
2. Modelling of Underwater Robots

“We have Einstein’s space, de Sitter’s spaces, expanding universes, contrac-
ting universes, vibrating universes, mysterious universes. In fact the pure
mathematician may create universes just by writing down an equation, and
indeed, if he is an individualist he can have an universe of his own”.

J.J. Thomson, around 1919.

2.1 Introduction

In this Chapter the mathematical model of UVMSs is derived. Modeling of
rigid bodies moving in a fluid or underwater manipulators has been studied
in literature by, among others, [137, 156, 157, 174, 182, 189, 203, 242, 255,
256, 285, 286], where a deeper discussion of specific aspects can be found.
In [224], the model of two UVMSs holding the same rigid object is derived.

2.2 Rigid Body’s Kinematics

A rigid body is completely described by its position and orientation with
respect to a reference frame Σi, O−xyz that it is supposed to be earth-fixed
and inertial. Let define η1 ∈ IR3 as

η1 =

x
y
z

 ,

the vector of the body position coordinates in a earth-fixed reference frame.
The vector η̇1 is the corresponding time derivative (expressed in the earth-
fixed frame). If one defines

ν1 =

 u
v
w


as the linear velocity of the origin of the body-fixed frame Σb, Ob − xbybzb
with respect to the origin of the earth-fixed frame expressed in the body-
fixed frame (from now on: body-fixed linear velocity) the following relation
between the defined linear velocities holds:
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ν1 = RB
I η̇1 , (2.1)

where RB
I is the rotation matrix expressing the transformation from the

inertial frame to the body-fixed frame.
In the following, two different attitude representations will be introduced:

Euler angles and Euler parameters or quaternion. In marine terminology
is common the use of Euler angles while several control strategies use the
quaternion in order to avoid the representation singularities that might arise
by the use of Euler angles.

Table 2.1. Common notation for marine vehicle’s motion

forces and
moments ν1,ν2 η1,η2

motion in the x-direction surge X u x

motion in the y-direction sway Y v y

motion in the z-direction heave Z w z

rotation about the x-axis roll K p φ

rotation about the y-axis pitch M q θ

rotation about the z-axis yaw N r ψ

2.2.1 Attitude Representation by Euler Angles

Let define η2 ∈ IR3 as

η2 =

 φ
θ
ψ


the vector of body Euler-angle coordinates in a earth-fixed reference frame. In
the nautical field those are commonly named roll, pitch and yaw angles and
corresponds to the elementary rotation around x, y and z in fixed frame [254].
The vector η̇2 is the corresponding time derivative (expressed in the inertial
frame). Let define

ν2 =

 p
q
r


as the angular velocity of the body-fixed frame with respect to the earth-fixed
frame expressed in the body-fixed frame (from now on: body-fixed angular
velocity). The vector η̇2 does not have a physical interpretation and it is
related to the body-fixed angular velocity by a proper Jacobian matrix:

ν2 = Jk,o(η2)η̇2 . (2.2)
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The matrix Jk,o ∈ IR3×3 can be expressed in terms of Euler angles as:

Jk,o(η2) =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 , (2.3)

where cα and sα are short notations for cos(α) and sin(α), respectively. Ma-
trix Jk,o(η2) is not invertible for every value of η2. In detail, it is

J−1
k,o(η2) =

1

cθ

 1 sφsθ cφsθ
0 cφcθ −cθsφ
0 sφ cφ

 , (2.4)

that it is singular for θ = (2l + 1)π2 rad, with l ∈ IN, i.e., for a pitch angle
of ±π

2 rad.

The rotation matrix RB
I , needed in (2.1) to transform the linear velocities,

is expressed in terms of Euler angles by the following:

RB
I (η2) =

 cψcθ sψcθ −sθ
−sψcφ + cψsθsφ cψcφ + sψsθsφ sφcθ
sψsφ + cψsθcφ −cψsφ + sψsθcφ cφcθ

 . (2.5)

Table 2.1 shows the common notation used for marine vehicles according
to the SNAME notation ([272]), Figure 2.1 shows the defined frames and the
elementary motions.

2.2.2 Attitude Representation by Quaternion

To overcome the possible occurrence of representation singularities it might
be convenient to resort to non-minimal attitude representations. One possible
choice is given by the quaternion. The term quaternion was introduced by
Hamilton in 1840, 70 years after the introduction of a four-parameter rigid-
body attitude representation by Euler. In the following, a short introduction
to quaternion is given.

By defining the mutual orientation between two frames of common origin
in terms of the rotation matrix

Rk(δ) = cosδI3 + (1 − cosδ)kkT − sinδS(k) ,

where δ is the angle and k ∈ IR3 is the unit vector of the axis expressing the
rotation needed to align the two frames, I3 is the (3 × 3) identity matrix,
S(x) is the matrix operator performing the cross product between two (3×1)
vectors

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (2.6)

the unit quaternion is defined as
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earth-fixed

O
x

z

y

η1

body-fixed

Ob

xb

zb

yb

u, surge

w, heave

v, sway

p, roll

r, yaw

q, pitch

Fig. 2.1. Frames and elementary vehicle’s motion

Q = {ε, η}
with

ε = ksin
δ

2
,

η = cos
δ

2
,

where η ≥ 0 for δ ∈ [−π, π] rad. This restriction is necessary for uniqueness
of the quaternion associated to a given matrix, in that the two quaternion
{ε, η} and {−ε,−η} represent the same orientation, i.e., the same rotation
matrix.

The unit quaternion satisfies the condition

η2 + εTε = 1 . (2.7)

The relationship between ν2 and the time derivative of the quaternion is
given by the quaternion propagation equations

ε̇ =
1

2
ην2 +

1

2
S(ε)ν2 , (2.8)

η̇ = −1

2
εTν2 , (2.9)

that can be rearranged in the form:

ε̇
η̇

= Jk,oq(Q)ν2 =
1

2


η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η
−ε1 −ε2 −ε3

ν2 . (2.10)

The matrix Jk,oq(Q) satisfies:
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JT
k,oqJk,oq =

1

4
I3 ,

that allows to invert the mapping (2.10) yielding:

ν2 = 4JT
k,oq

ε̇
η̇

.

For completeness the rotation matrix RB
I , needed to compute (2.1), in

terms of quaternion is given:

RB
I (Q) =

 1 − 2(ε2
2 + ε2

3) 2(ε1ε2 + ε3η) 2(ε1ε3 − ε2η)
2(ε1ε2 − ε3η) 1 − 2(ε2

1 + ε2
3) 2(ε2ε3 + ε1η)

2(ε1ε3 + ε2η) 2(ε2ε3 − ε1η) 1 − 2(ε2
1 + ε2

2)

 . (2.11)

2.2.3 Attitude Error Representation

Let now define RI
B ∈ IR3×3 as the rotation matrix from the body-fixed frame

to the earth-fixed frame, which is also described by the quaternion Q, and
RI

d ∈ IR3×3 the rotation matrix from the frame expressing the desired vehicle
orientation to the earth-fixed frame, which is also described by the quaternion
Qd = {εd, ηd}. One possible choice for the rotation matrix necessary to align
the two frames is

R = RIT

B RI
d = RB

I RI
d ,

where RB
I = RI

B

T
. The quaternion Q = {ε̃, η̃} associated with R can

be obtained directly from R or computed by composition (quaternion pro-

duct): Q = Q−1 ∗ Qd, where Q−1 = {−ε, η}:
ε̃ = ηεd − ηdε + S(εd)ε, (2.12)

η̃ = ηηd + εTεd . (2.13)

Since the quaternion associated with R = I3 (i.e. representing two aligned

frames) is Q = {0, 1}, it is sufficient to represent the attitude error as ε̃.
The quaternion propagation equations can be rewritten also in terms of

the error variables:

˙̃ε =
1

2
η̃ν̃2 +

1

2
S(ε̃)ν̃2 , (2.14)

˙̃η = −1

2
ε̃Tν̃2 , (2.15)

where ν̃2 = ν2,d − ν2 is the angular velocity error expressed in body-fixed
frame. Defining

z =
ε̃
η̃

,

the relations in (2.14)–(2.15) can be rewritten in the form:
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ż =
1

2

η̃I3 + S(ε̃)
−ε̃T ν̃2 = Jk,oq(z)ν̃2 (2.16)

The equations above are given in terms of the body-fixed angular velocity.
In fact, they will be used in the control laws of Chap. 7. The generic expression
of the propagation equations is the following:

ε̇
a

ba =
1

2
E(Qba)ω

a
ba ,

η̇ba = −1

2
εa

T

ba ωa
ba ,

with

E(Qba) = ηbaI3 − S(εaba).

where Qba = {εaba, ηba} is the quaternion associated to Ra
b = RT

aRb and the
angular velocity ωa

ba = RT
a (ωb − ωa) of the frame Σb relative to the frame

Σa, expressed in the frame Σa.

Quaternion from Rotation Matrix

It can be useful to recall the procedure needed to extract the quaternion from
the rotation matrix [127, 261].

Given a generic rotation matrix R:

1. compute the trace of R according to:

R4,4 = tr(R) =

3

j=1

Rj,j

2. compute the index i according to:

Ri,i = max(R1,1, R2,2, R3,3, R4,4)

3. define the scalar ci as:

|ci| = 1 + 2Ri,i −R4,4

in which the sign can be plus or minus.
4. compute the other three values of c by knowing the following relations-

hips:

c4c1 = R3,2 −R2,3

c4c2 = R1,3 −R3,1

c4c3 = R2,1 −R1,2

c2c3 = R3,2 + R2,3

c3c1 = R1,3 + R3,1

c1c2 = R2,1 + R1,2

simply dividing the equations in which ci is involved by ci itself.
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5. compute the quaternion Q by the following:

[ ε η ]
T

=
1

2
[ c1 c2 c3 c4 ]

T
.

Quaternion from Euler Angles

The transformation from Euler angles to quaternion is always possible, i.e.,
it is not affected by the occurrence of representation singularities [127]. This
implies that the use of quaternion to control underwater vehicles is compatible
with the common use of Euler angles to express the desired trajectory of the
vehicle.

The algorithm consists in computing the rotation matrix expressed in
Euler angles by (2.5) and using the procedure described in the previous subs-
ection to extract the corresponding quaternion.

2.2.4 6-DOFs Kinematics

It is useful to collect the kinematic equations in 6-dimensional matrix forms.
Let us define the vector η ∈ IR6 as

η =
η1

η2
(2.17)

and the vector ν ∈ IR6 as

ν =
ν1

ν2
, (2.18)

and by defining the matrix Je(R
I
B) ∈ IR6×6

Je(R
I
B) =

RB
I O3×3

O3×3 Jk,o
, (2.19)

where the rotation matrix RB
I given in (2.5) and Jk,o is given in (2.3), it is

ν = Je(R
I
B)η̇. (2.20)

The inverse mapping, given the block-diagonal structure of Je, is given by:

η̇ = J−1
e (RI

B)ν =
RI

B O3×3

O3×3 J−1
k,o

ν , (2.21)

where J−1
k,o is given in (2.4).

On the other side, it is possible to represent the orientation by means of
quaternions. Let us define the vector ηq ∈ IR7 as

ηq =

η1

ε
η

 (2.22)
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and the matrix Je,q(R
I
B) ∈ IR6×7

Je,q(R
I
B) =

RB
I O3×4

O3×3 4JT
k,oq

, (2.23)

where Jk,oq is given in (2.10); it is

ν = Je,q(R
I
B)η̇e . (2.24)

The inverse mapping is given by:

η̇e =
RI

B O3×3

O4×3 Jk,oq
ν . (2.25)

2.3 Rigid Body’s Dynamics

Several approaches can be considered when deriving the equations of motion
of a rigid body. In the following, the Newton-Euler formulation will be briefly
summarized.

The motion of a generic system of material particles subject to external
forces can be described by resorting to the fundamental principles of dynamics
(Newton’s laws of motion). Those relate the resultant force and moment to
the time derivative of the linear and angular momentum.

Let ρ be the density of a particle of volume dV of a rigid body B, ρdV
is the corresponding mass denoted by the position vector p in an inertial
frame O − xyz. Let also VB be the the body volume and

m =
VB

ρdV

be the total mass. The center of mass of B is defined as

pC =
1

m VB
pρdV.

The linear momentum of the body B is defined as the vector

l =
VB

ṗρdV = mṗC .

For a system with constant mass, the Newton’s law of motion for the linear
part

f = l̇ = m
d

dt
ṗC (2.26)

can be rewritten simply by the Newton’s equations of motion:

f = mp̈C (2.27)

where f is the resultant of the external forces.
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Let us define the Inertia tensor of the body B relative to the pole O:

IO =
VB

ST(p)S(p)ρdV,

where S is the skew-symmetric operator defined in (2.6). The matrix IO is
symmetric and positive definite. The positive diagonal elements IOxx, IOyy,
IOzz are the inertia moments with respect to the three coordinate axes of
the reference frame. The off diagonal elements are the products of inertia.

The relationship between the inertia tensor in two different frames IO
and IO, related by a rotation matrix R, with the same pole O, is the following:

IO = RIORT.

The change of pole is related by the Steiner’s theorem:

IO = IC + mST(pC)S(pC),

where IC is the inertial tensor relative to the center of mass, when expressed
in a frame parallel to the frame in which IO is defined.

Notice that O can be either a fixed or moving pole. In case of a fixed pole
the elements of the inertia tensor are function of time. A suitable choice of
the pole might be a point fixed to the rigid body in a way to obtain a constant
inertia tensor. Moreover, since the inertia tensor is symmetric positive definite
is always possible to find a frame in which the matrix attains a diagonal form,
this frame is called principal frame, also, if the pole coincides with the center
of mass, it is called central frame. This is true also if the body does not have
a significant geometric symmetry.

Let Ω be any point in space and pΩ the corresponding position vector.
Ω can be either moving or fixed with respect to the reference frame. The
angular momentum of the body B relative to the pole Ω is defined as the
vector:

kΩ =
VB

ṗ × (pΩ − p) ρdV. (2.28)

Taking into account the definition of center of mass, (2.28) can be rewritten
in the form:

kΩ = ICω + mṗC × (pΩ − pC) , (2.29)

where ω is the angular velocity.
The resultant moment µΩ with respect to the pole Ω of a rigid body

subject to n external forces f1, . . . ,fn is:

µΩ =

n

i=1

f i × (pΩ − pi) .

In case of a system with constant mass and rigid body, the angular part
of the Newton’s law of motion



24 2. Modelling of Underwater Robots

µΩ = k̇Ω

yields the Euler equations of motion:

µΩ = IΩω̇ + ω × (IΩω) . (2.30)

The right-hand side of the Newton and Euler equations of motion, (2.27)
and (2.30), are defined inertial forces and inertial moments, respectively.

2.3.1 Rigid Body’s Dynamics in Matrix Form

To derive the equations of motion in matrix form it is useful to refer the
quantities to a body-fixed frame Ob−xbybzb using the body-fixed linear and
angular velocities that has been introduced in Section 2.2.

The following relationships hold:

pΩ − pC = RI
BrbC (2.31)

Ṙ
I

B · = ω × (RI
B ·) (2.32)

RB
I ω × RI

B · = ν2 × · (2.33)

ω = RI
Bν2 (2.34)

ω̇ = RI
Bν̇2 (2.35)

ṗC = RI
B(ν1 + ν2 × rbC) (2.36)

IC = RI
BIbCRB

I (2.37)

where, according to the (2.31), rbC is the vector position from the origin of
the body-fixed frame to the center of mass expressed in the body-fixed frame
(ṙbC = 0 for a rigid body).

Equation (2.26) can be rewritten in terms of the linear body-fixed veloci-
ties as

f = m
d

dt
RI

B ν1 + ν2 × rbC

= mRI
B ν̇1 + ν̇2 × rbC + ν2 × ṙbC + mω × RI

B(ν1 + ν2 × rbC),

Premultiplying by RB
I and defining as

τ 1 =

X
Y
Z

 ,

the resultant forces acting on the rigid body expressed in a body-fixed frame,
and as

τ 2 =

K
M
N

 ,

the corresponding resultant moment to the pole Ob, one obtains:
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τ 1 = mν̇1 + mν̇2 × rbC + mν2 × ν1 + mν2 × (ν2 × rbC).

Equation (2.29) is written in an inertial frame. It is possible to rewrite
the angular momentum in terms of the body-fixed velocities:

kΩ = RI
B IbCν2 + mν1 × rbC . (2.38)

Derivating (2.38) one obtains:

τ I
2 = ω × RI

B IbCν2 + mν1 × rbC + RI
B IbC ν̇2 + mν̇1 × rbC ,

that, using the relations above, can be written in the form:

τ 2 = IbC ν̇2 + ν2 × (IbCν2) + mν2 × (ν1 × rbC) + mν̇1 × rbC .

It is now possible to rewrite the Newton-Euler equations of motion of a
rigid body moving in the space. It is:

MRBν̇ + CRB(ν)ν = τ v, (2.39)

where

τ v =
τ 1

τ 2
.

The matrix MRB is constant, symmetric and positive definite, i.e.,
ṀRB = O, MRB = MT

RB > O. Its unique parametrization is in the form:

MRB =
mI3 −mS(rbC)

mS(rbC) IOb

,

where I3 is the (3×3) identity matrix, and IOb
is the inertia tensor expressed

in the body-fixed frame.
On the other hand, it does not exist a unique parametrization of the

matrix CRB , representing the Coriolis and centripetal terms. It can be de-
monstrated that the matrix CRB can always be parameterized such that it
is skew-symmetrical, i.e.,

CRB(ν) = −CT
RB(ν) ∀ν ∈ IR6 ,

explicit expressions for CRB can be found, e.g., in [127].
Notice that (2.39) can be greatly simplified if the origin of the body-fixed

frame is chosen coincident with the central frame, i.e., rbC = 0 and IOb
is a

diagonal matrix.

2.4 Hydrodynamic Effects

In this Section the major hydrodynamic effects on a rigid body moving in a
fluid will be briefly discussed.

The theory of fluidodynamics is rather complex and it is difficult to deve-
lop a reliable model for most of the hydrodynamic effects. A rigorous analysis
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for incompressible fluids would need to resort to the Navier-Stokes equations
(distributed fluid-flow). However, in this book modeling of the hydrodynamic
effects in a context of automatic control is considered. In literature, it is well
known that kinematic and dynamic coupling between vehicle and manipula-
tor can not be neglected [182, 203, 204, 206], while most of the hydrodynamic
effects have no significant influence in the range of the operative velocities.

2.4.1 Added Mass and Inertia

When a rigid body is moving in a fluid, the additional inertia of the fluid
surrounding the body, that is accelerated by the movement of the body, has
to be considered. This effect can be neglected in industrial robotics since
the density of the air is much lighter than the density of a moving mecha-
nical system. In underwater applications, however, the density of the water,
ρ ≈ 1000 kg/m

3
, is comparable with the density of the vehicles. In particu-

lar, at 0◦, the density of the fresh water is 1002.68 kg/m3; for sea water with
3.5% of salinity it is ρ = 1028.48 kg/m3.

The fluid surrounding the body is accelerated with the body itself, a force
is then necessary to achieve this acceleration; the fluid exerts a reaction force
which is equal in magnitude and opposite in direction. This reaction force is
the added mass contribution. The added mass is not a quantity of fluid to
add to the system such that it has an increased mass. Different properties
hold with respect to the (6 × 6) inertia matrix of a rigid body due to the
fact that the added mass is function of the body’s surface geometry. As an
example, the inertia matrix is not necessarily positive definite.

The hydrodynamic force along xb due to the linear acceleration in the xb-
direction is defined as:

XA = −Xu̇u̇ where Xu̇ =
∂X

∂u̇
,

where the symbol ∂ denotes the partial derivative. In the same way it is pos-
sible to define all the remaining 35 elements that relate the 6 force/moment
components [X Y Z K M N ]T to the 6 linear/angular accelera-
tion [ u̇ v̇ ẇ ṗ q̇ ṙ ]T. These elements can be grouped in the Added
Mass matrix MA ∈ IR6×6. Usually, all the elements of the matrix are diffe-
rent from zero.

There is no specific property of the matrix MA. For certain frequencies
and specific bodies, such as catamarans, negative diagonal elements have
been documented [127]. However, for completely submerged bodies it can be
considered MA > O. Moreover, if the fluid is ideal, the body’s velocity is low,
there are no currents or waves and frequency independence it holds [214]:

MA = MT
A > O. (2.40)

The added mass has also an added Coriolis and centripetal contribution. It
can be demonstrated that the matrix expression can always be parameterized
such that:
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CA(ν) = −CT
A(ν) ∀ν ∈ IR6.

If the body is completely submerged in the water, the velocity is low
and it has three planes of symmetry as common for underwater vehicles, the
following structure of matrices MA and CA can therefore be considered:

MA = − diag {Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ} ,

CA =


0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0

 .

The added mass coefficients can be theoretically derived exploiting the
geometry of the rigid body and, eventually, its symmetry [127], by applying
the strip theory. For a cylindrical rigid body of mass m, length L, with circular
section of radius r, the following added mass coefficients can be derived [127]:

Xu̇ = −0.1m

Yv̇ = −πρr2L

Zẇ = −πρr2L

Kṗ = 0

Mq̇ = − 1

12
πρr2L

3

Nṙ = − 1

12
πρr2L

3
.

Notice that, despite (2.40), in this case it is MA ≥ O. This result is due
to the geometrical approach to the derivation of MA. As a matter of fact,
if a sphere submerged in a fluid is considered, it can be observed that a
pure rotational motion of the sphere does not involve any fluid movement,
i.e., it is not necessary to add an inertia term due to the fluid. This small
discrepancy is just an example of the difficulty in representing with a closed
set of equations a distributed phenomenon as fluid movement.

In [220] the added mass coefficients for an ellipsoid are derived.
In [145], and in the Appendix, the coefficients for the experimental ve-

hicle NPS AUV Phoenix are reported. These coefficients have been experi-
mentally derived and, since the vehicle can work at a maximum depth of few
meters, i.e., it is not submerged in an unbounded fluid, the structure of MA

is not diagonal. To give an order of magnitude of the added mass terms, the
vehicle has a mass of about 5000 kg, the term Xu̇ ≈ −500 kg.

A detailed theoretical and experimental discussion on the added mass
effect of a cylinder moving in a fluid can be found in [203] where it is shown
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that the added mass matrix is state-dependent and its coefficients are function
of the distance traveled by the cylinder.

2.4.2 Damping Effects

The viscosity of the fluid also causes the presence of dissipative drag and lift
forces on the body.

A common simplification is to consider only linear and quadratic damping
terms and group these terms in a matrix DRB such that:

DRB(ν) > O ∀ν ∈ IR6.

The coefficients of this matrix are also considered to be constant. For a
completely submerged body, the following further assumption can be made:

DRB(ν) = − diag {Xu, Yv, Zw,Kp,Mq, Nr} +

− diag Xu|u| |u| , Yv|v| |v| , Zw|w| |w| ,Kp|p| |p| ,Mq|q| |q| , Nr|r| |r| .

Assuming a diagonal structure for the damping matrix implies neglecting the
coupling dissipative terms.

The detailed analysis of the dissipative forces is beyond the scope of this
work. In the following, only the nature of these forces will be briefly discussed.
Introductory analysis of this phenomenon can be found in [127, 157, 208, 220,
255], while in depth discussion in [253, 274].

The viscous effects can be considered as the sum of two forces, the drag
and the lift forces. The former are parallel to the relative velocity between
the body and the fluid, while the latter are normal to it. Both drag and lift
forces are supposed to act on the center of mass of the body. In order to solve
the distributed flow problem, an integral over the entire surface is required to
compute the net force/moment acting on the body. Moreover, the model of
drag and lift forces is not known and, also for some widely accepted models,
the coefficients are not known and variables.

For a sphere moving in a fluid, the drag force can be modeled as [157]:

Fdrag = 0.5ρU2SCd(Rn),

where ρ is the fluid density, U is the velocity of the sphere, S is the frontal area
of the sphere, Cd is the adimensional drag coefficients and Rn is the Reynolds
number. For a generic body, S is the projection of the frontal area along
the flow direction. The drag coefficient is then dependent on the Reynolds
number, i.e., on the laminar/turbulent fluid motion:

Rn =
ρ |U |D

µ

where D is the characteristic dimension of the body perpendicular to the
direction of U and µ is the dynamic viscosity of the fluid. In Table 2.2 the
drag coefficients in function of the Reynolds number for a cylinder are repor-
ted [255]. The drag coefficients can be considered as the sum of two physical
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effects: a frictional contribution of the surface whose normal is perpendicular
to the flow velocity, and a pressure contribution of the surface whose normal
is parallel to the flow velocity.

Table 2.2. Lift and Drag Coefficient for a cylinder

Reynolds number regime motion Cd Cl

Rn < 2 · 105 subcritical flow 1 3 ÷ 0.6

2 · 105 < Rn < 5 · 105 critical flow 1 ÷ 0.4 0.6

5 · 105 < Rn < 3 · 105 transcritical flow 0.4 0.6

The lift forces are perpendicular to the flow direction. For an hydrofoil
they can be modeled as [157]:

Flift = 0.5ρU2SCl(Rn, α),

where Cl is the adimensional lift coefficient. It can be recognized that it also
depends on the angle of attack α. In Table 2.2 the lift coefficients in function
of the Reynolds number for a cylinder are reported [255].

Vortex induced forces are an oscillatory effect that affects both drag and
lift directions. They are caused by the vortex generated by the body that
separates the fluid flow. They then cause a periodic disturbance that can
be the cause of oscillations in cables and some underwater structures. For
underwater vehicles it is reasonable to assume that the vortex induced forces
are negligible, this, also in view of the adoption of small design surfaces that
can reduce this effect. For underwater manipulators with cylindrical links this
effects might be experienced.

2.4.3 Current Effects

Control of marine vehicles cannot neglect the effects of specific disturbances
such as waves, wind and ocean current. In this book wind and waves phe-
nomena will not be discussed since the attention is focused to autonomous
vehicles performing a motion or manipulation task in an underwater environ-
ment. However, if this task has to be achieved in very shallow waters, those
effects can not be neglected.

Ocean currents are mainly caused by: tidal movement; the atmospheric
wind system over the sea earth’s surface; the heat exchange at the sea sur-
face; the salinity changes and the Coriolis force due to the earth rotation.
Currents can be very different due to local climatic and/or geographic cha-
racteristics; as an example, in the fjords, the tidal effect can cause currents
of up to 3 m/s [127].
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The effect of a small current has to be considered also in structured en-
vironments such as a pool. In this case, the refresh of the water is strong
enough to affect the vehicle dynamics [34].

Let us assume that the ocean current, expressed in the inertial frame, νI
c

is constant and irrotational, i.e.,

νI
c =


νc,x
νc,y
νc,z
0
0
0


and ν̇I

c = 0; its effects can be added to the dynamic of a rigid body moving
in a fluid simply considering the relative velocity in body-fixed frame

νr = ν − RB
I νI

c (2.41)

in the derivation of the Coriolis and centripetal terms and the damping terms.
A simplified modeling of the current effect can be obtained by assuming

the current irrotational and constant in the earth-fixed frame, its effect on
the vehicle, thus, can be modeled as a constant disturbance in the earth-fixed
frame that is further projected onto the vehicle-fixed frame. To this purpose,
let define as θv,C ∈ IR6 the vector of constant parameters contributing to
the earth-fixed generalized forces due to the current; then, the vehicle-fixed
current disturbance can be modelled as

τ v,C = Φv,C(RI
B)θv,C , (2.42)

where the (6 × 6) regressor matrix simply expresses the force/moment coor-
dinate transformation between the two frames and it is given by

Φv,C(RI
B) =

RB
I O3×3

O3×3 RB
I

. (2.43)

Notice that in [14, 35] compensation of the ocean current effects is obtai-
ned through a quaternion-based velocity/force mapping instead. Moreover,
in some papers [34, 35, 125, 255], the effect of the current is simply mode-
led as a time-varying, vehicle-fixed, disturbance τ v,C that would lead to the
trivial regressor

Φv,C = I6. (2.44)
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2.5 Gravity and Buoyancy

“Ses deux mains s’accrochaient à mon cou; elles ne se seraient pas accrochées
plus furieusement dans un naufrage. Et je ne comprenais pas si elle voulait
que je la sauve, ou bien que je me noie avec elle”.

Raymond Radiguet, “Le diable au corps” 1923.

When a rigid body is submerged in a fluid under the effect of the gra-
vity two more forces have to be considered: the gravitational force and the
buoyancy. The latter is the only hydrostatic effect, i.e., it is not function of
a relative movement between body and fluid.

Let us define as

gI =

 0
0

9.81

m/s
2

the acceleration of gravity, ∇ the volume of the body and m its mass.
The submerged weight of the body is defined as W = m gI while its

buoyancy B = ρ∇ gI .
The gravity force, acting in the center of mass rBC is represented in body-

fixed frame by:

fG(RB
I ) = RB

I

 0
0
W

 ,

while the buoyancy force, acting in the center of buoyancy rBB is represented
in body-fixed frame by:

fB(RB
I ) = −RB

I

 0
0
B

 .

The (6×1) vector of force/moment due to gravity and buoyancy in body-
fixed frame, included in the left hand-side of the equations of motion, is
represented by:

gRB(RB
I ) = − fG(RB

I ) + fB(RB
I )

rBG × fG(RB
I ) + rBB × fG(RB

I )
.

In the following, the symbol rBG = [xG yG zG ]
T

(with rBG = rBC) will be
used for the center of gravity.

The expression of gRB in terms of Euler angles is represented by:

gRB(η2) =


(W −B)sθ

−(W −B)cθsφ
−(W −B)cθcφ

−(yGW − yBB)cθcφ + (zGW − zBB)cθsφ
(zGW − zBB)sθ + (xGW − xBB)cθcφ
−(xGW − xBB)cθsφ − (yGW − yBB)sθ

 , (2.45)
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while in terms of quaternion is represented by:

gRB(Q)=


2(ηε2 − ε1ε3)(W −B)
−2(ηε1 + ε2ε3)(W −B)

(−η2 + ε21 + ε22 − ε23)(W −B)
(−η2 + ε21 + ε22 − ε23)(yGW − yBB) + 2(ηε1 + ε2ε3)(zGW − zBB)
−(−η2 + ε21 + ε22 − ε23)(xGW − xBB) + 2(ηε2 − ε1ε3)(zGW − zBB)

−2(ηε1 + ε2ε3)(xGW − xBB) − 2(ηε2 − ε1ε3)(yGW − yBB)

 .

By looking at (2.45), it can be recognized that the difference between
gravity and buoyancy (W − B) only affects the linear force acting on the
vehicle; it is also clear that the restoring linear force is constant in the earth-
fixed frame. On the other hand, the two vectors of the first moment of inertia
WrBG and BrBB affect the moment acting on the vehicle and are constant in
the vehicle-fixed frame. In summary, the expression of the restoring vector is
linear with respect to the vector of four constant parameters

θv,R = [W−B xGW−xBB yGW−yBB zGW−zBB ]
T

(2.46)

through the (6 × 4) regressor

Φv,R(RI
B) =

RB
I z O3×3

03×1 S RB
I z

, (2.47)

i.e.,

gRB(RI
B) = Φv,R(RI

B)θv,R.

In (2.47) S(·) is the operator performing the cross product. Notice that, alter-
natively to (2.45), the restoring vector can be written in terms of quaternions;
however, this would lead again to the regressor (2.47) and to the vector of
dynamic parameters (2.46).

2.6 Thrusters’ Dynamics

Underwater vehicles are usually controlled by thrusters (Figure 2.2) and/or
control surfaces.

Control surfaces, such as rudders and sterns, are common in cruise ve-
hicles; those are torpedo-shaped and usually used in cable/pipeline inspec-
tion. Since the force/moment provided by the control surfaces is function
of the velocity and it is null in hovering, they are not useful to manipula-
tion missions in which, due to the manipulator interaction, full control of the
vehicle is required.

The relationship between the force/moment acting on the vehicle τ v ∈
IR6 and the control input of the thrusters uv ∈ IRpv is highly nonlinear. It
is function of some structural variables such as: the density of the water;
the tunnel cross-sectional area; the tunnel length; the volumetric flowrate
between input-output of the thrusters and the propeller diameter. The state
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Fig. 2.2. Thruster of SAUVIM (courtesy of J. Yuh, Autonomous Systems Labo-
ratory, University of Hawaii)

of the dynamic system describing the thrusters is constituted by the propeller
revolution, the speed of the fluid going into the propeller and the input torque.

A detailed theoretical and experimental analysis of thrusters’ behavior
can be found in [40, 147, 176, 178, 220, 270, 300, 309]. Roughly speaking,
thrusters are the main cause of limit cycle in vehicle positioning and band-
width constraint.

A common simplification is to consider a linear relationship between τ v

and uv:

τ v = Bvuv, (2.48)

where Bv ∈ IR6×pv is a known constant matrix known as the Thruster Con-
trol Matrix (TCM). Along the book, the matrix Bv will be considered square
or low rectangular, i.e., pv ≥ 6. This means full control of force/moments of
the vehicle.
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As an example, ODIN has the following TCM:

Bv =


∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 0 0

 (2.49)

where ∗ means a non-zero constant factor depending on the thruster allo-
cation. Different TCM can be observed as in, e.g., the vehicle Phantom S3
manufactured by Deep Ocean Engineering that has 4 thrusters:

Bv =


∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

 (2.50)

in which it can be recognized that not all the directions are independently
actuated.

On the other hand, if the vehicle is controlled by thrusters, each of which
is locally fed back, the effects of the nonlinearities discussed above is very
limited and a linear input-output relation between desired force/moment and
thruster’s torque is experienced. This is the case, e.g., of ODIN [35, 83, 215,
216] where the experimental results show that the linear approximation is
reliable.

2.7 Underwater Vehicles’ Dynamics in Matrix Form

By taking into account the inertial generalized forces, the hydrodynamic ef-
fects, the gravity and buoyancy contribution and the thrusters’ presence, it is
possible to write the equations of motion of an underwater vehicle in matrix
form:

Mvν̇ + Cv(ν)ν + DRB(ν)ν + gRB(RI
B) = Bvuv, (2.51)

where Mv = MRB +MA and Cv = CRB +CA include also the added mass
terms. Taking into account the current, a possible, approximated, model is
given by:

Mvν̇ + Cv(ν)ν + DRB(ν)ν + gRB(RI
B) = τ v − τ v,C . (2.52)

The following properties hold:

• the inertia matrix is symmetric and positive definite, i.e., Mv = MT
v > O;

• the damping matrix is positive definite, i.e., DRB(ν) > O;
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• the matrix Cv(ν) is skew-symmetric, i.e., Cv(ν) = −CT
v (ν), ∀ν ∈ IR6.

It is possible to rewrite the dynamic model (2.51) in terms of earth-fixed
coordinates; in this case, the state variables are the (6 × 1) vectors η, η̇
and η̈. The equations of motion are then obtained, through the kinematic
relations (2.1)–(2.2) as

Mv(R
I
B)η̈ + Cv(R

I
B , η̇)η̇ + DRB(RI

B , η̇)η̇ + gRB(RI
B) = τ v, (2.53)

where [127]

Mv = J−T
e (RI

B)MvJ
−1
e (RI

B)

Cv = J−T
e (RI

B) Cv(ν) − MvJ
−1
e (RI

B)J̇(RI
B) J−1

e (RI
B)

DRB = J−T
e (RI

B)DRB(ν)J−1
e (RI

B)

gRB = J−T
e (RI

B)gRB(RI
B)

τ v = J−T
e (RI

B)τ v.

Again, the current can be taken into account by resorting to the relative
velocity or, introducing an approximation, considering the following equati-
ons of motion:

Mv(R
I
B)η̈ + Cv(R

I
B , η̇)η̇ + DRB(RI

B , η̇)η̇ + gRB(RI
B) = τ v − τ v,C ,

where τ v,C ∈ IR6 is the disturbance introduced by the current. It is worth
noticing that the earth-fixed and the body-fixed models with the introduction
of the current as a simple external disturbance implies different dynamic
properties. In particular, this is true if, in case of the design of a control
action, the disturbance is considered as constant or slowly varying.

2.7.1 Linearity in the Parameters

Relation (2.51) can be written by exploiting the linearity in the parameters
property. It must be noted that, while this property is proved for rigid bodies
moving in the space [254], for underwater rigid bodies it depends on a suitable
representations of the hydrodynamics terms. With a vector of parameters θv
of proper dimension it is possible to write the following:

Φv(R
I
B ,ν, ν̇)θv = τ v. (2.54)

The inclusion of the ocean current is straightforward by using the relative
velocity as shown in Subsection 2.4.3. However, it might be useful to consider
also the regressor form of the two approximations given by considering the
current as an external disturbance. In particular, it is of interest to isolate
the contribution of the restoring forces and current effects, those are the sole
terms giving a non-null contribution to the dynamic with the vehicle still and
for this reason will be defined as persistent dynamic terms.
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Starting from the equation (2.52) let first consider the current as an ex-
ternal disturbance τ v,C constant in the body-fixed frame, it is possible to
write:

Mvν̇ + Cv(ν)ν + DRB(ν)ν + Φv,R(RI
B)θv,R + Φv,Cθv,C = τ v

that can be rewritten as:

Mvν̇ + Cv(ν)ν + DRB(ν)ν + Φv,P (RI
B)θv,P = τ v (2.55)

with the use of the (6 × 10) regressor:

Φv,P (RI
B) =

RB
I z O3×3 I3 O3×3

03×1 S RB
I z O3×3 I3

.

On the other side the current can be modeled as constant in the earth-fixed
frame and, merged again with the restoring forces contribution, gives the
following

Mvν̇ + Cv(ν)ν + DRB(ν)ν + Φv,P (RI
B)θv,P = τ v (2.56)

with the use of the (6 × 9) regressor:

Φv,P (RI
B) =

O3×3 RB
I O3×3

S RB
I z O3×3 RB

I
.

It is worth noticing that the two regressors have different dimensions.
In order to extrapolate the minimum number of independent parameters,
i.e., the number of columns of the regressor, it is possible to resort to the
numerical method proposed by Gautier [135] based on the Singular Value
Decomposition.

Model (2.56) can by rewritten in a sole regressor of proper dimension
yielding:

Φv,T (RI
B ,ν, ν̇)θv,T = τ v. (2.57)

2.8 Kinematics of Manipulators with Mobile Base

In Figure 2.3 a sketch of an Underwater Vehicle-Manipulator System with
relevant frames is shown. The frames are assumed to satisfy the Denavit-
Hartenberg convention [254]. The position and orientation of the end effector,
thus, is easily obtained by the use of homogeneous transformation matrices.

Let q ∈ IRn be the vector of joint positions where n is the number of
joints. The vector q̇ ∈ IRn is the corresponding time derivative. Let define
ζ ∈ IR6+n as
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Fig. 2.3. Sketch of an Underwater Vehicle-Manipulator System with relevant fra-
mes

ζ =

ν1

ν2

q̇

 ;

It is useful to rewrite the relationship between body-fixed and earth-fixed
velocities given in equations (2.1)-(2.2) in a more compact form:

ζ =

ν1

ν2

q̇

 =

 RB
I O3×3 O3×n

O3×3 Jk,o(R
B
I ) O3×n

On×3 On×3 In

 η̇1

η̇2

q̇

 = Jk

 η̇1

η̇2

q̇

 , (2.58)

where On1×n2 is the null (n1×n2) matrix and the matrix Jk,o(R
B
I ) in terms

of Euler angles has been introduced in (2.3).
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Knowing ν1, ν2, ν̇1, ν̇2, (vehicle linear and angular velocities and acce-
leration in body fixed frame), q̇, q̈, (joint velocities and acceleration) it is
possible to calculate, for every link, the following variables:

ωi
i, angular velocity of the frame i,

ω̇i
i, angular acceleration of the frame i,

vii, linear velocity of the origin of the frame i,

viic, linear velocity of the center of mass of link i,

ai
i, linear acceleration of the origin of frame i,

by resorting to the following relationships:

ωi
i = Ri

i−1 ωi−1
i−1 + q̇izi−1 (2.59)

ω̇i
i = Ri

i−1 ω̇i−1
i−1 + ωi−1

i−1 × q̇izi−1 + q̈izi−1 (2.60)

vii = Ri
i−1v

i−1
i−1 + ωi

i × rii−1,i (2.61)

viic = Ri
i−1v

i−1
i−1 + ωi

i × rii−1,c (2.62)

ai
i = Ri

i−1a
i−1
i−1 + ω̇i

i × rii−1,i + ωi
i × (ωi

i × rii−1,i) (2.63)

where zi is the versor of frame i, rii−1,i is the constant vector from the origin
of frame i− 1 toward the origin of frame i expressed in frame i.

Since the task of UVMS missions is usually force/position control of the
end effector frame, it is necessary to consider the position of the end effector
in the inertial frame, ηee1 ∈ IR3; this is a function of the system configura-
tion, i.e., ηee1(η1,R

B
I , q). The vector η̇ee1 ∈ IR3 is the corresponding time

derivative.
Let us further define ηee2 ∈ IR3 as the orientation of the end effector in

the inertial frame expressed by Euler angles: also ηee2 is a function of the
system configuration, i.e., ηee2(R

B
I , q). Again, the vector η̇ee2 ∈ IR3 is the

corresponding time derivative.
The relation between the end-effector posture ηee = [ ηT

ee1 ηT
ee2 ]

T
and

the system configuration can be expressed by the following nonlinear equa-
tion:

ηee = k(η, q). (2.64)

The vectors η̇ee1 and η̇ee2 are related to the body-fixed velocities νee via
relations analogous to (2.1) and (2.2), i.e.,

νee1 = Rn
I η̇ee1 (2.65)

νee2 = Jk,o(ηee2)η̇ee2 (2.66)

where Rn
I is the rotation matrix from the inertial frame to the end-effector

frame (i.e., frame n) and Jk,o is the matrix defined as in (2.3) with the use
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of the Euler angles of the end-effector frame. If the end-effector orientation is
expressed via quaternion the relation between end-effector angular velocity
and time derivative of the quaternion can be easily obtained by the quaternion
propagation equation (2.10).

The end-effector velocities (expressed in the inertial frame) are related to
the body-fixed system velocity by a suitable Jacobian matrix, i.e.,

η̇ee1

η̇ee2
=

Jpos(R
I
B , q)

Jor(R
I
B , q)

ζ = Jw(RI
B , q)ζ. (2.67)

In Chapter 6, a different version of the (2.67) will be considered. To have
a compact expression to the representation of the attitude error via qua-
ternions, the end-effector velocities (expressed in the earth-fixed frame) are
related to the body-fixed system velocity by the following Jacobian matrix:

ẋE =
η̇ee1

RI
nνee2

= J(RI
B , q)ζ. (2.68)

Notice that the Jacobian has been derived with respect to the angular velocity

of the end effector expressed in the earth-fixed frame (the matrix RI
n = RnT

I

is the rotation from the frame n the the earth-fixed frame).

2.9 Dynamics of Underwater Vehicle-Manipulator
Systems

By knowing the forces acting on a body moving in a fluid it is possible to
easily obtain the dynamics of a serial chain of rigid bodies moving in a fluid.

The inertial forces and moments acting on the generic body are represen-
ted by:

F i
i = M i[a

i
i + ω̇i

i × rii,c + ωi
i × (ωi

i × rii,c)]

T i
i = Iiiω̇

i
i + ωi

i × (Iiiω
i
i),

where M i is the (3 × 3) mass matrix comprehensive of the added mass, Iii
is the (3 × 3) inertia matrix plus added inertia with respect to the center of
mass, rii,c is the vector from the origin of frame i toward the center of mass
of link i expressed in frame i.

Let us define dii the drag and lift forces acting on the center of mass of
link i, rii−1,i the vector from the origin of frame i− 1 to the origin of frame i

expressed in frame i, rii−1,c the vector from the origin of frame i − 1 to the

center of mass of link i expressed in frame i and rii−1,b the vector from the
origin of frame i− 1 to the center of buoyancy of link i expressed in frame i,

gi = Ri
Ig

I = Ri
I

 0
0

9.81

 m/s
2
.
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The total forces and moments acting on the generic body of the serial
chain are given by:

f i
i = Ri

i+1f
i+1
i+1 + F i

i −mig
i + ρ∇ig

i + pi

µi
i = Ri

i+1µ
i+1
i+1 + Ri

i+1r
i+1
i−1,i × Ri

i+1f
i+1
i+1 + rii−1,c × F i

i + T i
i +

+rii−1,c × (−mig
i + di) + rii−1,b × ρ∇ig

i

Bi

Ci

Oi−1

Oiri−1,i

ri−1,C

ri−1,B

ri,C

f i,µi

f i+1,µi+1

−ρ∇ig

migdi

Fig. 2.4. Force/moment acting on link i

The torque acting on joint i is finally given by:

τq,i = µi
i

T
zii−1 + fdisign(q̇i) + fviq̇i (2.69)

with fdi and fvi the motor dry and viscous friction coefficients.
Let us define τ q = [ τq,1 . . . τq,n ]T ∈ IRn the vector of joint torques

and τ ∈ IR6+n

τ =
τ v

τ q
(2.70)

the vector of force/moment acting on the vehicle as well as joint torques. It
is possible to write the equations of motions of an UVMS in a matrix form:

M(q)ζ̇ + C(q, ζ)ζ + D(q, ζ)ζ + g(q,RI
B) = τ (2.71)

where M ∈ IR(6+n)×(6+n) is the inertia matrix including added mass
terms, C(q, ζ)ζ ∈ IR6+n is the vector of Coriolis and centripetal terms,
D(q, ζ)ζ ∈ IR6+n is the vector of dissipative effects, g(q,RB

I ) ∈ IR6+n

is the vector of gravity and buoyancy effects. The relationship between the
generalized forces τ and the control input is given by:
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τ =
τ v

τ q
=

Bv O6×n

On×6 In
u = Bu, (2.72)

where u ∈ IRpv+n is the vector of the control input. Notice that, while for
the vehicle a generic number pv ≥ 6 of control inputs is assumed, for the
manipulator it is supposed that n joint motors are available.

It can be proven that:

• The inertia matrix M of the system is symmetric and positive definite:

M = MT > O

moreover, it satisfies the inequality

λmin(M) ≤ M ≤ λmax(M),

where λmin(M) (λmax(M)) is the minimum (maximum) eigenvalue of M .
• For a suitable choice of the parametrization of C and if all the single bodies

of the system are symmetric, Ṁ − 2C is skew-symmetric [67]

ζT Ṁ − 2C ζ = 0

which implies

Ṁ = C + CT

moreover, the inequality

C(a, b)c ≤ CM b c

and the equality

C(a, α1b + α2c) = α1C(a, b) + α2C(a, c)

hold.
• The matrix D is positive definite

D > O

and satisfies

D(q,a) − D(q, b) ≤ DM a − b .

In [255], it can be found the mathematical model written with respect
to the earth-fixed-frame-based vehicle position and the manipulator end-
effector. However, it must be noted that, in that case, a 6-dimensional mani-
pulator is considered in order to have square Jacobian to work with; moreover,
kinematic singularities need to be avoided.

Reference [174] reports some interesting dynamic considerations about the
interaction between the vehicle and the manipulator. The analysis performed
allows to divide the dynamics in separate meaningful terms.
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2.9.1 Linearity in the Parameters

UVMS have a property that is common to most mechanical systems, e.g., se-
rial chain manipulators: linearity in the dynamic parameters. Using a suitable
mathematical model for the hydrodynamic forces, (2.71) can be rewritten in
a matrix form that exploits this property:

Φ(q,RI
B , ζ, ζ̇)θ = τ (2.73)

with Φ ∈ R(6+n)×nθ , being nθ the total number of parameters. Notice that nθ
depends on the model used for the hydrodynamic generalized forces and joint
friction terms. For a single rigid body the number of dynamic parameter nθ,v
is a number greater than 100 [127]. For an UVMS it is nθ = (n + 1) · nθ,v,
that gives an idea of the complexity of such systems.

Differently from ground fixed manipulators, in this case the number of
parameters can not be reduced because, due to the 6 degrees of freedom
(DOFs) of the sole vehicle, all the dynamic parameters provide an individual
contribution to the motion.

2.10 Contact with the Environment

If the end effector of a robotic system is in contact with the environment,
the force/moment at the tip of the manipulator acts on the whole system
according to the equation ([254])

M(q)ζ̇ + C(q, ζ)ζ + D(q, ζ)ζ + g(q,RI
B) = τ + JT

w(q,RI
B)he, (2.74)

where Jw is the Jacobian matrix defined in (2.67) and the vector he ∈ IR6 is
defined as

he =
fe

µe

i.e., the vector of force/moments at the end effector expressed in the iner-
tial frame. If it is assumed that only linear forces act on the end effector
equation (2.74) becomes

M(q)ζ̇ + C(q, ζ)ζ + D(q, ζ)ζ + g(q,RI
B) = τ + JT

pos(q,R
I
B)fe (2.75)

Contact between the manipulator and the environment is usually difficult
to model. In the following the simple model constituted by a frictionless and
elastically compliant plane will be considered. The force at the end effector is
then related to the deformation of the environment by the following simplified
model [79] (see Figure 2.5)
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fe = K(x − xe), (2.76)

where x is the position of the end effector expressed in the inertial frame, xe

characterizes the constant position of the unperturbed environment expressed
in the inertial frame and

K = knnT, (2.77)

with k > 0, is the stiffness matrix being n the vector normal to the plane [194].

nnTxe

(I − nnT)xe

xe

x

fe

Fig. 2.5. Planar view of the chosen model for the contact force

In our case it is x = ηee1; however, in the force control chapter, the
notation x will be maintained.

2.11 Identification

Identification of the dynamic parameters of underwater robotic structures is a
very challenging task. The mathematical model shares its main characteristics
with the model of a ground-fixed industrial manipulator, e.g., it is non-linear
and coupled. In case of underwater structure, however, the hydrodynamic
terms are approximation of the physical effects. The actuation system of the
vehicle is achieved mainly by the thrusters the models of which are still object
of research. Finally, accurate measurement of the whole configuration is not
easy. For these reasons, while from the mathematical aspect the problem
is not new, from the practical point of view it is very difficult to set-up
a systematic and reliable identification procedure for UVMSs. At the best
of our knowledge, there is no significant results in the identification of full
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UVMSs model. Few experimental results, moreover, concern the sole vehicle;
often driven in few DOFs.

Since most of the fault detection algorithms rely on the accuracy of the
mathematical model, this is also the reason why in this domain too, there
are few experimental results (see Chapter 4).

In [2] the hydrodynamic damping terms of the vehicle Roby 2 developed
at the Naval Automation Institute, National Research Council, Italy, (now
CNR-ISSIA) have been experimentally estimated and further used to develop
fault detection/tolerance strategies. The vehicle is stable in roll and pitch,
hence, considering a constant depth, the sole planar model is identified.

In [227] some sea trials have been set-up in order to estimate the hydro-
dynamic derivatives of an 1/3-scale PAP-104 mine countermeasures ROV.
The paper assumes that the added mass is already known, moreover, the
identification concerns the planar motion for the 6-DOFs model. The posi-
tion of the vehicle is measured by means of a redundant acoustic system; all
the measurements are fused in an EKF in order to obtain the optimum state
estimation. Experimental results are given.

The work [271] reports some experimental results on the single DOF mo-
dels for the ROV developed at the John Hopkins University (JHUROV).
First, the mathematical model is written so as to underline the Input-to-
State-Stability; then a stable, on-line, adaptive identification technique is de-
rived. The latter method is compared with a classic, off-line, Least-Squares
approach. The approximation required by the proposed technique is that the
equations of motion are decoupled, diagonal, there is no tether disturbance
and the added mass is constant. Interesting experimental results are reported.

The interested reader can refer also to [62, 111].


	2.1 Introduction
	2.2 Rigid Body’s Kinematics
	2.2.1 Attitude Representation by Euler Angles
	2.2.2 Attitude Representation by Quaternion
	2.2.3 Attitude Error Representation
	2.2.4 6-DOFs Kinematics

	2.3 Rigid Body’s Dynamics
	2.4 Hydrodynamic E.ects
	2.4.1 Added Mass and Inertia
	2.4.2 Damping E.ects
	2.4.3 Current E.ects

	2.5 Gravity and Buoyancy
	2.6 Thrusters’ Dynamics
	2.7 Underwater Vehicles’ Dynamics in Matrix Form
	2.7.1 Linearity in the Parameters

	2.8 Kinematics of Manipulators with Mobile Base
	2.9 Dynamics of Underwater Vehicle-Manipulator Systems
	2.9.1 Linearity in the Parameters

	2.10 Contact with the Environment
	2.11 Identi.cation



