published as a 2005 technical
report of the Oxford University Computing Laboratory.

The organizers are grateful to Wolfgang Paul and Andrew Pitts for agreeing
to give invited talks at TPHOLs 2005.

The TPHOLs conference traditionally changes continents each year to max-
imize the chances that researchers from around the world can attend. Starting
in 1993, the proceedings of TPHOLs and its predecessor workshops have been
published in the Springer Lecture Notes in Computer Science series:

1993 (Canada) Vol. 780 2000 (USA) Vol. 1869
1994 (Malta) Vol. 859 2001 (UK) Vol. 2152
1995 (USA) Vol. 971 2002 (USA) Vol. 2410
1996 (Finland) Vol. 1125 2003 (Italy) Vol. 2758
1997 (USA) Vol. 1275 2004 (USA) Vol. 3223
1998 (Australia) Vol. 1479 2005 (UK) Vol. 3603
1999 (France) Vol. 1690

We would like to thank our local organizers Ed Smith and Ashish Darbari
for their help in many aspects of planning and running TPHOLs.

Finally, we thank our sponsors: Intel Corporation and the EPSRC UK Net-
work in Computer Algebra.

June 2005 Joe Hurd and Tom Melham
TPHOLs 2005 Chairs
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On the Correctness of Operating System Kernels

Mauro Gargano�, Mark Hillebrand�, Dirk Leinenbach�,��, and Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbrücken, Germany
{gargano, mah, dirkl, wjp}@wjpserver.cs.uni-sb.de

Abstract. The Verisoft project aims at the pervasive formal verification of entire
computer systems. In particular, the seamless verification of the academic system
is attempted. This system consists of hardware (processor and devices) on top of
which runs a microkernel, an operating system, and applications. In this paper we
define the computation model CVM (communicating virtual machines) in which
concurrent user processes interact with a generic microkernel written in C. We
outline the correctness proof for concrete kernels, which implement this model.
This result represents a crucial step towards the verification of a kernel, e.g. that
in the academic system. We report on the current status of the formal verification.

1 Introduction

There is no need to argue about the importance of computer security [1] and operating
system security is in the center of computer security. Making operating systems com-
fortable and at the same time utmost reliable is extremely hard. However, some small
and highly reliable operating system kernels, e.g. [2,3,4], have been developed. A reli-
able kernel opens the way to uncouple the safety-critical applications running under an
operating system from the non-critical ones. One runs two operating systems under a
trusted kernel, a small trusted one for the safety-critical applications and a conventional
one for all others. This minimizes the total size of the trusted components. For example,
[5] describes a small operating system and Linux running under the L4 microkernel [6].

For critical applications one wishes of course to estimate, how much trust one
should put into a system. For this purpose the common criteria for information tech-
nology security evaluation [7] define a hierarchy of evaluation assurance levels EAL-1
to EAL-7. These are disciplines for reviewing, testing / verifying, and documenting sys-
tems during and after development. Even the highest assurance level, EAL-7, does not
require formal verification of the system implementation. Clearly, the common criteria,
in the current revision, stay behind the state of the art available at that time: already
nine years before Bevier [8] reported on the full formal verification of KIT, a small
multitasking operating system kernel written in machine language. KIT implements a
fixed number of processes, each occupying a fixed portion of the processor’s memory.
It provides the following verified services: process scheduling, error handling, message
passing, and an interface to asynchronous devices. In terms of complexity, KIT is near
to small real-time operating systems like e.g. OSEKTime [9].

� Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft project under grant 01 IS C38.

�� Work supported by DFG Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”.

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

TPHOLs
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In this paper we outline an approach to the pervasive verification of a considerably
more powerful kernel, supporting virtual memory, memory management, system calls,
user defined interrupts, etc. We outline substantial parts of its correctness proof. We
report on the current status of the formal verification. The results presented in this paper
were obtained in and are of crucial importance to the Verisoft project [10], funded by
the German Federal Government. Verisoft has the mission to provide the technology for
the formal pervasive verification of entire computer systems of industrial complexity.

2 Overview

To handle the design complexity, computer systems are organized in layers some of
which are modeled by well established formal models. Examples are (i) the hardware
layer that is modeled by switching circuits and memory components, (ii) the machine
language layer that is modeled by random access machines [11] with an appropriate
instruction set, and (iii) the programming language layer, e.g. for C, is, for operational
semantics, modeled by abstract interpreters, also called abstract C machines. Correct-
ness theorems for components of computer systems are often simulation theorems be-
tween adjacent layers. Processor correctness concerns a simulation between Layers (i)
and (ii). Compiler correctness concerns a simulation between Layers (ii) and (iii).

Aiming at formulating and proving a correctness theorem for an operating system
kernel we take a similar approach. We introduce an abstract parallel model of compu-
tation called communicating virtual machines (CVM) that formalizes concurrent user
processes interacting with an operating system kernel. In this model user processes are
virtual machines, i.e. processors with virtual memory. The so-called abstract kernel is
represented as an abstract C machine. Beyond the usual C functions the abstract kernel
can call a few special functions, called the CVM primitives, that alter the configura-
tion of user processes. For instance, there are CVM primitives to increase / decrease the
memory size of a user process or to copy data between user processes (and I/O devices).

By linking abstract kernels with a program implementing the CVM functionality
we obtain the concrete kernel. In particular, the concrete kernel contains the implemen-
tation of the CVM primitives and the implementation of handlers for page faults (not
visible in the abstract model). A crucial observation is that the concrete kernel necessar-
ily contains assembler code because neither processor registers nor user processes are
visible in the variables of a C program. Thus the correctness theorem for the concrete
kernel will establish a simulation between CVM and Layer (ii) instead of Layer (iii).
Since reasoning on assembler level is tedious we minimize its use in the concrete kernel.

The remainder of this paper is structured as follows. In Sect. 3 we define virtual ma-
chines and summarize results from [12] on the simulation of virtual machines by physi-
cal machines, processors with physical and swap memory. In Sect. 4 we define abstract
C0 machines and summarize the compiler correctness proof from [13]. In Sect. 5 we
define the CVM model using virtual machines to model computation of the user and
abstract C0 machines to model computation of an abstract kernel. Section 6 sketches
the construction of the concrete kernel containing the CVM implementation. We state
the correctness proof for the concrete kernel and outline its proof. In Sect. 7 we report
on the status of the formal verification. In Sect. 8 we conclude and sketch further work.
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3 Virtual Memory Simulation

Let us introduce some notation. We denote bitvectors by a ∈ {0, 1}n. Bit j of bitvector
a is denoted by a[j], the sub bitvector consisting of bits j to k (with k < j) is denoted
by a[j :k]. The concatenation of two bitvectors a ∈ {0, 1}n and b ∈ {0, 1}m is denoted
by a ◦ b ∈ {0, 1}n+m. Occasionally we will abuse notation and identify bitvectors a
with their value 〈a〉 =

∑
i a[i] · 2i and vice versa. Arithmetic is modulo 2n. We model

memories m as mappings from addresses a ∈ {0, 1}32 to byte values m(a) ∈ {0, 1}8.
For natural numbers d we denote by md(a) the content of d consecutive memory cells
starting at address a, so md(a) = m(a+ d− 1) ◦ · · · ◦m(a).

In the following sub sections we summarize results from [12].

3.1 Virtual Machines

Virtual machines consist of a processor operating on a (uniform) virtual memory. Con-
figurations cV of virtual machines have the following components:

– cV.R ∈ {0, 1}32 for a variety of processor registers R. We consider here pipelined
DLX machines [14] with a delayed branch mechanism that is implemented by two
program counters, called delayed program counter cV.DPC ∈ {0, 1}32 and pro-
gram counter cV.PC ∈ {0, 1}32. For details see [15].

– The size cV.V of the virtual memory measured in pages of 4K bytes. It defines the
set of accessible virtual addresses VA(cV) = {a ∈ {0, 1}32 | a < cV.V · 4K}. We
split virtual addresses va = va[31 :0] into page index va.px = va[31 :12] and byte
index va.bx = va[11 :0].

– A byte addressable virtual memory cV.vm :VA(cV) → {0, 1}8.
– A write protection function cV.p : VA(cV) → {0, 1} that only depends on the page

index of virtual addresses. A virtual address va is write protected if cV.p(va) = 1.

Computation of the virtual machine is modeled by the function δV that computes for
a given configuration cV its successor configuration c′V. The virtual machine accesses
the memory in the following situations: it reads the memory to fetch instructions and to
execute load instructions, it writes the memory to execute store instructions.

However, any access to a virtual address va /∈ VA(cV) or a write access to va with
cV.p(va) = 1 is illegal and leads to an exception. For the CVM model (cf. Sect. 5) we
do not consider write protected pages and assume cV.p(va) = 0 for all va ∈ VA(cV).

Note that the effects of exceptions are not defined in a virtual machine model alone
but in an extended context of a virtual machine running under a certain operating system
(kernel). Also, the size of the virtual memory cV.V cannot be changed by the virtual
machine itself. This is described in more detail in Sect. 5.

3.2 Physical Machines and Address Translation

Physical machines consist of a processor operating on physical memory and swap mem-
ory. Configurations cP of physical machines have components cP.R for processor regis-
ters R, cP.pm for the physical memory, and cP.sm for the swap memory. The physical
machine has several special purpose registers not present in virtual machines, e.g. the



4 M. Gargano et al.

ppx[19 : 0] pv · · ·
31 12 11 10 9 0

Fig. 1. Page Table Entry

mode register mode , the page table origin pto, and the page table length ptl . Computa-
tion of the physical machine is modeled by the next state function δP.

In system mode, i.e. if cP.mode = 0, the physical machine operates almost like a
virtual machine with extra registers. In user mode, i.e. cP.mode = 1, memory accesses
are subject to address translation: they either cause a page fault or are redirected to
the translated physical memory address pma(cP, va). The result of address translation
depends on the contents of the page table, a region of the physical memory starting at
address cP.pto · 4K with (cP.ptl + 1) entries of four bytes width.

The page table entry address for virtual address va is defined as ptea(cP, va) =
cP.pto · 4K + 4 · va.px and the page table entry of va is defined as pte(cP, va) =
cP.pm4(ptea(cP, va)). As shown in Fig. 1, a page table entry consists of three com-
ponents, the physical page index ppx (cP, va) = pte(cP, va)[31 : 12], the valid bit
v(cP, va) = pte(cP, va)[11], and the write protection bit p(cP, va) = pte(cP, va)[10].

On user mode memory access to address va , a page fault is signaling if the page
index exceeds the page table length, va.px > cP.ptl , if the page table entry is not valid,
v(cP, va) = 0, or if for a write access the write protection is active, p(cP, va) = 1. On
page fault the page fault handler, an interrupt service, is invoked.

Without a page fault, the access is performed on the (translated) physical memory
address pma(cP, va) defined as the concatenation of the physical page index and the
byte index, pma(cP, va) = ppx (cP, va) ◦ va.bx .

For example, the instruction I(cP) fetched in configuration cP is defined as follows.
If cP.mode = 0 we define I(cP) = cP.pm4(cP.DPC ), otherwise, provided that there
is no page fault, we define I(cP) = cP.pm4(pma(cP, cP.DPC )).

3.3 Virtual Memory Simulation

A physical machine with appropriate page fault handlers can simulate virtual machines.
For a simple page fault handler, virtual memory is stored on the swap memory of the
physical machine and the physical memory acts as a write back cache. In addition to the
architecturally defined physical memory address pma(cP, va), the page fault handler
maintains a swap memory address function sma(cP, va).

We use a simulation relation B(cV, cP) to indicate that a (user mode) physical ma-
chine configuration cP encodes virtual machine configuration cV. Essentially,B(cV,cP)
is the conjunction of the following three conditions:

– For every page of virtual memory there is a page table entry in the physical ma-
chine, cV.V = cP.ptl + 1.

– The write protection function of the virtual machine is encoded in the page ta-
ble, cV.p(va) = p(cP, va). As noted earlier in this paper we assume p(cP, va) =
cV.p(va) = 0.

– The virtual memory is stored in physical and swap memory: if v(cP, va) then
cV.vm(va) = cP.pm(pma(cP, va)), else cV.vm(va) = cP.sm(sma(cP, va)).
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The simulation theorem for a single virtual machine has the following form:

Theorem 1. For all computations (c0V, c
1
V, . . . ) of the virtual machine there is a compu-

tation (c0P, c
1
P, . . . ) of the physical machine and there are step numbers (s(0), s(1), . . . )

such that for all i and S = s(i) we have B(ciV, c
S
P).

Thus step i of the virtual machine is simulated after step s(i) of the physical ma-
chine. Even for a simple handlers, the proof is not completely obvious since a single
user mode instruction can cause two page faults. To avoid deadlock and guarantee for-
ward progress, the page fault handler must not swap out the page that was swapped in
during the last execution of the page fault handler.

3.4 Synchronization Conditions

If the hardware implementation of a physical machine is pipelined, then an instruction
I(ciP) that is in the memory stage may modify / affect a later instruction I(cjP) for j > i
after it has been fetched. It may (i) overwrite the instruction itself, (ii) overwrite its page
table entry, or (iii) change the mode. In such situations instruction fetch (in particular
translated fetch implemented by a memory management unit) would not work correctly.
Of course it is possible to detect such data dependencies in hardware and to roll back
the computation if necessary. Alternatively, the software to be run on the processor
must adhere to certain software synchronization conventions. Let iaddr (cjP) denote the
address of instruction I(cjP), possibly translated. If I(ciP) writes to address iaddr (cjP),
then an intermediate instruction I(ckP) for i < k < j must drain the pipe. The same
must hold if cjP is in user mode and I(ciP) writes to ptea(cjP, c

j
P.DPC ). Finally, mode

can only be changed to user mode by an rfe (return from exception) instruction (and
the hardware guarantees that rfe instructions drain the pipe).

Conditions of this nature are hypotheses of the hardware correctness proof in [12].
It will be easy to show that they hold for the kernels constructed in Sect. 6.

4 Compilation

We sketch the formal semantics of C0, a subset of C, and state the correctness theo-
rem of a C0 compiler, summarizing result from [13]. In Section 4.3 we extend the C0
semantics to inline assembler code.

4.1 C0 Semantics

Eventually we want to consider several programs running under an operating system.
The computations of these programs then are interleaved. Therefore our compiler cor-
rectness statement is based on a small steps / structured operational semantics [16,17].

In C0 types are elementary (bool , int , . . . ), pointer types, or composite (array or
struct). A type is called simple if it is an elementary type or a pointer type. We define
the (abstract) size of types for simple types t by size(t) = 1, for arrays by size(t[n]) =
n ·size(t), and for structures by size(struct{n1 :t1, . . . , ns :ts}) =

∑
i size(ti). Values

of variables with simple type are called simple values. Variables with composite types
have composite values that are represented flat as a sequence of simple values.
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Configuration. An C0 machine configuration cC0 has the following components:

1. The program rest cC0.pr. This is a sequence of C0 statements which still needs to
be executed. In [16] the program rest is called code component of the configuration.

2. The type table cC0.tt collects information about types used in the program.
3. The function table cC0.ft contains information about the functions of a program. It

maps function names f to pairs cC0.ft(f) = (cC0.ft(f).ty , cC0.ft(f).body) where
cC0.ft(f).ty specifies the types of the arguments, the local variables, and the result
of the function, whereas cC0.ft(f).body specifies the function body.

4. The recursion depth cC0.rd .
5. The local memory stack cC0.lms . It maps numbers i ≤ cC0.rd to memory frames

(defined below). The global memory is cC0.lms(0). We denote the top local mem-
ory frame of a configuration cC0 by top(cC0) = cC0.lms(cC0.rd).

6. A heap memory cC0.hm . This is also a memory frame.

Memory Frames. We use a relatively explicit, low level memory model in the style
of [18]. Memory frames m have the following components: (i) the number m.n of
variables in m (for local memory frames this also includes the parameters of the cor-
responding function definition), (ii) a function m.name mapping variable numbers
i ∈ [0 : m.n − 1] to their names (not used for variables on the heap), (iii) a func-
tion m.ty mapping variable numbers to their type. This permits to define the size of a
memory frame size(m) as the number of simple values stored in it, namely: size(m) =∑m.n−1

i=0 size(m.ty(i)). (iv) a content functionm.ct mapping indices 0 ≤ i < size(m)
to simple values.

A variable of configuration cC0 is a pair v = (m, i) where m is a memory frame
of cC0 and i < m.n is the number of the variable in the frame. The type of a variable
(m, i) is defined by ty((m, i)) = m.ty(i).

Sub variables S = (m, i)s are formed from variables (m, i) by appending a selector
s = (s1, . . . , st), where each component of a selector has the form si = [j] for selecting
array element number j or the form si = .n for selecting the struct component with
name n. If the selector s is consistent with the type of (m, i), then S = (m, i)s is a sub
variable of (m, i). Selectors are allowed to be empty. In C0, pointers p may point to sub
variables (m, i)s in the global memory or on the heap. The value of such pointers simply
has the form (m, i)s. Componentm.ct stores the current values va(cC0, (m, i)s) of the
simple sub variables (m, i)s in the canonical order. Values of composite variables x are
represented in m.ct in the obvious way by sequences of simple values starting from the
abstract base address ba(x) of variable x.

With the help of visibility rules and bindings we easily extend the definition of va ,
ty , and ba from variables and sub variables to expressions e.

Computation. For space restrictions we cannot give the definitions of the (small-step)
transition function δC0 mapping C0 configurations cC0 to their successor configura-
tion c′C0 = δC0(cC0). As an example we give a partial definition of the function call
semantics.

Assume the program rest in configuration cC0 begins with a call of function f with
parameters e1, . . . , en assigning the function’s result to variable v, formally cC0.pr =
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fcall(f, v, e1, . . . , en); r. In the new program rest, the call statement is replaced by the
body of function f taken from the function table, c′C0.pr = cC0.ft(f).body; r and the
recursion depth is incremented c′C0.rd = cC0.rd+1. Furthermore, the values of all para-
meters ei are stored in the new top local memory frame by updating its content function
at the corresponding positions: top(c′C0).ctsize(ty(cC0,ei))(ba(cC0, ei)) = va(cC0, ei).

4.2 Compiler Correctness

The compiler correctness statement (with respect to physical machines) depends on a
simulation relation consis(aba)(cC0, cP) between configurations cC0 of C0 machines
and configurations cP of physical machines which run the compiled program. The rela-
tion is parameterized by a function aba which maps sub variables S of the C0 machine
to their allocated base addresses aba(cC0, S) in the physical machine. The allocation
function may change during a computation (i) if the recursion depth and thus the set of
local variables change due to calls and returns or (ii) if reachable variables are moved
on the heap during garbage collection (not yet implemented).

Simulation Relation. The simulation relation consists essentially of four conditions:

1. Value consistency v -consis(aba)(cC0, cP): this condition states, that reachable ele-
mentary sub variables x have the same value in the C0 machine and in the physical
machine. Let asize(x) be the number of bytes needed to store a value of type ty(x).
Then we require cP.pmasize(x)(aba(cC0, x)) = va(cC0, x).

2. Pointer consistency p-consis(aba)(cC0, cP): This predicate requires for reachable
pointer variables p which point to a sub variable y that the value stored at the allo-
cated address of variable p in the physical machine is the allocated base address of
y, i.e. cP.pm4(aba(cC0, p)) = aba(cC0, y). This induces a sub graph isomorphism
between the reachable portions of the heaps of the C0 and the physical machine.

3. Control consistency c-consis(cC0, cP): This condition states that the delayed PC of
the physical machine (used to fetch instructions) points to the start of the translated
code of the program rest cC0.pr of the C0 machine. We denote by caddr (s) the
address of the first assembler instruction which is generated for statement s. We
require cP.DPC = caddr (cC0.pr) and cP.PC = cP.DPC + 4.

4. Code consistency code-consis(cC0, cP): This condition requires that the compiled
code of the C0 program is stored in the physical machine cP beginning at the code
start address cstart . Thus it requires that the compiled code is not changed during
the computation of the physical machine and thereby forbids self modifying code.

Theorem 2. For every C0 machine computation (c0C0, c
1
C0, . . . ) there are a computa-

tion (c0P, c
1
P, . . . ) of the physical machine, step numbers (s(0), s(1), . . . ), and a se-

quence of allocation functions (aba0, aba1, . . . ) such that for all steps i and S = s(i)
we have consis(abai)(ciC0, c

S
P).

4.3 Inline Assembler Code Semantics

For sequences u of assembler instructions (we do not distinguish here between assem-
bler and machine language) we extend C0 by statements of the form asm(u) and call
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Fig. 2. Execution of Inline Assembler Code

the resulting language C0A. In C0A the use of inline assembler code is restricted:
(i) only a certain subset of DLX instructions is allowed (e.g. no load or store of bytes
or half words, only relative jumps), (ii) the target address of store word instructions
must be outside the code and data regions of the C0A program or it must be equal
to the allocated base address of a sub variable of the C0A program with type int or
unsigned int (this implies that inline assembler code cannot change the stack layout
of the C0A program), (iii) the last assembler instruction in u must not be a jump or
branch instruction, (iv) the execution of u must terminate, (v) the target of jump and
branch instructions must not be outside the code of u, and (vi) the execution of u must
not generate misalignment or illegal instruction interrupts.

As pointed out in Sect. 2, operating system kernels necessarily contain assembler
code; thus a formal semantics of programs in C0A has to be defined. Inline assembler
portions of C0A programs can modify parts of the machine which are not visible to C0,
e.g. the processor registers or memory which is not reachable via C0 variables. Thus
to define the meaning of inline assembler code the transition function δC0A of C0A

machines needs, in addition to aC0 configuration cC0, a physical machine configuration
as a second input parameter. Also the result of δC0A consists of a C0 configuration and
a physical machine configuration. To express the meaning of inline assembler code
which changes memory cells holding C0 variables we parameterize the C0A transition
function over an allocated base address function aba like we did for the consis relation.

As long as no inline assembler code is executed, we set δC0A(aba)(ciC0, c
i
P) =

(δC0(ciC0), x) ignoring the second input parameter and setting the second output para-
meter to an arbitrary, fixed physical machine configuration x.

However, when executing inline assembler code, ciC0.pr = asm(u); r, the defin-
ition of δC0A(aba)(ciC0, c

i
P) = (ci+1

C0 , c
i+1
P ) is more difficult. We take cP as the start

configuration for the execution of assembler code sequence u. The execution of u
leads to a physical machine computation (ĉ0P, . . . , ĉ

t
P) with ĉtP.DPC = caddr (r) and

ĉtP.PC = ĉtP.DPC + 4 by the restrictions on inline assembler. We construct a corre-
sponding sequence (ĉ0C0, . . . , ĉ

t
C0) of intermediate C0 machine configurations reflect-

ing successively the possible updates of the C0 variables by the assembler instructions
(see Fig. 2). We set ĉ0C0 = ciC0 except for the program rest: ĉ0C0.pr = r. If the instruc-
tion I(ĉjP) executed in configuration ĉjP for j < t writes the value v to the word at an
address ea(ĉjP) equaling the allocated base address of some C0 variable x, we update
the corresponding variable in the ĉj+1

C0 by va(ĉj+1
C0 , x) = v. Finally the result of the

C0A transition function is defined by ci+1
C0 = ĉtC0 and ci+1

P = ĉtP.
Observe that for the definition from above we do not need to know ciP exactly.

Nevertheless the definition keeps configurations consistent:
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Lemma 1. If the program rest of ciC0 starts with an inline assembler statement we have
consis(aba)(ciC0, c

i
P) =⇒ consis(aba)(δC0A(aba)(ciC0, c

i
P)).

5 CVM Semantics

We introduce communicating virtual machines (CVM), a model of computation for
a generic abstract operating system kernel interacting with a fixed number of user
processes. CVM uses the C0 language semantics to model computation of the (ab-
stract) kernel and virtual machines to model computation of the user processes. It is a
pseudo-parallel model in the sense that in every step of computation either the kernel
or one user process can make progress.

From a kernel implementor’s point of view, CVM encapsulates the low-level func-
tionality of a microkernel and provides access to it as a library of functions, the so-called
CVM primitives. Accordingly, the abstract kernel may be ‘linked’ against the imple-
mentation of these primitives to produce the concrete kernel, a C0A program, that may
be run on the target machine. This construction and its correctness will be treated in
Sect. 6. In the following sections we define CVM configurations, CVM computations,
and show how abstract kernels implement system calls as regular C0 function calls.

5.1 Configurations

A CVM configuration cCVM has the following components:

– User process virtual machine configurations cCVM.up(u) for user process indices
u ∈ {1, . . . , P} (and P fixed, e.g. P = 128).

– A C0 machine configuration cCVM.ca of the so-called abstract kernel. As we will
see below, the kernel configuration, in particular its initial configuration, must have
a certain form: (i) it must have a global variable named i of type int , (ii) it declares
certain functions f ∈ CVMP , the CVM primitives, with empty body, arguments,
and effects as described below, and (iii) it must have a function kdispatch that takes
two integer arguments and returns an integer; when starting with a call to kdispatch
as initial program rest the kernel must eventually call start , a CVM primitive that
passes control to one of the user processes.

– The component cCVM.cp denotes the current process: cCVM.cp = 0 means that the
kernel is running; cCVM.cp = u > 0 means that user process u is running.

5.2 Computation

A computation of the CVM machine is parameterized over a list of external interrupt
events eevs , one event mask eeve with e signals for each user process step (the kernel
runs uninterruptibly).

In this section we define the next state function δCVM of the CVM model. It maps
the external events’ list eevs and a CVM configuration cCVM to its successor con-
figurations c′CVM and the new external events’ list eevs ′, so δCVM(eevs , cCVM) =
(c′CVM, eevs

′). In the definitions below we only list components that are changed.
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User Computation. If the current process cCVM.cp in configuration cCVM is non-zero
then user process u = cCVM.cp is meant to make a step. Let eevs = eev ; eevs ′, i.e.
eev ∈ {0, 1}e denotes the first element of the external events’ list and eevs ′ its remain-
der, the next external events’ list.

Let the predicate JISR(cV, eev ) denote that an interrupt occurred in configura-
tion cV, either internally or with respect to the events eev . If JISR(cV, eev), then the
(masked) exception cause is encoded in the bitvector mca(cV, eev ) and an additional
‘parameter’ of the exception (for internal exceptions only) is denoted by edata(cV). For
details on the definition of JISR, mca , and edata see e.g. [12,15].

For ¬JISR(cCVM.up(u), eev) a CVM step simply consists of a step of the vir-
tual machine cCVM.up(u), so c′CVM.up(u) = δV(cCVM.up(u)). Otherwise, execution
of the abstract kernel starts. The kernel’s entry point is the function kdispatch that
is called with the exception masked cause and the exception data. We set the cur-
rent process component and the kernel’s recursion depth to zero, c′CVM.cp = 0 and
c′CVM.ca.rd = 0, and the kernel’s program rest to the function call c′CVM.ca.pr =
fcall(kdispatch , i,mca(cV, eev), edata(cV)).

Kernel Computation. Initially (after power-up) and after an interrupt, as seen above,
the kernel starts execution with a call of the function kdispatch . User process execution
continues when the kernel calls the start CVM primitive.

If we have cCVM.cp = 0 and the kernel’s program rest does not start with a call to a
CVM primitive, a regular C0 semantics step is performed, c′CVM.ca = δC0(cCVM.ca).

Otherwise, we have cCVM.cp = 0 and cCVM.cp.pr = fcall (f, v, e1, . . . , en); r for
a CVM primitive f , an integer variable v and integer expressions e1 to en. The CVM
primitive f = start to start user processes is defined below. For f 	= start , the CVM
primitive f is specified by a function fS that takes n integer arguments, a P -tuple of
virtual machines and returns an integer and an updatedP -tuple of virtual machines. The
new CVM configuration after calling such a primitive is defined as follows. First, we
compute the application of fS to the values Ei = va(cCVM.ca, ei) of the expressions
ei and set (vS, c

′
CVM.up) = fS(E1, . . . , En, cCVM.up). Then, the program rest of the

kernel is set to c′CVM.pr = r and the return value vS is stored in the return variable v of
the call to the CVM primitive.

Below we describe the special CVM primitive start and then a few selected other
primitives. For lack of space, we ignore any pre conditions or corner cases; these are
straightforward to specify and resolve.

– The CVM primitive start , taking one argument, hands control over to the specified
user process. For cCVM.ca.pr = fcall(start , v, e1); r and u = va(cCVM.ca, e1)
we set c′CVM.cp = u. By this definition, the kernel stops execution and is restarted
again on the next interrupt (with a fresh program rest as described before).

– The CVM primitive alloc increases the memory size of user process u by x pages.
We define allocS(u, x, cCVM.up) = (0, c′CVM.up) by increasing the memory size,
c′CVM.up(u).V = cCVM.up(u).V + x, and afterwards clearing the new pages,
c′CVM.up(u).vm(y) = 08 for cCVM.up(u).V · 4K ≤ y < c′CVM.up(u).V · 4K.

– Likewise, the CVM primitive free with specification function freeS decreases the
memory size of a user process u by x pages.
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– The CVM primitive copy copies memory between user processes. So we define
copyS(u1, a1, u2, a2, d, cCVM.up) = (0, c′CVM.up) by c′CVM.up(u2).vmd(a2) =
cCVM.up(u1).vmd(a1).

– The CVM primitive get vm gpr reads register GPR[r] of process u; we define
get vm gprS(r, u, cCVM.up) = (cCVM.up(u).GPR[r], cCVM.vm). As described
below, this primitive is used to read parameters of system calls.

– The CVM primitive set vm gpr writes register GPR[r] of process u; we define
set vm gprS(r, u, x, cCVM.up) = (0, c′CVM.up) by c′CVM.up(u).GPR[r] = x.
This primitive is used to set return values of system calls.

The remaining CVM primitives include process initialization (reset and clone) or de-
vice port I/O (input and output).

5.3 Abstract Kernels and System Calls

The binary interface of a kernel specifies how user processes can make system calls to
the kernel. We describe an exemplary binary interface, also used in the VAMOS kernel
[10]: a system call number j is invoked by a trap instruction with immediate constant j.
System calls have additional parameters that are taken from general purpose registers
of the user process; if system call j has n parameters we pass parameter number x
with 1 ≤ x ≤ n in register GPR[10 + x] of the calling process. Furthermore, after
completion of the system call the kernel notifies the user process of the result of the
system call by updating a return value register, e.g. GPR[20], of the calling process.

In a CVM based kernel such a system call interface is implemented as follows.
Let the kernel maintain a variable cu that indicates the last process that has been
started. Execution of a trap instruction with immediate constant j causes an interrupt
with index 5. In the absence of other higher-prioritized interrupts, this interrupt entails
a function call kdispatch(mca, j) in the abstract kernel with mca[5 : 0] = 100000
that the kernel then detects as a system call j of process cu . Testing the parameter
j the kernel determines the number of parameters n and a function f that is meant
to handle the system call. It calls the get vm gpr CVM primitive repeatedly for all
1 ≤ x ≤ n with fcall(get vm gpr , ex, cu, x) to set the parameters of the call such that
ex = cCVM.up(cu).GPR[10 + x]. Then, the actual call of the handler is implemented
as an ordinary C0 function call fcall(f, r, e1, . . . , en) in the abstract kernel. The re-
turn result is passed back to the user (fcall(set vm gpr , i, r)) and the user process is
reactivated (fcall(start , i, cu)). We see that not only the semantics but also the imple-
mentation of a trap interrupt is formally a function call.

6 Concrete Kernels and Correctness

The concrete kernel cc is an implementation of the CVM model for a given abstract
kernel ca . We construct the concrete kernel by linking the abstract kernel ca , a C0
program, with a CVM implementation cvm , a C0A program. Formally, this is written
using a link operator ld as cc = ld(ca, cvm). The function table of the linked program
cc is constructed from the function tables of the input programs. For functions present
in both programs, defined functions (with a non-empty body) take precedence over
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declared functions (without a body). We do not formally define the ld operator here; it
may only be applied under various restrictions concerning the input programs, e.g. the
names of global variables of both programs must be distinct, function signatures must
match, and no function may be defined in both input programs. We require that the
abstract kernel ca defines kdispatch and declares all CVM primitives while the CVM
implementation cvm defines the primitives and declares kdispatch .

6.1 CVM Implementation

Data Structures. The CVM implementation maintains data structures for the simulation
of the virtual machines and multiprocessing. These include: (i) An array of process
control blocks pcb[u] for the kernel (u = 0) and the user processes (u > 0). Process
control blocks are structures with components pcb[u].R for every processor register R
of the physical machine. (ii) The integer array ptspace on the heap holds the page tables
of all user processes. Its base address must be a multiple of 4K. (iii) Data structures
(e.g. doubly-linked lists) for the management of physical and swap memory (including
victim selection for page faults). (iv) The variable cup keeping track of the current user
process thus encoding the cCVM.cp component.

Entering System Mode. If the concrete kernel enters system mode, its program rest is
initialized with init1; init2. In all other cases than reset, the first part init1 will (i) write
all processor register R to the process control block PCB [cup].R of the process cup
that was interrupted and (ii) restore the registers of the kernel from process control block
PCB [0]. Only after the execution of init1, compiler consistency holds. In the second
part init2, the CVM implementation detects whether the interrupt was due to a page
fault or for other causes. Page faults are handled silently without calling the abstract
kernel (cf. below). For other interrupts, we call kdispatch with parameters obtained
from PCB [cup].

Leaving System Mode. The start CVM primitive enters user mode again. It is im-
plemented using inline assembler. First, we assign the parameter u of start to cup.
Second, we write the physical processor registers to PCB [0] to save the concrete kernel
state. Third, we restore the physical processor registers for process u from PCB [u] and
execute an rfe (return from exception).

Page Fault Handler. The page fault handler establishes the simulation relation B as
described in [12] and summarized in Sect. 3. Only with correct page fault handlers,
user mode steps in the physical machine without interrupts simulate steps of a virtual
machine. Again, note that a user mode instruction can produce up to two page faults.

To reason about multiple user processes u, we have to slightly modify and ex-
tend the B relation. Have a virtual machine configuration cV and a physical machine
configuration cP. If user process u is not running, i.e. cup 	= u or cP.mode = 0,
we demand that the user-visible processor registers of the process and the location
and size of its page table (via special-purpose registers pto and ptl ) are stored in the
process control block pcb[u]. Thus, we parameterize B over user processes u and set
B(u)(cV, cP) = B(cV, ĉP) where ĉP is defined by ĉP.m = cP.m for m ∈ {pm, sm}
and ĉP.R = cP.R if cup = u and cP.mode = 1 or ĉP.R = pcb[u].R otherwise.
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Implementation of the CVM Primitives. The implementation of CVM primitives like
get vm gpr and set vm gpr is straightforward with the entry and exit mechanism up-
dating the process control blocks described before. For CVM primitives alloc and free
the page table length of the process has to to be increased or decreased, resp.; various
other data structures concerning memory management have to be adjusted as well. Such
operations are closely interconnected with the page fault handler. Since the page tables
are accessible as a C0 data structure, inline assembler is only required to clear physical
pages. Similarly, the copy implementation requires assembler to copy physical pages.

6.2 Simulation Relation Between Abstract Kernel and Concrete Kernel

We proceed as in Sect. 4.2 by defining a simulation relation konsis(kalloc)(cc, ca) that
states whether a concrete kernel configuration cc encodes an abstract kernel configura-
tion ca; this relation is parameterized over a function kalloc mapping variables in the
abstract to variables in the concrete kernel. Note that the concrete kernel may has more
variables than the abstract kernel (i) in the global memory frame cc.lms(0) and (ii) on
the heap cc.hm .

By placing the additional global variables behind the global variables of the ab-
stract kernel, indices of variables from the abstract kernel stay unchanged for any mem-
ory frame lms(i). Hence, we define kalloc(ca.lms(i), j) = (cc.lms(i), j). Heap vari-
ables (ca.hm, j) in the abstract kernel must be mapped injectively to heap variables
kalloc(ca.hm , j) = (cc.hm , j′) in the concrete kernel. Below we demand that the ab-
stract heap is embedded isomorphically in the concrete heap. For sub variables V s,
we trivially extend kalloc(V s) = kalloc(V )s. Now we set konsis(kalloc)(cc, ca) iff
(i) program rests and recursion depths coincide, cc.pr = ca.pr and cc.rd = ca.rd ,
(ii) corresponding elementary sub variables S and kalloc(S) have the same value,
va(ca, S) = va(cc, kalloc(S)), (iii) reachable pointer sub variables P and kalloc(P )
must point to corresponding locations, kalloc(va(ca, P )) = va(cc, kalloc(P )). For
pointers P to heap variables, i.e. va(ca, P ) = (ca.hm, j), this establishes a sub graph
isomorphism between the heaps of the abstract and the concrete kernel.

6.3 Correctness of the Concrete Kernel

Our formulation of a correctness theorem for an operating system kernel written in
C0 uses the result for virtual memory simulation (Section 3), the compiler correctness
theorem (Section 4), Lemma 1 on the execution of inline assembler (Section 4.3), and
the simulation relation between abstract kernels and concrete kernels (Section 6).

Consider an initial CVM configuration c0CVM with a valid abstract kernel configu-
ration c0CVM.ca . Let cc0 = ld(c0CVM.ca, cvm) denote the initial configuration of the
concrete kernel and let (c0P, c

1
P, . . . ) denote a physical machine computation with c0P

code-consistent to cc0. After z(0) steps the physical machine is fully consistent to cc0

under an allocated base address function aba0, i.e. consis(aba0)(cc0, c
z(0)
P ).

We construct the list of external events eevsCVM = (eev0
CVM, eev

1
CVM, . . . ) that

parameterizes the CVM computation based on the external event signals eevk
P seen by

the physical processor in step k. We sample the external events for non-page-faulting
user mode steps. Formally, let the sequence x(l) enumerate these steps ascendingly and
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Fig. 3. Consistency Relations Between the Different Configurations

define eev l
CVM = eev

x(l)
P . Hence, page faults may ‘shadow’ events with respect to the

CVM; this problem must be treated when fully specifying I/O devices.
Let (c0CVM, c

1
CVM, . . . ) denote the CVM computation parameterized over the exter-

nal events’ list eevsCVM. Then, there exists (i) a sequence of concrete kernel configu-
rations (cc0, cc1, . . . ), (ii) a sequence of step numbers z(j) and allocated base address
functions abaj relating the physical machine computation to the sequence of concrete
kernel configurations, and (iii) a sequence of step numbers s(i) and functions kalloci

relating the abstract kernel’s computation to the sequence of concrete kernel configura-
tions such that for all i and j the following simulation relations hold:

– Configuration ccs(i) of the concrete kernel after step s(i) encodes configuration
ciCVM.ca of the abstract kernel after step i, so konsis(kalloci)(ciCVM.ca, cc

s(i)).
– Configuration cz(j)

P of the physical machine after step z(j) encodes configuration

ccj of the concrete kernel after step j, so consis(abaj)(ccj , cz(j)
P ).

– For all user processes u the configuration ciCVM.up(u) of virtual machine u after

step i of the CVM machine is encoded by the configuration c
t(i)
P of the physical

machine after step t(i) = z(s(i)). With the B relation introduced in Sect. 3 and

parameterized in Sect. 6, we require B(u)(ciCVM.up(u), ct(i)P ).
– The physical machine computation and the computation of the concrete kernel

must fit together. Unless ccj .pr = asm(u,rfe); r, i.e. the program rest starts
with assembler code that returns to user mode, ccj+1 is computed by δC0A pa-
rameterized with the current allocated base address function abaj applied to the
current physical machine configuration cz(j)

P and ccj . Formally, (ccj+1, c
z(j+1)
P ) =

δC0A(abaj)(ccj , c
z(j)
P ). Observe that the aba parameter and the second input for

δC0A are used only for executing inline assembler code. In the other case, i.e. if
ccj .pr = asm(u,rfe); r, the next configuration of the concrete kernel ccj+1 is
obtained from ccj by setting ccj+1.pr = init2 and ccj+1.rd = 1.

The claim of the correctness theorem is illustrated in Fig. 3. Its proof is by induc-
tion on i with a case split along the cases of the CVM semantics from Sect. 5. In the
proof the sequence numbers z(j) and s(i) are defined inductively: (i) Unless ccj .pr =
asm(u,rfe); r we set z(j+1) as in the induction step of the compiler correctness the-
orem. If the program rest starts with asm(u,rfe) just before returning to user mode,
we set z(j + 1) to the index of that that system mode configuration that marks the
completed initialization part init1 of the concrete kernel. This resembles the base case
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of compiler correctness. (ii) We set s(i + 1) = s(i) if ciCVM.cp 	= 0 or ciCVM.pr =
fcall(start , v, e1); r, s(i + 1) = s(i) + 1 if ciCVM.cp = 0 and if ciCVM.ca.pr does
not start with a CVM primitive call. In this case, the concrete kernel simulates one step
of the abstract. We set s(i + 1) = s(i) + x if ciCVM.cp = 0 and if the program rest
ciCVM.ca.pr starts with a call of a CVM primitive other than start , and x is the number
of steps the implementation of the CVM primitive takes to return.

7 Status of the Formal Verification

At the time of this writing a considerable part of the presented work has been for-
malized in the theorem prover Isabelle/HOL [19]: (i) based on the specification of the
VAMP processor [12,20] (a DLX-like processor verified in PVS) we have specified a
formal VAMP assembler semantics, (ii) we have defined formal semantics for C0 and
C0A, (iii) we specified as an Isabelle/HOL function, implemented in C0, and veri-
fied the compiler’s code generation, (iv) large parts of the compiler simulation theorem
(Sect. 4.2) have been verified (we plan to finish this proof until fall 2005), (v) data struc-
tures and algorithm used in the CVM implementation have been specified and verified,
(vi) the CVM and the VAMOS microkernel semantics have been formally specified.

8 Summary and Further Work

The work presented here depends crucially on a recent theory of virtual memory simu-
lation from [12] and a compiler correctness proof in form of a step by step simulation
theorem from [13]. We have presented the new abstract CVM model. In this model
the formalisms for machine language specification and for programming language se-
mantics have been combined in a natural way, allowing to treat system calls not only
intuitively but also formally as function calls. Also, due to the parallelism, CVM permits
to specify operating system kernel without reference to inline assembler code. We have
provided an approach to the pervasive verification of an operating system kernel, which
handles virtual memory and is written in a high level language with inline assembler
code, and outlined substantial parts of its proof.

The ‘trivial’ further work is the completion of the formal verification effort that we
expect to be completed in 2006 if things go well or in 2007 if things go not so well. In the
next years CVM will be used in the Verisoft project [10] in several places: (i) a correct-
ness proof for a simple operating system (called SOS) will be based on CVM with a par-
ticular abstract kernel (called VAMOS) inspired by [6]. (ii) Based on verified hardware
[12,20], verified compilers, and SOS the verification of entire systems for electronic
signatures of emails and for biometric access control will be attempted.
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tecture. In Fox, D., Köhntopp, M., Pfitzmann, A., eds.: VIS 2001, Sicherheit in komplexen
IT-Infrastrukturen, Vieweg Verlag (2001) 1–18

6. Liedtke, J.: On micro-kernel construction. In: Proceedings of the 15th ACM Symposium on
Operating systems principles, ACM Press (1995) 237–250

7. The Common Criteria Project Sponsoring Organisations: Common Criteria for In-
formation Technology Security Evaluation version 2.1, Part I. http://www.
commoncriteriaportal.org/public/files/ccpart1v21.pdf (1999)

8. Bevier, W.R.: Kit: A study in operating system verification. IEEE Transactions on Software
Engineering 15 (1989) 1382–1396

9. OSEK group: OSEK/VDX time-triggered operating system. http://www.osek-vdx.
org/mirror/ttos10.pdf (2001)

10. The Verisoft Consortium: The Verisoft project. http://www.verisoft.de/ (2003)
11. Aho, A.V., Hopcroft, J.E., Ullman, J.: Data Structures and Algorithms. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA (1983)
12. Dalinger, I., Hillebrand, M., Paul, W.: On the verification of memory management

mechanisms. Technical report, Verisoft project (2005) http://www.verisoft.de/
.rsrc/SubProject2/verificationmm.pdf.

13. Leinenbach, D., Paul, W., Petrova, E.: Compiler verification in the context of pervasive
system verification. Draft manuscript (2005)

14. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. Second
edn. Morgan Kaufmann, San Mateo, CA (1996)

15. Müller, S.M., Paul, W.J.: Computer Architecture: Complexity and Correctness. Springer
(2000)

16. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction. John Wi-
ley & Sons, Inc., New York, NY, USA (1992, revised online version: 1999)

17. Winskel, G.: The formal semantics of programming languages. The MIT Press (1993)
18. Norrish, M.: C formalised in HOL. Technical Report UCAM-CL-TR-453, University of

Cambridge, Computer Laboratory (1998)
19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order

Logic. Volume 2283 of Lecture Notes in Computer Science (LNCS). Springer (2002)
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Alpha-Structural Recursion and Induction
(Extended Abstract)

Andrew M. Pitts

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK

Abstract. There is growing evidence for the usefulness of name permutations
when dealing with syntax involving names and name-binding. In particular they
facilitate an attractively simple formalisation of common, but often technically
incorrect uses of structural recursion and induction for abstract syntax trees mod-
ulo α-equivalence. At the heart of this formalisation is the notion of finitely sup-
ported mathematical objects. This paper explains the idea in as concrete a way
as possible and gives a new derivation within higher-order logic of principles of
α-structural recursion and induction for α-equivalence classes from the ordinary
versions of these principles for abstract syntax trees.

1 Introduction

“They [previous approaches to operational semantics] do not in general have
any great claim to being syntax-directed in the sense of defining the semantics
of compound phrases in terms of the semantics of their components.”

—GD Plotkin, A Structural Approach to Operational Semantics, p 21
(Aarhus, 1981; reprinted as [18, p 32])

The above quotation and the title of the work from which it comes indicate the important
role played by structural recursion and structural induction in programming language
semantics. These are the forms of recursion and induction that fit the commonly used
“algebraic” treatment of syntax. In this approach one specifies the syntax of a language
at the level of abstract syntax trees (ASTs) by giving an algebraic signature. This con-
sists of a collection of sorts s (one for each syntactic category of the language), and
a collection of constructors K (also called “operators” or “function symbols”). Each
such K comes with an arity consisting of a finite list (s1, . . . , sn) of sorts and with a
result-sort s. Then the ASTs over the signature can be described by inductively gen-
erated terms t: if K has arity (s1, . . . , sn) and result sort s, and if ti is a term of sort
si for i = 1..n, then K (t1, . . . , tn) is a term of sort s. One gets off the ground in this
inductive definition with the n = 0 instance of the rule for forming terms; this covers
the case of constants, C , and one usually writes the term C () just as C . Recursive def-
initions and inductive proofs about programs following the structure of their ASTs are
both clearer and less prone to error than ones using non-structural methods. However,
this treatment of syntax does not take into account the fact that most languages that one
deals with in programming semantics involve binding constructors. In the presence of
binders many syntax-manipulating operations only make sense, or at least only have

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 17–34, 2005.
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good properties, when we operate on syntax at a level of abstraction represented not by
ASTs themselves, but by α-equivalence classes of ASTs.

It is true that this level of abstraction, which identifies terms differing only in the
names of bound entities, can be reconciled with an algebraic treatment of syntax by
using de Bruijn indexes [4]. The well-known disadvantage of this device is that it ne-
cessitates a calculus of operations on de Bruijn indexes that does not have much to do
with our intuitive view of the structure of syntax. As a result there can be a big “coding
gap” between statements of results involving binding syntax we would like to make and
their de Bruijn versions; and (hence) it is easy to get the latter wrong. For this reason,
de Bruijn-style representations of syntax may be more suitable for language implemen-
tations than for work on language semantics.

In any case, most of the work on semantics which is produced by humans rather
than by computers sticks with ordinary ASTs involving explicit bound names and uses
an informal approach to α-equivalence classes.1 This approach is signalled by a form
of words such as “we identify expressions up to α-equivalence” and means that: (a)
occurrences of “t” now really mean its α-equivalence class “[t]α”; and (b) if the rep-
resentative t for the class [t]α is later used in some context where the particular bound
names of t clash in some way with those in the context, then t will be changed to an
α-variant whose bound names are fresh (i.e. ones not used in the current context). In
other words it is assumed that the “Barendregt variable convention” [1, Appendix C]
is maintained dynamically. In the literature, the ability to change bound names “on
the fly” is usually justified by the assertion that final results of constructions involving
ASTs are independent of choice of bound names. A fully formal treatment has to prove
such independence results and in this paper we examine ways, arising from the results
of [8, 16], to reduce the burden of such proofs.

However, proving that pre-existing functions respect α-equivalence is only part of
the story; in most cases a prior (or simultaneous) problem is to prove the existence
of the required functions in the first place. To see why, consider the familiar exam-
ple of capture-avoiding substitution (x := t)t′ of a λ-term t for all free occurrences of
a variable x in a λ-term t′. In the vernacular of programming semantics, we specify
(x := t)(−) by saying that it has the properties

(x := t)x1 =

{
t if x1 = x

x1 if x1 	= x
(1)

(x := t)(t1 t2) = (x := t)t1 (x := t)t2 (2)

(x := t)λx1. t1 = λx1. (x := t)t1 if x1 	= x and x1 is not free in t (3)

where in the last clause there is no need to say what happens when x1 = x or when
x1 does occur freely in t, since we are working “up to α-equivalence” and can change
λx1. t1 to an α-variant satisfying these conditions. To see what this specification re-
ally amounts to, let us restore the usually-invisible notation for α-equivalence classes.
Writing Λ for the set of λ-terms and Λ/=α for its quotient by α-equivalence =α, then
capture-avoiding substitution of e � [t]α for x is a function ŝx,e ∈ Λ/=α → Λ/=α.

1 This includes the metatheory of “higher-order abstract syntax” [15], where the questions we
are addressing are pushed up one meta-level to a single binding-form, λ-abstraction.
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Every such function corresponds to a function sx,e ∈ Λ → Λ/=α respecting =α,
i.e. satisfying

t1 =α t2 ⇒ sx,e(t1) = sx,e(t2) (4)

(enabling us to define ŝx,e([t′]α) as [sx,e(t′)]α). The requirements (1)–(3) mean that we
want sx,e to satisfy:

sx,e(x1) =

{
e if x1 = x

[x1]α if x1 	= x
(5)

sx,e(t1 t2) = [t′1 t
′
2]α where sx,e(ti) = [t′i]α for i = 1, 2 (6)

sx,e(λx1.t1) = [λx1.t
′
1]α if x1 	= x and x1 is not free in e,

and where sx,e(t1) = [t′1]α.
(7)

The problem is not one of proving that a certain well-defined function sx,e respects
α-equivalence, but rather of proving that a function exists satisfying (4)—(7). Note that
(5)—(7) do not constitute a definition of sx,e(t′) by recursion on the structure of the
AST t′: even if we patch up the conditions in clauses (6) and (7) by using some enu-
meration of ASTs to make the choices t′i definite functions of sx,e(ti), the fact still
remains that clause (7) only specifies what to do for certain pairs (x1, t1), rather than
for all such pairs. Of course it is possible to complicate the specification of sx,e(λx1.t1)
by saying what to do when x1 does occur freely in e and arrive at a construction for sx,e

(either by giving up structural properties and using a less natural recursion on the height
of trees; or by using structural recursion to define a more general operation of simulta-
neous substitution [21]). An alternative approach, and one that works with the original
simple specification, is to construct functions by giving rule-based inductive definitions
of their graphs (with the rules encoding the required properties of the function); one then
has to prove (using rule-based induction) that the resulting relations are single-valued,
total and respect =α. This is in principle a fully formal and widely applicable approach
to constructing functions like sx,e (using tools that in any case are part and parcel of
structural operational semantics), but one that is extremely tedious to carry out. It would
be highly preferable to establish a recursion principle that goes straight from definitions
like (1)–(3) to the existence of the function (x := t)(−) ∈ Λ/=α → Λ/=α. We provide
such a principle here for a general class of signatures in which binding information can
be declared. We call it α-structural recursion and it comes with a derived induction
principle, α-structural induction.

These recursion and induction principles for α-equivalence classes of ASTs are
simplifications and generalisations of the ones introduced by Gabbay and the author
in [8] as part of a new mathematical model of fresh names and name binding. That
paper expresses its results in terms of a non-standard axiomatic set theory, based on the
classical Fraenkel-Mostowski permutation model of set theory. Experience shows that
this formalism impedes the take up within computer science of the new ideas contained
in [8]. There is an essentially equivalent, but more concrete description of the model as
standard sets equipped with some simple extra structure. These so-called nominal sets
are introduced in [16] and I will use them here to express α-structural recursion and
induction within “ordinary mathematics”, or more precisely, within Church’s higher-
order logic [3].
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2 Nominal Syntax

The usual principles of structural recursion and induction are parameterised by an alge-
braic signature that specifies the allowed constructors for forming ASTs of each sort. In
order to state principles of recursion and induction for α-equivalence classes of ASTs,
we need to fix a notion of signature that also specifies the forms of binding that occur
in the ASTs. As explained in the Introduction, we stick with the usual “nominal” ap-
proach in which bound entities are explicitly named. Any generalisation of the notion
of algebraic signature to encompass constructors that bind names needs to specify how
bound occurrences of names in an AST are associated with a binding site further up the
syntax tree. There are a number of such mechanisms in the literature of varying degrees
of generality [10, 17, 5, 12, 22]. Here we will use the notion of nominal signature from
[22]. It has the advantage of dealing with binding and α-equivalence independently of
any considerations to do with variables, substitution and β-equivalence; bound names
in a nominal signature may be of several different sorts and not just variables that can
be substituted for. In common with the other cited approaches, nominal signatures only
allow for constructors that bind a fixed number of names (and without loss of much
generality, we can take that number to be one). There are certainly forms of binding
occurring “in the wild” that do not fit comfortably into this framework.2 I believe that
the notion of α-structural recursion given here can be extended to cover more general
forms of statically scoped binding; but for simplicity’s sake I will stick with construc-
tors binding a fixed number of names.

2.1 Atoms, Nominal Signatures and Terms

From a logical point of view3, the names we use for making localised bindings in formal
languages only need to be atomic, in the sense that the structure of names (of the same
kind) is immaterial compared with the distinctions between names. Therefore we will
use the term atom for such names. Throughout this paper we fix two sets: the set A of
all atoms and the set AS of all atom-sorts. We also fix a function sort ∈ A → AS

assigning sorts to atoms and assume that the sets AS and Aa � {a ∈ A | sort(a) = a},
for each a ∈ AS, are all countably infinite.

A nominal signature Σ consists of a subset ΣA ⊆ AS of atom-sorts, a set ΣD of
data-sorts and a set ΣC of constructors. Each constructor K ∈ ΣC comes with an
arity σ and a result sort s ∈ ΣD, and we write K : σ → s to indicate this information.
The arities σ of Σ are given as follows; at the same time we define the terms4 t over Σ
of each arity, writing t : σ to indicate that t has arity σ.

Atoms: every atom-sort a ∈ ΣA is an arity. If a ∈ Aa is an atom of sort a, then a : a.
Constructed terms: every data-sort s ∈ ΣD is an arity. If K : σ → s is in ΣC and

t : σ, then K t : s.

2 The full version of F<: with records and pattern-matching used in Part 2B of the “POPLMARK

challenge” (www.cis.upenn.edu/group/proj/plclub/mmm/) is an example.
3 As opposed to a pragmatic one that also encompasses issues of parsing and pretty-printing.
4 Compared with [22, Definition 2.3] we only define ground terms, since we do not need to

consider variables ranging over terms here.
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Tuples: if σ1, . . . , σn is a finite list of arities, then σ1 ∗ · · · ∗ σn is an arity; the n = 0
case is called the unit arity and written 1. If t1 : σ1, . . . , tn : σn, then 〈t1, . . . , tn〉 :
σ1 ∗ · · · ∗ σn; in particular, when n = 0 we have 〈〉 : 1.

Atom-binding: if a ∈ ΣA and σ is an arity, then 〈〈a〉〉σ is an arity. If a ∈ Aa and t : σ,
then 〈〈a〉〉t : 〈〈a〉〉σ.

We write Ar(Σ) for the set of all arities over a nominal signature Σ, T(Σ) for the set
of all terms over Σ, and ar ∈ T(Σ) → Ar(Σ) for the function assigning to each term
t the unique arity σ such that t : σ holds. For each σ ∈ Ar(Σ), we write T(Σ)σ for the
subset {t ∈ T(Σ) | ar(t) = σ} of terms of arity σ.

Example 1. Here is a nominal signature for the version of the Milner-Parrow-Walker
π-calculus given in [19, Definition 1.1.1]. (The sort gsum is for processes that are
guarded sums, and the sort pre is for prefixed processes.)

atom-sorts data-sorts constructors
chan proc Gsum : gsum→ proc

gsum Par : proc ∗ proc → proc
pre Res : 〈〈chan〉〉proc → proc

Rep : proc → proc
Zero : 1→ gsum
Pre : pre → gsum

Plus : gsum ∗ gsum → gsum
Out : chan ∗ chan ∗ proc → pre
In : chan ∗ 〈〈chan〉〉proc → pre

Tau : 1→ pre
Match : chan ∗ chan ∗ pre → pre

This example uses several atom- and data-sorts, but does not illustrate the usefulness of
the inter-mixing of the arity-formers for tupling and atom-binding that is allowed in a
nominal signature. An example that does do this is given in [22, Example 2.2]; see also
the discussion in [10, Sect. 3].

2.2 Ordinary Structural Recursion and Induction

The terms over a nominal signature Σ are just the abstract syntax trees determined
by an ordinary signature associated with Σ whose sorts are the arities of Σ, whose
constructors are those of Σ, plus constructors for tupling and atom-binding, and with
atoms regarded as particular constants. Consequently we can use ordinary structural
recursion to define functions on the set T(Σ) of terms over Σ. We state without proof
a simple, iterative form of the principle that we will be using later.

Theorem 2. Let Σ be a nominal signature. Suppose we are given sets Sσ , for each
σ ∈ Ar(Σ), and functions

ga ∈ Aa → Sa (a ∈ ΣA)
gK ∈ Sσ → Ss ((K : σ → s) ∈ ΣC)

gσ1∗···∗σn ∈ Sσ1 × · · · × Sσn → Sσ1∗···∗σn (σi ∈ Ar(Σ) | i = 1..n)
g〈〈a〉〉σ ∈ Aa × Sσ → S〈〈a〉〉σ (a ∈ ΣA, σ ∈ Ar(Σ)).
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Then there is a unique family of functions gσ ∈ T(Σ)σ → Sσ (σ ∈ Ar(Σ)) satisfying
the following properties

g a = ga(a) (8)

g(K t) = gK (g t) (9)

g〈t1, . . . , tn〉 = gσ1∗···∗σn〈g t1, . . . , g tn〉 (10)

g〈〈a〉〉t = g〈〈a〉〉σ(a, g t) (11)

where we have abbreviated gσ(t) to g t (since σ = ar (t) is determined by t). �

Using the fact that subsets of T(Σ) are in bijection with functions T(Σ) → B

(where B = {T, F} is the two-element set of boolean values), one can derive the fol-
lowing principle of structural induction for terms over Σ as a corollary of the unique-
ness part of Theorem 2.

Corollary 3. Let Σ be a nominal signature and S ⊆ T(Σ) a set of terms over Σ. To
prove that S is the whole of T(Σ) it suffices to show

(∀a ∈ ΣA, a ∈ Aa) a ∈ S

(∀(K : σ → s) ∈ ΣC, t : σ) t ∈ S ⇒ K t ∈ S

(∀(σi ∈ Ar(Σ), ti : σi | i = 1..n)) t1 ∈ S & · · · & tn ∈ S ⇒ 〈t1, . . . , tn〉 ∈ S

(∀a ∈ ΣA, a ∈ Aa, σ ∈ Ar(Σ), t : σ) t ∈ S ⇒ 〈〈a〉〉t ∈ S . �

2.3 α-Equivalence and α-Terms

So far we have taken no account of the fact that atom-binder terms 〈〈a〉〉t should be
identified up to renaming the bound atom a. Given a nominal signature Σ, the binary
relation of α-equivalence, t =α t′ : σ (where σ ∈ Ar(Σ) and t, t′ ∈ T(Σ)σ) makes
such identifications. It is inductively defined by the following rules. In rule (=α-4),
atm t indicates the finite set of atoms occurring in t; and t{a′/a} indicates the term
resulting from replacing all occurrences in t of the atom a by the atom a′ (assumed to
be of the same sort).

(=α-1)
a ∈ ΣA a ∈ Aa

a =α a : a
(=α-2)

(K : σ → s) ∈ ΣC t =α t′ : σ
K t =α K t′ : s

(=α-3)
t1 =α t′1 : σ1 · · · tn =α t′n : σn

〈t1, . . . , tn〉 =α 〈t′1, . . . , t′n〉 : σ1 ∗ · · · ∗ σn

(=α-4)

a ∈ ΣA a, a′, a′′ ∈ Aa a′′ /∈ atm 〈a, t, a′, t′〉
t{a′′/a} =α t′{a′′/a′} : σ
〈〈a〉〉t =α 〈〈a′〉〉t′ : 〈〈a〉〉σ
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Here we have generalised to terms over a nominal signature a version of the definition
of α-equivalence of λ-terms [11, p. 36] that is conveniently syntax-directed compared
with the classic version [1, Definition 2.1.11]. It is easy to see that =α is reflexive, sym-
metric and respects the various term-forming constructions for nominal syntax. Less
straightforward is the fact that =α is transitive. This can be proved in a number of
ways. My favourite way makes good use of the techniques we will be using in Sect. 3,
based on the action of atom-permutations on terms; see [16, Example 1].

For each σ ∈ Ar(Σ), we write Tα(Σ)σ for the quotient of T(Σ)σ by the equiva-
lence relation (−) =α (−) : σ. Thus the elements of Tα(Σ)σ are α-equivalence classes
of terms of arity σ; we write [t]α for the class of t and refer to [t]α as an α-term of arity
σ over the nominal signature Σ.

3 Finite Support

The crucial ingredient in the formulation of structural recursion and induction for α-
terms over a nominal signature is the notion of finite5 support. It gives a well-behaved
way, phrased in terms of atom-permutations, of expressing the fact that atoms are fresh
for mathematical objects. It turns out to agree with the obvious definition when the
objects are finite data such as abstract syntax trees, but allows us to deal with freshness
for the not so obvious case of infinite sets and functions.

3.1 Nominal Sets

Let Perm denote the set of all (finite, sort-respecting) atom-permutations; by defin-
ition, its elements are bijections π : A ↔ A such that {a ∈ A | π(a) 	= a} is finite
and sort(π(a)) = sort(a) for all a ∈ A. The operation of composing bijections gives
a binary operation π, π′ ∈ Perm �→ π ◦ π′ ∈ Perm that makes Perm into a group;
we write ι for the identity atom-permutation and π−1 for the inverse of π. Among the
elements of Perm we single out transpositions (a a′) given by a pair of atoms of the
same sort; (a a′) is the atom-permutation mapping a to a′, mapping a′ to a and leaving
all other atoms fixed. It is a basic fact of group theory that every π ∈ Perm is equal to
a finite composition of such transpositions.

An action of Perm on a set X is a function Perm × X → X , whose effect on
(π, x) ∈ Perm × X we write as π · x (with X understood), and which is required
to have the properties: ι · x = x and π · (π′ · x) = (π ◦ π′) · x, for all x ∈ X and
π, π′ ∈ Perm. Given such an action and an element x ∈ X , we say that a set A ⊆ A

of atoms supports x if (a a′) · x = x holds for all atoms a and a′ (of the same sort)
that are not in A. Then a nominal set is by definition a set X equipped with an action
of Perm such that every element x ∈ X is supported by some finite set of atoms. If A1
and A2 are both finite sets of atoms supporting x ∈ X , then one can show that A1 ∩A2
also supports x. It follows that in a nominal set X , each element x ∈ X possesses a
smallest finite support, which we write as suppX(x) (or just supp(x), if X is clear from
the context) and call the support of x in X .

5 Both Gabbay [7] and Cheney [2] develop more general notions of “small” supports. As Ch-
eney’s work shows, such a generalisation is necessary for some techniques of classical model
theory to be applied; but finite supports are sufficient here.
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Example 4. (i) Each set Aa of atoms of a particular sort a is a nominal set once we
endow it with the atom-permutation action given by π · a = π(a); as one might
expect, supp(a) = {a}. It is not hard to see that the disjoint union of nominal
sets is again a nominal set. So since the set of all atoms is the disjoint union of Aa

as a ranges over atom-sorts, A is a nominal set with atom-permutation action and
support sets as for each individual Aa.

(ii) LetΣ be a nominal signature. Using Theorem 2 we can define an atom-permutation
action on the sets T(Σ)σ of terms over Σ of each arity σ ∈ Ar(Σ):

π · a = π(a) π · 〈t1, . . . , tn〉 = 〈π · t1, . . . , π · tn〉
π ·K t = K (π · t) π · 〈〈a〉〉t = 〈〈π · a〉〉(π · t) .

Using Corollary 3 one can prove that this has the properties required of an atom-
permutation action, that a, a′ /∈ atm t ⇒ (a a′) · t = t, and that a ∈ atm t &
(a a′) · t = t ⇒ a = a′. From these facts it follows that each T(Σ)σ is a nominal
set, with supp(t) = atm t, the finite set of atoms occurring in t.

(iii) Turning next to α-terms over Σ (Sect. 2.3), first note that the action of atom-
permutations on terms preserves α-equivalence.6 Therefore we get a well-defined
action on α-terms by defining: π · [t]α = [π · t]α. For this action one finds that
Tα(Σ)σ is a nominal set with supp([t]α) = fa(t), the finite set of free atoms of
any representative t of the class [t]α, defined (using Theorem 2) by:

fa(a) = {a} fa(〈t1, . . . , tn〉) = fa(t1) ∪ · · · ∪ fa(tn)
fa(K t) = fa(t) fa(〈〈a〉〉t) = fa(t)− {a} .

(iv) Each set S becomes a nominal set, called the discrete nominal set on S, if we
endow it with the trivial action of atom-permutations, given by π · s = s for
each π ∈ Perm and s ∈ S; in this case the support of each element is empty. In
particular, we will regard the set of booleans B = {T, F} and the set of natural
numbers N = {0, 1, 2, . . .} as nominal sets in this way.

3.2 Products and Functions

If X1, . . . , Xn are nominal sets, then we get an action of atom-permutations on their
cartesian product X1× · · · ×Xn by defining π · (x1, . . . , xn) to be (π ·x1, . . . , π ·xn),
for each (x1, . . . , xn) ∈ X1 × · · · ×Xn. If Ai supports xi ∈ Xi for i = 1..n, then it is
not hard to see that A1 ∪ · · · ∪An supports (x1, . . . , xn) ∈ X1× · · ·×Xn; indeed, one
can prove that supp((x1, . . . , xn)) = supp(x1)∪ · · · ∪ supp(xn). Thus X1× · · ·×Xn

is also a nominal set.
If X and Y are nominal sets, then we get an action of atom-permutations on the set

X → Y of all functions from X to Y by defining π · f to be the function mapping each
x ∈ X to π · (f(π−1 · x)) ∈ Y . If you have not seen this definition before, it may look

6 As noted in [16, p 169], this fact has nothing much to do with the particular nature of =α and
everything to do with the fact that it is inductively defined by a collection of schematic rules
with the property that the action of any atom-permutation takes any instance of the rules to
another instance.
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more complicated than expected; however, it is forced by the important requirement
that function application be respected by atom-permutations:7

π · (f(x)) = (π · f)(π · x) . (12)

Unlike the situation for cartesian product, not every element f ∈ X → Y is necessarily
finitely supported with respect to this action (see Example 6 below). However, note that
if f is supported by a finite set of atoms A, then π · f is supported by {π(a) | a ∈ A}.
Therefore

X →fs Y � {f ∈ X → Y | (∃finite A ⊆ A) A supports f}

is closed under the atom-permutation action and is a nominal set.

Example 5. Recall that the elements of Perm are bijections from A to itself that re-
spect sorts and leave fixed all but finitely many atoms. So each π ∈ Perm is in partic-
ular a function A → A. Regarding A as a nominal set as in Example 4(i), the action
of atom-permutations on π qua function turns out to be the operation of conjugation:
π′ ·π = π′◦π◦(π′)−1. Hence the action of atom-permutations on A → A restricts to an
action on Perm . One can prove that the finite set {a ∈ A | π(a) 	= a} supports π with
respect to this action (and is in fact the smallest such set); so Perm is a nominal set.

Example 6. Not every function between nominal sets is finitely supported. For exam-
ple, since the set A of atoms is countable, there are surjective functions in N → A; but
it is not hard to see that any f ∈ N →fs A must have a finite image (which is in fact the
support of f ). A more subtle example of a non-finitely-supported function is any choice
function for the set A of atoms, i.e. any function choose ∈ (A →fs B) → A (where
B = {T, F}) satisfying f(a) = T ⇒ f(choose(f)) = T , for all f ∈ A →fs B and
a ∈ A.8

3.3 Freshness

Given an element of a nominal set, most of the time we are interested not so much in
its support as in the (infinite) set of atoms that are not in its support. More generally, if
x ∈ X and y ∈ Y are elements of nominal sets, we write x # y when suppX(x) ∩
suppY (y) = ∅ and say that x is fresh for y. Of the many properties of this notion of
“freshness” developed in [8, 16] we single out the following one that we need below;
it provides a very general criterion for when a construction that “picks a fresh atom” is
independent of which fresh atom is chosen. (We omit the proof in this abstract.)

Lemma 7 (Freshness Lemma). Given an atom-sort a ∈ AS and a nominal set X , if a
finitely supported function h ∈ Aa →fs X satisfies

7 More precisely, the definition of the action on functions is forced by the requirement that
X → Y together with the usual application function be the exponential of X and Y in the
cartesian closed category of sets equipped with an atom-permutation action.

8 It was this lack of finite support for choice functions that motivated the original construction
of the permutation model of set theory by Fraenkel and Mostowski.
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(∃a ∈ Aa) a # h & a # h(a) (13)

then there is a unique element fresh(h) ∈ X satisfying

(∀a ∈ Aa) a # h ⇒ h(a) = fresh(h) . (14)

�

4 Recursion and Induction for α-Terms

4.1 The Structure of α-Terms

Recall that Tα(Σ)σ denotes the set of α-terms of arity σ over a nominal signature Σ; by
definition these are α-equivalence classes [t]α of terms t : σ. Elementary properties of
the relation =α of α-equivalence yield the following structural properties of α-terms;
at the same time we introduce some concrete syntax for α-terms mirroring the informal
notation for α-equivalence classes mentioned in the Introduction.

Atoms: if a ∈ ΣA and e ∈ Tα(Σ)a, then there is a unique a ∈ Aa such that e = [a]α.
In this case we write e just as a.

Constructed α-terms: if s ∈ ΣD and e ∈ Tα(Σ)s, then there are unique (K : σ →
s) ∈ ΣC and e′ ∈ Tα(Σ)σ such that there exists t′ with e′ = [t′]α and e = [K t′]α.
In this case we write e as K e′.

Tuples: if σ1, . . . , σn ∈ Ar(Σ) and e ∈ Tα(Σ)σ1∗···∗σn , then there are unique ei ∈
Tα(Σ)σi for i = 1..n such that there exist ti with ei = [ti]α (i = 1..n) and
e = [〈t1, . . . , tn〉]α. In this case we write e as (e1, . . . , en).

Atom-binding: if a ∈ ΣA, σ ∈ Ar(Σ) and e ∈ Tα(Σ)〈〈a〉〉σ, then for each a ∈ Aa

with a # e (i.e. with a not a free atom of e—cf. Example 4(iii)), there is a unique
e′ ∈ Tα(Σ)σ such that there exists t′ with e′ = [t′]α and e = [〈〈a〉〉t′]α. In this case
we write e as a. e′.

4.2 α-Structural Recursion and Induction

We can now state and prove the main result of this paper, a principle of structural re-
cursion for α-terms over a nominal signature. Compared with Theorem 2, the principle
uses nominal sets rather than ordinary sets, and requires a common finite support for
the collection of functions in its hypothesis. Furthermore, the function supplied for
each binding arity must satisfy a freshness condition for binders (FCB) saying, roughly,
that for some sufficiently fresh choice of the atom being bound, the result of the func-
tion can never contain that atom in its support. These conditions ensure that there is a
unique (finitely supported) arity-indexed family of functions that is well-defined on α-
equivalence classes and satisfies the required recursion equations—for all sufficiently
fresh bound atoms, in the case of the recursion equation for binders. The “some/any”
aspect of the principle is a characteristic of the treatment of fresh names from [8].

Theorem 8 (α-Structural recursion). Let Σ be a nominal signature. Suppose we are
given an arity-indexed family of nominal sets Xσ (σ ∈ Ar(Σ)) and functions
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fa ∈ Aa →fs Xa (a ∈ ΣA)
fK ∈ Xσ →fs Xs ((K : σ →fs s) ∈ ΣC)

fσ1∗···∗σn ∈ Xσ1 × · · · ×Xσn →fs Xσ1∗···∗σn (σi ∈ Ar(Σ) | i = 1..n)
f〈〈a〉〉σ ∈ Aa ×Xσ →fs X〈〈a〉〉σ (a ∈ ΣA, σ ∈ Ar(Σ))

all of which are supported by a finite set of atoms A and satisfy the

Freshness Condition for Binders (FCB): for each atom-binding arity 〈〈a〉〉σ ∈
Ar(Σ), the function f〈〈a〉〉σ satisfies (∃a′∈Aa−A)(∀x∈Xσ)a′ # f〈〈a〉〉σ(a′, x).

Then there is a unique family of finitely supported functions fσ ∈ Tα(Σ)σ →fs Xσ

(σ ∈ Ar(Σ)) with supp(fσ) ⊆ A and satisfying the following properties for all
a, e, e1, . . . , en of suitable arity:

fa = fa(a) (15)

f(K e) = fK (fe) (16)

f(e1, . . . , en) = fσ1∗···∗σn(fe1, . . . , fen) (17)

a /∈ A ⇒ f(a. e) = f〈〈a〉〉σ(a, fe) (18)

where we have abbreviated fσ(e) to fe and used the notation forα-terms from Sect. 4.1.

Proof (sketch). We can reduce the proof of the theorem to an application of Theorem 2,
taking advantage of the fact that we are working (informally) in higher-order logic.9

From the Ar(Σ)-indexed family of nominal sets Xσ we define another such family:
Sσ � Perm →fs Xσ (regarding Perm as a nominal set as in Example 5 and using the
→fs construct from Sect.3.2). Now define functions ga, gK , gσ1∗···∗σn and g〈〈a〉〉σ (with
domains and codomains as in the statement of Theorem 2) as follows.

ga a � λπ ∈ Perm . fa(π(a))

gK s � λπ ∈ Perm . fK (s(π))

gσ1∗···∗σn(s1, . . . , sn) � λπ ∈ Perm . fσ1∗···∗σn(s1(π), . . . , sn(π))

g〈〈a〉〉σ(a, s) � λπ ∈ Perm . fresh(λa′ ∈ Aa. f〈〈a〉〉σ(a′, s(π ◦ (a a′))))

The crucial clause in this definition is the last one, where we are using the fresh func-
tional from Lemma 7 applied to the function h � λa′ ∈ Aa. f〈〈a〉〉σ(a′, s(π ◦ (a a′)));
in this abstract we omit the proof that the condition (13) needed to apply the lemma is
satisfied in this case. Applying Theorem 2 with this data, we get a family of functions
gσ ∈ T(Σ)σ → (Perm →fs Xσ) satisfying the recursion equations (8)–(11) of that
theorem. Next one proves that these functions respect α-equivalence; this is done by
induction over the derivation of t1 =α t2 : σ from the rules in Sect.2.3. So the func-
tions gσ induce functions fσ ∈ Tα(Σ)σ → Xσ given by fσ[t]α � gσ t ι for any t : σ
(recalling that ι stands for the identity permutation). One proves that these functions
fσ are all supported by A by first proving that the functions gσ are so supported. Then

9 In other words the theorem is reducible to primitive recursion at higher types.
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the fact that the fσ satisfy the required recursion equations (15)–(18) follows from the
recursion equations (8)–(11) satisfied by the gσ. That concludes the existence part of
the proof of Theorem 8.

For the uniqueness part, suppose functions f ′
σ ∈ Tα(Σ)σ →fs Xσ are all supported

by A and satisfy the recursion equations (15)–(18) for fσ . Define g′σ ∈ T(Σ)σ → Sσ

by g′σ t π � f ′
σ[π · t]α (σ ∈ Ar(Σ), t : σ, π ∈ Perm). One can show that the g′σ satisfy

the same recursion equations (8)–(11) from Theorem 2 as the functions gσ; so by the
uniqueness part of that theorem, g′σ = gσ . Therefore for all t : σ, f ′

σ[t]α = f ′
σ[ι · t]α �

g′σ t ι = gσ t ι � fσ[t]α; hence f ′
σ = fσ . �

Remark 9 (“Some/any” property). In Theorem 8 we gave the FCB as an existential
statement. It is in fact equivalent to the universal statement (∀a′ ∈ Aa − A)(∀x ∈
Xσ) a′ # f〈〈a〉〉σ(a′, x). This is an instance of the characteristic “some/any” property
of fresh names noted in [8, Proposition 4.10] and [16, Proposition 4].

Given a nominal set X , we can use the usual bijection between subsets of X and
functions in X → B (where B = {T, F}) to transfer the action of atom-permutations
on X → B to one on subsets of X . This action sends π ∈ Perm and S ⊆ X to the
subset π · S = {π · x | x ∈ S}. The nominal set Pfs(X) of finitely supported subsets
of the nominal set X consists of all those subsets S ⊆ X that are finitely supported with
respect to this action. Thus Pfs(X) is isomorphic to X →fs B. Using this isomorphism,
as a corollary of the uniqueness part of Theorem 8 we obtain the following principle of
structural induction for α-terms.

Corollary 10 (α-Structural induction). Let Σ be a nominal signature. Suppose we
are given a finitely supported set S ∈ Pfs(Tα(Σ)) of α-terms over Σ. To prove that S
is the whole of Tα(Σ) it suffices to show

(∀a ∈ ΣA, a ∈ Aa) a ∈ S

(∀(K : σ → s) ∈ ΣC, e ∈ Tα(Σ)σ) e ∈ S ⇒ K e ∈ S

(∀(σi ∈ Ar(Σ), ei ∈ Tα(Σ)σi | i = 1..n)) e1 ∈ S & · · · & en ∈ S ⇒
(e1, . . . , en) ∈ S

(∀a ∈ ΣA, σ ∈ Ar(Σ))(∃a ∈ Aa − supp(S))(∀e ∈ Tα(Σ)σ) e ∈ S ⇒ a. e ∈ S .
�

Remark 11 (Primitive recursion). Theorem 8 gives a simple “iterative” form of struc-
tural induction for α-terms, rather than a more complicated “primitive recursive” form
with recursion equations

fa = fa(a) f(e1, . . . , en) = fσ1∗···∗σn(e1, . . . , en, fe1, . . . , fen)
f(K e) = fK (e, fe) atm /∈ A⇒ f(a. e) = f〈〈a〉〉σ(a, e, fe).

In fact this more general form can be deduced from the simple one given in the theorem.

4.3 “Sort-Directed” Recursion Principle

Theorem 8 is an “arity-directed” recursion principle for α-terms: one has to specify
nominal sets Xσ for each arity σ, and give functions f( ) for tuple and atom-binding
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binding arities in addition to ones for atoms and constructors. It is possible to derive
a “sort-directed” version of the principle in which one only has to give Xσ when σ
is a data-sort, and only has to give the functions f( ) for constructors; the FCB has
to be replaced by a more complicated family of conditions, indexed by the argument
arities of constructors. In this extended abstract I will not formulate this version of the
principle for an arbitrary nominal signature, but instead just give it for the particular
case of untyped λ-calculus, for which the FCB is quite simple to state.

Let Σλ be the nominal signature with a single atom-sort v (for variables), a single
data-sort t (for λ-terms), and constructors Var : v → t, App : t ∗ t → t and Lam :
〈〈v〉〉t → t. Thus T(Σλ)t is the usual set Λ of abstract syntax trees of λ-terms and
Tα(Σλ)t is the quotient Λ/=α of that by the usual notion of α-equivalence—in other
words Tα(Σλ)t is what is normally meant by the set of all (open or closed) untyped
λ-terms. The following “sort-directed” version of α-structural recursion for Σλ can be
deduced by suitably instantiating X( ) and f( ) in Theorem 8.

Corollary 12 (α-Structural recursion for λ-terms). Given a nominal set X and func-
tions hVar ∈ Av →fs X , hApp ∈ X × X →fs X and hLam ∈ Av × X →fs X , all
supported by a finite set of atoms A and with hLam satisfying

(∃a′ ∈ Av −A)(∀x ∈ X) a′ # hLam(a′, x) (FCB′)

then there is a unique finitely supported function h ∈ Λ/=α →fs X with supp(h) ⊆ A
and satisfying

h(Var a) = hVar (a) (19)

h(App (e1, e2)) = hApp(h e1, h e2) (20)

a /∈ A ⇒ h(Lam a. e) = hLam(a, h e) . (21)

�
4.4 Applying the Principles

How do we use Theorem 8 in practice? Suppose that some language of interest has
been specified as the α-terms for a particular nominal signature. Suppose that we wish
to define a function on those α-terms specified by an instance of the recursion scheme
(15)–(18) and we have identified suitable functions fa, fK , fσ1∗···∗σn and f〈〈a〉〉σ. Then
there are three tasks involved in applying the theorem to this data:

(I) Show that the sets Xσ that we are mapping into have the structure of nominal sets.
(II) Show that the functions fa, fK , fσ1∗···∗σn and f〈〈a〉〉σ are all supported by a single

finite set of atoms A.
(III) Show that the functions f〈〈a〉〉σ for atom-binding arities satisfy the FCB.

It is possible to dispose of tasks (I) and (II) by applying a single metatheorem about
the notion of support, based on the fact that nominal sets form a model of higher-order
logic (without choice functions—see Example 6). In the author’s opinion, the best way
of explaining this model is to use topos theory (see [13], for example). Call a function
f ∈ X → Y between two nominal sets equivariant if it is supported by the empty
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set; in view of (12), this means that π · (f(x)) = f(π · x), for all π ∈ Perm and
x ∈ X . Nominal sets and equivariant functions form a category that has the structure
of a boolean topos with natural number object: products and exponentials are given by
the operations (−)× (−) and (−)→fs (−) considered in Sect.3.2; the terminal object,
subobject classifier and the natural number object are just the discrete nominal sets 1,
B and N respectively (cf. Example 4(iv)). As for any such category, there is a sound
interpretation of classical higher-order logic with arithmetic in this category. However,
in this particular case the interpretation is easy to describe concretely: so long as we
interpret function variables as ranging over only finitely supported functions, the usual
set-theoretic interpretation of higher-order logic always yields finitely supported ele-
ments. If we remain within pure higher-order logic over ground types for numbers and
booleans, then we only get elements with empty support. However, if we add a ground
type for the set A of atoms, a constant for the function sort ∈ A → AS (taking AS to be
a copy of N) and constants for each atom, then the terms and formulas of higher-order
logic describe functions and subsets which may have non-empty, finite support; such a
“higher-order logic with atoms” has been developed by Gabbay [7]. Note that nominal
sets of abstract syntax trees T(Σ) and their quotients by α-equivalence Tα(Σ) are con-
structible within such a setting. As far as tasks (I) and (II) are concerned, we can sum
things up thus: if we use nominal sets and finitely supported functions in constructions
definable in classical higher-order logic with arithmetic but without choice, the result
will again be nominal sets and finitely supported functions.

5 Examples

Here are some examples of Theorem 8 and Corollary 12 in action. In view of the
above remarks, in each case we pass quickly over tasks (I) and (II) and concentrate
on task (III).

Example 13 (Capture-avoiding substitution). The example mentioned in the Intro-
duction of capture-avoiding substitution of λ-terms, ŝx,e ∈ Λ/=α → Λ/=α, is ob-
tained from Corollary 12 (using the nominal signature Σλ) by taking X to be the nom-
inal set Λ/=α, i.e. Tα(Σλ)t. Given x ∈ Av and e ∈ X , then ŝx,e is given by h where

hVar � λa ∈ Av. if a = x then e else Var a hLam � λ(a, e) ∈ Av ×X. Lam a. e

hApp � λ(e1, e2) ∈ X ×X. App(e1, e2) A � supp(x, e).

(FCB′) is satisfied because, as noted in Example 4(iii), for each e ∈ X = Tα(Σ)t,
supp(e) is the finite set of free atoms of e; in particular a # Lam a. e = hLam(a, e),
because a is not free in (any representative of the α-equivalence class) Lam a. e. Note
that the common finite support A of the h( ) functions consists of x and the finite set
of free variables of e. Therefore the restriction “a /∈ A” in the recursion equation (21)
corresponds precisely to the side-condition “x1 	= x and x1 is not free in e” in (7).

Example 14 (Length of an α-term). In [9, Sect. 3.3] Gordon and Melham give the
usual recursion scheme for defining the length of a λ-term, remark that it is not a direct
instance of the scheme developed in that paper (their Axiom 4) and embark on a detour
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via simultaneous substitutions to define the length function. This difficulty is analysed
by Norrish [14, Sect. 3] on the way to his improved version of Gordon and Melham’s
recursion scheme (discussed further in Sect. 6). Pleasingly, the usual recursive definition
of the length of a λ-term, or more generally of an α-term over any nominal signature,
is a very simple application of α-structural recursion.10 Thus in Theorem 8 we take Xσ

to be the discrete nominal set N of natural numbers and

fa � λa ∈ Aa. 1 fσ1∗···∗σn � λ(k1, . . . , kn) ∈ Nn. k1 + · · ·+ kn

fK � λk ∈ N. k + 1 f〈〈a〉〉σ � λ(a, k) ∈ Aa × N. k + 1

These functions are all supported by A = ∅ and the FCB holds trivially, because a # k
holds for any a ∈ A and k ∈ N. So the theorem gives us functions fσ ∈ Tα(Σ)σ →fs N.
Writing length e for fσ e, we have the expected properties of a length function on α-
terms:

length a = 1 length(e1, . . . , en) = length e1 + · · ·+ length en

length(K e) = length e+ 1 length(a. e) = length e+ 1 .

Note that the last clause holds for all a, because in (18) the condition “a /∈ A” is
vacuously true (since A = ∅).
Example 15 (Recursion with “varying parameters”). Norrish [14, p 245] consid-
ers a variant sub′ of capture-avoiding substitution whose definition involves recursion
with varying parameters; it motivates the parametrised recursion principle he presents
in that paper. The α-structural recursion principles we have given here do not involve
parameters, let alone varying ones; nevertheless it is possible to derive parameterised
versions from them. One can derive parameterised versions of ordinary structural re-
cursion by currying parameters and defining maps into function sets using Theorem 2.
In the presence of binders, one has to do something slightly more complicated, involv-
ing the Freshness Lemma 7, to derive the parameterised FCB from the unparameterised
version of the condition.

Let us see how this works for Norrish’s example. Using the nominal signature Σλ

from Sect.4.3 (for which Tα(Σ)t coincides with the nominal setΛ/=α of α-equivalence
classes of λ-terms) his sub′ function can be expressed as follows. Fixing atoms a1, a2 ∈
Av, we seek a function s ∈ (Λ/=α) →fs (Λ/=α) →fs (Λ/=α) satisfying:

s (Var a) e = if a = a1 then e else Var a (22)

s (App(e1, e2)) e = App(s e1 e, s e2 e) (23)

a # (a1, a2, e) ⇒ s (Lam a. e1) e = Lam a. s e1 (App(Var a2, e)) . (24)

If can be obtained from Corollary 12 as s = h if we take X to be the nominal set
(Λ/=α) →fs (Λ/=α) and use the functions

hVar � λa ∈ Av.λe ∈ (Λ/=α). if a = a1 then e else Var a

hApp � λ(x1, x2) ∈ X ×X. λe ∈ (Λ/=α). App(x1 e, x2 e)

hLam � λ(a, x) ∈ Av ×X.λe ∈ (Λ/=α). fresh(h(a, x, e))
10 The same goes for Norrish’s stripc function, used to illustrate the limitations of Gordon and

Melham’s workaround for the length function [14, p. 247].
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where the last clause uses Lemma 7 applied to h(a, x, e) � λa′ ∈ Av. Lam a′. ((a a′) ·
x)(App(Var a2, e)) ∈ Av →fs (Λ/=α), which is easily seen to satisfy the property
(13) needed for to apply lemma. Properties (19) and (20) of h give (22) and (23) re-
spectively. When a 	= a1, a2, property (21) gives us h(Lam a. e1) = hLam(a, h e1) =
fresh(h(a, h e1, e)). So if a # (a1, a2, e), picking any a′ # (a1, a2, e, e1, h), then
by Lemma 7 we have fresh(h(a, h e1, e)) = h(a, h e1, e) a′ � Lam a′. ((a a′) ·
(h e1))(App(Var a2, e)) = Lam a′. (a a′) · (h e1 (App(Var a2, e))). Hence by defi-
nition of =α, h(Lam a. e1) = Lam a. h e1 (App(Var a2, e)), as required for (24).

6 Assessment

Mathematical Perspective. The results of this paper are directly inspired by my joint
work with Gabbay on “FM-set” theory [8] and by his PhD thesis [6]; in particular those
works contain structural recursion and induction principles for an inductively defined
FM-set isomorphic to λ-terms modulo α-equivalence. Here I have taken an approach
that is both a bit more general and more concrete: more general, because the particu-
lar signature for λ-terms has been replaced by an arbitrary nominal signature (a notion
which comes from joint work with Urban and Gabbay [22] and is developed further
in Cheney’s thesis [2]); and more concrete in two respects. First, the key notion of (fi-
nite) support has been developed using nominal sets within the framework of ordinary
higher-order logic, rather than being axiomatised within FM-set theory; see Cheney [2,
Chapter 3] for a more leisurely and generalised account of the theory of nominal sets.
Secondly, rather than using an inductively defined nominal set that is isomorphic to the
set of α-terms, the recursion and induction principles refer directly to α-terms, i.e. stan-
dard α-equivalence classes of abstract syntax trees. This is also the approach taken
by Norrish [14], building on Gordon and Melham’s five axioms for α-equivalence [9];
and also by Urban and Tasson [23]. Norrish’s recursion principle [14, Fig. 1] has side-
conditions requiring that the function being defined be well-behaved with respect to
variable-permutations and with respect to fresh name generation. In effect these side-
conditions build in just enough of the theory of nominal sets to yield a well-defined and
total function, while only having to specify how binders with fresh names are mapped
by the function. Along with Urban and Tasson [23], I prefer to develop the theory of
nominal sets in its own right and then give a simple-looking (compare the statements
of Theorems 2 and 8) recursion principle within that theory. One advantage of such
an approach is that it makes it easier to identify and use properties of name freshness,
such as Lemma 7, independently of the recursion principle. We used Lemma 7 in the
reduction of Theorem 8 to Theorem 2 and in the reduction of “varying parameters” to
“no parameters” (Example 15); another good example of its use occurs (implicitly) in
the denotational semantics of FreshML’s fresh expression [20, Sect. 3].

Automated Theorem-Proving Perspective. How easy is it to apply these principles of
α-structural recursion and induction? Just as for the work of Gordon-Melham, Norrish
and Urban-Tasson, to use them one does not have to change to an unfamiliar logic (we
remain in higher-order logic), or a new way of representing syntax (we use the familiar
notion of α-equivalence classes of abstract syntax trees). One does have to get used
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to thinking in terms of permutations and finite support; and the latter is undoubtedly a
subtle concept at higher types. However, the relativisation from arbitrary mathematical
objects to finitely supported ones called for by this approach is made easier by the fact,
noted in Sect. 4.4, that the finite support property is conserved by all the usual con-
structs of higher-order logic except for uses of the axiom of choice. Based also on my
experience with other formalisms, I claim that the use of permutations and finitely sup-
ported objects is a simple, effective and yet rigorous way of dealing with binders and
α-equivalence in “paper-and-pencil” proofs in programming language semantics. But
how easy is it to provide computer support for reasoning with α-structural recursion and
induction? In Sect.4.4, I mentioned the three types (I–III) of task involved in applying
these principles in any particular case. Task (III) will require human-intervention; but in
view of the meta-theorem mentioned in Sect.4.4, there is the possibility of making tasks
(I) and (II) fully automatic. One way of attempting that is to develop a new higher-order
logic in which types only denote nominal sets and that axiomatises properties of permu-
tations and finite support; this is the route taken by Gabbay with his FM-HOL [7]. The
disadvantage of such a “new logic” approach is that one does not have easy access to
the legacy of already-proved results in systems such as HOL (hol.sourceforge.net)
and Isabelle/HOL (www.cl.cam.ac.uk/Research/HVG/Isabelle/). To what extent
tasks (I) and (II) can be automated within these “legacy” mechanised logics remains to
be seen. The work of Norrish [14] provides a starting point within the HOL system;
and Urban and Tasson [23] have already developed a theory equivalent to nominal sets
within Isabelle/HOL up to and including what I am here calling α-structural induction
for the particular nominal signature for λ-terms (but not yet α-structural recursion for
that signature).11 HOL and Isabelle/HOL feature type variables and predicative poly-
morphism. As a result, in principle it is possible to formulate and prove within such
logics a result like Theorem 8 that makes a statement about all nominal signatures and
all nominal sets. Of more use in practice would be would an augmentation of the HOL
or Isabelle datatype packages, allowing the user to declare a nominal signature and then
have the principles of α-structural recursion and induction for that signature proved and
ready to be applied.12

Acknowledgements. I am grateful to James Cheney, Murdoch Gabbay, Michael Nor-
rish, Mark Shinwell and Christian Urban for their many contributions to the subject of
this paper.
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Abstract. We show that delaying fully-expansive proof reconstruction
for non-interactive decision procedures can result in a more efficient work-
flow. In contrast with earlier work, our approach to postponed proof does
not require making deep changes to the theorem prover.

1 Introduction

Theorem proving programs serve to mechanise formal reasoning. Interactive the-
orem provers require user guidance to assist with formal proof. The proof pro-
ceeds by having the user type commands that tell the prover the next step in the
proof. Such a step may invoke fully automatic decision procedures to handle the
tedious but easier parts of the proof, leaving the user to focus on the parts requir-
ing insight. Such decision procedures can often take a while to execute, taking
up resources and making the user wait before the next command can be issued.

This situation is made worse for fully-expansive or LCF-style [10] theorem
provers. This is because every proof must be constructed via the application of
a small core set of primitive rules of inference. This has the great advantage
that writing more powerful derived rules of inference cannot breach soundness,
provided the core rules are sound. However, there is a speed penalty because of
the large number of primitive inferences performed for each proof. Henceforth
we consider only fully-expansive provers.

The standard way of making a decision procedure go faster is to execute it
outside the theorem prover in an efficient manner (say as a C program), and then
verify the result by proof in the theorem prover. Often the difference between the
time taken to find a proof and to verify it justifies this approach. For instance, the
result from a SAT-solver can be efficiently verified fully-expansively [7]. On the
other hand, the result of a BDD operation is extremely inefficient to verify fully-
expansively [11]. Most decision procedures fall somewhere along this spectrum.

For decision procedures that are hard to verify, the proof is usually done
using a hybrid approach in which as much as possible of the proof search is
done externally, resorting to internal proof if the trade-off between search and
verification becomes unacceptable. In this way, proof search and verification
proceed together in lock-step fashion.

In such a situation, it may help to postpone the justification underlying the
verification, but to assert the verification right away so that the next search
phase can proceed. This is supported by two observations:

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 35–49, 2005.
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– The verification can be done later when the user is otherwise occupied and
computational resources are lying unused.

– Many of the lemmas for the verification proof may not eventually be required
as the decision procedure may abandon a particular line of inquiry and thus
all corresponding verification as well.

This approach was considered, most relevantly for us, by Boulton in his Ph.D.
thesis [4], for the hol88 theorem prover. The postponed proofs and theorems
were termed lazy. In this paper we describe a slightly different approach to lazy
proofs, which is less general but nonetheless useful in certain circumstances. We
use the hol-4 system [13,9], a descendant of hol88.

2 Background

To understand our approach, it is important to first know about the inference
system of the hol family of provers.

2.1 The HOL Inference System

We first give a quick overview of the inference system of hol88 and hol-4.1

The logic of the prover is classical higher order logic, i.e. Church’s simple type
theory [5], with Hindley-Milner polymorphism [16]. The inference system is based
on natural deduction, though the choice of exactly which rules are primitive
has been tempered by efficiency considerations. Hence some derivable rules are
implemented as primitives. The term structure is simply-typed λ-calculus and
the formula syntax is that of predicate logic.

The system is implemented in Moscow ML [19], a dialect of Standard ML
[17]. The type of terms is term and the ML type constructors are available to
users. A goal is an unproved theorem, consisting of a set of propositional terms
Γ (the assumptions) and a propositional term A (the conclusion). Thus a goal
has ML type termset×term. A theorem Γ � A is a goal that can be derived via
the primitive inference rules. Theorems have ML type thm. This is an abstract
type, and so theorems can only be constructed by using the inference rules which
are implemented as ML functions. Some of the primitive rules of inference we
shall refer to are shown in Figure 1.

The complete set of primitive rules together with other functions that may
affect soundness is often referred to as the kernel of the prover. The kernel is
trusted code in the sense that a bug in the kernel can affect the soundness of
derivations. Hence fully-expansive provers attempt to keep the kernel as small
as is feasible.

1 The differences are irrelevant to our discussion so we may regard the inference sys-
tem as effectively being the same. For instance, hol88 was actually implemented
in Classic ML, but for the sake of clarity we’ll pretend it was written in Moscow
ML.
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Assumption:

{A} � A
ASSUME

Modus ponens (A and A′ are α-convertible):

Γ � A Δ � A′ ⇒ B

Γ ∪ Δ � B
MP

Discharge (Δ is the (possibly empty) set of all terms in Γ α-convertible to B):

Γ � A

Γ − Δ � B ⇒ A
DISCHB

Generalisation (x is not free in the assumptions Γ ):

Γ � A

Γ � ∀x.A
GEN x

Specialisation (y is free for x in A):

Γ � ∀x.A

Γ � A[y/x]
SPECy

Fig. 1. Some of the primitive inference rules of hol-4

2.2 Deep Lazy Proofs

Since Boulton’s method forms the starting point of our investigations, we provide
an overview of it here. We shall call this method deep lazy proofs to distinguish
it from our approach. The idea behind deep lazy proofs is to replace theorems
with lazy theorems of abstract type lazy thm.

The lazy theorems are lazy because they have not yet been proved, but may
be used in proofs. Each consists of the underlying structure (i.e. the goal) of
the theorem, together with a justification function of ML type unit → thm.
The justification function or justifier, is a closure which when executed returns
a proved theorem of type thm. A lazy theorem is created by calling a special
function mk lazy thm that takes a goal and a justifier and returns a lazy theorem.

This requires modifying all inference rules (including those in the kernel) to
operate over lazy thm rather than thm. The lazy inference rules would perform
the required validity checks, internally modify the goal, and construct a new
justifier that sequentially calls the justifiers of the argument lazy theorems before
creating the required theorem.

This way any lazy theorem can be proved by executing its justifier. This
execution will also result (because of the sequencing) in the execution of any
justifiers for lazy theorems that were arguments to the inference rules that gave
rise to the lazy theorem. A failed justification raises an exception. This ensures
that all lazy theorems used in the lazy proof of the lazy theorem under consider-
ation are indeed provable. The function prove lazy thm takes a lazy theorem,
executes the justifier, checks that the theorem it returned is indeed the goal, and
returns it as a proved theorem of type thm.
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Since the entire kernel is now lazy, all proof can be done using lazy theorems
only. This results in a significant speed up since simply modifying the term
structure of the goal and sequencing closures is in general much faster than
calling an eager inference rule. This does not really apply at the level of primitive
lazy inferences which effectively do as much work as their eager counterparts.
The main benefit is for derived rules that can directly create lazy rules whose
justifiers take a while to execute.

Proved theorems of type thm are still present in the system mainly because
hol88 was unable to persist closures, so lazy theorems had to be proved be-
fore theories could be saved between sessions. To allow these theorems to be
reused in the main system, the type of lazy theorems was modified to optionally
contain a proved theorem. A function was provided to convert a value of type
thm to a value of type lazy thm, the latter simply containing the proved theo-
rem. This would enable saved theorems to be read back into the system in later
sessions.

The deep approach has the obvious advantage of increased apparent speed
(i.e. not including the justification time). Correctly used, it also results in in-
creased real speed as lazy inferences applied in unused branches of proof search
are not needlessly justified. Another big advantage is that the chosen representa-
tion does not impose any restrictions: deep lazy theorems can be used anywhere
in the prover (except for storage).

The disadvantages are primarily from a developer’s perspective. First, this
approach requires modifying the kernel, always a delicate enterprise in a fully-
expansive prover. Second, unmodified derived rules do not become faster auto-
matically. They have to be heavily modified to exploit lazy proof, and there is
no guarantee that total execution time (i.e. lazy part plus justification) will be
lower than the standard eager proof: it depends on the nature of the proof search
the decision procedure performs.

Henceforth, we use the word “theorem” to mean both lazy and proved theo-
rems, providing the appropriate qualification when necessary. We use the words
“lazify” and “unlazify” to denote the operations of constructing a lazy theorem,
and recovering a proved theorem from it.

3 A Shallow Approach

We felt the need for postponed proof during the development of a symbolic
model checker embedded in hol-4 [1]. The checker falls firmly in the “hard to
verify” category, with BDD operations interleaved with proof steps. Since the
model checker is completely non-interactive, being able to postpone expensive
verification to, say, when the user is asleep,2 or do it in the background, would
help significantly with the work-flow and some of the verification could possibly
be discarded unused.
2 Conversations with verification engineers at Intel Corp. and Microsoft Corp. indicate

that model checkers are commonly run overnight, with office time spent setting up
runs or analysing the output.
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However, it is not clear whether deep lazy theorems are the answer. In par-
ticular, we do not wish to modify the kernel since we wish to retain compatibility
with hol-4. Hence the word “shallow” to contrast with Boulton’s method. This
single restriction starts a chain of decisions that results in a rather different
approach to lazy proofs.

For a start, we cannot have a separate type to represent lazy theorems. This
is because the primitive rules operate over normal theorems, and thus so do all
the derived rules. Having lazy derived rules that operate over a different type
would be an interoperability nightmare. Whereas these derived lazy rules could
conceivably use normal theorems via a suitable embedding of normal theorems
into lazy ones (much like in the deep approach), the reverse is not possible unless
the lazy theorem is first justified into a normal one. This would defeat the point
of having lazy theorems, or else severely restrict their usefulness.

Also, since justifiers can now not be stored with the theorems (since we
cannot modify the type thm), they have to be stored centrally, and a mapping φ
between theorems and justifiers maintained. φ is a partial function, since a single
theorem is not allowed two different justifiers, and proved (directly or unlazified)
theorems have no justifiers. In ML, we implement φ by the look-up function on
a splay map data structure.

3.1 Creating Lazy Theorems

Our solution3 is to have a lazy theorem for the goal (Γ,A) be represented by the
theorem {Ag} � A, where Ag ≡ ∀x ∈ fv(A). A and fv computes the set of free
variables of A. The mapping to justifiers is then given via terms by constructing
φ so that φ(Ag)() = Γ � A. The only constraint is that

fv(A) ∩
⋃

γ∈Γ

fv(γ) = ∅

i.e., the conclusion and the assumptions must not have any free variables in
common. The reason for this is discussed towards the end of §3.2.
{Ag} � A is derived by first constructing the term Ag and then proceeding

{Ag} � Ag ASSUME
.... SPEC(x ∈ fv(A))

{Ag} � A (1)

where after the first inference we have a series of applications of the SPEC rule
for each x ∈ fv(A).

Users are not allowed to modify φ directly. A function make lthm is sup-
plied that takes a goal, creates the required mapping in φ, and returns the lazy
theorem. §3.3 demonstrates this on a simple example.

3 We note here that our first attempt based on the mk oracle thm function of hol-4
failed because it was unable to cleanly track primitive inference rule applications.
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The reason we do not retain the assumptions Γ is practical: it does no harm,
and retaining them complicates and slows down look-ups when evaluating φ.
As noted in the next section, these assumptions are recovered from the justifier
when the theorem is unlazified.

The reason for make lthm creating {Ag} � A rather than {A} � A is to
ensure that rules like GEN that would have succeeded on the proved theorem
Γ � A do not fail on the lazy version. Indeed, some rule applications that would
have failed on Γ � A succeed on {Ag} � A. This would appear to suggest that
we can prove stronger theorems with {Ag} � A than we could with Γ � A.
However, all such rule applications turn out to be vacuous (e.g. GENx t where x
does not occur in t), so the “stronger” theorem is in fact derivable from Γ � A.

3.2 Unlazifying Lazy Theorems

Now suppose we wish to prove B, and know that we require only Γ � A to
prove it. We can use {Ag} � A instead of Γ � A, since the former is a stronger
theorem. The resulting “lazy” theorem is then {Ag} � B.

In general, to unlazify a theorem Δ � B, we define the operation (−)s on
terms to be such that (Ag)s = A and for each C ∈ Δ such that φ(C) is defined,
do

Δ � B
Δ− C � C ⇒ B

DISCHC

φ(C)()
= Θ � Cs

.... GEN (x ∈ fv(Cs))
Θ � C

(Δ− C) ∪Θ � B MP (2)

If φ is not defined, we move on to the next C ∈ Δ and repeat. We can access
the contents of Δ since type destructors for thm are available.

Thus we eventually derive Δ′ ∪Θ′ � B as required, where Δ′ contains all the
non-lazy assumptions used in the proof of B, i.e. they were not introduced via
make lthm. Θ′ similarly contains all non-lazy assumptions used in the proofs of
the lazy theorems used in the proof of B.

As an example, consider the lazy theorem {Ag} � B described at the begin-
ning of §3.2. Δ in this case is just {Ag}. Iterating over Δ, we consider {Ag},
and compute φ(Ag)() which gives Γ � A, corresponding to Θ � Cs in deriva-
tion 2 above. Now we generalise this by apply GEN for each x ∈ fv(A), to get
Γ � Ag, corresponding to Θ � C above. Now we take our lazy theorem {Ag} � B
and use DISCH to get � {Ag} ⇒ B, corresponding to Δ − C � C ⇒ B above.
Finally we use MP together with Γ � Ag to obtain Γ � B, corresponding to
(Δ− C) ∪Θ � B. We give a more detailed and concrete example in §3.3.

A function prove lthm is supplied that takes a theorem and discharges by
the above strategy all assumptions in Δ that were added due to invocations
of make lthm. The implementation of prove lthm is a recursion rather than a
simple iteration, since Cs may itself be the conclusion of a lazy theorem.

prove lthm also modifies φ so that the next call φ(C)() will just return the
result of the justification. This ensures that each unique lazy theorem’s justifi-
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cation is carried out at most once. This is critical since often some fundamental
lemmas are used hundreds of times in a single run of the decision procedure.

Note that the series of GEN rule applications will fail if any x ∈ fv(Cs) occur
free in Θ. This is the reason for having the constraint on free variables in §3.1.
The assumptions added by make lthm respect this constraint so lazy theorems
may be used by the justifiers of other lazy theorems.

Note also that dropping the assumptions Γ in the goal of a lazy theorem
during make lthm does not matter, as any of them that do not get discharged
(as they would if they were caused by a yet earlier make lthm invocation), will
appear as part of Θ′ in the final theorem.

3.3 A Simple Example

We give a simple concrete example to illustrate our approach. Suppose we wish
to prove that

{∀m.m+ 0 = m} � (y = 0)⇒ (x+ y + z = x+ z)

This can be proved directly using the decision procedures for linear arithmetic
available in hol-4. For the purposes of this example however, another way to
prove this in hol-4 is to use the simplifier together with the theorem

{∀m.m+ 0 = m} � (y = 0)⇒ (x+ y = x)

Suppose the latter theorem can be proved by a hol-4 proof procedure f that
takes the goal as argument and returns the required theorem. Suppose further
that calling f is expensive.

To postpone the expensive calls, we can create a lazy theorem. This is done
by calling make lthm with the goal goal1 given by

({′∀m.m+ 0 = m′},′(y = 0)⇒ (x+ y = x)′)

and the justifier λ . f(goal1).4 make lthm returns the lazy theorem

{∀xy.(y = 0)⇒ (x+ y = x)} � (y = 0)⇒ (x+ y = x)

and modifies φ so that φ(′∀xy.(y = 0)⇒ (x+ y = x)′) = λ . f(goal1). Note that
the assumption set {′∀m.m + 0 = m′} has been dropped.

Now we prove our required theorem via simplifying with the lazy theorem,
and get

{∀xy.(y = 0)⇒ (x + y = x)} � (y = 0)⇒ (x+ y + z = x+ z)

Later, to unlazify this theorem, we pass it to prove lthm. prove lthm iterates
through the assumptions. In this case there is only one: ′∀xy.(y=0)⇒(x+y=x)′.
4 We use quotes to distinguish terms of hol-4’s object logic from our metatheory.

There is no such danger of confusion for theorems, since all theorems in this section
are in the object logic.
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This is passed to φ which duly returns λ . f(goal1). Executing this closure gives
us {∀m.m + 0 = m} � (y = 0) ⇒ (x + y = x). prove lthm now recursively
calls itself with this theorem, in case it is lazy. In this example it is not, so the
recursive call returns the theorem itself. We now repeatedly use GEN to get

{∀m.m+ 0 = m} � ∀xy.(y = 0)⇒ (x+ y = x)

Note that the dropped assumption has reappeared via the justifier.
Finally we use DISCH ′∀xy.(y = 0)⇒ (x+ y = x)′ on our target theorem to

get
� (∀xy.(y = 0)⇒ (x+ y = x)) ⇒ (y = 0)⇒ (x+ y + z = x+ z)

and then use the MP rule on this together with {∀m.m+0=m}� ∀xy.(y=0)⇒
(x+ y = x) from the previous paragraph to obtain

{∀m.m+ 0 = m} � (y = 0)⇒ (x+ y + z = x+ z)

as required.

3.4 Limitations and Benefits

This approach has a few problems not faced by the deep approach, which we
discuss here:

1. Definitions cannot be lazified. This is because creating a definition intro-
duces a fresh constant into the current theory, invalidating similarly named
constants declared earlier. Thus the justifier’s result will not match the cor-
responding assumption in the theorem to be unlazified and failure will occur
at the MP stage of derivation 2.

This is not such an issue because few decision procedures create defini-
tions on-the-fly. If they do, the definitions are typically not recursive (used
for abbreviating bigger terms say) and can be created very quickly.

2. The constraint in §3.1 means that our method cannot, in general, be used for
interactive proof, except within a decision procedure that returns non-lazy
results. However, often laziness in decision procedures allows some savings
compared to eager execution, so its usefulness for interactive proofs is not
entirely ruled out. Outside of interactive proof, this constraint has not been
a problem in our experiments so far i.e. we have never needed to create a
lazy theorem with assumptions that had free variables in common with the
conclusion.

3. Any type variables in the conclusion of the lazy theorem appear in its as-
sumptions as well. In theory, this is not a problem, since such type variables
can be instantiated at the point of use. In practice, many derived rules in
hol attempt to instantiate type variables in the conclusion only and will fail
with a lazy theorem which has those type variables in the assumptions (they
must fail: unsoundness would result otherwise).

The only complete answer to this is to modify all derived rules to at-
tempt full type instantiation whenever possible. This could result in loss of
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efficiency. Fortunately, most decision procedures tend to work mostly with
ground theorems. Any theorems with type variables are usually general ones
from pre-proved libraries. Such theorems are of course fully justified theo-
rems and the problem does not exist.

4. φ is currently not constrained to be injective. This can create undesirable
additional assumptions in an unlazified theorem, because the wrong justifier
got called. Unlazifying would succeed since the justifier’s result’s conclusion
is the desired one, but the final unlazified theorems would be stuck with the
non-lazy assumptions of the justifier’s result.

This is an engineering issue. Making φ injective will require the mapping
translation to take assumptions into account, which could possibly be slow.
In practice, this turns out to be a low priority issue since in all our test runs
so far we have yet to come across a non-injective φ.

5. The series of GEN applications in derivation 2 can be very expensive if Θ
contains very large terms.
This is a difficult problem. In practice, decision procedures often work with
large terms, since the very reason for fully automated tools is to handle
mountains of trivial proof. This problem can be solved by adding an iterated
version of GEN to the kernel and deriving GEN as a non-primitive inference
rule. We have verified this solution experimentally. However, modifying the
kernel is not to be taken lightly. Fortunately, this does not become a big
issue for our particular application (the embedded model checker) so we are
content to live with it.

With the possible exception of the last, these are not really problems in
practice, at least not for the problem domains we have considered so far. Unex-
pectedly, the fact that theorems tend to carry around a lot of assumptions while
in lazy mode does not seem to have impacted performance. This may be because
for our current problem domain, the number of dischargeable assumptions in the
final lazy theorem rarely exceeds a hundred.

Within these constraints, we are able to create and use lazy theorems more
or less as in the deep approach. We do have a few benefits as well:

1. The kernel is unmodified and so we are guaranteed soundness (modulo sound-
ness of the kernel itself). This was a big plus during development when the
ramifications of the method were still unclear.

2. No existing derived rule (or any other hol-4 code for that matter) needs
to be modified at all to work with this method. However, as with the deep
approach, unmodified derived rules do not directly benefit.

3. There is only one type of theorem. Thus we do not have to implement trans-
lations between different types.

More importantly, we can unlazify a theorem at any stage. This provides
some flexibility in implementing a more sophisticated system that would
perhaps completely or partially unlazify theorems based on some metric that
measured the trade-offs for retaining the lazy version, at any stage during
the decision procedure’s run. The closest analogy that comes to mind is that
of a garbage collector in modern programming languages.
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3.5 Refinements

We mention some refinements to the method which, for the sake of clarity, were
not presented in §3.1 and §3.2.

First, as with the deep approach, we allow different modes of operation.
Lazy mode works as described above. In eager mode, the justifiers are executed
right away so there is no difference between eager mode and normal non-lazy
execution. The mode can be changed at any time, and thus procedures can switch
lazy proofs on or off depending on requirements.

Second, make lthm is actually passed two closures rather than a goal and
a single closure (i.e. the justifier). The first closure returns the goal, and the
second is the justifier. This is so that eager mode does not pay the penalty for
constructing the goal (which can sometimes be time consuming even in lazy
mode), which is not required in eager mode. This does not guard against the
goal being different from the justifier’s result. However, if such were the case,
unlazifying would fail at the MP stage of derivation 2, if not earlier.

Finally, the first closure passed to make lthm does not just return a goal. It
returns a goal and optionally a justifier which is used when unlazifying. This is
because it can use any information gained during the construction of the goal
in lazy mode. Thus it could conceivably execute faster than the “eager” justifier
(the second argument to make lthm) that re-proves everything from scratch.

We have experimented with using shallow lazy proofs in our embedded model
checker. The results are promising, as we show in the next two sections.

4 Lazifying a Decision Procedure

We chose to modify the HolCheck decision procedure [1] in hol-4 to exploit lazy
proof. The reason for this is our view that HolCheck could significantly benefit
from such a development, as well as our familiarity with the code.

HolCheck is a symbolic model checker for the modal μ-calculus [15]. It is em-
bedded in the HOL logic, with BDD operations considered atomic and executed
externally for efficiency [8]. It is not possible to efficiently verify the part of proof
search performed by the BDD operations. However, a model checker does more
than BDD operations. It creates and applies transformations to models, trans-
lates between formalisms, and organizes the sequencing of BDD operations. All
these operations are amenable to verification by formal proof.

Since model checkers are expected to be fast, it is in our interest to lower
the overhead that is the verification part of the execution of HolCheck. For
various reasons, it was found more efficient and more effective to carry out the
verification interleaved with the proof search steps. The expectation is that by
lazifying the verification, we retain the advantages and yet increase efficiency.

The model checking work-flow is somewhat different from the way interactive
proof proceeds. The user sets up a run, and executes the checker. Most of the
user’s time is then spent analysing the output of the checker to fix bugs in the
model or the specification. Then the process is repeated. It is thus imperative
that the checker run as fast as possible.
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Our main hope was that by using lazy proofs, we could delay the relatively
slower verification parts of the proof to some later time, say when the user is
analysing the checker’s output, or overnight. This would greatly speed up the
model checking work-flow, at no extra cost.

Currently we have lazified only the core of the model checker. This includes
formal model construction, translation by proof from the specification logic CTL
[3] to the model checker’s μ-calculus and back, the model checking engine itself
and trace generation. The abstraction mechanisms have not yet been made lazy,
and were turned off for benchmarking purposes.

The benchmarks are for model checking several properties for a 3x3 game of
tic-tac-toe, and for a small pipelined ALU. The examples were chosen to be big
enough to not finish execution in a couple of seconds, but not so big that the
majority of the model checker’s time was spent in BDD operations. This was so
that we could time the savings (if any) in the non-BDD verification part of the
checker’s time.

Table 1. HolCheck benchmarks with and without lazy proof (as % of eager time)

tic-tac-toe ALU

Eager total (gc) 100 (30.13) 100 (34.28)

Lazy lazy 38.88 30.47
Lazy justification (overhead) 19.53 (7.39) 75.95 (4.98)
Lazy total (gc) 58.41 (6.21) 106.43 (4.76)

The results are given in Table 1. All numbers are normalised with respect to
the topmost row, which represents the time taken by running HolCheck in eager
or non-lazy mode, scaled to 100. The absolute numbers are not important. The
benchmarks took from about 30 seconds to about a 1000 seconds to complete.

In the table, “gc” stands for the time taken by the Moscow ML garbage
collector, and is included in the total time. “lazy” gives the time taken to run
HolCheck in lazy mode, and “justification” indicates how long it takes to later
unlazify all the lazy theorems produced. “overhead” shows the portion of time
spent doing the work of derivations 1 and 2.

The HolCheck core’s verification part is already heavily optimized. Nonethe-
less, we see that the lazified system runs around thrice as fast as the eager one.
Garbage collection overheads are also comparatively low, mainly because proof
is delayed so that the number of terms that appear and disappear is low.

Factoring in the justification stage, the tic-tac-toe benchmark still runs al-
most twice as fast as the eager version, but the ALU benchmark is slightly
slower. This is because in the tic-tac-toe benchmark, some of the properties
checked are designed to fail (to exercise the trace generation code). Hence unlaz-
ifying for those properties is not done, whereas the eager version expends extra
time proving the corresponding verification conditions. In the ALU benchmark,
all properties succeed, so all theorems must be unlazified. In this case, the small
lag is explained by the (un)lazifying overhead, as expected.
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Note that we omit the number of primitive inferences made in the different
modes. This is mainly because the number of primitive inferences only very
roughly correlates with time savings and thus primitive inference figures may
overrate the benefits of lazy proofs. For instance, the lazy version of HolCheck
performs about 80% fewer primitive inferences than the eager one (though the
justification phase makes up for the difference), but is not five times as fast.
Unlike the deep approach, our lazy mode is not primitive inference free: we do
not bother lazifying proofs written directly in terms of primitive inferences since
these do not save us any time. There were quite a few of these in the pre-lazified
optimized HolCheck core.

The speed gains are remarkably similar to those achieved using the deep
approach, which also reported roughly a three-fold increase in the speed of the
lazy decision procedure, with justification not always saving any time. It remains
to be investigated if this is more than coincidence. It should be kept in mind
that the deep approach’s results were reported over a decade ago, and theorem
proving technology has improved much since then. Nonetheless, we have achieved
similar performance gains without modifying the kernel of the prover, with room
for improvement if we do.

5 Lazifying a Derived Rule

The primary beneficiaries of our approach are expected to be decision proce-
dures. However, most decision procedures make use of derived rules of inference.
It would thus be nice if we could over time build a library of lazified derived
rules. This would ease the further development of lazy derived rules and deci-
sion procedures.

The expectation here is that the lazy derived rule will run faster than the
eager one and even if the justification takes as long as the eager rule, it would
not matter since the justification will be carried out at a time when the user is
busy elsewhere.

An an experiment, we chose to lazify the GEN PALPHA derived rule in hol-4.
This rule performs alpha conversion with respect to the binder of any abstraction,
with the further ability to handle not only single variables, but paired structures
as well. So,

Γ � @x.t
Γ � @y.t[y/x]

GEN PALPHAy

where @ is any binder, and x and y are possibly paired structures of the same
type. Variable renaming is performed if necessary to avoid variable capture
within t.

This rule was chosen for two reasons. First, it is used often in HolCheck
and can be slow on large terms (not through any fault of the implementation).
Second, it is not so low-level that lazifying has no benefit, and not so complicated
that lazifying would not work because we do not understand how the rule works.

Lazifying this rule is not as simple as passing a goal and the eager version
of GEN PALPHA to make lthm. We need to work out what the t[y/x] part of
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Table 2. GEN PALPHA lazy execution time (as % of eager time)

Number of variables\Term size 800-3000 1500-5500 2500-8000 3000-12000

100 55.81 55.1 57.14 53.33
200 22.46 22.52 24.62 23.72
300 13.1 13.45 14.96 17.03
400 9.66 9.77 12.28 12.49
500 5.82 7.15 9.59 9.88

Table 3. GEN PALPHA justification time (as % of eager time)

Number of variables\Term size 800-3000 1500-5500 2500-8000 3000-12000

100 188.37 289.8 422.98 572.08
200 150.97 203.95 266.36 314.71
300 135.1 172.79 202.24 227.16
400 125.69 152.15 171.57 190.51
500 128.49 144.26 154.56 165.87

the goal will look like. Simple substitution will not do since x and y may have
the same type but different structure e.g. x could be the pair (a, b) with a and b
occurring separately in t, while y is just a single variable. Also, some components
of y may need renaming to avoid capture by internal binders in t. Fortunately,
the code for this can be extracted without too much hardship from the code for
GEN PALPHA, though it is not as simple as a copy-paste operation.

Constructing the goal takes time, and this is where the motivation for the
refinements mentioned in §3.5 comes from. Once that is done, we proceed with
make lthm as usual, using as our justifier the eager version of GEN PALPHA.
Later we intend to write our own justifier that can take advantage of any infor-
mation gleaned during goal construction.

Performance evaluation results are given for lazy execution and justification
in Table 2 and Table 3, with all times normalised to the eager version’s perfor-
mance, which is set at 100 as before.

Both the eager and lazy versions of GEN PALPHA were run on a number of
randomly generated terms of various sizes, with varying numbers of free variables
and levels of internal binding (to exercise the renaming aspects of the code).
Term size is, roughly speaking, the number of abstractions and applications
in the underlying λ-structure of a term. Term sizes are given as ranges since
the randomly generated terms contained predicates on a random number of
variables, hence the term size increased with the number of free variables.

Again, the absolute numbers are not important. Just to give the reader an
idea, the eager version averaged about half a second with a 100 variables and a
term size range of 800-3000, and about 120 seconds when the number of variables
is increased to 500. Increasing term size only causes a linear degradation in eager
performance however.

As expected, the lazy version runs much faster than the eager version, much
more so than in the deep approach. However, the justification phase now takes
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much longer. The performance of the eager version scales well with term size,
but degrades badly with increasing the number of variables, which is where the
lazy version wins out. Justification degrades badly in both dimensions, though
with higher variable sizes, the relative performance improves on account of the
degradation in eager performance.

Since the justifier is just the eager version, all the extra time in justification
is being taken up by the lazifying overhead. Profiling shows that 99% of this
overhead can be traced to the series of GEN applications in derivation 2. This
problem has already been noted. If an iterated version of GEN is added to the
kernel, this overhead almost disappears.

Thus, at least in this case, using the lazy version is only useful if the justifica-
tion is to be postponed until much later, rather than done immediately after the
lazy rule finishes. This renders this lazy rule unfit for interactive use (without
modifying the kernel) where, as noted in §3.4, only fully justified theorems are
usable. However, it can still be used in decision procedures and indeed has been
used in HolCheck.

6 Related Work and Conclusion

The work by Boulton [4] was the starting point of our research and his obser-
vations strongly influenced our decisions. Laziness has been exploited in formal
verification elsewhere, for instance in incremental SAT-based abstraction for
model checking [2,6]. More relevantly, the lazy approach has been applied to the
Nelson-Oppen congruence closure algorithm [12,18].

Shallow lazy proofs succeed very well at justifying the observations made
towards the end of §1, at least with respect to HolCheck and GEN PALPHA.
However, our experience with lazifying indicates that the gains are strongly
dependent on the nature of the proof procedure under consideration.

In particular, the more proof is done externally, the less lazy proofs are likely
to help, even in the lazy stage. Also, if the proof search is very efficient with
few abandoned lines of search, the justification phase will make up for any time
savings made during the lazy stage.

The constraints listed in §3.4 do restrict the applicability of our approach.
However, in actual practice, the performance issues have not seriously affected ef-
ficiency, and the theoretical restrictions have not constrained shallow lazy proofs
enough to affect usefulness.

This method is applicable to all theorem provers that support the rules of
inference listed in Figure 1.
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Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?

We propose an initial set of benchmarks for measuring progress in
this area. Based on the metatheory of System F<:, a typed lambda-
calculus with second-order polymorphism, subtyping, and records, these
benchmarks embody many aspects of programming languages that are
challenging to formalize: variable binding at both the term and type
levels, syntactic forms with variable numbers of components (including
binders), and proofs demanding complex induction principles. We hope
that these benchmarks will help clarify the current state of the art, pro-
vide a basis for comparing competing technologies, and motivate further
research.

1 Introduction

Many proofs about programming languages are long, straightforward, and te-
dious, with just a few interesting cases. Their complexity arises from the man-
agement of many details rather than from deep conceptual difficulties; yet small
mistakes or overlooked cases can invalidate large amounts of work. These effects
are amplified as languages scale: it becomes hard to keep definitions and proofs
consistent, to reuse work, and to ensure tight relationships between theory and
implementations. Automated proof assistants offer the hope of significantly eas-
ing these problems. However, despite much encouraging progress in recent years
and the availability of several mature tools (ACL2, Coq, HOL, HOL Light, Is-
abelle, Lego, NuPRL, PVS, Twelf, etc.), their use is still not commonplace.

We believe that the time is ripe to join the efforts of the two communities,
bringing developers of automated proof assistants together with a large pool
of eager potential clients—programming language designers and researchers. In
particular, we would like to answer two questions:

1. What is the current state of the art in formalizing language metatheory and
semantics? What can be recommended as best practices for groups (typically
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not proof-assistant experts) embarking on formalizing language definitions,
either small- or large-scale?

2. What improvements are needed to make the use of tool support common-
place? What can each community contribute?

Over the past several months, we have surveyed the landscape of proof as-
sistants, language representation strategies, and related tools. Collectively, we
have applied automated theorem proving technology to a number of problems, in-
cluding proving transitivity of the algorithmic subtype relation in System F<: [3],
proving type soundness of Featherweight Java, proving type soundness of vari-
ants of the simply typed λ-calculus and F<:, and a substantial formalization of
the behavior of TCP, UDP, and the Sockets API. We have carried out these case
studies using a variety of object-language representation strategies, proof tech-
niques, and proving environments. We have also experimented with lightweight
tools designed to make it easier to define and typeset both formal and informal
mathematics. Although experts in programming language theory, we are relative
outsiders with respect to computer-aided proof.

Our conclusion from these experiments is that the relevant technology has
developed almost to the point where it can be widely used by language re-
searchers. We seek to push it over the threshold, making the use of proof tools
common practice in programming language research—mechanized metatheory
for the masses.

Tool support for formal reasoning about programming languages would be
useful at many levels:

1. Machine-checked metatheory. These are the classic problems: type preser-
vation and soundness theorems, unique decomposition properties for opera-
tional semantics, proofs of equivalence between algorithmic and declarative
variants of type systems, etc. At present such results are typically proved
by hand for small to medium-sized calculi, and are not proved at all for full
language definitions. We envision a future in which the papers in confer-
ences such as Principles of Programming Languages (POPL) are routinely
accompanied by mechanically checkable proofs of the theorems they claim.

2. Use of definitions as oracles for testing and animation. When developing a
language implementation together with a formal definition one would like
to use the definition as an oracle for testing. This requires tools that can
decide typing and evaluation relationships, and they might differ from the
tools used for (1) or be embedded in the same proof assistant. In some cases
one could use a definition directly as a prototype.

3. Support for engineering large-scale definitions. As we move to full language
definitions—on the scale of Standard ML [19] or larger—pragmatic “software
engineering” issues become increasingly important, as do the potential ben-
efits of tool support. For large definitions, the need for elegant and concise
notation becomes pressing, as witnessed by the care taken by present-day
researchers using informal mathematics. Even lightweight tool support, with-
out full mechanized proof, could be very useful in this domain, e.g., for sort
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checking and typesetting of definitions and of informal proofs, automatically
instantiating definitions, performing substitutions, etc.

Large scale formalization of languages is already within reach of current
technology. For examples, see the work on proofs of correctness of the Damas-
Milner type inference algorithm for ML [6,22], semantics for C [25], semantics
for Standard ML [32,34,13], and semantics and proofs of correctness for sub-
stantial subsets of Java [24,17,23]. Some other significant existing applications
of mechanized metatheory include Foundational Proof Carrying Code [1] and
Typed Assembly Languages [4]. Inspired by these successes, we seek to make
mechanized metatheory more accessible to programming languages researchers.

We hope to stimulate progress by providing a framework for comparing al-
ternative technologies. We issue here an initial set of challenge problems, dubbed
the PoplMark Challenge, chosen to exercise some aspects of programming lan-
guages that are known to be difficult to formalize: variable binding at both term
and type levels, syntactic forms with variable numbers of components (includ-
ing binders), and proofs demanding complex induction principles. Such chal-
lenge problems have been used in the past within the theorem proving com-
munity to focus attention on specific areas and to evaluate the relative mer-
its of different tools; these have ranged in scale from benchmark suites and
small problems [31,12,5,15,9,21] up to the grand challenges of Floyd, Hoare, and
Moore [7,14,20]. We hope that our challenge will have a similarly stimulating
effect.

Our problems are drawn from the basic metatheory of a call-by-value variant
of System F<: [3], enriched with records, record subtyping, and record patterns.
We provide an informal definition of its type system and operational semantics.
This language is of moderate scale—significantly more complex than simply
typed lambda-calculus or “mini ML,” but much smaller than a full-blown pro-
gramming language—to keep the work involved in attempting the challenges
manageable. (Our challenges therefore explicitly address only points 1 and 2
above; we regard the pragmatic issues of point 3 as equally critical, but it is
not yet clear to us how to formulate a useful challenge problem at this larger
scale.) As these challenges are met, we anticipate that the set of problems will
be extended to emphasize other language features and proof techniques.

We have begun collecting and publicizing solutions to these challenge prob-
lems on our web site.1 In the longer run, we hope that this site and accompanying
e-mail discussion list will serve as a forum for promoting and advancing the cur-
rent best practices in proof assistant technology and making this technology
available to the broader programming languages community and beyond. We
encourage researchers to try out the PoplMark Challenge using their favorite
tools and send us their solutions.

In the next section, we discuss in more detail our reasons for selecting this
specific set of challenge problems. Section 3 describes the problems themselves,
and Section 4 sketches some avenues for further development of the challenge
problem set.
1 http://www.cis.upenn.edu/proj/plclub/mmm/
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2 Design of the Challenge

This section motivates our choice of challenge problems and discusses the eval-
uation criteria for proposed solutions to the challenges. Since variable binding
is a central aspect of the challenges, we briefly discuss relevant techniques and
sketch some of our own experience in this area.

2.1 Problem Selection

The goal of the PoplMark Challenge is to provide a small, well-defined set of
problems that capture many of the most critical issues in formalizing programing
language metatheory. By its nature, such a benchmark will not be able to reflect
all important issues. Instead, the PoplMark problems concentrate on a few
important features:

– Binding. Most programming languages have some form of binding in their
syntax and require a treatment of α-equivalence and substitution in their se-
mantics. To adequately represent many languages, the representation strat-
egy must support multiple kinds of binders (e.g. term and type), constructs
introducing multiple binders over the same scope, and potentially unbounded
lists of binders (e.g. for record patterns).

– Complex inductions. Programming language definitions often involve com-
plex, mutually recursive definitions. Structural induction over such objects,
mutual induction, and induction on heights or pairs of derivations are all
commonplace in metatheory.

– Experimentation. Proofs about programming languages are just one aspect
of formalization; for some applications, experimenting with formalized lan-
guage designs is equally interesting. It should be easy for the language de-
signer to execute typechecking algorithms, generate sample program behav-
iors, and—most importantly—test real language implementations against
the formalized definitions.

– Component reuse. To further facilitate experimentation with and sharing
of language designs, the infrastructure should support some way of reusing
prior definitions and parts of proofs.

We have carefully constructed the PoplMark Challenge to stress these
features; a theorem-proving infrastructure that addresses the whole challenge
should be applicable across a wide spectrum of programming language theory.
While we believe that the features above are essential, our challenge does not
address many other interesting and tricky-to-formalize constructs and reasoning
principles. We discuss possible extensions to the challenge in Section 4.

2.2 Evaluation Criteria

A solution to the PoplMark Challenge will consist of appropriate software
tools, a language representation strategy, and a demonstration that this in-
frastructure is sufficient to formalize the problems described in Section 3. The
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long version of this paper (available at our web site) includes an appendix with
reasonably detailed informal proofs of the challenge properties. Solutions to the
challenge should follow the overall structure of these proofs, though we expect
that details will vary from prover to prover and across term representations. In
all cases, there must be an argument for why the formalization is equivalent to
the presentation in Section 3—i.e., an adequacy theorem—which should be as
simple as possible.

The primary metric of success (beyond correctness, of course) is that a solu-
tion should give us confidence of future success of other formalizations carried
out using similar techniques. In particular, this implies that:

– The technology should impose reasonable overheads. We accept that there is
a cost to formalization, and our goal is not to be able to prove things more
easily than by hand (although that would certainly be welcome). We are
willing to spend more time and effort to use the proof infrastructure, but
the overhead of doing so must not be prohibitive. (For example, as we discuss
below, our experience is that explicit de Bruijn-indexed representations of
variable binding structure fail this test.)

– The technology should be transparent. The representation strategy and proof
assistant syntax should not depart too radically from the usual conventions
familiar to the technical audience, and the content of the theorems them-
selves should be apparent to someone not deeply familiar with the theorem
proving technology used or the representation strategy chosen.

– The technology should have a reasonable cost of entry. The infrastructure
should be usable (after, say, one semester of training) by someone who is
knowledgeable about programming language theory but not an expert in
theorem prover technology.

2.3 Representing Binders

The problem of representing and reasoning about inductively-defined structures
with binders is central to the PoplMark challenges. Representing binders has
been recognized as crucial by the theorem proving community, and many dif-
ferent solutions to this problem have been proposed. In our (still limited) ex-
perience, none emerge as clear winners. In this section we briefly summarize
the main approaches and, where applicable, describe our own experiments using
them. Our survey is far from complete and we refrain from drawing any hard
conclusions, to give the proponents of each method a chance to try their hand
at meeting the challenge.

A first-order, named approach very similar in flavor to standard informal pre-
sentations was used by Vestergaard and Brotherston to formalize some metathe-
ory of untyped λ-calculus [35,36]. Their representation requires that each binder
initially be assigned a unique name—one aspect of the so-called Barendregt
convention.

Another popular concrete representation is de Bruijn’s nameless represen-
tation. De Bruijn indices are easy to understand and support the full range of
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induction principles needed to reason over terms. In our experience, however,
de Bruijn representations have two major flaws. First, the statements of theo-
rems require complicated clauses involving “shifted” terms and contexts. These
extra clauses make it difficult to see the correspondence between informal and
formal versions of the same theorem—there is no question of simply typesetting
the formal statement and pasting it into a paper. Second, while the notational
clutter is manageable for “toy” examples of the size of the simply-typed lambda
calculus, we have found it becomes quite a heavy burden even for fairly small
languages like F<:.

In their formalization of properties of pure type systems, McKinna and Pol-
lack use a hybrid approach that combines the above two representation strate-
gies. In this approach, free variables are ordinary names while bound variables
are represented using de Bruijn indices [18].

A radically different approach to representing terms with binders is higher-
order abstract syntax (HOAS) [28]. In HOAS representations, binders in the
meta-language are used to represent binders in the object language. Our experi-
ence with HOAS encodings (mainly as realized in Twelf) is that they provide a
conveniently high level of abstraction, encapsulating much of the complexity of
reasoning about binders. However, the strengths and limitations of the approach
are not yet clearly understood, and it can sometimes require significant ingenuity
to encode particular language features or proof ideas in this style.

Gordon and Melham propose a way to axiomatize inductive reasoning over
untyped lambda-terms [11] and suggest that other inductive structures with
binding can be encoded by setting up a correspondence with the untyped lambda
terms. Norrish has pursued this direction [26,27], but observes that these axioms
are cumbersome to use without some assistance from the theorem-proving tool.
In particular, the axioms use universal quantification in inductive hypotheses
where in informal practice “some/any” quantification is used. He has developed
a library of lemmas about a system of permutations on top of the axioms that
aids reasoning significantly.

Several recent approaches to binding take the concept of “swapping” as a
primitive, and use it to build a nominal logic. Gabbay and Pitts proposed a
method of reasoning about binders based upon a set theory extended with an
intrinsic notion of permutation [8]. Pitts followed this up by proposing a new
“nominal” logic based upon the idea of permutations [30]. More recent work by
Urban proposes methods based on the same intuitions but carried out within a
conventional logic [33]. Our own preliminary experiments with Urban’s methods
have been encouraging.

3 The Challenge

Our challenge problems are taken from the basic metatheory of System F<:.
This system is formed by enriching the types and terms of System F with a
subtype relation, refining universal quantifiers to carry subtyping constraints,
and adding records, record subtyping, and record patterns. Our presentation is
based on Pierce’s Types and Programming Languages [29].
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The challenge comprises three distinct parts. The first deals just with the
type language of F<:; the second considers terms, evaluation, and type soundness.
Each of these is further subdivided into two parts, starting with definitions and
properties for pure F<: and then asking that the same properties be proved for
F<: enriched with records and patterns. This partitioning allows the development
to start small, but also—and more importantly—focuses attention on issues of
reuse: How much of the first sub-part can be re-used verbatim in the second
sub-part? The third problem asks that useful algorithms be extracted from the
earlier formal definitions and used to “animate” some simple properties.

Challenge 1A: Transitivity of Subtyping

The first part of this challenge problem deals purely with the type language
of F<:. The syntax for this language is defined by the following grammar and
inference rules. Although the grammar is simple—it has only four syntactic
forms—some of its key properties require fairly sophisticated reasoning.
Syntax:
T ::= types

X type variable
Top maximum type
T→T type of functions
∀X<:T.T universal type

Γ ::= type environments
∅ empty type env.
Γ , X<:T type variable binding

In ∀X<:T1.T2, the variable X is a binding occurrence with scope T2 (X is not
bound in T1). In Γ , X<:T, the X must not be in the domain of Γ , and the free
variables of T must all be in the domain of Γ .

Following standard practice, issues such as the use of α-conversion, capture
avoidance during substitution, etc. are left implicit in what follows. There are
several ways in which these issues can be formalized: we might take Γ as a
concrete structure (such as an association list of named variables and types)
but quotient types and terms up to alpha equivalence, or we could take entire
judgments up to alpha equivalence. We might axiomatize the well-formedness of
typing environments and types using auxiliary � Γ ok and Γ � T ok judgments.
And so on. We leave these decisions to the individual formalization.

It is acceptable to make small changes to the rules below to reflect these
decisions, such as adding well-formedness premises. Changing the presentation
of the rules to a notationally different but “obviously equivalent” style such as
HOAS is also acceptable, but there must be a clear argument that it is really
equivalent. Also, whatever formalization is chosen should make clear that we are
only dealing with well-scoped terms. For example, it should not be possible to
derive X <: Top in the empty typing environment.
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The subtyping relation captures the intuition “if S is a subtype of T (written
S <: T) then an instance of S may safely be used wherever an instance of T is
expected.” It is defined as the least relation closed under the following rules.
Subtyping Γ � S <: T

Γ � S <: Top (SA-Top)

Γ � X <: X (SA-Refl-TVar)

X<:U ∈ Γ Γ � U <: T

Γ � X <: T
(SA-Trans-TVar)

Γ � T1 <: S1 Γ � S2 <: T2

Γ � S1→S2 <: T1→T2
(SA-Arrow)

Γ � T1 <: S1 Γ , X<:T1 � S2 <: T2

Γ � ∀X<:S1.S2 <: ∀X<:T1.T2
(SA-All)

These rules present an algorithmic version of the subtyping relation. In
contrast to the more familiar declarative presentation, these rules are syntax-
directed, as might be found in the implementation of a type checker; the al-
gorithmic rules are also somewhat easier to reason with, having, for example,
an obvious inversion property. The declarative rules differ from these by explic-
itly stating that subtyping is reflexive and transitive. However, reflexivity and
transitivity also turn out to be derivable properties in the algorithmic system.
A straightforward induction shows that the algorithmic rules are reflexive. The
first challenge is to show that that they are also transitive.

3.1 Lemma [Transitivity of Algorithmic Subtyping]: If Γ � S <: Q and
Γ � Q <: T, then Γ � S <: T. �

The difficulty here lies in the reasoning needed to prove this lemma. Transi-
tivity must be proven simultaneously with another property, called narrowing,
by an inductive argument with case analyses on the final rules used in the given
derivations.

3.2 Lemma [Narrowing]: If Γ , X<:Q, Δ � M <: N and Γ � P <: Q then
Γ , X<:P, Δ � M <: N. �

Challenge 1B: Transitivity of Subtyping with Records

We now extend this challenge by enriching the type language with record types.
The new syntax and subtyping rule for record types are shown below. Implicit
in the syntax is the condition that the labels {li

i∈1..n} appearing in a record
type {li : Ti

i∈1..n} are pairwise distinct.
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New syntactic forms:
T ::= ... types

{li:Ti
i∈1..n} type of records

New subtyping rules Γ � S <: T

{li
i∈1..n} ⊆ {kj

j∈1..m} if kj = li, then Γ � Sj <: Ti

Γ � {kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(SA-Rcd)

Although it has been shown that records can actually be encoded in pure
F<: [2,10], dealing with them directly is a worthwhile task since, unlike other
syntactic forms, record types have an arbitrary (finite) number of fields. Also,
the informal proof for Challenge 1A extends to record types by only adding the
appropriate cases. A formal proof should reflect this.

Challenge 2A: Type Safety for Pure F<:

The next challenge considers the type soundness of pure F<: (without record
types, for the moment). Below, we complete the definition of F<: by describ-
ing the syntax of terms, values, and typing environments with term binders
and giving inference rules for the typing relation and a small-step operational
semantics.

As usual in informal presentations, we elide the formal definition of substi-
tution and simply assume that the substitutions of a type P for X in T (denoted
[X �→ P]T) and of a term q for x in t (denoted [x �→ q]t) are capture-avoiding.

Syntax:
t ::= terms

x variable
λx:T.t abstraction
t t application
λX<:T.t type abstraction
t [T] type application

v ::= values
λx:T.t abstraction value
λX<:T.t type abstraction value

Γ ::= type environments
∅ empty type env.
Γ , x:T term variable binding
Γ , X<:T type variable binding
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Typing Γ � t : T

x:T ∈ Γ

Γ � x : T
(T-Var)

Γ , x:T1 � t2 : T2

Γ � λx:T1.t2 : T1→T2
(T-Abs)

Γ � t1 : T11→T12 Γ � t2 : T11

Γ � t1 t2 : T12
(T-App)

Γ , X<:T1 � t2 : T2

Γ � λX<:T1.t2 : ∀X<:T1.T2
(T-TAbs)

Γ � t1 : ∀X<:T11.T12 Γ � T2 <: T11

Γ � t1 [T2] : [X �→ T2]T12
(T-TApp)

Γ � t : S Γ � S <: T

Γ � t : T
(T-Sub)

Evaluation t −→ t′

(λx:T11.t12) v2 −→ [x �→ v2]t12 (E-AppAbs)

(λX<:T11.t12) [T2] −→ [X �→ T2]t12 (E-TappTabs)

Evaluation contexts:
E ::= evaluation contexts

[−] hole
E t app fun
v E app arg
E [T] type fun

Evaluation in context:

t1 −→ t′1
E[t1] −→ E[t′1]

(E-Ctx)

The evaluation relation is presented in two parts: the rules E-AppAbs and
E-TappTabs capture the immediate reduction rules of the language, while
E-Ctx permits reduction under an arbitrary evaluation context E. For F<:, one
would have an equally clear definition and slightly simpler proofs using explicit
closure rules for the evaluation relation. We use evaluation contexts with an
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eye to larger languages and languages with non-local control operators such as
exceptions, for which (in informal mathematics) they are an important tool for
reducing notational clutter in definitions.2 Evaluation contexts are also partic-
ularly interesting from the point of view of formalization when they include
binders, though unfortunately there are no examples of this in call-by-value F<:.

Type soundness is usually proven in terms of preservation and progress the-
orems. Challenge 2A is to prove these properties for pure F<:.

3.3 Theorem [Preservation]: If Γ � t : T and t −→ t′, then Γ � t′ : T. �

3.4 Theorem [Progress]: If t is a closed, well-typed F<: term (i.e., if � t : T
for some T), then either t is a value or else there is some t′ with t −→ t′. �

Unlike the proof of transitivity of subtyping, the inductive arguments re-
quired here are straightforward. However, variable binding becomes a more sig-
nificant issue, since this language includes binding of both type and term vari-
ables. Several lemmas relating to both kinds of binding must also be shown, in
particular lemmas about type and term substitutions. These lemmas, in turn,
require reasoning about permuting, weakening, and strengthening typing envi-
ronments.

Challenge 2B: Type Safety with Records and Pattern Matching

The next challenge is to extend the preservation and progress results to cover
records and pattern matching. The new syntax and rules for this language appear
below. As for record types, the labels {li

i∈1..n} appearing in a record {li =
ti

i∈1..n} are assumed to be pairwise distinct. Similarly, the variable patterns
appearing in a pattern are assumed to bind pairwise distinct variables.
New syntactic forms:
t ::= ... terms

{li=ti
i∈1..n} record

t.l projection
let p=t in t pattern binding

p ::= patterns
x:T variable pattern
{li=pi

i∈1..n} record pattern

2 This design choice has generated a robust debate on the PoplMark discussion list
as to whether evaluation contexts must be used in order for a solution to count
as valid, or whether an “obviously equivalent” presentation such as an evaluation
relation with additional congruence rules is acceptable. We prefer evaluation contexts
for the reasons we have given, but the consensus of the community appears to be
that one should accept solutions in other styles. However, a good solution must be
formulated in a style that provides similar clarity as the language scales.



Mechanized Metatheory for the Masses: The PoplMark Challenge 61

v ::= ... values
{li=vi

i∈1..n} record value

New typing rules Γ � t : T

Γ � t1 : T1 � p : T1 ⇒ Δ Γ, Δ � t2 : T2

Γ � let p=t1 in t2 : T2
(T-Let)

for each i Γ � ti : Ti

Γ � {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ � t1 : {li:Ti
i∈1..n}

Γ � t1.lj : Tj
(T-Proj)

Pattern typing rules:

� (x:T) : T⇒ x : T (P-Var)

for each i � pi : Ti ⇒ Δi

� {li=pi
i∈1..n} : {li:Ti

i∈1..n}⇒ Δn, . . . , Δ1
(P-Rcd)

New evaluation rules t −→ t′

let p=v1 in t2 −→ match(p, v1)t2 (E-LetV)

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

New evaluation contexts:
E ::= ... evaluation contexts

E.l projection
{li=vi

i∈1..j−1,lj=E,lk=tk
k∈j+1..n} record

let p=E in t2 let binding

Matching rules:

match(x:T, v) = [x �→ v] (M-Var)

{li
i∈1..n} ⊆ {kj

j∈1..m} if li = kj , then match(pi, vj) = σi

match({li=pi
i∈1..n}, {kj=vj

j∈1..m}) = σn ◦ · · · ◦ σ1
(M-Rcd)

Compared to the language of Challenge 2A, the let construct is a fundamen-
tally new binding form, since patterns may bind an arbitrary (finite) number of
term variables.
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Challenge 3: Testing and Animating with Respect to the Semantics

Given a complete formal definition of a language, there are at least two interest-
ing ways in which it can be used (as opposed to being reasoned about). When
implementing the language, it should be possible to use the formal definition
as an oracle for testing the implementation—checking that it does conform to
the definition by running test cases in the implementation and confirming for-
mally that the outcome is as prescribed. Secondly, one would like to construct a
prototype implementation from the definition and use it for animating the lan-
guage, i.e., exploring the language’s properties on particular examples. In both
cases, this should be done without any unverified (and thus error-prone) manual
translation of definitions.

Our final challenge is to provide an implementation of this functionality,
specifically for the following three tasks (using the language of Challenge 2B):

1. Given F<: terms t and t′, decide whether t −→ t′.
2. Given F<: terms t and t′, decide whether t−→∗ t′ 	−→, where −→∗ is the

reflexive-transitive closure of −→.
3. Given an F<: term t, find a term t′ such that t −→ t′.

The first two subtasks are useful for testing language implementations, while the
last is useful for animating the definition. For all three subtasks, the system(s)
should accept syntax that is “reasonably close” to that of informal (ASCII)
mathematical notation, though it maybe necessary to translate between the
syntaxes of a formal environment and an implementation. We will provide an
implementation of an interpreter for F<: with records and patterns at the chal-
lenge’s website in order to make this challenge concrete, together with a graded
sequence of example terms. To make a rough performance comparison possible,
solutions should indicate execution times for these terms.

A solution to this challenge might make use of decision procedures and tactics
of a proof assistant or might extract stand-alone code. In general, it may be
necessary to combine theorems (e.g. that a rule-based but algorithmic definition
of typing coincides with a declarative definition) and proof search (e.g. deciding
particular instances of the algorithmic definition).

4 Beyond the Challenge

The PoplMark Challenge is not meant to be exhaustive: other aspects of pro-
gramming language theory raise formalization difficulties that are interestingly
different from the problems we have proposed—to name a few: more complex
binding constructs such as mutually recursive definitions, logical relations proofs,
coinductive simulation arguments, undecidability results, and linear handling of
type environments. As time goes on, we will issue a small number of further
challenges highlighting the most important of these issues; suggestions from the
community would be welcome. However, we believe that a technology that pro-
vides a good solution to the PoplMark challenge as we have formulated it
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here will be sufficient to attract eager adopters in the programming languages
community, beginning with the authors.

So what are you waiting for? It’s time to bring mechanized metatheory to
the masses!
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Abstract. We present a set of problems that may support the development of cal-
culi and theorem provers for classical higher-order logic. We propose to employ
these test problems as quick and easy criteria preceding the formal soundness and
completeness analysis of proof systems under development. Our set of problems
is structured according to different technical issues and along different notions of
semantics (including Henkin semantics) for higher-order logic. Many examples
are either theorems or non-theorems depending on the choice of semantics. The
examples can thus indicate the deductive strength of a proof system.

1 Motivation: Test Problems for Higher-Order Reasoning Systems

Test problems are important for the practical implementation of theorem provers as well
as for the preceding theoretical development of calculi, strategies and heuristics. If the
test theorems can be proven (resp. the non-theorems cannot) then they ideally provide
a strong indication for completeness (resp. soundness). Examples for early publications
providing first-order test problems are [21,29,23]. For more than decade now the TPTP
library [28] has been developed as a systematically structured electronic repository of
first-order test problems. This repository together with the yearly CASC theorem prover
competitions [24] significantly supported the improvement of first-order and proposi-
tional reasoning systems. Unfortunately, a respective library of higher-order test prob-
lems is not yet available.

This paper presents a small set of significant test problems for classical higher-
order logic that may guide the development of higher-order proof systems. These test
problems are relevant for both automated and interactive higher-order theorem proving.
Even some of our simpler theorems may be difficult to prove interactively. Examples are
our problems 15(a): po→o (ao∧bo)⇒ p (b∧a) and 16: (po→o ao)∧(p bo)⇒ (p (a∧b)).

Most of the examples presented here are chosen to be a simple representative of
some particular technical or semantical point. We also include examples illustrating
real challenges for higher-order theorem provers. Our work is relevant in the first place
for theorem proving in classical higher-order logic. However, many of our examples
also carry over to other logics such as intuitionistic higher-order logic. Most of the
presented test problems evolved from experience gained in the development of the
higher-order theorem provers TPS [5] and LEO [10,7]. Some of the examples and (many
others) have been also discussed in other publications on classical higher-order logic,
e.g. [15,17,6,1,4]. The novel contribution of this paper is not the test problems per se,
but the connection of these examples with the particular model classes in which they
are valid (resp. invalid) and their assemblage into a comprehensive set.

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 66–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We structure many of our examples along two dimensions. The examples are theo-
rems or non-theorems depending on these dimensions.

Extensionality provides one dimension in which we can vary semantics. Assuming
Henkin semantics, for instance, most of our examples denote theorems. If we choose
a weaker semantics, for instance, by omitting Boolean extensionality, then some test
problems become non-theorems providing a test case for soundness with respect to this
more general notion of semantics (in which fewer propositions are valid). By varying
extensionality, we have defined a landscape of eight higher-order model classes and
developed abstract consistency methods and model existence results in [8,9]. This land-
scape of higher-order model classes and the corresponding abstract consistency frame-
work provides much needed support for the theoretical analysis of the deductive power
of calculi for higher-order logic. The test problems we introduce in this paper provide
quick and easy test criteria for the soundness and completeness of proof systems with
respect to these model classes. Testing a proof system with our examples should thus
precede a formal, theoretical soundness and completeness analysis with the abstract
consistency methodology introduced in [8,9].

Set comprehension provides another dimension along which one can vary seman-
tics. In [14] different model classes are defined depending on the logical constants
which occur in the signature. Since many sets are only definable in the presence of
certain logical constants, this provides a way of varying the sets which exist in a model.
In this paper, we provide examples of theorems which are only provable if one can use
certain logical constants for instantiations. In implementations of the automated theo-
rem provers TPS and LEO the problem of instantiating set variables corresponds to the
use of primitive substitutions described in [14,2,3].

Section 2 introduces the syntax of classical higher-order logic following Church
[15]. Section 3 presents some first test problems for pre-unification and quantifier de-
pendencies. In Section 4 we review a landscape of higher-order semantics that distin-
guishes higher-order models with respect to various combinations of Boolean exten-
sionality, three forms of functional extensionality and different signatures of logical
constants. Section 5 provides test problems that are structured according to the intro-
duced landscape of model classes. Section 6 presents some more complex test problems.

2 Classical Higher-Order Logic

As in [15], we formulate higher-order logic (HOL) based on the simply typedλ-calculus.
The set of simple types T is freely generated from basic types o and ι using the function
type constructor→.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z, . . .)
and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .). We let Vα (Σα)
denote the set of variables (constants) of typeα. A signatureΣ of constants may include
logical constants from the set Σ defined by

{�o,⊥o,¬o→o,∧o→o→o,∨o→o→o,⇒o→o→o,⇔o→o→o}

∪ {Πα
(α→o)→o

∣∣ α ∈ T } ∪ {Σα
(α→o)→o

∣∣ α ∈ T } ∪ {=α
α→α→o

∣∣ α ∈ T }.
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Other constants in a signature are called parameters. The constants Πα and Σα are used
to define ∀ and ∃ (see below) without introducing a binding mechanism other than λ.
The set of HOL-formulae (or terms) over Σ are constructed from typed variables and
constants using application and λ-abstraction. We let wffα(Σ) be the set of all terms of
type α and wff(Σ) be the set of all terms. We use A,B, . . . to denote terms in wffα(Σ).

We use vector notation to abbreviate k-fold applications and abstractions as AUk

and λXk A, respectively. We also use Church’s dot notation so that stands for a (miss-
ing) left bracket whose mate is as far to the right as possible (consistent with given
brackets). We use infix notation A ∨ B for ((∨A)B) and binder notation ∀Xα A for
(Πα(λXα Ao)). While one can consider ∧,⇒ and⇔ to be defined (as in [8]), we con-
sider these members of the signatureΣ. We also use binder notation ∃X A as shorthand
for Σα(λX A) if Σα is a constant inΣ. We let (Aα=̇αBα) denote the Leibniz equation
∀Pα→o (PA)⇒ PB.

Each occurrence of a variable in a term is either free or bound by a λ. We use
free(A) to denote the set of free variables of A (i.e., variables with a free occurrence
in A). We consider two terms to be equal (written A ≡ B) if the terms are the same up
to the names of bound variables (i.e., we consider α-conversion implicitly). A term A
is closed if free(A) is empty. We let cwffα(Σ) denote the set of closed terms of type
α and cwff(Σ) denote the set of all closed terms. Each term A ∈ wffo(Σ) is called a
proposition and each term A ∈ cwffo(Σ) is called a sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X ]B.
Since we consider α-conversion implicitly, we assume the bound variables of B avoid
variable capture.

Two common relations on terms are given by β-reduction and η-reduction. A β-
redex (λX A)B β-reduces to [B/X ]A. An η-redex (λX CX) (where X /∈ free(C))
η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can be converted
to B by a series of β-reductions and expansions. Similarly, A≡βηB means A can be
converted to B using both β and η. For each A ∈ wff(Σ) there is a unique β-normal
form (denoted A↓β) and a unique βη-normal form (denoted A↓βη). From this fact we
know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is (cAn)
where c is a logical constant. An atomic formula is any other formula in wffo(Σ).

Many of the example problems in this paper employ equality, e.g. ¬(a = ¬a). We
have different options for the encoding of equality. We can either use primitive equality
(i.e., equality as a logical constant) or use some definition of equality in terms of other
logical constants. A common definition is Leibniz equality (∀Pα→o (PA) ⇒ PB),
but others are possible (see Exercise X5303 in [4]). In many examples we will denote
equality by

∗= (e.g.,¬(a ∗= ¬a)). For each different interpretation of equality, we obtain
a different example. We will discuss conditions under which different choices lead to
theorems and which choices lead to non-theorems.

For some types, one can also define equality extensionally. For example, one can use

equivalence instead of equality at type o. Similarly, at any type α→ o, we introduce
set=

to denote set equality, i.e.,
set= is an abbreviation for

λUα→oλVα→o∀Xα UX ⇔ V X.
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In some cases, the use of an extensional definition of equality yields a theorem which
can be proven without assuming extensionality. We will not use the notation

∗= to refer
to any extensional definition of equality. Interpreting

∗= extensionally would signifi-
cantly change some of the discussion below.

3 Test Problems for Pre-unification and Quantifier Dependencies

Higher-order pre-unification (see [26]) and higher-order Skolemization (see [22]) are
important basic ingredients for building an automated higher-order theorem prover.
They are largely independent of the chosen semantics for higher-order logic with one
exception:β versus βη. As noted in [18] the unification problem relative to β-conversion
is different from the unification problem relative to βη-conversion.

3.1 Pre-unification

Implementing a sound, complete and efficient pre-unification algorithm for the simply
typed λ-calculus is a highly non-trivial task. Since higher-order pre-unification extends
standard first-order unification all first-order test problems in the literature also apply to
the higher-order case.

Some specific higher-order test problems can be obtained from the literature on
higher-order unification and pre-unification, for example [26,25]. We will now illustrate
how further challenging test examples can be easily created using Church numerals.

Church numerals are usually employed in the context of the untyped λ-calculus to
encode the natural numbers. This encoding can be partly transformed in a simply typed
or polymorphic typed λ-calculus. This includes the definition of successor, addition and
multiplication which we employ in or test problems.

Iteration is the key concept to encode natural numbers as Church numerals. For each
type α, we can define the Church numeral nα by (λFα→αλYα (FnY ))(α→α)→(α→α)
where (FnY ) is shorthand for (F (F . . . (F︸ ︷︷ ︸

n−times

Y ))). We will often write n instead of nα,

leaving the dependence on the type implicit. Omitting types1, the successor function s
can be defined as λNλFλY F (NFY ), addition + as λMλNλFλY MF (NFY ) and
multiplication × as λMλNλFλZ N(MF )Z . To ease notation, we write + and × in
infix.

Arithmetic equations on Church numerals such as 3×4 ∗= 5+7 or (((1̄0×1̄0)×1̄0) ∗=
((1̄0×5̄)+(5̄×1̄0))×1̄0)) provide highly suited test problems for the efficiency of
β-conversion or βη-conversion in the proof system. Of course, in order to correctly
implement β- and η-conversion, one must first properly implement α-conversion.

We obtain more challenging test problems if we employ pre-unification for synthe-
sizing Church numerals and arithmetical operations.

Example 1. (Solving arithmetical equations using pre-unification) The following ex-
amples are provable using pre-unification for β-conversion.

1 N, M are of type (α → α) → (α → α), F is of type α → α, and Y, Z are of type α.
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(a) ∃N(ι→ι)→ι→ι ((N×1) ∗= 1) (There are two solutions, 1 and (λFι ι F ), if one only
assumes β-conversion. There is one solution assuming βη-conversion.)

(b) ∃N (N×4) ∗= 5+7
(c) ∃H (((H 2̄)3̄) ∗= 6̄) ∧ (((H 1̄)2̄) ∗= 2̄))
(d) ∃N,M (N×4) ∗= 5+M (There are infinitely many solutions to this problem.)

3.2 Quantifier Dependencies

In proof search with tableaux and expansion proofs, variable conditions can be used
to encode quantifier dependencies. Of course, one must be careful to obtain a sound
framework. For instance, the variable conditions added with each eliminated existential
quantifier in the framework used in [20] allow (incorrect) proofs of the following first-
order non-theorems:

Example 2. (First-order non-theorems)

(a) (Example 2.9 in [30]) (∃Xι∀Yι qι→ι→oXY ) ∨ (∃Uι∀Vι ¬qV U)
(b) (Example 2.50 in [30]) ∃Yι∀Xι ((∀Zι qι→ι→oXZ) ∨ (¬qXY ))

In [19] an attempt was made to use variable conditions in the context of resolution
theorem proving (for a sorted extension of higher-order logic) instead of introducing
Skolem terms. However, the system was unsound as it allowed a resolution refutation
proving the following non-theorem:

Example 3. (Non-Theorem: Every function has a fixed point) ∀Fα→α ∃Xα F X=̇X .
The idea is that one obtains two single-literal clauses (Pι→o(FX)) and ¬(PY ) using
clause normalization and variable renaming (where X and Y can be instantiated). One
then obtains the empty clause by unifying Y with (FX).

Skolem terms avoid incorrect proofs of such theorems since the Skolem terms will
preserve the relationship between renamed variables in different clauses. In particular,
if S is a Skolem function, we would obtain single-literal clauses (Sι→ι→oX(FX)) and
¬(Sι→ι→oY Y ) which cannot be resolved and unified.

There is a relationship between Skolemization and the axiom of choice in the first-
order case which becomes more delicate in the higher-order case. Consider formulas
∀xι∃yιϕ(x, y) and ∀xιϕ(x, (fι→ιx)). In first-order logic, the two formulas are equiva-
lent with respect to satisfiability whenever f does not occur in ϕ. The equivalence fol-
lows from the fact that any first-order model (with domain Dι) satisfying ∀x∃yϕ(x, y)
can be extended to interpret f as a function g : Dι −→ Dι such that ∀xϕ(x, (fx))
holds. In general, the axiom of choice (at the meta-level) is required to conclude the
function g exists. The situation is different in the higher-order case. As we shall see
when we consider higher-order models, we would need to interpret f not simply as a
function from Dι to Dι, but as a member of a domain Dι→ι. Existence of an appropri-
ate function from Dι to Dι follows from the axiom of choice at the meta-level, but the
existence of an appropriate element of Dι→ι would only follow from a choice property
internal to the higher-order model.

Dale Miller has shown that a naive adaptation of standard first-order Skolemization
to higher-order logic allows one to prove particular instances of the axiom of choice.
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For example, naive Skolemization permits an easy proof of the following version of the
axiom of choice:

Example 4. (Choice) (∀X∃Y rXY ) ⇒ (∃F∀X rX(FX))

However, naive Skolemization does not provide a complete method for reasoning with
choice. The following example is equivalent to the axiom of choice (essentially Axiom
11 in [15]) but is not provable using naive Skolemization.

Example 5. (Choice) ∃E(ι→o)→ι∀P (∃Y PY ) ⇒ P (EP )

Thus standard first-order Skolemization is unsound in higher-order logic as it partly
introduces choice into the proof system. Dale Miller has fixed the problem by adding
further conditions (see [22]): any Skolem function symbol fn with dependency arity n
(the existentially bound variable to be eliminated by a new Skolem term headed by f is
depending on n universial variables) may only occur in formulas fnAn, where none of
the Ai contains a variable that is bound outside of the term fnAn.

4 Semantics for HOL

In [8] we have re-examined the semantics of classical higher-order logic with the pur-
pose of clarifying the role of extensionality. For this we have defined eight classes of
higher-order models with respect to various combinations of Boolean extensionality
and three forms of functional extensionality. One can further refine these eight model
classes by varying the logical constants in the signature Σ as in [14].

A model of HOL is given by four objects: a typed collection of nonempty sets
(Dα)α∈T , an application operator @:Dα→β×Dα −→ Dβ , an evaluation function E for
terms and a valuation function υ:Do −→ {T, F}. A pair (D,@) is called aΣ-applicative
structure (see [8](3.1)). If E is an evaluation function for (D,@) (see [8](3.18)), then
we call the triple (D,@, E) a Σ-evaluation. If υ satisfies appropriate properties, then we
call the tuple (D,@, E , υ) a Σ-model (see [8](3.40 and 3.41)).

Given an applicative structure (D,@), an assignment ϕ is a (typed) function from
V to D. An evaluation function E maps an assignment ϕ and a term Aα ∈ wffα(Σ) to
an element Eϕ(A) ∈ Dα. Evaluation functions E are required to satisfy four properties
given in [8](3.18)). If A is closed and E is an evaluation function, then Eϕ(A) cannot
depend on ϕ and we write E(A).

A valuation υ:Do −→ {T, F} is required to satisfy a property Lc(E(c)) for every
logical constant c ∈ Σ (see [8](3.40)). For each logical constant c, Lc(a) is defined to
hold if a is an object of a domainDα satisfying the characterizing property of the logical
constant c. For example, L¬(n) holds for n ∈ Do→o iff for every a ∈ Do, υ(n@a) is T iff
υ(a) is F. Likewise, L=α(q) holds for q ∈ Dα→α→o if for every a, b ∈ Dα, υ(q@a@b)
is T iff a equals b.

Given a modelM := (D,@, E , υ), an assignment ϕ and a proposition A (or set of
propositions Φ), we say M satisfies A (or Φ) and write M |=ϕ A (or M |=ϕ Φ) if
υ(Eϕ(A)) ≡ T (or υ(Eϕ(A)) ≡ T for each A ∈ Φ). If A is closed (or every member of
Φ is closed), then we simply write M |= A (or M |= Φ) and say M is a model of A
(or Φ). We also consider classes M of Σ-models and say a proposition A is valid in M
ifM |=ϕ A for everyM ∈M and assignment ϕ.
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In order to define model classes which correspond to different notions of exten-
sionality, we define five properties of models (see [8](3.46, 3.21 and 3.5)). For each
Σ-modelM := (D,@, E , υ), we sayM satisfies property

q iff for all α ∈ T there is a qα ∈ Dα→α→o with L=α(qα).
η iff (D,@, E) is η-functional (i.e., for each A ∈ wffα(Σ) and assignment ϕ, Eϕ(A) ≡

Eϕ(A↓βη)).
ξ iff (D,@, E) is ξ-functional (i.e., for each M,N ∈ wffβ(Σ), X ∈ Vα and assignment

ϕ, Eϕ(λXα Mβ) ≡ Eϕ(λXα Nβ) whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every
a ∈ Dα).

f iff (D,@) is functional (i.e., for each f, g ∈ Dα→β , f ≡ g whenever f@a ≡ g@a for
every a ∈ Dα).

b iff υ is injective.

For each ∗ ∈ {β,βη,βξ,βf,βb,βηb, βξb,βfb} and each signature Σ we define M∗(Σ)
to be the class of all Σ-models M such that M satisfies property q and each of the
additional properties {η, ξ, f, b} indicated in the subscript ∗ (see [8](3.49)). We always
include β in the subscript to indicate that β-equal terms are always interpreted as iden-
tical elements. We do not include property q as an explicit subscript; q is treated as a
basic, implicit requirement for all model classes. See [8](3.52) for a discussion on why
we require property q. (We also briefly explore models which do not satisfy property
q in the context of Example 8 and again in Subsection 5.3.) Since we are varying four
properties, one would expect to obtain 16 model classes. However, we showed in [8]
that f is equivalent to the conjunction of ξ and η. Note that, for example, Mβf(Σ) is
a larger class of models than Mβfb(Σ), hence fewer propositions are valid in Mβf(Σ)
than are valid in Mβfb(Σ). In our examples we try to indicate the largest of our model
classes in which the proposition is valid. Implicitly, this means the proposition is also
valid in smaller (more restricted) model classes and may not be valid in larger (less
restricted) ones.

5 Test Problems for Higher-Order Theories

Unless stated otherwise, we assume the signature includes Σ (see p. 67) and write
M∗ for M∗(Σ). Many of the examples could be considered in the context of smaller
signatures. In the following discussion, we only consider smaller signatures in order to
make particular points. (Note that if the signature becomes too small, Leibniz equality,
for example, is no longer expressible.)

5.1 Properties of Equality

There are many useful first-order test problems on equality reasoning in the literature.
For instance, in [12] the following clause set is given to illustrate the incompleteness of
the RUE-NRF resolution approach as introduced in [16]:

{g(f(a)) = a, f(g(X)) 	= X}
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Here, X is a free variable (i.e., implicitly universially quantified) and f, g are unary
function symbols. In [12] it is shown that this inconsistent clause set cannot be refuted
in the first-order RUE-NRF approach.

We now present some higher-order test problems addressing properties of equality.
Some of them apply to many possible notions of equality while others describe specific
properties of individual notions or relate different notions to each other.

Example 6. Equality is an equivalence relation in Mβ . These particular examples should
be theorems even if one replaces

∗= with an extensional definition of equality (e.g., ⇔
at type o or

set= at any type α→ o).

(a) ∀Xα X
∗= X

(b) ∀Xα∀Yα X
∗= Y ⇒ Y

∗= X
(c) ∀Xα∀Yα∀Zα (X ∗= Y ∧ Y ∗= Z)⇒ X

∗= Z

Example 7. Equality obeys the congruence property (substitutivity property) in Mβ .

(a) ∀Xα∀Yα∀Fα→α X
∗= Y ⇒ (FX) ∗= (FY )

(b) ∀Xα∀Yα∀Pα→o (X ∗= Y ) ∧ (PX)⇒ (PY )

Example 8 relates the Leibniz definition of equality to primitive equality.

Example 8. (aα=̇αbα) ⇒ (a =α b).

One could legitimately debate whether Example 8 should be a theorem. On the one
hand, if Example 8 is not a theorem, then one should not consider Leibniz equality to
be a definition of real equality. Semantically, Henkin’s first (quite natural) definitions
of models allowed models in which Leibniz equality (e.g., at type ι) does not evaluate
to equality of objects in the model. Such a model M is constructed in [1]. This model
M is a Σ-model in the sense of this paper (if one assumes =α /∈ Σ for every type α),
but is not in any model class M∗(Σ) since property q fails. There is a slight technical
problem with saying M provides a counter-model for Example 8 since one cannot
express Example 8 without =ι∈ Σ. As in [14], one can distinguish between internal
and external uses of equality (as well as⇒ and ∀) and determine thatM is (in a sense
that can be made precise) a countermodel for Example 8.

If a model satisfies property q, then Example 8 is valid for any type α. If a logical
system is intended to be complete for one of our model classes M∗(Σ), then Exam-
ple 8 should be a theorem. For the complete natural deduction calculi in [8], there is
an explicit rule which derives primitive equality from Leibniz equality. In some sense,
requiring property q semantically corresponds to explicitly requiring that Example 8 be
provable.

Also, if =α∈ Σ, then Example 8 (for this particular type α) is valid in any Σ-
model. A proof using primitive equality could instantiate the Leibniz variable Pα→o

with (λZα a = Z). The important point is that = must be available for instantiations
during proofs (not simply for expressing the original sentence).

Extensionality is the distinguishing property motivating our different model classes.
For both, functional and Boolean extensionality, we distinguish between a trivial and a
non-trivial direction.
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Example 9. The trivial directions of functional and Boolean extensionality are valid
in Mβ .

(a) ∀Fα→β∀Gα→β F
∗= G⇒ (∀Xα (FX) ∗= (GX))

(b) ∀Ao∀Bo A
∗= B ⇒ (A⇔ B)

The other directions are not valid in Mβ . They become theorems only relative to
more restricted model classes in our landscape.

Example 10. (discussed in [15]; Axiom 10 in [17]) ∀Ao∀Bo (A ⇔ B) ⇒ A
∗= B is

valid in Mβb. This is the non-trivial direction of Boolean extensionality.

Example 11. ([15,17], Axiom 10βα) ∀Fα→β∀Gα→β (∀Xα (FX) ∗= (GX)) ⇒ F
∗=

G is valid in Mβf. This is the non-trivial direction of functional extensionality. (Property
q is also relevant to this example as is discussed in [8].)

5.2 Extensionality

We next present examples that illustrate distinguishing properties of the different model
classes with respect to extensionality. In the preceding sections we have already men-
tioned several test problems that are independent of the “amount of extensionality” and
which are theorems in Mβ . We additionally refer to all first-order test problems as, for
instance, provided in the TPTP library.

η-equality is usually realized as part of the pre-unification algorithm in a higher-
order reasoning system. It is important to note that η-equality should not be confused
with full extensionality. In literature on higher-order rewriting, for instance [25], the
notion of extensionality is usually only associated with η-conversion which is far less
than full extensionality.

Example 12. (p(ι→ι)→o(λXι fι→ιX))⇒(p(ι→ι)→of) is essentially 21 from [15] which
expresses η-equality using Leibniz equality. It is valid in Mβη but not in Mβ .

Property ξ together with η gives us full functional extensionality.

Example 13. Validity of (∀Xι (fι→ιX) ∗= X) ∧ p(λXιX) ⇒ p(λXι fX) only de-
pends on ξ, not on η. It is thus valid in Mβξ (but not in model classes which do not
require either ξ or f).

Example 14. (∀Xι (fι→ιX) ∗= X)∧ p(λXιX)⇒ pf is valid in Mβf, but not in model
classes which do not require f.

As in Example 11, property q is important for validity of Example 13 in Mβξ and
validity of Example 14 in Mβf.

Example 15. ([7]) (a) po→o (ao ∧ bo) ⇒ p (b ∧ a) and (b) ao ∧ bo ∧ (po→oa) ⇒ (pb)
are valid iff we require Boolean extensionality as in Mβb.

Example 16. (po→o ao) ∧ (p bo) ⇒ (p (a ∧ b)) is a theorem of Mβb which is slightly
more complicated to mechanize in some calculi; see [7] for more details.
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Example 17. ¬(a = ¬a) is valid in Mβb. As discussed in [7] this example motivates
specific inference rules for the mechanization of primitive equality.

The following is a tricky example introduced in [14].

Example 18. (ho→ι((h�) ∗= (h⊥))) ∗= (h⊥) is valid in Mβb, but not in model classes
which do not require property b.

Many people do not immediately accept that Example 18 is a theorem. A simple
informal argument is helpful. Either (h�) ∗= (h⊥) is true or false. If the equation
holds, then Example 18 reduces to (h�) ∗= (h⊥) which we have just assumed. If the
equation is false, then Example 18 reduces to (h⊥) ∗= (h⊥), an instance of reflexivity.

Example 19 combines Boolean extensionality with η-equality.

Example 19. p(ι→ι)→o(λXι fo→ι→ι(a(ι→ι)→o(λXι fboX)∧b)X)⇒ p(f(b∧ a(fb)))
is valid in Mβηb, but is not valid if properties b and η are not assumed.

By DeMorgan’s Law, we knowX ∧Y is the same as ¬(¬X ∨¬Y ). In Example 20,
we vary the notion of “is the same as” to obtain several examples which are only prov-
able with some amount of extensionality. Note that if we only assume property ξ, we
can only conclude the η-expanded form of ∧ is equal to (λXλY ¬(¬X ∨ ¬Y )).

Example 20. Consider the following examples.

(a) ∀X∀Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y ) is valid in Mβ .
(b) ∀X∀Y X ∧ Y ∗= ¬(¬X ∨ ¬Y ) is valid in Mβb.
(c) (λUλV U ∧ V ) ∗= (λXλY ¬(¬X ∨ ¬Y )) is valid in Mβξb.
(d) ∧ ∗= (λXλY ¬(¬X ∨ ¬Y )) is valid in Mβfb.

Finally we reach Henkin semantics which is characterized by full extensionality,
i.e. the combination of Boolean and functional extensionality. Example 20(d) already
provided one example valid only in Mβfb.

Example 21. The following theorem in Mβfb characterizes the fact that in all Henkin
models we have exactly four functions mapping truth values to truth values.

((p λXo Xo) ∧ (p λXo ¬Xo) ∧ (p λXo⊥) ∧ (p λXo�))⇒ ∀Yo→o (p Y )

Example 22. As exploited in [11], set theory problems can be concisely and elegantly
formulated in higher-order logic when using λ-abstraction to encode sets as character-
istic functions. For instance, given a predicate pα→o the set of all objects of type α that
have property p is denoted as λXα (pX). We then define set operations as follows (we
give only some examples):

set operation defined by
∈α→(α→o)→o λZαλXα→o(XZ)

{.}α→(α→o) λUα(λZα Z
∗
= U)

∅α→o (λZα⊥)
∩(α→o)→(α→o)→(α→o) λXα→oλYα→o(λZα Z ∈ X ∧ Y ∈ Y )
∪(α→o)→(α→o)→(α→o) λXα→oλYα→o(λZα Z ∈ X ∨ Y ∈ Y )
⊆(α→o)→(α→o)→o λXα→oλYα→o(∀Zα Z ∈ X ⇒ Y ∈ Y )
℘(α→o)→((α→o)→o) λXα→o(λYα→o Y ⊆ X)
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We can now formulate some test problems on sets:

(a) aα→o ∪ (bα→o ∩ cα→o)
set= (a ∪ b) ∩ (a ∪ c) is valid in Mβ .

(b) aα→o∪(bα→o∩cα→o)
∗= (a∪b)∩(a∪c) is valid in Mβξb but not in model classes

without ξ and b.
(c) ℘(∅α→o)

set= {∅α→o} is valid in Mβfb but not in model classes without f and b.
The example is not valid in Mβ due to the embedded equation introduced by the
definition of a singleton set {.}.

(d) and ℘(∅α→o)
∗= {∅α→o} is valid in Mβfb but not in model classes without f and b.

These examples motivate pre-processing in higher-order theorem proving in which
the definitions are fully expanded and in which the extensionality principles are em-
ployed es early as possible. After pre-processing, many problems of this kind can be
automatically translated from their concise and human readable higher-order represen-
tation into first-order or even propositional logic representations to be easily checked
by respective specialist systems.

5.3 Set Comprehension

One of the advantages of Church’s type theory is that instead of assuming compre-
hension axioms one can simply use terms defining sets for set instantiations. Such set
instantiations make use of logical constants in the signature Σ. As in [14] one can vary
the signature of logical constants in order to vary the set comprehension assumed in
Σ-models. With different amounts of set comprehension, different examples will be
valid.

Generating set instantiations is one of the toughest challenges for the automation of
higher-order logic. (In fact set instantiations can be employed to simulate the cut-rule
as soon as one of the following prominent axioms of higher-order logic is available
in the search space: comprehension, induction, extensionality, choice, description.) Set
instantiations are often generated during automated search using an enumeration tech-
nique involving primitive substitutions.

For each example below, we note restrictions on the signature Σ under which the
example is either valid or not valid. Since we would like to distinguish between sig-
natures which contain primitive equality (at various types) and those which do not, we
consider classes of models which do not necessarily satisfy property q. In particular,
let M−q

β (Σ) be the set of all Σ-models and let M−q
βfb(Σ) be the set of all Σ-models

satisfying properties f and b (without requiring property q).
As in Example 8 one can focus on the use of logical constants in Σ for instantia-

tions and ignore certain uses of logical constants to express the formula. For example,
suppose A ∈ cwffo(Σ), M is a Σ-model and ¬ /∈ Σ. While (¬A) /∈ wffo(Σ), we can
consider (¬A) to be a Σ-external proposition and defineM |= ¬A to meanM 	|= A.
Intuitively, the negation is used externally in (¬A). We can inductively define the set
of Σ-external propositions M and the meaning of M |= M for Σ-models M. After
doing so, most of the examples below are Σ-external propositions even if Σ contains
no logical constants. Only Examples 30 and 33 in this section make nontrivial uses of
certain logical constants to express the propositions. Due to space considerations, we
refer the reader to [14] for details.
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If Σ is sufficiently small, then one can construct two trivial models in M−q
βfb(Σ)

where Do is either simply {T} or {F}. (This possibility was ruled out in [8] since we
assumed ¬ ∈ Σ.)

Example 23. ∃PP is valid in M−q
β (Σ) if either � ∈ Σ or ¬ ∈ Σ. The example is not

valid in M−q
βfb(Σ) if Σ ⊆ {⊥,∧,∨} ∪ {Πα,Σα|α ∈ T }. (Any proof must use a set

instantiation involving either �, ¬,⇒,⇔ or some primitive equality.)

Example 24. ¬∀PP is valid in M−q
β (Σ) if either ⊥ ∈ Σ or ¬ ∈ Σ. The example is

not valid in M−q
βfb(Σ) if Σ ⊆ (Σ \ {⊥,¬}). (Any proof must use a set instantiation

involving either ⊥ or ¬.)

Example 25 characterizes when an instantiation satisfying the property of nega-
tion is possible. This can be either because the signature supplies negation or supplies
enough constants to define negation.

Example 25. ∃No→o∀Po NP ⇔ ¬P is valid in M−q
β (Σ) if ¬ ∈ Σ. The example is

also valid in M−q
β (Σ) if ⊥ ∈ Σ and {⇒,⇔} ∩ Σ 	= ∅ since one can consider either

the term λXo X ⇒ ⊥ or the term λXo X ⇔ ⊥. The example is not valid in M−q
βfb(Σ)

if Σ ⊆ {�,⊥,∧,∨} ∪ {Πα,Σα|α ∈ T }.

One possibility we did not cover in Example 25 is if Σ is {⊥,=o}. Consider the
term (λXo X =o ⊥). This only defines negation if we assume Boolean extensionality.
Hence we obtain the interesting fact that Example 25 is valid in M−q

βfb({⊥,=o}), but is

not valid in M−q
β ({⊥,=o}).

One can modify Example 25 in a way that requires not only a set instantiation for
negation, but also extensionality.

Example 26. ¬∀Fo→o∃X (FX) ∗= X is valid in M−q
βfb(Σ) if ¬ ∈ Σ. The example is

not valid in M−q
β (Σ) regardless of the signature Σ. Also, the example is not valid in

M−q
βfb(Σ) if Σ ⊆ {�,⊥,∧,∨} ∪ {Πα,Σα|α ∈ T }.

Example 27 characterizes when an instantiation can essentially define disjunction
and Example 28 characterizes when an instantiation can essentially define the univer-
sal quantifier at type α. Clearly one can modify these examples for any other logical
constant.

Example 27. ∃Do→o→o∀Po∀Qo DPQ⇔ (P ∨Q) is valid in M−q
β (Σ) if ∨ ∈ Σ. The

example is also valid in M−q
β (Σ) if {¬,∧} ⊆ Σ.

Example 28. ∃Q(α→o)→o)∀Pα→o QP ⇔ ∀Xα PX is valid in M−q
β (Σ) if Πα ∈ Σ.

Recall that Example 8 already provided an example in which one might require a
set instantiation involving primitive equality (depending on how the calculus relates
Leibniz equality to primitive equality).

A few interesting set instantiations involve no logical constants, but do make use of
projections (see [18]). Sometimes such projections can be obtained from higher-order
unification, as in Example 29.
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Example 29. ∃No→o∀Po NP ⇔ P is valid in M−q
β (∅).

However, one cannot expect higher-order unification to always provide projection
terms when they are needed. Example 30 was studied extensively in [2] (see THM104)
in order to demonstrate this fact. In this example, we make use of the abbreviation
{.} which was defined in Example 22. If the definition of {.} makes use of primitive
equality, one must assume =ι∈ Σ to express the proposition. If {.} is defined using
Leibniz equality, then one must assume ¬,Πι→o ∈ Σ to express the proposition.

Example 30. ∀Xι∀Zι {X}=̇{Z} ⇒ X=̇Z is valid in M−q
β (Σ) so long as Σ is suffi-

cient to express the proposition.

The examples above are straightforward examples designed to ensure completeness
of theorem provers with respect to set comprehension. A more natural theorem which
requires set instantiations is Cantor’s Theorem. Two forms of Cantor’s Theorem were
studied with respect to set comprehension in [14]. Example 31 is the surjective form of
Cantor’s Theorem discussed in [4].

Example 31. (Surjective Cantor Theorem) ¬∃Gα→α→o∀Fα→o∃Jα GJ =α→o F is
valid in M−q

βfb(Σ) if¬ ∈ Σ. The example is not valid in M−q
βfb(Σ) ifΣ ⊆ {�,⊥,∧,∨}∪

{Πα,Σα|α ∈ T } (see Theorem 6.7.8 in [14]).

An alternative formulation of Cantor’s Theorem (see [5,14]) is the injective form
shown in Example 32. Almost any higher-order theorem prover complete for the cor-
responding model class should be capable of proving the previous examples in this
subsection. Example 32 is far more challenging. At the present time, no theorem prover
has found a proof of Example 32 automatically.

Example 32. (Injective Cantor Theorem) ¬∃H(ι→o)→ι∀Pι→o∀Qι→o HP =ι HQ ⇒
P =ι→o Q is valid in M−q

βfb(Σ) if {¬,∧,=ι,Πι→o} ⊆ Σ (see Lemma 6.7.2 in [14]).

The example is not valid in M−q
βfb(Σ) if Σ ⊆ {�,⊥,¬,∧,∨,⇒,⇔,Πι,Σι,=ι→o}.

(This fact follows from the results in Section 6.7 of [14].)

One of the difficulties of proving Example 32 is that certain set instantiations seem
to be needed beneath other set instantiations (see [5]). The next family of examples
illustrates that nontrivial set instantiations can occur within set instantiations with an
arbitrary number of iterations.

Example 33. Assume Σ contains ¬ and Πα for every type α. Fix a constant cι. We will
define a theorem Dn

o for each natural number n. By induction on n, define simple types
τn and abbreviations An

τn→o as follows.

(a) Let τ0 be the type ι and τn+1 be τn → o for each natural number n.
(b) Let A0

ι→o be λZ (Z=̇cι) ∧� and An+1 be λZτn+1 (Z=̇An) ∧ ∃Tτn ZT for each
natural number n.

Finally, for each n, let Dn
o be ∃SτnAnS. Each Dn is a valid in M−q

β (Σ). The constant
cι is the obvious witness for D0. For each n, An is the witness for Dn+1. Note that
a subgoal of showing An is the witness for Dn+1 involves showing An is nonempty
(which was Dn). Hence this proof of Dn+1 involves all the previous instantiations
A0, . . . ,An.
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6 More Complex Examples

Here we present technically or proof theoretically challenging examples. First we con-
sider a class of hard problems simply involving β-reduction.

Example 34. Let α0 be ι and αn+1 be (αn → αn) for each n. Note that the Church

numeral 2αn

has type αn+2. For any n we can form the term (2αn

2αn−1

· · · 2α0

) of type
(ι → ι) → ι → ι. The size of the β-normal form of this term is approximately of size

2(2···
2)

containing n + 1 ‘2s’. (This is a well-known example, mentioned in [27].) For

n ≥ 4 it becomes infeasible to β-normalize such a term (since 2222
2

is 265536, a number
much larger than google). One can express relatively simple theorems using this term
such as

(2αn

2αn−1

· · · 2α0

)(λXιX) ∗= (λXιX).

If one avoids eager β-normalization and allows lemmas, then there is a reasonably short
proof using higher-order logic. We first define the set Cα

2 of Church numerals (over α)
greater than or equal to 2:

λN(α→α)→α→α∀P (P2α ∧ (∀M PM ⇒ P (sM))) ⇒ PN.

(Technically, (0 2) is β-equal to (λFι→ιF ), which is not equal to 1. We work with the
set of Church numerals greater than or equal to 2 to avoid this problem.) One can prove
two results with little trouble (where the lengths of the proofs do not depend on the
type α):

(a) ∀N((α→α)→α→α)→(α→α)→α→α C
α→α
2 N ⇒ Cα

2 (N2α)
(b) ∀N(α→α)→α→α C

α
2 N ⇒ (N(λXα X)) = (λXαX)

Using (a) at several types and (b) at type ι, we can prove, e.g.,

(2α4

2α3

2α2

2α1

2α0

)(λXιX) ∗= (λXιX)

in higher-order logic without β-normalizing.

In [13, Chapter 25, p. 376–382] Boolos presents a related example of a first-order
problem which has only a very long (practically infeasible) derivation in first-order
logic, but which has a short derivation in a second-order logic, by making use of com-
prehension axioms.

Example 35. (Boolos’ Curious Inference)

(∀n f(n, 1) = s(1) ∧ ∀x f(1, s(x)) = s(s(f(1, x)))
∧ ∀n ∀x f(s(n), s(x)) = f(n, f(s(n), x))
∧D(1) ∧ ∀x (D(x) ⇒ D(s(x))))
⇒ D(f(s(s(s(s(1)))), s(s(s(s(1))))))

If there were an appropriate (first-order) induction principle available, then there
should be a short proof of this example. Note that the example specifies f to be the Ack-
ermann function which grows extremely fast and hence f(s(s(s(s(1)))), s(s(s(s(1)))))
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is a very big number. Actually, there is long first-order proof which is relatively easy

to describe. Boolos argues that any first-order proof must be of size at least 2(2···
2)

containing 64K ‘2s’ in all (far more enormous than the number 264K in Example 34).
There is no chance of formally representing such a proof with all computation power
ever. Boolos presents a short alternative proof in second-order logic that makes use of
higher-order lemmas obtained from comprehension axioms. Formulating the appropri-
ate lemmas (as with the lemmas in Example 34) requires human ingenuity that goes
beyond the capabilities of what can be supported with primitive substitution and lemma
speculation techniques in current theorem proving approaches.

As discussed in [3], there is a family of theorems A1,A2, . . . which are all of the
same low order such that An is not provable unless one uses set instantiations involving
nth-order quantifiers. To obtain concrete examples from the argument, one must use
Gödel numbering. A family of simpler examples displaying this phenomenon would
likely be enlightening.

7 Conclusion

We have presented a first set of higher-order test examples that may support the develop-
ment of higher-order proof systems. This set of examples has been structured according
to technical aspects and the semantic properties of extensionality and set comprehen-
sion. Future work is to add examples and include them in either the TPTP library or
an appropriate higher-order variant. Many more examples are particularly needed to
illustrate properties of different forms of equality.
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Abstract. This paper presents the formalization of an algorithm for
slicing Java event spaces in PVS. In short, Java event spaces describe how
multi-threaded Java programs operate in memory. We show that Java
event spaces can be sliced following an algorithm introduced in previous
work and still preserve properties in a subset of CTL. The formalization
and proof presented in this paper can be extended to other state-space
reduction techniques as long as some sufficient conditions are fulfilled.

1 Introduction

Java event spaces [2,10] are partial orders of the actions performed by the main
memory and the threads of a multi-threaded Java program. In previous work [1]
we showed how classical slicing techniques can be employed to reduce the size
of Java event spaces. Roughly speaking, when slicing, only the parts of the Java
event space upon which the elements of the slicing criterion depend are retained,
while the underlying structure of the Java event space is preserved. Furthermore,
we dealt with the problem of aliasing that arises when two variables of the event
space point to the same memory address. An algorithm that takes a Java event
space and calculates aliasing dependencies for relevant variables of the slicing
criterion was outlined.

Here, we formalize the aliasing algorithm in PVS [8] and, for parts of the
algorithm, show how Java event spaces can be sliced and still verify the same
properties in CTL without the next operator [4,5] as non-sliced Java event spaces.
To cope with the proof, we propose a two-step trace reconstruction approach.
This process of reconstruction outlines conditions which must be verified for
other algorithms working with state-space reduction to preserve properties in
CTL. The outline of these conditions and the PVS formalization are the two
main contributions of this paper.

This paper is structured as follows. Section 2 introduces Java event spaces
formally and gives an example where an event space for a multi-threaded Java
program is calculated. Section 3 presents the slicing algorithm introduced in [1].
Section 4 formalizes Java event spaces as finite-state automata. This allows for
defining how CTL properties are evaluated on Java event spaces. Section 5 shows
that the algorithm introduced in [1] preserves properties expressed in a subset
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of CTL. During the proof we identify sufficient conditions employable in sim-
ilar proofs when different kinds of state-space algorithms are applied. Finally,
Section 6 gives conclusions and presents future work.

2 Java Event Spaces

Chapter 17 of the Java Language Specification (JLS) [7] gives a detailed yet not
formal specification of how multi-threaded Java programs should operate. This
specification states that a main memory shared by all the threads in the program
exists, and that it keeps a global copy of the variable values. The specification
also says that each thread has its own local working memory which keeps a copy
of variables of the main memory. As a thread executes code, some events in
memory happen. An event in memory represents the occurrence of some action
either in the main memory or in the working memory of some thread. A thread
θ can for example use the right value v of a left value l, action use(θ, l, v), or it
can assign it a new value v, action assign(θ, l, v). Right values represent object
values as seen in memory: native type values and references. Left values are
memory addresses. When copying the value v of l from the main memory to
the working memory of θ, two actions must occur: first, a read(θ, l, v) action
performed by the main memory, followed at some unspecified time later by a
load(θ, l, v) action performed by the working memory. When copying the value
v of l from the working memory of θ to the main memory, two actions must
occur as well: a store(θ, l, v) action performed by the working memory, followed
at some unspecified time later by a write(θ, l, v) action performed by the main
memory. Actions lock(θ, o) and unlock(θ, o) acquire and relinquish a lock on
the object o on behalf of the thread θ.

We use the notation x : y to indicate that x is an event labeled with an
action y. Memory actions are read, write, lock and unlock; thread actions
are load, use, assign, store, write, lock and unlock; and lock actions lock
and unlock. With x:read(l) we indicate that x:read(θ, l, v) for some θ and v.
Analogously x:write(v) means that x:write(θ, l, v) for some θ and l. Similarly
for the other actions. We use refx to indicate the reference associated with
variable x.

Formally expressed, a Java event space is a set of events X labeled with
actions, provided with a partial order ≤, such that (X,≤) respects the rules
of well-formedness enunciated in the specification of the Java Memory Model
(JMM) [2,10]. We give an example of event space generation for a Java program
that describes the interaction of two threads executing two methods in parallel.

Example 1. Suppose that two threads θ1 and θ2, executing respectively meth-
ods p() and q() on some object this, exist.

void p(){ synchronized(this){x.i = 7; x.j = 5;} y.i = x.j; }
void q(){ synchronized(this){y = x; z.i = y.i;} z.i = 9; }

Further, suppose that variables x, y and z are instances of some class C with
variables i and j of type int, whose initial values are 0 for both. Figure 1
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0 1 2 3 4 5 6

l o ck (θ1, t h i s )
2 ↓

a s s i gn (θ1,x.i,7)
4 ↓

s t o r e (θ1,x.i,7) → write (θ1,x.i,7)
6 ↓ ↓

a s s i gn (θ1,x.j,5)
8 ↓

s t o r e (θ1,x.j,5) −−−−−−−→ write (θ1,x.j,5)
10 ↙ ↓

↓
12

↙
14 unlock (θ1, t h i s ) −−−−−−−→ −−−−−−−→ l ock (θ2, t h i s )

↘ ↓ ↓
16 ↓ read (θ2,x,refx)

↓
18 ↘ ↓ l oad (θ2,x,refx)

l oad (θ1,x.j,5) ←−−−−−−− read (θ1,x.j,5) ↓
20 ↓ ↓ use (θ2,x,refx)

use (θ1,x.j,5) ↓ ↓
22 ↓ a s s i gn (θ2,y,refx)

a s s i gn (θ1,y.i,5) ↓
24 ↓ s t o re (θ2,y,refx)

↓ ↓
26 ↓ read (θ2,y.i,7) ←−−−−−−− write (θ2,y,refx)

↓ ↓ ↘
28 s t o r e (θ1,y.i,5) −−−−−−−→ −−−−−−−→ write (θ1,y.i,5)

30 ↓
↓ ↘

32 l oad (θ2,y.i,7)
↓

34 use (θ2,y.i,7)
↓ ↓

36 ↓ a s s i gn (θ2,z.i,7)
↓

38 write (θ2,z.i,7) ← s t o r e (θ2,z.i,7)
↓ ↘

40 ↓ unlock (θ2, t h i s )
↓ ↓

42 ↓ a s s i gn (θ2,z.i,9)
↓

44 read (θ2,x.i) ←−−−−−−− write (θ2,z.i,9) ← s t o re (θ2,z.i,9)
↓

46 read (θ2,x.j)

Fig. 1. Java event space generation

shows an event space for the interaction of actions generated by both the main
memory and the working memories local to θ1 and θ2. This event space represents
a possible execution of the program for the interaction of these two threads. The
partial order relation ≤ of actions is represented in the figure by (multiple)
vertical, horizontal and diagonal arrows.

For readability, the reflexivity and transitivity of the partial order relation
have not been sketched. Because, according to the JMM, thread actions for the
same thread make up a total order, actions for θ1 and θ2 in Columns 1 and 6
form increasing chains. The same thing happens for memory actions on the same
variable, hence actions read and write for variables x.i, x.j, y.i and z.i in
Columns 2 to 5 also form increasing chains.
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In Java, when a thread is executing a synchronized code fragment of some
object, no other thread may acquire a lock associated with the same object.
Though, a single thread may acquire several times the lock associated with
the same object. In our example, p() and q() are synchronized. We sketch
the case when θ1 acquires the lock on object this before θ2. After acquiring
the lock associated with this (Column 1, Line 1), θ1 executes the body of the
synchronized part of p() (Lines 3 to 9), and finally relinquishes the lock (Column
1, Line 14). In Line 3, θ1 assigns 7 to x.i and, in Line 5, it writes the new value of
x.i from its working memory to the main memory. The thread θ1 then executes
the rest of the synchronized part of p(), since θ2 cannot acquire a lock on the
object this in order to execute the synchronized part of q().

From then on θ1 and θ2 continue to execute concurrently, in particular the
Java Language Specification does not specify whether the locking of this on
behalf of θ2 or the execution of y.i = x.j by θ1 occurs first. One can only be sure
that writing to and reading from a certain variable must respect a total order.
Figure 1 sketches the case when reading from y.i in the synchronized statement
of q() occurs before the writing to y.i in p() (Column 4). In Column 6, θ2 reads
the value of x from the main memory (Lines 16 and 18), uses its value (Line 20),
and finally assigns the reference of x to y (Line 22). Consequently, from there
on, x and y will be aliased. The rest of Column 6 shows the memory interactions
corresponding to the execution of z.i = 9; by θ2.

3 The Slicing Algorithm

A program slice consists of those parts of a program that potentially affect some
points of interest, which in turn depend on the property that is checked. These
points of interest are called slicing criterion and its variables relevant variables. A
slice set SC is composed of nodes in the Java event space from which nodes in the
slicing criterion C are reachable via the dependency relation

fda−→, defined below,
with the intuitive meaning w

fda−→ r if the event r is aliasing flow dependent on
the event w. In addition to elements in SC , a residual slice set SCr must contain
other events, so that the Java event space formed of events in SCr and having
as order relation the partial order relation of the event space restricted to SCr

make up a program slice.
Predicate FlowDep? below constitutes the basis for the slicing algorithm in-

troduced in [1]. This predicate formalizes the notion of aliasing flow dependency
fda−→; more concretely w

fda−→ r is given by FlowDep?(w, r). In the first case of
definition of FlowDep?, when y=x and w “occurs before” r (w≤r), read(x.i) is
alias flow dependent of write(y.i) if there is no write action w1 (other than w)
between w and r that modifies the field i of x. When y and x are distinct two
other cases arise. First, if w≤r, it is not only necessary to ensure that there is no
write action w1 between w and r modifying x.i, but also that y is an alias of x
when w happened. When y and x are different, it is possible that w:write(y.i)
and r:read(x.i) are not related, since the e Java Language Specification does not



86 N. Cataño

ensure a total order for write and read actions on different left values. In this
case a defensive approach is adopted by considering that write(y.i) modifies
x.i provided that y is an alias of x when w happened.

F lowDep?(w:write(y.i), r:read(x.i)) =

true, if
1. y=x ∧ w≤r ∧
2. ¬∃w1:write(z.i).Alias?(x, z, w1)∧w<w1≤r∧F lowDep?(w1, r)

true, if
1. y�=x ∧ w≤r ∧
2. Alias?(x, y, w) ∧
3. ¬∃w1:write(z.i).Alias?(x, z, w1)∧w<w1≤r∧F lowDep?(w1, r)

true, if
1. y�=x ∧ w �≤r ∧ r �≤w ∧
2. Alias?(x, y, w)

false otherwise

The predicate FlowDep? uses the predicate Alias?(x, y, w) to decide whether
x and y are aliased at the moment the action w occurs in the Java event space.
This last predicate is defined as the disjunction of the predicate AliasAux? with
the parameters swapped. The predicate AliasAux?(y, x, w) checks whether, at
the moment w occurs, y references the same address as x, as a consequence of an
assignment to y from an alias of x. AliasAux?(y, x, w) holds if (i.) y is written
to by x — w2:write(y, refx) — and the reference of y is not modified afterward
by any w1 : write to some reference reft which is not alias of x, or (ii.) y is
written to by a z other than x, and z was an alias of x before w2 occurred.

Alias?(x, y, w) = AliasAux?(x,y, w) ∨ AliasAux?(y,x, w)

AliasAux?(y, x, w:write) =

(∃w2:write(y, refx).w2≤w∧¬∃w1: write(y, reft).w2≤w1<w∧¬Alias?(x, t, w1)) ∨
(∃w2:write(y, refz).w2<w∧ z�=x∧

¬∃w1:write(y, reft).w2<w1<w∧¬Alias?(x, t, w1)∧Alias?(y, z, w2))

Slice sets are formalized by SC below, where an event w labeled with an
action is considered to be in the carrier of a Java event space η, w ∈ carrier(η),
if the event is related to itself. When SC is applied to η and an r:read(x.i), it
returns the set of events w:write(y.i) in the carrier of η such that the predicate
FlowDep?(write(y.i), read(x.i)) holds.

SC(η, r:read(x.i)) = { w:write(y.i)|w ∈ carrier(η)∧FlowDep?(w, r) }

Example 2. Given the slicing criterion C = { read(x.i), read(x.j) } and the
event space in Figure 1, SC(read(x.i)) = { write(θ1, x.i, 7),write(θ1, y.i, 5) }
and SC(read(x.j)) = { write(θ1, x.j, 5) }. Therefore:

SC = {write(θ1, x.i, 7), write(θ1, x.j, 5), write(θ1, y.i, 5) }

Definition 1 below formalizes the construction of residual slices. We are not
going in details on this definition here, but want to indicate that Items (i.)



Formal Modeling of a Slicing Algorithm for Java Event Spaces in PVS 87

l o ck (θ1, t h i s )
↓

s t o r e (θ1,x.i,7) → write (θ1,x.i,7)
↙ ↓

s t o r e (θ1,x.j,5) −−−−−−−→ write (θ1,x.j,5)
↙ ↓

↓

↙
unlock (θ1, t h i s ) −−−−−−−→ −−−−−−−→ l o ck (θ2, t h i s )

↘ ↓ ↓

↓ ↘ ↓ ↓
read (θ1,x.j,5)

↙ ↓
↓ ↓

read (θ2,x.i) ← ←−−−−−−− unlock (θ2, t h i s )
↘ ↓

read (θ2,x.j)

Fig. 2. Sliced event space

through (iv.) of this definition rely on the formalization of the JMM [2,10]. For
instance, Item (ii.) comes from the JMM well-formedness rule “A thread is not
permitted to write data from its working memory back to the main memory for
no reason”. In Definition 1, storeof is a function that pairs a write action with
a unique preceding store action.

Definition 1 (residual slice set construction SCr). Given an event space η
and a slice set SC , the residual set SCr for SC is constructed from SC by adding
actions to it as follows:

(i.) For each write action w:write(θ, l, v) in SC , the only action s in η such
that s:store(θ, l, v) and s = storeof (w) is added to SCr.

(ii.) For each pair of store actions s: store(θ, l), s′: store(θ, l) in η such that
s 	=s′ and s≤s′, every action a:assign(θ, l) in η such that s≤a≤s′ is added.

(iii.) Each lock and unlock actions in η are added to SCr.
(iv.) For each write action w:write(l) in SC , all read actions r: read(l) in η

such that w≤r or r≤w are added to SCr.

Example 3 calculates the residual slice set SCr for SC in Example 2.

Example 3. Given SC as in Example 2, the residual slice set SCr for the event
space in Figure 1 is:

SCr = { write(θ1, x.i, 7), write(θ1, x.j, 5), write(θ1, y.i, 5),store(θ1, x.i, 7),
store(θ1, x.i, 5), store(θ1, y.i, 5), read(θ1, x.j, 5), read(θ2, x.i),
read(θ2, y.i, 7), read(θ2, x.j), lock(θ1, this), lock(θ2, this),
unlock(θ1, this),unlock(θ2, this) }

Figure 2 presents the event space with events in SCr preserving the partial order
relation in Figure 1.



88 N. Cataño

4 Expressing Java Event Spaces as Finite-State Automata

To check the correctness of a dynamic system, we should be able to specify
the kind of properties the system is expected to have. As dynamic systems can
be modeled as finite-state transition systems, the formalism behind the spec-
ification should be appropriate to express properties about state transitions.
Temporal logic is a particular formalism suitable to specify properties in terms
of sequence of transitions between states in the system. The Computation Tree
Logic (CTL) [4,5] is one of the most commonly used temporal logic in model
checking. Validity of CTL formulae depends only on the current state of the
transition system, this is the reason why CTL formulae are referred to as state
formulae in literature. CTL formulae are formed of path quantifiers and temporal
operators. Path quantifiers specify that all paths, A, or some paths, E, starting at
some initial state have a certain property. Four basic operators exist: X (next),
which requires a property to hold at the second state of the path; G (globally)
requires a property to hold at every state along the path; F (future) requires
a property to hold at some states on the path; and U (until), combining two
properties, which requires that the second property holds at some state along
the path and the first holds in any preceding state. CTL requires that each use of
a temporal operator be immediately proceeded by the use of a path quantifier.
Hence, valid formulae in CTL are in the shape of EXφ, EGφ, EFφ, E[φ1Uφ2], AXφ,
AGφ, AFφ, and A[φ1Uφ2].

We are interested in proving that, after the program slice procedure presented
in Section 3 is applied to a Java event space, the sliced Java event space verifies
the same CTL properties (when the next operator is not considered) as the
original Java event space. To prove that, Java event spaces must be formalized
as finite-state automata. In the following we present such a formalization in
PVS [8]. First Java event spaces are modeled.

Java event spaces. Predicate IsEventSpace? below formalizes Java event spaces.
A Java event space E is an evtrelation, i.e. a set of pairs of events, that respects
the (17) well-formedness rules regarding the JMM enunciated in [7], that is is a
partial order — i.e. that is reflexive, antisymmetric and transitive — and that
has a finite history of elements preceding any event — FiniteHistory?(E). This
last predicate holds if for every event e in the carrier of E only a finite number
of elements preceding it exists.

IsEventSpace?(E:evtrelation) : bool =
rule1?(E) ∧ · · · ∧ rule17?(E) ∧
reflexive?(E) ∧ antisymmetric?(E) ∧ transitive?(E) ∧ FiniteHistory?(E)

FiniteHistory?(E:evtrelation) : bool =
∀(e:event): is_finite({(d:event)|carrier(E)(e) ∧ carrier(E)(d) ∧ E(d,e)})

Java event spaces as finite-state automata. We first define a store as an as-
sociation of right values rval to left values lval. Then, states are defined as
records having two fields: a finite history h of events occurring before reaching
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the current state, and a store σ which is updated as events in the history occur.
Initial states of the finite-state automaton have an empty? history of events and
each element of the store has a default value rdefault.

store: TYPE = [lval → rval]
state: TYPE = [# h: (is_finite[event]), σ: store #]
InitialState: [state → bool] =

λ(s:state): empty?(s‘h) ∧ s‘σ = λ(l:lval): rdefault

Predicate NextState(E)below decides whether a one-step transition between
two states s and s1 exists; E represents the event space to be expressed as a
transition system. Formally expressed, NextState(E) holds for two states s and
s1 if their histories differ by a single element e, which moreover must belong
to the carrier of E. Additionally, each element f in the carrier of E happening
before e1 must be in the history of s, and the history and store of s1 can be
obtained respectively from the history and store of s when considering only
the effect produced by the event e. Notice that only Write events affect the
store. This respects the definition of Sc in Section 3 where only Write events are
retained in the sliced event space.

NextState(E:(IsEventSpace?)): [state,state → bool] =
λ(s:state,s1:state):
let {e} = s1‘h \s‘h in

carrier(E)(e) ∧
(∀(f:event): carrier(E)(f) ∧ E(f,e) ∧ f/=e ⇒ s‘h(f)) ∧
s1‘h = s‘h ∪ {e} ∧
s1‘σ = cases e of Write(t,l,r): s‘σ with [l:=r] else s‘σ endcases

We can now define whether a trace tr, i.e. an infinite sequence of states
indexed by natural numbers, constitutes a path in a finite-state automaton.
First, the initial state of the trace must be an InitialState, and a transition
between each pair of successive elements i, i+1 of the trace should exist.

trace: TYPE = [nat → state]
Path(E:(IsEventSpace?)): [trace → bool] =
λ(tr:trace): InitialState(tr(0)) ∧ ∀(i:nat): NextState(E)(tr(i),tr(i+1))

Figure 3(b) shows the states transitions of the Java event space in Figure 3(a)
after slicing (removing) events a, b, c and d. Symbols ≺� stand for records
of type state. Thus, NextState(E)(≺ {e1, e2, e3}, σ3 �,≺ {e1, e2, e3, e}, σ4 �),
for example. Lemmas below follow directly from the definitions of NextState,
trace and Path, where Program_Slice(E,C) stands for the program slice of the
Java event space E with respect to the slicing criterion C.

The first lemma says that the history for the first state (index 0) of any sliced
trace2 is empty; the second lemma states that histories of successive states differ

1 E(e1,e2) corresponds to the notation e1≤e2 in the event space E used before. Symbol
/= denotes inequality in PVS, and s‘h stands for field h of s.

2 A sliced trace is a trace in a program slice.
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e1
↓
e2
↓

a e3 b
↘↓↙
c e d
↘↓↙
f

(a) Trace in the event space

0 ≺ ∅, σ0 �
1 ≺ {e1}, σ1 �
2 ≺ {e1, e2}, σ2 �
3 ≺ {e1, e2, e3}, σ3 �
4 ≺ {e1, e2, e3, e}, σ4 �
5 ≺ {e1, e2, e3, e, f}, σ5 �
(b) Sliced trace

0 ≺ ∅ �
1 ≺ {e1} �
2 ≺ {e1, e2} �
3 ≺ {e1, e2, e3} �
4 ≺ {e1, e2, e3, e, a, b} �
5 ≺ {e1, e2, e3, e, a, b, f, c, d} �
(c) Extended trace

0 ≺ ∅ �
1 ≺ {e1} �
2 ≺ {e1, e2} �
3 ≺ {e1, e2, e3} �
4 ≺ {e1, e2, e3, a} �
5 ≺ {e1, e2, e3, a, b} �
6 ≺ {e1, e2, e3, a, b, e} �
7 ≺ {e1, e2, e3, a, b, e, c, } �
8 ≺ {e1, e2, e3, a, b, e, c, d} �
9 ≺ {e1, e2, e3, a, b, e, c, d, f} �
(d) Original trace

Fig. 3. Reconstruction of traces in the event space

by a single event; additionally, the third lemma says that these histories grow.
The last lemma combines the third and the fourth lemmas.

sliced_traces_are_empty_initially: lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace):
Path(Program_Slice(E,C))(tr) ⇒ empty?(tr(0)‘h)

sliced_traces_make_single_steps: lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace,i:nat):
Path(Program_Slice(E,C))(tr) ⇒
subset?(tr(i)‘h,tr(i+1)‘h) ∧ singleton?(tr(i+1)‘h \tr(i)‘h)

sliced_traces_are_strict_subsets: lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace,i:nat):
Path(Program_Slice(E,C))(tr) ⇒ strict_subset?(tr(i)‘h,tr(i+1)‘h)

sliced_traces_as_increments_the : lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace,i:nat):
Path(Program_Slice(E,C))(tr) ⇒
tr(i+1)‘h = add(the(tr(i+1)‘h \tr(i)‘h),tr(i)‘h)

Evaluating properties. The evaluation of CTL properties follows directly from the
standard definitions of CTL operators. For example, given a Java event space E
and a state s, property EGφ holds in s, if a trace tr starting at s — tr(0)=s —
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and being a path — Path(E)(tr) — exists, such that φ is true along the
trace — ∀(j : nat) : Eval(φ)(tr(j)). Further, a property Holds provided that it
holds at every initial state.

Sem(E:(IsEventSpace?)): [property → [state → bool]] =
λ(prop:property)(s:state):
cases prop of
EG(P): ∃(tr:trace): tr(0)=s ∧ Path(E)(tr) ∧ ∀(j:nat): Eval(P)(tr(j)),
· · ·

endcases

Holds(E:(IsEventSpace?)): [property → bool] =
λ(prop:property): ∀(s:state): InitialState(s) ⇒ Sem(E)(P)(s)

5 Program Slice Is CTL Property-Preserving

We want to prove that, for any proper slicing criterion C, if a CTL property prop
holds in the whole Java event space E, then prop holds in the sliced Java event
space Program_Slice(E,C), and vice-versa. This is expressed in the following
two theorems respectively:

preserving_slice_fi : theorem
∀(E:(IsEventSpace?),C:setof[event],prop:property):
Holds(E)(prop) ⇒ Holds(Program_Slice(E,C))(prop)

preserving_slice_if : theorem
∀(E:(IsEventSpace?),C:setof[event],prop:property):
Holds(Program_Slice(E,C))(prop) ⇒ Holds(E)(prop)

First, notice that slicing can not preserve properties constructed with the aid
of the CTL operators EX and AX because slicing does not preserve next states.
Second, when using Holds(R)(prop) in the definition of preserving_slice_fi
and preserving_slice_if above, a proof of the following lemma, stating that
sliced Java event spaces are still Java event spaces, must be first provided.

slice_sets_are_event_spaces : lemma
Program_Slice(E:(IsEventSpace?),C:setof[event]) has type (IsEventSpace?)

This lemma ensures that expressing sliced Java event spaces as finite-state
automata according to Section 4 is still valid. We will not focus on the proof of
this last lemma here, but will use it in the proof of the second theorem above.
This theorem has been proved for the existential operators EG, EU and EF3.
Our approach considers the reconstruction of traces which incorporate all those
events in the event space removed when slicing. For one, this approach allows the
making of the whole proof process easier and secondly, if we know that original
traces verify the same properties as sliced traces, we are sure that our program

3 Additionally, the first theorem has been proved for the universal CTL operators AG,
AU and AF.
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slice is correct in the sense that only those elements that do not change the
validity of underlying properties were removed when slicing. This construction
is accomplished in two steps.

Constructing original traces from sliced traces. Firstly, we construct extended
traces from sliced traces tr, which modify the history of every state in tr in
such a way that those events in the event space who relate to any event in
the history are added to it (extended_trace below gives a precise definition of
extended traces). Note that stores on extended traces coincide respectively with
stores on sliced traces; that is in accordance with the fact that, when slicing,
we rule out only those events that do not affect the store and hence do not
affect the validity of the CTL property that is checked. Figure 3(c) shows the
extended trace constructed from the sliced trace presented in Figure 3(b). We
have intentionally omitted stores as part of states.

extended_trace(E:(IsEventSpace?),C:setof[event]):
[(Path(Program_Slice(E,C))) → trace] =

λ(tr:(Path(Program_Slice(E,C)))) (n:nat):
(# h:={ e:event | Carrier(E)(e) ∧

∃(a:event): Carrier(E)(a) ∧ tr(n)‘h(a) ∧ E(e,a)},
σ:= tr(n)‘σ #)

We want to make single steps between consecutive indexes, i.e. histories be-
tween consecutive states should differ by a single element only. However, single
steps are not provided by the definition of extended_trace (see histories for in-
dexes 3 and 4 in Figure 3(c) for example). To achieve this singleness, events in the
history of every state on the extended trace are spelled out, making up original
traces (see definition below). Figure 3(d) presents the original trace for the ex-
tended trace in Figure 3(c). Notice that if the history at index 4 in Figure 3(c) is
spelt out, one sole element between a or b should be chosen from the history first;
e cannot be chosen because it requires that both a and b occur before. To make
this choice, the least between a or b can be selected; but since, Java event spaces
do not provide total orders in general, the least between a and b might not be de-
fined. Assume that such a functionspell_history(E(IsEventSpace?))(k:nat,
S:setof[(Carrier(E))], spelling the k least elements of S, exists; as well as
spell_store(E:(IsEventSpace?)) (k:nat,S:setof[event]) (st:strstate),
which spells the k least elements of S and return st after making it k single up-
dates.

From the definition of original_trace below, given an index n, if n=0 then
original_trace returns tr(0). If n>0, then original_trace takes the mini-
mum index m such that Card(etr(m)‘h)>=n, where Card is the standard cardi-
nality function for sets. If Card(etr(m)‘h) is n, then the original trace coincides
with the extended trace; otherwise, n-p — where p is Card(etr(m-1)‘h) —
events are spelt from the difference between Card(etr(m)‘h) and Card(etr(-
m-1)‘h). The same is done for the store.

original_trace(E:(IsEventSpace?),C:setof[event]):
[(Path(Program_Slice(E,C))) → trace] =
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λ(tr:(Path(Program_Slice(E,C))))(n:nat):
let etr = extended_trace(E,C)(tr) in
if n=0 then tr(0) else
let m = min(λ(x:nat): Card(etr(x)‘h)>=n) in
if Card(etr(m)‘h)= n then etr(m) else
let D = etr(m)‘h \etr(m-1)‘h, p = Card(etr(m-1)‘h) in
(# h := union(etr(m-1)‘h,spell_history(E)(n-p,D)),

σ := spell_store(E)(n-p,D)(etr(m-1)‘σ) #)
endif

endif

The approach used to reconstruct traces (paths) on the original system from
traces in the reduced system is general, so it can be extended to other state-
space reduction techniques, provided that some sufficient conditions are verified.
Note that the definition of original_trace depends on the proper definition of
extended_trace. The three lemmas below summarize those sufficient conditions.
The first lemma says that the minimum index i for which the cardinality of
extended_trace is greater than or equal than n, for some n, always exists. The
second lemma says that this cardinality is always positive for any positive n.
And the third lemma says that extended_trace histories grow.

etr_nonempty_n_positive: lemma
∀(E:(IsEventSpace?),C:setof[event],tr:(Path(Program_Slice(E,C))),n:nat):
let S=λ(i:nat): Card(extended_trace(E,C)(tr)(i)‘h) >= n in
nonempty?[nat](S)

etr_min_positive: lemma
∀(E:(IsEventSpace?),C:setof[event],tr:(Path(Program_Slice(E,C))),n:nat):
let S=λ(i:nat): Card(extended_trace(E,C)(tr)(i)‘h) >= n in
n>0 ⇒ min(S)>0

etr_n_minus_p_nonnegative: lemma
∀(E:(IsEventSpace?),C:setof[event],tr:(Path(Program_Slice(E,C))),n:nat):
let S=λ(i:nat): Card(extended_trace(E,C)(tr)(i)‘h) >= n in
let m=min(S) in let p=Card(extended_trace(E,C)(tr)(m-1)‘h) in
n>0 ⇒ n-p>=0

Further, the lemmas below summarize some properties about original traces.
The first lemma follows from the proper definition of spell_history; the second
from the definition of the first lemma, and the third from the first lemma and
some results on sets theory.

otr_makes_single_steps : lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace,i:nat):
Path(Program_Slice(E,C))(tr) ⇒
subset?(original_trace(E,C)(tr)(i)‘h,original_trace(E,C)(tr)(i+1)‘h) ∧
singleton?(original_trace(E,C)(tr)(i+1)‘h \original_trace(E,C)(tr)(i)‘h)

otr_are_strict_subsets : lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace,i:nat) :
Path(Program_Slice(E,C))(tr) ⇒



94 N. Cataño

strict_subset?(original_trace(E,C)(tr)(i)‘h,
original_trace(E,C)(tr)(i+1)‘h)

otr_as_increments_the : lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace,i:nat) :
Path(Program_Slice(E,C))(tr) ⇒
original_trace(E,C)(tr)(i+1)‘h =
add(the(original_trace(E,C)(tr)(i+1)‘h \original_trace(E,C)(tr)(i)‘h),

original_trace(E,C)(tr)(i)‘h)

Now, we go into the proof of the following theorem, which summarizes the
process of constructing original traces described before.

constructing_original_traces_from_traces : theorem
∀(E:(IsEventSpace?),C:setof[event],tr:trace):
Path(Program_Slice(E,C))(tr) ⇒ Path(E)(original_trace(E,C)(tr))

Theorem 1 (constructing original traces from traces). Because of the
following equivalence:

∀(E:(IsEventSpace?),tr:trace):Path(E)(tr) ⇔ ∀(i:nat):PathUpTo(E)(tr)(i),

where PathUpTo is given by:

PathUpTo(E:(IsEventSpace?))(tr:trace)(n:nat) : RECURSIVE bool =
if n=0 then InitialState(tr(0))
else PathUpTo(E)(tr)(n-1) ∧ NextState(E)(tr(n-1),tr(n)) endif

measure n

the proof reduces to:

Path(Program_Slice(E,C))(tr) ⇒ ∀(i:nat): PathUpTo(E)(tr)(i)

Then, by induction on i, the base case becomes:

Path(Program_Slice(E,C))(tr) ⇒ PathUpTo(E)(tr)(0)

When expanding Path and PathUpTo definitions, the base case reduces to:

InitialState(tr(0)) ∧ ∀(i:nat): NextState(Program_Slice(E,C))(tr(i),
tr(i+1)) ⇒ InitialState(original_trace(E,C)(tr)(0))

Because original_trace(E,C)(tr)(0) is tr(0), this goal reduces trivially. For
the case i=k we have:

Path(Program_Slice(E,C))(tr) ∧ PathUpTo(E)(original_trace(E,C)(tr))(k)
⇒ PathUpTo(E)(original_trace(E,C)(tr))(k+1)

Then, because PathUpTo(E)(original_trace(E,C)(tr))(k+1) can be expre-
ssed as the conjunction between PathUpTo(E)(original_trace(E,C)(tr))(k)
and NextState(E)(original_trace(E,C)(tr)(k), original_trace(E,C)
(tr)(k+1)), the case i=k reduces to:

Path(Program_Slice(E,C))(tr) ∧ PathUpTo(E)(original_trace(E,C)(tr))(k)
⇒ NextState(E)(original_trace(E,C)(tr)(k),original_trace(E,C)(tr)(k+1))
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When expanding the definition of NextState, the proof of the i=k reduces to
three sub-cases, namely, (ii.a) which states that if original_trace makes a
transition from state at index k to state at index k+1 using the single event e
in the difference between the state histories, then any event f occurring before
e must belong to the history of original_trace at index k.

Path(Program_Slice(E,C))(tr) ∧ PathUpTo(E)(original_trace(E,C)(tr))(k)⇒
∀(f:event):
(carrier(E)(f) ∧
E(f,the(original_trace(E,C)(tr)(k+1)‘h \original_trace(E,C)(tr)(k)‘h))∧
f /= the(original_trace(E,C)(tr)(k+1)‘h \original_trace(E,C)(tr)(k)‘h)
) ⇒ original_trace(E,C)(tr)(k)‘h(f)

(ii.b) which states that for any indexes k and k+1 in original_trace, the history
at index k+1 can be obtained from the history at index k when adding the event
in the difference.

Path(Program_Slice(E,C))(tr) ∧ PathUpTo(E)(original_trace(E,C)(tr))(k)⇒
original_trace(E,C)(tr)(k+1)‘h =
add(the(original_trace(E,C)(tr)(k+1)‘h \original_trace(E,C)(tr)(k)‘h),

original_trace(E,C)(tr)(k)‘h)

and (ii.c) which states something similar to (ii.b), but considering stores instead
of histories:

Path(Program_Slice(E,C))(tr) ∧ PathUpTo(E)(original_trace(E,C)(tr))(k)⇒
original_trace(E,C)(tr)(k+1)‘σ =
cases the(original_trace(E,C)(tr)(k+1)‘h \original_trace(E,C)(tr)(k)‘h) of
Write(t,l,r): original_trace(E,C)(tr)(k)‘σ with [l:=r]

else original_trace(E,C)(tr)(k)‘σ endcases

We are not going into details about the proof of these three sub-cases here; we
just want to say that the proof of (ii.b) is based on the correct definition of
spell_history; (ii.c) on the correct definition of spell_store; and (ii.a) on
the correct definition of both spell_history and spell_store.

Theorem 2 uses lemma constructing_original_traces_from_traces to
prove preserving_slice_if.

Theorem 2 (preserving slice if). After expanding the definition of Holds
and Sem and doing induction on prop, preserving_slice_if reduces to:

( ∀(s:state): InitialState(s) ⇒
(∃(tr: trace): tr(0) = s ∧ Path(Program_Slice(E,C))(tr) ∧

∀(j:nat): Eval(P)(tr(j)‘σ)) ) ⇒
( ∀(s:state): InitialState(s) ⇒
(∃(tr: trace): tr(0) = s ∧ Path(E)(tr) ∧ ∀(j:nat): Eval(P)(tr(j)‘σ)) )

Then, when considering the same state s in the hypothesis as in the goal, the
theorem reduces to:

( InitialState(s) ∧
∃(tr: trace):



96 N. Cataño

tr(0)=s ∧ Path(Program_Slice(E,C))(tr) ∧ (∀(j:nat): Eval(P)(tr(j)‘σ))
) ⇒
( ∃(tr: trace): tr(0) = s ∧ Path(E)(tr) ∧ (∀(j:nat): Eval(P)(tr(j)‘σ)) )

To instantiate the goal, original_trace(E,C)(tr) is used. Thereafter, three
subgoals are to be proved, namely:

(i.) tr(0)=s⇒ original_trace(E,C)(tr)(0)=s
(ii.) Path(Program_Slice(E,C))(tr)⇒Path(E)(original_trace(E,C)(tr))
(iii.) ∀(j:nat): Eval(P)(tr(j)‘σ)⇒

∀(j:nat): Eval(P)(original_trace(E,C)(tr)(j)‘σ)

Since original_trace(E,C)(tr)(0) is tr(0), (i.) is trivially verified; (ii.) re-
duces from Theorem 1; to prove (iii.), original_traces_are_well_formed be-
low is used. This lemma says that for all index j in the original trace exists an
index i in the sliced trace such that any event in the difference is unimportant,
i.e. it does not modify the validity of the property that is checked. This last
lemma constitutes a new sufficient condition.

original_traces_are_well_formed : lemma
∀(E:(IsEventSpace?),C:setof[event],tr:trace) :
Path(Program_Slice(E,C))(tr) ⇒
∀(j:nat):∃(i<=j): subset?(tr(i)‘h,original_trace(E,C)(tr)(j)‘h) ∧

∀(b:event): (original_trace(E,C)(tr)(j)‘h \tr(i)‘h)(b)
⇒ unimportant_event(C)(b)

6 Conclusion

The full PVS formalization presented here consists of 1800 lines of code, in-
cluding 32 theorems. This formalization shows how theorem proving techniques
can effectively be used to prove general properties about state-space reduction
algorithms. We presented the formalization of a slicing algorithm introduced
previously in [1], and the proof that this algorithm preserves a subset of the
properties that can be modeled using Computation Tree Logic (CTL): next-state
properties formed of AX, EX CTL operators are not preserved under slicing.

Furthermore, during the proof some sufficient conditions were outlined to
extend the two-steps path reconstruction proof approach to other proofs that
involve proving CTL property-preserving under similar state-space reduction
techniques. In particular, in future work, we are interested in exploring how
partial order reduction techniques [6] can be employed to reduce the number of
states generated in MDDs based symbolic state generation techniques [3]. And we
are interested in the correctness proofs involved in that reduction.

The Java Memory Model (JMM) as specified in Chapter 17 of the Java Lan-
guage Specification presents some inconsistencies as highlighted by W. Pugh
in [9]. A new document of Java Specification Requests (JSR-133) (see http://-
www.cs.umd.edu/∼pugh/java/memoryModel/) has been produced to fix these
inconsistencies. This document is part of the most recent Tiger 5.0 release of



Formal Modeling of a Slicing Algorithm for Java Event Spaces in PVS 97

Java. We consider that main results presented here are still valid for these new
specifications: our results apply not only for slicing techniques in the context of
Java, but for reduction techniques in general.
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Abstract. We present a new implementation of a reflexive tactic which
solves equalities in a ring structure inside the Coq system. The efficiency
is improved to a point that we can now prove equalities that were previ-
ously beyond reach. A special care has been taken to implement efficient
algorithms while keeping the complexity of the correctness proofs low.
This leads to a single tool, with a single implementation, which can be
addressed for a ring or for a semi-ring, abstract or not, using the Leibniz
equality or a setoid equality. This example shows that such reflective
methods can be effectively used in symbolic computation.

1 Introduction

In the context of a computer algebra system, one of the most extensively used
functionalities is the simplification of symbolic expressions, and in particular, the
use of algebraic identities. These identities are usually established by elementary
combinations of canonical identities, stored in a very large database, in a quite
efficient way. Programing similar tools in a proof assistant consists in programing
decision procedures, as the user is concerned with the reliability of the result.

Algebraic identities that the user of proof assistant is to handle are often
equalities modulo the axioms of a ring. There are numerous examples of such
identities: the product of two bi-squares is itself a bi-square, remarkable identities
like the famous (a + b)2 = a2 + 2ab + b2 or event more complex properties like
the fact that the product of sums of eight squares is a sum of eight squares.
These equalities are decidable and it seems natural to relieve the user of a proof
assistant of such goals, by providing an automatic tool. Otherwise the proof of
the identity:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

would require no more than thirty elementary rewriting steps of the ring axioms.
The Coq [12] proof assistant already provides such a tool called ring. It is

not based on an automatic rewriting strategy but built using a reflexive tech-
nique [3]. The use of reflexivity has already reduced the size of the generated
proof terms and the time for building and checking them. Nevertheless, the ef-
ficiency of ring is not satisfactory. For example, proving 10 ∗ 100 = 1000, is
immediate if the multiplication ranges over the integers, while it takes about a

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 98–113, 2005.
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hundred seconds on a 3GHz machine if the multiplication ranges over the ax-
iomatic implementation of real numbers. The efficiency of the method on such
goals should not depend on the computational nature of the underlying ring
structure. This bad behaviour on constants strongly affects the efficiency of the
method on algebraic identities of higher degree. Moreover the implementation
choices made in the ring developpment are really limiting the size of the entries
ring is able to deal with.

Currently, there exists eight different implementations of ring depending
on the kind of ring: semi-ring or ring, abstract or not, setoid equality or Leib-
niz equality. Here, we factorize these eight implementations through a modular
implementation which will be finally instantiated to fit the kind of ring required.

The Coq system has recently been improved by the introduction of a com-
piler and an abstract machine, which now allows the evaluation of Coq programs
with the same efficiency as Ocaml programs [8]. After the experiences of mar-
rying computer algebra systems with theorem provers to get both efficiency
and reliability [9], it now seems reasonable to use Coq as a single environment
for programming, certifying and evaluating computer algebra algorithms. Our
newring decision procedure is one of these efficient tools required for the manip-
ulation of symbolic expressions, showing that the reflexive methods are the way
to separate computations from checking, inside the proof assistant. Furthermore
it is the first step for a bunch of other decision procedures, like the simplification
of field equalities [6], or decision methods in geometry [11].

In Section 2, we begin with some general remarks about the reflexive method
and its use in our particular context. The Section 3 is dedicated to our choice
to get efficient representation of polynomials, which is a crucial point for the
efficiency. The Section 4 shows the major importance of the choice of coeffi-
cients set for these polynomials. In the Section 5, we introduce a new axiomatic
structure, called almost-ring, which allows to unify the implementations of the
procedure for rings and semi-rings. In Section 6 we show how the use of the new
metalanguage Ltac [5,2] allows to completely avoid the use of external Ocaml
code. Section 7 is dedicated to examples and benchmarks before we conclude in
Section 8.

2 Overall View of the Method

2.1 Reflexivity

In the Coq system, the rewriting steps are explicit in a proof: each step builds a
predicate having the size of the current goal when the rewriting was performed,
hence the size of the proof term heavily depends on the number of these rewriting
steps. The reflection technique introduced by [1] takes benefit of the reduction
system of the proof assistant to reduce the size of the proof term computed and
consequently to speed up its checking. It relies on the following remark:

– Let P : A → Prop be a predicate over a set A.
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– Suppose that we are able to write in the system a semi decision procedure
f , such that f is computable and if f returns true on the entry x, then P (x)
is valid, that is to say:
f correct: forall x, f(x)=true -> P(x).

If we want to prove P (y) for a particular y, and if we know that f(y) reduces to
true, then we can simply apply the lemma f_correct to y and to a proof that
true = true. Thanks to the conversion rule which allows to change implicitly the
type of a term by an equivalent (modulo β-reduction):

Γ � t : T Γ � U : s T ≡ U
Γ � t : U

This latter proof, which is (refl_equal true), is also implicitly a proof that
f(y) = true because f(y) reduces to true, so true = true is convertible with
f(y) = true. Finally the proof of P (y) we have built is :

f correct y (refl equal true)
The size of such a proof now only depends on the size of the particular

argument y and does not depend on the number of implicit β-reduction steps:
explicit rewriting steps have been replaced by implicit β-reductions. The size
of the proof term of the correctness lemma for f may be large, it is only done
once and for all. It will be shared by all the instantiations and will no more be
type-checked. The efficiency of this technique of course strongly depends on the
efficiency of the system to reduce the application of the decision procedure f(y),
hence on the efficiency of the decision procedure itself.

2.2 General Scheme of the newring Tactic

The newring tactic operates on a ring structure A, which includes a base type
for its elements, two constants 0 and 1, three binary operations +, ∗,− over A
and an opposite unary function −, together with the usual axioms defining a
commutative ring structure. Its goal is to prove the equality of two terms t1 and
t2 of type A modulo the ring axioms.

Working by reflection means that we want to build a semi decision proce-
dure f , which will take t1 and t2 as arguments and return true if t1 and t2 are
equal modulo associative-commutative rewriting in the ring structure.

A natural way to perform a comparison between two terms seems to be the
pattern-matching. Yet the Coq system does not allow pattern matching over
arbitrary terms, but only over inductive types. That is why terms of the type
A are going to be reflected into an appropriate inductive type PolExpr, which
describes the syntax of terms of type A. This step is also called the metaification.
A term of type A is mapped by the meta-function T to a polynomial expression
in PolExpr by:

– interpreting every ring constant as a constant polynomial expression (eg. 0,1)
– interpreting every ring operation as an operation over polynomial expressions
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– hiding every subterm which is neither a ring constant, nor the application
of a ring operation to other subterms behind a labeled variable and building
the corresponding association list.

T is a kind of oracle, we will explain in Section 6 how to build such a function
using the meta-language Ltac[5] which allows to do pattern-matching over an
arbitrary Coq expression.

Once we have built the two PolExpr, e1 and e2, corresponding to t1 and t2,
the idea is to check the equality of the normal forms of e1 and e2 and to prove
that this implies the equality of t1 and t2. For this purpose, we should ensure
the correctness of the following diagram:

e1 = e2 PolExpr
norm ��

ϕPE

��

Pol

ϕP

��

norm(e1) = norm(e2)

t1 = t2 A

T

��

⇐⇒ A ϕP (norm(e1)) = ϕP (norm(e2))

by the correctness lemma:

∀e ∈ PolExpr, ϕPE(e) = ϕP (norm(e))

ϕPE (resp. ϕP ) are the evaluation functions. They evaluate polynomial ex-
pressions (resp. normalized polynomial Pol) into elements of A, by interpreting
back each constant polynomial to a constant of A, each variable by the ring term
it was hiding and each representation of an operator by the corresponding ring
operator.

These functions can be easily defined within the theory by pattern matching
over the reflected inductive types.

The inductive type PolExpr is adapted to the metaification. To ensure the
completeness of our tactic it should verify the following meta property:

∀a ∈ A. ϕPE(T(a)) = a.

Note that we do not have to prove this property, which can not be expressed
inside Coq. It does not affect the correctness of our decision procedure, but only
its completeness.

The type Pol stands for the set of the normalized forms of polynomial ex-
pressions, which does not need to be the same as PolExpr. It is adapted to
build normal forms efficiently. The norm function bridges the gap between these
two kind of constraints: PolExpr suits to the syntax of the terms in A and Pol
allows efficient computations.

To prove the equality of t1 and t2, our tactic first computes e1 and e2 using
T, and then checks the equality of their normal forms. If it holds, the correctness
lemma and the transitivity of equality ensure the equality of t1 and t2:

t1 = ϕPE(T(t1)) = ϕP (norm(T(t1))) = ϕP (norm(T(t2))) = ϕPE(T(t2)) = t2
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3 Sparse Horner Normal Forms

Choosing the shape of the normal form is a crucial point for the complexity. The
normal form for terms in the ring will be determined by the choice made for the
normal form of polynomial expressions. We present here the choice we made for
the normal form, the sparse Horner normal form, which provides the required
efficiency.

3.1 Representation

Horner form for polynomials in C[X ] can be represented by the following induc-
tive type:

Inductive Pol1 (C:Set) : Set :=
| Pc : C -> Pol1 C
| PX : Pol1 C -> C -> Pol1 C.

where (Pc c) represents the constant polynomial c and (PX P c) represents
the polynomial P ∗ X + c. The problem with such a representation is that a
polynomial can have a lot of holes due to gaps in the degrees. For example,
X4 + 1 is represented in the Horner form as:
(PX (PX (PX (PX (Pc 1) 0) 0) 0) 1). The number of nested PX constructors
of such a polynomial is indeed its degree. To get a more compact representation
of the Horner form we can factorize these gaps by adding a power index in the
constructor of non constant polynomials:

Inductive Pol1 (C:Set) : Set :=
| Pc : C -> Pol1 C
| PX : Pol1 C -> positive -> C -> Pol1 C.

where positive is a inductive type representing N∗.
Now (PX P i c) stands for the polynomial P ∗ X i + c. So X4 + 1 is now

represented as (PX (Pc 1) 4 1).
Once the representation of univariate polynomials is fixed, there is a natural

way to extend it to multivariate polynomials, using the canonical isomorphism
C[X1, . . . , Xn] = C[X1 . . .Xn−1][Xn]. In Coq this can be done by declaring the
following fixpoint using dependent type:

Fixpoint Poln (C:Set) (n:nat) {struct n} : Set :=
match n with
| 0 => C
| S m => Pol1 (Poln C m)
end.

The type (Poln C n) represents the set of polynomials with n variables. Namely
(Poln C (S n)) represents the set of univariate polynomials with coefficients
in (Poln C n) and (Poln C 0) is the set of constant polynomials in C.

This representation creates another kind of holes corresponding to holes in
variables. For example the polynomial 1 will be encoded either by (Pc 1) if it
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is seen as an element of Z[X ] or by (Pc (Pc (Pc (Pc 1)))) if it is seen as an
element of Z[W, X, Y, Z]. To solve this problem, we give up the idea of defining
multivariate polynomials recursively from univariate ones. We now define the set
of polynomials in an arbitrary number of variables in one shot.

Inductive Pol (C:Set) : Set :=
| Pc : C -> Pol C
| Pinj : positive -> Pol C -> Pol C
| PX : Pol C -> positive -> Pol C -> Pol C.

– (Pc c) stands for the constant polynomial c ∈ C[X1, . . . , Xn] for any n.
– If Q ∈ C[X1, . . . , Xn−j], and Q is its representation, then (Pinj j Q) repre-

sents Q as a polynomial in n variables, namely Q.X0
n−j+1 ∗ . . .∗X0

n. We have
“pushed” Q from C[X1, . . . , Xn−j ] to C[X1, . . . , Xn]. j is called the injection
index.

– Finally, (PX P i Q) stands for P ∗ X i
n + Q where P ∈ C[X1 . . .Xn] and

Q ∈ C[X1 . . .Xn−1] is constant in Xn.

3.2 Normalization

Our sparse Horner form does not provide a unique representation for arbitrary
polynomials. In C[X ] the polynomial X4 + 1 can be represented by (PX (Pc
1) 4 (Pc 1)) or by (PX (PX (Pc 1) 3 (Pc 0)) 1 (Pc 1)). To solve this, we
can define a normalization function that build a canonical representative of a
polynomial, and then define the equality on polynomial as the equality of the
canonical representatives.

Instead of normalizing before checking equality, our choice is to always ma-
nipulate canonical representatives verifying the three following properties:

– the coefficient of highest degree is never zero;
– the injection index is the biggest possible;
– the power index is the biggest possible.

So the canonical representative of X4 +1 is (PX (Pc 1) 4 (Pc 1)). Note that,
it is also the most compact representation of a sparse Horner form. Since the
complexity of operations depends on the size of the polynomials, linear for ad-
dition and quadratic for multiplication, it is interesting to work with canonical
terms. This means that each operation on polynomials should only build canoni-
cal terms. If P and Q are in canonical form, building the canonical representation
of (PX P i Q) is not expensive, since we only need to locally destruct P:

– if P = (Pc 0) then build the canonical representative of (Pinj 1 Q);
– if P = PX P’ i’ (Pc 0) then the canonical representative is:

(PX P’ (i+i’) Q)
– else (PX P i Q) is the canonical representative.

Our defined operations on polynomial, denoted by Padd, Pmul, Psub, and
Popp, keep the following invariant: if their arguments are canonical then their
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result is canonical. To ensure this, we use specialized constructors that perform
local normalizations: mkPinj and mkPX. For example, the addition of (PX P i
Q) and (PX P’ i Q’) leads to the term (mkPX (Padd P P’) i (Padd Q Q’)).
Since the addition of P and P’ can be the zero polynomial, we need to use mkPX
to ensure that the result is canonical. But we directly use constructors Pinj and
PX, which are costless, each time the invariant allows it, as in the addition of (PX
P i Q) and (Pc c) which reduces to (PX P i (Padd Q (Pc c))), here P can
not be zero or of the form (PX P’ i’ (Pc 0)), since (PX P i Q) is canonical,
so (PX P i (Padd Q (Pc c))) is canonical.

For each operator, we prove a correctness lemma showing that the operator
is correct up to evaluation. For the addition the lemma is:

Lemma Padd_correct: forall P Q l,
phiP l (Padd P Q) == (phiP l P) + (phiP l Q).

where == is the setoid equality over the initial ring (or semi-ring) structure and
+ is its addition.

Note that using mkPX instead of PX has no influence on the correctness, be-
cause (phiP l (mkPX P i Q)) is equal to (phiP l (PX P i Q)). The only in-
fluence is for completeness, since using PX instead of mkPX can produce a non-
canonical representative. But again, we do not need to prove completeness.

The normalization function from polynomial expressions to their canoni-
cal sparse Horner forms consists in mapping variables to monomials, constants
to constant polynomials and operation constructors to operation functions on
Horner form. The canonical representative is given by the evaluation of the term
obtained.

After having defined the normalization function, we can prove its correctness:

Lemma norm_correct : forall l e, phiPE l e == phiP l (norm e).

And then the main lemma, which expresses the correctness of our decision pro-
cedure:

Lemma f_correct : forall l e1 e2,
Peq (norm e1) (norm e2) = true -> phiPE l e1 == phiPE l e2.

where Peq stands for a defined function which checks the syntactic equality over
sparse Horner forms.

The set of coefficients C is the carrier of the computations performed by the
normalization function. The following section will show that the choice made for
C is crucial, especially for the efficiency of the procedure, as C catches the “best
computational part“ of the ring.

4 Computations over the Parametric Coefficient Set

The normalization function we have described above strongly relies on the com-
putational behavior of the set of coefficients. For example the normalization of
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x + (−x) leads to (1 + (−1)).x, which will reduce to 0.x. C has to be chosen
as a set over which we know how to compute, as efficiently as possible. In the
Coq system, these kind of sets will be represented by inductive types, and the
operations are defined as functional programs.

In the Coq system, Z is an implementation of Z as lists of binary digits.
In the case Z is the underlying ring of the equality to be proved, Z itself is a
good candidate. On the other hand, if the underlying ring is R, the axiomatic
implementation of real numbers in Coq, R itself will not be an appropriate set
of coefficients. Indeed, in R, 1 + (−1) is equal to 0 (using ring axioms) but does
not reduce to 0: the subtraction as the other operations and constants of R are
only symbols, and are not evaluable. Hence x + (−x) would not reduced to 0.x
by the normalization function. Since there is a natural inclusion of Z in R, we
can use Z as a set of coefficients. Moreover, whatever ring A we are dealing
with, the canonical morphism from Z to A will enable us to use again Z as
a set of coefficients. This type Z seems then to be a universal candidate for
coefficients.

Nevertheless, Z will not always be the good choice. If the computational
content of the ring operations is stronger than the ring axioms, this method will
allow to prove more than what is provable by sole rewriting of the rings axioms.
In the case we are working in the ring bool, the equality x+x = 0 holds, even if
it is not provable using only the ring axioms. The good choice for C is now bool
itself: the left side of the equality is again reflected in X +X (with coefficients in
bool), whose normal form (1+1).X is reduced to 0.X = 0 by the normalization
function, thanks to the computations over the coefficients in bool. Hence our
choice is to parametrize our tactic by the set of coefficients and to let the user
make the most appropriate choice.

An inductive type has to fulfill some requirements to be admissible as a set of
coefficients. These requirements will ensure the correctness of the normalization
function. Formally, C will be admissible if it is equipped with the constants
and operators of a ring, and with a decidable equality relation =C . The last
requirement is needed to implement the mkPX and mkInj constructors (we need
to be able to check the equality at 0). It also allows to get a decidable equality
on sparse Horner form.

We also require a suitable evaluation function from C to A, mapping the
constants of C to the elements of A and this function should be compatible with
the respective operations of C and A. These requirements can be expressed by
the existence a so-called morphism between C and A (even if C does not need to
be a ring). This morphism evaluates the constants and operators in C into their
analogous in A, and the decidable equality relation =C over C should satisfies :
if (x =C y) returns true, then the evaluations of x and y will be equal in A.

Once we have got C and a proof of all these specifications, we define in
a generic way the operations over polynomials as explained in Section 3, and
extend the morphism between C and A into two evaluation functions ϕPE and
ϕP , from the polynomial expressions and sparse Horner form to A. We also
obtain a proof of the general diagram of the reflection presented in 2.2, Pol
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and PolExpr being now replaced by their parametrized version Pol(C) and
PolExpr(C).

We have implemented the identity morphism which corresponds to taking
the ring itself as the set of coefficient. The user can always apply the resulting
tactic even if it may not prove much equalities (like in the case R is involved).
We have also implemented the morphism from Z to an arbitrary ring, which can
always be used as an efficient default choice, but is not necessary the best choice
(cf the case of bool).

In order to get the maximal efficiency from this method, the user has to make
to most appropriate choice for C. If the ring structure is defined in an axiomatic
way, like R, Z will always be a good choice for the set of coefficients. In the case
the ring already presents a computational content, like Z or bool, it may be
a good choice to take the ring itself as the coefficient set. Nevertheless, if the
available operations are not efficient enough, like it is the case for example in
the semi-ring of Peano numbers, it may be more appropriate to obtain the most
efficient computational content by changing the set of coefficients all the same,
here for example by taking a binary representation of natural numbers.

5 Unifying Rings and Semi-rings

A semi-ring is a ring where the axioms stating the existence of an opposite
(and of a subtraction) have been replaced by an extra axiom : ∀x, 0 ∗ x = 0.
These structures are quite alike and we would like to get a tool also adapted to
semi-rings without duplicating the code. For this purpose, we work with an in-
termediate structure, called almost-ring. The idea is to complete a semi-ring
with a unary operator, called almost-opposite which is morally the opposite
operator of a ring structure. This operator will be instantiated by a dummy
function to equip a semi-ring with such a structure. In fact the fundamental
remark is the following : in the correctness proof of the normalization func-
tion, the axiom defining the opposite operator as an inverse, by stating that
∀x, x + (−x) = 0 is never used itself, but only the properties which describe its
combination with the other operators. Finally an almost-ring is defined by the
following axioms:

– ∀x, 0 + x = x
– ∀x y, x + y = y + x
– ∀x y z, x + (y + z) = (x + y) + z
– ∀x, 1 ∗ x = x
– ∀x y, x ∗ y = y ∗ x
– ∀x y z, x ∗ (y ∗ z) = (x ∗ y) ∗ z
– ∀x y z, (x + y) ∗ z = x ∗ z + y ∗ z
– ∀x, 0 ∗ x = x (at that point we have a semi-ring)
– ∀x y, −(x ∗ y) = −x ∗ y (combination of pseudo-opposite with product)
– ∀x y, −(x + y) = −x +−y (combination of pseudo-opposite with addition)
– ∀x y, x− y = x +−y (definition of an associated pseudo-subtraction)
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It is straightforward to prove that every ring is an almost-ring. The axioms
of an almost-ring do not allow to prove the missing axiom defining the opposite
in ring x +−x = 0. Anyway, this identity will be proved by our tactic, provided
that in the set of coefficients 1+(−1) reduces to 0. This is ensured thanks to the
existence of a morphism from the set of coefficients to the ring. Every semi-ring
can also be equipped with an almost-ring structure if we take the identity as an
almost-opposite operator and the defined addition operator of the semi-ring as
subtraction.

The tactic is finally designed for an almost-ring structure. We have moreover
built the proofs required to transform any ring or semi-ring into the associated
almost-ring.

The last parameter given to the tactic is the equality relation used over the
ring. It may not be the Leibniz equality, but an equivalence relation adapted to
the ring structure. For example, this is the case for an implementation of Q as
Z×N∗. A set equipped with such an equality relation is called a setoid ([7],[10]).
Proving equalities in such a setoid ring requires extra properties stating that
all the ring operations are compatibles with the given setoid equality. In the
case the equality involved in the goal is the Leibniz one, these requirements are
trivial to fulfill. That is why the tactic will finally also be parametrized by a
setoid equality and the related compatibility lemmas for the operations.

6 Programming the Metaification and the Tactic

The purpose of the newring tactic is to solve goals of the form t1 == t2 by
applying the f_correct lemma. To do so we need to produce a list of values l
and two polynomial expressions e1 and e2 such that the evaluation of e1 (resp.
e2) at l is convertible to t1 (resp. t2). Consider the following equality

3 ∗ sin(x) ∗ x = x ∗ (sin(x) + 2 ∗ sin(x)) + 0 ∗ y

In this case l will be [sin(x); x; y], e1 will be 3 ∗X1 ∗X2 and e2 will be
X2 ∗ (X1 + 2 ∗X1) + 0 ∗X3.

6.1 Programming the Metaification

We use the Coq proof-dedicated metalanguage Ltac[5] to design the oracle pro-
ducing the expected values (l, e1, e2). This metalanguage allows to do pattern-
matching on arbitrary Coq terms, and thereby to program this metafunction,
which is a tactic, in a natural way as done in [6].

We first build a function FV which computes the list l containing the subterms
to abstract. These are the ones which do not belong to the syntax of a ring. Then
the mkPolexpr tactic computes the two expresssions e1 and e2 and the list l is
used to know which variable is associated to a given subexpression to abstract.

Ltac mkPolexpr Cst add mul sub opp t l :=
let rec mkP t :=
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match t with
| (add ?t1 ?t2) =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(PEadd e1 e2)

| (mul ?t1 ?t2) => ...
| (sub ?t1 ?t2) => ...
| (opp ?t1) => ...
| _ =>
match Cst t with
| false => let p := Find_at t l in constr:(PEX p)
| ?c => constr:(PEc c)
end

end
in mkP t.

The tactic mkPolexpr takes as arguments a term t, the list l of terms to abstract,
the ring operators and a tactic Cst. It matches the head symbol of t:

– If this symbol is one of the given operators then it builds recursively the
corresponding polynomial expression;

– If the head symbol is not an operator then either t is a constant or it has to
be abstracted into a variable. This discrimination is performed by the tactic
Cst given in argument :
• If Cst returns false then the index of the proper variable is given by

the position of t in the list l given in argument.
• Otherwise t is mapped to the corresponding constant.

The definition of the Cst tactic depends on the ring A. If A is an abstract ring,
the set of coefficients will be Z, and we can already define a naive tactic which
matches only the neutral elements of A (rO and rI).

Ltac genCstZ rO rI t :=
match t with
| rO => constr:(0%Z)
| rI => constr:(1%Z)
| _ => constr:false
end.

On the other hand, in the case A is Z, the set of coefficients will be Z itself,
and we can match much more constants: in fact all the terms built only with the
constructors of Z.

Ltac ZCst t :=
match (is_ZCst t) with
| true => constr:t
| false => constr:false
end.
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Here is_ZCst is a tactic matching the terms built only with the constructors of
the inductive type Z.

This method has also been generalized to the case of semi-rings, where N,
the implementation of binary natural numbers plays the role of Z. We have also
built such a tactic Cst for boolean, where the target constants are booleans.

6.2 The Generic Tactic

To define the newring tactic itself, we use the possibility given by Ltac to pro-
gram a higher-order function, which builds a tactic, solving equalities in the
structure given in argument. For the sake of clarity we present a simplified ver-
sion that can be used only if the goal is a valid equality modulo ring axioms
and fails otherwise. The real implementation also replace both members of the
equality by their normal form if they are not equal.

Ltac Make_ring_tac add mul sub opp req Cst_tac :=
match goal with
| [ |- req ?r1 ?r2 ] =>
let fv := FV Cst_tac add mul sub opp (add r1 r2) (nil R) in
let e1 := mkPolexpr Cst_tac add mul sub opp r1 fv in
let e2 := mkPolexpr Cst_tac add mul sub opp r2 fv in
apply (f_correct fv e1 e2); compute; exact (refl_equal true)

| _ => fail "not equality"
end.

The tactic first checks that the current goal is an equality. If so, it computes a
single list fv of subterms to be abstracted in both terms, and the two polynomial
expressions e1 and e2 representing the members of the equality. Then the tactic
applies the correctness lemma f_correct. At that point the tactic should prove
the hypothesis of the lemma, namely check that (norm e1) ?== (norm e2) is
equal to true.

If r1 and r2 are equal modulo ring axioms then this new goal is convertible
to true = true. So it is now possible to complete the proof with the term
(refl_equal true). The tactic exact checks that the provided term has a
type convertible to the current goal ((norm e1) ?== (norm e2)) = true. This
is performed using a lazy reduction strategy. Here checking the convertibility
is equivalent to computing the normal form of the equality’s left-hand side.
The efficient strategy suitable to this problem is the call by value reduction. So
the tactic first uses the compute tactic to reduce the goal in this way, before
concluding with exact.

We can now apply the Make_ring_tac to obtain a tactic which automatically
prove ring equality in Z:

Ltac zring := Make_ring_tac Zplus Zmult Zminus Zopp (@eq Z) ZCst.

We also have implemented such a tactic for booleans (bring), reals (rring) and
natural numbers (nring), Peano numbers as well as their binary implementation.
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Finally, the newring tactic analyzes the type of the equality to prove and calls
the corresponding specialized tactic:

Ltac newring :=
match goal with
| [|- @eq Z _ _ ] => zring
| [|- @eq R _ _ ] => rring
| [|- @eq bool _ _ ] => bring
| [|- @eq nat _ _ ] => nring
end.

To work with an other user-defined structure, one can always use the prede-
fined tactic Make_ring_tac to build the appropriate tactic for proving equalities
in this structure.

7 Examples and Benchmarks

The newring tactic has performed two orthogonal improvements compared to
the choices made in the ring tactic developped by S. Boutin [3]. The first one
is the choice of the sparse Horner form for the representation of normal forms
instead of an ordered sum of monomials, being themselves an ordered product of
variables. The second is to use Z as the set of coefficients for reflected expressions
when working with abstract rings (R for example).

7.1 Sparse Horner Form

Figure 1 describes the time to normalize the expression (x1 + . . .+xn)d seen as a
polynomial with coefficients in Z. For ring, the normal form of this expression is
its expansion in an ordered sum of monomials, each prefixed by a coefficient in Z.
Both tactics use Z as a set of coefficients, so these benchmarks show the interest
of the sparse Horner form to deal with polynomials of higher degree. The gain
in time for n = 5 and d = 5 is a factor 6 and a factor 500 for n = 7 and d = 9,
thanks to the compactness of sparse Horner form representation. Using a naive
Horner form (without power and injection index, or not maintaining canonical
representatives) introduces an overhead of 30%. Moreover, the ring tactic is not
able to normalize this expression when n = 8 and d = 9, and when n = 12 it
fails for d = 6. The newring tactic is able to normalize the expression for n = 12
and d = 11.

Comparing the time to normalize expressions of the form (x1 + . . . + xn)d

to the results given by the expand function of Maple, is deceiving. The algo-
rithm used by the computer algebra system in mainly focused on the access
to a database of stored identities, and possible simple combinations of them.
When the precomputed identities are useless, the system is of course less effi-
cient, and can even fail because of the size of the normal form. This is the case
for expressions of the following form
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Fig. 1. Time to prove that (x1 + . . . + xn)d is equal to its normal form

( y + x2 + . . . + xn−1 + xn) ∗
(x1 + y + . . . + xn−1 + xn) ∗

...
(x1 + x2 + . . . + y + xn) ∗
(x1 + x2 + . . . + xn−1 + y )

For n = 8 the newring tactic is four times slower than the expand strategy of
Maple (0.4s for newring, 0.12s for Maple). But Maple fails to expand the for-
mula when n = 9 (Error, (in expand/bigprod) object too large), while
newring finishes in 1.7s.

7.2 The Set of Coefficients

Beside the successful use of the Horner form, the use of Z as the set of coefficients
when we are working with an abstract ring has been a major improvement for
efficiency. For the previous ring tactic, the representation of normal forms in an
abstract ring leads to coefficients equivalent to unary numbers, hence compu-
tations are completely inefficient. Proving that 10*100 = 1000 takes about one
hundred of seconds on a 3GHz machine using ring, and it is now immediate with
newring (as one would expect). It is worth paying attention to the efficiency of
such a tactic over (large) integers. One often deals with expressions with small
coefficients but successive computations may increase their size in a significant
way. A well-known phenomenon of explosion in the size of the coefficients oc-
cur while computing a remainder sequence of polynomials, like the computation
of a polynomial gcd in Q[X ]. For example, in the context of the checking of
computations made by an external oracle [9] (Maple or any dedicated program
producing a trace of certificates...), checking the successive steps of such a com-
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putation will force to deal with large coefficients, even if the initial polynomial
entries had small ones.

8 Conclusion

This development shows that it is worth paying attention to the algorithmic
aspects in programming such a procedure in the same way we would have done
while programming it in a functional language. The choices we made in that
sense turned out to be primordial for efficiency. This gain in efficiency could
have lead to a complication of the associated correctness proofs. This is not the
case, as the possible difficulties in the proofs lie in the mathematical complexity
of the problem more than in the choices made for computations. This effort
has even allowed to reduce the size of the development, by factorizing the eight
versions of the tactic in a single one.

One other characteristic feature of the reflexive method is that it requires, for
the reflection step, the use of an operator defined in the meta level, and hence
using the meta-language of the system. The Ltac metalanguage turns out to be
exactly the tool needed in reflexive tactic to program this reflection step in the
meta-theory. The mechanism of pattern-matching over Coq terms indeed enables
to write this function easily, without any knowledge of the inside of Coq and to
work entirely at the top-level, without needing to compile again and again the
whole sources of the system to integrate the new tactic.

A possible improvement for our development would be to allow negative
powers in the representation of polynomials, to deal with Laurent series. But,
one can also use the remark that proving an equality in a field can be transformed
into a goal in a certain ring plus nonzero conditions for the denominators. This
implementation of a newfield tactic has been achieved by L. Théry.

This work shows that the sparse Horner form is the right representation to
compute efficiently with polynomials. We hope that existing developments, such
as the decision procedure for geometry [11], strongly relying on the ring tactic
will gain in efficiency and hence in power.

We are also convinced that this will allow the development of other efficient
procedures to deal with symbolic expressions, providing a basic toolkit for larger
developments in the domain of certified computer algebra. In particular, the sec-
ond author uses the Horner representation of polynomials to develop a decision
procedure for real numbers theory based on G. Collins’ cylindrical algebraic
decomposition [4], which is a quite complex algorithm resting on numerous com-
putations over polynomials (computations of gcd, subresultant coefficients,...).

The efficiency of newring overcomes what was before a strongly limiting
factor in such a development, showing that it is possible to compute efficiently
within a proof assistant. This makes possible to use the proof assistant as a single
environment for computing and proving as well as an efficient checker efficiently
computations possibly performed by an external tool as described in [9].

The systematic use of Z as a set of coefficients has considerably increased the
efficiency of the tactic. Yet Z, in which numbers are represented as lists of bits,
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is not the best possible implementation for integers. An other step toward the
efficiency of a genuine computer algebra system will be to provide to the user the
possibility to use a library of machine binary integers, comprising fast computing
operations, in order to deal even more efficiently with the huge integers occurring
during symbolic computations (eg. polynomial gcds, prime numbers).
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Abstract. We describe a formalization of the elementary algebra, topology and
analysis of finite-dimensional Euclidean space in the HOL Light theorem prover.
(Euclidean space is RN with the usual notion of distance.) A notable feature is
that the HOL type system is used to encode the dimension N in a simple and
useful way, even though HOL does not permit dependent types. In the resulting
theory the HOL type system, far from getting in the way, naturally imposes the
correct dimensional constraints, e.g. checking compatibility in matrix multiplica-
tion. Among the interesting later developments of the theory are a partial decision
procedure for the theory of vector spaces (based on a more general algorithm due
to Solovay) and a formal proof of various classic theorems of topology and analy-
sis for arbitrary N -dimensional Euclidean space, e.g. Brouwer’s fixpoint theorem
and the differentiability of inverse functions.1

1 The Problem with RN

Since the pioneering work of Jutting [9], several people including the present author [6]
have used computer theorem provers to formalize the construction of the real numbers
and/or the development of elementary real analysis. There has also been some work in
formalizing complex analysis, with proofs of the Fundamental Theorem of Algebra in
Mizar [12], HOL Light [7] and — constructively — in Coq [5]. However, as far as we
are aware the first serious formalization of arbitrary N -dimensional Euclidean space is
quite recent, undertaken by Hales in HOL Light as part of the Flyspeck project:2

One reason for this may be that the basic real line suffices for many interesting
applications such as the verification of floating-point algorithms. Another reason is that
the proofs for N -dimensional space tend to be a bit technical, with a lot of summations
and indexing, which makes them more tedious to formalize. A more substantial reason,
however, may be that several theorem provers, including the numerous variants of HOL
(HOL Light and Isabelle/HOL included) are based on a simple type theory where the
type system seems to be more a hindrance than a help in formalizing N -ary Cartesian
products. This applies not just to R

N but in other cases too — for example if one wants
to formalizeN -bit words as an N -ary Cartesian productbitN for some 2-element type
bit. The problem with simple type theory is that a compound type can only depend

1 The proofs and tools described are available within the ‘Multiviariate’ direc-
tory of recent HOL Light releases available from http://www.cl.cam.ac.uk/
users/jrh/hol-light.

2 See http://www.math.pitt.edu/∼thales/flyspeck/index.html for more
about the project and the Jordan subdirectory of HOL Light for some of Hales’s theories.

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 114–129, 2005.
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on other types like R or bit, and not on terms like N . So how are N -ary Cartesian
products AN usually defined in HOL? We can identify two common approaches.

One can use a larger type such as (A)list or N → A and identify subsets of it
for particular N . While quite workable — this is what Hales’s formalization does —
it seems disappointing that the type system then makes little useful contribution, for
example in ‘automatically’ ensuring that one does not take dot products of vectors of
different lengths or wire together words of different sizes. All the interesting work is
done by set constraints, just as if we were using an untyped system like set theory.

Alternatively, one can define specific instances for the N that are actually to be
used; for example just bit16 and bit32 for a verification project or just R

2 for a
proof in plane geometry. However one may then need to duplicate structurally identical
definitions, theorems and proofs for many different cases. One can use programmability
to ease this burden; for example in HOL4 one can invoke an ML functor to create a
specific word theory simply by:

structure word8Theory = wordFunctor (val bits = 8)

However, writing such a general theory requires a lot of rather tedious parametriza-
tion, and it seems inelegant to have various incompatible versions of what are naturally
thought of as just instances of the same general result.

Of course, no problem arises in systems based on traditional set theory (such as
Mizar) or those based on richer dependent type theories (such as Coq, Nuprl or PVS).
So one might argue that it would be preferable to start from some such foundation rather
than find ingenious ways to work around the deficiencies of a simpler one. However,
simple type theory is a well-understood system with some appealing technical quali-
ties such as efficiently decidable inference of most general types. Moreover, there has
already been a considerable effort expended in developing comprehensive libraries of
theorems and suites of proof tools for several provers based on simple type theory, and
from a social point of view it would be difficult to abandon it.

A different approach to the problem of formalizing real vector spaces is to avoid
Cartesian products by not using a ‘basis’ representation. For example, the IMPS system,
which is also based on simple type theory, has been used to formalize analysis at a quite
abstract level [3]. One can work in a theory of vector spaces over an arbitrary type ‘V’,
and then where necessary deduce the dimensions or choose a basis. However, one then
needs a degree of overparametrization in all the results to indicate the ambient vector
space operations and assert that they satisfy the required properties. By contrast, our
solution below needs no such parametrization.

2 Our Formalization of RN

While HOL’s version of simple type theory does not permit dependent types, it does
feature polymorphic type variables. Our basic idea is to use types in place of numeric
parameters, with the cardinality of the type being the dimension of the Cartesian prod-
uct. That is, our formalization of AN for a variable N is essentially the function space
N → A where N is a type variable. In order to instantiate N to a particular value in
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a theorem, we simply type-instantiate it so that the type replacing N has the appropri-
ate size. For example, given a theorem about R

N with N a type variable, we can later
specialize it to R

3 by type-instantiating N to a 3-element type, which we can define as
follows (there is no problem using the numeral 3 as the name of a type since types and
terms belong to different namespaces):

let three_INDUCT,three_RECURSION =
define_type "3 = three_1 | three_2 | three_3";;

One may object that, just as with the HOL4 word theory, one still needs to define
a new type for each concrete instance required. However, this is now only an indexing
type. All the definitions and theorems are generic, and one just needs to type-instantiate
them to get specific instances. And in fact, one does not need to define new types for
each instance. One can already create an N -element type by applying the sum-type
constructor ‘+’ to the one-element type ‘1’:

N times︷ ︸︸ ︷
1 + · · ·+ 1

This amounts to expressing the size of the indexing set in unary. More exotically,
one can define type constructors for the construction of a binary or decimal representa-
tion [1].

Variants

Actually, there are at least three slightly different variants of the idea that we have
considered:

– Literally use the function space N → R. This allows any indexing type, finite or
infinite.

– Use a subset of functionsN → R with ’finite support’, i.e. so that {x : N | f(x) 	=
0} is finite.

– Use a subset of the set of functions N → R that somehow ‘forces N to be finite’.

These all have different strengths and weaknesses. The first alternative is the sim-
plest and most transparent, but if certain theorems depend on N ’s finiteness we need to
add an explicit hypothesis FINITE(UNIV:N->bool). The second approach would
probably be the most appropriate for a theory of vector spaces with finite or infinite di-
mension. But since we are mainly concerned with the finite-dimensional case, we have
adopted the third alternative. More explicitly, we have defined a binary type constructor,
written as infix ‘ˆ’, such that the type ‘AˆN’ is isomorphic to the usual function space
N → A if N is finite and to A itself if N is infinite. In other words, we force infinite
indexing sets to be treated as if they had size 1. This is accomplished by the following
definition of a unary type constructor finite_image:

let finite_image_tybij =
new_type_definition "finite_image" ("mk_finite_image","dest_finite_image")
(prove(‘∃x:A. (x = @z. T) ∨ FINITE(UNIV:A->bool)‘,MESON_TAC[]));;
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This ensures that the type (A)finite_image has the same size as A when that
size is finite, and size 1 otherwise. The size of (A)finite_image can be determined
by applying this function:

|- dimindex(s:A->bool) = if FINITE(UNIV:A->bool) then CARD(UNIV:A->bool) else 1

Now the binary type constructor ˆ is defined so that AˆN is isomorphic to the mod-
ified function space (N)finite_image->A, which yields the desired effect. These
encoding tricks may be a bit obscure, but the end effect is that we can freely use the
naive notation AˆN while assuming whenever necessary that N is finite.

Since this is not actually the usual function space constructor, we need a corre-
sponding notion of application and abstraction. Actually, the actual indexing type itself
is of no interest, only its size. When we use it as for indexing, we would prefer, for con-
formance with informal convention, to use natural number indices from 1 to N . So we
define an indexing operator, written as an infix $ symbol, and with typeAN → N → A,
which internally picks some canonical way of mapping {1, . . . , N} bijectively into the
indexing type and then applies it. We also define a corresponding notion of function
abstraction (lambda written with binder syntax), and these satisfy the key property:

|- ∀i. 1 <= i ∧ i <= dimindex(UNIV:B->bool) ⇒ (((lambda) g:AˆB) $i = g i)

For most purposes, one can now forget the coding details and use ‘x$i’ where
informally one would write xi for indexing.

3 Vectors and Linear Algebra

It’s now straightforward to define the basic operations on vectors. Addition and similar
‘pointwise’ operations are defined according to the following pattern:

|- x + y = lambda i. x$i + y$i

Note that we overload the usual arithmetic symbols like ‘+’, but that the under-
lying constant on the left is actually vector_add:realˆN->realˆN->realˆN,
whereas the ‘+’ on the right is the usual addition of real numbers. We define scalar
multiplication of vectors by constants:

|- c % x = lambda i. c * x$i

and an injection from natural numbers, useful to denote the zero vector by vec 0:

|- vec n = lambda i. &n

More interesting is the inner (‘dot’) product. We show here the definition with the
appropriate type annotations. Note that this looks quite close to the way this would be
written informally, x · y =

∑n
i=1 xiyi, except that since our N is a type, we need to

convert it to a number by applying dimindex to its universe set:

|- (x:realˆN) dot (y:realˆN) =
sum(1..dimindex(UNIV:N->bool)) (λi. x$i * y$i)
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A Simple Decision Procedure

The basic algebraic properties of vectors can be derived fairly mechanically from the
above definitions. In fact, we’ve hacked together a crude proof procedure that is able to
prove most of the basic algebraic properties automatically by reducing them to the real
case on the subcomponents. This is very convenient for generating the kinds of simple
algebraic identities one often needs in proofs. Some of these (such as associativity of
vector addition) are so useful that we bind them to names. More ad hoc lemmas can be
generated dynamically.

# VECTOR_ARITH ‘∀x y:realˆN. (x - y = vec 0) ⇔ (x = y)‘;;
val it : thm = |- ∀x y. (x - y = vec 0) ⇔ (x = y)
# VECTOR_ARITH ‘∀a b x:realˆN. a % (b % x) = (a * b) % x‘;;
val it : thm = |- ∀a b x. a % b % x = (a * b) % x
# VECTOR_ARITH ‘∀x y z:realˆN. (x + y) dot z = (x dot z) + (y dot z)‘;;
val it : thm = |- ∀x y z. (x + y) dot z = x dot z + y dot z
# VECTOR_ARITH ‘∀c x y:realˆN. x dot (c % y) = c * (x dot y)‘;;
val it : thm = |- ∀c x y. x dot c % y = c * (x dot y)

The reduction process inside is, for many ‘pointwise’ theorems, a simple equiva-
lence, e.g. x + y = y + x to ∀i. 1 ≤ i ≤ n ⇒ xi + yi = yi + xi. In more general
cases involving dot products and richer logical structure, the componentwise versions
are proved anyway. For example, to prove x · y = 0 ⇒ y · x = 0, it is first reduced
to the equivalent

∑n
i=1 xiyi = 0 ⇒

∑n
i=1 yixi = 0 and that is deduced from the (a

priori stronger) componentwise implications ∀i. 1 ≤ i ≤ n ⇒ xiyi = 0 ⇒ yixi = 0,
which are trivial. Note that assuming the postulated fact is true without regard to di-
mension, then it is in particular true for 1-dimensional space (n = 1 above), so the
componentwise form is not in fact any stronger.

Norms

We next define the usual norm:

|- norm x = sqrt(x dot x)

and the corresponding distance function:

|- dist(x,y) = norm(x - y)

While apparently straightforward, this does raise a slight bootstrapping problem.
Although the existing HOL analysis theory includes a large suite of theorems about
square roots, our long-term goal is to subsume that theory in the present more general
one. Therefore, we want to generate from scratch any results about square roots that we
need. Before commencing analysis proper we prove the following lemma:

|- a <= b ∧ f(a) IN e1 ∧ f(b) IN e2 ∧
(∀e x. a <= x ∧ x <= b ∧ &0 < e

⇒ ∃d. &0 < d ∧ ∀y. abs(y - x) < d ⇒ dist(f(y),f(x)) < e) ∧
(∀y. y IN e1 ⇒ ∃e. &0 < e ∧ ∀y’. dist(y’,y) < e ⇒ y’ IN e1) ∧
(∀y. y IN e2 ⇒ ∃e. &0 < e ∧ ∀y’. dist(y’,y) < e ⇒ y’ IN e2) ∧
¬(∃x. a <= x ∧ x <= b ∧ f(x) IN e1 ∧ f(x) IN e2)
⇒ ∃x. a <= x ∧ x <= b ∧ ¬(f(x) IN e1) ∧ ¬(f(x) IN e2)
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This looks somewhat ugly and complicated, but it condenses to a more natural state-
ment using concepts yet to be defined. It simply says that given a continuous mapping
out of the real interval [a, b] that maps a and b respectively into points of open sets e1
and e2 that have no common points in the image f [a, b], there must be a point x in the
interval such that f(x) is contained in neither of those sets.

Later this is used to yield some standard theorems of analysis such as the fact that
a convex set is connected. But in the short term, we use it to justify the existence of
square roots, so we can proceed with our theory. It’s now fairly easy to prove the usual
norm properties such as the triangle law

|- ∀x y. norm(x + y) <= norm(x) + norm(y)

and the Cauchy-Schwarz inequality:

|- ∀x y. abs(x dot y) <= norm(x) * norm(y)

An arguably more elegant alternative used by Arthan in the development of analysis
in the ProofPower version of HOL is to start the development based on the L1 norm
||x|| =

∑n
i=1 |xi| and develop analysis normally. Once this infrastructure is set up,

properties of square roots are trivial, and it’s then straightforward to show that all the
basic topological properties are the same under the L1 and usual norms and so map any
earlier theorems across.

Linear Algebra

For us, linear algebra is only a tool for use in analytical results, and we have not de-
veloped it very comprehensively. We define a summation operator vsum over vectors,
define orthogonality

|- orthogonal x y ⇔ (x dot y = &0)

and linearity of functions:

|- linear (f:realˆM->realˆN) ⇔
(∀x y. f(x + y) = f(x) + f(y)) ∧
(∀c x. f(c % x) = c % f(x))

We do not define a specific type of matrices, but represent M × N matrices using
our Cartesian product twice. The usual arithmetic operations are then defined by by
a further pointwise lifting, with ‘**’ overloaded for matrix-matrix and matrix-vector
multiplication. For example matrix-matrix multiplication is defined by:

|- (A:realˆNˆM) ** (B:realˆPˆN) =
lambda i j. sum(1..dimindex(UNIV:N->bool)) (λk. A$i$k * B$k$j)

Note that to make the indexing correspond to the usual row-column convention, we
needed to represent M × N matrices as (RN)M , not (RM )N . If this is not considered
palatable, it would be strightforward to define a new type, say (M,N)matrix and
an indexing function on pairs of numbers. But if we ignore such details, note how
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nicely our typed formalization enforces the compatibility requirements in operations
like matrix multiplication: one can only multiply an M × N matrix by a N × P one
and the result is an M × P one.

The crucial theorems for our later work involve the correspondence between ma-
trices and linear operators, with matrix mapping from a linear operator to the corre-
sponding matrix:

|- ∀A:realˆNˆM. linear(λx. A ** x)

|- ∀f:realˆM->realˆN. linear f ⇒ ∀x. matrix f ** x = f(x)

|- ∀f g. linear f ∧ linear g ⇒ (matrix(g o f) = matrix g ** matrix f)

We have undertaken only a very rudimentary formalization of dimension, linear
independence etc., just enough to reach one lemma that we need later on, that left and
right invertibility coincide for N ×N matrices.

|- ∀A:realˆNˆN A’:realˆNˆN. (A ** A’ = mat 1) ⇔ (A’ ** A = mat 1)

It would however be a nice exercise in formalization to round out this theory with
all the usual results of linear algebra, along the lines of Japser Stein’s formalization in
Coq.

4 A Decision Procedure

While the naive VECTOR_ARITH above is very useful, it is incapable of proving deeper
facts about vectors. We spent some time looking for information on the decidability
of theories of vector spaces. In contrast to the detailed catalogue of decidability and
undecidability results that are known for groups, rings and fields, we were unable to
find any such results. We therefore asked Robert Solovay about the subject. He was
also unaware of any existing body of results, but within a few days had invented and
described to us via email [16] a comprehensive set of quantifier elimination procedures
for several variants of the first-order theory of real vector spaces. (Solovay is of the
opinion that he is probably not the first to arrive at these results, and if any readers have
seen such things before, the author would be very interested to know about them.)

Although the full quantifier elimination procedures are probably impractical, we
thought it worthwhile to implement a cut-down version which, in principle, will suc-
cessfully prove all theorems in the first-order language of real vector spaces where (i)
all quantifiers over vectors are universal, and (ii) they are true in infinite-dimensional
space. The reader will see shortly where these restrictions arise.

Initial Reduction

The first step in the procedure is to eliminate most vector operations, in fact all except
dot products between pairs of variables.

First we eliminate the norm, which is already taken to be defined by |x| =
√
x · x,

by replacing any atomic formula P (||x||) involving a norm by ∀c. 0 ≤ c ∧ x · x =
c2 ⇒ P (c). In fact we optimize this reduction in common special cases, e.g. mapping
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||x|| < ||y|| to x · x < y · y. We also write away the distance function dist using its
definition.

Now note that any vector equality x = y is equivalent to x − y = 0, which is in
its turn equivalent to |x − y| = 0 and so to (x − y) · (x − y) = 0. This allows us
to eliminate vector equality. Actually we follow Solovay’s original procedure in using
x · x = y · y ∧ x · y = x · x (the chain of implications between these equivalents is easy
to establish).

Now we can distribute dot products through any composite terms and constants
using various obvious rules. Note that these can be applied until the dot product is
applied to pairs of variables only.

0 · x = 0
x · 0 = 0

(cx) · y = c(x · y)
x · (cy) = c(x · y)
−x · y = −(x · y)
x · −y = −(x · y)

(x + y) · z = x · z + y · z
x · (y + z) = x · y + x · z
(x − y) · z = x · z − y · z
x · (y − z) = x · y − x · z

These steps are easily packaged up as a HOL tactic SOLOVAY INIT TAC which
reduce the initial goal. For example, here we set the Cauchy-Schwarz inequality as our
goal:

# g ‘∀x y:realˆN. x dot y <= norm x * norm y‘;;
val it : goalstack = 1 subgoal (1 total)

‘∀x y. x dot y <= norm x * norm y‘

and apply the tactic:

# e SOLOVAY_INIT_TAC;;
val it : goalstack = 1 subgoal (1 total)

‘&0 <= u1 ∧ (u1 pow 2 = y dot y)
⇒ &0 <= u2 ∧ (u2 pow 2 = x dot x)
⇒ x dot y <= u2 * u1‘

Elimination of Dot Products

Note that given a vector w and a list of vectors v1, . . . , vn, we can express w as a linear
combination of the vi together with one more vector u that is orthogonal to all the vi.
This result (essentially the Gram-Schmidt process) is easy to prove by induction. Here
is our HOL formalization using iterated operations over lists:
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|- ∀w vs. ∃u as.
ALL (orthogonal u) vs ∧ (LENGTH as = LENGTH vs) ∧
(w = ITLIST2 (λa v s. a % v + s) as vs u)

This allows us to replace quantification over vectors w, v1, . . . , vn with a quantifi-
cation over u, v1, . . . , vn where u is orthogonal to all the vi:

|- (∀w:realˆN. P w vs) =
(∀as u. ALL (orthogonal u) vs ∧ (LENGTH as = LENGTH vs)

⇒ P (ITLIST2 (λa v s. a % v + s) as vs u) vs)

We can now expand out any dot products w · vk into
∑n

i=1 ai(vi · vk); note that
u · vk vanishes because of the orthogonality hypothesis. We can similarly expand out
any instances of w ·w, and it is only here that we get a dot product involving u, namely
u · u.

Now note that in an infinite-dimensional space we can choose u · u arbitrarily (so
long as it’s nonnegative), because we can find a vector of any length that is orthogonal
to a finite set of vectors. So for the formula P [u · u] to hold for all vectors u orthogonal
to the vi, it is necessary and sufficient that P [c] should hold for all c ≥ 0. In the
general case, this is no longer an equivalence, because if the v1, . . . , vk already span the
whole space we can only have u = 0. However, the implication is always valid in one
direction, so we simply prove the more general goal that ∀c. 0 ≤ c ⇒ P [c]. We have
set up a generic HOL rule SOLOVAY RULE which automatically generates a suitable
general theorem for each number of vectors v1, . . . , vn, e.g.

# SOLOVAY_RULE 2;;
val it : thm =

|- (∀v0 v1 c.
&0 <= c
⇒ (∀h h’.

P v0 v1 (v0 dot (h % v0 + h’ % v1))
(v1 dot (h % v0 + h’ % v1))
((h % v0 + h’ % v1) dot (h % v0 + h’ % v1) + c)))

⇒ (∀v0 v1 w. P v0 v1 (v0 dot w) (v1 dot w) (w dot w))

and then SOLOVAY REDUCE TAC normalizes dot products by symmetry then gener-
ates the right instance of the theorem and applies it. For our running example we get:

# e(REPEAT SOLOVAY_REDUCE_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘&0 <= c’
⇒ &0 <= c

⇒ (∀h. &0 <= u1 ∧ (u1 pow 2 = h * h * (&0 + c’) + c)
⇒ &0 <= u2 ∧ (u2 pow 2 = &0 + c’)

⇒ h * (&0 + c’) <= u2 * u1)‘

We have successfully reduced the original assertion to an assertion over the reals
that always implies it, and will still be true provided the original assertion was true over
an infinite-dimensional vector space (or one with a sufficiently large dimension).

Solving the Real Problem

Of course, we still need to prove the resulting formula over the reals. Since it is purely
universal, we opt to use an experimental HOL implementation of techniques based on
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finding sum-of-squares decompositions using semidefinite programming [14]. This, us-
ing the CSDP semidefinite programming system, solves our goal quite easily:

# time e (CONV_TAC REAL_SOS);;
...
Iter: 33 Ap: 1.00e+00 Pobj: 1.5728640e+06 Ad: 8.34e-01 Dobj: 1.5728641e+06
Iter: 34 Ap: 1.00e+00 Pobj: 1.5728640e+06 Ad: 6.90e-01 Dobj: 1.5728640e+06
Iter: 35 Ap: 7.30e-01 Pobj: 1.5728640e+06 Ad: 8.49e-01 Dobj: 1.5728640e+06
Success: SDP solved
...
Trying rounding with limit 1
Translating proof certificate to HOL
CPU time (user): 4.44
val it : goalstack = No subgoals

Other Examples

In the following example, applying the reduction yields a rather complicated-looking
formula. The result can still be proved automatically by REAL_SOS, but now it takes
about a minute:

|- ∀a x y:realˆN. (y - x) dot (a - y) > &0 ⇒ norm(y - a) < norm(x - a)

Although our present version of Solovay’s procedure is limited to universal vector
quantifiers, existential quantifiers over reals are quite acceptable, as in the following
lemma we used in connection with some separating hyperplane proofs:

|- x dot y > &0 ⇒ ∃u. &0 < u ∧ ∀v. &0 < v ∧ v <= u ⇒ norm(v % y - x) < norm x

After reduction, we get the following formula. (This is the raw form; the inequality
in the conclusion is amenable to some algebraic simplification.)

‘&0 <= c’ ∧ &0 <= c ∧ &0 < h * c’
⇒ (∃u. &0 < u ∧

(∀v. &0 < v ∧ v <= u
⇒ v * (v * (h * h * c’ + c) - h * c’) - (v * h * c’ - c’) < c’))‘

Unsurprisingly, we still have an existential quantifier in the reduced formula. This
means we cannot solve it using REAL_SOS, but we can pull out the “big gun”, a general
quantifier elimination procedure for the reals implemented in HOL by Sean McLaughlin
[11] based on Hörmander’s method [8,4,2]. This proves (the universal closure of) the
above formula in about 15 seconds.

5 Topology and Analysis

The acid test of our approach to formalizing Euclidean space is whether it allows us
to keep the formalization of more serious mathematical developments looking clean
and elegant without introducing any significant difficulties. To this end, we will survey
briefly some work we have undertaken in formalizing elementary topology and analysis.
We will show quite a few statements of theorems, and we believe they generally look
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fairly natural. The only potential difficulty we have identified is that since type variables
are not quite such first-class objects as numbers, it is not trivial to formalize theorems
that depend on induction over dimension. However, this pattern of reasoning has only
come up in two theorems considered here. In one case, proving that a bounded closed
set is (sequentially) compact, a workaround was necessary, but we will describe one that
seemed quite simple and effective and could probably handle many similar situations.
In the other, Brouwer’s fixed point theorem, the induction takes place at the level of
the underlying combinatorial lemma, and therefore the details of the formalization of
Euclidean space make no difference.

We define the usual notions of topology in Euclidean space. We start with the
slightly more general notion of one set being open in another, since this ‘localized’
notion is sometimes important:

|- s open_in u ⇔
s SUBSET u ∧
∀x. x IN s ⇒ ∃e. &0 < e ∧

∀x’. x’ IN u ∧ dist(x’,x) < e ⇒ x’ IN s

and derive from it the ‘global’ version:

|- ∀s. open s ⇔ s open_in UNIV

Similarly we define closed_in and closed, open and closed balls:

|- ball(x,e) = { y | dist(x,y) < e}

|- cball(x,e) = { y | dist(x,y) <= e}

interior, closure, boundedness, limits, continuity, uniform continuity and convergence
of sequences (of vectors). We then proceed to the usual properties such as complete-
ness (every Cauchy sequence is convergent) connectedness, and compactness (every
sequence has a convergent subsequence)

|- compact s ⇔
∀f:num->realˆN.

(∀n. f(n) IN s)
⇒ ∃l r. l IN s ∧ (∀m n:num. m < n ⇒ r(m) < r(n)) ∧

((f o r) --> l) sequentially

and derive a fairly comprehensive set of the usual classics of analysis. For example,
here is the Banach fixed point theorem:

|- ∀f s c. complete s ∧ ¬(s = {}) ∧
&0 <= c ∧ c < &1 ∧
(IMAGE f s) SUBSET s ∧
(∀x y. x IN s ∧ y IN s ⇒ dist(f(x),f(y)) <= c * dist(x,y))
⇒ ∃!x:realˆN. x IN s ∧ (f x = x)

and here is the Heine-Borel theorem:

|- compact s ⇔
∀f. (∀t. t IN f ⇒ open t) ∧ s SUBSET (UNIONS f)

⇒ ∃f’. f’ SUBSET f ∧ FINITE f’ ∧ s SUBSET (UNIONS f’)
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The proofs are all fairly well-known and routine. One more interesting case arises
in the proof of the following:

|- compact s ⇔ bounded s ∧ closed s

The crucial argument is that a bounded closed N -dimensional ‘interval’ (or ‘box’)
is compact. This proceeds by induction on dimension. While the proof is quite straight-
forward, the induction argument needs a little reformulation for our framework because
we cannot really perform induction over a type. So we stay within one type RN and
consider the result for sequences in the various sets Sk = {s|∀k ≥ n. sk = 0}, per-
forming induction on k until we real the dimension of N . While not really difficult, it’s
slightly messy. Inductive arguments over dimension are perhaps the main weakness of
our type-based formulation.

We also define the usual topological notion of homeomorphism and show that it
preserves topological properties such as compactness:

|- ∀s t. s homeomorphic t ⇒ (compact s ⇔ compact t)

In fact, we have the more general results that compactness and connectedness are
preserved under continuous images:

|- f continuous_on s ∧ compact s ⇒ compact(IMAGE f s)

|- f continuous_on s ∧ connected s ⇒ connected(IMAGE f s)

We define the convexity of a set: the line segment between any two points of the set
lies entirely in the set.

|- convex s ⇔
∀x y u v. x IN s ∧ y IN s ∧ &0 <= u ∧ &0 <= v ∧ (u + v = &1)

⇒ (u % x + v % y) IN s

We also define a generic notion of ‘hull’, written as an infix so we can then consider
‘convex hull s’, ‘affine hull s’, ‘conic hull s’ without duplication of
basic lemmas. We even use ‘closed hull s’ as the definition of ‘closure’.

|- P hull s = INTERS {t | P t ∧ s SUBSET t}

We prove many of the classic ‘separation’ theorems for convex sets, e.g. strict sep-
aration for a closed and a compact set:

|- ∀s t. convex s ∧ compact s ∧ ¬(s = {}) ∧
convex t ∧ closed t ∧ DISJOINT s t
⇒ ∃a:realˆN b. (∀x. x IN s ⇒ a dot x < b) ∧

(∀x. x IN t ⇒ a dot x > b)

One key result is that all convex compact sets with nonempty interior are homeo-
morphic:

|- convex s ∧ compact s ∧ ¬(interior s = {}) ∧
convex t ∧ compact t ∧ ¬(interior t = {})
⇒ s homeomorphic t
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Our next major theorem — certainly the hardest to formalize of those presented
here — is Brouwer’s Fixed Point Theorem. Using the above homeomorphism property,
it is sufficient to prove it for a convenient special case, and we use the unit cube:

|- f continuous_on (interval [vec 0,vec 1]) ∧
IMAGE f (interval [vec 0,vec 1]) SUBSET (interval [vec 0,vec 1])
⇒ ∃x. x IN interval[vec 0,vec 1] ∧ (f x = x)

One approach to this theorem is to develop some more extensive machinery from
algebraic topology. Since that was not our primary interest, we were originally planning
to formalize the fairly elementary proof based on Sperner’s combinatorial lemma. How-
ever, this requires the formalization of the intuitively clear fact that we can subdivide
a standard N -dimensional simplex into arbitrarily small simplices (e.g. by barycentric
subdivision). Instead, we settled on a different approach due to Kuhn [10], where we
need only the much simpler result that we can chop a cube into arbitrarily small cubes.
Still, the proof of the combinatorial lemma underlying Kuhn’s proof required a lot of
work to formalize, possibly because of a poor choice of formalization. Still, once we
get Brouwer’s theorem it’s easy to deduce the usual consequences such as the absence
of a retraction from a closed ball onto its boundary:

|- ∀a:realˆN e. &0 < e ⇒ ¬(frontier(cball(a,e)) retract_of cball(a,e))

We now define the usual notion of derivative for vector functions. Following
Frechet, the derivative is defined to be the linear function that approximates the function
close to a point. We are accustomed to thinking of the derivative of a function R → R

as simply a real number, but in this framework we think of it as the linear function
resulting from multiplication by that number:

|- (f has_derivative f’) (at x) ⇔
linear f’ ∧
((λy. inv(norm(y - x)) % (f(y) - (f(x) + f’(y - x)))) --> vec 0)
(at x)

The matrix corresponding to the derivative is the Jacobian (with respect to the usual
basis):

|- jacobian f net = matrix(frechet_derivative f net)

All the usual results such as derivatives of sums are easy to prove:

|- (f has_derivative f’) net ∧ (g has_derivative g’) net
⇒ ((λx. f(x) + g(x)) has_derivative (λh. f’(h) + g’(h))) net

and the ‘chain rule’ is also reasonably straightforward:

|- (f has_derivative f’) (at x) ∧
(g has_derivative g’) (at (f x))
⇒ ((g o f) has_derivative (g’ o f’)) (at x)

We also prove an important generalization of the usual mean value theorem for
R → R functions.
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|- convex s ∧ open s ∧
(∀x. x IN s ⇒ (f has_derivative f’(x)) (at x)) ∧
(∀x. x IN s ⇒ onorm(f’(x)) <= B)
⇒ ∀x y. x IN s ∧ y IN s ⇒ norm(f(x) - f(y)) <= B * norm(x - y)

where onorm is the ‘operator norm’ of a linear function:

|- onorm (f:realˆM->realˆN) = sup { norm(f x) | norm(x) = &1 }

The most interesting result in this area is the inverse function theorem. It is cus-
tomary to state this for a continuously differentiable function, but if one simply wants
differentiability of the inverse function, the usual hypotheses are much stronger than
necessary — of the analysis books we have examined only Rudin [15] makes this ex-
plicit. We use the following sharper open mapping theorem as a lemma — we took the
proof from Sussmann [17], who refers to it as ‘well known’, though we’ve never seen
it anywhere else. Note that this result is for a general function f : RM → RN without
the assumption that M = N .

|- open s ∧ f continuous_on s ∧
x IN s ∧ (f has_derivative f’) (at x) ∧ linear g’ ∧ (f’ o g’ = I)
⇒ ∀t. t SUBSET s ∧ x IN interior(t)

⇒ f(x) IN interior(IMAGE f t)

However, the usual inverse function theorem does require the restricted type f :
RN → RN :

|- open s ∧ x IN s ∧ f continuous_on s ∧
(∀x. x IN s ⇒ (g(f(x)) = x)) ∧
(f has_derivative f’) (at x) ∧ (f’ o g’ = I)
⇒ (g has_derivative g’) (at (f(x)))

In order to deduce the existence of the local inverse function from the invertibility
of the derivative, we do seem to need continuity of the derivative, but only at a point:

|- a IN s ∧ open s ∧ linear g’ ∧ (g’ o f’(a) = I) ∧
(∀x. x IN s ⇒ (f has_derivative f’(x)) (at x)) ∧
(∀e. &0 < e

⇒ ∃d. &0 < d ∧
∀x. dist(a,x) < d ⇒ onorm(λv. f’(x) v - f’(a) v) < e)

⇒ ∃t. a IN t ∧ open t ∧
∀x x’. x IN t ∧ x’ IN t ∧ (f x’ = f x) ⇒ (x’ = x)

We have proved some results on generalized power series (of linear operators) and
have made a start on a theory of integration, but this work is still quite fragmentary and
we will not describe it in more detail here.

6 Future Work

Our two main priorities are (1) to develop a theory of integration that can then be used
for the Flyspeck project, and (2) to link up the existing real analysis theory so that the
present one cleanly subsumes and generalizes it. We also want to make a link to Hales’s
theories of Euclidean space. At the moment neither subsumes the other. For example,
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Hales proves the highly non-trivial Jordan Curve Theorem as well as some other results
in topology that we do not (e.g. equivalence of connectedness and path-connectedness).
Although the underlying formalizations of Euclidean space are different, they are iso-
morphic and it should be easy enough to transfer results automatically.

Another interesting line of work (but with no particular applications in view) is to
formalize complex differentiability or some appropriate generalization. Complex dif-
ferentiability can be considered as differentiability of a R2 → R2 function with a
skew-symmetric Jacobian (i.e. where the partial derivatives satisfy the Cauchy-Riemann
equations). We may also want to formalize traditional vector calculus and/or the theory
of differential forms. Ideally, one would like to deduce Cauchy’s theorem as a special
case of a generalized Stokes theorem, but one needs to pay attention to the details of
the integration theory to make this work.

Our existing treatment of topology is fixed in Euclidean space. While for the most
part this is attractive because of the lack of parametrization, there are situations where
we want to consider topologies on other sets such as the space of linear operators or
continuous functions. Note, for example, that one hypothesis in the last theorem above
is nothing but continuity in the space of linear functions, but we need to ‘expand out’
the definition because it does not come within our existing setup. Perhaps it would be
more attractive to generalize open_in and closed_in to arbitrary toplogies, not
simply other subsets of Euclidean space. The modifications required to do this are not
very extensive.
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Abstract. The quotient operation is a standard feature of set theory,
where a set is partitioned into subsets by an equivalence relation. We
reinterpret this idea for higher order logic, where types are divided by
an equivalence relation to create new types, called quotient types. We
present a design to mechanically construct quotient types as new types
in the logic, and to support the automatic lifting of constants and theo-
rems about the original types to corresponding constants and theorems
about the quotient types. This design exceeds the functionality of Har-
rison’s package, creating quotients of multiple mutually recursive types
simultaneously, and supporting the equivalence of aggregate types, such
as lists and pairs. Most importantly, this design supports the creation of
higher order quotients, which enable the automatic lifting of theorems
with quantification over functions of any higher order.

1 Introduction

The quotient operation is a standard feature of mathematics, including set theory
and abstract algebra. It provides a way to cleanly identify elements that previ-
ously were distinct. This simplifies the system by removing unneeded structure.

Traditionally, quotients [4] have found many applications. Classic examples
are the construction of the integers from pairs of non-negative natural numbers,
or the rationals from pairs of integers. In the lambda calculus [1], it is common
to identify terms which are alpha-equivalent, that differ only by the choice of
local names used by binding operators. Other examples include the construction
of bags from lists by ignoring order, and sets from bags by ignoring duplicates.

The ubiquity of quotients has recommended their investigation within the
field of mechanical theorem proving. The first to appear was Ton Kalker’s 1989
package for HOL88 [11]. Isabelle/HOL [14] has mechanical support for the cre-
ation of higher order quotients by Oscar Slotosch [19], using partial equivalence
relations represented as a type class, with equivalence relations as a subclass.
That system provides a definitional framework for establishing quotient types,
including higher order. Independently, Larry Paulson has shown a construction
of first-order quotients in Isabelle without any use of the Hilbert choice operator
[17]. PVS uses quotients to support theory interpretations [15]. MetaPRL has
quotients in its foundations, as a type with a new equality [16]. Coq, based on
the Calculus of Constructions [9], supports first order quotients [5] but has some

J. Hurd and T.F. Melham (Eds.): HM 2005, LNCS 3603, pp. 130–146, 2005.
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difficulties with higher order [3]. These systems provide little automatic support.
In particular, there is no automatic lifting of constants or theorems.

John Harrison has developed a package for the HOL theorem prover which
supports first order quotients, including automation to define new quotient types
and to lift to the quotient level both constants and theorems previously estab-
lished [8]. This automatic lifting is key to practical support for quotients. A quo-
tient of a group would be incomplete without also mapping the original group
operation to a corresponding one for the quotient group. Similarly, theorems
about the group which are independent of the equivalence relation should also
be true of the quotient group. Mechanizing this lifting is vital for avoiding the
repetition of proofs at the higher level which were already proved at the lower
level. Such automation is not only practical, but mathematically incisive.

Despite the quality of Harrison’s excellent package, it does have limitations.
It can only lift one type at a time, and does not deal with aggregate types,
such as lists or pairs involving types being lifted, which makes it difficult to lift
a family of mutually nested recursive types. Most importantly, it is limited to
lifting only first order theorems, where quantification is permitted over the type
being lifted, but not over functions or predicates involving the type being lifted.

In this paper we describe a design for a new package for quotients [10] for the
Higher Order Logic theorem prover that meets all these concerns. It provides
a tool for lifting multiple types across multiple equivalence relations simultane-
ously. Aggregate equivalence relations are produced and used automatically. But
most significantly, this package supports the automatic lifting of theorems that
involve higher order functions, including quantification, of any finite order. This
is possible through the use of partial equivalence relations [2,18], as a possibly
non-reflexive variant of equivalence relations, enabling the creation of quotients
of function types. The relationship between these partial equivalence relations
and their associated abstraction and representation functions (mapping between
the lower and higher types) is expressed in quotient theorems, which are central.

The precise definition in section 3 of the quotient relationship between the
original and lifted types, and the proof in section 5.2 of that relationship’s preser-
vation for a function type, given existing quotients for the function’s domain and
range, are the heart of this paper, and are presented in full detail. These form the
core theory that justifies the treatment of all higher order functions, including
higher order universal, existential, and unique existential quantification.

The structure of this paper is as follows. Section 2 discusses equivalence
relations and their extensions. Section 3 defines partial equivalence relations
and quotient theorems. Section 4 shows the construction of a new quotient type
in HOL. Section 5 explains the extension of quotients for aggregate and function
types. Section 6 explores an alternative design that avoids use of the Axiom of
Choice. Section 7 touches on highlights of the implementation and its required
inputs. Section 8 exhibits an example. Finally, section 9 presents our conclusions.

We thank the TPHOLs referees for their cogent and constructive comments.
We are grateful for the helpful comments and suggestions made by Rob Arthan,
Randolph Johnson, Sylvan Pinsky, Yvonne V. Shashoua, and Konrad Slind,
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and especially Michael Mislove for identifying partial equivalence relations, and
William Schneeberger for the key idea in the proof of Theorem 19.

2 Equivalence Relations and Equivalence Theorems

Before considering quotients, we examine equivalence relations, on which such
traditional quotients as those mentioned in the introduction have been based.

Let τ be any type. A binary relation R on τ can be represented in HOL as a
curried function of type τ → (τ → bool). We will take advantage of the curried
nature of R, where R x y = (R x) y.

An equivalence relation is a binary relation E satisfying

reflexivity: ∀x : τ. E x x
symmetry: ∀x y : τ. E x y ⇒ E y x
transitivity: ∀x y z : τ. E x y ∧ E y z ⇒ E x z

These three properties are encompassed in the equivalence property:

equivalence: EQUIV E
def= ∀x y : τ. E x y ⇔ (E x = E y)

A theorem of the form � EQUIV E is called an equivalence theorem on type τ .

2.1 Equivalence Extension Theorems

Given an equivalence relation E : τ → τ → bool on values of type τ , there is a
natural extension of E to values of lists of τ . This is expressed as LIST REL E ,
which forms an equivalence relation of type τ list→ τ list→ bool. Similarly,
equivalence relations on pairs, sums, and options may be formed from their
constituent types’ equivalence relations by the following operators.

Type Operator Type of operator

list LIST REL : (’a -> ’a -> bool) ->
’a list -> ’a list -> bool

pair ### : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
’a # ’b -> ’a # ’b -> bool

sum +++ : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
’a + ’b -> ’a + ’b -> bool

option OPTION REL : (’a -> ’a -> bool) ->
’a option -> ’a option -> bool

These operators are easily defined in the expected way [10]. They are used
to build an equivalence relation with a structure analogous to the type operator
structure of the type of the elements compared by the relation.

Using these relation extension operators, the aggregate type operators list,
prod, sum, and option have the following equivalence extension theorems:
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LIST EQUIV: � ∀E. EQUIV E ⇒ EQUIV (LIST REL E)
PAIR EQUIV: � ∀E1 E2. EQUIV E1 ⇒ EQUIV E2 ⇒ EQUIV (E1 ### E2)
SUM EQUIV: � ∀E1 E2. EQUIV E1 ⇒ EQUIV E2 ⇒ EQUIV (E1 +++ E2)
OPTION EQUIV: � ∀E. EQUIV E ⇒ EQUIV (OPTION REL E)

3 Partial Equivalence Relations and Quotient Theorems

In this section we introduce a new definition of the quotient relationship, based
on partial equivalence relations (PERs), related to but different from equiva-
lence relations. Every equivalence relation is a partial equivalence relation, but
not every partial equivalence relation is an equivalence relation. An equivalence
relation is reflexive, symmetric and transitive, while a partial equivalence relation
is symmetric and transitive, but not necessarily reflexive on all of its domain.

Why use partial equivalence relations with a weaker reflexivity condition?
The reason involves forming quotients of higher order types, that is, functions
whose domains or ranges involve types being lifted. Unlike lists and pairs, the
equivalence relations for the domain and range do not naturally extend to a
useful equivalence relation for functions from the domain to the range.

The reason is that not all functions which are elements of the function type
are respectful of the associated equivalence relations, as described in [10]. For
example, given an equivalence relation E : τ → τ → bool, the set of func-
tions from τ to τ may contain a function f? where for some x and y which are
equivalent (E x y), the results of f? are not equivalent (¬(E (f? x) (f? y))).
Such disrespectful functions cannot be worked with; they do not correspond to
any function at the abstract quotient level. Suppose instead that f? did lift.
Let #φ$ be the lifted version of φ. As #f?$ is the lifted version of f?, it should
act just like f? on its argument, except that it should not consider the lower
level details that E disregards. Thus ∀u. #f?$#u$ = #f? u$. Then certainly
∀u v. E u v ⇔ (#u$ = #v$), and because E x y, we must have #x$ = #y$. Ap-
plying #f?$ to both sides, #f?$#x$ = #f?$#y$. But this implies #f? x$ = #f? y$,
which means that E (f? x) (f? y), which we have said is false, a contradiction.
Therefore such disrespectful functions cannot be lifted, and we must exclude
them. Using partial equivalence relations accomplishes this exclusion.

First, we say an element r respects R if and only if R r r.

Definition 1 (Quotient). A relation R with abstraction function abs and rep-
resentation function rep (between the representation, lower type τ and the ab-
stract, quotient type ξ) is a quotient (notated as 〈R,abs,rep〉) if and only if

(1) ∀a : ξ. abs (rep a) = a
(2) ∀a : ξ. R (rep a) (rep a)
(3) ∀r, s : τ. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Property 1 states that rep is a right inverse of abs.
Property 2 states that the range of rep respects R.
Property 3 states that two elements of τ are related by R if and only if each

element respects R and their abstractions are equal.
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These three properties (1-3) describe the way the partial equivalence relation
R works together with abs and rep to establish the correct quotient relationship
between the lower type τ and the quotient type ξ. The precise definition of this
quotient relationship is a central contribution of this work. This relationship is
defined in the HOL logic as a new predicate:

QUOTIENT (R:’a -> ’a -> bool) (abs:’a -> ’b) (rep:’b -> ’a) ⇔
(∀a. abs (rep a) = a) ∧
(∀a. R (rep a) (rep a)) ∧
(∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s))

The relationship that R with abs and rep is a quotient is expressed in HOL as

� QUOTIENT R abs rep .

A theorem of this form is called a quotient theorem. The identity is � 〈$=, I, I〉.
These three properties support the inference of a quotient theorem for a

function type, given quotient theorems for the domain and the range. This key
inference is central and necessary to enable higher order quotients.

4 Quotient Types

The user may specify a quotient of a type τ by a relation R (written τ/R) by
giving either a theorem that the relation is an equivalence relation, of the form

� ∀x y. R x y ⇔ (R x = R y) , (1)

or one that the relation is a nonempty partial equivalence relation, of the form

� (∃x. R x x) ∧ (∀x y. R x y ⇔ R x x ∧R y y ∧ (R x = R y)) . (2)

In this section we will develop the second, more difficult case. The first follows
immediately. In the following, x, y, r, s : τ , c : τ → bool, and a : τ/R.

New types may be defined in HOL using the function new type definition
[6, sections 18.2.2.3-5]. This function requires us to choose a representing type,
and a predicate on that type denoting a subset that is nonempty.

Definition 2. We define the new quotient type τ/R as isomorphic to the subset
of the representing type τ → bool by the predicate P : (τ → bool) → bool,
where P c

def= ∃x. R x x ∧ (c = R x).

P is nonempty because P (R x) for the x : τ such that R x x by (2). Let ξ = τ/R.
The HOL tool define new type bijections [6] automatically defines a function
absc : (τ → bool)→ ξ and its right inverse repc : ξ → (τ → bool) satisfying

Definition 3. (a) ∀a : ξ. absc (repc a) = a
(b) ∀c : τ → bool. P c ⇔ repc (absc c) = c

PER classes are subsets of τ (of type τ → bool) which satisfy P . Then absc

and repc map between the quotient type ξ and PER classes (hence the “c”).
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Lemma 4 (repc maps to PER classes). ∀a. P (repc a).

Proof: By Definition 3(a), absc (repc a) = a, so taking the repc of both sides,
repc (absc (repc a)) = repc a. By Definition 3(b), P (repc a). �

Lemma 5. ∀r. R r r ⇒ (repc (absc (R r)) = R r).

Proof: Assume R r r; then P (R r). By Definition 3(b), the goal follows.

Lemma 6 (absc is one-to-one on PER classes).
∀r s. R r r ⇒ R s s⇒ (absc (R r) = absc (R s) ⇔ R r = R s).

Proof: Assume R r r and R s s. The right-to-left implication of the biconditional
is trivial. Assume absc (R x) = absc (R y). Applying repc to both sides gives us
repc (absc (R x)) = repc (absc (R y)). Then by Lemma 5 twice, R x = R y. �

The functions absc and repc map between PER classes of type τ → bool and
the quotient type ξ. Using these functions, we can define new functions abs and
rep between the original type τ and the quotient type ξ as follows.

Definition 7 (Quotient abstraction and representation functions).

abs : τ → ξ abs r
def= absc (R r)

rep : ξ → τ rep a
def= $@ (repc a) ( = @r. repc a r )

The @ operator is a higher order version of Hilbert’s choice operator ε [6,12].
It has type (α → bool) → α, and is usually used as a binder, where $@ P =
@x. P x. (The $ converts an operator to prefix syntax.) @ satisfies the HOL axiom
∀P x. P x⇒ P ($@ P ). Given any predicate P on a type, if any element of the
type satisfies the predicate, then $@ P returns an arbitrary element of that type
which satisfies P . If no element of the type satisfies P , then $@ P will return
simply some arbitrary, unknown element of the type. Such definitions have been
questioned by constructivist critics of the Axiom of Choice. An alternative design
for quotients avoiding the Axiom of Choice is described in section 6.

Lemma 8. ∀r. R r r ⇒ (R ($@ (R r)) = R r).

Proof: The axiom for the @ operator is ∀P x. P x⇒ P ($@ P ). Taking P = R r
and x = r, we have R r r ⇒ R r ($@ R r). Assuming R r r, R r ($@ (R r))
follows. Then by (2), R r ($@ (R r)) implies the equality R r = R ($@ (R r)). �

Theorem 9. ∀a. abs (rep a) = a

Proof: By Lemma 4 and the definition of P , for each a there exists an r such that
R r r and repc a = R r. Then by Lemma 8, R ($@ (R r)) = R r. Now by Definition
7, abs (rep a) = absc (R ($@ (repc a))), which simplifies by the above and De-
finition 3(a) to a. �
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Theorem 10. ∀a. R (rep a) (rep a).

Proof: As before, for each a there exists an r such that R r r and repc a = R r.

R (rep a) (rep a) ⇔ R ($@ (repc a)) ($@ (repc a)) Definition 7
⇔ R ($@ (R r)) ($@ (R r)) selection of r
⇔ R r ($@ (R r)) Lemma 8
⇔ R ($@ (R r)) r symmetry of R
⇔ R r r ⇔ T Lemma 8, selection of r

�

Theorem 11. ∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Proof:

R r s ⇔ R r r ∧ R s s ∧ (R r = R s) (2)
⇔ R r r ∧ R s s ∧ (absc (R r) = absc (R s)) Lemma 6
⇔ R r r ∧ R s s ∧ (abs r = abs s) Definition 7

�

Theorem 12. 〈R, abs , rep〉.

Proof: By Theorems 9, 10, and 11, with Definition 1. �

5 Aggregate and Higher Order Quotient Theorems

Traditional quotients that lift τ to a set of τ also lift lists of τ to sets of lists of τ .
These sets are isomorphic to lists, but they are not lists. In this design, when τ
is lifted to ξ, then we lift lists of τ to lists of ξ. We preserve the type operator
structure built on top of the types being lifted. Similarly, we want to preserve
polymorphic constants. In a theorem being lifted, we want an occurrence of
HD : τ list→ τ to lift to an occurrence of HD : ξ list→ ξ. If such a constant is
not lifted to itself, the lifted version of the theorem will not look like the original.
Hence Definition 1 was designed to preserve the vital type operator structure.

In the process of lifting constants and theorems, quotient theorems are needed
for each argument and result type of each constant being lifted. For aggregate and
higher order types, the tool automatically proves any needed quotient theorems
from the available quotient theorems for the constituent subtypes. To accomplish
this, the tool uses quotient extension theorems (section 5.2). These are provided
preproven for some standard type operators. For others, new quotient extension
theorems may be manually proven and then included to extend the tool’s power.

5.1 Aggregate and Higher Order PERs and Map Operators

Some aggregate equivalence relation operators have been already described in
section 2, and these can equally be used to build aggregate partial equivalence
relations. In addition, for function types, the following is added:
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Type Operator Type of operator

fun ===> : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
(’a -> ’b) -> (’a -> ’b) -> bool

Definition 13. (R1 ===> R2) f g ⇔ ∀x y. R1 x y ⇒ R2 (f x) (g y).

Note R1 ===> R2 is not in general an equivalence relation (it is not reflexive).
It is reflexive at a function f , (R1 ===> R2) f f , if and only if f is respectful.

The quotient theorems created for aggregate types involve not only aggregate
partial equivalence relations, but also aggregate abstraction and representation
functions. These are constructed from the component abstraction and represen-
tation functions using the following “map” operators.

Type Operator Type of operator, examples of abs and rep fns

list MAP : (’a -> ’b) -> ’a list -> ’b list
examples: (MAP abs) , (MAP rep)

pair ## : (’a -> ’b) -> (’c -> ’d) ->
’a # ’c -> ’b # ’d

examples: (abs1 ## abs2) , (rep1 ## rep2)

sum ++ : (’a -> ’b) -> (’c -> ’d) ->
’a + ’c -> ’b + ’d

examples: (abs1 ++ abs2) , (rep1 ++ rep2)

option OPTION MAP : (’a -> ’b) -> ’a option -> ’b option
examples: (OPTION MAP abs) , (OPTION MAP rep)

fun --> : (’a -> ’b) -> (’c -> ’d) ->
(’b -> ’c) -> ’a -> ’d

examples: (rep1 --> abs2) , (abs1 --> rep2)

The above operators are easily defined in the expected way [10], if not already
present in standard HOL. The identity quotient map operator is the identity
operator I : α→ α. The function map operator definition is of special interest:

Definition 14. (f --> g) h x
def= g (h (f x)).

5.2 Quotient Extension Theorems

Here are the quotient extension theorems for the list, prod, sum, option, and,
most significantly, fun type operators:
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LIST QUOTIENT:
� ∀R abs rep. 〈R, abs , rep〉 ⇒ 〈LIST REL R, MAP abs , MAP rep〉

PAIR QUOTIENT:
� ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 ### R2, abs1 ## abs2, rep1 ## rep2〉

SUM QUOTIENT:
� ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 +++ R2, abs1 ++ abs2, rep1 ++ rep2〉

OPTION QUOTIENT:
� ∀R abs rep. 〈R, abs , rep〉 ⇒

〈OPTION REL R, OPTION MAP abs , OPTION MAP rep〉

FUN QUOTIENT:
� ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 ===> R2, rep1 --> abs2, abs1 --> rep2〉

This last theorem is of central and critical importance to forming higher
order quotients. We present here its proof in detail.

Theorem 15 (Function quotients). If relations R1 and R2 with abstraction
functions abs1 and abs2 and representation functions rep1 and rep2, respectively,
are quotients, then R1 ===> R2 with abstraction function rep1 --> abs2 and
representation function abs1 --> rep2 is a quotient.

Proof: We need to prove the three properties of Definition 1:

Property 1. Prove for all a, (rep1 --> abs2) ((abs1 --> rep2) a) = a.
Proof: The equality here is between functions, and by extension, true if for all
values x in a’s domain, (rep1 --> abs2) ((abs1 --> rep2) a) x = a x.
By the definition of -->, this is abs2 ((abs1 --> rep2) a (rep1 x)) = a x, and
then abs2 (rep2 (a (abs1 (rep1 x)))) = a x. By Property 1 of 〈R1,abs1,rep1〉,
abs1 (rep1 x) = x, and by Property 1 of 〈R2,abs2,rep2〉, ∀b. abs2 (rep2 b) = b,
so this reduces to a x = a x, true.

Property 2. Prove (R1 ===> R2) ((abs1 --> rep2) a) ((abs1 --> rep2) a).
Proof: By the definition of ===>, this is
∀x, y. R1 x y ⇒ R2 ((abs1 --> rep2) a x) ((abs1 --> rep2) a y). Assume R1 x y,
and show R2 ((abs1 --> rep2) a x) ((abs1 --> rep2) a y). By the definition of
-->, this is R2 (rep2 (a (abs1 x))) (rep2 (a (abs1 y))). Now since R1 x y, by
Property 3 of 〈R1,abs1,rep1〉, abs1 x = abs1 y. Substituting this into our goal,
we must prove R2 (rep2 (a (abs1 y))) (rep2 (a (abs1 y))). But this is an instance
of Property 2 of 〈R2,abs2,rep2〉, and so the goal is proven.

Property 3. Prove (R1 ===> R2) r s ⇔
(R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧ ((rep1 --> abs2) r = (rep1 --> abs2) s).
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The last conjunct on the right side is equality between functions, so by extension
this is (R1 ===> R2) r s ⇔ (R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧

(∀x. (rep1 --> abs2) r x = (rep1 --> abs2) s x).
By the definitions of ===> and -->, this is (1)⇔ (2) ∧ (3) ∧ (4), where

(1) (∀x y. R1 x y ⇒ R2 (r x) (s y))
(2) (∀x y. R1 x y ⇒ R2 (r x) (r y))
(3) (∀x y. R1 x y ⇒ R2 (s x) (s y))
(4) (∀x. (abs2 (r (rep1 x)) = abs2 (s (rep1 x))).

We prove (1)⇔ (2) ∧ (3) ∧ (4) as a biconditional with two goals.

Goal 1. (⇒) Assume (1). Then we must prove (2), (3), and (4).

Subgoal 1.1. (Proof of (2)) Assume R1 x y. We must prove R2 (r x) (r y).
From R1 x y and Property 3 of 〈R1,abs1,rep1〉, we also have R1 x x and R1 y
y. From (1) and R1 x y, we have R2 (r x) (s y). From (1) and R1 y y, we have
R2 (r y) (s y). Then by symmetry and transitivity of R2, the goal is proven.

Subgoal 1.2. (Proof of (3)) Similar to the previous subgoal.

Subgoal 1.3. (Proof of (4)) R1 (rep1 x) (rep1 x) follows from Property 2 of
〈R1,abs1,rep1〉. From (1), we have R2 (r (rep1 x)) (s (rep1 x)). Then the goal
follows from this and the third conjunct of Property 3 of 〈R2,abs2,rep2〉.

Goal 2. (⇐) Assume (2), (3), and (4). We must prove (1). Assume R1 x y. Then
we must prove R2 (r x) (s y). From R1 x y and Property 3 of 〈R1,abs1,rep1〉, we
also have R1 x x, R1 y y, and abs1 x = abs1 y. By Property 3 of 〈R2,abs2,rep2〉,
the goal is R2 (r x) (r x) ∧ R2 (s y) (s y) ∧ abs2 (r x) = abs2 (s y). This breaks
into three subgoals.

Subgoal 2.1. Prove R2 (r x) (r x). This follows from R1 x x and (2).
Subgoal 2.2. Prove R2 (s y) (s y). This follows from R1 y y and (3).

Subgoal 2.3. Prove abs2 (r x) = abs2 (s y).

Lemma. If 〈R,abs,rep〉 and R z z, then R (rep (abs z)) z.
R (rep (abs z)) (rep (abs z)), by Property 2 of 〈R,abs ,rep〉.
From the hypothesis, R z z. From Property 1 of 〈R,abs ,rep〉,
abs (rep (abs z)) = abs z. From these three statements and
Property 3 of 〈R,abs ,rep〉, we have R (rep (abs z)) z. �

By the lemma and R1 x x, we have R1 (rep1 (abs1 x)) x. Similarly, by
the lemma and R1 y y, we have R1 (rep1 (abs1 y)) y. Then by (2), we have
R2 (r (rep1 (abs1 x))) (r x), and by (3), R2 (s (rep1 (abs1 y))) (s y). From these
and Property 3 of 〈R2,abs2,rep2〉,

abs2 (r (rep1 (abs1 x))) = abs2 (r x) and
abs2 (s (rep1 (abs1 y))) = abs2 (s y).

But by abs1 x = abs1 y and (4), the left hand sides of these two equations are
equal, so their right hand sides must be also, abs2 (r x) = abs2 (s y), which
proves the goal. �
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6 The Axiom of Choice

Gregory Moore wrote that “Rarely have the practitioners of mathematics, a dis-
cipline known for the certainty of its conclusions, differed so vehemently over one
of its central premises as they have done over the Axiom of Choice. Yet without
the Axiom, mathematics today would be quite different” [13]. Today, this discus-
sion continues. Some theorem provers are based on classical logic, and others on
a constructivist logic. In higher order logic, the Axiom of Choice is represented
by Hilbert’s ε-operator [12, §4.4], also called the indefinite description opera-
tor. Paulson’s lucid recent work [17] exhibits an approach to quotients which
avoids the use of Hilbert’s ε-operator, by instead using the definite description
operator ι [14, §5.10]. These two operators may be axiomatized as follows:

∀P x. P x⇒ P (ε P ) or ∀P. (∃x. P x)⇒ P (ε P )
∀P x. P x⇒ (∀y. P y ⇒ x = y)⇒ P (ι P ) or ∀P. (∃!x. P x) ⇒ P (ι P )

The ι-operator yields the single element of a singleton set, ι{z} = z, but its result
on non-singleton sets is indeterminate. By contrast, the ε-operator chooses some
indeterminate element of any non-empty set, even if nondenumerable. The ι-
operator is weaker than the ε-operator, and less objectionable to constructivists.

Thus it is of interest to determine if a design for higher order quotients may
be formulated using only ι, not ε. Inspired by Paulson, we investigate this by
forming an alternative design, eliminating the representation functions.

Definition 16 (Constructive quotient, replacing Definition 1).
A relation R with abstraction function abs (between the representation type τ
and the abstraction type ξ) is a quotient (notated as 〈R, abs〉) if and only if

(1) ∀a : ξ. ∃r : τ. R r r ∧ (abs r = a)
(2) ∀r s : τ. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Property 1 states that for every abstract element a of ξ there exists a repre-
sentative in τ which respects R and whose abstraction is a.

Property 2 states that two elements of τ are related by R if and only if each
element respects R and their abstractions are equal.

The quotients for new quotient types based on (partial) equivalence relations
may now be constructed by a modified version of §4, where the representation
function rep is omitted from Definition 7, so there is no use of the Hilbert ε-
operator. Property 1 follows from Lemma 4. The identity quotient is 〈$=, I〉.
From Definition 16 also follow analogs of the quotient extension theorems, e.g.,

∀R abs. 〈R, abs〉 ⇒ 〈LIST REL R, MAP abs〉

for lists and similarly for pairs, sums and option types. Functions are lifted by
the abstraction operation for functions, which requires two new definitions:

(abs ⇓ R) a r
def= R r r ∧ abs r = a

(reps +-> abs) f x
def= ι (IMAGE abs (IMAGE f (reps x)))



A Design Structure for Higher Order Quotients 141

Note that for the identity quotient, (I ⇓ $=) = $=.
The critical quotient extension theorem for functions has also been proven:

Theorem 17 (Function quotient extension).

〈R1, abs1〉 ⇒ 〈R2, abs2〉 ⇒ 〈R1 ===> R2, (abs1 ⇓ R1) +-> abs2〉

Unfortunately, the proof requires using the Axiom of Choice. In fact, this theorem
implies the Axiom of Choice, in that it implies the existence of an operator which
obeys the axiom of the Hilbert ε-operator, as seen by the following development.

Theorem 18 (Partial abstraction quotients). If f is any function from
type α to β, and Q is any predicate on α, such that ∀y:β. ∃x:α. Q x∧ (f x = y),
then the partial equivalence relation R = λr s. Q r ∧ Q s ∧ (f r = f s) with
abstraction function f is a quotient (〈R, f〉).

Proof: Follows easily from substituting R in Definition 16 and simplifying. �

Theorem 19 (Partial inverses exist). If f is any function from type α to β,
and Q is any predicate on α, such that ∀y:β. ∃x:α. Q x ∧ (f x = y), then there
exists a function g such that f ◦ g = I and ∀y. Q (g y). [William Schneeburger]

Proof: Assuming the function quotient extension theorem 17, we apply it to two
quotient theorems; first, the identity quotient 〈$=, I〉 for type β, and second, the
partial abstraction quotient 〈R, f〉 from Theorem 18. This yields the quotient
〈$= ===> R, $= +-> f〉, since (I ⇓ $=) = $=. By Property 1 of Definition 16,
∀a. ∃r. ($= ===> R) r r ∧ (($= +-> f)r = a). Specializing a = I : β → β,
and renaming r as g, we obtain ∃g. ($= ===> R) g g ∧ ($= +-> f)g = I). By the
definition of ===>, ($= ===>R)g g is ∀x y. x = y ⇒ R (g x) (g y), which simplifies
by the definition of R to ∀y. Q (g y). The right conjunct is ($= +-> f)g = I, which
by the definition of +-> is (λx. ι (IMAGE f (IMAGE g ($= x)))) = I. But $= x is the
singleton {x}, so since IMAGE h {z} = {h z}, ι{z} = z, and (λx. f (g x)) = f ◦g,
this simplifies to f ◦ g = I, and the conclusion follows. �

Theorem 20 (Existence of Hilbert choice). There exists an operator c :
(α→ bool)→ α which obeys the Hilbert choice axiom, ∀P x. P x⇒ P (c P ).

Proof: In Theorem 19, let Q = (λ(P :α → bool, a:α). (∃x. P x) ⇒ P a) and
f = FST. Then its antecedent is ∀P ′. ∃(P, a). ((∃x.P x) ⇒ P a)∧(FST(P, a) = P ′).
For any P ′, take P = P ′, and if ∃x. P x, then take a to be such an x. Otherwise
take a to be any value of α. In either case the antecedent is true. Therefore by
Theorem 19 there exists a function g such that FST ◦ g = I and ∀P. Q (g P ),
which is ∀P. (∃x. (FST (g P )) x) ⇒ (FST (g P )) (SND (g P )). The operator c is
taken as SND ◦ g, and since FST (g P ) = P , the Hilbert choice axiom follows. �

The significance of Theorem 20 is that even if we are able to avoid all use
of the Axiom of Choice up to this point, it is not possible to prove the function
quotient extension theorem 17 without it. This section’s design may be used to
build a theory of quotients which is constructive and which extends naturally to
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quotients of lists, pairs, sums, and options. However, it is not possible to extend
it to higher order quotients while remaining constructive. Therefore the designs
presented in this paper cannot be used to create higher order quotients in strictly
constructive theorem provers. Alternatively, in theorem provers like HOL which
admit the Hilbert choice operator, if higher order quotients are desired, there is
no advantage in avoiding using the Axiom of Choice through using the design
of this section. The main design presented earlier is much simpler to automate.

7 Implementation

The design for higher order quotients presented here has been implemented in a
package for the Higher Order Logic theorem prover. This section will touch on
only a few interesting aspects of the implementation; for further details, see [10].

This implementation provides a tool which accomplishes all the three tasks
of lifting types, constants, and theorems. To do these, the tool requires inputs of
several kinds. For each new quotient type to be created, the user must provide a
(partial) equivalence theorem (§4). For each kind of aggregate type involved, the
user must provide a quotient extension theorem, and if possible, an equivalence
extension theorem. For every constant which is mentioned in a theorem to be
lifted, there must be a respectfulness theorem showing that the constant respects
the equivalence relations. In addition, for polymorphic constants that can apply
to arguments of either the lower or the quotient types, both a respectfulness
theorem and a preservation theorem must be provided, which shows that the
function of the polymorphic constant is preserved across the quotient operation.

COND RSP: 〈R, abs, rep〉 ⇒ (a1 = a2) ∧ R b1 b2 ∧ R c1 c2 ⇒
R (if a1 then b1 else c1) (if a2 then b2 else c2)

COND PRS: 〈R, abs, rep〉 ⇒ if a then b else c = abs (if a then rep b else rep c)
RES FORALL RSP: 〈R, abs, rep〉 ⇒ (R ===> $=) f g ⇒

RES FORALL(respects R) f = RES FORALL(respects R) g
FORALL PRS: 〈R, abs, rep〉 ⇒ ($∀ f = RES FORALL(respects R) ((abs --> I) f)

Interestingly, ∀ is not respectful. To lift, theorems using ∀ are automatically con-
verted to ones using RES FORALL. RES FORALL (respects R) P is the universal
quantification of P , restricted to values of the argument of P which respect R. A
large number of these respectfulness and preservation theorems have been pre-
proven for standard operators, including, e.g., the unique existential quantifier.
The natural power of higher order quotients is smoothly exploited in enabling
these respectfulness and preservation theorems to be used to lift theorems con-
taining curried operators with none, some, or all of their arguments present.

8 Example: Finite Sets

To demonstrate the higher order quotients package, we create finite sets as a
new type, starting from the existing type of lists, ’a list.
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Lists are represented in HOL as a free algebra with two distinct constructors,
NIL and CONS, also written as [] and infix :: respectively. Let A, B, C be lists.

We intend to create the new type of finite sets as the quotient of lists by the
equivalence relation ∼, generated by rule induction on the following six rules:

a::(b::A) ∼ b::(a::A) [] ∼ []
A ∼ B
B ∼ A

a::(a::A) ∼ a::A
A ∼ B

a::A ∼ a::B
A ∼ B, B ∼ C

A ∼ C

It is easy to prove that ∼ is in fact an equivalence relation, reflexive, sym-
metric, and transitive, and so fset EQUIV: � ∀A B. A ∼ B ⇔ ($∼ A = $∼ B).

Theorems may be proved by induction using the list induction principle:

∀P : ’a list→ bool. P [] ∧ (∀t. P t⇒ ∀h. P (h::t)) ⇒ ∀l. P l

Membership and concatenation (which lifts to “union”) are predefined:

MEM x [] = F ∧ MEM x (h::t) = (x = h) ∨ MEM x t
APPEND [] l = l ∧ APPEND (h::l1) l2 = h::(APPEND l1 l2)

We define new constants by primitive recursion, and prove extensionality:

[] Delete1 x = []
(a::A) Delete1 x = if a = x then A Delete1 x else a::(A Delete1 x)

Fold1 f g z [] = z
Fold1 f g z (a::A) = if (∀u v. f u v = f v u) ∧

(∀u v w. f u (f v w) = f (f u v) w)
then if MEM a A then Fold1 f g z A

else f (g a) (Fold1 f g z A)
else z

A ∼ B ⇔ ∀a. MEM a A⇔ MEM a B

Before invoking the quotient package, we must first prove the respectfulness
theorems of each of the operators we wish to lift, NIL RSP, CONS RSP, etc., e.g.,

[] ∼ []

A ∼ B

a::A ∼ a::B

A ∼ B

MEM a A = MEM a B

A1 ∼ A2, B1 ∼ B2

APPEND A1 B1 ∼ APPEND A2 B2

A ∼ B

Card1A = Card1B

A ∼ B

A Delete1 a ∼ B Delete1 a

A ∼ B

Fold1 f g z A = Fold1 f g z B

We intend to lift the following constants on lists to new ones on finite sets:

[] �→ Empty MEM �→ In APPEND �→ Union Delete1 �→ Delete
:: �→ Insert Card1 �→ Card Inter1 �→ Inter Fold1 �→ Fold
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val [In, Union, finite_set_EXTENSION, ... finite_set_INDUCT] =
define_quotient_types{
types = [{name = "finite_set", equiv = fset_EQUIV}],
defs=[{def_name="In_def",fname="In", fixity=Infix(NONASSOC,425),

func=‘‘MEM:’a -> ’a list -> bool‘‘}, ... ],
tyop_equivs = [],
tyop_quotients = [FUN_QUOTIENT],
tyop_simps = [FUN_REL_EQ, FUN_MAP_I],
respects = [NIL_RSP, CONS_RSP, MEM_RSP, APPEND_RSP,

Card1_RSP, Delete1_RSP, Inter1_RSP, Fold1_RSP],
poly_preserves = [FORALL_PRS, EXISTS_PRS, COND_PRS],
poly_respects = [RES_FORALL_RSP, RES_EXISTS_RSP, COND_RSP],
old_thms = [MEM, APPEND, list_EXTENSION, ... list_INDUCT]};

This proves and stores the quotient theorem

� QUOTIENT $∼ finite set ABS finite set REP.

It also defines the lifted versions of the constants, for example

� ∀T1 T2. T1 Insert T2 = finite set ABS (T1 :: finite set REP T2)

The theorems listed in old thms are automatically soundly lifted to the quotient
level, with the types changed, now concerning not lists but finite sets, e.g.,

x In Empty = F ∧ x In (h Insert t) = (x = h) ∨ x In t
Empty Union l = l ∧ (h Insert l1) Union l2 = h Insert (l1 Union l2)

Empty Delete x = Empty
(a InsertA) Delete x = if a = x then A Delete x

else a Insert (A Delete x)
Fold f g z Empty = z

Fold f g z (a InsertA) = if (∀u v. f u v = f v u) ∧
(∀u v w. f u (f v w) = f (f u v) w)

then if a In A then Fold f g z A
else f (g a) (Fold f g z A)

else z

A = B ⇔ ∀a. a In A⇔ a In B

∀P. P Empty ∧ (∀t. P t⇒ ∀h. P (h Insert t)) ⇒ ∀l. P l

The if ... then ... else in the Delete definition now yields a finite set, not a
list. The last theorem requires higher order quotients to lift, because it involves
quantification over functions, in this case P of type ’a finite set→ bool.

9 Conclusions

We have presented a design for mechanically creating higher order quotients
which is a conservative, definitional extension of higher order logic. The package

We now create the new type ’a finite set from the quotient of lists by ∼.
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implemented from this design [10] automatically lifts not only types, but also
constants and theorems from the original level to the quotient level.

The relationship between the lower type and the quotient type is charac-
terized by the partial equivalence relation, the abstraction function, and the
representation function. As a key contribution, three necessary algebraic prop-
erties have been identified for these to properly describe a quotient, which are
preserved in the creation of both aggregate and higher order quotients.

The Axiom of Choice was used in this design. We showed that an alternative
design may be constructed without dependence on the Axiom of Choice, but that
it may not be extended to higher order quotients while remaining constructive.

Prior to this work, only Harrison [8] went beyond support for modeling the
quotient types to provide automation for the lifting of constant definitions and
theorems from their original statements concerning the original types to the
corresponding analogous statements concerning the new quotient types. This is
important for the practical application of quotients to sizable problems like quo-
tients on the syntax of complex, realistic programming or specification languages.
These may be modelled as recursive types, where terms which are partially equiv-
alent by being well-typed and alpha-equivalent are identified by taking quotients.
This eases the traditional problem of the capture of bound variables [7].

Such quotients may now be more easily and practically modeled within a
variety of theorem provers, using the design described here.

Soli Deo Gloria.
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Abstract. We have definitionally extended Isabelle/HOLCF to support
axiomatic Haskell-style constructor classes. We have subsequently de-
fined the functor and monad classes, together with their laws, and imple-
mented state and resumption monad transformers as generic constructor
class instances. This is a step towards our goal of giving modular denota-
tional semantics for concurrent lazy functional programming languages,
such as GHC Haskell.

1 Introduction

The Isabelle generic theorem prover is organized as a modular collection of tools
for reasoning about a variety of logics. This allows common theorem proving
tasks such as parsing, pretty printing, simplification of formulas, and proof search
tactics to be reused in each object logic. We are similarly interested in using
Isabelle to modularly reason about programs written in a wide spectrum of
programming languages. In particular, we want to verify programs written in
lazy functional programming languages, such as Haskell [11].

Denotational semantics is one attractive approach for this, owing to its high
level of abstraction and the ease in which both recursive datatypes and functions
can be modeled. However, language features change over time. Modeling new lan-
guage datatypes and primitives usually only requires local changes to the language
semantics. On the other hand, the introduction of a new computational effect, such
as exceptions, often requires global modifications. Furthermore, these effects must
be formalized anew for each programming language under consideration.

In the last decade monads have become an increasingly popular way to mit-
igate this problem. A monad M is a single-argument type constructor together
with a particular set of operations and equational laws (listed in Section 4.4)
that can be used for expressing kinds of computational effects, such as im-
perative state update, exception handling, and concurrency. For more informa-
tion, we recommend consulting one of the Haskell-oriented monad tutorials at
[http://www.haskell.org/bookshelf/#monads].

When formalizing the semantics of a language, a monad can be defined that
models the language’s computational effects. The rest of the semantics is then
specified abstractly in terms of the monad, allowing the language’s effects to be
modified in isolation.
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Even greater modularity can be achieved by composing complex monads
through a series of monad transformers. A monad transformer takes an existing
monad and extends it with a specific new computational effect, such as impera-
tive state, or exception handling. In this way an effect can be specified once, as
a monad tranformer, and then reused in other language semantics.

1.1 Axiomatic Constructor Classes

Isabelle supports overloaded constant definitions [21]. Polymorphic constants
usually have a single definition that covers all type instances, but multiple defi-
nitions are allowed if they apply to separate types. For example, unary negation
in Isabelle/HOL has the polymorphic type ′a ⇒ ′a. It may be applied to sets or
to integers, with a different meaning in each case.

Axiomatic type classes [21] are another important feature of Isabelle. Each
class has a set of class axioms, each of which has a single free type variable, and
specifies properties of overloaded constants. An axiomatic type class is then a
set of types: those types for which the class axioms have been proven to hold.
Theorems can express assumptions about types using class constraints on type
variables. Axiomatic type classes are used extensively in Isabelle’s implementa-
tion of domain theory (see Section 2.1).

Unfortunately, Isabelle’s type class system is not powerful enough to specify
classes for monads or monad transformers. The problem is that Isabelle supports
abstraction over types, using type variables; but there is no such abstraction for
type constructors—they can only be used explicitly. This means that we can
prove the monad laws hold for a particular type constructor, but we can not
reason abstractly about monads in general. Furthermore, monad transformers
cannot even be defined, since Isabelle does not allow type constructors to take
other type constructors as arguments.

A key observation is that we can represent types themselves as values, and we
can represent continuous type constructors as continuous functions over those
values. We can then use Isabelle’s existing type definition and axiomatic type
class packages to represent such type constructors as new types. This now allows
us to use type variables to reason abstractly about type constructors, and thus
we can specify constructor classes simply as type classes.

This representation is carried out definitionally, and we have gone on to en-
code several monads and monad transformers in Isabelle/HOLCF. The most
interesting of these is the resumption monad transformer, which models inter-
leaving of computations.

2 Background

Isabelle is a generic interactive theorem prover, which can be instantiated with
various kinds of object-logics. Isabelle/HOL is an instantiation of higher order
logic. We will now summarize the basic syntax and keywords of Isabelle/HOL
that will be used in the paper.
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The formula syntax in Isabelle/HOL includes standard logical notation for
connectives and quantifiers. In addition, Isabelle has separate syntax for the
meta-level logic:

∧
, =⇒, and ≡ represent meta-level universal quantification,

implication, and equality. There is also notation for nested meta-level implica-
tion: [[P1; . . . ;Pn]] =⇒ R is short for P1 =⇒ · · · =⇒ Pn =⇒ R.

The syntax of types is similar to the language ML, except that Isabelle
uses a double arrow (⇒) for function types. Some binary type constructors are
written infix, as in the product type nat × bool; other type constructors are
written postfix, as in bool list or nat set. Finally, ′a and ′b denote free type
variables.

Isabelle theories declare new constants with the consts keyword. Definitions
may be supplied later using defs; alternatively, constants may be declared and
defined at once using constdefs. Theories introduce new types with the type-
def command, which defines a type isomorphic to a given non-empty set. The
keywords lemma and theorem introduce theorems.

2.1 Isabelle/HOLCF

HOLCF [14,20] is an object logic for Isabelle designed for reasoning about func-
tional programs. It is implemented as a layer on top of Isabelle/HOL, so it in-
cludes all the theories and syntax of the HOL object logic. In addition, HOLCF
defines a family of new axiomatic type classes, several new type constructors,
and associated syntax, which we will summarize here.

HOLCF introduces an overloaded binary relation &, which is used to define
information orderings for types: The proposition x & y means that x is an
approximation to y. HOLCF then defines a sequence of axiomatic type classes
po ⊇ cpo ⊇ pcpo to assert properties of the & relation. The class po contains
types where & defines a partial order. The subclass cpo is for ω-complete partial
orders, which means that there exists a least upper bound for each ω-chain. An
ω-chain Y is a countable sequence where Yn & Yn+1 for all n. The expression⊔

n Yn denotes the least upper bound of the chain Y . Finally, the class pcpo is
for ω-cpos that additionally have a least element, written ⊥. HOLCF declares
pcpo to be the default class, so free type variables are assumed to be in class
pcpo unless otherwise specified.

HOLCF defines a standard set of type constructors from domain theory.
Given types ′a and ′b in class pcpo, and ′c in class cpo, the following are all in
class pcpo: the cartesian product ′a × ′b, the strict product ′a ⊗ ′b, the strict
sum ′a ⊕ ′b, the lifted type ′a u, and the continuous function space ′c → ′a.
Recall that a continuous function is a monotone function that preserves limits:
f(

⊔
n Yn) =

⊔
n f(Yn). HOLCF also defines a type constructor lift that can turn

any type into a flat pcpo by adding a new bottom element.
HOLCF defines special syntax for operations involving the continuous func-

tion space. Continuous function application is written with an infix dot, as in
f ·x. Continuous lambda abstraction is written Λx . P. Composition of continuous
functions f and g is written f oo g.
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3 Representing Types and Type Constructors

3.1 Embedding-Projection Pairs

To do formal reasoning about types, we need to be able to talk about what it
means to embed one type into another. An appropriate concept in domain theory
is the embedding-projection pair, or ep-pair [1,2,7]. Let ′a and ′b be types in class
pcpo. A pair of continuous functions e:: ′a → ′b and p:: ′b → ′a is an ep-pair if
p oo e = ID :: ′a → ′a and e oo p & ID :: ′b → ′b. The existence of such a pair
shows that the type ′a can be embedded into type ′b. An illustration of a simple
ep-pair is shown in Fig. 1.

constdefs
is-ep-pair :: ( ′a → ′b) ⇒ ( ′b → ′a) ⇒ bool
is-ep-pair e p ≡ (∀ x :: ′a. p·(e·x) = x) ∧ (∀ y :: ′b. e·(p·y) � y)

Ep-pairs have many useful properties: e is injective, p is surjective, both are
strict, each function uniquely determines the other, and the range of e is a sub-
pcpo of ′b. Ep-pairs are also compositional, and they can be lifted over many
type constructors, including cartesian product and continuous function space.

If we identify ′a with a subset of ′b, so that e is just subset inclusion, then it is
natural to consider just the composition e oo p:: ′b → ′b. This gives a continuous
function that is below the identity, and also idempotent, since e oo p oo e oo p
= e oo ID oo p = e oo p. In domain theory, a function with these properties
is called a projection (not to be confused with the second half of an ep-pair).
Our definitions of ep-pairs and projections follow Amadio and Curien’s [2, Defn.
7.1.6].

constdefs
is-projection :: ( ′a → ′a) ⇒ bool
is-projection p ≡ (∀ x . p·(p·x) = p·x) ∧ (∀ x . p·x � x)

A projection is a function, but it can also be viewed as a set: Just take the
range of the function, or equivalently, its set of fixed points—for idempotent
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Fig. 1. Projections (left) and ep-pairs (right). The range of a projection defines a subset

of a pcpo. An ep-pair defines an isomorphism between a subset and another type.
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functions they are the same. A projection along with the set it defines are shown
in Fig. 1. Every projection gives a set that is a sub-pcpo, and contains ⊥. Not
all sub-pcpos have a corresponding projection, but if one exists then it is unique.
The set-oriented and function-oriented views of projections even give the same
ordering: For any projections p and q, p & q if and only if range p ⊆ range q.

We define a type constructor in Isabelle for the space of projections over
any pcpo. Since is-projection is an admissible predicate, the set of projections
is closed with respect to limits of ω-chains. Since Λx . ⊥ is a projection, the set
also contains a least element—thus the resulting type is a pcpo.

typedef ′a projection = {p:: ′a → ′a. is-projection p}

Isabelle’s type definition package provides Rep and Abs functions to convert
between type ′a projection and type ′a → ′a. Rep-projection is injective and its
range equals the set of all projection functions; Abs-projection is a left-inverse
to Rep-projection. (See the Isabelle Tutorial [16, §8.5.2] for more details.)

We can define some operations on projections that are useful for reasoning
about projections as sets. The in-projection relation is like the ∈ relation for
sets; the triple-colon notation is meant to be reminiscent of type annotations
in Isabelle or Haskell. The function cast is implemented by simply applying a
projection as a function—in the set-oriented view of projections, the intuition is
that it casts values into a set, preserving those values that are already in the set.

constdefs
cast :: ′a projection → ′a → ′a
cast ≡ ΛD . Rep-projection D

in-projection :: ′a ⇒ ′a projection ⇒ bool (infixl ::: 50 )
x ::: D ≡ cast ·D ·x = x

lemma cast-in-projection: cast ·D ·x ::: D
lemma subprojectionD : [[D � E ; x ::: D ]] =⇒ x ::: E

3.2 Representable Types

Using the domain package of Isabelle/HOLCF, we can define a universal domain
U that is isomorphic to the lifted naturals plus its own continuous function
space:

domain U = UNat (fromUNat :: nat lift) | UFun (fromUFun :: U → U )

The domain package defines continuous constructor and accessor functions for
the type U, and proves a collection of theorems about them. Then we can easily
show that UNat and fromUNat form an ep-pair from nat lift to U ; similarly,
UFun and fromUFun form an ep-pair from U → U to U. Using these ep-pairs
as a starting point, we can then construct ep-pairs to U for several other types:
unit lift, bool lift, U × U , U ⊗ U , U ⊕ U , and U⊥.
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We say that a type ′a is representable if we can define an ep-pair between
′a and the universal domain U. We declare overloaded constants emb and proj
to convert values to and from the universal domain, and encode the notion of
representability with a new axiomatic type class rep:

consts
emb :: ′a → U
proj :: U → ′a

axclass rep ⊆ pcpo
ep-emb-proj : is-ep-pair emb proj

Given two representable types ′a and ′b, we can lift the ep-pairs over the
cartesian product to construct a new ep-pair from ′a × ′b to U × U. Then we
can compose this with the standard ep-pair from U × U to U, and get an ep-pair
from ′a × ′b to U. Thus ′a × ′b is representable if both ′a and ′b are, and we
say that × is a representable type constructor. Similarly, we can show that →,
⊗, ⊕, and (−)⊥ are all representable type constructors as well. Our proofs of
representability are analogous to those given by Gunter and Scott [7, §7.1, §7.3].
Note that U is also trivially representable, since we can embed any type into
itself.

Mapping from Types to Values. We encode values of representable types
as values of type U, but we encode types themselves as projections over U. We
can construct a projection for any representable type by simply composing emb
and proj.

constdefs
rep-of :: ( ′a::rep) itself ⇒ U projection
rep-of (t :: ′a itself ) ≡ Abs-projection ((emb:: ′a → U ) oo (proj ::U → ′a))

The special type ′a itself has only one value, which is written with the special
syntax TYPE ( ′a). As the argument type of rep-of, it allows us to effectively take
types as arguments. We could have used simply ′a as the argument type, but
this does not accurately reflect what the function does—the result value does not
depend on any actual values of type ′a, it only depends on the type itself. This
Isabelle-specific feature is not actually necessary: We could also have defined
a type constructor that produces singleton types, using the datatype package;
instead of TYPE ( ′a) we would just write Myself :: ′a itself.

datatype ′a itself = Myself — sample singleton type constructor

The type U projection is large enough to encode all the programming lan-
guage datatypes that we are interested in. We have already shown that the
unit type, sums, products, and continuous function spaces are representable,
and since U projection is a pcpo, it contains least fixed-points for all general
recursive datatypes as well.

From now on, all free type variables are assumed to be in class rep, unless
specified otherwise. We will not concern ourselves with non-representable types.
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3.3 Representing Type Constructors

One way to think of a type constructor is as a function from types to types. Just
as we can represent a type with a projection, we can represent a type constructor
using a projection constructor, i.e. a continuous function of type U projection →
U projection.

We declare an Isabelle type class tycon for type constructors. It is a syntactic
class which has no axioms; the class only serves to restrict the possible argument
types for overloaded functions. While instances of class tycon are actually types,
we will never use them as such, or construct any values having those types. We
only use them to define an overloaded constant tc, which returns a projection
constructor. As before, we use ′f itself as the argument type because the result
should only depend on the type of the argument, and not its value.

axclass tycon ⊆ type
consts tc :: ( ′f ::tycon) itself ⇒ U projection → U projection

Now we can define an Isabelle type constructor to model explicit type appli-
cation. App takes two type arguments: ′a of class rep, and ′f of class tycon. By
applying the projection constructor of ′f to the representation of ′a, we get a
new projection. We define the resulting type to be isomorphic to the subset of
U that corresponds to this projection.1

typedef (open) ( ′a, ′f ) App (infixl � 65 )
= {x . x ::: tc TYPE ( ′f ::tycon)·(rep-of TYPE ( ′a::rep))}

defs
emb :: ′a� ′f → U ≡ Λ x . Rep-App x
proj :: U → ′a� ′f ≡ Λ x . Abs-App (cast ·(tc TYPE ( ′f )·(rep-of TYPE ( ′a)))·x)

lemma rep-of-App:
rep-of TYPE ( ′a� ′f ) = tc TYPE ( ′f )·(rep-of TYPE ( ′a))

Since λx . x ::: D is an admissible predicate, and holds for ⊥, it is easy to show
that the resulting type is a pcpo. Also notice the infix syntax for the App type
constructor: We use postfix application order to be consistent with Isabelle’s
type syntax.

4 Axiomatic Constructor Classes

4.1 Coercion

We define a function coerce to convert values between any two representable
types. The coerce function will be useful in the next section for defining poly-
morphic constants in axiomatic type classes.
1 For convenience, Isabelle’s typedef package would normally try to define a constant

App to be equal to the set specified in the type definition. That would cause an error
in this case, because while the value of the set depends on the type variables ′a and
′f, those type variables do not appear in the type of the set itself. The keyword open
overrides this behavior, so that the typedef package does not define such a constant.
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constdefs
coerce :: ( ′a::rep) → ( ′b::rep)
coerce ≡ proj oo emb

Now we establish some properties of coerce. Coercing from a smaller type to
a larger type is always invertible, while coercing from a larger type to a smaller
type is only invertible under some conditions. Applying a coerced function is
equivalent to coercing before and after applying the original function. Finally,
the coerce function may degenerate into emb, proj, or ID, depending on the type
at which it is applied.

lemma coerce-inv1 : rep-of TYPE ( ′a) � rep-of TYPE ( ′b)
=⇒ coerce·(coerce·x :: ′b) = (x :: ′a)

lemma coerce-inv2 : emb·x ::: rep-of TYPE ( ′b) =⇒ coerce·(coerce·x :: ′b) = (x :: ′a)
lemma coerce-cfun: coerce·f = coerce oo f oo coerce
lemma coerce-ID : coerce·(ID :: ′a → ′a) = cast ·rep-of TYPE ( ′a)

4.2 Functor Class

The first axiomatic type class that we define is the functor class. Instances of
this class should have a polymorphic function fmap (similar to map for lists) that
preserves the identity and function composition. Here are the type signature and
theorems that we would like to have for fmap:

consts fmap :: ( ′a → ′b) → ′a� ′f → ′b�( ′f ::functor)
theorem fmap-ID : fmap·ID = ID
theorem fmap-comp: fmap·(f oo g) = fmap·f oo fmap·g

The above theorems are not suitable for use as class axioms, because they
each have multiple free type variables: fmap-ID has two and fmap-comp has four,
counting ′f. We could try to emulate a 4-parameter type class using predicates,
but when reasoning about functors in general the number of extra assumptions
would quickly get out of hand. We really need a set of class axioms with only one
free type variable, the type constructor ′f. Furthermore, the class axioms should
ensure that the above laws hold at all instances of the other type variables.
If Isabelle supported nested universal quantification of type variables [13] this
would be simple to express, but we must find another way.

Our solution is to express the functor laws in an untyped setting, by replacing
universally-quantified type variables with U, the universal domain type. In this
setting we can model type quantification using quantification over the U pro-
jection type. Along these lines, we declare an “untyped” version of fmap called
rep-fmap—the polymorphic fmap is defined by coercing it to more specific types.

consts rep-fmap :: (U → U ) → U� ′f → U� ′f
defs fmap ≡ coerce·rep-fmap

The functor class axioms are all in terms of rep-fmap. We need three alto-
gether: one for each of the two functor laws, and one to assert that rep-fmap has
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an appropriate polymorphic type. We just need to decide what forms the laws
should take. First consider the composition law fmap-comp: If we convert it to
the untyped setting and make all quantification explicit, we get something like
the following (abusing notation slightly):

theorem rep-fmap-comp:
∀ a b c::U projection.
∀ f :::b→c. ∀ g :::a→b. rep-fmap·(f oo g) = rep-fmap·f oo rep-fmap·g

Because the U projection variables are only used to restrict the quantification
of f and g, we can simplify this rule by removing the U projection quantifications,
and allowing f and g to range over all functions of type U → U . We end up with
something that looks exactly like the original fmap-comp law, but at a more
specific type.

The identity law fmap-ID works out differently, because it mentions a specific
function value ID instead of using universal quantification. When we convert this
rule to the untyped setting, we obtain terms of the form coerce·ID, which simplify
to applications of cast.

axclass functor ⊆ tycon
rep-fmap-type:

[[ x . x ::: D =⇒ f ·x ::: E ; emb·xs ::: tc TYPE ( ′f )·D ]]
=⇒ emb·(rep-fmap·f ·xs) ::: tc TYPE ( ′f )·E

rep-fmap-ID :
rep-fmap·(cast ·D) = proj oo cast·(tc TYPE ( ′f )·D) oo emb

rep-fmap-comp:
rep-fmap·(f oo g) = rep-fmap·f oo rep-fmap·g

Deriving the polymorphic versions of the functor laws is quite straightfor-
ward. It basically consists of unfolding the definition of fmap, and then using the
coerce lemmas together with the functor class axioms to finish the proofs.

4.3 Functor Class Instances

In this section we describe the recommended method for establishing instances of
the functor class. In typical usage, we expect the user to have defined an ordinary
Isabelle type constructor—such as llist, for lazy lists—which is representable and
has a function map that satisfies the functor laws. Our remaining task is to
define a tycon instance that models this type constructor, and prove that it is
an instance of the functor class.

To obtain the projection constructor that models llist, we need to derive a
formula for rep-of TYPE ( ′a llist) in terms of rep-of TYPE ( ′a). This is straight-
forward as long as emb and proj are defined in a reasonable way for llist : Em-
bedding a value of type ′a llist should be the same as first mapping emb over
the list, and then embedding the resulting U llist. Similarly, projecting a value
of type ′a llist should be the same as projecting from U to U llist, and then
applying map·proj.
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rep-of TYPE ( ′a llist)
= Abs-projection (emb oo proj )
= Abs-projection (emb oo map·emb oo map·proj oo proj )
= Abs-projection (emb oo map·(emb oo proj ) oo proj )
= Abs-projection (emb oo map·(cast ·(rep-of TYPE ( ′a))) oo proj )

Accordingly, we define a function functor-tc that produces a projection con-
structor from any map function. We will typically instantiate the type variable
′l to some type constructor applied to U, for example U llist.

constdefs
functor-tc :: ((U → U ) → ′l → ′l) ⇒ U projection → U projection
functor-tc map ≡ ΛD . Abs-projection (emb oo map·(cast ·D) oo proj )

Next we declare a type which will be an instance of class tycon. Since values
of types in class tycon are never used for anything, it does not matter how we
actually define the type—a singleton type works fine. By our convention, we use
a capitalized version of the name of the original type constructor.

datatype LList = DummyLList — exact definition does not matter
instance LList :: tycon ..
defs

tc (t ::LList itself ) ≡ functor-tc (map::(U → U ) → U llist → U llist)
rep-fmap::(U → U ) → U�LList → U�LList ≡ coerce·map

The above two definitions, together with proofs of the functor laws for map
at type (U → U ) → U llist → U llist, are sufficient to prove the functor class
axioms for type LList. To facilitate proof reuse, we define a predicate to encode
this set of assumptions.

constdefs
functor-locale :: ( ′f ::tycon) itself ⇒ ((U → U ) → ′l → ′l) ⇒ bool
functor-locale (t :: ′f itself ) map ≡

(tc TYPE ( ′f ) = functor-tc map) ∧
((rep-fmap :: (U → U ) → U� ′f → U� ′f ) = coerce·map) ∧
(map·ID = ID) ∧
(∀ f g . map·(f oo g) = map·f oo map·g)

Using only this predicate as an assumption, we can prove each of the functor
class axioms. There are a couple of important intermediate theorems: First,
that the argument to Abs-projection in the definition of functor-tc is actually
a projection. Second, that the types U* ′f and ′l are represented by the same
projection—this means coerce is an isomorphism between the two. Using these
lemmas together with the properties of coerce, it is then relatively straightforward
to prove the three functor class axioms for type ′f. This means that to establish
a functor class instance, the user only needs to define the tycon and rep-fmap
in the standard way, and then prove that the functor laws hold at a single type
instance.



Axiomatic Constructor Classes in Isabelle/HOLCF 157

To show that LList is an instance of class functor, our only proof obligation is
to show functor-locale TYPE(LList) map. Once we have shown that LList is in
class functor, we can now use fmap at type ( ′a → ′b) → ′a*LList → ′b*LList.
We can also instantiate the functor laws fmap-ID and fmap-comp (or any other
theorem proved about functors in general) to the LList type. Besides fmap, there
are no constants or operations defined on the new LList type; however, we can
always create values or operations on the type ′a*LList by coercion from the
type ′a llist, since the two types are isomorphic.

4.4 Monad Class

The monad class specifies two polymorphic constants, return and bind, with a
set of three monad laws that they should satisfy. In addition, a fourth law should
be satisfied by monads that are also instances of the functor class. Here are the
type signature and theorems that we would like to have for class monad.

consts return :: ′a → ′a�( ′m::monad)
consts bind :: ′a�( ′m::monad) → ( ′a → ′b� ′m) → ′b� ′m (infixl � 55 )
theorem monad-left-unit : (return·x � f ) = (f ·x)
theorem monad-right-unit : (m � return) = m
theorem monad-bind-assoc: ((m � f ) � g) = (m � (Λ x . f ·x � g))
theorem monad-fmap: fmap·f ·xs = xs � (Λ x . return·(f ·x))

The functor and monad laws are closely connected. If we use the monad-fmap
law as a definition for fmap, then the functor laws can be proved from the monad
laws. Alternatively, we can define monad as a subclass of functor ; in this case,
the right unit law is redundant. We have chosen the subclass method, because
it allows us to reuse some proofs from the functor class.

The definition of the monad class follows the same basic pattern as the
functor class. We start by declaring overloaded representative versions of return
and bind, where all polymorphic type variables are replaced with U. As with the
functor class, the real return and bind are defined by coercion from these.

The monad class has five axioms in total: one each for the types of return
and bind, and three more for the monad-left-unit, monad-bind-assoc, and monad-
fmap rules. All three of these class axioms look exactly like the original rules,
because (as with fmap-comp) all free type variables are attached to universally
quantified values.

Our standard method for establishing instances of class monad is similar to
the method for class functor. We define a predicate monad-locale that encodes all
of the assumptions necessary to prove the monad class axioms. This predicate
includes all the assumptions from functor-locale, plus additional assumptions
stating that rep-bind and rep-return are defined by coercion, and that the monad
laws hold for the underlying type.

4.5 Monad Transformers

In addition to simple type constructors like LList, our framework can also be
used to define type constructors that take additional type arguments, some of
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which may be type constructors themselves. The trick is to use a type constructor
with one or more type arguments as an instance of class tycon.

A good example is the state monad transformer, which has a total of three
type parameters: The state type ′s, the inner monad ′m, and the result type
′a. We declare ( ′a, ′m, ′s) stateT as a type abbreviation for ′s → ( ′a × ′s)* ′m,
and define operations map-stateT, return-stateT and bind-stateT on this type
in terms of the monad operations of ′m. We can then use the monad laws for ′m
to prove that these new operations satisfy the monad laws.

datatype ( ′m, ′s) StateT = DummyStateT — exact definition does not matter
instance StateT :: (monad , rep) tycon ..
defs tc (t ::( ′m, ′s) StateT itself )

≡ functor-tc (map-stateT ::(U → U ) → (U , ′m, ′s) stateT → (U , ′m, ′s) stateT )

The above instance declaration says that ( ′m, ′s) StateT is in class tycon if
′m is in class monad and ′s is in class rep. After defining tc, rep-fmap, rep-return,
and rep-bind in the standard way, we can then use the monad-locale theorems
to establish that ( ′m, ′s) StateT is also in class monad, for any monad ′m.

instance StateT :: (monad , rep) monad

A more complex example is the resumption monad transformer: It is particu-
larly interesting because the datatype is defined with indirect recursion through a
monad parameter. The domain package of HOLCF can not define such datatypes;
we defined it manually by taking the least fixed-point of a projection constructor.
In the definition of rep-resT, (−)⊥ and ⊕ refer to the projection constructors
associated with their respective type constructors.

constdefs
rep-resT :: (U projection → U projection) → U projection → U projection
rep-resT ≡ ΛM A. fix ·(ΛR. A⊥ ⊕ (M ·R)⊥)

typedef ( ′a, ′m) resT = {x . x ::: rep-resT ·(tc TYPE ( ′m))·(rep-of TYPE( ′a))}

The resulting type satisfies the isomorphism ( ′a, ′m) resT ∼= ′a⊥ ⊕ (( ′a, ′m)
resT* ′m)⊥. Similarly to the previous example, we define a type ′m ResT as a
member of class tycon, and we prove that if ′m is in class monad, then so is ′m
ResT.

5 Axiomatic Constructor Classes in HOL

All of the framework described so far has been implemented in Isabelle/HOLCF,
where every representable type is a pcpo. However, we have also explored the
possibility of porting the theories to Isabelle/HOL. Most of it appears to work,
albeit with some important restrictions. The major differences between the two
versions are summarized in Table 1.

The essential characteristics of the class of representable types are that: (1)
The class is closed with respect to several type constructors, and (2) the class
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Table 1. Translation between HOLCF and HOL versions of axiomatic constructor

classes

Concept HOLCF HOL

Representable type constructors →,×,⊗,⊕, ·⊥ ×, +, restricted ⇒
Embedding between types ep-pair function with inverse

Encoding of representable type projection over U idempotent function

Ordering of type encodings � on projections ⊆ on range sets

Encoding of type constructor continuous function monotone function

has an ordering, with a maximal representable type U. Having a maximal rep-
resentable type is necessary for our method of reasoning about polymorphic
constants in constructor classes.

Remember that in HOLCF we can define a universal domain U into which we
can embed its continuous function space U → U . However, this is not possible
in HOL, since for any non-trivial type U the full function space U ⇒ U has
a strictly larger cardinality than U itself. Essentially this means that the full
function space type constructor ⇒ can not be representable.

It is possible to make ⇒ representable in a limited way, by placing extra
restrictions on the left type argument. For example, ′a ⇒ ′b could be repre-
sentable for all representable types ′b and countable types ′a. Isabelle’s datatype
package can define infinitely-branching trees, which would be a good candidate
for a universal type that could represent these function spaces.

6 Related Work

The authors are members of the Programatica project [10], which is building
a high assurance software development environment for Haskell98 [11]. Progra-
matica allows users to embed desired correctness assertions and environmental
assumptions in Haskell program elements. Assertions can also be annotated with
certificates that provide evidence of validity, at differing levels of assurance. Ex-
ample certificates can range from code inspection sign-offs, manually or randomly
generated test cases, all the way up to theorem proving invocations. The Pro-
gramatica environment tracks assertions and the Haskell definitions they depend
on, and can re-invoke certificate servers automatically as needed. We are using
Isabelle/HOLCF and axiomatic constructor classes to build a certificate server
that provides a high level of assurance for validating Programatica assertions,
even in the presence of Haskell functions that terminate on only a subset of their
inputs.

Papaspyrou and Macos [19] illustrate how monads and monad transform-
ers can provide a modular denotational semantics for a range of programming
language features. They define a simple eager language of expressions with side
effects (ELSE), and gradually extend the semantics to include side effects, non-
deterministic evaluation of side-effects, concurrent execution of side-effects, and
culminates in ANSI C style sequence points. The semantics of the language is
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parameterized on an underlying monad; this allows the desired computational
effects to be reconfigured without globally rewriting the language semantics. The
desired monad is also constructed modularly, by applying a sequence of monad
transformers. The same framework can also be adapted to model structural lan-
guage features such as procedures, non-local control-flow, and reference values.
Papaspyrou has given a denotational semantics for a significant subset of ANSI
C using the same methods [18].

Proof assistants such as Coq [4] and MetaPRL [8] whose type systems are
based on dependent type theory can encode instances of axiomatic type and
constructor classes as records whose fields contain implementations of the class
methods, as well as proofs that the methods satisfy the class axioms. Overloaded
functions can then be defined as functions that take these records as parameters.
This is often called the dictionary-passing approach to implementing type classes.
It is unclear to us whether the function parameter hiding and type inference
heuristics of these proof assistants are sufficient to hide such dictionary passing
from the user, as is the case with our implementation of constructor classes in
Isabelle/HOLCF.

Theory morphisms are an alternative to axiomatic type classes for allowing
theorems to be reused across families of types, and have been implemented in
theorem provers such as IMPS [6,5] and PVS [17]. A key advantage of theory
morphisms is that multiple morphisms can be defined that target the same type.

Axiomatic constructor classes can be simulated by theory morphisms, pro-
vided that the morphism is allowed to instantiate type constructors of arity
greater than zero. However, instantiation of morphisms is an operation on the-
ories, rather than terms, and therefore cannot be applied anonymously to sub-
terms. Also, most-general class instantiations for a well-typed term can always be
inferred by Isabelle’s order-sorted type unification algorithm [15]. Larger Haskell
programs rely on this heavily, and it prevents type annotations from swamping
the actual code. To our knowledge, no similar capability is available for cur-
rent theory morphism implementations. However, they could be implemented in
principle, if one were willing to specify a “default” morphism for any given type
scheme in the same way that class instances are defined.

Isabelle has a lightweight implementation of theory morphisms, called
locales [3,12]. However, locales can not not instantiate type constructors, so they
are unsuitable for modeling constructor classes. A more general theory mor-
phism mechanism has recently been implemented for Isabelle by Johnsen and
Lüth [9], that relies on the theorem prover’s ability to attach proof objects to
theorems. This allows theorems to be safely instantiated, without needing to
modify Isabelle’s kernel.

7 Conclusion

Using purely definitional means, we have developed a framework within Is-
abelle/HOLCF that permits abstract reasoning about type constructors. We
have formalized the functor and monad type classes and proved several monad
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instances, including the maybe monad, lazy lists, the error monad, and the state
monad. We have also formalized monad transformers for error handling, persis-
tent state, and resumptions.

We have found that our framework works quite well for abstract reasoning
about functors and monads in general. Isabelle’s type class system neatly encap-
sulates all the assumptions related to the functor and monad laws.

Our framework still has much room for improvement, though. Even with a
library of combinators available, it turns out that constructing emb and proj
functions takes a bit of work for recursive types; this is something that would
benefit from automation. It is also unfortunate that in our framework, we end
up with two versions of each type constructor, for example llist and LList. This
means that constants and theorems about llist must all be transferred over to
LList one by one. This would benefit from automation as well. Alternatively, it
would be nice to have a datatype package that generates tycon instances in the
first place.

Other directions for future work aim to automate the translation from
Haskell-style code into Isabelle definitions. Mechanizing the process of producing
Isabelle code for new type classes is one possibility. With a more sophisticated
universal domain, it may also be possible to model datatypes that use features
like higher-rank polymorphism, which would be valuable for deep embeddings of
Haskell semantics.
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Abstract. The ACL2 system is based upon a first-order logic and imple-
ments traditional first-order reasoning techniques, notably (conditional)
rewriting, as well as extensions including mathematical induction and
a “functional instantiation” capability for mimicking second-order rea-
soning. Additionally, one can engage in meta-reasoning — using ACL2
to reason, and prove theorems, about ACL2’s logic from within ACL2.
One can then use these theorems to augment ACL2’s proof engine with
custom extensions. ACL2 also supports forms of meta-level control of its
rewriter. Relatively recent additions of these forms of control, as well as
extensions to ACL2’s long-standing meta-reasoning capability, allow a
greater range of rules to be written than was possible before, allowing
one to specify more comprehensive proof strategies.

1 Introduction

ACL2 is a logic, a programming language, and a semi-automatic theorem prover
[6,4,5]. This paper is about the meta reasoning facilities of ACL2, the theorem
prover. We give a brief overview of ACL2’s operations, paying particular atten-
tion to ACL2’s rule-based rewriter, which is generally considered to be its main
proof procedure. We then present a sequence of increasingly complex problems
that cannot be solved with normal rewrite rules and show how they can be solved
using ACL2’s meta-reasoning facilities. Although occasionally simplified, all but
one of these examples are based upon items from actual proof efforts. One can
find these as well as many additional examples in the proof scripts distributed
with ACL2 by searching for the keywords syntaxp, meta, and bind-free.

The facilities presented in this paper correspond to “computational reflec-
tion” as described by Harrison [3]. We do not, however, wish to argue with his
thesis that there is often a “too-easy acceptance of reflection principles as a prac-
tical necessity.” Rather, we argue that these facilities, when carefully integrated
into a system such as ACL2, can greatly enhance the user experience. Although
ACL2 does have a tactic programming language — for its interactive utility (the
so-called proof-checker) — experience has shown that the techniques described
here are often simpler and more profitable to use.

The facilities described in this paper fall into three categories: meta functions
(dating back to [1]), syntaxp directives, and bind-free directives. In addition, each
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of these three facilities can be divided into a “plain” and an “extended” version.
The plain version of meta functions has been present in ACL2 from its inception,
and syntaxp was added not long thereafter (in the early 1990s). Extended meta
functions were added in Version 2.6 (2001). The bind-free directive was added
to Version 2.7 (2002), in both its plain and extended versions. The extended
syntaxp directive was added at the same time.

Syntaxp and bind-free might be appropriate within an LCF-style system
such as HOL [2]. We do not intend to argue that point vigorously, although it
seems that they could serve to free users from the need to work in the tactic
meta-language.1 We do believe that these facilities bring many of the benefits
of HOL’s programmability to ACL2. Additionally, even experienced ACL2 users
may find it simpler to add a syntaxp or bind-free directive than to prove a meta
rule that installs a new simplification procedure.

We begin with a few words about the ACL2 language. The ACL2 language
is based upon a subset of Common Lisp. As such, it uses a prefix notation. For
example, one might write an expression 3*f(x,y+3) in a traditional notation,
or in the C programming language, which would be written in Lisp notation as
(* 3 (f x (+ y 3))). We should also mention that ACL2 terms are themselves
objects, which therefore can be constructed and analyzed by ACL2. Without this
ability, the features we describe in this paper would not have been possible. In
this paper, however, we stick with a traditional (or C language) notation for
pedagogical purposes.

We will also use function names that are self-explanatory. For example, the
ACL2 term (quotep x), which we could write as quotep(x), would be written
in this paper as constant(x) (so that we need not explain that quotep is the rec-
ognizer for constant terms). We will also avoid Lisp’s quote notation by writing,
for example, fn-symb(x) == + to indicate that the top function symbol of the
term x is the symbol +, in place of the ACL2 notation (equal (fn-symb x) ’+).
We therefore assume no familiarity with Lisp on the part of the reader, yet with
the comments above we also expect it to be readable by those familiar with Lisp
or ACL2.

We now give our brief overview of ACL2. The user submits a purported
theorem to ACL2, which applies a series of procedures in an attempt to prove
the theorem. These procedures include, among others, the following: simplifica-
tion that includes rewriting and linear arithmetic; generalization; and induction.
ACL2 is fully automatic in the sense that this process, once started, cannot be
further guided.

That said, however, ACL2 will rarely succeed at proving any but the simplest
of theorems on its own. The user usually must assist ACL2 in finding a proof,
generally by attaching hints to a theorem or by proving additional rules. New
rules will be added to ACL2’s database and used in subsequent proof attempts.

1 We thank a referee for pointing out that Isabelle’s Isar user interface is an example
of a “recent trend in some higher order logic theorem provers to shield users from
having to learn the tactic meta-language.”
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The judicious development of a library of rules can make ACL2 not only powerful
but — in the words of a game review — strangely glee to play with.

ACL2’s rewriter uses conditional rewrite rules and proceeds in a left-to-right,
inside-out manner, maintaining a context as it goes. This will be clearer after
an example. When ACL2 is rewriting a goal of the form:

<hyp 1> &&
<hyp 2>

==> <from> == <to>

it acts as if it were rewriting the equivalent clause (i.e., disjunction, represented
here using ||)

not(<hyp 1>) || not(<hyp 2>) || (<from> == <to>)

and attempts to rewrite, in (left-to-right) order, each of the following to true:
not(<hyp 1>), not(<hyp 2>), and (<from> == <to>). As ACL2 rewrites each
disjunct above, it does so in a context in which it assumes the falsity of the
others. Thus, when ACL2 rewrites not(<hyp 1>), it assumes both <hyp 2> and
(<from> != <to>). Similarly, when it rewrites (<from> == <to>), it assumes
rewritten forms of <hyp 1> and <hyp 2>. These assumptions are the context.

Suppose ACL2 is rewriting a function application, say foo(<arg1>, <arg2>).
In this case, ACL2 will recursively rewrite (proceeding left to right) each of
<arg1> and <arg2>, yielding <arg1’> and <arg2’> and then rewrite the expres-
sion foo(<arg1’>, <arg2’>). Note that this inside-out rewriting order mimics
that for evaluation — a function’s arguments are evaluated before the function
is applied to them2.

Let us now examine the rewriter in more detail, and see how this last expres-
sion, foo(<arg1’>, <arg2’>), may be rewritten. Assume that the conditional
rewrite rule

GIVEN p(x)
q(y)

REWRITE foo(x, y) TO bar(y, x)

had been previously proved. The left-hand side of the above conclusion —
foo(x, y) — can be matched with our target term — foo(<arg1’>, <arg2’>)
— by replacing the variables x with <arg1’> and y with <arg2’>. Instantiating
the above theorem thus yields:

GIVEN p(<arg1’>)

2 And as for evaluation, the rewriter handles if-then-else terms in a “lazy” manner: in
order to rewrite the term

if <test> then <true-branch> else <false-branch>

ACL2 first rewrites the test, and if the result is true or false then ACL2 rewrites
only the true branch or the false branch, respectively. Otherwise the resulting if
term will generally lead, ultimately, to a case split.
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q(<arg2’>)
REWRITE foo(<arg1’>, <arg2’>) TO bar(<arg2’>, <arg1’>).

If ACL2 can relieve the hypotheses — recursively rewrite them to true — it will
replace the expression foo(<arg1’>, <arg2’>) with bar(<arg2’>, <arg1’>).

Conditional rewriting, as illustrated above, is quite restrictive. This paper
presents techniques that allow a much greater range of replacements to be spec-
ified — they allow one to specify solutions to classes of problems and to ex-
periment speculatively with several rewriting strategies, selecting among these
based upon the predetermined outcome of these strategies. Note, in particular,
that we are not claiming that these facilities allow us to prove things we could
not, in principle, before. Rather, we developed these facilities to help the user
to prove theorems more easily and naturally, by removing much of the tedium
of repeatedly carrying out simple and “obvious” steps.

2 Syntaxp

When reasoning about arithmetic expressions, it is usual to have some rules like
the following to assist with normalizing sums:

RULE: associativity-of-+
REWRITE (x + y) + z TO x + (y + z)

RULE: commutativity-of-+
REWRITE y + x TO x + y

RULE: commutativity-2-of-+
REWRITE y + ( x + z) TO x + (y + z)

Although it may appear that the second and third rules could each loop or
be applied repeatedly, they permute the individual summands into a pre-defined
term-order.3 Rules that merely permute their elements without introducing any
new function symbols, such as the aforementioned two rules, are recognized by
ACL2 as potentially looping. It will apply such rules only when doing so will
move a smaller term to the left of a larger one. Thus, for instance, ACL2 will
use commutativity-of-+ to rewrite x + 3, y + x, and (y + z) + x to 3 + x,
x + y, and x + (y + z) respectively, but will not apply it to any of these latter
expressions.

Note that although there was no meta-level reasoning used to justify these
rules, and although there were no meta-level heuristics explicitly given by the
user, the behavior of commutativity-of-+ and commutativity-2-of-+ are re-
stricted based upon the syntactic form of the instantiations of the variables x,
y, and z.
3 The details of this term-order are irrelevant to the present paper; but, crudely, it is

a lexicographic order based upon the number of variables, the number of function
symbols, and an alphabetic order.
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Let us now consider the term x + (3 + 4). Recall that ACL2 rewrites inside-
out. Thus, ACL2 will first rewrite the two arguments, x and (3 + 4). The first of
these is a variable, and so rewrites to itself. The second of these is a ground term
and, since ACL2 implements an executable logic, this term will get evaluated
to produce 7. Finally, ACL2 will use commutativity-of-+ to rewrite x + 7 to
7 + x.

But what about 3 + (4 + x)? Ideally, this would rewrite to the same thing,
but there is nothing the above rules can do with this. If we could only get the
3 and 4 together, things would proceed as for x + (3 + 4). The following rule
will do this for us:

RULE: fold-consts-in-+
GIVEN syntaxp(constant(c))

syntaxp(constant(d))
REWRITE c + (d + x) TO (c + d) + x.

This rule is just the reverse of associativity-of-+, with the addition of two
syntaxp hypotheses. Without these extra hypotheses, this rule would loop with
associativity-of-+.

How do these syntaxp hypotheses work? Logically, a syntaxp expression eval-
uates to true. The above rule is, therefore, logically equivalent to

GIVEN t
t

REWRITE c + (d + x) TO (c + d) + x

or

REWRITE c + (d + x) TO (c + d) + x

and this is the meaning of syntaxp when one is proving the correctness of a rule.
(Note that t denotes true.)

However, when attempting to apply such a rule, the test inside the syntaxp
expression is treated as a meta-level statement about the proposed instantiation
of the rule’s variables, and that instantiated statement must evaluate to true to
establish the syntaxp hypothesis. Note, in particular, that the statement must
evaluate to true, rather than be proved true as for a regular hypothesis. Thus,
just as term-order is automatically used as a syntactic restriction on the oper-
ation of commutativity-of-+ and commutativity-2-of-+, so we have placed
a syntactic restriction on the behavior of fold-consts-in-+ — the variables c
and d must be matched with constants.

Here, we are considering the application of fold-consts-in-+ to the term
3 + (4 + x). The variable c of the rule is matched with 3, d with 4, and x
with x. Since 3 and 4 are, indeed, constants, 3 + (4 + x) will be rewritten to
(3 + 4) + x. This last term will then be rewritten in an inside-out manner,
with the final result being the desired 7 + x.

We have thus used syntaxp to assist in specifying a strategy for simplifying
sums involving constants. Fold-consts-in-+ merely places the constants into a
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position in which ACL2 can finish the job using pre-existing abilities — in this
case evaluation of constant sums. Without such a rule we would have had to
write a rule such as:

RULE: crock
REWRITE 3 + (4 + x) TO 7 + x

for each combination of constants encountered in the proof. Without syntaxp the
necessity for rules such as crock would make ACL2 much more tedious to use.

Although the example presented here uses a very simple syntactic test in
the syntaxp hypothesis, this need not be the case in general. There are ACL2
functions, not presented here, to deconstruct a term and examine the resulting
pieces. Although rare, quite sophisticated syntaxp hypotheses are possible.

Before concluding this section, we wish to emphasize an important fact about
syntaxp hypotheses that is easily overlooked. As mentioned above, a syntaxp
hypothesis is logically true, and is treated as such during the verification of the
rule containing it. Consider the rule

RULE: example
GIVEN integer(x)
REWRITE f(x, y) TO g(y, x)

in which the integer(x) hypothesis is required for the rule to be correct. We
would not, then, be able to prove:

RULE: synp-example-bad
GIVEN syntaxp(x == 0)
REWRITE f(x, y) TO g(y, x)

Even though we, as users, know that the syntaxp hypothesis requires x to be
the constant 0 (which is an integer), ACL2 does not get to use this fact during
the proof of synp-example-bad. Rather we must use:

RULE: synp-example-good
GIVEN syntaxp(x == 0)

integer(x)
REWRITE f(x, y) TO g(y, x)

ACL2 must impose this seemingly arbitrary restriction in order to maintain
logical soundness. Recall that, logically speaking, syntaxp always returns true;
hence the hypothesis (integerp x) does not follow logically from the syntaxp
hypothesis.

3 Meta Functions

In the previous section we discussed certain aspects of the process of normalizing
sums, and saw how syntaxp hypotheses can be used to achieve a greater degree
of control than was possible without them. They allowed us to specify a rule
based upon the ability to analyze the lexical structure of an ACL2 expression.
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In this section we present facilities not only for examining a term, but also for
constructing a new term, via so-called meta rules. These were first implemented
in Nqthm, ACL2’s predecessor; see [1], and we refer the reader to that paper,
or the “Essay on Correctness of Meta Reasoning” in the ACL2 source code for
a careful description. In a nutshell, meta rules install user-defined simplification
code into the rewriter, where the user’s proof obligation for those rules guar-
antees that each application of that code returns a term provably equal to its
input. Here, we review the basics of meta rules before describing their extension
in Section 4. More details may also be found in the extensive documentation
distributed with ACL2, specifically within the topic “meta”.

Consider the following example: arrange that for an equality between two
sums, cancel any addends that are common to both sides of the equality. For
instance, x + 3*y + z == a + b + y should be simplified to:

x + 2*y + z == a + b.

If one knew ahead of time the maximum number of addends that could appear
in a sum, one could write (a large number of) rules to handle all the potential
permutations in which common addends could appear; but this will not work in
general and is potentially expensive in terms both of the user’s labor to develop
the set of rules and of ACL2’s labor in sorting through such a number of rules,
any particular one of which is unlikely to be needed.

Instead, we will use a meta function. A meta function is a custom piece of code
that transforms certain terms into equivalent ones. When this transformation is
proved to be correct via a meta rule, the meta function will be used to extend
the operations of ACL2’s simplifier.

Here is pseudo-code for our meta function, which cancels common summands
from both sides of an equality.

FUNCTION: cancel-plus-equal(term)
1 if (fn-symb(term) == EQUAL
2 && fn-symb(arg1(term)) == +
3 && fn-symb(arg2(term)) == +) then
4 {lhs = sum-fringe(arg1(term))
5 rhs = sum-fringe(arg2(term))
6 int = intersect(lhs, rhs)
7 if non-empty(int) then
8 make-term(sum-tree(diff(lhs, int)),
9 <,
10 sum-tree(diff(rhs, int)))
11 else term}
12 else term

And here is the associated meta rule.

RULE: cancel-plus-equal-correct
META-REWRITE term TO cancel-plus-equal(term).
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Unlike the syntaxp example, which merely performed a simple textual test on a
term, cancel-plus-equal-correct takes a term and constructs an equivalent
one under programmatic control.

We now examine its action on:

3 + f(x) + g(x, y) == x + g(x, y) + h(y, x).

The test of the if expression, lines 1–3, ask whether term is an equality be-
tween two sums. If term were not, cancel-plus-equal would return it un-
changed — line 12. By returning a term unchanged, a meta function signals
lack of applicability, i.e., failure. But since in the present case term is bound to
3 + f(x) + g(x, y) == x + g(x, y) + h(y, x) and so is such an equality,
ACL2 will execute the true-branch of the if expression in lines 4–11. Lines 4
and 5 assign to the variables lhs and rhs lists of the addends of the left-hand
side and right-hand side respectively. In line 6, the intersection of these two
lists is assigned to int. If this intersection is empty, ACL2 evaluates line 11 and
returns term unchanged, signaling lack of applicability. Since in our case the
addend g(x, y) is common to both sides of the equality, int is non-empty and
so ACL2 constructs two new sums and a new equality in lines 8–10:

3 + f(x) == x + h(y, x).

The addends of these sums are the (bag-wise) difference of the two lists of ad-
dends, lhs and rhs — {3, f(x), g(x, y)} and {x, g(x, y), h(y, x)}, with
the list int — {g(x, y)}.

Thus, meta rules allow one to write a custom simplifier for entire classes of
terms, rather than having to write rules for a myriad of subclasses. We are able
to do so because an ACL2 term is merely a structure consisting of a function
symbol and the function’s arguments, and we can deconstruct, examine, and
reconstruct such structures using ACL2 functions.

We now briefly examine the “meaning” of a meta rule and touch upon how to
prove its correctness. A meta rule not only has an associated meta function, but
also has an associated evaluator that operates in an environment. An evaluator
is a function that can evaluate terms by first looking in the environment for
the values of any variables present in the term and then evaluating the resulting
ground term. The meta rule then states that, using this evaluator, the evaluation
of a manipulated term in the environment is equal to the evaluation of the
original term in the same environment.

4 Extended Meta-functions

Sometime prior to ACL2 Version 2.6, one of the authors of this paper became
dissatisfied with some of the limitations inherent in meta functions. In particular,
he wanted to write a rule similar to cancel-plus-equal-correct that would
cancel like factors from either side of an inequality, but was unable to do so. The
difficulty stemmed from the fact that within ACL2’s logic, as opposed to stan-
dard mathematics, complex numbers are linearly ordered using the dictionary
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order on their real and imaginary parts respectively. Thus, for example, 0 < i
and i < 1. It is therefore not true that for numbers x, y, and z:

0 < x
==> x*y < x*z == y < z.

For a counterexample, let x and y be i, and z be 0. In contrast with a high
school mathematics exam, within ACL2, one can perform such a simplification
only if one also knows that x is rational4. The correct theorem in ACL2 is

rational(x) &&
0 < x

==> x*y < x*z == y < z.

In this section, we describe an extension to meta functions that allows us to
perform such simplifications. This extension will allow us to gather information,
for heuristic purposes only, that would not be otherwise available.

A “plain” meta function takes one argument — the term under consideration.
This is what we saw in the previous section. An “extended” meta function takes
two additional arguments, mfc5 and state. These extra arguments give one
access to functions that can be used for heuristic purposes, with names of the
form mfc-xxx. These functions allow one to access and examine ACL2’s internal
data structures as well as giving one the ability to call a couple of the major
functions of ACL2’s rewriter.

We will see below how to make use of the following function.

FUNCTION: provably-pos-rat(x, mfc, state)
mfc-rw(make-term(make-term(RATIONAL, x),

&&,
make-term(0, <, x))

t t mfc state)

It asks whether ACL2 can rewrite an expression of the form rational(x) &&
0 < x to true. We wish to emphasize here that the ability to construct and
examine ACL2 terms within ACL2’s logic is fundamental to such capabilities.

Here is pseudocode for our meta function, which cancels a common positive
rational factor (if any) from both sides of an inequality.

FUNCTION: cancel-times-<(term, mfc, state)
1 if (fn-symb(term) == <
2 && fn-symb(arg1(term)) == *
3 && fn-symb(arg2(term)) == *) then
4 {lhs = product-fringe (arg1(term))
5 rhs = product-fringe (arg2(term))

4 There are no irrational numbers in ACL2.
5 Mfc stands for “Meta Function Context.” The meta function context is a large and

complex data structure that contains the current dynamic environment of ACL2’s
rewriter.



172 W.A. Hunt Jr. et al.

6 int = intersect(lhs, rhs)
7 pos-rat = find-pos-rat(int, mfc, state)
8 if non-empty(pos-rat) then
9 make-term(IF,
10 make-term(make-term(RATIONAL, pos-rat),
11 &&
12 make-term(0, <, pos-rat)),
13 make-term(product-tree(diff(lhs, pos-rat)),
14 <,
15 product-tree(diff(rhs, pos-rat))),
16 term)
17 else term}
18 else term)

And here is the associated meta rule.

RULE: cancel-times-<-correct
META-REWRITE term TO cancel-times-<(term).

The function above is similar to cancel-plus-equal, but with three distinc-
tions. First, in lines 2 and 3 cancel-times-< tests for the presence of products
rather than sums and in lines 13 and 15 produces new products rather than
sums. Second, line 7 is new. Find-pos-rat takes three arguments — int (the
list of common factors), mfc, and state. Find-pos-rat steps through the ele-
ments of int, searching for one for which provably-pos-rat(element, mfc,
state) returns true. If it is able to find one, find-pos-rat returns a list con-
taining that positive, rational factor. If it is unable to find one, it returns the
empty list.

Third, in lines 9–16 cancel-times-< constructs a more complex return value
than just a simple equality between two sums or products. We must do so be-
cause, although we as users know that if pos-rat is non-empty it must contain
a positive rational, ACL2 does not know this logically. Just as any information
gathered by a syntaxp hypothesis cannot be used during verification of the rule
with that hypothesis, so any information gathered by an mfc-xxx function is
not available to ACL2 during a meta rules verification. ACL2 has no knowledge
about the mfc-xxx functions, other than that they are functions.

We now examine the action of this rule in more detail, using

3 * f(x) * g(x, y) < x * g(x, y) * h(y, x)

as our example. We assume that in the present context, g(x, y) is provably
a positive rational. Things will proceed much as in the previous example and,
as described immediately above, find-pos-rat will return a list containing the
single term g(x, y), and this value will be assigned to the variable pos-rat. The
test in line 8 is therefore true, and ACL2 will evaluate lines 9–16. The result is

if (rational(g(x, y)) && 0 < g(x, y))
then 3 * f(x) < x * h(y, x)
else 3 * f(x) * g(x, y) < x * g(x, y) * h(y, x).
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During subsequent simplification of this expression, ACL2 will first rewrite
the test of the if in order to determine which branch to use. Since (by construc-
tion) the test will rewrite to true, ACL2 will rewrite only the “then” sub-term,
leading to the desired final result:

3 * f(x) < x * h(y, x).

Although this “extra” rewriting of the if expression’s test might seem to be a
source of inefficiency, in practice we have not found this to be true. Failure is
the norm and the vast majority of the time any particular rule does not apply to
the current term. Thus, only a small percentage of the work is ever duplicated,
and this only when progress is (supposedly) being made.

5 Bind-Free

The careful reader may have noticed that the meta rule, cancel-plus-equal-
correct, presented in Section 3 would not actually simplify the first, motivat-
ing, example — the addends 3 * y and y are not equal, and so would not be
found by merely taking the intersection of the two sets of addends. While this
could be fixed by using something more sophisticated than intersection to
determine what to subtract from both sides, we instead present a solution using
a bind-free hypothesis.

Bind-free hypotheses grew out of a discussion between several of this paper’s
authors dissatisfied with the difficulty of proving simple meta rules correct. In
general, this proof burden is equivalent to proving the total correctness of a piece
of software. Although theoretically meta rules, plain or extended, are much more
powerful than a rule using bind-free, this extra power is rarely needed. Giving
up this extra power, when it is not needed, can make it much easier to write
and verify the appropriate rules. This exchange, in turn, encourages one to focus
upon the larger picture by proving the most general rules possible and thereby
helps one to avoid getting lost in the details.

A bind-free hypothesis is similar to a syntaxp hypothesis in that its treatment
when verifying the rule in which it appears differs from its treatment when that
rule is being applied to a term during rewriting. Both bind-free and syntaxp
hypotheses are treated as being logically true during verification of a rule, and
both are evaluated during the rules application. As before this differing treatment
is sound, and for the same reasons.6

A bind-free hypothesis differs from a syntaxp hypothesis as follows. A syntaxp
hypothesis evaluates to true or false, signaling success or failure. A bind-free
hypothesis either evaluates to the empty list or signals success by returning a
list of pairs binding the free variables of the rule, as illustrated by the following
example.

6 ACL2 actually implements both bind-free and syntaxp using a single primitive, synp,
an implementation detail that is beyond the scope of this paper.
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FUNCTION: find-matching-addends (lhs rhs)
1 if (fn-symb(lhs) == +
2 && fn-symb(rhs) == +) then
3 {common-addends = find-common(sum-fringe(lhs),
4 sum-fringe(rhs))
5 if common-addends then
6 list(pair(x, common-addends))
7 else empty-list}
8 else empty-list

RULE: simplify-equality-of-sums
GIVEN rational(rhs)

rational(lhs)
bind-free(find-matching-addends(lhs, rhs))

REWRITE lhs == rhs TO lhs - x == rhs - x.

Note that it is the job of other rules, not shown here, to simplify the resulting
differences.

Briefly, this rule cancels any common addends by adding their inverse to both
sides of the equality. There are two things to note about this rule. First, note
that the variable x does not appear in the left-hand side of the concluding equal-
ity of simplify-equality-of-sums. It is, therefore, a free variable. (As briefly
described in the Introduction, ACL2 matches the left-hand side of a rule’s con-
cluding equality with the term currently being rewritten, binding any variables
to their matching sub-terms. Since x does not appear in the left-hand side of
simplify-equality-of-sums’s conclusion, it is unbound or free. We will make
this more explicit shortly.) ACL2 has several automatic mechanisms for choos-
ing an instantiation of such variables, which we do not discuss here. Rather, we
describe how we use bind-free to programmatically determine the appropriate
binding.

Second, the correctness of this rule does not depend upon the value that we
subtract from both sides. We are free to pick this value however we want.

How is this rule applied to the following equality?

x + 3*y + z == a + b + y

As hinted in the Introduction, when ACL2 attempts to apply the rule simplify-
equality-of-sums to the term under discussion, it first forms a substitution
that instantiates the left-hand side of the rule’s concluding equality so that it
is identical to the target term. This substitution has the following value in our
example.

((lhs == x + 3*y + z)
(rhs == a + b + y))

ACL2 then attempts to relieve the hypotheses in the order they were given. Here,
the first two hypotheses are regular ones, to be relieved by standard rewriting.
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Let us assume that in the current context these hypotheses rewrite to true; we
examine the final, bind-free, hypothesis.

ACL2 evaluates find-matching-addends(lhs, rhs) in an environment in
which lhs and rhs are instantiated as determined by the substitution. In this
case we evaluate

find-matching-addends(x + 3*y + z, a + b + y).

The test of the if expression (lines 1 and 2 above) asks whether lhs and rhs
are sums. If they weren’t the expression would evaluate to the empty list in line
8, signaling failure or lack of applicability. Since they are sums, ACL2 evaluates
the true branch of simplify-equality-of-sums in lines 3 – 7. Lines 3 and 4
assign to the variable common-addends a list of addends common to both lhs
and rhs. Find-common is a much more complex function than intersection
and examines the addends in a more intelligent manner. We do not further
describe this than to say that in the present case, find-common returns y, the
“matching” part of lhs and rhs. The returned value of find-matching-addends
is, therefore, list(pair(x, y)), informally written as (x == y), and this is
then used to extend the substitution:

((lhs == x + 3*y + z)
(rhs == a + b + y)
(x == y)).

This is used to substitute back into the TO side of simplify-equality-of-sums’s
concluding rewrite, yielding the result:

x + 3*y + z - y == a + b + y - y.

Again, we have preemptively eliminated the need for a large collection of similar
rules with one rule.

This rule both was able to search for matching addends in a more sophis-
ticated manner than in cancel-plus-equal-correct and was easier to prove.
The authors of a meta rule might be reluctant to use such a complex search
method, because it could greatly complicate the proof of correctness and the
simpler method was usually “good enough.” A well-constructed bind-free rule,
however, is often trivial to prove.

6 Extended Syntaxp

We now return to syntaxp hypotheses, but in an extended form. Just as meta
rules come in two flavors, so do syntaxp hypotheses. In this section, we describe
two more mfc-xxx functions and show how they can be used with extended
syntaxp hypotheses.

(Recall that a syntaxp hypothesis is treated as being logically true when it
is one of the hypotheses of the rule being proven correct. It is only during a
rule’s use, when the hypothesis must be relieved, that ACL2 will execute these
functions. As before, any information gathered is of heuristic use only — it
cannot be used to justify the correctness of a rule.)
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– mfc-clause(mfc): returns the current goal being proved. From the dis-
tributed finite-set-theory books7 we take the following example:

function: rewriting-conc-lit(term, mfc, state)
subterm-of(term, last(mfc-clause(mfc)))

This function asks whether the term now being rewritten is the conclusion of
the current goal. It has been found useful for certain expensive rules to act
only upon the conclusion of a goal. The heuristic thought behind this is that
often the hypotheses of a goal merely set forth the conditions under which the
conclusion is true. It is therefore reasonable to expend more effort rewriting
a conclusion than a hypothesis. See the finite-set-theory/osets books
distributed with ACL2 for examples of this.

– mfc-ancestors(mfc): returns the current list of the negations of the back-
chaining hypotheses being pursued. The only use we envision for this function
is in:

function: rewriting-goal-literal(term, mfc, state)
is-empty-list(mfc-ancestors(mfc))

(Note that term and state are being ignored here.) This function asks
whether we are rewriting a term from the current goal — as opposed to
rewriting a hypothesis from a rewrite (or other) rule. This has been found
useful in such rules as the following.

rule: floor-positive
given: syntaxp(rewriting-goal-literal(x, mfc, state))

rational(x)
rational(y)

rewrite: 0 < floor(x, y)
to: (0 < y && y <= x) || (y < 0 && x <= y)

By using rewriting-goal-literalwe avoid the expense of inducing a case-
split for the two disjuncts while backchaining to relieve a rule’s hypotheses
(when it is unlikely to do any good).

7 Extended Bind-Free

Bind-free hypotheses also come in an extended form. In this section we illus-
trate such hypotheses by presenting a rule for simplifying terms of the form
integer(<sum>) where <sum> is a sum. For example, if we can show that y is
an integer, we would like to simplify integer(x + y + z) to integer(x + z).

FUNCTION: reduce-integer-+-fn(sum, mfc, state)
1 if fn-symb(sum) != + then
2 empty-list

7 Books are ACL2 input files that can be run through ACL2’s certification process.
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3 else if provably-integer(arg1(sum), mfc, state) then
4 list(pair(int, arg1(sum)))
5 else if fn-symb(arg2(sum)) == + then
6 reduce-integer-+-fn(arg2(sum), mfc, state)
7 else if provably-integer(arg2(sum), mfc, state) then
8 list(pair(int, arg2(sum)))
9 else empty-list

RULE: reduce-integer-+
GIVEN bind-free(reduce-integer-+-fn(sum, mfc, state))

integer(int)
REWRITE integer(sum) TO integer(sum - int)

We emphasize here that although we (as users) know that the second hy-
pothesis, integer(int) must be true by the way that we selected int, this
information is not available to ACL2. ACL2 must rederive this fact for its own
use. Again, although this might seem a source of inefficiency, in practice we have
not found this to be true.

We now consider our example, integer(x + y + z), where y is provably an
integer, and describe the action of reduce-integer-+-fn on this term. First
note that addition is actually a binary operation in ACL2; we are really looking
at the term integer(x + (y + z)). Reduce-integer-+-fn recurs on the ad-
dends so since y, by assumption, is provably an integer, reduce-integer-+-fn
returns list(pair(int, y)). The right-hand side of the concluding equality of
reduce-integer-+ is therefore rewritten to the appropriate instance of the term
integer((x + y + z) - y), which will be simplified by other rules to yield our
desired result.

8 Conclusion

In this paper we have described three facilities afforded by ACL2 for varying lev-
els of meta level control and reasoning. The weakest of these, syntaxp hypothe-
ses, allow one to control the behavior of ordinary rewrite rules by restricting
their operations based upon the syntactic form of their instantiated variables. A
quick search reveals that there are over 800 uses of syntaxp hypotheses among
more than 150 of the proof scripts distributed with ACL2. Bind-free hypothe-
ses, which allow one to programmatically select a binding for free variables, are
slightly more powerful and there are more than 50 uses of this relatively new
facility in approximately 15 scripts. Finally, there are about 25 uses of meta rules
in 12 scripts8.

8 It seems likely that all but a couple of these meta rules could, instead, be made
bind-free rules. For example, the meta rule cancel-plus-equal-correct could be
replaced with the more general bind-free rule simplify-equality-of-sums. That
this is not the case is due to the fact that bind-free rules were not available at the
time of many of these meta rules’ creation.
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The initial designs of these facilities sprang from users’ frustrations with the
effort required to carry out certain proofs which required one to continually point
out to ACL2 simple and seemingly “obvious” steps. The initial implementations
were then tested, generalized, and tested again. They were not placed into the
main development branch of ACL2’s source code until all were satisfied that
they were correctly and efficiently implemented, as easy to use as possible, and
sufficiently general to be broadly useful.

As we have seen, these meta level facilities allow one to specify solutions to
entire classes of problems, avoiding the need for a myriad of rules in their stead.
This allows one to concentrate on the structure of the desired proof, and to leave
many of the details to ACL2. See [7] for an example of this in the domain of
bags, or multisets.
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Abstract. Several tools exist for reasoning about Java programs an-
notated with JML specifications. A main issue is to deal with possible
aliasing between objects and to handle correctly the frame conditions
limiting the part of memory that a method is allowed to modify. Tools
designed for automatic use (like ESC/Java) are not complete and even
not necessarily correct. On the other side, tools which offer a full model-
ing of the program require a heavy user interaction for discharging proof
obligations. In this paper, we present the modeling of Java programs
used in the Krakatoa tool, which generates proof obligations expressed
in a logic language suitable for both automatic and interactive reasoning.
Using the Simplify automatic theorem prover, we are able to establish
automatically more properties than static analysis tools, with a method
which is guaranteed to be sound, assuming only the correctness of our
logical interpretation of programs and specifications.

1 Introduction

Krakatoa [16] is a prototype tool for verifying that a Java program meets
its JML specification (JML stands for Java Modeling Language [14, 15]). It
is built on top of the Why tool [11], which generates proof obligations from
annotated programs written in a basic ad-hoc programming language with
higher-order functions, references, exceptions, and a simple modular specification
language [10]. These proof obligations can be generated for various interactive
proof assistants and automatic theorem provers.

Krakatoa expresses the operational semantics of a Java program by pro-
ducing a translation into the Why programming language as well as translating
the JML specification into logical assertions. Krakatoa needs also to provide
a theory corresponding to the program which expresses the representation of the
memory, and the dynamic typing information. The memory modeling of the first
version of Krakatoa was built on a unique heap where the objects and arrays
were stored, and the theory was only generated for the Coq proof assistant [21].
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180 C. Marché and C. Paulin-Mohring

The tool was successfully used for proving small examples like Dijkstra’s Dutch
Flag algorithm or basic properties of a method in a JavaCard applet provided
by the Schlumberger company for the IST VerifiCard project [8, 13]. The mod-
ular proof architecture appeared well-suited for dealing with large programs,
however the manual work for proving proof obligations was complicated due to
the lack of automation, and the too naive memory representation which was not
taking enough static typing information into account.

To cope with this problem, we changed the modeling and adopted a more
local representation of the memory. This alternative approach, already present
in early work on general pointer programs by Burstall [7] is emphasized by
Bornat [4]. It amounts to associate to each structure field a map from adresses to
value, access or modification of the field of some structure being just interpreted
as the corresponding access or update of the map at the index corresponding to
the address of the structure. This approach works perfectly well with Java object
fields, because the corresponding cell can only be accessed using the field name,
but we also had to extend the approach to Java arrays, and also to support
new memory allocation. This was not a trivial task because the Krakatoa
tool has to perform an accurate static analysis of the program in order to deal
properly with frame conditions (JML modifiable clauses, specifying the only
part of the memory that can be changed by a method). Another extension was to
provide a first-order theory for the logical aspects of the programs in order to use
automatic provers such as Simplify [19] for solving proof obligations. Building
a first-order theory for Java programs was also non-trivial and we used our
higher-order Coq modeling for validating the axioms in order to avoid building
an inconsistent theory that will trivially solve all proof obligations. The new
version of Krakatoa together with Simplify can automatically check simple
properties of programs (no null object dereferencing, no out-of-bounds array
access, etc.): it validates proof obligations or provides counter-examples. Unlike
ESC/Java which does not properly check frame properties leading to accept
programs which are wrong, the Krakatoa approach never gives wrong positive
answers.

Section 2 gives an overview of the languages and notations, mainly JML and
the specification language of the Why tool. Section 3 explains our modeling
of memory states and describes the background theory needed to solve proof
obligations. Section 4 explains how Java programs are interpreted in our model.
Section 5 studies in more details how the frame conditions are handled. Sec-
tion 6 illustrates our method on some examples. We conclude in Sect. 7, with
comparison to related works.

2 Preliminaries

2.1 Considered Fragment of JML

In JML, Java programs can be annotated using a special class of comments. Log-
ical formulas are written as Java boolean expressions using only pure methods
(i.e. without side effects). Furthermore some special operators such as \forall,
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class Purse {
int balance; //@ invariant balance >= 0;

/*@ normal_behavior
@ requires s >= 0;
@ modifiable balance;
@ ensures balance == \old(balance)+s; */

public void credit(int s) { balance += s; }

/*@ behavior
@ requires s >= 0;
@ modifiable balance;
@ ensures s <= \old(balance) && balance == \old(balance) - s;
@ signals (NoCreditException)
@ s > balance && balance == \old(balance); */

public void withdraw(int s) throws NoCreditException {
if (balance >= s) { balance -= s; }
else { throw new NoCreditException(); }

}
}

Fig. 1. JML specification of a simplified electronic purse

\exists are introduced. In a post-condition, the construction \result refers
to method’s returned value, and \old(e) is the value of expression e before the
execution of the method.

In this paper, we focus on the most important features of JML: declarations
of class invariants and method annotations describing their functional behav-
ior: a requires (resp. ensures) clause gives the pre-condition (resp. the post-
condition), and a modifiable clause, also called frame condition, specifies the
set of memory locations where the method can write. A signals clause similar
to ensures specifies which exception can be raised and which properties are
true in that case. This is illustrated on Figure 1 which introduces a simple class
Purse with a field balance which should be non-negative (invariant), a method
credit (resp. withdraw) which adds (resp. removes) money to the purse.

Krakatoa also supports other essential JML constructs such as loop in-
variants. Regarding exceptions, it is noticeable that the Krakatoa approach,
whatever the JML specification is, inserts pre-conditions to access operations
which prevent to raise an exception in the class RunTimeException (mainly
NullPointerException or ArrayIndexOutOfBounds). Also, we interpret byte,
short, etc. into unbounded integer arithmetic (arithmetic overflow could be for-
bidden by insertion of suitable preconditions on integer operations [16]).

2.2 Interpretation into the Why Tool

Why’s core language includes higher-order functions, references and exceptions
but rejects any variable aliasing. Programs can be annotated using pre, post-
conditions, loop invariants and intermediate assertions. Logical formulas are
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written in a typed (sorts, possibly parametric) first-order logic, with built-in
equality and integer arithmetic. Why performs an effect analysis (see below)
on programs, a classical weakest-precondition computation, and generates proof
obligations for various provers.

Why has a primitive notion of exceptions which is integrated in its weakest
pre-condition calculus. It is used for the interpretation of break and continue
statements or the Java exception mechanism and JML exceptional behav-
ior (see [16]). Why has a modular approach: new logic functions or predicate
symbols can be introduced and freely used in the specification part, and sub-
programs can also be introduced abstractly, giving just a full specification: type
of input variables and result, pre- and post-conditions, as well as its effects,
that is giving which of the global references can be read and/or written by the
sub-program.

In order to translate a Java program annotated with JML into Why, one
needs to proceed the following way:

1. Find an appropriate modeling of Java memory states using global Why
variables which will never be aliased ;

2. Translate Java constructs into Why statements, with assignments over the
global variables defined before ;

3. Translate JML formulas into Why predicates, over those variables.

Our Java modeling contains a generic part which is the same for all Java
programs and a specific part which depends on the particular class hierarchy. The
generic part introduces a global variable alloc which keeps track of allocated
objects, it defines the set of values, memory segments (mapping addresses to
values), Java types, and operations such as access or update of memory as well
as logical relations like to be an instance of a class (instanceof), or to preserve
part of the memory (modifiable). These notions will be formally introduced in
the next sections.

The specific part introduces constants for the different classes (Purse in the
example) and global variables for the fields (balance in the example), it also
defines a predicate for each class invariant.

Because Java methods in a class can be mutually recursive, we first give a
specification of all the methods as abstract Why sub-programs with specifica-
tions. This abstract view is used to interpret method calls, and suffices to ensure
partial correctness of programs.

The general form of a Why program specification f is the following :

parameter f : x1:type1 → · · · →xn:typen → { Precondition } return type
reads input vars writes output vars
{ Postcondition | exception1 ⇒ condition1 . . . exceptionn ⇒ conditionn }

Figure 2 shows the Why abstract declaration of the sub-program correspond-
ing to the Purse.credit method of Figure 1. It has two arguments (the object
this and the integer parameter s) which are supposed to satisfy the pre-condition
(first formula between curly braces). There is no result (output type unit), it
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parameter Purse credit : this : value → s : int →
{ s ≥ 0 ∧ this �= Null ∧ (instanceof alloc this (ClassType Purse))
∧(Purse invariant balance this)}

unit reads balance, alloc writes balance
{ (access balance this) = (access balance@ this) + s ∧ (Purse invariant balance this)
∧(modifiable alloc@ balance@ balance (value loc this)) }

Fig. 2. Why interpretation of Purse.credit

accesses two global variables (balance and alloc) and writes one (balance). The
post-condition (second pair of curly braces) uses the notations balance@ and
alloc@ to denote the value of these variables before the method application.

The Why language has a formally defined semantics [10], and the fact that
the generated proof obligations are sufficient conditions for the program to meet
its specification is furthermore guaranteed by a validation which is built for each
function and can be automatically checked. However, the main source of error in
our method could be that our translation of Java programs or JML specification
does not respect the Java/JML semantics. For these reasons, it is important for
these interpretations to be clearly stated. This is the purpose of the following
sections.

3 Modeling Java Memory States

We have to represent states of Java memory by a finite set of Why variables, and
describe the state transitions corresponding to Java statements as modifications
of those variables.

For local variables of constructors or methods, since such variables are allo-
cated in Java memory stack, and cannot be aliased to another local variable or
a cell of memory heap, it is sound to represent them as local variables in Why
intermediate language.

3.1 Modeling the Heap

Java values are either direct values (integers, booleans or floats) or references
to objects or arrays which are represented as adresses allocated in the heap. As
mentioned in Sect. 1, the first version of Krakatoa described in [16] used a
naive method considering Java memory heap as a single large array mapping
addresses to values, but this modeling is very low-level, and proving properties
with it amounts to reason all the time on whether two addresses are aliased or
not: for example, if a field x is modified, one should expect that it is known for
free that any different field y is unchanged ; or when an array cell is modified,
the length of the array is not. This is why we adapted Burstall’s approach for
pointer programs with structures to Java programs.

The set of variables representing a state of Java memory heap is displayed on
Fig. 3. All these variables can be seen as maps indexed by addresses a1, a2, . . .
belonging to some abstract data type addr.
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alloc f1 · · · fk intA objA

a1 C1

a2 C2

a3 int[5]
a4 C3[3]
a5 int[][2]
...

...
...

...
...

...

Fig. 3. Modeling of Java memory heap

The variable alloc on the left of the figure, is an allocation store (type store)
which tells for each address whether it is allocated, and if yes what is the type of
the structure at this address: an object of some class C or an array of some length
l of values of some type t. This variable will be accessed when length of an array
is sought and for dynamic typing (instanceof and casts), and modified only by
new statements. The variables f1, f2, . . . represent dynamic fields of objects, in
a very similar way as Burstall.

The variables intA and objA represent the memory locations where arrays of
integers and references respectively are allocated (for simplicity, we only consider
the basic type int here, but in practice booleans and floats are also handled,
with variables boolA and floatA). When an array arr of integers of size l is
allocated at address a, then alloc(a) will be equal to int[l] and for all integer
0 ≤ i < l, intA(a, i) will be an integer corresponding to arr[i]. An array of
objects will be allocated similarly in the variable objA. Notice that the array
objA cannot be split further because it is possible for any two arrays of objects
to be aliased (think of arguments of System.arraycopy method of Java API).

3.2 First-Order Modeling of Values, Classes and Memories

The next step is to design a first-order theory, introducing function and predicate
symbols and axioms for them, to model Java execution in terms of formulas over
the variables introduced in the previous section.

A very useful consequence of our splitting of the heap is that it is statically
known whether the contents of some memory cell is an integer or a reference;
hence in the logical modeling, instead of a unique sort for representing any
memory cell value, we use primitive integers of the logic for values of arithmetic
expressions plus a sort value for values corresponding to references (objects or
arrays). This sort value is equipped with a function Ref : addr → value which
builds an object from an address, and a logical constant Null of type value for
representing Java’s null value.

We introduce a sort javaType for representing Java types of references. With
classId being the type of class names of the given Java program, javaType is
constructed by:
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ClassType : classId → javaType // for class C
ArrIntType : javaType // for array int[]
ArrayType : javaType→ javaType // for array t[], with t a reference type

The alloc variable of type store corresponds to a finite partial map which
contains the currently allocated values with type information. In practice we
shall use the following functions to access type information.

fresh : store → value → prop
typeof : store→ value → javaType → prop
arraylength : store → value → int

fresh and typeof corresponds respectively to JML’s \fresh and \typeof;
arraylength corresponds to .length in Java or JML. Derived from the typeof
relations, we shall introduce logical interpretation of Java predicate instanceof
and JML function \elemtype:

instanceof : store→ value → javaType → prop
array elemtype : store→ value → javaType

Useful properties on these functions are

∀ s : store, v : value, 0 ≤ (arraylength s v),
∀ s : store, t : javaType, v : value, (typeof s v t) → (instanceof s v t)
∀ s : store, t : javaType, v : value, (instanceof s v t) → ¬(fresh s v)
∀ s : store, t : javaType, v : value,

v 	= Null ∧ (typeof s v (ArrayType t))→ (array elemtype s v) = t

And for each class C extending class D:

∀ s : store, v : value,
(instanceof s v (ClassType C))→ (instanceof s v (ClassType D))

The store will only be changed when a new object is allocated. The main
information we need is that the new store contains the objects allocated in the
old store. This is achieved by the introduction of a binary relation store extends
on stores with the following properties (among others):

∀ s1, s2 : store, v : value, (store extends s1 s2) ∧ (fresh s2 v) → (fresh s1 v)
∀ s1 s2 : store, t : javaType, v : value,

(store extends s1 s2) ∧ (instanceof s1 v t) → (instanceof s2 v t)

Krakatoa introduces one additional Why variable (fi) for each static field
of the Java program. Variable fi will have type α memory where α is either int
or value, depending of the static type declared for fi. The basic operations on
objects of type α memory are access and update:

access : α memory→ value → α
update : α memory→ value → α→ α memory
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To reason with combination of access and updates, we have the classical prop-
erties of the theory of arrays:

∀ m : α memory, v : value, w : α, (access (update m v w) v) = w
∀ m : α memory, v1, v2 : value, w : α,

v1 	= v2 → (access (update m v1 w) v2) = (access m v2)

The variables intA and objA have type int arraymem and value arraymem respec-
tively. These maps are indexed by both a value and an integer, with operations

array access : α arraymem → value→ int→ α
array update : α arraymem → value → int→ α→ α arraymem

and the expected properties for combination of access and updates.

3.3 Coq Realization

We use Why’s ability to translate formulas into several prover output formats, in
particular for the Coq proof assistant and for the Simplify automatic theorem
prover. With Coq output, we furthermore built a realization of all axioms of
our theory. This has the very important consequence that the original first-order
theory is proven consistent.

Our Coq development is structured as a functor, whose parameter is a sig-
nature representing the class structure of an arbitrary Java program, made of:

– a set of class identifiers classId;
– a distinguished class identifier ObjectClass (for the Java Object class);
– a partial function super associating to its class its superclass ;
– three axioms for assuming decidability of equality on classId, that ObjectClass

as no superclass, and that super is a well-founded relation.

From this signature, the functor builds a module which provides a realization
of the previous first-order theory, using inductive data types (for representing
sorts value, javaType, etc.) and higher-order functions, intensively used in order
to represent the memory types and operations, and the sets of memory locations
presented further in Sect. 5. It contains 1500 lines of Coq code. We have also
introduced 200 lines of specialized tactics in order to mechanize simple reasoning.

On each particular program, Krakatoa generates an instance of the signa-
ture above, thus providing a proven consistent modeling of this program.

4 Translating Java Programs

We now give the semantical interpretation of Java statements which access
and/or updates the memory heap. The interpretation of complex statements in
Java (sequence, if, while, exception throwing and catching, etc.) is not different
from [16] so we focus here only on atomic statements of access, assignment, and
memory allocation.
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4.1 Analysis of Variable Effects

Once we have fixed the set of variables representing memory states, one very
important step for being able to deal modularly with function calls in Why’s
intermediate language, is to statically compute for any statements the variable
effects, as it is shown for example in reads and writes clauses of Figure 2.
This analysis of effects allows to interpret JML modifiable clauses, as it will
be shown in Sect. 5.

Because Java methods in a class can be mutually recursive, the effect analysis
uses an iterative process in order to compute the maximal effects of each method,
starting from an empty effect. We introduce an environment Γ which associates
to each method its (currently known) effects, we write Γ � e : R,W to mean that
expression (or statement) e reads variables R and writes variables W assuming
the methods have effects as given in Γ . We give here a few rules for computing
Γ � e : R,W :

Γ � e : R,W
Γ � e.f : R ∪ {f},W

e1 has type int[] Γ � e1 : R1,W1 Γ � e2 : R2,W2 Γ � e3 : R3,W3

Γ � e1[e2] = e3 : R1 ∪R2 ∪R3 ∪ {intA, alloc},W1 ∪W2 ∪W3 ∪ {intA}
m : R,W in Γ Γ � e1 : R1,W1 · · · Γ � ek : Rk,Wk

Γ � m(e1, . . . , ek) :
⋃

i Ri ∪R,
⋃

i Wi ∪W

C : R,W in Γ Γ � e1 : R1,W1 · · · Γ � ek : Rk,Wk

Γ � new C(e1, . . . , en) :
⋃

i Ri ∪R ∪ {alloc},
⋃

i Wi ∪W ∪ {alloc}
From a given Γ , and a given method m with body e, we compute R,W such that
Γ � e : R,W and update consequentely the information associated to method
m in Γ until a fixpoint is reached, which happens in finite time because set of
effects are bounded: the number of variables is fixed.

4.2 Memory Access

In our logical model of Java program, we introduced total functions in order to
be able to represent any well-typed Java program. But we want also to detect
and avoid any possible runtime exception such as access to a null pointer, or
outside the bounds of an array.

Let’s consider a Java access expression v.f, where v is a variable (the general
case of any expression can be dealt by adding a temporary variable) and f a
field name. The logical interpretation views f as something of type α memory
where α is either int or value, depending on the static type of f . The logical
interpretation of v.f is (access f v) using the access function introduced in our
model (see Sect. 3.2). But this access will generate a runtime exception if v is
the null pointer. It is necessary to produce a proof obligation v 	= Null. One
possibility could be to introduce in Why an access function with the corre-
sponding precondition. We prefer to use the possibility in Why to associate pre
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or post-condition to any expression. The Java v.f expression is consequentely
translated into the Why annotated expression: { v 	= Null } (access f v). The
precondition is omitted when v is the self reference this.

Similarly, an array access expression v[i] is interpreted as the annotated
expression { v 	= Null ∧ 0 ≤ i < (arraylength alloc v) } (array access A v i),
where A = intA or objA depending on static type of the array. The precondition
ensures that no null pointer access and no out-of-bounds access occur.

4.3 Memory Assignments

A field assignment v.f = w is interpreted as f := { v 	= Null } (update f v w).
Updating the field f of object v is protected by the condition that v should not
be null, another natural condition is to check that the type of the object w is
an instance of the type of the field f . However, this is a consequence of static
typing and type-safety in Java so we do not need to add extra checking.

The situation is different for array assignement v[i] = w. Assume D is a
subclass of C, it can be the case that v is statically an array of C, but dynamically
an array ofD in which case updating v with an objectw in the classC is statically
correct but fails at runtime. In order to avoid this error, we interpret v[i] = w
into

A := { v 	= Null ∧ 0 ≤ i < (arraylength alloc v)∧
(instanceof alloc w (array elemtype alloc v)) } (array update A v i w)

4.4 Memory Allocation

A Java object creation expression new C(v1, . . . , vn) is interpreted as

let this = (alloc obj C) in Cfun(this, v1, . . . , vn); this

where Cfun is the Why function for the coresponding constructor. Unlike access
and update functions, alloc obj is a function with side-effects, specified in Why:

parameter alloc obj : c : classId→ {} value reads alloc writes alloc
{ result 	= Null ∧ (fresh alloc@ result) ∧ (typeof alloc result (ClassType c))
∧(store extends alloc@ alloc)}

Array creation new C[l] is interpreted as (alloc array C l) where alloc array
is specified as

parameter alloc array : t : javaType→ n : int→ {0 ≤ n} value
reads alloc writes alloc
{ result 	= Null ∧ (fresh alloc@ result) ∧ (typeof alloc result (ArrayType t))
∧(arraylength alloc result) = n ∧ (store extends alloc@ alloc)}

There is also a special variant alloc int array for new int[l].
Notice that in order to prove Java programs, we do not need to know how

these functions are implemented. However, in order to avoid axioms in our model,
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the alloc obj and alloc array functions have also been implemented in Why using
more primitive functional operations for computing a non allocated value in a
store and creating an updated store. We have a Coq proof of correctness of these
implementations (technically, this requires the addr type to be infinite, since we
do not consider memory overflow).

5 Modeling Frame Conditions

JML modifiable clauses are essential for reasoning modularly when several
methods are involved. As a toy example, let’s imagine a new method in our class
Purse, given Fig. 4. Proof of the post-condition needs the fact that p1.balance
is not modified by the call to p2.credit(100). Our modeling allows to prove
this using the modifiable predicates in the post-condition of credit and the
pre-condition p1 != p2, that forbids aliasing of p1 and p2.

We model modifiable clauses using the predicates

modifiable : store → α memory→ α memory→ set loc → prop
array modifiable : store → α arraymem → α arraymem → array set loc → prop

respectively for objects locations and array locations. set loc (resp. array set loc)
are logic types representing sets of modifiable locations for objects (resp. for
arrays).

In general, the post-condition of a method will have one modifiable predicate
for each of the Why variables it modifies, as they are computed by the analysis
of effects of Sect. 4.1. Splitting of the JML modifiable clause into modifiable
predicate for each modified variable is computable automatically.

According to JML informal semantics, a modifiable clause with set of loca-
tions loc specifies that in the post-state of the considered method, every memory
location which is already allocated in the pre-state and is not included in loc is
unchanged. This formally results in the following:

∀ s : store,m1,m2 : α memory, loc : set loc,
(modifiable s m1 m2 loc)↔
∀ v : value, ¬(fresh s v) ∧ (notin v loc)→ (access m1 v) = (access m2 v)

/*@ normal_behavior
@ requires p1 != null && p2 != null && p1 != p2;
@ modifiable p2.balance;
@ ensures \result == \old(p1.balance); */

public static int test(Purse p1,Purse p2) {
p2.credit(100);
return p1.balance;

}

Fig. 4. An example of reasoning on aliases and frame conditions
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∀ s : store,m1,m2 : α arraymem, loc : array set loc,
(array modifiable s m1 m2 loc)↔
∀ v : value, n : int,¬(fresh s v) ∧ (array notin v n loc)→

(array access m1 v n) = (array access m2 v n)

and it remains to give axioms for the notin (resp. array notin) functions, depend-
ing on the form of the locations specified.

The JML clause modifiable \nothing specifies that nothing is modified. It
is interpreted with a new constant empty loc of type set loc (resp. array empty loc
of type array set loc) with the axioms:

∀v : value, (notin v empty loc)
∀v : value, n : int, (array notin v n array empty loc)

The JML clause modifiable v.f specifies that the field f of v is modified. It is
interpreted with a new function value loc of type value → set loc with the axiom:

∀v′ v : value, (notin v′ (value loc v)) ↔ v′ 	= v

Analogously, The JML clauses modifiable t[i], modifiable t[i..j] and
modifiable t[*] are interpreted using functions array loc, array sub loc and
array all loc with axioms

∀ v t : value, n i : int, (array notin v n (array loc t i))↔ (v 	= t ∨ i 	= n)
∀ v t : value, n i j : int,

(array notin v n (array sub loc t i j))↔ v 	= t ∨ n < i ∨ n > j
∀ v t : value, n : int, (array notin v n (array all loc t))↔ v 	= t

When a JML clause modifiable l1,l2 specifies several (say two) locations
l1 and l2, then two cases may occur: either l1 and l2 refer to locations repre-
sented by different variables of the memory heap representation, and in that
case a conjunction of two modifiable assertions is built; or they refer to the same
variable, and then the clause is interpreted using the function union loc (resp.
array union loc) with axioms

∀v : value, l1, l2 : set loc,
(notin v (union loc l1 l2))↔ (notin v l1) ∧ (notin v l2)

∀v : value n : int, l1, l2 : array set loc,
(array notin v n (array union loc l1 l2))
↔ (array notin v n l1) ∧ (array notin v n l2)

Notice also that if a variable is detected as written by the analysis of effects,
but there is no modifiable location refering to it, then we have to add an as-
sertion (modifiable · · · empty loc) for it. Finally, the JML clause modifiable
\everything is interpreted simply by building no modifiable predicate, for spec-
ifying no information at all.

These constructions have been implemented in our Coq realization. The sort
set loc is interpreted as the functional type value → Prop representing intention-
ally a set of locations. We interpret a set of locations directly as the predicate
which is true for values which are not in this set of locations, such that the
predicate notin can be interpreted directly without extra negation.
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6 Examples

ESC/Java does not check that a method meets the frame condition written in
its specification, but it assumes that this condition is fulfilled when the method
is called. This is one of the major sources of unsoundness. The ChAsE [9] tool
was designed for automatically checking frame conditions, but it works at a syn-
tactic level and consequently can give incorrect diagnosis: two such examples are
given [9] (see Figure 5). ChAsE accepts these programs with incorrect frame
conditions, but not with the appropriate ones which are a[i+1] instead of a[i]
for method q and y.i instead of x.i for method p. On the other hand, Kraka-
toa gives automatically the correct diagnosis for both programs. For instance
for p with clause modifiable y.i, which, according to JML semantics, denotes
the field i at address this.y in the pre-state of the method: Krakatoa inter-
prets this clause as (modifiable alloc@ i@ i (value loc (access y@ this))) which
is easily provable.

class Q {
int i; int[] a;

/*@ normal_behavior
@ requires 0<=i && i+1 < a.length;
@ modifiable i,a[i]; */

void q() { i++; a[i]=3; }
}

class O { int i; }
class P {
O x; O y;
/*@ normal_behavior
@ requires y != null;
@ modifiable x,x.i; */
void p() { x=y; x.i=7; }

}

Fig. 5. Two programs where ChAsE gives the wrong answer

In practice, most proof obligations generated are solved automatically using
Simplify, for example all obligations of the Krakatoa tutorial (a simple elec-
tronic purse, maximum of an array, etc.) and the Dijkstra’s Dutch Flag program
of [16]. In comparaison, using Coq with simple ad-hoc tactics, the proofs for the
Purse (resp. Flag, resp. Arrays) programs require 20 (resp. 60, resp. 100) lines
of tactics.

7 Conclusions, Related Works, and Future Work

7.1 Combining First-Order and Higher-Order Models

The Why tool generates proof obligations written in a first-order multi-sorted
theory, using the Why primitive operations on basic types such as integers or
booleans and also model-specific symbols for constants, functions and predicates.
In order to prove properties involving these symbols, we provide an axiomatic
first-order theory, used to discharge the proof obligations with an automatic
prover such as Simplify. We developed a Coq realization of that theory. This
model uses higher-order constructions for representing the memories operations.
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If we assume that deduction steps performed by Simplify are correct, then they
could be translated into Coq, leading to a complete proof in Coq of the original
proof obligations.

By designing a suitable modeling of Java memory states, together with a
static computation of effects and a suitable background first-order theory, we
obtained a powerful method for proving functional properties of Java programs.
Combined with an automatic theorem prover, we are able to establish automat-
ically more properties than static checkers like ESC/Java or ChAsE, with a
method whose soundness only rely on the soundness of the translation provided
in Section 4.

We believe we made a significant step in filling the gap between static check-
ing techniques, fully automatic but unsound, and true formal verification which
requires user interaction: our approach is a compromise between safety of the
global approach and push-button technology.

We took advantage of the modular architecture ofWhywhich does all the work
of generation of proof obligations for different provers. We believe that this mod-
ular architecture is a good approach, that can be easily reused for different input
languages thanJava. For example we have been able to build, in a quite short time,
a similar modeling for C programs [12], with full support for pointer arithmetic.

7.2 Related Work

In [17], F. Mehta and T. Nipkow used the Isabelle proof assistant in order to
prove an imperative program involving pointers using a model similar to ours,
but without arrays nor memory allocation.

Several tools exist which manipulate Java programs annotated with JML
specifications [6]. Their objectives can be different, they may aim at producing
code with dynamic testing, or generating programs for unit testing of classes,
or proving properties of programs. We already mentioned ESC/Java which is
fully automatic but does not guaranty correctness. The memory modeling of
ESC/Java seems similar to ours. LOOP [22, 23], Jive [18], JACK [5] or our
tool Krakatoa are intended to generate for any JML specification of the pro-
gram, sufficient verification conditions for these properties to hold. These tools
are based on different techniques: both Jive and LOOP use a global mem-
ory modeling ; Jive is based on a weakest precondition generator ; in LOOP,
the semantics of JML-annotated Java programs is translated into functional
PVS expressions which represent the denotational semantics of the program,
and properties of these programs can be established using specialized PVS tac-
tics. The JACK environment [5], initially developed by the Gemplus company
and now by INRIA, uses a memory model similar to ours, and was initially de-
signed for generating proof obligations for the B system [1] but now also has an
output for Simplify.

7.3 Future Work

Automatic provers are useful for early detection of errors in code or specifica-
tion. We plan to be able to analyze counter-examples in order to suggest proof
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annotations. A partial analysis of correctness of loops could also help in finding
appropriate loop invariants.

One very interesting future work is to be able to build, with the underly-
ing automatic prover, a proof trace which could be double-checked by a proof
assistant: in this way, only proof obligations that cannot be solved automati-
cally would need to be proved manually. To obtain such a trace, the use of the
haRVey [20] and CVC-lite[3] tools is currently under investigation.

There are still important Java and JML features not yet supported by the
Krakatoa tool. Handling the class invariants may become heavy when they are
many objects involved, and their combination with inheritance causes important
theoretical issues [2].

Acknowledgements. We thank Gary T. Leavens and David Cok for their
useful comments on a preliminary version of this paper.
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[16] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Kraka-
toa tool for certification of Java/JavaCard programs annotated in JML.
Journal of Logic and Algebraic Programming, 58(1–2):89–106, 2004. http://
krakatoa.lri.fr.

[17] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order
logic. In Franz Baader, editor, 19th Conference on Automated Deduction, Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[18] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The jive system. http://www.
informatik.fernuni-hagen.de/pi5/publications.html, 2000.

[19] Greg Nelson. Techniques for program verification. Research Report CSL-81-
10, Xerox Palo Alto Research Center, 1981. http://research.compaq.com/
SRC/esc/Simplify.html.

[20] Silvio Ranise and David Deharbe. Light-weight theorem proving for de-
bugging and verifying units of code. In Proc. SEFM’03, Canberra, Aus-
tralia, September 2003. IEEE Computer Society Press. http://www.loria.fr/
equipes/cassis/softwares/haRVey/.

[21] The Coq Development Team. The Coq Proof Assistant Reference Manual – Ver-
sion V8.0, April 2004. http://coq.inria.fr.

[22] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory
model for verification of sequential Java programs. In D. Bert, C. Choppy, and
P. Mosses, editors, Recent Trends in Algebraic Development Techniques, volume
1827 of Lecture Notes in Computer Science, pages 1–21. Springer-Verlag, 2000.

[23] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In T. Margaria and W. Yi, editors, Proc. TACAS’01, volume 2031
of Lecture Notes in Computer Science, pages 299–312. Springer-Verlag, 2001.
http://www.cs.kun.nl/∼bart/LOOP.



Real Number Calculations and Theorem Proving
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Abstract. Wouldn’t it be nice to be able to conveniently use ordinary
real number expressions within proof assistants? In this paper we out-
line how this can be done within a theorem proving framework. First, we
formally establish upper and lower bounds for trigonometric and tran-
scendental functions. Then, based on these bounds, we develop a rational
interval arithmetic where real number calculations can be performed in
an algebraic setting. This pragmatic approach has been implemented as
a strategy in PVS. The strategy provides a safe way to perform explicit
calculations over real numbers in formal proofs.

1 Introduction

In the verification of an engineering application it is often necessary to perform
explicit calculations on non-algebraic functions. Despite all the developments
on real analysis in theorem provers [12, 7, 8, 15, 9], formal justification of these
calculations is not routine.

Take, for example, the formula

3π
180

≤ g

v
tan(

35π
180

), (1)

where g is the gravitational force and v = 250 kt is the ground speed of an
aircraft. This formula appears in the verification of the NASA’s Airborne Infor-
mation for Lateral Spacing (AILS) algorithm presented in [18]. It states that the
maximum turn rate of an aircraft flying at ground speed v with a bank angle of
35o is 3o per second. The original proof is about a dozen lines and requires the
use of several trigonometric properties.

In some cases the formal checking of a numerical inequality is so cumbersome
that the effort seems futile; it is then tempting to perform the calculation out
of the system, and introduce the result as an axiom1. However, the chances are
that the external calculation will be performed using floating-point arithmetic.
Without formal checking of the result, we will never be sure of the correctness
of the calculation.
1 As a matter of fact, the initial verification of NASA’s AILS algorithm contained

several of such axioms.
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In this paper we present a method to automatically prove numerical inequal-
ities, such as Formula (1), within a proof assistant. The point of departure is a
collection of lower and upper bounds for rational and non-rational operations.
Based on provable properties of these bounds, we develop a rational interval
arithmetic which is amenable to automation. The series approximations and in-
terval arithmetic used here are well-known. However, to our knowledge, this is
the most complete formalization of exact real arithmetic and interval arithmetic
within a theorem prover.

The rest of this paper is organized as follows. Section 2 defines bounds for
square root and transcendental functions. Section 3 presents a rational interval
arithmetic based on these bounds. Section 4 describes a method to prove nu-
merical inequalities. The implementation of this method in PVS is described in
Section 5. Last section summarizes our work and compares it to related work.
For readability, we will use standard mathematical notation along this paper.
However, we remark that the mathematical development presented in this paper
has been written and fully verified in PVS. Furthermore, all the development is
freely available on the Internet. The results on upper and lower bounds have been
integrated to the NASA Langley PVS Libraries at http://shemesh.larc.nasa.
gov/fm/ftp/larc/PVS-library/pvslib.html. The rational interval arithmetic
and the PVS strategy for numerical inequalities are available from http://
research.nianet.org/∼munoz/Interval.

2 Bounds for Square Root and Transcendental Functions

A PVS basic theory of bounds for square root and trigonometric functions was
originally proposed for the verification of an algorithm for aircraft conflict detec-
tion [18]. It has been completed and extended with bounds for natural logarithm,
exponential, and arctangent. The basic idea is to provide for each real function
f : R �→ R, functions f : (R,N) �→ R and f : (R,N) �→ R closed under Q, such
that for all x, n

f(x, n) ≤ f(x) ≤ f(x, n), (2)
f(x, n) ≤ f(x, n + 1), (3)

f(x, n + 1) ≤ f(x, n), (4)
lim

n→∞
f(x, n) = f(x) = lim

n→∞
f(x, n). (5)

Formula (2) states that f and f are, respectively, lower and upper bounds of f ,
and formulas (3), (4), and (5) state that these bounds can be improved, as much
as needed, by increasing the approximation parameter n.

For transcendental functions, we use Taylor’s approximation series. Because
the convergence is usually best for a small range of values, we have used Tay-
lor’s Theorem only on a small range, and then exploited the technique of range
reduction. All the stated propositions in this section have been formally verified
in PVS.
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2.1 Square Root

For square root, we use a simple approximation by Newton’s method. For x ≥ 0,

sqrt(x, 0) = x+ 1,

sqrt(x, n + 1) =
1
2
(y +

x

y
), where y = sqrt(x, n),

sqrt(x, n) =
x

sqrt(x, n)
.

Proposition 1. ∀x, n : x ≥ 0 ⇒ 0 ≤ sqrt(x, n) ≤ √
x < sqrt(x, n).

The first inequality is strict when x > 0.

2.2 Trigonometric Functions

We use the partial approximation by series.

sin(x, n) =
m∑

i=1

(−1)i−1 x2i−1

(2i− 1)!

sin(x, n) =
m+1∑
i=1

(−1)i−1 x2i−1

(2i− 1)!
,

cos(x, n) = 1 +
m+1∑
i=1

(−1)i x
2i

(2i)!
,

cos(x, n) = 1 +
m∑

i=1

(−1)i x
2i

(2i)!
,

where m = 2n if x < 0; otherwise, m = 2n+ 1.

Proposition 2. ∀x, n : f(x, n) ≤ f(x) ≤ f(x, n), for f ∈ {sin, cos}.

2.3 Arctangent and π

We first use the alternating partial approximation by series for 0 ≤ x ≤ 1.

atan(x, n) =
2n+1∑
i=1

x2i+1 (−1)i

2i+ 1
, if 0 < x ≤ 1,

atan(x, n) =
2n∑
i=1

x2i+1 (−1)i

2i+ 1
, if 0 < x ≤ 1.

We note that for x = 1 (which we might näıvely wish to use to define π/4 and
hence π) the series: 1− 1

3 + 1
5−

1
7 + 1

9−· · · does converge, but very slowly. Instead
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we use the equality π
4 = 4 atan(1/5)− atan(1/239), which then has much better

convergence properties. Using this identity we can define bounds on π:

π(n) = 16 atan(1, n)− 4 atan(1, n),
π(n) = 16 atan(1, n)− 4 atan(1, n).

Proposition 3. ∀n : π(n) ≤ π ≤ π(n).

Now, we extend the range of the arctangent function to the whole set of real
numbers:

atan(0, n) = atan(0, n) = 0,

atan(x, n) =
π(n)

2
− atan(

1
x
, n), if 1 < x,

atan(x, n) = −atan(−x, n), if x < 0,

atan(x, n) =
π(n)

2
− atan(

1
x
, n), if 1 < x,

atan(x, n) = −atan(−x, n), if x < 0.

Proposition 4. ∀x, n : atan(x, n) ≤ atan(x) ≤ atan(x, n).

These are strict inequalities except when x = 0.

2.4 Exponential

The fundamental series we use for the exponential function is

exp(x) =
∞∑

i=0

xi

i!
.

We could directly find bounds for negative x from this series as, in this case, the
series is alternating. However, we will subsequently find that it is convenient to
show that our bounds for the exponential function are strictly positive, and with
the above bounds this is not true. It is true for −1 ≤ x ≤ 0. This is proven by
using Taylor’s Theorem for the exponential function on the range −1 ≤ x < 0.
Therefore, we define

exp(x, n) =
2n+1∑
i=1

xi

i!
, if − 1 ≤ x < 0,

exp(x, n) =
2n∑
i=1

xi

i!
, if − 1 ≤ x < 0.

Using properties of the exponential function, we obtain bounds for the whole set
of real numbers:
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exp(0, n) = exp(0, n) = 1,
exp(x, n) = exp(x/m, n+ 1)m

, if x ≤ −1,

exp(x, n) =
1

exp(−x, n)
, if x > 0,

exp(x, n) = exp(x/m, n+ 1)m, if x ≤ −1.

exp(x, n) =
1

exp(−x, n)
, if x > 0.

Notice that unless we can ensure that all of the bounding functions are strictly
positive we will run into type-checking problems using the bound definitions for
x > 0, e.g., 1/exp(−x, n) is only defined provided exp(−x, n) 	= 0.

Proposition 5. ∀x, n : 0 < exp(x, n) ≤ exp(x) ≤ exp(x, n).

These are strict inequalities except when x = 0.

2.5 Natural Logarithm

For −1 < x ≤ 1, we use the alternating series for natural logarithm:

ln(x+ 1) =
∞∑

i=1

(−1)i+1 x
i

i
.

Therefore, we define

ln(x, n) =
2n∑
i=1

(−1)i+1 (x− 1)i

i
, if 1 < x ≤ 2,

ln(x, n) =
2n+1∑
i=1

(−1)i+1 (x− 1)i

i
, if 1 < x ≤ 2.

Using properties of the natural logarithm function, we obtain

ln(1, n) = ln(1, n) = 1,

ln(x, n) = −ln(
1
x
, n), if 0 < x < 1,

ln(x, n) = −ln(
1
x
, n), if 0 < x < 1.

Finally, we extend the range to the whole set of positive reals. If x > 2, we find
a natural number m and real number y such that x = 2my and 1 < y ≤ 2, by
using an algorithm similar to Euclidean division. Then, we observe that

ln(x) = ln(2my) = m ln(2) + ln(y).

Hence,

ln(x, n) = m ln(2, n) + ln(y, n), if x > 2,
ln(x, n) = m ln(2, n) + ln(y, n), if x > 2.
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Proposition 6. ∀x, n : 0 < x ⇒ ln(x, n) ≤ ln(x) ≤ ln(x, n).

These are strict inequalities except when x = 1.

3 Rational Interval Arithmetic

A (closed) interval [a, b] is the set of real numbers between a and b, i.e.,

[a, b] = {x | a ≤ x ≤ b}.
The bounds a and b are called the lower bound and upper bound of [a, b], respec-
tively. Note that if a > b, the interval is empty. The notation [a] abbreviates the
point-wise interval [a, a].

Since interval computations are mostly performed on the bounds of the inter-
vals, the set where these bounds are defined is critical. This set is called the base
number type. Systems for interval analysis and exact arithmetic usually consider
the base number type to be machine floating-point numbers. In general, interval
computations assume a correct implementation of the IEEE 754 standard [13].
For this work, we take a different approach where the base number type is the
set of rational numbers. Trigonometric and transcendental functions for interval
arithmetic are defined using the parameterizable bounding functions presented
in Section 2.

In the following, we use the first letters of the alphabet a, b, . . . to denote
rational numbers, and the last letters of the alphabet . . . x, y, z to denote arbi-
trary real variables. We use boldface for interval variables. If x is an interval
variable, x denotes its lower bound and x denotes its upper bound. The four
basic interval operations are defined as follows [14]:

x + y = [x + y,x + y],
x− y = [x− y,x− y],
x× y = [min{xy,xy,xy,xy},max{xy,xy,xy,xy}],

x÷ y = x× [
1
y
,
1
y

], if yy > 0.

We also define the unary negation, absolute value, and power operators for in-
tervals:

−x = [−x,−x],
|x| = [min{|x|, |x|},max{|x|, |x|}], if xx ≥ 0.
|x| = [0,max{|x|, |x|}], if xx < 0.

xn =

⎧⎪⎪⎨
⎪⎪⎩

[1] if n = 0,
[xn,xn] if x ≥ 0 or odd?(n),
[xn,xn] if x ≤ 0 and even?(n),
[0,max{xn,xn}] otherwise.

Interval operations are defined such that they include the result of their
corresponding real operations. This property is called the inclusion property and
is formally expressed as follows:
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Proposition 7. If x ∈ x and y ∈ y then x⊗y ∈ x⊗y, where ⊗ ∈ {+,−,×,÷}.
Moreover, −x ∈ −x, |x| ∈ |x|, and xn ∈ xn, for n ≥ 0. It is assumed that y
does not contain 0 in the case of interval division.

The inclusion property is fundamental to interval arithmetic. It guarantees
that the evaluations of an expression using interval arithmetic is a correct ap-
proximation of the exact real value. Any operation in interval arithmetic must
satisfy the inclusion property with respect to the corresponding real operation.

3.1 Interval Comparisons

There are several possible ways to compare intervals [27]. In this work, we use
interval-rational comparisons and interval inclusions.

x � a if x � a, for � ∈ {<,≤},
x � a if x � a, for � ∈ {>,≥},
x ⊆ y if y ≤ x and x ≤ y.

Proposition 8. Assume that x ∈ x,

1. if x �� a then x �� a, for �� ∈ {<,≤, >,≥}, and
2. if x ⊆ y then x ∈ y.

We use 	�� to denote ≥, >, ≤, or <, when �� is, respectively, <, ≤, >, or ≥.

Proposition 9. If x �� a and x 	�� a, then x is empty.

Notice that ¬(x �� a) does not imply x 	�� a. For instance, [−1, 1] is neither
greater nor less than 0.

3.2 Square Root, Arctangent, Exponential, and Natural Logarithm

Interval functions for square root, arctangent, exponential, and natural logarithm
are defined for an approximation parameter n ≥ 0:

[
√

x]n = [sqrt(x, n), sqrt(x, n)], if 0 ≤ x ≤ x,

[atan(x)]n = [atan(x, n), atan(x, n)],
[exp(x)]n = [exp(x, n), exp(x, n)],

[ln(x)]n = [ln(x, n), ln(x, n)], if 0 < x ≤ x.

The above functions satisfy the following inclusion property.

Proposition 10. If x ∈ x then f(x) ∈ [f(x)]n, where f ∈ {√ , atan, exp, ln}.
It is assumed that x is non-negative in the case of square root, and x is positive
in the case of natural logarithm.

Proof. This is a consequence of Propositions 1, 4, 5, and 6 in Section 2, and the
fact that these functions are increasing. �
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3.3 Trigonometric Functions

Parametric trigonometric functions for intervals are defined as follows:

[sin(x)]n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[sin(x, n), sin(x, n)] if x ⊆ [−π(n)
2 , π(n)

2 ],
[sin(x, n), sin(x, n)] if x ⊆ [π(n)

2 , π(n)],
[sin(x, n), sin(x, n)] if x ⊆ [0, π(n)

2 ],
−[sin(−x)]n if x ⊆ [−π(n), 0],
[−1, 1] otherwise,

(6)

[cos(x)]n =

⎧⎪⎪⎨
⎪⎪⎩

[cos(x, n), cos(x, n)] if x ⊆ [0, π(n)],
[cos(−x)]n if x ⊆ [−π(n), 0],
[min{cos(x, n), cos(x, n)}, 1] if x ⊆ [−π(n)

2 , π(n)
2 ],

[−1, 1] otherwise,

(7)

[tan(x)]n = [
sin
cos

(x, n + 3),
sin
cos

(x, n+ 3)], if x ⊆ [−π(n)
2

,
π(n)

2
]. (8)

The n + 3 in Formula (8) is necessary to guarantee that the lower and upper
bounds of cosine are always positive. Therefore, the tangent function is well-
defined in the interval [−π(n)

2 , π(n)
2 ].

The above functions satisfy the following inclusion property.

Proposition 11. If x ∈ x then f(x) ∈ [f(x)]n, where f ∈ {sin, cos}. Moreover,
if x ⊆ [−π(n)

2 , π(n)
2 ], tan(x) ∈ [tan(x)]n.

Proof. This is a consequence of Proposition 2 in Section 2, and a case analysis
on the quadrant where the functions are increasing or decreasing. �

The next section proposes a method to prove numerical inequalities based
on the rational interval arithmetic described here.

4 Proving Numerical Inequalities

Arithmetic expressions are defined by the following grammar, where V is a de-
numerable set of real variables:

e ::= a | x | e+ e | e− e | −e | e× e | e÷ e | |e| | ei |
√
e |

π | sin(e) | cos(e) | tan(e) | exp(e) | ln(e) | atan(e)
a ∈ Q

i ∈ N

x ∈ V

As usual, parenthesis are used to group subexpressions as needed.
A context Γ is a set of couples (x,x) where x is a real variable and x is a

non-empty interval. The intended semantics of contexts is given by the following
deduction rule in the sequent calculus style:

(x,x) ∈ Γ

Γ � x ∈ x
.
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Given a real expression e, a context Γ that includes all variables in e, and an
approximation parameter n, the interval expression [e]Γn is recursively defined as
follows:

[a]Γn = [a],
[x]Γn = x, where (x,x) ∈ Γ,

[e1 ⊗ e2]Γn = [e1]Γn ⊗ [e2]Γn , where ⊗ ∈ {+,−,×,÷},
[ei]Γn = ([e]Γn )i,

[−e]Γn = −[e]Γn ,
[|e|]Γn = |[e]Γn |,
[π]Γn = [π(n), π(n)],

[f(x)]Γn = [f([x]Γn )]n, where f ∈ {sin, cos, tan, exp, ln, atan}.

Proposition 12. Let e be an arithmetic expression, Γ be a context that includes
all variables in e, n an approximation parameter, and e = [e]Γn . Assume that e
and e are well-defined, i.e., side conditions are satisfied for division, square root,
logarithm, and tangent for real and interval values. Therefore,

Γ � e ∈ e. (9)

Proof. By structural induction on e and propositions 3, 7, 10, and 11.

4.1 A General Method

We propose the following general method to prove the sequent

Γ � e1 �� e2,

where e1 and e2 are well-defined arithmetic expressions, and �� ∈ {<,≤, >,≥}:
1. Select an approximation parameter n.
2. Define e = e1 − e2.
3. Define e = [e]Γn and show that it is well-defined.
4. By Proposition 12,

Γ � e ∈ e.

5. Evaluate e �� 0. If it evaluates to true, it means that the following sequent
holds

Γ � e �� 0.

In that case go to step 6. In the other case, evaluate e 	�� 0. If this evaluates
to true then fail. By Proposition 9, the sequent Γ � e �� 0 cannot hold. If
e 	�� 0 evaluates to false, increase the approximation parameter and return
to step 3.

6. Proposition 8 yields

Γ � e �� 0.
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7. By definition,

Γ � e1 − e2 �� 0.

8. Therefore,

Γ � e1 �� e2.

The method above is a sound, i.e., all the steps can be effectively computed
and each one is formally justified. In particular, well-definedness of e and the
inequalities e �� 0 and e 	�� 0 can be mechanically checked as they only involve
rational arithmetic. However, the method is not complete as the it does not
necessarily terminate. Even if e only involves the four basic operations, it may
be that both e �� 0 and e 	�� 0 evaluate to false.

The absence of a completeness result is a fundamental limitation on any gen-
eral computable arithmetic. At a practical level, the problem arises because all
we have available are a sequence of approximations to the real numbers x and
y; provided x and y differ, with luck we will eventually have a pair of approx-
imations whose intervals do not overlap, and hence we can return a result for
x �� y. However, if x and y are the same real number (note we might not neces-
sarily get the same sequence of approximations for both x and y), we can never
be sure whether further evaluation might result in us being able to distinguish
the numbers. Theoreticians might prefer the statement that to be computable,
a function must at least be (computably) continuous, and that any attempt
to define non-constant continuous functions from the (computable) reals to the
booleans is futile [21,22,24,25].

4.2 Sub-distributive Arithmetic

Interval arithmetic is sub-distributive, i.e., x × (y + z) ⊆ x × y + x × z. In the
general case the inclusion is strict. This effect is also called decorrelation and
it is due to the fact that interval identity is lost in interval arithmetic. This
may have surprising effects, for instance x− x is [0] only if x is point-wise, e.g.,
[0, 1]− [0, 1] = [−1, 1]. Moreover, as we have seen in Section 3.1, both x ≥ a and
x < a may be false.

For the method presented in the previous section, it means that the arrange-
ment of the expression e matters. For instance, assume that we want to prove
Γ � 2× x ≥ x assuming that x ∈ [0, 1] is in Γ . This is pretty obvious in arith-
metic as x is a non-negative real. Using our method, we consider the arithmetic
expression e = 2 × x − x and construct the interval expression e = 2 × x − x,
where x = [0, 1]. For any approximation parameter, e evaluates to [−1, 2] which
is neither greater nor less than 0. Therefore, the method will not terminate. This
effect may happen even if e is ground.

On the other hand, if instead of the arithmetic expression 2 × x − x, we
consider the equivalent arithmetic expression (2 − 1) × x, the corresponding
interval property ([2]− [1])× x evaluates to [0, 1] which is non-negative.
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4.3 The Bounds of π

Note that sin and cos are defined for the whole real line. However, for angles α
such that |α| ≥ π both functions will return the interval [−1, 1], a valid approx-
imation but not a very good one.

Even for angles less than π, the bounds computed by formulas (6) and (7) may
not be very accurate. For example, consider the arithmetic expression e = sin(π

2 )
and, for an approximation parameter n, the corresponding interval expression
e = [sin([π(n)

2 , π(n)
2 ])]n. From the definition of [sin(x)]n, we get e = [−1, 1], as the

interval [π(n)
2 , π(n)

2 ] falls in the default case. Therefore, the fact that sin(π
2 ) > 0,

cannot be proven using our method.

4.4 Symbolic Evaluation

Our method relies on explicit calculations to check for well-definedness of inter-
val expressions in step 3 and to verify interval inequalities in step 5. In theorem
provers, explicit calculations usually means symbolic evaluations, which are ex-
tremely inefficient for the interval functions that we want to calculate.

Section 5 describes how all these issues are handled in the PVS Interval
package that we have developed.

5 Automation in PVS

The interval arithmetic presented in this paper has been formalized and veri-
fied in PVS [20]. It is available as a PVS package called Interval. The strategy
numerical, which is part of the Interval package, implements the method de-
scribed in Section 4.1. This strategy automatically discharges sequent of the
forms Γ � e1 �� e2, for �� ∈ {< . ≤, >,≥}, and Γ � e ∈ [a, b].

Actual definitions in PVS have been slightly modified for efficiency reasons.
For instance, multiplication is defined using a case analysis on the sign of the
operands. Additionally, all interval operations are completed by returning an
empty interval if side conditions are not satisfied. This technique avoids the
generation of type correctness conditions in some instances.

The strategy numerical is aimed to practicality rather than accuracy. For
example, it might not be able to prove that

√
4 ∈ [2], but it can prove that√

4 ∈ [1.5, 2.5], or, even better, that
√

4 ∈ [1.99, 2.01]. With this in mind, we
designed a strategy that:

– Always terminates (in a reasonable period of time).
– Works over the PVS built-in type real (in contrast to a strategy for a new

data type of arithmetic expressions).
– Is configurable for better accuracy (at the expense of performance).

5.1 Termination

Termination is trivially achieved as the strategy does not iterate for different
approximations, i.e., step 5 either goes to step 6 or fails. In other words, if
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numerical does not succeed, it does nothing. By default, numerical picks a
default approximation value of 3 which gives an accuracy of about 2 decimals
for trigonometric functions. However, the user can increase this parameter or set
a different approximation to each function according to its accuracy needs and
availability of computational power. Currently, there is no direct relation between
the approximation parameter and the degree of the accuracy, as all the bounding
functions have different convergence rates. On-going work aims to provide an
absolute error of at most 10−n for the approximation parameter n. This will
give additional control to the user on the accuracy of the result. However, this
technique will not guarantee the precision of the final result as computation
errors are accumulative. Automatic iteration of the method for continuously
increasing approximation parameters is not supported as the strategies have not
being designed to reuse past computations. Without a reusing mechanism it will
be prohibitively expensive to automatically iterate numerical to achieve a small
approximation on a complex arithmetic expression.

5.2 Data Type for Real Numbers

The strategies in the Interval package work over the PVS built-in real numbers.
The major advantage of this approach is that the functionality of the strate-
gies can be extended to handle user defined real operators and functions with-
out modifying the strategy code. Indeed, optional parameters to the strategy
numerical allow for the specification of arbitrary real functions. If the interval
interpretations are not provided, the strategy tries to build them from the syn-
tactic definition of the functions. The trade-off for the use of the PVS type real,
in favor of a defined data type for arithmetic expressions, is that the function
[e]Γn and Proposition 12 are at the meta-level, i.e., they are not written in PVS.
It also means that the soundness of our method cannot be proven in PVS itself.
In particular, Proposition 12 has to be proven for each particular instance of e
and [e]Γn . This is not a major drawback as, in addition to numerical, we have
developed a strategy called sharp that discharges the sequent Γ � e ∈ [e]Γn
whenever is needed. We assume that PVS strategies are conservative in the
sense that they do not add inconsistencies to the theorem prover. Therefore, if
numerical succeeds to discharge a particular goal the answer is correct.

5.3 Decorrelation

Decorrelation is a well-known problem in interval arithmetic. Daumas et al.
describe in [5] additional strategies in the Interval package that address this
problem. Those strategies, which are intended for verification of numerical algo-
rithms, are computationally intensive and not suitable for interactive theorem
proving. In contrast, the strategy numerical uses two basic methods to reduce
decorrelation. First, it automatically rearranges arithmetic expressions using a
simple factorization algorithm. Due to the sub-distributivity property, factor-
ized interval expressions are likely to be more accurate than non-factorized ones.
Second, a configurable parameter allows the user to specify a splitting parame-
ter for interval sub-divisions. This technique is described in detail in [5]. The
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näıve implementation of interval sub-divisions in numerical is exponential with
respect to the number of interval variables.

A set of lemmas of the NASA Langley PVS Libraries are also used as rewrit-
ing rules on arithmetic expressions prior to numerical evaluations. This set
of lemmas is parameterizable and can be extended by the user. For instance,
trigonometric functions applied to notable angles are automatically rewritten
to their exact value. Although is not currently implemented, this approach can
also be used to normalize angles to the range −π . . . π that is suitable for the
trigonometric bounding functions in Sections 3.3.

5.4 Numerical Evaluations

To avoid symbolic evaluations, numerical is implemented using computational
reflection [11, 2, 26]. Interval expressions are translated to Common Lisp (the
implementation language of PVS) and evaluated there. The extraction and eval-
uation mechanism is provided by the PVS ground evaluator [23]. The result of
the evaluation is translated back to the PVS theorem prover using the PVSio
package developed by one of the authors [17].

We illustrate the use of the numerical with some examples. Lemma tr35 is
the PVS version of Formula (1). The proof is just one step of numerical with
no parameters:

g : posreal = 98/10 %[m/s^2]
v : posreal = 250×514/1000 %[m/s]

tr35: LEMMA 3×π/180 ≤ g×tan(35×π/180)/v
%|- tr35: PROOF (numerical) QED

Another example is the proof of the inequality 4.1.35 in Abramowitz & Ste-
gun [1]:

∀x : 0 < x ≤ 0.5828 ⇒ | ln(1 − x)| < 3x
2
.

The key to prove this inequality is to prove that the function

G(x) =
3x
2
− ln(1 − x)

satisfies G(0.5828) > 0. In PVS:

G(x|x < 1): real = 3×x/2 - ln(1-x)

A_and_S : lemma
let x = 5828/10000 in
G(x) > 0

%|- A_and_S : PROOF (numerical :defs "G") QED

In this case, the optional parameter :defs "G" tells numerical that the user-
defined function G has to be considered when performing the numerical evalua-
tion. The original proof of this lemma in PVS required the manual expansion of
19 terms of the ln series.



208 C. Muñoz and D. Lester

6 Conclusion

We have presented a pragmatic and safe way to perform ordinary real
number computations in formal proofs. To this end, bounds for non-algebraic
functions were established based on provable properties of their approximation
series. Furthermore, a package for interval arithmetic was developed. The pack-
age includes a strategy that automatically discharges numerical inequalities and
interval inclusions.

The PVS Interval package, which is available at http://research.nianet.
org/∼munoz/Interval, contains in total 306 lemmas. It is roughly 10 thousand
lines of specification and proofs and 1 thousand lines of strategy definitions.
These numbers do not take into account the bounding functions which have been
fully integrated to the NASA Langley PVS Libraries (http://shemesh.larc.
nasa.gov/fm/ftp/larc/PVS-library/pvslib.html). It is difficult to estimate
the human effort for this development as it has evolved over the years from an
original axiomatic specification to a fully foundational set of theories. As far as
we know, this is the most complete formalization of exact real arithmetic and
interval arithmetic within a theorem prover.

Research on interval analysis and exact arithmetic is rich and abundant (see
for example [14, 16, 10]). The goal of interval analysis is to compute an upper
bound of the round-off error in a computation performed using floating-point
numbers. In contrast, in an exact arithmetic framework, an accuracy is specified
at the beginning of the computation and the computation is performed in such
way that the final result respects this accuracy.

Real numbers and exact arithmetic is also a subject of increasing interest
in the theorem proving community. Pioneers in this area were Harrison and
Gamboa who, independently, developed extensive formalizations of real numbers
for HOL [12] and ACL2 [8]. In Coq, an axiomatic definition of reals is given
in [15], and constructive definitions of reals are provided in [3] and [19]. As real
numbers are built-in in PVS, there is not much meta-theoretical work on real
numbers. However, a PVS library of real analysis was originally developed by
Dutertre [6] and currently being maintained and extended as part of the NASA
Langley PVS Libraries. An alternative real analysis library is proposed in [9].

Closer to our approach are the tools presented in [4] and [5]. These tools
generate bounds on the round-off errors of numerical programs, and formal proofs
that these bounds are correct. The formal proofs are proof scripts that can be
checked off-line using a proof assistant.

Our approach is different from previous works in that we focus on automa-
tion and pragmatism rather than accuracy. In simple words, our practical con-
tribution is a symbolic pocket calculator for real number computations in for-
mal proofs.2 Thanks to all the previous developments in theorem proving and
real numbers, lemmas like Lemma tr35 and Lemma A and S are provable in
HOL, ACL2, Coq, or PVS. The Interval package and, in particular, the strategy
numerical make these proofs routine in PVS.

2 The results are – of course – only as sound as PVS.
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Abstract. Denotational semantics for a substantial fragment of Java is formal-
ized by deep embedding in PVS, making extensive use of dependent types. A
static analyzer for secure information flow for this language is proved correct,
that is, it enforces noninterference.

1 Introduction

This paper reports on the use of the PVS theorem prover [13] to formalize a seman-
tic model for a core fragment of Java and machine check the correctness of a secure
information flow analyzer.

The primary objective of the project is to check the results of Banerjee and Nau-
mann [2]. Their work specifies a static analysis, in the form of a type system, for secure
information flow in a substantial fragment of Java including mutable state, recursive
types, dynamic allocation, inheritance and dynamic binding, type casts, and the code-
based access control mechanism (stack inspection [6]). Security policy, i.e., confiden-
tiality/integrity, is expressed by annotating object fields and method signatures with
levels from a security lattice. The main result of [2] is that the typing rules are sound in
the sense that a program deemed safe by the analysis is noninterferent, w.r.t. the policy
(as in [18], see the survey by Myers and Sabelfeld [15]). A detailed proof of soundness
has undergone peer review but it is sufficiently complicated to merit machine checking.

In recent years, operational semantics has been popular but [2] is based on a deno-
tational model in the style of Scott and Strachey. In particular, the interesting semantic
domains are higher order dependent function spaces and the main results are proved by
fixpoint induction. A second objective of our project is to explore how well PVS sup-
ports formalizing and reasoning about such a model. Owing to the use of a denotational
model we reap the benefits of a deep embedding while avoiding the need to manipulate
or even define syntactic substitution. Moreover there is no explicit method call stack,
which simplifies reasoning about noninterference.

A third objective was for the author to gain his first experience with a proof assistant.
To give this a more scholarly spin, let us say the objective was to assess the effectiveness
of PVS as a proof assistant for a user without expertise in mechanical theorem proving.

The project is largely completed. With the omission of code-based access control,
the results of [2] have been completely formalized and proved. The omission was made
only to scale down this first phase of the project. The static analysis is presented as
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a recursive function that implements the typing rules of [2], and an arbitrary security
lattice is considered, whereas the paper considers only the two-point lattice.

The design decision with the most far-reaching consequences was to use higher or-
der dependent types to encode the semantics in a way that closely matches the paper [2].
The PVS type system is undecidable; the type checker generates type correctness con-
ditions (TCCs) that must be proved. Once proved they are useful as lemmas. The use of
dependent predicate types to express, e.g., the absence of dangling pointers and ill-typed
program states, means that type-correctness of our definitions requires nontrivial proof
in some cases. A tangential consequence is type soundness for the modeled language.

PVS is notable for its high level of automation and integrated decision procedures
but to our knowledge there are no previous large applications involving higher order
dependent types like ours. A considerable amount of user interaction appears to be
needed for the proofs, for reasons explained in the sequel. The proofs mostly follow
the structure of those in the paper, as reflected in the formulation of lemmas. But rather
than transcribing the details from the paper, I tried to carry out proofs by the seat of
my pants and I found PVS to be a fairly pleasant assistant in this working style. As
a beginning user I refrained from trying to do sophisticated control of rewriting, or
defining new proof strategies, or using automatic conversions between total and partial
functions represented by lifting. I decided not to factor large proofs by introducing lots
of little lemmas with no independent interest, given that PVS offers a graphical display
that facilitates inspection of sequents at intermediate points. Some proof scripts run to
several dozen lines and a few are a hundred lines.

Axioms are used only to express assumptions as follows: (a) the program to be
analyzed is syntactically well formed (e.g., ordinary type correctness, subclassing is
acyclic); (b) flow policy is well formed, i.e., invariant with respect to subclassing; and
(c) the memory allocator, otherwise arbitrary, returns fresh locations. The axioms are
simple and soundness is obvious. PVS theory interpretations have been used to confirm
this claim but that is omitted for lack of space.

Related work. Strecker [16] uses Isabelle/HOL to show soundness for a language and
security typing rules very similar to those in [1], i.e., a sequential fragment of Java,
without access control. Strecker’s result, like that in [1], makes an assumption of “para-
metricity” for the memory allocator in order to use equality rather than an arbitrary
bijection on locations in the definition of noninterference. This simplifies the proofs
considerably but is at odds with memory management in practice. Strecker also con-
fines attention to the two-element lattice. The present work confirms the wisdom of
those simplifications. Although an arbitrary lattice is needed for practical applications,
it results in an additional quantifier in each of the key properties (indistinguishability,
write-confinement, and noninterference) and this pervades the proofs. Treating memory
allocation realistically necessitates the use of a bijection on locations in the definition of
indistinguishability. As Strecker remarks, this means that there are fewer opportunities
to exploit provers’ built-in equality reasoning.

Jacobs, Pieters and Warnier [8] report on using PVS to verify soundness of a static
information flow analysis for a simple imperative language. The analysis is based on
abstract interpretation instead of types, which allows a variable to be used for informa-
tion of different levels at different times. Hähnle and Sands [5] use the KeY tool, an
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interactive theorem prover, to prove confidentiality of programs in a subset of JavaC-
ard. Confidentiality is formalized in dynamic logic, following the semantic approach
of Joshi and Leino [9]. Rushby [14] uses EHDM to check an “unwinding theorem”
that says the “no read up” and “no write down” rules [15] for individual steps suffice
to ensure noninterference. This elegant theory is set in an abstract model rather than a
programming language; the focus is on intransitive noninterference.

Overview. This paper reviews the work of [2] and describes the formalization in PVS of
the semantics (Sect. 2), policy and static analysis (Sect. 3), and proof of noninterference
(Sect. 4). Sect. 5 concludes. For readers not familiar with PVS, key notations are briefly
explained. More details can be found in a technical report on the author’s home page,
together with the PVS files.

2 Formalizing of the Language: Syntax and Semantics

This section describes the object language, as defined “in the paper” (meaning [2]), and
its formalization in PVS. For clarity, some minor details of the description differ from
the paper and the PVS code, but only in ways that seem unlikely to lead to confusion.

Signature of a class table. A well formed program is given in the form of a class table,
i.e., a collection of class declarations, each giving a superclass, field types, method sig-
natures, and method implementations. The paper follows [7] in using several auxiliary
functions: superC gives the direct superclass declared by a class named C; dfieldsC
gives the field declarations f 0 : T 0, f 1 : T 1, . . . of C; f ieldsC combines the declared
and inherited field declarations; and mtype(m,C) gives the parameter and return type
for method m declared or inherited in C. If there is no such method, mtype(m,C) is
undefined. Fields and methods of a class may make mutually recursive reference to any
other classes. We assume there are given, disjoint sets of field names, class names, and
method names, ranged over by f , C, and m respectively. Finally, mbody(m,C) gives the
method body, if method m has a declaration in class C, and is undefined otherwise.

The data types T in Java consist of primitive types (such as boolean and int),
names of declared classes, and the unit type (void). Data types are the types of fields,
local variables, method parameters and method return; the unit type is used as return
type for a method called only for its effect on state. Data types are given by the grammar

T ::= bool | unit |C

where C ranges over the set of declared class names. This is formalized as a PVS induc-
tive datatype, dty, in theory dty which is parameterized on a nonempty set Classname
used as argument for the constructor classT(name: Classname). Datatype recogniz-
ers are named according to the usual convention, e.g., classT?.

Theory classtableSig formalizes the signature of a well formed class table, i.e.,
fields, superclass, and method signatures for every class. It declares uninterpreted sets
Classname, Methname, and Varname (the latter for fields and also local variables and
parameters). Unlike the paper, we do not formalize the syntax of class declarations but
rather work directly with the auxiliary functions super, fields, etc.; e.g., the follow-
ing uninterpreted function declaration gives method signatures:
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mtype: [Classname, Methname
-> lift[ [# parN: Varname, parT: dty, resT: dty #] ] ]

Undefinedness is represented using the lift constructor, as PVS is a logic of total func-
tions ([T->U] is notation for functions, [# lab:T #] for records, and r‘lab for field
selection). If mtype(m,C) is defined (not bottom) then its value is a record with field
parT giving the parameter type, resT giving the result type, and parN giving the pa-
rameter name. As in the paper, the parameter name is treated as part of the type; this
loses no generality and simplifies definitions related to method call.

Method types in Java are invariant, i.e., if C is a subclass of D and inherits or over-
rides a method m of C then the method signatures are the same. This is expressed by

inherit_meths: AXIOM C <= D & up?(mtype(D,m)) => mtype(C,m) = mtype(D,m)

Axiom inherit meths also embodies inheritance in the sense that if m is defined in a
class then it is also defined in subclasses thereof. The set of methods defined for a given
class is lifted to the level of types as follows:

definedMeth(C)(m): bool = up?(mtype(C,m))
DefinedMeth(C): TYPE = (definedMeth(C))

The first line defines a predicate and the second line uses the PVS notation of enclosing
parentheses to lift a predicate to a type, here the type of methods either declared or
inherited in class C. The declaration and inheritance of fields is treated similarly.

The declaration-based subclassing relation turned out to be slightly intricate to for-
malize. Theory classtableSig declares an uninterpreted function super to designate
the immediate superclass (except for mapping the distinguished class Object to itself).

super: [Classname -> Classname]
super_fin_top: AXIOM EXISTS j: j > 0 & iterate(super,j)(C) = Object

Here C ranges over class names owing to the declarations

C, D, E: VAR Classname T, T1, T2: VAR dty

In the sequel we omit such declarations. Subclassing on class names is defined by

<=(C, D): bool = EXISTS j: iterate(super,j)(C) = D

and this extends easily to a relation <= on data types. Lemmas state that Object is the
top element and that <= is a preorder. The proofs require minimal user guidance, e.g.,
here is the script for transitivity of <= on class names:

(skosimp) (expand "<=") (lemma "iterate_add_applied[Classname]") (grind)

It uses a lemma about the iterate function from the PVS prelude as well as the
most powerful strategy, grind, which repeatedly applies simplification, instantiation,
skolemization and if-lifting.

Many of the results are proved using a secondary induction on inheritance chains,
formalized using the following (where /= is disequality).

stepsToObj(C)(j): bool = iterate(super,j)(C) = Object
cdepth(C): nat = min(stepsToObj(C))
cdepth_super: LEMMA C /= Object => cdepth(super(C)) < cdepth(C)
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Theory classtableSig includes a number of additional definitions and results
concerning subclassing and inheritance. It also defines contexts for use in typing rules.
In the paper, a (variable) context Γ is a partial function from variable names to data
types. It is formalized in PVS as a dependent record type.

Vxt: TYPE = [# dom: set[Varname], map: [(dom) -> dty] #]

Here (dom) is notation for the lift of predicate dom to the level of types. The type
set[Varname] is syntactic sugar for the function type [Varname -> bool].

In the semantics, the state on which a command operates includes a type correct
assignment of values to variables (i.e., parameters and locals including self) and the
state of an object in the heap is a type correct assignment of values to field names. The
context for fields is defined as follows, using set comprehension notation { f |...}.

fieldVxt(C: Classname): Vxt =
(# ‘dom := { f | fields(C)(f) }, ‘map := lambda f: ftype(C,f) #)

Similarly, methParVxt(C)(m) declares self:C and also the method’s parameter.

Typing of method bodies. The context free syntax of expressions and commands is
given by PVS datatypes exp and com in a theory lang which is parameterized on the
sets Classname, Varname, and Methname. An assignment x := e is represented by the
term assign(x,e,T) with an explicit trace of the type of e to simplify type checking;
similarly for the other constructs. The expressions are: variables, boolean literals, null,
equality test, field access, type test, and type cast. The commands are: assignment, field
update, new, dynamically dispatched method call, sequence and conditional. (Loops are
omitted since general recursion is included.)

Theory typing gives the typing rules for expressions and commands. The typing
judgement Γ � e : T is expressed by a predicate expOK(V,T)(e) where V ranges over
contexts, T over data types, and e over expressions.

expOK(V,T)(e): RECURSIVE bool =
CASES e OF
vblV(n): V‘dom(n) & T = V‘map(n) ,
fieldAccess(e1,T1,f):expOK(V,T1)(e1) & classT?(T1) & ftype(name(T1),f)=T
... MEASURE e by <<

This uses pattern matching on the datatype exp of expressions. A variable named n
has type T in context V if n is in the domain of V and is assigned type T. Recursive
definitions in PVS must be proved total using an explicitly designated measure, in this
case the subterm relation << generated automatically by the datatype definition for exp.

For commands, the paper’s judgement Γ � S is formalized as follows.

comOK(V)(S): RECURSIVE bool =
CASES S OF
assign(n,e,T): n /= Self & V‘dom(n) & expOK(V,T)(e) & T <= V‘map(n)...

The target n of assignment cannot be self and must be declared. The expression must
have the type recorded T in the syntax and T must be a subtype of the type of n. The
typing rules here and in the paper are syntax directed, so the semantics can be defined
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by recursion on syntax. Subsumption is not present as a separate rule but is instead
embodied by subtyping conditions.

All of the TCCs in theories typing and classtableSig are proved by the default
strategy without user intervention.

Theory wellformedCT declares an uninterpreted function for method bodies.

mbody: [C: Classname, m: Methname ->
lift[[# localvar: Varname, localvarType: dty, body: com #]] ]

To simplify the formalization slightly, each method is assumed to have exactly one local
variable. The formalization also enforces that the local variable name is distinct from
the distinguished names self and result as well as from the parameter name (not
shown here).

Every method should have an implementation and every method declaration should
be typable; this assumption is expressed as follows.

declaredMeth(C)(m): bool = definedMeth(C)(m) & up?(mbody(C,m))
DeclaredMeth(C): TYPE = (declaredMeth(C))
every_meth_has_body: AXIOM definedMeth(C)(m) & NOT declaredMeth(C)(m)

=> C /= Object & definedMeth(super(C))(m)
all_bodies_typable: AXIOM
declaredMeth(C)(m) => comOK( bodyVxtFor(C,m) )( down(mbody(C,m))‘body )

Semantic domains. According to the paper, the state of a method in execution is com-
prised of a heap h, which is a finite partial function from locations to object states, and
a store r which assigns locations and primitive values to local variables and parame-
ters. States are self-contained in the sense that all locations in fields and in variables
are in the domain of the heap. For locations, we assume that a set Loc is given, along
with a distinguished entity nil not in Loc. To track an object’s class we assume given a
function loctype : Loc→Classname such that there are infinitely many locations � with
loctype �= C, for each C. In the formalization, it suffices to assume that the allocator is
a total function. Theory semanticDomains begins with the uninterpreted declarations
Loc: TYPE+ and loctype: [Loc -> Classname]. It imports theory value[Loc]
which defines a datatype of values with constructors semNil, semLoc(valL: Loc),
etc. These are classified as follows.

locsBelow(C)(l: Loc): bool = loctype(l) <= C
LocsBelow(C): TYPE = (locsBelow(C))
valOfType(T)(v: Value): bool =
CASES T OF
unitT: semIt?(v) ,

boolT: semBool?(v) ,
classT(C): semNil?(v) OR ( semLoc?(v) & locsBelow(C)(valL(v)) ) ENDCASES
ValOfType(T): TYPE = (valOfType(T))
val_subsumptionT: LEMMA T <= T1 & valOfType(T)(v) => valOfType(T1)(v)

A number of subsumption properties are needed in the semantics. Formulation is
a little delicate, e.g., in a case like val subsumptionT this very property is needed
to discharge a TCC for valOfType(T1)(v). Once the TCC has been proved, one can
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Table 1. Semantic domains, named by categories θ including MEnv for method environments;
(C, x̄, T̄ → T ) for methods of C with parameters x̄ : T̄ , return T ; and Heap⊗Γ for closed states.

θ ::= T | Γ | objstateC | Heap | Heap⊗Γ | Heap⊗T | θ⊥ | (C, x̄, T̄ → T ) |MEnv

[[bool]] = {true, false} [[unit]] = {it} [[C]] = {nil}∪{� | � ∈ Loc∧ loctype�≤C}
[[Γ ]] = {r | domr = domΓ ∧ r self 	= nil∧∀x ∈ domr • r x ∈ [[Γ x]]}
[[objstateC]] = {s | doms = dom(fieldsC)∧∀( f : T ) ∈ fieldsC • s f ∈ [[T ]]}
[[Heap]] = {h | domh⊆fin Loc∧ closed h∧∀� ∈ domh•h� ∈ [[objstate(loctype �)]]}

where closed h iff rngs∩Loc ⊆ domh for all s ∈ rngh

[[Heap⊗Γ ]] = {(h,r) | h ∈ [[Heap]]∧ r ∈ [[Γ ]]∧ rngr∩Loc⊆ domh}
[[Heap⊗T ]] = {(h,v) | h ∈ [[Heap]]∧ v ∈ [[T ]]∧ (v ∈ Loc ⇒ v ∈ domh)}
[[C, x̄, T̄ → T ]] = [[Heap⊗ (x̄ : T̄ ,self : C)]]→ [[(Heap⊗T )⊥]]

[[MEnv]] = {μ | ∀C,m•μCm is defined iff mtype(m,C) is defined,
and μCm ∈ [[C,pars(m,C),mtype(m,C)]] if μCm defined }

appeal to it to get an immediate proof of the lemma. But the lemma needs to be explicitly
stated in order to generate the TCC.

In the paper, notation for the hierarchy of semantic domains is based on syntactic
categories θ , see Table 1. These categories are not separately formalized in PVS. Instead
there are just named types, e.g., for [[Γ ]] we define Store(V). (Recall that identifier V
is used instead of Γ .) A store for context V maps each name n in the domain of V to a
value of the type assigned to n in V.

Store(V): TYPE = [n: (V‘dom) -> ValOfType(V‘map(n))]

Heaps are defined in two stages, the second imposing the containment condition.

ObjState(C): TYPE = Store(fieldVxt(C))
preHeap: TYPE = [# dom: finite_set[Loc],

map: [ l:(dom) -> ObjState(loctype(l)) ] #]
closedStore(V)(h: preHeap)(r: Store(V)): bool =
FORALL (n:(V‘dom)):
classT?(V‘map(n)) & NOT semNil?(r(n)) => h‘dom(valL(r(n)))

heap(h: preHeap): bool =
FORALL ( l:(h‘dom) ):
LET V = fieldVxt(loctype(l)), r = h‘map(l) IN closedStore(V)(h)(r)

Heap: TYPE = (heap)
state(V)(h: Heap, r: Store(V)): bool = closedStore(V,h)(r)
State(V): TYPE = (state(V))

If s: State(V) then s‘1 is the heap part, using the PVS projection notation.
In the paper, no domains are explicitly defined for expressions but it is stated that the

meaning of an expression Γ � e : T is a function [[Heap⊗Γ ]]→ [[T⊥]] that takes a state
(h,r) ∈ [[Heap⊗Γ ]] and returns either a value v ∈ [[T ]], such that (h,v) ∈ [[Heap⊗T ]]
(i.e., v is in domh if v is a location), or the improper value ⊥ which represents errors.
In the formalization the domain for expressions is made explicit:
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preExpr(V,T): TYPE = [ State(V) -> lift[ValOfType(T)] ]
contValOfType(T, h)( v ): bool =

valOfType(T)(v) & ( classT?(T) & NOT semNil?(v) => h‘dom(valL(v)) )
CValOfType(T: dty, h: Heap): TYPE = (contValOfType(T,h))
semExpr(V,T)(g: preExpr(V,T)): bool =

FORALL (s:State(V)): liftContValOfType(T,s‘1)(g(s))
SemExpr(V,T): TYPE = (semExpr(V,T))

The paper says that a typable command Γ � S denotes a function [[MEnv]] →
[[Heap⊗Γ ]]→ [[(Heap⊗Γ )⊥]]. In proving noninterference, which involves extending
bijections on the heap domain, it became apparent that commands must have an addi-
tional property not made clear in the paper: Any location allocated in the initial heap
is still allocated in the final heap. (By not modeling garbage collection, we simplify
the formulation of noninterference.) This condition could be proved as a lemma but is
instead imposed on the semantic domains for commands (and also method meanings).
This is formalized as follows.

preSemCommand(V): TYPE = [ State(V) -> lift[State(V)] ]
semCommand(V)(g: preSemCommand(V)): bool =

FORALL (s: State(V), l:(s‘1‘dom)): up?(g(s)) => down(g(s))‘1‘dom(l)
SemCommand(V): TYPE = (semCommand(V))

Finally, the denotation of a method m takes a pair (h,r), where r is a store with
the arguments, i.e., self and for the parameter. (An alternate formulation would pass
a tuple of values, with the benefit that the parameter name would not be significant in
method types. The cost would be additional definitions of indistinguishability etc. for
tuples.) It returns ⊥ or a pair (h1,v) where v is the result value and h1 the updated
heap. The semantic domain SemMeth(C,m) imposes the conditions that v is in the
domain of h1 and that the domain of h1 extends that of h (the latter condition is missing
from the equation for [[(C, x̄, T̄ → T )]] in Table 1).

Method environment. The semantics for commands, discussed later, is defined in terms
of a method environment which provides for each defined method an appropriate se-
mantics.

MethEnv: TYPE = [C: Classname -> [m: DefinedMeth(C) -> SemMeth(C,m)]]

Theory semCT defines the semantics of a class table as a method environment obtained
as the limit of a chain of approximations.

approxMethEnv(j)(C): RECURSIVE [m:DefinedMeth(C) -> SemMeth(C,m)] =
lambda (m:DefinedMeth(C)):

IF j=0 THEN abortMeth(C,m)
ELSE IF declaredMeth(C)(m) THEN mbodySem(C,approxMethEnv(j-1))(m)
ELSE restrict[...]( approxMethEnv(j)(super(C))(m) ) ENDIF ENDIF

MEASURE lex2(j, cdepth(C)) BY <

For the 0th approximation, every method aborts. For the jth approximation, if m is
declared in C then its semantics is given in terms of the semantics of its body, interpreted
with respect to the ( j−1)st approximation for methods it calls. (We defer the definition
of mbodySem.) This exactly mirrors an operational semantics in which the call stack
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size is bounded by j− 1 (note that there is no stack in the denotational model). The
semantics of a complete program has a one-line definition:

semCT: MethEnv = lub( approxMethEnv )

This uses the least upper bound operator defined in theory orderDomains, where it is
shown that the semantic constructs are monotonic and continuous. Operationally, taking
the lub removes the bound on stack size. We omit further details.1

Returning to approxMethEnv, if m is inherited then its semantics is inherited, i.e.,
given by approxMethEnv(j)(super(C))(m). But this function is applied to a smaller
domain (the argument stores where self has type C rather than super(C)), whence the
need for restrict[...] to make the conversion explicit for the PVS type checker.

The definition of approxMethEnv generates eight TCCs. One is that the given
order is well founded. Three of the TCCs require more than one step of user in-
teraction, mainly to show that approxMethEnv(j)(super(C))(m), which has type
SemMeth(super(C),m), also has type SemMeth(C,m) (when its domain is restricted
State(methParVxt(C)(m))). The proofs use axiom every meth has body, lemma
cdepth super, and the following.

inherit_defined: LEMMA
FORALL C, (m: DefinedMeth(super(C))), (g: SemMeth(super(C),m)):
semMeth(C, m)(restrict[...](g))

For lemma inherit defined the proof is easy:

(skosimp*)(typepred "g!1")(use "super_above")(use "semMeth_subsumpt")(prop)

On the other hand, to discharge the subtyping TCCs generated by inherit defined
requires several steps, in two of which instantiations needed to be supplied. The TCCs
for this lemma are then used subsequent proofs.

Semantics of commands and method bodies. Theory comSemantics gives the seman-
tics for commands, given an uninterpreted function for memory allocation.

fresh: [Classname, Heap -> Loc]
freshness: AXIOM loctype(fresh(C,h)) = C & NOT h‘dom(fresh(C,h))

A simple and realistic model for this assumption is to let Loc be the set of pairs (i,C)
with C a classname and i a natural; fresh chooses the least unused i.

For each syntactic command construct we explicitly define a semantic operation,
e.g., here is the semantic operation that allocates a fresh object and assigns it to n:

newS(V)(n: {n | V‘dom(n) & n/=Self}, C: {C | below(V‘map(n))(classT(C))})
(s: State(V)): lift[State(V)] =

LET l = fresh(C, s‘1),
h1 = (# ‘dom := add(l, s‘1‘dom),

‘map := s‘1‘map WITH [ (l) |-> initObState(C)] #)
IN up( updateVar(V)(n, (h1, s‘2), semLoc(l)) )

1 The lub of method environments admits an elementary characterization, owing to the simple
concrete representation for states. If method meanings were stored in the heap then we would
need to work with the solution of a nontrivial domain equation. Indeed, Levy [12] gives a
denotational model for a higher order language with pointers, but the model does not capture
relational parametricity or recursive types.
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The semantic function comSem has a succinct definition, mapping each construct to its
corresponding semantic operation. In the paper, the semantics [[Γ � S]] is only defined
for derivable judgement Γ � S. A direct encoding of this would lift the predicate for
typing, comOK(V), to a type, but then we would have to state and prove an induction
rule for the set of typable commands. In order to use the induction rule generated by
PVS for the datatype com, i.e. for proofs to begin simply (induct "S"), we define
semantics for all commands, typable or not.

comSem(V: Vxt, me: MethEnv)(S: com): RECURSIVE SemCommand(V) =
IF NOT comOK(V)(S) THEN abortCom(V) ELSE
CASES S OF

new(n, C): newS(V)(n, C) ,
seq(S1,S2): seqS(V)( comSem(V,me)(S1), comSem(V,me)(S2) ) ,
mcall(n,e1,m,e2,T1,T2): % that is, n := e1.m(e2)

mcallS(V,me)( n, T1, expSem(V,T1)(e1), m, expSem(V,T2)(e2) ) ,
...MEASURE S by <<

Type soundness. The theories discussed so far give a deep embedding of the syntax and
semantics of a fragment of Java with features including mutable objects, recursive class
definitions, type casts, pointer equality, and inheritance. The semantic domains express
invariants like these: self is not null; objects are never deallocated; the value of any field
of any object is an element of the (denotation of) the type declared for the field. The
net effect is that type soundness is a consequence of definedness of the semantics. To
see how this works, consider an assignment assign(n,e,T) typable in context V. The
semantics is assignS(V)(n, T, expSem(V,T)(e)), using the following.

assignS(V)(n: {n|V‘dom(n) & n/=Self}, T:Below(V‘map(n)), g:SemExpr(V,T))
( s: State(V) ): lift[State(V)] =

IF up?(g(s)) THEN up( updateVar(V)(n,s,down(g(s))) ) ELSE bottom ENDIF

Note that assignS(V) is applicable only to a variable n in the domain of V and not
equal to self; moreover, the type T of the assigned expression must be a subtype of the
type of n in V. The declaration indicates that assignS(V)(n,T,g) applies to a state
for V and returns a lifted state. An additional result says that in fact it has the type
SemCommand(V).

assignS_type: JUDGEMENT
assignS(V)(n:{n|V‘dom(n) & n/=Self}, T:Below(V‘map(n)), g:SemExpr(V,T))
HAS_TYPE SemCommand(V)

This can be read as a lemma, saying that if assign(n,e,T) typechecks then it de-
notes a function satisfying the invariants imposed by SemCommand(V). The definition
of comSem generates three TCCs for assign, which can be discharged easily using
assignS type and inversion of the typing rule.2

The domain definitions, subsumption, inheritance, etc., come together in the seman-
tics method call, mcallS. The TCCs for this definition are among the longer proofs in
the development, as user interaction is needed to invoke various subsumption lemmas.

2 The JUDGEMENT form provides refined type information to the type checker, to reduce redun-
dant TCCs. It is of little use in our work because it does not cater for dependent types, e.g.,
JUDGEMENT loc(l: locsBelow(C)) HAS TYPE ValOfType(classT(C)) is not allowed
because C is free. Instead we use LEMMA FORALL (C:Classname, l: LocsBelow(C)):
valOfType(classT(C))(loc(l)).
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3 Formalizing the Static Analysis and Noninterference

Security policy. Noninterference for a given security labeling means that if a pair of
initial states are indistinguishable by an observer who only sees fields/variables labeled
below level L then the corresponding final states are indistinguishable below L.

Theory lattice defines the relevant operations on an uninterpreted type, Level.
Variables L, L1 etc range over Level. Security policy assigns a level to each field as
well as to method parameters and result. Theory indistinguishable defines the in-
distinguishability of states, with respect to a given policy.

methPolicy:TYPE = [Classname,Methname -> [# self, par, res, hp: Level #]]
fieldPolicy: TYPE = [Classname -> [Varname -> Level]]

The method policy for a given class and method gives not only levels for the parameters
and result, serving as upper bounds on their information, but also a lower bound on the
levels of fields written (hp). We refrain from tying policy to a particular class table
signature, but rather let the policy assign arbitrary values for undefined methods and
fields.

Indistinguishability of values involves a partial bijective renaming of locations to
mask allocation effects. Theory indistinguishable develops suitable theory for
type-respecting partial bijections on locations, e.g., how composition of such relations
behaves. Indistinguishability of values of type T, relative to a typed bijection rho, is
defined as follows:

indis( rho, T )( v, v?: ValOfType(T) ): bool =
CASES T OF
unitT: TRUE ,
boolT: v = v? ,
classT(C): ( semNil?(v) & semNil?(v?) )

OR ( semLoc?(v) & semLoc?(v?) & rho( valL(v), valL(v?) ) )

Where the paper uses v,v′ for related pairs, the PVS formalization uses v? because
symbol ′ is not allowed in identifiers. For this reason we mostly avoid the convention of
using ? to signal predicate names. The definition above induces the notions of indistin-
guishability (overloading the name indis) for each of the other semantic domains. We
need the notion of a policy for stores:

Levels(V): TYPE = [(V‘dom) -> Level]

Indistinguishability of stores with respect to an observer of level L and local variable
labeling lev is defined as follows:

indis( L, rho, V, (lev: Levels(V)) ) ( r, r?: Store(V) ): bool =
FORALL (n:{n|V‘dom(n) & lev(n)<=L}): indis(rho,V‘map(n))( r(n), r?(n))

The definition says that r is indistinguishable from r? for an observer at level L provided
that the values for n are indistinguishable for every variable n with level at most L.

Confinement. Confinement expresses, semantically, the key rules “no read down” and
“no write up” [15]. For an expression meaning g to be read confined for observers at
level L means that it cannot distinguish states that are indistinguishable for L.
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readConf(L, V, T, fpField)(levs: Levels(V))(g: SemExpr(V,T)): bool =
FORALL rho, (s, s?: State(V)):
indis(L,rho,V,fpField,levs)(s,s?) => indis(rho,T)(g(s),g(s?))

For a command to be write confined above L means that it writes no variable or field
below level L; that is, its final state is indistinguishable, for observers not at a level
above L, from the initial state, using as renaming bijection the identity on the domain
of the initial heap. Write confinement is also defined for methods; details omitted.

Safety. Theory safe gives the static analysis in terms of uninterpreted policy functions
and also an assignment of levels to the local variable(s) of method bodies.3

mPolicy: [Classname, Methname -> [# self, par, res, hp: Level #]]
fPolicy: [Classname -> [Varname -> Level]]
localLevel: [Classname, Methname, Varname -> Level]

It is assumed that the policies are invariant with respect to subclassing.

inherit_meth_lev:AXIOM C<=D & up?(mtype(D,m))=> mPolicy(C,m)=mPolicy(D,m)

In the paper, the static analysis is specified using labeled types (T,κ) for expressions,
where T is a data type and κ a security level. For commands, the judgement Δ � S : κ ,κ ′
expresses that S is secure, with respect to a given policy assigning levels to locals (Δ ),
fields, and method parameters/returns, and moreover S writes fields (resp. locals) of
level at least κ (resp. κ ′). There is a similar judgement for expressions. The paper gives
rules to inductively define these judgements but in PVS we define a recursive function
that, for expression e, gives the least L at which e would be typable in the paper. This
serves as a deterministic and reasonably efficient implementation.

In the paper, the analysis, like the semantics, is specified only for typable programs.
In the PVS formalization, safety is defined for all programs but only typable programs
are deemed safe. (Compare comSem.)

expSafe(V: Vxt, lev: Levels(V), T: dty )(e: exp): RECURSIVE lift[Level] =
If NOT expOK(V,T)(e) THEN bottom ELSE
CASES e OF vblV(n): up( lev(n) ) ,

fieldAccess(e1, T1, f):
s_lub( expSafe(V,lev,T1)(e1), up(fPolicy(name(T1))(f)) )...

For a method declaration to be safe, mSafe, is defined to mean that its body is safe with
respect to the method policy. Function comSafe is similar to expSafe. Finally, safety
of a whole program is defined as follows.

safe_CT: bool = FORALL C, (m: DeclaredMeth(C)): mSafe(C)(m)

4 Main Results

Confinement. Theory confinement shows that the analyzer ensures read and write
confinement. For the semantic operation used to interpret each program construct, there
is a lemma expressing conditions under which the semantics is confined. For example,
here is the case that the expression is a variable:

3 The formalization could be improved by factoring out the policy from both theories safe and
indistinguishable.
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vblS_read_conf: LEMMA FORALL ( V: Vxt, levs: Levels(V) ):
V‘dom(n) & V‘map(n) = T & levs(n)<= L
=> readConf(L, V, T, fpField)(levs)( vblS(V)(n) )

These lemmas are used to prove that if the analysis returns level L for an expression then
its semantics is read confined at that level. Similarly, if the analyzer says a command is
safe at a certain level pair LLp then it is write confined for LLp.

safe_com_write_conf: LEMMA
FORALL ( V: Vxt, lev: Levels(V), S: com, me: WriteConfMenv ):
LET LLp = comSafe(V,lev,S)
IN up?(LLp) => writeConf(down(LLp), V, fPolicy, lev)( comSem(V,me)(S))

Note the antecedent that method meanings in me are write confined. The lemma is
proved by induction on the structure of S; in each case one inverts the safety rule and
uses lattice properties to establish the hypothesis for the corresponding semantic con-
finement lemma.

To discharge the assumption about method environment, we have to show that if all
method bodies are safe then all their meanings are write confined. This is proved by
showing that all approximations are write confined and that this implies the same for
the least upper bound.

write_conf_approx: LEMMA
safe_CT => (FORALL j: writeConfMenv( approxMethEnv(j) ))

write_conf_admissible: LEMMA
FORALL ( app: AscendingMenvs ):
(FORALL j: writeConfMenv(app(j))) => writeConfMenv( lub(app) )

safe_CT_write_conf: LEMMA safe_CT => writeConfMenv( semCT )

Admissibility is a straightforward series of steps unfolding the definitions, owing to our
explicit characterization of lub in theory orderDomains. For write conf approx
the proof goes by induction on the lexical ordering of j and depth of inheritance (using
lemma cdepth super).

The least satisfying proof in this theory is the write confinement lemma for seman-
tics of method call. It is long, mainly because a number of TCCs are generated at several
points where lemmas are invoked. Some of the TCCs are discharged by a simple strat-
egy which tries all the TCCs from the definition of the semantic function mcallS. For
a number of others the strategy fails and I have to explicitly appeal to a specific one of
the TCCs associated with the definition of mcallS in theory comSemantics.

Noninterference. It is only in the final theory, safeProps, that the TCCs are really
onerous. First come definitions, e.g., what it means for a command to be noninterferent
with respect to a policy lev for variables (the policy for fields is imported from theory
safe) and an observer that can see variables and fields of level at most L:

nonint( L, V, (lev: Levels(V)) )( g: SemCommand(V) ): bool =
FORALL rho, (s, s?: State(V)):
indis(L,rho,V,fPolicy,lev)(s,s?) & up?(g(s)) & up?(g(s?))
=> EXISTS tau: subset?(rho,tau)

& indis(L,tau,V,fPolicy,lev)(down(g(s)), down(g(s?)))
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There is a similiar notion, nonint(L,C,m), of noninterference for the meaning of
method m at class C. A method environment is noninterferent provided every method
meaning is noninterferent for observers at every level L. (The definition is factored into
two to fit a standard induction rule.)

nonintMenv2( me, C ): bool =
FORALL L, (m: DefinedMeth(C)): nonint(L, C, m)( me(C)(m) )

nonintMenv( me ): bool = FORALL C: nonintMenv2(me,C)

Next come noninterference lemmas for the semantic operations, for example:

nonint_assignS: LEMMA
FORALL L, V, (lev: Levels(V)), (n: {n | (V‘dom) & n/=Self)}),

(T: Below(V‘map(n))), (g: SemExpr(V,T)):
readConf(lev(n),V,T,fPolicy)(lev)(g)
=> nonint(L,V,lev)( assignS(V)(n,T,g) )

The proof involves manipulating a pair s,s? of states related by indis and unfolding
the definition of assignS on both s and s?. This generates two sets of TCCs. The
TCCs can be discharged by using, as lemmas, the TCCs associated with the definition
of assignS. But there is a problem: one wants two instantiations of the latter, one for
each of the two states at hand. The PVS heuristics for instantiation fare poorly here and
must be guided by manually deleting the distracting formulas in the sequent. Reference
to these formulas is by line number and this makes the proof script brittle in the face of
changes to the prover or the proof.

The noninterference lemma for mcallS is the most complex in the entire develop-
ment. The proof itself is easy, but only because it is factored into three very complicated
technical lemmas with long proofs. The semantics of method call is inherently compli-
cated, so these lemmas involves two heaps, two target objects, two argument stores,
etc. Each application of the semantics, mcallS, generates about eight TCCs as does
each use of a lemma like monotonicity of indis. The strategy of trying each mcallS
TCC until one works fails hopelessly here. I have to designate a specific one to use and
also the instantiation of its top level variables. But this is not enough. There are nested
quantifiers and in the worst case the TCC appears in a sequent with about 35 formulas.
An explicit hide command is needed to remove half of these so the strategy smash
can finish the job with simplification and heuristic instantiation. A specialized strategy
to automate the hide step might work by removing formulas that mention identifiers
in which ? occurs, or those for which there is a matching formula with ?. But this is
neither principled nor straightforward to implement; is there another way?

The noninterference property for commands is as follows.

nonint_com: LEMMA
FORALL L,V,S,(lev:Levels(V)),(me | nonintMenv(me) & writeConfMenv(me)):

up?( comSafe(V, lev, S) ) => nonint(L, V, lev)( comSem(V,me)(S) )

The proof is by structural induction on S. For each command construct, the safety con-
dition is unfolded and the noninterference lemma for that construct’s semantics is in-
voked. For if/else, an instantiation is explicitly provided for a lemma on monotonicity
of write confinement. But in the rest of the proof the heuristic instantiations work fine
and there are no difficulties with TCCs. Finally, the main result is succinctly stated:
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nonint_CT: THEOREM safe_CT => nonintMenv( semCT )

Like the write confinement lemma for semantics of the class table, the proof is by
measure induction (on the approximation chain and on inheritance), using nonint com
for method bodies in the induction step. User interaction is needed to introduce lemmas
and in a couple of cases provide instantiations.

5 Discussion

The first objective of the project was met: the results of [2] (omitting code-based access
control) were checked successfully. The complete import chain for theory safeProps
comprises about 3K lines of PVS specifications. There are a total of 587 proofs which
take approximately 30 minutes to check on a 1.2Ghz Intel CPU with .5G RAM (and
took about 8 person-weeks to create). A rough guess for the user written proof scripts
is 8K lines.4

As for the second objective, the expressiveness of the PVS language certainly
lends itself to a semantic model of this sort. The facilities of PVS served well but the
JUDGEMENTmechanism was of little use and heuristic instantiation of quantifiers leaves
something to be desired. But the biggest problem with instantiation is in the contexts
where there are two copies of everything in sight, which is likely to pose a problem for
any prover and any style of modeling for noninterference.

The effort uncovered a bug in [2]: We had neglected to impose on the semantic
domains that the domain of the heap never shrinks, but this was assumed implicitly in
some proofs. To my suprise this was the only bug. This is not to say no mistakes were
made during the PVS development: In the generalization to an arbitrary lattice of levels
I formulated revised definitions off the top of my head, without proving correctness on
paper. The third project objective was to find out whether PVS could serve as a proof
assistant and help find the correct formulations. I was not disappointed.

The plan is to complete the project by adding access control to the language; this
should offer some experience in “proof maintenance”. It should be straightforward to
extract executable code for the analyzer; this may be used to verify policies created
by an inference tool being developed by Qi Sun [17], but it will require extension of
the policy language to include level polymorphism. Another interesting project would
be to add generics and prove type soundness; on paper the semantics has already been
extended [3] to generics as in C# [10]. In joint work with Gary Leavens on foundations
of JML [11], we plan to check rules for behavioral subclassing.

Acknowledgements. Natarajan Shankar and Patrick Lincoln arranged a Visiting Fel-
lowship at SRI International for the month of September, 2003, during which time I
learned PVS and more than half of this work was carried out. Harold Rueß’s elegant
domain theoretic work [4] was the leading example for my initial study. Shankar, Sam
Owre, and Bruno Dutertre were particularly generous with explanations and advice;
Bruno taught me that the way to smash a sequent is to (smash). Walkthroughs by the

4 A couple of the theories with complicated dependent types run afoul of PVS bugs which hinder
use of some tools for exploring proofs. But I have no reason to doubt soundness of the proofs.
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whole group, with John Rushby guiding me in fluent emacs-keystroke, were very help-
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Abstract. Linear programming is a basic mathematical technique for
optimizing a linear function on a domain that is constrained by linear
inequalities. We restrict ourselves to linear programs on bounded do-
mains that involve only real variables. In the context of theorem proving,
this restriction makes it possible for any given linear program to obtain
certificates from external linear programming tools that help to prove
arbitrarily precise bounds for the given linear program. To this end, an
explicit formalization of matrices in Isabelle/HOL is presented, and how
the concept of lattice-ordered rings allows for a smooth integration of
matrices with the axiomatic type classes of Isabelle.

As our work is a contribution to the Flyspeck project, we argue that
with the above techniques it is now possible to prove bounds for the
linear programs arising in the proof of the Kepler conjecture sufficiently
fast.

1 Introduction and Motivation

The Flyspeck project [3] has as its goal the complete formalization of Hales’
proof [2] of the Kepler conjecture. The formalization has to be carried out within
a mechanical theorem prover. For our work described in this paper, we have cho-
sen the generic proof assistant Isabelle, tailored to Higher-Order Logic (HOL) [4].
In the following, we will refer to this environment as Isabelle/HOL.

An important step in Hales’ proof is the maximization of about 105 real linear
programs. The size of these linear programs (LPs) varies; the largest among them
consist of about 2000 inequalities in about 200 variables. The considered LPs
have the important property that there exist a priori bounds on the range of the
variables. The situation is further simplified by our attitude towards the linear
programs: we only want to know whether the objective function of a given LP
is bounded from above by a given constant K.

Under these assumptions, Hales describes [1] a method for obtaining an arbi-
trarily precise upper bound for the maximum value of the objective function of
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an LP. We will show that this method still works nicely in the context of mechan-
ical theorem provers. The burden of calculating the upper bound is delegated
to an LP solver that needs not to be trusted. Instead, the LP solver delivers
a small certificate to Isabelle/HOL that can be checked cheaply. Furthermore,
there is no need to delve into the details of the actual method of optimizing an
LP, which is usually the Simplex method. These details just do not matter for
the theorem prover.

In this paper we describe all relevant issues and notions that arise in imple-
menting the method in Isabelle/HOL. Although our point of view is necessarily
influenced by the capabilities and restrictions of Isabelle/HOL, we think that
the results are of independent interest, and we try to present them that way.

We first describe the basic idea of the method. Then we define the notion of
finite matrices and explain why these are our representation of choice for linear
programs. Finite matrices can be fitted into the system of numeric axiomatic type
classes in Isabelle/HOL via the algebraic concept of lattice-ordered rings, and we
take a short look at the changes of the hierarchy of type classes in Isabelle/HOL
that were necessary for this. Checking the certificate from the external LP solver
is basically a calculation involving finite matrices, and the matrices we have to
deal with coming from our Flyspeck background are sparse, therefore we present
a sparse matrix representation of finite matrices and formalize operations like
sparse matrix multiplication.

2 The Basic Idea

There are quite a lot of different ways to state a linear programming problem [5,
sect. 7.4], which are all general in the sense that every linear programming
problem can be stated that way. Here is one such way: a linear program consists
of a matrix A ∈ IRm×n, a row vector c ∈ IR1×n and a column vector b ∈ IRm×1.
The goal is to maximize the objective function

x �−→ c x, x feasible, (1)

where x is called feasible iff x ∈ IRn×1 and Ax ≤ b holds. Note that we are
dealing with matrix inequality here: X ≤ Y for two matrices X and Y iff every
matrix element of X is less than or equal to the corresponding element of Y .

Usually, the above stated goal really encompasses several goals / questions:

1. Find out if there exists any feasible x at all (otherwise the LP is called
infeasible).

2. Find out if there is a feasible xmax such that c xmax ≥ c x for any feasible x,
and calculate this xmax.

3. Calculate M = sup {c x |x is feasible}.

Note that M = −∞ iff the answer to the first question is no. And M = ∞ iff the
answer to the first question is yes and the answer to the second question is no. If
M <∞ then the LP is called bounded. Linear programming software is good at
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answering all those questions and at exhibiting (approximately) such an xmax if
it exists. Our goal is more modest in some ways, but more demanding in others:
assuming a priori bounds for the feasible region, that is assuming l ≤ x ≤ u
for all feasible x with a priori known bounds l and u, actually prove within
Isabelle/HOL that M ≤ K, where we can choose K arbitrarily close to M . In
particular, we do not want to calculate xmax, but just want to approximate M
as precise as we wish for. Furthermore, we can assume M 	= ∞ because of

M ≤
n∑

i=1

|c1i| max {|li1| , |ui1|} < ∞ . (2)

It might seem that our goal can be accomplished trivially by setting K to the
above sum. But of course this is not the case, as K is probably not a particularly
good approximation for M , and there is nothing in the above inequality telling
us how to get a better approximation in case we need one.

2.1 Reducing the Case M = −∞ to the Case −∞ < M < ∞

The case of an infeasible LP can be reduced to the case of a feasible LP [1]. We
will give a more detailed description here than the one found in [1].

Remember that we are only considering LPs for which we know l and u s.t.

Ax ≤ b =⇒ l ≤ x ≤ u . (3)

In this subsection we additionally require A to fulfill the inequality

Ax ≤ 0 =⇒ x = 0 . (4)

This can easily be arranged by replacing A and b by Ã and b̃ where

Ã =

⎛
⎝ A

In
−In

⎞
⎠ and b̃ =

⎛
⎝ b
u
−l

⎞
⎠ . (5)

In ∈ IRn×n denotes the identity matrix.
Now let us assume that for the given LP both (3) and (4) hold. We can

construct for any K ∈ IR a modified LP with objective function

x′ =
(
x
t

)
�−→ c x+K t, x′ feasible, (6)

where x′ ∈ IRn+1 is called feasible with respect to the modified LP iff

Ax+ t b ≤ b and 0 ≤ t ≤ 1 . (7)
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Lemma 1. (
x
1

)
is feasible ⇐⇒ x = 0 , (8)

0 ≤ t < 1 =⇒
( (

x
t

)
is feasible ⇐⇒ x/(1 − t) is feasible

)
. (9)

On the left hand side of above equivalences we talk about feasibility with respect
to the modified LP, on the right hand side about feasibility with respect to the
original LP.

Proof. To show (8) in the direction from left to right one needs the fact that
A fulfills (4). The rest ist obvious by just expanding the respective definition of
feasibility. �

Lemma 2. Defining M ′ := sup {c x+K t | x′ =
(
x
t

)
, x′ feasible} yields

−∞ < max {M,K} = M ′ < ∞ . (10)

As a special case follows

M = −∞ =⇒ M ′ = K . (11)

Proof. Because of (8) we have M ′ ≥ K, in particular M ′ > −∞. Considering
t = 0 in (9) gives us M ′ ≥M . From (9) and (3) in the case t 	= 1 and (8) in the
case t = 1 we obtain bounds for x′:

x′ =
(
x
t

)
is feasible =⇒ l− ≤ (1 − t) l ≤ x ≤ (1− t)u ≤ u+ .

Here l− denotes the negative part of l which results from l by replacing every
positive matrix element by 0. Similarly, the positive part u+ results from u by
replacing every negative element by 0. We conclude M ′ <∞.

So far we have shown −∞ < max {M,K} ≤ M ′ < ∞. To complete the
proof, we need to show max {M,K} ≥ M ′. We will proceed by case distinction.

Assume M ≥ K. We show that for any feasible x′ =
(
x
t

)
, M ≥ c x + K t,

and therefore M ≥ M ′. This is obvious in the case t = 1, the feasibility of x′

accompanied by the equivalence (8) forces x to be zero. In the case t 	= 1, (9)
implies that x/(1− t) is feasible with respect to the original LP. But this is just
what we claim:

M ≥ c (x/(1− t)) =⇒ M ≥ c x+ tM ≥ c x+ tK .

Now assume M < K. Assume further M ′ > K. Because of −∞ < M ′ < ∞
there is a feasible x′ =

(
x
t

)
s.t. M ′ = c x+K t. For t = 1 we would have again

x = 0 and therefore the contradiction K < M ′ = K. Finally 0 ≤ t < 1 also leads
to a contradiction:

M ′ = c x+K t ≤ c x+M ′ t =⇒M ′ ≤ c (x/(1− t)) ≤ M < K ≤ M ′ .

Therefore the only possibility is M ′ ≤ K. �



Proving Bounds for Real Linear Programs in Isabelle/HOL 231

From now on we will assume that we are dealing with feasible, bounded LPs,
that is with LPs for which we know −∞ < M <∞.

2.2 The Case −∞ < M < ∞
This case is the heart of the method. Again we construct a modified LP. The
original LP is called the primal LP, the modified LP is called the dual LP. The
objective function of the dual LP

y �−→ y b, y feasible,

is to be minimized. Here y ∈ IR1×m is called feasible iff yA = c and y ≥ 0 holds.

Lemma 3. Any feasible y induces an upper bound on M :

y b ≥ M . (12)

Proof. For any feasible x we have

y b ≥ y (Ax) = (y A)x = c x . (13)

�

But is there such a feasible y so that we can utilize (12)? And if there is, can
we accomplish y b = M by carefully choosing y? The well-known answer to both
questions is yes:

Lemma 4. Define M ′ := inf {y b | y A = c and y ≥ 0}. Then

−∞ < M = M ′ < ∞ . (14)

Furthermore, choose a feasible y such that M ′ = y b. Then

card {i ∈ IN | 1 ≤ i ≤ m and y1i > 0} ≤ n . (15)

Proof. Corollary 7.1g and 7.1l in [5]. �

Now the basic idea of our method can be described as follows. First, form
the dual LP. Then use an external LP solver to solve the dual LP for an optimal
y. This optimal y serves as a certificate. In our application, where typically
m ≈ 2000 and n ≈ 200, y will be sparse, as inequality (15) tells us. Finally, use
(12) to verify our desired upper bound M ≤ K = y b.

This basic idea is complicated by the fact that we are dealing with real data
and numerical algorithms. The external LP solver does not return an y such
that y A = c and y ≥ 0, but rather an y such that y A ≈ c and y � 0. In
order to obtain a provably upper bound on M , one has to take (3) into account.
Furthermore the input data A, b and c need not to be given as exact numerical
data either, for example an element of A could equal π.

The rest of the paper will discuss the implementation in Isabelle/HOL of the
method outlined here and will also deal with the mentioned complications.
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3 Finite Matrices

Somebody who wants to implement the method outlined in the previous section
faces up to the problem of how to represent linear programs. This problem is
prominent outside of the realm of mechanical theorem proving, too: designers
of linear programming packages typically provide various ways of input of data
to the LP algorithms these packages provide, one can normally choose at least
between dense and sparse representations of the data. The issue is to provide a
certain convenience of dealing with the data without compromising the efficiency
of the LP algorithms by too much overhead.

Our situation is different: we need to reason within our mechanical theorem
proving environment Isabelle/HOL why our computations lead to a correct re-
sult, therefore we need a good representation of LPs for reasoning about them. Of
course we also need to compute efficiently. But we should avoid mixing up those
two issues if we can. The reasoning in the previous section has used matrices
and the properties of matrix operations like associativity of matrix multiplica-
tion extensively. Therefore representing LPs within Isabelle/HOL as matrices is
a good idea.

So how exactly does one represent matrices in higher-order logic? Obviously,
matrices should be a type, but how does one deal with the dimension of a
matrix? HOL does not have dependent types, so it seems impossible to have
a parametrized family of types where the dimension of the matrix would be
the parameter. But it is: one possibility that is pursued by John Harrison in the
2005 version of his Hol-light system is to represent the needed parameter by type
variables! He uses this representation in order to formalize multivariate calculus.
But in our case this idea cannot be used without causing serious problems later
when we turn our attention to sparse matrices.

Another possibility is to represent the dimension of a matrix by a predicate
that carves the set of all matrices of this dimension out of a certain bigger,
already existing type. This is a common technique to overcome the absence of
dependent types in HOL [10]. This approach could work like this:1

type α M = nat × nat × (nat ⇒ nat ⇒ α)

constdef
Mequiv :: (α M ∗ α M) set
Mequiv ≡ {((m, n, f), (m, n, g)) | ∀ j i. (j < m ∧ i < n) −→ f j i = g j i}

typedef α matrix = UNIV // Mequiv

constdef
is-matrix :: nat ⇒ nat ⇒ α matrix ⇒ bool
is-matrix m n A ≡ ∃ f. (m, n, f) ∈ Rep-matrix A.

(16)

1 Here and in the following we deviate slightly from actual Isabelle/HOL syntax for
various reasons, the most important being formatting; the actual Isabelle/HOL user
will have no difficulty translating the given theory snippets to proper Isabelle/HOL
syntax.



Proving Bounds for Real Linear Programs in Isabelle/HOL 233

In (16) α matrix is the bigger type, and is-matrix m n acts as the predicate
that carves out all matrices consisting of m rows and n columns. Here matrices
are modelled as equivalence classes [7] of triples (m,n, f) where m denotes the
number of rows, n the number of columns and f a function from indices to
matrix elements. The set of these equivalence classes is denoted by UNIV //
Mequiv. With this formalization of matrices an error element comes for free:
there is exactly one matrix Error such that

is-matrix 0 0Error (17)

holds. When adding matrices A and B which fulfill

∃ m n . (is-matrix m n A) ∧ (¬ is-matrix m n B) (18)

and when multiplying matrices A and B for which

∃ m n u v. (is-matrix m n A) ∧ (is-matrix u v B) ∧ (n �= u) (19)

holds, the matrix Error is returned to signal that the operands do not belong to
the natural domain of addition and multiplication, respectively.

Still, this approach is not entirely satisfying: in Isabelle/HOL there exists a
large number of theorems that are valid for types that form a group or a ring. The
fact that a type can be viewed as such an algebraic structure is formulated via
the concept of axiomatic type classes [6]. But α matrix in (16) with the suggested
error signaling definition of addition does not even form a group, because there
is no matrix Zero with

∀A. A + Zero = A , (20)

but rather a whole family Zeromn such that

∀A. is-matrix m n A −→ A + (Zero mn) = A . (21)

Therefore we advocate a different approach that exploits the fact that the ma-
trix elements commonly used in mathematics [11] themselves carry an algebraic
structure, that of a ring, which always contains a zero. We define α matrix to
be the type formed by all infinite matrices that have only finitely many non-zero
elements of type α:

type α infmatrix = nat ⇒ nat ⇒ α

typedef α matrix = {f :: (α :: zero)infmatrix |finite {(j, i) | f j i �= 0}} .
(22)

Hence we choose the name finite matrices for objects of type α matrix. Note the
restriction α :: zero in (22). This means that the elements of a matrix cannot
have just any type but only a type that is an instance of the axiomatic type class
zero and has thus an element denoted by 0. Of course this is not a real restriction
on the type; any type can be declared to be an instance of the axiomatic type
class zero.
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3.1 Dimension of a Finite Matrix

The dimension of a finite matrix deviates from the notion of dimension that one
is used to. Because we did not encode the number of rows and columns explicitly
in the representation of a finite matrix as we did in (16), we have to recover the
dimension of a finite matrix by extensionality:

constdefs
nrows :: α matrix ⇒ nat
nrows A ≡ LEASTm.∀ j i. m ≤ j −→ (Rep-matrixA j i = 0)
ncols :: α matrix ⇒ nat
ncols A ≡ LEASTn. ∀ j i. n ≤ i −→ (Rep-matrixA j i = 0)
is-matrix :: nat ⇒ nat ⇒ α matrix ⇒ bool
is-matrix m n A ≡ nrows A ≤ m ∧ ncols A ≤ n .

(23)

The expression LEASTx. P x equals the least x such that P x holds. The defi-
nition of the type α matrix has introduced two automatically defined functions
Rep-matrix and Abs-matrix

consts
Rep-matrix :: α matrix ⇒ α infmatrix
Abs-matrix :: α infmatrix ⇒ α matrix

(24)

that convert between finite matrices and infinite matrices. They enjoy the fol-
lowing crucial properties:

(A = B) = (∀ j i. Rep-matrix A j i = Rep-matrix B j i) , (25)

∃1 f. A = Abs-matrix f , (26)

Abs-matrix (Rep-matrix A) = A , (27)

finite {(j, i) |Rep-matrix A j i �= 0} , (28)

finite {(j, i) | f j i �= 0} =⇒ Rep-matrix (Abs-matrix f) = f . (29)

Thus Rep-matrixAj i denotes the matrix element of A in row j and column i.
Note that the first row is row 0, likewise for columns.

Let us return to the definitions in (23). The definition of is-matrix implies
that a matrix has not exactly one dimension, but infinitely many! Therefore
there is no need for signaling an error due to incompatibility of dimensions: for
any two matrices A and B one shows

∃m. is-matrix m mA ∧ is-matrix m mB . (30)

The intuition behind (30) is that every matrix can be viewed as a square matrix
of dimension m as long as m is large enough: one just needs to fill up the missing
rows and columns with zeros.
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The need for an Error matrix has vanished, but one can still use (17) to
uniquely define a matrix. This time, we denote that matrix by 0:

∀A. (A = 0) = (is-matrix 0 0A) . (31)

Another possibility of defining 0 is given by the following theorem:

∀A. (A = 0) = (∀mn. is-matrix m n A) . (32)

We will see that 0 is actually the proper name for this matrix.

3.2 Lifting Unary Operators

In this subsection we look at how to define an unary operator U on matrices,

U :: α matrix ⇒ β matrix , (33)

by lifting an unary operator u on matrix elements,

u :: α ⇒ β . (34)

The first step is to lift u to infinite matrices:

constdef
apply-infmatrix :: (α ⇒ β) ⇒ (α infmatrix ⇒ β infmatrix)
apply-infmatrix u ≡ λ f j i. u (f j i) ,

(35)

which results in the lifting property

(apply-infmatrix u f) j i = u (f j i) . (36)

Its proof is apparent from the definition of apply-infmatrix.
Now the unary lifting operator apply-matrix can be defined by first lifting u

to infinite matrices, and then to finite matrices:

constdef
apply-matrix :: (α ⇒ β) ⇒ (α matrix ⇒ β matrix)
apply-matrix u ≡ λA. Abs-matrix (apply-infmatrix u (Rep-matrix A)) .

(37)

What is the lifting property for apply-matrix? A first guess yields

Rep-matrix (apply-matrix u A) j i = u (Rep-matrix A j i) . (38)

But this is false (in the sense that we cannot prove it in HOL)! To see why,
consider α = β = int and u = λx. 1. Then we have

apply-infmatrix u (Rep-matrix A) =

1 1 · · ·
1 1 · · ·
...

...
. . .

�= Rep-matrix B (39)

for all matrices A and any matrix B. But there is a simple condition on u that
turns out to be sufficient and necessary to prove (38):

u 0 = 0 =⇒ Rep-matrix (apply-matrix u A) j i = u (Rep-matrix A j i) . (40)

This is easily provable using (37), (28), (29) and (36).
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3.3 Lifting Binary Operators

Just as we have defined a unary lifting operator apply-matrix, we can define
similarly a binary lifting operator combine-matrix:

constdef
combine-infmatrix ::

(α ⇒ β ⇒ γ) ⇒ (α infmatrix ⇒ β infmatrix ⇒ γ infmatrix)
combine-infmatrix v ≡ λf g j i. v (f j i) (g j i) ,

(41)

constdef
combine-matrix :: (α ⇒ β ⇒ γ) ⇒ (α matrix ⇒ β matrix ⇒ γ matrix)
combine-matrix v ≡

λ AB. Abs-matrix (combine-infmatrix v (Rep-matrix A) (Rep-matrix B)) ,

(42)

The lifting property for combine-matrix reads

v 0 0 = 0 =⇒ Rep-matrix (combine-matrix v A B) j i =
v (Rep-matrix A j i) (Rep-matrix B j i) .

(43)

Lifting binary operators passes on commutativity and associativity. Defining

constdefs
commutative :: (α ⇒ α ⇒ β) ⇒ bool
commutative v ≡ ∀x y. v x y = v y x
associative :: (α ⇒ α ⇒ α) ⇒ bool
associative v ≡ ∀x y z. v (v x y) z = v x (v y z)

(44)

we can formulate this propagation concisely:

commutative v =⇒ commutative (combine-matrix v) ,
[[v 0 0 = 0; associative v]] =⇒ associative (combine-matrix v) .

(45)

You might be surprised that the propagation of commutativity does not require
v 0 0 = 0, which is due to the idiosyncrasies of the definite description operator
that is hidden in Abs-matrix.

3.4 Matrix Multiplication

We need one last lifting operation, the most interesting one: given two binary
operators addition and multiplication on the matrix elements, define the ma-
trix product induced by those two operators. As a basic tool we first define by
primitive recursion a fold operator that acts on sequences:

const foldseq :: (α ⇒ α ⇒ α) ⇒ (nat ⇒ α) ⇒ nat ⇒ α
primrec

foldseq f s 0 = s 0
foldseq f s (Sucn) = f (s 0) (foldseq f (λ k. s (Suck))n)

(46)

For illustration purposes, assume s = (s1, s2, s3, s4, . . . , sn, 0, 0, 0, . . .). Then

foldseq f s 0 = s1 ,
foldseq f s 1 = f s1 s2 ,
foldseq f s 2 = f s1 (f s2 s3) ,
foldseq f s 3 = f s1 (f s2 (f s3 s4)) ,
foldseq f s n = f s1 (f s2 (. . . (f sn 0) . . .)) ,
foldseq f s (n + 1) = f s1 (f s2 (. . . (f sn (f 0 0) . . .)) and so on.

(47)
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Note that if f 0 0 = 0 the above sequence converges:

f 0 0 = 0 =⇒ ∀m. n ≤ m −→ foldseq f sm = foldseq f s n . (48)

Now we are prepared to deal with matrix multiplication:

constdef
mult-matrix-n :: nat ⇒ (α ⇒ β ⇒ γ) ⇒ (γ ⇒ γ ⇒ γ) ⇒

α matrix ⇒ β matrix ⇒ γ matrix
mult-matrix-n n mult add A B ≡ Abs-matrix (λ j i.

foldseq add (λ k. mult (Rep-matrixA j k) (Rep-matrix B k i))n)

(49)

The idea of mult-matrix-nnmult addAB is to consider only the first n columns
of A and the first n rows of B when calculating the matrix product. Of course
the matrix product should be independent of n. We achieve this by setting

mult-matrixmult add ≡ lim
n→∞

mult-matrix-nn mult add , (50)

which is due to (48) well-defined if ∀x.multx 0 = mult 0 x = add 0 0 = 0 holds:

constdef
mult-matrix :: (α ⇒ β ⇒ γ) ⇒ (γ ⇒ γ ⇒ γ) ⇒

α matrix ⇒ β matrix ⇒ γ matrix
mult-matrix mult add A B ≡

mult-matrix-n (max (ncols A) (nrows B))mult addA B .

(51)

Again, we have a lifting property:

[[∀ x. multx 0 = 0 ∧ mult 0 x = 0; add 0 0 = 0 ]]=⇒
Rep-matrix (mult-matrixmult addA B ) j i = foldseq add

(λ k. mult (Rep-matrixA j k) (Rep-matrix B k i)) (max (ncols A) (nrows B)) .
(52)

Finally, let us examine what properties of element addition and element multi-
plication induce distributivity and associativity of mult-matrix.

Distributivity. We distinguish between left and right distributivity:2

constdefs
r-distributive :: (α ⇒ β ⇒ β) ⇒ (β ⇒ β ⇒ β) ⇒ bool
r-distributive mult add ≡ ∀ a u v. mult a (addu v) = add (mult a u) (mult a v)
l-distributive :: (α ⇒ β ⇒ α) ⇒ (α ⇒ α ⇒ α) ⇒ bool
l-distributive mult add ≡ ∀ a u v. mult (add u v)a = add (multu a) (mult v a)

(53)

Distributivity of mult over add lifts to distributivity of mult-matrix mult add
over combine-matrix add if add is associative and commutative and both add
and mult behave as expected with respect to 0:

2 Our convention is that left distributivity means that the factor is distributed over
the left sum, not that the left factor is the one that gets distributed.
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[[ l-distributive mult add; associative add; commutative add;
∀ x. multx 0 = 0 ∧ mult 0x = 0; add 0 0 = 0 ]]

=⇒ l-distributive (mult-matrix mult add) (combine-matrix add) ,

[[ r-distributive mult add; associative add; commutative add;
∀ x. multx 0 = 0 ∧ mult 0x = 0; add 0 0 = 0 ]]

=⇒ r-distributive (mult-matrix mult add) (combine-matrix add) .

(54)

Associativity. We state the law of associativity for mult-matrix in a very
general form:

[[∀ a. mult1 a 0 = 0; ∀ a. mult1 0 a = 0; ∀ a. mult2 a 0 = 0; ∀ a. mult2 0 a = 0;
add1 0 0 = 0; add2 0 0 = 0;
∀ a b c d. add2 (add1 a b) (add1 c d) = add1 (add2 a c) (add2 b d);
∀ a b c. mult2 (mult1 a b) c = mult1 a (mult2 b c);
associative add1; associative add2;
l-distributive mult2 add1; r-distributive mult1 add2 ]]

=⇒ mult-matrix mult2 add2 (mult-matrix mult1 add1 A B) C =
mult-matrix mult1 add1 A (mult-matrix mult2 add2 B C) .

(55)

For mult = mult1 = mult2 and add = add1 = add2 this simplifies to

[[∀ a. mult a 0 = 0; ∀ a. mult 0 a = 0; add 0 0 = 0;
associative add; commutative add; associative mult;
l-distributive mult add; r-distributive mult add ]]

=⇒ associative (mult-matrix mult add) .

(56)

3.5 Lattice-Ordered Rings

Paulson describes in [6] how numerical theories like the theory of integers or the
theory of reals can be organized in Isabelle/HOL using axiomatic type classes.
For example both integers and reals form a ring, therefore Paulson recommends
to prove theorems that are implied purely by ring properties only once, and then
to prove that both types int and the type real are an instance of the axiomatic
type class ring.

Birkhoff points out [12, chapt. 17] that for a fixed n the ring of all n × n
square matrices forms a latticed-ordered ring in a natural way. The same is true
for our finite matrices! Therefore it suggests itself to establish an axiomatic type
class lordered-ring that captures the property of a type to form a lattice-ordered
ring. Of course lordered-ring should be integrated with the other type classes like
ring and ordered-ring of Isabelle/HOL to maximize theorem reuse. Two major
changes along with minor modifications were necessary to the original hierarchy
of type classes as described in [6]:

1. The original type class ring demanded both the existence of a multiplicative
unit element and the commutativity of multiplication. But our finite matrices
do not have such a multiplicative unit element, nor is multiplication of finite
matrices a commutative operator. Nevertheless, finite matrices still form a
ring in common mathematical terminology. Therefore the original type class
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ring was renamed to become comm-ring-1 and new type classes ring, ring-1
and comm-ring were introduced, suitable for rings that do not necessarily
possess a 1 and/or are not commutative.

2. All ordered algebraic structures contained in the original hierarchy were lin-
early ordered. The natural (elementwise) order for finite matrices is a proper
partial order, actually a lattice order. Therefore we enriched the hierarchy
with type classes that model partially ordered algebraic systems like par-
tially ordered groups and rings, or lattice-ordered groups and rings. For this
we follow largely [13], [12].

We do not want to delve into the details of the modified hierarchy, but refer the
curious reader to the 2005 release of Isabelle where all these changes have been
incorporated. Instead, let us directly turn to lattice-ordered rings. A type α is
an instance of the axiomatic type class lordered-ring iff

ring. α is a ring with addition +, subtraction −, additive inverse −,
multiplication ∗, zero 0,

lattice. α is a lattice with partial order ≤ and operators join and meet,
monotonicity. addition and multiplication are monotone:

a ≤ b −→ c + a ≤ c + b , (57)
a ≤ b ∧ 0 ≤ c −→ a ∗ c ≤ b ∗ c ∧ c ∗ a ≤ c ∗ b . (58)

Both int and real are instances of lordered-ring :

instance int :: lordered-ring
instance real :: lordered-ring . (59)

Our goal is to prove

instance matrix :: (lordered-ring) lordered-ring . (60)

The above meta theorem has the following meaning (which is not legal Isabelle
syntax):

(instance α :: lordered-ring) =⇒ (instance α matrix :: lordered-ring) . (61)

Of course, in order to prove (60), one first has to define 0, +, ∗ etc. for objects
of type matrix. The zero matrix is easy to define:

instance matrix :: (zero) zero
def (overloaded)

0 ≡ Abs-matrix (λ j i. 0) .
(62)

It is simple to show that this is actually the 0 we refer to in (31) and (32).
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Addition +, multiplication ∗, subtraction −, unary minus −, can all be de-
fined using the lifting machinery we have developed:

instance matrix :: (plus) plus
instance matrix :: (minus) minus
instance matrix :: ({plus, times}) times

defs (overloaded)
A + B ≡ combine-matrix (λa b. a + b) A B
A − B ≡ combine-matrix (λa b. a − b) A B

−A ≡ apply-matrix (λa. − a)A
A ∗ B ≡ mult-matrix (λ a b. a ∗ b) (λa b. a + b) A B .

(63)

Finally, we need to be able to compare matrices:

instance matrix :: ({ord, zero}) ord
defs (overloaded)

A ≤ B ≡ ∀ j i. Rep-matrix A j i ≤ Rep-matrix B j i
(64)

After having introduced the necessary syntax, we need to show that α matrix
really constitutes a lattice-ordered ring, provided α constitutes one, in order to
obtain (60). But almost the entire work has already been done: for example, in
order to prove associativity of matrix multiplication,

∀ (A :: (α :: lordered-ring) matrix). A ∗ (B ∗ C) = (A ∗ B) ∗ C , (65)

which is the hardest of all proof obligations, just apply (56)! The remaining
proof obligations are not difficult to prove, either, one just has to make use of
matrix extensionality (25) and the lifting properties (40), (43) and (52). It is
useful, though, first to dispose of the assumptions in these lifting properties, so
for example instead of using (43) directly one should prove and use

Rep-matrix (A + B) j i = (Rep-matrix A j i) + (Rep-matrixB j i)
Rep-matrix (A − B) j i = (Rep-matrix A j i) − (Rep-matrixB j i) .

(66)

A proof obligation that differs from the others because it is not a universal
property that needs to be shown, but an existential one, turns up when one has
to show that join and meet do exist:

∃ j. ∀ a b x. a ≤ j a b ∧ b ≤ j a b ∧ (a ≤ x ∧ b ≤ x −→ j a b ≤ x)
∃m.∀ a b x.m a b ≤ a ∧ ma b ≤ b ∧ (x ≤ a ∧ x ≤ b −→ x ≤ ma b)

(67)

But these are not difficult to exhibit! Just choose

join ≡ combine-matrix join, meet ≡ combine-matrix meet . (68)

3.6 Positive Part and Negative Part

In lattice-ordered rings (actually in groups, also), both the positive part and the
negative part can be defined:

constdefs
pprt :: α ⇒ (α :: lordered-ring)
pprt x ≡ join x 0
nprt :: α ⇒ (α :: lordered-ring)
nprt x ≡ meet x 0

(69)
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We will write x+ instead of pprtx, and x− instead of nprtx. We have:

0 ≤ x+, x− ≤ 0, x = x+ + x−, x ≤ y =⇒ x− ≤ y− ∧ x+ ≤ y+ . (70)

Positive part and negative part come in handy for calculating bounds for a
product when bounds for each of the factors of the product are known:

[[a1 ≤ a; a ≤ a2; b1 ≤ b; b ≤ b2 ]]
=⇒ a ∗ b ≤ a+

2 ∗ b+
2 + a+

1 ∗ b−
2 + a−

2 ∗ b+
1 + a−

1 ∗ b−
1

(71)

In order to prove (71), decompose the factors into their parts and use distribu-
tivity. Then take advantage of the monotonicity of positive and negative part:

a ∗ b = (a+ + a−) ∗ (b+ + b−)

= a+ ∗ b+ + a+ ∗ b− + a− ∗ b+ + a− ∗ b−

≤ a+
2 ∗ b+2 + a+

1 ∗ b−2 + a−2 ∗ b+1 + a−1 ∗ b−1 .

4 The Main Theorem: Proving Bounds by Duality

Now we have everything in place to represent LPs by finite matrices. In sect. 2,
we presented the basic idea of how to prove an arbitrarily precise upper bound
for the objective function (1) of a given LP. There the LP was represented by
matrices whose elements are real numbers:

c ∈ IR1×n, A ∈ IRm×n, b ∈ IRm×1 , l, u ∈ IRn×1.

Dropping the dimensions we arrive at a representation of a real linear program
by finite matrices:

c, A, b, l, u :: real matrix .

From now on we are always talking in terms of finite matrices.
We need a further modification of our representation of LPs: our method

is based on numerical algorithms like the Simplex method, therefore we need
to represent the data numerically. We allow for this possibility by looking at
intervals of linear programs instead of only considering a single LP. Such an
interval is given by finite matrices c1, c2, A1, A2, b, l, u. We can now state the
main theorem as it has been proven in Isabelle/HOL:

[[A ∗ x ≤ b; A1 ≤ A; A ≤ A2; c1 ≤ c; c ≤ c2; l ≤ x; x ≤ u; 0 ≤ y]]
=⇒ c ∗ x ≤ y ∗ b + ( let s1 = c1 − y ∗ A2; s2 = c2 − y ∗ A1

in s+
2 ∗ u+ + s+

1 ∗ u− + s−
2 ∗ l+ + s−

1 ∗ l−) .
(72)

The proof is by standard algebraic manipulations: using A ∗ x ≤ b and y ≥ 0,

c ∗ x ≤ y ∗ b+ (c− y ∗A) ∗ x

follows at once. Then one just has to apply (71) to the product (c − y ∗ A) ∗ x.
Note that this proof not only works for matrices, but for any lattice-ordered
ring. Therefore the main theorem is valid also for lattice-ordered rings!
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This is how our method works: First, we calculate the approximate optimal
solution y of the dual LP. We know our primal LP only approximately, so we
can pass only approximate data to the external LP solver. We could pass for
example c1, A1, b, l, u. The LP solver will return the certificate y, which is only
approximately non-negative. Therefore we replace all negative elements of y by
0. We then plug the known numerical data y, c1, c2, A1, A2, b, l and u into
(72) and simplify the resulting theorem. The simplification will rewrite 0 ≤ y
to True and the large expression on the right hand side of the inequality to a
matrix numeral K with ncolsK ≤ 1 and nrowsK ≤ 1. The result of our method
is therefore the theorem

[[A ∗ x ≤ b; A1 ≤ A; A ≤ A2; c1 ≤ c; c ≤ c2; l ≤ x; x ≤ u]]
=⇒ c ∗ x ≤ K .

(73)

In the above theorem, free variables are set in bold face. All other identifiers
denote matrix numerals.

5 Sparse Matrices and Floats

After reading the previous section, you probably wonder what a matrix numeral
might look like. We have chosen to represent matrix numerals in such a way that
sparse matrices are encoded efficiently:

types
α spvec = (nat ∗ α) list
α spmat = (α spvec) spvec

(74)

constdefs
sparse-row-vector :: α spvec ⇒ α matrix
sparse-row-vector l ≡ foldl (λ m (i, e). m + (singleton-matrix 0 i e)) 0 l
sparse-row-matrix :: α spmat ⇒ α matrix
sparse-row-matrix L ≡

foldl (λm (j, l). m + (move-matrix (sparse-row-vector l) j 0)) 0L

(75)

Here singleton-matrix j i e denotes the matrix whose elements are all zero except
the element in row j and column i, which equals e. Furthermore move-matrixAj i
denotes the matrix that one gets if one moves the matrix A by j rows down and
i columns right, and fills up the first j rows and i columns with zero elements.

Real numbers are represented as binary, arbitrary precision floating point
numbers:

constdef
float :: (int ∗ int) ⇒ real
float (m,e) ≡ (real m) ∗ 2e

(76)

Finally, here is an example of a matrix numeral with floats as its elements:

[(1, [(1, float (7, 0)), (3, float (−3, 2))]), (2, [(0, float (1,−3)), (1, float (−3,−4))])]

sparse-row-matrix−−−−−−−−−−−−−→

⎛
⎝0 0 0 0

0 7 0 −12
1
8 −

3
16 0 0

⎞
⎠
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We have formalized addition, subtraction, multiplication, comparison, positive
part and negative part directly on sparse vectors and matrices by recursion on
lists. The multiplication algorithm for sparse matrices is inspired by the one
given in [8].

These operations on sparse vectors/matrices can be proven correct with re-
spect to their finite matrices counterpart via the sparse-row-matrix morphism,
assuming certain sortedness constraints. This is actually not too hard: all stu-
dents of an introductory Isabelle/HOL class taught at Technische Universität
München have been able to complete these proofs within four weeks as their
final assignment with varying help from their tutors. Using these correctness
results, one can then easily prove a sparse version of (72).

6 Conclusion

We have presented a novel way to prove arbitrarily precise bounds within higher-
order logic for real linear programs that have a priori bounds. Our approach has
three main virtues:

1. It is fast. The actual work is done by an external LP solver, the theorem
prover has only to check a small certificate. Using a rewriting oracle that is
based on the ideas found in [9], this check can be performed so quickly that
it is projected that the linear programs arising in the proof of the Kepler
conjecture can be bounded in about 10 days on a 3Ghz Pentium 4. The
original computer programs from the 1998 proof of the Kepler conjecture
that do not generate proofs at all needed back then about 7 days.

2. It decouples reasoning from computing issues. The new notion of finite ma-
trices has been introduced, and it turned out that finite matrices and lattice-
ordered rings are a natural choice to describe and reason about our method.
At the same time, well-known data structures like sparse matrices can still
be used for efficient computing.

3. It is independent from the actual method of solving LPs. This method could
be Simplex, but does not have to be.
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13. László Fuchs. Partially ordered algebraic systems, Addison-Wesley 1963.



Essential Incompleteness of Arithmetic

Verified by Coq

Russell O’Connor

1 Institute for Computing and Information Science,
Faculty of Science, Radboud University Nijmegen

2 The Group in Logic and the Methodology of Science,
University of California, Berkeley

r.oconnor@cs.ru.nl

Abstract. A constructive proof of the Gödel-Rosser incompleteness the-
orem [9] has been completed using the Coq proof assistant. Some theory
of classical first-order logic over an arbitrary language is formalized. A
development of primitive recursive functions is given, and all primitive
recursive functions are proved to be representable in a weak axiom sys-
tem. Formulas and proofs are encoded as natural numbers, and functions
operating on these codes are proved to be primitive recursive. The weak
axiom system is proved to be essentially incomplete. In particular, Peano
arithmetic is proved to be consistent in Coq’s type theory and therefore
is incomplete.

1 Introduction

The Gödel-Rosser incompleteness theorem for arithmetic states that any com-
plete first-order theory of a nice axiom system, using only the symbols +, ×,
0, S, and < is inconsistent. A nice axiom system must contain the nine specific
axioms of a system called NN. These nine axioms serve to define the previous
symbols. A nice axiom system must also be expressible in itself. This last re-
striction prevents the incompleteness theorem from applying to axioms systems
such as the true first order statements about .

A computer verified proof of Gödel’s incompleteness theorem is not new.
In 1986 Shankar created a proof of the incompleteness of Z2, hereditarily fi-
nite set theory, in the Boyer-Moore theorem prover [11]. My work is the first
computer verified proof of the essential incompleteness of arithmetic. Harrison
recently completed a proof in HOL Light [6] of the essential incompleteness of Σ1-
complete theories, but has not shown that any particular theory is Σ1-complete.
His work will be included in the next release of HOL Light.

My proof was developed and checked in Coq 7.3.1 using Proof General under
XEmacs. It is part of the user contributions to Coq and can be checked in Coq
8.0 [14]. Examples of source code in this document use the new Coq 8.0 notation.

Coq is an implementation of the calculus of (co)inductive constructions. This
dependent type theory has intensional equality and is constructive, so my proof is
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c© Springer-Verlag Berlin Heidelberg 2005

TPHOLs



246 R. O’Connor

constructive. Actually the proof depends on the Ensembles library which declares
an axiom of extensionality for Ensembles, but this axiom is never used.

This document points out some of the more interesting problems I encoun-
tered when formalizing the incompleteness theorem. My proof mostly follows
the presentation of incompleteness given in An Introduction to Mathematical
Logic [10]. I referred to the supplementary text for the book Logic for Mathe-
matics and Computer Science [1] to construct Gödel’s β-function. I also use part
of Caprotti and Oostdijk’s contribution of Pocklington’s criterion [2] to prove
the Chinese remainder theorem.

This document is organized as follows. First I discuss the difficulties I had
when formalizing classical first-order logic over an arbitrary language. This is
followed by the definition of a language LNN and an axiom system called NN.
Next I give the statement of the essential incompleteness of NN. Then I briefly
discuss coding formulas and proofs as natural numbers. Next I discuss primitive
recursive functions and the problems I encountered when trying to prove that
substitution can be computed by a primitive recursive function. Finally I briefly
discuss the fixed-point theorem, Rosser’s incompleteness theorem, and the in-
completeness of PA. At the end I give some remarks about how to extend my
work in order to formalize Gödel’s second incompleteness theorem.

1.1 Coq Notation

For those not familiar with Coq syntax, here is a short list of notation

– ->, /\, \/, and ~ are the logical connectives ⇒, ∧, ∨, and ¬.
– A -> B, A * B, and A + B form function types, Cartesian product types,

and disjoint union types.
– *, +, and S are the arithmetic operations of multiplication, addition, and

successor.
– inl and inr are the left and right injection functions of types A -> A + B

and B -> A + B.
– ::, and ++ are the list operations cons, and append.
– is an omitted parameter that Coq can infer itself.

For more details see the Coq 8.0 reference manual [14].

2 First-Order Classical Logic

I began by developing the theory of first order classical logic inside Coq. In
essence Coq’s logic is a formal metalogic to reason about this internal logic.

2.1 Definition of Language

I immediately took advantage of Coq’s dependent type system by defining
Language to be a dependent record of types for symbols and an arity function
from symbols to . The Coq code is:
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Record Language : Type := language
{Relations : Set;
Functions : Set;
arity : Relations + Functions -> nat}.

In retrospect it would have been slightly more convenient to use two arity func-
tions instead of using the disjoint union type.

This approach differs from Harrison’s definition of first order terms and for-
mulas in HOL Light [5] because HOL Light does not have dependent types.
Dependent types allow the type system to enforce that all terms and formulas
of a given language are well formed.

2.2 Definition of Term

For any given language, a Term is either a variable indexed by a natural number
or a function symbol plus a list of n terms where n is the arity of the function
symbol. My first attempt at writing this in Coq failed.

Variable L : Language.
(* Invalid definition *)
Inductive Term0 : Set :=
| var0 : nat -> Term0
| apply0 : forall (f : Functions L) (l : List Term0),

(arity L (inr _ f))=(length l) -> Term0.

The type (arity L (inr f))=(length l) fails to meet Coq’s positivity re-
quirement for inductive types. Expanding the definition of length reveals a
hidden occurrence of Term0 which is passed as an implicit argument to length.
It is this occurrence that violates the positivity requirement.

My second attempt met the positivity requirement, but it had other difficul-
ties. A common way to create a polymorphic lists of length n is:

Inductive Vector (A : Set) : nat -> Set :=
| Vnil : Vector A 0
| Vcons : forall (a : A) (n : nat),

Vector A n -> Vector A (S n).

Using this I could have defined Term like:

Variable L : Language.

Inductive Term1 : Set :=
| var1 : nat -> Term1
| apply1 : forall f : Functions L,

(Vector Term1 (arity L (inr _ f))) -> Term1.

My difficulty with this definition was that the induction principle generated by
Coq is too weak to work with.

Instead I created two mutually inductive types: Term and Terms.
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Variable L : Language.

Inductive Term : Set :=
| var : nat -> Term
| apply : forall f : Functions L,

Terms (arity L (inr _ f)) -> Term
with Terms : nat -> Set :=
| Tnil : Terms 0
| Tcons : forall n : nat,

Term -> Terms n -> Terms (S n).

Again the automatically generated induction principle is too weak, so I used the
Scheme command to generate suitable mutual-inductive principles.

The disadvantage of this approach is that useful lemmas about Vectors must
be reproved for Terms. Some of these lemmas are quite tricky to prove because
of the dependent type. For example, proving forall x : Terms 0, Tnil = x
is not easy.

Recently, Marche has shown me that the Term1 definition would be adequate.
One can explicitly make a sufficient induction principle by using nested Fixpoint
functions [7].

2.3 Definition of Formula

The definition of Formula was straightforward.

Inductive Formula : Set :=
| equal : Term -> Term -> Formula
| atomic : forall r : Relations L, Terms (arity L (inl _ r)) ->

Formula
| impH : Formula -> Formula -> Formula
| notH : Formula -> Formula
| forallH : nat -> Formula -> Formula.

I defined the other logical connectives in terms of impH, notH, and forallH.
The H at the end of the logic connectives (such as impH) stands for “Hilbert”

and is used to distinguish them from Coq’s connectives.
For example, the formula ¬∀x0.∀x1.x0 = x1 would be represented by:

notH (forallH 0 (forallH 1 (equal (var 0) (var 1))))

It would be nice to use higher order abstract syntax to handle bound variables
by giving forallH the type (Term -> Formula) -> Formula. I would represent
the above example as:

notH (forallH (fun x : Term =>
(forallH (fun y : Term => (equal x y)))))

This technique would require addition work to disallow “exotic terms” that are
created by passing a function into forallH that does a case analysis on the term
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and returning entirely different formulas in different cases. Despeyroux et al. [3]
address this problem by creating a complicated predicate that only valid formulas
satisfy.

Another choice would have been to use de Bruijn indexes to eliminate named
variables. However dealing with free and bound variables with de Bruijn indexes
can be difficult.

Using named variables allowed me to closely follow Hodel’s work [10]. Also, in
order to help persuade people that the statement of the incompleteness theorem
is correct, it is helpful to make the underlying definitions as familiar as possible.

Renaming bound variables turned out to be a constant source of work during
development because variable names and terms were almost always abstract. In
principle the variable names could conflict, so it was constantly necessary to
consider this case and deal with it by renaming a bound variable to a fresh one.
Perhaps it would have been better to use de Bruijn indexes and a deduction
system that only deduced closed formulas.

2.4 Definition of substituteFormula

I defined the function substituteFormula to substitute a term for all oc-
currences of a free variable inside a given formula. While the definition of
substituteTerm is simple structural recursion, substitution for formulas is com-
plicated by quantifiers. Suppose we want to substitute the term s for xi in the
formula ∀xj .ϕ and i 	= j. Suppose xj is a free variable of s. If we näıvely perform
the substitution then the occurrences of xj in s get captured by the quantifier.
One common solution to this problem is to disallow substitution for a term s
when s is not substitutable for xi in ϕ. The solution I take is to rename the
bound variable in this case.

(∀xj .ϕ)[xi/s]
def= ∀xk.(ϕ[xj/xk])[xi/s] wherek 	= i andxk is not free inϕ or s

Unfortunately this definition is not structurally recursive. The second substitu-
tion operates on the result of the first substitution, which is not structurally
smaller than the original formula.

Coq will not accept this recursive definition as is; it is necessary to prove
the recursion will terminate. I proved that substitution preserves the depth of a
formula, and that each recursive call operates on a formula of smaller depth.

One of McBride’s mantras says, “If my recursion is not structural, I am us-
ing the wrong structure” [8, p. 241]. In this case, my recursion is not structural
because I am using the wrong recursion. Stoughton shows that it is easier to
define substitution that substitutes all variables simultaneously because the re-
cursion is structural [13]. If I had made this definition first, I could have defined
substitution of one variable in terms of it and many of my difficulties would have
disappeared.

2.5 Definition of Prf

I defined the inductive type (Prf Gamma phi) to be the type of proofs of phi,
from the list of assumptions Gamma.
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Inductive Prf : Formulas -> Formula -> Set :=
| AXM : forall A : Formula, Prf (A :: nil) A
| MP : forall (Axm1 Axm2 : Formulas) (A B : Formula),

Prf Axm1 (impH A B) -> Prf Axm2 A ->
Prf (Axm1 ++ Axm2) B

| GEN : forall (Axm : Formulas) (A : Formula) (v : nat),
~ In v (freeVarListFormula L Axm) -> Prf Axm A ->

Prf Axm (forallH v A)
| IMP1 : forall A B : Formula, Prf nil (impH A (impH B A))
| IMP2 : forall A B C : Formula,

Prf nil (impH (impH A (impH B C))
(impH (impH A B) (impH A C)))

| CP : forall A B : Formula,
Prf nil (impH (impH (notH A) (notH B)) (impH B A))

| FA1 : forall (A : Formula) (v : nat) (t : Term),
Prf nil (impH (forallH v A) (substituteFormula L A v t))

| FA2 : forall (A : Formula) (v : nat),
~ In v (freeVarFormula L A) ->

Prf nil (impH A (forallH v A))
| FA3 : forall (A B : Formula) (v : nat),

Prf nil
(impH (forallH v (impH A B))

(impH (forallH v A) (forallH v B)))
| EQ1 : Prf nil (equal (var 0) (var 0))
| EQ2 : Prf nil (impH (equal (var 0) (var 1))

(equal (var 1) (var 0)))
| EQ3 : Prf nil

(impH (equal (var 0) (var 1))
(impH (equal (var 1) (var 2)) (equal (var 0) (var 2))))

| EQ4 : forall R : Relations L, Prf nil (AxmEq4 R)
| EQ5 : forall f : Functions L, Prf nil (AxmEq5 f).

AxmEq4 and AxmEq5 are recursive functions that generate the equality axioms for
relations and functions. AxmEq4 R generates

x0 = x1 ⇒ . . . ⇒ x2n−2 = x2n−1 ⇒ (R(x0, . . . ,x2n−2) ⇔ R(x1, . . . ,x2n−1))

and AxmEq5 f generates

x0 = x1 ⇒ . . . ⇒ x2n−2 = x2n−1 ⇒ f(x0, . . . ,x2n−2) = f(x1, . . . ,x2n−1)

I found that replacing ellipses from informal proofs with recursive functions
was one of the most difficult tasks. The informal proof does not contain informa-
tion on what inductive hypothesis should be used when reasoning about these
recursive definitions. Figuring out the correct inductive hypotheses was not easy.
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2.6 Definition of SysPrf

There are some problems with the definition of Prf given. It requires the list
of axioms to be in the correct order for the proof. For example, if we have Prf
Gamma1 (impH phi psi) and Prf Gamma2 phi then we can conclude only Prf
Gamma1++Gamma2 psi. We cannot conclude Prf Gamma2++Gamma1 psi or any
other permutation of psi. If an axiom is used more than once, it must appear
in the list more than once. If an axiom is never used, it must not appear. Also,
the number of axioms must be finite because they form a list.

To solve this problem, I defined a System to be Ensemble Formula, and
(SysPrf T phi) to be the proposition that the system T proves phi.

Definition System := Ensemble Formula.
Definition mem := Ensembles.In.

Definition SysPrf (T : System) (f : Formula) :=
exists Axm : Formulas,
(exists prf : Prf Axm f,

(forall g : Formula, In g Axm -> mem _ T g)).

Ensemble A represents subsets of A by the functions A -> Prop. a : A is consid-
ered to be a member of T : Ensemble A if and only if the type T a is inhabited.
I also defined mem to be Ensembles.In so that it does not conflict with List.In.

2.7 The Deduction Theorem

The deduction theorem states that if Γ ∪ {ϕ} � ψ then Γ � ϕ ⇒ ψ.
There is a choice of whether the side condition for the ∀-generalization rule,

~ In v (freeVarListFormula L Axm), should be required or not. If this side
condition is removed then the deduction theorem requires a side condition on it.
Usually all the formulas in an axiom system are closed, so the side condition on
the ∀-generalization is easy to show. So I decided to keep the side condition on
the ∀-generalization rule.

At one point the proof of the deduction theorem requires proving that if
Γ ∪ {ϕ} � ψ because ψ ∈ Γ ∪ {ϕ}, then Γ � ϕ ⇒ ψ. There are two cases
to consider. If ψ = ϕ then the result easily follows from the reflexivity of ⇒.
Otherwise ψ ∈ Γ , and therefore Γ � ψ. The result then follows. In order to
constructively make this choice it is necessary to decide whether ψ = ϕ or not.
This requires Formula to be a decidable type, and that requires the language L
to be decidable. Since L could be anything, I needed to add hypotheses that the
function and relation symbols are decidable types.

– forall x y : Functions L, { x=y } + { x<>y }
– forall x y : Relations L, { x=y } + { x<>y }.

I used the deduction theorem without restriction and ended up using the hy-
potheses in many lemmas. I expect that many of these lemmas could be proved
without assuming the decidability of the language. It is hard to imagine a use-
ful language that is not decidable, so I do not feel too bad about using these
hypotheses in unnecessary places.
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2.8 Languages and Theories of Number Theory

I created two languages. The first language, LNT, is the language of number
theory and just has the function symbols Plus, Times, Succ, and Zero with
appropriate arities. The second language, LNN, is the language of NN and has
the same function symbols as LNT plus one relation symbol for less than, LT.

I define two axiom systems: NN and PA. NN and PA share six axioms.

1. ∀x0.¬Sx0 = 0
2. ∀x0.∀x1.(Sx0 = Sx1 ⇒ x0 = x1)
3. ∀x0.x0 + 0 = x0
4. ∀x0.∀x1.x0 + Sx1 = S(x0 + x1)
5. ∀x0.x0 × 0 = 0
6. ∀x0.∀x1.x0 × Sx1 = (x0 × x1) + x0

NN has three additional axioms about less than.

1. ∀x0.¬x0 < 0
2. ∀x0.∀x1.(x0 < Sx1 ⇒ (x0 = x1 ∨ x0 < x1))
3. ∀x0.∀x1.(x0 < x1 ∨ x0 = x1 ∨ x1 < x0)

PA has an infinite number of induction axioms that follow one schema.

1. (schema) ∀xi1 . . . .∀xin .ϕ[xj/0] ⇒ ∀xj .(ϕ ⇒ ϕ[xj/Sxj ]) ⇒ ∀xj .ϕ

The xi1 , . . . ,xin are the free variables of ∀xj .ϕ. The quantifiers ensure that all
the axioms of PA are closed.

Because NN is in a different language than PA, a proof in NN is not a
proof in PA. In order to reuse the work done in NN, I created a function
called LNN2LNT formula to convert formulas in LNN into formulas in LNT by
replacing occurrences of t0 < t1 with (∃x2.x0 + (Sx2) = x1)[x0/t0,x1/t1]—
ϕ[x0/t0,x1/t1] is the simultaneous substitution of t0 for x0 and t1 for x1. Then
I proved that if NN � ϕ then PA � LNN2LNT formula(ϕ).

I also created the function natToTerm : nat -> Term to return the closed
term representing a given natural number. In this document I will refer to this
function as ���, so �0� = 0, �1� = S0, etc.

3 Coding

To prove the incompleteness theorem, it is necessary for the inner logic to rea-
son about proofs and formulas, but the inner logic can only reason about natural
numbers. It is therefore necessary to code proofs and formulas as natural numbers.

Gödel’s original approach was to code a formula as a list of numbers and
then code that list using properties from the prime decomposition theorem[4].
I avoided needing theorems about prime decomposition by using the Cantor
pairing function instead. The Cantor pairing function, cPair, is a commonly
used bijection between × and .

cPair(a, b) def= a +
a+b∑
i=1

i
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All my inductive structures were easy to recursively encode. I gave each con-
structor a unique number and paired that number with the encoding of all its
parameters. For example, I defined codeFormula as:

Fixpoint codeFormula (f : Formula) : nat :=
match f with
| fol.equal t1 t2 => cPair 0 (cPair (codeTerm t1) (codeTerm t2))
| fol.impH f1 f2 =>

cPair 1 (cPair (codeFormula f1) (codeFormula f2))
| fol.notH f1 => cPair 2 (codeFormula f1)
| fol.forallH n f1 => cPair 3 (cPair n (codeFormula f1))
| fol.atomic R ts => cPair (4+(codeR R)) (codeTerms _ ts)
end.

where codeR is a coding of the relation symbols for the language.
I will use �ϕ� for �codeFormula ϕ� and �t� for �codeTerm t�.

4 The Statement of Incompleteness

The incompleteness theorem states the essential incompleteness of NN, meaning
that for every axiom system T such that

– NN ⊆ T
– T can represent its own axioms
– T is a decidable set

then there exists a sentence ϕ such that if T � ϕ or T � ¬ϕ then T is inconsistent.
The theorem is only about proofs in LNN, the language of NN. This statement

does not show the incompleteness of theories that extend the language.
In Coq the theorem is stated as as:

Theorem Incompleteness
: forall T : System,
Included Formula NN T ->
RepresentsInSelf T ->
DecidableSet Formula T ->
exists f : Formula,
Sentence f /\
(SysPrf T f \/ SysPrf T (notH f) -> Inconsistent LNN T).

A System is Inconsistent if it proves all formulas.

Definition Inconsistent (T : System) :=
forall f : Formula, SysPrf T f.

A Sentence is a Formula without any free variables.

Definition Sentence (f : Formula) :=
forall v : nat, ~ In v (freeVarFormula LNN f).
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A DecidableSet is an Ensemble such that every item either belongs to the
Ensemble or does not belong to the Ensemble. This hypothesis is trivially true
in classical logic, but in constructive logic I needed it to prove the strong con-
structive existential quantifier in the statement of incompleteness.

Definition DecidableSet (A : Type)(s : Ensemble A) :=
forall x : A, mem A s x \/ ~ mem A s x.

The RepresentsInSelf hypothesis restricts what the System T can be. The
statement of essential incompleteness normally requires T be a recursive set.
Instead I use the weaker hypothesis that the set T is expressible in the system T .

Given a system T extending NN and another system U along with a formula
ϕU with at most one free variable xi, we say ϕU expresses the axiom system U
in T if the following hold for all formulas ψ.

1. if ψ ∈ U then T � ϕU [xi/�ψ�]
2. if ψ 	∈ U then T � ¬ϕU [xi/�ψ�]

U is expressible in T if there exists a formula ϕU such that ϕU expresses the
axiom system U in T .

In Coq I write the statement T is expressible in T as

Definition RepresentsInSelf (T : System) :=
exists rep : Formula, exists v : nat,
(forall x : nat, In x (freeVarFormula LNN rep) -> x = v) /\
(forall f : Formula,

mem Formula T f ->
SysPrf T (substituteFormula LNN rep v

(natToTerm (codeFormula f)))) /\
(forall f : Formula,

~ mem Formula T f ->
SysPrf T (notH (substituteFormula LNN rep v

(natToTerm (codeFormula f))))).

This is weaker than requiring that T be a recursive set because any recursive set
of axioms T is expressible in NN. Since T is an extension of NN, any recursive
set of axioms T is expressible in T .

By using this weaker hypothesis I avoid defining what a recursive set is. Also,
in this form the theorem could be used to prove that any complete and consistent
theory of arithmetic cannot define its own axioms. In particular, this could be
used to prove Tarski’s theorem that the truth predicate is not definable.

5 Primitive Recursive Functions

A common approach to proving the incompleteness theorem is to prove that
every primitive recursive function is representable. Informally an n-ary function
f is representable in NN if there exists a formula ϕ such that
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1. the free variables of ϕ are among x0, . . . ,xn.
2. for all a1, . . . , an : ,

NN � (ϕ ⇒ x0 = �f(a1, . . . , an)�)[x1/�a1�, . . . ,xn/�an�]

I defined the type PrimRec n as:

Inductive PrimRec : nat -> Set :=
| succFunc : PrimRec 1
| zeroFunc : PrimRec 0
| projFunc : forall n m : nat, m < n -> PrimRec n
| composeFunc :

forall (n m : nat) (g : PrimRecs n m) (h : PrimRec m),
PrimRec n

| primRecFunc :
forall (n : nat) (g : PrimRec n) (h : PrimRec (S (S n))),

PrimRec (S n)
with PrimRecs : nat -> nat -> Set :=
| PRnil : forall n : nat, PrimRecs n 0
| PRcons : forall n m : nat,

PrimRec n -> PrimRecs n m -> PrimRecs n (S m).

PrimRec n is the expression of an n-ary primitive recursive function, but it is
not itself a function. I defined evalPrimRec : forall n : nat, PrimRec n
-> naryFunc n to convert the expression into a function. Rather than work-
ing directly with primitive recursive expressions, I worked with particular Coq
functions and proved they were extensionally equivalent to the evaluation of
primitive recursive expressions.

I proved that every primitive recursive function is representable in NN. This
required using Gödel’s β-function along with the Chinese remainder theorem.
The β-function is a function that codes array indexing. A finite list of numbers
a0, . . . , an is coded as a pair of numbers (x, y) and β(x, y, i) = ai. The β-function
is special because it is defined in terms of plus and times and is non-recursive.
The Chinese remainder theorem is used to prove that the β-function works.

I took care to make the formulas representing the primitive recursive func-
tions clearly Σ1 by ensuring that only the unbounded quantifiers are existential;
however, I did not prove that the formulas are Σ1 because it is not needed for
the first incompleteness theorem. Such a proof could be used for the second
incompleteness theorem [12].

5.1 codeSubFormula Is Primitive Recursive

I proved that substitution is primitive recursive. Since substitution is defined
in terms of Formula and Term, it itself cannot be primitive recursive. Instead I
proved that the corresponding function operating on codes is primitive recursive.
This function is called codeSubFormula and I proved it is correct in the following
sense.

codeSubFormula(�ϕ�, i, �s�) = �ϕ[xi/s]�
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Next I proved that it is primitive recursive. This proof is very difficult. The
problem is again with the need to rebind bound variables. Normally one would
attempt to create this primitive recursive function by using course-of-values re-
cursion. Course-of-values recursion requires all recursive calls have a smaller code
than the original call. Renaming a bound variable requires two recursive calls.
Recall the definition of substitution in this case:

(∀xj .ϕ)[xi/s]
def= ∀xk.(ϕ[xj/xk])[xi/s] wherek 	= i andxk is not free inϕ or s

If one is lucky one might be able to make the inner recursive call. But there is
no reason to suspect the input to the second recursive call, ϕ[xj/xk], is going
to have a smaller code than the original input, ∀xj .ϕ.

If I had used the alternative definition of substitution, where all variables
are substituted simultaneously, there would still be problems. The input would
include a list of variable and term pairs. In this case a new pair would be added
to the list when making the recursive call, so the input to the recursive call could
still have a larger code than the input to the original call.

It seems that using course-of-values recursion is difficult or impossible. In-
stead I introduce the notion of the trace of the computation of substitution.
Think of the trace of computation as a finite tree where the nodes contain the
input and output of each recursive call. The subtrees of a node are the traces
of the computation of the recursive calls. This tree can be coded as a number.
I proved that there is a primitive recursive function that can check to see if a
number represents a trace of the computation of substitution.

The key to solving this problem is to create a primitive recursive function
that computes a bound on how large the code of the trace of computation can
be for a given input. With this I created another primitive recursive function
that searches for the trace of computation up to this bound. Once the trace is
found—I proved that it must be found—the function extracts the result from
the trace and returns it.

5.2 checkPrf Is Primitive Recursive

Given a code for a formula and a code for a proof, the function checkPrf returns
0 if the proof does not prove the formula, otherwise it returns one plus the code of
the list of axioms used in the proof. I proved this function is primitive recursive,
as well as proving that it is correct in the sense that for every proof p of ϕ
from a list of axioms Γ , checkPrf(�ϕ�, �p�) = 1 + �Γ�; and for all n,m : if
checkPrf(n,m) 	= 0 then there exists ϕ, Γ , and some proof p of ϕ from Γ such
that �ϕ� = n and �p� = m.

For any axiom system U expressible in T , I created the formulas codeSysPrf
and codeSysPf. codeSysPrf[x0/�n�,x1/�m�] is provable in T if m is the code
of a proof in U of a formula coded by n. codeSysPf[x0/�n�] is provable in T if
there exists a proof in U of a formula coded by n.

codeSysPrf and codeSysPf are not derived from a primitive recursive func-
tions because I wanted to prove the incompleteness of axiom systems that may
not have a primitive recursive characteristic function.
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6 Fixed Point Theorem and Rosser’s Incompleteness
Theorem

The fixed point theorem states that for every formula ϕ there is some formula
ψ such that

NN � ψ ⇔ ϕ[xi/�ψ�]

and that the free variables of ψ are that of ϕ less xi.
The fixed point theorem allows one to create “self-referential sentences”. I

used this to create Rosser’s sentence which states that for every code of a proof
of itself, there is a smaller code of a proof of its negation. The proof of Rosser’s
incompleteness theorem requires doing a bounded search for a proof, and this
requires knowing what is and what is not a proof in the system. For this reason,
I require the decidability of the axiom system. Without a decision procedure for
the axiom system, I cannot constructively do the search.

6.1 Incompleteness of PA

To demonstrate the incompleteness theorem I used it to prove the incompleteness
of PA. I created a primitive recursive predicate for the codes of the axioms of
PA. Coq is sufficiently powerful to prove the consistency of PA by proving that
the natural numbers model PA.

One subtle point is that Coq’s logic is constructive while the internal logic
is classical. One cannot interpret a formula of the internal logic directly in Coq
and expect it to be provable if it is provable in the internal logic. Instead I use a
double negation translation of the formulas. The translated formula will always
hold if it holds in the internal logic.

The consistency of PA along with the expressibility of its axioms and the
translations of proofs from NN to PA allowed me to apply Rosser’s incomplete-
ness theorem and prove the incompleteness of PA—there exists a sentence ϕ
such that neither PA � ϕ nor PA � ¬ϕ.

Theorem PAIncomplete :
exists f : Formula,

(forall v : nat, ~ In v (freeVarFormula LNT f)) /\
~ (SysPrf PA f \/ SysPrf PA (notH f)).

7 Remarks

7.1 Extracting the Sentence

Because my proof is constructive, it is possible, in principle, to compute this
sentence that makes PA incomplete. This was not done for two reasons. The
first reason is that the existential statement lives in Coq’s Prop universe, and
Coq’s only extracts from its Set universe. This was an error on my part. I should
have used Coq’s Set existential quantifier; this problem would be fairly easy to
fix. The second reason is that the sentence contains a closed term of the code
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of most of itself. I believe this code is a very large number and it is written in
unary notation. This would likely make the sentence far to large to be actually
printed.

7.2 Robinson’s System Q

The proof of essential incompleteness is usually carried out for Robinson’s system
Q. Instead I followed Hodel’s development [10] and used NN. Q is PA with the
induction schema replaced with ∀x0.∃x1.(x0 = 0 ∨ x0 = Sx1). All of NN
axioms are Π1 whereas Q has the above Π2 axiom. Both axiom systems are
finite.

Neither system is strictly weaker than the other, so it would not be possible
to use the essential incompleteness of one to get the essential incompleteness of
the other; however both NN and Q are sufficiently powerful to prove a small
number of needed lemmas, and afterward only these lemmas are used. If one
abstracts my proof at these lemmas, it would then be easy to prove the essential
incompleteness of both Q and NN.

7.3 Comparisons with Shankar’s 1986 Proof

It is worth noting the differences between this formalization of the incompleteness
theorem and Shankar’s 1986 proof in the Boyer-Moore theorem prover. The most
notable difference is the proof systems. In Coq the user is expected to input the
proof, in the form of a proof script, and Coq will check the correctness of the
proof. In the Boyer-Moore theorem prover the user states a series of lemmas and
the system generates the proofs. However, using the Boyer-Moore proof system
requires feeding it a “well-chosen sequence of lemmas” [11, p. xii], so it would
seem the information being fed into the two systems is similar.

There are some notable semantic differences between Shankar’s statement
of incompleteness and mine. His theorem only states that finite extensions of
Z2, hereditarily finite set theory, are incomplete, whereas my theorem states
that even infinite extensions of NN are incomplete as long as they are self-
representable. Also Shankar’s internal logic allows axioms to define new relation
or function symbols as long as they come with the required proofs of admissibil-
ity. Such extensions are conservative over Z2, but no computer verified proof of
this fact is given. My internal logic does not allow new symbols. Finally, I prove
the essential incompleteness of NN, which is in the language of arithmetic. With-
out any set structures the proof is somewhat more difficult because it requires
using Gödel’s β-function.

One of Shankar’s goals when creating his proof was to use a proof system
without modifications. Unfortunately he was not able to meet that goal; he ended
up making some improvements to the Boyer-Moore theorem prover. My proof
was developed in Coq without any modifications.

7.4 Gödel’s Second Incompleteness Theorem

The second incompleteness theorem states that if T is a recursive system extend-
ing PA—actually a weaker system could be used here—and T � ConT then T is
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inconsistent. ConT is some reasonable formula stating the consistency of T , such
as ¬PrT (�0 = S0�), where PrT is the provability predicate codeSysPf for T .

If I had created a formal proof in PA, I would have �PA “Gödel’s first
incompleteness theorem”. This could then be mechanically transformed to cre-
ate another formal proof in PA that �PA (PA � “Gödel’s first incompleteness
theorem”). The reader can verify that the second incompleteness theorem follows
from this. Unfortunately I have only shown that �Coq “Gödel’s first
incompleteness theorem”, so the above argument cannot be used to create a
proof of the second incompleteness theorem.

Still, this work can be used as a basis for formalizing the second incom-
pleteness theorem. The approach would be to formalize the Hilbert-Bernays-Löb
derivability conditions:

1. if PA � ϕ then PA � PrPA(�ϕ�)
2. PA � PrPA(�ϕ�) ⇒ PrPA(�PrPA(�ϕ�)�)
3. PA � PrPA(�ϕ ⇒ ψ�) ⇒ PrPA(�ϕ�) ⇒ PrPA(�ψ�)

The second condition is the most difficult to prove. It is usually proved by first
proving that for every Σ1 sentence ϕ, PA � ϕ ⇒ PrPA(�ϕ�). Because I made
sure that all primitive recursive functions are representable by a Σ1 formula,
it would be easy to go from this theorem to the second Hilbert-Bernays-Löb
condition.

8 Statistics

My proof, excluding standard libraries and the library for Pocklington’s crite-
rion [2], consists of 46 source files, 7 036 lines of specifications, 37 906 lines of
proof, and 1 267 747 total characters. The size of the gzipped tarball (gzip -9)
of all the source files is 146 008 bytes, which is an estimate of the information
content of my proof.
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Abstract. We present the verification of the normalization of a binary
decision diagram (BDD). The normalization follows the original algo-
rithm presented by Bryant in 1986 and transforms an ordered BDD in
a reduced, ordered and shared BDD. The verification is based on Hoare
logics and is carried out in the theorem prover Isabelle/HOL. The work
is both a case study for verification of procedures on a complex pointer
structure, as well as interesting on its own, since it is the first proof of
functional correctness of the pointer based normalization process we are
aware of.

1 Introduction

Binary Decision Diagrams (BDDs) are a canonical, memory efficient pointer
structure to represent boolean functions, with a wide spread application in com-
puter science. They had a decisive impact on scaling up the technology of model
checking to large state-spaces to handle practical applications [5]. BDDs were
introduced by Bryant [3], and later on their implementation was refined [2]. The
efficiency of the BDD algorithms stems from the sharing of subgraphs in the
BDD. Some properties of the BDD, like the uniqueness of the representation of
a function, rely on the fact that the graph is maximally shared. So the algorithms
manipulating BDDs have to ensure this invariant. However the formal verifica-
tion of the algorithms has never received great attention. We are only aware of
the work of Verma et al. [14] and of Kristic and Matthews [7]. Maybe one reason
for the lack of formal verification is the problem of reasoning about imperative
pointer programs in general, which is still an area of active research, recently in
two main directions: The integration and mechanization of pointer verification
in theorem provers [1,8,6], and the development of a new logic, namely separa-
tion logic [12]. In this context our work contributes to two aspects. On the one
hand it presents the first formal verification of the pointer based normalization
algorithm for BDDs as presented by Bryant. Verma et al. [14] and also Kristic
and Matthews [7] use a different (more abstract) model of BDDs, where the nor-
malization algorithm is no issue, since they ensure that only normalized BDDs
will be constructed at all. Although modern BDD packages also follow this ap-
proach, and avoid the costly normalization process, the concepts we introduce
to formally describe the invariants on the BDD pointer structure can also serve
as basis in a more involved setting like [2]. On the other hand this work is a case
study on the feasibility of pointer verification based on Hoare logics in a theorem
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prover. It carries on the approach of [8] to (recursive) procedures. In contrast
to separation logic, which is difficult to combine with existing theorem proving
infrastructure, our embedding of Hoare logics fits seamlessly into Isabelle/HOL.

The rest of the paper is structured as follows. In Sect. 2 we give a short in-
troduction to Isabelle/HOL in general and the Hoare logic module, that we will
use for our verification work. Sect. 3 gives an informal overview of BDDs and
Sect. 4 introduces our formalization of them. Sect. 5 is devoted to the normaliza-
tion of BDDs, where we explain the algorithm and describe the assertions and
invariants that we have used for the correctness proof. Finally Sect. 6 concludes.

2 Preliminaries

2.1 Isabelle

Isabelle/HOL [10] is an interactive theorem prover for HOL, higher order logic,
with facilities for defining data types, records, inductive sets as well as primitive
and total general recursive functions. Most of the syntax of HOL will be familiar
to anybody with some background in functional programming and logic. We just
highlight some of Isabelle’s nonstandard notation.

There are the usual type constructors T1 × T2 for product and T1 ⇒ T2
for function space. To emulate partial functions the polymorphic option type
is frequently used: datatype ′a option = None | Some ′a. Here ′a is a type
variable, None stands for the undefined value and Some x for a defined value
x. A partial function from type T1 to type T2 can be modelled as T1 ⇒ (T2
option). Lists (type ′a list) come with the empty list [], the infix constructor #
and the infix @ that appends two lists, and the conversion function set from lists
to sets. The nth element of a list xs is obtained by xs ! n. The standard function
map is also available.

2.2 The Hoare Logic Module

Before considering the algorithm of BDD normalization in detail, we first take a
brief look at the verification environment for imperative programs [13] built on
top of Isabelle/HOL. It embeds a sequential imperative programming language
with (mutually) recursive procedures, local and global variables and a heap for
pointer structures into Isabelle/HOL. The expressions used in the language are
modelled as ordinary HOL expressions. Therefore both “pseudo code” and C
programs can be expressed in a uniform framework, giving the user the freedom
to choose the proper abstraction level.

To define the state-space, we use records in Isabelle/HOL [10], which contain
every program variable used in the implementation. We can refer to these state-
space components by specifying v́ for the current state of the component v and
σv for the same component at a fixed state σ. Assertions are sets of states and
we provide special brackets {| |} for them, e.g. {| Ḿ = 2|} is a shorthand for
the ordinary set comprehension {s | M s = 2}, which is the set of states where
variable M is equal to 2. M is a record selector of the state-space.
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A judgement in our Hoare logic is of the general form Γ ,Θ� P c Q for partial
correctness and Γ ,Θ�t P c Q for total correctness, where P and Q figure as
pre- and postcondition. The two remaining variables are premises of the Hoare
triple, Γ being the procedure environment and context Θ representing a set of
Hoare triples that we may assume. The procedure environment maps procedure
names to their bodies. The Hoare triples in Θ are important for proving recursive
procedures. An empty set of assumptions can be omitted.

Moreover the module supplies a verification condition generator built on top
of the Hoare logic for the programming language.

3 Binary Decision Diagrams

“Many problems in digital logic design and testing, artificial intelligence, and
combinatorics can be expressed as a sequence of operations on Boolean func-
tions.” ([3], p. 1) Thus the representation of Boolean functions by an efficient
data-structure is of high interest for computer science. Binary Decision Dia-
grams, which represent the underlying binary decision tree of a Boolean function
as a directed acyclic graph (DAG), save storage space and computation time by
eliminating redundancy from the canonical representations. Besides, using re-
duced, ordered and shared BDDs allows us to provide a unique representation
for each function. An inner node of the BDD contains a variable over which
the Boolean function is defined, together with a pointer to the left and right
sub-BDD. Given a valuation of the variables the value of the Boolean function
encoded in the BDD is obtained by traversing the BDD according to the val-
uation of the variables. The leaf that we reach holds the value of the function
under the given valuation.

As BDDs are an efficient representation for Boolean functions, which are used
in a lot of domains of computer science, there is a wide variety of imaginable
operations on them. We will only treat the normalization here, which has an
ordered BDD as its argument and removes all redundancies contained in it. The
result is an ordered, reduced and shared BDD implementing the same Boolean
function. The normalization follows the algorithm presented in [3], where it is
used as a central building block for further BDD-algorithms.

The basic transformations on the BDD that occur during normalization are
reducing and sharing (Fig. 1). A node is reduced from the BDD if it is irrelevant
for the encoded Boolean function: if the left and the right child both point to
the same node, it is irrelevant if we choose to go left or right during evaluation.
Two sub-BDDs are shared if they contain the same decision tree. Note that
sharing does not change the structure of the underlying decision tree, but only
the structure of the DAG, whereas reducing also changes the decision tree. None
of the transformations change the encoded Boolean function.

BDDs are an extreme area of application for pointer programs with opera-
tions involving side effects due to the high degree of sharing in the data-structure.
Because of their efficiency in computation time and storage, they are highly
popular for the processing of Boolean functions. Altogether BDDs constitute a
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Fig. 1. Illustration of normalization operations

perfect domain for a case study for our Hoare logic. They represent a practically
relevant subject and include the important pointer program features, which pose
problems for verification.

4 Formalization of BDDs

4.1 State-Space

In order to represent all variables and the heap used in the program we use
Isabelle records. Our model of the heap follows Burstall’s [4] idea, recently em-
phasized by Bornat [1] and Mehta and Nipkow [8]: we have one heap f of type
ref ⇒ value for each component f of type value of a BDD-node. Type ref is our
abstract view on addresses. It is isomorphic to the natural numbers and contains
Null as an element. Figure 2 shows the C-style structure for a DAG node and
the corresponding Isabelle records we use to represent the state-space. A C-like
selection p->var becomes function application var p in our model. The global
components (in our case the split heap) are grouped together in one field globals
of the state-space-record. The remaining fields are used for local variables and
procedure parameters. The semantics of our programming language model is
defined via updates on this state-space [13]. The separation of global and local
components is used to handle procedure calls.

Every BDD-node contains a variable var which is encoded as a natural num-
ber. We reserve the variables 0 and 1 for the terminal nodes. Besides every node

struct node {
nat var;
struct node* left;
struct node* right;
struct node* rep;
struct node* next;
bool mark;

};

record heap =
var :: ref ⇒ nat
left :: ref ⇒ ref
right :: ref ⇒ ref
rep :: ref ⇒ ref
next :: ref ⇒ ref
mark :: ref ⇒ bool

record state =
globals :: heap
p :: ref
levellist :: ref list
. . . local variables/parameters . . .

Fig. 2. Node struct and program state
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needs pointers to its children (fields left and right) and its representative (rep),
used during the normalization algorithm. The next pointer links together all
nodes of the same (variable) level in the bdd. This is implemented in procedure
Levellist as marking algorithm using the mark field.

4.2 BDD Model

We follow the approach in [8] to abstract the pointer structure in the heap
to HOL datatypes. For the formalization of BDDs we work on two levels of
abstraction, the decision tree (BDT) and the graph structure (DAG). On the
higher level, we describe the underlying decision tree with the datatype bdt:

datatype bdt = Zero | One | Bdt-Node bdt nat bdt

A bdt is modeled by the constructors Zero and One, which represent the ter-
minal values False and True, and by the constructor Bdt-Node representing a
nonterminal node with two sub-BDTs and the current decision variable.

When looking at this datatype, it becomes clear that we cannot express the
concept of sharing by using this content-based definition. Therefore, we intro-
duce another formalization level in order to describe the graph structure of the
BDD based on references. For the representation of a BDD in the heap we use
datatype dag, which is a directed acyclic graph of binary degree:

datatype datatype dag = Tip | Node dag ref dag

A DAG in the heap is either constant Tip, which is equal to the Null pointer, or
a node consisting of a reference for the root node and two sub-DAGs. This repre-
sentation allows us to express sharing by equal references in the nodes. Moreover
it is convenient to write recursive predicates and functions on a datatype. For
example set-of yields the references stored in the DAG:
set-of :: dag ⇒ ref set
set-of Tip = {}
set-of (Node lt r rt) = {r} ∪ set-of lt ∪ set-of rt

To actually abstract the pointer structure in the heap to the datatype dag we
introduce the predicate Dag. It constructs a DAG from the initial pointer and
the mappings for left and right children:
Dag:: ref ⇒ (ref ⇒ ref ) ⇒ (ref ⇒ ref ) ⇒ dag ⇒ bool
Dag p l r Tip = (p=Null)
Dag p l r (Node lt a rt) = (p=a ∧ p �=Null ∧ Dag (l p) l r lt ∧ Dag (r p) l r rt)

This expression is true when starting at pointer p and following heaps l and r we
can construct the DAG passed as fourth argument. The heaps l and r correspond
to the fields left and right in the state-space.

To construct the decision tree out of the DAG we introduce the function
bdt. It takes a function indicating the variables assigned to each reference as
parameter. Usually we use field var in the state-space-record for this purpose.
The result of bdt is an option type. This implies that not every dag encodes
a bdt. The terminal nodes of the decision tree, Zero and One, are represented
by an inner node Node Tip p Tip in the DAG, where var p = 0 or var p = 1,
respectively. So every proper DAG will end up in those inner nodes.
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bdt :: dag ⇒ (ref ⇒ nat) ⇒ bdt option
bdt Tip var = None
bdt (Node Tip p Tip) var =

(if var p = 0 then Some Zero else if var p = 1 then Some One else None)
bdt (Node Tip p (Node l p2 r)) var = None
bdt (Node (Node l p1 r) p Tip) var = None
bdt (Node (Node l1 p1 r1) p (Node l2 p2 r2)) var =

(if var p = 0 ∨ var p = 1 then None
else case bdt (Node l1 p1 r1) var of None ⇒ None

| Some t1 ⇒
case bdt (Node l2 p2 r2) var of None ⇒ None
| Some t2 ⇒ Some (Bdt-Node t1 (var p) t2))

4.3 Properties on BDDs

We now define predicates and functions on our BDD model that we use for the
specification and verification of the normalization algorithm.

Eval. Function eval on BDTs expects the BDT which shall be evaluated and
an environment (a list containing the values for all variables). It traverses the
given BDT following the path indicated by the variable values and finally re-
turns the resulting Boolean value. So eval t denotes the Boolean function that
is represented by the decision tree t.
eval :: bdt ⇒ bool list ⇒ bool
eval Zero env = False
eval One env = True
eval (Bdt-Node l v r) env = (if env ! v then eval r env else eval l env)

Since all functions in HOL are total, indexing the list in env ! v will yield an
legal but indefinite value when the index is out of range.

An interesting concept which arises from this function is eval-equivalence
represented by the operator ∼:
bdt1 ∼ bdt2 ≡ eval bdt1 = eval bdt2
Two BDTs are eval-equivalent if they represent the same Boolean function.

Reduced. We call a DAG reduced if left and right non-Tip children differ for
every node contained in it. Note that the order of equations is significant in this
definition.
reduced :: dag ⇒ bool
reduced Tip = True
reduced (Node Tip p Tip) = True
reduced (Node l p r) = (l �= r ∧ reduced l ∧ reduced r)

Ordered. The variable ordering of a given BDD is checked by predicate ordered.
The root node stores the highest variable and the variables decrease on a path
down to the leaf. For the variable information, the function takes a mapping of
references to their variables (usually field var).
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ordered :: dag ⇒ (ref ⇒ nat) ⇒ bool
ordered Tip var = True
ordered (Node (Node l1 p1 r1) p (Node l2 p2 r2)) var =

(var p1 < var p ∧ var p2 < var p) ∧
(ordered (Node l1 p1 r1) var) ∧ (ordered (Node l2 p2 r2) var)

ordered (Node Tip p Tip) var = True
If the DAG properly encodes a decision tree (according to bdt), both children

of an inner node will either be Tips or again inner nodes. So we do not have to
care about the other cases in the definition above.

Shared. Bryant [3] calls two BDDs isomorphic if they represent the same decision
tree. If a BDD is shared, then all isomorphic sub-BDDs will be represented by
the same root pointer, i.e. the same DAG. This is encapsulated in predicate
isomorphic-dags-eq, which should be read “if two dags are isomorphic, then they
are equal”:
isomorphic-dags-eq :: dag ⇒ dag ⇒ (ref ⇒ nat) ⇒ bool
isomorphic-dags-eq st1 st2 var ≡
∀ bdt1 bdt2.

bdt st1 var = Some bdt1 ∧ bdt st2 var = Some bdt2 ∧ (bdt1 = bdt2) −→
st1 = st2

i.e. if the decisions trees resulting from st1 and st2 are equal, the two DAGs must
also be equal. The sub-DAG structure forms a partial order:
(t < Tip) = False
(t < Node l p r) = (t = l ∨ t = r ∨ t < l ∨ t < r)
s ≤ t ≡ s = t ∨ s < t

In order to express that a DAG is (maximally) shared, we argue that all its
sub-DAGs respect the isomorphic-dags-eq property:
shared :: dag ⇒ (ref ⇒ nat) ⇒ bool
shared t var ≡ ∀ st1 st2. st1 ≤ t ∧ st2 ≤ t −→ isomorphic-dags-eq st1 st2 var

5 Normalization

BDD normalization is a central algorithm of [3] and quite complex in specifica-
tion and verification. By concentrating on this part, we hope to give an impres-
sion of the provability and the verification complexity of pointer programs.

5.1 Overview of the Process of Normalization

We call the process of converting an ordered DAG into an ordered, shared and
reduced DAG “normalization”. It is encapsulated in procedure Normalize which
calls on its part the sub-procedures Levellist, ShareReduceRepList and Repoint.
The implementation follows the procedure called “reduce” in Bryant’s paper [3],
but imposes some simplifications and the decomposition into sub-procedures to
structure the algorithm and the verification (e.g. in Bryants algorithm steps 2
and 3 below are done simultaneously).
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From a high-level point of view, one can divide the normalization process
into three main stages:

1. Collect the nodes of the argument DAG according to their variable in a two
dimensional level-list. At index n the level-list contains all the nodes of the
DAG with variable n.

2. Calculate the representative node for each node in the DAG (and store it in
the rep field of the node) level by level and bottom up. This means that we
work on the breadth of the DAG.

3. Repoint the DAG according to the representatives.

We will now examine these three steps in detail:
Stage 1: Procedure Normalize first instantiates the level-list with an empty node
list for each variable, that can be contained in the argument DAG. The necessary
size of the list is given by the variable stored in the root of DAG, since the DAG
is ordered. Afterwards, the procedure calls Levellist, which fills the level-list with
the nodes contained in the DAG. After the call of Levellist a node with variable
i is contained in the level-list at index i (see figure 3). Note that a node in level
i not necessarily denotes the depth in the DAG, since variables do not have to
appear strictly consecutive on a path through the DAG.

Via the level-list we can easily access all nodes with the same variable. Those
are the ones that may have to be shared. In the DAG structure, the nodes con-
taining the same variable can be contained in different sub-DAGs and therefore
are far from each other. With the concept of a level-list, these nodes are much
easier to be compared and processed. The inconvenience of this process is the
complexity of the conversion from the DAG to the two dimensional list, which
is visible in the length of the proof.

Stage 2: After obtaining the two dimensional level-list, we traverse each level
looking for a representative for each node, which is then stored in the field rep.
So we do not change the DAG structure at this stage but just store the pointer
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Fig. 3. Illustration of the level-list notion
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to the representative node in the field rep. Finding the representatives for all
nodes in one level of the level-list is realized by procedure ShareReduceRepList.
It is important to start the normalization with the leaf children (which have the
lowest variables), because procedure ShareReduceRepList consults the represen-
tatives of the children in order to decide if the current node will be shared or
reduced. Therefore the children representatives already have to contain the final
and correct representatives. Working at a specific level we can assume that the
representative DAGs of the lower levels will already be shared and reduced. If
both children representatives point to the same node, we reduce, otherwise we
search for a node in the current level-list with the same children representatives,
which means sharing:

reducing 

sharing

rep

levellist ! n

levellist ! (n − 1)

left/right

After procedure Normalize has traversed all the levels of the level-list, ev-
ery node contained in the DAG has got a representative by which it will be
replaced in the shared and reduced DAG to be constructed. All representative
nodes derive from nodes contained in the original DAG. During the process of
normalization we never need to construct new nodes.

Stage 3: The only task to complete now, is the “repointerization” of the DAG.
We follow the DAG of rep-pointers and thereby set the left and right fields in
order to obtain the desired reduced, shared and ordered DAG, which represents
our BDD in the heap.

In order to summarize the functionality described above, let us look at the
source code of procedure Normalize; the auxiliary procedures can be found in
the appendix.
procedures Normalize (p | p) =

ĺevellist := replicate ( ṕ→ v́ar + 1) Null;
ĺevellist := CALL Levellist ( ṕ, (¬ ṕ→ ḿark) , ĺevellist);
ń := 0;

WHILE ( ń < length ĺevellist) DO
CALL ShareReduceRepList( ĺevellist ! ń);

ń := ń + 1
OD;

ṕ := CALL Repoint ( ṕ)

The bar | divides the parameters in value and result parameters. In the case of
Normalize the input and result parameter is p. The arrow, like in p→var, mimics
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the C-style combined pointer dereferencing and field selection p->var. Logically
it is equivalent to var p in our heap model.

Note that the first code line initializes the the levellist array with Null-
pointers. The level-list is implemented as an array of heap-lists in our program-
ming language, where the array size is fixed by the number of variables. Arrays
are represented as HOL-lists.

5.2 Hoare Annotations

Besides the pre- and postcondition around the whole procedure body, we have
inserted another Hoare triple around the while loop, starting with SPEC. This
inner specification characterizes the important intermediate stages of the al-
gorithm. The precondition captures the point between step 1 and 2, and the
postcondition the point between 2 and 3.

In order to be able to distinguish between the different program states we fix
state variables σ for the initial procedure state and τ for the program state at
the beginning of the inner Hoare triple. This state fixing is part of the assertion
syntax: {|σ. . . .|} abbreviates {s | s=σ . . .}. State components decorated with the
prefix ´refer to the current state at the position of the assertion. This helps us
to speak about different stages of the program state. The logical variables τ and
ll that are introduced by SPEC are universally quantified. We will first have a
look at the fully annotated procedure before going into detail on its components.

∀σ pret prebdt. Γ�t

{|σ. Dag ṕ ĺeft ŕight pret ∧ ordered pret v́ar ∧ bdt pret v́ar = Some prebdt ∧
(∀no. no ∈ set-of pret −→ ḿark no = ḿark ṕ)|}

ĺevellist := replicate ( ṕ→ v́ar + 1) Null;
ĺevellist := CALL Levellist ( ṕ, (¬ ṕ→ ḿark) , ĺevellist);
SPEC (τ ,ll). {|τ . Dag σp σleft σright pret ∧

ordered pret σvar ∧ bdt pret σvar = Some prebdt ∧
Levellist ĺevellist ńext ll ∧
wf-ll pret ll v́ar ∧ length ĺevellist = ( ṕ → v́ar) + 1 ∧
wf-marking pret σmark ḿark (¬ σmark σp) ∧
(∀ pt. pt /∈ set-of pret −→ σnext pt = ńext pt) ∧
ĺeft = σleft ∧ ŕight = σright ∧ ṕ = σp ∧ ŕep = σrep ∧ v́ar = σvar|}

ń :=0;
WHILE ( ń < length ĺevellist)
INV {|Dag σp σleft σright pret ∧

ordered pret σvar ∧ bdt pret σvar = Some prebdt ∧
Levellist ĺevellist ńext ll ∧
wf-ll pret ll v́ar ∧ length ĺevellist = (( ṕ → v́ar) + 1) ∧
wf-marking pret σmark τmark (¬ σmark σp) ∧
τleft = σleft ∧ τright = σright ∧ τp = σp ∧ τrep = σrep ∧ τvar = σvar ∧
ń ≤ length τlevellist ∧
(∀no ∈ Nodes ń ll. (∗ reduced, ordered and eval equivalent ∗)

no→ ŕep→ v́ar ≤ no→ v́ar ∧
(∃ t rept. Dag no ĺeft ŕight t ∧

Dag ( ŕep no) ( ŕep ∝ ĺeft ) ( ŕep ∝ ŕight ) rept ∧
reduced rept ∧ ordered rept v́ar ∧
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(∃nobdt repbdt. bdt t v́ar = Some nobdt ∧
bdt rept v́ar = Some repbdt ∧ nobdt ∼ repbdt) ∧

set-of rept ⊆ ŕep ‘ Nodes ń ll ∧
(∀no ∈ set-of rept. ŕep no = no))) ∧

(∀ t1 t2. (∗ shared ∗)
{t1,t2} ⊆ Dags ( ŕep ‘(Nodes ń ll)) ( ŕep ∝ ĺeft ) ( ŕep ∝ ŕight)
−→ isomorphic-dags-eq t1 t2 v́ar) ∧

ŕep ‘ Nodes ń ll ⊆ Nodes ń ll ∧
(∀pt i. pt /∈ set-of pret ∨ ( ń ≤ i ∧ pt ∈ set (ll ! i) ∧ i < length ĺevellist)

−→ σrep pt = ŕep pt) ∧
ĺevellist = τlevellist ∧ ńext = τnext ∧ ḿark = τmark ∧
ĺeft = σleft ∧ ŕight = σright ∧ ṕ = σp ∧ v́ar = σvar|}

VAR MEASURE (length ĺevellist − ń)
DO
CALL ShareReduceRepList( ĺevellist ! ń);
ń := ń + 1

OD
{|(∃ rept. Dag ( ŕep ṕ) ( ŕep ∝ ĺeft ) ( ŕep ∝ ŕight ) rept ∧

reduced rept ∧ ordered rept v́ar ∧ shared rept v́ar ∧
set-of rept ⊆ set-of pret ∧
(∃ repbdt. bdt rept v́ar = Some repbdt ∧ prebdt ∼ repbdt) ∧
(∀no ∈ set-of rept. ( ŕep no = no))) ∧

ordered pret σvar ∧ σp �= Null ∧
(∀no. no ∈ set-of pret −→ ḿark no = (¬ σmark σp)) ∧
(∀pt. pt /∈ set-of pret −→ σrep pt = ŕep pt) ∧
ĺevellist = τlevellist ∧ ńext = τnext ∧ ḿark = τmark ∧
ĺeft = σleft ∧ ŕight = σright ∧ ṕ=σp|};

ṕ := CALL Repoint ( ṕ)
{|(∃postt. Dag ṕ ĺeft ŕight postt ∧

reduced postt ∧ ordered postt σvar ∧ shared postt σvar ∧
set-of postt ⊆ set-of pret ∧
(∃ postbdt. bdt postt σvar = Some postbdt ∧ prebdt ∼ postbdt)) ∧

(∀ no. no ∈ set-of pret −→ ḿark no = (¬ σmark σp)) ∧
(∀ pt. pt /∈ set-of pret −→ σrep pt = ŕep pt ∧ σleft pt = ĺeft pt ∧

σright pt = ŕight pt ∧ σmark pt = ḿark pt ∧ σnext pt = ńext pt)|}

The Precondition of procedure Normalize assumes all the facts that are essen-
tial for the call of its sub-procedures: The argument pointer must construct a
DAG pret, which is ordered, and transformable into the decision tree prebdt.
Because of Levellist being a marking algorithm, all the nodes in this DAG must
be identically marked.

The Postcondition. The result of the procedure is a new DAG (postt), which is
reduced, ordered, and shared. Its nodes are a subset of the nodes of the argument
DAG. The decision tree postbdt resulting from the new DAG is ”eval-equivalent”
(operator ∼) to the decision tree that we get from the argument DAG, i.e. the
Boolean function represented by the normalized BDD is still the same. Besides
the marking is inverted in comparison to the beginning of the procedure (which
is performed by procedure Levellist during the level-list construction). The rest
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of the postcondition states that, for nodes which are not contained in the orig-
inal DAG, the fields that are normally modified by the procedure will remain
unchanged. The fact that field var does not change, is not captured by this post-
condition. We use an additional specification that exploits our split heap model
and lists all the global state components that may be modified:
∀σ. Γ�{σ} ṕ := CALL Normalize ( ṕ)

{t. t may-only-modify-globals σ in [rep,mark,left,right,next]}
The verification condition generator makes use of this extra specification [13].
Therefore the regular postcondition only has to mention properties of the global
entities that potentially do change. That means, a procedure specification can
focus on the relevant portions of the state-space.

The Inner Hoare Triple surrounds the while loop contained in the procedure.
Its precondition contains the outer procedure’s precondition completed by the
results of the call to procedure Levellist and some propositions specifying the
fields which remained unchanged since the beginning of the procedure. Note that
we only have to mention those parts of the state-space here that we refer to in
subsequent assertions, i.e. those that are relevant for our current verification
task. Procedure Levellist adds the following assertions to our precondition:

Levellist ĺevellist ńext ll The constructed level-list is abstracted to the two di-
mensional HOL-list ll of type ref list list. The array ĺevellist contains the
initial pointers to the heap lists that link together the nodes of the same
level via the ńext pointers:
Levellist levellist next ll ≡
map first ll = levellist ∧ (∀ i<length levellist. List (levellist ! i) next (ll ! i))

first ps ≡ case ps of [] ⇒ Null | p # rs ⇒ p

List p next [] = (p = Null)
List p next (a # ps) = (p = a ∧ p �= Null ∧ List (next p) next ps)

wf-ll pret ll v́ar The level-list is well-formed, i.e. all nodes in the argument DAG
are contained in the level-list on their variable position and all nodes in the
level-list are contained in the argument DAG:
wf-ll pret ll var ≡
(∀p. p ∈ set-of pret −→ p ∈ set (ll ! var p)) ∧
(∀ k<length ll. ∀ p∈set (ll ! k). p ∈ set-of pret ∧ var p = k)

length ĺevellist = ( ṕ→ v́ar) + 1 The length of the level-list fits to the variables
contained in the DAG.

wf-marking pret σmark ḿark (¬ σmark σp) All nodes in the DAG are marked
contrary to their initial marking:
wf-marking pret mark-old mark-new marked ≡
case pret of Tip ⇒ mark-new = mark-old
| Node lt p rt ⇒

(∀n. n /∈ set-of pret −→ mark-new n = mark-old n) ∧
(∀n. n ∈ set-of pret −→ mark-new n = marked)
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Now let us think about the inner postcondition. The only action taken af-
ter the inner Hoare triple in the source code is the call to procedure Repoint.
Repoint only redirects the original DAG pret to the DAG of representatives
rept, which already has the desired properties: it is reduced, ordered, shared
and the resulting decision tree repbdt encodes the same Boolean function as
the original one. Moreover, since every node in rept is a representative the rep
field of those nodes will point to the node itself. The DAG of representatives
rept can be obtained out of the original DAG by following the rep pointers:
Dag ( ŕep ṕ) ( ŕep ∝ ĺeft ) ( ŕep ∝ ŕight ) rept. We begin with the representa-
tive of the root pointer ŕep ṕ, and instead of just following the left and right
pointers we make the additional indirection through rep, by the infix operator
∝. It is defined as an extension of function composition avoiding to consider
representatives of a Null pointer:
rep ∝ f ≡ λp. if f p = Null then Null else (rep ◦ f ) p

So in case left p 	= Null, the expression (rep ∝ left) p is equivalent to two
dereferences: p→left→rep.

In addition we preserve some facts that we already know, like the inversion
of the marks, and add the assertion about the parts of the state that are not
modified in the loop. Note that we do not modify the DAG structure, since the
fields left and right remain unchanged. Only the rep field is modified.

The Loop Invariant starts with the repetition of the facts that we already know
from the precondition of the inner Hoare triple. After that the main part of the
invariant describes the properties of the processed levels that we have to lift to
the current level while proving the invariant and that must suffice to derive the
postcondition (of the inner triple) after the loop. Intuitively we have to express
that all sub-BDDs stemming from the representative nodes are ordered, reduced
and shared and encode the same Boolean function as their original counterparts.

To get hold of the processed nodes and DAGs, we introduce two more pred-
icates, which express that we are processing the original DAG level by level:

– Nodes i ll ≡
⋃

k∈{k | k < i} set (ll ! k)

Nodes helps us to speak of all nodes, which are contained in the DAG or
level-list up to level i.

– Dags nodes left right ≡ {t | ∃p. Dag p left right t ∧ t �= Tip ∧ set-of t ⊆ nodes}
A DAG is contained in Dags nodes left right if its nodes are all contained in
nodes, if it forms a DAG based on the fields left and right and if this DAG
is no Tip.

For every node no that is already processed we know that the representative
will not point to a bigger variable; during sharing the variable remains the same
and reducing decreases the variable. Starting from a node no we can construct
the DAG and the decision tree following the original pointers (t and nobdt)
and following the representative pointers (rept and repbdt). The representative
DAG rept is ordered and reduced, and the encoded Boolean function is preserved
(nobdt ∼ repbdt). The nodes of rept all are representatives of nodes we have
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processed so far. This is expressed by set-of rept ⊆ ŕep ‘ Nodes ń ll. Here
the infix ‘ is the set image operation. So we can rephrase the set on the right
hand side with { ŕep no | no ∈ Nodes ń ll}. Moreover the representative of an
representative node will point to the node itself. This ensures uniqueness of the
representatives.

To properly express the sharing of the representative DAGs, we cannot
only refer to a single DAG constructed from a representative node, since we
also have to consider sharing between all sub-BDDs. For every two DAGs t1
and t2 that we construct from the representative nodes, the sharing property
isomorphic-dags-eq has to hold.

The remaining parts of the invariant express that the representative nodes
are contained in the original nodes, and describe the parts of state that remain
unmodified by the loop.

The Loop Variant justifies termination and is specified via a wellfounded rela-
tion. In this case a measure function, expressing that the distance of the loop
variable to the length of the level-list decreases.

Both Verma et al. [14] as well as Kristic and Matthews [7] encounter some
problems regarding termination. They directly map their BDD-algorithms to
recursive functions in Coq or Isabelle/HOL respectively. Since the underlying
logics only support total functions, they have to come up with a justification for
termination upon function definition. The recursive algorithms on BDDs only
terminate for proper inputs (e.g. no cycles). Verma et. al. work around this
problem by formally defining the recursion on an artificial counter (the variable
level). Kristic and Matthews come up with a scheme to simultaneously define
the function together with an invariant. By this they are able to handle the
nested recursion, that occurs because the global state is an explicit parameter of
their functions. Subsequent function application on the left and right sub-DAG
results in nested recursion in their approach.

These problems do not occur in our model (e.g. for the auxiliary procedures
Levellist or Repoint), since we do not directly define them as functions in HOL,
but just define the piece of syntax making up the procedure body. We can easily
restrict the input to well-formed BDDs by the precondition of the Hoare triple,
e.g. Dag ṕ ĺow h́igh pret already ensures that there are no cycles in the pointer
structure.

6 Conclusion

The verification of partial correctness of the normalization algorithm and its
auxiliary procedures sums up to about 10000 lines of Isabelle/Isar formalization
and proofs and is based on a master thesis [11]. Adapting the proofs to total
correctness is straightforward and only adds a few lines.

We locate the reasons of the complexity mainly in the data structure, which
involves a high degree of data sharing and side effects, which results in quite
complex invariants, specifications and proofs. We have to keep track of the orig-
inal BDD the level-list and the representative BDD. As an example our proof
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that the property marked as (∗ shared ∗) in the invariant is preserved, while we
proceed from level n to n + 1, required about 1000 lines. We consider two arbi-
trary Dags up to level n + 1 and have to show the isomorphic-dags-eq property
for them. We make a case distinction, whether both Dags are already in level
n, one Dag is already in level n, or none of them is in level n. In the latter case
we proceed by inspecting the root nodes to decide whether they where shared
or not. Those kind of case distinctions for various properties add up to the large
proofs.

To prove the verification conditions, we used the structured language Isar [9]
that allows to focus on and keep track of the various aspects of the proof, so that
we can conduct it in a sensible order. Moreover it turned out that the Isar proofs
are quite robust with regard to the iterative adaption of the invariant resulting
from failed proof attempts. The already established lines of reasoning remained
stable, while adding new aspects to, or strengthening parts of the invariant.
The relatively large size of the proofs is partly explained by the fact that the
declarative Isar proofs are in general more verbose than tactic scripts.

The Hoare logic framework and the split heap model appeared to form a
suitable verification environment on top of Isabelle/HOL. The abstraction of
pointer structures to HOL datatypes allows us to give reasonable specifications.
The split heap model addresses parts of the separation problems that occur when
specifying procedures on pointer structures. The overhead of describing the parts
of the heap that do not change is kept small. The main effort of the work goes
into the problem and not into the framework.

The model we used to describe the properties of the BDD pointer structure
can serve as a solid basis for more involved BDD algorithms.
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A Auxiliary Procedures

Levellist traverses the DAG, puts unmarked nodes to the front of the corre-
sponding level-list slot, and switches their mark. Marking ensures that nodes
are only collected once and thus no cycles are introduced in the list.

procedures Levellist (p, m, levellist | levellist) =
IF ( ṕ �= Null) THEN

IF ( ṕ→ ḿark �= ḿ) THEN
ĺevellist := CALL Levellist ( ṕ→ ĺeft, ḿ, ĺevellist );
ĺevellist := CALL Levellist ( ṕ→ ŕight, ḿ, ĺevellist );
ṕ→ ńext := ĺevellist ! ( ṕ→ v́ar);
ĺevellist ! ( ṕ→ v́ar) := ṕ;
ṕ→ ḿark := ḿ;

FI
FI

ShareReduceRepList processes one level of the level-list. Non-leaf nodes with the
same children representatives are reduced, all the others are shared.
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isLeaf-pt p left right ≡ left p = Null ∧ right p = Null

procedures ShareReduceRepList (nodeslist) =
ńode := ńodeslist;
WHILE ( ńode �= Null) DO

IF (¬ isLeaf-pt ńode ĺow h́igh ∧ ńode→ ĺow→ ŕep = ńode→ h́igh→ ŕep)
THEN ńode → ŕep := ńode → ĺow → ŕep (∗ reducing ∗)
ELSE CALL ShareRep ( ńodeslist , ńode ) (∗ sharing ∗)
FI ;
ńode := ńode→ ńext

OD

ShareRep shares node p by searching its representative in the current nodeslist.
In case of leafs, the representative is the first element in the list. Otherwise the
representative is the first node in the list with the same children representatives.
Since p itself is in the list we will always find a node.

repNodes-eq p q left right rep ≡
(rep ∝ right) p = (rep ∝ right) q ∧ (rep ∝ left) p = (rep ∝ left) q

procedures ShareRep (nodeslist, p) =
IF (isLeaf-pt ṕ ĺow h́igh)
THEN ṕ → ŕep := ńodeslist
ELSE

WHILE ( ńodeslist �= Null) DO
IF (repNodes-eq ńodeslist ṕ ĺow h́igh ŕep)
THEN ṕ→ ŕep := ńodeslist; ńodeslist := Null
ELSE ńodeslist := ńodeslist→ ńext
FI

OD
FI

Repoint traverses the DAG while re-pointing the nodes to their representatives.

procedures Repoint (p | p) =
IF ( ṕ �= Null) THEN

ṕ := ṕ→ ŕep;
IF ( ṕ �= Null) THEN

ṕ→ ĺeft := CALL Repoint ( ṕ→ ĺeft);
ṕ→ ŕight := CALL Repoint ( ṕ→ ŕight)

FI
FI
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Abstract. This paper presents a method to translate a proof in an
extensional version of the Calculus of Constructions into a proof in the
Calculus of Inductive Constructions extended with a few axioms. We
use a specific equality in order to translate the extensional conversion
relation into an intensional system.

In logical systems based on type theory, terms — and formulas — are identi-
fied modulo an equivalence relation which usually includes β–convertibility. Two
equivalent terms or formulas are considered as exactly the same. There is also a
propositional predicate for equality, such that one can state and possibly prove
that two terms are equal. Two equivalent terms are obviously provably equal,
the converse is not true in general. Actually, there is a distinction between so-
called intensional and extensional type theories: in intensional type theories, two
terms are equivalent only if they compute to the same value; in extensional type
theory, two terms which are provably equal are equivalent. Having a larger class
of equivalent terms leads to simpler proofs, the identification of provably equal
terms is also an usual mathematical practice. However, because provability is
not decidable, the equivalence relation becomes undecidable in extensional type
theories and so is type checking. Except for the Nuprl system [3] and — with
a weaker notion of conversion — HOL, all proof assistants based on type theo-
ries are indeed implementing an intensional type theory. Nevertheless, there is
a growing interest in extending the equivalence relation to include more than
β–reduction. Deduction modulo is a logical framework where the equivalence re-
lation plays a central role in deduction, the Calculus of Algebraic Constructions
extends also the usual computations with general rewrite rules still preserving
normalisation and confluence. A natural question is to understand whether con-
sidering equal terms as equivalent significantly changes the logical system. The
answer for a first-order system is negative, the extensional system is conservative
over the intensional one, which means we can prove exactly the same theorems
([4]). However, the problem is more complicated in type theories with depen-
dent types because having more equivalent terms extends the class of typable
formula. M. Hofmann gives a semantical proof of conservativity of Extensional
Martin–Lof’s type theory into Intensional Martin–Lof’s type theory extended
with a few axioms. In this paper, we analyse the same problem in the framework
of the Calculus of Constructions. Our contribution is to give a syntactic proof: it
includes an effective process which translates an extensional proof into an inten-
sional one (with additional axioms), this proof can consequently be checked by a
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computer. In our proof, we use the so-called John Major’s equality introduced by
C. McBride in order to compare two terms of different types ; it plays a central
role in order to overcome the technical difficulty caused by dependent types.

In section 1, we give a precise presentation of the problem. In section 2,
we present the extensional system and expose its properties. In section 3, we
extend the intensional Calculus of Inductive Constructions in order to be able
to translate the extensional calculus into it in section 4. The main result is to
establish conservativity of this Extensional Calculus of Constructions on this
extended Calculus of Inductive Constructions.

1 Presentation

The Calculus of Inductive Constructions (CIC) is a logical system implemented
by the Coq proof assistant. CIC is a typed λ–calculus with dependent types and
inductive definitions. There is an internal notion of convertibility over terms. This
convertibility includes β–conversion and ι–conversion — which deals with pat-
tern matching and fixpoints on inductive definitions. We denote this
relation ≡.

Convertibility is automatically used during typing. So some calculi are dis-
charged by the system. For example, because 2+2 ≡ 4, 2+2 = 4 ≡ 4 = 4. So the
obvious proof of 4 = 4 is also a proof of 2+ 2 = 4. This results in shorter proofs.
In order for type checking to be decidable, we need M ≡ N to be decidable when
M and N are well typed. In the CIC, this is decidable. Indeed, the conversion
is based on a reduction → strongly normalizing and confluent.

In CIC, it is also possible to define a propositional equality (Leibniz equality)
defined as the smallest reflexive relation. Two terms that are convertible can be
proved equal by reflexivity. But some terms, that are not convertible, can also
be proved equal. For example, if we define addition on Peano numbers1:

plus O n = n
plus (S m) n = plus m (S n)

O + n and n are convertible, so the proof of ∀n, 0 + n = n is exactly the same
as the proof of ∀n, n = n. But n+O and n are not convertible. Indeed, plus is
defined by pattern matching on its first argument. The first argument of n+O
is a free variable, so this term is in normal form. The conversion fails. We have
to prove ∀n, n+O = n by induction on n.

Moreover, the Calculus of Inductive Constructions allows dependent types.
So values can appear in types. Hence, two types that depend on values which
are equal but not convertible are not convertible. For example, assume we have
defined list n, the type of lists of natural numbers of size n. Size of the list
appears in the type. Now, we can define an append function to concatenate two
of these lists. This function has type:

append : ∀n,m : nat.(list n)→ (list m)→ (list (n +m))
1 For the sake of clarity, we use pseudo syntax here.
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We may want to prove some properties of this function. Let us try to prove the
property

∀n : nat, l : (list n), (append l nil) = l.

Actually, we get into a problem. We can not even write this property. This
equality is not well-typed. append l nil is of type list (n + O) whereas l is of
type list n. As shown earlier, these types are not convertible. So, the types are
different. Whereas Leibniz equality only links two terms within the same type.

These errors are difficult to understand and even more difficult to solve.
For example, the above property is difficult to formalize. Moreover, we lose
modularity. Some properties or proofs relies on the implantation of plus and
not only on its mathematical behaviour. In order to use natural numbers in a
proof development, one need to know their implementation.

Usual mathematics identifies equal terms. So, ideally, a proof system should
merge convertibility and Leibniz equality. Such a system — like Nuprl [3] — is
said to be extensional. In such a system the following conversion would hold :

X + 0 ≡ X

0 +X ≡ X

This solves the problem described above.
Martin Hofmann has studied this problem in the context of Martin–Löf type

theory [5](Section 3.2.5). He has shown this theory to be conservative over the
usual theory extended with Streicher’s axiom K and functional extensionality2.
These axioms are similar but weaker than those which are used here. His proof
is based on a semantical model of the system. Here, we syntactically translate
typed terms in the usual system. We give a practical interest of an effective
translation in section 5.

In the following, we drop inductive definitions in the Extensional Calculus of
Inductive Constructions. We use proved equalities to reintroduce them later —
see section 5.

2 Extensional Calculus of Constructions

We base the Extensional Calculus of Constructions (hereafter called CCE) on
the Extended Calculus of Constructions(ECC)[7]. This is a Pure Type System
(PTS) [1] with a hierarchy of cumulative sorts Typei and an impredicative sort
Prop to express logical propositions.

Figure 1 shows typing rules of the Extended Calculus of Constructions. Rule
(CONV) allows conversion during typing. The conversion rules for this system
are those shown in figure 2 extended with reflexivity, symmetry and transitivity.
This conversion is β-conversion. Nevertheless, for the sake of the clarity of our
translation, we had rather decomposed it into head reductions and some congru-
ence rules. In the following, we denote the empty context with ∅, product with
2 This axiom states that two functions pointwisely equal are equal.
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(ECON)
� ∅

(I–CON)
Γ � A : s

� Γ, x : A
s ∈ S

(TYPE)
� Typei : Type i+1

(PROP)
Γ � Prop : Type0

(VAR)
� Γ

Γ � x : A
x : A ∈ Γ (UNIV)

Γ � A : Typei

Γ � A : Type i+1

(PROD)
Γ � A : s Γ, x : A � B : s′

Γ � ∀x : A.B : s′ (s, s′) ∈ R

(APP)
Γ � t : ∀x : A.B Γ � u : A

Γ � (t u) : B{x ← u}

(LAM)
Γ, x : A � t : B

Γ � (fun x : A ⇒ t) : ∀x : A.B

(CONV)
Γ � A ≡ B Γ � t : A Γ � B : s

Γ � t : B

Fig. 1. Typing rules of the Extended Calculus of Constructions

∀x.T and abstraction with fun x⇒M . A typing judgement is written Γ � t : T .
� Γ are judgements for well formed contexts. Γ � t ≡ t′ are judgements of
convertibility.

2.1 Extensionality Rule

We denote = the usual, propositional Leibniz equality in ECC. CCE consists in
the Extended Calculus of Constructions extended with an extensionality rule:

(EXT)
Γ �E t : A = B

Γ �E A ≡ B

In the following, judgements of CCE are denoted �E .
If an equality is provable in a context, then the terms are convertible.3 With

this rule, we can type the example on size-dependant lists.
We can also prove that two functions equal pointwise are equal. The follow-

ing derivation states this property and is a good example of the usage of the
extensionality rule4:

3 We keep the name conversion for this relation because it is used as a conversion in
the usual system. We agree that this is much more powerful than an usual conversion.

4 In this derivation, for the sake of clarity, we focus on types and forget terms.
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(β)
Γ � (((fun x : A ⇒ u)v) : t

Γ � ((fun x : A ⇒ u)v) ≡ u{x ← v}

(CAPP)
Γ � u1 ≡ u′

1 Γ � u2 ≡ u′
2

Γ � (u1 u2) ≡ (u′
1 u′

2)

(CPROD)
Γ � u1 ≡ u′

1 Γ, x : u1 � u2 ≡ u′
2

Γ � ∀x : u1.u2 ≡ ∀x : u′
1.u

′
2

(CLAM)
Γ � u1 ≡ u′

1 Γ, x : u1 � u2 ≡ u′
2

Γ � (fun x : u1 ⇒ u2) ≡ (fun x : u′
1 ⇒ u′

2)

Fig. 2. Conversion rules of the Extended Calculus of Constructions

(EqIntro)

(CLAM)

(EXT)

Γ �E ∀x : A,M = N

Γ, x : A �E M = N

Γ, x : A �E M ≡ N

Γ �E fun x : A⇒M ≡ fun x : A⇒ N

Γ �E fun x : A⇒M = fun x : A⇒ N

2.2 Undecidability

The extensional system allows simpler proofs but has some drawbacks. First of
all, in this calculus, typing is undecidable. Intuitively, the extensionality rule
(EXT) ”forgets” a witness of an equality property. This proof that two terms
are equal has been used but is not kept in the proof. In order to typecheck the
term, the type system has to guess these equalities and proofs.

More precisely, on one hand, it is easy to prove that a type checker may have
to decide for any given Γ , M and N , Γ �E M ≡ N . Indeed, let extend Γ with
a term P of type (nat → nat) → Prop and p of type ∀x : nat → nat.P x. It
is easy to check that Γ ′ �E (fun y : (P M).y)(p N) is typable if and only if
Γ �E M ≡ N .

On the other hand, we can encode the halting problem in a convertibility
decision. Indeed, let now assume we have defined in CCE a function T taking 3
arguments. T n m p returns 1 if and only if the nth Turing machine does not halt
in p steps or less on entry m. This function can easily be written as a fixpoint
on p in CCE . Let also define, a function f such that f p constantly equals 1.
Using the derivation of previous section, we have that �E T n m ≡ f if and only
if �E ∀p.T n m p ≡ f p. This latter holds if and only if the nth Turing machine
does not halt on entry m. So the type system is able to decide an undecidable
problem and so is undecidable.
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2.3 Infinite Reductions

Moreover, this system is not strongly normalizing. Some terms can be typed and
are not normalizing. For example, in a context containing a proof of True =
True→ True5, we can encode the whole λ–calculus, which is not normalising.

The Coq proof assistant checks proofs by typing. CCE typing is undecidable.
So this system seems not to be a good choice for this proof assistant. Neverthe-
less, it is useful as a superset of some decidable type systems.

2.4 A Model for Rewriting Extensions of the Calculus of Inductive
Constructions

There is another possibility to solve the convertibility problems shown in sec-
tion 1. CIC could be extended to support rewriting rules. Some extensions —
like [2] or [9] — allows the user to add symbols and rewriting rules to convert
these symbols. In such a system, for example, the user can define symbols S, O
and plus and add the following rewriting rules :

O + n -> n
n + O -> n
S n + m -> S (n + m)
m + (S m) -> S (n + m)

Since more reductions are allowed, n + O and O + n are both convertible to n.
This solves the problem described in section 1.

The system checked some criterias on symbols and rules. This ensures that
the system stays strongly normalizing, confluent and consistent.

Nevertheless, these systems have some drawbacks. Logical power of these
system with respect to Calculus of Inductive Constructions have not been much
studied. Moreover, with such a system, it is not always clear whether we have
defined the same data types as in the initial system. For example, we can look
at the following rewriting system:

f 0 -> true
f 1 -> false

This rewriting system have an infinity of new normal forms — f i,∀i > 1 — for
booleans. This is not incoherent but very counter-intuitive.

Furthermore, it is difficult to extract programs from proofs using rewriting
steps. Extraction is a process in the Coq proof assistant that translates a con-
structive proof to a functional program. Assume we want to extract a proof to a
functional language. We know how to translate β–reductions and ι–reductions:
they have their counter parts in most functional languages. But, some rewrite
rules — like non–linear rules — can not be translated in a funcional languages.

We suggest a new way to add rewrite rules. First, the user proves or admits
some equalities in the Calculus of Inductive Constructions. Then, one of the
5 This property is not provable in CCE but is consistent with this system. It holds in

some proof irrelevance model.
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criterias of rewriting extensions is used to check that the system is still decidable.
The system where we add such proved rewrite rules is a subsystem of CCE . So
the translation described here can be used to translate it into a slight extension
of the Calculus of Inductive Constructions. It allows to check the proof with a
certified kernel. This practical interest will be fully discussed in section 5.

3 Translation of CCE into CIC+

In section 2, we have shown a derivation that is provable in CCE and does not
hold in CIC. So CCE is obviously non conservative over CIC. We introduce an
extension of CIC, that is powerful enough to encode CCE . We translate this
extensional system into that extension of the Calculus of Inductive Construc-
tions — thereafter called CIC+. CIC, and so CIC+ is based on the typing rules
of ECC — see figures 1 and 2 —, extended with inductive definitions, pattern
matching and fixpoints.

We keep the � notation for the deduction in CIC+ and �E for the deduction
in CCE .

Next, we explain the principle of the translation. Then, we introduce the
system CIC+.

3.1 Extensionality Rule

The difference between extensional and intensional systems is the extensionality
rule. This rule transforms a proved equality into a conversion. Such a transfor-
mation is impossible in an intensional system like CIC or CIC+. So, we can
not translate the conversion of the extensional system into the conversion of the
intensional system. The best we can hope is to translate the conversion relation
of CCE into a proved equality in CIC+. We want to have:

Γ �E M ≡ N ⇒ ∃p, Γ � p : M = N

This creates some difficulties. Indeed, let assume we have in CIC+ a function
subst that rewrite with a proved equality.6 The rule:

(CONV)
Γ �E t : A Γ �E A ≡ B Γ �E B : s

Γ �E t : B

translates to:
Γ � t : A Γ � p : A = B Γ � B : s

Γ � subst p t : B

The translation changes the proof term. The equality step is made explicit.
Since CCE has dependent types, these explicit conversions can also appears in
types. Moreover, the translation of a type depends on the derivation. A same
type can have a lot of different translations with different explicit conversions.
6 We will define this function in the next section.
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Nevertheless, we manage to keep a key invariant in the translation.

Invariant. The translated term is the same as the initial term where some
subterms t has been replaced by subst p t for some proof p.

We stress here a point important to understand the whole translation process:

Remark 1. As type checking is undecidable, it can seem strange that there ex-
ists a translation into CIC+ — where type checking is decidable. Indeed, the
process translates a type tree in CCE . This type tree contains the information
about equalities used in conversion. So, the translation have not to guess these
equalities, which would be undecidable.

Before explaining the translation, we have to choose an equality for the
translation of CCE conversion relation. A same type in CCE can have mul-
tiple translations. Moreover, extensional conversion can happen on two terms in
two intensionally different types. So this equality has to link terms of different
types.

3.2 Definition of = in CIC+

In CIC, the usual equality only allows to compare two terms that have the same
type. In our case, we need to compare terms that have not, a priori, the same
type. For example, append l nil is of type list (n+O) whereas l is of type list n.

(JMType)
Γ � A, B : Type Γ � x : A Γ � y : B

Γ � xA =B y : Prop

(JMIntro)
Γ � x : A

Γ � refl x : xA =A x

(JMElim)
Γ � e : xA =B y Γ � p : P A x Γ � P : ∀A : Type,A → Type

Γ � elim e P p : P B y

(JMLeibniz)
Γ � x, y : A

Γ � xA =A y ⇒ x =L y

(JMLAM)

Γ � p1 : u1 = u′
1 Γ, x : u1 � u2 : t

Γ, y : u′
1 � u′

2 : t′ Γ, x : u1, y : u′
1, p : x = y � p2 : u2 = u′

2

Γ � jmlam p1 p2 : (fun x : u1 ⇒ u2) = (fun y : u′
1 ⇒ u′

2)

(JMAPP)
Γ � p1 : u1 = u′

1 Γ � p2 : u2 = u′
2

Γ � jmapp p1 p2 : (u1 u2) = (u′
1 u′

2)

Fig. 3. Essential properties of = in CIC+
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(JMSet)
Γ � xA =B y

Γ � A =L B

(JMSubst1)
Γ � p : A = B Γ � t : A

Γ � subst p t : B

(JMSubst2)
Γ � e : A = B Γ � m : A

Γ � subst e m B =A m

(JMPROD)

Γ � p1 : u1 = u′
1 Γ, x : u1 � u2 : s

Γ, y : u′
1 � u′

2 : s Γ, x : u1, y : u′
1, p : x = y � p2 : u2 = u′

2

Γ � jmprod p1 p2 : (∀ x : u1.u2) = (∀ y : u′
1.u

′
2)

Fig. 4. Derivable properties of = in CIC+

Conversion of CCE links these terms. Hence, in order to translate this relation
into a proved equality, we have to extend equality to link these terms.

In [8], Conor Mc Bride introduced an equality that allows to compare terms
in different types. Nevertheless, two terms can only be equal if they are in the
same type. He has called this equality John Major’s equality. It can be defined
in CIC. Nevertheless, in CIC+, we need a slightly stronger equality. Figure 3
states the essential properties of this equality. All these properties are provable
in CCE for Leibniz equality and so need to be true in CIC+.

Definition. CIC+ consists of CIC extended with the equality axiomatised in
figure 3.

Figure 4 states some properties — that are provable in CIC+ — that are used
in the translation. This defines subst, a function that rewrites a term with an
equality. One can define this function in CIC+ by using the primitive operation
elim.

In section 5, we discuss the power of this equality compared to the John
Major’s equality that can be defined in the CIC.

As we often use this equality we write it =. When there is no ambiguity, we
omit the type of the arguments. We write the usual Leibniz equality, =L.

4 Proof of the Translation

4.1 Main Difficulty

We first explain the main problem with the translation of CCE into CIC+. Let
assume we inductively translate a derivation of CCE . For example, one can look
at the rule for application :

(APP)
Γ �E f : ∀x : A,B Γ �E t : A

Γ �E f t : B
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By induction, we have, on one hand, a translation Γ ′ � f ′ : ∀x : A′, B′ and, on
the other hand, a translation Γ ′′ � t′ : A′′. We have, a priori, no link between,
respectively, Γ ′ and Γ ′′, and A′ and A′′. Indeed, some explicit conversion — some
subst p — may have been added at different positions during the translation.
In order to use the rule for application in CCI+ and conclude the induction, we
have to link them.

In order to solve this problem, we show that all translations of a same term
are equal in CIC+. To have this result we have to introduce a new equivalence,
linking all terms that are the same modulo some explicit conversion steps. This
relation formalizes the key invariant of the translation.

4.2 Rewrited Terms Equivalence

Definition 1. We define the equivalence relation ∼ on terms CIC+ by induc-
tion:

– for x variable:
x ∼ x

– for t1, t2 and p terms,
t1 ∼ t2

subst p t1 ∼ t2
and

t1 ∼ t2

t1 ∼ subst p t2

– for m1, m2, n1 and n2 terms:
m1 ∼ m2 n1 ∼ n2

(m1 n1) ∼ (m2 n2)

– for A1, A2, t1 and t2 terms:
A1 ∼ A2 t1 ∼ t2

(fun x : A1 ⇒ t1) ∼ (fun x : A2 ⇒ t2)

and
A1 ∼ A2 t1 ∼ t2

(∀x : A1.t1) ∼ (∀x : A2.t2)

This relation is canonically extended to contexts.

Remark 2. We stress the fact that this relation is purely syntactic and does not
rely on typing.

Remark 3. subst is defined and one can be puzzled by the fact it could be inlined
or reduced. The following translation can be done with an opaque parameter
subst′ — that would have the same properties as subst but can not be reduced.
We can set this parameter to subst at the end of the translation.

We now prove that two typable equivalent terms are equal.

Lemma 1. Let t1 and t2 be two terms. If t1 ∼ t2, Γ � t1 : T1 and Γ � t2 : T2,
then there exists p such that Γ � p : t1 = t2.

To prove this lemma, we need to introduce a larger relation. For all set E of
couple of variables, we denote ∼E the relation ∼ extended by x ∼ y for every
(x, y) ∈ E. In fact, we prove, by induction on the formation rules of ∼E , that,
for all E, for all Γ , if ∀(x, y) ∈ E,Γ � : x = y, t1 ∼E t2, Γ � t1 : and Γ � t2 :
then Γ � : t1 = t2.

– For x ∼E y the result is an hypothesis and for x ∼E x the result is an
application of reflexivity.
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– For t1 ∼E subst p t2, we have by induction hypothesis Γ � : t1 = t2 and
we conclude by use of property (JMSubst2).

– For (m1n1) ∼E (m2n2), we have Γ � m1 = m2 and Γ � n1 = n2 by
induction hypothesis, we conclude by (JMProd).

– For ∀x : T1.m1 ∼E ∀x : T2.m2, we use α–conversion and prove ∀x :
T1.m1 ∼E ∀y : T2.m2x← y. Let E′ be E∪{(x, y)}. By induction hypothesis,
we have Γ � : T1 = T2 and Γ, x : T1, y : T2, : x = y � : m1 = m2. We
conclude by using the contextual rule of equality for product.

– The proof of λ–rule case is similar to the one of product.

We prove the original lemma by choosing E = ∅.
Lemma 2. If t1 ∼ t′1 and t2 ∼ t′2 then t1{x← t2} ∼ t′1{x← t′2}.

By induction on the formation rules of t1 ∼ t′1. For y ∼ y, then we conclude
because y ∼ y and t2 ∼ t′2. For subst p t ∼ t′, we have t{x← t2} ∼ t′{x← t′2}.So
we have subst p{x ← t2} t{x ← t2} ∼ t′{x ← t′2}. The other cases are simple
applications of contextual rules.

4.3 Set of Terms with Explicit Conversions

We have now a tool to link judgements in CIC+ that are the same modulo some
explicit conversions. We now translate a judgement in CCE by a set of terms
in CIC+ that are ∼–equivalent. Such a translation ensures — see the previous
subsection — that all translations of a judgement can be proved to be equal in
CIC+.

We have to translate three kinds of — mutually recursive — judgements:
context formation, typing and conversion. We have to show that these interpre-
tations sets are never empty — whatever choices have already been made in the
translation process.

Definition 2. For any �E Γ we define a set ��E Γ � of judgements valid for
CIC such that � Γ ∈ ��E Γ � if and only if Γ ∼ Γ and Γ and Γ bind the same
variable and each binded variable have the same kind.

For any Γ �E t : T we define a set �Γ �E t : T � of judgements valid for CIC
such that Γ � t : T ∈ �Γ �E t : T � if and only if � Γ ∈ ��E Γ �, t ∼ t and T ∼ T .

Lemma 3. We can always choose types T that have the same head constructor
as T .

Proof of the lemma Assume we have Γ � t : T . By definition of ∼, for any terms
T ∼ T , T is shaped subst p1 . . . subst pnT ′ with T ′ having the same head
constructor than T . Any subterm of a typable term is typable. So T ′ is typable.
Moreover, from lemma 1, it is equal to T . So there exists p of type T = T ′ such
that Γ � subst p t : T ′.

We now prove our translation process.

Theorem 1. The following properties are valid:

1. If Γ �E t : T then for any � Γ in ��E Γ � there exists t and T such that
Γ � t : T ∈ �Γ �E t : T �.
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2. If �E Γ then there exists � Γ ∈ ��E Γ �.
3. If Γ �E t1 ≡ t2 there exists Γ � t : t1 = t2 ∈ �Γ � t : t1 = t2�

Corollary 1. For any Γ � T : s in �Γ �E T : s�, and forall t such that
Γ �E t : T , there exists t such that Γ � t : T ∈ �Γ �E t : T �. In particular, if
Γ � T : s there exists t such that Γ � t : T ∈ �Γ �E t : T �.

Proof of the corollary. By property 1 of the theorem, we have a translation. By
lemma 2, we can choose T .

This corollary induces the conservativity of CCE over CIC+.

Proof of the theorem. We proceed by induction on the typing rules of CCE .

1. (ECON)
�E ∅

become
� ∅

2. (I-CON)
Γ �E A : s
Γ, x : A �E

. By induction hypothesis, there exists Γ � A : s in

�Γ �E A : s�. By the context formation rule we get � Γ, x : A. Moreover A
and A have the same kind.

3. (TYPE) and (PROP) These rules translate to the same rules in CIC+.

4. (UNIV)
Γ � A : Typei

Γ � A : Typei+1
Let � Γ be in ��E Γ �. By induction hypothesis,

we have Γ � A : Typei ∈ �Γ � A : Typei�. We conclude by using universe
cumulativity in CIC.

5. (VAR)
�E Γ

Γ �E x : A
. Let � Γ be in ��E Γ �. Then we get by application of

the same rule Γ � x : A ∈ �Γ �E x : A�.
6. (PROD)

Γ �E A : s Γ, x : A �E B : s′

Γ �E ∀x : A.B : s′

Let � Γ be in ��E Γ �. By induction hypothesis, there exists A such that
Γ � A : s ∈ �Γ �E A : s�.
Moreover, as � Γ , x : A ∈ ��E Γ, x : A�, there exists B such that Γ, x : A �
B : s′ ∈ �Γ, x : A �E B : s′�. As (s, s′) ∈ S, we conclude Γ � ∀x : A.B : s′ ∈
�Γ �E ∀x : A.B : s′�.

7. (LAM)
Γ, x : A �E t : B

Γ �E (fun x : A⇒ t) : ∀x : A.B
Let � Γ, x : A be in ��E Γ, x : A�. By induction hypothesis, there exists t
and B such that Γ , x : A � t : B ∈ �Γ, x : A �E t : B�. Then, with the
λ–intro rule, we have : Γ � (fun x : A⇒ t) : ∀x : A.B ∈ �Γ �E (fun x : A⇒
t) : ∀x : A.B�

8. (APP)
Γ �E t : ∀x : A.B Γ �E u : A

Γ �E (t u) : B{x← u}
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Let � Γ be in ��E Γ �. By induction hypothesis and lemma 3, there exists t,
A and B such that Γ � t : ∀x : A.B ∈ �Γ �E t : ∀x : A.B�. Moreover, there
exist u′ and A′ such that Γ � u′ : A′ ∈ �Γ �E u : A� As we have Γ � A = A′,
there exists u such that Γ � u : A ∈ �Γ �E u : A�.
So, with the application rule, we conclude:

Γ � (t u) : B[x← u] ∈ �Γ �E (t u) : B[x← u]�

9. (CONV)
Γ �E A ≡ B Γ �E t : A Γ �E B : s

Γ �E t : B
Let � Γ be in ��E Γ �. By induction hypothesis and lemma 3, there exist p,
A and B, such that Γ � p : A = B ∈ �Γ �E A ≡ B�
Moreover, there exist, by induction hypothesis, t′ and A′ such that Γ � t′ :
A′ ∈ �Γ �E t : A�.
Moreover, Γ � : A = A′. We conclude, there exists t such that Γ � t : A ∈
�Γ �E t : A�. So, Γ � (subst p t) : B ∈ �Γ �E t : B�.

10. (EXT)
Γ �E t : A = B

Γ �E A ≡ B

Let � Γ be in ��E Γ �. By induction hypothesis, there exist t, A and B such
that Γ � t : A = B ∈ �Γ �E A = B�. By definition, this judgement is also
in �Γ �E A ≡ B�.

11. (CAPP)
Γ �E u1 ≡ u′1 Γ �E u2 ≡ u′2

Γ �E (u1 u2) ≡ (u′1 u
′
2)

We conclude by induction hypothesis and congruence rule (JMAPP).

12. (CPROD)
Γ �E u1 ≡ u′1 Γ, x : u1 �E u2 ≡ u′2

Γ �E ∀x : u1.u2 ≡ ∀x : u′1.u
′
2

This rule is, in an extensional system, equivalent to:

Γ �E u1 ≡ u′1 Γ, x : u1, y : u′1, p : x = y �E u2 ≡ u′2{x← y}
Γ �E ∀x : u1.u2 ≡ ∀x : u′1.u

′
2

We have, by induction hypothesis Γ � : u1 = u′1 and — as x = y is typable
in Γ, x : u1, y : u′1 — Γ , x : u1, y : u′1, p : x = y � : u2 = u′2{x← y}. We
conclude by application of congruence rule (JMPROD).

13. (CLAM) The contextual rule for functions is similar to the rule for products.
14. (β)

Γ �E ((fun x : A⇒ u)v) :
Γ �E ((fun x : A⇒ u)v) ≡ u{x← v}

From lemma 3, there exist Γ , A, u, B, A′ et v′ such that: Γ � (fun x : A⇒
u) : ∀x : A.B and Γ � v : A′

As Γ � A = A′, there exist v such that: Γ � ((fun x : A⇒ u)v) : B ∈ �Γ �E

((fun x : A⇒ u)v) : �
By β–reduction, Γ � : ((fun x : A⇒ u)v) = u{x← v}
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5 Discussions and Conclusion

5.1 Comparison Between = in CIC+ and John Major’s Equality
Defined in CIC

In this translation, we have extended CIC to support a stronger equality. This
equality links terms of different types and so it is similar to John Major’s equality.
One can define this latter in CIC but some of the properties of figure 3 do not hold.

– (JMType), (JMIntro) and (JMElim) holds.
– (JMLeibniz) does not hold in CIC. We need this axiom in order to prove

(JMSubst2). It is equivalent to Streicher’s axiom K. [6]
– (JMLam) does not hold in CIC. This is often called functional extensionality

since it states that two functions pointwise equal are equal.
– (JMApp) can not be proved in CIC.

So CIC+ is CIC extended with three axioms.

1. Streicher’s axiom K
2. Functional extensionality
3. (JMAPP), the equality of the results of two equal applications

In [5], only the two former are needed.
We now give a justification of these axioms by giving their interpretation in

a proof irrelevance model of CIC in set theory.

– Axiom K states that the only proof of t = t is refl t. It is clear in a proof
irrelevance model, where two proofs of a proposition in Prop are always
equal.

– Functional extensionality states that two functions that have equal results
are equal. This is the definition of equality for functions in set theory.

– (JMAPP) states two equal functions applied to two equal arguments returns
equal results. This holds for equality in set–theory.

5.2 Practical Interest of This Translation

This translation has some practical interests.
CCE can be used as a superset of the rewriting extensions to CIC. Indeed, let

assume the user has extended CIC with some new symbols and new rewrite rules
linking these symbols. If the user can give an interpretation of these symbols in
CIC and prove the equalities corresponding to these rewrite rules, then CCE is a
superset of CIC extended with these symbols and rewrite rules. So the translation
process can translate a proof in this extended system into a proof in CIC+ that
uses the equalities the user has proved. This allows a certified kernel to check
these translated proofs. The extended system can construct a proof term that
uses rewrite rules. This proof term can then be translated to be checked in the
old, certified kernel.

Moreover, this translation gives a way to implement program extraction from
proof in these extensions of CIC. Indeed, programs can be extracted from proofs
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in CIC. Since axioms added in CIC+ are valid for observational equivalence of
programs, the same process can be used to extract program in CIC+. Moreover,
the shape of the translated terms guarantees that the extraction is safe in CCE .
Indeed, terms in CCE can be translated into CIC+ by adding some explicit
conversions subst. Since t and subst p t have the same extracted program, we
can use the extraction process of CIC to extract proof in CCE . Since CCE can
be used as a superset of rewriting extensions of CIC, this gives a safe way to
extract programs from proofs in one of these extensions.

5.3 Generalizations

In the system we studied, some simplifications have been made. We work out
these details here.

Universes Cumulativity. In the Calculus of Inductive Constructions, there is
a hierarchy of universes Type0 ⊂ Type1 ⊂ . . .. This is achieved by converting
from Typei to Typej when j > i. But this means that conversion is not an
equivalence relation anymore. This is a reduction order. As it would prevent us

to encode conversion into equality, we choosed another rule:
Γ � T : Typei

Γ � T : Typei+1
This was the original rule of the Calculus of Constructions. Luo explained in

[7] that this is not equivalent to adding cumulativity in reduction. For example:

X : Type0 → Type0 � X : Type0 → Type1

Nevertheless, this restriction is not a restriction in our case. We still have:

X : Type0 → Type0 � (fun x⇒ X x) : Type0 → Type1

We also have by extensionality:

(fun x⇒ X x) = X

So we can replace X everywhere. When a property contains (fun x⇒ X x), we
can replace it by X with the extensionality rule. With this restriction we get a
great technical simplification with no restriction on expressiveness.

Inductive Definitions. In this paper, we have decided, for the sake of simplic-
ity, not to include inductive types in CCE . In fact, since we can include equalities
in convertibility, there is no need to include inductives in CCE .

They can be introduced in CCE . We can introduce axioms for constructors,
elimination, recursion and induction. Then, we introduce axiomatised equalities
for these symbols. Since this system is extensional, these equalities are automat-
ically included in the conversion in CCE . This axiomatisation will be used in the
translation but is provable using inductive types in CIC+. So we can translate
terms of CCE extended with inductive types.
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5.4 Conclusion

In this paper, we have shown a translation of an Extensional Calculus of Con-
structions into the usual Calculus of Inductive Constructions extended with
Streicher’s axiom K and contextual rules that allow John Major’s equality to be
a congruence.

This introduces a new approach to extend the Calculus of Inductive Con-
structions with rewrite rules. As soon as the set of rewriting rules is provable in
CIC+, we can safely include these rewrite rules in CIC+. This leads to a method
to safely introduce rewriting in the Coq proof assistant. First we provide a model
and prove some equalities. Then we use a criteria to ensure that the equalities
induces a normalising and decidable system. This process still allows to extract
programs from proofs in an usual functional language.
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5. M. Hofmann. Extensional concepts in intensional type theory. Phd thesis, Edinburgh

university, 1995.
6. Martin Hofmann and Thomas Streicher. A groupoid model refutes uniqueness of

identity proofs. In 9th Symposium on Logic in Computer Science (LICS), Paris,
1994.

7. Zhaohui Luo. ECC an Extended Calculus of Constructions. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, Pacific Grove, California,
1989.

8. Conor McBride. Dependently Typed Functional Programs and their Proofs.
PhD thesis, University of Edinburgh, 1999. Available from http://www.lfcs.
informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/.

9. Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Construc-
tions. In Proceedings of the Workshop on Logical Frameworks and Meta-languages,
Santa Barbara, California, 2000. Part of the LICS’2000.



A Mechanically Verified, Sound and Complete

Theorem Prover for First Order Logic

Tom Ridge1 and James Margetson
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Abstract. We present a system of first order logic, together with sound-
ness and completeness proofs wrt. standard first order semantics. Proofs
are mechanised in Isabelle/HOL. Our definitions are computable, allow-
ing us to derive an algorithm to test for first order validity. This algorithm
may be executed in Isabelle/HOL using the rewrite engine. Alternatively
the algorithm has been ported to OCaML.

1 Introduction

In this work we mechanise a system of first order logic, and show soundness and
completeness for this system. We also derive an algorithm which tests a sequent s
for first order validity: s is true in all models iff our algorithm terminates with the
answer True. All results are mechanised in Isabelle/HOL, and the theorem prover
can be executed inside Isabelle/HOL using the rewrite engine. Alternatively, the
definitions have been ported to OCaML to give a directly executable theorem
prover.

This work is interesting for a number of reasons. Soundness is a prerequisite
for a logical system. Completeness of a logical system means that any sequent
true in all models is provable in the system. This signals a step change in con-
fidence in the system: when attempting a proof of a true statement, we have
gone from knowing that we will never err, to knowing that we will eventually
succeed. Soundness and completeness for first order logic are the first significant
results in metamathematics, so that the mathematical content of this work is
interesting.

Our main contribution is to take this process one step further, and provide
a mechanically verified algorithm that will actually prove every valid sequent.
This is the first mechanically verified, sound and complete theorem prover for
FOL. Others have presented mechanisations of completeness proofs for proposi-
tional logic, and occasionally predicate logic, but none have aimed to make the
definitions executable. Completeness of a theorem prover is useful from a user’s
point of view: one wants to know that the failure of a theorem prover to prove a
sequent arises from the unprovability of the sequent, and not from a deficiency
in the theorem prover.

Our work is also interesting because of the range of possible applications.

The mechanization of metamathematics itself has important implications
for automated reasoning since metatheorems can be applied as labor-
saving devices to simplify proof construction.[Sha94]
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For instance, reflection [Har95] is a mechanism whereby, having verified a
piece of code correct, one can incorporate it in a trusted way in the kernel of
a theorem prover or proof checker. Since we have verified a theorem prover for
first order logic, we could conceivably incorporate this code into the kernel of
a theorem prover or proof checker. The advantage of reflection is that we can
safely extend our systems in non-trivial ways.

Proofs involving the semantics of logical systems are subtle, and can be hard
to construct correctly, and to understand correctly, because one tends to bring a
significant amount of intuition to the process, which may not be justified. As an
example of these problems, free variables have long been felt to be problematic
[ZTA+], so much so that some formalisations of first order logic go to great
lengths to avoid them all together [Qui62]. We feel that this work has pedagogic
advantages in this area, and have attempted to illustrate this with a completely
formal proof of the soundness of the ∀R/∀I rule1.

We feel the mechanisation is also a contribution.

– We polish the proofs substantially: we were not afraid to change the definition
of the logical system to make the proofs much more pleasant.

– The mechanisation is small, consisting of around 1000 lines of definitions
and proofs, which makes comprehending and extending the work hopefully
as simple as possible.

– We highlight dependencies between sections of the proof: soundness, for in-
stance, does not require the universe of the models to be infinite.

– For metamathematical reasons, we aim to make the proofs as weak as pos-
sible. We remove uses of wellfounded induction in favour of natural number
induction, which is the strongest principle we use, save for one application
of König’s lemma. Consequently the proofs could be carried out in relatively
weak systems, certainly much weaker than HOL.

This work is also interesting from an aesthetic standpoint, in that it nicely
combines the areas of mathematics, metamathematics, logic, and algorithms. In
the following sections, we give all the definitions, and outline the main lemmas,
of the mechanised proofs.

2 Proof Outline

The rules of our logical system are given in Fig. 1. Terms are simply variables
xi. Theoretically this is no restriction, since the usual first order terms may be
simulated. We occasionally use x, y, z to stand for variables. Parameter a is a
variable xi. a is used in preference to emphasise the eigenvariable status: a does
not appear free in ∀x.A, Γ . Atomic predicates are positive atoms P,Q, . . . and
negative atoms P,Q, . . .. Literals are atomic predicates applied to a tuple of
terms, P (xi1 , . . . , xin), P (xi1 , . . . , xin), . . .. The intent is that P (xi1 , . . . , xin) is
true in a model iff P (xi1 , . . . , xin) is false. Note that there is no relation between

1 Which is simply the ∀ rule here, since we work in a one sided system.
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Ax
� P (xi1 , . . . , xik), Γ, P (xi1 , . . . , xik), Δ

� Γ, P (xi1 , . . . , xik )
NoAx

� P (xi1 , . . . , xik), Γ

Ax
� P (xi1 , . . . , xik), Γ, P (xi1 , . . . , xik), Δ

� Γ, P (xi1 , . . . , xik )
NoAx

� P (xi1 , . . . , xik), Γ

� Γ, A, B
∨

� A ∨ B, Γ

� Γ, A � Γ, B
∧

� A ∧ B, Γ

� Γ, [a/x]A
∀

� ∀x.A,Γ

� Γ, [xn/x]A, (∃x.A)n+1

∃
� (∃x.A)n, Γ

NoAx: P (xi1 , . . . , xik) does not appear in Γ
NoAx: P (xi1 , . . . , xik) does not appear in Γ

∀: a does not appear free in ∀x.A,Γ

Fig. 1. Deterministic Variant of Wainer and Wallen’s System [WW92]

an atomic predicate applied to two tuples of different arity. For instance, the
value of P (x, y) in a model is independent of the value of P (x, y, z). Formulas
A,B, . . . are inductively defined as the least set containing literals, and closed
under applications of ∧,∨, ∀, ∃. The omission of ¬,→ is no restriction, since
they can be defined as abbreviations as usual. Numbered formulae are pairs of
a formula and a number. We say that a formula A is tagged with n, and write
An, when talking about the numbered formula (A, n). Sequents � Γ are lists Γ
of numbered formulae. Initially every formula in a sequent is tagged with 0. Any
formulae which arise as a result of applying rules ∧,∨, ∀, ∃ get tagged with 0.
Except when the formula is quantified by an ∃, the tag is irrelevant and is not
displayed.

A derivation in this system is simply a finite tree constructed using the
rules. If we read these rules backwards, they give an algorithm for taking apart
a sequent. The algorithm is deterministic2 because exactly one rule applies to
any given sequent.

We can connect syntax and semantics in the standard way by giving an
interpretation of primitive propositions as propositions in a model and extending
this to formulas and sequents such that the extension respects standard Tarski
semantics. For example, A ∧B is true in a model iff A is true, and B is true.

Looking at the rules, it is quite easy to convince ourselves that they are sound
in the sense that, if the premises of the rule are true in all models, with respect
to all interpretations of free variables, then so too is the conclusion. For the
axioms, this is just the recognition that we are working in a classical metalogic.
Actually, soundness for rule ∀ is not so obvious, and we give a full proof later.

2 In rule ∀, we choose a to be xi+1 where i is the maximum index of the free variables
occurring in the conclusion of the rule.
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More interesting is the question of whether the rules are complete, that is, do
they suffice to prove every true proposition? We wish to show that, if a sequent s
is true in all models, then we can prove it using our system of rules. Put another
way, if we fail to prove s then it had better be false in at least one model. Given
that we fail to prove s, how can we exhibit a model where s is false? When we
attempt to prove s using our system of rules, if we eventually close every branch
then we have a proof of s. So if we fail to prove s, there must be at least one
branch which goes on forever. We call this branch a failing path, and denote
it f . We can then define a model by taking N as the domain, interpreting each
variable xi as the number i, and interpreting an atomic predicate P (xi1 , . . . , xin)
as true iff P (xi1 , . . . , xin) does not appear anywhere on the failing path f . By
induction on the size of the formula, we can see that every formula appearing
on f must get false. Since f starts at s, and all formulae in s get false, then s
must also get false in this model. Let us consider the ∧ case in the inductive
argument. We must show that if P ∧Q appears on f , then P ∧Q gets false in
the model. Assume P ∧Q appears on f . We must show that P ∧Q gets false in
the model. Since P ∧Q appears in a sequent on f , eventually P ∧Q gets to the
head of the sequent, and rule ∧ is applied. At this point, either P appears on f
or Q appears on f . By induction hypothesis, (at least one of) P or Q gets false
in the model, so P ∧Q gets false in the model.

Having shown soundness and completeness for our system, we can derive an
algorithm for first order validity: the algorithm simply takes the initial sequent
s, and applies the rules of the logical system, keeping track of those sequents
that appear at each stage. If at any stage all branches have been closed and
there are no more sequents to consider, the algorithm will terminate with the
answer True: if the algorithm terminates with True, then certainly we have a
finite derivation and s is valid. Conversely, if s is valid, then by completeness
there is a finite derivation, and we can argue that at stage n our algorithm has
considered all potential derivations of depth less than or equal to n. In this way,
we can see that the algorithm will terminate with True iff s is valid. We also
note that by the undecidability result for first order logic, if the sequent would
lead to an infinite derivation, the algorithm cannot always terminate with False.

3 Formalisation

3.1 Notation

We work in Isabelle/HOL, a variant of classical, simply typed, higher order logic.
Isabelle/HOL has a meta-logic. The symbol =⇒ stands for the implication of
the meta-logic. Nothing substantial is lost by considering this synonymous with
the object level implication −→. Nested meta-logical implication A =⇒ B =⇒
C can be written [[ A; B ]] =⇒ C. The symbol ≡ stands for the equality of the
meta-logic. Again, nothing substantial is lost by considering this synonymous
with the object level equality =. Type aliases are syntactic shorthand for the
underlying type, and have no logical meaning. On the other hand, new types
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may be introduced axiomatically, or defined in relation to an already existing
type. The type N of natural numbers is written nat. Type constructors are func-
tions mapping type lists to types. Application of a type constructor is typically
written postfix. For example, the type of sets over an underlying type ′a is ′a set.
Application of a function f to an argument a is written simply f a. The function
which takes an argument x and produces a result f x is denoted by λx . f x. The
function which is exactly the same as f, except that x is mapped to y, is written
f (x := y). The type of a function with domain ′a and codomain ′b is ′a ⇒ ′b.
ML style datatypes are present, as is definition by primitive and wellfounded
recursion. Lists are a particularly important datatype. The type of lists over a
base type ′a is formed by applying the list type constructor, viz. ′a list. The
empty list is written [], whilst the list xs with an additional x on the front is
written x # xs. The list containing 1, 2, 3 is written [1 , 2 , 3 ]. The functions to
take the head, hd, and tail, tl, of a list are as usual, such that hd (x # xs) =
x and tl (x # xs) = xs. The concatenation of two lists is written xs @ ys. The
function set takes an ′a list to an ′a set in the obvious way. The type of pairs
over base types ′a, ′b is written ′a × ′b, and has the standard projections fst,
snd. Datatypes are accompanied by destructors in the form of case statements.
For example, the case distinction on natural numbers may be written case x of
0 ⇒ baseCase | Suc n ⇒ stepCase n. This has the eta-contracted form natcase
baseCase stepCase.

3.2 Formulas

Predicates Pi are identified by their index i ∈ N. Similarly variables xi.

types pred = nat types var = nat

Terms are variables. Formulas are literals (positive and negative atomic pred-
icates applied to tuples of variables, here represented as lists), conjunctions, dis-
junctions, foralls and exists. Variables and binding are handled by De Bruijn’s
nameless representation: a bound variable is a natural number indicating the
number of enclosing quantifiers one must traverse to find the binding quantifier.
This represents a deep embedding of the logic [WN04]. Free variables, substitu-
tion, and instantiation are defined as usual.

datatype form =
PAtom pred (var list)
| NAtom pred (var list)
| FConj form form
| FDisj form form
| FAll form
| FEx form

consts fv :: form ⇒ var list
primrec

fv (PAtom p vs) = vs
fv (NAtom p vs) = vs
fv (FConj f g) = (fv f ) @ (fv g)
fv (FDisj f g) = (fv f ) @ (fv g)
fv (FAll f ) = preSuc (fv f )
fv (FEx f ) = preSuc (fv f )

consts preSuc :: nat list ⇒ nat list
primrec
preSuc [] = []
preSuc (a#list) = (case a of 0 ⇒ preSuc list | Suc n ⇒ n#(preSuc list))

consts subst :: (nat ⇒ nat) ⇒ form ⇒ form
primrec
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subst r (PAtom p vs) = (PAtom p (map r vs))
subst r (NAtom p vs) = (NAtom p (map r vs))
subst r (FConj f g) = FConj (subst r f ) (subst r g)
subst r (FDisj f g) = FDisj (subst r f ) (subst r g)
subst r (FAll f ) = FAll (subst (λ y. case y of 0 ⇒ 0 | Suc n ⇒ Suc (r n)) f )
subst r (FEx f ) = FEx (subst (λ y. case y of 0 ⇒ 0 | Suc n ⇒ Suc (r n)) f )

constdefs finst :: form ⇒ var ⇒ form
finst body w ≡ subst (λ v . case v of 0 ⇒ w | Suc n ⇒ n) body

Sequents are formula lists. A numbered formula is a pair of a natural num-
ber and a formula. Numbered sequents are numbered formula lists. We define
mappings between sequents and numbered sequents.

types seq = form list

types nform = nat × form

types nseq = nform list

constdefs s-of-ns :: nseq ⇒ seq
s-of-ns ns ≡ map snd ns

constdefs ns-of-s :: seq ⇒ nseq
ns-of-s s ≡ map (λ x . (0 ,x)) s

The free variables of a sequent, the maximum of a list of free variables, and
a new variable are defined.

constdefs sfv :: seq ⇒ var list
sfv s ≡ flatten (map fv s)

consts maxvar :: var list ⇒ var
primrec
maxvar [] = 0
maxvar (a#list) = max a (maxvar list)

constdefs newvar :: var list ⇒ var
newvar vs ≡ Suc (maxvar vs)

3.3 Derivations

In addition to the rules in Fig. 1, we add the following rule to deal with the
degenerate case of the empty sequent. We note that we could simply terminate
the proof at this point, but that this rule ensures that the proofs in the rest of
the mechanisation are uniform.

�
Nil

�

Then to represent the rules, we use a function mapping the conclusion of a rule
to a list of premises.

consts subs :: nseq ⇒ nseq list
primrec
subs [] = [[]]
subs (x#xs) =
(let (m,f ) = x in case f of
PAtom p vs ⇒ if NAtom p vs ∈ set (map snd xs) then [] else [xs@[(0 ,PAtom p vs)]]
| NAtom p vs ⇒ if (PAtom p vs) ∈ set (map snd xs) then [] else [xs@[(0 ,NAtom p vs)]]
| FConj f g ⇒ [xs@[(0 ,f )],xs@[(0 ,g)]]
| FDisj f g ⇒ [xs@[(0 ,f ),(0 ,g)]]
| FAll f ⇒ [xs@[(0 ,finst f (newvar (sfv (s-of-ns (x#xs)))))]]
| FEx f ⇒ [xs@[(0 ,finst f m),(Suc m,FEx f )]])

Derivations are defined inductively wrt. this function. The additional natural
number indicates the depth of a node in the derivation tree, and aids inductive
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arguments. We also make an abstracting definition of a predicate to recognise a
terminal sequent, that is, one that can be closed by an application of the rules
Ax,Ax.

consts deriv :: nseq ⇒ (nat × nseq) set
inductive deriv s
intros
init: (0 ,s) ∈ deriv s
step: (n,x) ∈ deriv s =⇒ y ∈ set (subs x) =⇒ (Suc n,y) ∈ deriv s

consts is-axiom :: seq ⇒ bool
primrec
is-axiom [] = False
is-axiom (a#list) = ((∃ p vs. a = PAtom p vs ∧ NAtom p vs ∈ set list)
∨ (∃ p vs. a = NAtom p vs ∧ PAtom p vs ∈ set list))

Our first task is to show that these derivations are sound wrt. first order
models.

3.4 Models

A first order model (M, I) is a set of elements M and an interpretation I of
the syntactic predicates Pj as predicates Pj over tuples (represented as lists) of
elements of the model. Which type should the elements of a model be drawn
from? We assert the existence of a universal type3.

typedecl U types model = U set × (pred ⇒ U list ⇒ bool)

An alternative would be to quantify over all models at all types. However,
type quantification is currently not supported in HOL. We would like to echo
Harrison [Har98] who notes the utility of type quantification in HOL [T.F92] in
a similar context.

The third semantic notion is that of an environment, which is an assignment
of elements in the model to free variables.

types env = var ⇒ U constdefs is-env :: model ⇒ env ⇒ bool
is-env MI e ≡ ∀ x . e x ∈ (fst MI )

Given a model and an environment, we can evaluate the truth of a formula,
using standard Tarski semantics.

consts feval :: model ⇒ env ⇒ form ⇒ bool
primrec
feval MI e (PAtom P vs) = (let IP = (snd MI ) P in IP (map e vs))
feval MI e (NAtom P vs) = (let IP = (snd MI ) P in ¬ (IP (map e vs)))
feval MI e (FConj f g) = ((feval MI e f ) ∧ (feval MI e g))
feval MI e (FDisj f g) = ((feval MI e f ) ∨ (feval MI e g))
feval MI e (FAll f ) = (∀ m ∈ (fst MI ). feval MI (λ y. case y of 0 ⇒ m | Suc n ⇒ e n) f )
feval MI e (FEx f ) = (∃ m ∈ (fst MI ). feval MI (λ y. case y of 0 ⇒ m | Suc n ⇒ e n) f )

This extends to sequents, and finally we can say what it means for a sequent
to be valid.

3 This is one of only two places where we make axiomatic assertions. Both could be
avoided by using existing type ind instead of declaring U .
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consts seval :: model ⇒ env ⇒ seq ⇒ bool
primrec
seval MI e [] = False
seval MI e (x#xs) = (feval MI e x ∨ seval MI e xs)

constdefs svalid :: form list ⇒ bool
svalid s ≡ ∀ MI e. is-env MI e −→ seval MI e s

3.5 Soundness

We prove that the rules are sound, that is, that any sequent at the root of a
derivation is true in all models. Conceptually this is done by induction on the
finite derivation, from leaf to root.

lemma soundness: finite (deriv (ns-of-s s)) =⇒ svalid s

For each rule, we need a lemma stating that if the premises are true in
all models, then so too is the conclusion. We treat the most interesting case
of the ∀ rule, which we prove for abitrary fresh u. This case depends on the
following lemma, which states roughly that evaluating [u/x]f in environment e
is equivalent to evaluating f in an environment e(x := e u), i.e. in the same
environment except that the free variable x gets mapped to whatever u was
mapped to by the original environment e.

lemma feval-finst: feval MI e (finst A u) = feval MI (nat-case (e u) e) A

The statement of the main lemma is as follows.

lemma sound-FAll: u /∈ set (sfv (FAll f #s)) =⇒ svalid (s@[finst f u]) =⇒ svalid (FAll f #s)

Suppose we wish to show that ∀x.f is true in all models wrt. all environments
e, and we assume that for u fresh wrt. f , [u/x]f is true in all models wrt. all
environments e′. To show ∀x.f is true wrt. environment e, we must show that for
all m, f is true wrt. environment e(x := m). From the assumption, choosing e′ to
be e(u := m), we get that [u/x]f is true wrt. environment e(u := m). By lemma
feval-finst, this is equivalent to f being true wrt. environment e(u := m)(x :=
(e(u := m) u)), and this environment is simply e(u := m)(x := m). Since u is
fresh wrt. f , we actually have that f is true wrt. environment e(x := m), which
is what we had to show. This is the essential idea behind the proof of the main
lemma. An Isar proof of this lemma is included in the development, but omitted
here for space reasons.

3.6 Failing Path

We wish to show completeness of our rule system wrt. validity, i.e. if some
sequent s is true in all models, then it is provable. Alternatively, if s is not
provable, we must exhibit a model where s is false. If s is not provable, then
when we attempt to prove it using the rules of our system, we will not end up
with a finite derivation. If the derivation tree is infinite then, since it is finitely
branching, we can use König’s lemma to find an infinite path in the tree. We call
this infinite path a failing path. We define a failing path as a function from a



302 T. Ridge and J. Margetson

derivation tree to a path through the derivation tree. Paths are simply functions
with domain nat.

consts failing-path :: (nat × nseq) set ⇒ nat ⇒ (nat × nseq)
primrec
failing-path ns 0 = (SOME x . x ∈ ns ∧ fst x = 0 ∧ infinite (deriv (snd x))
∧ ¬ is-axiom (s-of-ns (snd x)))

failing-path ns (Suc n) = (let fn = failing-path ns n in SOME fsucn. fsucn ∈ ns
∧ fst fsucn = Suc n ∧ (snd fsucn) ∈ set (subs (snd fn)) ∧ infinite (deriv (snd fsucn))
∧ ¬ is-axiom (s-of-ns (snd fsucn)))

If f is the failing path for deriv s then the essential property of f is given in
the following.

lemma (in loc1 ) is-path-f : infinite (deriv ns) =⇒ ∀ n. f n ∈ deriv ns ∧ fst (f n) = n
∧ (snd (f (Suc n))) ∈ set (subs (snd (f n))) ∧ infinite (deriv (snd (f n)))

Note that HOL is sufficiently powerful that we can simply define a failing
path through a tree using the choice operator, avoiding an explicit invocation of
König’s lemma.

3.7 Contains, Considers

We now wish to talk about when a path f contains a numbered formula nf at
position n. We also introduce the notion of when a formula is considered at a
point n in a path, which is when the formula is at the head of the sequent at
position n.

constdefs contains :: (nat ⇒ (nat × nseq)) ⇒ nat ⇒ nform ⇒ bool
contains f n nf ≡ nf ∈ set (snd (f n))

constdefs considers :: (nat ⇒ (nat × nseq)) ⇒ nat ⇒ nform ⇒ bool
considers f n nf ≡ case snd (f n) of [] ⇒ False | (x#xs) ⇒ x = nf

3.8 Models 2

A falsifying model will in general consist of at least countably many elements.
So far, we have said nothing about the size of our universe type. We require that
it is infinite so that it can contain an infinite falsifying model. We assert the
existence of an injective function from nat to U4.

consts ntou :: nat ⇒ U

axioms ntou: inj ntou

constdefs uton :: U ⇒ nat
uton ≡ inv ntou

3.9 Falsifying Model from Failing Path

We are now in a position to define a falsifying model, given an infinite derivation.

constdefs model :: nseq ⇒ model
model ns ≡ (range ntou, λ p ms. (let f = failing-path (deriv ns) in
(∀ n m. ¬ contains f n (m,PAtom p (map uton ms)))))

4 If we had taken the existing HOL type ind instead of declaring U , then we could
avoid asserting this axiom, and our development would be conservative.
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The point of the model is that any formula contained in a sequent on the
failing path f gets false in the model. This is proved by induction on the size of
the formula.

lemma [[ f = failing-path (deriv (ns-of-s s)); infinite (deriv (ns-of-s s)); contains f n (m,A) ]]
=⇒ ¬ feval (model (ns-of-s s)) ntou A

Let us treat the case that (∃x.P x)n appears on f . Then we know that
(∃x.P x)0 appears on f . Then (∃x.P x)0 eventually gets considered, and P x0
and (∃x.P x)1 appears on f . Then (∃x.P x)1 eventually gets considered, and
P x1 and (∃x.P x)2 appears on f . Continuing in this way, we see that for all
n, P xn appears on f . Applying the induction hypothesis to each of these, we
see that for all n, the interpretation of P xn, i.e. P n, is false in the model. So
“there exists an n such that P n” is false in the model, and so ∃x.P x gets false
in the model.

3.10 Completeness

Since the sequent s which gave rise to the infinite derivation appears on the
failing path at position 0, and all formulas in s get false, it too must get false in
the model. We have thus found our falsifying model, and s could never have been
proved using any sound system of rules. The completeness lemma is as follows.

lemma completeness: infinite (deriv (ns-of-s s)) =⇒ ¬ svalid s

3.11 Soundness and Completeness

We can combine our soundness and completeness results to get a lemma which
connects validity and provability.

lemma soundComplete: svalid s = finite (deriv (ns-of-s s))

3.12 Algorithm and Computation

The rules of our system are deterministic. We therefore want to turn the rules
into a deterministic algorithm. This algorithm checks to see if the derivation is
finite by repeatedly applying the rules to all sequents at depth n, to obtain the
list of sequents at depth n + 1. If there are no sequents at a given depth, then
all branches have been closed and we have found our finite derivation.

We define a global version of the algorithm as a function that takes an initial
sequent s, and a number n, and gives back the list of sequents at depth n in the
derivation rooted at s. We need a step function that takes a list of sequents at
depth n in the derivation, and gives back a list of sequents at depth n + 1.

constdefs step :: nseq list ⇒ nseq list
step ≡ λ s. flatten (map subs s)

We are going to iterate this step function repeatedly, so we need an iteration
function.
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consts iter :: ( ′a ⇒ ′a) ⇒ ′a ⇒ nat ⇒ ′a — fold for nats
primrec
iter g a 0 = a
iter g a (Suc n) = g (iter g a n)

So iterating the step function n times on an initial sequent s gives the sequents
at depth n in the derivation.

lemma ∀ x . ((n,x) ∈ deriv s) = (x ∈ set (iter step [s] n))

Now we know that the derivation from s is finite iff there is some n such
that there are no sequents at depth n in the derivation, in which case the nth
iteration of the step function on s will be empty.

lemma finite-deriv : finite (deriv s) = (∃ m. iter step [s] m = [])

Now the following is the definition in OCaML of a function that searches
the natural numbers to see if there is an n such that the nth iteration of the
subs function on an initial sequent s is empty. By lemma finite-deriv, if the
derivation is finite, then there is some n such that the nth iteration is empty,
and the algorithm will terminate. However, if the derivation is not finite, then
our algorithm will fail to terminate, searching ever increasing n.

let rec prove’ s n = (if iter step s n = [] then true else prove’ s (n+1));;

let prove s = prove’ [ns_of_s s] 0;;

There is an obvious source of inefficiency in that, having computed the nth
iteration, we throw the result away and compute the n + 1 th iteration from
scratch. The following is an equivalent, but much more efficient implementation.

let rec prove’ s = (if s = [] then true else prove’ (step s));;

let prove s = prove’ [ns_of_s s];;

When we come to replicate this in HOL we run into a problem. HOL is
a logic of total functions, whilst the general recursive OCaML definitions just
given are clearly partial. However, we can improve our confidence in the OCaML
definitions as follows. Firstly, we define our function prove′ in a non-constructive
way.

constdefs prove ′ :: nseq list ⇒ bool
prove ′ s ≡ ∃ m. iter step s m = []

constdefs prove :: seq ⇒ bool
prove s ≡ prove ′ [ns-of-s s]

From lemma finite-deriv, prove s corresponds to the finiteness of the deriva-
tion from s.

lemma finite-deriv-prove: finite (deriv (ns-of-s s)) = prove s

Note that together with lemma soundComplete we have that validity of s is
equivalent to prove s. We can even show that prove’ satisfies the relation implied
by the general recursive OCaML definition.

lemma prove ′: prove ′ s = (if s = [] then True else prove ′ (step s))
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At this point, we believe that if the OCaML function terminates with true,
then the derivation is finite. Conversely, we believe that if the derivation is
finite, there is some n such that the nth iteration is empty, and our algorithm
will discover this at stage n and terminate with true. On the other hand, we
also believe that if the derivation is not finite, then the algorithm will fail to
terminate. We have shown formally in HOL that any function that claimed to do
this must satisfy the relation implied in lemma prove’. However, there are many
functions that satisfy this recursive equation, such as the constant function of one
argument that returns true, so that our beliefs have not been fully formalised. To
go further would require some explicit notion of termination, and some way of
handling general recursive definitions formally in HOL. We discuss this further
in Sect. 5.

To execute the prover in Isabelle, we can rewrite the prove function to prove’,
then use the lemma prove’ to rewrite prove’. Further rewriting can occur. Ex-
amining the definitions, one sees that all functions involved are computable by
rewriting. Of course, this rewriting will not terminate on some inputs, but if it
does terminate with the output True, then the sequent is valid, and this will have
been formally proved inside Isabelle. In terms of performance, one can comfort-
ably run the verified prover inside Isabelle on small examples using the rewriting
engine5. Alternatively, we have transported the definitions to OCaML, to give
a directly executable program. For instance, the last few clauses of the OCaML
program are as follows.

let subs t = match t with
[] -> [[]]

| (x::xs) -> let (m,f) = x in match f with
PAtom (p,vs) -> if mem (NAtom (p,vs)) (map snd xs) then [] else [xs@[(0,PAtom (p,vs))]]

| NAtom (p,vs) -> if mem (PAtom (p,vs)) (map snd xs) then [] else [xs@[(0,NAtom (p,vs))]]
| FConj (f,g) -> [xs@[(0,f)];xs@[(0,g)]]
| FDisj (f,g) -> [xs@[(0,f);(0,g)]]
| FAll f -> [xs@[(0,finst f (newvar (sfv (s_of_ns (x::xs)))))]]
| FEx f -> [xs@[(0,finst f m);(suc m,FEx f)]];;

let step = fun s -> flatten (map subs s);;

let rec prove’ s = (if s = [] then true else prove’ (step s));;

let prove s = prove’ [ns_of_s s];;

4 Related Work

Completeness for first order logic has been mechanised several times, but without
focusing on executability. In HOL Light, Harrison develops basic model theory
for first order predicate logic in [Har98], mechanising a textbook by Kreisel and
Krivine, but without addressing executability considerations. In Isabelle/HOL,
Berghofer has also tackled classical first order predicate logic [Ber02], mechanis-
ing a textbook by Melvin and Fitting, again without focusing on executability.

In ALF, Persson has mechanised a constructive proof of intuitionistic pred-
icate logic [Per96], but we were unable to trace the thesis. From comments in
5 This applies to the newest version: the original was somewhat inefficient.
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other work, it appears that Persson formalised the semantics of FOL formu-
lae wrt. formal topology, so that the development is presumably substantially
different from that here.

Completeness for propositional logic has also been tackled several times, al-
though these results tend to be substantially easier to mechanise. There is a
line of work by Underwood et al. in the NuPRL system. Primarily this involves
mechanised proofs of completeness for intuitionistic propositional logic. The fi-
nal paper in this line appears to be [Cal99], which usefully references much
of the previous work. Included in this work is a paper [Und95] that discusses
computational aspects of classical reasoning, applied to completeness results for
intuitionistic logic, although these results were not mechanised. In Coq there has
been much work on mechanising propositional logic. For instance, Weich tackles
intuitionistic propositional logic in [Wei01].

The basic idea for this type of completeness proof is found in the work of
Henkin [Hen49], where the author introduces the then radical idea of utilising
the terms of the logical system as the elements of the model. Such a model is
usually called a Henkin-model. The proof proceeds by successively extending the
language and the term model until a maximally consistent and term complete
model is formed. It is a relatively short step from here to defining a model directly
from a failing derivation, as we have done here. However, we are unable to trace
the paper in which this step appears for the first time. A succinct presentation of
this approach is [WW92]. This work was originally mechanised in Isabelle/HOL
by Margetson [Mar99]. This was then remechanised by Ridge, who modified the
logical system, simplified and polished the proofs, and extended the work so that
the prover is executable by rewriting inside Isabelle.

Less closely related is work on verifying proof checkers. For instance, Pollack
has a verified type checker in [Pol95], and further work with McKinna is reported
in [MP99].

More generally, this work is an exercise in mechanising results in meta-
mathematics. A good example of a much more comprehensive mechanisation
in this area is the work of Shankar on mechanising Gödel’s incompleteness the-
orem [Sha94].

5 Conclusion and Future Work

We have presented a deterministic system of first order logic, proved soundness
and completeness, and captured the system as an algorithm that can be directly
executed inside Isabelle using the rewrite system. There are many extensions
that might be considered.

Most immediately, we claim that if the derivation is finite, then the algorithm
will terminate with true. To make this claim fully formal would require a treat-
ment of general recursive definitions and explicit non-termination in HOL. One
approach would be to work with a formalised semantics for OCaML, or some other
suitable language. A more abstract approach would be to apply the techniques of
LCF, a logic which explicitly deals with termination and recursive definitions.
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Currently, there is a “leap of faith” [Har95] required to bridge the gap between
the formalised definitions and those in OCaML. As we have shown, HOL is
already a powerful language for expressing functional algorithms. A more radical
approach than mechanising a theory of recursive functions inside HOL, is simply
to carve out an exectuable subset of HOL itself. This is harder than it appears
because one must treat general recursive definitions.

Terms in our system are simply variables. Although theoretically this is no
restriction, it would be interesting to extend the mechanisation to deal with
full first order terms. We might consider a representation of terms such as the
following.

datatype folterm = Var nat | App nat (folterm list)

It is then not too difficult to enumerate these in an effective way. The next
extension is to equality. Again, the lack of equality is theoretically no restriction,
but it is usual to treat equality as a special relation, rather than axiomatising
its properties.

We can also seek to extend the formalisation to cover other results in proof
theory and automatic theorem proving, or as the basis of a more substantial
verified theorem prover. Although we have not stated the result explicitly, our
system does not use the Cut rule, so that the proofs generated are Cut free. Cut
elimination is one of the main results of proof theory. Our proofs represent a
semantic proof of Cut elimination. It would be interesting to tackle a syntactic
proof, such as that by Pfenning [Pfe00]. Indeed, Pfenning cites Cut elimination
as a challenge problem for formalisation. An approach along our current lines
would have advantages over Pfenning’s, in that the embedding is deeper, and
properties such as coverage could be proven. Resolution is perhaps most easily
treated as a variant of proof search in a system such as G3c [Avr93]. If syntactic
Cut elimination were in place, a proof of completeness for a resolution based
system would be relatively straight forward. Alternatively, one could try for a
direct semantic proof. Mechanisation of these results could provide benefits to
the community, allowing proposed improvements in algorithms to be formally
assessed in terms of completeness preservation.

We alluded to the use of the reflection mechanism to incorporate verified code
into the kernel of a theorem prover. It would be interesting to port the proofs to a
system that supported such a feature, and investigate issues such as performance.
Previous versions of this paper used the word “efficient” in the title, which
referred to the fact that the algorithm was tail recursive, without backtracking.
The algorithm does not use unification to select quantifier instantiations, and so
is roughly comparable to Gilmore’s procedure in terms of performance. In this
sense, it is not competitive with current unification based approaches. It would
be interesting to examine the performance of the system when extended to use
unification.

The mechanisation described here can be found at the Archive for Formal
Proofs [afp], which also includes the related OCaML code. Alternatively, the
newest version is maintained at Ridge’s homepage [Rid].
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Finally, we would like to thank the anonymous reviewers for their extremely
close reading which uncovered several inadequacies in a previous version.
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itors, Theorem Proving with Analytic Tableaux and Related Methods,
volume 918 of Lecture Notes in Artificial Intelligence. Springer, 1995.
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-321/.

[Wei01] Klaus Weich. Improving Proof Search in Intuitionistic Propositional
Logic. Logos-Verlag, 2001. http://www.logos-verlag.de/cgi-bin/engbuchmid?
isbn=767&lng=eng&id=.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shal-
low versus deep embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2004), volume
3223, pages 305–320, 2004.

[WW92] S. S. Wainer and L. A. Wallen. Basic proof theory. In S. S. Wainer, P. Aczel,
and H. Simmons, editors, Proof Theory: A Selection of Papers from the Leeds
Proof Theory Programme 1990, pages 3–26. Cambridge University Press,
Cambridge, 1992.

[ZTA+] Richard Zach, Neil Tennant, Arnon Avron, Michael Kremer, Charles Par-
sons, and Timothy Y. Chow. The rule of generalization in fol, and
pseudo-theorems. Thread on the FOM mailing list. http://www.cs.nyu.edu/
pipermail/fom/2004-September/008513.html.



A Generic Network on Chip Model

Julien Schmaltz and Dominique Borrione

TIMA Laboratory, VDS Group, Joseph Fourier University,
46 avenue Felix Viallet, 38031 Grenoble Cedex, France
{Julien.Schmaltz, Dominique.Borrione}@imag.fr

Abstract. We present a generic network on chip model (named GeNoC)
intended to serve as a reference for the design and the validation of high
level specifications of communication virtual modules. The definition of
the model relies on three independent groups of constrained functions:
routing and topology, scheduling, interfaces. The model identifies the
sufficient constraints that these functions must satisfy in order to prove
the correctness of GeNoC. Hence, one can concentrate his efforts on
the design and the verification of one group. As long as the constraints
are satisfied the overall system correctness is still valid. We show some
concrete instances of GeNoC. One of them is a state-of-the-art network
taken from industry.

1 Introduction

To face the growth of integration capabilities (a few hundred million transistors
with a 0.09 μm process), the system-on-chip (SoC) design paradigm has become
familiar to embedded system manufacturers. This design methodology relies on
the reuse of pre-existing processor and memory cores. In this framework, in-
terconnections and the interoperability of the different components become the
main design and verification challenges.

At the Register Transfer Level (RTL) and below, the design and the verifica-
tion of a production quality SoC is well supported by numerous tools [19]. These
tools are based on a combination of efficient methods to manipulate Boolean
terms and reason in propositional logic: Boolean decision diagrams, SAT, au-
tomatic test pattern generation combined with structural analysis, partitioning
and name matching [12].

To handle the complexity of a SoC, designs must start at a higher level
of abstraction [25] and consider generic (i.e. unbounded) models. At this level,
where emphasis is placed on the functional behavior, algorithmic techniques
(e.g. Model Checking [15]) are not directly applicable because of their lack of
abstract datatypes and the size explosion of their state-graph representation.
Consequently, the initial design step is currently supported by simulation tools
taking as input relatively ad hoc formalisms.

In this context, our objective is to provide formalisms and methodologies
for the specification and the validation of parameterized communication archi-
tectures at their initial design steps. We consider unbounded systems where the
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number of interconnected nodes is an arbitrary, but finite, natural. Theorem
proving systems, like ACL2 [14], PVS [17] or HOL [9], have reasoning capabili-
ties which do not require fixed size models. They have been successfully applied
to the verification of floating-point operators [22], microprograms [11,3,8] and
pipelined machines [23,1]. If some of these systems have been applied to the
verification of protocols [10,16,18,4], their application to on-chip communication
hardware is new.

In this paper, we present a generic network on chip model intended to serve as
a reference for the design and the validation of high level specifications of com-
munication virtual modules. A function, named GeNoC, represents a generic
communication architecture. It is defined in terms of three independent groups
of key functions: routing and topology, scheduling, interfaces. We have identified
constraints on the key functions that are sufficient to prove the overall correct-
ness of GeNoC. Consequently, our proposed methodology to ensure that modules
behave correctly in the overall system is modular. The definition and the iden-
tification of the properties (proof obligations) that ensure the correctness of the
overall communication are the main contribution of this paper.

The next section presents an overview of GeNoC. We explain how we func-
tionally represent communication architectures and we define our correctness
criteria. In section 3, we detail the routing and the interconnect functions. We
show that the routing of the Octagon network from STMicroelectronics and an
XY routing algorithm in a 2D mesh are concrete instances of GeNoC. In section
4, we detail the generic scheduling function and we show two concrete instances
of it: a circuit switched algorithm and a packet switched algorithm. Section 5
details the interfaces and exhibits a concrete example. In section 6, we present a
precise definition of GeNoC and how we prove it correct from the constraints on
the key functions. Section 7 discusses related works. Finally, section 8 concludes
the paper.

2 Overview of GeNoC

Our purpose is the modeling of communications between points (e.g. processors,
co-processor, memories) of a network (Fig.1). Computations and communica-
tions are orthogonal, and are separated into applications and interfaces [21].
Each point of the network reflects this decomposition. This paper focuses on
communications, applications are not considered further. To distinguish between
interface-application and interface-interface communications, an interface and
an application communicate using messages; two interfaces communicate using
frames. In the examples of this paper, the need for the distinction between mes-
sages and frames is not obvious. But in the general case, the encapsulation of
messages into frames with protocol information (e.g. Etherner, Bi-φ-M) produces
objects of a quite distinct structure.

The points are not directly connected. A communication architecture, bus or
network, determines how frames are transferred between them. The roles of this
component for any communicating pair are:
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Fig. 1. Communications Principles

1. to compute the route between the points of a pair (routing)
2. to schedule or delay this communication according to the current traffic and

the priority ordering between points (scheduling)
3. to convey the frame from one point to another (medium)

The scheduling policy constitutes one independent module. Routing and
medium are intrinsically related by the topology of the network. They constitute
another independent module.

The Generic Network on Chip (GeNoC) model is given Fig. 2. It represents a
generic communication architecture. Our modeling style is functional: GeNoC is
represented by a function, as well as each module. To show that our model can
be extended we include interfaces in its definition. GeNoC takes as arguments
the list of requested communications and the characteristics of the network.
It produces two lists as results: the messages received by the destination of
successful communications and the aborted communications. In the remainder
of this section, we detail the basic components of the model.

The model makes no assumption on the domain GenericNodeSet used for
referring to the points (or nodes) of the communication architecture. The set
of nodes present in a particular architecture, denoted NodeSet, is generated by
a network specific function NodeSetGenerator(Params). The list Params repre-
sents the generating base for NodeSet. Function ParamsHyps is a network specific
function which defines the list Params. Let ValidNodesp(x) be a predicate that
defines the type of the nodes; the constraint on the generator is that it produces
a list of valid nodes if Params satisfies its hypotheses. Consequently, for each
instanciation of GeNoC, the following proof obligation will have to be relieved:

Proof Obligation 1. NodeSet Definition
ParamsHyps(Params)→ V alidNodesp(NodeSetGenerator(Params))
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The main input of GeNoC is a list T of transactions of the form t = (id A
msgt B). Transaction t represents the intention of the application A to send a
message msgt to the application B. A is the origin and B the destination. Both
A and B are members of NodeSet. Each transaction is uniquely identified by
a natural id. In a valid list, transactions appear in ascending order of the ids.
Valid transactions are recognized by the predicate Transactionsp(T , NodeSet).

An interface communicates (via the transmission medium) with two compo-
nents, an application and another interface. It is thus represented by two func-
tions: p2psend computes a frame from a message; p2precv computes a message
from a frame. The topology of the network, i.e. the physical interconnection
of the different nodes, is represented by the function Medium. In this topology,
the computation of routes is modeled by the function Routing. The scheduling
policy of the architecture is represented by the function Scheduling. It splits a
list of frames into a list of scheduled frames and a list of delayed frames.

Briefly, function GeNoC works as follows. For every message in the initial list
of transactions, it computes the corresponding frame using p2psend. Each frame
together with its id, origin and destination constitutes a missive. A missive
is valid if the ids are naturals (with no duplicate) and appear in ascending
order; the origin and the destination are members of NodeSet. Valid missives are
recognized by the predicate Missivesp(x). Then, GeNoC computes the routes
of the missives and schedules them using functions Routing and Scheduling.
Once a route is computed, a travel denotes the list composed of a frame, its id
and its route. Travels are valid if the ids are naturals (with no duplicate) and
ordered. Valid travels are recognized by the predicate TrLstp(x). The scheduled
travels are executed by function Medium, and the corresponding results are
computed by calling p2precv. The delayed travels are converted back to missives
and constitute the argument of a recursive call to GeNoC. Function GeNoC halts
if every attempt has been consumed. Its main output is the list of the results of
the completed transactions.
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Table 1. Terminology

Type of message Purpose

message information between applications and interfaces

frame information between interfaces

NodeSet set of existing nodes

missive a frame with information about its travel
(Id origin frame destination)

Missives ordered list of missives

NodeLists a set of ordered lists of existing nodes

route a route in a network (route ∈ NodeLists)

origin origin node of any message and frame

destination destination node of any message and frame

Id unique identifier of any message

att a list of remaining attempts of every node

AttLst domain of att

travel a frame associated with its route and Id
(Id frame route)

Travels ordered list of travels

result a tuple of the form (Id result)

R ordered list of results

transaction tuple of the form (Id origin message destination)

T ordered list of transactions

Params ordered list of the parameters of the system

GeNoC is a recursive function, and must be proved to terminate for two
reasons. (1) It is a prerequisite for mechanized reasoning (in our case with the
ACL2 system). To make sure that this function terminates, we associate to every
point a finite number of attempts. At every recursive call of GeNoC, every point
with a pending transaction will consume one attempt. The association list att
stores the attempts and att[i] denotes the number of remaining attempts of
the node i. Function SumOfAttempts(att) computes the sum of the remaining
attempts of the nodes and is used as the decreasing measure of parameter att.
(2) The main reason why termination must be ensured is that T represents the
transactions and is finite. If GeNoC never terminates on finite inputs, this means
that at least one transaction is processed forever, i.e. there exists a deadlock.

Let AttLst be the domain of att, GeNoC has the following functionality:

GeNoC : P(T )×GenericNodeSet× AttLst �→ P(R) ×P(T )

Transactions may not run to completion (e.g. due to network contention).
The second output list of GeNoC is named Aborted and contains the cancelled
or lost transactions. The first output list R contains the results of the completed
transactions. Every result r is of the form (id msgr) and represents the reception
of a message msgr by its final destination B.

Function GeNoC is considered correct if every non aborted transaction t =
(id A msg B) is completed in such a way that B effectively receives msg. We thus
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need to prove that for every final result r, there is a unique initial transaction t
such that t has the same id and msg as r.

Proof Obligation 2. GeNoC Result
∀(idr msgr) ∈ R, ∃!(idt at msgt bt) ∈T | idr = idt ∧msgr = msgt

This formula must be complemented by a condition TravelCondition (de-
fined later) which proves that every transaction is received by the correct desti-
nation. The correctness criterion for the function GeNoC is to prove both the
TravelCondition and GeNoC Result under the following hypotheses:

TheHyps = Transactionsp(T , NodeSet) ∧ ParamsHyps(Params)
∧NodeSet = NodeSetGenerator(Params)

The complete terminology used in this paper is summarized in Table 1. In
the next sections, we detail the definition of every key function and present the
sufficient constraints that the key functions must satisfy in order to prove the
final correctness of GeNoC.

3 Topology and Routing

The expected topology is defined by predicate CheckRoutep(route,NodeSet)
which holds if any two successive nodes in route are adjacent nodes in the topol-
ogy. Predicate Availablemovesp(TrLst ,NodeSet) checks that CheckRoutep holds
for the route of every travel of TrLst and provides the relation between functions
Medium and Routing. Both Medium and Routing must be shown to conform
to the desired topology.

3.1 Topology

Function Medium represents the physical node interconnection. It has the fol-
lowing functionality:

Medium : P(Travels)×GenericNodeSet �→ P(Travels)

It must be an accurate model of the topology. If every frame route is consistent
with the topology, function Medium moves frames from one node to another
without modifying them. Otherwise, the result of function Medium must differ
from the initial travel list indicating an error. Formally, function Medium is a
projection of its first dimension if and only if Availablemovesp holds. This is
expressed by the following proof obligation:

Proof Obligation 3. Medium Constraint
TrLstp(TrLst)
→
Medium(TrLst,NodeSet) = TrLst↔ Availablemovesp(TrLst,NodeSet)
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Example 1. Octagon Topology. Let us consider the Octagon [13] topology
given in Fig. 4. The eight nodes are connected by bidirectional links, but we
can extend the topology to an arbitrary number of nodes Num Nodes that is
a multiple of four. We define Params to be Num Node. Function OctagonPar-
amsHyps(Num Node) is equal to Num Node mod 4 = 0 ∧ Num Node ∈ N. In the
Octagon, the set of existing nodes is equal to the naturals up to Num Node−1.
Function OctagonNodeGen generates the nodes of the Octagon. We prove that
Proof Obligation 1 holds for OctagonParamsHyps and OctagonNodeGen. In
the Octagon topology, three moves are available: clockwise, counterclockwise or
across. These moves define the predicate OctagonAvailableMovesp.

The nodes are connected using 4x4 switches (Fig. 5). In our functional par-
adigm, we represent a generic switch component by a function Switch. It takes
as arguments: the four inputs (from x), two commands (origin and target) and
switch specific parameters. It produces a new value for every output. The switch
reads a frame on the input selected by the value of origin, and writes the frame
on the output selected by the value of target. The other outputs are set to a
default ”no frame” value. In our model, a frame travels on its route r as a result
of iterative calls to function Switch, until every node of r has been visited. Let
i be the current node at a given travel step in route r. Switch is called with i
as node nb. origin and target take the previous and next node numbers w.r.t.
i in r. If i is the first node of r, origin is equal to i. If i is the last node of r,
target is equal to i. The values assigned to the outputs of Switch, as a result of
executing one travel step, are used in the next call to Switch where i is replaced
by its successor in r. These calls to Switch represent the structure of the inter-
connected nodes effectively involved in the travel along route r. The function
OctagonMedium is then defined by executing the travel of every element of its
input argument TrLst. The proof of Medium Constraint [24] showed that our
example is a valid instance of the generic medium model.

Example 2. 2D Mesh Topology. We model the mesh topology in a similar
way to the Octagon example. Here the parameters Params are the size of the
X and Y dimensions. Predicate Paramsp(Params) recognizes such parameters.
A node is a coordinate and the set of existing nodes is generated by the function
MeshNodeGenerator(Params). Fig. 3 shows the coordinates for X = 3 and Y =
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2. In this example, a list of valid coordinates is recognized by the predicate
ValidCoordinatesp(x). The first theorem that we prove is that Proof Obligation
1 holds for these functions.

Let (xi yi) and (xi+1 yi+1) be two successive nodes of a route. This step is
considered available if xi+1 = xi ± 1 ∧ yi+1 = yi or xi+1 = xi ∧ yi+1 = yi ± 1 .
The predicate MeshAvMovesp(TrLst, NodeSet) recognizes such routes.

We model a generic 5x5 switch (4 inputs and 4 outputs for the X and Y
dimensions, 1 input and 1 output for the node itself) by a function MeshSwitch.
A frame travels on its route by iterative calls to this function. The 2D mesh is
represented by the function Mesh(TrsLst, NodeSet). We prove that function
Mesh is a valid instance of the generic Medium function.

3.2 Routing

Function Routing represents the routing algorithm of the network. It takes as
arguments: the list of missives and the set of existing nodes. It returns a travel
list that associates to every missive its route in the topology. The functionality
of Routing is:

Routing : P(Missives)×GenericNodeSet �→ P(Travels)

A route from an origin to a destination is correct if (a) it contains no duplicate;
(b) its first element is the origin; (c) its last element is the destination; (d) it is
a subset of NodeSet and (e) it is consistent with the network topology. The last
condition is dependent on the topology. It is represented by the network specific
predicate Availablemovesp(TrLst, NodeSet). On the contrary, the first conditions
are common to all networks. One of the main concerns in a routing algorithm is
the absence of deadlocks. In the case of deterministic routing algorithms, it has
been proven [7] that the absence of cycles in routes is a necessary and sufficient
condition to prevent deadlocks. The first condition ensures this property. The
predicate CorrectRoutesp(TrLst, Missives, NodeSet) checks that every route in
TrLst of the corresponding missive in Missives satisfies the properties (a) to
(d) above. Function Routing is correct if it satisfies both CorrectRoutesp and
Availablemovesp. The main proof obligation about the routing algorithm defines
the TravelCondition :

Proof Obligation 4. Routing Correctness - TravelCondition
Missivesp(Missives,NodeSet)
→
CorrectRoutesp(Routing(Missives,NodeSet),Missives,NodeSet)
∧Availablemovesp(Routing(Missives,NodeSet), NodeSet)

Another important constraint states that the routing function creates a travel
list without modifying the content (id, frame, origin and destination) of the initial
transactions. Let ToMissives(TrLst) be a function that builds a list of missives
from a list of travels. It grabs the id, the frame of each travel and for every
created missive the origin and the destination are the first and the last element
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of the route of the travel. If we convert the resulting travel list into a list of
missives, we obtain the initial input Missives.

Proof Obligation 5. Routing Missives
Missivesp(Missives,NodeSet)
→
ToMissives(Routing(Missives,NodeSet)) = Missives

Example 3. Routing in the Octagon. Let us consider the Octagon network
[13] (Fig. 4). The routing of a packet is accomplished as follows. Each node
compares the tag (Packet addr) to its own address (Node addr) to determine
the next action. The node computes the relative address of a packet as:

Rel addr = (Packet addr − Node addr) mod 8 (1)

At each node, the route of packets is a function of Rel addr as follows:

– Rel addr = 0, destination node has been reached
– Rel addr = 1 or 2, route clockwise
– Rel addr = 6 or 7, route counterclockwise
– route across otherwise

This routing algorithm is represented for an arbitrary number Num Node of
nodes by a function Octagon Route (Num Node is a multiple of 4). This func-
tion computes the path - a list of node numbers - between the origin and the des-
tination nodes. In a previous study [24] we proved that Octagon Route satisfies
the TravelCondition. We prove that Proof obligation 5 holds for Octagon Route.
Consequently, this shows that Octagon Route is a valid instance of function
Routing.

Example 4. XY-Routing in a 2D mesh. Dimension-order routing [7] is a
deterministic routing scheme well-suited for uniform traffic distribution. The
dimensions of the network are arranged in predetermined monotonic order and
frames traverse dimensions in sequence. Frames first traverse the network in the
lowest or highest dimension until no further move is needed in this dimension.
Then, they go along the next dimension and so forth until they reach their
destination. Dimension-order routing in two-dimensional meshes is called XY
routing (Fig. 3). The dimensions of the mesh are named X and Y . Frames travel
along the X dimension completely and then along the Y dimension.

We define a function XYRouting(missives, NodeSet) which represents the di-
mension order algorithm in the 2D mesh. Because frames never travel in reverse
direction of the dimension ordering, there is no duplicate in routes (i.e. no cy-
cle) and thus no deadlock. We prove that XYRouting satisfies CorrectRoutesp
and MeshAvMovesp. Finally, we can prove that Proof Obligation 4 holds for
XYRouting. This function associates a route to a frame without modifying
it and therefore Proof Obligation 5 holds. This shows that the dimension or-
der routing in a 2D mesh is a valid instance of the generic routing function of
GeNoC.
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4 Scheduling

The scheduling policy of the network is represented by function Scheduling. It
takes as arguments the travel list produced by the routing function, the set of
existing nodes and the list of attempts att. It returns a list of scheduled travels,
a list of delayed travels, and updates att. The functionality of Scheduling is:

Scheduling : P(Travels)×GenericNodeSet×AttLst �→ P(Travels)2×AttLst

For readability, we shall identify the codomain of Scheduling as:

Scheduled×Delayed×AttLst

Let us consider a function f : X1×X2 �→X3×X4 . We will note by f�X3
(x1 , x2 )

and f�X4
(x1 , x2 ) the projections of f on X3 and X4.

To ensure the termination of GeNoC, one attempt must be consumed at each
call. The first constraint on Scheduling is:

Proof Obligation 6. Scheduling Consumes At Least one Attempt
Let natt be Scheduling�AttLst(TrLst,NodeSet, att) in
SumOfAttempts(att) 	= 0

→ SumOfAttempts(natt) < SumOfAttempts(att)

Let TrLst/ids denote a sublist of the list of travels TrLst which is the result
of filtering TrLst according to some ids.

Example 5. If TrLst is ((123 m1 (1 3 9)) (212 m2 (12 4 25)) (313 m3 (1 12 3))),
then TrLst/(123 313 ) is ((123 m1 (1 3 9 )) (313 m3 (1 12 3 )))

The delayed travels are converted back to missives in the recursive call of
GeNoC. These missives must be a sublist of the initial missives. Filtering TrLst
according to any subset ids of the identifiers delids of the delayed travels, must
produce the same list as filtering the delayed travels according to ids.

Proof Obligation 7. Delayed Travels Correctness
Let del be Scheduling�Delayed

(TrLst,NodeSet, att) in
∀ids ⊆ N.NoDuplicatesp(ids) ∧ ids ⊆ delids ∧TrLstp(TrLst)

→ del/ids = TrLst/ids

Concerning the scheduled travels, they must contain the same frame as in the
initial travel list. In contrast to Delayed Travels Correctness, we only prove that
filtering the initial TrLst according to the ids schedids of the scheduled travels
produces the scheduled travels. In the final proof, this constraint is sufficient to
prove the correctness of GeNoC.

Proof Obligation 8. Scheduled Travels Not Modified
Let sched be Scheduling�Scheduled

(TrLst,NodeSet, att) in
TrLstp(TrLst)
→

sched = TrLst/schedids
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The scheduling policy may modify the routes of frames (e.g. in case of network
contention). But, the routes chosen by the scheduling policy must still be correct.

Proof Obligation 9. Scheduling Preserves Route Correctness
Let sched be Scheduling�Scheduled

(TrLst,NodeSet, att) in
CorrectRoutesp(TrLst, T oMissives(TrLst), NodeSet)
∧Availablemovesp(TrLst)
→
Correctroutesp(sched, T oMissives(TrLst)/schedids, NodeSet)
∧Availablemovesp(sched)

The goal of the scheduling policy is to split a list of travels in two distinct
sublists. A last proof obligation ensures that the intersection of the scheduled
travels and the delayed travels is empty.

Example 6. Circuit and Packet Switched Scheduling. Two modes are com-
monly used in SoC communication architectures: circuit switched and packet
switched. In the circuit switched mode, a complete path is allocated for each
transaction. A circuit algorithm has already been studied [24] and is easily
proved to be fully compliant with GeNoC. In this mode, a travel list contains
non-overlapping communications if a node is used in at most one route.

The packet switched mode is more complex and allows more concurrency.
In this mode, a message msg is divided into packets. In our formalism, this is
expressed by generating a transaction for each packet. For instance, the transac-
tions ( (123 12 P0 24 ) (124 12 P1 24 )) represent the emission of two packets
at node 12. The destination of these packets is node 24. In a packet switched
network, after each hop from a node A to a node B, A is available for other
packets. We have modeled a packet algorithm inspired from the Octagon’s [13].
Let prev be a list of lists of nodes. prev[i] denotes the list of nodes used by all
scheduled travels at the ith hop. An additional travel is scheduled if at every
hop number i, the ith node of its route does not belong to prev[i] and if every
node of its route has at least one attempt left. This condition is defined as the
function PackCond(route, prev, att) to be:

len(route)−1∧
i=0

route[i] ∩ prev[i] = ∅ ∧AttLst[route[i]] 	= 0

Function PacketScheduling represents this algorithm and has the same func-
tionality as function Scheduling:

PacketScheduling : P(Travels)×GenericNodeSet×AttLst �→
Scheduled×Delayed×AttLst

Its definition is as follows:

Definition 1. Packet Scheduling
PacketScheduling(TrLst, NodeSet, att) �

if SumOfAttempts(att) = 0 then
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list(∅, TrLst, att)
else

Let (sched del) be PacketScheduler(TrLst, att, ∅, ∅, ∅) in
list(sched, del, ConsumeAttempts(att))

endif

where PacketScheduler is:

Definition 2. Packet Scheduler
PacketScheduler(TrLst, att, sched, prev, del) �

if TrLst = ∅ then
list(Rev(sched), Rev(del))

else
if PackCond(Route(Head(TrLst)), prev, att) then

PacketScheduler(Tail(TrLst), AttLst, Head(TrLst) ∩ sched,
UpdatePrev(prev, route), del)

else
PacketScheduler(Tail(TrLst), att, sched, prev,

Head(TrLst) ∩ del)
endif

endif

Function UpdatePrev properly updates the list prev by inserting the nodes of
route at the corresponding sublist.

Before trying to check that function PacketScheduling is a valid instance of
Scheduling, we prove the algorithm correct per se. This correctness is achieved
if for any hop a node is used at most once. Let ExtractHops(TrLst) be the func-
tion which creates the lists of the nodes used in every hops; and let steps denote
ExtractHops(PacketScheduling�Scheduled (TrLst , NodeSet , att)), the correctness of
PacketScheduling is expressed by the following formula:

len(steps)−1∧
i=0

NoDuplicatesp(steps[i]) (2)

Now, the algorithm captures effectively our initial intent. Because we want
to validate PacketScheduling without considering other functions, we define
the predicate PackAv to return ”true” for every possible values of its input ar-
guments. We use PackAv as an instance of AvailableMovesp. We prove that
every proof obligation holds on PacketScheduling under the proper substitu-
tions. This shows that both circuit and packet modes are valid instances of the
generic Scheduling function and that Scheduling constitutes an independent
function.

5 Interfaces

Function p2psend takes as input a message and outputs a frame.

p2psend : Messages �→ Frames
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Function p2precv takes as input a frame and outputs a message.

p2precv : Frames �→Messages

The constraint on the interface functions is that their composition yields the
identity function. This is formally expressed by the following proof obligation:

Proof Obligation 10. Transfer Constraint
∀ m ∈Messages, p2precv ◦ p2psend(m) = m

Example 7. In his study of asynchrony, Moore [16] represents a sender and a
receiver by two functions: send and recv. He proves that their composition is
an identity. Therefore, his functions are valid interfaces. The interfaces can be
validated as an independent group of functions.

6 Definition and Correctness of GeNoC

Let ComputeMissives denote the function that applies function p2psend re-
cursively and produces a list of missives from the list of transactions T . Let
ComputeResults denote a similar function that recursively applies p2precv to
produce the list of results R. We have the following definition for GeNoC:

Definition 3. GeNoC
GeNoC(T , NodeSet, att) �
Let (Responses Aborted) be

GeNoCt(ComputeMissives(T ), NodeSet, att, ∅) in
list(ComputeResults(Responses), Aborted)

where GeNoCt is the following function:

Definition 4. GeNoCt

GeNoCt(Missives, NodeSet, att, Responses) �
if SumOfAttempts( ) = 0 then
list(ToMissives(Responses), Missives)

else
Let(sched del att1) be

Scheduling(Routing(Missives,NodeSet),NodeSet,att) in
Let sched1 be Medium(sched, NodeSet) in

GeNoCt(ToMissives(del), NodeSet, att1,
sched1∪ Responses)

endif

As stated in section 2, GeNoC must satisfy both the TravelCondition and
GeNoC Result. The TravelCondition is satisfied by the routing algorithm and
only GeNoC Result remains unproved. In the context of our work, GeNoC Result
does not translate directly in the ACL2 logic, because ACL2 is quantifier free.
As a walk around, we extract the messages from the projection of the input
transactions T according to the ids Rids of the output R, and we extract the
results of R. These two lists must be equal. Formally, we prove the following
theorem:

att
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Theorem 1. GeNoC Correctness
Let R be GeNoC�P (R)(T , NodeSet, att) in

TheHyps→Messages(T /Rids) = Results(R)

Proof. The proof is done by induction on T and the induction hypothesis is
obtained by the substitution suggested by the recursive call of GeNoCt. The
base case is trivial. For the induction step, thanks to proof obligations 3, 4 and
9, we can remove the call to function Medium. Then, because of proof obligations
5, 7 and 8, every result is processed by the composition of p2psend with p2precv.
This composition is proved to be the identity function by proof obligation 10. �

7 Related Works

The very active field of protocol verification best relates to the modeling of
interfaces in GeNoC. A huge body of work is based on the use of temporal
logics. The temporal properties are checked using model checkers (e.g. [5,6]) or
a combination of model checkers and theorem provers (e.g. [4]). For instance,
Roychoudhury et al. [20] use the SMV model checker to debug a RTL imple-
mentation of the AMBA AHB protocol from ARM. The AMBA protocol family
was then studied by Amjad [2]. He uses a model checker implemented in HOL
to verify two different protocols. Then, he uses the HOL theorem proving sys-
tem to verify their composition. These studies are complementary to our work:
they focus on behavioral aspects of low level models rather than functionali-
ties of abstract entities. In closer frameworks, the idea of Proof Obligation 10
is present in many previous works (e.g. [16]). For instance, in the recent work
of Pike et al. [18] concerning fault-tolerant distributed systems, this property is
formalized using relations instead of functions. Our work is also related to the
study of deadlock free algorithms (c.f section 3.2). One originality of GeNoC is
to consider both protocols and routing algorithms in a single framework.

8 Conclusions and Future Work

In this paper, we have presented a generic model for deterministic networks on
chip named GeNoC. This model relies on a functional formalism for communi-
cations. GeNoC models a complete communication system and its correctness
includes the proof that messages are either lost or eventually reach their ex-
pected destination without being modified. The correctness also ensures that
the routing algorithm is deadlock free. The model identifies key functions and
the sufficient constraints they must satisfy in order to prove the correctness of
GeNoC. The key functions are separated in independent groups. Hence, one can
concentrate his efforts on the design and the verification of one group. As long
as the constraints are satisfied the overall system correctness is still valid.

The GeNoC ACL2 file contains around 1 500 lines, 40 functions and 85 the-
orems. We show two different applications of this generic model: an XY routing
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scheme in a 2D mesh and the Octagon network from STMicroelectronics. We
also show that the packet and circuit switched scheduling policies are instances
of GeNoC. Most of the human effort was spent on identifying the sufficient
constraints ensuring that they lead to the proof of the final theorem.

Our model has been developed using the ACL2 theorem proving system.
Some features were really helpful. We take advantage of the executability of the
ACL2 logic to debug failed proofs and definitions. We reach the genericity using
the encapsulation principle. Using the functional instanciation feature, the proof
obligations that must be satisfied to prove that a function is a valid instance of a
generic function are automatically generated. Nevertheless, our functional style
and our generic model are general and should be processable by other theorem
proving systems.
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Abstract. Our study was part of a project aiming at the design and ver-
ification of a circuit for secure communications between a computer and
a terminal smart card reader. A SHA-1 component is included in the cir-
cuit. SHA-1 is a cryptographic primive that produces, for any message, a
160 bit message digest. We formalize the standard specification in ACL2,
then automatically produce the ACL2 model for the VHDL RTL design;
finally, we prove the implementation compliant with the specification. We
apply a stepwise approach that proves theorems about each computation
step of the RTL design, using intermediate digest functions.

1 Introduction

The SHA-1 is a standardized hash function [1], which processes a message up to
264 bits, and produces a 160 bit message digest, with the following property: any
alteration to the initial input message will result, with a very high probability,
in a different message digest. The applications of this algorithm include fast
encryption, password storage and verification, computer virus detection, etc. The
study of SHA-1 was motivated by a cooperative project1 with industrial partners,
aiming at the design and verification of a circuit for secure communications
between a computer and a terminal smart card reader. Security considerations
were at the heart of the project, it was thus of utmost importance to guarantee
the correctness of the system components dedicated to security. For the SHA-1
component, formal methods were applied both for the validation of the functional
specification, and for the verification of the implementation.

The SHA-1 is an iterative algorithm, involving a large number of repeti-
tions over an arbitrary number of 512-bit blocks. Property verification by model
checking was first attempted, and provided some correctness statements about
the internal design synchronization. But more powerful methods had to be ap-
plied to establish that, whatever the length of the input message, the digest is
computed according to the standardized algorithm. It was thus decided to apply
mechanized theorem proving technology. We chose the ACL2 logic, for its high
degree of automation, and reusable libraries of function definitions and theorem
proofs [4]. Moreover, the input model, being written in a subset of Common Lisp,
1 This work was supported by ISIA2 contract granted by the French Ministry of In-

dustry (DIGITIP).

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 326–341, 2005.
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is both executable and provable. Before investing human time in a proof, it is
thus possible to check the model on test vectors, a common simulation activity
in design verification which helps debug the formal model and gain designer’s
confidence in it. This feature was key to showing the compliance of our spec-
ification model with the SHA standard document, since numeric data only is
provided as validation test.

2 SHA-1 Specification

2.1 The SHA-1 Algorithm

The principle of the SHA-1 is shown on Figure 1. The input message M, a bit
sequence of arbitrary length L < 264, undergoes two preprocessing steps:

– Padding: M is concatenated by bit 1, followed by k bits 0, followed by the
64-bit binary representation of number L. k is the least non-negative solution
to the equation: (L+1+k) mod 512 = 448. As a result, the padded message
holds on a multiple of 512 bits.

– Parsing: The padded message is splited in blocks of 512 bits.

The computation of the message digest is an 80-iteration algorithm over each
message block, in order; a block is viewed as a sequence of 32 bit words, which are
selected and combined with the contents of five 32-bit internal registers (A, B, C,
D, E), using XOR and shift operations. At the start of the computation, the inter-
nal registers are initialized with predefined constants H0 =(H0, H1, H2, H3, H4).
At the end of each block processing, they contain the digest obtained so far. This
digest is used as an initial value for processing the next block, if there is one.

According to the SHA-1 standard [1], the digest phase operates on the 16
words Wi (0 ≤ i ≤ 15) of a padded block in order to generate 80 words. The
SHA-1 algorithm is formalized in ACL2 and the detailed model can be found
in [2]. Because of hardware efficiency constraints, the VHDL design implements
an alternative digest algorithm presented in the standard, which stores only

Fig. 1. Secure Hash Algorithm
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sixteen W words and not eighty. We summarize below the principle of the alter-
native algorithm, knowing that we have already proven that the two methods
are equivalent.

Wj (0 ≤ j ≤ 79) and the five main variables A, B, C, D, E, are computed in
the same loop, and each Wj starting from j=16 is written in place of Wj mod 16.
The first sixteen words are made of the padded block itself. The 64 remaining
words and A, B, C, D, E are generated as follows, where ROTLn indicates a
n-bit circular left shift operation:

for j=0 to 79 do
s=j∧MASK;
if j≥16 then

Ws=ROTL1 (W(s+13)∧MASK XOR W(s+8)∧MASK

XOR W(s+2)∧MASK XOR Ws);
endif;
TEMP=ROTL5(A) + Fj (B, C, D) + E + Ws + Kj ;
E=D; D=C; C=ROTL30(B); B=A; A=TEMP;

endfor.

where MASK = ‘00000000000000000000000000001111’, Fj are functions and Kj

constants defined in the SHA-1 standard.
When one block has been processed, the values of Hi are updated:
H0 = H0+A; H1 = H1+B; H2 = H2+C; H3 = H3+D; H4 = H4+E;

The computation continues until there are no more blocks to process. The last
Hi updated values represent the message digest of the initial message.

2.2 The Functional Model

Here is the corresponding ACL2 model. Lisp syntax has been replaced by an
algorithmic notation, for readability.

Digest-one-block-Spec, computes the variables A, B, C, D, E for 80− j steps
of the algorithm, starting from step j. Let ABC Vars

def
= List (A, B, C, D, E)

Digest-one-block-Spec (j, ABC Vars, Block)
def
=

if Natural (j) then
if 80 ≤ j then ABC Vars

else let New-Block be
if 16 ≤ j then Replace (s (j), Word Spec (j, Block), Block)

else Block fi
New-ABC Vars be

〈Temp Spec (j, ABC Vars, New-Block), A, Rotl (30, B), C, D〉
in
Digest-one-block-Spec (j+1, New-ABC Vars, New-Block)

fi
else nil

fi

In function Digest-one-block-Spec above, Word Spec computes the word Ws(j)
during step j of the algorithm, Temp Spec computes the variable TEMP for the
step j of algorithm, s (j) computes j mod 16 and Replace (i, W, Block) replaces
the i-th word of block with W.
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Word Spec (j, Block)
def
=

Rotl-spec (1, B-Xor (Block[B-And (*mask*, 13 + s (j))],
Block[B-And (*mask*, 8 + s (j))],
Block[B-And (*mask*, 2 + s (j))],
Block[B-And (*mask*, j)]))

Temp Spec (j, ABC Vars, Block)
def
=

Rotl-spec (5,A) + F-spec (j, B, C, D) + E + Block[s(j)] + K(j)

s (j)
def
= Bv-nat-be (B-And (Nat-bv-be (j), *mask*))

In the above Bv-nat-be, Nat-bv-be are conversion functions according to the
big endian representation, B-And and B-Xor are macros computing the logic
and, respectively xor operation between two bits, and between two bit-vectors
of possibly distinct lengths. + is addition overloaded with the addition between
two bit-vectors, and between a natural and a bit-vector, Rotl-spec (n, w) rotates
to left the bit-vector w with n bits.

The function Digest-Spec computes the digest for a padded message:

Digest-Spec (Message, Hash Val)
def
=

if empty (Message) then Hash Val
else Digest-Spec (Cdr (Message),

Update (Hash Val,
Digest-one-block-Spec (0, Hash Val, Car (Message))))

fi

When the last block has been processed, the message digest contains the last
values of Hash V al. Otherwise, one block is digest, the result is updated, and
the computation continues for the rest of the message.

Sha Spec defines the specification for SHA-1:

Sha Spec (Message)
def
=

Digest-Spec (Parsing (Padding (Message, 512)), Initial Hash Val)

An arbitrary message m is first padded, then it is parsed into blocks of 512
bits. The list of blocks is digested with the algorithm constants as initial hash
values: Initial Hash Val

def
= 〈*h0*, *h1*, *h2*, *h3*, *h4*〉.

2.3 Validation of the Formal Functional Specification

The SHA-1 ACL2 model is executed on the test benches given in the standard
document to check that the returned result is as expected. A complementary
validation is obtained by proving the mathematical properties of the algorithm,
using ACL2 [2]. In fact, a more general model has been written, to capture the
common principles of the four versions of the SHA algorithm: SHA-1, SHA-256,
SHA-384 and SHA-512, which differ essentially in the sizes of the message blocks,
word, and digest. Seventy function definitions and over a hundred lemmas were
written. Among the safety theorems that were proven for the SHA-1:
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– The length of the padded message is a non-zero multiple of 512.
– The last 64 bits of the padded message represent the binary coding of the

length.
– The first L bits of the padded message represent the initial message.
– The bits between the end-of-the-message bit and the last 64 bits are all 0.
– After parsing the padded message, the result is a vector of blocks, each of

512 bits.
– The final result of the SHA-1 is a five 32-bit words message digest.

Due to the nature of the digest computation, there is no straightforward
algebraic expression for it; thus, the validation of the specification consisted in
showing properties of the result of each processing step rather than proving its
equivalence with a mathematical function.

3 SHA-1 Implementation

3.1 Main Characteristics of the VHDL Design

The SHA-1 design provided by our project partners implements only the digest
computation and it takes as input the message already padded from an external
RAM. The RAM is also used to store the modified Ws computed during the
digest. The VHDL model is written at the RTL level [6] and is fully synchronous.
The pin description of the core is given in Table 1. The design also has 23 internal
memories. We will refer only to some of them, which seem important to illustrate
our approach: a, b, c, d, e are 32-bit registers storing the digest computation,
state is a 3-bit vector giving the state of the control automaton, blocks left is a
6-bit word representing the number of blocks that remain to be processed, count
is a 8-bit word counting the iterations of the digest.

The SHA core is composed of a control machine and a data path. The data
path contains a compact description of the operators necessary for the digest
computation. The transition graph of the control automaton for the state ma-
chine is shown on Figure 2.

Table 1. Pin description of the SHA core

start, reset input bit start signal, asynchronous core reset
reset done input bit invalidates the output done
clk input bit clock signal
rdata input 32-bit Input data
base address input 12-bit first word W RAM address
nb block input 6-bit number of blocks
address output 12-bit RAM address
ram sel, ram write output bit RAM select and write signals
wdata output 32-bit computed W to store into the RAM
busy output bit core busy by digest computation
done output bit digest message available
aout, bout, cout, dout, eout output 32-bit message digest output
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Fig. 2. VHDL control automaton

The global behaviour is the following:

– idle is the wait state;
– init loads the constants H0 to H4 into the registers that store A, B, C, D, E;
– SHA init reads one block from the RAM and computes the first sixteen

values of A, B, C, D, E, i.e. the first sixteen steps of the algorithm;
– compute W computes one of the 64 remaining words, W ;
– compute ABC computes the values of A, B, C, D, E corresponding to the

previous W and updates W in the RAM.
The states compute W and compute ABC are repeated 64 times;

– result adds the last values of A, B, C, D, E to the last values of H0 to H4
respectively;

– cnt reset resets the different counters; when the last block has been processed
(L block = 1) then signal done is set to 1, indicating that the message digest
is available.

The RAM has the following behaviour:

– if the ram sel bit is 1, the RAM is enabled, i.e. reading or writing is allowed;
– writing is allowed only if the ram write bit is 1, and in this case the data
wdata is written at address

– if the ram write bit is 0, reading is allowed, and the data from address is
put in rdata which is one of the inputs for the design.

3.2 Formal Model of the SHA-1 Design into ACL2

The VHDL is automatically translated into a functional model using a method
based on symbolic simulation developed by our team [5]. The model is simulated
symbolically for one clock cycle, actually corresponding to several VHDL simu-
lation cycles, to extract one transition function per output and state variable of
the design. The body of a transition function is an if expression, an arithmetic or
a Boolean expression. The functions are translated into Lisp and used to define
the Moore machine for the initial VHDL description.
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A state of the Moore machine is the set of all internal registers and all the
outputs of SHA, grouped in vector LOCALS. A step is modeled as a function
Sim Step which takes as parameters the inputs of SHA and LOCALS at clock
cycle k, and which produces LOCALS at clock cycle k+1 (k is a natural).

Sim Step (Input, LOCALS)
def
= 〈NextSig s (Input, LOCALS) 〉s∈St

NextSig s denotes the transition function for signal s ∈ LOCALS. There is
one such function for each s ∈ LOCALS, obtained by simbolic simulation. The
body of Sim Step is the composition of all the NextSig s.

The external memory, RAM, must also be added to the state as it stores the
message during the computation.

We also extract from the VHDL the types for all input, internal and output
objects. These informations are translated into ACL2 as predicates.

Finally, the circuit is defined by the function Sha V hdl which has two para-
meters: the sequence of inputs List Inputs and the state St. St is the concate-
nation of LOCALS and RAM.

St
def
= (LOCALS | RAM)

Sha V hdl (List Inputs, St)
def
=

if empty (List Inputs) then St
else let* New LOCALS be

Sim Step (Read-RAM (LOCALS, RAM) | Car (List Inputs),
LOCALS)

New RAM be Write-RAM (New LOCALS, RAM)
in

Sha V hdl (Cdr (List Inputs), New LOCALS | New RAM)
fi

The length of List Inputs gives the number of clock cycles, and List Inputs
represents the list of symbolic or numeric values for the SHA-1 input ports at
each clock cycle. If the inputs list is empty, the computation is finished and
Sha V hdl returns the state St. Otherwise, the next state is computed by calling
the step function Sim Step, then LOCALS and RAM are updated. Again, this
model is executable, and we have initially checked it using the test benches
provided in the SHA standard.

The following Sha V hdl property allows the combination of different behav-
iors of the circuit:

Lemma. ∀ List inputs a valid list of inputs, ∀ i, j naturals,
i+ j ≤ Length (List Inputs)
Implies

Sha V hdl (First (i+j, List Inputs), St) =

Sha V hdl (First (i, List inputs),

Sha V hdl (First (j, Last(i, List inputs)), St))
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Table 2. The symbolic input for Sha V hdl

Cycle 1 2 3 ...

Input input cycle 1 input cycle 2 L Input

Reset 1 0 0 ...
Start X 1 X ...
Reset done X X X ...
Nb block X nb block nb block ...
Base address X X base address ...

The expected environment for Sha V hdl is described in Table 2, where X stands
for ”don’t care”, nb block is the 6-bit representation of the natural number nb:
the number of blocks to be processed, base address is a bit-vector of size 12.
nb block and base address are symbolic. The fist two cycle initialize the design
and start the computation. Starting from the third cycle, reset is fixed to 0, and
nb block and base address signals are stable. Thus, the proof will be done for:

List Inputs
def
= (〈input cycle 1, input cycle 2〉 | L input).

The RAM is modeled as a list of couples 〈address, 32-bit word〉 where
address is symbolic. In order to preserve the generality of the proof, we model
the RAM as being the concatenation of two RAMs: one RAM of no interest for
the computation and the second RAM starting from base address. The addresses
domains of the two RAMs are disjoint.

4 Proof of Correctness of the Implementation

At this point, we have two models of SHA-1 in ACL2: the translation by hand
of the standard Sha Spec which has no timing information, and the automatic
translation of the VHDL description Sha V hdl which is clock cycle accurate. Be-
cause Sha V hdl takes as input an already padded message, contrary to Sha Spec
which inputs the initial message, we will compare Sha V hdl with Digest-Spec
instead of Sha Spec.

Thus, we must show this correctness statement: for an arbitrary input mes-
sage, the execution of Sha V hdl for the appropriate input and the appropriate
number of clock cycles (until the computation is done) returns the same message
digest as the one returned by Digest-Spec.

Sha Vhdl needs 3 clock cycles to initialize the system and set A, B, C, D,
E to their initial values; then it needs 342 clock cycles to compute the digest
for one block. The 342 cycles are decomposed as: 16 for reading the first 16
words and computing 16 steps of digest, 320 to compute an intermediate digest,
3 to combine the results with the initial hash values of the block, 2 to store the
message digest obtained so far. The last cycle returns to the digest computation
for the next block, or to the idle state. So, in order to process nb blocks, the
design needs 3 + (342 ∗ nb) clock cycles.

The above could let the reader believe that we are performing simulation.
This is not the case. The reasoning engine considers the initial value of all memo-



334 D. Toma and D. Borrione

ries and registers as arbitrary, and nb (the number of blocks) to be an unbounded
(but finite) natural integer.

4.1 Defining the Intermediate Functions

One difficulty in performing the proof arises because there is no way to write a
relation between Digest-Spec and the result of the VHDL computation. Clearly
Digest-Spec involves a time abstraction with respect to Sha V hdl but the two
models are not directly equivalent. To solve the problem, we define intermediate
digest functions having a similar construction as the specification functions but
with design elements as input: Digest-one-block-Impl for the computation of the
digest for one block, and Digest-Impl for the overall digest computation. Actually,
each intermediate function corresponds to an abstraction of the behavior of the
VHDL state machine.

The Digest-one-block-Impl computes i steps of the algorithm starting from
step count.

Digest-one-block-Impl

(i, count, a, b, c, d, e, RAM, base address, nb block, blocks left)
def
=

if Is zero (i) then List (a, b, c, d, e)
else let* Address be

New-address (nb block, blocks left, base address, count, 0)
Computed-Word be

Word-Impl (count, base address, nb block, blocks left, RAM)
Word-from-RAM be if 16 ≤ count then Computed-Word

else Get(Address, RAM) fi
New-a be Temp-Impl (count, a, b, c, d, e, Word-from-RAM)
New-RAM be if 16 ≤ count then

Put (Address, Computed-Word, RAM)
else RAM fi

in
Digest-one-block-Impl (i-1, count+1, New-a, a, Next-b (b), c, d,

New-RAM, base address, nb block, blocks left)
fi

At each step the current RAM address of Wcount mod 16 is computed. If
count < 16 then Wcount mod 16 is read from the RAM, otherwise it is computed
by xor-ing words from the RAM, (Computed-Word), and the RAM is updated.
The values of a, b, c, d, e are then updated and the computation continues until
i is 0.

In the function Digest-one-block-Impl above, Temp-Impl computes the inter-
mediate variable TEMP, New-address computes the address of Wi+count mod 16
relative to base address, Word-Impl computes the new Wcount mod 16, Get reads
a word from the RAM, and Put writes a word into the RAM.

Temp-Impl(count, a, b, c, d, e, data)
def
=

F-impl (count, b, c, d) + e + data + Rotl-Impl (5, a) + K (count)
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New-address (nb block, blocks left, base address, count, i)
def
=

base address + i + Segment (4, 8, count) +
16 * (nb block - blocks left)

Word-Impl (count, base address, nb block, blocks left, RAM)
def
=

Rotl-Impl (1, B-Xor(
Get (New-address (nb block, blocks left, base address, count, 0), RAM),
Get (New-address (nb block, blocks left, base address, count, 2), RAM),
Get (New-address (nb block, blocks left, base address, count, 8), RAM),
Get (New-address (nb block, blocks left, base address, count, 13), RAM)))

F-impl and Rotl-Impl are the logic function F and rotation left operation ROTL
defined in the VHDL implementation. The arithmetic operations + and - are
overloaded for two bit-vectors and for a bit-vector and a natural.

Another difficulty in performing the proof is brought by the presence of the
RAM in the implementation and by the added circuitry to access the informa-
tions and write back partial results during the computation. Moreover, a 512-bit
block is overwritten by the Wi, (16 ≤ i ≤ 79) words during the digest computa-
tion. In contrast, the specification is a functional algorithm that processes each
message block without side-effect. Thus, we needed to define a function modeling
how the RAM is modified during computation: Modified-RAM.

While count < 16 there is no writing operation on the RAM. If 16 ≤ count,
at each step count of the algorithm, the word Wcount mod 16 is updated in the
RAM.

Modified-RAM (i, count, RAM, base address, nb blocks, blocks left)
def
=

if Is zero(i) then RAM
elsif 16 ≤ count then

Modified-RAM (i-1, count+1,
Put (New-address (nb blocks, blocks left, base address, count, 0),

Word-Impl (count, base address, nb blocks, blocks left, RAM)
RAM)

base address, nb blocks, blocks left)
else Modified-RAM(i-1, count+1, RAM, base address,

nb blocks, blocks left) fi fi

The general implementation digest function Digest-Impl returns the resulting
hash values if there are no more blocks left to process. Otherwise, it computes the
digest for one block, updates the hash values and then continues the computation
for the rest of the message stored in the modified RAM.

Digest-Impl (Hash Val, RAM, base address, nb blocks, blocks left)
def
=

if Is zero (blocks left) then Hash Val
else Digest-Impl (

Update (Hash Val,
Digest-one-block-Impl (80, ‘00000000’, Hash Val,

RAM, base address, nb blocks, blocks left))
Modified-RAM (80, ‘00000000’, RAM, base address, nb blocks, blocks left)

base address, nb blocks, Minus(blocks left,1))
fi
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Digest-one-block-Impl and Modified-RAM have a similar decomposition prop-
erty which allows resoning about the design behaviour:

∀ i, j naturals
Digest-one-block-Impl

(i+j, count, a, b, c, d, e, RAM, params) =
Digest-one-block-Impl(i, count+j,

Digest-one-block-Impl (j, count, a, b, c, d, e, RAM, params)
Modified-RAM (j, count, RAM, params), params)

∀ i, j naturals,
Modified-RAM (i+j, count, RAM, params) =

Modified-RAM (i, count+j,
Modified-RAM (j, count, RAM, params), params)

4.2 VHDL Design Behavior vs Intermediate Functions

To prove properties about the VHDL design behavior we developed a stepwise
approach, which proves intermediate theorems for each main computation step
of the overall Sha V hdl. A computation step corresponds to a state of the VHDL
state machine (Figure 3).

– Theorems 1 to 3 establish the results of the initialization phases;
– Theorem 4 corresponds to the first 16 computation steps. The RAM is un-

changed;
– Theorem 5 corresponds to the subsequent 64 steps: the block is overwritten

in the RAM;
– Theorems 6 and 7 update the block digest and initialize the computation for

the next block;
– Theorem 8 combines Theorems 3 to 7 to establish the result of 342 clock

cycles over one block;
– Theorem 9 combines Theorems 1,2 and 8 to establish the result of the VHDL

computation for nb blocks (over 3+342*nb cycles).

Some of the theorems above (Theorems 4, 5, 8, 9) prove that the result of the
VHDL design, for a given number of clock cycles, is equal with the intermediate
functions. These theorems are proved using the same method: the computation
step is first generalized for an arbitrary number j of clock cycles and then proved
by induction on j and on the circuit state, to be compliant with the intermediate
function. Here is the general induction scheme constructed for this purpose:

1. Base case: Is zero(j) or empty(input) or empty(st) ⇒ P (j, input, st)
2. Induction step:

P (j − 1, Last(step,F irst(j ∗ step, input)), Sha V hdl(First(step, input), st)) ⇒
P (j, input, st)

where P is the property to prove, j is the number of clock cycles and step
represents the number of clock cycles needed for the design to compute one



Formal Verification of a SHA-1 Circuit Core Using ACL2 337

algorithm step. For instance the VHDL needs 5 clock cycles to compute one of
the last 64 steps of the digest algorithm, or 342 clock cycles to compute the digest
for a block message. After the generalized theorem is proved, j is instanciated
to the actual number of cycles performed by the circuit (16 for SHA init, 320
for looping between compute w and compute ABC, etc.). All proofs details in
the ACL2 logic can be found in [3].

Theorem 1. (From an arbitrary state to idle)
Starting from an arbitrary state, after one cycle, with input cycle 1 as input, the
system is in the idle state and the RAM is not modified.

Theorem 2. (From idle to init)
Starting from state idle, after 2 cycles, the system is in state init, the state
variables a, b ,c, d, e are initialized with the initial hash values which are con-
stants of the standard, blocks left is initialized with the number of block to be
processed, i.e. nb block, all the other state variables are initialized and the RAM
is not modified.

Theorem 3. (From init to SHA init)
Starting from state init, after 1 cycle the system is in the SHA init state (i.e.
the computation can begin), count is set to 0 and the RAM has not changed.

The theorems above are obtained by symbolic execution of Sha V hdl.

Theorem 4. (From SHA init to compute W )
Starting from the initial computation state, after 16 cycles, RAM is not modified,
the system state is compute W , count is ’00010000’, and a, b, c, d, e hold the
result of the first 16 steps of the digest computed by Digest-one-block-Impl.

To prove Theorem 4 we first prove a more general form: the generalization
is done for count and the number of clock cycles. The new theorem is proved by
induction using the scheme defined above, with step = 1. Then, j is instantiated
with 16 and count with ‘00000000’.

Theorem 5. (From compute W to result)
Starting from the computation state for the first word, after 320 cycles, RAM is
modified, the system state is result, count is ’01010000’, and a, b, c, d, e hold
the result of the last 64 steps of the digest computed by Digest-one-block-Impl.

The 5*64=320 cycles are needed to compute the digest of a block: 5 cycles for
the computation of TEMP (the intermediate variable) and the algorithm must
be applied 64 times to compute the intermediate digest.

As in the previous case, a generalized version of the theorem is proved first.
The parameters to be generalized are the same: count and the number of clock
cycles. The new theorem is proved by induction using the general scheme, with
step = 5. Then, j is instantiated with 64 and count with ‘00010000’.

Some lemmas are needed to compute the behaviour of Sha V hdl for 5 cycles,
starting from compute W state:
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Lemma. (From compute W to compute ABC)
Starting from any word computation state (state = compute W ), after 4 cycles,

the corresponding Wcount mod 16 word is computed by Word-Impl, the new state is

compute ABC, count and RAM are unchanged.

Lemma. (From compute ABC to compute W or result)
Starting from any variables computation state (state = compute ABC, count ≤

79), after one cycle if count is 79 then the algorithm finished and the new state is

result, otherwise, the algorithm was applied less than 79 times and the new state is

compute W . In both cases count is incremented, TEMP is computed and Wcount mod 16

is written in RAM at its corresponding address.

Theorem 6. (From result to cnt reset)
Starting from the result state, after 3 cycles, the system is in state cnt reset,
the number of blocks to be processed is decremented and a, b, c, d, e are added
to h0, h1, h2, h3, h4, which are intended to hold the hash values during the
computation.

Theorem 7. (From cnt reset to init or idle)
Starting from the reseting state, after 2 cycles, if the number of blocks to be
processed is higher than 0, then the new state is init and count is reset to
‘00000000’, otherwise the new state is idle, done is 1 and the values of a, b,
c, d, e are available as output.

Theorem 8. (From init to init or idle ⇔ One block is processed)
Starting from the initial state, after 1 + 16 + 320 + 3 + 2 = 342 clock cycles, if
the number of blocks to be processed is higher than 0, then the system is again in
the initial state, otherwise it is in the idle state. In both cases RAM is modified
and a, b, c, d, e hold the result of the digest for one block.

The theorem above is obtained by combining Theorems 3 to 7.

Theorem 9. (VHDL design vs. Intermediate digest function)
Starting from any state, for any message of nb blocks stored at base address in
RAM, after the execution of Sha V hdl for 3 + 342 ∗ nb blocks clock cycles, the
system is in its final state (done = 1) and the values of the output are equal to
the result of the Digest-Impl applied to the message.

∀ St = (LOCALS,RAM),
(New-LOCALS, New-RAM) = Sha V hdl (First (3 + 342 ∗ nb blocks, Input), St)
Implies

New-LOCALS.done = 1 ∧ New-LOCALS.state = idle ∧
ABC V ars(New-LOCALS) =

Digest-Impl (Initial Hash Val, RAM, base address, nb blocks, nb blocks)
∧ ∀ others elem ∈ LOCALS, New-LOCALS.elem = Initialized.

First we write a more general form of the theorem by replacing nb blocks with
blocks left and stating that starting from the init state, after 342 ∗ blocks left
clock cycles, the design processed blocks left blocks.
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The generalized theorem is proved by induction using the general scheme
defined before, with step = 342 and j = Bv-nat-be (blocks left). Then, by
combining it with Theorem 1 and Theorem 2 we prove Theorem 9.

4.3 Intermediate Functions vs Specification

Until now we proved that Digest-Impl models correctly the behavior of Sha V hdl.
The next step is to prove the equivalence between the intermediate digest func-
tion and the digest specification function Digest-Spec for the same message.

Theorem 10. (Intermediate digest vs. Specification digest function)
Digest-Impl (Initial Hash Val, RAM, base address, nb blocks, nb blocks) =

Digest-Spec(Parsing (Get-Message-from-RAM (nb blocks, base address, RAM),512),
Initial Hash Val)

Get-Message-from-RAM takes nb blocks of 16 32-bit words stored in the
RAM starting at Address and concatenates them.

We first prove a generalized form of the property: the implementation model
and the specification model computes the same message digest for same arbitrary
initial hash values, and for k = nb block − blocks left blocks of message.

The proof uses the induction scheme generated by Digest-Impl and a large
number of lemmas. Only the top level ones are briefly described:

Lemma. After processing k blocks, the memory storing the rest of the message
to be processed (starting from the address base address + 16 ∗ k) is unaltered.

Lemma. The result of the computation of the digest of one block is the same
in both specification and the implementation model.
Digest-one-block-Impl

(80, ‘00000000’, ABC Vars, RAM, base address, nb blocks, blocks left) =

Digest-one-block-Spec (0, ABC Vars, (Get-Block-from-RAM (Address, RAM)))

For the current block, Address = base address+16∗(nb block−blocks left).
The proof also uses several properties:
- The computation of the word W(count mod 16) is the same in both the spec-

ification and the implementation model.
- The left rotating operation and the logical function F used in the imple-

mentation are equal with the specification defined ones.
- In both models the replacement of the word W(count mod 16) with the new

computed one has the same effect on the initial message.

4.4 The Correctness Theorem

Using Theorems 9 and 10 we prove that Sha V hdl implements correctly Di-
gest Spec:

Theorem 11. Starting from any state, for any message of nb blocks, stored in
RAM at address base address, after the execution of Sha V hdl for 3 + 342 ∗ nb
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clock cycles, the system is in its final state and the values of the output are equal
to the result of Digest-Spec on the same message.

∀ St = (LOCALS, RAM),
(New-LOCALS, New-RAM) = Sha V hdl (First (3+342*nb, List Inputs), St)
Implies

New-LOCALS.done = 1 ∧ New-LOCALS.state = idle ∧
ABC V ars(New-LOCALS) =

Digest-Spec (Parsing (Get-Message-from-RAM (nb blocks, Address, RAM),
512), Initial Hash Val)

All theorems use a large number of properties that we proved about bit-
vectors and operations with bit vectors (logical, arithmetic, concatenation, shift-
ing, conversions, etc), about the RAM and List inputs. The overall proof, in-
cluding the two models, needed 150 functions and 750 theorems, from which
45% are reusable.

5 Conclusion

The benefits of our research for the project are multiple. For proving a SHA -
1 circuit, we produced executable and reusable specifications for a standard
algorithm that was previously available under an informal notation only and
we also developed a stepwise method for the proof of the implementation vs
specification, based on the control automaton of the RTL. Our current work
systematically reuses this approach on a library of components (AES, TDES)
for secure circuits.

The extraction of a finite state machine (FSM) from a logic-level RTL is
at the basis of all sequential verification tools [7]. The implementation verifica-
tion of high-level data oriented circuits against a more abstract specification was
successfull treated with tools like Uclid [8], TLSim [9]. Yet, from the available
publications, these tools require that both the implementation and the speci-
fication be modeled in their specific and very restricted HDL. They also rely
on uninterpreted functions and a fixed (and small) number of implementation
cycles to compute the specified result. In contrast, we allow a very general al-
gorithmic specification, and reason on the results of an efficient automatic FSM
extraction from a VHDL design (not necessarily logic-level). Moreover, inductive
reasoning is needed to prove results over finite but unbounded input streams.
This is precisely where our work takes all its significance.

A couple of errors were also uncovered in the initial VHDL, the most seri-
ous being an excessive number of cycles in the digest computation and illegal
writing operations on the memory. The use of an executable logic was key to
the successful validation of both the specification and the RTL, as it provides
an easy model debugging facility.

We believe that the design of a reusable core module should increasingly
come with its formal proof of correctness: our work demonstrates that this is
feasible, and shows a strategy to reach this goal.
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Abstract. Using the HOL theorem prover, we proved the correctness
of a translation from a subset of Accellera’s property specification lan-
guage PSL to linear temporal logic LTL. Moreover, we extended the tem-
poral logic hierarchy of LTL that distinguishes between safety, liveness,
and more difficult properties to PSL. The combination of the transla-
tion from PSL to LTL with already available translations from LTL to
corresponding classes of ω-automata yields an efficient translation from
PSL to ω-automata. In particular, this translation generates liveness or
safety automata for corresponding PSL fragments, which is important
for several applications like bounded model checking.

1 Introduction

Model checking and equivalence checking are state of the art in hardware circuit
design flows. Standardised languages like the hardware description languages
VHDL [2,30] and Verilog [21] are widespread and allow the convenient exchange of
modules, which can also be sold as IP blocks. However, specifications of temporal
properties that are required for model checking cannot be easily described with
these languages [23,6]. Hence, the research on model checking during the last
two decades considered mainly temporal logics like LTL [22], CTL [9] and CTL∗

[10], and other formalisms like ω-automata [29], monadic second order logics,
and the μ-calculus [25].

The discussed temporal logics differ dramatically in terms of syntax, seman-
tics, expressiveness and the complexity of the related verification problem. For
example, LTL model checking is PSPACE-complete, while CTL model checking
can be done in polynomial time. Of course, this corresponds to the different ex-
pressive powers of these logics: It can be shown that temporal logics, ω-automata,
monadic predicate logics, and the μ-calculus form a hierarchy in terms of expres-
siveness [25].

The incompatibility of temporal logics used for specification complicates the
exchange of data between different tools; which is a situation similar to circuit
design before the standardisation of hardware description languages. Hence, the
increased industrial interest in verification naturally lead to standardisation ef-
forts for specification logics [5,4]. Accellera’s Property Specification Language
(PSL) [1] is a result.

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 342–357, 2005.
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However, the translation from (the linear time fragment of) PSL to equiva-
lent ω-automata, as required for model-checking, turned out to be quite difficult,
although many partial results of this translation already exist: It is well known
how LTL can be translated to equivalent ω-automata [33,8,13,28,12]. There is a
hierarchy of ω-automata [18,17,31,25] that distinguishes between safety, liveness
and four other classes of increasing expressiveness. Recently, the related sub-
sets of LTL of this hierarchy have been syntactically characterised [24,25] and
linear-time translations have been presented [24,25] that translate the temporal
logic classes to corresponding symbolic descriptions of ω-automata (these can be
directly used for symbolic model checking).

In addition to the temporal operators of LTL, PSL also provides certain abort
operators whose semantics turned out to be problematic: In [3], a logic RLTL was
introduced that extends LTL by an abort operator in order to show the impact
of different abort operators on the complexity of the translation and verification.
As a result, it turned out that in the worst case, the previous version of PSL lead
to a non-elementary blow-up in the translation to ω-automata. For this reason,
the semantics of PSL’s reset operator has been changed in version 1.1 following
the ideas in [3]. Thus, it is not surprising that a significant subset of PSL can
now be translated to RLTL. A further translation from RLTL to LTL has already
been presented in [3].

The subtle differences of the reset operators in PSL version 1.01 and version
1.1 demonstrate that the semantics of complex temporal logics like PSL should
not be underestimated. In fact, PSL is a complex language that includes many
special cases. Therefore, we feel the need to formally verify all parts of the
translation of PSL to ω-automata by a theorem prover like HOL. To this end, we
implemented deep embeddings of RLTL, LTL and ω-automata in HOL1. Using
the existing deep embedding2 of PSL [14] and the existing LTL library [26], we
have formally proved the correctness of the entire translation from PSL to ω-
automata via RLTL and LTL. By a detailed examination of the translation from
PSL to LTL, we could moreover extend the known temporal logic classes of LTL
to corresponding classes of PSL. In particular, we will present in this paper
a syntactic characterisation of subsets of PSL in the spirit of [24] that match
with corresponding ω-automata classes for safety, liveness and other properties.
Translations to safety or liveness automata are of particular interest for bounded
model checking as shown in [27].

The paper is organised as follows: In the next section, we present the temporal
logics PSL, RLTL and LTL in detail. Then, we briefly sketch the translations from
PSL to RLTL and from RLTL to LTL. In Section 5, we then define classes of PSL
that correspond with the temporal logic hierarchy [18,24,25] and hence, also
with the ω-automaton hierarchy [17,31,25]. Finally, we draw some conclusions
and show directions for future work.

1 The HOL library is available at http://rsg.informatik.uni-kl.de/tools .
2 Although some members of the Accellera Formal Property Language Technical Com-

mittee reviewed this embedding, we found a small, until then unknown bug in the
embedding.



344 T. Tuerk and K. Schneider

2 Basics

Temporal logics like LTL, RLTL and PSL use propositional logic to describe
(static) properties of the current point of time. The semantics of dynamic, i. e.,
temporal properties is based on a sequence of points of time, a so-called path.
Thus, we first define propositional logic and paths in this section.

Definition 1 (Propositional Logic). Let V be a set of variables. Then, the
set of propositional formulas over V (short propV) is recursively given as follows:

– each variable v ∈ V is a propositional formula
– ¬ϕ ∈ propV , if ϕ ∈ propV
– ϕ ∧ ψ ∈ propV , if ϕ, ψ ∈ propV

An assignment over V is a subset of V. In our context, assignments are also
called states. The set of all states over V, which is the power set of V, is denoted
by P(V). The semantics of a propositional formula with respect to a state s is
given by the relation |=prop that is defined as follows:

– s |=prop v iff v ∈ s
– s |=prop ¬ϕ iff s 	|=prop ϕ
– s |=prop ϕ ∧ ψ iff s |=prop ϕ and s |=prop ψ

If s |=prop ϕ holds, then the assignment s is said to satisfy the propositional
formula ϕ.

Moreover, we use the following abbreviations as syntactic sugar:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
– ϕ→ ψ := ¬ϕ ∨ ψ
– ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)
– true := v ∨ ¬v for an arbitrary variable v ∈ V
– false := ¬true

A finite word v over a set Σ of length |v| = n+1 is a function v : {0, . . . n} → Σ.
An infinite word v over Σ is a function v : N → Σ and its length is denoted
by |v| = ∞. The set Σ is called the alphabet and the elements of Σ are called
letters. The finite word of length 0 is called the empty word (denoted by ε). For
reasons of simplicity, v(i) is often denoted by vi for i ∈ N. Using this notation,
words are often given in the form v0v1v2 . . . vn or v0v1 . . .. The set of all finite
and infinite words over Σ is denoted by Σ∗ and Σω, respectively.

Counting of letters starts with zero, i. e. vi−1 refers to the i-th letter of v.
Furthermore, vi.. denotes the suffix of v starting at position i, i. e. vi.. = vivi+1 . . .
for all i < |v| . The finite word vivi+1 . . . vj is denoted by vi..j . Notice that in
case j < i the expression vi..j evaluates to the empty word ε. For two words
v1, v2 with v1 ∈ Σ∗, we write v1v2 for their concatenation. Finally, we write lω

for the infinite word v with vj = l for all j.
A path of a labelled transition system corresponds to a word whose letters

are the labels of the states of the path. However, the terminology of PSL does
not distinguish between paths and words [1]. Therefore, the terms ‘path’ and
‘word’ are also used synonymously in this work.
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2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) has been introduced by Pnueli in [22]. LTL essen-
tially consists of propositional logic enriched with the temporal operators X and
U. The formula Xϕ means that the property ϕ holds at the next point of time,
ϕ U ψ means that ϕ holds until ψ holds and that ψ eventually holds. The oper-
ators

←−
X and

←−
U express the same properties for the past instead of the future.

Therefore, the operators X and U are called future operators, while
←−
X and

←−
U

are called past operators.
LTL without past operators is as expressive as LTL with past operators [11].

For this reason, past operators are often neglected, although new results advo-
cate the use of past operators [19] since some properties require an exponential
blow-up when past operators are eliminated. Hence, our deep embedding of LTL
contains past operators as well, so that we distinguish between the full logic LTL
and its future fragment FutureLTL.

Definition 2 (Syntax of Linear Temporal Logic (LTL)). The set ltlV of
LTL formulas over a given set of variables V is defined as follows:

– p ∈ ltlV for all p ∈ propV
– ¬ϕ, ϕ ∧ ψ ∈ ltlV , if ϕ, ψ ∈ ltlV

– Xϕ, ϕ U ψ ∈ ltlV , if ϕ, ψ ∈ ltlV
–
←−
Xϕ, ϕ

←−
U ψ ∈ ltlV , if ϕ, ψ ∈ ltlV

As usual a lot of further temporal operators can be defined as syntactic sugar like
Fϕ := (true U ψ), Gϕ := ¬F¬ϕ, ϕ U ψ := ϕ U ψ ∨Gϕ, and ϕ B ψ := ¬(¬ϕ) U ψ.
LTL with the operators U and X is, however, already expressively complete with
respect to the first order theory of linear orders [25].

Definition 3 (Semantics of Linear Temporal Logic (LTL)). For b ∈ propV
and ϕ, ψ ∈ ltlV the semantics of LTL with respect to an infinite word v ∈ P(V)ω

and a point of time t ∈ N is given as follows:

– v |=t
ltl b iff vt |=prop b

– v |=t
ltl ¬ϕ iff v 	|=t

ltl ϕ
– v |=t

ltl ϕ ∧ ψ iff v |=t
ltl ϕ and v |=t

ltl ψ
– v |=t

ltl Xϕ iff v |=t+1
ltl ϕ

– v |=t
ltl ϕ U ψ iff ∃k. k ≥ t ∧ v |=k

ltl ψ ∧ ∀j. t ≤ j < k→ v |=j
ltl ϕ

– v |=t
ltl
←−
Xϕ iff t > 0 ∧ v |=t−1

ltl ϕ

– v |=t
ltl ϕ

←−
U ψ iff ∃k. k ≤ t ∧ v |=k

ltl ψ ∧ ∀j. k < j ≤ t→ v |=j
ltl ϕ

A word v ∈ P(V)ω satisfies a LTL formula ϕ ∈ ltlV (written as v |=ltl ϕ) iff
v |=0

ltl ϕ.

2.2 Reset Linear Temporal Logic (RLTL)

To evaluate a formula ϕ U ψ, one has to consider a (potentially infinite) prefix
of a path, namely the prefix up to a state where ¬(ϕ∧¬ψ) holds. As simulations
may stop before that prefix is completely examined, the evaluation of formulas
could be incomplete, and is thus aborted. In order to return a definite truth value,
abort operators are introduced. In particular, RLTL [3] is such an extension of
FutureLTL:
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Definition 4 (Syntax of Reset Linear Temporal Logic (RLTL)). The fol-
lowing mutually recursive definitions introduce the set rltlV of RLTL formulas
over a given set of variables V:

– each propositional formula p ∈ propV is a RLTL formula
– ¬ϕ, ϕ ∧ ψ ∈ rltlV , if ϕ, ψ ∈ rltlV
– Xϕ, ϕ U ψ ∈ rltl, if ϕ, ψ ∈ rltlV
– ACCEPT(ϕ, b) ∈ rltlV , if ϕ ∈ rltlV , b ∈ propV

Some operators like ¬,∧ or U are used by several logics discussed in this paper.
In most cases, it is clear by the context or it does not matter to which logic one
of these operators belongs. If it matters, we use subscripts like ¬prop, ¬ltl and
¬rltl. For example, with a, b, c ∈ V , note that 〈{a, b}∅ω, a, b〉 |=0

rltl ¬propc holds,
but 〈{a, b}∅ω, a, b〉 |=0

rltl ¬rltlc does not hold.

Definition 5 (Semantics of Reset Linear Temporal Logic (RLTL)). The
semantics of LTL is defined with respect to a word v and a point of time t. To
define the semantics of RLTL, an acceptance condition a ∈ propV and a rejection
condition r ∈ propV are additionally needed. These conditions are used to capture
the required information about ACCEPT operators in the context of the formula.
Thus, for b ∈ propV and ϕ, ψ ∈ rltlV , the semantics of RLTL with respect to an
infinite word v ∈ P(V)ω, acceptance / rejection conditions a, r ∈ propV and a
point of time t ∈ N is defined as follows:

– 〈v, a, r〉 |=t
rltl b iff vt |=prop a or (vt |=prop b and vt 	|=prop r)

– 〈v, a, r〉 |=t
rltl ¬ϕ iff 〈v, r, a〉 	|=t

rltl ϕ
– 〈v, a, r〉 |=t

rltl ϕ ∧ ψ iff 〈v, a, r〉 |=t
rltl ϕ and 〈v, a, r〉 |=t

rltl ψ
– 〈v, a, r〉 |=t

rltl Xϕ iff vt |=prop a or
(
〈v, a, r〉 |=t+1

rltl ϕ and vt 	|=prop r
)

– 〈v, a, r〉 |=t
rltl ϕ U ψ

iff ∃k. k ≥ t ∧ 〈v, a, r〉 |=k
rltl ψ ∧ ∀j. t ≤ j < k → 〈v, a, r〉 |=j

rltl ϕ
– 〈v, a, r〉 |=t

rltl ACCEPT(ϕ, b) iff 〈v, a ∨ (b ∧ ¬r), r〉 |=t
rltl ϕ

A word v ∈ P(V)ω satisfies a RLTL formula ϕ ∈ rltlV (written as v |=rltl ϕ) iff
〈v, false, false〉 |=0

rltl ϕ holds.

ACCEPT(ϕ, b) aborts the evaluation of the formula ϕ as soon as the propositional
condition b holds: assume we have to check v |=rltl ACCEPT(ϕ U ψ, b) with
propositional formulas ϕ, ψ and b, but only know a finite prefix of v, say v0..t.
Assume further that on every state vi with i ≤ t, we have vi |=prop ϕ ∧ ¬ψ.
Then, we can not decide whether v |=ltl ϕ U ψ holds, but nevertheless v |=rltl

ACCEPT((ϕ U ψ), b) holds, provided that vt |=prop b holds.
For example, the word {a}{c}∅ω does not satisfy the RLTL formula a U b

(since b is never satisfied), but it satisfies the formula ACCEPT(a U b, c), since
c aborts the until then incomplete evaluation of a U b. On the other hand,
the word ∅{c}∅ω does not satisfy ACCEPT(a U b, c), since the evaluation of
a U b is completed before c occurs. To understand the impact of the acceptance
and rejection conditions and thus, to understand the semantics of the ACCEPT
operator, the following lemma is important:
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Lemma 1 (Immediate Accept or Reject). For all infinite words v ∈ P(V)ω,
all formulas ϕ ∈ rltlV , all acceptance / rejection conditions a, r ∈ propV and all
points of time t ∈ N, the following holds:(

vt |=prop a ∧ vt 	|=prop r
)

=⇒ 〈v, a, r〉 |=t
rltl ϕ and(

vt 	|=prop a ∧ vt |=prop r
)

=⇒ 〈v, a, r〉 	|=t
rltl ϕ

The lemma can be easily proved by structural induction3 and states that if the
acceptance condition immediately holds, every formula (even false) is true. On
the other hand, if the rejection condition holds, every formula (even true) is false.

If the acceptance and the rejection condition would hold at the same point
of time, then a lot of problems would occur with the semantics. Fortunately, all
pairs of acceptance / rejection conditions (a, r) that appear during the evaluation
of RLTL formulas satisfy the invariant ∀s. s |=prop ¬(a ∧ r): Initially, the pair
(false, false) is used, and the rules that determine the semantics are easily seen
to maintain the invariant.

Therefore, ∀s. s |=prop ¬(a ∧ r) can be assumed for pairs of acceptance /
rejection conditions (a, r). This assumption simplifies some proofs, because un-
reasonable cases can be excluded. In particular, it does not matter if ¬prop or
¬rltl is used, if ∀s. s |=prop ¬(a ∧ r) holds4. Moreover, the invariant ¬(a ∧ r) is
necessary to formulate certain important lemmata like the following one:

Lemma 2. For all infinite words v1, v2 ∈ P(V)ω, all formulas ϕ ∈ rltlV , all
acceptance / rejection conditions a, r ∈ propV and all points of time t ∈ N, the
following holds5:(

∃k.k ≥ t ∧ vt..k−1
1 = vt..k−1

2 ∧((
vk
1 |=prop a ∧ vk

2 |=prop a ∧ vk
1 	|=prop r ∧ vk

2 	|=prop r
)
∨(

vk
1 	|=prop a ∧ vk

2 	|=prop a ∧ vk
1 |=prop r ∧ vk

2 |=prop r
)))

=⇒(
〈v1, a, r〉 |=t

rltl ϕ ⇐⇒ 〈v2, a, r〉 |=t
rltl ϕ

)
Lemma 2 states that if either the acceptance or the rejection condition holds at
some point of time k ≥ t, then it is sufficient to consider the finite prefix vt..k to
evaluate arbitrary RLTL formulas at position t. This does no longer hold if both
the acceptance and the rejection condition would hold at some point of time:
For example, we have 〈{a, b}∅ω, a, b〉 |=0

rltl a U ¬rltlc, but 〈{a, b}{c}∅ω, a, b〉 	|=0
rltl

a U ¬rltlc. The remaining RLTL operators have the same semantics as the corre-
sponding LTL operators (since RLTL is a superset of LTL).

2.3 Accellera’s Property Specification Language

As mentioned above, PSL is a standardised industrial-strength property specifi-
cation language [1]. PSL was chartered by the Functional Verification Technical
3 Theorem RLTL ACCEPT REJECT THM in theory ResetLTL Lemmata.
4 Theorem RLTL SEM PROP RLTL OPERATOR EQUIV in theory ResetLTL.
5 Theorem RLTL EQUIV PATH STRONG THM in theory ResetLTL Lemmata.
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Committee of Accellera. The Sugar language [5] was chosen as the basis for PSL.
The Language Reference Manual for PSL version 1.0 was released in April 2003.
Finally, in June 2004 version 1.1 [1] was released, where some anomalies (like
those reported in [3]) were corrected.

PSL is designed as an input language for formal verification and simulation
tools as well as a language for documentation. Therefore, it has to be easy
to read, and at the same time, it must be precise and highly expressive. In
particular, PSL contains features for simulation like finite paths, features for
hardware specification like clocked statements and a lot of syntactic sugar.

PSL consists of four layers: The Boolean layer, the temporal layer, the ver-
ification layer and the modelling layer. The Boolean layer is used to construct
expressions that can be evaluated in a single state. The temporal layer is the
heart of the language. It is used to express properties concerning more than one
state, i. e. temporal properties. The temporal layer is divided into the Founda-
tion Language (FL) and the Optional Branching Extension (OBE). FL is, like
LTL, a linear time temporal logic. In contrast, OBE is essentially the branching
time temporal logic CTL [9], which is widely used and well understood. The
verification layer has the task to instruct tools to perform certain actions on
the properties expressed by the temporal layer. Finally, the modelling layer is
used to describe assumptions about the behaviour of inputs and to model aux-
iliary hardware that is not part of the design. Additionally, PSL comes in four
flavours, corresponding to the hardware description languages SystemVerilog,
Verilog, VHDL and GDL. These flavours provide a syntax for PSL that is similar
to the syntax of the corresponding hardware description language.

In this paper, only the Boolean and the temporal layers will be considered.
Furthermore, mainly the formal syntax of PSL is used, which differs from the
syntax of all four flavours. However, some operators are denoted differently to
the formal syntax to avoid confusion with LTL operators that have the same
syntax, but a different semantics.

In this paper, only FL is considered. Therefore, only this subset of PSL is
formally introduced here. FL is a linear temporal logic that consists of:

– propositional operators
– future temporal (LTL) operators
– a clocking operator for defining the granularity of time, which may vary for

subformulas
– Sequential Extended Regular Expressions (SEREs), for defining finite regular

patterns, together with strong and weak promotions of SEREs to formulas
and an implication operator for predicating a formula on match of the pat-
tern specified by a SERE

– an abort operator

Due to lack of space, only the subset of PSL that is interesting for the translation
will be presented. Therefore, clocks and SEREs are omitted in the following.

The definition of the formal semantics of PSL makes use of two special states
� and ⊥. State � satisfies every propositional formula, even the formula false,
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and state ⊥ satisfies no propositional formula, even the formula true is not sat-
isfied. Using these two special states, the semantics of a propositional formula
ϕ ∈ propV with respect to a state s ∈ P(V) ∪ {�,⊥} is defined as follows:

– � |=xprop ϕ

– ⊥ 	|=xprop ϕ

– s′ |=xprop ϕ iff s′ |=prop ϕ for s′ ∈ P(V), i. e. for s′ /∈ {�,⊥}

For a given set of variables V , the set of extended states over V is denoted
by XP(V) := P(V) ∪ {�,⊥}. The definition of the formal syntax of PSL uses
a special function for words over these extended states. For finite or infinite
words w ∈ XP(V)ω ∪ XP(V)∗, the word w denotes the word over states that is
obtained from w by replacing every � with ⊥ and vice versa, i. e. for all i < |w|,
the following holds:

wi :=

⎧⎨
⎩
⊥ : if wi = �
� : if wi = ⊥
wi : otherwise

Using these extended states and words over these states, it is possible to define
the formal syntax and semantics of SERE-free, unclocked FL (short SUFL):

Definition 6 (Syntax of Unclocked, SERE-free Foundation Language
(SUFL)). The set of SUFL-formulas suflV over a given set of variables V is
defined as follows:

– p, p! ∈ suflV , if p ∈ propV
– ¬ϕ ∈ suflV , if ϕ ∈ suflV
– ϕ ∧ ψ ∈ suflV , if ϕ, ψ ∈ suflV
– Xϕ, ϕ U ψ6 ∈ suflV , if ϕ, ψ ∈ suflV
– ϕ ABORT b ∈ suflV , if ϕ ∈ suflV , b ∈ propV

Definition 7 (Semantics of SUFL). For propositional formulas b ∈ propV and
SUFL formulas ϕ, ψ ∈ suflV , the semantics of unclocked SUFL with respect to a
finite or infinite word v ∈ XP(V)∗ ∪ XP(V)ω is defined as follows:

– v |=sufl b iff |v| = 0 or v0 |=xprop b

– v |=sufl b! iff |v| > 0 and v0 |=xprop b

– v |=sufl ¬ϕ iff v 	|=sufl ϕ

– v |=sufl ϕ ∧ ψ iff v |=sufl ϕ and v |=sufl ψ

– v |=sufl Xϕ iff |v| > 1 and v1.. |=sufl ϕ

– v |=sufl ϕ U ψ iff ∃k. k < |v| s.t. vk.. |=sufl ψ and ∀j < k. vj.. |= ϕ

– v |=sufl ϕ ABORT b iff either v |=sufl ϕ or
∃j.j < |v| s.t. vj |=sufl b and v0..j−1�ω |=sufl ϕ

A word v satisfies an unclocked FL formula ϕ iff v |=sufl ϕ holds.

6 Written as ϕ U ψ in [1].



350 T. Tuerk and K. Schneider

As usual, some syntactic sugar is defined for SUFL:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
– ϕ→ ψ := ¬ϕ ∨ ψ
– ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)
– Xϕ := ¬X¬ϕ

– Fϕ := true U ϕ
– Gϕ := ¬F¬ϕ
– ϕ U ψ7 := ϕ U ψ ∨ Gϕ
– ϕ B ψ8 := ¬(¬ϕ U ψ)

All SUFL operators correspond to RLTL operators. A difference to RLTL is, that
SUFL is able to additionally consider finite paths. Thus, for a propositional
formula b, a strong variant b! is introduced that does not hold for the empty word
ε, while every propositional formula b holds for the empty word. Analogously, X
is introduced as a strong variant of X. The semantics of X requires that a next
state exists, while Xϕ trivially holds if no next state exists. For the remaining
temporal operator U, a weak variant U is already available in RLTL. Apart from
finite paths, the meaning of the FL operators is the same as the meaning of the
corresponding RLTL operators. The role of the two special states �,⊥ is played
by the acceptance / rejection conditions of RLTL. The proof of this connection
between PSL and RLTL is one important part of the translation presented in this
work and will be explained in Section 3.

3 From PSL to RLTL

As mentioned above, the temporal layer of PSL consists of FL and OBE. OBE
is essentially the well known temporal logic CTL [9]. Since CTL can be directly
used for model checking without further translations [7,25], this work only con-
siders FL.

FL with SEREs is strictly more expressive than LTL. For example, it is well
known that there is no LTL formula expressing that a proposition ϕ holds at every
even point of time [20,32,25]. However, there is an unclocked FL formula with
SEREs expressing this property9. As RLTL is as expressive as LTL [3], FL with
SEREs cannot be translated to RLTL. Therefore, only SERE-free FL formulas are
considered. Moreover, clock-statements can be omitted for reasons of simplicity,
because clocked formulas can be easily rewritten to equivalent unclocked ones
[1]. Thus, we only consider the translation of unclocked, SERE-free FL to RLTL.

The semantics of SUFL is similar to the semantics of RLTL. There are only
two important differences: first, SUFL is able to additionally consider finite paths,
and second, SUFL additionally makes use of the special states � and ⊥, while
RLTL makes use of acceptance and rejection conditions. The first difference is
not important in the scope of this paper, because the overall goal is to translate
SUFL to ω-automata. Therefore, only infinite paths are of interest. To handle

7 Written as [ϕ W ψ] in [1].
8 Written as [ϕ BEFORE! ψ] in [1].
9 Theorem PSL WITH SERES STRICTLY MORE EXPRESSIVE THAN LTL EXAMPLE in

theory PSLToRLTL.
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the second difference, the special states � and ⊥ are simulated with the ac-
ceptance / rejection conditions of RLTL. However, the special states and accep-
tance / rejection conditions have slightly different semantics: The states � and
⊥ determine whether an arbitrary proposition is fulfilled by the current state.
However, the remaining states are still important. In contrast, if either the ac-
ceptance or the rejection condition occurs, the remaining states can be neglected
according to Lemma 2. An example showing this difference is ⊥{p}ω |=sufl Xp,
but 〈{r}{p}ω, a, r〉 	|=0

rltl Xp for a, r, p ∈ V . To overcome this slightly different
semantics only special inputs are considered:

Definition 8 (PSL-Paths). A finite PSL-path over a set of variables V is a
finite word v ∈ P(V)∗, i. e. a finite word not containing the states � and ⊥.
An infinite PSL-path over V is an infinite word v ∈ XP(V)ω with the following
properties:

– ∀j. vj=� −→ vj+1=�
– ∀j. vj=⊥ −→ vj+1=⊥

The set of all infinite PSL-paths over V is denoted by XP(V)ω�⊥
. Notice that

P(V)ω ⊂ XP(V)ω�⊥
holds.

In this work, we only consider infinite PSL-paths. At the first glance, this may
seem to be a restriction, however, this is not the case: Note that special states
are just an auxiliary means used to explain the semantics; however, they do
not occur in practice. Hence, only paths that fulfil the additional property of
PSL-paths are considered in the following. In [15], PSL-paths are called proper
words.

Since paths containing the special states � and ⊥ are allowed as input of
SUFL formulas, but these special states are not allowed as input of RLTL formu-
las, both paths and formulas have to be translated. To translate the paths, two
new atomic propositions t and b are chosen, i. e. t and b do neither occur on the
path nor in the formula. Every occurrence of � on the path is replaced by the
state {t}. In the same way, every occurrence of ⊥ is replaced by {b}. For the
formula itself, only minor changes are required: Essentially, only the PSL opera-
tors are exchanged with the corresponding RLTL operators. Additionally, t and
b are used as acceptance and rejection conditions, respectively, while evaluating
the translated formula on the translated path.

Lemma 3. With the definitions of Figure 1, the following are equivalent10 for
all f ∈ suflV , all infinite PSL-paths v ∈ XP(V)ω�⊥

and all t, b /∈ V:

– v |=sufl f
– 〈RemoveTopBottom(t, b, v), t, b〉 |=0

rltl PSL TO RLTL f
– RemoveTopBottom(t, b, v) |=rltl ACCEPT(REJECT((PSL TO RLTL f), b), t)

Note that t and b never occur at the same point of time on the translated path
RemoveTopBottom(t, b, v).
10 Theorems PSL TO RLTL THM and PSL TO RLTL ELIM ACCEPT REJECT THM in theory

PSLToRLTL.
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RemoveTopBottom(t, b, v)j :=
{t} : if vj = $
{b} : if vj = ⊥
vj : otherwise

function PSL TO RLTL(Φ)
case Φ of

b : return b;
b! : return b;
¬ϕ : return ¬PSL TO RLTL(ϕ);
ϕ ∧ ψ : return PSL TO RLTL(ϕ) ∧ PSL TO RLTL(ψ);
Xϕ : return X PSL TO RLTL(ϕ) ;
ϕ U ψ : return PSL TO RLTL(ϕ) U PSL TO RLTL(ψ);
ϕ ABORT b : return ACCEPT(PSL TO RLTL(ϕ), b);

end
end

Fig. 1. Translation of SUFL to RLTL

The proof of Lemma 3 is based on a structural induction and requires some
lemmata about RLTL. In particular, Lemma 1 and 2 are important. To express
other important properties in a convenient way, some abbreviations about the
occurrence of propositions on a path are convenient:

NAND ON PATH(v, a, r) := ∀t.¬(vt |=prop a ∧ vt |=prop r)
IS ON PATH(v, p) := ∃t. vt |=prop p

BEFORE ON PATH(v, a, b) := ∀t. (vt |=prop b)⇒ ∃t0. (t0 ≤ t ∧ vt0 |=prop a)

Using these abbreviations, we can formulate the following lemma:

Lemma 4. For all v ∈ P(V)ω, a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of
time t ∈ N, the following holds11:(

NAND ON PATH(vt.., a1, r) ∧ BEFORE ON PATH(vt.., a1, a2)
)

=⇒(
〈v, a2, r〉 |=t

rltl ϕ⇒ 〈v, a1, r〉 |=t
rltl ϕ

)
Informally, this lemma states that valid RLTL formulas do not become invalid
if the acceptance condition is strengthened. That is an important property of
RLTL. A consequence of Lemma 4 is:

Lemma 5. For all v ∈ P(V)ω, a1, a2, r ∈ propV , all ϕ ∈ rltlV and all points of
time t ∈ N, the following property holds12:(

NAND ON PATH(vt.., a1, r) ∧ NAND ON PATH(vt.., a1, r)
)

=⇒(
〈v, a1 ∨ a2, r〉 |=t

rltl ϕ ⇐⇒
(
〈v, a1, r〉 |=t

rltl ϕ ∨ 〈v, a2, r〉 |=t
rltl ϕ

))
11 Theorem RLTL SEM TIME ACCEPT BEFORE ON PATH in theory ResetLTL Lemmata.
12 Theorem RLTL SEM TIME ACCEPT OR THM in theory ResetLTL Lemmata.
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Using these lemmata about the acceptance / rejection conditions of RLTL, the
remaining proof of Lemma 3 by structural induction is mainly technical. The
cases for b, b!,¬ϕ and ϕ∧ψ are obvious. The case for Xϕ uses the fact that only
infinite PSL-paths are considered, the rest it is technical. The same holds for
ϕ U ψ. Therefore, the only interesting case is that for ϕ ABORT b, where the
presented lemmata about RLTL are required in a case analysis.

The usage of HOL to formally prove Lemma 3 has been shown valuable.
The case analysis used to prove the case for ABORT is quite tricky. During
this case analysis, a small, until then unknown bug in Mike Gordon’s deep-
embedding of PSL has been discovered: The unclocked semantics of ABORT is
defined by v |=sufl ϕ ABORT b iff either v |=sufl ϕ or ∃j.j < |v| s.t. vj |=sufl b
and v0..j−1�ω |=sufl ϕ holds. This has been literally implemented in HOL. In
case of j = 0, the word v0..0−1�ω is evaluated to �ω by the formal semantics of
PSL. However, because the datatype used to model j in HOL represents natural
numbers, v0..0−1�ω evaluated to v0..0�ω and therefore, to v0�ω in the HOL
representation. After reporting this bug to Mike Gordon, it has been fixed.

Lemma 3 is the central result for the translation of PSL to RLTL. It considers
arbitrary infinite PSL-paths as inputs. However, one is usually interested only
in paths without special states. Restricting the allowed input paths, Lemma 3
directly leads to the following theorem:

Theorem 1 (Translation of SUFL to RLTL). For all infinite words v ∈ P(V)ω

and all ϕ ∈ suflV
13, the following holds:

v |=sufl ϕ ⇐⇒ v |=rltl PSL TO RLTL(ϕ).

4 From RLTL to LTL

The translation of RLTL to LTL that is used here is due to [3]. The correctness
of this translation can be easily proved by structural induction.

Theorem 2 (Translation of RLTL to LTL). With the definition of Figure 2,
the following holds14 for all infinite words v ∈ P(V)ω, all acceptance / rejection
conditions a, r ∈ propV , all RLTL formulas ϕ ∈ rltlV and all points of time t ∈ N:

〈v, a, r〉 |=t
rltl ϕ ⇐⇒ v |=t

ltl RLTL TO LTL(a, r, ϕ)

Obviously, this can be instantiated to:

v |=rltl ϕ ⇐⇒ v |=ltl RLTL TO LTL(false, false, ϕ)

13 Theorem PSL TO RLTL NO TOP BOT THM in theory PSLToRLTL.
14 Theorem RLTL TO LTL THM in theory ResetLTL Lemmata.
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function RLTL TO LTL(a, r, Φ)
case Φ of

b : return a ∨ (b ∧ ¬r);
¬ϕ : return ¬RLTL TO LTL(r, a, ϕ);
ϕ ∧ ψ : return RLTL TO LTL(a, r, ϕ) ∧ RLTL TO LTL(a, r, ψ);

Xϕ : return a ∨ X RLTL TO LTL(a, r, ϕ) ∧ ¬r ;

ϕ U ψ : return RLTL TO LTL(a, r, ϕ) U RLTL TO LTL(a, r, ψ);
ACCEPT(ϕ, b): return RLTL TO LTL(a ∨ (b ∧ ¬r), r, ϕ);

end
end

Fig. 2. Translation of RLTL to LTL

5 Temporal Logic Hierarchy for PSL

In [25], LTL classes LTLF, LTLG, LTLPrefix, LTLFG, LTLGF and LTLStreett are syn-
tactically identified, that are as expressive as deterministic, noncounting live-
ness (TDETF), safety (TDETG), prefix (TDETPrefix), persistence (TDETFG), Büchi
(TDETGF) and Streett automata (TDETStreett), respectively.

The translation from PSL to LTL adds additional Boolean expressions to the
translated formulas. Adding Boolean expressions does not affect the membership
of a formula in these classes. Therefore, it is straightforward to identify classes of
unclocked, SERE-free FL, which correspond to the classes of LTL (see Figure 3).
Similarly, we have identified a hierarchy of RLTL.

b ∈ SUFLG
b! ∈ SUFLG

¬ϕ ∈ SUFLG = ϕ ∈ SUFLF
ϕ ∧ ψ ∈ SUFLG = ϕ ∈ SUFLG ∧ ψ ∈ SUFLG

Xϕ ∈ SUFLG = ϕ ∈ SUFLG
ϕ U ψ ∈ SUFLG = false

ϕ ABORT b ∈ SUFLG = ϕ ∈ SUFLG

b ∈ SUFLGF
b! ∈ SUFLGF

¬ϕ ∈ SUFLGF = ϕ ∈ SUFLFG
ϕ ∧ ψ ∈ SUFLGF = ϕ ∈ SUFLGF ∧ ψ ∈ SUFLGF

Xϕ ∈ SUFLGF = ϕ ∈ SUFLGF
ϕ U ψ ∈ SUFLGF = ϕ ∈ SUFLGF ∧ ψ ∈ SUFLF

ϕ ABORT b ∈ SUFLGF = ϕ ∈ SUFLGF

b ∈ SUFLPrefix
b! ∈ SUFLPrefix

¬ϕ ∈ SUFLPrefix = ϕ ∈ SUFLPrefix
ϕ ∧ ψ ∈ SUFLPrefix = ϕ ∈ SUFLPrefix ∧ ψ ∈ SUFLPrefix

Xϕ ∈ SUFLPrefix = Xϕ ∈ SUFLG ∪ SUFLF
ϕ U ψ ∈ SUFLPrefix = ϕ U ψ ∈ SUFLG ∪ SUFLF

ϕ ABORT b ∈ SUFLPrefix = ϕ ∈ SUFLPrefix

b ∈ SUFLF
b! ∈ SUFLF

¬ϕ ∈ SUFLF = ϕ ∈ SUFLG
ϕ ∧ ψ ∈ SUFLF = ϕ ∈ SUFLF ∧ ψ ∈ SUFLF

Xϕ ∈ SUFLF = ϕ ∈ SUFLF
ϕ U ψ ∈ SUFLF = ϕ ∈ SUFLF ∧ ψ ∈ SUFLF

ϕ ABORT b ∈ SUFLF = ϕ ∈ SUFLF

b ∈ SUFLFG
b! ∈ SUFLFG

¬ϕ ∈ SUFLFG = ϕ ∈ SUFLGF
ϕ ∧ ψ ∈ SUFLFG = ϕ ∈ SUFLFG ∧ ψ ∈ SUFLFG

Xϕ ∈ SUFLFG = ϕ ∈ SUFLFG
ϕ U ψ ∈ SUFLFG = ϕ ∈ SUFLFG ∧ ψ ∈ SUFLFG

ϕ ABORT b ∈ SUFLFG = ϕ ∈ SUFLFG

b ∈ SUFLStreett
b! ∈ SUFLStreett

¬ϕ ∈ SUFLStreett = ϕ ∈ SUFLStreett
ϕ ∧ ψ ∈ SUFLStreett = ϕ ∈ SUFLStreett ∧ ψ ∈ SUFLStreett

Xϕ ∈ SUFLStreett = Xϕ ∈ SUFLGF ∪ SUFLFG
ϕ U ψ ∈ SUFLStreett = ϕ U ψ ∈ SUFLGF ∪ SUFLFG

ϕ ABORT b ∈ SUFLStreett = ϕ ∈ SUFLStreett

Fig. 3. Classes of SUFL
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We formally proved in HOL that the presented translation translate every PSL
class to the corresponding classes of RLTL and LTL. Moreover, the classes of
FutureLTL are as expressive as the classes of LTL [25], and FutureLTL is a subset
of RLTL and SUFL. Therefore, we formally proved in HOL that the classes of
FutureLTL can be translated to the corresponding classes of PSL and RLTL. This
leads to the following theorem:

Theorem 3 (Hierarchy of PSL). For any κ ∈ {G,F,Prefix,GF,FG, Streett},
the logics LTLκ, FutureLTLκ, RLTLκ and SUFLκ are as expressive as TDETκ.
Furthermore, LTL, FutureLTL, RLTL and SUFL are as expressive as TDETStreett.

6 Conclusion and Future Work

We presented a translation of a significant subset of PSL to LTL. This transla-
tion is interesting by its own, since it allows an efficient translation from this
significant subset of PSL to ω-automata. Moreover, it is possible to extend the
temporal logic hierarchy [18,24,25] to PSL. In particular, we were able to charac-
terise subsets of PSL that can be translated to liveness and safety automata. This
is of practical evidence, since these kinds of automata are very useful to handle
finite inputs which is required for bounded model checking or for simulation.

Our main goal is to translate PSL to ω-automata. Since the translation of
LTL to ω-automata is well known, we have already done a big step. Unfortu-
nately, regular expressions can, in general, not be translated to LTL. However,
they can be translated to finite state automata [16]. Therefore, the next step
will be to translate PSL directly to ω-automata. We have already deeply em-
bedded automaton formulas [24,25], a symbolic representation of ω-automata.
Furthermore, we have validated a basic and an improved translation of LTL to
ω-automata, which are both presented in [24,25]. The improved translation al-
lows us to formally validate the translation of SUFLF, SUFLG and SUFLPrefix to
TDETF, TDETG or TDETPrefix, respectively. Next, we will validate more opti-
mised translations. This will allow us to formally validate that also the other
classes of PSL can be translated to the corresponding classes of ω-automata.
Then, we can use these optimised translations to directly translate a subset of
PSL including regular expressions to ω-automata.
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Abstract. In this paper we present a formalization and proof of Hig-
man’s Lemma in ACL2. We formalize the constructive proof described
in [10] where the result is proved using a termination argument justified
by the multiset extension of a well-founded relation. To our knowledge,
this is the first mechanization of this proof.

1 Introduction

In [8] we presented a formal proof of Dickson’s Lemma in ACL2 [6]. This re-
sult was needed to prove the termination of a Common Lisp implementation of
Buchberger’s algorithm for computing Gröbner basis of polynomial ideals [9].
After finishing this work our attention was addressed to similar results already
present in the literature [12,15,10].The last one presents a constructive proof of
Higman’s Lemma similar to the one presented in [8]. Thus, the interest to au-
tomatize this proof of Higman’s Lemma in ACL2 is multiple: first, the proof has
a similar structure to the proof of Dickson’s Lemma developed by the authors,
and similar techniques are used; second, it is the first (to our knowledge) autom-
atization of this proof, complementing thus the work presented in [10]; third,
Dickson’s Lemma could be proved in ACL2 as a consequence of this theorem;
and finally it could give some advice about how to prove Kruskal’s Theorem
in ACL2, which is a fundamental theorem in the proof of termination of some
well-known term orderings [1].

The ACL2 logic is a subset of first-order logic with a principle of proof by
induction. The proof we present here is based on the constructive proof presented
in [10], where the result is proved using a termination argument justified by
the multiset extension of a well-founded relation. In the mechanization of this
proof, we use a tool for defining multiset well-founded relations in ACL2 in an
automated way, a tool that we used previously in other formalizations [13] and
that can now be reused.
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Higman’s Lemma is a property about embeddings of strings. Previously to
present the result we introduce some notation. Let Σ be a set, and let Σ∗ denote
the set of finite strings over Σ.

Definition 1. Let 1 be a binary relation on Σ. The induced embedding relation
1∗ on Σ∗ is defined as follows: s1s2 · · · sm 1∗ t1t2 · · · tn if there exists indices
j1 < j2 < . . . < jm ≤ n such that si 1 tji , ∀i.

If s 1 t (u 1∗ w) we usually say that s (u) is less than t (w) or t (w) is bigger
than s (u). The relation with respect to which an element is less or bigger than
other is usually obvious in the context.

Definition 2. We say that a relation on Σ is a quasi-order if it is reflexive and
transitive. Given a quasi-order 1 defined on Σ, we say that 1 is a well-quasi-
order if for every infinite sequence1 {sk : k ∈ N} of elements of Σ there exist
indices i < j such that si 1 sj.

Higman’s Lemma establishes a sufficient condition for well-quasi-orders on
strings.

Theorem 1. (Higman’s Lemma). If 1 is a well-quasi-order on Σ then 1∗

is also a well-quasi-order on Σ∗.

Given the well-quasi-order 1 on Σ, it is not difficult to prove that 1∗ is a
quasi-order on Σ∗. Thus, we will center our attention on the well-quasi-order
property: for every infinite sequence of strings {wk : k ∈ N} there exists indices
i < j such that wi 1∗ wj .

As we said above, the proof presented here is based on [10], and it essentially
builds a well-founded measure that can be associated to the initial segments of
a sequence of strings and that decreases whenever a string in the sequence is not
bigger than any of the previous strings.

2 Formalizing the Proof in ACL2

The ACL2 logic is a first-order logic with equality, describing an applicative sub-
set of Common Lisp. The syntax of terms is that of Common Lisp and the logic
includes axioms for propositional logic and for a number of Lisp functions and
data types. Rules of inference of the logic include those for propositional calcu-
lus, equality and instantiation. One important rule of inference is the principle
of induction, that permits proofs by well-founded induction on the ordinal ε0.
The theory has a constructive definition of the ordinals up to ε0, in terms of
lists and natural numbers, given by the predicate o-p (o ∈ ε0 ≡ o-p(o)) and the
order (o1 <ε0 o2 ≡ o<(o1,o2).) Although this is the only built-in well-founded
relation, the user may define new well-founded relations from that.
1 An infinite sequence of elements of Σ is a function s : N → Σ. As usual, we write

sk instead of s(k) and by abuse of notation, we often identify the sequence with its
range {sk : k ∈ N}.
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By the principle of definition, new function definitions are admitted as axioms
only if there exists a measure in which the arguments of each recursive call
decrease with respect to a well-founded relation, ensuring in this way that no
inconsistencies are introduced by new definitions. Usually, the system can prove
automatically this property using a predefined ordinal measure on Lisp objects
and the relation o<. Nevertheless, if the termination proof is not trivial, the user
has to explicitly provide a measure on the arguments and a well-founded relation
ensuring termination.

The encapsulate mechanism [7] allows the user to introduce new function
symbols by axioms constraining them to have certain properties (to ensure con-
sistency, a witness local function having the same properties has to be exhibited).
Inside an encapsulate, the properties stated need to be proved for the local wit-
nesses, and outside, they work as assumed axioms. This mechanism behaves like
a universal quantifier over a set of functions abstractly defined with it.

A derived rule of inference, called functional instantiation, provides a higher-
order-like mechanism by allowing to instantiate the function symbols of a pre-
viously proved theorem, replacing them with other function symbols or lambda
expressions, provided it can be proved that the new functions satisfy the con-
straints of the old ones.

The ACL2 theorem prover mechanizes the ACL2 logic, being particularly well
suited for obtaining automatized proofs based on simplification and induction.
For a detailed description of ACL2, we refer the reader to the ACL2 book [5].

For the sake of readability, the ACL2 expressions in this paper are presented
using a notation closer to the usual mathematical notation than its original
Common Lisp syntax; when it is necessary we show the correspondence between
the ACL2 and the mathematical notation. Some of the functions are also used
in infix notation.

2.1 Formulation of Higman’s Lemma

First we formalize in the ACL2 logic the context in which Higman’s Lemma will
be established. We consider a unary predicate sigma-p to check the membership
to Σ (s ∈ Σ ≡ sigma-p(s)) and a binary predicate sigma-<= representing the
well-quasi-order 1 on the set Σ (s 1 t ≡ sigma-<=(s,t)). These functions are
abstractly defined by means of the encapsulate mechanism. In this case the
assumed properties about sigma-p and sigma-<= are the following2:

Assumption: sigma-<=-reflexive
s ∈ Σ → s 1 s

Assumption: sigma-<=-transitive
s1, s2, s3 ∈ Σ ∧ s1 1 s2 ∧ s2 1 s3 → s1 1 s3

In the following we use Σ to denote the set of finite sequences of elements of
Σ and we use the overline notation to identify the elements of Σ. We characterize
2 The local witnesses are irrelevant to our description of the proof.
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the well-quasi-order property of 1 in the following way: there exists an ordinal
measure on Σ such that the measure of any element of Σ is bigger than the
measure of any extension of this sequence with an element s such that there is
no elements in the sequence less than s. As it is pointed out in [10]: “Classically,
this is easily gotten from the well-quasi-order-ness of 1, but constructively we
must have this as an assumption (. . . ) After a moment’s reflection, it should
be obvious to the reader that this is the constructive equivalent to the classical
notion of well-quasi-order.”

The embedding is introduced in the previous encapsulate by means of
the function sigma-seq-measure. To state the properties assumed about this
function we also need two concepts whose definitions are based on sigma-p
and sigma-<= functions: the membership to Σ (s ∈ Σ ≡ sigma-seq-p(s))
and the presence of an element in a finite sequence s less than an element t
(exists-sigma-<=(s,t)). The assumed properties are the following:

Assumption: sigma-seq-measure-o-p
s ∈ Σ → sigma-seq-measure(s) ∈ Ord

Assumption: sigma-seq-measure-neq-0
s ∈ Σ → sigma-seq-measure(s) 	= 0

Assumption: sigma-<=-well-quasi-order-characterization
s ∈ Σ ∧ t ∈ Σ ∧ ¬exists-sigma-<=(s,t)

→ sigma-seq-measure(cons(t,s)) <ε0 sigma-seq-measure(s)

The first property ensures that the function sigma-seq-measure returns an
ACL2 ordinal when its argument is a string, and the second property ensures
that this ordinal is not 03. The last property is the constructive characterization
of the well-quasi-order-ness of 1. It must be noticed that the elements of Σ
are represented in ACL2 by means of lists of elements of Σ in reverse order;
that is, the ACL2 representation of the finite sequence {s1, . . . , sn} is the list
(sn ... s1). This is because an element t is more easily added in front of a
sequence s using cons.

The elements of Σ∗ are also represented in ACL2 by means of lists, but
in this case the order of the elements is preserved. So, the representation of
the string s1s2 . . . sm is the list (s1 s2 ... sm). The membership to Σ∗ is
checked by the function sigma-*-p (w ∈ Σ∗ ≡ sigma-*-p(w)). We use a differ-
ent function name, but its definition is equal to the definition of sigma-seq-p.
The relation 1∗ in Σ∗ is formalized with the following function (w1 1∗ w2 ≡
sigma-*-<=(w1,w2)):

Definition:
sigma-*-<=(w1,w2) ⇔

if endp(w1) then t

3 This is a technical detail that could have been avoided adding 1 to the finite ordinals
returned by sigma-seq-measure.
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elseif endp(w2) then nil
elseif car(w1) ∈ Σ ∧ car(w1) ∈ Σ

then if car(w1) 1 car(w2)
then sigma-*-<=(cdr(w1),cdr(w2))
else sigma-*-<=(w1,cdr(w2))

else nil

It should be noted that this definition is algorithmic and different from the
non-deterministic declarative Definition 1; but it is not difficult to prove that
both definitions are equivalent. This function checks the property w1 1∗ w2 look-
ing for the first elements, from the left side of w2, bigger than the elements of w1.

To formalize Higman’s Lemma in the ACL2 logic we consider a unary
function f, representing an infinite sequence of strings. We use again the
encapsulate mechanism to abstractly define this function. In this case, the
assumed property about f is the following:

Assumption: f-returns-strings
i ∈ N → f(i) ∈ Σ∗

Here, the encapsulate mechanism behaves like a universal quantifier over
the function abstractly defined with it. So, any theorem proved about this func-
tion is true for any function with the above property, by means of functional
instantiation (see [5] for details). This is the case for the ACL2 formalization
of Higman’s Lemma: as the infinite sequence of strings is abstractly defined via
encapsulate, the properties that we will prove about it are valid for any infinite
sequence of strings.

Let us now define the functions needed to state Higman’s Lemma. The func-
tion get-sigma-*-<=-f has two arguments, a natural number j and a string w,
and it returns the biggest index i such that i < j and f(i) 1∗ w whenever such
index exists (nil otherwise):

Definition:
get-sigma-*-<=-f(j,w) =

if j ∈ N then if j = 0 then nil
elseif f(j − 1) 1∗ w then j − 1
else get-sigma-*-<=-f(j− 1,w)

else nil

Finally, the following function higman-indices receives as input an index k
and uses get-sigma-*-<=-f to recursively search a pair of indices i < j such
that j ≥ k and f(i) 1∗ f(j):

Definition:
higman-indices(k) =

if k ∈ N then let i be get-sigma-*-<=-f(k,f(k))
in if i 	= nil then 〈i, k〉

else higman-indices(k + 1)
else nil
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Let us assume for the moment that we have proved that the function
higman-indices terminates and that this definition has been admitted by the
system. Then the following property is easily proved as a direct consequence of
the definitions of the functions involved:

Theorem: higman-lemma
[k ∈ N ∧ higman-indices(k) = 〈i, j〉] → [i < j ∧ f(i) 1∗ f(j)]

This theorem ensures that for any infinite sequence of strings {f(k) : k ∈ N},
there exists i < j such that f(i) 1∗ f(j) (and the function higman-indices
explicitly provides those indices). Thus, it is a formal statement of Higman’s
Lemma in ACL2.

The hard part is the termination proof of the function higman-indices. For
that purpose, we have to explicitly provide to the system a measure on the
input argument and prove that the measure decreases with respect to a given
well-founded relation in every recursive call. We present the details in the next
subsections.

2.2 A Well-Founded Measure

Before giving a formal definition of the termination measure, we give some in-
tuition by means of an example. Let us consider the set of natural numbers, N,
and the reflexive transitive closure of the following relation: n 1 n + 2 for all
n. In this relation the even numbers are ordered as usual, as well as the odd
numbers, but there is no relation between even and odd numbers. It is easy to
prove that this relation is a well-quasi-order.

An embedding from N in ordinals characterizing the well-quasi-order-ness
of 1 could be the following: given a finite sequence of natural numbers s, the
ordinal associated is ω ·2 if s is empty; ω+n if n is the last even (odd) number in
s and there is no odd (even) numbers in s; and n+m if n and m are respectively
the last even number and the last odd number in s.

Let {fk : k ∈ N} be an infinite sequence of strings over N with f0 = 3 ·2. Note
that any string bigger than f0 is of the form x1...xixy1...yjyz1...zk with 3 1 x
and 2 1 y. Thus, the strings w such that f0 	1∗ w could be described as follows:

– Any string x1...xn with 3 	1 xi, ∀i. We represent this set of strings by Π1 =
〈−, 3〉.

– Any string x1...xnxy1...ym with 3 	1 xi, ∀i, 3 1 x and 2 	1 yj, ∀j. There are
three components in these strings: x1...xn with 3 	1 xi, that we represent by
π1 = 〈−, 3〉; x with 3 1 x, that we represent by π2 = 〈3〉; and y1...ym with
2 	1 yj , that we represent by π3 = 〈−, 2〉. So the representation of this set of
strings is Π2 = π1π2π3 = 〈−, 3〉〈3〉〈−, 2〉.

We will refer to these representations of set of strings as patterns. As it can
be seen in the previous example, a pattern could have components that we will
call simple patterns. Π1 is a pattern with only one simple pattern 〈−, 3〉; and Π2
is a pattern with three simple patterns π1, π2 and π3. We will use the capital
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Greek letter Π (possibly with subscripts) to represent patterns, and the small
Greek letter π (possibly with subscripts) to represent simple patterns. The set of
strings represented by a pattern Π or a simple pattern π will be denoted S(Π)
and S(π) respectively.

Let us suppose that f1 = 1 ·2. Note that f1 ∈ S(Π1) since every element of f1
is not bigger than 3. Let us see now how we can obtain from Π1 a set of patterns
describing the set of strings w such that f0 	1∗ w and f1 	1∗ w (we will call
this operation the reduction of Π1 with respect to f1). The pattern Π1 should
be replaced in such a way that any string bigger than f1 is removed from the
set represented by the pattern. Since the strings bigger than f1 are of the form
x1...xixy1...yjyz1...zk with 1 1 x and 2 1 y, then the set of strings w ∈ S(Π1)
such that f1 	1∗ w could be described as follows:

– Any string x1...xn with 3 	1 xi, ∀i (the string is in S(Π1)) and 1 	1 xi, ∀i.
We represent this set of strings by 〈−, 3, 1〉.

– Any string x1...xnxy1...ym with 3 	1 xi, x, yj , ∀i, j (the string is in S(Π1)),
1 	1 xi, ∀i, 1 1 x and 2 	1 yj, ∀j. There are three components in these strings:
x1...xn with 3, 1 	1 xi, ∀i, represented by 〈−, 3, 1〉; x with 3 	1 x and 1 1 x,
represented by 〈1, 3〉; and y1...ym with 3, 2 	1 yj , ∀j, represented by 〈−, 3, 2〉.
So the representation of this set of strings is 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉.

Now, let us see how to deal with a more complicated pattern: let suppose that
f2 = 1 · 5 · 3; this string is in S(Π2) since 1 ∈ S(π1), 5 ∈ S(π2) and 3 ∈ S(π3).
The pattern Π2 should be reduced in such a way that any string bigger than f2
is removed. In this case if w = w1w2w3 ∈ S(Π2) with wi ∈ S(πi) and 1 1∗ w1,
5 1∗ w2 and 3 1∗ w3, then f2 1∗ w. Thus, if we ensure that some component
wi is not bigger than the correspondent component in f2, then f2 	1∗ w. Taking
this into account, the strings w ∈ S(Π2) such that f2 	1∗ w are described as
follows:

– Any string w1w2w3 with wi ∈ S(πi), ∀i and 1 	1∗ w1. The set of strings in
S(π1) whose elements are not bigger than 1 is represented by the pattern
〈−, 3, 1〉. So the representation of this set of strings is 〈−, 3, 1〉〈3〉〈−, 2〉.

– Any string w1w2w3 with wi ∈ S(πi), ∀i and 5 	1∗ w2. The set of strings in
S(π2) whose elements are not bigger than 5 is represented by the pattern
〈3, 5〉. So the representation of this set of strings is 〈−, 3〉〈3, 5〉〈−, 2〉.

– Any string w1w2w3 with wi ∈ S(πi), ∀i and 3 	1∗ w3. The set of strings in
S(π3) whose elements are not bigger than 3 is represented by the pattern
〈−, 2, 3〉. So the representation of this set of strings is 〈−, 3〉〈3〉〈−, 2, 3〉.

We now explain how we formalize these constructions in ACL2. There are
two types of simple patterns: the first one is 〈−, s1, . . . , sn〉((nil sn ... s1) in
ACL2), representing any string t1 . . . tm such that si 	1 tj , ∀i, j; the second one is
〈s, s1, . . . , sn〉 (((s) sn ... s1) in ACL2), representing any string t such that
s 1 t and si 	1 t, ∀i (π is a simple pattern ≡ simple-pattern-p(π)). In both
cases we say that s1, . . . , sn is the sequence with respect to which the simple pat-
tern is defined. Note that this sequence is represented in ACL2 in reverse order.
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The following function checks the membership of a 1-length string s to the
set of strings described by a simple pattern π:

Definition:
member-simple-pattern(s,π) =

if consp(car(π)) then caar(π) 1 s ∧ ¬exists-sigma-<=(cdr(π),s)
else ¬exists-sigma-<=(cdr(π),s)

Simple patterns represent the components in which a new string could be split
ensuring that it is not bigger than any previous string in the sequence. Thus, a
pattern is a string of simple patterns (Π is a pattern ≡ pattern-p(Π)). Given
Π = π1 . . .πn, a string w is in the set of strings described by Π (w ∈ S(Π)) if
there exist strings w1, . . . , wn, such that w = w1 . . .wn and wi ∈ S(πi), ∀i. The
function member-pattern(w,Π) returns a pair (res val) where res indicates
if w ∈ S(Π) and, if it is the case, val is the list of components (w1 ... wn)
justifying this.

Definition:
member-pattern(w,Π) =

if endp(w) then if endp(Π) then 〈t,nil〉
elseif consp(caar(Π)) then 〈nil,nil〉
else let 〈res, val〉 be member-pattern(w,cdr(Π))

in if res then 〈t, cons(nil, val)〉
else 〈nil,nil〉

elseif endp(Π) then 〈nil,nil〉
elseif consp(caar(Π))

let res1 be member-simple-pattern(car(w),car(Π))
〈res2, val2〉 be member-pattern(cdr(w),cdr(Π))

in if res1 ∧ res2 then 〈t, cons(list(car(w)), val2)〉
else 〈nil,nil〉

else let 〈res1, val1〉 be member-pattern(w,cdr(Π))
in if res1 then 〈t, cons(nil, val1)〉

else let res2 be member-simple-pattern(car(w),car(Π))
〈res3, val3〉 be member-pattern(cdr(w),Π)

in if res2 ∧ res3
then 〈t, cons(cons(car(w), car(val3)), cdr(val3))〉

else 〈nil,nil〉

As we said above, given a string w and a pattern Π such that w ∈ S(Π),
we define the reduction of Π with respect to w as a set of patterns representing
the strings in S(Π) not bigger than w. Let us describe the reduction process
beginning with the reductions of a simple pattern π:

– If π = 〈s, s1, . . . , sn〉 then w ∈ Σ, s 1 w and si 	1 w, ∀i. In this case
the pattern 〈s, s1, . . . , sn, w〉 represents the set of strings t such that s 1 t,
si 	1 t, ∀i and w 	1 t, that is, the strings in S(π) that are not bigger than w.

– If π = 〈−, s1, . . . , sn〉 then w = t1 . . . tm such that si 	1 tj , ∀i, j. In this case
we obtain the following patterns after reducing π:
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• 〈−, s1, . . . , sn, t1〉: This pattern represents any string w whose elements
are not bigger than si, ∀i and t1.

• 〈−, s1, ..., sn, t1〉〈t1, s1, ..., sn〉〈−, s1, ..., sn, t2〉: This pattern represents
any string w1tw2 such that, the elements of w1 are not bigger than si, ∀i
and t1; t is an element of Σ bigger than t1 and not bigger than si, ∀i;
and the elements of w2 are not bigger than si, ∀i and t2.

• 〈−, s1, ..., sn, t1〉〈t1, s1, ..., sn〉〈−, s1, ..., sn, t2〉〈t2, s1, ..., sn〉〈−, s1, ..., sn, t3〉
• And so on.

The patterns obtained in the second case are all disjoint because the first
one represents strings whose elements are not bigger than t1, the second one
represents strings with an element bigger than t1 followed by elements not bigger
than t2, the third one represents strings with an element bigger than t1 followed
by an element bigger than t2 and this followed by elements not bigger than t3,
and so on. This disjointness property is preserved by the reduction process of
general patterns.

The function reduce-simple-pattern(w,π) computes the reductions of the
simple pattern π with respect to the string w (assuming that w ∈ S(π)). Let us
recall that the sequence with respect to which a simple pattern is defined is rep-
resented in ACL2 in reverse order, allowing easy additions of new elements to it:

Definition:
reduce-simple-pattern(w,π) =

if endp(w) then nil
elseif consp(car(π))

then list(list(cons(car(π),cons(car(w),cdr(π))))))
else cons(list(cons(nil,cons(car(w),cdr(π)))),

cons2-list-cdr(cons(nil,cons(car(w),cdr(π))),
cons(list(car(w)),cdr(π)),
reduce-simple-pattern(cdr(w),π)))

where the function cons2-list-cdr behaves schematically in the following way:

(cons2-list-cdr ’x ’y ’(l1 ... ln)) = ’((x y . l1) ... (x y . ln))

As we have discussed in the example, the reduction of a pattern depends on
its components. Given a pattern Π = π1 . . .πn and a string w ∈ S(Π), there exist
strings w1 . . .wn such that w = w1 . . .wn and wi ∈ S(πi), ∀i. The reduction of Π
with respect to w is the set of patterns π1 . . .πi−1π

′
1 . . .π

′
mπi+1 . . .πn for every

index i and every pattern π′
1 . . .π

′
m obtained by reducing the simple pattern πi

with respect to wi. The function reduce-simple-pattern-list computes the
reduction of a list of simple patterns (the components of Π) with respect to a
list of strings (the components of w).

Definition:
reduce-simple-pattern-list(w-lst,Π) =

if endp(Π) then nil
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else append-list-car(reduce-simple-pattern(car(w-lst),car(Π)),
cdr(Π)) @

cons-list-cdr(car(Π),
reduce-simple-pattern-list(cdr(w-lst),cdr(Π)))

where the symbol @ is the “append” operation between lists, and the functions
append-list-car and cons-list-cdr behave schematically as follows:

(append-list-car ’(l1 ... ln) ’l = ’(l1 @ l ... ln @ l)
(cons-list-cdr ’x ’(l1 ... ln)) = ’((x . l1) ... (x . ln))

The function reduce-pattern(w,Π) computes the reduction of the pattern
Π with respect to the string w, whenever w ∈ S(Π). If this is not the case, the
function returns the initial pattern Π :

Definition:
reduce-pattern(w,Π) =

let 〈res, val〉 be member-pattern(w,Π)
in if res then reduce-simple-pattern-list(val,Π)

else Π

Now we deal with set of patterns. In the following let be denote P a set
of patterns and S(P) the set of strings represented by the patterns in P (P is
a set of patterns ≡ pattern-list-p(P)). The function reduce-pattern-list
describes how the set of patterns P is reduced with respect to a string w:4

Definition:
reduce-pattern-list(w,P) =

if endp(P) then P
else let 〈res, val〉 be member-pattern(w,car(P))

in if res then reduce-pattern(w,car(P)) @ cdr(P)
else cons(car(P),reduce-pattern-list(w,cdr(P)))

The function reduce-pattern-sequence-list iterates the reduction pro-
cess over a finite sequence of strings. It must be noticed that the sequence of
strings is provided in reverse order:

Definition:
reduce-pattern-sequence-list(w,P) =

if endp(w) then P
else reduce-pattern-list(

car(w),reduce-pattern-sequence-list(cdr(w),P))

4 Since the reduction process produces patterns representing disjoint sets of strings,
it is enough to make the reduction with respect to the first pattern matched by
member-pattern. It must be noticed that it would be sufficient to make one reduction
even in the case in which P contains patterns representing non-disjoint sets of strings.
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Recall that our goal is to assign a well-founded measure to every initial subse-
quence of f, in such a way that every time a new element appears in the sequence
such that it is not bigger than any of the previous elements, then the correspond-
ing measure of the extended subsequence is strictly smaller. Intuitively, we will
measure the “size” of the set of elements that can be the next in the sequence
without affecting the well-quasi-order-ness property. Since we have seen that this
set of strings can be represented by a set of patterns, we will measure sets of
patterns.

First, we assign an ordinal measure to simple patterns, based on the
ordinal measure provided by sigma-seq-measure: if o is the measure of
the sequence s, then the measure of the simple pattern 〈−, s〉 is ωo + 1,
and the measure of the simple pattern 〈t, s〉 is ωo. The measure of a pattern
is the multiset of the measures of the simple patterns in it. Finally, the
measure of a set of patterns is the multiset of measures of the patterns in it.
The ACL2 functions simple-pattern-measure(π), pattern-measure(Π) and
pattern-list-measure(P) compute respectively the measure of the simple pat-
tern π, of the pattern Π and of the set of patterns P . We use this last function
to associate a measure to every index k:5

Definition:
higman-indices-measure(k) =

pattern-list-measure(
reduce-pattern-sequence-list(initial-segment-f(k− 1),

list(initial-pattern())))

where the function initial-pattern() builds the initial pattern 〈−〉 and the
function initial-segment-f(k) builds the list of strings (fk ... f1 f0). Note
that this measure is a finite multiset of finite multisets of ordinals.

The following table summarizes the measures in the given example:

Initial subsequence Set of patterns Measure
{} {〈−〉} {{{{ωω·2 + 1}}}}
{3 · 2} {〈−, 3〉, {{{{ωω+3 + 1}},

〈−, 3〉〈3〉〈−, 2〉} {{ωω+3 + 1, ωω·2, ωω+2 + 1}}}}
{3 · 2, {〈−, 3, 1〉, {{{{ωω+1 + 1}},
1 · 2} 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉, {{ωω+1 + 1, ωω+3, ω3+2 + 1}},

〈−, 3〉〈3〉〈−, 2〉} {{ωω+3 + 1, ωω·2, ωω+2 + 1}}}}
{3 · 2, {〈−, 3, 1〉, {{{{ωω+1 + 1}},
1 · 2, 〈−, 3, 1〉〈1, 3〉〈−, 3, 2〉, {{ωω+1 + 1, ωω+3, ω3+2 + 1}},
1 · 5 · 3} 〈−, 3, 1〉〈3〉〈−, 2〉, {{ωω+1 + 1, ωω·2, ωω+2 + 1}},

〈−, 3〉〈3, 5〉〈−, 2〉, {{ωω+3 + 1, ωω+5, ωω+2 + 1}},
〈−, 3〉〈3〉〈−, 2, 3〉} {{ωω+3 + 1, ωω·2, ω3+2 + 1}}}}

5 Note that since f is fixed, then k is sufficient to represent the initial subsequence
{f0 . . . fk−1}.
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2.3 Termination Proof of higman-indices

The last step in this formal proof is to define a well-founded relation and prove
that the given measure decreases with respect to it in every recursive call of the
function higman-indices. We will define it as the relation on finite multisets
induced by a well-founded relation. Intuitively, this relation is defined in such a
way that a smaller multiset can be obtained by removing a non-empty subset
of elements, and adding elements which are smaller than some of the removed
elements. In [4], Dershowitz and Manna show that if the base relation is well-
founded, then the relation induced on finite multisets is also well-founded.

As we said above, the only predefined well-founded relation in ACL2 is o<,
implementing the usual order between ordinals less than ε0. The function o-p
recognizes those ACL2 objects representing such ordinals. If we want to define
a new well-founded relation in ACL2, we have to explicitly provide a monotone
ordinal function, and prove the corresponding order-preserving theorem (see [5]
for details). Fortunately, we do not have to do this: we use the defmul tool. This
tool, previously implemented and used by the authors in [13], automatically
generates the definitions and proves the theorems needed to introduce in ACL2
the multiset relation induced by a given well-founded relation.

In our case, we need two defmul calls. The first one automatically gener-
ates the definition of the function mul-o<, implementing the multiset relation
on finite multisets of ordinals (the measure of a pattern) induced by the relation
o<; and the second one automatically generates the definition of mul-mul-o<,
implementing the multiset relation of finite multisets of finite multisets of or-
dinals (the measure of a pattern list) induced by the relation mul-o<. These
calls also automatically prove the theorems needed to introduce these relations
as well-founded relations in ACL2. See details about the defmul syntax in [13].
For simplicity, in the following we denote mul-o< as <ε0,M and mul-mul-o< as
<ε0,MM .

We finally prove that the measure decreases with respect to <ε0,MM in the
recursive call of the function higman-indices, hence justifying its termination.
We now explain the main lemmas needed to prove this result. We start with the
ones related to simple patterns. We have two cases:

– If the simple pattern is π = 〈s, s1, . . . , sn〉 and a string w ∈ S(π), then
w ∈ Σ, s 1 w and si 	1 w, ∀i. In this case the reduction of π
with respect to w is the simple pattern π′ = 〈s, s1, . . . , sn, w〉. Then
¬exists-sigma-<=(s,w) where s = 〈s1, . . . , sn〉. Thus the well-quasi-order
characterization of 1 ensures that sigma-seq-measure(cons(w,s)) is less
than sigma-seq-measure(s). Therefore, the measure of π′ is less than the
measure of π.

– If the simple pattern is π = 〈−, s1, . . . , sn〉 and a string w ∈ S(π), then
w = t1 . . . tm such that si 	1 tj , ∀i, j. In this case the reduction of π with
respect to w is a set of patterns whose components are of one of two kinds:
• Simple patterns as π′ = 〈−, s1, . . . , sn, tj〉. Then, if s = 〈s1, . . . , sn〉,

we have ¬exists-sigma-<=(s,tj). Thus the well-quasi-order character-
ization of 1 ensures that sigma-seq-measure(cons(tj,s)) is less than
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sigma-seq-measure(s). Therefore, the measure of π′ is less than the
measure of π.

• Simple patterns as π′ = 〈tj , s1, . . . , sn〉. Then, if s = 〈s1, . . . , sn〉 and
o =sigma-seq-measure(s), the measure of π′ is ωo and the measure of
π is ωo + 1. Therefore, the measure of π′ is less than the measure of π.

The following ACL2 lemma summarizes these considerations:

Lemma: reduce-simple-pattern-property
( simple-pattern-p(π) ∧ w ∈ Σ∗ ∧ w ∈ S(π)
∧ Π ∈ reduce-simple-pattern(w,π) ∧ π′ ∈ Π )
→ measure-simple-pattern(π′) <ε0 measure-simple-pattern(π)

where π′ ∈ Π indicates that the simple pattern π′ is a component of the pat-
tern Π .

Given a pattern Π = π1 . . .πn and w ∈ S(Π), to compute the patterns in
the reduction of Π with respect to w, we consider w = w1 . . .wn such that
wi ∈ S(πi), ∀i, and π′

1 . . .π
′
m obtained by reducing the simple pattern πi with

respect to wi. Then, the pattern Π ′ = π1 . . .πi−1π
′
1 . . .π

′
mπi+1 . . .πn is in the

reduction of Π with respect to w. The previous lemma ensures that the measure
of π′

j is less than the measure of πi, ∀i, j, therefore, the measure of Π ′ is obtained
from the measure of Π , replacing the measure of πi with the smaller measures
of π′

1, . . . , π
′
m. Then, the measure of Π ′ is a multiset less than the measure of Π :

Lemma: reduce-pattern-property
pattern-p(Π2) ∧ w ∈ Σ∗ ∧ w ∈ S(Π2) ∧ Π1 ∈ reduce-pattern(w,Π2)

→ measure-pattern(Π1) <ε0,M measure-pattern(Π2)

Finally, as a direct consequence of the previous lemma, if w ∈ S(P), then the
measure of reduce-pattern-list(w,P) is smaller than the measure of P with
respect to <ε0,MM :

Lemma: reduce-pattern-list-property
w ∈ Σ∗∧ pattern-list-p(P) ∧ w ∈ S(P)

→ pattern-list-measure(reduce-pattern-list(w,P))
<ε0,MM pattern-list-measure(P)

Now, we prove that the reduction process only removes strings bigger than
some string in the sequence with respect to which the reduction is made. The
following lemma establishes this property. If u ∈ S(P) then u is still in the set of
strings represented by the set of patterns obtained after reducing P with respect
to a given finite sequence of strings w (w ∈ Σ∗ ≡ sigma-*-seq-p(w)), provided
that u is not bigger than any of the strings of w (this condition is checked by
the function exists-sigma-*-<=, whose definition we omit here):

Lemma: exists-pattern-reduce-pattern-sequence-list
( u ∈ Σ∗ ∧ sigma-*-seq-p(w) ∧ pattern-list-p(P)
∧ u ∈ S(P) ∧ ¬exists-sigma-*-<=(w,u) )
→ u ∈ S(reduce-pattern-sequence-list(w,P))
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In addition, every string is in the initial set of patterns {〈−〉}:

Lemma: initial-pattern-exists-pattern
w ∈ Σ∗ → w ∈ S(list(initial-pattern()))

As a consequence of the above two lemmas, if fk is not bigger than any of f0
. . . fk−1 (that is, the recursive case in the definition of higman-indices), then
if P is the set of patterns generated in the k-th step, w ∈ S(P). So we can use
the lemma reduce-pattern-list-property to conclude that the measure of
the argument in the recursive call in higman-indices decreases with respect to
<ε0,MM . That is, we have the following theorem:

Theorem: higman-indices-termination-property
k ∈ N ∧ ¬get-sigma-*-<=-f(k,f(k))
→ higman-indices-measure(k + 1)<ε0,MM higman-indices-measure(k)

This is exactly the proof obligation generated to show the termination of the
function higman-indices. Thus, its definition is admitted in ACL2 and then
the theorem higman-lemma presented in subsection 2 is easily proved.

3 Concluding Remarks

The complete ACL2 files with definitions and theorems are available on the
Web at http://www.cs.us.es/~fmartin/acl2/higman/. To quantify the proof
effort, it was done in about 3 weeks of partial time work and only 43 definitions
and 76 lemmas (with 17 non trivial proof hints explicitly given) were needed,
which gives an idea of the degree of automation of the proof. The development
benefits from the previously developed multiset book, which provides a proof
of well-foundedness of the multiset relation induced by a well-founded relation.
It is worth emphasizing the reuse of the defmul tool for generating multiset
well-founded relations in ACL2 (see [13] for more uses of this tool).

Our proof is slightly different from the one presented in [10]. For example, our
construction of the order used to prove the termination of higman-indices is
more concise. Another important point is the level of detail that we must have in
the formalization; this reveals important properties needed in the development
of the proof that are not mentioned in [10]. For example, to prove the lemma
exists-pattern-reduce-pattern-sequence-listwe need a stability property
about 1∗: w1 1∗ w2 ∧ w3 1∗ w4 → w1w3 1∗ w2w4. The proof of this property
is not trivial in our formalization.

There are several constructive mechanizations of Higman’s lemma in the
literature, for example [2] in the Isabelle system (the author also has the same
work done in the COQ system), based on Coquand’s constructivization [3] of
Nash-William classical proof [11]; and [14] in the MINLOG system. These works
are related to program extraction from proofs, whereas our work starts with a
program solving the problem and then we prove its properties. This different
approach results in a more concise code: our program has 18 lines of LISP code
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whereas in [2] the program has 70 lines of ML code; and a more simple result: our
program returns the first elements in the sequence such that wi 1∗ wj , but this
is not the case in [2,14]. On the other hand these works are more restricted than
the presented here: in [2] the set Σ has only two values and the well-quasi-order
relation is equality; this is not the case in [14] where the proof developed is more
general, but the MINLOG formalization is restricted to a finite alphabet.
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Abstract. We briefly describe a mechanically checked proof of Dijk-
stra’s shortest path algorithm for finite directed graphs with nonnegative
edge lengths. The algorithm and proof are formalized in ACL2.

1 Introduction and Related Work

Dijkstra’s shortest path algorithm [3,4] finds the shortest paths between vertices
of a finite directed graph with nonnegative edge lengths. This paper formal-
izes that claim in ACL2 [8] and briefly describes a mechanically checked proof
of it.

ACL2 is a Boyer-Moore style theorem prover by Kaufmann and Moore that
supports a first-order logic based on recursively defined functions and inductively
constructed objects. The syntax is that of Lisp, which we use (and paraphrase)
in this paper – contrary to the TPHOLS tradition – since “proof pearls” are
meant to show how certain theorems are proved in certain systems. The ACL2
syntax does not include quantifiers, but the logic provides a means of introducing
“Skolem functions” providing full first-order power at the expense of executabil-
ity. This facility is crucial to the proof described here.

We represent graphs in ACL2 with a list data structure called an associa-
tion list, explained below. We define the function dijkstra-shortest-path to
implement the algorithm. It takes two vertices, a and b, and a graph as input
and it returns a value, say ρ. We prove that ρ is either nil or a path in the
graph from a to b, and that no path in the graph from a to b is shorter than ρ.
In our formalization, the non-path nil has “infinite” length and all finite paths
are shorter. Hence, our theorem ensures that if ρ is nil, there is no path from a
to b.

Despite the age and classic nature of the algorithm, there is relatively lit-
tle work on the correctness of Dijkstra’s algorithm in the mechanical theorem
proving literature. As far as we are aware, the first mechanically checked proof
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of the correctness of the algorithm was done in Mizar by Jing-Chao Chen [2]
in a paper submitted March 17, 2003. For the record, the first ACL2 proof
was completed in September, 2003. Our proof requires significant user guid-
ance, but our script is about one third the size of the Mizar proof script.1

In addition, the Mizar article draws upon notation and results in 22 other
Mizar articles concerning properties of sets, functions, arithmetic, chains, and
graphs. The ACL2 proof uses no external definitions or theorems – everything
is done from ACL2’s basic “bootstrap theory.” We compare the two proofs in
more detail in the concluding section of this paper. The Mizar model of the
algorithm is quite similar to ours. In fact, the article states that it was “ex-
tremely difficult” to use existing Mizar models of computing machines to formal-
ize the algorithm and instead “we adopt functions in the Mizar library, which
seem to be pseudo-codes, and are similar to those in the functional program-
ming, e.g., Lisp.” The invariant maintained by the Mizar algorithm is essen-
tially the same as ours, but is expressed in terms of the subgraph “induced”
on a larger graph by a subset of the nodes, while our invariant is phrased in
terms of paths through the original graph that are “confined” to that subset of
nodes.

Joe Hurd [6] formalized and proved the reachability property of Dijkstra’s al-
gorithm in HOL. A similar algorithm, Floyd’s all-pairs shortest path algorithm,
was formalized and proved correct in Coq by Eric Fleury in July, 1990 [5] (un-
published manuscript). In February, 1998, Christine Paulin and Jean-Christophe
Filliâtre proved Floyd’s algorithm in Coq [10].

In ACL2, Moore did the first proof of Dijkstra’s algorithm in September,
2003. He then challenged Zhang, then a relatively new ACL2 user, to do it
as an exercise, without seeing Moore’s proof. Zhang completed his first proof
in December, 2003, with some guidance from Moore. Then Zhang cleaned up
his proof, removing many user-supplied proof hints in the process. The proof
described here is Zhang’s second proof.

The rest of this paper is organized as follows. In the next section we describe
the formalization of the algorithm in ACL2. In the subsequent sections we give
our specification, the main invariant, a sketch of the proof, and a typical user-
supplied hint. In Section 7 we give some statistics about it. The complete script
of our work is available online at http://www.cs.utexas.edu/users/qzhang/
shortest-path/index.html.

1 The Mizar script, not counting the scripts it references, contains about 132,000 char-
acters, about 30,000 lexical tokens, and about 3,480 lines. The ACL2 script contains
about 35,500 characters, about 8,400 lexical tokens, and about 1,200 lines. Paren-
theses are counted as lexical tokens in both scripts. Comments are not counted. At
a higher level of abstraction, the proofs are about the same size. The Mizar script
proves 125 lemmas, of which 55 are called “Theorems” (the rest are supporting lem-
mas). The ACL2 script contains 125 lemmas, of which 57 mention concepts specific
to the algorithm, specification, or invariant. The rest are generic. We present more
statistics about the ACL2 proof in the concluding section of this paper.
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2 Formalization

The ACL2 language is a subset of Common Lisp. We use Lisp syntax. Suppose
neighbors is a function of two arguments. Then we write (neighbors u g) to
denote the application of that function to u and g. That is, we write (neighbors
u g) where neighbors(u, g) would be written in traditional notation. Lisp con-
ventions make the capitalization of symbols irrelevant (for the particular symbols
used in this paper). Thus neighbors, Neighbors, and NEIGHBORS all denote the
same symbol. We use lowercase consistently, but capitalize symbols when they
occur as the first word of a sentence.

In ACL2, ordered pairs are called conses and are constructed by the function
cons. The left component of a cons is accessed with the function car and the
right component is accessed with cdr. Conses are used to represent lists. The car
of such a cons is the first element in the list and the cdr is the list containing the
remaining elements. A list is said to be a true-list if its cdr-chain is terminated
with nil rather than some other atom.

An association list (or alist) is a true-list in which the elements are pairs in
which the car is said to be associated with or bound to the cdr. It is easy to
write the function that looks up the value of a key in an alist, by recurring down
the cdr-chain to the first pair that binds the key in question. It is also easy to
write the function that copies an alist inserting a new binding for given key.

We use alists extensively in this work. A directed graph is an alist associating
vertices with edge lists. An edge list is an association list associating vertices to
nonnegative rationals called edge lengths.

The function graphp checks that an object is of the shape just described. If
the edge list associated with some vertex u in a graph g binds v to w, then it
means there is an edge in g from u to v with edge length w, i.e., (edge-len u v
g) is w. The function all-nodes collects a duplication-free true-list (“set”) of all
vertices mentioned in a graph. (Neighbors u g) returns the set of all vertices
reachable from vertex u via one edge in g.

Of course, there are other representations of graphs. The particular one cho-
sen here is unimportant once we have defined and proved the basic properties
of graphp, all-nodes, neighbors, edge-len, etc. Graphs are accessed entirely
via these generic concepts (and no graph is constructed by the algorithm). We
thus could have merely constrained these functions to be in the appropriate rela-
tionships and conducted our proof without a concrete representation of graphs.
We prefer defining such concepts on a concrete representation to establish that
functions satisfying all those constraints indeed exist. In fact, ACL2 forces us
to provide function definitions “witnessing” any such collection of constraints to
establish consistency. In addition, an executable model of the algorithm allows
testing, which is particularly helpful when one is trying to formulate lemmas and
invariants.

Some readers may prefer a more abstract concrete representation, e.g., as
functions. But ACL2 is a first-order language and we do not have functions as
objects. However, alists – lists of ordered pairs – are the standard Lisp represen-
tation of tables and other finite function objects. When we say “v is bound to
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w in alist f” then one may think of f as a finite function, v as an element of its
domain, and f(v) = w. If one regards alists as finite function objects, then graphs
are finite functions from vertices to finite functions from vertices (neighbors) to
nonnegative rationals (edge lengths).

A path p in a graph g is a non-empty list of vertices with the property that
successive elements of p are linked by an edge in the graph g. Path-len returns
the sum of the edge lengths of the edges in a path.

In ACL2 it is common to use the atom nil for a variety of extended mean-
ings. It is used both as the terminal marker in true-lists and as the “false” truth-
value. We also use it as “infinity” in our system of lengths. That is, we define
a strict ordering lt (“less than”) and its weaker counterpart lte (“less than or
equal”) so that nil dominates all rational lengths. We also use nil to denote a
non-existent path; that is, if asked to find a path between two vertices where no
such path exists, we will return nil. We define path-len to return nil (infinity)
on the non-path nil. In an abuse of the strictness implied by the word “shorter,”
we define (shorterp p1 p2 g) to be (lte (path-len p1 g) (path-len p2 g)).2

The core of Dijkstra’s shortest path algorithm is an iterative procedure, here
called dsp (for Dijkstra’s shortest path), that computes a path table. In our work,
path tables are association lists (finite functions) from vertices to paths. All the
paths start at the same source vertex. Suppose the source vertex is a. Then if
u is paired with path p in the path table, then p is a path from a to u. Other
important invariants on the path table are discussed later. We use the variable
symbol pt to denote the path table. We define (path u pt) to return the path
associated with u in pt (or nil if no path is associated with u) and we define (d
u pt g) to return its length, (path-len (path u pt) g).

The dsp function is defined recursively as shown below.

(defun dsp (ts pt g)
(cond ((endp ts) pt)

(t (let ((u (choose-next ts pt g)))
(dsp (del u ts)

(reassign u (neighbors u g) pt g)
g)))))

Here, dsp is the name of the function and it takes three arguments: ts (the
“temporary set” of nodes not yet visited, pt (the path table), and g (the graph
to be explored). We can interpret this recursive function definition operationally
as follows. To compute (dsp ts pt g), ask whether ts is empty. If so, return
pt. Otherwise, let u be the value of the choose-next expression and call dsp
recursively on (del u ts), the reassign expression, and g.

From the traditional description of the iterative core of the algorithm the
reader should be able to infer the definitions of the functions used above.

Repeat until ts is empty:

Choose u in ts such that (d u pt g) is minimal.

2 Some authors write “(weakly) shorter.”
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For each edge from u to some neighbor v with edge length w, if (d v pt
g) > (d u pt g) + w, then modify pt so that the path associated
with v is the current path to u in pt, extended onward to v, (append
(path u pt) (list v)).

Delete u from ts.
We then define Dijkstra’s algorithm as

(defun dijkstra-shortest-path (a b g)
(let ((pt (dsp (all-nodes g) (list (cons a (list a))) g)))
(path b pt)))

which may be described as:

Let pt be the final path table computed by dsp starting from an initial ts
containing all the nodes of the graph and an initial path table pairing the
source vertex a, with the singleton path that starts and ends at a.

Return the path associated with b in the final path table.

Given that ACL2 is a functional programming language, this algorithm may
be executed on concrete input, though as coded here it is not very efficient. Much
more efficient implementations are possible in ACL2, e.g., using ACL2’s single-
threaded objects [1] (which are data structures that may be modified destruc-
tively but under syntactic restrictions that ensure conformance to the applicative
semantics) and the MBE feature (which permits the replacement of one ACL2 code
fragment by another provided they are provably equivalent in the given context).
These features could be used to implement the array-based binary trees com-
monly employed to represent the path table efficiently; the key step would be a
commuting diagram relating the “accessor” function, path, which recovers the
path associated with a given vertex in the path table, to the “updater” function,
reassign, for the two different concrete representations of path tables.

To our knowledge, no ACL2 proof of such an implementation has been carried
out. But correctness proofs by Sumners and Ray for an in situ ACL2 quicksort
[12], Sumners for an ACL2 BDD package that operates a 60% of the speed of
CUDD [11], and Greve and Wilding for an ACL2 graph path finding algorithm
that executes at speeds near those of a C implementation [7] are evidence that
moving from this implementation to an efficient one in ACL2 is a well-trodden
path. The main obstacle is proving the correctness of some ACL2 function im-
plementing the algorithm in question.

3 Specification

Our specification of the algorithm is as follows. Suppose a and b are nodes in
graph g. Let ρ (rho below) be the output of Dijkstra’s algorithm on a, b, and
g. Then ρ is either nil or a path in g from a to b, and ρ is a (weakly) shortest
path from a to b in g. Note that if ρ is nil the claim that it is nevertheless the
shortest path from a to b is equivalent to the claim that there is no such path,
since any true path from a to b is shorter than the infinite path-len of nil.
Formally, in ACL2, we write this as follows.

t
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(defthm main-theorem
(implies (and (nodep a g)

(nodep b g)
(graphp g))

(let ((rho (dijkstra-shortest-path a b g)))
(and (or (null rho)

(pathp-from-to rho a b g))
(shortest-pathp a b rho g)))))

To formalize the notion that a path is a (weakly) shortest path we define
(shortest-pathp a b p g) so that it is true if and only if for every path,
path, from a to b in g, p is (weakly) shorter than path. We could “fake” this
quantification with a recursive function that checks all possible paths, if there
were a finite number of them. But in general there may be an infinite number of
(non-simple) paths to a given node. ACL2 does not provide quantifiers per se.
But it does provide a facility, defchoose [9], like Hilbert’s ε, by which one can
introduce a function to return an object satisfying a given formula, if such an
object exists.

Therefore, to define shortest-pathp we first use defchoose to introduce
a witness, (shortest-pathp-witness a b p g) with the property that it is a
path in g from a to b and is shorter than p, if such an object exists. Then we
define shortest-pathp so that it is true of p precisely if the witness fails to be
a path from a to b that is shorter than p. In ACL2, this entire development is
wrapped up in a macro called defun-sk (for “define Skolemized function”).

(defun-sk shortest-pathp (a b p g)
(forall path

(implies (pathp-from-to path a b g)
(shorterp p path g))))

The macro expands to an appropriate use of defchoose for the witness ex-
pression (shortest-pathp-witness a b p g) followed by an appropriately en-
capsulated definition of shortest-path. This method of introducing quantified
concepts in ACL2 differs from the method in Nqthm, where Skolemization was
supported directly.

Such Skolem functions are not executable: even when the arguments are
known constants, ACL2 cannot reduce a call of shortest-pathp-witness to
a constant. This does not trouble us because these functions are used in the
specification and proof, but not in the path-finding algorithm itself.

The witness function is used extensively in a series of hand-written hints used
to carry out the most delicate arguments in the correctness proof. In particular,
to show that a just-constructed path is a shortest one, we suppose it is not, use
the witness to obtain an allegedly shorter one, and then derive a contradiction.
But while the various case splits and constructions used to conduct these argu-
ments are the messiest part of the proof, the real crux of the proof is identifying
and formalizing the invariant maintained by the algorithm.
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4 The Invariant

The mechanical proof is mainly concerned with establishing an invariant on the
temporary set, ts and the path table, pt, of dsp. The invariant also takes the
starting vertex, a, and the graph, g.

Several concepts are used repeatedly in defining the invariant. One is the
notion of the “final set,” usually represented here by the variable fs and equal
to (comp-set ts (all-nodes g)), the complement of the temporary set (with
respect to the set of all nodes of the graph). Another is the idea of a path p being
confined to fs, which means that every node in p except the last is a member of
fs. We define the concept recursively.

(defun confinedp (p fs)
(if (endp p) t
(if (endp (cdr p)) t
(and (memp (car p) fs)

(confinedp (cdr p) fs)))))

A third important concept is that of p being a shortest confined path, meaning
it is shorter than any path from a to b that is confined to fs. We need universal
quantification (defun-sk) to formalize this.

(defun-sk shortest-confined-pathp (a b p fs g)
(forall path (implies (and (pathp-from-to path a b g)

(confinedp path fs))
(shorterp p path g))))

We define the invariant as follows:

(defun invp (ts pt g a)
(let ((fs (comp-set ts (all-nodes g))))
(and (ts-propertyp a ts fs pt g)

(fs-propertyp a fs fs pt g)
(pt-propertyp a pt g))))

The invariant has three conjuncts, one each about the temporary set, the
final set, and the path table, although this partitioning is somewhat artificial
since all involve fs and pt to some extent.

We define ts-propertyp recursively to check that for every node in the
temporary set, the path to that node in the path table is a shortest confined
path to that node and the path is itself confined.

(defun ts-propertyp (a ts fs pt g)
(if (endp ts) t
(and (shortest-confined-pathp a (car ts)

(path (car ts) pt)
fs g)

(confinedp (path (car ts) pt) fs)
(ts-propertyp a (cdr ts) fs pt g))))
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We define fs-propertyp recursively in a very similar fashion, except it checks
that for every node in the final set, the path assigned to that node in the path
table is a shortest path to that node and is confined.

(defun fs-propertyp (a fs fs0 pt g)
(if (endp fs) t
(and (shortest-pathp a (car fs) (path (car fs) pt) g)

(confinedp (path (car fs) pt) fs0)
(fs-propertyp a (cdr fs) fs0 pt g))))

Finally, we define pt-propertyp to check that for every entry in the path
table is either nil or a path from a to the node with which it is associated in
the table.

(defun pt-propertyp (a pt g)
(if (endp pt) t
(and (or (null (cdar pt))

(pathp-from-to (cdar pt) a (caar pt) g))
(pt-propertyp a (cdr pt) g))))

5 Mechanical Proof

The proof breaks down into two main lemmas. The first is that the invariant
holds initially.

(defthm invp-0
(implies (nodep a g)

(invp (all-nodes g) (list (cons a (list a))) g a)))

The second is that the invariant holds as dsp recurs.

(defthm invp-choose-next
(implies (and (invp ts pt g a)

(my-subsetp ts (all-nodes g))
(graphp g)
(consp ts)
(setp ts)
(nodep a g)
(equal (path a pt) (list a)))

(let ((u (choose-next ts pt g)))
(invp (del u ts)

(reassign u (neighbors u g) pt g)
g a)))

:hints . . .)

From these two, it is straightforward to prove

(defthm invp-last
(implies (and (nodep a g)

(graphp g))
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(invp nil
(dsp (all-nodes g)

(list (cons a (list a)))
g)

g a)))

and main-theorem follows without much more work.

6 Hints

The hardest part of the proof is, of course, the proof of invp-choose-next. We
present only one of the major cases. Dsp uses choose-next to choose a vertex,
u, in ts whose associated path in pt is of minimal length. Why is this path the
shortest path to that vertex? Here is the lemma that states that it is.

(defthm choose-next-shortest
(implies (and (graphp g)

(consp ts)
(my-subsetp ts (all-nodes g))
(invp ts pt g a))

(shortest-pathp a
(choose-next ts pt g)
(path (choose-next ts pt g) pt)
g))

:hints . . .)

ACL2 cannot prove this without help. Help is given by the user in the form
of hints. We first describe the proof and then show the actual hints.

Let the choose-next term above be u and let its associated path in pt be δ.
Let fs be the “final set,” (comp-set ts (all-nodes g)). We know, from the
invp hypothesis, that δ is the shortest path to u that is confined to fs. We wish
to show it is the shortest path (confined or not). Suppose it is not. Then there is
a shorter path, say σ, to u that is not confined to fs, i.e., σ contains a vertex v
in ts. Let σ′ be the initial portion of σ up to and including v. Then σ′ is shorter
than σ, terminates on a node in ts, and is confined to fs. But the path in pt
associated with v is, by invp, shorter than σ′. And δ is shorter than that path
by the selection criteria in choose-next. Hence, δ is shorter than σ.

The actual term for σ above is (shortest-pathp-witness a u δ g). And
the actual term for σ′ is (find-partial-path σ fs). Find-partial-path is a
user-defined recursive function that finds the subpath of a path that terminates
in the first node outside of fs.

Hints in ACL2 are generally coded by listing a series of instantiations of
previously proved lemmas. These instances are conjoined to the hypotheses of
the goal theorem and then used freely by ACL2. To code the above hint we tell
ACL2 not to expand the definitions of shorterp, path and pathp and we provide
two instances. The ellipsis in the display above for choose-next-shortest is
filled in by:
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(("Goal" :in-theory (disable shorterp path pathp)
:use ((:instance pathp-partial-path (p σ) (s fs))

(:instance shorterp-by-partial-and-choose-next
(u u) (path σ′) (v (car (last σ′)))))))

The expression following the symbol :use specifies that the theorem prover
is to add two lemma instances to the hypotheses of the goal. The first lemma,
pathp-partial-path, instantiated above says that find-partial-path con-
structs a confined path to its last node. The given substitution replaces the
variable symbol p in the lemma by σ and the variable s by fs. The second
lemma says that if the path to u in pt is shorter than the path to v in pt, and
ts-propertyp holds, and path is a confined path to v, then the path to u is
shorter than path.

7 Some Details and Statistics

The entire ACL2 proof script contains 39 defuns and 125 defthms. The defthms
can be broken into to two broad categories: elementary lemmas about the basic
ideas and “custom” lemmas for this particular proof. We classified as “custom”
any lemma mentioning choose-next, reassign, ts-propertyp, fs-propertyp,
pt-propertyp, invp, dsp, or dijkstra-shortest-path.

There are 68 elementary lemmas about finite set theory, the notions of shorter
and shortest path, elementary path properties (including that of being confined)
and manipulation (including the notion of finding a confined subpath), and struc-
tural properties of association lists, paths, tables, and graphs. Here are a few.

(defthm comp-set-id
(equal (comp-set s s) nil))

(defthm neighbor-implies-nodep
(implies (memp v (neighbors u g))

(memp v (all-nodes g))))
(defthm shortest-pathp-corollary
(implies (and (shortest-pathp a b p g)

(pathp-from-to path a b g))
(shorterp p path g)))

(defthm confinedp-append
(implies (and (confinedp p s)

(memp (car (last p)) s))
(confinedp (append p (list v)) s)))

(defthm path-len-append
(implies (pathp p g)

(equal (path-len (append p (list v)) g)
(plus (path-len p g)

(edge-len (car (last p)) v g)))))
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All are used by ACL2 as conditional rewrite rules. For example, the last
theorem is used to rewrite (path-len (append . . .)) to the plus expression,
provided (pathp p g) can be established. (Plus is just addition extended to
handle nil as“infinity.”)

There are 57 custom lemmas, including four shown in this paper: invp-0,
invp-choose-next, invp-last, and choose-next-shortest. Some are easy to
prove lemmas that “explain” the fact that functions like ts-propertyp are re-
cursively defined quantifiers:

(defthm ts-propertyp-prop-lemma1
(implies (and (ts-propertyp a ts fs pt g)

(memp v ts))
(and (shortest-confined-pathp a v (path v pt) fs g)

(confinedp (path v pt) fs))))

In all, we had to give 51 hints. About 30 of these were hints only to disable
(i.e., avoid using) certain definitions or theorems. Twenty-three times we had to
instruct the theorem prover to :use instances of certain theorems, as illustrated
above, and a total of 31 instances were mentioned in the script. The vast majority
of the hints were used in the custom theorems: 37 of the 51 hints, 19 of the
23 :use hints for 28 of the 31 instances.

The proof takes about 67 seconds on a 2.4 GHz Intel XeonTM running ACL2
Version 2.9 compiled under GNU Common Lisp.
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Abstract. Structural recursion over sets is meaningful only if the result
is independent of the order in which the set’s elements are enumerated.
This paper outlines a theory of function definition for finite sets, based
on the fold functionals often used with lists. The fold functional is in-
troduced as a relation, which is then shown to denote a function under
certain conditions. Applications include summation and maximum. The
theory has been formalized using Isabelle/HOL.

1 Introduction

Finite sets have many applications in interactive proof. Lists are more com-
monly used, but are a poor substitute for sets: if the order of the list elements
really doesn’t matter, then the use of lists will introduce meaningless distinctions
and pointless complications. In general, of course, sets do not have to be finite.
Theorem provers based on higher order logic can easily reason about infinite
sets. Finite sets are appropriate for modelling computational phenomena such
as message buffering, where the order and possible repetition of messages must
be ignored. Finite sets support operations—such as summation, maximum and
minimum, cardinality—that are meaningful for infinite sets only in the context
of the calculus or other advanced methods.

Fold functionals are a convenient means of defining such operations. For lists,
fold functionals are well known [8], but for finite sets, they are problematical.
The problem is obvious: fold functionals seem to presuppose an ordering of the
elements, when by definition a set is unordered. The solution is to define a fold
functional that allows the definition of operations where the order of elements is
irrelevant.

– Summations are unaffected by the order in which elements are added.
– The maximum and minimum do not depend on the order in which elements

appear.
– Cardinality is unaffected by the order in which elements are counted.

This paper has several objectives. We describe how to the formalize fold
functionals for finite sets. While presenting our approach, which we believe pro-
vides maximum flexibility for minimal effort, we identify alternatives and outline
their merits. No mathematical novelties appear here, just a carefully tuned series
of definitions. We use Isabelle/HOL [9], but the approach should be applicable
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to other theorem provers based on higher-order logic or set theory. We also il-
lustrate the technique of proving a function to be well-defined by showing the
corresponding relation to be single valued.

We pay particular attention to the algebraic properties required for iterating
a function over a set. It turns out that there are two distinct cases: commutative
monoids with a unit (useful for defining summation) and ordered structures
(useful for defining minimum). Both require distinct fold functionals and their
own theory. In the development of these theories we demonstrate locales, a lesser-
known Isabelle feature.

As we go along, we compare our approach with the one in HOL4 [7] and
PVS [13], both of which provide their own libraries of functions over finite sets.
Our basic fold function resembles one formalized for HOL88 by Chou [3].

2 Finite Sets and the Fold Function

We assume there already is a formalization of sets, with standard operations such
as comprehension, union and intersection. In higher-order logic, this is trivial by
the obvious representation of sets by predicates.

We use standard mathematical notation with a few extensions. Type variables
are written ′a, ′b, etc., and function types are written using ⇒, as in ′a ⇒ ′a.
Logical equivalence is denoted by =, equality between booleans. The type of sets
over a type ′a is ′a set. The image of a function over a set, namely {f x | x ∈
A}, is written f ‘ A. Injectivity is written inj-on f A, which means the function
f is injective when restricted to the set A.

We use two description operators, SOME and THE . Both denote a value
that is specified by a formula. SOME is Hilbert’s ε-operator; it does not require
the formula to specify the value uniquely, instead choosing one using the axiom
of choice. THE is a definite description: the specified value must be unique.

Most uses of SOME that we have seen can be replaced by THE . Sometimes,
SOME is essential or at least leads to shorter definitions. However, introducing a
needless dependence on the axiom of choice is inelegant. Certain formal systems
are incompatible with choice [5, Remark 4.6].

2.1 Finite Sets

Finiteness we express by an inductive definition. The empty set is finite, and
adding one element to a finite set yields a finite set. The inductive definition
defines a predicate finite characterizing the finite sets:

finite ∅
finite A

finite ({a} ∪ A)

In Isabelle, we define the function insert and abbreviate the conclusion of the
second rule as finite (insert a A). This function brings out the analogy between
finite sets built by ∅ and insert with lists built by [] and Cons. We do not
introduce a separate type of finite sets, which might be desirable in systems that
offer predicate subtyping.
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Isabelle’s inductive definition package also generates an induction rule sim-
ilar to structural induction for lists. Familiar properties are easily proved by
induction. For example, the union of finitely many finite sets is itself finite.

Traditionally, a set is finite if it can be put into one-to-one correspondence
with the set of natural numbers less than some n. Another traditional definition
says A is finite if every injection from A to A is also a surjection. Compared
with the inductive definition of finiteness, which allows the standard results to
be proved easily, such definitions are inconvenient. Their only advantage is that
they do not presuppose the concept of inductive definition.

If we did not start from an existing type of sets which includes the infi-
nite ones, we could define the type of finite sets as a quotient type of a free
algebra [11]. There are two standard approaches.

– empty set, singleton set and union, modulo associativity, commutativity and
idempotency of union

– empty set and insert, modulo left-commutativity and left-idempotency:

insert a (insert b A) = insert b (insert a A)
insert a (insert a A) = insert a A

Below we will refer to them as the (∅,{−},∪)-algebra and the (∅,insert)-algebra.

2.2 Which Fold Function?

Our main interest is defining functions over finite sets by recursion. For lists, this
is trivial, but for sets, we must ensure that the order of the elements is irrelevant.
The cardinality of a set is a key function that might be defined recursively, though
it turns out to be essential in the development of recursion in the first place.

We seek a function fold of type ( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′b ⇒ ′a) ⇒ ′a ⇒ ′b set
⇒ ′a. It should satisfy the equation

fold f g z {x1, ..., xn} = f (g x1) (. . . (f (g xn) z). . .)

if f is associative and commutative (AC). The function g is applied to each of
{x 1, ..., xn}, then z is thrown in, and the resulting values —which do not have
to be distinct—are combined using f. This fold function is also well known from
functional data base query languages, for example Machiavelli [10].

If e is a unit element for f, i.e. f x e = x, then fold satisfies the recursion
equations

fold f g e ∅ = e
fold f g e {a} = g a

fold f g e (A ∪ B) = f (fold f g e A) (fold f g e B)

if A and B are finite disjoint sets. Hence fold corresponds to the (∅,{−},∪)-
algebra view of finite sets.

Can the argument g be eliminated? The application of g to the set elements
cannot be replaced by a separate use of the image operator because the resulting
collection of values must not be regarded as a set. We could combine f and g
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into one function, namely λx y. f (g x ) y. That approach, followed in HOL4,
resembles the treatment of fold for lists, i.e. it takes the (∅,insert)-algebra view of
finite sets. It can be shown that the two fold functions are interdefinable [2]. Our
treatment has the advantage that it only involves standard algebraic properties
like associativity and commutativity.

What happens if there is no unit e for f ? As an example, consider a naive
definition of the minimum of a set of natural numbers: Min ≡ fold min id 0
where min is the binary minimum (which is AC, but has no unit). The sad
consequence of this definition is that Min always returns zero. As a matter of
fact, fold will not allow us to define the minimum of a set over any type that
lacks a greatest element: a unit for min. Similarly, the maximum of a set can be
defined using fold only if the type has a least element; for the natural numbers,
it is correct to define Max ≡ fold max id 0. We treat the case of a missing unit
element separately in §4.

2.3 Defining the Fold Function

We do not define fold directly. Instead, we inductively define its graph: its in-
put/output relation. After proving that this relation is deterministic, we use it
to define fold. The relation is a constant foldSet of type

( ′a ⇒ ′a ⇒ ′a) ⇒ ( ′b ⇒ ′a) ⇒ ′a ⇒ ( ′b set × ′a) set.

Its inductive definition has two introduction rules. The first, intuitively, states
that when applied to the empty set, fold f g z should return z.

(∅, z ) ∈ foldSet f g z

The second rule says that if the “fold” of A can yield y, then the “fold” of {x}
∪ A can yield f (g x ) y, for any x /∈ A.

x /∈ A (A, y) ∈ foldSet f g z
({x} ∪ A, f (g x ) y) ∈ foldSet f g z

Proving that the “fold” of A can yield only one value is complicated because
the elements of A might be inserted in any order. Our proof (see below) is by
induction on the cardinality of A. Once we have proved that foldSet corresponds
to a function, we can define the “fold” of A to be the unique x determined by
foldSet f g z :

fold f g z A ≡ THE x . (A, x) ∈ foldSet f g z

This step requires the unique description operator, but not the axiom of choice.

3 A Fold Function for Finite Sets

All treatments of fold that we are aware of require some notion of finite cardi-
nality. Various definitions are possible.
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1. The traditional approach refers to a bijection to an initial segment of the
natural numbers: card A ≡ LEAST n. ∃ f . A = f ‘ {m | m < n}

2. HOL4 defines cardinality as a relation of pairs (A, n). This graph is proved
to be deterministic and turned into a function using a description.

3. The approach we adopt below refers implicitly to the traditional definition
of finiteness, via the theorem finite A = (∃n f . A = f ‘ {i | i < n}).

Alternative 2 above resembles the inductive definition of fold. Whichever alter-
native is chosen, we should only prove enough results about cardinality to allow
the definition of fold : many lemmas about cardinality are instances of more gen-
eral lemmas about set summation and can be obtained easily once that concept
is defined with the help of fold. We come back to this point in §3.5.

As stated in the previous section, the relation foldSet is defined inductively.
In order to turn foldSet into a function, we must show determinacy: for each A
there is at most one y such that (A, y) ∈ foldSet f g x. However, this is not true
for arbitrary f : the function must be AC.

3.1 Commutative Monoids

An Isabelle locale is essentially a detached proof context, comprising variables
and assumptions that are temporarily treated like constants and axioms [1].
When proving theorems within a locale, there is no need to repeat the assump-
tions nor to discharge them when appealing to other theorems of that locale.

Here, a locale conveniently packages the function f with its associative and
commutative laws. Locale ACf even gives f an infix syntax · to improve clarity:

locale ACf =
fixes f :: ′a ⇒ ′a ⇒ ′a (infixl · 70 )
assumes commute: x · y = y · x
and assoc: (x · y) · z = x · (y · z)

Some of our proofs require a unit element for f. Locale ACe extends ACf
with such an element, called e:

locale ACe = ACf +
fixes e :: ′a
assumes ident : x · e = x

For clarity, we write · and e only in the context of the corresponding locale.
Outside the locale, where the values are unconstrained, we write f and z. In the
locale, references to f as a function appear as (·), a notation that emphasizes the
connection with the infix syntax x · y. An example of this notation in context
is foldSet (·) g x.

3.2 From Relation foldSet to Function fold

The determinacy of foldSet is easily stated:

If (A, x) ∈ foldSet (·) g z and (A, y) ∈ foldSet (·) g z then y = x .
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For induction, we insert two conditions, expressing that A has cardinality n:

If A = h ‘ {i | i < n} and inj-on h {i | i < n} and (A, x) ∈ foldSet (·) g z and
(A, y) ∈ foldSet (·) g z then y = x .

The proof is conducted within locale ACf, making available the assumption that
· is associative and commutative. We use complete induction on n, obtaining as
induction hypothesis that the theorem statement holds for all m less than n.

We next analyse the assumption (A, y) ∈ foldSet (·) g z by cases on the
definition of foldSet. If A = ∅ then both x and y are equal to z. Otherwise A is
non-empty. We must consider two potential evaluations of fold:

1. A = {b} ∪ B and x = g b · u and (B , u) ∈ foldSet (·) g z, where b /∈ B
2. A = {c} ∪ C and y = g c · v and (C , v) ∈ foldSet (·) g z, where c /∈ C

If b = c then also B = C, whence u = v by the induction hypothesis. We
thus find that x and y equal g b · u.

The only remaining case is if b 	= c. Here, we define the set D = B − {c}.
Trivially B = {c} ∪ D, but we can also show C = {b} ∪ D by subtracting c
from both sides of the set equation {b} ∪ B = {c} ∪ C. Because the set D is of
smaller cardinality, the induction hypothesis tells us that (D , w) ∈ foldSet f g z
for a unique w. Returning to the two potential evaluations of fold, we find

1. A = {b, c} ∪ D and x = g b · (g c · w)
2. A = {c, b} ∪ D and y = g c · (g b · w).

Associativity and commutativity of (·) imply x = y, which completes the proof.	
If a theory of finite cardinality is already available, we can replace the for-

mulas A = h ‘ {i | i < n} and inj-on h {i | i < n} above by finite A. The
proof would then require a complete induction on the cardinality of A. The only
properies of cardinality needed are the obvious ones: card ∅ = 0 and

card ({a} ∪ A) = (if a ∈ A then card A else card A + 1 ).

Our experience is that defining cardinality separately requires much work and
yields only a small simplification in the formalization of the proof above. Fold
will give us cardinality for free.

Now that we have shown that foldSet is the graph of a function, we can easily
derive the recursion rule for fold where A must be finite and x /∈ A:

fold (·) g z ({x} ∪ A) = g x · fold (·) g z A (1)

The base case fold f g z ∅ = z follows directly from the definitions. Once we
have these two equations, we can forget about the original definition of fold.

3.3 An Alternative: Defining Fold by Choice and Recursion

An alternative definition of fold is by well-founded recursion over the cardinality
of the set, where pick A ≡ SOME a. a ∈ A and rest A ≡ A − pick A:

fold f g x A = (if A = ∅ then x else fold f g (pick A) (rest A))
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This version, used in PVS and HOL4, is appealingly concise. In PVS the
type of fold is restricted to finite sets, whereas in HOL the recursion equation is
subject to the condition finite A. A comparison of the Isabelle and HOL4 proof
scripts leading to equation (1) suggests that the use of the axiom of choice yields
no reduction in the proof effort. Our approach, which introduces no dependence
on the axiom of choice, provides more flexibility at no additional cost.

3.4 Further Properties of Fold

Here is a selection of equations that we have formally proved about the function
fold. They are all subject to the condition that the sets are finite. Most of the
proofs are trivial inductions over the finite set A.

f x (fold f g z A) = fold f g (f x z) A
fold f g (fold f g z B) A = fold f g (fold f g z (A ∩ B)) (A ∪ B)
fold f g z (h ‘ A) = fold f (g ◦ h) z A

The following theorems is proved in locale ACe:

fold (·) g e A · fold (·) g e B = fold (·) g e (A ∪ B) · fold (·) g e (A ∩ B) (2)

These samples from the fold library should suffice.

3.5 Applications

Our experience is that users seldom invoke fold directly. The great majority of
references to fold are via functions defined using it. Summation, which is the most
important of these, sums a given function over an index set. Also useful is an
analogous operator for products. Cardinality is defined in terms of summation.

So far we have implicitly worked in the context of a fixed but arbitrary com-
mutative semigroups or monoid, i.e. the locales ACf or ACe. Now we replace · by
addition or multiplication and e by 0 or 1. This is fine as those are commutative
monoids. In Isabelle it means instantiating the locales ACf or ACe and proving
their assumptions; the details are discussed elsewhere [1].

Sums Over a Set. We work in a flexible formalization of arithmetic, defined
using axiomatic type classes [12]. A general theory of commutative monoids
specifies that + is an AC operator with unit element 0. The resulting concept of
summation is applicable to integers, rationals, reals, matrices and even multisets.

The sum of the function f over the set A is defined in terms of fold.

setsum f A ≡ if finite A then fold (+) f 0 A else 0

The sum is defined to be zero if A is infinite; by case analysis on finite A,
many theorems about setsum can be proved without finiteness assumptions.
(The analogous if-then definition of fold would simplify only a few theorems.)
This summation operator inherits the theorems about fold shown above.

Products over a set are defined analogously.
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Syntactic Sugar. We have attached more conventional concrete syntax to
various forms of setsum. For a start setsum (λx . e) A can be written (and is
always printed) as

∑
x∈A. e. Instead of

∑
x∈{x . P}. e we have the shorter∑

x | P . e. The special form
∑

x∈A. x abbreviates to
∑

A.

Cardinality of a Finite Set. As remarked above, the summation operator and
the theorems proved about it are applicable to all types that belong to the class
of commutative monoids. Among these is nat, the type of the natural numbers.
The cardinality of a finite set can be expressed as a summation:

card A ≡ x∈A. 1

Note that the cardinality of an infinite set is zero with this definition. The usual
properties of cardinality are instances of those for summations.

4 A Fold Function for Non-empty Sets

Some functions on finite sets, such as Max, require their argument to be non-
empty. The algebraic reason is that the result type does not have a unit element e.
This phenomenon is well-known from functional programming with lists, where
typically two fold functions are available. We do the same here and define a
second fold function fold1 of type ( ′a ⇒ ′a ⇒ ′a) ⇒ ′a set ⇒ ′a such that

fold1 (·) {x1, ..., xn} = x1 · . . . · xn

if (·) is associative and commutative.
Unlike fold, the function fold1 does not apply some g to all x i. In all our

examples, the operator (·) is idempotent, when g can be mapped over the set first.
For fold, it is easy to show that if (·) is idempotent then g becomes redundant:

finite A =⇒ fold (·) g z A = fold (·) id z (g ‘ A)

The Isabelle definition of fold1 again avoids the axiom of choice and proceeds
as for fold : a relation fold1Set is defined inductively. We avoid recursion and
reduce fold1Set to foldSet.

(A, x ) ∈ foldSet f id a a /∈ A
({a} ∪ A, x ) ∈ fold1Set f

Again, our plan is to convert this relation into a function:

fold1 f A ≡ THE x . (A, x) ∈ fold1Set f

A surprise: this does not require proving determinacy of fold1Set ! The equation
for the base case is easy to show: fold1 f {a} = a. Harder to derive is the
recursion rule, where A must be finite and non-empty and a /∈ A:

fold1 (·) ({a} ∪ A) = a · fold1 (·) A (3)

Our proof requires two lemmas to allow us to change foldSet ’s third argument.
Both lemmas are proved by induction on the derivation of their first premise.
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(A, y) ∈ foldSet (·) id b b /∈ A

({b} ∪ A, z · y) ∈ foldSet (·) id z

(A, x) ∈ foldSet (·) id b a ∈ A b /∈ A
({b} ∪ (A − {a}), x) ∈ foldSet (·) id a

From these two lemmas, we can prove an equation relating fold1 to fold

fold1 (·) ({a} ∪ A) = fold (·) id a A

where again A must be finite and a /∈ A. The recursion rule (3) follows easily. If
(·) is idempotent, then a /∈ A can be dropped. The same holds for fold, but it is
less useful there, because few applications of fold involve idempotent operators.

4.1 Properties

In the sequel, all sets are implicitly assumed to be finite and non-empty.
There are fewer general properties of fold1 than of fold because fold1 has

fewer parameters. Of the fold lemmas in §3.4, only a single one still makes sense
here: provided A ∩ B = ∅, fold1 distributes over union.

fold1 (·) (A ∪ B) = fold1 (·) A · fold1 (·) B

For fold, this distributive law is the corollary of the more general lemma (2),
which does not hold for fold1.

If (·) is idempotent as well, the premise A ∩ B = ∅ in the distributive law
can be dropped. In fact, idempotence of (·) makes fold1 come into its own.

We will now examine properties of fold1 in various ordered structures (for
details see the literature [4]). These structures are again formalized by locales in
Isabelle, but our presentation will stay on an abstract mathematical level.

4.2 Semilattices

In this subsection, we assume (·) is not just AC but also idempotent : x · x =
x. This means we are in a semilattice. To obtain the order-theoretic view, we
define the symbol & by

(x & y) = (x · y = x ).

The semi-lattice law (x & y · z ) = (x & y ∧ x & z ) has a nice generalization
in terms of fold1 :

(x & fold1 (·) A) = (∀ a∈A. x & a)

The dual property (x · y & z ) = (x & z ∨ y & z ) holds iff the ordering & is
linear. Then, it can be generalized to

(fold1 (·) A & x ) = (∃ a∈A. a & x ).

Note that only the left-to-right direction of this equivalence requires linearity.
The other direction is valid in arbitrary semilattices:

a ∈ A =⇒ fold1 (·) A & a, (4)
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4.3 Lattices

Frequently, the semilattice is in fact a lattice: there is not just an infimum ((·)
above) but also a supremum, which we write � and . With the help of fold1,
we can define the standard extension of � and  to finite sets:

�
A ≡ fold1 (�) A

⊔
A ≡ fold1 () A

We inherit the semilattice laws and can derive new ones from them. For
example, we obtain

�
A &

⊔
A from the instances of (4) for the two semilattices

� and .
In case of a distributive lattice, distributivity propagates from the binary to

the n-ary operations. Here are two examples:

x %
�

A =
�

{x % a | a ∈ A}
�

A %
�

B =
�

{a % b | a ∈ A ∧ b ∈ B}

4.4 Applications

The most direct applications of fold1 are minimum and maximum because (as
noted in §2.2) many types lack a least or greatest element, which means fold is
inappropriate. In Isabelle, we can define Min and Max as follows:

Min ≡ fold1 min Max ≡ fold1 max

Here, min and max are overloaded functions available on any type of class ord,
which means the type must define an ordering ≤. Hence, Min and Max have
type ′a set ⇒ ′a, where ′a is of class ord.

We can now inherit all of the fold1 properties described above because Min
and Max form a distributive lattice. After instantiating the corresponding locales
we obain, for example, the distributive law

max (Min A) (Min B) = Min {max a b | a ∈ A ∧ b ∈ B}

Functions Min and Max and their properties are now available, for example, on
all numeric types (except the complex numbers) as they are linearly ordered.

In a similar manner, we can define the greatest common divisor and the least
common multiple of a set of natural numbers: Gcd ≡ fold1 gcd and Lcm ≡ fold1
lcm, where gcd and lcm are the binary versions. Functions gcd and lcm also
form a distributive lattice, where the ordering is divisibility. They even form a
complete lattice.

Finally, we consider the longest common prefix (lcp) of two lists:

lcp [] xs = []
lcp xs [] = []

lcp (x # xs) (y # ys) = (if x = y then x # lcp xs ys else [])

where # is the list Cons. Of course, the corresponding ordering is the prefix
ordering. This only yields a lower semilattice: there is no greatest element and
no supremum. Thus we only define Lcp ≡ fold1 lcp.
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4.5 Alternative Definitions

As in §3.3, we can use the axiom of choice to define fold1 by the obvious recursion
on the cardinality. Again, it is simpler to define fold1 in terms of fold :

fold1 f A ≡ fold f id (pick A) (rest A)

The main advantage of this definition is that the recursion rule (3) can now
be proved by a few case distinctions, a few properties of pick, and equational
reasoning alone, assuming we already know

a ∈ A =⇒ fold (·) g z A = g a · fold (·) g z (A − {a})
x · fold (·) g z A = fold (·) g (x · z) A

both of which are natural lemmas for fold. This proof of (3) has the advantage
over the one via fold1Set that it does not require any special purpose lemmas.

Neither PVS nor HOL4 provide an analogue of fold1. Both systems define
the minimum and maximum of a set directly. Other functions like the above Gcd
and Lcp would need to be defined separately.

HOL4 defines Min and Max only for sets of natural numbers. An advantage
of the HOL4 approach is that Min also works for infinite sets. Folding does not
make sense for infinite sets unless we introduce some notion of limit.

Let us compare the different approaches and assume we are interested in
finite sets only. Then fold1 has the advantage of generality over special purpose
Min and Max definitions. The shortest definitions and proofs are obtained by
defining fold1 with the help of fold and choice. The inductive definition is a
bit lengthier but not significantly so, and avoids choice. But even if one is just
interested in Min and Max, their definition by description is not ideal. It is
simpler by far to derive the characteristic properties of Min and Max from the
recursion equations than the other way around. This can be seen by comparing
the Isabelle and HOL4 proofs.

5 Conclusions

Recursive function definitions over finite sets are not difficult to justify. The
mathematics is simple. We have taken pains to ensure that the machine formal-
ization is simple too, while avoiding any dependence on the axiom of choice.
The applications we have discussed are cardinality, sum and product over sets.
For the case of non-empty sets, we have discussed the maximum and minimum
operators.

One question we have not discussed at all is definability. It is easily seen that
not every function on finite sets is definable by means of fold: if F A ≡ card A
≤ 1 were definable as F ≡ fold (·) g e for suitable (·), g and e, then it would
follow that e = F ∅ = True, g x · e = F {x} = True and hence False = F{x ,y}
= g x · g y · e = g x · e = True. On the other hand fold can trivially define
any homomorphism from the finite sets viewed as a (∅,{−},∪)-algebra into a
(e,g,·)-algebra: F ≡ fold (·) g e. But being a homomorphism this implies that ·
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must satisfy all union laws, in particular idempotence: F A = F (A ∪ A) = F A ·
F A. Hence set sum and product are not homomorphisms but still defineable.
This shows that the definability question is outside the scope of this paper and
requires a separate study analogous to the work of Gibbons et al. [6] for lists.
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Abstract. We discuss methods for dealing effectively with let-bindings
in proofs. Our contribution is a small set of unconditional rewrite rules,
found by the bracket abstraction translation from the λ-calculus to com-
binators. This approach copes with the usual HOL encodings of paired
abstraction, ensures that bound variable names are preserved, and uses
only conventional simplification technology.

1 Introduction

A characteristic feature of functional programming is the binding of values using
expressions of the form let v = M in N ; the value of M is calculated once
and may be used multiple times in N . In theorem-proving, let-terms are also
useful, for several reasons. First, let-terms are obviously needed when modelling
functional programs in logic. Second, sharing of sub-expressions by let is useful
for readability during interactive proof, and can also be helpful in controlling
expression size in automated proof.

In interactive proof, the most common operation applied to let-terms is to
eliminate them. In many cases, this is quite easy to do: a let-term is transformed
into a β-redex which is then β-reduced. This amounts to removing the sharing
introduced by the let. However, at times one wants to eliminate a let but keep
the sharing. This can be awkward, particularly when the let-term binds a tuple
of variables.

We know of three ways to eliminate lets without losing sharing: the first
asserts appropriate assumptions; the second uses a single higher order rewrite
rule, supported by non-local matching; and the third, which we now prefer, uses
local matching to apply a small set of rewrite rules. These rewrites have been
found by applying the notion of bracket abstraction [4] from combinatory logic.
For interactive proof, an important consequence of this is that user-specified
bound variable names are preserved.

Example. In the classic functional programming presentation of Quicksort (see
Figure 1), the function partition, defined in terms of a helper function part, is
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part P [ ] �1 �2 = (�1, �2)
part P (h :: rst) �1 �2 =
if P h then part P rst (h :: �1) �2 else part P rst �1 (h :: �2)

partition P � = part P � [ ] [ ]

qsort ord [ ] = [ ]
qsort ord (h :: t) =
let (�1, �2) = partition (λy. ord y h) t
in qsort ord �1 ++ [h] ++ qsort ord �2

Fig. 1. Quicksort

used to divide the list around a pivot element. The paired let-expression in qsort
binds the resulting pair of lists in preparation for the two recursive calls.
The definition of qsort generates the following induction theorem:

� ∀P. (∀ord . P ord [ ]) ∧
(∀ord h t.

(∀�1�2. ((�1, �2) = partition (λy. ord y h) t) ⊃ P ord �2) ∧
(∀�1�2. ((�1, �2) = partition (λy. ord y h) t) ⊃ P ord �1) ⊃
P ord (h :: t))

⊃ ∀v v1. P v v1

(1)

Now suppose that the notion of one list being a permutation of another has
been formalised. We wish to prove that qsort permutes its input: the goal

∀ord �. perm � (qsort ord �)

asserts that (qsort ord �) is always a permutation of �. The proof begins with an
application of the induction theorem (1). Two cases arise: a base case which is
easily dispensed with, and an induction case:1

perm (h :: t) (qsort ord (h :: t))
1. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �1 (qsort ord �1)
2. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �2 (qsort ord �2)

There are two induction hypotheses, mirroring the recursive calls of qsort. If
we now expand the definition of qsort in the goal, we obtain the new goal

perm (h :: t) (let (�1, �2) = partition (λy. ord y h) t
in qsort ord �1 ++ [h] ++ qsort ord �2)

1. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �1 (qsort ord �1)
2. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �2 (qsort ord �2)

1 The goal appears above the line and (numbered) assumptions below the line.
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We can now make our point. If it was somehow possible to lift the sub-
formula (�1, �2) = partition (λy. ord y h) t from within the goal and place it on
the assumptions, we could move to the goal

perm (h :: t) (qsort ord �1 ++ [h] ++ qsort ord �2)
1. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �1 (qsort ord �1)
2. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �2 (qsort ord �2)
3. (�1, �2) = partition (λy. ord y h) t

and use the inductive hypotheses to obtain

perm (h :: t) (qsort ord �1 ++ [h] ++ qsort ord �2)
1. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �1 (qsort ord �1)
2. ∀�1�2. ((�1, �2) = partition(λy. ord y h) t) ⊃ perm �2 (qsort ord �2)
3. (�1, �2) = partition (λy. ord y h) t
4. perm �1 (qsort ord �1)
5. perm �2 (qsort ord �2)

From this situation, only some simple theorems about permutations are needed
to finish the proof.

However, it is not clear how this step of lifting the let-binding out of the
goal can be accomplished. For example, näıvely rewriting with the definition of
let (for which, see below) is disastrous: at best, it results in duplication of the
occurrence of partition (λy. ord y h) t in the goal, which is unpleasant to read
and makes it difficult to apply the induction hypotheses. Instead, we want to
eliminate the let while moving the binding for �1 and �2 to the assumptions. In
order to understand the issues, we now address how let-terms are represented
in HOL.

1.1 Representing Variable-Binding Operators

Semantically, a let-term is just a suspended function application.

� LET f x = f x

The real work occurs in the HOL parser, which translates the surface syntax of
let-terms into applications of the LET constant. For example, let v = M in N
is mapped to LET (λv. N) M . This translation is inverted by the prettyprinter.

The representation of paired λ-abstractions is more complex: an abstraction
of the form (λ(x, y). . . . x . . . y) is a convenient notation for a function with a
product type as its domain. Such abstractions are redundant because the accessor
functions FST and SND could be used instead: the abstraction above is equivalent
to (λp. . . . (FST p) . . . (SND p)). However, the pattern-matching style is far more
readable and is supported in HOL by an encoding. The paired abstraction syntax
is mapped to an application of the UNCURRY combinator, defined as follows:

� UNCURRY f p = f (FST p) (SND p) .
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If f has the form (λx y.M), then HOL prints UNCURRY f as (λ(x, y).M).
UNCURRY terms can be nested, producing abstractions over three or more vari-
ables. For example

UNCURRY (λx. UNCURRY (λy z. M)) = (λ(x, (y, z)). M)
UNCURRY (UNCURRY (λx y z. M)) = (λ((x, y), z). M)

If the first argument to LET is a paired abstraction, then the let-term is
printed so as to suggest the binding of multiple values at once. For example,
LET (λ(x, y). N) M is printed as let (x, y) = M in N .

2 Eliminating let-Terms

In general, we wish to move from

P (let (x1, . . . , xn) = M in N)
· · · assumptions · · · to

P N
· · · assumptions · · ·
(x1, . . . , xn) = M

where N presumably includes at least some of the variables x1 . . . xn, and where
none of the xi or the variables in M are bound by the enclosing context P . We
now discuss three alternative ways to achieve this.

2.1 Approach 1: Making Assumptions Directly

As long as variable x is fresh for the goal, it is valid to extend a goal’s assumptions
with a fresh assumption of the form x = e, for an arbitrary e that does not
mention x. Similarly, if e has a product type, one can add an assumption of the
form (x1, . . . , xn) = e. These steps are justified by the theorems

� P = (∀x. (x = e) ⊃ P )

(with x 	∈ (e, P )) and

� (∀p. P (p)) = (∀a b. P (a, b)) (2)

which turns universal quantification over variables of product type into multiple
universal quantifications. When the goal looks like

P (let (x1, . . . , xn) = M in N)
· · · assumptions · · ·
(x1, . . . , xn) = M

the free occurrence of M in the goal can be replaced by the tuple (x1, . . . , xn),
the let-expression removed by rewriting with the definition of LET, and a β-
reduction performed. This then produces the desired goal. (Performing a β-
reduction for paired abstractions applied to tuples of the correct arity is simply
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a matter of rewriting with the definition of UNCURRY and then performing
normal β-reductions.)

This approach is conceptually simple, and would be relatively easy to im-
plement. The only complexity would be the requirement to check the various
freeness conditions mentioned above. This analysis is non-local: the movement
of the let-expressions depends on their surrounding context. Another limiting
factor is that the step of explicitly making an assumption can make it awkward
to integrate this approach with a term rewriter.

2.2 Approach 2: Lifting let with One Higher Order Rewrite

Another approach to lifting let-expressions makes the theorems used in the
previous approach more explicit. We might use the following theorem:

� P (let (x, y) = M in N x y) = (∀x y. ((x, y) = M) ⊃ P (N x y)) (3)

This theorem lifts the nested let-expression to the top-level of the goal, where
the let is replaced by an equational binding on the variables x and y. In the
Quicksort example, the instantiation for P would be perm (h :: t).

Further, it is easy enough to generalise the theorem above to one that works
for arbitrary n-tuples:

� P (LET f M) = ∀v. (v = M) ⊃ P (f v) (4)

This is not quite enough because we do not have a tuple of variables equated
with M , but rather the single variable v. If the f of the above theorem is not
a paired abstraction, then v will not have a product type, and it is trivial to
move the equality into the assumptions. Otherwise f is a paired abstraction, so
we must first rewrite with theorem (2) in order to introduce variables for each
element of the product type.

While rewrite rules (3) and (4) are elegant and easy to prove, they are not
always easy to apply. In the Quicksort example, rewriting with either works
well, but only accidentally: P can be found with a simple higher-order match.
However, had the let-term been the first argument to perm, instantiating the
rewrite rule would have moved beyond what is possible with usual pattern-based
higher-order matching [5]. In similar situations to this, the Isabelle system [6]
uses its “splitting” technology (also used for case-splits over types) rather than
normal rewriting. There for example, the splitting rule for UNCURRY is

� P (UNCURRY f p) = ∀x y. ((x, y) = p) ⊃ P (f x y)

where P must be found by means other than a simple match. Note that this
rule preserves sharing if the argument to a paired abstraction is not a tuple of
matching arity, but does not otherwise help in the preservation of let-induced
sharing.

Just as the ‘Making Assumptions Directly’ approach has to perform global
analyses of the goal in order to make the correct assumptions, so too must this
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one-step higher-order rewrite approach, even if this analysis is embodied in an
Isabelle-style splitter. One other problem with this approach is that it may be
difficult to ensure the preservation of bound variable names. Certainly, Isabelle’s
splitter for UNCURRY does not currently manage this (bound names in the
abstraction f are replaced by x and y).

Our preferred approach, described next, is a system that preserves bound
variable names, and works entirely locally, requiring only higher-order pattern
matching and the application of simple rewrite rules.

2.3 Approach 3: Lifting let by Multiple Combinator Rewrites

Superficially, the general problem of moving let-expressions upwards is solved
by the theorems:

� f (LET g M) = LET (λx. f (g x)) M (5)
� (LET f M) N = LET (λx. f x N) M (6)

Erasing the LETs, and performing β-reduction makes it clear that the equa-
tions are semantically valid. They also satisfy the important syntactic criterion
that the LET-expressions’ second arguments (M in both cases) remain as second
arguments to LETs on the right-hand sides. In this way, the “pending computa-
tions” represented by the M ’s remain pending, that is, not substituted through
the body of the LETs’ first arguments.

The following demonstrates the application of (5) as a first-order rewrite:

¬(let v = M in (v ∧ p ∨ r))
= ¬(LET(λv. v ∧ p ∨ r) M )
= LET (λx. ¬((λv. v ∧ p ∨ r) x)) M by (5)
= let x = M in ¬((λv. v ∧ p ∨ r) x)
=β let x = M in ¬(x ∧ p ∨ r)

While this has moved the LET to the top of the expression, and has kept M in
the right position relative to it, the rewriting has obliterated the original choice
of bound names. In this case at least, there is a fairly straightforward fix: the
rewriting engine could be modified so that when it generates fresh bound names
(x in this case), and they appear as arguments to λ-abstractions, it changes the
new bound name to be the same as the bound name of the abstraction. In this
way, the abstraction (λv. v ∧ p ∨ r) above will force the new bound name to
become v. After this α-conversion, the term can safely be β-reduced.

Unfortunately, this technology does not work when the abstraction under the
LET is paired. For example:

¬(let (u, v) = M in u ∧ v ∨ r)
= ¬(LET(UNCURRY (λu v. u ∧ v ∨ r)) M )
= LET (λx. ¬(UNCURRY (λu v. u ∧ v ∨ r)x)) M by (5)
= let x = M in (λ(u, v). u ∧ v ∨ r) x
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Although this term can be further modified by deductive steps to obtain
let (u, v) = M in u ∧ v ∨ r, that involves some detailed programming. Instead,
our approach is to arm the standard system simplifier with a sufficient set of
rewrite rules. One simple principle guides the development:

Never use rewrite rules that introduce fresh bound names on their right-
hand sides.

The key to enforcing this is to use rewrite rules phrased in terms of the com-
binators B and C. For example, the new versions of the rules for moving LETs
upwards are

� f (LET g M) = LET (B f g) M (7)
� (LET f M) N = LET (C f N) M (8)

where2

� B f g x = f (g x)
� C f x y = f y x

Also needed are rules to allow abstractions to move up over the combinators.

� B f (λx. g x) = (λx. f (g x)) (9)
� C (λx. f x) y = (λx. f x y) (10)

Without these, rewriting our first example above would stop at3

LET (B (¬) (λv. v ∧ p ∨ r)) M

These new rules respect the principle of not introducing new bound names.
Note that application of these rules requires higher-order rewriting [5]; moreover,
rewriting must also take care to preserve the bound names it encounters when
matching the left-hand side.

The development so far has dealt with the problem of lifting LETs with
normal abstractions underneath them.

2.4 Dealing with Tupled let-Bindings

To handle LETs with paired abstractions, we continue to use (7) and (8). Rules
for B and C that behave properly when applied to functions formed by use of
UNCURRY are also required. First the rule for B:

� B f (UNCURRY g) = UNCURRY (B (B f) g) (11)

2 The combinator B is often written as an infix ◦.
3 Note that ¬ appears here as an unapplied function, represented by enclosing it in

extra parentheses.
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In the example that went wrong above, our new technology does the following:

¬(let (u, v) = M in u ∧ v ∨ r)
= ¬(LET (UNCURRY(λu v. u ∧ v ∨ r)) M )
= LET (B (¬) (UNCURRY(λu v. u ∧ v ∨ r))) M by (7)
= LET (UNCURRY (B (B (¬)) (λu v. u ∧ v ∨ r))) M by (11)
= LET (UNCURRY (λu. B (¬) (λv. u ∧ v ∨ r))) M by (9)
= LET (UNCURRY (λu v. ¬(u ∧ v ∨ r))) M by (9)
= let (u, v) = M in ¬(u ∧ v ∨ r)

The beauty of this approach is that precisely the right number of B combina-
tors will be generated underneath the UNCURRY term to “consume” the unitary
bound variables of the curried abstractions underneath. For example, note that
if g in (11) is itself another UNCURRY term, then the argument to UNCURRY
in the right-hand side of (11) will itself be a match for the same rewrite, and
another B will be generated.

The rule for C is

� C (UNCURRY f) x = UNCURRY (C (B C f) x) (12)

The question remains: how were (11) and (12) found?
We demonstrate the derivation of (12). This equation relates functions. That

means the process quite reasonably begins with an η-expansion. Then, because
the functions are over pairs, we can immediately introduce a paired abstraction
(an UNCURRY term) at the top level:

C (UNCURRY f) x
= λp. C (UNCURRY f) x p
= λ(u, v). C (UNCURRY f) x (u, v)

The definitions of C and UNCURRY then simplify this to (λ(u, v). f u v x),
which is really UNCURRY (λu v. f u v x). At this point, bracket abstraction (see
Appendix A) is used to remove the bindings over u and v:

UNCURRY (λu v. f u v x)
= UNCURRY (λu. [v](f u v x))
= UNCURRY (λu. C (f u) x)
= UNCURRY ([u]((f u) x))
= UNCURRY (C (B C f) x)

The derivation of (11) is similar.
We now have equations for pushing B and C under both normal abstrac-

tions (9, 10), and paired abstractions (11, 12). In conjunction with the rules for
LET movement (7, 8), this supports a smooth rewriting strategy for moving any
sort of let-expression to the outermost position of a term.

2.5 Eliminating let

The higher-order rewrites of our second approach did more than simply move
let-expressions upwards. They also turned the let-binding into a universally
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quantified implication. From there, a standard HOL tactic could be used to
push the antecedent of the implication (the let-bindings) into the assumptions
of the goal. To calculate the combinator version, we start with a näıve rewrite
to accomplish this on a term of type bool:

� LET f M = ∀x. (x = M) ⊃ f(x)

When performing bracket abstraction on this term, we need the S combinator:

� S f g x = (f x) (g x)

Bracket abstraction then turns our näıve rewrite into

� LET f M = (∀)(S (B (⊃) (C (=) M)) f)

(Combinators truly are the machine-code of functional programming! Again, we
use extra parentheses around symbols (∀, ⊃ and = here) to make it clear that
these are not being used in their binding or infix forms.)

Now that S has made its appearance, we need a rule to move abstractions
past it. The rule for normal abstractions is obvious

� S f (λx. g x) = λx. (f x) (g x) (13)

For paired abstractions, the rule is more combinatory machine code:

� S f (UNCURRY g) = UNCURRY (S (B S (B (B f) (, ))) g)

where (, ) is the (curried) operator that produces pairs. Its presence is required
because the function f expects to be applied to a pair.

Finally, we also require a rule to deal with a universal quantifier being applied
to a paired abstraction:

� (∀) (UNCURRY f) = (∀) (B (∀) f)

2.6 Applying let-Bindings in Proof

Our basic premise is that let-bound definitions should be preserved, rather than
substituted out; thus, let-bindings are lifted out of the goal and placed on the
assumptions. Whenever the let-expression is over a normal, unitary abstraction,
the new assumption is of the form v = M , where v is a variable. Such assumptions
are grist to the simplifier’s mill: it uses them as additional rewrite rules and
eliminates all of the goal’s occurrences of v. But this is a source of frustration:
the simplifier has undone all of the work performed in getting the let-bound
definitions into the assumptions in the first place.

One approach to this situation is to store the equation in the assumptions as
M = v. This has the advantage that simplification will not only leave occurrences
of v alone, but also possibly find fresh occurrences of M in the goal, and replace
them with v. Unfortunately, this strategy is not good enough to to leave the
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bindings undisturbed by some aggressive simplification tactics: these methods
look for assumed equalities oriented in either direction, and eliminate them.
To remedy this, equalities arising from let-expressions are tagged, so that they
appear in the assumptions as Abbrev(v = M). Semantically, Abbrev is the identity
function on booleans. Its role here is simply to maintain equalities that might
otherwise be eliminated. If a user wishes to eliminate abbreviations, there are
tactics for doing so on an abbreviation-by-abbreviation basis, or all at once.
Automated reasoners eliminate the abbreviations as part of their pre-processing.

It is easy to accommodate Abbrev in our system: we modify the rule for the
final elimination of LET to

� LET f M = (∀)(S (B (⊃) (B Abbrev (C (=) M))) f)

This yields the final collection of rules, found in Figure 2.

� f (LET g M) = LET (B f g) M

� (LET f M) y = LET (C f y) M

� LET f M = (∀)(S (B (⊃) (B Abbrev (C (=) M))) f)

� B f g x = f (g x)

� C f x y = f y x

� S f g x = (f x) (g x)

� B f (λx. g x) = (λx. f (g x))

� C (λx. f x) y = (λx. f x y)

� S f (λx. g x) = (λx. (f x) (g x))

� B f (UNCURRY g) = UNCURRY (B (B f) g)

� C (UNCURRY f) x = UNCURRY (C (B C f) x)

� S f (UNCURRY g) = UNCURRY (S (B S (B (B f) (, ))) g)

� (∀) (UNCURRY f) = (∀) (B (∀) f)

Fig. 2. All rewrites needed to lift let-expressions up and out of HOL goals. Those

rewrites involving abstractions (λ) must use higher-order matching. The others may

be first-order.

2.7 Limitations

We have not presented a rule in the system to lift a let-term over a λ-abstraction.
With an expression such as

λx. let y = 3 in x+ y

it would be nice to have the system rewrite this to

let y = 3 in (λx. x+ y)
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This is possible because the let-term’s ‘pending’ computation has no depen-
dence on the abstraction’s bound variable. A suitable theorem expressing this
transformation is

� (λx. LET (f x) M) = LET (C f) M

(This rule needs to be accompanied by rules for dealing with the application
of C to various forms of abstraction. Deriving these is left as an exercise for
the reader.) Unfortunately, including this theorem as a rewrite rule immediately
leads to non-termination. The distinct normal forms

(let y = N in let x = M in P x (Q y)) and
(let x = M in let y = N in P x (Q y))

become inter-convertible, because they include instances of the new rewrite: the
underlying representation of the first normal form above is

LET (λy. LET (λx. P x (Q y)) M) N

Nor would the possible looping be easy to prevent: the shift from one normal
form to another involves the application of a number of different rewrites. In
particular, the loop could not be prevented by the simplifier’s simple-minded
detection of loops that occur in single rules.

3 Conclusions and Future Work

We have discussed the development of a specialised set of rewrite rules aimed
at lifting arbitrarily deeply-buried let-bindings to the top level of a formula.
Our approach allows the preservation of names, which is very important for
interactive use, and has the feature that specialised deductive apparatus is not
needed; for example, the rules are automatically used by the standard HOL-4
simplifier.

One might ask whether or not the system of rewrites presented here is con-
fluent. It is not: the term ((let x = u in P x) (let y = v in Q y)) can reduce
to either

let x = u in let y = v in P x (Q y) or
let y = v in let x = u in P x (Q y)

both of which are normal forms.

A remaining challenge is to prove that the system of rewrites presented in
Figure 2 terminates on all inputs.
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A Bracket Abstraction

Bracket abstraction is a method for translating λ-calculus terms to combina-
tor form. The basic bracket abstraction algorithm is the following, where [x]M
represents the abstraction of variable x from term M .

[x]x = I
[x]y = K y (y a constant or a variable not equal to x)

[x](M N) = S ([x]M) ([x]N)

If [x]M = N , then N has no occurrences of x and N(x) = M . Curry [2]
adds some optimizations, dealing with the situation when the variable to be
abstracted does not occur in one or more sub-terms. The following rewrites can
be applied whenever a term of the form (S M N) is created. When more than
one rule applies, the one given earlier takes precedence.

S (K M) (K N) = K (M N)
S (K M) I = M

S (K M) N = B M N
S M (K N) = C M N

More efficient translations [7,1,3] are known, but aren’t needed for our
application.
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Amjad, Hasan 35
Aydemir, Brian E. 50

Benzmüller, Christoph E. 66
Bohannon, Aaron 50
Borrione, Dominique 310, 326
Brown, Chad E. 66

Cataño, Néstor 82
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