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Preface

This book and its sister volumes, i.e., LNCS vols. 3610, 3611, and 3612, are
the proceedings of the 1st International Conference on Natural Computation
(ICNC 2005), jointly held with the 2nd International Conference on Fuzzy Sys-
tems and Knowledge Discovery (FSKD 2005, LNAI vols. 3613 and 3614) from
27 to 29 August 2005 in Changsha, Hunan, China. In its budding run, ICNC
2005 successfully attracted 1887 submissions from 32 countries/regions (the joint
ICNC-FSKD 2005 received 3136 submissions). After rigorous reviews, 502 high-
quality papers, i.e., 313 long papers and 189 short papers, were included in the
ICNC 2005 proceedings, representing an acceptance rate of 26.6%.

The ICNC-FSKD 2005 featured the most up-to-date research results in com-
putational algorithms inspired from nature, including biological, ecological, and
physical systems. It is an exciting and emerging interdisciplinary area in which
a wide range of techniques and methods are being studied for dealing with large,
complex, and dynamic problems. The joint conferences also promoted cross-
fertilization over these exciting and yet closely-related areas, which had a sig-
nificant impact on the advancement of these important technologies. Specific
areas included neural computation, quantum computation, evolutionary com-
putation, DNA computation, chemical computation, information processing in
cells and tissues, molecular computation, computation with words, fuzzy com-
putation, granular computation, artificial life, swarm intelligence, ants colonies,
artificial immune systems, etc., with innovative applications to knowledge dis-
covery, finance, operations research, and more. In addition to the large number
of submitted papers, we were blessed with the presence of four renowned keynote
speakers and several distinguished panelists.

On behalf of the Organizing Committee, we thank Xiangtan University for
sponsorship, and the IEEE Circuits and Systems Society, the IEEE Computa-
tional Intelligence Society, and the IEEE Control Systems Society for technical
co-sponsorship. We are grateful for the technical cooperation from the Interna-
tional Neural Network Society, the European Neural Network Society, the Chi-
nese Association for Artificial Intelligence, the Japanese Neural Network Society,
the International Fuzzy Systems Association, the Asia-Pacific Neural Network
Assembly, the Fuzzy Mathematics and Systems Association of China, and the
Hunan Computer Federation. We thank the members of the Organizing Com-
mittee, the Advisory Board, and the Program Committee for their hard work in
the past 18 months. We wish to express our heartfelt appreciation to the keynote
and panel speakers, special session organizers, session chairs, reviewers, and stu-
dent helpers. Our special thanks go to the publisher, Springer, for publishing
the ICNC 2005 proceedings as three volumes of the Lecture Notes in Computer
Science series (and the FSKD 2005 proceedings as two volumes of the Lecture
Notes in Artificial Intelligence series). Finally, we thank all the authors and par-
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ticipants for their great contributions that made this conference possible and all
the hard work worthwhile.

August 2005 Lipo Wang
Ke Chen

Yew Soon Ong



Organization

ICNC 2005 was organized by Xiangtan University and technically co-sponsored
by the IEEE Circuits and Systems Society, the IEEE Computational Intelli-
gence Society, and the IEEE Control Systems Society, in cooperation with the
International Neural Network Society, the European Neural Network Society,
the Chinese Association for Artificial Intelligence, the Japanese Neural Network
Society, the International Fuzzy Systems Association, the Asia-Pacific Neural
Network Assembly, the Fuzzy Mathematics and Systems Association of China,
and the Hunan Computer Federation.

Organizing Committee

Honorary Conference Chairs Shun-ichi Amari, Japan
Lotfi A. Zadeh, USA

General Chair He-An Luo, China
General Co-chairs Lipo Wang, Singapore

Yunqing Huang, China
Program Chairs Ke Chen, UK

Yew Soon Ong, Singapore
Local Arrangements Chairs Renren Liu, China

Xieping Gao, China
Proceedings Chair Fen Xiao, China
Publicity Chair Hepu Deng, Australia
Sponsorship/Exhibits Chairs Shaoping Ling, China

Geok See Ng, Singapore
Webmasters Linai Kuang, China

Yanyu Liu, China

Advisory Board

Toshio Fukuda, Japan
Kunihiko Fukushima, Japan
Tom Gedeon, Australia
Aike Guo, China
Zhenya He, China
Janusz Kacprzyk, Poland
Nikola Kasabov, New Zealand
John A. Keane, UK
Soo-Young Lee, Korea
Erkki Oja, Finland
Nikhil R. Pal, India

Witold Pedrycz, Canada
Jose C. Principe, USA
Harold Szu, USA
Shiro Usui, Japan
Xindong Wu, USA
Lei Xu, Hong Kong, China
Xin Yao, UK
Syozo Yasui, Japan
Bo Zhang, China
Yixin Zhong, China
Jacek M. Zurada, USA



VIII Organization

Program Committee Members

Shigeo Abe, Japan
Kazuyuki Aihara, Japan
Davide Anguita, Italy
Abdesselam Bouzerdoum, Australia
Gavin Brown, UK
Laiwan Chan, Hong Kong
Sheng Chen, UK
Shu-Heng Chen, Taiwan
YanQiu Chen, China
Vladimir Cherkassky, USA
Sung-Bae Cho, Korea
Sungzoon Cho, Korea
Vic Ciesielski, Australia
Keshav Dahal, UK
Kalyanmoy Deb, India
Emilio Del-Moral-Hernandez, Brazil
Andries Engelbrecht, South Africa
Tomoki Fukai, Japan
Lance Fung, Australia
Takeshi Furuhashi, Japan
Hiroshi Furutani, Japan
John Q. Gan, UK
Wen Gao, China
Peter Geczy, Japan
Fanji Gu, China
Zeng-Guang Hou, Canada
Chenyi Hu, USA
Masumi Ishikawa, Japan
Robert John, UK
Mohamed Kamel, Canada
Yoshiki Kashimori, Japan
Samuel Kaski, Finland
Andy Keane, UK
Graham Kendall, UK
Jong-Hwan Kim, Korea
JungWon Kim, UK
Irwin King, Hong Kong, China
Natalio Krasnogor, UK
Vincent C.S. Lee, Australia
Stan Z. Li, China
XiaoLi Li, UK
Yangmin Li, Macau, China
Derong Liu, USA

Jian-Qin Liu, Japan
Bao-Liang Lu, China
Simon Lucas, UK
Frederic Maire, Australia
Jacek Mandziuk, Poland
Satoshi Matsuda, Japan
Masakazu Matsugu, Japan
Bob McKay, Australia
Ali A. Minai, USA
Hiromi Miyajima, Japan
Pedja Neskovic, USA
Richard Neville, UK
Tohru Nitta, Japan
Yusuke Nojima, Japan
Takashi Omori, Japan
M. Palaniswami, Australia
Andrew P. Paplinski, Australia
Asim Roy, USA
Bernhard Sendhoff, Germany
Qiang Shen, UK
Jang-Kyoo Shin, Korea
Leslie Smith, UK
Andy Song, Australia
Lambert Spannenburg, Sweden
Mingui Sun, USA
Johan Suykens, Belgium
Hideyuki Takagi, Japan
Kay Chen Tan, Singapore
Kiyoshi Tanaka, Japan
Seow Kiam Tian, Singapore
Peter Tino, UK
Kar-Ann Toh, Singapore
Yasuhiro Tsujimura, Japan
Ganesh Kumar Venayagamoorthy,

USA
Brijesh Verma, Australia
Ray Walshe, Ireland
Jun Wang, Hong Kong, China
Rubin Wang, China
Xizhao Wang, China
Sumio Watanabe, Japan
Stefan Wermter, UK
Kok Wai Wong, Australia



Organization IX

Hong Yan, Hong Kong
Ron Yang, UK
Daniel Yeung, Hong Kong
Ali M.S. Zalzala, UK
Xiaojun Zeng, UK

David Zhang, Hong Kong
Huaguang Zhang, China
Liming Zhang, China
Qiangfu Zhao, Japan

Special Sessions Organizers

Ke Chen, UK
Gary Egan, Australia
Masami Hagiya, Japan
Tai-hoon Kim, Korea
Yangmin Li, Macau, China
Osamu Ono, Japan
Gwi-Tae Park, Korea
John A. Rose, Japan
Xingming Sun, China

Ying Tan, Hong Kong
Peter Tino, UK
Shiro Usui, Japan
Rubin Wang, China
Keming Xie, China
Xiaolan Zhang, USA
Liang Zhao, Brazil
Henghui Zou, USA
Hengming Zou, China

Reviewers

Ajith Abraham
Wensen An
Yisheng An
Jiancong Bai
Gurvinder Baicher
Xiaojuan Ban
Yukun Bao
Helio Barbosa
Zafer Bingul
Liefeng Bo
Yin Bo
Gavin Brown
Nan Bu
Erhan Butun
Chunhong Cao
Huai-Hu Cao
Qixin Cao
Yijia Cao
Yuan-Da Cao
Yuhui Cao
Yigang Cen
Chunlei Chai

Li Chai
Ping-Teng Chang
Kwokwing Chau
Ailing Chen
Chen-Tung Chen
Enqing Chen
Fangjiong Chen
Houjin Chen
Jiah-Shing Chen
Jing Chen
Jingchun Chen
Junying Chen
Li Chen
Shenglei Chen
Wei Chen
Wenbin Chen
Xi Chen
Xiyuan Chen
Xuhui Chen
Yuehui Chen
Zhen-Cheng Chen
Zhong Chen

Jian Cheng
Il-Ahn Cheong
Yiu-Ming Cheung
Yongwha Chung
Lingli Cui
Jian-Hua Dai
Chuangyin Dang
Xiaolong Deng
Hongkai Ding
Zhan Ding
Chao-Jun Dong
Guangbo Dong
Jie Dong
Sheqin Dong
Shoubin Dong
Wenyong Dong
Feng Du
Hai-Feng Du
Yanping Du
Shukai Duan
Metin Ertunc
Liu Fan



X Organization

Gang Fang
Hui Fang
Chen Feng
Guiyu Feng
Jian Feng
Peng Fu
Yongfeng Fu
Yuli Fu
Naohiro Fukumura
Haichang Gao
Haihua Gao
Zong Geem
Emin Germen
Ling Gong
Maoguo Gong
Tao Gong
Weiguo Gong
Danying Gu
Qiu Guan
Salyh Günet
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A Fast Nonseparable Wavelet Neural Network for Function
Approximation

Jun Zhang, Xieping Gao, Chunhong Cao, Fen Xiao . . . . . . . . . . . . . . . 783

A Visual Cortex Domain Model for Illusory Contour Figures
Keongho Hong, Eunhwa Jeong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Cognitive Science

ANN Ensemble Online Learning Strategy in 3D Object Cognition and
Recognition Based on Similarity

Rui Nian, Guangrong Ji, Wencang Zhao, Chen Feng . . . . . . . . . . . . . . 793

Design and Implementation of the Individualized Intelligent Teachable
Agent

Sung-il Kim, Sung-Hyun Yun, Dong-Seong Choi, Mi-sun Yoon,
Yeon-hee So, Myung-jin Lee, Won-sik Kim, Sun-young Lee,
Su-Young Hwang, Cheon-woo Han, Woo-Gul Lee,
Karam Lim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797



XL Table of Contents – Part I

Comparison of Complexity and Regularity of ERP Recordings Between
Single and Dual Tasks Using Sample Entropy Algorithm

Tao Zhang, Xiaojun Tang, Zhuo Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . 806

Representation of a Physio-psychological Index Through Constellation
Graphs

Oyama-Higa Mayumi, Tiejun Miao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

Neural Network Based Emotion Estimation Using Heart Rate
Variability and Skin Resistance

Sun K. Yoo, Chung K. Lee, Youn J. Park, Nam H. Kim,
Byung C. Lee, Kee S. Jeong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Modeling Belief, Capability and Promise for Cognitive Agents - A
Modal Logic Approach

Xinyu Zhao, Zuoquan Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

PENCIL: A Framework for Expressing Free-Hand Sketching in 3D
Zhan Ding, Sanyuan Zhang, Wei Peng, Xiuzi Ye,
Huaqiang Hu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Blocking Artifacts Measurement Based on the Human Visual System
Zhi-Heng Zhou, Sheng-Li Xie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

A Computation Model of Korean Lexical Processing
Hyungwook Yim, Heuseok Lim, Kinam Park, Kichun Nam . . . . . . . . . 844

Neuroanatomical Analysis for Onomatopoeia and Phainomime Words:
fMRI Study

Jong-Hye Han, Wonil Choi, Yongmin Chang, Ok-Ran Jeong,
Kichun Nam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

Cooperative Aspects of Selective Attention
KangWoo Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Selective Attention Guided Perceptual Grouping Model
Qi Zou, Siwei Luo, Jianyu Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867

Visual Search for Object Features
Predrag Neskovic, Leon N. Cooper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877

Agent Based Decision Support System Using Reinforcement Learning
Under Emergency Circumstances

Devinder Thapa, In-Sung Jung, Gi-Nam Wang . . . . . . . . . . . . . . . . . . . 888



Table of Contents – Part I XLI

Dynamic Inputs and Attraction Force Analysis for Visual Invariance
and Transformation Estimation

Tomás Maul, Sapiyan Baba, Azwina Yusof . . . . . . . . . . . . . . . . . . . . . . . 893

Task-Oriented Sparse Coding Model for Pattern Classification
Qingyong Li, Dacheng Lin, Zhongzhi Shi . . . . . . . . . . . . . . . . . . . . . . . . 903

Robust Face Recognition from One Training Sample per Person
Weihong Deng, Jiani Hu, Jun Guo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

Chinese Word Sense Disambiguation Using HowNet
Yuntao Zhang, Ling Gong, Yongcheng Wang . . . . . . . . . . . . . . . . . . . . . 925

Modeling Human Learning as Context Dependent Knowledge Utility
Optimization

Toshihiko Matsuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933

Automatic Text Summarization Based on Lexical Chains
Yanmin Chen, Xiaolong Wang, Yi Guan . . . . . . . . . . . . . . . . . . . . . . . . . 947

A General fMRI LINEAR Convolution Model Based Dynamic
Characteristic

Hong Yuan, Hong Li, Zhijie Zhang, Jiang Qiu . . . . . . . . . . . . . . . . . . . . 952

Neuroscience Informatics, Bioinformatics, and
Bio-medical Engineering

A KNN-Based Learning Method for Biology Species Categorization
Yan Dang, Yulei Zhang, Dongmo Zhang, Liping Zhao . . . . . . . . . . . . . 956

Application of Emerging Patterns for Multi-source Bio-Data
Classification and Analysis

Hye-Sung Yoon, Sang-Ho Lee, Ju Han Kim . . . . . . . . . . . . . . . . . . . . . . 965

Nonlinear Kernel MSE Methods for Cancer Classification
L. Shen, E.C. Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

Fusing Face and Fingerprint for Identity Authentication by SVM
Chunhong Jiang, Guangda Su . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

A New Algorithm of Multi-modality Medical Image Fusion Based on
Pulse-Coupled Neural Networks

Wei Li, Xue-feng Zhu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995



XLII Table of Contents – Part I

Cleavage Site Analysis Using Rule Extraction from Neural
Networks

Yeun-Jin Cho, Hyeoncheol Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

Prediction Rule Generation of MHC Class I Binding Peptides Using
ANN and GA

Yeon-Jin Cho, Hyeoncheol Kim, Heung-Bum Oh . . . . . . . . . . . . . . . . . . 1009

Combined Kernel Function Approach in SVM for Diagnosis of Cancer
Ha-Nam Nguyen, Syng-Yup Ohn, Jaehyun Park,
Kyu-Sik Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

Automatic Liver Segmentation of Contrast Enhanced CT Images Based
on Histogram Processing

Kyung-Sik Seo, Hyung-Bum Kim, Taesu Park, Pan-Koo Kim,
Jong-An Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027

An Improved Adaptive RBF Network for Classification of Left and
Right Hand Motor Imagery Tasks

Xiao-mei Pei, Jin Xu, Chong-xun Zheng, Guang-yu Bin . . . . . . . . . . . 1031

Similarity Analysis of DNA Sequences Based on the Relative Entropy
Wenlu Yang, Xiongjun Pi, Liqing Zhang . . . . . . . . . . . . . . . . . . . . . . . . . 1035

Can Circulating Matrix Metalloproteinases Be Predictors of Breast
Cancer? A Neural Network Modeling Study

H. Hu, S.B. Somiari, J. Copper, R.D. Everly, C. Heckman,
R. Jordan, R. Somiari, J. Hooke, C.D. Shriver, M.N. Liebman . . . . . 1039

Blind Clustering of DNA Fragments Based on Kullback-Leibler
Divergence

Xiongjun Pi, Wenlu Yang, Liqing Zhang . . . . . . . . . . . . . . . . . . . . . . . . . 1043

Prediction of Protein Subcellular Locations Using Support Vector
Machines

Na-na Li, Xiao-hui Niu, Feng Shi, Xue-yan Li . . . . . . . . . . . . . . . . . . . 1047

Neuroinformatics Research in China- Current Status and Future
Research Activities

Guang Li, Jing Zhang, Faji Gu, Ling Yin, Yiyuan Tang,
Xiaowei Tang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052

Australian Neuroinformatics Research – Grid Computing and
e-Research

G.F. Egan, W. Liu, W-S. Soh, D. Hang . . . . . . . . . . . . . . . . . . . . . . . . . 1057



Table of Contents – Part I XLIII

Current Status and Future Research Activities in Clinical
Neuroinformatics: Singaporean Perspective

Wieslaw L. Nowinski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065

Japanese Neuroinformatics Research: Current Status and Future
Research Program of J-Node

Shiro Usui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074

Neural Network Applications: Communications and
Computer Networks

Optimal TDMA Frame Scheduling in Broadcasting Packet Radio
Networks Using a Gradual Noisy Chaotic Neural Network

Haixiang Shi, Lipo Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

A Fast Online SVM Algorithm for Variable-Step CDMA Power Control
Yu Zhao, Hongsheng Xi, Zilei Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090

Fourth-Order Cumulants and Neural Network Approach for Robust
Blind Channel Equalization

Soowhan Han, Kwangeui Lee, Jongkeuk Lee,
Fredric M. Ham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100

Equalization of a Wireless ATM Channel with Simplified Complex
Bilinear Recurrent Neural Network

Dong-Chul Park, Duc-Hoai Nguyen, Sang Jeen Hong,
Yunsik Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113

A Novel Remote User Authentication Scheme Using Interacting Neural
Network

Tieming Chen, Jiamei Cai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117

Genetic Algorithm Simulated Annealing Based Clustering Strategy in
MANET

Xu Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121

Neural Network Applications: Expert System and
Informatics

A Gradual Training Algorithm of Incremental Support Vector Machine
Learning

Jian-Pei Zhang, Zhong-Wei Li, Jing Yang, Yuan Li . . . . . . . . . . . . . . . 1132



XLIV Table of Contents – Part I

An Improved Method of Feature Selection Based on Concept Attributes
in Text Classification

Shasha Liao, Minghu Jiang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140

Research on the Decision Method for Enterprise Information Investment
Based on IA-BP Network

Xiao-Ke Yan, Hai-Dong Yang, He-Jun Wang, Fei-Qi Deng . . . . . . . . 1150

Process Control and Management of Etching Process Using Data
Mining with Quality Indexes

Hyeon Bae, Sungshin Kim, Kwang Bang Woo . . . . . . . . . . . . . . . . . . . . 1160

Automatic Knowledge Configuration by Reticular Activating
System

JeongYon Shim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170

An Improved Information Retrieval Method and Input Device Using
Gloves for Wearable Computers

Jeong-Hoon Shin, Kwang-Seok Hong . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179

Research on Design and Implementation of the Artificial Intelligence
Agent for Smart Home Based on Support Vector Machine

Jonghwa Choi, Dongkyoo Shin, Dongil Shin . . . . . . . . . . . . . . . . . . . . . . 1185

A Self-organized Network for Data Clustering
Liang Zhao, Antonio P.G. Damiance Jr.,
Andre C.P.L.F. Carvalho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189

A General Criterion of Synchronization Stability in Ensembles of
Coupled Systems and Its Application

Qing-Yun Wang, Qi-Shao Lu, Hai-Xia Wang . . . . . . . . . . . . . . . . . . . . . 1199

Complexity of Linear Cellular Automata over Zm

Xiaogang Jin, Weihong Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209

Neural Network Applications: Financial Engineering

Applications of Genetic Algorithm for Artificial Neural Network Model
Discovery and Performance Surface Optimization in Finance

Serge Hayward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1214

Mining Data by Query-Based Error-Propagation
Liang-Bin Lai, Ray-I Chang, Jen-Shaing Kouh . . . . . . . . . . . . . . . . . . . 1224



Table of Contents – Part I XLV

The Application of Structured Feedforward Neural Networks to the
Modelling of the Daily Series of Currency in Circulation
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Abstract. A new method is proposed for merging two spatially registered im-
ages with diverse focus in this paper. It is based on multi-resolution wavelet de-
composition, Self-Organizing Feature Map (SOFM) neural networks and evolu-
tion strategies (ES). A normalized feature image, which represents the local re-
gion clarity difference of the corresponding spatial location of two source im-
ages, is extracted by wavelet transform without down-sampling. The feature 
image is clustered by SOFM learning algorithm and every pixel pair in source 
images is classified into a certain class which indicates different clarity differ-
ences. To each pixel pairs in different classes, we use different fusion factors to 
merge them respectively, these fusion factors are determined by evolution 
strategies to achieve the best fusion performance. Experimental results show 
that the proposed method outperforms the wavelet transform (WT) method. 

1   Introduction 

In recent years, image fusion has been widely applied to many areas such as computer 
vision, automatic target recognition, remote sensing and medical image processing, 
etc. It can be defined as the process of combining two or more different source images 
from the same scene into one new image with extend information content by a certain 
algorithm ]21[ − . 

As commonly known, optical lenses suffer from a limited depth of focus. If one 
object in the scene is focus, another one will be out of focus. A possible way to allevi-
ate this problem is by multi-focus image fusion, in which the auto-focus merged im-
age can be formed by combining several images with different focus points in the 
same scene under the same imaging conditions. This fused image will then hopefully 
contain all the relevant objects in focus. 

The primitive image fusion scheme is to take the average of the source images 
pixel by pixel. However, this often leads to undesired side effects such as reduced 
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contrast. In recent years, various methods based on  multi-scale transforms have been 
proposed, including the Laplacian pyramid, the gradient pyramid and the ratio-of-

low-pass pyramid etc ]53[ − . More recently, some papers introduced the Wavelet 

Transform (WT) method ]96[ − which is superior to the previous pyramid-based meth-
ods. The fused image of this method was obtained by performing an inverse wavelet 
transform using the fused wavelet coefficients derived by the area-based maximum 
selection rules. Because of its orthogonality symmetry and compact support, WT 
method can achieve better image fusion performance than pyramid-based methods, 
but they do suffer from the ringing effect in the fused image. Since wavelet transform 
is actually a high-pass or low-pass filtering process, a little edge information is lost in 
the reconstructed image. 

In this paper, a new multi-focus image fusion method is proposed. It is based on 
multi-resolution wavelet decomposition, SOFM neural networks and evolution strate-
gies. In this method, the multi-scale and multi-directional information of redundant 
WT coefficients is fully used in calculating the feature image, and the number of 
clusters is determined by the number of peaks of its histogram. Based on this feature 
image, SOFM networks are adopted to partition the regions according to clarity dif-
ference, and different optimal fusion factors determined by ES are applied in fusing 
the pixel pairs in different areas to achieve the best fusion performance. Experimental 
results show that the proposed method outperforms the WT method. The following 
sections of this paper are organized as follows: the proposed fusion scheme will be 
described in Section 2.Experimental results will be presented in Second 3, and some 
concluding remarks are given in the last section. 

2   Multifocus Image Fusion Based on SOFM Neural Networks and 
Evolution Strategies  

In the wavelet decomposition of images, assuming that an original image is 
fA1

, fA1
 is completely represented by one approximate image at resolution 

J−2 and J3 detail images. ( J  is decomposition level 0,1 ≥−≤≤− JjJ ) 

( ) ( ) ( )( )
1

3

21

2

21

1

22
,,,

−≤≤−−≤≤−−≤≤−− jJjJjJ
fDfDfDfA jjjJ  (1) 

where fA j2
corresponds to the lowest frequencies, fD j

1

2
gives the vertical high fre-

quencies, fD j

2

2
gives the horizontal high frequencies, fD j

3

2
 is the high frequencies in 

the diagonal directions. The details are referred in reference[10]. 

2.1   Feature Extraction 

Experimental results show that the WT sub-images (WT coefficients) produced by 
wavelet transform at resolution level 1~3 have contained most of the high frequency 
information in multi-focus source images. When the wavelet transform is used to 
decompose the source images, down-sampling is not adopted in order to keep the WT 
coefficients being in the same size as the source images, in this way, the wavelet coef-
ficients are redundant, this is helpful to image fusion. 
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Let two source images with diverse focus be Af , Bf .After decomposing Af Bf into 

3 levels by redundant WT transform, high frequency coefficients are added for further 
calculation. Assuming ADf , BDf  to be the sum of high frequency information of each 

source image, ADf , BDf  can be defined as: 

[ ]
−≤≤−

++=
13

3

2

2

2

1

2
),(),(),(),(

j

mnfDmnfDmnfDmnDf jjj
 (2) 

In the sum of high frequency coefficients, the local regional energy AE and BE  from 

two multi-focus images are respectively expressed as: 

[ ]2

','

)','(),(
∈∈

++=
kmln

mmnnDfmnE  (3) 

where ( )mnE ,  denotes the energy sum in a local region with the center of ( )mn, ; 

l k  is the size of local region (such as 77,55,33 ××× ,etc) 'n and 'm are changed 
in regions l and k then the feature image ( )mngE f ,  is defined as: 

( ) ( ) ( ) ( )( )mnEmnEmnEmngE BAAf ,,,, +=  (4) 

It reflects the regional clarity difference of two source images Af and Bf in a local 

region centered in ( )mn, . In the areas where Af  is clearer than Bf , the values of 

( )mnEA ,  are much more larger than ( )mnEB , , so the values of ( )mngE f ,  are close 

to 1, contrarily, in the areas where Bf  is clearer than Af , the values of ( )mngE f ,  are 

close to 0, and in the areas where Af  and Bf  have a similar clarity, the values of 

( )mngE f ,  vary slightly in a range centered at 0.5. Here, ( )mngE f , has the same size 

as source images. It’s easy to find corresponding relations between ( )mngE f ,  and 
two source multi-focus images in the spatial and frequency domain. 

2.2   Classification of Pixels Using SOFM Neural Networks 

According to the analysis above, the clarity differences in source images correspond 
with different normalized gray values in ( )mngE f , , and the histogram of ( )mngE f ,  

indicates 3 peaks with centers close to 0, 0.5 and 1 (It is showed in Fig.1). The 3 
peaks correspond to 3 kinds of areas with dissimilar clarity differences in source im-
ages. Therefore, classifying pixels in source images based on clarity difference could 
be achieved by classifying pixels in ( )mngE f ,  based on the normalized gray values. 

In this paper, Kohonen’s Self-Organizing Feature Map (SOFM) neural networks 
are adopted as a classifier for ( )mngE f , ]11[ . The SOFM neural network is one of 
the most popular neural network models based on unsupervised and competitive 
learning. It consists of two layers of processing units which provides a topology 
preserving mapping from the high dimensional space to a plane. The basic idea of 
this type of self-organizing neural network is that the signal representations are 
automatically mapped onto a set of outputs in such a manner that the response can 
preserve the same neighbourhood on the topology of the map. Therefore, the net-
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Fig. 1. Histogram of ( )mngE f ,  

work can automatically form a correct topological map of features of observable 
events. In other words, SOFM can adapt to the training data in such a way that a 
high-dimensional-input space is reflected to a 2-dimensional grid on the generated 
Kohonen-map. By preserving the neighbourhood on the topology of the map, struc-
tures of the input space can be discovered by exploring the feature map. As the 1-D 
input pattern ( )mngE f ,  is expected to be clustered into 3=c  (here, c is the number 
of classification), 1-D networks is employed to accomplish this task. It has one 
input neuron and 3 output neurons which (the output neurons) are assembled in a 1-
D array, and each one has a topological neighbourhood, choosing the size of the 
neighbourhood properly, clustering result could be most close to our expectation, 
this is the best convenience Kohonen networks taking to us. The input neuron is 
fully connected to output neuron j by synaptic weights cjwj ,,1, = . Each neuron 
has as many input connections as the number of attributes to be used in the clas-
classification. After

 training, these synaptic 
weights will be

 equivalent to the inputs 
representing the

 centroid coordinates of 
each cluster. So the 1-D 
training vectors are the 
value of the normalized 
gray scale of the pixels 
in ( )mngE f , . Networks 
of this kind use

  a competitive-learning 
algorithm, which can be 
summarized as: 

 
Step1.Initialize the weight vectors cjwj ,,1, =  of the network; initialize the 

learning parameter: define topological neighbourhood function; set 0=k . 
Step2. Check the termination condition. If false, continue; else quit.  
Step3. For each training vector x , perform the steps from 4 through 7 
Step4. Compute the best match of a weight vector with the input  

( ) 2

1
min j

cj
wxxq −=

≤≤
 (5) 

Step5. For all units in the specified neighbourhood ( )kNj q∈  (where q  is the win-

ning neuron), update the weight vectors according to 

( ) ( ) ( ) ( ) ( )[ ] ( )
( ) ( )∉

∈−+
=+

kNjifkw

kNjifkwkxkkw
kw

qj

qjj

j

η
1  (6) 

where ( ) 10 << kη  (is the learning rate parameter). 

Step6. Adjust the learning rate parameter.  
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Step7. Reduce the learning rate parameter appropriately.  
Step8. Set 1+= kk ; then go to step2, repeat this process until a terminate condi-

tion is satisfied. 

2.3   Fusion Rule 

As showed in Fig1, after clustered by SOFM neural networks in ( )mngE f , , there are 

three kinds of areas with dissimilar clarity difference, their normalized gray value 
centers are 321 ,, ωωω . 321 ,, ωωω  are synaptic weights of one dimensional SOFM 
networks . To obtain the best fusion performance, we apply different fusion factors 
to the pixels of the source image in different kinds of areas. Once the fusion factors 

( ),A n mα ( ) [ ]( , 0,1 )A n mα ∈  are assigned for the pixels in source image Af , fusion 

factors ( ),B n mα  for the pixels in source image Bf  will be ( ) ( ), 1 ,B An m n mα α= − . In 

the areas where Bf  is much more clear than Af , ( )mngE f ,  is less than 1ω  , we as-

sign 0 as the fusion factor for Af , therefore, the fusion factor for Bf  will be 1. In the 

areas where Af  is much more clear than Bf , ( )mngE f ,  is larger than 3ω , we assign 

1 as the fusion factor for Af , and the fusion factor for Bf  will be 0. In the areas 

where the pixel feature values in ( )mngE f ,  equal to 321 ,, ωωω , we assign 

321 ,, ααα [0,1], ( 1 ~ 3)j jα ∈ =  as their fusion factors of Af  (how to determine 

321 ,, ααα  will be discussed later). In this fusion algorithm, the three fusion factors  

321 ,, ααα  are not only meaningful to the pixels whose feature values equal to 21 ,ωω  
or 3ω , but also have an important effect on the other pixels whose feature values vary 
in the range between 1ω  and 3ω . In the areas where Af  and Bf  have a similar clar-

ity, the values of ( )mngE f ,  just vary between 1ω  and 3ω , and 2ω  is approximately 

close to the center of  1ω  and 3ω , for the pixels in this area, fusion factors will be  

= =

−−×
3

1

3

1

11

j i
ijj ddα ,Here, ( ) 2

, jfj mngEd ω−= ,   ( ( ) 31 , ωω << mngE f ),is the 

Euclidean distance between the pixel gray values in ( )mngE f , and ( )3,2,1, =jjω . In 

this way, every pixel pair in source images could obtain a suitable fusion factor of 
their own.For the pixel with coordinate ( )mn,  in source image Af , its fusion factor 

( ),A n mα  could be summarized as: 
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(7) 

Let Mf  be the fused image, Mf is expressed as 

( ) ( ) ( ) ( ) ( )mnfmnmnfmnmnf BBAAM ,,,,, ×+×= αα  (8) 
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2.4   Determination of Fusion Factors 321 ,, ααα  by Evolution  Strategies 

2.4.1   Fitness  Function 
How do we choose fusion factors 321 ,, ααα  on the range ]1,0[  of ( )mnA ,α to obtain 
the optimal fusion image? Here, we adopt evolution strategies(ES) method , which is 
suitable to optimize real functions. 

The searching process of ES depends on a fitness function. In the problem of 
multi-focus image fusion, the fitness function should indicate the character that the 
fused image can simultaneously maximumly conserve the high frequency information 
in the two source images. Cross entropy measure method is adopted in this paper. The 
cross entropy measure of images X  and Y  is 

−

=

=
1

0

,

)(

)(
log

L

i Yi

Xi
XiYX

Yp

Xp
pCE  (9) 

where L  denotes the total number of gray scales of an image,  ip is the ratio of the 

number of the pixels with the gray scale i to the total number of the pixels in an  
image. 

Since different sets of 321 ,, ααα correspond to different fused images, the fitness 
function of fused images can be regarded as the fitness function of each set of 

321 ,, ααα . The fitness function of fused images is defined as 

( )
≤−

+=
ε)()(..

2/)( 2

,

2

,

fEfEts

CECEfF

M

ffffM MBMA  (10) 

where ( )⋅E  is the mean average value of an image, and ( ) ( ) == AfEfE )( BfE , ε  is 

the permitted error range of average values. 
In definition (10), 2

, MA ffCE and 2

, MB ffCE are considered synthetically, namely total 

cross entropy. It synthesizes the differences between the fused image and two source 
images, which are all in the permitted range of mean value. The iterative process 
above is going in the direction of decreasing the fitness function, the iterative optimi-
zation process of ES will find the most wanted  set of 321 ,, ααα  , whose fitness is 
highest in a population.  

2.4.2   Evolution  Strategies (ES) 
The operating objects of ES is a population consisted by the feasible solutions of the 
problem. The individual in the population is defined as a real vector ( )321 ,, ααα=Α . 

The fitness of each individual can be measured by a fitness function. The goal of 
solving a problem is to find the individual ),,( *

3
*
2

*
1 ααα=Α∗  whose fitness is highest 

in the population  and it obtains the least fitness function value of the fused image. 
The processes of  ES  are as follows  

(1) Produce initial father population { }μ,,2,1, =Α ii  with  individual numbers μ . 

The values of each individual distribute randomly on in the interval ]1,0[ . 
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(2) Mutation  producing      offspring     individuals, ),,0( 2

ji

j

i N δ+Α=Α  

λμ ,,2,1,,,2,1 == ji , where ( )2,0 δN  denotes Gaussian noise with mean 

value of 0 and deviation of 2δ . The deviation of the noise can be constant or 

changing with time ]12[ . By mutation, each individual in the father population 
can produce λ offspring individuals. 

(3) Selection using certain choosing method to compose new father population with 
μ  individuals, whose fitness function values are the least in the μλμ +  indi-

viduals 
(4) Repeat steps (2) and (3) until the fitness function can  meet the requirement or 

reach  the   maximum running degree. The highest fitness individual in the final 
population will be the result. 

3   Fusion Experiment and Discussion 

The fusion experiment has been done in two sets of multi-focus images. The test im-
ages are showed in Figs. 2(a), 2(b) and 3(a), 3(b), their sizes are 640480×  and 

512512×  respectively, they contain several objects in different distances to the cam-
era, and only one object in each image is in focus. Using the fusion techniques we can 
make clear all the objects in the fused images. The fused images of WT method and 
the proposed method (using bior3.7 wavelet and level=3) are shown respectively in 
Figs.2(c), 2(d) and Figs. 3(c), 3(d). From the obtained results, we find that the fused 
images of the proposed method are of more richer in detail information than those of 
the WT method. 

The fusion experiment has been done in two sets of multi-focus images. The test 
images are showed in Figs. 2(a), 2(b) and 3(a), 3(b), their sizes are 640480×  and 

512512×  respectively, they contain several objects in different distances to the cam-
era, and only one object in each image is in focus. Using the fusion techniques we can 
make clear all the objects in the fused images. The fused images of WT method and 
the proposed method (using bior3.7 wavelet and level=3) are shown respectively in 
Figs.2(c), 2(d) and Figs. 3(c), 3(d). From the obtained results, we find that the fused 
images of the proposed method are of more richer in detail information than those of 
the WT method. 

Performance of fusion results is evaluated by the total cross entropy measure and 
spatial frequency. Total cross entropy measure has already been shown in Eq.(9). 

Spatial  frequency  is directly related to image clarity ]13[ . It  is  used  to  measure  the 
overall activity level of an image. For an MN ×  image Z , whose gray value at pixel 
position ( )mn,  is denoted by ( )mnZ , , its spatial frequency is defined as: 

22 CZRZSZ +=  (11) 

where RZ  and CZ are the row frequency 

( ) ( )( )
= =

−−=
N

n

M

m

mnZmnZ
NM

RZ
1 2

21,,
1

   (12) 
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and column frequency 

( ) ( )( )
= =

−−=
M

m

N

n

mnZmnZ
NM

CZ
1 2

2,1,
1

  (13) 

Table 1 shows the evaluation of the two sets of  multi-focus images. Compared 
with the WT method, we find that the spatial frequency values of the results obtained 
by the proposed method is large and the total cross entropy is small. It indicates that 
the fusion results obtained by our method have higher clarity and less difference with 
the two source images. Looking carefully, we can find that the detail of the fused 
images of the proposed method is much clearer than those of the WT method. 

    
(a)                                                                (b) 

    
(c)                                                               (d) 

Fig. 2. Fusion results of  Lab images. (a)  Lab1 (focus on the clock); (b) Lab2 (focus on the 
student); (c )  Fused image by WT method; (d) Fused image by the proposed method. 

Table 1. Total cross entropy and spatial frequency of fusion results obtained by  WT method 
and the proposed method 

Lab images  Clock images   
W T  

method 
The poposed  

method 
W T  

method 
The proposed  

method 
Total cross entropy 0.6393 0.0144 0.1853 0.0195 
Spatial frequency 31.7464 39.4748 31.0757 34.5398 
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(a)                                                                (b) 

    
(c)                                                               (d) 

Fig. 3. Fusion results of  Clock images. (a)  Clock1  (focus on the right part); (b) Clock2  (focus 
on the left part ); (c) Fused image by WT method; (d) Fused image by the proposed method. 

4   Conclusion 

A pixel level multi-focus image fusion method based on multi-resolution wavelet de-
composition, SOFM neural networks and evolution strategies has been proposed in this 
paper. The advantage of this method is that the multi-direction and multi-scale infor-
mation of wavelet decomposition without down-sampling are fully used to extract 
normalized feature image, but inverse wavelet transform process is avoided by adopt-
ing SOFM neural networks to partition the regions according to clarity difference and 
evolution strategies to determine optimal fusion factors.The experimental results show 
that the proposed method can keep the edge information of two spatially registered 
images to utmost extent and also achieve better fusion performance than WT method. 
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Abstract. Kotler and Trias De Bes (2003) at Lateral Marketing defined the 
creativity: each cluster had its own concepts, when a new need was generated 
and the designer could not find a solution from his own clusters, therefore he 
had a gap to overcome. This gap was as the original of creativity. If he wants to 
solve this problem, chose a new important concept for beginning was the only 
way he could do. This phenomenon was called the laterally transmitting. Then 
according to the designer’s subjective to choose the concept and connected 
other cluster to generate or enter a new cluster. This kind designing process 
could generate a creative product. But it also brought a new problem, there had 
many concepts in conceptual space, how to decide an effectiveness concept and 
extents it to create a good product. Here we combined Watt’s (2003) Small 
World model and Ohsawa and McBurney (2003) Chance Discovery Model to 
decide the creative probability and decreased the searching path length. Finally, 
we integrated the choosing mechanism and recombination mechanism into our 
chance based IEC (CBIEC) model. And we applied on the cell phone design. 
After the experiment we analyzed the interactive data found the choosing 
mechanism could bring the effective creativity and the recombination 
mechanism could quickly search as we expected the short-cut effect. Beside 
these results we also directly investigated the subjective of designer found our 
CBIEC model also better than the IGA (interactive genetic algorithms, Caldwell 
and Johnston, 1991). 

Keywords: lateral marketing, chance discovery, small-world, interactive 
evolutionary computation (IEC), value-focused thinking (VFT). 

1   Introduction 

In recent years what the creativity was, it was one of the hot researching topics, and 
the Kotler and Trias De Bes at 2003 in their lateral marketing had already defined it. 
When the new need as the creating purpose or the new environment was happened, 
then the product would be modified to suit it. It meant the laterally marketing was not 
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only a new marketing but also made a good product for consumer. Unfortunately, the 
Kotler and Trias De Bes only propose the conceptual model, did not supply the 
operating model. Here we believed only the dynamic and interactive evolutionary 
model had a chance to include the laterally transmitting and vertical transmitting in 
same process as Fig.1. 

 

Fig. 1. A dynamic model of lateral marketing and vertical marketing 

Because in the interactive process the system was not only gave the designer 
stimulating information to drive him defined the creativity, but also let the designer 
could design a creative product in his mind. Therefore the system must give the 
choosing and recombining power to the designer, let him could try to do the laterally 
transmitting. Then the creative designing problem became how to help the designer 
decided in which concept could effectively help him found a new creativity and 
recombining the concepts to build a creative product. Fortunately, Ohsawa and 
McBurney (2003) proposed the concept of Chance Discovery: analyzed whole 
network and found the key terms was used to calculate the probability of key terms to 
connect other cluster. The whole processed as building the random graph. Finally, 
according to these probabilities discovered the important key term and it as the 
chance. Therefore, in this study we believed that the designer’s intention could drive 
him understanding every key term and chose the important key term to builds the new 
creative product in his mind. But this method lacks experiment’s results to evidence 
that it can quickly reach. At 2003 the Watts’s Small World model evidenced about 5-
7 times could solve the problem. 

From Fig.2 we found the Small World’s area, in there connected any two points 
only needed a few path length. This was because the clusters were overlapping each 
other and the components also connected each other as an affiliation network. 

α  

Fig. 2. Compare paths length (L) with clustering coefficient (C). The area between the two 
curves is small-world network. (Watts, 2003). 
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Fig. 3. Affiliation networks (Watts, 2003) 

As in Fig.3, analyzing the movies and actors data, could find their relationship as 
bipartite networks, and this network was divided two separating networks, one was 
the affiliation networks for actors and the other was the cluster overlap networks. If 
we wanted to find any actor from a special actor, the first thing was that we must 
identify this actor’s attribute to separate the possible cluster from the cluster overlap 
network. Then we also were according the actor’s affiliation networks to analyze 
which cluster had high probability, and this algorithm could small down the searching 
area. That is why the small world searching mechanism could quickly find the other 
actor. 

But how to define the designing space, the Keeney (1992), firstly he analyzed the 
problem then defined the objective space. Finally according to the value network 
assembled the context space. The Corner, Buchanan and Henig (2000) at their 
dynamic system also used the same method, from the VFT (value-focused thinking) 
decided the alternative, and AFT (alternative-focused thinking) would stimulate the 
designer to find the creating value and modify his VFT. And all of them believed that 
the brainstorming was a useful method to build the complete problem space.   

From above discussed we found some important mechanisms, one was the 
choosing mechanism in which was not only a kind of the lateral transmitting, but also 
was a starting point for the creating design. The other was that the recombination 
mechanism based on the chance discovery decided the important key term and 
recombined with good product as a shot-cut in designing process. 

2   Methodology of CBIEC Model 

From the Kotler and Trias De Bes at 2003 in the lateral marketing had clearly defined 
what the creativity was. Because the designer had his personal need to generate a new 
creating purpose or a new product. Therefore, our model supplied the choosing 
mechanism and recombination mechanism for the designer. The choosing mechanism 
was that according to his preference decided what component was the designer 
wanted. Then he would choose a new component as the chance of laterally 
transmitting. And the recombination mechanism was the power that the designer how 
to assemble the new component with the best chromosome as the anchor to make a 
creative product. 
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2.1   The Choosing Mechanism  

Because the CBIEC model has two kinds of choosing mechanism, first is the designer 
based on his value network to estimates the product and chooses the elitism 
chromosomes b. It likes Ohsawa’s (Llorà, et al., 2004a; Llorà, et al., 2004b; Ohsawa, 
Benson and Yachida, 1998; Ohsawa, 1999) model identifies the term, the system will 
according to Eq. 1 lock set b as the anchor,. 

=

= p

i
i

c

CS

CS
b

1

 

(1) 

CSc the score is given by the designer for cth chromosome, and p is the population 
size. 

Secondary choosing mechanism is only the CBIEC model has. When the designer 
changes his purpose, secondary choosing mechanism supplies the limited products 
(the population size is 6.) for him to decide his preferable direction. Because this 
operation according to the designer’s subjective, it can help the designer to discover 
the chance: our model allows him has a choosing power to select his favorite 
component’s a. He will use the component’s a links to another cluster, then the a also 
as the chance to accomplish his idea and the a will be the chance to makes a creative 
product. The choosing mechanism is shown on following figure 4. 

 

Fig. 4. Choice mechanism 

It also points out that the choosing mechanism likes a chance which can connect 
another cluster. And this works as the laterally transmitting, the designer can start 
here to do the new design. Therefore, our system must supply the components 
selecting operation for designer as above figure 4. And we adopt the concept of shot-
cut in Small World, it follows Eq.2 to calculate the linking probability to every 
creative direction. And according to these probabilities chooses the direction as a 
chance to start the new design. 
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(2) 

The a is the probability for entering the shot-cut in Small World. The SGks is the g 
level on k attribute. 
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2.2   The Recombination Mechanism 

Passed through the choosing mechanism, the recombination mechanism can connect 
the elite allele a with the anchor b to generate a creative product ab. In our CBIEC 
model the new product is following the designer prefer the a and the b, then the 
probability to connects the ab is higher then the a connects other components. It is 
called the triadic closure (Watts, 2003). 

tt baCBIEC +=  (3) 

The at is the set a on tth generation and it is selected by designer at the secondary 
choosing mechanism. And the bt is the anchor b at tth generation and it is generated by 
evolutionary process. 

2.3   The Operation of CBIEC  

The following example shows the operation of CBIEC, and the cell phone’s 
chromosome is shown on table 1. At primary generation the chromosome is generated 
by randomness.  

Table 1. The cell phone’s chromosome 

faceplate handset screen function key number key 
1 2 … 18 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

 

Fig. 5. Process of operation 

The designer estimated all cell phones and according to Eq.1 the system could find 
the important components b is shown on the left of Fig.5. When other faceplates 
appear and some of there (a) are also selected by designer (Eq.2) as shown on second 
column in Fig.5. Then the system according to Eq.3 recombines the a with the b to 
generate the better product ab. The better products will be shown on next generation 
as the third column in Fig.5. Finally, the designer chooses a best product. The whole 
operation likes a kind of the communicating process talks with the mind in designer. 
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3   Experiment Design 

The purpose of this experiment was that recombined IEC with chance to guide the 
designer found his wanted creativity. Therefore, we developed a CBIEC system to 
help the designer created his favorite cell phone. But before developed this design 
system, we had surveyed all cell phone in the market and found the cell phone could 
be composed by five parts as the faceplate, handset, screen, function key and number 
key. 

Therefore in our experiment the faceplate has 18 types, the handset has 4 types, the 
screen has 4 types, the function’s key has 4 types and the number’s key has 4 types. 
And the variables of IGA are shown on Table2. 

Table 2. Component’s design 

Items Context 
Coding Real coding 

Population size 6 
Crossover rate 0.65 
Mutation rate 0.01 

We had held two fields for creative design; the first time we invited the professors 
and college’s students, the second time we invited the high school’s teachers. These 
schools are all in north Taiwan. We had collected 40 samples and the recovery rate 
was 77.5% (valid data divided all samples). 

4   Experiment Result and Discussion 

In these experiments we wanted to evidence two things: the a was the chance and it 
could link other clusters as the short-cut path in Small World, the other was analyzing 
the chance process to see it could induce the creativity or not. Therefore, in this 
section firstly we used the case to subjectively explain the chance how to work in 
designing problem. Secondly, the Ohsawa’s Chance Discovery model was used to 
observe the performance of our model to find the chance. Finally, we directly 
investigated that the designer could feel the CBIEC supplied the chance for him in 
designing process. 

4.1   Case Study 

Here we have two kinds of case. 

Case 1: 
At primary the designer cumulated what components was he wanted, it liked 
cumulating the anchor b and let the b did not easily disappear on evolving process. 
The other part the a was generated by randomness, at the creative design was 
depended on good and creative a helped him enter another cluster as the short-cut in 
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Small World: imaged which a connected with b could become the creative product 
ab. The products ab were shown on right side of Fig.6. Then we compared every 
generation’s ab, found the change of product between the generations was not 
smoothing, it seemed jumping into other cluster. And compared the ab’s score with 
the b’s score, the results were shown on table 3. It showed the ab’s score was better 
than the b’s score. 

 

Fig. 6. The CBIEC evolving process 

Table 3. Result of b and a scores 

generation b a 
Accomplishment 
(1-(g-(b+a))/g) 

1 0 4 0.8 
2 2 2 0.8 
3 1 4 1 

g: allele’s size, 

Case 2: 
In this case the designer at the choosing mechanism selected some components a to 
assemble the product ab, but the ab’s score was not higher than b’s score, it seemed 
that the ab did not clearly response the designer’s wanted. But when the anchor b was 
locked by designer then ab’s score could be higher than b’s score and quickly reached 
his wanted.  

These cases all evidenced that the a could help the designer selected useful 
components as the anchor b and according to a connected another cluster as the short-
cut in the Small World, then recombined the a with b to make the creative ab. Beside 
this, our model according to a linked the other cluster as the lateral transmitting, it 
meant the ab also obeyed the creativity of Kotler’s definition. 

Table 4. ab’s and b’s score of case 2 

generation ab score b score generation ab score b score 
2 6 6 8 5 4 
4 3 5 9 9(ab=b) 
5 3 7 10 10 8 
7 5 4  
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Fig. 7. Evolutional process 

4.2   The Performance of Chance Process 

Here we used the evolving data and the random graph method to building the 
evolutionary key graph. Because the first generation the all chromosomes were 
generated by random, and we used the score to separate the cluster. Then we could 
see there were 5 clusters (1, 2, 3, 4, and 5) in Fig. 8 and some components were linked 
to two or three cluster. There seemed that these components were more important 
then other only belong to the one cluster and we called these components as the key 
terms. And Followed the CBIEC process to generate the secondary offspring, we 
could find the some key terms were still strongly connected the higher score’s cluster 
to become an anchor in the evolutionary. And this phenomenon was not usually 
passed through a few generation could observing it. At last we used key graph to 
show all data, and clearly found a strong anchor was at the central of graph and it also 
was accepted by many cluster. This result demonstrated that the anchor was as our 
model defined, it could increase the converging speed and our model also could lock 
the anchor in evolutionary. 

  

Fig. 8 Fig. 9 

  

Fig. 10 Fig. 11 
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Fig. 12 

In our model also defined the a as the chance: from the key graph we could find 
the pink circles were around the cluster, but there did not like the anchor were linked 
almost all clusters, only a few clusters were linked to them. From the Osawa’s model 
the chance were defined as following: 

It must have some cluster on the key graph. 
Some individual key terms and some of these key terms have linked to few 

clusters. 
These few key term is called the chance, there also as the a in our model. 
We followed the above algorithm and the importance in the design to calculate the 

individual key terms, the faceplate 14 was the most important key term, and the result 
was shown on Figure 12.  

)(TimesSumx =  

)( ifAvgy =  

The x axis is the selecting frequency of the component and the y axis is the average 
score of the component. This result also demonstrated our secondary choosing 
mechanism was the chance maker. 

Then the recombination mechanism in our model was depended the Eq.3, the first, 
we compared the virtual product ab with the best chromosome, the result also was 
shown on table 6 and the virtual ab was significantly better than the best 
chromosome, the mean were 8.11 and 6.64. It could demonstrate our recombination 
mechanism as we expected it could jump to the creative area as the designer’s wanted.  

Table 6. t test between ab and b 

Method N Mean Sig. 
ab 15 8.11 

the best chromosome 12 6.64 
0.008<0.05 

4.3   Investigate the Chance in Designer’s Mind 

In this section we wanted to directly evidence one thing: the designer cold feel that 
the secondary choosing and the recombination by CBIEC could help him to make a 
creative product.   
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Table 7. t test of evolution times 

  N Mean Sig. (2-tailed) 

IGA 16 10.00 
Evolution times 

CBIEC 15 6.67 
0.308 

At first the t-test was used to compare the speed of convergence of CBIEC and 
IGA, there were not significant difference, but the CBIEC was still faster than IGA. 

And table 8 was directly asked the designer: secondary choosing mechanism could 
help him chose a creative a and entered another cluster as the short-cut in Small 
World to design the favorite ab. The result was that at the 95% confidence about 
79.7% designer agreed it.  

Table 8. t test of question 

Test Value = 3.986 Question 
Sig. (2-tailed) 

Choosing mechanism could help him create the favorite cell phone 0.047 

Table 9. t test of question 

QUESTION METHOD N Mean Sig. (2-tailed) 
IGA 16 3.69 6 Cell phone is your need 

CBIEC 15 4.07 
0.088 

IGA 16 3.56 7 It is a creative cell phone 
CBIEC 15 4.13 

0.127 

IGA 16 3.56 9 Do you like 
CBIEC 15 4.00 

0.090 

IGA 16 3.88 11 It worth to buy 
CBIEC 15 3.93 

0.841 

IGA 16 3.63 14 Easily operate 
CBIEC 15 4.00 

0.112 

IGA 16 2.50 16 Next generation your feasible cell phone will be disappeared 
CBIEC 15 1.93 

0.061 

IGA 16 3.81 17 System know what you need 
CBIEC 15 4.13 

0.242 

IGA 16 2.63 18 The cell phone usually is not your want 
CBIEC 15 2.07 

0.103 

Recombined the a with b to assemble the creative ab at the CBIEC, it increased the 
communication with the designer in designing process. But IEC lacked the chance 
process and the recombination, the designer only waited the evolutionary process to 
generate the new product for him to estimate the cell phone. Therefore the question 16 
was significant. At the question 17 and 18 were asked designer: the ab was as same as 
the design on his mind and the results were near significant. The above analysis 
results also evidenced our chance process was useful to help the designer 
communicated with himself and designed what product was he wanted. The question 
6 and 7 were used to ask the designer that this product had creativity. They also 
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agreed our model could help them to design a creative product. Finally, the question 9 
and 11 were investigated they would purchase this product. We could see they had a 
high intention to buy it. Of course the CBIEC was higher than the IGA. These 
analysis results also agreed the chance process was useful method to help the designer 
to accomplish his design. 

5   Conclusion 

How to increase the ability of communication between the designer and IEC and that 
is the only way can help the designer to do the creative design. In our model the 
designer has the choosing and the recombination power to guide the evolutionary 
direction. It could quickly make a creative product as he imaged  in his mind. The 
results of statistics analysis evidenced our model could help the designer to design a 
creative product. We also followed the Osawa’s method to check the secondary 
choosing, the a was the key term on the key graph and the a also had the weak links 
between the two clusters. This result supported that the a was the chance. 
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Abstract. In the standard GA, the individual has no intelligence and must act 
upon some rules established by a programmer in advance, such as various genetic 
operator. The result is to make the evolutionary process to be trapped into the 
local optimization of the objective function. In order to solve this problem, 
through studying the structure of an agent and selection operator, the paper 
designs a new genetic algorithm based on agent, called AGA (Agent-based 
Genetic Algorithm). At the premise of giving the definition of the outer 
environment where an agent lives and of an agent’s belief, this paper gives some 
rules on how an agent selects one agent to cross their genes and some rules on 
how to solve competition. In addition, a communication method based on 
blackboard is presented to solve the communication among the agent society. 
Finally, the paper gives the structure of AGA and the simulation result for a 
multi-peak function, which demonstrates the validity of the AGA. 

1   Introduction 

Genetic algorithm (GA) is a stochastic optimization methods inspired by the biological 
mechanisms of evolution and heredity, which were first developed by Holland in the 
1960s[1]. From the view of society, the principle of genetic algorithm (GA) is an 
evolutionary process of a society including lots of individuals. Each individual has a 
fitness, which values the performance of an individual. If an agent has a higher fitness 
value than the other agents, it can enter into next generation with higher probability[2]. 
In recent years, GA have been widely used in various fields, for example, global 
numerical optimization, combinatorial optimization, machine learning, and many other 
engineering problems[3~4]. But in the Canonical GA, each individual has no 
autonomy, and can’t select another individual at his will to cross their genes. 

Agent is an important subject in the field of distributed artificial intelligence and has 
been widely used in other branches of computer science. Reference [5] considered an 
agent as a physical or virtual entity that essentially has four properties: 1) It is able to 
live and act in the environment. 2) It is able to sense its local environment. 3) It is 
driven by certain purposes. 4) It has some reactive behaviors. These properties show 
that an agent has his own autonomy and he can do something at his will. But the ability 
of an agent is limited for solving complex problem, so we must use lots of agents 
(Agent society). 
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Considering that GA has many individuals but each individual has no autonomy and 
agent has autonomy, this paper integrates GA with agent and designs a new algorithm, 
called AGA (Agent -Based Genetic Algorithm). In this algorithm, each individual is 
recognized as an agent and the set of individuals is recognized as an agent society. 

The rest of this paper is organized as follows: Section 2 describes the structure of an 
agent including the definition of belief and environment. Sections 3 gives the 
competition rules and the communication method based on the blackboard. Section 4 
describes the structure of AGA. Section 5 shows the simulation result, for solving the 
global numerical optimization. Finally, conclusions are presented in Section 6. 

2   Structure of the Agent for GA 

Each agent corresponds to an individual in GA population, which intelligence is 
exhibited through it’s belief, desire and intention. According to the real situation, the 
structures of the agent for GA is designed based on the BDI model presented by 
Bratman, illustrated as Fig. 1. 

Each agent has two properties: name and 
performance value. The name property is an 
agent’s ID and unique. The performance 
value evaluates the agent, the more higher 
the value is, the more better the agent is. 
The performance value corresponds to the 
fitness value in GA. In this paper, an 
agent’s property is described by a 2-tuple: 

,ID v< > . 
The set of all agents’s property forms the 

environment in which an agent lives. Assume the population has n  agents and the 
property of the agent i  is ip = ,i iID v< > , then the environment can be defined as 
below: 

Def 1: The environemt is defined as a n -tuple: 1 2, , , np p p< > . 

For GA, an agent’s goal is to prompt his performance value through cooperating 

with other agents or competing with other agents. In section 3, competition rules will be 

discussed in detail. 
In the semantic, an agent’s belief states corresponds to the extent to which he can 

determine what world he is in. In a given world, the belief state determines the set of 
worlds that the agent considers possible. For AGA, the belief state determines the set of 
agents with which he maybe cross his gene. In traditional GA, two individuals are 
selected randomly and cross their genes. But in nature, it’s unpractical. For example, a 
man and a woman can’t hold a marriage if they are not familiar with each other. For 
AGA, the right of selection is left to agent. The belief is defined as below: 

Def 2: Assume the performance value of an agent i  is 
i

v , the belief states 
i

B  of an 

agent i  is defined as : 

knowledge

database 

goal belief 

action 

environm
ent 

Fig. 1. The Structure of the agent for GA 
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{ | | | , 0 1, is an agent}
i i j i

B j v v v jα α= − < < ≤  (1) 

In Equation (1), α  is a selection factor. The more bigger α  is, the more broader the 
range of selection is. From equation (1), we can know that if an agent has higher 
performance value than the other agents, he has more candidates to select than the other 
agents. It is beneficial for an agent with high performance to propagate his gene.  

The knowledge database stores the knowledge on how to select another agent  to 
exchange their genes. The knowledge is described by “if-then” rules. For AGA, there 
are some rules as below: 

1) if iB = ∅ , then select nothing; 

2) if ( iB ≠ ∅ ) ∧ ( j is the best) ∧ ( ij B∈ ), then select j ; 

3) if j  has been selected by another agent, then select the second best in iB ; 

4) if the best and the second best has been selected by other agents, then selects an 

agent from the rest in iB ; 

5) if all agents in iB  have been selected by the other agents, then selects nothing; 

For AGA, an agent has five actions: select, cross, calculate, mutate and percept. The 

five actions are defined as below: 

select( j ): means that an agent selects the agent which ID is j ; 

cross( j ): means that an agent crosses his gene with the agent which ID is j ; 

calculate( ): means that an agent computes his performance value; 

mutate( ): means that an agent changes one bit in his gene with probability mp ; 

percept( ): means that an agent percepts the outer environment; 

The quantity of the action an agent has corresponds to it’s ability. From the five 
actions, we can know that an agent can percept the outer environment, select an agent, 
cross his gene with an agent he selected and compute his performance value. 

3   Competition Rules and Communication Method 

To improve his performance value, an agent must select another agent to cross their 
genes. During the process of selection, there exist competition. For example, when an 
agent is selected by at least two agents, the competition emerges. For solving this 
conflict, we can establish some rules in advance. 

Let’s suppose that 1 2, ,α α  and mα  selects β  at the same time, where 1α , 

2α , , mα  and β  are agent. We left the selection right to agent β  and set four rules 

as below: 

1) if ,( 1,2, , )i B i mα ∉ = , then β  selects the best agent in { 1α , 2α , , mα }; 

2) if only i Bα ∈ , then β  selects iα ; 



 Design of the Agent-Based Genetic Algorithm 25 

 

3) if 1 2, , ,i i ik Bα α α ∈ , then β  selects the best agent in { 1 2, , ,i i ikα α α }; 

4) if 1 2, , ,i i ik Bα α α ∈  and 1 2i i ikv v v= = = , then β  selects an agent randomly. 

The first descirbes that if (1 )i i mα ≤ ≤  doesn’t belong to his belief state B , he 
selects the best agent in { 1α , 2α , , mα }. This is similar to the situation when some 
young boys propose to a young girl, the young girl can select the best young boy if she 
has not an ideal person in her mind. The second is similar to that if only a young boy 
within the boys proposing to her is her ideal young boy, the young girl selects the young 
boy. The third describes that if a young girl has many ideal young boys, she selects the 
best. The fourth describes that if a young girl has many ideal young boys and these 
young boys are similar good, she randomly selects one from these young boys. 

To simplify communication among these agents in AGA, this paper presents a 
communication method based on blackboard. As described in section 2, the 
environment is a n -tuple. After an agent has finished computing his performance value, 
he must wirte down his ID and performance on the blackboard. In reality, the process of 
an agent doing action percept() is the process of an agent reading the information in the 
blackboard. Because the method is simple, it is not discussed here any more. 

4   Structure of AGA 

Based on the above description, the structure of AGA can be described as below: 

Program AGA 

Begin 

// cp , mp  are reproduction probability and mutation 
//probability respectly 

initialize the variance cp , mp ,α ; 

generate the initial population ( )p k k  =0  

each agent does action calculate; 

repeat 

each agent does action percept  

each agent does action select and cross; 

each agent does action mutate  

operate the reproduction operator on population ( )p k  to 
generate population ( 1)p k + k:=k+1; 

until convergence condition is satisfied  

End  

In AGA, the reproduction operator and the cross operator adopt the common 
operator[1]. 
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5   Simulation 

Considering the below optimization problem: 

2 2
1 2

1 2min cos(2 )cos(2 )
2

x x
f x xπ π+

= −  

The function is multi-peak function with 40,000 local mini value in [-10, 10] and 
gets the global mini value at (0,0). It’s graph in XOZ plane illustrated as Fig.2. 

 

Fig. 2. The graph of the function f  in XOZ plane 

In the process of simulation, we adopt binary coding, the search space is {( 1x , 

2x )| 1 210 , 10x x− ≤ ≤ }, the size of the population is 10, the length of the string is 16, 

cp =0.7, mp =0.1 ,and . The simulation result is listed as Table 1. 

From the simulation result, we can know that the probability of AGA convergencing 
to global optimization is higher than the SGA(Standard Genetic Algorithm). 

Table 1. The simulation result 

GA No 
The steps of mean 

convergence 
The number of 

convergencing to 
global solution  

The convergencing 
probability 

SGA 
1 
2 

85.23 
82.22 

37 
41 

88.33  
85.00  

AGA 
1 
2 

57.10 
55.12 

53 
50 

90.00  
98.33  
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6   Conclusion 

Based on agent, a new genetic algorithm, AGA, has been proposed in this paper. 
Through integrating the GA with agent, this paper designs the structure of an agent for 
genetic algorithm, gives the definition of belief, action and environment. To solve the 
competition among agents, some rules are given. The simulation result shows that this 
algorithm can converge to global optimization solution with higher probability than 
SGA(Standard Genetic Algorithm). Comparing with SGA, an individual in AGA has 
autonomy. 
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Abstract. This paper proposes an improved genetic algorithm for producing 
aesthetically pleasing drawings of general undirected graphs. Previous undirected 
graph drawing algorithms draw large cycles with no chords as concave polygons. 
In order to overcome such disadvantage, the genetic algorithm in this paper 
designs a new mutation operator single-vertex- neighborhood mutation and adds a 
component aiming at symmetric drawings to the fitness function, and it can draw 
such type graphs as convex polygons. The improved algorithm is of following 
advantages: The method is simple and it is easy to be implemented, and the 
drawings produced by the algorithm are beautiful, and also it is flexible in that the 
relative weights of the criteria can be altered. The experiment results show that the 
drawings of graphs produced by our algorithm are more beautiful than those 
produced by simple genetic algorithms, the original spring algorithm and the 
algorithm in bibliography [4]. 

1   Introduction 

A number of data presentation problems involve the drawing of a graph on a limited 
two-dimensional surface, like a sheet of paper or a computer screen. Examples include 
circuit schematics, algorithm animation and software engineering. In almost all data 
presentation applications, the usefulness of a drawing of a graph depends on its 
readability, that is, the capability of conveying the meaning of the diagram quickly and 
clearly. Readability issues are expressed by means of aesthetics, which can be 
formulated as optimization goals for the drawing algorithms. Many aesthetic criteria 
can be conceived of and the generally accepted ones include: 

  Uniform spatial distribution of the vertices. 
  To minimize the total edge length on the precondition that the distance between 

any two vertices is no less than the given minimum value. 
  Uniform edge length. 
  To maximize the smallest angle between edges incident on the same vertex. 
  The angles between edges incident on the same vertex should be as uniform as 

possible. 
  Minimum number of edge crossings. 
  To exhibit any existing symmetric feature. 

While these criteria are useful measures of aesthetic properties of graphs, this is not 
an exhaustive list and there are other measures that can be used [1] . 
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It is not easy to locate the vertices of a general undirected graph so that it conforms to 
aesthetically pleasing principles of layout. There are many different strategies that can 
be used to draw a general undirected graph. One method is to use the spring model 
algorithm [2]. The algorithm likens a graph to a mechanical collection of rings (the 
vertices) and connecting springs (the edges). Two connected rings are attracted to each 
other or repelled by each other according to their distance and the properties of the 
connecting spring. A state with minimal energy in the springs corresponds to a nice 
drawing of the underlying graph. However, the spring method is likely to be trapped by 
local optima and thus obtains very poor drawings. Another method is to use simulated 
annealing algorithm [3]. Davidson and Harel have used the algorithm to draw undirected 
graphs. This algorithm produces drawings that are comparable to those generated by 
the spring model algorithm. However, the algorithm does not produce conventional 
looking figures for a large cycle with no chords. While this is normally drawn as a large 
circle, this algorithm tends to draw the cycle curled around itself and thus obtains a 
concave polygon but not a convex one. And also the simulated annealing algorithm is 
likely to be trapped by local optima and thus obtains very poor drawings. Eloranta and 
Mäkinen [4] present a GA for drawing graphs with vertices over a grid and use several 
operators but remark on the lack of a good crossover operator. And also the algorithm 
draws a large cycle with no chords curled around itself. 

A graph G= V, E  is formed by a set of vertices V and a set of edges E. It may be 
represented in different styles according to the purposes of the presentation. We are 
interested here in producing aesthetically-pleasing 2D pictures of undirected graphs. 
Vertices will be drawn as points in the plane inside a rectangular frame and edges will 
be drawn as straight-line segments connecting the points corresponding to the end 
vertices of the edges. So the problem of graph drawing reduces to finding the 
coordinates of such points. This paper concentrates on constructing the straight-line 
drawings of general undirected graphs with genetic algorithms. The algorithm has the 
following four advantages: 

 The figures drawn by the algorithm are beautiful. 
 it can draw large cycles with no chords as convex polygons. 
 It is simple and it is easy to be implemented. 
 It is flexible in that the relative weights of the criteria can be altered. 

2   The Genetic Algorithm for Drawing Undirected Graph 

The most important thing of solving graph drawing problems with genetic algorithms is 
to design fitness functions according to the adopted aesthetic criteria. The fitness 
function is given in section 2.2, and the various elements of the algorithm are illustrated 
in the following subsections. 

2.1   Encoding 

Let G= V, E be a finite, undirected, simple graph. Let n= V  denote the number of 
vertices of G, and let m= E denote the number of edges of G. Suppose the vertices 
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sequence of a graph G is v1 v2 vn , and the coordinates assigned to them are 
x1 y1 x2 y2 xn yn , respectively. The algorithm uses a real number 

vector x1 y1 x2 y2 xn yn  with the length of 2n to denote the solution to the 
problem. In order to draw graphs inside a rectangular frame in the plane, we add the 
following constraints: 

a xi b c yi d 

2.2   Fitness Function 

The algorithm designs the following fitness function according to the aesthetic criteria 
, which are stated in Section 1. The fitness function is interpreted as follows: 
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pi is the position vector of vertex vi , dij is the Euclidean distance between points pi and 
pj and dic is that between point pi and the center of the rectangular frame. The first and 
the second terms make the points distributed evenly and minimize the total edge length 
of graph G. The value of the first term will decrease if the points in the plane get too 
close, while that of the second term will decrease if the points get too far. In the third 
term, nsedgelengthideal /_ =  is the desired edge length, where s = d c b a  is 
the area of the rectangular frame in the plane. The length of each individual edge will be 
as close as possible to the parameter ideal_edgelength because of the third term, and 
thus be uniform. pjpipk in the fourth and the fifth term is the angle between edges 
incident on the point pi, degree(pi) in the fifth term is the vertex degree of point pi. 

),( lkji ppppCross  in the sixth term is defined as formula (2). It can be calculated by 
means of analytic geometry according to the coordinates of end points of the two 
straight- line segments ji pp  and lk pp . The seventh and the eighth terms make 
drawings symmetric if such feature exists. wi is the weight of criteria and it is a 
constant. They control the relative importance of the seven criteria and compensate for 
their different numerical magnitudes. The drawings produced by the algorithm can 
widely vary by modifying these constants. 

(1) 
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∞

= 1

0

),( lkji ppppCross  

2.3   Selection 

In order to avoid premature convergence, we perform a sigma proportional transform- 
ation on each individual’s fitness value [5], i.e., for the fitness value f(i) of the i-th 
individual, at first we apply the following formula to f(i) to transform it into ExpVal(i): 

 >−+= .0)(,1
.0)(,)(2/))()((1)( tif

tifttfifiExpVal σ
σσ  (3) 

where f(t) is the average fitness value of the t-th generation population, and )(tσ is the 
standard deviation of the t-th generation population. After such transformation, the 
algorithm then uses elitist fitness proportionate selection mechanism for ExpVal(i) to 
select chromosomes for reproduction. The best individual in the population is always 
passed on unchanged to the next generation, without undergoing crossover or mutation. 

2.4   The Design of Genetic Operator 

The algorithm has three types of genetic operations: crossover, mutation and inversion. 
The crossover operator is defined as follows: The single-point crossover generates two 
new graph layouts by randomly selecting one vertex and exchanging the corresponding 
coordinates between the parent graphs. The mutation operators are applied sequential 
and independently from crossover. They are defined as follows: 

The non-uniform mutation[6] – If S=  v1, v2,…,v2n is a chromosome and the 

element vk is selected for this mutation the domain of vk is [ak, bk] , the result is a 

vector  S = nkk vvvvv 2121 ,...,,,...,, ′− with k 1,…, 2n, and 

 kv′ =−Δ−
=−Δ+

,1)(
,0)(

cifavtv
cifvbtv

kkk

kkk (4) 

Where c is a random number that may have a value of zero or one, and the 
function )( ytΔ  returns a value in the range [0, y] such that the probability of 

)( ytΔ being close to 0 increases as t increases: 

)1()( )/1( λTtryyt −−=Δ (5) 

where r is a random number in the interval[0, 1], t is the current generation number, T is 
the maximum number of generations, and is a parameter chosen by the user, which 
determines the degree of dependency with the number of iterations. This property 
causes this operator to make an uniform search in the initial space when t is small, and a 
very local one in later stages.

If straight-line segments ji pp and lk pp don’t intersect . 

If straight-line segments ji pp and lk pp intersect . 

If straight-line segments ji pp and lk pp  overlap . 
(2) 
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The single-vertex-neighborhood mutation-choose a random vertex and move it to a 
random point in the circle of decreasing radius around the vertex’s original location. 
Suppose that vertex vi xi,yi is chosen for mutation, then the new coordinates ii yx ′′,  
of vi are defined as follows: 

+=′
+=′

θ
θ

sin
cos

ryy
rxx

ii

ii

where radius r=ideal_edgelength*(1-t/T); [0, 2  is an angle randomly produced; 
The meanings of t, T and ideal_edgelength are the same as above. As can be seen, the 
radius r is decreasing as the algorithm proceeds. 

The last genetic operation is inversion. Inversion works by randomly selecting two 
inversion points within a chromosome and inverting the order of genes between the 
inversion points, but remembering the gene's meaning or functionality. If 

S=(v1,…,vi,…,vj,…,v2n) 

is the parent vector and the two inversion points are i and j then the offspring vector 
will be 

S =( v1,…,vi-1,vj,vj-1,…,vi+1,vi,…,v2n) 

In order to avoid swapping x-coordinates for y-coordinates, we add the following 
constraint: 

(j–i)mod 2=0 

2.5   Determining the Termination Condition of the Algorithm 

The termination condition is just a check whether the algorithm has run for a fixed 
number of generations. 

3   Experimental Results and Analysis 

The algorithm described above was implemented and run on a PC with Celeron 1.7 GHz 
CPU, 128MB RAM. The experimental parameters values are shown as table 1. The 
simple genetic algorithm and our algorithm were applied respectively to six test graphs 
with the number of vertices ranging from 4 to 28. For each class of graphs, the two 
algorithms were run 20 times, respectively. Table 2 shows the mean fitness value of the 
two algorithms. As can be seen, our algorithm is much better than the simple genetic 
algorithm under the same condition. The experimental results are shown as figures 1-8. 
Figure 1 shows three different outputs of three different algorithms for the same cycle. 
Figure 1 a is the output of the algorithm in bibliography [3]; Figure 1 b is that of the 
algorithm in bibliography [4]; Figure 1 c is that of our algorithm. Clearly, Figure 1 c
is the best because it is a convex polygon while the other two are concave polygons. 

Figure 2 a  shows a rectangular grid input graph with random locations for the 
vertices. Figure 2 b is the output of the simple genetic algorithm. Figure 2 c is that 
of our algorithm. Figure 2 c took 14.000547 seconds using 675 generation. As can be 
seen, the drawing produced by our algorithm is more beautiful than that produced by 
the simple genetic algorithm under the same condition.  

(6) 
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Table 1. The parameters value of experiment 

Parameters Parameters value 

Population size 30 

Generation count 1000 

Crossover probability 0.75 

Mutation probability 0.25 

Inversion probability 0.20 

Table 2. Compare our algorithm with the simple genetic algorithm 

Number of vertices Simple GA GA in this paper 
4 0.106244 0.236976 
7 0.106602 0.224305 

11 0.104997 0.215806 
16 0.103219 0.222807 
25 0.062136 0.200684 
28 0.054096 0.200018 

 

(a)      (b)      (c) 

Fig. 1. Three different outputs of three different algorithms for the same cycle 

Figure 3 shows two different layouts of the same graph with bridges. Figure 3 a  is 
the layout produced by the original spring algorithm[2]; Figure 3 b is the layout 
produced by our algorithm. Clearly, Figure 3 b is better than Figure 3 for the 
uniform edge length.  

Figure 4 shows two different drawing of the same graph produced by two different 
algorithms. Figure 4 a  is the drawing produced by the algorithm in bibliography [4]; 
Figure 4 b is that produced by our algorithm. Clearly, Figure 4 b  is better than 
Figure 4 a because Figure 4 b has no crossing. 
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(a)      (b)      (c) 

Fig. 2. A random input and the corresponding outputs of simple genetic algorithm and our 
algorithm 

        

(a)       (b) 

Fig. 3. Two different layouts of the same graph with bridges 

     

(a)       (b) 

Fig. 4. Two different outputs of two different algorithms for the same graph 
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Figure 5 is an output for a tree. Figure 6 is an output for a disconnected graph. Figure 
7 a shows an output for a rectangular grid graph with 25 vertices and 40 edges. Figure 
7 b is an output for a triangular grid graph with 15 vertices and 30 edges. Figure 8 is 
other sample outputs of our algorithm. 

            

Fig. 5. An output for a tree Fig. 6. An output for a disconnected graph 

  

(a)        (b) 

Fig. 7. Outputs for two grid graphs 

      

Fig. 8. Simple examples 
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4   Conclusions and Further Work 

This paper has proposed an algorithm for producing aesthetically pleasing drawings of 
general undirected graphs. The primary advantage of our algorithm is that it can draw 
large cycles with no chords as convex polygons. This overcomes the disadvantage of 
previous undirected graph drawing algorithms drawing such type graphs as concave 
polygons. In addition, it is flexible in that the relative weights of the criteria can be 
altered. The experiment results show that the figures drawn by our algorithm are 
beautiful. The weakness of our algorithm is speed (like all that use GAs). The future 
research, based on bibliography [7], is the evolution (by a GA) of an ideal set of weights 
for the criteria - reflecting the aesthetic preferences of the user - by learning from 
examples. Those weights would then be used by the GA to layout graphs which will 
hopefully be more likely to please such users. 
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Abstract. In this paper, a novel niching approach to solve the multimodal func-
tion optimization problems is proposed. We firstly analyze and compare the 
characteristics and behaviors of a variety of niching methods as the fitness shar-
ing, the crowding and deterministic crowding, the restricted mating, and the is-
land model GA with regard to the competition, exploration & exploitation, ge-
netic drift, and the ability to locate and maintain niches. Then we put forward 
the idea that the local competition of individuals is crucial to realize the distri-
bution equilibria among niches of the optimization functions, and two types of 
niching methods, q-nearest neighbor replacement and parental neighbor re-
placement, are formulated by adopting special replacement policies in the set-
ting of the SSGA. Finally, we use a set of test functions to illustrate the efficacy 
and efficiency of the proposed methods and the DC scheme based on the 
SSGA.  

1   Introduction 

The standard genetic algorithms (GA), or the generalized evolutionary algorithms 
(EA), will converge to only one optimum of an optimization function when it is im-
plemented based on single population and fitness-based selection [1],[2],[3],[4]. The 
final population is usually consisted of the copies of a local optimum, even if the initial 
population is sampled uniformly in the feasible solution space of the optimization 
problem. There will appear the phenomenon of genetic drift when the GA is used to 
solve the multimodal function optimization problems.  

The multimodal fitness landscape of the GA in solving multimodal optimization 
problems, multi-objective function optimization, and in simulating complex and adap-
tive systems [2],[3] corresponds to the physical environment including many niches 
with high fitness that are occupied by locally evolved species through the specialized 
adaptation. In order to evolve a population that will converge to the all or most of the 
optima of an optimization problem, the niching technology has been proposed to ex-
tend the standard GA to realize the formation and maintenance of different solutions of 
local optima by reducing the effects of genetic drift, preserving the diversity of popula-
tion, and promoting the exploitation of different optima. 

In this paper, we firstly analyze the main aims of niching technology, and compare 
the characteristics of various niching methods and their affections on the behavior of 
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the GA in Section 2. Then, we propose a new type of explicit niching methods based 
on steady-state GA (SSGA) by using special replacement policy in Section 3, which is 
suitable for all styles of multimodal functions. Section 4 reports the experimental re-
sults of the proposed methods on a set of typical multi-modal functions, and investi-
gates the dynamic behavior of these methods. In Section 5, we conclude our research 
and point out some directions for the future work. 

2   Niching Methods and Comparisons 

By simulating the mechanics of natural coevolution, the niching GA tries to imple-
ment simultaneous exploration and exploitation of a number of different environ-
mental niches for multimodal problems. A niche represents a local optimum and its 
attraction basin in the multimodal function [4],[5],[6]. Whatever the niching mecha-
nism is, the final population should be distributed spatially among all or most of the 
niches. If a finite population is viewed as a resource, it should be shared among all 
niches, which means that local optima could only be exploited by a subpopulation of 
genetically similar individuals or by using limited resource (called a species).   

In the evolution process of a niching GA, different species adapt to occupy different 
niches (called local adaptation), and all of the subpopulations reach gradually the equi-
libria, which is preserved afterwards. We tend to divide the equilibria of population 
distribution for single-population GA or multi-populations GA into two types: fitness 
dependent distribution and niche-size (attraction basin) dependent distribution. In the 
former case, the number of individuals adapting to a niche is proportional to the fitness 
of the niche, such as the fitness sharing method. The speciation niching as restricted 
mating belongs to the latter case.  

We considers four styles of niching technologies [1],[3],[4],[5],[6],[7],[8]: the fit-
ness sharing (FS) proposed by Goldberg and Richardson in 1987, the crowding tech-
nique introduced by De Jong in 1975 and the deterministic crowding (DC) suggested 
by Mahfoud, the restricted mating, and the island model GA. There are many varieties 
of niching methods for solving real-world problems.  

2.1   Analyses and Comparisons  

We adopt a set of indexes to analyze different niching methods based on the their char-
acteristics and evolution behaviors, see Table 1. Although the selection operation is 
one of the main determinants for genetic drift, it is only when the selection operation is 
implemented on the total population that the GA is able to have a high exploration 
performance, and doesn’t depend on the initial population. Similarly, the replacement 
is another main determinant for genetic drift. When both or only the replacement is 
global, the competition among individuals will be global that will cause definitely the 
genetic drift in population.  

By adopting special sharing scheme, the fitness sharing method carries out global 
selection and local replacement, so that the individuals only compete with the ones in 
the same niche, and locates and maintains all or the most of niches within an enough 
large population. Since the crowding holds a global selection through random selection 
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and pairing, and CF individuals are also selected randomly from the entire population, 
so the individuals will compete globally. The DC uses two rounds of tournaments to 
decide the replacement, and the competition domain is between the local and the 
global, so that there still exists the phenomena of genetic drift to some extent. 

Table 1. Comparisons of the characteristics and behaviors of niching methods 

Niching methods 
Indexes  Fitness 

sharing 
Crowding 
and DC 

Restricted 
mating  

Island model 
GA 

a. Genetic operations:  
Selection 
Replacement 
Competition  

 
Global  
Local  
Local 

 
Global 

Global-Local 
Global-Local 

 
Local 

Global-Local 
Global-Local 

 
Local 
Global 

Global-Local 
b. Performances:  

Exploration  
Exploitation  
Genetic drift 
Locating niches  
Maintaining niches  

 
High 

Intermediate 
No 

High 
High 

 
High 
Low 
Yes 
High 

Intermediate 

 
Low 
High 
Yes 
Low  

Intermediate 

 
Intermediate 

High 
Yes 

Intermediate 
Intermediate 

c. Control parameters  Niching 
radius 

CF/No 
 

Dissimilarity 
threshold 

Migration 
policy  

d. Dependence:  
  Problems dependent  
  Initial population dependent 

 
Yes 
No 

 
No 
No 

 
Yes 
Yes 

 
No 
Yes 

The restricted mating scheme employs local selection by checking the similarity of 
individuals, but mutation could also produce aliens that belong to other niches, so that 
there is still the possibility for genetic drift. Besides, the restriction policy also re-
stricts the power of exploration for locating niches, and the distribution of individuals 
among niches is related to the initial sampling.  

The migration policy in the island model GA is good for exploration, but may also 
lead to the replacement of a subpopulation by intruders. Its capability for locating and 
maintaining niches are intermediate. The punctuate equilibria are dependent to some 
extent on the initial sampling and the implementation of migration policy.  

The fitness sharing method and the restricted mating require prior information of 
target problems to choose proper threshold parameters. 

3   A Novel Replacement Policy for Niching  

The local competition of individuals is crucial to the forming and maintaining of mul-
tiple niches in a population, or in other word, the localization of individual competi-
tion is the basis for the coevolution of multiple species in limited resources [6]. In 
order to gain the capability of exploration by crossover operation, the selection opera-
tion should be implemented globally. Therefore, the replacement constitutes an im-
portant platform to carry out the niching mechanism. 
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Considering the single-population GA, we adopt the style of steady-state GA 
(SSGA) [3, p207 in vol.1] for designing and testing niching methods. By referring to 
the crowding method [1],[3],[5], we select randomly two individuals to pair, and only 
one of the offspring is retained to proceed for replacement. For simplicity in argumen-
tation, we present the algorithm for real-code representation.  

Suppose that P  denotes population, },,,{ 21 NaaaP = , where the population size 

is N and is kept constant during the total evolution process. An individual 
T

miiii aaa ),,,( ,2,1,=a  is a vector of m-dimension variables in a real and continuous 

optimization function, ],[ maxmin
kkk aaa ∈ . Two individuals T

miiii aaa ),,,( ,2,1,=a , 
T

mjjjj aaa ),,,( ,2,1,=a  produce a child T
maaa )',,','(' 21=a  by the whole 

arithmetic recombination operation,  

kjkkikk aaa ,,)1(' αα +−= ,  Ni ,,2,1=                            (1) 

where ]1,0[∈kα  is a randomly generated number for each dimension of the variable 

vector. Then we mutate 'a  to get T
maaa )'',,'',''('' 21=a  by two styles of mutation.  

Gaussian mutation: 

{ }}',max{,min'' minmax
kkkkk aaaa β+= , mk ,,2,1=                               (2a) 

where ),0(~ σβ Nk  is randomly generated ( 1=σ  for default).  

Uniform matation:   

kka β='' ,  mk ,,2,1=                                                  (2b) 

where ],[ maxmin
kkk aa∈β  is uniformly generated on ],[ maxmin

kk aa .  

3.1   q-Nearest Neighbor Replacement Policy (q-NNR)  

In order to preserve local competition, we should consider how to insert the only off-
spring ''a  into the population P , or which individual in P  is selected to be replaced. 
In contrast to drawing CF individuals randomly from population in the crowding 
scheme, we tend to select similar ones to ''a  by the phenotypic distance.  

The Euclidean distance is employed to measure the similarity between ''a  and ele-
ments in P :  

=
−=−=

m

k
kikii aad

1

2
, )''(||''||),''( aaaa , Pa ∈i                              (3) 

so that we get },,2,1|),''({ Nid i =aa , which is further sorted ascendingly to get the 

population set as },,,{' 21 NaaaP = . Formerly ranked q individuals in 'P are drawn 

as the q-nearest individuals set: },,,{'' 21 qaaaP = ( ''' PP ⊆ , Nq << ). Suppose that 
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};,,2,1,;'',),()(|{* jiqjiff jiijj ≠=∈≤= Paaaaaa , and if *)()''( aa ff > , then 

*a  will be replaced by ''a .  
The parameter q is problem independent, and it only relates to the efficacy and effi-

ciency of the niching method. When q is set as a big integer, the replacement policy 
will cover a larger region of the space, and there will be a higher probability for the 
genetic drift. If Nq = (the worst deletion scheme in SSGA [3]), the global competition 

will happen.  
A simple algorithm for the q-NNR niching SSGA is outlined as below.  

procedure q-NNR_SSGA  

maxT  - the maximum individuals to generated  

N  - the population size  

mc pp ,  - rates for crossover and mutation operations  

q  - the size for individual neighbor  

initialize: )0(P  

for t=1 to maxT  do 

 selection: jiji t aaPaa ≠∈ ),(,     

 crossover: ),(' jicrossover aaa ←  

 mutation: )'('' aa mutate←   

 calculate: },,2,1|),''({ Nid i =aa   

 sort: },,,{' 21 NaaaP =   

 get: },,,{'' 21 qaaaP = , q nearest neighbor set  

 find: };,,2,1,;'',),()(|{* jiqjiff jiijj ≠=∈≤= Paaaaaa   

 if *)()''( aa ff >  then  

 replace: ''* aa ←  
end if  

)()1( tt PP ←+  

end for  
output { )( maxTP } 

end (procedure)  

The q-NNR makes the replacement policy totally local although the selection op-
eration is global. Hence, the number of individuals adapted to a niche is proportional to 
the size of its attraction basin. 

3.2   Parental Neighbor Replacement Policy (PNR)  

The parental neighbor replacement policy employs a parent-related method to calculate 
the neighbor of an offspring. Suppose that ''a  is produced by ji aa , , and 

),''(),''( ji dd aaaa < , which means that then ''a  is more similar to ia . Then ''a  and 

ia  are used to calculate the neighbor of ''a  as below. 
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Ball neighbor set (BN-set):   

},),(|{'' PaaaaP ∈≤= jjcentroidj rd ,                                    (4a) 

where 2/)''( icentroid aaa += , 2/),''( idr aa= .  

Ellipsoid neighbor set (EN-set):   

},),(),''(|{'' PaaaaaaP ∈≤+= jjijj rdd ,                            (4b) 

where ),''( idr aaγ= , ]2,1[∈γ . If γ  is too great, PP ='' . 

Then we find };,,2,1,;'',),()(|{* jiqjiff jiijj ≠=∈≤= Paaaaaa , and if 

*)()''( aa ff > , insert ''a  into the population to replace *a .  

The characteristics of the proposed niching schemes based on two types of re-
placement policies are shown in Table 2. 

Table 2. Characteristics of the proposed niching methods 

Niching methods based on neighbor replacement policies 
Indexes  

q-NNR  BN-set PNR EN-set PNR 

a. Genetic operations:  
Selection 
Replacement 
Competition  

 
Global  
Local  
Local 

 
Global 

Global-Local 
Global-Local 

 
Global 

Global-Local 
Global-Local 

b. Performances:  
Exploration  
Exploitation  
Genetic drift 
Locating niches  
Maintaining niches  

 
High 

Intermediate 
No 

High 
High 

 
High 
High 
Yes 
High  

Intermediate 

 
High 

Intermediate 
Yes 
High  

Intermediate  

c. Control parameters  q No  γ  

d. Dependence:  
Problems dependent  
Initial population dependent 

 
No 
No 

 
No 
No 

 
No 
No 

Since two parents are selected randomly from the population, the selection opera-
tion is global, so that the replacement based on either the BE-set or the EN-set is not 
totally local. There will appear some degree of the genetic drift because of the paren-
tal competition, but the algorithm of the SSGA by using the BE-set or the EN-set 
niching method is much more time efficient.   

4   Experimental Studies  

In this section, we attempt to examine the performance of the proposed niching meth-
ods on a set of test multimodal functions, and compare it to that of the DC niching 
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scheme in the setting of SSGA. Experiments are reported with adopting different 
control parameters for the proposed niching mechanism.  

The population size is set as N=400 so as to reduce the stochastic error caused by 
genetic operations. The rates for crossover and mutation are 5.0/1,0.1 === mpp mc , 

the maximum number of individuals generated is fixed as 000,10max =T . We have 

9=q  and 10.1=γ  for calculating the q-nearest neighbor set and the ellipsoid 

neighbor set.  

4.1   Function 1 

A bimodal function is defined by combining two Gaussian functions in a variety of 
ways as below:  

{ })||||exp(),||||exp(max)(max 2
2

2
2

2
1

2
1 δμαδμ −−−−= xxxf , 2Rx ∈        (5) 

where 21,μμ  and 21,δδ are the centroid and width parameters, and can be used to 

adjust the overlapping of the two peaks or niches. α  is employed to change the com-
parative heights of the two peaks. ]12,0[]12,0[ ×∈x  is used in experiments.  

When 21 δδ =  and 1=α , the two peaks are equal in height and have separate and 

equal attraction basins (called uniform competition niches). When 21 δδ <<  and 

)||||exp()||||exp( 2
2

2
2

2
1

2
1 δμαδμ −−>−− xx , the two niches form a style of decep-

tion (called deceptive niches). When 21 δδ <  and )||||exp( 2
1

2
1 δμ−− x  

)||||exp( 2
2

2
2 δμα −−< x , the two niches compete unequally for resources (called 

non-uniform competition niches). Further, if 21 δδ << , and |||| 21 μμ −  is small, we 

will say that the niche formed by },{ 11 δμ  is parasitized on the niche formed by 

},{ 22 δμ (called host and parasite niches).  

 
(a) uniform competition niches       (b) deceptive niches           (c) host and parasite niches  

Fig. 1.  Three cases of niches for Function 1 

The individual numbers adapted to all niches is used to measure the results of lo-
cating and maintaining niches. The efficiency of a niching method is denoted by the 
sum of the deviation of individuals in different niches in the final population as:  
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where nichesN  is the number of niches, ia  is the mean vector of the ith niche that 

covers iindN ,  individuals. 

The experiments for each case are implemented 10 times, and the initial population 
are randomly generated each run. The averaged performance of different niching 
methods based on the SSGA is listed in Table 3. 

Table 3. Averaged performance of different niching methods on the function 1 

Niching methods 
Cases  

q-NNR  BN-set PNR EN-set PNR DC  

a. }0.1;5.1,5.8;5.1,5.3{ 2211 ===== αδμδμ
Individuals distribution (%)*  
Sum of deviation  

 
{50.4,49.6}

93.77 

 
{50.0,50.0}

65.17 

 
{50.2,49.7}

43.22 

 
{47.5,52.5} 

42.94 

b. }8.0;0.3,0.6;5.0,0.1{ 2211 ===== αδμδμ
Individuals distribution (%)*  
Sum of deviation  

 
{2.5,97.5} 

63.91 

 
{1.8,98.2} 

19.47 

 
{1.4,98.6} 

10.42 

 
{0.9,99.1} 

7.57 

c. }2.1;0.3,0.6;5.0,0.4{ 2211 ===== αδμδμ
Individuals distribution (%)*  
Sum of deviation  

 
{1.13,98.9}

61.13 

 
{0.3,99.7} 

12.09 

 
{0.4,99.6} 

8.02 

 
{0,100} 
11.90 

* the proportion of individuals adapted to niches.    

The above table shows that all of the niching methods work well on case (a) of the 
function 1. For cases (b), the q-NNR niching locates and maintains more individuals in 
the niche }5.0,0.1{ 11 == δμ  though it has a quite small attraction basin. For cases (c), 
the q-NNR niching is still able to locate and maintain individuals in the niche 

}5.0,0.4{ 11 == δμ  even if it is parasitized on a bigger niche. The BN-set PNR 
niching, EN-set PNR niching, and DC niching are much more efficient in implementa-
tion, but there appear salient genetic drift in cases (b) and (c).  

4.2   Function 2  

The second function is a special two dimensional sin function as below:  

2)sin(sin)1(),(max yxxyxf ××+= α , ],1[],6,1[ ππ ∈∈ yx                       (7) 

where α  is a parameter to control the comparative heights of the six niches.  
All experiments are run 10 times with random initial populations. The averaged per-

formance is recorded in Table 4.  
The results on function 2 illustrate that the BN-set PNR niching, EN-set PNR 

niching, and DC niching are not able to maintain the individuals in the niches with 
lower heights, and the genetic drift is very common in their evolution processes. How-
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ever, the q-NNR niching scheme does quite well in maintaining a stable distribution of 
all individuals. Further, specific experiments are carried out for the q-NNR niching on 
function 2 with various values of q (see Table 5).  

The number of q is an important factor to the coevolution process of SSGA with q-
NNR niching scheme. As q gets greater (but is still smaller than population size), only 
a few of individuals are redistributed to higher niches, and the genetic drift is not ap-
parent for a large population. But the q-NNR niching SSGA with a greater value of q is 
much more efficient for the local adaptation of individuals by the deviation index. But 
if q is too great as 100≥q , the individuals would be redistributed. 

Table 4. Averaged performance of different niching methods on the function 2 

Niching methods 
Case( 0.1=α ) 

q-NNR BN-set PNR EN-set PNR DC  

Individuals distribution (%)*  
Sum of deviation  

{14.6,15.37, 
16.42, 17.15, 
17.74,18.73} 

52.68 

{0,1.28, 1.20, 
22.55,30.88, 

34.10} 
43.89 

{0, 0, 7.0, 
20.63, 34.43, 

37.95} 
39.34 

{0,0.15,4.23, 
20.8,35.67, 

39.15} 
44.83 

* peak coordinates of the six niches: { )2/,2/11(),2/,2/9(),2/,2/7(),2/,2/5(),2/,2/3(),2/,2/( ππππππππππππ }. 

Table 5. Performance of the q-NNR niching methods on the function 2  

q-NNR niching methods 
Case( 0.1=α ) 

1=q  9=q  50=q 100=q  200=q  

Individuals distribution (%) 
Sum of deviation  

{15.5,15.5,
16.3,16.7, 
17.5, 18.5}

233.88 

{14.6,15.4,
16.4,17.2, 
17.7,18.7}

52.68 

{14.5,15.6,
16.0,16.9, 
17.9,19.1} 

26.59  

{0,0,25.0, 
25.0, 25.0, 

25.0} 
24.88 

{0,0,0,0, 
50.0,50.0} 

47.60 

4.3   Schaffer Function  

The Schaffer function is a symmetric multimodal function with concentric torus 
ridges of different heights.  We modify it a little as follows:    

22
2

2
1

2
2

2
1

2
21 )](1[)5.0(sin5.0),( min xxxxxxf +×+−++= α , ]10,10[, 21 −∈xx   (8) 

where α  is used to regulate the function shape, and we take 01.0=α  in experiments. 
The niches formed in this function consist of a set of concentric torus ridges.  

The origin (0,0) is the global optimum with 0)0,0( =f  and denoted as 0niche . 

The four torus ridges that locate at }4,3,2,{2
2

2
1 ππππ=+ xx  form the local optima 

denoetd as },,,{ 432 ππππ nichenichenicheniche . The origin (0,0) and the four torus 

ridges constitute the five niches of the Schaffer function.  



46 M. Li and J. Kou 

 

The experiments results are displayed in Table 6. The q-NNR niching is able to lo-
cate and maintain the special type of niches in the Schaffer function, and it is also 
efficient for exploitation and local adaptation. The DC scheme performs well in locat-
ing all niches, but it is not good at local adaptation of individuals and there is still the 
genetic drift towards the niches with greater fitness. Both the BN-set PNR and the 
EN-set PNR don’t output good results since there appears notable genetic drift in the 
coevolution processes. 

Table 6.  Averaged performance of different niching methods on the Schaffer function  

Niching methods 
Index 

q-NNR  BN-set PNR EN-set PNR DC  

Individuals distribution (%)*  
{2.05, 15.8,  
30.38, 41.6, 

10.18} 

{5.53, 80.65, 
13.82, 0, 0} 

{5.95, 94.05, 
0, 0, 0} 

{2.83, 47.63, 
27.95, 17.82, 

3.78} 

* five niches are ranked as {
ππππ 4320 ,,,, nichenichenichenicheniche } 

5   Conclusions 

Two types of niching methods, q-nearest neighbor replacement and parental neighbor 
replacement, are designed by adopting special replacement policies in the setting of 
the SSGA. The experimental results obtained on a set of test functions illustrate the 
characteristics and behavior of the proposed methods and the DC scheme based on the 
SSGA, and prove that the q-NNR niching method is an effective tool for solving the 
multimodal function optimization problems. In future researches, we attempt to con-
sider the incorporation of the q-NNR, BN-set and EN-set niching methods with the 
fitness sharing so as to dynamically calculate a set of non-uniform niching radii. 
Meanwhile, we will apply tentatively these methods to the rule learning tasks and the 
multi-objective optimization tasks.  
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Abstract. The paper integrated genetic algorithm and marching method into a 
novel algorithm to solve the surface intersection problem. By combining ge-
netic algorithm with local searching method the efficiency of evolution is 
greatly improved. By fully utilizing the global searching ability and instinct at-
tribute for parallel computation of genetic algorithm and the local rapid conver-
gence of marching method, the algorithm can compute the intersection robustly 
and generate correct topology of intersection curves. The details of the new al-
gorithm are discussed here. The algorithm have been implemented in a proto-
type system named TigerSurf based on Windows/NT platform, and a soundly 
result is gotten from test datum. 

1   Introduction 

In recent years, there are a lot of literatures discussing the topic on calculating the 
intersection between two surfaces. They can be classified into analysis method, lattice 
method, tracing method, implicit function method, and sub-division method. The 
implicit function method is limited to CAD systems which support the implicit repre-
sentation of surfaces, the other methods can be used in general surface intersection 
problem, but all of them have the delicate problem for tolerance setting [1]. 

Recently genetic algorithm has become a hot-spot in the field of AI, and has been 
applied successfully in the fields of machine learning, engineering optimizing, job 
scheduling, image processing, etc. 

Applying a genetic algorithm involves the following steps [2]: 

1. Choosing a space of “potential answers” for one’s problem; 
2. Determining an appropriate measure of “fitness” on this space; 
3. Defining appropriate genetic operators on this space, for instance crossover 

and mutation operators. 

The algorithm itself then involves iterating generations in a population of potential 
answers, at each stage selecting certain population elements, and using these selected 
elements to generate new elements according to the genetic operators. The trick is in 
the selection process: in order to provide an intuitive simulation of the biological 
process of evolution by natural selection, measures must be taken to ensure that, on 
the whole, the “fittest” elements are chosen to reproduce. 
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Genetic algorithm has the benefit for global searching, and will not be trapped in 
the rapid descending direction introduced by local minima. And with its intrinsic 
parallelism, the calculation speed can be easily improved by distribute computation 
methods. 

Recently genetic algorithms have attracted attention as a powerful tool for optimi-
zation problems. Also, in the computer vision community a growing number of appli-
cations of these techniques can be seen. [3] used a genetic algorithm for registration 
of 3D images in a medical application. Cross and Hancock [4] reported fast conver-
gence with a genetic search based on Hamming distance. [5] applied genetic algo-
rithm for free-form surface matching. However, to the best of our knowledge no ear-
lier use of genetic algorithms for intersecting free-form surfaces can be found in the 
literature. In this paper we will present a new algorithm applied to this problem. 

Due to the lack of efficiency of “pure” genetic algorithm, local search methods 
based on heuristic information and field related knowledge are used to improve it. 
Surface/surface intersection calculating occurs frequently in the field of geometric 
modeling. Conventional method such as marching method has the advantages of ac-
curate, efficient and robust in non-degenerate conditions. So we designed a algorithm 
to combine the global search ability of genetic algorithm and local rapid convergence 
of marching method. 

2   Simulated Annealing Genetic Algorithm (SAGA) 

As a technique to solve massive optimization problem, simulated annealing algorithm 
has received the attention of many researchers. The main idea of it is an analogy to 
the growth of single crystals from a molten metal while it cool down slowly. 

Simulated annealing algorithms jump over the local minima using Metropolis rule, 
and will eventually converge to the optimization. When the algorithm has no knowledge 
about the objective space which has been detected, it’s hard to decide which area is more 
possible to contain optimal result. To be more efficient and smart, simulated annealing 
algorithm should get knowledge of objective space from the searching process. This 
knowledge is collected by evolution process of genetic algorithm. The combination of 
these two methods called SAGA (simulated annealing genetic algorithm). 

3   SSI Based on SAGA 

The marching method for SSI comprises three primary phases: hunting (start point), 
tracing, and sorting. The hunting phase provides starting point for stepping on the 
intersection curve. It should locate all branches of the intersection curve and prevent 
multiple copies of the same sequence of points during marching phase. The com-
monly used hunting methods include hodographs methods, subdivision techniques, 
and algebraic methods. The marching methods make use of curvature analysis or 
power series expansions about each point of the intersection curve to control the step. 
The sorting phase orders the sequences of points into meaningful branches of the 
intersection curve. When the points on the intersection curve can be found sequen-
tially, this sorting is trivial. 
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Simulated annealing algorithms jump over the local minima using Metropolis rule, 
and will eventually converge to the optimization. When the algorithm has no knowledge 
about the objective space which has been detected, it’s hard to decide which area is more 
possible to contain optimal result. To be more efficient and smart, simulated annealing 
algorithm should get knowledge of objective space from the searching process. This 
knowledge is collected by evolution process of genetic algorithm. The combination of 
these two methods called SAGA (simulated annealing genetic algorithm). 

4   Crossover Operation 

Crossover operation can generate new individuals, and make new search in objective 
space. The new individuals inherit chromosome information from their procreators, 
and are usually different to them. The procreators (two points) in crossover operation 
are in the neighborhood of an intersection point. The crossover operator will deter-
mine the offset of parameters on surface domain to generate new individuals with the 
property that they are (probably) closer to the intersection than their procreators. It 
should also be simple to be efficient. We introduce an auxiliary plane and calculate an 
intersection point on this plane and tangential planes of the intersecting surfaces as the 
first approximate values for the parameters. 

Given two points P and Q on each surface, we define two tangent planes: Fp at P 
and Fq at Q. We defines a plane Fn which passes through P and is orthogonal both to 
the planes Fp and Fq. On the plane Fn, we define the unit vectors in and jn. in is the unit 
normal of plane Fp, and jn is in the direction of the intersection line of the planes Fn 
and Fp. Then the normal of Fn is Kn =in jn (Fig. 1). If the points P and Q are repre-
sented by r(s, t) and s(u, v), we have the following relations: 
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Here h and hn are distances from the origin to the planes Fp and Fn. Solving the 
equations, the intersection point of the three planes is determined as the increments of 
the parameters: t, u, and . The new individuals P and Q can calculated 
by update the parameters as r(s+ , t+ t) and s(u+ , v+ v). 
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Fig. 1. Intersection of three planes 
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5   Strategy for Local Tracing  

Given a set of initial intersection points and their normalized tangent vectors, the trac-
ing process can be proceeded. The strategy for local tracing determinates the topology 
of intersection branches. Incorrect step direction or size may lead to erroneous results. 
Tracing in the tangent direction, along a circle, and along a parabola are some solutions 
presented in the literature. Most solutions use curvature-dependent step size for Trac-
ing. Here we used a simple but efficient tracing method presented in [6]. For the given 
neighboring intersection points P and Q, and with their respective tangent vectors u  
and v , an approximate osculating circle at Q is constructed as follows (Fig. 2): 

Center C The intersection of three planes: the plane that contains P and has 
u  as normal vector; the plane that contains Q and has v  as normal vector; and the 

plane that contains Q and has a normal vu × . 
Radius R The distance between C and Q.  

P

Q

AR
R

C

θ
L

 

Fig. 2. Tracing along circular step 

The step size can be easily computed from the approximated osculating circle. To 
assure that marching step adjusts automatically to the changes in the curvature of the 
intersection curve branch, the next approximated point to intersection curve A is cal-
culated by extending Q with distance L. 

We would like to stress that the class/style files and the template should not be ma-
nipulated and that the guidelines regarding font sizes and format should be adhered to. 
This is to ensure that the end product is as homogeneous as possible. 

6   Convergence Proof 

In this section we will give the proof for the convergence of the SSI algorithm. 
Given two surfaces F  and G , )(DfF = , )(DgG = here f  and g  are 

all twice differentiable functions, 3:, RDgf → . Without loss of generality, we 

assume that D  is the unit parametric domain: ]1,0[]1,0[ × .  

We use the notation nL  for the current population L  in the n  iteration, and indi-

vidual set }),(:)({ nn LxxP ∈= φφ . Without the local tracing strategy, and not 
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considering the crossover operation and mutation operation, the convergence of the 
algorithm can be proved [7]. 

Lemma: Let C  be the intersection point set of gf , , and set 01 =h , Then the 

algorithm above without local tracing procedure and only using reproduction opera-

tion, either stops after a finite number of steps or yields a sequence ( ) NnnP ∈  of sets 

of points with the property  

0)minmax(lim
1

=−
∈∈∞→

xp
CxPpn n

. (2) 

Proof Clearly the algorithm terminates if Φ=C . Now assume Φ≠C . In con-

trast to (2) suppose that there exist 0>ε , nn Pp ∈ Nn ∈ satisfying 

ε≥−
∈ 1min xpn

Cx
, for all Nn ∈ . (3) 

Without loss of generality (otherwise we consider a subsequence of np ) we may 

assume that 

)( nn xp φ= , Dxn ∈ , },{ gf∈φ , independent of n ; 

And there exist n
n

xx
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= lim* , n
n

pp
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= lim* . 

Then obviously 

ε≥−
∈ 1

*min xp
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 (4) 

holds. Choose },{
~

gf∈φ such that },{}
~

,{ gf=φφ . 

Because of the reproduction operator there exists a sequence Nnny ∈)(  such that 

nn Ly ∈)
~

,( φ  and 0)(
~

)(lim
1

=−
∞→ nn

n
yx φφ . Consequently *)(

~
lim pyn
n

=
∞→

φ . 

Since D  is compact, )( ny  has an accumulation point *y . Therefore 

Cyxp ∈== )(
~

)( *** φφ  (5) 

This contradicts with (4). 

7   Implementation and Results 

We have implemented the algorithm above in a prototype system named TigerSurf, 
which has been build on Windows/NT platform by C/C++. The surface intersection 
algorithm is a part of a Boolean operation of sculptured solids. The following are 
some examples made in TigerSurf for testing of the surface intersection algorithm. 
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7.1   Surface-Surface Intersection I——Multi-branch with Open Loops 

The following is an example for calculating the intersection between two cubic Bezier 
surfaces.  The  intersection  curves  of surfaces B and C are 4 open loops (branches) in 
their parametric domain. Fig. 3(a) shows the 1st generation with nh 10 =  and 

100=n .  Fig.  3(b)  shows  the  2nd generation evolved from the 1st generation, with 

 

(a) 1st generation, with nh 10 =  and 100=n  

 

(b) 2nd generation, with 301 hh =  

 
(c) 4 branches of intersection curve traced from the 2nd generation 

Fig. 3. Process for calculating intersection of surfaces B and C 
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301 hh = Fig. 3(c) shows the intersection curves gotten by local tracing method 

from the 2nd generation. 

7.2   Surface-Surface Intersection II——Inner Loop 

The intersection curve of surface D and E is a close loop in their parametric domain. 
Fig. 4(a)  shows  the  1st  generation  with nh 10 =  and 100=n , Fig. 4(b) shows the 

 
(a) 1st generation, nh 10 = , 100=n . 

 
(b) 2nd generation, 301 hh = .t 

 
(c) The intersection loop traced from 2nd generation 

Fig. 4. Process for calculating intersection of surface D and E 
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2nd generation evolved from the 1st generation with 301 hh = , Fig. 4(c) shows the 
intersection curve traced from the 2nd generation. 

Although the two examples are calculating intersection for bicubic Bezier surfaces, 
our algorithm does not have any limitation on the surface type. It is designed for gen-
eral parametric surface/surface intersection. Fig. 5 shows an example for intersecting 
two general parametric surfaces. 

 

Fig. 5. Intersection of two general parametric surfaces 

8   Conclusion 

In this paper, the authors present a new surface intersection algorithm by applying 
simulated annealing genetic algorithm in the field of geometric modeling. By combin-
ing the knowledge of conventional surface/surface intersection methods, we can use 
local tracing strategy into the pure simulated annealing genetic algorithm. So the rapid 
convergence of the algorithm can be achieved. With the global searching ability and 
rapid convergence, we designed a practical algorithm for calculation of the intersec-
tion between general surfaces robustly and efficiently.  

Degenerate cases are the situation a practical algorithm must face. There are three 
types of degenerate cases that may occur: singularities, osculate patches, and overlap-
ping patches. In most algorithms, degenerate cases will lead to failure or aborting. 
More recent research can get form [8]. 
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Abstract. In this paper, a different Web personalized service (PS) based on 
dual genetic algorithms (Dual GAs) has been presented. Firstly, to distinguish 
the importance of each keyword to a user, we have introduced a new concept 
called influence-gene and a user profile model UP=(I, C), which includes not 
only the user’s keyword-weights vector I but also a user’s influence-genes vec-
tor C. Secondly, based on C, we have introduced a w-cosine similarity, which is 
an improver of the traditional cosine similarity. Finally, we have discussed how 
to design our Dual GAs to automatically discover and adjust the UP. The com-
parison tests show that the Dual GAs can discover the user profile more accu-
rately and improve the precision of information recommendation. 

1   Introduction 

Bowman et al. said in 1994 that at least 99% of the available data was of no interest to 
at least 99% of the users. The functional absence of most of the current IR (informa-
tion retrieval) systems can be framed as: 1) Lack of filtering: A user looking for some 
topic on Internet retrieves too much information. 2) Lack of ranking of retrieved 
documents: The system provides no qualitative distinction between the documents. 3) 
Lack of support of relevance feedback: The user cannot tell his subjective evaluation 
of the relevance of the document. 4) Lack of personalization: There is a need of per-
sonal systems that serve the specific interest of the users and build users’ profiles. 5) 
Lack of adaptation: The system should notice when the user changes interests [1]. 

To improve or enhance the functionality of IR, various methods of Web personal-
ized service (PS) based on natural computation have been introduced into IR, such as 
Data Mining [2], Machine Learning [3], Software Agent [4][5], Statistical Theory [6], 
Rough Set [7], Neural Network [8] and GA (genetic algorithm) [9][22]. PSs can help 
users to find information with potential value for their needs and now play a very 
important role in the research of IR. 

The document spaces derived from the PS applications are spaces of large dimen-
sions. Since GAs have a proven efficiency in exploring large complex spaces, PS now 
seems to be a major field of application of GAs to IR [1][10 16]. 

Cordón et al. [9] pointed out that the design of user profile for a PS was limited by 
the lack of personalization in the representation of the user’s needs. An important 
issue in this situation was the construction of user profile that maintained previously 
retrieved information associated with previous user’s needs. 
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In this paper, we will firstly suggest a different framework of PS by introducing a 
new user profile model and our new Dual-GAs, secondly explain how to use the 
Dual-GAs to automatically discover and adjust the user profile according to the user’s 
relevance feedback, and finally give some experiments to show its efficiency. 

2   A New Framework of PS 

2.1   User Profile Model 

The vector space model (VSM) given by Salton & McGill [17] is one of the most 
widely used models in PS applications [18]. In VSM, a Web page can be represented 
with an n-dimensional keyword-weights vector d=(x1, x2, …, xn). Here xi represents 
the weight of the ith keyword ti (i=1, 2, .., n) and commonly is calculated by TF*IDF 
method. In a traditional user profile model, a user interest can be described with an n-
dimensional keyword-weights vector I=(w1, w2, ..., wn). 

We know the fact that, when describing a user interest and calculating the rele-
vance of a Web page with it, some keywords may contain more important meanings 
and may play a more important role than the other keywords for the user. But in tradi-
tional PS, when calculating the relevance between a Web page d and the user profile I 
by cosine similarity, the importance of these keywords can only be partly reflected in 
its user profile I through its keyword-weights, but is not reflected in the keyword-
weights vector d of the Web page, since TF*IDF method just concerns the frequency 
of a keyword but not their importance to the user. The frequency of a keyword and its 
importance are two different concepts. 

In our PS, we have introduced a new concept called influence-genes of keywords 
and a new user profile model UP=(I, C), which not only includes the keyword-
weights vector I but also includes an influence-genes vector C=(c1, c2, ..., cn) (see 
Section 3.2). Furthermore, based on C, we have defined a new w-cosine similarity as 
bellow, which is an improver for the traditional cosine similarity. 
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2.2   Framework 

The framework of our PS is shown in Fig.1. It uses the new w-cosine similarity and 
the Dual GAs (FSG and SGA). The Dual GAs is designed for automatically discover-
ing and adjusting the user profile according to user’s relevance feedback. 

To describe the relevance level of a Web page, we have introduced the concept of 
UIL (user interest level) in our PS. For any irrelevant page d, its UIL(d) is 0. For a 
relevant page, its UIL(d) is a real number in [0, 1] corresponding to the interest level 
of the user on it. The main procedure of our PS can be described as follows. 
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Step1. (Initialization) Sinput =NULL, C=(1,1,…,1), and I=P0. P0 is an interest page 
given by user (or retrieved by system according to some keywords given by user). 

Step2. (Step2-Step7: repeating body) With UP=(I, C), Web Site recommends the 
top-  new pages by w-cosine similarity (ranking the values in a descending order). 

Step3. The  pages are browsed by user and the relevance feedback, the interest 
page set Sinterest among them and their UILs, are determined by one of the two ways: 
1) Directly given by user; 2) Automatically calculated by system. As in [23], we use 
the user’s average reading time  to calculate the UIL of each page. Suppose dread is 
the reading time of page d. If dread< , then UIL(d)=0, else UIL(d)=min(dread,2 )/2 . 

Step4. According to Sinterest, Sinput will be updated by selecting  pages with better 
(bigger) UILs from Sinput and Sinterest. If Sinput has not been changed, go to Step8. 

Step5. With the new Sinput, FGA on Client will discover a new I (See Section 3.1). 
Step6. With the UILs of all the pages in Sin-

put, SGA on Client will discover a new C (See 
Section 3.2). 

Step7. Let UP:=(I, C), then return to Step2. 
Step8. (Termination) If all the current top-  

pages are irrelevant pages, the procedure will 
be ended, else return to step2. # 

In our PS, Dual GAs plays a very important 
role and will be discussed below. 

3   Dual GAs 

To discover and adjust the user profile UP=(I, C), we have designed the Dual GAs: 
the first genetic algorithm (FGA) and the second genetic algorithm (SGA). 

3.1   FGA 

It is used to automatically discover and adjust I in UP with the interest pages in Sinput. 

1) Representation 
There is only one chromosome in the population P for any generation. The chro-

mosome W0 in the initial population P can be formed as below, 

W0=(w1’, w2’ , . .., wn’) 
wi’=(MAXi+MINi)/2   i=1,2,…,n, 

where n is the total number of keywords, MINi and MAXi denotes respectively the 
minimum value and maximum value of the ith weights among all the vectors in Sinput. 

For any generation, the chromosome in P is always a keyword-weights vector with 
each gene representing a keyword’s weight. By applying its genetic operators, FGA 
will adjust each gene to a felicitous value so that the chromosome in the final genera-
tion can represent accurately the user interest implicated in Sinput. 

2) Fitness Function 
For any generation, the fitness value of a chromosome W=(w1, w2,. .., wn)  in P is 

defined by the formula (The bigger the fitness value is, the better the chromosome is.), 

Internet

Fig. 1. The framework of our PS 

FGA SGA
w-cosine

User profile 
(I,C)

Client
w-cosine 

Web pages 

Web site 
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where m=|Sinput| is the number of the vectors in Sinput, each di=(x1 , x2 , . .., xi , . .., xn) 
is in Sinput, and Cos is the traditional cosine similarity in VSM and defined by,  
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3) Genetic Operators 
FGA has only two mutation genetic operators, weight-adjusting and keyword-

adjusting. They will be executed randomly with fixed probabilities m1and m2 such 
that m1+m2=1. The parameters can be adjusted by experiments. 

 Weight-adjusting mutation 
It is used to adjust the weight of each gene in the chromosome. It can generate an 

offspring from its parent, the only one chromosome in the current population P. 
Firstly, produce randomly an integer i in (1, 2, …, n). Secondly, produce randomly 

a real number wi’ between MINi and MAXi. And finally, from the parent, 

W=(w1 , w2 , ..., wi-1, wi, wi+1, …, wn), 

an offspring can be generated as below, 

W’=(w1 , w2 , ..., wi-1, wi’, wi+1, …, wn). 

 Keyword-adjusting mutation 
It is used to adjust the keywords in the chromosome, by adding a keyword into it or 

removing a keyword off from it. It can generate an offspring from its parent, the only 
one chromosome in the current population P. 

First, produce randomly an integer i in (1, 2, …, n) and then from the parent, 

W=(w1 , w2 , ..., wi-1, wi, wi+1, …, wn), 

an offspring  can be generated as below by executing a reversal operation, 

W’=(w1 , w2 , ..., wi-1, wi’, wi+1, …, wn), 

where wi’ will be (MAXi + MINi) /2 if wi=0, otherwise 0. 

4) Selection 
After an offspring having been generated from its parent, the fitness function fFGA 

will be used to select a chromosome to form the next generation. 
For both weight-adjusting mutation and keyword-adjusting mutation, between the 

new offspring and its parent, the chromosome with bigger fitness value will become 
the only one chromosome in the next generation. 

5) Convergence and Solution 
In FGA, after the initial population is formed, next generation will be created re-

peatedly by using the two genetic operators. The fitness values of the parent and its 
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offspring will be calculated and selective pressure applied. The weak perish and the 
strong survive. The process is applied iteratively. 

FGA can be terminated in these cases: if the fitness value of the chromosome in 
current population is changed no more or very little (always less than a threshold) 
during a given iterative number, or if it has run a given iterative number . 

After the termination, the chromosome in the last generation is the weighted-
keywords vector I of the current user profile UP=(I, C). 

3.2   SGA 

As did in many other papers, FGA does not distinguish the roles of different key-
words when finding the user’s interest. But as we have pointed out in Section 2.1, 
some keywords may have more important meanings than the others for a user. So the 
concept of influence-genes vector C has been introduced in our PS. Here, we will 
discuss how to determine and adjust C. It is the main task of SGA. 

López-Pujalte et al.(2003) indicated that with respect to the fitness functions the 
best results were given by those that take into account not just which documents are 
retrieved, but also the order in which they are retrieved. Using the different UILs of 
all the interest pages in Sinput, SGA can automatically determine and adjust the influ-
ence-gene of each keyword and form the C for the user. 

1) Chromosome and Population 
For any generation, its population P has only one chromosome C=(c1, c2 ,…, cn), 

and each gene ci is always a positive integer (i=1, 2, …, n). The chromosome in initial 
population P is set to C0=(1,1, …,1). 

2) Fitness Function 
With the different UIL(di) of the interest page di=(x1 , x2 , . .., xi , . .., xn) in Sinput, 

the fitness value of the chromosome C=(c1, c2 ,…, cn) is defined as below,  

fSGA(C)= ( )
=

−
m

i
iic dUILdICos

1

)(,           (4) 

(The smaller the fitness value is, the better the chromosome is.), where Cosc is given 
by formula (1), m=|Sinput|, and I is the weighted-keywords vector in current UP. 

3) Genetic Operator 
SGA has only one mutation genetic operator. It is used to adjust the values of the 

genes in the chromosome. It can generate an offspring from its parent, the only one 
chromosome in current population. 

Firstly, produce randomly an integer i in (1, 2, …, n), and a binary number μ = 0 or 
1. Then, from the parent, 

C=(c1, c2, ..., ci-1, ci, ci+1, …, cn), 

an offspring C’ can be generated as bellow. 
If μ=1, do the following two steps repeatedly (“Adding continuously”). 

Step 1. C’=(c1, c2, ..., ci-1, ci+1, ci+1, …, cn). 
Step2. If fSGA(C’)< fSGA(C), then let C:= C’ and go to Step1, else stop. 

If μ=0 and ci=1, then do nothing and C’= C. 
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If μ=0 and ci>1, do the following two steps repeatedly (“Reducing continuously”). 

Step1. C’=(c1, c2, ..., ci-1, ci-1, ci+1, …, cn). 
Step2. If fSGA(C’)<fSGA(C) and ci>2, then let C:= C’ and go to Step1, else stop. 

4) Convergence and Solution 
The convergence of SGA is almost the same as FGA and has been omitted. After 

the termination, the chromosome in the last generation is the influence-genes vector C 
of the current user profile UP=(I, C). 

4   Experiments 

4.1   Preparation 

To form our test collection Yahoo900, we have selected 1100 Web pages from the 
Web site of Yahoo (http://dir.yahoo.com/Computers_and_Internet/). Yahoo900 in-
cludes 11 classes with each class containing 100 pages. The 11 classes are Games 
(GM), Data Formats (DF), Multimedia (MM), Operating Systems (OS), Security and 
Encryption (SE), Cad, Databases (DB), Storage (ST), Protocol (PT). Grid (GD), Uni-
fied Modeling Language (UML). 

VSM has been used to describe these Web pages. For the efficiency of extracting 
the keywords and forming the weights, a Dictionary K and a technique of Character-
istic Phrases have also been used. 

From [19], we know that a document can be described approximately only with its 
partial contents, called Characteristic Phrases. In our experiments, for each page, we 
select the first two paragraphs, the last paragraph, all the titles and subtitles, as well as 
all the italics or bold words as its Characteristic Phrases. 

The Dictionary K=(t1, t2, …, tn), where n=1962 is the total number of keywords, 
has been formed by firstly extracting all the words from the Characteristic Phrases of 
all the 1100 pages, secondly removing all the stop-words, which appear in more than 
four of the eleven classes, and lastly stemming the rest of the words manually. 

We use TF*IDF method to calculate the keyword-weight vectors for all the Web 
pages based on their Characteristic Phrases. As was done in López-Pujalte et al.’s 
experiments [12], in our experiments, we also use the Residual Collection method 
given by Salton [20], in which all the documents previously seen by the user (whether 
it is relevant or not) will be removed from the test collection. 

4.2   Experiments and Results 

In a PS, the method of forming its user profile plays an important role. In the PS, 
which uses a GA to form its user profile, the design of the GA’s fitness function is 
very important. To test the efficiency of our new user profile model and Dual GAs, 
three different types of tests have been carried out. From López-Pujalte et al.’s ex-
periments [12], we can see that the Fitness8 in [12], which was derived from the 
Horng & Yeh’s GA method [21] could get a very good result in information retrieval 
with relevance feedback and can be seen as a representation of the current GA appli-
cations in IR. 
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In our experiments, we have compared our Dual GAs with Fitness8 and Fitness8’. 
Here Fitness8’ is almost the same as Fitness8. The only difference is its similarity 
measure. Fitness8 used the inner-product similarity as was done by Horng & Yeh 
[21], but Fitness8’ used the cosine similarity as was done by López-Pujalte et al. [12]. 

In our experiments, the parameter  is set to10. The probabilities of running the 
two mutation operators of FGA are m1=0.6 and m2=0.4. The iterative numbers s of 
FGA and SGA are 5000 and 1000 respectively. 

1) Test1: Efficiency of Information Recommendation 
Based on the framework in Section 2.2, but using Fitness8 and Fitness8’ respec-

tively to discover and adjust the traditional user profiles I, and using our Dual GAs to 
discover and adjust the user profile with new model UP=(I, C), we run the PS to 
compare them. For each class, and for each of the three methods, we run the PS three 
times. From each class, and at each time, the page P0 used by our Dual GAs is se-
lected randomly from the class. The test results are shown in Table 1. Here “avg” 
means “average”. 

Table 1. Comparison of information recommendation 

Fitness8 Fitness8’ Dual GAs 
Class 

Recall(%) Precision(%) Recall(%) Precision(%) Recall(%) Precision(%) 
Cad-avg 54.5 79.6 52.0 86.6 80.3 77.0 
SE-avg 53.2 73.6 48.8 67.9 98.2 60.2 
ST-avg 35.5 66.4 36.3 68.5 73.5 48.7 
GM-avg 55.4 83.3 54.0 87.2 71.8 69.9 
GD-avg 64.0 94.9 51.8 86.4 88.3 81.1 
UML-avg 86.0 97.8 80.2 97.9 61.6 79.5 
All-avg 58.1 82.6 53.9 82.4 79.0 69.4 

Table1 shows that our Dual GAs can recommend more relevant pages to the user 
than Fitness8 and Fitness8’, improving average recall to 36% and 46.6% respectively 
with the sacrifice of average precision 19% and 18.7% respectively. 

2) Test2 and Test 3: Accuracy of Adjusting User Profile 
To test the accuracy of our Dual GAs in adjusting the user profile by using rele-

vance feedback, two comparison tests among Fitness8, Fitness8’ and our Dual GAs 
have been carried out. By inputting 10 (or 15) relevant pages and 20 irrelevant pages 
to each of the three GA methods, in one-off information recommendation, we calcu-
late respectively their recalls and precisions in two popular ways, RthP measure and 
R-P measure. 

Test 2 is for RthP measure (From high to low, the |R|th similarity value is chosen 
for the threshold, and then the precision ratio is calculated. Here |R|=100 is the total 
number of relevant pages of each class) and its result is shown in Table 2. Test 3 is for 
R-P measure (For recall thresholds at 0.1, 0.2, …, 1.0, find as many documents as are 
retrieved for the query, and calculate respectively the precision ratio of the points 
where the threshold is achieved) and its result is shown in Table 3 and Fig. 2. 
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Table 2. The test with RthP measure 

Fitness8 Fitness8’ Dual GAs  
Class Recall(%) Precision(%) Recall(%) Precision(%) Recall(%) Precision(%) 

GM-avg 43.0 38.7 59.6 53.7 64.8 58.3 
SE-avg 11.5 10.3 12.6 11.3 45.6 41.0 
MM-avg 28.6 25.7 40.7 36.7 49.7 44.7 
Cad-avg 34.2 30.7 17.0 15.3 44.4 40.0 
OS-avg 33.3 30.0 20.4 18.3 49.6 44.7 
ST-avg 11.5 10.3 12.6 11.3 40.0 36.0 
PT-avg 14.8 13.3 13.3 12.0 25.6 23.0 
DB-avg 43.0 38.7 49.6 44.7 43.0 38.7 
DF-avg 17.8 16.0 14.4 13.0 31.9 28.7 
GD-avg 21.0 19.0 28.2 25.0 53.0 48.0 
UML-avg 21.0 19.0 2.2 2.0 60.7 55.0 
All-avg 25.4 22.9 24.6 22.1 46.2 41.6 

Table 3. The test with R-P measure 

Recall  Class  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fitness8 0.185 0.213 0.245 0.258 0.260 0.262 0.208 0.185 0.153 0.107 
Fitness8’ 0.825 0.863 0.849 0.699 0.556 0.417 0.337 0.229 0.164 0.110 GM-avg 
Dual GAs 0.881 0.841 0.874 0.737 0.390 0.311 0.191 0.177 0.162 0.120 
Fitness8 0.140 0.119 0.126 0.130 0.176 0.129 0.131 0.131 0.127 0.110 
Fitness8’ 0.213 0.181 0.181 0.162 0.167 0.152 0.137 0.128 0.120 0.106 SE-avg 
Dual GAs 0.419 0.433 0.455 0.473 0.344 0.336 0.327 0.282 0.163 0.158 
Fitness8 0.202 0.138 0.113 0.104 0.101 0.103 0.099 0.102 0.105 0.105 
Fitness8’ 0.565 0.514 0.470 0.400 0.337 0.316 0.261 0.215 0.176 0.122 Cad-avg 
Dual GAs 1.000 0.982 0.838 0.602 0.430 0.165 0.160 0.164 0.161 0.140 
Fitness8 0.214 0.210 0.197 0.173 0.174 0.155 0.148 0.137 0.114 0.102 
Fitness8’ 0.180 0.213 0.193 0.191 0.161 0.146 0.133 0.116 0.111 0.105 ST-avg 
Dual GAs 0.838 0.698 0.546 0.503 0.486 0.453 0.439 0.367 0.175 0.103 
Fitness8 0.277 0.205 0.188 0.174 0.177 0.177 0.166 0.158 0.145 0.114 
Fitness8’ 0.806 0.700 0.597 0.497 0.345 0.302 0.251 0.213 0.164 0.116 MM-avg 
Dual GAs 0.454 0.438 0.479 0.423 0.348 0.265 0.205 0.169 0.138 0.108 
Fitness8 0.245 0.181 0.174 0.148 0.155 0.152 0.132 0.124 0.113 0.105 
Fitness8’ 0.265 0.192 0.160 0.139 0.122 0.100 0.100 0.099 0.100 0.104 DF-avg 
Dual GAs 0.640 0.383 0.286 0.205 0.186 0.160 0.157 0.139 0.128 0.108 
Fitness8 0.685 0.367 0.141 0.132 0.123 0.111 0.112 0.109 0.106 0.105 
Fitness8’ 0.740 0.359 0.192 0.156 0.122 0.111 0.107 0.098 0.101 0.104 OS-avg 
Dual GAs 0.645 0.553 0.387 0.312 0.298 0.272 0.211 0.199 0.178 0.105 
Fitness8 0.245 0.308 0.349 0.346 0.258 0.229 0.201 0.172 0.152 0.117 
Fitness8’ 0.416 0.446 0.427 0.366 0.271 0.243 0.208 0.165 0.135 0.108 DB-avg 
Dual GAs 0.524 0.366 0.257 0.255 0.211 0.205 0.201 0.188 0.146 0.103 
Fitness8 0.822 0.490 0.318 0.204 0.158 0.134 0.122 0.114 0.114 0.113 
Fitness8’ 0.419 0.358 0.241 0.197 0.185 0.123 0.113 0.107 0.110 0.107 PT-avg 
Dual GAs 0.939 0.762 0.633 0.521 0.428 0.363 0.303 0.265 0.192 0.105 
Fitness8 0.231 0.184 0.166 0.150 0.151 0.145 0.138 0.132 0.121 0.107 
Fitness8’ 0.517 0.476 0.420 0.363 0.281 0.255 0.215 0.181 0.150 0.114 GD-avg 
Dual GAs 0.764 0.706 0.621 0.509 0.421 0.294 0.268 0.233 0.158 0.117 
Fitness8 0.392 0.285 0.221 0.209 0.179 0.164 0.148 0.135 0.124 0.109 
Fitness8’ 0.473 0.332 0.260 0.220 0.172 0.151 0.138 0.121 0.112 0.105 UML-avg
Dual GAs 0.603 0.434 0.310 0.257 0.232 0.212 0.190 0.175 0.151 0.105 
Fitness8 0.331 0.245 0.203 0.184 0.174 0.160 0.146 0.136 0.125 0.109 
Fitness8’ 0.493 0.421 0.363 0.308 0.247 0.211 0.182 0.152 0.131 0.109 

P
recision 

All-avg 
 

Dual GAs 0.701 0.600 0.517 0.436 0.343 0.276 0.241 0.214 0.159 0.116 
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Fig. 2. The Graph of the test with R-P measure 

The user profile discovered by our Dual GAs is accurate and its effect is remark-
able. Table 2 shows that, compared with fitness8, our GA improves the recall and 
precision averagely to 81.9% and 81.7% respectively, and compared with fitness8’, 
our GA improves the recall and precision averagely to 87.8% and 88.2% respectively. 
Table 3 and Fig. 2 also show that our GA is better than fitness8 and fitness8’. 

5   Conclusions 

The special suitability of GAs to the exploration of very large dimensional vector 
spaces has led to their being progressively applied to IR. The robustness of GAs has 
been demonstrated in this field [16].  

In this paper, we have presented a different framework of PS. Firstly, by thinking 
that some keywords may play a more important role than the others for the user, we 
have introduced a new user profile model UP=(I, C), which includes not only the 
keyword-weights vector I but also an influence-genes vector C. Furthermore, with the 
influence-genes vector C, we have presented a new similarity measure w-cosine, 
which is an improver for the traditional cosine similarity.  

Secondly, we have presented the design of our Dual-GAs, FGA and SGA, which 
can accurately discover and adjust the user profile UP according to the user’s rele-
vance feedback.  

Finally, we have done three experiments on a Yahoo900 collection to compare our 
GA with some other GAs. The results show that our GA can discover the user profile 
more accurately and improve the precision of information recommendation. 
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A Diversity Metric for Multi-objective Evolutionary 
Algorithms 
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Abstract. In the research of MOEA (Multi-Objective Evolutionary Algorithm), 
many algorithms for multi-objective optimization have been proposed. Diversity 
of the solutions is an important measure, and it is also significant how to evaluate 
the diversity of an MOEA. In this paper, the clustering algorithm based on the 
distance between individuals is discussed, and a diversity metric based on 
clustering is also proposed. Applying this metric, we compare several popular 
multi-objective evolutionary algorithms. It is shown by experimental results that 
the method proposed in this paper performs well, especially helps to provide a 
comparative evaluation of two or more MOEAs.  

1   Introduction 

In recent years, various Multi-Objective Evolutionary Algorithms (MOEAs) are 
available, in which different techniques are employed to try to find the best 
approximations. Therefore, the questions arise of how to evaluate the performance of 
different MOEAs. The representative metrics can be classified into two groups: some 
metrics focused on comparing the observed Pareto optimal set with its true Pareto 
optimal set and others are used to assess the diversity of the observed Pareto optimal set. 

There are several techniques being used to assess the diversity of the observed Pareto 
optimal set. Such as: i) the approach is based on the distance to assess the performance 
of diversity by calculating the deviation from each solution point to the average distance; 
ii) the approach based on Shannon’s Entropy is implemented by calculating the density 
function that is the sum of all influence function of its neighborhood. However, the 
output results are not as good as desired for the existing performance metrics, and some 
of them may even be misleading for some given problems. 

In this paper, a clustering method based on the distance between individuals is 
discussed. It is shown by experimental results that the method can be correctly used to 
evaluate the diversity of different MOEAs. 

2   The Diversity Metric Based on Clustering 

2.1   Algorithm Description 

The diversity metric proposed in this paper is based on the clustering: initially we 
regard every individual in the solution as a subclass. Then choose the two subclasses 
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between which the centroid distance is the minimal, finally combine the two subclass if 
the centroid distance is smaller than D (D is the comparability of individuals).  

The algorithm is presented as follows: 

[1] Initialize cluster set C, let every subclass of C include one individual in NDSet: 

  1 2{ { }, { }, ,{ }} 1, 2, ,n i NDSetC p p p p i n= ∈ =  

  n is the size of NDSet .  

The centroid ( io ) of every subclass is the only individual in the subclass. 

[2] Calculate the centroid distance between any two subclasses: 

  Cooooood jijiji ∈−= ,||,||),(  

  Where |||| ji oo −  is the distance between io and jo . 

[3] Choose two new clusters ic and jc which have minimal centroid distance in 

current C: m in, : { ( , ) | , }i j i j i jc c d is t d o o o o C= ∈  

[4] If dist >D, then jump to [7]; where D is the given parameter. 

     combine ic and jc to cluster kc }{},{\ jiji ccccCC ∪=  

[5] Find the centroid of subclass kc : 

( ) { ( , ) | , , }kd p d p q p q c p q= ∈ ≠  

{ min( ( )) , }k ko p d p p c= ∈   

[6] Calculate the centroid distance between kc ( jik ccc ∪= ) and any other 

subclass of C: ||||),( lklk ooood −=  

  where ko lo is the centroid of kc and lc respectively, Ccc lk ∈, and 

lk cc ≠ . Then go to [3]. 

[7] Calculate the number of the subclasses of C, then the diversity equals to the 

number divided by the size of NDSet, End 

From the analysis of above paragraphs, we know the maximum diversity achievable 
is 1.000 and the larger the diversity measure the better is the distribution. 

2.2   Parameter Setting 

The value of D proposed in step 4 is given beforehand. Ideally, if the distance between 
the individuals in solution is almost the same, we choose the distance between the 
individuals as the value of D, which means the ideal condition. A too small value of D 
will make any distribution to have the maximum diversity measure of 1.000, whereas a 
very large value of D will make every distribution to have a small diversity measure. So 
we apply this method to get the value of D: first we choose the solution of the 
evolutionary algorithms that need to be evaluated, then for every algorithms’ solution, 
we calculate the minimal distance between the individuals and choose the biggest one 
from the those minimal distance values as the value of D.  
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But the convergence of every algorithm is different, if directly calculating the 
minimal distance of the individuals, the minimal distance of the poor convergent 
algorithm must be bigger, and it will affect the choice of D. So we should project 
Pareto-optimal solutions on a suitable reference plane before calculating the minimal 
distance of the individuals, and at the same time keep the distribution of the solution.  

If the true Pareto optimal front of the test problem is known, we consider the true 
Pareto optimal front as the reference plane; if it is unknown, we choose the suitable 
plane that is parallel with the solution plane as the reference plane. For example, the 
figure 1 illustrates the solution of SPEA2, and figure 2 illustrates the projective solution 
of SPEA2. (The three-objective test problem is DTLZ1, and the true Pareto optimal 
front is x+y+z=1). 

          

a. The elevation of SPEA2                 b. The side elevation of SPEA2 

Fig. 1.The solution of SPEA2 on DTLZ1 

           

a. The elevation of projected SPEA2         b. The side elevation of projected SPEA2 

Fig. 2.The projected solution of SPEA2 on DTLZ1 

From Figure 1 with Figure 2, the solution of SPEA2 is projected on the reference 
plane x+y+z=1 , but the distribution of the solution is almost unchanged. 

3   Experiment 

We apply the evaluation method proposed in this paper to evaluate the popular 
algorithms PESA2[1] NSGA2[2] and SPEA2[6]. 
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We test our method with two test problems that presented by Deb [3]: DLTZ1 and 
DLTZ3. In DLTZ1, the objective function values lie on the linear hyper-plane. The 
difficulty in DLTZ1 is to converge to the hyper-plane. The search space contains 
(11k-1) local Pareto optimal fronts, and each of which can attract the search procedure 
of a MOGA. In DLTZ3, there are (3k-1) local Pareto optimal fronts and one global 
Pareto optimal front in the search space, and all local Pareto optimal fronts are parallel 
to the global Pareto optimal front.  

3.1   Experimental Parameter 

Table 1 shows the parameters of algorithms for 2, 3, 4, 6 and 8 objectives:  

Table 1. Parameter setting scheme 

Objectives (M) 2 3 4 6 8 

Population size 200 200 250 300 500 

Generations 200 250 300 400 600 

Crossover probability 0.8 

Mutation probability 1/ len where len is the length of the chromosome. 

Selection Tournament selection 

 3.2   Experimental Results 

We use the metric proposed in this paper to compare three algorithms in diversity. 

          
a. SPEA2 distribution      b. NSGA2 distribution        c. PESA2 distribution 

Fig. 3.  Three algorithms distribution for the three-objective DTLZ1 

Obviously Figure 3 and Figure 4 show that SPEA2 attains the best distribution, 
followed by NSGA2 and then PESA2. The experimental results of Table 2 and Table 3 
show the performance metric based on clustering can correctly evaluate the diversity of 
three algorithms. But the results of Deb’s metric show the diversity of SPEA2 is worse 
than NSAG2 on highly dimensional objective space (3,4,6,8) of test problems. 
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Compared with the metric for diversity presented by Deb [4], the metric based on 
clustering can evaluate the evolutionary algorithms exactly.  

Table 2. Diversity on DTLZ1 

 Diversity metric of clustering Diversity metric of Deb 
M SPEA2 NSGA2 PESA2 SPEA2 NSGA2 PESA2 
2 0.99550 0.75240 0.72550 0.92641 0.75362 0.83630 
3 0.97560 0.49750 0.51743 0.59491 0.69837 0.59746 
4 0.98720 0.44297 0.47100 0.49025 0.60297 0.50100 
6 0.94336 0.37207 0.40503 0.50439 0.51207 0.55503 
8 0.99470 0.45756 0.40432 0.41504 0.59653 0.33964 

         

a. SPEA2 distribution      b. NSGA2 distribution       c. PESA2 distribution 

Fig. 4. Three algorithms distribution for the three-objective DTLZ3 

Table 3. Diversity on DTLZ3 

 Diversity metric of clustering Diversity metric of Deb 
M SPEA2 NSGA2 PESA2 SPEA2 NSGA2 PESA2 
2 0.97240 0.74650 0.73240 0.81368 0.74303 0.76550 
3 0.99845 0.49532 0.47546 0.62813 0.72467 0.54601 
4 0.98148 0.40454 0.48274 0.59034 0.69712 0.53318 
6 0.96529 0.36007 0.44563 0.51595 0.47534 0.40752 
8 0.96354 0.49843 0.43164 0.45580 0.51287 0.47165 

4   Conclusion 

With the development of evolutionary algorithms, many multi-objective algorithms are 
proposed, but there are not recognized performance metrics that can correctly evaluate 
the diversity of algorithms. In this paper, we proposed the metric based on clustering. It 
is proved by experiments that the method can evaluate the diversity of algorithms more 
exactly, but the method can only be used to compare the algorithms and not to evaluate 
one separate algorithm. 
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Abstract. Combinatorial auctions are efficient mechanisms for allocating re-
source in complex marketplace. Winner determination, which is NP-complete, is 
the core problem in combinatorial auctions. This paper proposes an immune 
partheno-genetic algorithm (IPGA) for solving this problem. Firstly, a zero-one 
programming model is built for the winner determination problem with 
XOR-bids and OR-bids. Then, steps of constructing three partheno-genetic op-
erators and an immune operator are introduced. In the immune operation, new 
heuristics are designed for vaccines selection and vaccination. Simulation results 
show that the IPGA achieves good performance in large size problems and the 
immune operator can improve the searching ability and increase the converging 
speed greatly. 

1   Introduction 

Auctions are dynamic and efficient mechanisms for allocating items (goods, resources, 
services, etc.) in complex marketplace. And they provide a foundation for mediation 
and brokering in a variety of task and resource allocation problems, for example, 
bandwidth auctions, auctions for take-off and landing slots in an airport, purchase and 
supply management and so on [1], [2], [3]. With the popularity of e-Business con-
tinuing to rise, auctions become new ways for fully automated electronic negotiation in 
multiple parties. Combinatorial auctions allow that bidders can bid on combinations of 
items in multi-item auctions. However, basic combinatorial auctions may generate in-
efficient allocations of resources when bidders demand bundles of complementary 
resource, i.e. “I want A or B either, but I don’t want A and B both”. So, XOR-bids and 
OR-bids are added in combinatorial auctions to help bidders expressing their general 
preference more exactly [4], [5]. XOR-Bids and OR-Bids allow bidders to submit ad-
ditive or exclusive bids over collection of combinations. In the former case, the bidder 
can express his preference exactly by submitting XOR-bids as “(A) XOR (B)”. 

In combinatorial auctions, finding the revenue maximizing set of winning bids is the 
first difficult challenge, called winner determination problem (WDP). And it is well 
known that the WDP is a complex computational problem and NP-complete [6]. Much 
of recent research on solving the WDP has been carried out by different approaches 
such as optimization, intelligent search and heuristics [7]. Sandholm developed 
Branch-on-Items and Branch-on-Bids algorithms for solving the WDP and gained 
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significant popularity [5], [8]. Mito and Fujita proposed three heuristic bid-ordering 
schemes for solving the WDP [9]. Leyton-Brown, Shoham and Tennenholtz researched 
and developed a method for the WDP in multi-unit combinatorial auctions [10]. Gonen 
and Lehmann also applied the branch-and-bound procedure to solve the WDP as an IP 
problem in multi-unit combinatorial auctions [11]. 

For solving the WDP, we propose an immune partheno-genetic algorithm (IPGA). 
The IPGA is a genetic algorithm that has three partheno-genetic operators [12] and an 
immune operator [13], [14]. The IPGA repeals crossover operators and implements the 
functions of crossover and mutation by partheno-genetic operators. The immune op-
erator is based on the theory of immunity in biology. And it operates as injecting the 
good vaccine into a solution and remove the bad one, so as to improve the revenue. It 
can increase the converging speed and make the improvement of the searching ability. 

In this paper, Section 2 describes the WDP with XOR-bids and OR-bids. Section 3 
introduces our algorithm IPGA in detail, including steps of constructing three 
partheno-genetic operators, procedure of vaccine selection and vaccination, heuristics 
for evaluating the bids to be good or not. In section 4, we test our algorithm in execution 
time, the percentage of producing the optimal solution and the least generations of 
finding the optimal solution. Finally, we present our conclusions. 

2   Problem Description 

Let M = {1, 2, …, m} be the set of items to be auctioned, and A = {1, 2, …, n} be the set 

of bidders to participate in the combinatorial auction. Each bidder i can submit 

XOR-bids or OR-bids but can’t submit XOR-bids and OR-bids at the same time. 

XOR-bids and OR-bids are both a set of bids, as } ..., ,{ 1 j
ii

type
i bbB = . Let type

iB  be 

the number of bids in type
iB . XOR-bids allow no more than one of the bids in 

XOR-bids to be accepted. OR-bids allow one or more of the bids in OR-bids to be 

accepted. For example, },,{ 321
iii

XOR
i bbbB =  indicates that bidder i wants at most one of 

321 ,, iii bbb  to be won. And },,{ 321
iii

OR
i bbbB = indicates that bidder i wants one or 

more, even all of them to be won.  Bid j
ib  is a tuple, j

ib = ( j
is , j

ip ), and indicates 

bidder i offer price j
ip  for item combination j

is . 
Assume that there is one seller (or several sellers acting in concert) and multiple 

bidders, and only one unit of each item is available in the auction. The objective is to 
maximize the seller’s revenue. The model of WDP with XOR-Bids and OR-bids is as 
follows: 

WDP: 
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Because single unit of each item is available, to any item k, only one bid can be won 
in all bids that contain item k. Therefore, Equation (2) ensures that each item will be 
allocated no more than once. Equation (3) ensures that no more than one bid in 
XOR-Bids can be won. 

3   Immune Partheno-Genetic Algorithm 

The WDP is a combinatorial optimization problem. And genetic algorithm (GA) is capa-
ble of solving combination optimization problems, such as traveling salesman problem, 
flow-shop problem and so on [15], [16]. In combinatorial optimization problems, GA of-
ten uses ordinal strings, and that make the implementation intuitionistic and convenient. 
But the crossover operation for ordinal strings is complex, GA has to use special crossover 
operators such as PMX, OX and CX [17], instead of general crossover operators, and that 
may cause immature convergence phenomenon. Therefore, a partheno-genetic algorithm 
(PGA) is proposed, and it use partheno-genetic algorithm operators to implement the 
function of crossover and mutation, and restrain the immature convergence phenomenon. 
In our algorithm IPGA, there are three particular partheno-genetic operators: SWAP, 
REVERSE, INSERT [18]. These partheno-genetic operators are easy to be carried out and 
they don’t require the initial population to be varied. 

In a complicated problem, there are many basic and obvious characteristics or 
knowledge. However, in basic GA, crossover and mutation operators usually lack the 
capability of utilizing these characteristics and knowledge. When using the PGA for 
solving the WDP, partheno-genetic operators may neglect the assistant function of 
these characteristics or knowledge. And the loss due to the negligence is sometimes 
considerable. Therefore we add an immune operator in our algorithm, and then the 
PGA becomes the IPGA. The immune operator utilizes the information of bids for 
seeking the ways or patterns of finding the optimal solution. By using the immune 
operator, the IPGA refrains the degenerative phenomena arising from the evolu-
tionary process, improves the searching ability, and increases the converging speed 
greatly. 

Before the main algorithm IPGA running, all bids should be preprocessed to find out 
noncompetitive bids and noncompetitive tuples of bids. Noncompetitive bids will be 
discarded directly and noncompetitive tuples of bids will be excluded in the searching 
process. We preprocess XOR-bids and OR-bids with particular methods, which were 
also develop by us [18]. 

To convenience the implementation, we use dummy bids [5] to make sure that each 
allocation includes all items. When an allocation includes a dummy bid that indicates 
the auctioneer keep the item from the dummy bid. 
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3.1   Chromosome Generation 

In the IPGA, the natural number string is used as the gene representation. A chromo-
some represents an allocation. The length of chromosome is alterable. The fitness is the 
sum price of the bids in the allocation. 

After preprocessing, number all survival bids and let Bsur be the set of the survival 
bids except dummy bids, Bsur = {b1, b2, ... ... bn}. Let M be the set of all items, U be the 
set of allocated items and X be the set of bids in an allocation. The procedure of 
chromosome generation is as follows: 

Step 1. Generate a random sequence Q on Bsur. 

Step 2. Take the first bid bhead from Q; add bhead into X and add the items of bhead  

into U. 

Step 3. If it comes to the end of Q, go to Step6; otherwise take the next bid bnext from 

Q in turn. 

Step 4. If bnext doesn’t meet equations (2) and (3) in the WDP model, go to Step3; 

else continue. 

Step 5. Add the bid bnext into X and add the items of bnext into U. if U equals M, go to 

Step 7, else go to Step3. 

Step 6. If U doesn’t equal M, add the dummy bids into X until U equals M, which 

only contains the unallocated items; else continue. 

Step 7. Output X as a chromosome. 

3.2   Partheno-Genetic Operators 

In genetic operation, three partheno-genetic operators work on Q. They change the 
order of bids in Q and generate the new chromosome from the new Q. When the length 
of Q is long, these partheno-genetic operators need to work on Q multiple times. The 
procedures of three partheno-genetic operators are stated as follows. 

• SWAP Operator 

Step 1. Select two bids from Q randomly. 

Step 2. Swap the position of these two bids and generate a new array Q’. 

Step 3. Generate a new chromosome from Q’. 

• REVERSE Operator 

Step 1. Select a sub-array from Q randomly. 

Step 2. Reverse the positions of these bids in the sub-array and generate a new 

array Q’. 

Step 3. Generate a new chromosome from Q’. 
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• INSERT Operator 

Step 1. Select a sub-array from Q randomly. 

Step 2. Move the last bid in the sub-array to the head position of this sub-array, and 

shift all other bids in the sub-array backwards, and generate a new array Q’. 

Step 3. Generate a new chromosome from Q’. 

For example, Q = (b3, b1, b5, b2, b6, b4), random positions in Q are 2 and 5. In SWAP 
operator, new array Q’ = (b3, b6, b5, b2, b1, b4); In RRVERSE operator, new array Q’ = 
(b3, b6, b2, b5, b1, b4); In INSERT operator, new array Q’ = (b3, b6, b1, b5, b2, b4). 

3.3   Heuristics for Bids Evaluation 

In chromosome generation, bids in Q are selected one by one, so the order of bids de-
cides the probability that a bid may be accepted in an allocation. The bid in the front of 
Q has more chance than the bid in the back. To find out the optimal allocation, intui-
tively, good bids should be placed in the front of Q, and bad bids should be moved 
backward. Price is a direct way for evaluating the bid to be good or not. In practice, the 
bid with high price often has many items, which may destroy many other bids’ op-
portunity. So, we developed some new heuristics for evaluating the bids. 

Heuristic hbavg Bid’s average contribution: the price of the bid divided by the number 
of the items in that bid. Formally, 

j
i

j
ij

ibavg
s

p
bh =)(  (5) 

Heuristic hiavg Item’s average contribution: the average of all the bids’ hbavg, which 
involves the item. Formally, 
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Heuristic himax Item’s maximal contribution: the maximum of all the bids’ hbavg, which 
involves the item. Formally, 

 })({ max)(max
j

i
j

ibavgi skbhkh ∈=  (7) 

Heuristic hnh Within a bid, the number of particular items that have their hiavg less than 
the hbavg of the bid, formally, 

},)()({)( j
iiavg

j
ibavg

j
inh skkhbhkbh ∈>=  (8) 

Heuristic hnl Within a bid, the number of particular items that have their hiavg greater 
than the hbavg of the bid, formally, 
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Heuristic hnm Within a bid, the number of particular items that have their himax equal the 
hbavg of the bid, formally, 

},)()({)( max
j
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When j
ib  contain item k and )()( khbh iavg

j
ibavg > , that indicates bid j

ib  can con-

tribute more revenue than average on item k, then item k in bid j
ib  is a good item. If 

)()( khbh iavg
j

ibavg < , that indicates item k in bid j
ib  is a bad one. When a bid contains 

more good items, we evaluated the bid better. In the same way, we evaluate the bid 

worse when it contains more bad items. We don’t evaluate the bid by the price but the 

number of good items and bad items. Obviously, heuristics hnl, hnh and hnm show the 

number of good items and bad items of each bid. Therefore, they are key functions for 

evaluating bids and applied in the immune operator. 

3.4   Immune Operator 

In the IPGA, an immune operator is composed of two operations: vaccination and 
immune test. These two operations base on reasonable selecting vaccines. The opera-
tion of selecting vaccines is selecting the good bids as vaccines from all preprocessed 
bids. The operation of vaccination is injecting vaccines into the individuals for raising 
the fitness; and that of immune test is testing the effect of vaccination for preventing the 
deterioration. 

• Selecting Vaccine 
After preprocessing, vaccines are selected in survival bids except dummy bids. And 
each item has its own vaccine list. A bid can be selected as a vaccine as long as it sat-
isfies one of these two conditions: 1) hnm > 0; 2) the value of hnh divided by the number 
of items in that bid is greater than 0.8. When a bid is selected as a vaccine, it will be 
added in all its items’ vaccine list. For example, bids [({1, 2}, $5)] and [({2, 3}, $6)] are 
selected as vaccines, then they will be added in item 1, 2, 3’s vaccine lists. 

• Vaccination 
The operation of vaccination is removing the worst bid from current allocation and 
accepting the corresponding bid (vaccine), then generating a better allocation. After 
preprocessing, let Bsur be the set of all survival bids except dummy bids, X be the cur-
rent allocation, Q be the random array on Bsur, F be the set of unallocated items, and set 
F empty initially. The procedure of vaccination is as follows: 

Step 1. Calculate hnl for all bids in X. 

Step 2. If all bids’ hnl equal zero, exit; otherwise select the bid with max hnl as the worst 

bid bwst (if multiple bids have the same max hnl, select the one with lowest price). 
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Step 3. Remove bwst and all dummy bids from X; add their items into F. 

Step 4. Search in all unallocated items’ vaccine lists for finding the bids that meet 

equations (2) and (3) in the WDP model. In these bids, select the bid with max hbavg 

as the best bid bbst. 

Step 5. If bbst exists, swap bbst and bwst in Q; else move bwst to the end of Q. 

Step 6. Generate a new allocation from the new Q, and output it as a vaccinated 
chromosome. 

If the bids’ order in Q is changed too much, the new allocation may be much dif-
ferent from the old one, and that may destroy the effect of vaccination. So we only 
select one bid as the worst bid and one bid as the best bid in vaccination. When the 
problem size is large, the worst bid bwst often use up many items. The operation of 
removing bwst and dummy bids from the current allocation will release the opportuni-
ties for other bids, which are behind bwst in Q. After swapping bbst and bwst in Q, a new 
allocation is generated from the new Q. Because bwst is removed, bbst and other bids are 
accepted, the new allocation has great chance to obtain more revenue and has more 
probability to be the optimal allocation. If bbst can’t be found out, the operation, 
moving bwst to the end of Q, equals removing bwst from the current allocation and give 
chances to other bids. The operations of vaccination reflect the criterion of our  
strategy: Good bids should have more chance to be accepted in the allocation than  
bad bids. 

• Immune Tests 
After vaccination, the vaccinated chromosome needs immune test. If the fitness of the 
vaccinated chromosome is smaller than that of the original one, which means that de-
generation has happened in the process of vaccination, instead of the vaccinated 
chromosome, the unvaccinated chromosome will participate in the next competition. 

3.5   Immune Partheno-Genetic Algorithm Procedure 

After all works have been introduced as above, the procedure of the IPGA for the WDP 
is as follows: 

Step 1. Set the global parameter: the number of generations NG, the size of popu-

lation size PS, probabilities of three partheno-genetic operators Ps, Pr and Pi, the 

probability of vaccination Pv. 

Step 2. Preprocess all bids. 

Step 3. Construct vaccine lists on each item. 

Step 4. Produce initial random population. 

Step 5. If the stopping criterion is satisfied, go to Step9; else continue. 

Step 6. Perform three partheno-genetic operations on the kth generation Ak and ob-

tain the results Bk. 



 An Immune Partheno-Genetic Algorithm for Winner Determination 81 

 

Step 7. Perform vaccination and immune test on Bk and obtain the results Ck. 

Step 8. Perform the roulette wheel proportional selection and quintessence selecting 

strategy on Ck, and obtain the next generation Ak+1, then go to Step5. 

Step 9. Output the solution and stop. 

There are two stop criterions: 1) stopping at the maximum number of generations; 2) 
the best fitness keeping no change in specific generations. The quintessence selecting 
strategy is that replace the random one chromosome in current generation by the best 
one in the pre-generation. 

4   Experimental Results 

To determine the efficiency of the algorithm, we run experiments on a gen-
eral-purpose PC (CPU: 2.4GHZ Pentium IV; Memory: 1024MB; OS: Windows 
2000). The algorithm is programmed in C language and run on Random bid distri-
butions: For each bid, pick the number of items randomly from 1, 2, …, m. Randomly 
choose that many items without replacement. Pick a random integer price from [1, 
1000]. When all the bids are produced, we assign them to the bidders randomly and 
set bidders submitting XOR-bids or OR-bids randomly. The bidders can bid any item 
combination. Same bids cannot belong to the same bidder. XOR-bids must contain at 
least two bids. 

In the following experiments, the comparison of execution time between the IPGA 
and the BOI+ algorithm shows how fast the IPGA is in large size problems. And we 
compare the percentage of producing the optimal solution between the IPGA and the 
PGA, and show the effect of the immune operator. At last, some instance results show 
the setting of global parameters in the IPGA. The BOI+ algorithm is derived form the 
algorithm BOI presented by Sandholm [5], and it use a different heuristic h(F), which is 
also designed by Sandholm [8]. Using this heuristic, the BOI+ algorithm can get more 
accurate upper bound on the optimal revenue and search faster. 

4.1   Execution Time 

The BOI+ algorithm seeks the optimal solution in a tree [5] and doesn’t stop until it 
finishes searching the whole tree. The execution time of it relies on the number of nodes 
in the tree. When the problem size becomes large, the number of nodes will increase 
explosively. Although using the heuristic can prune great many nodes in the tree, the 
execution time of the BOI+ algorithm still increase greatly. 

Fig. 1 shows that in the small or middle problem size, the searching speeds of the 
BOI+ algorithm and the IPGA are differential not very. When the problem size be-
comes large, the execution time of the BOI+ algorithm increases greatly and nonline-
arly. However the execution time of the IPGA increase steadily and almost linearly. 
Each point in the Fig 1 represents an average over 10 problem instances. 
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Fig. 1. Execution time of BOI+ and IPGA 

4.2   Best Rate and Best Generation 

In Fig.2 and Fig.3, the best rate means the percentage of producing the optimal solution. 
And the best rate of each problem instance is test by 100 running with different random 
seeds. The value of the best rate in histogram is an average over 10 problem instances. The 
best generation means the least generations of finding the optimal solution. And the value 
of best generation in histogram is also an average over 10 problem instances. 

 

Fig. 2. Best rate of PGA and IPGA 
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Fig. 3. Best generation of PGA and IPGA 

Fig.2 shows that the immune operator improves the percentage of producing optimal 
solution efficiently. In the four kinds of different size problems, the best rate of the 
IPGA is higher 13%~18% than that of the PGA. In the four kinds of different size 
problems, the best rates of the IPGA are all higher than 95%. 

Fig.3 shows that the IPGA find the optimal solution earlier than the PGA. In the four 
kinds of different size problems, the best generation of the IPGA is less 26%~37% than 
that of the PGA. 

4.3   Parameters Setting 

Table 1 shows different parameters setting in the IPGA for different problem sizes. For 
achieving high percentage of producing optimal solution in large size problems, we can 
enlarge the size of initial population, enhance the probabilities of INSERT operator and 
REVERSE operator, and the probability of the vaccination. 

Table 1. Some instance results of IPGA 

Problem 
Size 

Parameters 
PS/NG/Pr/Pi/Ps/Pv 

MAX 
Revenue

Average 
Revenue 

Time 
(s) 

Best 
Rate 

25/50/500 50/1000/0.3/0.3/0.2/0.3 11684 11684 1.3 100% 
50/100/1000 100/1000/0.3/0.3/0.2/0.3 18934 18931 8.6 99% 
50/400/1000 300/4000/0.5/0.5/0.3/0.4 8957 8953 158 98% 
75/150/1500 200/2000/0.4/0.4/0.2/0.3 22237 22235 49 96% 

100/200/2000 300/4000/0.5/0.5/0.3/0.4 19010 19008 185 99% 
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5   Conclusion and Analysis 

In this paper, we study the winner determination problem with XOR-bids and OR-bids 
in combinatorial auctions, and propose the immune partheno-genetic algorithm for 
solving the WDP. The IPGA has the advantage of GA, partheno-genetic operator and 
immune operator. The IPGA has the GA’s characteristics of easier application, greater 
robustness, and better parallel processing than many classical methods of optimization. 
Using partheno-genetic operators, the IPGA avoid the complicated crossover operation 
and restrains the immature convergence phenomenon. Using the immune operator, the 
IPGA is capable of alleviating the degeneration phenomenon and greatly increasing the 
converging speed. Genetic operations of IPGA are simple and don’t require their initial 
population to be varied. Different from heuristics in [5], [8], [19], we develop three new 
heuristics hnh, hnl, hnm for evaluating the bids and apply them in vaccine selection and 
vaccination. With these heuristics, the IPGA utilizes the assistant function of the prior 
knowledge. It is well known that the WDP can be formulated as a multi-dimensional 
knapsack problem (MDKP) [7], [19]. In the further, we will try to apply the IPGA for 
the MDKP and make more research on that. 
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Abstract. Enlightened by traditional Chinese medicine theory, a novel genetic 
algorithm (CMGA), which applies two types of treatment methods of "bu" and 
"xie" and dialectical treatment principle of traditional Chinese medicine theory 
to canonical GA, is proposed. The core of CMGA lies on constructing a cure 
operator, which is dynamically assembled with "bu" operation that replaces 
normal genes with eugenic genes and "xie" operation that replaces abnormal 
genes with normal genes. The main idea underlying CMGA is to give full play 
to the role of guidance function of knowledge to the evolutionary process 
through the cure operator. The simulation test of TSP shows that CMGA can 
restrain the degeneration and premature convergence phenomenon effectively 
during the evolutionary process while greatly increasing the convergence speed. 

1   Introduction 

In genetic algorithm (GA), because crossover and mutation operator search for new 
individuals randomly during the whole process, there exists the degeneration of 
offspring unavoidably, and the searching led by selection operator is comparatively 
slow and is often trapped in the local optimal area. Therefore canonical GA has the 
phenomena of low converging speed, being premature readily. One of the reasons 
causing such shortage is that canonical GA neglects the assistant function of 
knowledge as its universality. According to the NFL theory [1], if GA is guided by 
the related knowledge the matching between GA and the problem will be closer, then 
the performance of GA can be surely improved [2,3,4]. 

It is a perpetual theme in the research field of evolutionary algorithms and even 
intelligent computation to get inspiration from life sciences, and both the immune 
algorithm and the neural network from Western medicine are successful examples. 
While the traditional Chinese medicine, which is as important as the Western 
medicine, has a different theory, it should also be helpful to this research. 

Inspired by traditional Chinese medicine theory, a novel genetic algorithm 
(CMGA) is introduced. The core of CMGA lies on constructing a cure operator, 
which consists of "bu" operation that replaces normal genes with eugenic genes and 
"xie" operation that replaces abnormal genes with normal genes. This algorithm's 
contents and the cure operator's construction and mechanism are introduced. To 
validate CMGA, simulation tests of TSP are performed. Lastly conclusions are given. 
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2   A Novel Genetic Algorithm Based on Cure Mechanism of 
Traditional Chinese Medicine 

The fitness of individuals in GA can be considered as the index of health in iatrology, 
by which the higher fitness values indicate the strong and the lower fitness values 
indicate the weak. The process of population evolution in GA is similar to the process 
of the on-going improvement of human being's health condition. The treatment 
methods and mechanism adopted by human being to improve health level enlighten 
us to employ the similar ones to improve the fitness of the individuals in GA.  

According to traditional Chinese medicine theory, treatment should combine "bu" 
with "xie". The "bu" is to supply the lacking nutritional ingredient, while the "xie" is 
to clear the harmful materials [5]. But they are not completely separate, and they often 
involve each other. When a doctor makes a therapeutic schedule, the orders, times, 
proportions and contents of the "bu" and "xie" should be arrange according to the 
principle of differentiation of symptoms and signs. Only used appropriately, can they 
achieve the goal of curing diseases and increasing people's health level. 

Based on the consideration above, a novel genetic algorithm based on cure 
mechanism of traditional Chinese medicine (CMGA) is presented. Its flowchart is 
shown in Fig.1. The concepts involved in CMGA can be defined as follows. 

 

Fig. 1. The flow chart of CMGA 

Definition 1. Eugenic genes: the genes or chromosomal fragment to be included in the 
global optimal individual at a higher probability that can be viewed as a pattern with a 
comparative higher fitness. 

Definition 2. Abnormal genes: the genes or chromosomal fragment to be impossibly 
included in the global optimal individual at a higher probability that can be viewed as 
a pattern with a much lower fitness. 
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Definition 3. Normal genes: the genes or chromosomal fragment whose fitness is 
between abnormal genes' fitness and eugenic genes' fitness. 

Definition 4. "Bu" operation: replacing normal genes in the individual with eugenic 
genes. 

Definition 5. "Xie" operation: replacing abnormal genes in the individual with normal 
genes. 

The selection operator in CMGA is annealing selection with elitist strategy. 
Because the cure operator has no side effect to the convergence of CMGA, CMGA 
converges to the global optimal solution at the probability 1 [6, 7]. After the cure 
operator is finished, an individual Pi ( 0 i N≤ ≤ ) in the present offspring P= 
(P1,…,PN) is selected to join in the new population with the probability below: 

( ) / ( ) /P( ) /i k i k

N
f p T f p T

i
i 1

p e e
=

=  (1) 

where f(Pi) is the fitness of the individual Pi, 0ln( / 1)kT T k= +  is the temperature 

series approaching 0, k is the evolutionary generations, T0 is the initial annealing 
temperature. Meantime, the best individual found in each generation is maintained.  

3   The Construction and Mechanism of Cure Operator 

The core of CMGA is the construction of cure operator. First, we must obtain eugenic 
genes and abnormal genes, which are sometimes more than one type respectively, 
according to prior knowledge or posterior knowledge. Secondly, the detailed methods 
of "bu" operation and "xie" operation can be fixed on. Lastly we can make the 
implementing scheme of cure operator. 

In order to obtain eugenic genes according to prior knowledge, first a detailed 
analysis is carried out on the pending problem, and meanwhile, as many basic 
characteristics information of the problem as possible ought to be found. It is 
necessary to note that the characteristics information of the pending problem mainly 
relates to superior individual, for example the ingredients making up of superior 
individual. Secondly, the characteristics information is abstracted to be a schema. 
Finally eugenic genes are made of the schema. 

On the basis of a detailed analysis carried out on the pending problem, abnormal 
genes can be obtained from comparing superior individual with inferior individual 
and finding out their differences. If we have found some schemas included in the 
inferior individual and definitely not included in the superior individual, these 
schemas become the basis of identifying abnormal genes. Usually an individual 
generated randomly is an inferior individual at high probability, thus we can get 
inferior individual by this way. If we don't know superior individual, we can reduce 
the dimension of pending problem and make it become a simple problem, which can 
be solved by a simple algorithm, then we can find out superior individual. 

Different from the above-mentioned methods of obtaining eugenic genes and 
abnormal genes according to prior knowledge before population evolution, another 
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method is to obtain and update them according to posterior knowledge from 
individuals produced during the evolutionary process.  

When we make the implementing scheme of cure operator, we should fix on the 
execution time and probability, the order and proportion of "bu" and "xie" operation, 
and so on according to the information obtained during evolutionary process and the 
characteristic of pending problem. 

In essence, eugenic genes and abnormal genes are a kind of expression form of 
knowledge, and the cure operator, which can accelerate population to flee from the 
infeasible areas of search space while accelerating population to move towards the 
promising areas of search space, is a kind of method to give full play to the role of 
guidance function of knowledge to evolution process. The correct selection of eugenic 
genes and abnormal genes has important influence on efficiency of CMGA and is the 
basis and guaranty on which the effect of the cure operator can be exerted.  

4   Simulations 

Five TSP instances from TSPLIB are used in our experiments. The size of population 
is the total number of cities. The source code is written in C++ and run on a PC 
(Pentium4 2.4GHz, 256 MB memory) with Windows 2000. In order to make the 
coding easy and clear, we take the permutation of the order of visiting the cities for 
the coding of TSP and regard the following equation as the fitness function: 

*( ) (100 ) ( )i if p L w p= × ÷   *L k n R= × ×       (2) 

where L* denotes the approximate length of the shortest tour of TSP, n is the number 
of cities, k is a low bound of Held-Karp as an experiential value and varies with n, R 
means the side length of the smallest square which can contain all the cities, and Pi is 
the current tour, w (Pi) is the length of tour Pi [8, 9]. 

4.1   The Construction of Cure Operator 

In "bu" operation, eugenic genes are obtained according to posterior knowledge. First, 
a chromosomal fragment that consists of k continuous cities (2<k<n/2, n is the total 
number of cities) is randomly and continuously selected in the current best individual. 
Secondly, find out all chromosomal fragments that contain the k same cities with the 
same start city and end city from population's individuals and compare their path 
lengths, then the chromosomal fragment Gk whose path length is the shortest is 
identified as eugenic genes. Lastly, replace the individual's chromosomal fragment 
that contains the same cities with the same start city and end city as Gk with Gk. 

In "xie" operation, abnormal genes are obtained according to prior knowledge. 
First we find out superior and inferior individual to a simple TSP. Next we can 
discover that there are no crossed edges in superior individual and there are crossed 
edges in inferior one and the length of the inferior one is reduced after its crossed 
edges are removed. Thus, two crossed edges in an individual are identified as 
abnormal genes. Lastly a cross can be removed from an individual by reversing the 
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sub path between the two cities that belong to two crossed edges and aren't linked. In 
addition, because the original city order of an individual is changed after a reversal is 
completed, the process of removing crosses of every two edges in an individual must 
be repeated for sufficient times so that all the crosses in this individual can be 
removed completely. 

The implementing scheme of cure operator is described as follows. Since 
individuals created randomly often have many crossed edges, "xie" operation should 
be applied to the whole population in the first generation. From the second generation, 
"xie" operation is mainly used for removing crossed edges in individuals created by 
crossover and mutation operation, which will gradually decrease along with increment 
of population's fitness, so the probability of "xie" operation should gradually decrease 
along with evolutionary process. With respect to "bu" operation, it should begin to be 
applied after there are many superior individuals in population, and the probability of 
"bu" operation should increases with evolutionary process. By tests, the probability of 
"xie" and "bu" operation should be from 0.8 to 0.2 and from 0.2 to 0.8 respectively. 

4.2   The Crossover Operator and Mutation Operator 

PMX (Partially-Mapped Crossover) [10] is used in crossover, whose probability is 
from 0.6 to 0.8. The combination of shift operation and swap operation is used in 
mutation, whose probability is from 0.2 to 0.6. In shift operation, a series (of random 
length) of cities are picked and then shifted a random amount of cities forward (or 
backward). In swap operation, two cities from an individual are picked randomly and 
then their positions are switched. The times of shift operation and swap operation in 
one mutation is based on the diversity of population.  

4.3   The Results of Simulation 

A comparison of the variation of fitness with iteration for eil75 among GA, IGA [2] 
and CMGA is shown in Fig.2 (the sub graph (a) and sub graph (b) of Fig.2 are 
directly taken from [2]). CMGA finds the global optimal tour with the length 542.31 
after 33 generations while IGA finds the local optimal tour with the length 549.18 
after  960  and  GA  finds it after 3550. It can be seen from Fig.2 that CMGA not only  

 
(a) Canonical GA                         (b) IGA                            (c) CMGA 

Fig. 2. A comparison of the variation of fitness with iteration among GA, IGA, CMGA 

The optimal fitness 

The average fitness



 A Novel Genetic Algorithm Based on Cure Mechanism 91 

 

restrains the degenerate phenomenon effectively during the evolutionary process as 
IGA but also has the faster converging speed than GA and IGA.  

With the basic parameter fixed, eil51, Kroa100, ch150 and d198 are solved with 
canonical GA and CMGA respectively. The experimental results are shown in 
Table 1, from which we can find that CMGA finds the global optimal tour of the 
four TSP while canonical GA only finds the local optimal tour. In the meantime, 
CMGA has the faster convergence speed and the shorter convergence time than 
canonical GA. 

Table 1. A comparison of experimental results between anonical GA and CMGA 

Name 
CMGA 
optimal 
length 

GA 
optimal 
length 

CMGA best 
convergence 

time(s) 

GA best 
convergence 

time(s) 

CMGA best 
convergence 
generation 

GA best 
convergence 
generation 

eil51 428.87 429.53 0.15 3.95 20 936 
kroa100 21285 21311 1.93 40.28 36 1809 
ch150 6530.9 6535 7.04 90.74 87 2818 
dl98 15809 15851 46.78 642.14 140 6859 

5   Conclusions 

A novel genetic algorithm based on cure mechanism (CMGA), which is inspired by 
the theory of traditional Chinese medicine, is proposed. The simulation of TSP shows 
CMGA is not only feasible but also valid and is helpful to alleviating the degeneration 
and premature convergence phenomenon in canonical GA while greatly increasing 
the convergence speed. The success of CMGA makes us believe that it is a new and 
promising research way to get inspiration from traditional Chinese medicine theory in 
the research field of evolutionary algorithms and even intelligent computation. In the 
future, we will keep on with the research work along this way. 
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Abstract. An adaptive genetic algorithm based on information entropy is 
presented in this paper. Unlike traditionally approach, the proposed AGA let the 
crossover- and mutation- rate optimized by GA itself and user need not confirm 
the concrete values of the two parameters. Hence, it greatly decreases the 
workload for iterative debugging the corresponding parameters. As a modified 
algorithm, this AGA has the following holistic characters: (1) the quasi-exact 
penalty function is developed to solve nonlinear programming (NLP) problems 
with equality and inequality constraints, (2) entropy-based searching technique 
with narrowing down space is taken to speed up the convergence, (3) a specific 
strategy of reserving the most fitness member with evolutionary historic 
information is effectively used to approximate the solution of the nonlinear 
programming problems to the global optimization, (4) A new adaptive strategy 
is employed to overcome the difficulty in confirming the genetic parameters, 
(5) a new iteration scheme is used in conjunction with multi-population genetic 
strategy to terminate the evolution procedure appropriately. Numerical 
examples and the performance test show that the proposed method has good 
accuracy and efficiency. 

1   Introduction 

Genetic Algorithm (GA), initiated by Holland [1], is one of the most important 
evolutionary computation techniques. The principal advantages of the genetic 
algorithms reside in the fact that no sensitivity analysis is required and global optimal 
solution can be obtained. It has philosophical basis in Darwin’s theory of survival of 
the fittest. As a global optimization technique, it has been successfully applied in a 
series of optimal design problems. However, it still has some defects such as that the 
premature convergence cannot always get the optimal solution, some parameters are 
difficult to confirm appropriately, etc. All these hindered GA from more popularity. 

A new adaptive GA is presented in this paper to solve the above problems. Firstly, 
the adaptive genetic evolutionary model is constructed, which can be applied in the 
constraint optimization problems. Then, the information entropy-based genetic 
algorithm built on entropy-based searching technique developed in prior work [2,3] is 
described in detail. In the proposed method, the probability of both crossover and 
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mutation need not to be confirmed, the only work is to limit them to a reasonable 
range according to the references in any GA books. Besides, an entropy-based 
searching technique with multi-population and the quasi-exact penalty function are 
used to ensure rapid and steady convergence, and use a specific strategy of reserving 
the most fitness member with evolutionary historic information to obtain the global 
solution. Numerical examples and performance test are given to demonstrate the 
efficiency of the proposed algorithm. 

2   Adaptive Genetic Evolutionary Model Design 

General GA used fix genetic operators, so the confirming of some genetic parameters 
is more difficult than others. Besides, in prophase and anaphase of evolution, the 
specialties are different. Hence, the genetic operators should be dynamic during the 
process of evolution. Otherwise, it will prone to cause premature convergence. Let the 
genetic operators varied appropriately in different evolutionary phase is the pursuit of 
AGA (Adaptive Genetic Algorithm). When the coding method is decided, the 
crossover- and mutation- rate play an important role in the algorithm convergence. 
More and more AGA emerged under all sorts of methods in the last few decades  
[4-6], most of them take the modus operandi that set one or two additional 
coefficient(s) which varied abbey some rule. In this paper, the author attempt to put 
aside the traditional approach and let the crossover- and mutation- rate evolving 
together with the variables of the optimization problem. Hence, as for the general 
constrained non-linear programming problem: 
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where )(xf is the objective function of original optimization problem, 

{ }T
21 ,,, nxxx ⋅⋅⋅=x is a vector of n design variables, ),,2,1(  )( migi =x  are 

the constraint functions, cp  is the crossover rate and mp  is the mutation rate, after 

transformation, { }T
21 ,,,,, mcn ppxxx ⋅⋅⋅=d , )4,,1)(( ++= mmjg j d  are 

constraints derived from the upper and lower limits of cp and mp . 

The soul idea is that user need not give the concrete values to cp and mp , but let 

them evolve with other design variables within a reasonable design space. The initial 
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space of cp and mp  can be easily decided according to the range given by every GA 

related book. With the procedure going on, cp and mp will be optimized towards its 

optimal solution respectively together with other design variables. At the end, they all 
get its optimum value. 

Problem (3) is transformed into the following model by means of the aggregate 
function method [7]: 
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Problem (4) can be solved by using quasi-exact penalty function [8]: 
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the parameter ψ can be chosen in the range 53 1010 −  and 0>α  is penalty factor. 

Fitness function of GA by means of equation (5) may be written as: 

   )()(max dd ψϕ−= CF         (6) 

where C is a large positive number to make  sure that F >0.  Equation (6) is the 
evolutionary model of the proposed AGA. 

3   Information Entropy-Based Searching Technique 

The proposed GA is a multi-population algorithm in conjunction with an entropy-
based searching technique with narrowing down the searching space to ensure rapid 
and steady convergence. 

3.1   Narrowing Coefficients of Searched Space for the Multi-population 
Evolution 

The proposed GA begins from generating arbitrarily M populations with all the same 
searching space, i.e. initial design space. If ),,1(  )( MjjF ⋅⋅⋅=d  represent that the 

best value of the fitness function occurs in the jth population, then we need to 
maximum ),,1(  )( MjjF ⋅⋅⋅=d  by means of a genetic search, i.e. to solve the 

following optimum problem: 

   ,,2,1  ),(-  min mj
j

F ⋅⋅⋅=d            (7) 

It is difficult to solve optimization problem (7) completely, and it is not necessary 
to do so when using the genetic algorithm with narrowing of the search space. We 
need only to get efficient narrowing coefficients for the searched space. By 
information entropy principle [9], an entropy based-optimization model can be 
constructed as follows: 



96 Y. Sun et al. 

 

=

=

∈=

−=
=

 ]10[1  ..

1
)ln(  min

1
)(-  min

1

m
ppts

m
ppH

m

j
Fp

j
jj

j jj

jj
d

                                     (8) 

where H is the information entropy, jp is here defined as a probability that the 

optimal solution of the problem (7) occurs in the population j. In discussing the 
relationship between problems (7) and (8) the following theorem is introduced. 

Theorem 1. The optimization problem (7) and (8) both have the same optimal 
solution.  
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where liiplp ≠=∗=∗ for    0  ,1 , i.e. the optimal solution of the problem (7) 

occurs in the population l. Hence  
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Obviously, ∗d and ∗p are also the optimal solution of problem (7). It can be 

similarly proved that the optimal solution of problem (7) is also the optimal solution 
of problem (8), and the proof is completed. 

By means of the weighted coefficient method for solving multi-objective 
optimization, problem (8) can be transformed into a single objective optimization 
problem as follows: 
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where 0≥β  is weight coefficient. The Lagrange augmented function of problem 

(11) is 
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where η is Lagrange multiplier. The stationary conditions of HL  with respect 

to p ,η  and d give  
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The solution of equation (13) is 
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in which 

  ( ) ββγ /1−=                  (16) 

is called as quasi-weight coefficient. The ( )jp−1 can be used as the coefficients of 

narrowing searching space in the modified genetic algorithm. When the optimal 
solution occurs in the lth population, then ( ) 01 =− ∗

jp , and its searching space is not 

narrowing. 

3.2   Information-Entropy-Based Searching Technique 

Design space is defined as initial searching space )0(D .  M populations with N 
members are generated in the given space. After a few generations are independently 
evolved in each population (only two generations in this paper), Searching space of each 
population except for the worst one is narrowed according to the following equations:    
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where )( Kid and )(Kid are the modified lower and upper limits of ith  design 

variable at Kth iteration, respectively. )(Kid ∗ is the value of design variable i of the 
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best member in the population j. The searching space of worst population remains as 
the initial design space to ensure that the algorithm will not lose the boundary 
solutions. 

4   Implementation of Proposed AGA 

4.1   Genetic Operators 

The proposed AGA begins with generating arbitrarily M populations in which N 
strings corresponding to N possible solutions respectively, and here the strings are 
expressed in binary code. During the process of selection, an integer-decimal method 
is taken. Crossover allows string to exchange the characteristics among themselves 
and create new designs. In this paper, we use the two-point rule. Crossover is 
executed by first selecting two mating parents from two different populations, and 
selected randomly two cutting sites, then swap 0s and 1s of the strings between 
cutting sites of mating pairs according to crossover rate Pc. Mutation with a 
probability Pm is another operator. It is used to protect against the loss of some useful 
genetic information, and may help design to get out of local optimization solution. 
The process of mutation is to select simply a few strings from the population 
according to probability Pm and change the value of 0s or 1s on each chosen string in 
terms of some rule. A uniform mutation is employed in this paper. Both Pc and Pm 
are needless to be valued because of the adaptive scheme. 

It is reasonable to find the global solution to the numerical optimization problems 
with a few decades and some times even several hundreds generations. So a lot of 
historic information will be generated during the evolutionary process. Among them, 
we considered most is the elitist of all the populations in each generation. In this 
paper, the information of the best individual is recorded first in the former generation, 
then compare with the best one of current generation, and the absolute excellent 
individual up to now is stored in the contemporary as the elitist. Iterate this process in 
every generation till the convergence is reached. The final elitist is the solution to the 
optimization problem. 

4.2   Genetic Process 

Computer program for entropy-based AGA with multi-population consists of the 
following steps: 

Step 1. Deal with the constraints derived from Pc and Pm  

Step 2. Give the initial design space )]0(),0([)0( dd=D  and parameters. 

Generate M populations with given space )0(D  

Step 3. Perform GA with elitist maintaining processes introduced in section 4.1 a 
few generations (only one generation in this paper) 

Step 4. Perform the entropy-based searching process with narrowing down space, 
see equations (17) 

Step 5. Check convergence: if the searching space in the best population has been 
reduced to a very small area (a given tolerance), then stop; else go to step 3. 
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5   Examples 

In this section, two examples used in paper [3] with equality and inequality 
constraints are given to clarify the efficiency and accuracy of the proposed AGA (see 
tab.1). All of them are solved with the parameters: number of populations M=4, 
population size N=10, control parameters: 

5102.1 ,310 ×== αψ .  

Crossover rate Pc is controlled within [0.1, 0.99] and mutation rate Pm within 
[0.0001, 0.1];  

Tab.1 lists the numerical examples, Fig.1-2 show the evolution history of genetic 
design. Tab.2 gives the optimization result using the proposed method. In order to test 
the performance of the adaptive strategy presented in this paper, a test on example 1 is 
done, tab.3 gives the result. 

Table 1. Numerical examples 
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Fig. 1. The genetic evolution procedure of the 
optimization for example 1 

Fig. 2. The genetic evolution procedure of the 
optimization for example 2 
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Table 2. Numerical examples 

Example Example 1 Example 2 

Theoretical solution f(0, 1, 2, -1 )=44 f(2.4, 0.8) =-1.8 

This paper  f (-0.00427,  0.984036,  2.007537,  -0.994) 
= 43.998357 f(2.4,  0.8)=-1.8 

Generations(g/G)* 10/42 3/25 

Time-needed (s) 0.27 0.15 

*g/G: shows that the algorithm evolved G generations and at the gth generation get the optimal 
solution. 

Table 3. The performace test for the proposed algorithm without parameter adaptive 

Run times Pc Pm g G Time(s) 

1 0.6325 0.0027 14 47 0.33 

2 0.4346 0.0331 9 42 0.28 

3 0.7592 0.0001 12 44 0.30 

4 0.2587 0.0932 11 41 0.27 

5 0.4870 0.0689 8 40 0.26 

6 0.8734 0.0260 13 42 0.28 

7 0.6825 0.0603 12 41 0.27 

8 0.1387 0.0089 17 49 0.34 

9 0.3497 0.0831 16 46 0.32 

10 0.9832 0.0053 15 43 0.29 

6   Conclusion 

An adaptive multi-population genetic algorithm based on information entropy is 
presented in this paper for nonlinear programming. This method employs an entropy-
based searching technique with narrowing down space of multi-population. The 
adaptive strategy can bring convenience to users by decreasing the parameter 
debugging workload. Instead of confirming the value of crossover- and mutation- 
rate, only the ranges are needed and which can easily be set according to basic GA 
principle. The efficiency of adaptive strategy is demonstrated by the test result listed 
in tab.3. Numerical examples show that the proposed AGA is accurate and efficient 
when dealing constrained non-linear programming problem.  
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Abstract. This paper presents a novel genetic algorithm (GA) for the 
scheduling problem of input-Queued switch, which can be applied in various 
networks besides the design of high speed routers. The scheduler should satisfy 
quality of service (QoS) constraints such as throughput and jitter. Solving the 
scheduling problem for the input-Queued switches can be divided into two 
steps: Firstly, decomposing the given rate matrix into a sum of permutation 
matrices with their corresponding weights; secondly, allocating the permutation 
matrices in one scheduling period based on their weights. It has been proved 
that scheduling problem in input-Queued switch with throughput and jitter 
constraints is NP-complete. The main contribution of this paper is a GA based 
algorithm to solve this NP-complete problem. We devise chromosome codes, 
fitness function, crossover and mutation operations for this specific problem. 
Experimental results show that our GA provides better performances in terms of 
throughput and jitter than a greedy heuristic. 

1   Introduction 

Input-Queued crossbar switch fabric with virtual output queues and fixed size cells 
has been widely employed in the design of high speed routers. The scheduler has to 
find matching from input to output ports and then configure switches based on the 
matching. In addition to high speed routers, such scheduler can be applied in various 
networks, for examples, ATM switches [1], satellite switched TDMA [2], time-slotted 
FDMA, packet-switched WDM passive optical networks [3], and slotted-WDM ring 
networks [4]. 

There have been many studies on optimal schedule algorithm, which can be 
typically divided into two categories. One is based on request-grant-accept mechanism 
[5], [6], [7], in which request-grant-accept process between input ports and output ports 
is operated at the beginning of every time slot or frame. The other one is based on 
matrix decomposition [3], [8], [9]. Given a traffic demand matrix in one period of time, 
the scheduler decomposes it into a sum of weighted permutation matrices. Then these 
matrices are allocated evenly in a schedule table according to their weights. 

In the scheduling problem for input-queued switches, two main objects should be 
considered. The first objective is to obtain high throughput. Throughput is inversely 
proportional to the required bandwidth that is the sum of all the decomposition weights. 
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The second objective is to minimize the scheduling jitter, which is defined as the 
difference between maximum and minimum scheduling intervals in the schedule table.  

In this paper, we focus on the matrix decomposition approach for the following 
reasons: firstly, it does not need to perform matching in every time slot or frame if the 
traffic pattern changes infrequently, and hence the signaling overhead and the 
transmission delay are decreased; secondly, it can obtain higher throughput since the 
traffic matrix is demand accumulation in one period of time; thirdly, it can provide 
fairness more easily among the input ports, and then assure lower jitter. 

C. S. Chang et al. proposed minimum-bandwidth Birkhoff Von-Neumann 
decomposition [9]. However it does not take into account of jitter. I. Keslassy et al. 
formulated the problem to an integer linear programming (ILP) model by adding a 
low jitter (LJ) constraint and also proposed a greedy algorithm for the LJ ILP which is 
proved a NP-complete problem [8] [10].  

We propose to use a novel generic algorithm (GA) for the scheduling problem with 
both throughput and jitter constraints. GA is a random search and optimization 
method, which is based on natural selection theory and genetic mechanism of the 
living beings. It has been used to solve many scheduling problems such as job-shop 
scheduling [11], and broadcast scheduling in packet radio networks [12]. Here we 
extend the chromosome codes into two dimensions in GA by setting them to be a list 
of schedules (permutation matrices), which is different from conventional GA whose 
chromosome is a vector. We also devise corresponding crossover and mutation 
operations for these chromosomes. Experimental results show that GA could improve 
5% throughput and reduce 15% jitter compared to greedy algorithm. 

The rest of the paper is organized as follows. Firstly, we present the problem 
formulation and review the related works. In section III we describe our genetic 
algorithm in terms of coding method, fitness function, crossover, as well as mutation. 
Then, simulation results that show the performance of our designed algorithm will be 
presented in section IV. The last section V provides some conclusion remarks. 

2   Problem Formulation 

The input-Queued switch requires that a port cannot send or receive two or more 
packets simultaneously. We use a permutation matrix P to describe the configuration 
of an input-Queued switch in one time slot. Given a traffic demand matrix T, whose 
element Tij denotes the number of slots that port i needs to send to port j, it can be 
decomposed into a sum of weighted permutation matrices. Mathematically,  
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i,j,kpk
ji ∀∈         }1,0{,  (4) 

where N is the size of switch fabric and ck is the coefficient of the decomposed matrix 
Pk. Constraints (2) (3) (4) ensure that Pk is a permutation matrix or partial permutation 
matrix if there is an all zero column or row. The required bandwidth B is defined as 
the sum of ck: 

=
k

kcB  (5) 

Obviously, we need to minimize B to obtain high throughput. For the sake of 
simplicity, we use a schedule vector s to denote permutation matrix P:  
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After decomposition, these schedule vectors (permutation matrices) are allocated 
into schedule table s according to their coefficients. Note that, the decomposition 
process may introduce redundant scheduling when the real traffic demand matrix is 
less than the sum of weighted permutation matrices. Finally, the redundant scheduling 
elements should be removed.  

Birkhoff Von-Neumann theorem can be briefly explained as such: Any doubly 
stochastic matrix can be written as a convex combination of permutation matrices. If 
the original traffic demand matrix is not doubly stochastic, it has to construct a doubly 
stochastic matrix that is not less than the original matrix. BV decomposition, which is 
not NP complete, provides a lower bound of the required bandwidth [9]. . However, it 
results in unpredictable jitter because it allows the repeated configuration elements in 
different permutation matrices. The subsequent allocation process only considers the 
decomposition weights. Below is an example of BV decomposition: 

         

The minimum required bandwidth is 4. Its corresponding scheduling table is shown 
in SBV. The average jitter of SBV is 0.22. 

 

As we describe in the introduction, the LJ ILP model added a constraint that any 
two permutation matrices cannot have the same configuration elements [8].  

i,jp
k

k
ji ∀≤         1,  (7) 

The object function is also to minimize the sum of ck. The greedy heuristic is to 
find the matching for the maximum traffic demand elements first, and then eliminate 
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them from the traffic demand. The decomposition is completed after several iterations. 
Note that greedy heuristic does not require that the traffic matrix is doubly stochastic. 
Below is an example of greedy LJ (GLJ) decomposition:      

    

The minimum required bandwidth is 5, which is greater than BV decomposition. 
Its corresponding scheduling table is shown in the following SGLJ. The average jitter 
of SGLJ is 0.11, which is much less than that of SBV. 

 

3   Genetic Algorithm 

In practice, GA is iterative search process as shown in Fig.1. G and M are generation 
number and maximal generation in the evolution process respectively. In each 
generation, fitter individuals survive with greater probability and weak ones are more 
likely to be eliminated. As long as we choose proper evaluation function and gene 
operation the population will converge to an optimal or near optimal result eventually. 
We then describe each step in detail. 

Initialization Evaluation G > M ?

Selection

Crossover

Mutation

yes

no

 

Fig. 1.  Flow chart of genetic algorithm 

3.1   Coding and Initialization 

Generally, the candidate solution is encoded as a binary bit string, which is called 
chromosome. In our problem, an individual chromosome is composed of several 
scheduling vectors (permutation matrices). 

The purpose of initialization is to produce individuals of the first generation which 
constitute the beginning searching space. The steps are as follows: 

1. According to traffic matrix T, produce a permutation matrix P randomly. The 
position of nonzero element in P should consist with that in T. Then put the 
elements in T whose position in P is 1 into a set R; 
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2. Search for the maximal value in R and denoted it as the weight of P. Then 
eliminate the elements in R from T; 

3. Repeat the above two steps until T is reduced to 0. 

Note that, the initial populations for evolutionary process are generated randomly 
without any heuristic. But the length of a chromosome may be variable because the 
number of matrices is not fixed in each randomly decomposition. 

3.2   Fitness Function and Selection  

The object function of LJ ILP is to minimize the required bandwidth. So individuals 
with smaller bandwidth requirement are much easier to survive. We define a fitness 
function as follows: 

1)(

1
)(

min +−
=

BiB
iFit  (8) 

B(i) is the required bandwidth for an individual chromosome. Bmin is the minimal 
value of all the required bandwidth in one generation. The above fitness function 
enables that the fitter individuals can be selected with greater probability. The range 
of Fit(i) is from 0 to 1. Finally, a traditional tournament selection policy is employed 
according to the fitness function.  

3.3   Crossover  

As the order of these alleles in our chromosome is of no significance, we adopt 
uniform crossover to enable any combination of alleles be exchanged with another 
individual. Considering the character of our coding method, we modify the traditional 
uniform crossover operation which is divided into the following five steps: 

Step1. Randomly generate two bit strings for two parent chromosomes 
respectively. The length of the bit string is equal to the length of its corresponding 
chromosome. For example, given two parent chromosomes  and  

Allele lengths of them are 4 and 3 respectively. Bit strings 0100 and 101 are then 
randomly generated for them. 

Step2. Rearrange two individuals by moving the alleles sharing the same position 
with value one in its bit string to the end and those corresponding to zero to the front. 
We still take the above chromosomes and bit strings for example.  

 

 

A B,

The second allele of A, the first and third alleles of B are moved to the end of A 
and B. Note that such movement does not produce new genes because of the first 
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Finally, crossover operation may break good patterns of parents to produce 
undesirable individuals and such broken pattern require a lot of energy to recover. We 
compare the sons and their parents, the sons are conserved only if they are fitter than 
their parents. 

3.4   Mutation  

In our mutation operation, we randomly select two schedule vectors in a chromosome 
and then try to exchange elements in the same two positions (rows) of the schedule 

character of our coding. However, the uniform crossover with unequal chromosome 
length is reduced to one-point crossover by doing so. 
Step3. Exchange the front alleles that correspond to zero in the bit string to create 

two new chromosomes. For the above two chromosomes, the first three alleles of A 
exchange with the first allele of B. 

  
It can be seen that these two new individuals do not satisfy constraints (1) (7). 
Step4. Check whether scheduling for any nonzero traffic demand exists in the new 

chromosome. If the traffic demand is scheduled more than once, delete the redundant 
scheduling. If the nonzero traffic demand is not scheduled at all, search for feasible 
free spaces in the chromosome which satisfy conflict free condition after being added. 
If there does not exist such feasible free space. Append a new allele in the end of the 
chromosome to schedule this traffic demand. 

For example, In chromosome A , ’3,2 is redundant scheduling and has to be 
deleted. And two new alleles should be appended to meet the traffic demand. After 
this step, two new valid chromosomes are obtained. 

 
However, the above chromosomes may not be optimal with the shortest length. For 

example, in chromosome B , the third allele are all zero. Also note that the first and 
the second alleles can be combined together without violating constraints (1) (7) 
which we called degenerating process. 
Step5. Delete zero alleles and degenerate alleles to obtain optimal chromosome. 

However, not all chromosomes are needed to be degenerated. For example, A  is an 
optimal one already. But chromosome B  is optimized after this step. 

  

’

’

’

A
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vector until both new schedule vectors correspond to permutation matrices. We use 
the final chromosome C in the above paragraph to explain our mutation operation. We 
choose schedule vectors c1 and c2. If we exchange row 1 and 2, the new schedule 
vectors are: 

 

The two new schedule vectors do not correspond to permutation matrices. So the 
mutation failed. Then we try to exchange row 1 and 3, the new schedule vectors are 

 

The two new schedule vectors correspond to permutation matrices. 

4   Simulation Results and Discussion 

Firstly, we still take the above traffic matrix T for example. Our GA obtains the 
optimal decomposition: 

 

The required bandwidth is 4, which is the same as BV. The corresponding 
scheduling table is 

 

Its average jitter is 0. Indeed, GA improves the jitter performance significantly.  
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Fig. 4.  Bandwidth requirement performance with different population size 

In the following experiments we choose cross probability to be 0.5, mutation 
probability to be 0.1, N=8, and the population size to be 20, the traffic demand is 
generated randomly with that for every connection pair distributing uniformly from 0 
to 10, individuals of the first generation is generated without any heuristic.  

In Fig.2, we show a typical example in which the required bandwidth B improves 
over the generations number G. Fig. 3 shows the distribution of generation numbers 
where optimal (or near optimal) results appear in 100 experiments. Here traffic 
demands are generated randomly in each simulation. 

With the optimal or near optimal results, generation numbers vary because of the 
random operation of the initialization, crossover, and mutation. Fig.3 shows that 
nearly half of the optimal or near optimal results can be obtained within 200 
generations. 

In the above figure 4, we vary individual number in a generation from 20 to 100. It 
shows that the larger the population size, the faster bandwidth requirement reduces. 
And smaller bandwidth requirement can be obtained for larger population size when 
maximal generation is fixed. When the individual number is small, the chromosome 
codes are not as diversity as that with large one. Thus it’s more likely to jump into 
local optimal point and difficult to find a fitter individual. On the contrary, when the 
individual number is large, chances for searching a better individual are increased a lot. 

In Fig.5 and Fig.6, the traffic demand matrices are generated randomly with their 
elements uniformly distributed between 0 and L. The value of L determines maximum 
traffic load. The maximal generation number is 2000. That means the iterative searching 
carries on for 2000 times. Such experiments were conducted 20 times for a single L.  

In Fig.5, we compare the required bandwidth of BV, GLJ and GA.. BV provides 
minimal bandwidth for a given traffic. Because of the additional constraint (5), GLJ 
algorithm and GA based algorithm require some extra bandwidth. It can be seen that 
little extra bandwidth is needed for GA based algorithm and it provides about 5% 
improvement on throughput compared to greedy algorithm. We can conclude that our 
designed algorithm does help to find better solutions although the optimal solutions 
and lower bounds of the problem are unknown.  
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Fig.6 is comparison of jitter between GLJ and GA based algorithm. Here we do not 
compare it with BV because jitter of it is extremely large compared to GA and GLJ. 
The total number of scheduling slots needed by GA based algorithm is less than that 
of GLJ. So for a single connection, the traffic is transmitted nearly uniformly in a 
shorter scheduling period. Correspondingly, jitter is reduced in general. GA can 
achieve an average of 15% jitter reduction compared with GLJ. 

5   Conclusion 

In this paper we studied low jitter scheduling for input-queued switch. Scheduling 
taking both jitter and bandwidth into account was proved NP-hard before and we 
proposed an optimization method based on GA to achieve optimal result or near 
optimal one. Firstly we use a list of permutation matrices to code our solution 
candidate which is different from conventional codes. Because of the various 
constraints of our codes, crossover and mutation operators should be specially 
designed. A modified uniform crossover is adopted for this specific problem owning 
to the order independence of the alleles and unfixed length of the chromosome. 
Problem specific mutation is designed as well. Finally, we perform simulations based 
on our novel genetic algorithm and shows how the fitness function improves 
generation after generation. Comparison of our GA with BV and GLJ were done to 
show good performances in terms of jitter and throughput. 
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Abstract. A new approach to evolutionary computation with muta-
tion only is developed by the introduction of the mutation matrix. The
method of construction of the mutation matrix is problem independent
and the selection mechanism is achieved implicitly by individualized and
locus specific mutation probability based on the information on locus
statistics and fitness of the population, and traditional genetic algorithm
with selection and mutation can be treated a special case. The mutation
matrix is parameter free and adaptive as the mutation probability is time
dependent, and captures the accumulated information in the past gener-
ations. Three methodologies, mutation by row, mutation by column, and
mutation by mixing row and column are introduced and tested on the
resource allocation problem of the zero/one knapsack problem, showing
high efficiency in speed and high quality of solution compared to other
traditional methods.

1 Introduction

The fruitful use of genetic algorithms [1][2] usually requires intelligent choices
of parameters, such as the criterion for the selection mechanism. One may need
to use different percentage of the population for survival for different problems.
Indeed, even for the same problem, the percentage of survivors in the evolution
process should be time dependent to achieve a more effective convergence. This
observation has been addressed in the work of adaptive parameter control in
solving the financial knapsack problem [3]. In this paper, we like to address a
novel way to do the selection process by the introduction of a mutation matrix,
which is time dependent but problem independent.

In traditional simple genetic algorithm, the mutation/crossover operators are
processed on the chromosome indiscriminately over the loci. The loci statistics
is never employed. The recent work of Ma and Szeto [4] on Locus Oriented
Adaptive Genetic Algorithm (LOAGA) has demonstrated the importance of the
locus specific mutation rate in solving the zero/one knapsack problem. Their
idea is inspired by the research of short tandem-repeat (STR) polymorphism [5],
which shows evidence of very different mutation rate at different loci in Human’s
� Corresponding author.
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DNA. In this paper, we will generalize their method and further demonstrate the
advantage of using the information on the loci statistics on mutation operator.
Since genetic algorithm usually involves additional genetic operators such as
crossover, it is difficult to include them together with the mutation operator for
a clear comparison. Therefore, we focus on the development of a simple genetic
algorithm with mutation only.

2 Mutation Matrix for Traditional Genetic Algorithm

We consider a population of N chromosomes, each encoded by L bits to form
a N × L matrix A(t) for the population at a given time t. The ith row in-
dexes the chromosome which fitness fi is of rank i, while the jth column indexes
the jth locus for the entire population. Our ordering of the rows ensures that
fi ≥ fk if i ≤ k. We perform mutation on A to explore the solution space and
exploit fit chromosomes through selection. Traditionally we divide N chromo-
somes into three groups: (1) Survivors who are the fit ones, forming the first
N1 = c1 × N rows of the population matrix A(t + 1) and 0 < c1 < 1 is the
fraction that survive. (2) N2 children of the fit ones are formed by replacing the
next N2 = c2 ×N < N −N1 rows in the A(t + 1). The fraction c1 and c2 are
model parameters to be specified. The children are usually generated from the
fit parents (the first N1 rows) by mutation and/or crossover. (3) the remain-
ing N −N1 − N2 rows are the randomly generated chromosomes to ensure the
diversity of the population so that the genetic algorithm continuously explores
the solution space. We can merge all these three steps into one single operation
by defining a N × L mutation matrix M(t), with matrix element Mij defined
as the probability of mutation for the Aij . In traditional genetic algorithm, we
will have Mij = 0 for the first N1 rows, Mij = m for the next N2 rows,(this
constant 0 ≤ m ≤ 1 is a pre-assigned mutation rate) and Mij = 1 for the last
N −N1 −N2 rows. In our new method, this matrix M is time dependent.

3 Row and Column Mutation Probability

To begin we first consider the case of mutation on a fit chromosome. We expect
to mutate only a few loci so that it keeps most information unchanged. This
corresponds to “exploitation” of the features of fit chromosomes. On the other
hand, when an unfit chromosome undergoes mutation, it should change many of
its loci in order to explore more regions of the solution space. This corresponds to
“exploration”. Under this principle, we should use a non-uniform and adaptive
mutation structure for M instead of the rigid format of the traditional genetic
algorithm. We require that Mij should be a monotonic increasing function of the
row index i since we order the population in descending order of fitness. This
ordering of rows (chromosomes) by fitness effectively selects the survivors, the
children by mutation, and the randomly generated chromosomes. In the next sec-
tion, we will discuss the properties of the columns in the mutation matrix, when
we incorporate locus statistics in our locus oriented adaptive genetic algorithm.
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In order to formulate a general method for mutation that is problem inde-
pendent, one must use information that is accessible in all kinds of problems.
One such candidate is the fitness distribution function of the population. In any
genetic algorithm, the course of evolution inevitably accumulates a fitness profile
of the population, which we now use for our construction of mutation matrix.
Intuitively, good chromosomes should have lower mutation rate than bad ones.
We can simply increase the mutation rate linearly for chromosomes of increasing
rank, or decreasing fitness so as to get row mutation probability αi = i−1

N−1 . A
more sophisticated choice is to use the cumulative distribution function C(f) of
fitness profile P (f). Since C(f) represents the fraction of the population with
fitness value less than or equal to f , it is a monotonic increasing function of f
with C(fmax) = 1 and C(fmin) = 0. We thus can choose αi = 1− C(fi), which
is monotonic increasing function of the row index i. As C(fi) evolves with time,
our αi becomes adaptive. In either case, we have a ranking mechanism for the
chromosome so that the selection process of rows for mutation is automatic.

Next, we must decide on the choice of loci for mutation. We define pjX as the
locus mutation probability of changing to X at locus j. (X stands for either 0 or 1
for binary encoding). In the original LOAGA method[4], this is computed simply
by counting how many 0 or 1 at locus j inside the population. The information
about the chromosome to which this particular 0 or 1 belongs is not used. This
loss of information can be remedied by giving more weight to the information
provided by fit chromosomes, since fit chromosome contains more important
information than unfit ones. We thus redefine the locus mutation probability of
changing to a X at locus j as pjX by

pjX =
∑N

i=1(N + 1− i)× δij(X)∑N
m=1 m

(1)

where i is the rank of the chromosome in the population. δij(X) is 1 if the ith
chromosome has a X at locus j, and zero otherwise. The factor in the denomi-
nator is for normalization. For example, if the first half of the population after
ranking all have 0 at locus j and the second half have 1 at locus j. According to
the original LOAGA method[4], we get pj0 = 0.5, while our modification yields

pj0 =

∑N
k=N/2 k∑N
k′=1 k′

which is bigger than 0.5. This is a more reasonable choice for pj0 than 0.5,
since we place more emphasis on the statistics provided by the first half of the
population, which are of higher fitness and all have 0. In this example, we see how
we incorporate information from fitness statistics on locus mutation probability.
We now compute the column mutation rate pj using

pj =
1− |pj1 − 1

2 | − |pj0 − 1
2 |∑

k pk
. (2)

For example, if 0 and 1 are randomly distributed, then pj0 = pj1 = 0.5. In
this case, we have no information about the locus so we mutate it, and pj = 1.
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On the other hand, in the extreme cases of pj0 = 1 − pj1 = 0, or 1, we have
definitive information and we do not mutate this column, and pj = 0.

3.1 Mutation Only Genetic Algorithm: MOGA

First we should remind ourselves that pjX contain information of both locus and
individual. To select the column of the mutation matrix, we first compute the
locus mutation probability pjX for each column j and then the corresponding
column mutation probability pj . We can then write our general form of the mu-
tation matrix element as Mij = αi×pj. Now we observe that there are two ways
to apply M on the population. We can first decide which row (chromosome) to
mutate and then which column (locus) to mutate, we call this particular method
the Mutation Only Genetic Algorithm by Row or abbreviated as MOGAR. Al-
ternatively, we can first select the column and then the row to mutate, and we
call this the Mutation Only Genetic Algorithm by Column or abbreviated as
MOGAC. This MOGAC is a new kind of mutation and we like to see if it can
work just like traditional GA, which is a special kind of MOGAR.

For MOGAR, we go through the population matrix A(t) by row first. We
first arrange the locus mutation probability, pj(t), in descending order. The, for
a given row i, we generate a random number x. If x < αi(t), then we perform
mutation on this row, otherwise we proceed to the next row and Ai,j(t + 1) =
Ai,j(t), , j = 1, ..., L. If row i is to be mutated, we determine the set R(i) of loci
in row i to be changed by choosing the loci with the pj(t) in descending order, till
we obtain K(i) = αi × L members. Once the set R(i) is constructed, mutation
will be performed on these columns of the ith row of the A(t) matrix to obtain
the matrix elements Ai,j(t + 1), j = 1, ..., L. We then go through all N rows. In
one generation, we need to sort N fitness, L probabilities pj(t), and generate N
random numbers for the rows. After we obtained A(t + 1), we recompute the
αi(t + 1) and pj(t + 1) in the mutation matrix M(t + 1).

For MOGAC, the operation is similar to MOGAR mathematically. For a
given column j, we generate a random number y and if y < pj(t), we perform
mutation on this column, otherwise we proceed to the next column and Ai,j(t+
1) = Ai,j(t), , i = 1, ..., N . If column j is to be mutated, we determine the set
S(i) of rows in column j to be changed by choosing the rows with the αi(t) in
descending order, till we obtain W (j) = pj(t)×N members. Since A is assumed
to be row ordered by fitness, we simply need to choose the N,N − 1, ..., N −
W (j)+1 rows to have the jth column in these row mutated to obtain the matrix
elements Ai,j(t + 1), i = 1, ..., N . In one generation, we sort a N fitness values,
compute L probabilities pj and generate L random numbers for the columns.

3.2 Mutation Only Genetic Algorithm with Mixing MOGAM

In our Mutation Only Genetic Algorithm by Row and by Column, we do not need
to introduce any parameter for selection or preset our mutation probability. Our
MOGAR or MOGAC is entirely determined by the information accumulated in
the fitness distribution and the locus statistics. We find that each MOGA method
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has its own advantages and disadvantages. For MOGAR, we have a well-defined
mutation probability for the entire population throughout the evolution, since
our row mutation rate is αi. Once we choose a row to mutate, we must sweep
through the L loci to decide on the mutation of each bit. This generally leads
to slower speed compared to MOGAC. In MOGAC, pjX � 0.5 for all j in the
first few generations, resulting in mutation of most entries in A. This rapid
mutation allows a fast collection of statistics initially. In MOGAC, the column
information provides more adaptive power, as our pjX contains both the row
and column information, resulting in higher speed in application. While faster,
MOGAC also runs the risk of early convergence to local optimum, which is a
serious problem for genetic algorithm. Indeed, when MOGAC converges to a local
optimal solution, pjX � 0 for all j and the population stops evolving. When this
happens, mutation by row will help as MOGAR always produce mutation in each
generation: some unfit chromosomes always mutate. This forces the population to
explore the global solution region continuously. The conclusion is that MOGA
by column will speed up convergence and place emphasis on “exploitation”,
while MOGA by row will be slower but keeps on evolving and place emphasis
on “exploration”. A natural approach is to mix MOGAR with MOGAC, so
that we can statistically exploit and explore to achieve better performance. We
abbreviate this mutation only genetic algorithm with mixing row and column
mutation as MOGAM, or Mutation Only Genetic Algorithm with Mixing. For
illustrative purpose, we simply use MOGA by row and by column alternatively in
our test example of the zero/one knapsack problem in the next section. We should
note that the method of mixing should be problem dependent and in a separate
paper, we further develop MOGAM into quasi-parallel genetic algorithm [6].

4 Application to the Zero/One Knapsack Problem

The model problem to test our ideas on MOGA is the Knapsack problem, consid-
ered a difficult problem for traditional genetic algorithm [7]. In the early version
of our ideas on mutation matrix [4], we find that LOAGA outperforms dynamic
programming which is the usual method for Knapsack problem. Now, we use
LOAGA as our new benchmark and compare it with our MOGAR, MOGAC,
and MOGAM

First we define the 0/1 Knapsack Problem [8]. Given L items, each has its
own profit Pk, weight wk and the the total capacity limit is c. The objective is to
select a subset of L items to place in the knapsack so as to maximize the profit,
while its total weight does not exceed the capacity limit. Mathematically, we need
to choose the set (x1, x2, ..., xL) so as to maximize F given by F =

∑L
k=1 Pk×xk

subjected to the constraint
∑L

k=1 wk×xk ≤ c. Here xj = 0, or 1. Applications of
this class of problem often appear in economic problem, such as the problem of
resource allocation[8], and logistic problem like airline cargo. Several commonly
used methods to find the exact solution of the zero/one knapsack are branch
and bound, depth-first with bound, and dynamic programming[8]. Here we sim-
ply want to use this problem to compare our MOGA with the Locus Oriented
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Adaptive Genetic Algorithm, which is better than dynamic programming[4]. We
consider a particular knapsack problem with size L = 150 items, c = 4000,
Pk ∈ [0, 1000], and wk ∈ [0, 100]. In all test we use the same population size
N = 100. For knapsack problem, we follow [4] and use two tricks, “Punishment”
and “Repairing”, in solving the constraint problem. “Punishment” reduces the
fitness when the constraint is violated, “Repairing” modifies the chromosome
(adding/deleting items) until the constraint is satisfied. We will use a method
called Greedy Repair. If a chromosome violates the constraint (total weight is
over the constraint in the Knapsack), the repair scheme will remove the least
p/w ratio selected items from the knapsack until the constraint is satisfied. When
the constraint is satisfied, and if some empty space remains, Greedy Repair will
tried to fill the knapsack “as full as possible” under constraint by picking up the
unselected item and fill then in the knapsack in descending order of p/w. The
repair stops once the constraint is violated. This scheme can repair all chromo-
somes into local optimal solution in Hamming space. Finally we should state
that unlike MOGA, the selection mechanism in LOAGA must be specified. Here
we use the adaptive selection as discussed in [3]. Chromosome will be selected if
its fitness is greater than f(max)−0.5κ(f(max)−f(min)), where κ is a constant
between 0.5-0.6. The details of this method can be found in [4].

5 Result and Comparison

We compare LOAGA with three kinds of evolutionary computation using mu-
tation matrix (MOGAR,MOGAC, and MOGAM) in two perspectives. The first
one concerns the quality of the solution in terms of the best values (maximum

Table 1. Best Value of the Four Methods in Solving a Knapsack Problem

Example 1 Row Column Mix LOAGA
50 generations 56243 59540 59481 60451
100 generations 58017 60526 60519 60500
200 generations 59144 60719 60719 60500
500 generations 60469 60719 60719 60500
1000 generations 60635 60719 60719 60549

Example 2 Row Column Mix LOAGA
50 generations 59193 63808 63315 64696
100 generations 61783 64764 64270 64711
200 generations 62482 64802 64821 64711
500 generations 64782 64814 64821 64711
1000 generations 64782 64814 64821 64711

Example 3 Row Column Mix LOAGA
50 generations 61455 64840 65368 66411
100 generations 63779 66113 66583 66729
200 generations 64171 66721 66738 66729
500 generations 66289 66738 66738 66729
1000 generations 66738 66738 66738 66729



118 J. Zhang and K.Y. Szeto

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t V
al

ue

Generation

 Column
 LOAGA
 Mix
 Row

Row

LOAGA

Column

Mix

Fig. 1. Shows the performance of four different methods in solving a randomknapsack
problem

of the knapsack). In table 1 we show the best values after 1000 generations for
these four algorithms.

We see that all MOGA produce better results than LOAGA, as our MOGA
programs handle the early convergence problem more satisfactorily. Although
LOAGA uses adaptive selection to avoid early convergence problem, it requires
extra parameter which needs adjustment to improve its performance. On the
other hand, our MOGA methods are parameter free, as everything we use is
based on information accumulated in the evolving population.

The second features for comparison is the speed to solution. In [4] we have
already seen how LOAGA greatly improve the performance in solving knap-
sack problems. It shows high convergent rate with 91% successful rate in solving
knapsack problem with N = 500 items. In Fig.1, we compare the convergence
to a solution of LOAGA with three MOGA programs. As expected, MOGAR
converges slower than the other algorithms, while MOGAM and LOAGA have
similar rate of convergence. This indicates that our MOGA programs can pro-
duce better results at a speed comparable to LOAGA.

6 Conclusion

In conclusion, we see that mutation matrix provides a new method of evolution-
ary computation. Traditional genetic algorithm can be treated as a special case
in our formalism. We show that the mutation matrix can be found in a problem
independent manner and we achieve selection implicitly by individualized and
locus specific mutation probability. Furthermore, mutation matrix is parameter
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free (no need to specify c1 and c2) and adaptive. Our formulation of mutation
only genetic algorithm by row, by column or by mixing row and column have
been tested. They are more reliable in quality of solution and comparable in
speed to LOAGA. which has been shown to be better than the standard method
of dynamic programming for the knapsack problem [4].
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Abstract. This paper considers how to increase the capacities of the elements in 
a set E efficiently so that probability of the total cost for the increment of 
capacity can be under an upper limit to maximum extent  while the final 
expansion capacity of a given family F of subsets of E is with a given limit 
bound. The paper supposes the cost w is a stochastic variable according to some 
distribution. Network bottleneck capacity expansion problem with stochastic 
cost is originally formulated as Dependent-chance programming model 
according to some criteria. For solving the stochastic model efficiently, network 
bottleneck capacity algorithm, stochastic simulation neural network(NN) and 
genetic algorithm(GA) are integrated to produce a hybrid intelligent algorithm. 
Finally a numerical example is presented. 

1   Introduction 

As we know, during the past years, many experts did relevant researches in the fields 
of network expansion. Ravindra K.Ahuja and James B.Orlin [1] studied a lot about 
network flows and network flow model, and they figured out an algorithm for the 
maximum flows problem with constrained conditions. O.Berman [2] worked over 
weight problem of decreasing a given tree edge to cut down weight of minimal tree, 
and proved a strongly polynomial algorithm for this problem. S.O.Krumke [3] 
presented two improved network flow models, and put forward heuristic algorithm to 
resolve some network improvement problems. Zhang,J and Yang,C[4] also showed us 
a strongly polynomial algorithm for a particular network expansion problem. Based 
on Zhang,J’s research, Yang Chao, etc.[5]took budgets and bottleneck capacity 
restrictions into consideration, and gave a strongly polynomial algorithm for this kind 
of network expansion problems. Internally, Wang Hongguo,etc.[6-7] solved capacity 
expansion problems of undirected network and directed network by extending Yang 
Chao’s network bottleneck model, and the concept of fixed expansion was brought 
forward. In the process of network expansion, Yang Xiaoguang [8] introduced several 
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normal form problems, constructed a network model subtly to figure out network 
optimization problem, and offered a relevant arithmetic to deal with it. Whereas, 
restrictions exist in all the above researches about the determined network bottleneck 
capacity expansion problems for many uncertainty factors in reality, such as, 
uncertainty of needs, expansion costs, uncertainty of accomplishment time, etc. 
Charnes&Cooper[9] first studied dependent-chance models, they put forward second 
type  stochastic programming. Most marked feature was that  dependent-chance 
constrained condition must satisfy the believed area. After that, more researchers 
began to study these problems. Based on work of Charnes&Cooper ,Liu B[10] gave 
an arithmetic for dependent-chance programming. K.IWAMURA[11] introduces this 
dependant-chance programming to the field of integer programming ,and he gave 
heuristic arithmetic to solve it. upon that, H.Ishii and Nishida [12] introduced a new 
problem about stochastic bottleneck capacity expansion, afterwards,H.katagiri, 
H.Hishii [13] discussed a chance-constrained model of bottleneck spanning tree in 
terms of fuzzy stochastic edge weights. Based on the above algorithms, Hideki 
Katagiri and Masatoshi Sakawa[14] explored necessary probability and evaluation 
problems in fuzzy stochastic bottleneck spanning tree problem. Internally, Liu 
Baoding, etc. [15] employed genetic algorithm to solve orientation problem in 
network optimization problem efficiently. All the work will be appreciated. 

In this paper, based on the above research fruits, no researchers have introduced the 
dependant-chance programming to network bottleneck capacity expansion problem. 
For solving stochastic model more efficiently, a strongly polynomial algorithm of 
network , neural network(NN) and genetic algorithm(GA)  are integrated to produce a 
hybrid intelligent algorithm. Finally, a numerical example is presented. 

2   Network Bottleneck Capacity Expansion Model with Stochastic 
Unit Expansion Cost 

Let ),,( CEVG be an undirected network structure, which is composed of vertices set 

{ }nvvvvV ,,3,2,1=  and edge set { } VVeeeeE m ∗∈= ,,3,2,1
. Every edge 

has an original edge capacity ic . Let original network capacity vector be 

{ }mccccC ,,3,2,1= , let unit expansion cost on every edge be iw , and let 

expansion cost vector W  be a stochastic vector, which meets definite distribution 
function. Spanning tree ),( SNTT =  is a part of network graph, which meets the 

following terms: 

(1) T and G have the same vertices; 
(2) |S|= n -1 shows the force of set S, that is, the number of edges; 
(3) T is connected graph. 

Define the capacity of a spanning tree T of network ),,( CEVG  be ),( CTcap , which is 

the bottleneck capacity for every edge in T , i.e. 

{ }),,(,e |),( i CEVGTTcMINCTcap i ∈∈=                                           (1) 
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We use )(CT ∗  to show the maximum capacity tree of network ),,( CEVG , i.e. 

{ }),(),( CTcapMAXCTcap
T

=∗                                                      (2) 

The beforehand problem of this paper is how to expand original capacity vector C  to 
minimize the total expansion cost while the capacity ),( CTcap ∗  of maximum 

expansion tree of expanded network ),,( CEVG  meets definite condition and scopes. 

})*,(,|{)( rCTcapCCCrH ≥≥=                                            (3) 

2.1   Problem 1 

Given 
0r , how to expand C to C to minimize expansion cost WCC T)( − , and 

0)*,( rCTcap ≥ , problem 1 equals the following problem: 

)0(

..

)min(

rHC

ts

WCC T

∈

−

                                                              (4) 

According to the above analysis, we introduce probability statistics concept, and 
induce the dependent-chance programming model  of network bottleneck capacity 
expansion with stochastic unit expansion cost, the core idea of this dependent-chance 
model is to maximize  probability  of   random issue and optimize the value of 
objective function in uncertain conditions, and get reasonable optimized value in 
reality. 

When unit expansion cost vector { }mwwwwW ,,3,2,1=  is stochastic 

variable, the total expansion cost WCCCWCCOST T)min(),|( −=  is also a stochastic 

variable. The problem we consider here is to let probability of the total cost for the 
increment of capacity can be under an upper limit to maximum extent In this section, 
we offer a new idea to set up a general dependent-chance model of network 
bottleneck capacity expansion with stochastic unit expansion cost as follows:  

≥

≥
≤Ω∈

0),(

..

}),|(|Pr{max

rCTcap

CC

ts

MCWCCOSTW

                                          (5) 
or 

)0(

..

}),|(|Pr{max

rHrC

ts

MCWCCOSTW

∈

≤Ω∈

                                             (6) 

In the above formulas, we define stochastic variable { }mwwwwW ,,3,2,1=  in 

the probability space ),,( rΡΛΩ . From the beforehand problem analysis, we could shift 

to the essential problem in problem 2.  
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2.2   Problem 2 

Thus, the ultimate problem of this paper is: considering stochastic unit expansion 
cost, how to expand original capacity vector C to maximize the probability that 

),|( CWCCOST  is less than M which is a given expansion cost and minimize the value 

of the total expansion cost while the capacity ),( CTcap ∗  of maximum expansion tree 

of expanded network ),,( CEVG  satisfies definite condition and scopes. A child 

problem of bottleneck capacity is included in dependent-chance model of problem 2, 
WCCCWCCOST T)min(),|( −=  i.e. problem 1, once choose a value in the probability 

space ),,( rΡΛΩ , stochastic variable W  will become a determined value W . In Yang 

Chao [4-5], strongly polynomial algorithm has been brought forward for this 
determined problem. In the next section, we will discuss the general algorithm for this 
problem.  

3   Hybrid Intelligent Algorithm for Stochastic Network Bottleneck 
Capacity Expansion 

3.1   Calculate Uncertainty Function 

From the above thought we could work out the algorithm for this dependent-chance 
model. First of all, we design a stochastic simulation algorithm to get the value of 
uncertainty function. 

}),|(|Pr{max)( MCWCCOSTWCU ≤Ω∈→                                      (7) 

Steps: 

(1) Let 'N 0; 
(2) We need get definitive value of W  from stochastic variable W , which produced 

from probability rΡ  in Ω ; 
(3) Employ definitive network bottleneck capacity expansion algorithm, which is 
designed by Yang Chao [4-5], to calculate problem 1. the algorithm is also a child 
problem of stochastic dependent-chance programming  model. We show optimized 
solution for the child problem as c ; 
(4) If Mc ≤ than cNN +← '' ; 
(5) Repeat step 2 to step 4 N times, N is a prodigious circulation times; 
(6) Back to 'N /N. 

3.2   Approximate Uncertain Function by Neural Network 

NNs are inspired by the current understanding of biological NNs . The most popular 
and useful NN architecture is multilayer feedforward NN, which is widely used for 
pattern classification and functional approximation ,in this paper , NNs are used to 
approximate uncertain functions. When we solve models (5) or (6) by GA, the process 
of stochastic simulations to compute U(C), will be repeated for thousands of times , 
which means large computations, so NNs are trained to approximate these uncertain 
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function, which reduce the computations and speed up the solution process greatly. 
After making a set of input-output data for uncertain function U(C) by stochastic 
simulations ,we train an NN to approximate the uncertain function by the back 
propagation algorithm according to the training data. 

In detail, in order to get training data , firstly , we take the steps which follow the 
section 3.1 to approximate the uncertain function U(C). we can get N training data 
according to repeating the process of stochastic simulation for N times.  We  let  

εε
WW

N
32

ln
32≥ or simply 

ε
W

N ≥ ,see [16]  here, W is the sum of edges and 

nods of neural network ε  is the rate of misjudgment  let %2=ε We use the 
back propagation algorithm to approximate the uncertain function U(C) . as everyone 
knows, the propagation ability of the neural network that has two hidden layers is better 
than the neural network that has one hidden layer. But for our bottleneck capacity 
network expansion problem, the neural network that has one hidden layer is enough to 
approximate any uncertain function. in this paper, we just use the feedforward neural 
network which has one input layer ,one hidden layer and one input layer. Support the 
input layer has m input nodes, output layer has n output nodes and hidden layer has p 
hidden nodes. In the section 4  numeral example, we let  m=5 the num of decision 
variable wi n=1 the num of uncertain function . The hidden nodes p can be 
calculated by pruning algorithm [17] The purpose of the training process is to find the 
neural network ‘s best weight ω  to minimize the value of error function 

 
2

1

||),(||
2

1
)(

=

−=
N

i
ii uwFErr ωω                             (8) 

here ),( ωWF  is the output function of neural network. 

 

Fig. 1. Neural network 

3.3   Hybrid Intelligent Algorithm 

In order to solve the problem of network bottleneck capacity expansion, we combine 
network bottleneck capacity algorithm, stochastic simulation ,neural network and 
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genetic algorithm to produce a hybrid intelligent algorithm, which will reduce 
calculation work and manage large-scale problems.  
Steps: 

(1) Generate training input-out data for uncertain function by stochastic simulations 
(2) Train neural networks to approximate the uncertain function according to the 
generated training data. 
(3) Initialize chromosomes ),...,,,()( 321

k
m

kkkk
k ccccCV == , 

sizepopk _,,3,2,1= , check the feasible region )( 0rHC ∈  where the trained 

neural network will be used 
(4) Calculate every chromosome’s target value )( kk CU  sizepopk _,,3,2,1=  

by the trained neural network. This algorithm includes Yang Chao [4-7]’s strongly 
polynomial algorithm for determined network bottleneck capacity expansion and 
employs to solve the problem 1; 
(5) Calculate every chromosome’s fitness extent, the evaluation function is: 

1)1()( −−= k
kVEval αα   sizepopk _,,3,2,1=   )1.0(∈α , α  is a parameter in 

genetic algorithm. 
Rearrange chromosomes sizepopvvvv n _,,,, 321

, in accordance with the 

different evaluation values, from good to poor in sequence; 
(6) Confirm next generation by circumvolving roulette wheel sizepop _  time, 

according to the fitness extent. Finally, we obtain a new chromosome, and we use kv , 

sizepopk _,,3,2,1=  to denote it; 

(7) Define Pc  as the probability of intercross operation, and update chromosomes 

kv , sizepopk _,,3,2,1=  by intercross operation. In order to confirm father 

generations in the intercross operation process, we should repeat the following 
process from i=1 to sizepop _ : produce a stochastic number r from [0,1], if Pcr < , 

chose iv  as one father generation. Use ,,, '
3

'
2

'
1 vvv  to denote the above chosen 

father generations, and divide this group of father generations into pairs like: 
),,(),,(),,( '

6
'
5

'
4

'
3

'
2

'
1 vvvvvv . For example, in the pair of ),( '

2
'
1 vv , at first, we produce 

stochastic number c  from (0, 1), and then produce two offspring X, Y through 
intercross operation between '

2
'
1 ,vv , according to the formula as follows:  

'
1

'
2

'
2

'
1 )1(,)1( VccVYVccVX −+=−+=  

If these two children chromosomes belong to the feasible region )( 0rHC ∈ , we 

could use them to substitute their parents. If not, we have to give up these two 
children chromosomes, and repeat intercross operation until the children 
chromosomes meets the feasible region )( 0rHC ∈ . Finally, new chromosomes kv , 

sizepopk _,,3,2,1=  come into being; 

(8) Renew chromosomes through variation operation. As the above step, firstly, 
define a parameter Pm  as the probability of variation, and repeat the following 
process from i=1 to sizepop _ : produce a stochastic number r  from [0,1], if Pcr < , 
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chose 
iv  as one father generation and operate relevant variation in the selected father 

generation ),...,,( 321
'

mccccV = . Then, we chose a variation direction d  at random in 

the space nR , if MdVX += '  doesn’t belong to the feasible region )( 0rHC ∈ , we 

suppose M  as a stochastic number from 0 to M , and M  is a given big integer, then a 
new child chromosome will be produced. Size up whether the new child chromosome 
meets the feasible region, if not, repeats the process until it belongs to the feasible 
region )( 0rHC ∈ . We substitute the satisfied child chromosome for the father 

chromosome, and at last we gain a group of new chromosomes kv , 

sizepopk _,,3,2,1= ; 

(9) Repeat step 2 to step 6 in terms of the given circulation times; 
(10) The best chromosome ∗== CccccV m ),...,,( *

3
*

2
*

1
**  is the optimum solution 

for network bottleneck capacity expansion model with stochastic unit expansion cost. 

4   A Numerical Example 

Here we calculate a simple numerical example, the network graph is as follows: 

 

Fig. 2. Network graph  

Table 1. Parameter value list in network graph 

Edge of graph E  (E1) (E2) (E3) (E4) (E5) 
Original capacity C c1=20 c2=30 c3=40 c4=50 c5=80 
Unit expansion cost W 

)400,280(

1

N

w →

 

)225,100(

2

N

w →

 
)64,152(

3

N

w →

 

)900,160(

4

N

w →

 
)49,167(

5

N

w →
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Let 750 =r α 0.9  M=8600, { }∗∗∗∗∗∗ = 54321 ,,,, cccccC  be the optimum solution of 

expansion; ∗COST  is the optimum solution of expansion cost; prob* is max 
probability, Error%=(Prob*-prob*min) /prob*min,  Vi= wi(c*i –ci)  NNerror is average 
error rate of neural network 

)75(

..

}8600),|(|Pr{max

HrC

ts

CWCCOSTW

∈

≤Ω∈
                                 (9)  

Table 2. The list of results 

 

The hybrid intelligent algorithm is run with 5000 cycle in simulations and 5000 
training sample for NNs and 600 generations in GA, Different environment 
parameters of GA are taken ,and corresponding solutions are give in table2 ,where 
‘prob’ is the maximal probability. Similarly, we run the hybrid intelligent algorithm 
for 7 times with different parameters of GA on the basis of equivalent generations. In 
order to measure the differentia between these results,’ error’, I.e. the percent error, is 
calculated and given in table2. From these computational results, we see that the 
maximal percent error does not exceed4.292% when different parameters are chosen. 
Therefore the hybrid intelligent algorithm is also robust to the parameter settings and 
effective to solve model (9).  

5   Conclusions 

The paper first introduces dependent-chance model to network bottleneck capacity 
expansion problem. For solving the stochastic model efficiently, network bottleneck 
capacity algorithm, stochastic simulation, neural network and genetic algorithm are 
integrated to produce a hybrid intelligent algorithm.  
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Abstract. This improved algorithm, Gray-encoded hybrid accelerating genetic 
algorithm (GHAGA), is presented to reduce computational amount and to 
improve the computational accuracy for the global optimization of water 
environmental models. The hybrid method combines two algorithms, which are 
the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the 
shrinking of searching range, the method gradually directs to optimal result 
with the excellent individuals obtained by Gray genetic algorithm embedding 
the Hooke-Jeeves searching operator. The convergence and global optimization 
of the new genetic algorithm are analyzed. Its global convergence rate is 100%, 
and the computational velocity is fast for five test functions. And it is efficient 
for the global optimization in the practical water environmental model on 
wastewater treatment. 

1   Introduction 

The algorithms for global optimization are of increasing importance in modern 
environmental models. Many environmental models consist of a large number of 
parameters. The global optimization to the parameters of complicated models is 
intractable. The particular challenge is that an algorithm may be trapped in the local 
extreme point of an objective function when the dimension is high and there are 
numerous local optima. In the above case, the traditional optimization methods may 
not obtain the global optimization efficiently. Genetic algorithm (GA) is a kind of 
heuristic searching algorithm based on the mechanics of natural selection and 
natural genetics. The global solutions can be found for both linear and nonlinear 
formulations. The work on genetic algorithm was done by Holland [1]. The detailed 
genetic algorithm and its implementation were given by Goldberg [2]. De Jong [3] 
showed that the standard binary-encoded GA (SGA) could constitute an interesting 
alternative to perform the global optimization of a function depending on several 
continuous variables [4]. The genetic algorithm and its extensions are powerful in 
their search for the global optimum [5-6]. GA has been applied in many fields [7-12]. 
However, the computational amount is very large and premature convergence 
phenomena exist in SGA. To reduce computational amount and improve the 
computational precision, the binary-encoded accelerating genetic algorithm (BAGA), 
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real-encoded genetic algorithm (RGA) and integer-encoded genetic algorithm were 
developed [13-16]. However, these genetic algorithms cannot be effectively applied 
for continuous variable global optimizations in nonlinear environmental models. The 
Hamming distance between two closest integers in binary code is very large. For 
instance, integers 127 and 128 are expressed by the 01111111 and 10000000 in binary 
code, respectively. All of the codes must be changed if we turn 127 into 128 in binary 
code. This operation reduces the efficiency of the genetic algorithms. This 
phenomenon is termed the ‘Hamming cliff’. To overcome these difficulties relating to 
binary encoding for continuous variable optimizations, the standard binary-encoded 
GA was improved with Gray encoding [4 12 17]. For the Gray-encoded genetic 
algorithm (GGA), the integers 127 and 128 are expressed by the 01000000 and 
11000000. It was found that this algorithm still needs a large amount of computation. 
So GGA should be developed. In this paper, a Gray-encoded hybrid accelerating 
genetic algorithm (GHAGA) is presented to improve the computational efficiency. 
This approach will apply to five nonlinear functions and one practical environmental 
model on the least-cost of wastewater treatment, and the results show that it is 
efficient and robust. 

2   The Steps of GHAGA 

Consider the following water environmental optimization problem: 

),,,(min 21 pnxxxf ⋅⋅⋅  

s.t. jjj bxa ≤≤  , for j =1,2,… , pn  
(1) 

where { }pj njxx ,...,2,1, == , jx  is an environmental variable to be optimized, 

f is an objective function and 0≥f . 

And the steps of GHAGA are given as follows. 

Step 1.  Gray encoding.  
Suppose Gray encoding length is e in every variable, the jth environmental variable 

range is the interval ],[ jj ba , and then each interval is divided into 12 −e  sub- 

intervals  

jjjj cIax ⋅+=  (2) 

where the length of sub- interval of the jth variable ( ) (2 1)e
j j jc b a= − −  is 

constant. The Gray code array of the jth variable is denoted by the grid points of 

{ }ekkjd ,...,2,1|),( =  [12]  

1

1

( ( , )) 2
e e

m
j

k mm

I d j k −

==
= ⋅⊕  (3) 
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where ⊕  denotes the operator of addition modulo 2 on { }1,0 . GHAGA’s process 

operates on a population of individuals (also called Gray code array strings or 
chromosomes). Each individual represents a potential solution. 

Step 2.  Generating initial father population. 
Initially, the chromosomes are generated at random in Gray-encoded genetic 
algorithm, and n-chromosomes in father population are: 

)2),(int()( e
j ijuiI ⋅=  for ninj p ,...,2,1;,...,2,1 ==  (4) 

where ),( iju  is uniformity random number, ),( iju ∈[0,1] )(iI j  is a searching 

location, int ( ) is an integer function. From Eq.(3), the n-corresponding chromosomes 

are ),,( ikjd  for .,...,2,1;,...,2,1;,...,2,1 nieknj p ===  To homogeneously 

cover the whole solution space and to avoid the risk of having too much individuals in 
the same region, a large uniformity random population are selected in this algorithm.  

Step 3.  Fitness evaluation. 
The fitness function )(iF of ith chromosome for the optimization is defined as 

follows: 

1.0)]([

1
)(

2 +
=

if
iF  (5) 

Step 4.  Reproduction. 

Compute the reproduction probability )(ipr  of a certain chromosome with  

Equation (6).  

=

=
n

j
r jFiFip

1

)(/)()(  (6) 

Such two groups of n -chromosomes are selected by the above probabilities. 

Step 5.  Two-point crossover. 

Perform crossover on each chromosome pair according to probability cp to generate 
two offspring. For two-point crossover, two crossing points are randomly chosen. 
Crossover the two chromosomes, save the new chromosome and delete the parents 
from the population. Loop this step until all the parent chromosomes are computed 
with crossover. In order to enhance the diversity of population, the crossing 

probability is set as cp ≥ 0.5. 

Step 6.  Two-point mutation. 
In this paper, two-point mutation is adopted. And a new offspring can be computed by 

a mutating probability mp . The operator has the capability not only to exploration, but 

also exploitation. Thus the operator can improve the computational efficiency [12]. 
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Step 7.  Hooke-Jeeves evolution. 
The Hooke-Jeeves algorithm is a useful, local descent algorithm, which does not make 
use of the objective function derivatives [18]. The best point in the previous phase 
becomes a new initial solution in the Hooke-Jeeves algorithm, and then a new best 
point is obtained by this Hooke-Jeeves algorithm. The new best point inside the 
offspring will be inserted to replace the worst one in the previous phase. Repeat step3 
to step 7 until the evolution times Q or termination criteria is met. 

Step 8.  Accelerating cycle. 

The variable ranges of sn -excellent individuals obtained by Q -times of the Hooke-

Jeeves evolution become the new ranges of the variables, and then the whole process 
return to step 1. 

Step 9.  Stop computation.  
The computation process is over until the objective function value gets to an expected 
value, or algorithm running times gets to the design T times. Herein, the most 
excellent chromosome currently is the optimum solution of GHAGA. 

The GHAGA is convergent [12]. The global optimization of the GHAGA is not 
only accurate but also stable. Let the Hooke-Jeeves evolution times be Q, the number 

of excellent individuals be sn the number of optimized variable be pn  and  the 

times of accelerating evolution be T, the probability 0p  of excellent individuals 

surround the optimum point is TnnQ psp ⋅⋅−−= )21(0 . The GHAGA is global 

convergence with probability 0p =1.000 when Q=2 sn =10, pn =5, T=5; 

Q=2 sn =20, pn =5, T=5; Q=3 sn =10, pn =10, T=10; Q=5 sn =20, pn =15, 

T=15; Q=5 sn =20, pn =15, T=15, etc. 

3   Experiment 

3.1   Criteria 

Three main criteria, the relative error, the absolute error and the total computation 
number, for the objective functions, are very important when trying to determine the 
performances of an algorithm: convergence, speed and robustness [4]. The parameters 
of the GHAGA are selected as follows: The length e =10 population size 300=n , 

the number of excellent individuals sn =10, the times of Hooke-Jeeves evolution 

Q=5, the crossover probability 0.1=cp , the mutation probability mp =0.5 and the 

times of Hooke-Jeeves searching 300≤m . 
The global optimization of five test functions [4] is accomplished by using the 

following methods: standard binary-encoded GA (SGA), improved Gray-encoded 
genetic algorithm (IGGA) [4] and GHAGA. To compare with the global 
optimization ability of the above algorithms objectively, the absolute error or 
relative error in neighbor generations will be less than or equal 10-2 , and the less 
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than or equal 18,000 computations of the objective functions are done, and one of 
the three termination criteria is used for ensuring the optimization precision and 
avoiding algorithm invalidation. 

3.2   Experiment and Result 

To test our GHAGA, five analytical test functions, F2 (1 variables), Branin (2 
variables), Hartman1 (3 variables), Shekel1 (4 variables) and Brown1 (20 variables), 
were used. This set of classical test functions, were often used [4,16]. Because of the 
stochastic nature of GAs, the discussion of results derived from one single execution 
of the algorithm is meaningless [16]. So all results reported in this section are 
obtained by averaging the results from 100 executions per function. The computation 
results of the five nonlinear test functions are given in Tables 1~2 with the SGA, 
IGGA [4] and GHAGA. It is obviously observed that the GHAGA is the best one 
both in accuracy (see minimum found in Table 1) and in efficiency (see success rate 
and number of evaluation of the functions in Table 2) compared with existing 
algorithms. The results given in Table 2 show that the global optimum is reached 
since the ratio of success is equal to 100% for the five tested functions with GHAGA, 
and the ‘Hamming cliff’ phenomena are avoided in GHAGA. 

Table 1. The minimum found  with the SGA, IGGA(Andre et al., 2001) and GHAGA 

Minimum found with different methods Name of the 

functions 

Number of  

variables 

Theoretical  

minimum SGA  IGGA GHAGA 

F2 1 -12.03125 -12.03120 -12.03120 -12.03123 

Branin  2 0.39789 0.39789 0.39791 0.39789 

Hartman1 3 -3.86278 -3.86249 -3.86114 -3.86277 

Shekel1  4 -10.15320 -10.13490 -10.14866 -10.15209 

Brown1 20 2 43.62810 8.55162 1.99877 

Table 2. Results with the SGA, IGGA(Andre et al., 2001) and the GHAGA 

Number of evaluation of the 
functions for minimizing 
objective functions 

 Success rate % Name of the 
functions 

SGA IGGA GHAGA  SGA IGGA GHAGA 

F2 5347 744 300  100 100 100 

Branin 8125 2040 305  81 100 100 

Hartman1 1993 1680 319  94 100 100 

Shekel1 7495 36388 390  1 97 100 

Brown1 6844 128644 312  0 0 100 
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4   Application 

Example. Consider the least-cost treatment of wastewater as an environmental 
optimization model to satisfy 
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where ix is the sewage treatment rate at the ith discharge point F  is total daily 

cost of treatment. 
We consider the following objective function: 
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where )( ii gh  is a penalty function.  

The least objective function f  is 5060.95($) with GHAGA, and 1x =0.4884, 

2x =0.5058, 3x =0.5062, 4x = 0.6372. For the GHAGA, the evaluation number T is 11. 

For real-encoded genetic algorithm (RGA), the evolution number T is 1000, the least 
objective function f  is 5076.28 ($). For the Hooke-Jeeves algorithm (HJA), the least 

objective function f  is 5228.27($) of 100 independent runs. And for fuzzy nonlinear 

optimization method [20], the least objective function f  is 5063.10 ($). Our 
GHAGA can overcome some Hamming-cliff phenomena in existing genetic 
algorithms, and the result is satisfied both in efficiency and accuracy for practical 
wastewater treatment model. 

5   Conclusion 

In this paper, a new method, GHAGA is proposed to solve water environmental 
optimal problem. Because the steps of Gray-encoding, Hooke-Jeeves hybrid searching 



 Gray-Encoded Hybrid Accelerating Genetic Algorithm 135 

 

operator and accelerating cycle are used, the efficiency and accuracy of the new 
algorithm are very high compared to existing algorithms. The corresponding 
convergence and global optimization ability are analyzed. This algorithm overcomes 
some Hamming-cliff phenomena in existing genetic methods, it has been applied to 
five nonlinear test functions and one practical wastewater treatment model, and the 
results are encouraging. 
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Abstract. Generalized Traveling Salesman Problem (GTSP) is one of the 
challenging combinatorial optimization problems in a lot of applications. In 
general, GTSP is more complex than Traveling Salesman Problem (TSP). In this 
paper, a novel hybrid chromosome genetic algorithm (HCGA), in which the 
hybrid binary and integer codes are adopted, is proposed as an improvement of 
generalized chromosome genetic algorithm (GCGA). In order to examine the 
effectiveness of HCGA, 16 benchmark problems are simulated. The 
experimental results show that HCGA can perform better than GCGA does in 
solving GTSP. 

1   Introduction 

GTSP[1-3] has been first introduced in the context of computer record balancing and 
visit sequencing through welfare agencies. Other application fields of GTSP include: 
agent service brokering problem[4], covering tour problem, material flow system 
design, post-box collection, stochastic vehicle, arc routing and so on[5]. 

The GTSP can be described as the problem of seeking a special Hamiltonian cycle 
with the lowest cost in a completely weighted graph[6]. Let ( , , )G V E W=  be a 

completely weighted graph, in which
1 2

{ , ,..., }( 3)
n

V v v v n= ≥ , { , }ij i jE e v v V= ∈ , and 

{ 0 0, , ( )}ij ij iiW w w and w i j N n= ≥ = ∀ ∈  are vertex set, edge set and cost set, 

respectively. The vertex set V is partitioned into m  possibly intersecting groups 

1 2, , ..., mV V V  with 1jV ≥  and
m

jj
V V= . The special Hamiltonian cycle is required 

to pass through all of the groups, but not all of the vertices. At present, there are two 
kinds of GTSP[5,7]: (1) the cycle passes exactly one vertex in each group and (2) the 
cycle passes at least one vertex in each group. In this paper, only the first case is 
discussed and called as GTSP for the sake of convenience. 
                                                           
* Corresponding author. 
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In the previous, simple dynamic programming methods were proposed to solve 
GTSP[1-3]. Laporte[8,9] used integer programming to solve the instances with 104 
vertexes. Fischetti et al[10,11] applied branch-and-cut algorithm to solve the GTSP with 
442 vertexes. Renaud and Boctor[12] designed a composite heuristic algorithm for 
GTSP. And some studies on GTSP focused on how to change GTSP into TSP[13-15]. 
Unfortunately, these methods could only be used to solve small GTSP problems for its 
low efficiency.  

Recently, a generalized chromosome genetic algorithm (GCGA), which could be 
considered as the best solving algorithm for GTSP, was proposed by Wu et al[6]. 
However, GCGA cannot solve the GTSP instances with large groups very well due to 
the limits of the generalized chromosome setting and crossover strategy, which can be 
proved by the analysis of chromosome schema. In this paper, a hybrid chromosome 
genetic algorithm (HCGA) is designed to improve the performance of GCGA. 

2   Hybrid Chromosome Genetic Algorithm for GTSP 

In this section, a novel algorithm named hybrid chromosome genetic algorithm 
(HCGA) is given. There are also two parts in the new chromosome of HCGA: head part 
formed by binary numbers and body part, which is the same as generalized 
Chromosome of GCGA[6] (refer to Fig. 1). 

 
Fig. 1. Hybrid Chromosome 

Let | [ (1 ) , ( 2 ) , , ( ) ] , ( ) [ , ,. . . , ]1 2H h h h h h h i a a a N i
m == =  

( { 0 , 1} , 1 , [ )l o g ] ,
2

a j N N ij i i V i m≤ ≤ ≤∈ =     

The coding for the head of hybrid chromosome can be described in the following: 

[ (1), (2), , ( )]
coding

h h h h m ⎯⎯⎯⎯→= . 1 2[ (1) V , (2) V ,... , ( ) V ]h h h m mmod mod mod  

In the crossover strategy of HCGA, ( , )h h h h
x y x y

′ ′⊗ →  is changed into 

( ' , )
1 2

h h h h
x y

′⊗ →  and ( , )b b b b
x y x y

′ ′⊗ → is the same as that in GCGA, where  

' [ (1) (1) , (2) (2) , ..., ( ) ( )]
1

h h h h h h m h mx y x y x y= and and and  

' [ (1) (1) , (2) (2) , ..., ( ) ( )]
2

h h h h h h m h mx y x y x y= or or or  

The mutation for the head of the hybrid chromosome is designed as follows: 

M: [ , , .., , ..., ] [ , , ..., , ..., ](1) (2) ( ) ( ) (1) (2) ( ) ( )i
mh h h h i h m h h h h i h⎯⎯→= = not . 
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3   Computational Results 

In this section, some benchmark problems are computed by HCGA. These instances 
can be obtained from TSPLIB library[16]. To test GTSP algorithms, Fischetti et al.[7] 
provided a partition algorithm to convert the instances used in TSP to those which 
could be used in GTSP.  

In our experiments, we take the population size as 100, maximal generation as 200, 
crossover probability as 0.5, and mutation probability as 0.09. All of the instances are 
computed by HCGA and GCGA[6] five times on a PC with 1.2 GHz processor and 256 
MB SDR memory, and the results are shown in Table 1.  

Table 1. Comparisons of results for benchmark test problems 

Problem\five 
runs 

HCGA 
Max 

HCGA 
Min 

HCGA 
Average 

GCGA 
Min 

GCGA 
Average 

HCGA 
Time(s) 

GCGA 
Time(s) 

30KROA150 11018 11018 11018 11018 11022 0.35 4.84 
30KROB150 12195 12195 12195 12196 12314 0.89 4.31 

31PR152 51573 51573 51573 51586 53376 0.60 4.95 
32U159 22664 22664 22664 22664 22685 0.99 5.51 

40KROA200 13408 13408 13408 13408 13617 1.76 6.10 
40KROB200 13124 13113 13119 13120 13352 8.00 6.78 

45TS225 68576 68340 68432 68340 68789 19.01 8.40 
46PR226 64007 64007 64007 64007 64574 0.58 11.33 
53GIL262 1011 1011 1011 1011 1057 41.20 10.11 
53PR264 29546 29546 29546 29549 29791 3.07 14.51 
60PR299 22647 22631 22638 22638 22996 68.63 11.18 
64LIN318 21028 20788 20914 20977 22115 18.34 16.81 
80RD400 6534 6456 6498 6465 6604 17.43 7.67 
84FL417 9664 9663 9663 9663 9725 19.42 20.90 
88PR439 60956 60184 60558 61273 62674 10.87 6.89 

89PCB442 21987 21768 21860 21978 22634 31.80 13.77 

From Table 1, one can see that HCGA can obtain much shorter GTSP cycles than 
GCGA does in all of the examples. The reason is that the crossover operator of HCGA 
is more powerful in searching GTSP cycles than that of GCGA. In some larger 
problems, the computational effort of HCGA is more than that of GCGA because the 
search range of HCGA is larger than that of GCGA. 

4   Discussions and Conclusions 

GCGA was considered as the best evolutional algorithm for solving GTSP. However, 
for the setting of the generalized chromosome and its crossover, it is easy for GCGA to 
fall into local extremum. In order to improve the solution of GTSP, a hybrid 
chromosome genetic algorithm (HCGA) is designed with the new crossover and 
mutation operators. The experimental results show that HCGA has a wider search space 
than GCGA, and can overcome some disadvantages of GCGA. 
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Abstract. The paper proposed a novel quantum-inspired genetic algorithm with 
only one chromosome, which we called Single-Chromosome Quantum Genetic 
algorithm (SCQGA). In SCQGA, by bringing the information representation in 
quantum computing into the algorithm, only one quantum chromosome (QC) is 
used to represent all possible states of the entire population. A novel quantum 
evolution method without using conventional genetic operators such as cross-
over operator and mutation operator is proposed, in which according to the best 
individuals generated by QC we adjust the quantum probability amplitude with 
quantum rotation gates so that the QC can produce more promising individuals 
with higher probability in the next generation. The paper indicated that SCQGA 
is a new approach belonging to estimation of distribution algorithms (EDAs). 
Experiments on solving a class of combinatorial optimization problems show 
that SCQGA performs better than conventional genetic algorithm. 

1   Introduction 

The dramatic advantages of quantum computing inspire people with the new idea: 
using the quantum information representation and the quantum information process-
ing mode to improve the performance of conventional intelligent algorithms. The 
work about combining the quantum computing and artificial intelligence includes the 
study of quantum neural network, quantum evolution computing, quantum fuzzy set 
and so on. For example, Matsui et al. proposed a qubit neuron model in which a neu-
ral state is described by quantum superposition [1], Gopathy Purushothaman et al. 
built an inherent fuzzy quantum neural network in which multilevel active function is 
used in hidden-layer neurons [2], Ajit Narayanan et al. introduced a novel evolution-
ary computing method where concepts and principles of quantum mechanics are used 
to inform and inspire more efficient evolutionary computing methods [3]. And other 
related work can refer to [4], [5], [6]. 

This paper proposed a novel genetic algorithm—single-chromosome quantum ge-
netic algorithm (SCQGA). In SCQGA, relying upon the quantum effects of superposi-
tion, we use only one quantum chromosome (QC) to represent all possible states of 
the entire population and explore the relationship between QC and conventional popu-
lation. A novel quantum evolution method without using conventional genetic opera-
tors such as crossover operator and mutation operator is proposed, in which according 
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to the best individuals generated by QC we adjust the quantum probability amplitude 
with quantum rotation gates so that the QC can produce more promising individuals 
with higher probability in the next generation. And, the SCQGA is in fact a new ap-
proach belonging to estimation of distribution algorithms (EDAs) and the relationship 
between EDAs and SCQGA is investigated in the research. 

The outline of the work is as follows. In section 2, the background provides the 
rough description about quantum-inspired genetic algorithm and EDAs. In section 3, 
the details of the novel SCQGA are introduced. The connection between SCQGA and 
EDAs is discussed in section 4. In section 5, experimental analyses are given to show 
that the presented algorithm outperforms conventional genetic algorithm (CGA). At 
last, the conclusions and future work are given in section 6. 

2   Background 

2.1   Quantum-Inspired Genetic Algorithms 

The work of merging quantum computing and evolutionary computing has been done 
by several researchers and it can be classified into two branches: to quantum com-
puter and to classical electronic computer. In the literature, most of the studies are 
faced to quantum computer, such as Bart’s quantum evolutionary programming [7], 
Martin Lukac’s evolving quantum circuits using genetic algorithm [8], Hugo de 
Garis’s using quantum evolution algorithm to accomplish a quantum neural network 
model [9]. Here, we focus on work related to classical electronic computer. 

The most important work to classical computer was done by Han et al. [10]. They 
proposed a quantum evolutionary algorithm which is used to solve combinational 
problem on classical electronic computer. In their model, the idea of the encoding of 
chromosome using quantum bit and evolving the population by quantum rotation gate 
was first proposed. Instead of binary, numeric, or symbolic representation, a Q-bit is 
defined as the smallest unit of information and a Q-bit individual as a string of Q-bits 
is introduced. The SCQGA proposed in Section 3 is based on the Han et al.’s previous 
work. However, the novel quantum concepts in SCQGA, the novel evolution method 
with only one chromosome and the characters that can be cast to the framework of 
EDAs are very different from Han et al.’s algorithm. 

2.2   Estimation of Distribution Algorithms 

Recently, estimation of distribution algorithms (EDAs) have become one of the fast-
est growing techniques within genetic and evolutionary computation [18]. EDAs are 
fundamentally different form the traditional evolutionary algorithms. The central 
engine of evolution in EDAs is the estimation of distribution mode which creates new 
populations by employing probability model of the solution space. There is no tradi-
tional crossover or mutation operator in EDAs. Instead, they explicitly extract global 
statistical information from the population and build a posterior probability distribu-
tion model of promising solutions. Based on the extracted information, new solutions 
are sampled from the model and construct the next generation of solutions. As the 
process repeats, the promising solutions are generated.  
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One of the main issues in EDAs is how to estimate the accurate distribution that can 
capture the structure of the given problem. There are many kinds of EDAs, for exam-
ple, population-based incremental learning (PBIL) [12], univariate marginal distribu-
tion algorithm (UMDA) [13], mutual information maximization for input clustering 
(MIMIC) [14], compact Genetic Algorithm (cGA) [15], factorized distribution algo-
rithm (FDA) [16], Bayesian optimization algorithm (BOA) [17, 18] and so on. These 
methods have been studied in the last decade and exhibit good performance in solving 
search problems. Detailed discussion on EDAs can refer to a well-crafted book [18]. 

3   SCQGA 

3.1   Information Representation in SCQGA 

It is known that 0-1 bit string is usually used in conventional genetic algorithm to 
represent a chromosome, and the population can be represented by a number of such 
chromosomes. However, in SCQGA, based on the quantum effects of superposition, a 
string of quantum bits is used to represent a chromosome and the population can be 
represented by only one such special chromosome. 

Def 1: Quantum Gene (QG) is the smallest information unit in SCQGA, which can be 
coded as a quantum bit.  

QG is represented as a pair of numbers
β
α

, which can be also written 

as 10 βαψ += , where α and β  are the probability amplitudes associated with the 

0 state and the 1 state such that 122 =+ βα  and the values 2α and 2β  represent 

the probability of seeing a conventional gene state 0 and 1 respectively when the 
quantum gene is measured [11]. Thus, a QG can be represented as the linear superpo-
sition of the two conventional binary genes (0 and 1). 

Def 2: Quantum chromosome (QC) is a string of QGs. 
For example, an n-length QC q  can be written as 

=
n

n

i

iq
β
α

β
α

β
α

β
α

2

2

1

1  , (1) 

where 
i

i

β
α

is a QG, ni ,,1= , and n is the length of the chromosome. In fact, the 

QC is the linear superposition of all possible conventional chromosomes. In CGA, an 

n-length chromosome must be in one of the n2 situations. However, in SCQGA, an n-

length QC can be in all the n2 situations at the same time: 

11111011 01000000 122210 −− ++++= nn aaaaq , (2) 

where ia represents the quantum probability amplitude, 2
ia is the probability of see-

ing the i-th conventional chromosome, ni 21= . 
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Def 3: Quantum population (QP) comprises only one QC. 

In CGA, the population is composed of a number of chromosomes. Usually, the 
more chromosomes a population has, the more diversity it can achieve. The efficiency 
of the algorithm depends on the size of population in some way. It is impossible to 
use the population with only one chromosome to accomplish the optimization compu-
tation. However, it works if the QC is used. As described in Def 2, a QC can represent 
all the possible conventional chromosomes at the same time. So, only one QC is 
enough to construct the whole population. The distribution of the different individuals 
is indicated by the probability amplitude of the QC. The more the probability ampli-
tude is, the more chance the corresponding individual have to appear. The diversity is 
not decreased at all, and even increased in fact. The QP will be transformed to con-
ventional population while the fitness is evaluated. 

3.2   SCQGA 

The main process of SCQGA is similar to CGA. However, because of the novel in-
formation representation, the detailed method is very different. The procedure of 
SCQGA is shown as follows: 

1. Initiate the QC; 
2. Generate conventional population by collapsing method applied to the QC; 
3. Calculate the fitness value of every individual in the conventional population. If 

the termination condition is achieved, then stop the algorithm;  
4. Change the QC by quantum evolution method, and go to Step2. 

Step1 is the initiation stage. First of all, parameters such as the length of QC n , the 
size of conventional population generated by QC N , the evolution rate and the termi-
nation condition are given according to the practical problem. And then the QC can be 
represented as: 

=
n

n

i

iq
β
α

β
α

β
α

β
α

2

2

1

1  , (3) 

where
2

1
,

2

1 == jj βα nj 1=  so that every QG has the same probability ampli-

tude at the beginning. Thus, the QC can represent the entire population and every 
possible individual is guaranteed to have the same probability to appear in the con-
ventional population. 

In Step2, the conventional population is generated so that the evolution of the QC 
can be evaluated in Step3. The QC is the superposition of conventional chromosomes, 
and it collapses to one conventional chromosome by calculating the probability of 

every QG. To every QG 
i

i

β
α

, it has the probability of 2
iα  to collapse to conven-

tional gene 0 and 2
iβ  to collapse to 1[11]. A random number [ ]1,0∈λ  is generated 

first. Then it collapses to 0 if λα >2
i ; otherwise it collapses to 1. The collapsing 
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method is applied to every QG and a conventional chromosome is generated. The 
conventional population can be obtained by repeating the process N times. 

In Step3, the fitness value is calculated for every chromosome generated in Step2. 
The termination condition is the same as that in conventional method. 

Step4 is the key step which determines the performance of SCQGA. The QP is 
evolved by changing the probability amplitude of the QG using quantum rotation gate 
instead of using conventional genetic operations such as selection, crossover and 
mutation operations. The main idea is that the QP evolves toward more promising 
population by changing the probability amplitude of every gene in chromosome, so 
that the good individual has the high probability to appear in the next generation. 

In quantum computing, the probability amplitude can be changed by altering the 
quantum phase θ  to θθ Δ+  using quantum rotation gate [11]: 

ΔΔ
Δ−Δ

=Δ
)cos()sin(

)sin()cos(
)(

θθ
θθ

θU  . (4) 

In order to change the QC, proper quantum rotation gates has to be constructed and is 
applied to QGs, and a QG is evolved as: 

ΔΔ
Δ−Δ

=
old

old

new

new

β
α

θθ
θθ

β
α

)cos()sin(

)sin()cos(
 . (5) 

Now the key problem is how to construct proper quantum rotation gate. The idea 
for the construction of the rotation gate is to make the changing of the entire popula-
tion (quantum chromosome) to the direction of the best individual, and to make the 
excellent individual have greater chance to appear in the next generation. A lookup 
table method is introduced below. 

1. AVE is a 0-1 string which is the average representation of the QC. For QC 

=
n

nq
β
α

β
α

β
α

β
α

3

3

2

2

1

1 , if 5.02 ≥jα , then 0=jAVE , otherwise 1=jAVE , 

nj 1= . 

2. According to Step3, choose the best chromosome in the conventional popula-
tion, written as BEST, which is also a 0-1 string; 

3. Look up table 1 to get the proper θΔ  and constructing the quantum rotation gate 
for every gene. jBEST  and jAVE refer to the j-th gene in BEST and AVE respec-

tively. The parameter a is a positive parameter which determine the evolving 
rate, nj 1= . 

Table 1. Lookup table of θΔ  

BESTj AVEj θΔ  
1 1 0 
1 0 a 
0 0 0 
0 1 -a 
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The overall evolution process in SCQGA can be illustrated in the figure below. 
The solutions are generated according to conventional population which is con-
structed by collapsing methods applied to quantum population, and then quantum 
population is updated using quantum rotation gates. As the process repeats, the opti-
mal or near-optimal solutions can be obtained. 

 

Fig. 1. Evolution process of SCQGA. QP: Quantum Population, CP: Conventional Population 
generated by collapsing method, Solu: Solutions 

4   Connection Between SCQGA and EDAs 

The SCQGA is a novel algorithm inspired from quantum computation, but this sec-
tion shows that it is in fact a new-type approach in EDAs. EDAs attempt to solve 
optimization problems by repeating the following two steps: 

1. Candidate solutions are generated using probabilistic model. 
2. The probabilistic model is updated by evaluating the candidate solutions, so that 

the promising solutions will be generated with greater probability. 

 

Fig. 2. Schematic description of EDAs and SCQGA. In EDAs (a), candidate solutions are 
sampled according to probability model, and then the probability model is rebuilt based on the 
extracted global statistical information from the population. In SCQGA (b), the QC is cast to 
probability model and the collapsing method is the corresponding the sampling method, so the 
process of SCQGA can be cast into the framework of EDAs. 

The schematic description of EDAs is illustrated in Fig.2.a. Solution set is con-
structed according to the probability distribution, and then the probability distribution 
of the selected set of solutions is estimated and updated. The process is repeated until 
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the termination criteria are met. Obviously, we can cast SCQGA into the framework 
of EDAs. As described in section 3, in SCQGA, QC is used to model the probability 
distribution, and using quantum collapsing method to generate conventional popula-
tions, and then, after evaluating the individuals in conventional population the QC is 
modified by quantum rotation gates. The schematic description is shown in the below 
Fig.2.b. So we can say that, the novel SCQGA is an approach in EDAs. 

5   Experimental Analyses 

In this part, experiments on knapsack problems are carried out to verify the perform-
ance of the novel SCQGA and empirical analyses will show that SCQGA outperforms 
conventional GA.  

Knapsack problem is a well-known combinational optimization problem which be-
longs to NP-hard problem. Knapsack problems with 10, 50 and 100 items are used to 
evaluate the performance of the novel algorithm. The experimental data are generated 
randomly. The parameters of the algorithms are set in table 2 and we run the algo-
rithms 30 times respectively. 

The statistical comparisons between the quantum and conventional genetic algo-
rithm in handling 10-item, 50-item and 100-item knapsack problem are demonstrated 
in table 3. It is found that the SCQGA performs much better than the conventional 
algorithm in solving the knapsack problem.  

Table 2. The parameters setting of SCQGA and CGA. PS: population size; MG: maximum 
number of generations; ER: evolution rate; PAR: probability amplitude range; CP: crossover 
probability; MP: mutation probability. 

SCQGA/CGA SCQGA CGA 
Problem 

PS MG ER PAR CP MP 
10-item 20 100 
50-item 100 1000 

100-item 100 1000 
36/π  

]20/9

,20/[

π
π

 0.8 0.05 

Table 3. The performance comparison of SCQGA and CGA in solving knapsack problem. To 
each problem, both algorithms run 30 times and performance can be compared by “Best 
Solution”, “Worst Solution”, “Average Solution” and “Success Rate”. The success rate is 
defined as: success rate=the times of getting “Best Solution”/30. 

Problem Algorithm 
Best Solu-

tion 
Worst 

Solution 
Ave Solu-

tion 
Success 

Rate 
SCQGA 51.9798 51.9798 51.9798 100.00% 10-item 
CGA 51.9798 39.226 49.0781 30.00% 
SCQGA 1082.41 1079.50 1082.13 90.00% 

50-item 
CGA 1082.41 1039.23 1068.72 3.33% 
SCQGA 3976.43 3950.94 3965.71 16.70% 

100-item 
CGA 3852.21 3644.41 3769.84 0.00% 



148 S. Zhou and Z. Sun 

 

 

Fig. 3. The evolution process of SCQGA and CGA over 30 runs in solving 50-item knapsack 
problem. The smooth lines are the fitness variation process and the rough lines indicate the 
variation of number of individuals with unique fitness. 

 

Fig. 4. The best results achieved by SCQGA and CGA averaged 10 runs with different popula-
tion sizes 

Fig.3. illustrates the evolutionary process of the two algorithms in solving the 50-
item knapsack problem. The fitness variations show that SCQGA converges more 
quickly and achieves better solutions than CGA. The population diversity is an impor-
tant factor that determines the performance of genetic algorithm. The number of indi-
viduals with unique fitness is used to measure the population diversity. It is found that 
SCQGA produces more unique individual than conventional method and we find that 
QGA produces total 86402 different individuals in the 1000 generations while CGA 
produces only 35251. The conclusion is that SCQGA maintains the diversity of popu-
lation much better than CGA, which is the main reason of achieving better perform-
ance.  The SCQGA makes a good balance between exploiting the best solution and 
exploring the search space. 

To further examine the superiority of SCQGA, we set population size from 2 to 
100. Given different population sizes, the SCQGA and CGA are used to optimize the 
30-item knapsack problem. The best results they can achieved averaged 10 runs are 
shown in Fig.4. It can be concluded that SCQGA outperforms CGA for different 
population sizes obviously. This experiment also shows that even with small popula-
tion, SCQGA can achieve good performance steadily.  
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6   Conclusions and Future Work 

In this paper we present a novel genetic algorithm—SCQGA, in which relying upon 
the quantum effects of superposition, we use only one QC to represent all possible 
states of the entire population. A novel quantum evolution method without using 
conventional genetic operators is proposed. And SCQGA is cast into the framework 
of EDAs. To verify the performance of SCQGA, experiments are carried out on knap-
sack problems and the results show that SCQGA outperforms the conventional ge-
netic algorithm. Though the performance of SCQGA and Han et al.’s algorithm [10] 
are almost the same in experiments (detailed empirical results were not shown be-
cause of the page limit), the novel quantum concepts in SCQGA, the novel evolution 
method with only one chromosome and the characters that can be cast to the frame-
work of EDAs are very different from Han et al.’s algorithm [10]. 

SCQGA is our first attempt to combine quantum computing and genetic algorithm 
and it has some advantages over CGA. However, the model proposed in the paper is 
very simple. A great deal of research needs to do to increase the effectiveness of the 
algorithm. The comparison of SCQGA and other methods in EDAs should be further 
studied. In the research, we indicated that SCQGA is in fact a new approach in EDAs. 
Experimental and theoretical comparison with EDAs should be further investigated. 
Theoretical analysis of SCQGA isn’t given in this paper. Proving the convergence of 
the algorithm, analyzing why SCQGA outperforms theoretically and giving math-
ematic explanation of the dynamic characters of SCQGA are also our next work. 
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Abstract. This paper presents an approach to the problem of the identity 
verification speed by means of fingerprint pattern recognition in the Medicare 
real-time settlement system. This study aims to speed up the fingerprint feature 
transmission by greatly reducing the space of feature, and improve fingerprint 
matching speed under a comparative matching precision. To solve the problem, 
we take several aspects into consideration: reducing the space of one minutiae 
point occupied, abandoning the global feature to reduce the feature space, 
depending on the definition of minutiae point’s direction and restriction of 
transformation for precision, and controlling the number of evolutionary species 
by searching the optimization parameters. The experiment results indicate that 
this approach manages to speed up the transmission and matching effectively, 
and therefore prove to be suitable for the Medicare identity verification. 

1   Introduction 

The real-time identity verification is a significant part of Medicare, because it not only 
guarantees the security of Medicare fund in case of an illegitimate loss, but also is 
indispensable to medical supervision. However, the identity verification in domestic 
Medicare is carried out through IC card. It is insecure because whether the patient is 
real or not depends on the eyeballing ability of hospital operators; while checking 
verification by Medicare controllers is a spot test. For the speciality of Medicare 
real-time settlement system, a biologic verification method, which is controlled by 
Medicare itself, should be adopted. According to the market research, Medicare 
governors deem that the fingerprint recognition is economical and practical compared 
with other methods, and also capable of being popularized in the Medicare. 

However, it is a big problem to apply the technology of fingerprint recognition on 
Medicare, because the transmission occupies almost the whole finite bandwidth. It is 
very valuable for some hospitals, especially rural hospitals, since so many Medicare 
patients should get their identities verified at the same time. The speed of fingerprint 
matching, especially the speed of transmission, needs improving. 

Therefore, to solve the problem of verification speed effectively, two factors the 
size of fingerprint feature and the relationship between the speed of fingerprint 
matching and precision, should be taken into consideration in this research. 

Many algorithms of fingerprint matching have been put forward. For instance, 
Ranade and Ro Senfeld present laxity algorithms for point matching [1]; Ratkovic 
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presents a more special model of fingerprint features [2]; Sparrow.M.K [3] and 
A.K.Hrechak [4] present fingerprint feature matching based on structural information. 
In fact, the matching problem in this paper is a point matching based on comparing 
methods [5]. Since current methods are usually based on traditional searching 
strategies; the fingerprint feature usually includes global features for a better matching 
precision, like center point and pattern section; and it is hard to compress the size of 
feature more. Genetic algorithms, as a fresh theory and method, have been taken as an 
alternative to obtain a solution of hard optimization problems [6] [7] fit with the parallel 
processes, and can guarantee the global optimization in the searching process. 

We solve the problem of speed with a set of methods: reducing the space of one 
minutiae point occupied; abandoning global features to compress the feature saved and 
transmitted; depending on the definition of direction and the restriction of 
transformation to guarantee a comparative precision of matching; controlling the 
number of species by searching for the best solution of genetic algorithms’ parameters 
for a faster evolutionary speed. In addition, we adopt the method of simulative input 
fingerprint data, which is processed from database to test the matching precision. 

2   The Definition and Storage of Fingerprint Feature 

Controlling the size of fingerprint feature effectively can effectively save the required 
time of transmission and fingerprint matching. We abandon global features(such as 
ridge lines quantity, pattern section, center point, and ridge lines shape) except the 
minutiae points, save the size of space by reducing x-coordinate and y-coordinate 
range, and guarantee the matching precision through the definition of minutiae point. 

The definition of minutiae point’s type, which refers to that of FBI [8], according to 
ridge lines, includes two kinds: end point and forked point, other points can be 
combined by these two. Each point can have 16 directions shown in Figure 1. 

The angle of consecutive direction is 22.5°; there are 32 kinds of minutiae points that 
we can apply in the matching process. So one minutiae point is a vector, which includes 
4 elements (x-coordinate, y-coordinate, direction, type), presented with 
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pppppppp tryxtryxtryxP ,,,,,,,,,,,, 22221111=  . (1) 

 

Fig. 1. Sketch Map of Minutiae Point’s Direction and Storage 
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Fig. 2. Sketch Map for Minutiae Point Storage 

A minutiae point occupies three bytes for storage. Two bytes of them are used to 
save the value of x-coordinate and y-coordinate respectively, and the third one is used 
to save the direction and type of minutiae points. Since the number of minutiae points 
obtained from input equipment is about 20 to 60, the size of one minutiae feature is 
controlled within about 60 to 180 bytes, while other methods use the size of 0.3K to 1K 
bytes. The sketch map storage of minutiae point is shown in Figure 2. 

After the minutiae extraction, the feature is saved in the database as the ID for 
identity verification. But it cannot be completely identical with the feature inputted 
because of the inaccuracy of displacement and rotation (the zoom can be ignored). 
Therefore, the main problem of fingerprint matching is that the adjustment of the two 
features depends on the optimal solution of transformation through search strategies. 

3   The Algorithms of Fingerprint Matching 

For the fingerprint matching, the most important thing is how to improve the methods 
for decreasing computation and maintain an acceptable matching precision. As we have 
discussed above, because the dependence of global features is ignored, the features 
cannot be matched by traditional methods. Instead, the point matching, based on the 
underlying principles, is adopted: 

1. After finding a corresponding point for each minutiae point from another feature in 
the fixed border upon region, a pre-matching couple, the gene, is created. The 
process is called pre-matching. 

2. Two pre-matching couples are randomly selected to create an individual, and some 
individuals are used to create an original species. 

3. An excellent individual whose fitness value is above a predefined threshold through 
selection, crossover and mutation operators is pricked off. 

Basing on the summary of genetic algorithms by Michalewicz [9] and analysis by 
Yao, X. [10] [11], Four presented steps to analyze the matching as following. 

3.1   The Gene Expression of Solution 

The first thing is to encode a solution from a phenotype to the genotype. Because the 
expression of the features is based on the minutiae points, a vector of real-valued 
numbers encodes each individual in this paper, and it can avoid the illegality of 
solutions and represent a feasible solution only, and vice versa. 

Generally speaking, center and trigonal points are used as the benchmark of 
displacement and rotation. If two couples of correct matching points were found to 
replace the center and trigonal point, the transformation between two features can be 
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solved. If two features have no relative displacement and rotation or very little 
inaccuracy under a predefined threshold, the matching problem is to compare only 
minutiae points on types and directions. Two couples of minutiae points, used for 
displacement and rotation, are two genes of one chromosome, as is shown in Figure 3. 

 

Fig. 3. Sketch Map of Individual’s Chromosome 

3.2   The Creation of Original Species 

After encoding the chromosome, the original species should be created. Two 
discretional couples of points can be a transformation. One of them is called 
pre-matching couple. All of these pre-matching couples make up the gene space. 

If there are 50 minutiae points, the total of pre-matching couples will be 

25001
50

1
50 =⋅CC  , (2) 

which is the whole combination of a fingerprint feature. This kind of pre-matching 
couples is redundant and inefficient, so the whole gene space should be reduced. 
Displacement and rotation should be controlled in a certain range through normative 
fingerprint input, just as a door will be opened only when you insert the right key and 
turn it in the correct direction. Here there is a 22.5° for rotation threshold and 0.5cm for 
displacement threshold. 

We need to find the same or similar type minutiae point R (existent or not) in a 
certain range of point P, and the features of these two points are presented as 

( )pppp tryxP ,,,=  , ( )rrrr tryxR ,,,= . (3) 

And if point P and point R are pre-matched successfully, several rules of 
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have to be observed for pre-matching. The pre-matching couples are saved to a 
two-dimension array. And rows, which express genes, constitute the gene space. 

An individual can be created by two different genes, and the individual will solve the 
problem and also a transformation for two features. The population size is 30 in the 
original species and it remains the same in the evolutionary process. 
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3.3   Fitness Function for Individuals 

This problem is in the field optimization, so we compute the value in the phenotype. 
Let Fd be the feature points saved in database, Fi the feature points inputted, let 

( )dcbaI ,,,=  , (5) 

the individual selected, so fitness function has the transformation of the displacement 
and rotation shown in Figure 4, and returns the value of matching point quantity. 

Fig. 4. Sketch Map of Displacement and Rotation Adjustment 

However, this fitness function should compute each individual in each species; it 
will have the more computation, which increases with geometric series along with the 
evolutionary process. And the flow of fitness function is shown in the Figure 5.  

 

Fig. 5. Flow of Fitness Function 
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Before evaluating an individual in the phenotype, deterministic methods are used in 
the genotype to count the fitness value firstly, and it can save about 70% runtime of 
fitness function through experiments. That is the distance (D) (between two points, 
which are in the same feature) of (a,c) and (b,d) in the Figure 4. If matching result is 
accurate, D(a,c) and D(b,d) should be equal or margin under a predefined threshold.  

3.4   Operators in Evolutionary Process and Parameters 

A single individual with a certain acceptable fitness value cannot necessarily be found 
in the original species, so preferable species needs effective genetic operators. Here we 
emphasize exploration more than exploitation, because what we need is not a global 
optimal solution, but a local feasible solution above a predefined threshold, and we 
compare this notion to mountain climbing shown in Figure 6. 

 

Fig. 6. Sketch Map of Mountain Climbing 

 

Fig. 7. Sketch Map of Crossover and Mutation 

What we care is the first one who climb above the T, not the mountain which he 
climbs and whether it is the highest one. If an individual’s fitness value is above T 
(=0.25), and the maximum number of species is above 20, the evolutionary process 
should be terminated. The crossover and mutation operators are shown in Figure 7. 

However, how we can guarantee a fast convergence speed, and evolve a preferable 
offspring based on its parents’ excellent quality? 

Emphasizing on exploration, we mainly use crossover and mutation operators as the 
primary operators to search a preferable solution out of existing species, and selection 
operators is subordination. It is proved that the time of the first satisfactory individual’s 
appearance will be prolonged along with the increased selection rate. 
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Fig. 8. Results of Average Convergence Speed by Changing Proportion 

 

Fig. 9. Results of Average Convergence Speed by Changing Mutation and Crossover Rate 

There are two steps to get a fast convergence speed and ensure the excellent quality 
as well through parameter selection. First fix the crossover and mutation rate, change 
the proportion of these two genes in the evolutionary process, according to the Table 1. 
And then, fixing the proportion, crossover and rotation rate are changed according to 
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the Table 1. Therefore we can obtain the relationship among the number of species, 
master’s proportion (or crossover and mutation rate), and average fitness value.  

We can come to the conclusion from both the experiment results and the three- 
dimensional map in Figure 8. It is the fastest convergence speed when the master’s 
proportion is 0.6 and the slave’s proportion is 0.4. And then, the relationship among the 
number of species, mutation rate and fitness value is shown in Figure 9.  

According to the results, the best mutation rate is 0.4 and the crossover rate is 0.5. 
The relationship of fixing proportion is shown in Figure 9 throught 10000 specimens. 

Table 1. Variational Parameters in Experiments 

No 
Primary 

proportion 
Slave 

proportion 
No 

Mutation 
Rate 

Crossover 
Rate 

1 0.0 1.0 1 0.0 0.9 
2 0.1 0.9 2 0.1 0.8 
3 0.2 0.8 3 0.2 0.7 
4 0.3 0.7 4 0.3 0.6 
5 0.4 0.6 5 0.4 0.5 
6 0.5 0.5 6 0.5 0.4 
7 0.6 0.4 7 0.6 0.3 
8 0.7 0.3 8 0.7 0.2 
9 0.8 0.2 9 0.8 0.1 

10 0.9 0.1 10 0.9 0.0 
11 1.0 0.0    

Table 2. Results of FAR Test 

ANFD ANFS ANLP ANAN APT 
(ms) 

ACT 
(ms) 

AET 
(ms) 

AMT 
(ms) 

FAR 
(%) 

40.250 42.643 11.700 14.093 6.957 0.383 3.621 10.961 0. 10

40.040 42.442 11.615 14.016 6.876 0.380 3.661 10.917 0. 10

39.981 42.369 11.599 13.987 6.812 0.386 3.574 10.772 0. 10

40.101 42.520 11.603 14.022 6.836 0.377 3.311 10.523 0. 07

39.817 42.160 11.596 13.939 6.785 0.359 3.465 10.608 0. 12

39.825 42.270 11.503 13.948 6.760 0.363 3.715 10.838 0. 12

40.138 42.484 11.708 14.055 6.754 0.402 3.631 10.787 0. 08

40.050 42.499 11.559 14.009 6.929 0.397 3.659 10.985 0. 10

40.026 42.532 11.492 13.997 6.933 0.362 3.702 10.997 0. 11

40.218 42.643 11.670 14.095 6.875 0.353 3.652 10.880 0. 12
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Table 3. Results of FRR Test 

ANFD ASIP APL ANP APT 
(ms) 

ACT 
(ms) 

AET 
(ms) 

AMT 
(ms) 

FRR 
(%) 

39.967 42.477 11.522 13.989 6.787 0.398 188.745 195.930 0.00

39.819 42.453 11.649 14.026 6.742 0.374 187.966 195.081 0.00

39.925 42.654 11.628 14.081 6.860 0.362 188.113 195.334 0.00

39.974 42.482 11.524 14.003 6.702 0.388 188.823 195.913 0.00

39.813 42.300 11.601 13.972 6.695 0.374 187.630 194.699 0.00

39.792 42.330 11.524 13.988 6.810 0.382 188.861 196.053 0.00

39.939 42.550 11.790 14.081 6.804 0.373 189.454 196.631 0.00

40.024 42.267 11.665 13.983 6.857 0.366 189.348 196.571 0.00

40.044 42.397 11.536 13.999 6.776 0.370 189.382 196.528 0.01

40.146 42.352 11.492 13.969 6.852 0.389 189.889 197.130 0.00

4   Experimental Results 

Generally, two criterions, False Reject Rate (FRR) and False Accept Rate (FAR), are 
used to evaluate the precision of matching. Using these two criterions on the identity 
verification on Medicare, FRR means the rate of regarding a real Medicare patient as a 
pretender, and FAR means the rate of regarding a pretender as a real one. These two 
criterions are contradictory but unified, and cannot be absolutely perfect values at the 
same time. So for the identity verification of Medicare, because the wrong result on a 
real Medicare patient can be remedied through artificial check, a lesser FAR and a 
comparatively bigger acceptable FRR are needed. 

Except for the FRR and FAR, There are also two criterions of the matching speed, 
Average Success Matching Time (ASMT) and Average Unsuccessful Matching Time 
(AUMT), added specially in this paper. The reason is that these two terminate 
conditions determine the different number of species in the evolutionary process. 

10000 specimens are selected randomly from fingerprint feature database, and we 
carry through a simulative fingerprint features input. There are 10 times matching test 
for FRR, and 10 times for FAR in a common computer. The results are shown in Table 
2 and Table 3. And the abbreviation of experiments in Table1 and Table 2, ANFD, 
ANFS, ANLP, ANAN, APT, ACT, AET, AMT, express Average Number of Features 
in Database, Average Number of Features in Simulative-test, Average Number of Lost 
Points, Average Number of Added Noise, Average Pre-matching Time, Average 
Creating origin species Time, Average Evolution Time, Average Matching Time 
respectively. 

According to the experimental data, FRR is about 0.1%, and ASMT in FRR test is 
about 10.827 ms; FAR is smaller than 0.01% and AUMT in FAR test is about  
195.987 ms. 
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5   Conclusions 

In this paper, we have increased the speed of transmission to a great extent, because of 
reducing the size of fingerprint feature. Compared to other methods, the size of a 
feature is reduced from 0.3K~1K bytes to 60~180 bytes, saving about 80% space of 
storage and transmission time. It also increases the matching speed effectively by 
searching the best parameters of genetic algorithms under an acceptable precision 
through the definition of minutiae points. 

This paper takes the Medicare identity verification as the research background, the 
speed of identity verification as the main objective; and tries to improve the definition 
of features and the matching methods as well. According to the experiment results, 
these methods are valuable more in the practical sense, suitable for the domestic 
Medicare system, and relieve the workload of medical controller considerately. The 
matching time in experiments has satisfied the needs of Medicare real-time settle 
system on the whole. 
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Abstract. In this paper, we will introduce an evolutionary algorithm
for finding approximate solutions to the Weighted Minimum Hitting Set
Problem. The proposed genetic algorithm, denoted by HEAT-V, makes
use of a newly defined concept of virus. We will test its performance
against a well known and efficient greedy algorithm, and on several fam-
ilies of sets.

1 Introduction

The Weighted Minimum Hitting Set Problem (WMHSP) and the standard Mini-
mum Hitting Set Problem (MHSP), are combinatorial problems of great interest
for many applications. Although, these problems lend themselves quite naturally
to an evolutionary approach, to our knowledge, there are no significant results
of evolutionary algorithms applied to either the WMHSP or the MHSP, except
for the results contained in [3].

We will now formally introduce the optimization problem and recall that the
corresponding decision problem is NP-complete [6].

– Instance: A finite set U, with | U |= m; a collection of sets C = {S1, . . . , Sn}
such that Si ⊆ U ∀i = {1, . . . , n}. A weight function w : U → 	+.

– Solution: A hitting set for C, that is to say H ⊆ U such that H ∩ Si �= ∅,
∀i = 1, . . . , n.

– Optimal Solution: a hitting set H such that w(H) =
∑

s∈H w(s) is mini-
mal.

The above definition is very general and, by simply putting w(s) = 1, ∀s ∈ U,
we obtain the standard definition of the Minimum Hitting Set problem.

Theoretical results show that:

– the problem can be approximated within 1 + lnm [7];
– it cannot be approximated within c lnm, for some c > 0 [13];
– moreover [4], optimal solutions cannot be approximated within (1− ε) lnm
∀ ε > 0, unless NP ⊂ DT IME(mlog log m).

– Finally, in [2], is proven that it is not possible to approximate Set Cover,
which is simply a dual problem of MHSP, with a ratio of c logm, ∀c < 1/4
unless NP ⊂ DT IME(mpoly log m); furthermore, if c < 1/8 it would be
NP ⊂ DT IME(mlog log m).

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 161–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Set and Minimum Vertex Cover

Minimum Vertex Cover (MVCP) can be used in many practical applications,
especially in matching problems. We will now show a triangular reduction, Set
Cover (SCP)→ Minimum Vertex Cover→ Minimum Hitting Set, which is com-
putationally easy, e.g. quadratic. As a consequence, an approximation algorithm
for the MHSP can be easily used for SCP and MVCP.

Let us formally define the combinatorial problems.

Minimum Vertex Cover

– Instance MVCP: A graph G = (V,E), where V = {1, . . . , n} is the set of
vertices and E = {e1, . . . , em} ⊆ V × V is the set of edges.

– Solution: A subset V ′ ⊆ V such that ∀(i, j) ∈ E : i ∈ V ′ ∨ j ∈ V ′.
– Optimal solution: A vertex cover V ′ of minimal cardinality.

To E we can also associate a matrix A, called adjacency matrix, whose values
aij are defined as

aij =
{

1 if (i, j) ∈ E
0 otherwise

Set Cover

– Instance SCP: A set X, with | X |= m; a collection D = {Z1, . . . , Zn}
such that Zi ⊆ X ∀i = {1, . . . , n}.

– Solution: A set cover for D, i.e. a collection D′ = {Z1, . . . , Zk} ⊆ D such
that

⋃k
i=1 Zi = X.

– Optimal solution: A cover D′ of minimal cardinality.

Reductions. We can reduce MVCP → SCP by putting X = E and D =
E∗, where E∗ = {E∗

i : i = 1, . . . ,m} and for all i E∗
i = {(i, j) : (i, j) ∈

E for some j ∈ V }. Therefore, E∗ is the collection of all the sets representing,
for every vertex, the collection of edges that have it as an endpoint.

We can reduce SCP→MHSP by putting U = D and C = {T1, . . . , Tn} where
Ti = {A ∈ D : ai ∈ A}.

We can easily reduce directly MVCP → MHSP, by putting U = V and
C = V ∗ with V ∗ = {V1, . . . , Vm}, where, for all h = 1, . . . ,m Vh is the set of the
two endpoints of the edge eh.

It is easy to check that the above shown reductions take O(| V + E |) time.

1.2 Evolutionary Algorithms and NP-Complete Problems

Evolutionary algorithms have been applied with satisfactory results to a very
long list of hard combinatorial problems. A complete description or enumeration
of such results is, per se, a hard problem. We will cite here just few interesting
examples and stress the fact that no evolutionary algorithm exists for the MHSP.
EA’s have been applied to SAT, 3SAT [1]; TSP [9,10]; Graph Coloring [5].
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2 The Description of Our Algorithm

Our evolutionary approach and the resulting genetic algorithm, denoted by
HEAT-V, is based on the idea of a mutant virus, which somehow acts as a
non-purely random mutation operator.

Each chromosome in the population is a binary string of fixed length (see
below for details). The selection operator is tournament selection and the selected
individuals mate with probability p = 1. Reproduction uses uniform crossover
(however this does not involve the virus part as we will describe later).

Elitism is used on three specific elements (not necessarily distinct) of the
population:

– best fitness element;
– hitting set of smaller cardinality;
– hitting set of smaller weight.

2.1 Virus Description

Chromosomes contain some extra genes, specifically 2 + �log | U |�. These genes
represent the genetic patrimony of the virus. As a consequence, the total length
of a chromosome is | U | +2 + �log | U |�. We have

– The extra �log | U |� bits uniquely identify one of the first | U | loci of the
chromosome. If | U | is not a power of 2, the above bits identify, as well,
positions past the first | U | bits. In such cases, the virus will have no effect.
The virus is characterized by two behavioral phases, positive and negative,
and it switches between them dynamically, specifically whenever the popula-
tion has gotten used to the disease, that is to say when no improvements are
generated after a specific number of generations. If the virus hits the indi-
vidual, with probability one half, it is decided whether it will act selectively
or generally.
• If it acts selectively, the position identified by the �log | U |� and another

randomly chosen are hit by the virus. That means, that if the virus is
acting positively [resp. negatively] the gene with smaller weight (of the
chosen two) is put to one [resp. the gene with higher weight of the chosen
two, is put to zero].
• If it acts generally, the position identified by the �log | U |� extra bits is

put to one if the virus acts positively and zero otherwise.
– Viruses will hit an individual if the remaining two extra bits, control bits,

have both value 1.
Thus, chromosomes can be partitioned into three groups:
• healthy (control bits are both 0);
• disease carrier (control bits have different values);
• sick (control bits are both 1).

However, all individuals, including healthy ones, carry in their genes the
virus. Two disease carrier chosen for reproduction, will produce a sick off-
spring with probability 1/4.
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During the first generation, the virus bits are randomly generated with a
uniform distribution. Control bits are instead put to 1 with a probability pv1
that has to be set. In all cited tests, we did set pv1 = 1/10.

Virus reproduction is slightly different than uniform crossover.
Basically, in the case that the virus bits differ in one location, offspring are

given a random value (in the uniform crossover, such a case would imply that
one offspring will get the value 1 and the other the value 0).

Control bits have also their specific reproduction procedure. If c1, c2 are the
offspring control bits and c11, c12 are the first parent control bits, while c21, c22
are the second parent control bits, we choose randomy c1 ∈ {c11, c12} and c2 ∈
{c21, c22}. Then, with probability pv2, we set first child control bit to 1 if control
bits are both 0.

In all cited tests, we did set pv2 = 1/10.

2.2 The Fitness Functions

We will now describe the three fitness functions we used to test our algorithm.

Fitness 1: Algorithm HEAT-V1 The fitness function f1 : P → 	+ that
HEAT-V1 tries to maximize is defined as follows:

f1(c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ× n + α + w(U)
w(c) if c is not a

hitting set for C
n + α + w(U)

w(c) if c is a
hitting set for C
0.0 if w(c) = 0

where c ⊆ U, ρ =| U |, α = ρ− | c |, w(U) =
∑

u∈U w(u), and in general w(c) =∑
u∈c w(u) and P is the population set. Intuitively, this is a two-phase fitness

function. If the chromosome is not a hitting set its fitness function increases
very rapidly when new elements are added to it. If it is a hitting set, the fitness
increases when the cardinality of c decreases.

Fitness 2: Algorithm HEAT-V2 The fitness function f2 : P → N \{0} that
HEAT-V2 tries to minimize is defined as follows:

f2(c) = w(c) + w(Lc,M )

where
Lc,M = {e : (∃K ⊆ U) s.t. K ∩ c = ∅ ∧ e ∈ K ∧ w(e) = max{w(e′) : e′ ∈

K}}. Intuitively, f2 is computed by adding to the weight of a chromosome, the
maximum weight of elements of sets which c does not hit. In some sense, f2 acts
as a large upper-bound to the fitness function of any chromosome that could
become a hitting set by including c.

Fitness 3: Algorithm HEAT-V3 The fitness function f3 : P → N \{0} that
HEAT-V3 tries to minimize is defined as follows:
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f3(c) = w(c) + w(Lc,m)

where Lc,m = {e : (∃K ⊆ U) s.t. K ∩ c = ∅ ∧ e ∈ K ∧ w(e) = min{w(e′) : e′ ∈
K}}. Intuitively, f3 is computed by adding to the weight of a chromosome, the
minimum weight of elements of sets which c does not hit. Thus, f3 acts as a
strict upper-bound to the fitness function of any chromosome that could become
a hitting set by including c.

2.3 Comments on the Obtained Results

The first two fitness functions are equivalent from a quality point of view, i.e. the
corresponding algorithms find the same minimal hitting sets. However, fitness 2
gives more stability since HEAT-V2 finds the best result in all the runs, whereas
HEAT-V1 only 50% of the time. On the other hand, HEAT-V1 converges more
rapidly than HEAT-V2.

HEAT-V3, which uses the third function, is less stable than the other two
algorithms, yet in 33% of the cases, it produces better solutions.

Note also, that HEAT-WV is a variation of HEAT-V where no viruses are
used but instead we use the mutation operator with probability 1/ | U | .

3 Computational Results

We compared HEAT-V to a greedy algorithm which is a very well known and
quite efficient approximation algorithm. Such an algorithm approximates the
optimal solution to a factor of O(lnm). In [14], ratio factor is improved to lnm−
ln lnm + θ(1), and, basically, no known polynomial algorithm can have a better
performance [4].

Basically, the procedure greedy chooses at every step the element that maxi-
mizes the ratio between the number of hit sets (among the remaining ones) and
its weight. The hit sets are eliminated.

HEAT-V was also compared to the results in [3], where an extension of the
MHSP was studied. In such an extension, denoted by T-constrained, the problem
is to find hitting set of minimal cardinality with the highest number of elements
belonging to a given set T ⊆ U.

It is easy to see how the T-constrained version of the MHSP can be mapped
into the WMHSP by assigning a small weight to the elements of T and a large
weight to the elements outside of T. In our experiments we chose w(t) = 1,
∀t ∈ T and w(s) = 10, ∀s /∈ T.

Many tests were performed. For each test HEAT-V was tested three times.
The population contained 200 individuals and each test ran for 500 generations.

3.1 Tests on Guaranteed Hitting Set Families

We have generated family of subsets of a universe U that have hitting sets of
guaranteed cardinality.
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For our experiments, we randomly created three test collections

(50) | U |= 50, and | C |= 50000 where for each subset, each element of U
belongs to it with probability 1

4 ;
(100) | U |= 100, and | C |= 100000 where for each subset, each element of U

belongs to it with probability 1
8 ;

(200) | U |= 200, and | C |= 200000 where for each subset, each element of U
belongs to it with probability 1

16 .

Table 1 shows the results obtained by HEAT-V3. w(G) stands for the weight
of the guaranteed MHS. Note that we created two tests series (A and B) for each
of the collections described above.

Table 1. w(H) for guaranteed WMHS

TEST w(G) GREEDY HEAT-V3 HEAT-WV
50A 115 194 115 115
50B 102 129 102 102
100A 501 837 501 584
100B 537 793 537 626
200A 2054 3094 2054 2552
200B 428 668 428 623

3.2 Results on T-MHSP

In table 2 we show the results obtained by HEAT-V3 on the T-constrained
MHSP. In this case, | T |= 10, whereas | U |= 100 and | C |= 100000. To
randomly generate the elements of C, we proceed as follows:

– We fixed two integer interval parameters [a1, . . . , a2] and [b1, . . . , b2].
– For each element C ∈ C and for each bit in C,
• we draw randomly two numbers a′ ∈ [a1, . . . , a2] and b′ ∈ [b1, . . . , b2].
• If a′ < b′ the bit is given the value 1 otherwise is given the value 0.

The test set T − 100 is characterized by the intervals [0, . . . , 9] and [1, . . . , 10].
What is the probability that a′ < b′ ? The event space is made of the 100 possible
pairs of values [a′, b′]. Of these 100 pairs, the ones for which a′ < b′ are exactly
55. Thus, with probability 55

100 a bit is set to 1. Any set in C will therefore have
a little over one half of its bits equal to 1.

We compare HEAT-V3 with the Greedy Algorithm above described and, a
simpler algorithm proposed in [3].

3.3 Results on Papadimitriou and Steiglitz Regular Graphs

We also checked HEAT-V against vertex cover, which can be easily reduced to
MHSP. In particular, we used the regular graphs proposed by Papadimitriou
and Steiglitz (PS-rg) [12] built so that the classical greedy strategy fails. Such
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Table 2. Results for T-MSHP

TEST SUITE Algorithm | H | ∈ T
T-100 GREEDY 51 100%
T-100 HEAT-V3 49 100%
T-100 HEAT-WV 51 80%
T-100 CEC-2002 Alg. 49 60%

a greedy strategy chooses at every step the uncovered vertex with the highest
degree, i.e. the highest number of edges incident to it. PS-rg’s can be seen as
3-level graphs. Formally, every graph G(V,E) has n = 3k + 4 vertices, k ≥ 1;
k + 2 in the first level, k + 2 as well in the second level, but exactly k vertices in
the third level. Every vertex in the third level is connected by an edge to every
vertex of the second level. Every vertex in the second level is connected to one
and only one vertex of the first level. Therefore a PS-rg graph has exactly 3k+4
vertices and k(k + 3) + 2 edges. In figure 1 we see a PS-rg of degree k = 3. It

LEVEL 1

LEVEL 2

LEVEL 3

Fig. 1. PS-rg with k = 3

is easy to see that for PS-rg’s an optimal cover is given by the vertices of the
second level. Thus the cardinality of the optimal cover is k + 2.

The greedy strategy instead, would choose the vertices of level 3, because
they are the highest degree vertices, and then, to produce a cover, would choose
the vertices of level 1. Obtaining a cover of cardinality 2k + 2.

In [8], the authors present a genetic algorithm for the minimum vertex cover,
which reaches the optimal solution in 2/3 of the experiments on PS-rg’s with
degree k = 32 e k = 66.

3.4 PS-rg’s Minimal Cover as MHSP

An instance of the minimum vertex cover for a PS-rg reduces to an instance of
MHSP as follows:

– U is given by V, i.e. the number of elements of the universe is equal to the
number of vertices in the graph.

– C is given by E, i.e. the number of sets is equal to the number of edges and
each set has exactly two elements, corresponding to the two endpoints of the
edge.
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Table 3. | H | results on regular graphs with k = 32, k = 66, k = 100

Graph GREEDY HEAT-V3
PS-32 66 34
PS-66 134 68
PS-100 202 102

For the PS-rg in figure 1, the corresponding instance of MHSP would then be:

– U = {1, 2, . . . , 13}
– Assuming that the level 1 vertices correspond to elements 1 to 5, second level

to elements 6 to 10 and third level vertices to elements 11 to 13, the sets of
the collection are:
• {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}, and
• {i, 6}, {i, 7}, {i, 8}, {i, 9}, {i, 10}, for i = 11, 12, 13.

The Minimum hitting set is obviously given by the subset {6, 7, 8, 9, 10}.
Surprisingly, the best approximation algorithm for the MVCP is said to be

the randomized algorithm [11]. It can be proven, that such an algorithm guar-
antees a cover which at most has twice the cardinality of the minimal cover.

We ran HEAT-V with PS-rg’s of degrees k = 32, k = 66, k = 100. In ta-
ble 3, we show the obtained results. HEAT-V always finds the optimal solution,
whereas only 66% of the cases are claimed in [8]. We also ran our algorithm
with an instance of degree k = 100. HEAT-V1 was not able to find the optimal
in this case, whereas HEAT-V2 and HEAT-V3 found the optimal solution. For
simplicity, we show just the results for HEAT-V3.

3.5 Results on Randomly Generated Subsets

We ran many tests on randomly generated families, changing the cardinality of
U, of C, and the range for the weights. We can distinguish two major test suites:

– TEST100: | U |= 100, | C |= 100000, w(ui) ∈ {1, . . . , 50}.
– TEST200: | U |= 200, | C |= 200000, w(ui) ∈ {1, . . . , 100}.

Elements are randomly assigned to subsets, using three different probability
values: A: p = 55

100 , B: p = 45
100 , and C: p = 65

100 .

Table 4. w(H) results for the GREEDY and HEAT-V algorithms

TEST GREEDY HEAT-V1 HEAT-V3 HEAT-WV
100A 870 849 796 1193
100B 1084 995 967 1160
100C 111 109 105 181
200A 1134 1107 1073 1895
200B 992 973 955 1872
200C 153 146 138 312
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In all, we have six different test suites, 100A, 100B, 100C and 200A, 200B,
200C. Weights are randomly generated in the set interval. In table 4 we have
the weight of the hitting sets produced by the greedy algorithm and by HEAT-
V.The table clearly shows that HEAT-V3 always obtains the best results.

3.6 Comparing Various Crossover

We have compared various types of crossover operators with virus. We used
six new tests. Tests “A” have low density, that is there are about 30% of “1”.
Tests “B” have high density, that is there are about 70% of “1”. “G” stands for
greedy approach; “OPC” for one-point crossover; “TPC” for two-point crossover;
“UFC” for uniform crossover. The last three columns show result with the same
crossover operators but with virus. How we can see from table 5, the virus
strategy always enhances results.

Table 5. w(H) with various crossover

TEST G OPC TPC UFC VOPC VTPC VUFC
30A 334 317 309 309 305 291 281
30B 43 43 43 41 41 41 39
40A 357 353 352 352 352 350 346
40B 62 62 62 62 61 61 61
50A 415 415 414 414 410 407 404
50B 70 70 70 70 65 65 65

4 Future Work and Conclusions

We have presented an evolutionary algorithm which makes use of extra bits of
data, called virus bits, and we have studied its performance on the Weighted Min-
imum Hitting Set Problem. The obtained algorithm turns out to be flexible and
efficient in finding approximate solutions even for variations of the studied prob-
lem. It does not require any a-priori knowledge about the problem instance and
it does not use any reduction techniques. Hence, we were able to test its perfor-
mance even on different problems such as the Minimum Vertex Cover Problem.

One of the major novelties of HEAT-V, is the usage of a virus, which acts as
a non purely mutation operator. Computationally, its usage has no meaningful
extra costs.

HEAT-V was tested on a large set of test cases, and, compared with the best
known greedy algorithm, it obtained better results in 100% of the cases. It also
wins against the same algorithm that makes use of the mutation operator, but
not the viruses.

Acknowledgments

F.P. acknowledges partial support from University of Catania research grant
and MIUR (PRIN 2004: Problemi matematici delle teorie cinetiche). Part of



170 F. Pappalardo

this work has been done while F.P. is research fellow of the Faculty of Pharmacy
of Universiy of Catania.

References
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Abstract. This paper studies the resource-constrained project scheduling prob-
lem with fuzzy activity duration and fuzzy deadline. On the basis of the concept 
of schedule robustness for fuzzy deadline and fuzzy project makespan, we seek 
for a schedule that maximizes the schedule robustness. First, An efficient ge-
netic algorithm (GA) based on activity list representation is proposed for solv-
ing this problem, the performance of our GA and GA based on the priority value 
representation is compared. Second, we study the impact for the two different 
weak comparison rules (integral value method, distance method) in the per-
formance of GA. The computational experiment shows that the performance of 
the proposed GA is better than GA appearing in the literature, there is no sig-
nificant difference between the two weak comparison rules on the Performance 
of the algorithm. 

1   Introduction 

The resource-constrained project scheduling problem (RCPSP) is to schedule the 
activities such that precedence and resource constraints are satisfied while optimizing 
some managerial objective. Applications can be found in diverse industries, especially 
in make-to-order and small batch production such as construction engineering, soft-
ware development, ships and planes etc. There are some recent papers that summarize 
researches for this problem [1,2].  

During project execution, however, project activities are subject to considerable 
uncertainty that may lead to numerous schedule disruptions. So we should consider 
this uncertainty in any realistic RCPSP approach. One of the major uncertainty is 
activity duration that may be difficult to predict accurately at the project early stage 
because a project is usually unique and “open-ended”. There are two major ap-
proaches to handle uncertainty: stochastic and fuzzy. The latter one is especially well 
suited to handle such vague information [3, 4].  

There are some papers concerned with fuzzy RCPSP [5,6,7,8,9]. Hapke and Slow-
inski [5,6] transformed the non-deterministic problem into a deterministic problem 
that was then solved using known deterministic procedures. Hapke and Slowinski [7] 
extended the priority rule based serial and parallel scheduling schemes [2] to deal 
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with fuzzy parameters and applied 12 dispatching rules to solve this problem. Pan [8] 
applied GA based on the priority value representation for solving the problem under 
the objective of minimizing the fuzzy makespan. Wang [9] presented a fuzzy beam 
search approach for this problem under the objective of minimizing the schedule risk. 
Wang [10] described a genetic algorithm based on the priority value representation 
for solving the problem with the objective of maximizing the schedule robustness. 

 In this paper, in order to model actual scheduling situation more suitably, we study 
RCPSP incorporating fuzzy activity duration and fuzzy deadline (FRCPSP). On the 
basis of the concept of schedule robustness for fuzzy deadline and fuzzy project 
makespan, we seek for a schedule that maximizes the schedule robustness. First, An 
efficient genetic algorithm based on activity list representation is proposed for solving 
the FRCPSP, we compare the performance of our GA and GA based on the priority 
value representation proposed in [8,10]. Second, we study the impact for the two 
different weak comparison rules (integral value method, distance method) on the 
performance of the genetic algorithm.  

The paper is organized as follows. The second section presents some introductory 
material: uncertainty modeling using fuzzy sets, and weak and strong comparison 
rules of fuzzy numbers. The FRCPSP is described in Section 3. Section 4 presents the 
new GA to the FRCPSP. In section 5 we describe the result obtained by experiment. 
In the final section general conclusions are made. 

2   Basic Concepts and Definitions  

2.1   Representation of Fuzzy Activity Duration and Project Deadline 

Activity duration and project deadline can be characterized by six-point fuzzy num-
bers for computational efficiency [4]. For example, activity duration can be denoted 
as follows: ),,,,,(

~ ελλε ppppppP =  (see Fig. 1 (A)). Where 1,, λε  are three prominent 

membership levels at which the manager is able to express possible values of activity 
duration which will be realized. The values within the range ],[ pp are the most certain 

activity duration and the value outsides the range ],[ εε pp  are the least possible ones. 

The values within ],[ λλ pp  have good chances to be realized. 

             )(xμ                                                          )(xμ  

        1                                                             1 
 
        λ                                                           λ  
 
        ε                                                            ε  

             εp λp p  p   λp εp    x                                     e  λe  εe      x  

(A) (B) 

Fig. 1.  (A) Fuzzy activity duration (B) Fuzzy project deadline 
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Project deadline can be denoted by ),,,0,0,0(
~ ελ eeeE = (see Fig. 1 (B)), if the 

makespan of the project is not greater than e , then the project manager is completely 
satisfied. However, if the makespan is later than e , then the degree of satisfaction 

decreases. When the makespan is equal to λe , it is still acceptable and when the 
makespan is latter than εe , the degree of satisfaction is zero.  

2.2   Comparison of Fuzzy Numbers 

Generally, the different fuzzy numbers A
~  and B

~ can overlap in two different ways:  

(1) The values of both lower and upper bounds of any α -level set of B
~  are greater 

than those of A
~  (see Fig. 2(A)). That is, if BBA

~
)

~
,

~
x(a~m = B

~  is 

strongly greater than or equal to A
~ . This relation is denoted by AB

~~
>>= . The rule 

determining AB
~~

>>=  is called the strong comparison rule (SCR).  
(2) Fig. 2(B) presents another case of two overlapping fuzzy numbers. In such a case, 
it is proposed to apply the weaker comparison rule (WCR). This paper introduces two 
WCRs, due to their discriminating ability and easy computation. 

 

)(xμ A
~

B
~

)(xμ A
~

B
~

λ λ
                                                                  

ε                                        x                      ε                                          x  

  

Fig. 2.  Overlapping two fuzzy numbers 

Distance Approach. Cheng [11] developed a distance approach for fuzzy number 
comparisons based on the calculation of the distance from original point to the cen-
troid point ),( 00 yx . Suppose that ε  is equal to 0, Formula of calculating the centroid 

point for ),,,,,(
~ ελλε aaaaaaA =  can be simplified as: 

.   
)]()[(3

))(1()()( 222222
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aaaaaaaa
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0 yxAR +=                                                        (3)           �

For two fuzzy numbers A
~ and B

~ ,  if )
~

()
~

( BRAR > , then BA
~~

> . 

Integral Value Approach. Liou and Wang [12] proposed the integral value approach 
described as follows. Given a fuzzy number A

~ , )(~ yg L
A

and )(~ yg R

A
are denoted as the 
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inverse functions of the left and right membership function of A
~  respectively. The 

left integral value and the right integral value of A
~  are defined as follows: 

.  (  
~

~

1

L dyygAI

L

Aε

.  (  
~

R

~

1

R dyygAI
Aε

Then the total integral value of A
~  is defined as the weighted sum of )

~
(AI L  and )

~
(AIR :     

where ]1,0[∈β  is the index of optimism and is determined  by  the attitude of manager. 
As 0=ε , 5.0=β , for simplifying the computation, formula (9) can be rewritten for 

six-point fuzzy number ),,,,,(
~ ελλε aaaaaaA = : 

         

For two fuzzy numbers A
~ and B

~ ,  if ),
~

(),
~

( ββ BIAI TT > , then BA
~~

> .  

3   Problem Description 

FRCPSP can be defined as follow. A single project consists of J  activities where 
each activity has to be processed in order to complete the project. The activities are 
interrelated by two kinds of constraints. First, precedence constraints force activity j  
not to be started before all its immediate predecessor activities have been finished. 
Second, performing the activities requires resources with limited capacities. We have 
R  renewable resources. The duration of activities j  ),...,2,1( Jj =  is the fuzzy number 

jP
~ . Pre-emption of activities is not allowed. In each period of its executed time 

jPt
~

,...,2,1= , activity j  requires jrl  units of resource r  ),...,2,1( Rr = . Resource r  has a 

limited capacity of M
rl  at any point in time.  

                             )(xμ          )( ~ x
E

μ     )(-1
)(

~ x
SD

μ        

                      1        

     

RM  
0.5 

               λ         
                                                                                 x  

                                                                Φ  

Fig. 3. The robustness measure ) RM(S  
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The objective is to determine the schedule with the maximum schedule robustness; 
i.e. to select the schedule with the best worst-case performance. Let )(

~
sD be the fuzzy 

makespan of a project schedule s , characterized by the membership function 
)(

~
sD

μ , 

and E
~  be a deadline of the project, the robustness measure is defined: 

                          .  ))(),(1max(inf)( ~
)(

~ xxsRM
EsD

μμ−=                                       (8) 

Fig. 3 shows that RM is determined by the intersections of )(1
)(

~ x
sD

μ−  and )(~ x
E

μ . 

According to the obtained RM, the plausible project duration, from the pessimistic 
perspective, is defined as the maximum value of the α -level set of )(

~
sD (see  

Fig. 3): 

                   .   )()(max
)(

~ ≥=Φ sRMxx
sD

μ                                            (9) 

4   Genetic Algorithm 

4.1   Solutions Encoding 

The solution is encoded as a precedence feasible list of the activities. Each activity 
can appear in the list at any position after all its predecessors. Fig. 4 illustrates the 
activity list representation for a project with J  activities. We would schedule the 
activities, one by one, in the order given by the list, so when an activity is going to be 
scheduled, all its predecessors have already been scheduled. 

 

Fig. 4. Activity list 

4.2   Decoding Procedure 

An activity list is transformed into a schedule by a decoding procedure called the 
fuzzy parallel scheduling procedure [7]. The procedure is described as follows. 

Denote 

t
~     current time 
CS   completed set that stores the activities that have been scheduled and completed 
DS decision set that stores the unscheduled activities which are available for sched-

uling with respect to precedence constraints  
AS activity set that stores the activities in progress  

jTS
~   the fuzzy start time of activity j  

jTF
~   the fuzzy finish time of activity j  

rlπ    the left-over capacity of resource r  
 



176 H. Wang, D. Lin, and M. Li 

 

program  fuzzy parallel scheduling procedure 
begin 

  ; 1,2,..., :  ,}1{:   ,: ,:   , 0:
~

R rllAS CSDSt M
rr ====== πφφ  

repeat 
    Compose DS  

Repeat 

select activity ∗j in DS with the least position in 
activity list; 

update { }*\: jDSDS = ; 
if  rjr ll π≤  , Rr ,...,2,1=  then   

assign the start time of activity *j : tTS
j

~:
~

* = ;  

assign the finish time of activity *j    
          update resource availability:   : *rjrr lll −= ππ ,and AS ; 

    until φ=DS  

select the earliest completed activity *i ; 
determine current time: }

~
  ,~x{a~m:~

*i
TFtt = ; 

Update resource availability:  :
 *rirr lll += ππ , AS ,and CS ; 

Until number of activities in CS = J  
end 

4.3   Initial Population 

In order to initialize initial population, we employ a regret based biased random sam-
pling procedure with Minimum Job Slack (MINSLK) as the selection rule proposed in 
[2]. This method can ensure the good initial solutions. 

4.4   Selection 

The expected value model is employed as the selection mechanism. The objective is 
converted into fitness function as: 

)(101)( iFif ×+=                                                 (10) 

where )(if is the fitness value of i individual, and )(iF is the RM of i individual.  The 
number of expected copies of each individual iN  is given by the probability of select-

ing that individual ip , multiplied by the population size. Each individual is allocated 

samples according to the integer part of iN , and the fractional parts are treated 

as probabilities of obtaining another copy with roulette wheel mechanism.  

=
=

sizepop

i
i ififp

_

1
)(/)(                                            (11) 

                                              sizepoppN ii _×=                                                  (12) 
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4.5   Crossover 

Assume that two individuals of the current population have been selected for cross-
over as mother and a father  

}/,/,,...,,{ 21
MMM

J
MM BFPSM λλλ= , } / ,/ , ,..., ,{   21

FFF
J

FF BFPSF λλλ= .  

Now two children individuals have to be constructed as a daughter and a son:   

}/  ,/  ,   ,...,,{ 21
DDD

J
DD BFPSD λλλ= , } /  ,/  ,   ,..., ,{ 21

SSS
J

SS BFPSS λλλ= . 

In this paper, the one-point crossover of activity list is used. We draw a random in-
teger r with Jr <<0  as crossover-point, daughter D  is first considered and defined as 

follows: (a) the positions ri ,...,2,1=  in D  are taken from the mother, that is M
i

D
i λλ = , 

ri ,...,2,1= . (b) the positions Jri ,...,1+=  in D  are taken from the father. However, the 
activities that have already been taken from the mother may not be considered again. 
We obtain { } , },...,2,1 ,,...,,  min          121 Jkkk D

i
DDF

k
F
k

D
i =∉= −λλλλλλ Jri ,...,1+= . 

As proven by Hartmann [2], this crossover strategy constructs precedence feasible 
solutions, given that the parents’ activity lists are precedence feasible as well. 

The generation of the son D  is similar to the daughter D , but the positions 
ri ,...,2,1=  of the son S  are taken from the father and the remaining positions are de-

termined by the mother. 

4.6   Mutation 

For each activity with a probability of mp , a new position is “randomly” chosen. In 

order to generate precedence feasible solution, this new position must be higher than 
any of its predecessors and lower than any of its successors. Then, this activity is 
inserted in the new position. 

5   Computational Experiment 

Computational experiments are conducted in two aspects: (1) compare the perform-
ance of our GA based on activity list representation and GA based on the priority 
value representation suggested in the literature [8,10]; (2) study the impact of two 
different weak comparison rules (integral value method, distance method) in the per-
formance of the two genetic algorithm. So we design 4 different algorithms: activity 
list representation + integral value WRC, activity list representation + distance WRC, 
priority value representation + integral value WRC, priority value representation 
+distance WCR. The proposed algorithms have been coded in C++ language under 
the Windows XP operating system. The experiments have been performed on a PC 
(1CPU, Intel P4 2.0GHz, 512MB RAM, 60GB Hard Disk).  

5.1   Test Design 

The instance job301305 from the project scheduling problem library (PSPLIB) [13] 
has been used. This instance contains 32 activities and four renewable resource types, 
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and the availability of resources is (17,18,20,18) in each period. Due to all the bench-
marking problems created from PSPLIB are deterministic, we randomly fuzzify this 
instance data and called fuzzyjob301305. According to activity duration iP and opti-

mal makespan 67of instance job301305, six numbers used to define the fuzzy activity 
duration iP

~  are randomly generated from the interval )2.1  ,8.0( ii PP ××  and ranked in 

ascending order. The fuzzy deadline is (0,0,0,67,73.3,80.4). We assume that 
0=ε , 5.0=λ , 5.0=β . 

5.2   Computational Results 

In this paper the parameters for performing genetic algorithms are set as follows: 
population size is 20, number of generations is 100, crossover probability is 0.8, and 
mutation probability is 0.1. Each procedure is randomly repeated 30 times.  

Table 1 displays the best solution, average solution, and standard deviation (SD) of 
RM for the four different algorithms. In this table we can clearly observe that the GAs 
that make use of activity list representation give better results than priority rule based 
procedures.  

 A T-test has been conducted to compare the performance of the two GAs based on 
different representations, and investigate the impact of the two different WCRs (inte-
gral value method, distance method) on the performance of the make use of activity 
list representation give better results than priority rule based procedures.  

A T-test has been conducted to compare the performance of the two GAs based on 
different representations, and to investigate the impact of the two different weak com-
parison rules (integral value method, distance method) on the performance of the 
GAs. The statistic used in the T-test: 

21

2121

2
22

2
11

21 )2(

)1()1( nn

nnnn

SnSn

XX
t

+
−+

−+−

−
=

where 1n  and 2n  are the number of samples, 1X  and 2X  are the mean value of sam-

ples, and 1S  and 2S  are the standard deviation of samples. 

Table 1. Best solution, average solution, standard deviation of RM  

Algorithm Best Average SD 

Priority Value Distance WRC 0.5316 0.4833 0.0295 
Priority Value Integral Value WRC 0.5598 0.4907 0.0334 
Activity List Distance WRC 0.6264 0.5818 0.018 
Activity List Integral Value WRC 0.6165 0.5751 0.0172 

The t value between the performance of activity list representation + distance WRC 
and priority value representation + distance WRC is 16.3091, the t value between the 
performance of activity list representation + integral value WRC and priority value 
representation + integral value WRC is 12.3049. Overall, The performance of GA 
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based on activity list representation is statistically significantly better than GA based 
on priority value representation at the 95% confidence level ( 2)58(95.0 =t ). 

The t value between the performance of priority value representation + distance 
WRC and priority value representation + integral value WRC is 0.9506, while the t 
value between the performance of activity list representation + distance WRC and 
activity list representation + integral value WRC is 1.3992. Overall, the difference 
between distance and integral value WCR is not statistically significant at the 95% 
confidence level ( 2)58(95.0 =t ).  

Summing up, there is no difference between the two weak comparison rules on the 
performance of the algorithm statistically. But the activity list representation report 
statistically better results than the priority value representation. 

The fuzzy project makespan and the plausible project duration of the schedule 
which RM is best for four different algorithms is shown in table 2. 

Table 3 gives the fuzzy schedule which RM is best for the algorithm that makes 
use of the activity list representation and integral value WCR. 

The proposed robust scheduling approach also can assist project managers in re-
source allocation decision to avoid the risk of late project. For example, Table 4 
shows the sensitivity analysis of resource availability to the schedule robustness and 
the plausible project makespan. Project managers may consider increasing additional 
two units the first resource, if he/she feels that the risk of late project is high under the 
current resource availability )18,20,18,17(=Ml . 

Table 2. Fuzzy project makespan and plausible project duration Φ  

Algorithm Fuzzy project makespan Φ  
Priority Value+ Distance (57,59.5,62.9,66.7,73.1,75.9) 72.7 
Priority Value+ Integral Value (56.5,59.2,63.4,68.1,72.3,74.9) 71.8 
Activity List+ Distance (55.5,58.1,62,66.4,71.4,73.8) 70.1 
Activity List+ Integral Value (55.5,58.1,62,66.4,71.4,73.8) 69.9 

Table 3. Sensitivity analysis of resource availability to schedule performance 

Resource availability Fuzzy project makespan RM Φ

(17,18,20,18) (56.5,59.4,62.1,65.5,71.3,74.9) 0.6165 69.9 
(19,18,20,18) (54.3,56.5,59.4,63.9,69.5,71.3) 0.7471 66.7 
(17,20,20,18) (54.9,58,61.8,65.2,70.5,72.9) 0.6758 68.6 
(17,18,22,18) (54.5,57.9,61.2,65.3,70.2,73.5) 0.6750 68.5 
(17,18,20,20) (54.1,57.4,60.4,65.7,69.9,71.8) 0.7209 68.0 

6   Conclusions 

This paper studies the resource-constrained project scheduling problem with fuzzy 
duration and fuzzy deadline. On the basis of the concept of schedule robustness for 
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fuzzy deadline and fuzzy project makespan, we seek for a schedule that maximizes 
the schedule robustness. First, An efficient genetic algorithm (GA) based on activity 
list representation is proposed for solving this problem, we compare the performance 
of our GA and GA based on the priority value representation. Second, we study the 
impact for the two different weak comparison rules (integral value method, distance 
method) in the performance of the GA. The computational experiment shows that the 
performance of the proposed GA is better than GA appearing in the literature, and 
there is no significant difference between the two weak comparison rules on the per-
formance of the algorithm. 
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Abstract. This paper presents a genetic algorithm hybridized with a
constructive procedure and reports its application on the crosstalk aware
track assignment problem. In this algorithm, only dominating elements
are encoded as chromosomes, on which genetic operators work to explore
the solution space, while other elements are determined using construc-
tive method. With proper dominating elements identification, the pro-
posed approach essentially searches a much smaller space without trivial
operations, efficiently generating competitive solutions with an effective
constructive procedure. Experimental results on a set of industrial in-
stances and ISPD98 benchmarks show that the proposed algorithm re-
duces both capacitive and inductive coupling in acceptable running time.
It is probable that the proposed approach provides a practical way for
the application of genetic algorithm on large scale engineering problems.

1 Introduction

Genetic algorithms (GAs) have shown great effectiveness in solution space explo-
ration, and can be applied to a wide range of problems. However, classical GAs
often suffer from slow convergence and a tremendous number of potential solu-
tions, many of which are apparently inferior or even infeasible, have to be eval-
uated before a satisfactory solution can be reached. Researchers have proposed
some hybrid schemes for GA by incorporating GAs with local search procedures,
like hill-climbing [1], simulated annealing [2], tabu search [3]. These approaches
are helpful, but when when applied to large scale problems, especially some engi-
neering applications in which solution evaluation is highly time-consuming, local
search procedures will probably either take much time to perturb the solution
on some insignificant elements and achieve trivial improvements or lounges in a
huge neighboring search space, making such methods unaffordable.
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This paper introduces a GA hybridized with a constructive procedure, in-
spired by the observation that a good solution contains some dominating ele-
ments for many problems. Dominating elements are factors that can give a par-
tial solution and shape the complete solution in the sense that other elements
can be determined without much effort for a satisfactory solution under given
dominating elements. Therefore, chromosomes can be encoded with only domi-
nating elements for the genetic operations with little loss of solution quality. The
search space much reduced, more efforts can be made to avoid prematurity and
to improve solution quality. Moreover, the partial solution given by dominating
elements are usually less likely to be infeasible, and thus the search efficiency is
increased.

Crosstalk aware track assignment problem is a NP hard problem which
emerges from VLSI design and has gained great interests in the EDA com-
munity. We have applied the proposed hybrid genetic algorithm to this problem,
and experimental results have demonstrated the effectiveness of our approach.

2 GA Hybridized with a Constructive Procedure

Consider a general optimization problem,

min f(x) (1)

Suppose we can find a transformation function p : x = p(x1, x2), and a com-
pleting procedure g : x2 = g(x1) so that ∀x, f(p(x1, x2)) ≤ f(p(x1, x)). In such
circumstance, we have the following theorem.

Theorem 1. If f has a minimum point f(x∗) and the completing procedure g
is optimal,there exists some x∗

1, so that

f(x∗
1, g(x∗

1)) = f(x∗)

Theorem 1 tells that the search procedure can work in a reduced dimensional
space with at least one global optimum not lost. This makes it possible for faster
search process with satisfactory solution quality, which motivates the technique
referred to as reduced dimensional search.

In practice, dominating elements are selected based on the power of the
completing procedure with a tradeoff between solution quality and running time.
In the reduced search space, couplings between the variables are usually hard to
determine, and often little information can be explicitly used to guide the search
process, which encourages the use of genetic algorithms due to their effectiveness
in solution space exploration and convergence towards a good solution. We here
propose to use genetic algorithm to search the reduced solution space while use
constructive procedure to complete the solution. The reason why a constructive
procedure may give high-quality solutions is that after the dominating elements
are settled, other elements tend to be local, without complicated entanglements –
possibly the problem or completing the solution is convex and separable, making
it dispensable to perform a local search.
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3 Application to Crosstalk Aware Track Assignment

The crosstalk aware track assignment assigns each wire segment onto a track, so
that the undesired coupling effects (crosstalk) between neighboring wires sensi-
tive with each other are minimized. The problem can be described as: given a
set of segments S and a set of tracks T , find an assignment f : S → T , so that
total crosstalk between sensitive wires are minimized, under the constraint that
no two overlapping segments are assigned to the same track.

A straightforward encoding scheme is used in our algorithm. A potential
solution is represented with an array c, with ci being the index of the track si

is assigned to. On selecting dominating elements, some empirical rules (relating
to wire length, the severity of potential coupling, etc.) are adopted to decide the
significance value of a segment.

The initial dominating elements can possibly exclude some very critical seg-
ments relating to the detailed configuration of the segments. In order to grasp
the dominating elements more accurately and flexibly, we allow adaptive update
of the significance values during the evolution process. Each time after a number
of populations are evaluated, the average coupling contributed by each segment
is evaluated. The significance values are recalculated taking account of both the
original significance and the average coupling the segment suffers. Dominating
elements are then redetermined accordingly.

After dominating elements have been settled, all remaining segments form
a priority queue. Each time, the segment with highest priority is assigned and
removed from the queue. Every possible track for Segment s is evaluated with
the cost of the partial solution, and the one with least crosstalk is adopted. The
main difficulties of such a constructive procedure are that the quality of the final
solution depends greatly on the order in which segments are processed, and that
it is not easy to find a good order before the procedure begins. Here we adopt
a dynamic priority strategy to avoid the undesired effects caused by sequential
manner.

An unprocessed segment must be in one of the following statuses:

1. The segment is assignable on no track;
2. The segment is assignable on only one track;
3. The segment has more than one tracks to choose from, and the solution with

least cost is much better than other solutions;
4. The segment has more than one tracks to choose from, and the best solution

is not remarkably better than the second best one.

Apparently, segments in Status 2 or 3 should take the priority over ones in Status
4. We define the dynamic priority as follows,

pri(s) =

⎧⎨⎩0 , s in Status 1
∞ , s in Status 2
L(si) + κ× (costm2 − costm) , s in Status 3 or 4

Here costm2 and costm is the second minimum cost and the minimum cost for
the segment.
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4 Experimental Results

The proposed algorithm has been implemented in C++ on a SUN v880 work-
station with 8 CPU and 4GB memory. Five criterions are used to measure
the results: number of failed segments, capacitively/inductively coupled segment
pairs, total capacitive/inductive coupling length. Results are listed in Table 1
and compared to those of a previous graph-based algorithm [4]. It is clear that

Table 1. Result Comparison: ours / [4]

name failed c num c len l num l len time (s)
biu 0/0 0/12 0/24 36/52 59/80 1/0.5
gdc 3/3 712/856 3156/4572 16908/18800 180588/221108 4806/118

ibm01 3/2 28/100 64/212 9728/13024 31940/43564 13336/677
ibm02 5/7 34/64 73/140 34902/41136 97110/128988 15930/996

the proposed algorithm finds better layout with less crosstalk than the previous
algorithm.

5 Conclusion

We have proposed a new hybrid genetic algorithm for large scale optimization
problems. With effective constructive procedure based on problem specific knowl-
edge, the proposed algorithm takes advantage of genetic algorithm to better
explore the solution space and perform global optimization. Application of the
algorithm in crosstalk aware track assignment problem has shown encouraging
results: the algorithm is able to reduce both capacitive coupling and inductive
coupling notably compared to [4] within acceptable running time.
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Abstract. Genetic Algorithm (GA) is an effective method for solving the clas-
sical resource-constrained project scheduling problem. In this paper we propose 
a new GA approach to solve this problem. Our approach employs a new 
representation for solutions that is an activity list with two additional genes. The 
first, called serial-parallel scheduling generation scheme gene (S/P gene), de-
termines which of the two decoding procedures is used to computer a schedule 
for the activity list. The second, called forward-backward gene (F/B gene), in-
dicates the direction in which the activity list is scheduled. The two genes de-
termine the decoding procedure and decoding direction for the related activity 
list simultaneously. This allows the GA to adapt itself to a problem instance. 
The performance evaluation done on the 156 benchmark instances shows that 
our GA yields better results than the other two GAs which make use of the ac-
tivity list representation and the activity list with S/P gene representation re-
spectively. It is applicable developing self-adapting GA for the related optimi-
zation problems.   

1   Introduction 

The resource-constrained project scheduling problem (RCPSP) is to schedule the 
activities such that precedence and resource constraints are satisfied while optimizing 
some managerial objective, such as minimization of project makespan, project cost. 
Applications can be found in various industries, especially in make-to-order and small 
batch production such as construction engineering, software development, ships and 
planes etc. The models in this field are rich, and many well-known optimization prob-
lems are special cases, for instance job shop and flow shop scheduling.  

The RCPSP has attracted many researchers [1,2]. The methods suggested can be 
classified into two categories: exact methods and heuristic methods. Since the RCPSP 
is known to be NP-hard, the exact methods are able to optimize small sized projects 
usually with less than 60 activities. For larger and more complex instances, heuristic 
methods can provide the best trade-off between performance and ease of implementa-
tion. Heuristics for the RCPSP can be classified into four methodologies: (1) priority 
rules based scheduling. (2) truncated branch and bound. (3) disjunctive arcs concepts. 
(4) metaheuristic techniques. 



186 H. Wang, D. Lin, and M. Li 

 

Many metaheuristics such as genetic algorithm (GA) [3,4,5,6], simulated annealing 
(SA) [7,8], and tabu search (TS) [9] are the latest generation of heuristic algorithms and 
have been applied to solve the RCPSP. The studies show that SA and GA significantly 
outperform all other heuristics, while GA performs best on the large projects [10]. 

It is crucial for the success of a GA to design a representation and decoding proce-
dure for the solution. Hartmann [4] proposes a genetic algorithm that makes use of the 
so-called activity list representation for the RCPSP. Computational experiment shows 
that this GA outperforms GAs based on other representations. In this GA the serial 
scheduling generation scheme (SGS) [11] is used as the decoding procedure. 

Hartmann [5] points out that not only the serial but also the parallel SGS can be 
adopted as the decoding procedure for the activity list representation. In fact, the par-
allel SGS can be easily applied to activity list: in each step, we simply choose the 
activity from the eligible set that has the lowest index in the activity list. While, an 
activity list, with different decoding procedures, may be transformed into different 
schedule, with possibly different makespan. So Hartmann proposes an extended rep-
resentation to encode activity list with an additional gene, called serial-parallel SGS 
gene (S/P gene), which determines which of the two decoding procedures is used to 
transform the related activity list into a schedule. As with all genes in GA, this one is 
also subject to the genetic operations as crossover, mutation, and selection. Therefore, 
the SGS individuals leading to better results will survive while the others will proba-
bly die over the generations. This enables the GA to adapt itself dynamically to each 
instance. This method is called the mechanism of self-adaptation of GA. 

Further, Alcaraz and Maroto [6] proposes a mechanism of self-adaptation as well. 
They use a new representation that is activity list with an additional gene, called for-
ward- backward gene (F/B gene), which determines the direction in which the activity 
list is scheduled. This representation is based on the fact that an activity list may be 
transformed into different scheduling with possibly different makespan in a for-
ward/backward way [12,13]. An extensive computational experiment shows that the 
algorithms proposed in the works of Hartmann [5] and Alcaraz and Maroto [6] out-
perform the other heuristic algorithms. 

This paper tries to propose a new GA for the RCPSP that builds upon the self-
adapting GA used in [5,6]. We design a new representation for the solutions that is 
activity list with two additional genes. The first, called serial-parallel SGS gene (S/P 
gene), determines which of the two decoding procedures is used to computer a sched-
ule for the activity list. The second, called forward-backward gene (F/B gene), indi-
cates the direction in which the activity list is scheduled. The two genes determine the 
decoding procedure and decoding direction for the related activity list simultaneously. 
156 benchmark instances are used to evaluate the efficiency of this method. 

This paper is organized as follows. After the introduction and problem description 
in section 2, Section 3 presents a new self-adapting GA to the RCPSP. In section 4 we 
describe the result obtained in the performance evaluation and analyze the behavior of 
the self-adapting GA. In the final section general conclusions are made. 

2   Resource-Constrained Project Scheduling Problem  

A single project consists of J activities that are processed in order to complete the 
project. The fictitious activities 0 and J  correspond to the  ‘project start’ and to the 
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‘project end’ respectively. The activities are interrelated by two types of constraints. 
First, precedence constraints force activity j not to be started before all its immediate 
predecessor activities have been finished. Second, performing the activities requires 
resources with limited capacities. We have K  renewable resources. The duration or 
processing time of activities j  ),...,2,1( Jj =  is jp . Pre-emption of activities is not 

allowed. In each period of its execution time jpt ,...,2,1= , activity j requires jkr  units 

of resource k ),...,2,1( Kk = , and we have 0jp  and  0jkr  for the project start and end 

activities. Resource k has a limited capacity of kR in any period. The values of 

jkr , jp , kR are assumed to be non-negative and integer.  

The objective is to determine the starting time of each activity, so that the project 
makespan is minimized, while both the precedence and the resource constraints are 
satisfied. 

3   Genetic Algorithm 

The GA, introduced by Holland, serves as a heuristic meta-strategy to solve hard 
optimization. It starts with an initial population generated by taking into account the 
representation of the solutions employed. We assume that the initial population con-
tains sizepop _ individuals where sizepop _  is an even integer. After computing the 
fitness values of all individuals, the selection operation makes a number of copies of 
each individual, depending on its fitness. Then, the individual copies are mated at 
random and each pair undergoes crossover operation to produce offsprings. Finally, 
some offsprings of the population are mutated to become the next generation. The 
algorithm stops if a prespecified number of generations is evolved. 

3.1   Solutions Encoding 

Activity List Representation. The solution is encoded as a precedence feasible list of 
the activities. Each activity can appear in the list in any position after all its predeces-
sors. In Fig. 1 (A), we can observe the activity list representation for a project with 
J activities. An activity list is transformed into a schedule by a decoding procedure 
that is called the serial/parallel schedule generation scheme (SGS). The parallel SGS 
proposed by Hartmann [5] is employed. We would schedule the activities, one by one, 
in the order given by the list, so when an activity is going to be scheduled, all its 
predecessors have already been scheduled (forward scheduling). 

Activity List Representation with Decoding Procedure. The solution is encoded as 
an activity list with an additional gene, called serial/parallel SGS gene (S/P gene), 
which determines the SGS type to be used in decoding procedure for the related activ-
ity list. In Fig. 1 (B), when S/P gene is ‘1’, the decoding procedure is serial SGS; 
otherwise, ‘0’ means that the decoding procedure is parallel SGS. 

Activity List Representation with Decoding Procedure and Decoding Direction. 
The solution is encoded as an activity list and two additional genes. The first, called 
serial-parallel SGS gene (S/P gene), determines which of the two decoding proce-
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dures is used to computer a schedule for the activity list. The second, called forward-
backward gene (F/B gene), indicates in which of the forward and backward directions 
the related activity list is scheduled. In Fig. 1 (C), when F/B gene is ‘1’ the scheduling 
direction is forward; otherwise; ‘0’ means that the scheduling direction is backward. 
The two genes determine the decoding procedure and decoding direction for the re-
lated activity list simultaneously. 

1 2 5 ……  …… J 

(A) 

1 2 5 ……  …… J   S/P 

(B) 

1 2 5    J S/P F/B 

(C) 

Fig. 1. (A) Activity list representation. (B) Activity list representation with decoding procedure. 
(C) Activity list representation with decoding procedure and decoding direction. 

3.2   Initial Population 

In order to initialize initial population containing sizepop _  individuals as described 
above, we will consider the construction of an activity list and the selection of the S/P 
and F/B genes respectively. 

Construction of Activity List. To generate an activity list as described in section 3.1, 
we employ a regret based biased random sampling procedure with Minimum Job 
Slack (MINSLK) as the selection rule proposed in [11]. This method can ensure the 
good initial solutions. 

S/P Gene. For each individual we select each of the two SGS types with a probability 
of 5.0=p . 

F/B Gene. For each individual we first construct the related schedule applying for-
ward scheduling with the SGS specified in the S/P gene. Then, the backward schedul-
ing is applied, regardless of the schedule generated by the forward scheduling. If the 
forward scheduling obtains a better makespan, then the F/B gene is set to ‘1’, other-
wise it is set to ‘0’. 

3.3   Selection 

Selection is an artificial version of the natural phenomenon called the survival of the 
fittest. We implement the expected value model as the selection mechanism. 

To generate the next generation, all individuals are evaluated by the fitness func-
tion and only fit individuals are chosen as parents. By the principle of GA, the fitter 
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individuals should have a higher fitness value. In the project scheduling, the objective 
is to minimize the project makespan that is converted into fitness function as: 

1)()( max +−= iFFif .                                                   (1) 

where )(if is the fitness value of i individual, maxF is the maximum makespan of the 

current population, and )(iF is the makespan of i individual.   
The expected value model tries to reduce the stochastic errors associated with rou-

lette wheel selection. The number of expected copies of each individual iN  is given by 
the probability of selecting that individual ip , multiplied by the population size. Each 
individual is allocated samples according to the integer part of iN , and the fractional 
parts are treated as probabilities of obtaining another copy with roulette wheel 
mechanism.  

=
=

sizepop

i
i ififp

_

1
)(/)( .                                                  (2) 

  sizepoppN ii _×= .                                                         (3) 

3.4   Crossover 

Assume that two individuals of the current population have been selected for cross-
over as mother and a father  

}/,/,,...,,{ 21
MMM

J
MM BFPSM λλλ= , } / ,/ , ,..., ,{   21

FFF
J

FF BFPSF λλλ= .  

Now two children individuals have to be constructed as a daughter and a son:   

}/  ,/  ,   ,...,,{ 21
DDD

J
DD BFPSD λλλ= , } /  ,/  ,   ,..., ,{ 21

SSS
J

SS BFPSS λλλ= . 

One-Point Crossover of Activity List. We draw a random integer r with Jr <<0  as 
crossover-point, daughter D  is first considered and defined as follows: (a) the posi-
tions ri ,...,2,1=  in D  are taken from the mother, that is M

i
D
i λλ = , ri ,...,2,1= . (b) the 

positions Jri ,...,1+=  in D  are taken from the father. However, the activities that have 
already been taken from the mother may not be considered again. We obtain 

{ } , },...,2,1 ,,...,,  min          121 Jkkk D
i

DDF
k

F
k

D
i =∉= −λλλλλλ Jri ,...,1+= . 

As proven by Hartmann [4], this crossover strategy constructs precedence feasible 
solutions, given that the parents’ activity lists are precedence feasible as well. 

The generation of the son S  is similar to the daughter D , but the positions 
ri ,...,2,1=  of the son S  are taken from the father and the remaining positions are de-

termined by the mother. 

Forward-Backward Crossover of Activity List. This crossover technique is suited 
to the activity list representation with decoding procedure and decoding direction 
proposed in this paper. The last gene determines the way in which the crossover is 
performed. 

First we draw a random integer r with Jr <<0  as crossover-point. If the mother’s 
scheduling direction is forward, the generation of daughter is similar to the above 
definition. Otherwise, if the mother’s scheduling direction is backward, the positions 
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Jri ,...,1+=  in D  are directly taken from the mother. That is M
i

D
i λλ = , Jri ,...,1+= . The 

positions ri ,...,2,1=  in D  are taken from the father. However, the activities that have 
already been taken from the mother may not be considered again. We obtain 

{ } },,...,2,1,,...,,max   , 21 Jkk k D
J

D
i

D
i

F
k

F
k

D
i =∉== ++ λλλλλλ 1,...,1, −= rri .     

The generation of the son S  is similar to the daughter D , but the way in which the 
son S  is generated is determined by the father’s F/B gene. 

Selection of the S/P and F/B Gene.  The daughter’s S/P and F/B genes are taken 
from the mother. The son inherits the S/P and F/B genes from the father. 

 3.5   Mutation 

For each activity with a probability of mp , a new position is “randomly” chosen. In 

order to generate precedence feasible solution, this new position must be higher than 
any of its predecessors and lower than any of its successors. Then, this activity is 
inserted in the new position. 

The S/P and F/B genes change with a probability of mp . If S/P gene is ‘1’, we set 

S/P gene to ‘0’. Otherwise, if S/P gene is ‘0’, we set S/P gene to’1’. That is, by muta-
tion operations, the serial SGS is replaced by the parallel one in the current individual 
and vice versa. If F/B gene is ‘1’, we set F/B gene to ‘0’. Otherwise, if F/B gene is 
‘0’, we set F/B gene to ‘1’. That is, by mutation operations, the forward scheduling is 
replaced by the backward scheduling in the current individual and vice versa.    

4   Computational Experiment  

4.1   Test Design 

In this section, we will study the performance of the GAs based on three different 
representations that are activity list representation, activity list representation with S/P 
gene, and activity list representation with S/P gene and F/B gene. These three GAs are 
described as follows. The first, called S-GA, employs the activity list representation, 
the serial SGS as decoding procedure, forward scheduling, expected value model, 
one-point crossover of activity list, and insert mutation. The second, called SP-GA, 
employs the activity list representation with S/P gene, the decoding procedure deter-
mined by the S/P gene, forward scheduling, expected value model, one-point cross-
over of activity list, and insert mutation. The third, called FBSP-GA, employs the 
activity list representation with S/P and F/B genes proposed by us, the decoding pro-
cedure and decoding direction determined by S/P and F/B genes, expected value 
model, forward-backward one-point crossover, and insert mutation. The above three 
algorithms have been coded in C++ language on a PC (1CPU, Intel P4 2.0GHz, 
512MB RAM, 60GB Hard Disk) under the Windows XP operating system. 

We have employed the 156 instances of the three standard sets in RCPSP library 
(PSPLIB) of Kolisch and Sprecher as test instances [14]. In the PSPLIB the first two 
sets contain 480 instances with four resource types as well as J=30 and J 60 activi-
ties (J30 and J60) respectively. The third one consists of 600 instances with J=120 
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activities (J120) and four resource types. The full factorial design with the three 
independent variable parameters network complexity (NC), resource factor (RF), and 
resource strength (RS) is used. For J30 and J60, the levels of the parameters are 
NC={1.5, 1.8, 2.1}, RF={0.25, 0.5, 0.75, 1}, and RS={0.2, 0.5, 0.7, 1}. For J120 the 
levels of the parameters are NC={1.5, 1.8, 2.1}, RF={0.25, 0.5, 0.75, 1}, and 
RS={0.1, 0.2, 0.3, 0.4, 0.5}. Each combination of the variable parameters contains 10 
instances. We randomly select an instance from each combination. That is, select 
48,48,60 instances from the three sets described above, respectively. 

4.2   Computational Results 

For each problem, the minimum makespan is taken from 10 random runs for each 
GA, in this paper the parameters for performing genetic algorithms are set as follows: 
population size is 50, number of generations is 100, crossover probability is 0.8, and 
mutation probability is 0.05. 

Comparison of the Three GAs. Table 1 displays the average deviations from the 
optimal makespan for J30, and the average deviations from the upper bound for J60 
and J120, obtained by the three GAs described above. As for some instances with J60 
and J120 the optimal solutions are not known. The uppers of J60 and J120 are fre-
quently updated in the library PSPLIB. The results of table 1 are based on the uppers 
reported there in October 2004.  

The results show that the FBSP_GA and SP_GA lead to the better results than the 
S_GA for J120, the one with the best performance is FBSP_GA. For J60, the S_GA 
give better results than the SP_GA and FBSP_GA, and the SP_GA and FBSP_GA 
give almost identical results. For J30, the FBSP_GA yields the best results. Addi-
tional, in the table 1 we can observe that there are no significant differences among 
the performances of the three GAs for J30 and J60. Taking one with another, the per-
formance of FBSP_GA outperforms the other two GAs. 

Table 1. Average deviations from the optimal solution for J30 and from the upper bound for 
J60 and J120 

Algorithm J30 J60 J120 

S_GA 0.208 1.097 4.648 

SP_GA 0.204 1.165 4.103 

FBSP_GA 0.165 1.167 3.989 

Influence of Problem Parameters.  Table 2 displays that distribution of four 
scheduling ways in the best solution found by the FBSP_GA for the three sets. Note: 
for some instances the best solution is found with different scheduling ways, for 
example, the optimal solution of the instance job300807 in J30 can obtained with 
three different scheduling ways that are SF, PF, and PB. In the table 2 we can observe 
that SF is more than the other three scheduling ways for J30, for J60 SF and PF are 
almost equal, and SF and PF more than SB and PB, for J120 PF is most among the 
four scheduling ways. 
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Table 2. Distribution of four scheduling ways in the best solution found by the FBSP_GA 

Instance set SF* SB* PF* PB* 

J30 71% 40% 46% 52% 

J60 63% 21% 58% 27% 

J120 27% 8% 53% 18% 

SF: Serial SGS and forward scheduling; SB: Serial SGS and backward; PF: Parallel 
SGS and forward scheduling; PB: Parallel SGS and backward scheduling 

Table 3. Distribution of SGS in the best solution found by the FBSP_GA w.r.t resource 
strength 

SGS RS=0.2 RS=0.5 RS=0.7 RS=1.0 

Serial 2 8 11 12 

Parallel 10 6 7 12 

Table 3 gives the distribution of the SGS in the best solution found by the 
FBSP_GA for four different levels of the resource strength RS of J60. We can see that 
the resource strength has an impact on the SGS selection. For RS=1, the problems are 
resource-nonconsrained, each SGS can find an optimal solution. In case of low re-
source strength (RS=0.2), the parallel SGS leads to more best solutions than the serial 
one. In the case of more resource strength (RS=0.7), the best solutions contain the 
serial SGS more than the parallel one.  

Summing up, it is a promising approach to include both decoding procedure and 
decoding direction into individual, and let GA select the more successful decoding 
way for the related activity list----as done in our self-adapting GA. 

5   Conclusions 

In this paper we consider the resource-constrained project scheduling problem with 
makespan minimization as objective. We propose a new GA approach to solve this 
problem. Our approach makes use of a new representation for solutions that is an 
activity list with two additional genes. The first, called serial-parallel SGS gene (S/P 
gene), determines which of the two decoding procedures is used to computer a sched-
ule for the activity list. The second, called forward-backward gene (F/B gene), indi-
cates the direction in which the activity list is scheduled. The two genes determine the 
decoding procedure and decoding direction for the related activity list simultaneously. 
This allows the GA to adapt itself to problem instance solved. In order to evaluate our 
approach, we compare it to the two GAs of Hartmann that employ the activity list and 
a activity list with S/P gene, respectively. Computational experiments show that our 
approach outperforms the other two GAs described above. This is due to the fact that 
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our approach can enable each of individual to adapt itself to select the decoding way 
during the genetic search. It is applicable to develop self-adapting GA for the related 
optimization problems. 
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Abstract. Inspired by the overlap gene expression in biological study, this paper 
proposes a novel evolutionary algorithm-EAOGE i.e. Evolutionary Algorithm 
based on Overlapped Gene Expression. Different from existing works, EAOGE 
suggests a new expression structure of genes with probabilities of overlapped 
expression for some segments. The main contributions are: (1) Proposing a novel 
model and an algorithm of gene expression while borrowing some ideas from 
artificial immunity algorithm; (2) Analyzing the expressing space and encode 
characteristic of the new model; (3) The extensive experiments in function 
finding shows that new model is 2.8~9.7 times faster than usual GEP method, 
and in higher-degree polynomial function finding, the success rate of EAOGE is 
over 10 times than usual GEP. 

1   Introduction 

To solve complicated problems such as polynomial function finding, Cramer proposed 
GP (Genetic Programming) [1,2]. However, GP is too complicated in encoding and it is 
relatively slow. Ferreira, C combined the advantages of GA and GP, and proposed Gene 
Expression Programming (GEP) with speed 100-60000 times faster than GA or GP [3~9]. 

Enlightened by the phenom5ena of overlapped gene [10], this paper proposes a novel 
evolutionary algorithm, i.e. Evolutionary Algorithm based on Overlapped Gene 
Expression (EAOGE). Compared with other evolutionary algorithms, EAOGE has the 
advantages as follows: 

1). Individual consists of several genes and gene segments can be overlapped under 
certain conditions. 2). By the segments’ overlapping, EAOGE is efficiency in 
space.3). It is not needed to restrict the content of gene or chromosome. Both GP and 
GEP have to restrict the form5ats of gene in some ways such as constraints on the 
type and length of gene head and tail in GEP. Experiments show that under same 
condition, the velocity of EAOGE is 2.8 to 9.7 times of GEP. 4). The capability to 
discover higher-degree polynomial function is high. Compared with GEP, EAOGE 
greatly increases the success rate in polynomial function finding. 

                                                           
* This paper was supported by Grant of National Science Foundation of China (60073046), 

Sichuan Major Science and Technology Project (04SG1640). 



 Evolutionary Algorithm Based on Overlapped Gene Expression 195 

 

2   Definitions and Encoding Methods 

2.1   Definition 

GA, GP, GEP and EAOGE are algorithms of simulating biological genetic evolution; 
several concepts about genetic computing are borrowed from biology, such as gene, 
genotype, phenotype, chromosome, individual, and population. The formal 
descriptions are as follows: 

Definition 1 (Gene). Gene G is a quintuple: (E, T, F, Op, S), where E is genotype; T 
(Terminal set) is gene terminal character set; F (Function set) is gene function set; Op 
(Operator set) is gene genetic operator set, such as mutation operator, transition 
operator and root transition operator; S (Score) is the fitness score which gene gets 
from certain data set. 

Definition 2 (Chromosome). Chromosome is a tetrad: C = (G, T, L, Op, S), where G 
is gene set; T (Terminal set) is gene terminal character set; L is connection operator of 
gene in chromosome; Op is the chromosome genetic operator set, and  

)))((,( 21 GClengthnOpOpOpOpOp gnggc =∪∪∪∪=  

Note that, Opc is an operator which operates for multi-gene in the chromosome, 
such as one-point recombination operator, multi-points recombination operator, gene 
recombination operator, and gene transition operator. Opgi (i=1… length(C(G))) is 
each gene operator in chromosome, usually, it assumes Opg1=Opg2=…=Opgn  (where 
n=length(C(G))), i.e. all genes in chromosome take same genetic operators. S stands 
for chromosome fitness score. 

Example 1: Let C1=({G1, G2, G3},'ab','*', Op, 0.7). It demonstrates that 
chromosome consist of 3 genes, the terminal character set of chromosome is (a, b), 
gene connection operator is '*', fitness score is 0.7.  

Definition 3 (Individual and Population). Individual is a triple: I= (C, Op, S), where 
C is chromosome set. Op stands for Individual genetic operator set, such as:  

)))((,( 21 CIlengthnOpOpOpOpOp cncci =∪∪∪∪=  

Opi is an operator for multi-chromosomes, such as chromosome recombination 
operator, gene random recombination operator; Opci (i=1… length (I(C))) is each 
chromosome genetic operator. S is Individual fitness score. Assume Population P= 
(I), I is an Individual set. 

In this paper, the number of chromosome in Individual is 1, which means each 
Individual has only one chromosome. 

2.2   Encoding Method 

Encoding is the primary problem in genetic computing. The essential difference 
among GA, GP, and GEP is in coding. Both genotype and phenotype in traditional 
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genetic code is Tree, and genetic operators (mutation, recombination etc.) manipulate 
the tree directly. Therefore, there are a lot of invalidation structures in the genetic 
process. Candida Ferreira proposed ET (Expression Tree) using a different encoding 
method [4]. The encoding method of GEP is to encode an Individual into a fixation 
length String. The key points encoding rule are: (a) Translate the expression into a 
expression tree according the semantic meaning, (b) Go through all the nodes in ET 
from top to bottom, from left to right, the result is the available parts of gene code. 

To ensure the validity of expression, GEP must satisfy following constraints:(a) 
Let F be a predefined Function set and T be the Terminal set. Gene is divided into 
head and tail, and the head can include element in F U T, the tail can only include 
element in T.(b) Let h be the length of the head; t be the length of the tail; n =max {K: 
K is the number of parameters of f , f in F}  t, h, n must satisfy the following 
equation: 

The translating process is as follows:  

(a). Scan each element of gene in order. (b).If the current symbol belongs to T, 
then let it be a leaf-node in ET. (c).If the current symbol belongs to F, then let it be a 
non-leaf node in ET, the number of its sub-trees equals the number of the function 
parameters. Let the element which is the directly succeeding of current symbol be the 
first root node of the sub-trees, the secondary element be the root node of secondary 
sub-trees, and the rest may be deduced by analogy. If it meets the end of the gene, 
then let the first element in T as sub-tree root-node.  

3   EAOGE Algorithms  

EAOGE algorithms simulate the natural biological evolutionary. According to the 
rule of “natural selection, the survival of the fittest”, they implement selection, 
recombination, and mutation on the Population P which consists of several 
Individuals. Thus, the Population can evolve generation after generation. The best 
Individual can be found during the evolution; thereby the problems are solved finally. 

The detailed implementations are as follows: 

Algorithm 1  
Inputs: Configuration (configuration of algorithm parameters such as population 
number, chromosome length, value of M and rate of IS, RIS etc.), 

Dataset (a training data set); 
Output: Best fitness Individual I = (C, Op, S); 
1    Generate initial population P (I); 
2    Evaluation (P (I)); //Calculate each individual’s fitness score.  
3    While (i < Max_Genaration) Do  
4      tmpPopulation P'  {Ø}; P'  P'+ {Best Individual of P (I)}; 
5      For x = 1 To | Op | Do P'  P'+ Operatorx(P (I)); //Execute the x-th operator 
6      Evaluation (P' (I));  Sort P' (I) by Individual’ Score; 
7      P (I) P' (I) ; i= i+1; 
8      If |Best Individual of P (I)-M|< Precision Then  Break;  End While; 
9  Return Best Individual of P (I); 
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3.1   Fitness Algorithm 

The fitness algorithm in EAOGE does the mapping from genotype to phenotype.  

Algorithm 2 fitness algorithm 
Input: Individual I(C, Op); 
Output: individual fitness I (S); 
1   For Each Record r In Training-Dataset Do  
2   {  ParamBuffer  r;  Buffer  ;  rc ;  rc  0; 
3      For Each Gene G In I.C Do { rc I. C. L (rc, Ovr_Exec (G. E, 1)); } 
4      Result  Result + (r. t – rc)2;} 
5   Return |M - Min(sqrt(Result), M)|; 

It is easy to see that the range of final fitness is 0~M, the fitness is higher, the 
inosculation to training data is better. Function Ovr_Exec completes computing the 
fitness of each gene. The algorithm is recursive, the details is as following: 

Algorithm 3 Gene fitness algorithm (Ovr_Exec) 
Inputs: genotype Express; current process position; 
Output: gene fitness  
1    If (Position>Length(Express)) Result  ParamBuffer[1]; End If 
2    Else If (Express[Position] F)  
3     { Case Express[Position] Of  
4       '+': Result Ovr_Exec (Position + 1) + Ovr_Exec (Position + 2); 
5       '-': Result Ovr_Exec (Position + 1) - Ovr_Exec (Position + 2); 
6       '*': Result Ovr_Exec (Position + 1) * Ovr_Exec (Position + 2); 
7       ‘/’: Result Ovr_Exec (Position + 1) / Ovr_Exec (Position + 2);} 
8       Buffer[Position]  Result;  
9       Express[Position] GetCite (Buffer, Position); End If 
10    Else If (Express[Position] T)  
11      Result  GetValue(Buffer, ParamBuffer, Express, Position); End If 

3.2   Probability Selection Formula  

The core of the roulette algorithm is that the probability of individuals’ join in the 
propagation is simply decided by their fitness. Thereby, the individuals with higher 
fitness are kept. However, if one of the individual densities is too high, it is easy to 
make the algorithm become locally optimized, and easy to loose the individuals with 
lower fitness but preserve a good evolution trend. Borrowing idea from immune 
algorithm[11], this paper introduces a probability selection formula based on individual 
density. The definition of i-th individual is as following: 
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Where N stands for the number of population. we can infer the probability based on 
individual density: 
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By (2), the more individuals similar to individual Ik , the less selected probability 
the individual Ik will have. Therefore, the individuals which have lower fitness have 
the evolution chance. Thus the probability selection formula based on individual 
density ensures the individual diversity theoretically.Section 5 will compare the 
difference between roulette probability and the ones based on density. 

4   Algorithm Analyses 

The essence difference between EAOGE algorithm and other genetic algorithm is in 
encoding method and will be discussed here. 

4.1   Expression Space Analyses 

Definition 4 (Expression space). Let I be the individual, I=(C, Op, S), E be I ‘s 
Expression, then length (E) is called expression space of I, and denoted as DI; Then 
the maximal expression space of the individual I, whose chromosome total length is 
m, is denoted as MAXm(DI). 

Lemma 1. Let m be the length of the gene. Let MAXm (DI) be the maximal expression 
space. Then individual I, MAXm (DI) =m. 

Proof: Omitted by the space limitation, for detail please see [12]. 

Lemma 2. Let m be the length of the chromosome, k be the number of genes in 
multi-gene GEP algorithm, then maximal expression space of individual I is 
m+k-1,i.e.  MAXm(DI)=m+k-1.  

Proof:  Omitted by the space limitation, for detail please see [12]. 

Theorem 1. Let I be a single gene individual. Let m be the length of gene. Assume 
the number of parameters in operator set is 2. Then in EAOGE algorithm, the 
maximal expression space of a single gene individual I is as following: 
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Proof: Omitted by the space limitation, for detail please see[12]. 

Example 2. From Lemma 1, 2 and Theorem 1, when the number of genes is 1, the 
length of chromosome ranges from 3 to 17, the expression space comparison between 
EAOGE algorithm and GEP algorithm is as Table 1:  
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Table 1. Expression Space Examples 

Length of Chromosome EAOGE GEP 
3 9 3 
5 25 5 
7 67 7 
9 177 9 

11 465 11 
13 1219 13 
15 3193 15 
17 8361 17 

Theorem 2. Assume the number of parameters in operator set is 3, in EAOGE 
algorithm, the maximal expression space of a single gene individual I is as following: 
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Where m is the length of gene, and 
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Proof: Omitted by the space limitation, for detail please see[12]. 

In the area of expression space, the analysis and examples show that EAOGE 
algorithm is better than GEP. The expression space of GEP algorithm gets linear 
growth with the length of the chromosome, in turn, the expression space of EAOGE 
algorithm gets exponential growth with the length of the chromosome. Combined the 
following experiments, we can see that this is an important reason why EAOGE 
algorithm excels the latter. 

4.2   Expression Power Analysis 

In EAOGE, the code method from expression tree to linear string is not preorder, 
inter-order, or post-order, or is not ET code method of GEP. Can EAOGE encode any 
polynomial? The answer is in the following. 
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Theorem 3. Assume np
n

pp
n xxxxxxH 21

2121 ),,,( = , where xi is a variant, 

npp ,1 is non-0 integer. Then there must exist a genotype E of EAOGE algorithm, 

such that the expression of E equals to ),,,( 21 nxxxf . 

Proof: Omitted by the space limitation, for detail please see[12]. 

Theorem 4. Assume function sequences fk satisfy: 

),,,(),,,( 211211 nn xxxHxxxf = , 

 )),,,(1(*),,,(),,,( 2112121 nmnmnm xxxfxxxHxxxf −+= , 

Where ),,,( 21 ni xxxH  satisfies the definition in theorem 3. Then there exist a 

genotype Em of EAOGE algorithm such that the corresponding expression of Em is 
equal to ),,,( 21 ni xxxf , namely each member of the function sequence can be 

coded by EAOGE algorithm.  

Proof: Omitted by the space limitation, for detail please see[12]. 

Theorem 5 Assume  
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Where xi is a variant; k is a positive integer, ini pp ,1  are non-0 integer. There 

exists a genotype E of EAOGE algorithm, an expression tree corresponding E such tat 
E equals right side of formula (5). 

Proof: Omitted by the space limitation, for detail please see[12]. 

Theorem 5 proves that EAOGE has the capability to encode any polynomials like 
(5). If there are coefficients in the polynomials, these coefficients can be assumed as 
variants. In this way, the polynomials turn into formula (5). It proves that EAOGE can 
encode these polynomials. 

According the above discussion, EAOGE can encode any forms of polynomials. 
Through the same way in prove theorem 5, it can prove that EAOGE can encode the 
polynomials with other operators. 

The encoding method provided by Theorem 5 usually makes the length of 
expression very long. In practice, there are methods to get much shorter expression. 
The EAOGE encoding Method provided here shows that EAOGE has the capability 
to encode any forms of polynomials. 

5   Experiments and Analysis  

We have applied EAOGE algorithm into function-finding research. The purposes of 
the experiments includes comparison the characters between EAOGE and GEP 
algorithm and finding good EAOGE parameters. Experiment environment: CPU: 
PIII733M, Memory: 512M, Hard disk: 40G, Development tool: Delphi 7.0, Database: 
Microsoft Access 2000.The key parameters used in the experiment are in the Table 2. 
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Table 2. Algorithm Parameters 

Type EAOGE Multi-gene 
GEP 

Max Evolutionary Generation  1000 1000 
Size of Population   60 60 
Operator Set  +-*/ +-*/ 
Gene Connector + + 
Mutation Rate 0.044 0.044 
Single-Point Recombination  0.4 0.4 
Tow-Points Recombination Rate 0.2 0.2 
Gene Recombination Rate 0.1 0.1 
Gene transition Rate  0.1 0.1 
transition Rate  0.1 0.1 
Root transition Rate 0.1 0.1 
Precision 0.001 0.001 

Experiment 1. 2-member function finding. 

Take the function finding of the formula below for instance: 

Z=X5+2*X2*Y+Y3                            (6) 

20 real numbers were generated randomly, the data domain was [-2, 2], 
M=10000(namely, criterion factor), gene length is from 9~23 for EAOGE and GEP 
respectively, and ran 100 times respectively, the other parameters were shown in  
table 2. The results are shown as in figure 1, where eaoge_time is the time 
consumption of EAOGE under different genetic length, gep_time is the time 
consumption of GEP, and the unit of Y-axis is second. 

  

Fig. 1. EAOGE algorithms cooperation under different genetic length and the Comparison of 
Time Consumption between EAOGE and GEP 

Figure 1 shows that (1) under different genetic length, the average evolutionary 
generation, max evolutionary generation, and min evolutionary generation of EAOGE 
algorithm does not change a lot. (2) The two algorithm differs greatly on time 
consumption, the velocity of EAOGE is about 2.8~9.7 times as the one of GEP. 
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The comparison between average evolutionary generation and success rate of 
EAOGE and GEP is shown in figure 2, eaoge_avg is the average evolutionary 
generation of EAOGE, gep_avg is the average evolutionary generation of GEP. 

  

Fig. 2. Averages Evolutionary and Success Rate Comparison between EAOGE and GEP 

Figure 2 shows that on success rate of formula (6), the two has little difference, 
EAOGE is a bit better than GEP as whole. However, on average success generations 
of different genetic length, EAOGE is obviously better than GEP, the average 
evolutionary generations save at least 10%. 

Experiment 2. Solve the problem of Complex function finding. 

Take the formula below for instance: 

5
3

4
3

2
2321

7
1321 ****3),,( xxxxxxxxxxfy +++==           (7) 

20 real numbers are generated randomly, and the data domain is [-2, 2], M=20000. 
To compare the difference in higher-degree polynomial function finding between 

EAOGE and GEP, the formula (7) was in use of corresponding experiment. The 
number of gene was changed into 5, the length of single gene is 23, the max 
evolutionary generation was set to 10000, the other parameters were shown as in table 
2, and run it 100 times. The results of the experiment were shown in Table 3, where 
OVR_DES is EAOGE adopted probability selection formula based on density , 
OVR-ROU is EAOGE adopted roulette probability selection formula, GEP-DES is 
GEP adopted probability selection formula which based on density , GEP-ROU is 
GEP adopted roulette probability selection formula and 100-time is the time 
consumption to averagely evolve 100 generations. 

Table 3. The Comparison of higher-degree polynomial function finding between EAOGE and 
GEP. 

 suc avg max min Time suc-time 100-time 

OVR-DES 47 4932.78 9901 855 269.31 164.12 3.42 

OVR-ROU 44 4011.33 9935 756 273.67 166.39 3.67 

GEP-DES 4 3379.50 8331 2582 2183.98 613.14 21.6 

GEP-ROU 0    2322.91  23.2 
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Table 3 shows that: 

(1) The success rate of EAOGE is much higher than GEP in higher-degree 
polynomial function finding. Even if compares with the result of the best GEP, 
EAOGE still raises 1 order of magnitude at least. 

(2) In the process of higher-degree polynomial function finding, the probability 
selection formulas based on density is good. In EAOGE algorithm, there is a little rise 
in success rate and number of average evolutionary generation. In GEP algorithm, the 
success rate is 4%, when the method based on density, whereas there was not even 1 
success in 100 run, when the method based on roulette. There force, the probability 
selection formulas based on density gets obvious advantage in GEP algorithm.  

EAOGE possesses comparative applied value, similar to the solutions of complex 
polynomial function finding problem of formula (7). In the evolutionary computing, 
whose evolutionary limit is 10000 generations, the success reaches 44% at least. User 
can continue running it 6 times, the probability of more than once success is 
1-(1-0.44)6=96.9%, and the time consumption is 273.67*6=1642.02 27.4 minutes. It 
is acceptable for users. However, if the success rate is required above 96% in GEP, 
the algorithm would run more than 80 times (1-(1-0.04)80=96.1%), and the time 
consumption is 80*2183.98=174718.4 48.5 hours, is about 106 times to EAOGE. It 
is obviously too slow. 

6   Conclusions 

Inspired by the overlapped expression in biological genetics, this study proposes a 
novel evolutionary algorithm-EAOGE, and describes the genetic expression structures 
and relevant algorithm of EAOGE. This study systematically analyzes EAOGE, 
discusses the features of expression space, capability of expression, and compares 
EAOGE with traditional algorithms.  

The detailed experiments show that EAOGE algorithm is 2.8~9.7 times faster than 
usual GEP method, and in higher-degree polynomial function finding, the success rate 
of EAOGE is 10 times than usual GEP, discusses the effect of variant criteria factor to 
algorithm. The experiments results show that the probability selection function based 
on density works well in higher-degree polynomial function finding. 
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Abstract. In this paper, a hybrid system is developed by evolving Case-Based 
Reasoning (CBR) with Genetic Algorithm (GA) for reverse sales forecasting of 
returning books. CBR systems have been successfully applied in several 
domains of artificial intelligence. However, in conventional CBR method each 
factor has the same weight which means each one has the same influence on the 
output data that does not reflect the practical situation. In order to enhance the 
efficiency and capability of forecasting in CBR systems, we applied the GAs 
method to adjust the weights of factors in CBR systems, GA/CBR for short. 
The case base of this research is acquired from a book wholesaler in Taiwan, 
and it is applied by GA/CBR to forecast returning books. The result of the 
prediction of GA/CBR was compared with other traditional methods. 

1   Introduction 

Wholesales in Taiwan are under the extremely competitive environment, in order to 
face the complex market competitions; they are trying their best to make the ultimate 
policy. The completeness of the information available to the decision maker is the key 
influencing the quality of the decisions. A book wholesaler could have better controls 
if sales forecast is conducted for a new book, and simultaneously another forecast for 
book returning is evaluated after the release. In business forecasting, managers often 
apply the outcomes of past similar cases to predict the result of the current one.  

Traditionally, the methods to be applied in sales forecasting include naive 
prediction, statistical methods, or artificial intelligent methods. Among these methods, 
artificial intelligent (AI) methods are mostly used in academic studies because of the 
ability to provide rapid solutions with high accuracy and to deal with diversified 
cases. Among AI methods, Case based reasoning (CBR) has been paid attention 
gradually. The earliest contributions to the area of CBR were from Schank and his 
colleagues at Yale University [19, 20]. During 1977-1993, CBR research was highly 
considered as a conceivable high-level model for cognitive processing. [1] indicated 
that CBR systems have been successfully used in several domains such as diagnosis, 
prediction, control, and planning. Based on the survey conducted by [23, 24], there 
were more than 130 enterprises using CBR systems to solve many kinds of problems 
in companies at the end of 1997.  
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For the book industry in Taiwan, it is very difficult to predict sales and returned 
volumes because the products have various classifications and different lengths of 
life-cycles, and the environment in this industry is very unique. Average, there are 
about 3412.6 new books being published every month in Taiwan, and the speed for 
new released books is really high. The returning rate of books is more than 30% in 
this industry according to the actual data collected from the wholesaler and from past 
studies (Council for Culture Affairs [9]). The main reason of high book returning rate 
is caused by the insufficient information of book sales status in the book supply chain 
which brings up bullwhip effect and form up the unbalanced situation between supply 
and demand. Blind returning activities are happening so often because retailing 
bookstores are often space limited, without efficient computerized managing system, 
and moreover they do not have to bear any forward and reverse logistics cost. High 
book returning rate is a very heavy burden for all companies in this industry. Hence, 
we propose a returning forecasting system for slow-selling books for wholesaler to 
advise its retailers on returning book decision making to avoid blind returning 
movements. The system is a hybrid CBR method integrating a conventional CBR 
with adjusted factor weights by Genetic Algorithms (GAs) method to conduct a high 
accurate and efficient book returning forecast to reduce high book returning rate to 
increase profits. 

The remainder of this paper is organized as follows: Section 2 describes relevant 
literature review. Section 3 presents the hybrid method that integrates CBR with GAs 
based. Section 4 shows problem description. Section 5 depicts experimental design 
and results. In the final section, the conclusion is presented. 

2   Literature Review 

In the book industry, returning books forecast is equally important to sales forecast. 
Under the environment of limited space, low computerized level, frequent release of 
new books and no forward/reverse logistics cost for retailers, books are returned to 
wholesales so often without proper evaluations. Retailers might return selling books 
and place the order again later. This could affect the profit of wholesales, competitive 
ability of retailers, and also may lead the publishers to re-print a book without proper 
market demands. Therefore, it should be very important for Taiwan book industry to 
value the issue of return book forecast, and provide a proper and accurate list of 
possible slow-selling books to the retailers for correct book returning activities, and 
also for publishers to evaluate and may introduce promotion strategy for the slow-
selling books. 

In the early years, studies regarding forecasting mainly relied on statistical 
techniques such as exponential smoothing, regression model, autoregressive and 
moving average (ARMA), etc. ([3] [7] [10] [11] and [18]). As time goes by, the 
internal and external environments for enterprises are becoming more and more 
complex. Traditional statistical prediction methods are no longer effective enough to 
deal with the problems. Therefore, Artificial Intelligence algorithms were applied to 
face the changes as in [21] and [25]. The algorithms such as Artificial Neural Network 
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(ANNs), Fuzzy method, CBR, Genetic Algorithm (GA) and data envelopment 
analysis, etc., have been widely applied to many fields such as bankruptcy prediction 
([8] and [12]), Stock market prediction ([2], [13], [16] and [22]) and all kinds of sales 
prediction ([4], [5] and [6]). There were so many researchers that have been comparing 
different prediction methods ([14] and [15, 17]). 

From the literatures reviewed, the study focusing on returning books forecast is 
rarely discussed. Therefore, this study would like to focus on the book markets and 
develop an accurate and practical returning books forecasting model. 

3   Methodology 

GAs and CBR were used in this research to build up an alarm list of slow-selling 
books and assisting system for returned book handling. The advantages of conveying 
implicit knowledge, comparing characteristics provided by CBR, and the function of 
random search by GAs providing different weights of factors could increase the 
accuracy of forecast. Four models were established in this research: Model A – 
Hybrid System of GAs and CBR, Model B – Conventional back propagation neural 
network(BPN), Model C - Conventional CBR and Model D - Multiple-regression 
analysis. These four models were selected into this research for analysis and 
comparison.  

3.1   Genetic Algorithms 

CBR emphasizes on how to describe and retrieve cases, and one of the crucial points 
is the combination of the weight and each characteristic factor. In this section, we will 
describe the process of using GAs to find the optimal weight for each factor in CBR ). 
The steps of finding the best combination are described as below: 

Step 1. Encoding 
The most common encoding method for gene is binary number used as the original 
calculating system by computer. It is very convenient to operate the encoding, 
crossover and mutation steps of GAs. Each factor influencing book returning is given 
a weight with the combination of eight binary numbers. 

Step 2. Generate the Initial Population 
Initial weights are randomly generated between 0 and 1; these initial solutions form 
the first population. The weights in the chromosomes will be evaluated by GAs 
operator later.  

Step 3. Compute the objective function 
The purpose of finding the objective function is to keep good chromosomes. The 
objective function of each chromosome will be compared to the best fitness function 
currently, and if the new chromosome is better the current fitness function, then the 
new one will be kept to produce next generation. The objective function of this 
research is to find out the most accuracy for slow-selling books forecast. Description 
of objected function listed and accuracy as Table 1 and Table 2 below. 
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Table 1. Description of Notations 

Notation description 

M(T) Objective function of forecasting slow-selling books for set of T 
training cases 

Oi 
Comparison of predicted result to actual result for case i. 
If the same Oi = 1; different Oi = 0 

Pi Predicted result of case i in training cases 

Ai Actual result of case i in training cases 

R Set of reference cases, { }nrrrR ,,, 21=  . 

T Set of training cases, { }ktttT ,,, 21=  . 

Y(rj) 
The result of case j of reference cases that is the most similar to case i 
of training cases. 

Sij 
Similarity degree between case i of training cases and case j of 
reference cases 

D Sum of distances between each weighted factors of training cases and 
reference cases. 

jhf  Value of factor h of case j in reference cases. 

ihf  Value of factor h of case i in training cases. 

hw  Weight of factor h in reference cases. 

Table 2.  Decision Variables and Objective Function for Book Returning Problems 

Training cases iP  iA  iO  

Book1 slow-selling selling 0 

Book2 slow-selling slow-selling 1 
 
 

 
 

 
 

 
 

Booky slow-selling slow-selling 1 

Total M(T) 
=

k

i
iO

1

 

1. Objective function:    

=
=

k

i
iO

1

 M(T)Max  (1) 

s.t. 1=iO , if iP = iA   

       0=iO , if iP ≠
iA   
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2. Calculation of iP  

Let Set of reference cases { }nrrrR ,,, 21= , j=1,2,...,n 

Set of training cases { }ktttT ,,, 21= , i=1,2,…,k 

)( ji rYP =  (2) 

if ( )[ ]ij
j

ij trDMinS ,=  and 

( )ij trD , = 2

1

)( ihjh

m

h
h ffw −

=
, h=1,2,…,m  ,where m is the total number of factors 

Step 4. Compute the fitness function 
The original concept of fitness is “the larger the better”, because solutions with larger 
fitness tend to propagate to the next generation. The objective function for the 
problem of slow-selling books forecast described in this research is to find the 
accuracy value which is also “the larger the better.” Therefore the objective function 
is fitness function for a set of training cases. 

fit (T)=M(T)=
=

k

i
iO

1
 (3) 

Step 5. Reproduction / Selection  
The roulette wheel selection method is applied in this research and the value of the 
fitness function represents the area proportion of each string on the roulette wheel, 
also represents the probability of being selected. Therefore, a chromosome with larger 
fitness function value means it has greater probability of being selected for crossover. 
The probability ( )xp  of each chromosome x will be chosen to re-produce as defined 

below: 

( ) =
fit(x)

fit(x)
xp  (4) 

Step 6. Crossover  
After the parameter design, two-point crossover method is applied in the research. 

Step 7. Mutation  
After the parameter design, one-point mutation method is applied in the research. 

Step 8. Elite Strategy 
Elite strategy is applied in this research in order to have greater probability for good 
chromosomes to propagate excellent next generation. 30% of parent chromosomes 
and 70% offspring chromosomes are used in this research. 

Step 9. Replacement 
The new population generated by the previous steps updates the old population. 

Step 10. Stopping criteria 
If the number of generations equals to the maximum generation number then stop, 
otherwise go to step 3. 
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3.2   A Hybrid System Combining GAs and CBR 

The operation process for the integration is listed as below: 

Step 1. Inputs of new case 
New case needed to be solved is the input in the CBR system in order to find out the 
solutions of related problem from the past case-base. 

Step 2. Factor analysis of new case 
Each new case is composed of many related characteristics, and the factor 
representing each case would be determined in this state. It is very important to select 
the related factors since the completeness of a case could influence the computing 
outcome. Five basic factors including grade of author, grade of publisher, hot or slow 
season of the publishing date, sales volume for first three months, and returning rate. 

Step 3. Calculated Weight of Factors  
Using GAs approach to find the optimal weight for each factor. 

Step 4. Find out the most matching case from reference cases for the new case using 
similarity rule. 
This stage would find out the most matching case from reference cases using 
similarity rule in order to predict the possible slow-selling book for the new case. 

( )[ ]ij
j

ij trDMinS ,=
 

(5) 

( )ij trD , = 2

1

)( ihjh

m

h
h ffw −

=
 (6) 

Step 5. Case Adaptation 
After the steps above, the most matching case from reference cases was selected and 
it would have the most similarity to the new case. K-Nearest Neighbors was added to 
gain more matching cases from reference cases. k numbers of best matching cases 
from reference cases were produced by K-Nearest Neighbors. We set k = 5 in this 
research, and determine the new case result to be the same as most results of 5 best 
matching case from reference cases. For example, the new case would be slow-selling 
book if the 5 most matching case from reference cases are mostly slow-selling books. 

Step 6. Verifying the results 
The forecasted values in this research are either 0 or 1 (True/False Question), and 
mean error method is applied as the measurement benchmark to verify the forecasted 
results of training cases and testing cases.       

=
=

n

i i

i

y

e

n 1

1
rateerror  Mean   (7) 

Where, 

ie is the forecast error for experiment i 

iy is the total number of forecasted cases in experiment i 

n  is the total number of experiments 
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Mean Error values are the forecasting benchmarks to evaluate the accuracy of these 
four proposed models in this research. 

4   Experiment Results and Analysis 

In this research, the data were collected from a book wholesaler company in Taiwan. 
This company is one of the leading book wholesalers in Taiwan, and its distribution 
channels are widely spread out all around Taiwan. Books to be distributed by this 
company are covering almost all categories in the market. Therefore, data collected in 
this research are quite representative for this industry.  

Data collected for this research started from May 01, 2002 to April 30, 2003, and 
total of 904 cases including selling books and slow-selling books. 904 cases were 
randomly divided into reference cases, training cases, test cases and reserved cases 
listed as Table 3 below. Reference cases and test cases were used in the GA/CBR 
returning books forecast system described in this research to find out the best weight 
for each factor. Test cases were then used to verify the accuracy of this forecast 
system. Reserved cases would be added into test cases later in order to see if the 
accuracy of this system would be affected by the numbers of test cases. 

Data collecting time for each case would be nine months including actual sales 
volume for the first three months to be used as a factor in the forecast system, and the 
actual total sales volume for the six months coming afterward would be used as the 
base to define a book as a slow-selling book when total sales volume is less then 5 
books. Therefore, total collecting time for actual sales volumes for these 904 cases 
started from May 01, 2002 until Jan. 31, 2004. 

Table 3. Groups for collected cases 

Group Reference 
Cases 

Training 
Cases 

Test Cases Reserved Cases 

Volume 404 200 100 200 

Selling vs. Slow-
selling Books 259:145 102:98 56:44 96:104 

Major software used in this research including VISUAL BASIC 6.0, Microsoft 
Access 2002 (Model A, C), Minitab 13, Neural Works Professional II V5.20 (Model 
B) and Microsoft Excel 2002 (Model D).  

Try and error method is used to find out the best epoch size, and the system 
becoming stabilized when epoch size exceeds 150,000 times with mean error value of 
0.08. We set the epoch size as 180,000 in order to make sure each experiment could 
reach convergence. 

Forecast results for each model under the combination of 404 reference cases, 200 
training cases and 100 testing cases are shown as Table 4. Besides, reserved cases are 
added into reference cases for calculation gradually, and the forecast results are being 
compared to training cases and testing cases for each model shown as Table 5 and 6. 
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Table 4. Analysis of forecast errors for each model under 404/200/100 combination 

Training cases Testing case  
 
 

Error 
numbers 

Total 
number 

Mean error 
rate 

Error 
numbers

Total 
number 

Mean Error 
rate 

Selling  2 102 0.020* 1 56 0.018* 
Model A Slow-

selling 
12 98 0.122* 6 44 0.136 

Selling 3 102 0.029 4 56 0.071 
Model B Slow-

selling 
13 98 0.133 4 44 0.091* 

Selling 8 102 0.078 5 56 0.089 
Model C Slow-

selling 
18 98 0.184 7 44 0.159 

Selling 16 102 0.157 8 56 0.143 
Model D Slow-

selling 
14 98 0.143 5 44 0.114 

Table 5. Mean error value of training cases under different reference cases numbers for Model 
A, B, C and D 

 204 304 404 504 604 

Model A 0.1* 0.085* 0.07* 0.022* 0.022* 

Model B 0.113 0.085* 0.08 0.067 0.06 

Model C 0.155 0.14 0.13 0.065 0.06 

Model D 0.15 0.15 0.15 0.15 0.15 

*The least mean error value under different reference cases numbers 

Table 6. Mean error value of testing cases under different reference cases numbers for Model 
A, B, C and D 

 204 304 404 504 604 

Model A 0.07* 0.073* 0.07* 0.043* 0.04* 

Model B 0.097 0.083 0.077 0.050 0.046 

Model C 0.14 0.11 0.12 0.11 0.1 

Model D 0.13 0.13 0.13 0.13 0.13 

*The least mean error value under different reference cases numbers 

Mo

Reference 

Mo

Mo

Reference 

Reference 
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Summary and comparison of forecast results:  

1. The result of experiment indicates Model A (GA/CBR) has better forecasting 
ability on selling books than other models, but slightly higher forecast error rates 
than Model B on slow-selling books. Practically, higher forecast accuracy of 
selling books could help wholesalers to reduce loss of opportunity costs by 
misjudge the selling books into slow-selling books.   

2. The order of best to worst forecasting ability is Model A, Model B, Model C and 
Model D. Model A has better performance and higher forecast accuracy then other 
models under each training cases and each testing cases.  

3. Factor weights are both being adjusted under Model A and Model B. Weights 
being adjusted by Fitness Function under GA in Model A and by bias under Model 
B. Model A has better forecasting performance under training cases and testing 
cases than Model B because GA calculates factor weights by global search.  

4. Model A with adjusted factor weights under GA presents better forecasting ability 
than Model C with same factor weights under conventional CBR indicating 
adjusted factor weights could have better forecasting accuracy and represent the 
real world. 

5   Conclusion 

This research discusses how to integrate the GAs and CBR approaches to construct a 
hybrid system of returning books forecasting. It can help book wholesalers determine 
the advising list of returning books for the retailers and also the warning list of slow-
selling books for publishers. There are so many new books being released each year 
in Taiwan, and create so many book returning problems. The advising list of returning 
books could help the space-limited book retailers to make best returning decision and 
also let the publishers have time to deal with the slow-selling books to make a win-
win solution for all parties in the supply chain. 
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Abstract. A new algorithm, the immune quantum-inspired genetic algorithm 
(IQGA), is proposed by introducing immune concepts and methods into 
quantum-inspired genetic algorithm (QGA). In application to the knapsack 
problem, which is a well-known combinatorial optimization problem , the 
proposed algorithm performs better than the conventional GA (CGA), the 
immune GA (IGA) and QGA. 

1   Introduction 

Recently, a novel genetic algorithm called quantum-inspired genetic algorithm (QGA) 
was presented [1]-[3]. QGA is based on the concept and principles of quantum 
computing [4]such as qubits and superposition of states. Compared to the conventional 
GAs, QGA has many advantages such as automatic balance ability between global 
search and local search, etc. However, the process that QGA evolves the qubit 
chromosomes is probabilistic, which not only gives the individuals the evolutionary 
chance but also causes certain degeneracy. In addition, QGA neglects the assistant 
function of the characteristics or knowledge in a pending problem. Therefore, this 
Letter introduces immune concepts proposed in [5] into QGA, and presents a new 
genetic algorithm called the immune QGA (IQGA). 

2   The Immune QGA 

QGA uses a new representation that is based on the concept of qubits. One qubit is 
define with a pair of complex numbers, ( ),α β , which is characterized by  

10 βα +=Ψ  (1) 

where 2 2
1α β+ = . If there is a system of m-qubits, the system can contain 

information of 2m states. The basic structure of QGA is described in the following. 

procedure QGA 
begin 

0←t  
initialize )(tQ  

make ( )tP  by observing )(tQ  states 

evaluate ( )tP  

store the best solution among ( )tP  
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while (not termination-condition) do 
begin 

1+←tt  
make ( )tP  by observing )1( −tQ  states 

evaluate ( )tP  

update )(tQ  using quantum gates ( )tU  

store the best solution among ( )tP  
end 

end 

where )(tQ  is a population of qubit chromosomes at generation t, and )(tP   is a set 

of binary solutions at generation t. One binary solution is formed by selecting each bit 
using the probability of qubit. A set of qubit chromosomes )(tQ is updated by 

applying some appropriate quantum gates ( )U t , which is formed by using the binary 

solutions )(tP  and the best stored solution.  

From the basic structure of QGA, we can easily find that QGA evolves the qubit 
chromosomes by applying some quantum gates, and makes the binary solutions by 
observing the states of qubit chromosomes. Because it is a probabilistic operation 
process which makes individuals change randomly and blindly, it not only give the 
individuals the evolutionary chance but also cause certain degeneracy. On the other 
hand, there are many basic and obvious characteristics or knowledge in a pending 
problem. However QGA neglects the assistant function of the characteristics or 
knowledge. The loss due to the negligence is sometimes considerable in dealing with 
some complex problems.  

An immune operator is composed with two operations, selecting vaccines, i.e., a 
vaccination and an immune selection, of which the former is used for raising fitness 
and the latter is for preventing the deterioration. They are explained as follows: 

1) The Vaccination: Given an individual x, a vaccination means modifying the 
genes on some bits in accordance with priori knowledge so as to gain higher fitness 
with greater probability. Suppose the size of the population is n, select nα = nα 
individuals to be subject to vaccination, where α denotes the fraction of individuals. 

2) The Immune Selection: This operation is accomplished by the following two 
steps.  The first one is the immune test, i.e. testing the antibodies.  If the fitness is 
smaller than that of the parent, the parent will participate in the next competition 
instead of the individual; the second one is the annealing selection [6]. 

3   Experiment Results 

The knapsack problem, a kind of combinatorial optimization problem, is used to 
investigate the performance of IQGA. The knapsack problem can be described as 
selecting from various items those items which are most profitable, given that the 
knapsack has limited capacity. The 0-1 knapsack problem is used here. 
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In view of general knowledge of humans, when a person is going to select the 
items from various items given that the knapsack has limited capacity, he always 
chooses those items with high values of profit to weight ratios. If the knapsack is 
overfilled, the selection procedure always chooses the item with low value of profit to 
weight ratio for deletion. This characteristic is not only one of the properties of the 
knapsack problem, but also can be used as the information or knowledge for dealing 
with the problem. So it may act as an approach to abstracting vaccines here. 

For the purpose of the comparison, we test the conventional GA (CGA), the 
immune GA (IGA), QGA, and IQGA on the knapsack problems with 100, 250, and 
500 items, respectively. The population size considered for CGA and IGA is equal to 
100, and the probabilities of crossover and mutation are fixed as 0.65 and 0.05. The 
population size of QGA and IQGA is equal to 10, and a qubit chromosome is updated 
by using the rotation gate ( )tU [3] [4]. The i-th qubit value ( ),i iα β is updated as 

cos( ) sin( )'

sin( ) cos( )'
i ii

j ii

θ θα
θ θβ

−
=

i

i

β
α

 
(2) 

where 
i

θ is given as ( )i i is α β θΔ . The parameters used are shown in Table 1, where 

( )f ⋅ is the profit, ( )i is α β  is the sign of 
iθ , and ib and ix  are the i-th bits of the best 

solution b and the binary solution x, respectively.  

Table 1. Lookup table of iθ  

( )iis βα  ix   ib     ( )xf  

                ( )bf≥  

 

iθΔ  0i iα β >  0i iα β =  0iα =  0iβ =  

      0   0       false 
 0   0       true 
 0   1      false 
 0   1      true 
 1   0      false 
 1   0      true 
 1   1      false 
 1   1      true 

0 
0 
0 

0.05π
0.01π

0.025π
0.005π
0.025π  

0 
0 
0 

1 
1 
1 
1 
1 

0 
0 
0 

1 
1 
1 
1 
1 

0 
0 
0 
1 
1 

0 
0 
0 

0 
0 
0 
0 
0 

1 
1 
1 

Table 2 shows the experimental results of the knapsack problems found by CGA, 
IGA, QGA, and IQGA within 1000 generations over 25 runs for 100, 250, and 500 
items. The progress of the mean of best profits and the mean of average profits of 
population is shown in Figure 1. The results show that IQGA performs well in spite 
of small size of population, which yields superior results as compared to CGA, QGA 
and IGA. 
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Table 2. Experiment results of the knapsack problem  

Algorithms No. of 
items Profits 

CGAs IGAs QGAs IQGAs 
best 583.5 617.8 609.1 617.9 

mean 507.8 601.8 579.2 614.0 
 
 
100 worst 385.4 533.1 508.0 585.2 

best 1378.9 1503.0 1423.2 1519.5 
mean 1248.6 1449.0 1363.0 1511.4 

 
 
250 worst 1059.0 1268.6 1262.5 1471.3 

best 2723.3 2973.3 2788.2 3053.4 
mean 2536.0 2861.7 2703.7 3036.5 

 
 
500 worst 2290.4 2564.8 2555.4 2931.7 

4   Conclusions 

IQGA proposed in this paper leads immune concepts and methods into QGA, whose 
aim is theoretically to utilize the locally characteristic information for seeking the 
ways and means of finding the optimal solution when dealing with the difficult 
problems. The experimental results of the knapsack problem demonstrate the 
effectiveness and the applicability of IQGA. 
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Abstract. With more and more interactions between high-level and physical-
level design, incremental floorplan is becoming a must to deal with such com-
plexity. In this paper, we propose a hierarchical approach for incremental floor-
plan based on genetic algorithms. It combines the power of genetic optimization 
and partition algorithms to provide smooth controllable quality/runtime trade-
offs. Experiments show that our hierarchy approach can provide magnitudes of 
speedup compared to traditional flatten floorplan using genetic algorithms 
without much area overhead. Furthermore, incremental change is also supported 
in such a hierarchical floorplanner, which makes it very promising to be used in 
the high-level analysis and synthesis environment. 

1   Introduction 

With the continuous shrinking of feature size, deep submicron effects cause more and 
more interactions between high-level and physical-level design. To cope with the 
complexity of the merging of those design phases, incremental algorithms [1][2] are a 
must. Furthermore, floorplan is an important stage in the physical design cycle, which 
can provide necessary information to estimate quality metrics, such as area, timing, 
interconnect length and congestion. Those physical metrics are important parameters 
for high-level SoC (Systems-on-a-Chip) synthesis. Thus research on the incremental 
floorplan algorithm is relevant. 

Placement and floorplan of blocks on a 2D surface is a NP complete or NP hard 
problem, thus many heuristic algorithms are proposed to solve it, e.g. simulated an-
nealing [8][9] and genetic algorithms. Genetic algorithms are proved to be an effec-
tive way to solve the floorplan problem and several research papers based on genetic 
algorithms have been presented recently. In [3], given an initial hard block floorplan, 
the authors presented how to adjust each soft block’s ratio with genetic algorithms, 
but the quality is also greatly dependent on the previous hard block floorplan. Wang 
etc [4] proposed a genetic algorithm to simultaneously adjust each soft block’s ratio 
and hard blocks’ position, however the incremental approach is not considered and 
their algorithm does not also have the scalable ability to deal with large design cases. 

                                                           
1 The author would like to thank the grants from the 863 Programs (Grant No. 2004AA1Z1050 
and 2005AA1Z1230), and the National Science Foundation of China (Grant No. 60025101 and 
90207001). 
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Partition-based placement (e.g. employed in [5][6]) shows good scalability but can 
not handle the sizing problem well. Most recently, [7] presented a genetic algorithm 
to implement the incremental floorplan, however no hierarchical support is considered 
in their approach, which makes their solution not suitable for large design cases and 
fast estimation in high-level SoC synthesis. 

In this paper, we study the floorplan problem based on genetic algorithms for fu-
ture IP-based SoC design. Our contributions include: 1) We develop a floorplan algo-
rithm to combine the power of genetic optimization and partition-based algorithms. 
Our floorplan program can deal with larger design cases (e.g. more than 100 blocks) 
with a smooth controllable quality/runtime tradeoff, which is not seen in the previous 
floorplan work based on genetic algorithms. This characteristic is becoming more and 
more important, because hundreds of IP blocks and hard macros will be integrated 
into the future SOC designs.  2) We integrate an incremental optimization algorithm 
into our hierarchical floorplanner. Since more ECO and debugging changes will occur 
with the increasing complexity of VLSI, handling such changes becomes very impor-
tant for physical design tools. Incremental optimization will often find an acceptable 
solution with a magnitude of speedup compared to traditional approaches.  

The rest of this paper will be arranged as below: section 2 illustrates partition algo-
rithms, hierarchical genetic algorithms and incremental optimization flow, respec-
tively; then the section 3 and 4 will present the results and conclusions. 

2   Hierarchical Floorplan Based on Genetic Algorithms 

The basic flow of our hierarchical floorplan based on genetic algorithms is showed in 
Fig. 1. After the initial floorplan solution is gotten, we may want to make some small 
changes to it. In traditional floorplan approaches, the floorplanner has to be run again 
even if only some slight changes are made on the blocks resulting from debugging or 
ECOs. In fact, using an incremental method will often generate a comparable solution 
with a much faster speed. Fig. 2 shows the incremental process of resizing two blocks 
in the previous floorplan solution. 

 

Fig. 1. an example of hierarchical floorplan 
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Fig. 2. resize two blocks incrementally 

As we can see, the two green blocks are resized. In our incremental algorithm, we 
define three kinds of operations to the initial floorplan solution: add_block, de-
lete_block and resize_block. And their meanings are straightforward.  

In the next sections, we will show detail descriptions of the partition algorithms, 
hierarchical genetic algorithms and the incremental optimization flow respectively. 
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2.1   Partition Algorithms 

In this section, we will present a heuristic partition method to divide the block 
set B into n subsets iB ( 1 , )i n= , in which each subset has a similar number of blocks. 

Before illustrating the algorithm, we will first define several terminologies: 
Given a set B of rectangular blocks and a matrix of inter-rectangle priorities 

[ ]| | | |mn m nB B
P p if a link exists from B to B

×
= , we define a corresponding edge-weighted 

DAG (directed acyclic graph) ( , )G B E , {( , ) | , ( , ) }m n m nE B B if m n then B B E= ≤ ∈ . An edge 

( , )m nB B E∈ has a weight mn mn nmw p p= + . Given a graph ( , )G B E , it can be reduced to a 

super graph ( , )G B E′ ′ ′ by recursive clustering. To evaluate the reduction efficiency, we 
define a factor | | / | |V Vα ′= , which is also called the degeneration degree of graph G′ . 
The whole partition procedure is then described as below: 

I. Depth-first search is deployed on DAG ( , )G B E . 
II. The resulted depth-first trees ( , )k k kG B E with more than | |B  blocks are then parti-

tioned into two equal size sub trees recursively until no sub trees exceed | |B . (If 
the degree of kG  is odd, a special block with zero width and height is added.)  

III. After that, block sets with more than sM blocks are selected as seeds, where sM is 

an experimental value to guarantee that the seed number is close to | |B .  
IV. For every no-seed block subset, it joins into the seed set with the least blocks.  

2.2   Hierarchical Genetic Algorithms 

As we know, the encoding method, genetic operators and decoding method are fun-
damental factors to implement genetic algorithms and we will only discuss encoding 
method and genetic operators below for limited spaces. The decoding method could 
be referred to [7], so it isn’t discussed in this paper. 

1) Encoding Method: In order to reduce the complexity of 2D floorplan problem, 
we use an abstract representation { , }r S w= to present the intermediate floorplan result, 
where w indicates chip width and 1 1 2 2{( , ),( , ), ( , )}n nS o d o d o d= ⋅ ⋅ ⋅ is a sequence, in 

which ( , )i io d  indicates the place order and the direction of block iB respectively. Fur-

thermore, we extend the concept of block to enable it represent a single block as well 
as a block set. Thus our floorplanner can do floorplan hierarchically.  

2) Cross-over Operator: A two-cut cross-over operator is adopted. Suppose the 
length of sequence X and Y is n , two number i and j ranging between 0 and n are then 
randomly generated, with i j< , and two new sequences ,S S′ ′′ are generated by switch-
ing two pieces of sequence X and Y . After that, a mapping rule [7] is used on those 
new generated sequences ,S S′ ′′  to guarantee the legalization of those sequences. 

3) Mutation Operator: Two kinds of mutation operators are defined in our floor-
planner, called as mutation operator 1 and mutation operator 2, respectively.  The first 
one is the simplest one. We just randomly select several blocks (e.g. two blocks) and 
change their direction. In mutation operator 2, several pairs of blocks will be ran-
domly picked out and both block’s place order and direction will be changed.  
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4) Work Flow: The work flow of our hierarchical genetic algorithm is described as 
below: The block set B is automatically divided into n subsets iB ( 1 , )i n= , according 

to the partition algorithms. For each iB , we use the encoding method of genetic algo-

rithms to obtain an abstract representation ir . The heuristic decoder is then called to 

acquire the width and height of each subset. After that, we can consider each subset as 
a large block, and hierarchically use the floorplanner to find the final solution.  

Suppose that the block set B is divided into L equal-sized subsets with a two-level 
hierarchical partition, the computation complexity of each subset is 2( (| | / ) )O M B L⋅ . 
Thus, the computation cost to obtain the whole floorplan solution 
is 2 2( | | / )O M B L M L⋅ + ⋅ . Though adopting the hierarchical algorithm will greatly 
reduce the complexity of the problem, it makes us lose the opportunity to find the 
global optimal solution. However, in most cases, floorplan solutions close to the op-
timal solution are also acceptable. What’s more, the floorplanner also provides con-
trollable quality/runtime tradeoffs by adjusting the partition standard. It is straight-
forward to prove that the most effective α equals to | |B  for a two-level hierarchy. As 
the factor α decreases, the floorplanner will operate slower with a better quality.  

2.3   Incremental Changes  

The basic idea behind our incremental floorplanner is that we try to change the initial 
floorplan as little as possible to acquire a significant speedup. For flatten incremental 
floorplan, we can use the algorithm defined in [7]. Suppose that | |B is the number of 
reshuffled blocks, it is easy to prove that the worst-case computation complexity of 
the incremental approach will be 2( )O M N⋅ , where N = |B|/2  + 2.  

Furthermore, the efficiency for the hierarchical approach could be improved. On 
the assumption that one new block would be added in one subset, what we need to do 
is to reshuffle part of the sequence corresponding to the subset, and accordingly adjust 
the sequence in the higher level. Suppose the block set B is divided into L equal-sized 
subsets with a two-level hierarchical partition, the computation cost for one incre-
mental change is 2 2 2 2( ) ( (| | / ) / 4 / 4)O M K M H O M B L M L⋅ + ⋅ ≈ ⋅ + ⋅ , where K= 

|B|/2L +2, H= L/2 +2. In case L B= , we can derive that the complexity of the in-
cremental changes in the hierarchical floorplanner is ( | | / 2)O M B⋅ .  

3   Experiment Results 

We have implemented the two-level hierarchy floorplan algorithm in a C++/STL style 
program on a 1.0GHz PC/Intel system running Linux. Because of lacking benchmarks 
for large cases, we generate the benchmark randomly with the block number ranging 
from 49 to 225. We believe that our way makes sense for IP-based SoC synthesis. 
According to the area usage, the initial pool size is set to be 50, while the generation 
number of genetic algorithms is set to be 50. And the probability to do cross-over and 
mutation operation is set to be 0.5 and 0.03, respectively.  Fig. 3 shows the curves of 
the relationship between run time and block number in our hierarchical and flatten 
floorplanner. As we can see, the run time of flatten approach increases very quickly as 
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the number of block on the chip increases. However, the hierarchical algorithm effec-
tively reduces the run time and also keeps an acceptable area usage. In our experi-
ments, it approaches a linear relationship with the block number on the chip, in case 
that the block number is up to 225.  
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Fig. 3. Run time and block number curve 

 

Fig. 4. Floorplan result of m225 

Fig. 4 gives out the floorplan result of m225. It can be seen that our hierarchical 
floorplanner partition the whole block set into fifteen subsets and then they are organ-
ized in a hierarchical way, it acquires a good tradeoff between quality and running 
time. Furthermore, the hierarchical approach can use the modularity of block set to 
obtain extra speedup. For example, in multiprocessor Network Processor, we know 
that there are many block subsets on the chip, each of which contains the same blocks 
as others. In a hierarchical approach, we can only find out the floorplan for one of 
them. It will save lots of time if the number of such block subsets is quite large.  

In Table 1, running time of incremental algorithm for two different approaches is 
showed. As we have analyzed before, the incremental optimization in the hierarchical 
floorplanner is quite efficient. We only need to modify the corresponding block subset 
and its high level position. It provides several magnitudes of speedup than simply 
running the flatten floorplanner again. This characteristic makes our floorplanner 
quite promising for the estimation tools used in the high-level SOC synthesis, where 
an iterative process is often needed. 

Table 1. Run time of Incremental Optimization Based on Hierarchical Genetic Algorithms 

Bench 
Name 

Hier/Incre 
Run time/Usage 

Hier/One-shot 
Run time/Usage 

Flat/One-shot 
Run time/Usage 

m49 1.2/87.1% 5/88.2% 32/89.5% 
m100 1.9/88.1% 10/89.4% 258/90.1% 
m121 2.0/87.4% 12/88.7% 445/87.2% 
m130 2.1/87.1% 13/87.9% 546/88.1% 
m169 2.4/85.8% 18/86.7% 1176/86.2% 
m225 2.9/88.1% 26/89.3% 1656/89.2% 
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4   Conclusion and Extension 

We showed that our hierarchical floorplan method can produce a reasonably good 
solution very quickly. By combining the power of genetic optimization and partition 
algorithms, it provides smooth controllable quality/runtime tradeoffs for large design 
cases. Furthermore, incremental algorithm is also supported in such a hierarchical 
floorplanner, which makes it extremely fast and suitable for the quick estimation in 
high-level SoC synthesis. A possible extension to this work is to extend the current 
floorplanner to optimize soft blocks as well as hard blocks. 
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Abstract. Grid computing is a new computing-framework to meet the growing 
computational demands. Computational grids provide mechanisms for sharing 
and accessing large and heterogeneous collections of remote resources. 
However, task Scheduling is one of the key elements in the grid computing 
environment, and an efficient algorithm can help reduce the communication 
time between tasks. So far, the task scheduling algorithms in the grid computing 
environment have not been based on task duplication. However, the scheduling 
algorithms based on task duplication will generate too many task replications, 
which will enlarge the system loads and even add the makespan. As optimal 
scheduling of tasks is a strong NP-hard problem, this paper presents a 
scheduling algorithm based on genetic algorithm and task duplication, whose 
primary aim is to get the shortest makespan, and secondary aim to utilize less 
number of resources and duplicate less number of tasks. The chromosome 
coding method and the operator of genetic algorithm are discussed in detail. 
The relationship between subtasks can be obtained through the DAG. And the 
subtasks are ranked according to their depth-value, which can avoid the 
emergence of deadlock. The algorithm was compared with other scheduling 
algorithm based on GAs in terms of makespan, resource number and task 
replication number. The experimental results show the effectiveness of the 
proposed algorithm to the scheduling problem. 

1   Introduction 

A Grid is a distributed collection of computer and storage resources maintained to 
serve the needs of some community or virtual organization (VO) [1] [2]. These virtual 
organizations can share their resources collectively as a larger grid. In the grid-
computing environment, a large scale-computing program can often be divided into 
several tasks. In most cases, the amount of tasks is more than that of the 
computational resource. In order to reduce the makespan of the whole program as 
possible, scheduling applications among the resource is a very complicate problem. In 
general, it is a NP-hard problem in a distributed system. 

Related earlier work has been done in task scheduling policy. Vincenzo has 
introduced a scheduling algorithm based on genetic algorithm, which can improve the 
efficiency and throughput [3] [4]. Asim YarKhan addressed the application of simulated 
annealing algorithm in the resource scheduling of the grid [5]. Xu has also put the ant 
algorithm into the resource scheduling policy[6]. But they didn’t take the relationship 
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among tasks into account. But they all didn’t consider the duplication of tasks. 
Although these algorithms can optimize the execution time of the whole programs, 
the communication delay between two different computing nodes, seriously affects 
the efficiency of computation. It is obvious that the communication delay is one of the 
most important factors that influence the length of schedules. And task duplication is 
shown to be useful for shortening it. Task duplication means scheduling some copies 
of a task on more than one computing nodes to eliminate communication delays 
between processors. So far, several scheduling algorithms using task duplication have 
already been proposed. Tatsuhiro Tsuchiya first proposed a GA based on task 
duplication [7]; Samantha Ranaweera proposed another scheduling algorithm TSA 
based on task duplication in 1998; and two years later, he improved the TSA [8] and 
proposed the algorithm OSA [9]. However, the previous algorithms were applied in the 
homogeneous system and didn’t consider eliminating the redundancy tasks. In order 
to overcome the deficiencies, in this paper we propose an alternative approach to find 
a good schedule based on task duplication and to eliminate the redundancy 
duplication tasks. 

2   System Model 

In this paper, a heterogeneous system consists of a set of n identical computing 

resource 1 2{ , ... }nR R R R , which is completely connected via a network. Each 

resource executes only one task at one time without interrupting and task preemption 
is not allowed. A parallel program is modeled as a weighted DAG, { }, , ,G V E C T=  

where each node v V∈  represents a task whose computation cost is ( ),C v r  and each 

edge ( ),u v E∈ represents the precedence relation that task u should be completed 

before task v can be started. In addition, at the end of its execution, u  sends data to v  
and the communication cost is ( , )T u v . The communication cost is zero if u  and v  

are scheduled to the same processor. If there is a path from u  to v , then u  is called a 
predecessor of v , while v  is called a successor of u . A node without predecessors is 
called entry node and a node without successors is called exit node. 

The height of a node v is denoted by ( )height v . If the node has no predecessors, the 
height is zero. If the task has predecessors, the height is the maximum of their heights 
plus one. A schedule of G, denoted by ( )S G  is a mapping of tasks onto processors and 

assigning a start time to each task. For a task v V∈ , it is scheduled onto processor 
( )r v R∈ and assigned a start time ( , )ST v r . Therefore, the finishing time of v , 

denoted by ( , )FT v p can be represented as ( , ) ( , ) ( , )FT v r ST v r C v r= + . A node 
can be mapped onto several processors. In such a case, task duplication is used. The 
length or makespan of a schedule S is the maximal finishing time of all tasks, that is 

( ) max{ ( , ) | , }makespan S FT v r v V p P= ∈ ∈ .Given a weighted 

DAG { }, , ,G V E C T= , the aim of resource scheduling is to find a schedule with 

smallest makespan, that is { ( )  }Min makespan S S∀ . Figure-1 shows a simple DAG, and 
table-1 shows the computing time of the tasks of DAG in different computing resource. 
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Fig. 1. a simple DAG 

Table 1.  the computing time in different resource 

Resource id  
task id  

1 2  3 4 

1 4 4 4 4 
2 5 5 5 5 
3 4 6 4 7 
4 3 3 3 3 
5 3 5 3 4 
6 3 7 2 2 
7 5 8 5 5 
8 2 4 5 3 
9 5 6 7 5 

10 3 7 5 2 
11 5 6 7 8 

3   The Proposed Algorithm 

Genetic algorithms[10] (GAs) emulate the evolutional process in nature to solve 
optimization problems. Unlike other traditional search techniques, GAs uses multiple 
search nodes simultaneously. Each of the search nodes corresponds to one of the 
current solutions and is represented by a sequence of symbols. Such a sequence is 
called a chromosome. Each chromosome has an associated value called a fitness 
value, which is evaluated by the objective function. 

3.1   Chromosomes 

One of the most fundamental and important tasks in the design of GAs is devising the 
encoding mechanism for representing search nodes as chromosomes. Since we 
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consider a scheduling problem, each search node corresponds to a schedule. 
Therefore, it is desirable that any chromosome can determine a schedule uniquely. 
For this purpose, we design a chromosome using a planar matrix. Each column in a 
chromosome is associated with a task and retains information on all tasks assigned to 
that resource. Each gene of the column corresponds to one of these tasks that run on 
that resource, which is shown in figure-2. 

 

Fig. 2. Chromosome encoding style 

The schedule represented by a chromosome must consider the imposed constraints, 
that is, precedence constraints, communication delays and execution order specified 
by the chromosome.  

Condition 1: For all ,i jn n V∈ , if ,i je E∈  and , ( )i j kn n RT R∈ , then in  must 

execute before in .  

In order to construct the schedule that satisfies the condition 1, we give the 
following algorithm that is used to generate the schedule: 

1. Initially, the tasks are classified by the resource that they are assigned; 
2. The tasks in the same resource are arranged according to their values of height 

from the lower to the higher. 
The height of a task is defined as  

{ }
i0                                          parent(n )=

( )
1 max ( ( )  other tasksi

i

height n
height parent n

φ
=

+
    (1) 

 ( ) iparent n returns the parent nodes of task in .  

Claim 1. For the tasks that are assigned to the same resource, if their sequence of 
execution is according to their height, it will not occur the deadlock. 

Proof.  Let us be given resources ,i jR R  and task 1 4n n− . It is no matter to suppose 

that 1 3( ) ( )height n height n< and 2 4( ) ( )height n height n< . We use the method 
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of reduction to absurdity. Suppose that the sequence of execution of the four tasks is 
complied with the order according to their height from the lower to higher and a 

deadlock occurs. So it must be 1n 4n  are assigned to the same resource iR  and 

4n executes before 1n . And in the same reason 2n 3n  are assigned to the same 

resource jR  and 1n  executes before 2n . So we can educe that 4( )height n <  

1( )height n and 3 2( ) ( )height n height n< , so 4 2( ) ( )height n height n<  . It is 

obvious that the conclusion is contradicted with our hypotheses. So if their sequence 
of execution is according to their height, the deadlock will not occur. 

3.2   Initialization 

In this step, an initial population of chromosomes is generated. First, for every task, 
the resource value is generated within [1... ]n ; second, for each task, it must be 

assigned to at least one resource. Consequently, a chromosome is obtained. The initial 
population of chromosomes is generated by repeating the process as many times as 
the given population size. 

3.3   Fitness and Selection 

In this paper, we define the fitness values as the 1F f=  , f represents the 

completion time of the exit task node. So to get the f , we must compute the 

completion time ( )i jf n R , which represents the completion time of task in  runs on 

the resource jR . The formula is following: 

( / ) ( / ) ( , )i j i jf n R s n R C i j= +  (2) 

And ( )i js n R represents the earliest start time of task in  in the resource jR , 

which is computed as following formula: in (3) [ ][ ]{ | 1}kL l chromosome n l= = . 

( )
( )

( ) ( ) ,

/ max( ( / ),

                          max (min( / , / )))
k i

i j j i

k l k l i k
l Ln pred n

l j l j

S n R spare R n

f n R f n R C
∈∈ = ≠

=

+  (3) 

According to formula  and  we can compute completion time of the exit node 
on the resources. 

Once fitness values have been evaluated for all chromosomes, we can select good 
chromosomes through rotating roulette wheel. The chromosomes with higher fitness 
values have more chance to be selected. Consequently, the same number of 
chromosomes as the population size is selected. 
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3.4   Crossover and Mutation 

For this algorithm, Crossover is performed by executing the following process for 
every processor. The crossover operator swaps the columns of two chromosomes, 
which occurs with the crossover probability. Crossover is performed as follows: first, 
choose two chromosomes according to the selection method; second, generate two 
random integers between 1 and the amount of resource as crossover points for each 
chromosome; third, swap the two columns of the crossover points. As a consequence, 
two new chromosomes replace the two parents. 

Mutation is a basic operator, which occurs with the mutation probability, ensuring 
that the probability of finding the optimal solution is never zero. The mutation 
operator is applied to each task in all chromosomes with the mutation probability. We 
consider three types of mutation: transformation, duplication and deletion. In the 
following we explain this operator. Let ( , )task i r  be the ith task on the list for 

resource and assume that the mutation operator is applied to ( , )task i r . Deletion 
operator will remove the task i from the resource r. However, Deletion is executable if 
and only if there is another resource where the task is assigned. Duplication operator 
will generate the other resource that task i doesn’t run on and duplicate the task i onto 
it. Transformation operator will generate the other resource that task i doesn’t run on 
and move the task i onto it. Moreover, our mutation operator needs further 
adjustment. When duplication or transformation operator executes, the resources that 
the parent of the task i runs on are considered in preference, which will not add the 
communication delay. 

After the crossover or mutation operator, the new schedule represented by the 
chromosomes that have been altered should be re-scheduled according to the 
algorithm , which will ensure the deadlock not to occur. Then the new fitness will 
be computed. If the fitness of the new chromosome is more than that of the old, the 
old chromosome will be replaced by the new one according to the exchange rate. 

4   Redundant Task Elimination 

The algorithm terminates when it meets the convergent criterion. Typically, the 
criterion can be that the best solution in the population obtained does not change after 
a specific number of generations. The chromosome that meets the convergent 
criterion represents the tasks schedule scheme in the resources. In this scheme each 
tasks maybe be replicated at least one time. But not every task replication is needed. It 
is obvious that the task replication in the grid will consume much resource, such as 
network bandwidth. And the resource in the grid is costly, so how to eliminate these 
redundant tasks is a key point. 

4.1   Definition of Redundant Task 

Definition 1.  Redundant task: As for the task in  that runs in the resource jR , if in   

was eliminated from the resource and the new fitness of the new chromosome is not 

more than the old one, then we would define the task in  as the redundant task for the 

resource jR . 
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4.2   Deletion Algorithm 

The algorithm of eliminating the redundant tasks in the scheme is presented here: 
The input parameters are the old [][]chromosome  and the old fitness. 

Algorithm Step: 
   for(i=0;i<nodenumber;i++)�{ 
    for (j=0;j<resourcenumber;j++) { 
     if( [ ][ ] 1chromosome i j = ){ 

      flag=JudgeCopy(); //judge whether the task has other replications;  
5.        if(flag){ 

         [ ][ ] 0chromosome i j =  

        fitness=computefitness(); //calculate the new fitness� 
        if (oldfitness>=fitness) 
         oldfitness=fitness; 
        else 
         [ ][ ] 1chromosome i j =  //resume the old chromosome 

        }}}} 

Claim 2. The new fitness calculated according to the new chromosome obtained after 
the elimination of the redundant tasks is not more than the old one; and the new 
chromosome must comply with the condition 1. 

Proof. According to the algorithm , after the elimination of a certain replication if 
the new fitness is smaller than the old one, then the replication will be recovery(line 
11); otherwise restore the new fitness and the new chromosome(line 9). So the fitness 
will not come to be smaller. Moreover, before eliminating the replication of a certain 
task, it is first to check whether the task has other replication (line 4). If true, the 
elimination operation will continue; otherwise it will break. So every task in the 
chromosome must run at least one resource. 

5   MGaTds Algorithm Steps 

Generate the initial population [ ][][]chromosome popid and calculate the 

fitness of every chromosome in the population;
Select two good chromosomes through rotating roulette wheel and make the 
crossover operator
Select one chromosome randomly to make the mutation operator;
When the iterative number is smaller than a certain one return the step one;
Optimize the best chromosome by which the smallest completion time is 
calculated through eliminating the redundant tasks; 
The schedule scheme is obtained according to the chromosome whose fitness 
is largest, and output the completion time and the scheme of task schedule. 
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6   Experiments 

In order to evaluate the performance of the proposed MGaTDS, we coded the 
algorithm in java language and performed simulation studies. To show the 
effectiveness, we compared it with a non-genetic algorithm called TDS [8], and 
GaTDS [7]. The task graph is shown as figure-1. Each node in the DAG represents a 
task. We also assume the number of computing resource is four and the cost time of 
each task in different computing resource is shown in table-1. The number beside 
every arrow represents the communication delay. The population size is 500. The 
crossover rate is 0.8 and the mute rate is 0.05. The max iterative number is 10000. We 
make the comparison in three aspect: the minimum makespan�the number of used 
resources�the number of duplication tasks. The schedules generated by three 
algorithms are shown as figure-3�figure-4�figure-5. It is obvious that the proposed 
MGaTDS generates the same makespan with the other two algorithms. However, it 
occupies less resource and duplicates fewer tasks. We also generate the tree type 
DAG randomly to represent the task graph, the number of whose nodes are 20�30 
and 40. The recourses are 8�10 and 12 correspondingly. The time cost of each task in 
different resource is generated randomly. We compare the GaTDS and the proposed 
MGaTDS in the same three aspects. The result is shown in table-2. From table-3, it is 
clear that the makespan generated by two algorithms are almost equal, but the number 
of used resources and duplication tasks generated by MGaTds is less than that 
generated by GaTds, which is more accord with the grid environment. 

Fig. 3. MGaTDS schedule

Fig. 4. GaTds schedule 
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Fig. 5.  TDS schedule  

Table 2. Two algorithm comparison

7   Conclusion 

In this paper, we have proposed a modified genetics-based approach to multi-
resources scheduling using task duplication. A novel chromosome encoding scheme is 
used in our algorithm. In order to show the effectiveness of the proposed GA, we 
conducted a comparison with the other two algorithms using a number of DAG. As a 
result, it is found that the resource and duplication tasks number used in the proposed 
algorithm were less than those in the other algorithms, and the makesapn was also not 
more than the two others. 
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Abstract. Simple genetic algorithms on populations of l-binary words
usually become iterative systems on 2l dimensional spaces when popula-
tions have size infinite. However, in a particular model (BCCG model)
previously introduced, it has been shown that the iterative system works
in a l-dimensional space.

In this paper we propose a simplification of the BCCG model and we
analyze it in the case of large but finite-size populations. In particular:
1. We exhibit a Markov chain with states in IRl that approximates the

system behavior.
2. We estimate the steady state distribution of the Markov chain.

1 Introduction

Genetic algorithms are probabilistic search algorithms inspired by mechanisms
of natural selection. They have received considerable attention because of their
applications to several fields such as optimization, adaptive control, and others
[1,2,3,4,5,6]. By means of stochastic rules, genetic algorithms simulate natural
reproductive processes over a population of individuals or genotypes in an ar-
bitrary environment. In the so-called simple genetic algorithms, the individuals
are represented by binary words of fixed length.

The behavior of simple genetic algorithms is described by homogeneous
Markov chains [7,8,9] whose states encode populations that are multi-sets of
binary words. General theoretical results are available in the thermodynamic
limit (for infinite populations) when the systems become deterministic iterative
systems [10]. Unfortunately, simulation of the deterministic system is computa-
tionally difficult since the states of the system are represented by vectors in IR2l

,
where l is the length of the words that represent the individuals.
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In [11] it has been introduced a genetic model, the BCCG model, that pre-
serves most of the properties of the classical genetic systems but, for infinite
populations, it has the states in IRl instead of IR2l

. With this condition, the sys-
tem behavior can be simulated and a general algorithm for finding approximate
solutions for a large class of hard combinatorial optimization problems can be
derived [11].

In this paper we propose a simplification of the BCCG model obtaining a
stochastic system with states in IRl even when the population size is finite (finite
populations).

The system behavior is described by an ergodic Markov chain; we show that,
under suitable conditions, a random walk of the Markov chain is close to a precise
stable state for most of the time.

The paper is organized as follows. In Section 2 we recall the BCCG model
and its behavior in case of infinite population. In Section 3 we derive an asymp-
totic formula which, in the BCCG model, gives the probability of having 1 in
a given position of a word in the next generation. In Section 4 we present a
simplified model, suggested by the formula obtained in Sect. 3, and we describe
the system behavior through a Markov chain. The long-term behavior of the
chain is analyzed by using a variant of the Vose’s technique. In particular, a
weighted digraph is built on the steady state iterative system for infinite popu-
lations and it is shown that if this digraph admits a unique rooted spanning tree
with minimum cost, the system stays close to a unique state most of the time.

2 Preliminary Definitions and Results

In this section we briefly recall some definitions and some results about the
genetic model of Bertoni et al. (BCCG model) [11], which will be used in the
following sections.

A population P is a multi-set of n elements of Ω, where n is a positive integer
and Ω = {0, 1}l = {ω1, . . . , ω2l} is the class of binary strings of length l that
we assume ordered in the usual lexicographical way. The population P can be
represented by the frequency vector F = [Fω1 , . . . , Fω2l

], where Fωk
= nk

n and
nk is the number of occurrences of the word ωk in P . Let Λn denote the set of
the frequency vectors that represent all the populations of n elements. Note that
Λn is a finite subset of the simplex

Λ =

⎧⎨⎩[p1, . . . , p2l ] | pi ≥ 0 ∧
2l∑

i=1

pi = 1

⎫⎬⎭
and

⋃∞
n=1 Λn is a dense subset of Λ.

Given a function X : Ω → IR and a stochastic vector Π ∈ Λ, we denote the
expectation of X by

EΠ(X) =
2l∑

i=1

X(ωi)Πi.
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Let f : Ω → IN+ be a fitness function and xk : Ω → {0, 1} be the function
xk(ω) = k-th bit of ω.

It is possible to represent the fitness function f : Ω → IN+ by a multivariate
polynomial of degree one at most in each variable, defined in [0, 1]l and coincident
with f on Ω:

f(x1, . . . , xl) =
∑

y1,...,yl∈{0,1}
αy1...yl

xy1
1 xy2

2 · · ·x
yl

l [x1, . . . , xl] ∈ [0, 1]l

With abuse of notation, f will denote both the fitness function and the associated
polynomial. Since the variables in f have degree one at most, global maxima of
f are elements of Ω. Moreover, for every 1 ≤ k ≤ l, f can be also represented as
a linear combination of multivariate polynomials:

f(x1, . . . , xl) = xkbk(x1, . . . , xk−1, xk+1 . . . , xl) + ak(x1, . . . , xk−1, xk+1, . . . , xl)

where polynomials bk(x) and ak(x) do not depend on xk.

In BCCG model, given a population P at time t, represented by the fre-
quency vector F, the population at time t + 1, represented by the frequency
vector F′, is obtained by the execution of the following stochastic algorithm:

1. calculate the ratio

φkF =
EF(xk · f)

EF(f)
1 ≤ k ≤ l

2. generate the new candidate members {ωs1 , . . . , ωsi , . . . , ωsn} with probability
φkF to obtain 1 at the k-th position of a word, independently from i and k,
for 1 ≤ i ≤ n and 1 ≤ k ≤ l. This is the recombination step.

3. flip the k-th bit of word ωsi with probability 0 < η ≤ 1
2 for all 1 ≤ k ≤ l and

1 ≤ i ≤ n. This step is called mutation and η the mutation ratio.

Given a frequency vector F, by applying recombination and mutation the
probability of generating words with 1 at the k-th position is

gkF = φkF(1− η) + η(1 − φkF) =
EF ((1− 2η)(xk · f) + ηf)

EF(f)
1 ≤ k ≤ l (1)

So the population at next generation is obtained by selecting n words with
probability distribution

G(F) = [G(F)ω1 , . . . ,G(F)ω2l
],

where the probability G(F)ωj of obtaining the word ωj is

G(F)ωj =
l∏

k=1

(xk(ωj)gkF + (1− xk(ωj))(1− gkF)) . (2)
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The analysis of the BCCG model is done by the application of the Vose’s
technique [10], that describes a genetic system by means of a homogeneous
Markov chain. Identifying the populations with the corresponding frequency
vectors, the states of the Markov chain are the elements of Λn. The probability
QFF′ that the system evolves from a population F to a population F′ is given by

QFF′ = n!
2l∏

j=1

(
G(F)ωj

)nF ′
ωj

(nF ′
ωj

)!
.

An important consequence of the mutation step is that if η > 0, then the Markov
chain is ergodic, admitting therefore a stationary distribution. For large n, by
Stirling formula, the following asymptotic expression holds

QFF′ = e−nK(F′;G(F))+O(log n)

where K is the Kullback-Leibler divergence defined by

K(F;F′) =
2l∑

i=1

Fωi log
Fωi

F ′
ωi

. (3)

For n → ∞, the state space of the Markov chain becomes dense in Λ and the
function G can be extended to Λ. Moreover, when the population size is infinite,
it holds

QFF′ = δ(F′ − G(F))

where δ is the impulsive function. Therefore, the system becomes deterministic
and its dynamics is given by

F(t + 1) = G(F(t)). (4)

This system has states in [0, 1]2
l

. The main result in [11] is that the behavior
of the BCCG model, in the case of infinite populations, can be analyzed by
means of a iterative deterministic system with states in [0, 1]l instead of [0, 1]2

l

.
More precisely, it is proven that, for large n, with high probability it holds that

gkF′ ≈ gkG(F) =
gkF(bk(gF) + ak(gF))

f(gF)
(1− 2η) + η, 1 ≤ k ≤ l (5)

where gF = [g1F, . . . , glF]. As a consequence of (4) and (5), for infinite popula-
tions, the stochastic genetic system becomes an iterative deterministic one whose
states are vectors g = [g1, . . . , gl] ∈ [0, 1]l and whose dynamics is described by
the equation

gk(t + 1) = gk(t)
bk(g(t)) + ak(g(t))

gk(t)bk(g(t)) + ak(g(t))
(1− 2η) + η 1 ≤ k ≤ l

= τk(g(t)) (6)
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We observe that the transformation τ (g(t)) is continuously differentiable and,
for every initial condition ĝ, the sequence τ i(ĝ) converges [11], i.e. the iterative
system (6) is focused.

In the following section we consider the case of finite populations with n >>
0. In particular, we derive an asymptotic formula for the probability of finding
1 at the k-th position in a word of the generation next to a given population F.

3 Finite Populations Analysis

Let us to start from the Vose’s analysis of a genetic system when the population
size is finite (finite populations) and the system states are in [0, 1]2

l

.
Fixed n < ∞, let F be a population in Λn and F′ the random vector rep-

resenting the generation next to F. Let us assume that G(F)ωj > 0 and let us
denote by ζ the random vector with components

ζωj =
F ′

ωj
− G(F)ωj√
G(F)ωj

n

1 ≤ j ≤ 2l.

The vector ζ represents a kind of normalization of the difference vector between
F′ and the population G(F), that would be generated if we assumed the infi-
nite populations model. In [10] it is shown that ζ can be approximated by a
multivariate normal distribution:

Theorem 1. Let ξ be a random vector of dimension 2l − 1 with multi-normal
distribution N (0, I) and let C be an 2l×2l−1 matrix having orthonormal columns
perpendicular to the vector

√G(F) =
[√
G(F)ω1 ,

√
G(F)ω2 , . . . ,

√
G(F)ω2l

]
.

Then ζ converges in distribution to CξT as n→∞.

In the case of BCCG model, from equation (2), we can rewrite G(F)ω as

G(F)x1x2...xl
= g̃1(x1) · g̃2(x2) · · · · · g̃l(xl)

where g̃k(1) = gkF and g̃k(0) = 1 − gkF. With this notation, it can be easily
verified that:[√

G(F)ω1 , . . . ,
√
G(F)ω2l

]
=

[√
g̃1(0),

√
g̃1(1)

]
⊗

[√
g̃2(0),

√
g̃2(1)

]
⊗ · · · ⊗

[√
g̃l(0),

√
g̃l(1)

]
,

where ⊗ is the Kronecker product of matrices.
Consider now the 2l × 2l matrix C̃ defined as

C̃ =
l⊗

k=1

[√
g̃k(0)

√
g̃k(1)√

g̃k(1) −
√

g̃k(0)

]
.
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C̃ is unitary since every matrix
[√

g̃k(0)
√

g̃k(1)√
g̃k(1) −

√
g̃k(0)

]
is unitary and Kronecker

product preserves the unitary property; moreover, it can be easily verified that
the first column of C̃ is [

√
G(F)]T .

As a consequence of Theorem 1, we have the following corollary:

Corollary 1. Let ξ be a random vector of dimension 2l − 1 with multi-normal
distribution N (0, I) and let ξ̃ = [0|ξ]. The random vector ζ with components

ζωj =
F ′

ωj
− G(F)ωj√
G(F)ωj

n

1 ≤ j ≤ 2l

converges in distribution to C̃ξ̃
T

as n→∞.

Let us now define the random variables

ρkF =
2l∑

j=1

xk(ωj)F ′
ωj

1 ≤ k ≤ l

i.e., the probability to find 1 at the k-th position in a word of the generation next
to F. The following theorem can be considered a specialization of Theorem 1 in
the case of the BCCG model.

Theorem 2. For each k, 1 ≤ k ≤ l, the random variable

ρkF − gkF√
gkF(1−gkF)

n

converges in distribution to N (0, 1).

Proof. From the above definitions of the random vector ζ and from the definition
of the random variables ρkF, it holds that

2l∑
j=1

xk(ωj)
√
G(F)ωj ζωj =

√
n(ρkF −

2l∑
j=1

xk(ωj)G(F)ωj ) 1 ≤ k ≤ l.

Rewriting this expression in vectorial notation, we obtain

xkDζT =
√

n(ρkF − xkG(F)T ) 1 ≤ k ≤ l.

where

– xk = [xk(ω1), xk(ω2), . . . , xk(ω2l)] =
⊗k−1

i=1 [1, 1]⊗ [0, 1]⊗
⊗l

i=k+1[1, 1].

– D =
⊗l

k=1

[√
g̃k(0) 0
0

√
g̃k(1)

]
.

Recall that g̃k(1) = gkF and g̃k(0) = 1− gkF.
– G(F) =

[
G(F)ω1 ,G(F)ω2 , . . . ,G(F)ω2l

]
=

⊗l
i=1[g̃i(0), g̃i(1)].
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Now, it holds that

xkG(F)T =

(
k−1⊗
i=1

[1, 1]⊗ [0, 1]⊗
l⊗

i=k+1

[1, 1]

)
·

l⊗
i=1

[
g̃i(0)
g̃i(1)

]

=

(
k−1⊗
i=1

[g̃i(0) + g̃i(1)]

)
⊗ [g̃k(1)]⊗

(
l⊗

i=k+1

[g̃i(0) + g̃i(1)]

)

=

⎛⎝k−1∏
i=1

(g̃i(0) + g̃i(1))︸ ︷︷ ︸
1

⎞⎠ · g̃k(1) ·

⎛⎝ l∏
i=k+1

(g̃i(0) + g̃i(1))︸ ︷︷ ︸
1

⎞⎠
= gkF

From Corollary 1, ζT converges in distribution to C̃ξ̃
T
; moreover

xkDC̃ξ̃
T

= xk ·
l⊗

k=1

[√
g̃k(0) 0
0

√
g̃k(1)

]
·

l⊗
k=1

[√
g̃k(0)

√
g̃k(1)√

g̃k(1) −
√

g̃k(0)

]
· ξT

= xk ·
l⊗

k=1

[
g̃k(0)

√
g̃k(0)g̃k(1)

g̃k(1) −
√

g̃k(0)g̃k(1)

]
· ξT

= ([1, 0] ⊗ · · · ⊗ [1, 0])︸ ︷︷ ︸
k−1 terms

⊗[g̃k(1),−
√

g̃k(0)g̃k(1)] ⊗ ([1, 0] ⊗ · · · ⊗ [1, 0])︸ ︷︷ ︸
l−k terms

·ξT

= [g̃k(1), 0, . . . , 0,−
√

g̃k(0)g̃k(1), 0, . . . , 0] ·

⎡⎢⎢⎢⎣
0
ξ1
...

ξ2l−1

⎤⎥⎥⎥⎦
= −

√
g̃k(0)g̃k(1) · ξ2l−k

=
√

gkF(1− gkF) · ξk

where ξk = −ξ2l−k , 1 ≤ k ≤ l, are independent normal distributed random
variables.

Summarizing,
√

n(ρkF − gkF) ≈
√

gkF(1 − gkF) · ξk 1 ≤ k ≤ l

We can conclude that, for all k, 1 ≤ k ≤ l,
√

n(ρkF − gkF) converges in
distribution to

√
gkF(1− gkF) · ξk and the thesis follows. ��

4 Approximate Model and Its Asymptotic Behavior

In this section we present and analyze a model, suggested by Theorem 2, which
is a rough approximation of BCCG model.

Let n the size of population and let g(t) ∈ [0, 1]l the state at time t; the state
g(t + 1) is obtained by the following steps:



242 A. Bertoni, P. Campadelli, and R. Posenato

1. For every 1 ≤ k ≤ l, compute τk(g(t)) according to (6) as in BCCG model
when the population size is infinite.

2. For every 1 ≤ k ≤ l, add a random variable 1√
n
ψk to τk(g(t)), where ψk is

chosen according to the normal distribution N (0, τk(g(t))(1 − τk(g(t)))) as
suggested by Theorem 2.

More formally, the model behavior is described by the following Markov chain

gk(t + 1) = Qn

(
τk(g(t)) +

ψk√
n

)
1 ≤ k ≤ l (7)

where Qn is a scalar quantization function defined as:

Qn(x) = argmin
t∈{ 1

n , 2
n ,..., n−1

n }
|t− x|

and ψk is a random variable having normal distribution N (0, τk(g(t))(1 −
τk(g(t)))).

Observe that for infinite population, the system (7) becomes the iterative
system (6).

The Markov chain associated to (7) has states in { 1
n , 2

n , . . . , n−1
n }l and it is

represented by the stochastic matrix M
(n)
q,p which, for large n, can be approxi-

mated by
M (n)

q,p ≈ cqe
−n

2 K(q,p)

where K(q,p) is a pseudo-distance function defined in (0, 1)l by

K(q,p) =
l∑

k=1

1
qk(1 − qk)

(pk − qk)2 (8)

and the normalization constant cq is

cq =
( n

2π

) l
2

(
l∏

k=1

qk(1− qk)

)− 1
2

.

In order to derive the long-term behavior of (7), we can apply the technique
presented in [5, Chapter 14] since the iterative system (6) is focused. The intu-
ition is that the chain behavior is characterized by periods of relative stability,
close to a stable fixed point of the deterministic iterative system, interrupted by
fast transitions to another fixed point. This suggests that stable fixed points can
be regarded as “states” and the sudden changes as “transitions” between states.

Let S = {S1,S2, . . . ,SM} be the set of stable fixed points of the iterative
system (6).

Given p,q ∈ (0, 1)l, a path between q and p is a sequence ρ = x0,x1, . . . ,xm

of point in (0, 1)l such that x0 = q and xm = p. The integer m is the length of
ρ. The cost of ρ, denoted by |ρ|, is defined as

|ρ| =
m−1∑
i=0

K(xi+1; τ (xi)).
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The fixed points graph T associated with the iterative system (6) is a weighted
digraph with vertices S1,S2, . . . ,SM and edge weights

w(Si,Sj) = inf{|ρ| | ρ is a path from Si to Sj}.

A tributary tree T of T is a weighted rooted spanning tree such that all edges
point towards the root. The cost of a tributary tree is the sum of the weights of
its edges.

Let us now come back to the Markov chain (7); we recall that for positive
mutation ratio η > 0, the chain is ergodic admitting therefore a steady state
distribution Πn. Following the argument developed in [5, Theorem 14.14], we
can conclude:

Theorem 3. If the fixed point graph T admits a unique tributary tree with min-
imum cost and Sj is its root, then, for all ε > 0,

Πn(x | ||x− Sj || ≤ ε) = 1− o(1)

as n→∞.

5 Conclusion

In this paper we propose a genetic model that simplifies the BCCG model
introduced in [11].

In case of infinite populations, both models are described by the same itera-
tive system with states in IRl instead of IR2l

; this system, experimented in [11]
as an heuristic for solving combinatorial optimization problems, has shown good
performance as a local optimizer.

In case of finite populations, the new model has still its states in IRl; this
makes possible numerical simulations for reasonable values of l; moreover, an
advantage of stochastic dynamics is to allow escaping from local maxima of the
fitness function.

We analyze the long-term behavior of the new model for large but finite pop-
ulation, according to a technique proposed by Vose [5]. Under suitable conditions
this technique allows to find the stable state close to which a random trajectory
spends most of its time.

Two main problems are still open and under investigation:

– One of most hard task of Vose’s method is its algorithmic implementation.
The method consists of two steps: building the fixed point graph and finding
the minimum cost tributary tree. The second step can be solved by efficient
algorithms working in polynomial-time, while it is an open problem to find
an efficient method for constructing the fixed point graph.

– Our genetic model determines, with high probability, a stable state that
represents a maximum of the fitness function, not necessarily a global one. It
is an open problem to establish conditions which guarantee the convergence
to a global maximum with high probability.
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Abstract. The substitution of missing values, also called imputation, is an im-
portant data preparation task for data mining applications. This paper describes 
a nearest-neighbor method to impute missing values, showing that it can be use-
ful for a clustering genetic algorithm. The proposed nearest-neighbor method is 
assessed by means of simulations performed in two datasets that are bench-
marks for data mining methods: Wisconsin Breast Cancer and Congressional 
Voting Records. The efficacy of the proposed approach is evaluated both in 
prediction and clustering scenarios. Empirical results show that the employed 
imputation method is a suitable data preparation tool. 

1   Introduction 

Knowledge discovery in databases (KDD) is the non-trivial process of identifying 
valid, novel, potentially useful, and ultimately understandable patterns in data [1]. 
Although the terms KDD and Data Mining (DM) are sometimes employed inter-
changeably, DM is usually considered as a step in the KDD process that centers on 
the automated discovery of patterns in data. In this context, data preparation is a step 
in the KDD process that involves the selection, preprocessing, and transformation of 
data to be mined. When data preparation is performed in a suitable way, higher qual-
ity data are produced, and the outcomes of the KDD process can be improved. In spite 
of its importance, the data preparation step became an effervescent research area only 
in the last few years. An important problem to be tackled in this step concerns about 
missing values. The absence of values is common in real-world datasets and it can 
occur for a number of reasons like, for instance [2]: malfunctioning measurement 
equipment, changes in experimental design during data collection, collation of several 
similar but not identical datasets, refusing of some respondents to answer certain 
questions in surveys. Missing values resulting from such situations may generate bias 
in the data, affecting the quality of the KDD process. 

Many approaches have been proposed to deal with the missing values problem - 
e.g. see [3,4,5]. A simple solution involves ignoring instances and/or attributes con-
taining missing values, but the waste of data may be considerable and incomplete 
datasets may lead to biased statistical analyses. Another alternative is to substitute the 
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missing values by a constant. However, it assumes that all missing values represent 
the same value, leading to considerable distortions. The substitution by the 
mean/mode value is common and sometimes can even lead to reasonable results. 
However, this approach does not take into account the between-attribute relationships, 
which are usually explored by data mining methods. Therefore, a more interesting 
approach involves trying to fill missing values by preserving such relationships.  

The task of fulfilling missing values is often referred to as either missing values 
substitution or missing values imputation. Imputation methods can be helpful for a 
variety of data mining tasks, such as classification, extraction of association rules and 
clustering. In this work, we focus on clustering tasks, in which one seeks to identify a 
finite set of categories (clusters) to describe the data. More specifically, we describe 
and evaluate a Nearest-Neighbor Method (NNM) to substitute missing values in data-
sets to be partitioned by the Clustering Genetic Algorithm (CGA) [6], which can find 
(according to a numeric criterion) the optimal number of clusters. Similar NNMs for 
imputation have been proposed in the literature – e.g. see [7,8] for classification prob-
lems and [9,10] for clustering tasks. NNMs usually do not generate a model to de-
scribe the data and, when used for imputation, they basically search for the best in-
stance(s) of the dataset to be used for substituting missing values. This characteristic 
may produce a high computational cost. On the other hand, as the learning process is 
specific to each query, it may be more accurate. Under this perspective, we believe 
that a NNM can be a suitable data preparation tool for the CGA. 

The remainder of this paper is organized as follows. The next section presents our 
proposed method to substitute missing values. Section 3 reviews the Clustering Ge-
netic Algorithm (CGA) [6]. The employed NNM is evaluated in two datasets that are 
benchmarks for data mining methods, and the obtained results are described in Sec-
tion 4. Finally, Section 5 concludes our work. 

2   Nearest-Neighbor Method (NNM) 

The Nearest-Neighbor Method (NNM) substitutes missing values by the correspond-
ing attribute value of the most similar complete instance, i.e. it is a K-nearest-
neighbor method [11] for K=1. Let us consider that each instance is described by  
attributes. Thus, each instance can be represented by a vector y=[y1,y2,...,y ]. The 
distance between two vectors (instances) u and y will be here called d(u,y). Also, let 
us suppose that the i-th attribute value (1 i ) of vector u is missing. The NNM cal-
culates distances d(u,y), for all y u, y representing a complete instance, and use these 
distances to compute the value to be imputed in ui. The Euclidean metric – expression 
(1) – is used to compute distances between continuous/ordinal instances, whereas the 
simple matching approach – expression (2) – is employed to compute distances be-
tween instances formed by nominal/binary attributes. 

d(u,y)E = 22
11

2
11

2
11 )yu(...)yu()yu(...)yu( iiii ρρ −++−+−++− ++−− . (1) 

d(u,y)SM = =
≠=

ρj
ij,j js1 ;  sj=0  if  uj=yj;   sj=1 otherwise . (2) 



 Missing Values Imputation for a Clustering Genetic Algorithm 247 

 

In the above expressions, the i-th attribute is not considered, because it is missing 
in u. After computing the distances d(u,y) for all y u, y representing a complete in-
stance, the more similar instance (the neighbor of u) is employed to complete ui. The 
nearest neighbor of u is here called s. This way, d(u,s)=min d(u,y) for all y u, and ui 
is substituted by si. For a set of instances whose distances d(u,y) are equal, the substi-
tuted value comes from the first instance of this set. Although expressions (1) and (2) 
just consider one missing value (in the i-th attribute), they can be easily generalized 
for instances with more missing values. 

The imputation by the K-Nearest Neighbor (KNN) method is simple, but it has 
provided encouraging results [7,8,9,10]. In clustering problems, this approach is par-
ticularly interesting, because the imputation is based on distances between instances, 
as well as the clustering process is. In other words, the inductive biases of clustering 
and imputation methods are equal. 

3   Review of the Clustering Genetic Algorithm (CGA) 

Clustering is a task in which one seeks to identify a finite set of categories (clusters) 
to describe a given dataset, both maximizing homogeneity within each cluster and 
heterogeneity among different clusters [12]. In other words, instances that belong to 
the same cluster should be more similar to each other than instances that belong to 
different clusters. Thus, it is necessary to devise means of evaluating the similarities 
between instances. This problem is usually tackled indirectly, i.e. distance measures 
are used to quantify the dissimilarity between instances. Several dissimilarity meas-
ures can be employed for clustering tasks, such as the Euclidean distance – expression 
(1) – or the simple matching approach – expression (2). In both cases, the CGA uses 
all the available information (attribute values) to calculate such dissimilarities. 

The CGA assumes that clustering involves the partitioning of a set X of instances 
into a collection of mutually disjoint subsets Ci of X. Formally, let us consider a set of 
N instances X={x1,x2,...,xN} to be clustered, where each xi ∈ ℜρ is an attribute vector 
consisting of ρ measurements. The instances must be clustered into non-overlapping 
groups C={C1,C2,...,Ck} where k is the number of clusters, such that: 

C1 ∪ C2 ∪... ∪ Ck = X ,    Ci ≠ ∅,    and    Ci ∩ Cj = ∅  for  i ≠ j. (3) 

The problem of finding an optimal solution to the partition of N data into k clus-
ters is NP-complete [13] and, provided that the number of distinct partitions of N 
instances into k clusters increases approximately as kN/k!, attempting to find a globally 
optimum solution is usually not computationally feasible [12]. This difficulty has 
stimulated the search for efficient approximate algorithms. Evolutionary algorithms 
[14,15] are widely believed to be effective on NP-complete global optimization prob-
lems and they can provide good sub-optimal solutions in reasonable time [13]. Under 
this perspective, a genetic algorithm specially designed for clustering problems was 
introduced in [6] and it is here reviewed. Figure 1 provides an overview of the CGA, 
whose main features are described in the sequel. 

 



248 E.R. Hruschka, E.R. Hruschka, and N.F.F. Ebecken 

 

1) Initialize a population of genotypes; 
2) Evaluate each genotype in the population; 
3) Apply a linear normalization; 
4) Select genotypes by proportional selection; 
5) Apply crossover and mutation; 
6) Replace the old genotypes by the ones formed in step 5); 
7) If the convergence criterion is attained, stop; if not, go to step 2). 

Fig. 1. Clustering Genetic Algorithm (CGA) 

3.1   Encoding Scheme 

The CGA [6] is based on a simple encoding scheme. Let us consider a dataset formed 
by N instances. Then, a genotype is an integer vector of (N+1) positions. Each posi-
tion corresponds to an instance, i.e., the i-th position (gene) represents the i-th in-
stance, whereas the last gene represents the number of clusters (k). Thus, each gene 
has a value over the alphabet {1,2,3,...,k}. For example, in a dataset composed of 20 
instances, a possible genotype is: 223451234533214545525. In this case, 5 instances 
{1,2,7,13,20} form the cluster whose label is 2. The cluster whose label is 1 has 2 
instances {6,14}, and so on. Finally, the last gene represents the number of clusters. 

Standard genetic operators may not be suitable for clustering problems for several 
reasons [6,16]. First, the encoding scheme presented above is naturally redundant. In 
fact, there are k! different genotypes that represent the same solution. Thus, the size of 
the search space is much larger than the original space of solutions. This augmented 
space may reduce the efficiency of the genetic algorithm. In addition, the redundant 
encoding also causes the undesirable effect of casting context-dependent information 
out of context under the standard crossover, i.e., equal parents may originate different 
offspring. Mainly for these reasons, the development of genetic operators specially 
designed for clustering problems has been investigated [6,16]. In this context, the 
CGA operators are of particular interest since they operate on constant length geno-
types. 

3.2   Crossover and Mutation Operators 

The crossover operator combines partitions codified in different genotypes. It works 
in the following way. First, two genotypes (A and B) are selected. Then, assuming 
that A represents k1 clusters, the CGA randomly chooses c ∈ {1,2,...,k1} clusters to 
copy into B. The unchanged clusters of B are maintained and the changed ones have 
their instances allocated to the corresponding nearest clusters (according to their cen-
troids). In this way, an offspring C is obtained. The same procedure is employed to 
get an offspring D, but now considering that the changed clusters of B are copied into 
A. Thus, the crossover operator produces offspring usually formed by a number of 
clusters that are neither smaller nor larger than the number of clusters of their parents. 

Two operators for mutation are used in the CGA. The first operator works only 
on genotypes that encode more than 2 clusters. It eliminates a randomly chosen clus-
ter, placing its instances to the nearest remaining clusters (according to their cen-
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troids). The second operator divides a randomly selected cluster into 2 new ones. 
The first cluster is formed by the instances closer to the original centroid, whereas 
the other cluster is formed by those instances closer to the farthest instance from the 
centroid. 

3.3   Objective Function 

The objective function is based on the silhouette [17]. To explain it, let us consider an 
instance i belonging to cluster A. The average dissimilarity of i to all other instances 
of A is denoted by a(i), whereas the average dissimilarity of i to all instances of a 
different cluster C will be called d(i,C). After computing d(i,C) for all clusters C ≠ A, 
the smallest one is selected, i.e. b(i) = min d(i,C), C ≠ A. This value represents the 
dissimilarity of i to its neighboring cluster, and the silhouette s(i) is given by: 

)}(),(max{

)()(
)(

ibia

iaib
is

−=  (4) 

It is easy to verify that −1 ≤ s(i) ≤ 1. Thus, the higher s(i) the better the assignment 
of instance i to a given cluster. In addition, if s(i) is equal to zero, then it is not clear 
whether the instance should have been assigned to its current cluster or to a neighbor-
ing one [18]. Finally, if cluster A is a singleton, then s(i) is not defined and the most 
neutral choice is to set s(i) = 0 [17]. The objective function is the average of s(i) over 
i = 1,2,...,N and the best clustering is achieved when its value is maximized.  

3.4   Selection, Settings and Initial Population 

The genotypes corresponding to each generation are selected according to the roulette 
wheel strategy [19], which does not admit negative objective function values. For this 
reason, a constant equal to one is summed up to the objective function before the 
selection procedure takes place. In addition, the best (highest fitness) genotype is 
always copied into the succeeding generation. 

The CGA does not employ crossover and mutation probabilities; that is, the de-
signed operators are necessarily applied to some selected genotypes after the roulette 
wheel selection procedure is performed. Particularly, 50% of the selected genotypes 
are crossed-over, 25% are mutated by Operator 1 and 25% are mutated by Operator 2. 

In this work, we have employed the methodology developed in [17] to set up the 
initial population. The process is based on the selection of representative instances. 
The first selected instance is the most centrally located in the set of instances. Subse-
quently, other instances are selected. Basically, the chance of selecting an instance 
increases when it is far from the previously selected ones and when there are many 
instances next to it. After selecting the representative instances, the initial population 
is formed considering that the non-selected instances must be clustered according to 
their proximity to the representative ones. Considering k representative instances, the 
first genotype represents 2 clusters, the second genotype represents 3 clusters,..., and 
the last one represents k clusters. Thus, we have employed initial populations formed 
by (k-1) genotypes, each one representing a different data partition. 
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4   Simulation Results 

Imputation methods can be evaluated as prediction tools. To do so, known values can 
be artificially excluded from a dataset (missing values simulation), with the goal of 
predicting them by a particular imputation method. Thus, the predicted value can be 
compared with the real, known value artificially eliminated from the dataset. Consid-
ering this scenario, the more similar the imputed value is in relation to the real one, 
the better the imputation method is. In this work, we compare the prediction results 
obtained by the NNM with those achieved by the mean/mode imputation. Although 
the prediction results provide an efficient way to compare different imputation meth-
ods, requiring few computations after imputation, they do not provide any guarantee 
that the imputed values will be suitable for the ultimate data mining task – e.g. the 
clustering process. In summary, the prediction results are not the only important issue 
to be analyzed. Data mining methods usually explore relationships between attributes 
and, thus, it is critical to preserve them, as far as possible, when replacing missing 
values [3]. This aspect has motivated us to propose the NNM as an imputation tool for 
the CGA. Indeed, since both methods (NNM and CGA) are based on distance meas-
ures, which can somehow reflect the between-attribute relationships, the patterns 
inserted by the NNM tend to be consistent with the clustering process performed by 
the CGA. To assess this aspect, we compare the partitions obtained in the original 
datasets with those obtained in the imputed datasets. The next section describes the 
procedure employed to generate datasets formed by imputed values. 

4.1   Missing Values Simulation and Imputation   

Our simulations consider that there is just one missing value at a time. Let us consider 

a dataset formed by N instances xi=[ iii x,...,x,x ρ21 ]. First, we simulate that 1
1x  is missing 

and it is consequently substituted. Second, 1
2x  is missing and it is consequently sub-

stituted. This process is repeated until 1
ρx  is substituted. After that, we simulate that 

2
1x  is missing and it is consequently substituted. In summary, this procedure is re-

peated for all i
jx  (i=1,...,N; j=1,..., ). This way, simulations can be easily reproduced, 

i.e. they are not influenced by the choice of random samples. After the imputation 
process, we obtain a substituted dataset, which is formed only by imputed values 
(same number of instances and attributes of the original dataset). Thus, it is possible 
to compare the imputed values with the original ones, as well as the partitions ob-
tained in the original dataset can be compared with those achieved in the imputed 
datasets. 

4.2   Employed Datasets   

The assessment of clustering results usually requires datasets for which the clusters 
are a priori known. In this sense, clustering algorithms can be evaluated by means of 
classification datasets. To do so, the clustering algorithm is applied in the classifica-
tion dataset (without the class labels) in order to verify whether it finds the correct 
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clusters (according to the known classes) or not. Our simulations were performed in 
two classification datasets that are benchmarks for data mining methods: Wisconsin 
Breast Cancer and Congressional Voting Records. These datasets are available at the 
UCI Machine Learning Repository [20]. These datasets were chosen because they are 
formed by ordinal and binary attributes, showing the applicability of our method, 
which can also be employed for continuous and nominal attributes, e.g. using expres-
sions (1) and (2) to compute distances respectively. In this sense, we extend our pre-
vious work [21], in which only ordinal attributes were considered. 

In the Wisconsin Breast Cancer dataset, each instance has 9 ordinal attributes 
(A1,…, A9) and an associated class (benign or malignant). The attribute values belong 
to the set {1,2,…,9}. There are 699 instances, of which 16 have missing values. We 
removed those instances (to allow evaluating the prediction results) and used the 
remaining ones to simulate imputations. The Congressional Voting Records dataset 
includes votes for each of the U.S. House of Representatives Congressmen on 16 key 
votes (attributes A1,…,A16). There are 435 instances, of which 203 have missing val-
ues. These instances were removed (to make the prediction evaluation possible) and 
the proposed method was employed in the remaining ones. 

4.3   Evaluating the NNM as a Prediction Tool  

In this section, we compare the imputed values with the original ones (artificially 
excluded from the dataset). This is performed by reporting the average prediction 
error for each attribute. For the ordinal attributes of the Wisconsin dataset, we calcu-
late the average absolute differences between substituted and original values for each 
attribute – considering all substitutions. In this case, the NNM imputations are com-
pared with those achieved by the mean value, and the obtained results (average pre-
diction error) are depicted in Figure 2. For the binary attributes of the Congress data-
set, the NNM average error rate is compared with the results obtained by the mode 
imputation (Figure 3). The NNM provided better results than the substitution by the 
mean in all attributes of Wisconsin, whereas in Congressional the NNM provided 
better results in 14 out of 16 attributes. The mean/mode imputation was also per-
formed according to the methodology described in Section 4.1. 

4.4   Evaluating the Influence of NNM Imputation in a Clustering Task 

In this section, we report results that allow estimating the suitability of the NNM in 
the context of the partitions found by the CGA. As previously mentioned, imputed 
values should preserve the between-attribute relationships observed in the clean 
(original) dataset. In a clustering process, it means that the correct clusters should be 
preserved, i.e. it is expected that the imputed values do not change the classification 
of each particular instance. To evaluate this aspect, it is assumed that the correct clus-
ters are given by the classes. Thus, it is possible to verify to what extent the CGA is 
capable of finding the correct clusters, which are given by the instances of each class. 
In this sense, we compare the Average Correct Classification Rates (ACCRs) ob-
tained by CGA in the original dataset with those obtained in the substituted datasets.  

The CGA was applied in the original dataset and in the dataset formed only by 
substituted values, using populations formed by 20 genotypes that, in turn, implies in 
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using 21 clusters at most (see Section 3.4 for details). We simulated the clustering 
process 11 times (this number is convenient to perform the Wilcoxon/Mann-Whitney 
test [22]) for each dataset and the maximum number of generations was set to 100. In 
all simulations, the CGA has found the correct number of clusters. Table 1 shows the 
obtained results in terms of the Average Correct Classification Rates (ACCRs). 

Table 1. ACCRs (%): average (μ); standard deviation (σ) 

Dataset CGA (Original) CGA (Imputed by NNM) 
Wisconsin Breast Cancer μ=95.45; σ=0.30 μ=95.27; σ=0.30 

Congressional Voting μ=86.41; σ=0.22 μ=88.36; σ=0.00 
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Fig. 2. Average prediction error - Wisconsin Breast Cancer 
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Fig. 3. Average prediction error (%) - Congressional Voting Records 

The CGA has provided similar ACCRs in both datasets (original and imputed by 
NNM). This aspect was statistically evaluated by means of the Wilcoxon/Mann-
Whitney test [22]. In the Wisconsin Breast Cancer, it was performed supposing that 
the ACCR values in the original dataset are equal to those obtained in the substituted 
dataset, and we concluded that the results are statistically significant at the 5% sig-
nificance level. In the Congressional Voting Records, there is sample evidence 
(α=5%) suggesting that the results in the imputed dataset are slightly better than in the 
original dataset. These results suggest that the proposed method is a suitable estimator 
for missing values, preserving (Wisconsin) or slightly improving (Congress) the rela-
tionships between attributes in the clustering process. Finally, due to the methodology 
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employed in our simulations (Section 4.1), most of the values imputed by the 
mean/mode are equal across all instances. In this sense, instances in the substituted 
dataset form only one cluster. In this case, it does not make sense to evaluate the clus-
tering results achieved by the mean/mode imputation. However, the methodology 
described in Section 4.1 is particularly interesting to evaluate clustering results in the 
datasets imputed by NNM, because these datasets do not contain any original values 
and, thus, the corresponding CGA´s results are not positively biased by them. 

5   Conclusions 

Missing values are a critical problem in data mining applications. In this work, we 
presented a Nearest-Neighbor Method (NNM) to substitute missing values and 
showed that it can be useful for a Clustering Genetic Algorithm (CGA). In the NNM, 
each instance containing missing values is compared with the complete instances, 
using a distance metric, and the most similar complete instance is used to assign the 
missing value for a particular attribute.  

 The proposed method was assessed by means of simulations performed in two 
datasets that are benchmarks for data mining: Wisconsin Breast Cancer and Congres-
sional Voting Records. Our simulations were designed to evaluate the NNM both in 
prediction and in clustering tasks. In the prediction task, we compared the results 
obtained by the NNM with those achieved by the mean/mode imputation. In the clus-
tering task, we compared the partitions obtained in original datasets with those 
achieved in imputed datasets. The prediction results showed that the NNM provided 
better results than the mean/mode imputation. Although the prediction results are 
relevant, they are not the only important issue to be analyzed. In fact, imputation 
methods must generate values that least distort the original characteristics of the 
original sample, preserving the between-attribute relationships. In our work, we 
evaluated this aspect in the CGA context, performing clustering simulations and com-
paring the results obtained in the original datasets with the substituted ones. These 
results indicated that the proposed method is a suitable estimator for missing values. 

Considering our future work, there are many aspects that can be further investi-
gated. One important issue involves evaluating the best number of neighbors (K) in 
the K-nearest-neighbor method. Finally, we are also going to assess the efficacy of the 
proposed method in real-world datasets, comparing the NNM results with those ob-
tained by other imputation methods. 
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Abstract. Based on the concept of organization in economics, a novel
genetic algorithm, organizational nonlinear genetic algorithm (ONGA),
is proposed to solve global numerical optimization problems with con-
tinuous variables. In ONGA, genetic operators do not act on individuals
directly, but on organizations, and four genetic operators,organization
establish, organization classify, multi-parent crossover, and multi-parent
mutation operators, are designed for organizations. Simulation results
indicate that ONGA performs much better than the real-coded genetic
algorithm both in the quality of solution and in the computational
complexity.

1 Introduction

Multi-parent recombination is an attention-getting research area of GA in recent
years,and several multi-parent recombinations have been proposed such as the
real-coded center of mass crossover(CMX), multi-parent feature-wise crossover
operator(MFX), seed crossover operator(SX), simplex crossover (SPX) and a
fitness-weighted crossover(FWX)[1][2].

As an economics concept, organization can decrease the exchanging cost be-
tween goods and services. Based on this character, Wilcon J.R. used organization
to training classifier system in 1995 firstly and the organization was defined a
group or rules. Jing L. ec[3]t gave a new classification method based on orga-
nization though the organization defined as a group of training data, and in
2004, Jing L. etc[4] proposed a new organizational evolutionary algorithm while
organization is a group of individual.

Enlightened by them, this paper integrates organization with GA to form a
new algorithm, organizational nonlinear genetic algorithm (ONGA), for solving
the global numerical optimization problem. In ONGA, organization not only
provides the group of individuals, but evaluated by multi-parent operations.
However the performance of multi-parent recombination is independent with
the parent number.
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2 Organizational Nonlinear Genetic Algorithm for Global
Numerical Optimization

2.1 Organization Establish and Classify Operators

The following global optimization problem is considered:

maximizef(x)
subjecttoL ≤ x ≤ U

where x = (x1, x2, ..., xN )is a variable vector in RN , f(x) is the objective func-
tion, and L = (L1, L2, ..., LN) and U = (U1, U2, ..., UN ) define the feasible so-
lution space. We denote the domain of xi by [Li, Ui], and the feasible solution
space by [L, U ].

(1)Organization Establish Operator
To dynamically create the different organization, gene-pool is needed. Let us

assume X(t) = (X1, X2, ..., XN )is the population at time t, where Xkrepresents
the k-th chromosome, and N is the number of chromosomes. f(X(t))=(f(X1),
f(X2), ..., f(XN)) is the fitness vector of the population at time t, where
f(Xk)represents the fitness value of k-th chromosome. Parent populations are
selected using roulette wheel approach denoted by P (t) = (P1, P2, ..., P2N ). To
balance the diversity and computational efficiency, the parent number within
each organization is stochastic established, though it is limited by 2 ≤ parent−
numberj ≤ N

2 ,where parent−numberjmeans the number of parent individuals
within organization j.Thus the organization group is established. Suppose parent
population is divided into M parts. It means Organization1,Organization2,...,
and OrganizationM , where Organizationi = (PNumber(i)+1,PNumber(i)+2,...,

PNumber(i+1)), in which Number(i)represents the parent number within or-
ganization i.

(2)Organization Classify Operator
Organization fitness is a value determining how well or bad of a organization.

Thus, it can be defined with

Organizationi − fitness = max{fXj} (1)

where j = Number(i) + 1, Number(i) + 2, ..., Number(i + 1). Then the M or-
ganizations are divided into two parts: good or bad. Organization i is called a
good organization if and only if:

Organizationi − fitness ≥
∑M

j=1 Organizationj − fitness

M
(2)

while others are called bad organizations. Similarly, we can divide the parent
chromosome k of organization i into two parts: good or bad. Parent chromosome
j is called a good chromosome of organization i if and only if:

f(Xk) ≥
∑Number(i+1)

j=Number(i)+1 f(Xj)

Number(i + 1)−Number(i)
(3)

while others are called bad chromosome of organization i.
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2.2 Multi-parent Nonlinear Crossover Operator

In this paper, multi-parent nonlinear crossover operator defines a multiple prob-
ability distribution. First of all, we need to define two definitions. Suppose
Organizationi = (PNumber(i)+1,PNumber(i)+2,..., PNumber(i+1)), where Pj =
(Pj1,Pj2,..., PjN ), and j = Number(i) + 1,Number(i) + 2,..., Number(i + 1).
Suppose the good interval of kth variable in organization i is [GLk, GUk], and
better interval of kth variable in organization i is [BLk,BUk], where

GLk = min{Pjk|j = Number(i) + 1, Number(i) + 2, ..., Number(i + 1)} (4)

GUk = max{Pjk|j = Number(i) + 1, Number(i) + 2, ..., Number(i + 1)} (5)

BLk = min{Pjk|Pj ∈ Organizationi, andPjisagoodchromosome} (6)

BUk = max{Pjk|Pj ∈ Organizationi, andPjisagoodchromosome} (7)

Now, we can give a probability distribution f as follows:

Probability(x ∈ [BLk,BUk]) =
1

BUk − BLk
, if(random() < pb) (8)

Probability(x ∈ [GLk, GUk]) =
1

GUk −GLk
, if(pb ≤ random() < pg) (9)

Probability(x ∈ [Lk, Uk]) =
1

Uk − Lk
, if(pg ≤ random() < 1) (10)

It means the multi-parent nonlinear crossover operator has the capability not
only to exploitation, but also exploration. Thus the operator can decrease the
evendence of premature convergence. Because of the multi-parent crossover oper-
ator is a nonlinear function, we call it multi-parent nonlinear crossover operator.

2.3 Multi-parent Nonlinear Mutation Operator

The multi-parent nonlinear mutation operator uses the same information to
enhance the operator’s exploitation and exploration, and the good interval and
bad interval is the same as above, Now, we can give a probability distribution f
as follows:

Probability(x ∈ [BLk,BUk]) =
1

BUk −BLk
, if(random() < pb) (11)

Probability(x ∈ [GLk, GUk]) =
1

GUk −GLk
, if(pb ≤ random() < pg) (12)

Probability(x ∈ [Lk, Uk]) =
1

Uk − Lk
, if(pg ≤ random() < 1) (13)

It means the multi-parent nonlinear mutation operator has the capability not
only to exploration, but also exploitation.
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3 Computational Results and Comparisons

We have decided to perform experiments on numerical function optimization
problems. We have chosen the DeJong function F3, and the Spherical functions
as test suite, and to compare the performance of ONGA with the performance
of real-coded genetic algorithm (RGA). Because of the limitation, here we only
give the figure.

Fig. 1. Comparison of DeJongF3
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Abstract. Most scheduling literature assumes that machines are avail-
able at all times. In this paper, we study the flexible Job-shop schedul-
ing problem where the machine maintenance has to be performed within
certain intervals and hence the machine becomes unavailable during the
maintenance periods. We propose an assignment technique based succes-
sively on the use of different priority rules and a local search procedure.
An adequate criteria is developed to evaluate the quality of the assign-
ment. The sequencing problem is solved by a hybrid genetic algorithm
which takes into account the constraint of availability periods.

1 Introduction

Most of the literature on scheduling assumes that the machines are available
at all times. However, in many realistic situations, for typical industrial set-
tings, breakdowns and scheduled maintenance have rather quietly common oc-
currences. This consideration adds complexity to any scheduling problem.

In this paper, we consider the flexible job-shop scheduling with availability
constraints and related machines. We consider the deterministic model where the
unavailability periods corresponding to maintenance tasks are known in advance.
We also assume that preemption of operations is not allowed. More precisely, an
operation Oij of job Ji on machine Mk starts only if its execution can be finished
before Mk becomes unavailable. The problem considered is a generalization of
the classical job-shop problem and the multi-purpose machine problem studied
in [4], where machines are available all time.

As compared to the literature dedicated to classical scheduling problems,
studies dealing with limited machine scheduling problems are rather rare. Avail-
ability constraints have been firstly introduced in single machine [1], [15] and
parallel machines [12], [13]. Lee extensively investigated flow-shop scheduling
problems with two machines [6], [8], [9]. In particular, the author defined the
resumable, non-resumable and semi-resumable models. An operation is called
resumable if it can be interrupted by an unavailability period and completed
without penalty as soon as the machine becomes available again. If the part
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of the operation that has been processed before the unavailability period must
be partially (respectively fully) re-executed, then the operation is called semi-
resumable (respectively non-resumable). Recently, flow-shop scheduling prob-
lems with two machines and resumable jobs have been treated in [3] and [5].
Job-shop problem under unavailability constraints has also been considered re-
cently [17], [2] where authors proposed a branch and bound algorithm for the
job-shop problem with heads and tails and unavailability periods. However to our
knowledge flexible job shop under availability constraints has not been consid-
ered yet. The problem is strongly NP-hard since problem without unavailability
periods is already strongly NP-hard [4].Therefore we propose in this paper an
approximation method to solve this problem.

The remainder of this paper is organized as follows. After a description of
the considered problem in the following section, we propose a heuristic to solve
the assignment problem. A hybrid genetic algorithm (HGA) is then used for the
sequencing problem.

2 Problem Formulation

The flexible job-shop with availability constraints and related machines can also
be called MPM job-shop (job shop with Multi Purpose Machines).

It may be formulated as follows. There are n jobs J1, ..., Jn to be processed
on a set of m machines R = (M1, ...,Mm). Each machine Mr can process at
most one job at a time. Each job Ji consists of a sequence of ni operations, that
must be accomplished according to its manufacturing process. Each operation
Oij (i = 1, ..., n; j = 1, ..., ni) can be performed by any machine r in a given
set μij ⊂ R for pij time units. The operation is non-preemptive, i.e. it must be
accomplished without interruption. Moreover, we assume that machine Mr is
unavailable during giving periods corresponding to preventive maintenance. The
starting times and durations of these tasks are known and fixed in advance. We
note Kr the number of maintenance tasks on machine Mr. Arl and Drl represents
respectively the starting and the finishing time of the lth maintenance task on
machine Mr.

The objective is to construct a schedule with a minimum makespan.
According to the terminology concerning the machine availability introduced

in [16], the studied problem can be denoted by J(MPM), NCwin | Cmax,
where NCwin means that non-availability periods are arbitrarily distributed on
machines.

The scheduling problem in J(MPM)NCwin | Cmax can be decomposed in
two subproblems:

– a routing subproblem that consists in assigning operations to machines;
– an operation scheduling subproblem associated with each machine to mini-

mize the makespan. This is a Job-Shop scheduling Problem with Availability
Constraints J,NCwin | Cmax.
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3 The Routing Problem

In classical scheduling problem where machines are available all time we gener-
ally adopt for the assignment problem the following priority rule: assigning an
operation to the minimum loaded machine. In fact assigning the operation to
the minimum loaded machine in classical scheduling is aiming for the operation
to be finished as early as possible. Hence assigning operations in this way enable
to pre-optimize the makespan. In our problem, however, these two goals are not
equivalent and this technique is unsuitable.

3.1 Heuristic for the Assignment Problem

Because of maintenance tasks, the planning horizon is decomposed on subinter-
vals. So our objective, while assigning operations, is to occupy the different time
intervals.

Since we deal with a problem presenting precedence constraints, we sort
operations in FIFO order using their earliest starting time (definition 1).

Definition 1. To each operation Oi,j , we associate an earliest starting time ri,j

calculated by the following formula:{
r1,j = rj ∀ 1 ≤ j ≤ N , ri+1,j = ri,j + pi,j

∀ 1 ≤ i ≤ nj − 1, ∀ 1 ≤ j ≤ N.
(1)

On each machine Mr, Kr maintenance tasks are fixed. This decomposes the
planning horizon of machine Mr on Kr + 1 subintervals Ir1, Ir2; ...; IrKr+1.

The starting and the finishing time of a subinterval Irl are respectively
Dr(l−1) and Arl. the last subintervals IrKr+1 are in the shape [Dr(l−1),+∞).
the heuristic starts by assigning operations that could be scheduled in intervals
Irl r = 1...m, l = 1...Kr

So in Step 2, these intervals are sorted in non decreasing order of their finish-
ing time. For each interval Irl, we try to find the set of operations, noted εrl in
the program, such that CFIFO ≤ Arl, CFIFO is the makespan where operations
are scheduled in FIFO order. Priority is given of course to operations Oij such
that card(μij) = 1.

Step 3 deals with the remaining operations that means operations that will be
scheduled in IrKr+1 r = 1...m, the priority rule FAM (First Available Machine)is
applied. Let us define Sij the machine that will be assigned to operation Oij by
the heuristic of Fig.1.

In order to ensure a high level of the solution quality, we have chosen to
improve the assignment given by the assignment heuristic. To this end, a local
improvement search has been studied. Such search is based on a Tabu algorithm
, an adapted routing move technique and an adapted criteria for the studied
problem. In next section, we give a description of the Tabu algorithm.
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step 1
Sort operations in non-decreasing order of their
earliest starting time.
Sort all available interval of all machines in non-decreasing
order of their finishing time.
step 2
for each interval Irl, r = 1...m, l = 1...Kr

define the set E1,rl of operations Oij such that:
μij = {r} and rij + pij ≤ Arl ,
the set E2,rl of operations Oij such that:
r ∈ μij , card(μij) > 1and rij + pij ≤ Arl ,
For each operation Oij in E1,rl

Sij = r
if (CF IF O = max(CF IF O, rij) + pij ≤ Arl)

CF IF O = max(CF IF O, rij) + pij

εrl = εrl ∪ Oij

For each operation Oij in E2,rl

Sort operations in εrl ∪ Oij in non-decreasing order of their
earliest starting time and compute CF IF O.
if (CF IF O ≤ Arl)

Sij = r
εrl = εrl ∪ Oij

step 3
For the remaining operations Use the rule FAM (First Available
Machine) for the assignment

Fig. 1. Heuristic for the assignment problem

3.2 A Tabu Search Algorithm for the Assignment Problem

For a classical routing problem where machines are available all time, we choose
in general to minimize the workload of the most loaded machine since it is a
lower bound for the makespan.

We define for each assignment S a lower bound noted LB(S) for the makespan
corresponding to S. This lower bound is based on the one machine relaxation
and taking into account the unavailability periods.

The objective of the tabu search algorithm presented here is to minimize
Cr1 = LB(S) and hence to preoptimize the makespan.

Giving an assignment S, to each machine Mk, we associate a single-machine
problem πk with ready times (definition 1), tails (definition 2) and unavailability
periods.

A lower bound for πk is the makespan of a preemptive schedule with un-
availability periods based on the Jackson Preemptive Schedule (JPS) defined in
Fig.2.

Definition 2. After the finishing of operation Oij , a time of qij has to go before
job Ji is finished completely. qij is called the tail of operation Oij
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step1
For each unavailability period we associate
a virtual operation where the ready time is equal to Arl

and the tail is equal to G, G is a big constant :
(G > qij, ∀Oij ∈ Br )
We add this operation to Br,

Br is the set of operations executed by machine Mr.
step2
At time Zero, or the time when operation has just completed
processing, schedule among the available operations in Br the
operation with the largest tail, If there is no operation
available, leave the machine idle until the first available operation
step3
When a new operation just become available,
compare the tail of this operation with the operation under
processing.
If it is greater, preempt the operation under
processing by this new operation.
Otherwise, add this operation to the list of available operations.
step4
Computation of the makespan:
- Set the tail of the virtual operation associated
to the unavailability period to 0.
- The makespan is equal to MaxOij∈Br (Cij + qij),
Cij is the completion time of Oij in the preemptive schedule

Fig. 2. Preemptive Schedule

The procedure of preemptive schedule allows constructing the optimal sched-
ule when preempt-resume applies and hence to obtain a lower bound for πk due
to the two following reasons:

1. the unavailability period is treated as an operation, so the problem here is
equivalent to the preempt-resume case where JPS give the optimal solution.

2. The unavailability period will start right on its ready time and will never be
preempted since it has the largest tail among the available operations. Pre-
emptive schedule is calculated for each machine and LB(S) is the maximal
makespan of these schedules.

Description of the Tabu Search (TS) Algorithm. TS was introduced by
Glover as a general iterative metaheuristic for solving combinatorial optimization
problems [7].

The TS algorithm is as follows.

- The initial solution is obtained by applying the assignment heuristic described
above.
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- The solution is described as a list of operations with their corresponding ma-
chines.

- A routing move is defined by the relocation of a critical operation (operation
that belongs to the machine with ) to a feasible machine position. For a given
solution, we consider every possible relocation of every reroutable critical
operation.
The routing move is based on the following steps:
1. Find the critical machine Mkc .
2. Find an operation Oij that it can be assigned to another machine Mk0 ∈

μijwithout increasing the criterion value.
3. Reassign Oij to Mk0 if possible.

- The Tabu list consists of pairs (op;mo), where op denotes the operation that
is moved from machine mo to a different machine.

- The choice of the move is based on the value of Cr1 which is the maximum
makespan value of the preemptive schedules.

4 Hybrid Genetic Algorithm for the Job-Shop Problem
with Availability Constraints

After the assignment step, the J(MPM)NCwin | Cmax problem is reduced to
a job-shop problem with availability constraints (JSPAC).

- to each operation Oij , we define Ma(i,j) as the machine on which Oij will
be executed (Mk is the machine assigned to Oij in the first part of the
algorithm).

- to each machine Mk, we associate the set Bk of operations to be executed on
the machine.

The problem is then to assign the starting time tij and the completion time
tfij to each operation Oij(tfij = tij + pij). The considered objective is to mini-
mize the makespan (Cmax = maxi,jtfij ).

4.1 Genetic Local Search

We propose a Hybrid Genetic algorithm (HGA) to optimize the makespan in a
JSPAC.

Coding: Tasks Sequencing List(T.S.L). We choose to use a simple linear
encoding. This encoding has been used for JSP problem [10]. It consists in repre-
senting the schedule in a list of NT operations (

∑
1≤i≤n ni ). Each chromosome

will represent the tasks sequencing in the form of a NT-cell list (Fig.3). Each
cell represents a task Tz (1 ≤ z ≤ NT ) coded in the following way: (i, j, k).

The computation of the starting times and the completion times (tij , tfij)
is obtained by applying a Non-delay schedule generation procedure described
bellow according to the order z of each task in the list (Fig.4).
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T1 T2 ... Tz TNT

(1, 2, 3) (2, 2, 3) (i, j, k) (3, 2, 4)

Fig. 3. Coding

Initialization of the availability date of machine
Mk (DM [k]) and the availability date of job
ji (DJ [i])
Initialization:

DM [k] = 0 for k = 1...m
DJ [i] = 0 for i = 1...n

For z =1...NT
hij = max(DM [k], DJ [i])
Compute Ak,hij et Dk,hij the starting and the finishing time of the
unavailable period corresponding to hij

(hij < Dk,hij i.e ) Check if Tz can be scheduled before the unavailable
period
if( hij + pij ≤ Ak,hij )

tij = hij

tfij = tij + pij

Tzis scheduled after the unavailable period
Else

tij = max(Dk,hij , hij)
tfij = tij + pij

Update the availability date of machine Mk

and the availability date of job Ji

DJ [i] = tfij

DM [a(i, j)] = tfij

Fig. 4. Pseudo-code of Schedule Generation Procedure

Such procedure is based on the sequencing of the tasks (i, j) on the machine
Mk according to the availability of machine Mk and the precedence constraints.
In fact, for each machine Mk and each job Ji we associate an availability date
DM [k] and DJ [i] corresponding respectively to the end of the operation sched-
uled on machine Mk just before the operation Oij and the end of the operation
preceding Oij in the job.

Oij can be scheduled at earliest at date hij = max(DM [k], DJ [i]). But be-
cause of the availability constraints we have to check if the operation can be
scheduled before or after the corresponding unavailable period (the first unavail-
able period such that hij is less than its finishing time).

Operators: In our case, we have to respect the precedence constraints between
the operations of each job. Therefore, we can avoid a correction process which
will be very expensive in term of computation time. Hence, we propose to use
operators developed by Lee and Yamakawa to respect precedence constraints for
sequencing problems [9].
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Local Search Procedure: It is well known that GA can be enhanced by incor-
porating local search methods. In fact, an offspring obtained by a recombination
operator, such as crossover, is not included in the next generation directly but
is used as a ”seed” for the subsequent local search. We employ the exchange lo-
cal search, based on the disjunctive graph model of Roy and Sussmann and the
neighborhood of Nowicki and Smutnicki [11]. The local search procedure begins
by identifying the critical path. However, because the unavailability periods do
not appear in the graph, the classical longest path calculation is not enough pre-
cise. In fact the earliest starting time and the latest starting time are calculated
using the procedures of Fig.5, Fig.6.

Calculate for each operation Oij

estij = maxOi′j′ precede Oijesti′j′ + pi′j′

if Ak,l ≤ estij < Dk,l and then return Dk,l

else if estij < Ak,l and estij + pij > Ak,l

then return Dk,l

else return estij

Fig. 5. Earliest starting time

Calculate for each operation Oij

lstij = minOij precede Oi′j′ lsti′j′ − pij

if (Oij is scheduled just before the unavailable
period of machine a(i, j))
Then return min(lstij , Ak,l − pij)
Else return lstij

Fig. 6. Latest starting time

It is possible to decompose the critical path into a number of blocks where a
block is a maximal sequence of adjacent critical operations that require the same
machine. The approach of Nowicki and Smutnicki can be described as follow:

Given b blocks, if 1 < l < b, then swap only the last two and first two
block operations. Otherwise, if l = 1 (l = b) swap only the last (first) two
block operations. In the case when the first and/or last block contains only two
operations, these operations are swapped. If a block contains only one operation,
then no swap is made.

5 Experiments Result

Ten classic flexible job-shop instances have been used for computational experi-
ments (LA01, LA02, LA03, LA04, LA05, LA06, ABZ07, LA08 , LA09, LA10W).

For these instances, we note C∗ the best makespan obtained in the literature
without unavailability periods. Unavailability periods are generated as follows:
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– the number of unavailability periods on each machine is denoted by z and
equals to n/5.

– The starting times and the ending times of the lth unavailability period on
machine Mrl are uniformly generated in [0;C∗ + 3 × pmax(z − 1)/2] and
[Arl +pmax/2, Arl +3×pmax/2] respectively. pmax represents the maximum
processing time of all operations.

This method of generating unavailable periods is used in [17] to generate in-
stances for job-shop problem with availability constraints.

One set of unavailability periods has been generated for each instance, leading
to the new instances denoted by (LA01W, LA02W, LA03W, LA04W, LA05W,
LA06W, LA07W, LA08W , LA09W and LA10W).

In table I, we report the values of the preemptive lower bound obtained
by the assignment procedure (LB(Sinit) and the tabu search (LB(Stabu). We
report also the value of the makespan obtained by the HGA using the assign-
ment given by the tabu search as well as the relative deviation of Cmax from
LBS tabu.

We notice from these preliminary simulations that the algorithm of tabu
search improve the value of the lower bound and then the value of makespan.
And hence we deduce the adaptability of this method and the criteria cho-
sen for the routing problem. The HGA is also efficient (RD ∼ 13.14%)for the
examples treated. However, we have to test it on larger instances in future
work.

Table 1. Simulation results of the HGA

 size LBS_init LBtabu Cmax RD
la01W 10x5 933 821 875 6.57% 
La02W 10x5 830 780 853 9.35% 
La03W 10x5 653 620 769 24% 
La04W 10x5 682 660 703 6.51% 
La05W 10x5 653 620 781 25.05% 
La06W 15x5 977 941 1002 6% 
La07W 15x5 919 845 1132 20.5% 
La08W 15x5 948 922 1141 33% 
La09W 15x5 989 969 1052 8.56% 
La10W 15x5 1144 953 1123 17.7% 

6 Conclusion

In this paper, we have proposed an algorithm based on a heuristic and the
application of a hybrid genetic algorithm to deal with the MPM jobshop with
limited machine availability. Preliminary simulations show the quality and the
adequation of the proposed method. As future perspective we propose to focus on
scheduling jointly and simultaneously jobs and maintenance tasks and propose
a multi objective method based on evolutionary algorithm to deal with this
problem. Besides the valuation of the results on larger instances.
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Abstract. This paper proposes an elite crossover strategy together with a 
dynastic change strategy for genetic algorithms. These strategies are applied to 
the elites, with a different crossover operation applied to the general population. 
This multi-crossover operation approach is different from the traditional genetic 
algorithms where the same crossover strategy is used on both elites and general 
population. The advantage of adopting a multi-crossover operation approach is 
faster convergence. Additionally, by adopting a dynastic change strategy in the 
elite crossover operation, the problem of premature convergence does not need to 
be actively corrected. The inspiration for the dynastic change strategy comes 
from ancient Chinese history where royal members of a dynasty undertake 
intermarriages with other royal members in order to enhance their ascendancy. 
The central thesis of our elite crossover strategy is that a dynasty can never be 
sustained forever in a society that changes continuously with its environment. A 
set of 8 benchmark functions is selected to investigate the effectiveness and 
efficiency of the proposed genetic algorithm. 

1   Introduction 

Due to their robustness, genetic algorithms (GAs) have become increasingly popular 
for optimizing real world applications. Another reason for their wide acceptance and 
popularity is by mimicking the process of biological evolution in the improving search, 
GAs generally avoid local optima. This is a huge advantage over gradient-based 
optimization formulations which require objective function derivatives and thus, are 
prone to convergence to local optima. GAs are based on the mechanics of natural 
selection and natural genetics rather than a simulated reasoning process and they 
belong to the category of non-deterministic optimizing algorithms [1], [2]. Good 
heuristic optima are evolved by operations combining members of an improving 
population of individual solutions. GAs, on the other hand, may converge too quickly 
in the early stages or too slowly in the later stages of the iterations [3], [4], [5] leading to 
a local optimum, the well-known premature convergence problem [6]. Furthermore, 
because of their statistical approach GAs do not guarantee their solutions are feasible. 
This leads to another concern, especially among members of the mathematical 
community, the lack of an established theory explaining why the method works and 
why it sometimes does not. 
                                                           
* Also, Professor of Mechanical Engineering at The Univ. of Iowa, USA. 
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In the traditional GA, the same crossover strategy is employed on elites as well as 
the general population, and this can lead to a slow down of the convergence speed. To 
avoid the problem and perhaps, even enhance the convergence speed, this paper 
proposes for the elites an elite crossover operation coupled with a dynasty-based 
crossover strategy while the general population is treated with an ordinary crossover 
strategy. The method is inspired by dynastic development and change similar to that 
found in ancient China where royal members of a dynasty undertake intermarriage with 
other royal members in order to enhance their ascendancy. The central thesis of our 
dynastic change strategy is that a dynasty can never be sustained forever in a society 
that changes continuously with its environment. 

Another well-known problem in GAs is premature convergence. Up to now, no 
effective methods have been proposed to overcome this difficulty. While the dynastic 
change strategy does not actively avoid the premature convergence problem, it reduces 
its occurrence by renewing the population and saving the best individuals in the former 
generation when the problem appears.  

In the next section a flowchart description of the proposed GA implementation is 
provided, followed by a section on numerical experimentation to demonstrate and 
validate the effectiveness of the method and finally, some concluding remarks. 

2   Flowchart for the Proposed Elitist and Dynastic-Based GA 
Implementation 

Some of the more salient features of the proposed algorithm are briefly described here. A 
floating-point representation is adopted in the work. To retain the best members during 
regeneration, an elite-based operation is used. Furthermore, a dynastic-change strategy is 
employed to enhance convergence. In addition, offspring of the general population are 
created by a probabilistic crossover operation. In the fitness selection, several strategies 
are available: a roulette-wheel method [7], [8], a tournament-based technique or a 
ranking-based procedure. A tournament-based method is adopted in this paper since it 
generally converges faster than the other 2 techniques. The flowchart of the proposed GA 
with elite crossover and dynastic change strategies is outlined in Table 1. 

A more detailed explanations of the flowchart is summarized below. 
Step 1 is concerned with initialization and evaluation. The maximum number of 

generations together with other GA parameters are initialized. Furthermore, the initial 
population which can be chosen randomly or heuristically is fixed. If the size is too 
small, the population loses diversity and if it is too large, it loses efficiency. Goldberg 
[8] discusses some ideas on the initial population size selections. In the initial fitness 
evaluation phase, the values of parameters for each member are randomly extracted. 

Step 2 is concerned with elites. The fittest individuals from the population (and 
offspring) are selected to form the elites. Just as with the initial population, coming up 
with an appropriate size of the elite pool is equally challenging, if not more. The 
number of elite members should be set small relative to the population; the term loses 
its meaning otherwise. Based our numerical experimentations, the elite members were 
set at 3% of the population. 
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Table 1. GA Flowchart with Elite Crossover and Dynastic Change Strategies 

Step 1: Initialization. Choose generation limit maxn , initial population size p , 

initial starting solutions ( ) ( )1 , , nx x , set generation index 0n ← . 

Step 2: Elite Population. Set elite size ep  and choose elites from initial 

population to form the elite mating pool ep . 

Step 3: Elite Reproduction. Execute nonoverlapping elite crossover among the 

ep  elites in generation n  to complete generation 1n +  elite population. 

Step 4: General Population. Form general population mating pool g gk p  where 

1gk <  and g ep p p= − , choose 2g gk p  nonoverlapping population pairs 

from generation n  and execute population crossover on each pair to 
complete generation 1n +  population. 

Step 5: Next Elite Generation. Generate elite population of generation 1n +  
from current elites and all their offspring. 

Step 6: Next GP Generation. Generate general population of generation 1n +  
from current generation and their offspring using a tournament procedure. 

Step 7: Dynastic Change. Increment 1n n← +  and return to Step 3. If premature 
termination occurs, activate dynastic change strategy and return to Step 2. 

Step 8: Stop Condition. The stop condition consists of either the predefined 
generation limit maxn  or values remained substantially unchanged after 5 

continuous generations. 

Step 3 is concerned with elite reproduction. Every elite individual mates with all 
other elites via an elite non-overlapping pairwise crossover. The ep  individuals in elite 

mating pool produce ( )1e ep p −  offspring by the elite crossover. 

Step 4 is concerned with the general population reproduction. A mating pool of the 
general population is formed and their offspring are procreated using the general 
population crossover with a preset probability. The probability of the population 

crossover was chosen to lie between 0.8~1.0 ( )gk . The g gk p  parents in the mating 

pool produce g gk p  individuals as offspring. 

Step 5 selects the fittest individuals from population and offspring to form the next 
generation elite specie. 

Step 6 selects individuals from population and offspring to form the next generation 
population. The tournament procedure is used in the selection process. 
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Step 7 is concerned with the premature convergence problem. Steps 3-6 are executed 
until a premature termination is encountered. If that happens, the dynastic change 
strategy that includes saving the best individuals is activated. The dynastic change 
strategy we have implemented is inspired by the practice found in ancient Chinese 
history. Steps 2-6 are then executed. 

Step 8 involves the stop condition. The stop condition consists of either a preset 
generation limit or converged values are substantially unchanged after 5 continuous 
generations. 

In the next section, the results obtained applying our algorithm to eight real-valued 
function optimization problems are reported and compared with several genetic 
algorithms, including the genetic algorithm only with elite crossover strategy, the 
genetic algorithm only with dynastic changes, and the genetic algorithm without both 
strategies. 

3   Numerical Experimentations and Discussion of Results 

In order to study the performance of the proposed strategy, extensive numerical 
experimentations have been performed with real-valued set of benchmark functions. 
They include low-dimensional, high-dimensional, unimodal and multimodal functions 
and are reproduced here as: 
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Fig. 1. The diagram of function 5f  

As their equations clearly show 1f , 6f  and 7f  are quadratic in nature and hence, 

are strongly convex with a single optimum and without any local optima [9]. So, the 
conventional wisdom is that they should be relatively easy to minimize. The 2f  is the 

generalized Rosenbrock function. Searching for the optimum of this function is 
challenging because of its narrow curved valley containing the minimum at ( )1 1,  [10]. 

Function 3f  has 4 local extrema at ( )5 12 5 12. , .± ±  with a function value of 851.22, and a 

global extremum at ( )0 0,  with a function value of 0 [11]. Function 4f  is taken from 

Bohachevsky et al. [12] and 5f  is the Schaffer function [13] which has infinite local 

extrema. A sketch of 5f  with 1x  and 2x  constrained in ( )5 5,−  is depicted in Fig. 1. 

Additionally,  its  local  extremum  of  0.009717  is  located  in  the vicinity of the global  

Table 2. Optimization of 1f  

Function 1f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 11.16 0.00000006 56 0.05497306 

E-GA 9.25 0.00000018 30 0.41757762 

D-GA 85.14 0.00000006 99 0.00001052 

ED-GA 113.52 0.00000000 100 0.00000003 
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extremum and thus, most ordinary algorithms will find only the local extremum. 
Function 8f  is a variation taken from Ackley [14]. Its global minimum is located at the 

origin with a function value of zero. Simulations were performed using an initial 
population of 200 and 8 competitions. 

Table 3. Optimization of 2f  

Function 2f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 8.73 0.00000001 21 0.47925830 

E-GA 7.39 0.00000000 15 0.81717509 

D-GA 82.43 0.00000001 86 0.00040771 

ED-GA 82.85 0.00000000 97 0.00058799 

Table 4. Optimization of 3f  

Function 3f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 6.38 0.00045776 1 424.77276611 

E-GA 5.56 0.00000000 3 486.30636597 

D-GA 83.89 0.00000000 36 0.16390826 

ED-GA 78.71 0.00000000 91 10.64427471 

Optimization simulations were performed using an initial population of 200 and 8 
competitions and results are summarized in Tables 2-9. In these tables, the following 
notations are employed: Mean Gen (mean generation), Min Func (minimum function 
value), Appr Time (appearance time of the absolute value 0 001.< ) and Mean Best 
(mean best objective function value) after the stop condition is attained in over 100 
trials. Furthermore, the following nomenclature was used: N-GA (GA without elite 
crossover and dynastic change strategies), E-GA (GA with elite crossover strategy 
only), D-GA (GA with dynastic change strategy only) and ED-GA (GA with elite 
crossover and dynastic change strategies). 

Clearly, the results of Tables 2-9 indicate that the performance of GA with both elite 
and dynastic change strategies is superior to GA without any strategies or with just only 
one; either the elite or dynastic change strategy. This is especially true in terms of the 
appearance time. ED-GA has the greatest appearance times compared to all other 
methods. In terms of mean best fitness, ED-GA is generally better but there are 2 
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exceptions: from Tables 3 and 8, D-GA produces better mean best fitness values than 
ED-GA, but ED-GA has better appearance times. Also, comparing between E-GA and 
N-GA, it can be seen that the former speeds-up the convergence rate compared to the 
latter. Finally, it appears from our numerical experimentations that the performance of 
the proposed ED-GA for these functions 1 4 6 7  , , ,f f f f  and 8f  is better than the 

lognormal perturbation method introduced in Saravanan et al. [15]. 

Table 5. Optimization of 4f  

Function 4f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 8.45 0.00000001 90 0.02272174 

E-GA 6.83 0.00000000 80 0.08100411 

D-GA 50.30 0.00000000 100 0.00000249 

ED-GA 52.17 0.00000000 100 0.00000001 

Table 6. Optimization of 5f  

Function 5f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 10.36 0.00000059 1 0.00509341 

E-GA 8.64 0.00010571 1 0.00504897 

D-GA 48.58 0.00000001 75 0.00365367 

ED-GA 65.14 0.00000000 58 0.00281766 

Table 7. Optimization of 6f  

Function 6f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 15.34 8.39930916 0 22.00690460 

E-GA 12.17 17.67862511 0 28.53572273 

D-GA 562.46 0.00020634 8 0.00281838 

ED-GA 839.79 0.00000237 98 0.00003204 
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Fig. 2. Optimization of the best scores for functions 1 8f f−  



 A Genetic Algorithm with Elite Crossover and Dynastic Change Strategies 277 

 

Table 8. Optimization of 7f  

Function 7f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 15.45 12.45736885 0 19.12287903 

E-GA 12.59 15.91287708 0 27.89656067 

D-GA 559.70 0.00072110 5 0.00436221 

ED-GA 848.51 0.00000194 98 0.00004552 

Table 9. Optimization of 8f  

Function 8f  

Method Mean Gen Min Func Appr Time Mean Best 

N-GA 13.27 1.91737759 0 1.32728183 

E-GA 10.80 2.22059083 0 1.48957455 

D-GA 527.76 0.00495088 0 0.03247735 

ED-GA 773.91 0.00031640 29 0.08787882 

Next, the optimization of the best scores in the population averaged over 100 trials in 
terms of the number of generations for the 8 benchmark functions is collectively 
graphed in Fig. 2. 

4   Conclusion 

An elite crossover strategy together with a dynastic change strategy for genetic 
algorithms is developed in this paper. Elite crossover strategy improves the convergent 
speed of the optimization procedure whereas the dynastic change strategy assists in the 
search for global optima and generally, avoids the problem of premature convergence. 
Eight benchmark functions are employed to demonstrate and validate the effectiveness 
of the approach. From the results of the numerical experimentation, it appears that the 
proposed method is effective. 
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Abstract. Different mutation operators have been proposed in evolu-
tionary programming. However, each operator may be efficient in solving
a subset of problems, but will fail in another one. Through a mixture of
various mutation operators, it is possible to integrate their advantages to-
gether. This paper presents a game-theoretic approach for designing evo-
lutionary programming with a mixed mutation strategy. The approach
is applied to design a mixed strategy using Gaussian and Cauchy muta-
tions. The experimental results show the mixed strategy can obtain the
same performance as, or even better than the best of pure strategies.

1 Introduction

Several mutation operators have been proposed in evolutionary programming
(EP), e.g., Gaussian, Cauchy and Lévy mutations [1,2,3]. According to no free
lunch theorem [4], none of mutation operators is efficient in solving all optimiza-
tion problems, but only in a subset of problems. Experiments show that Gaussian
mutation has a good performance for some unimodal functions and multimodal
functions with only a few local optimal points; Cauchy mutation works well on
multimodal functions with many local optimal points [2].

An improvement to conventional EP is to apply several mutation opera-
tors in one algorithm and integrate their advantages together. This idea is not
completely new to the community of evolutionary programming. An early imple-
mentation is a linear combination of Gaussian and Cauchy distributions [5]. This
combination can be viewed a new mutation operator, whose probability distribu-
tion is a convolution of Gaussian and Cauchy’s probability distributions. IFEP
[2] adopts another technique: each individual implements Cauchy and Gaussian
mutations simultaneously and generates two individuals; the better one will be
chosen in the next generation. In [3], the idea of IFEP is developed further into
mixing Lévy distribution with various scaling parameters.

Different from the above work, this paper presents an alternative approach
to design a mixed mutation strategy. Inspired from game theory, individuals in
EP are regarded as players in a game. Each individual will choose a mutation
strategy from its strategy set based on a selection probability, and then generate
an offspring by this strategy.
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The central topic of game theory is the interactions and strategies among a
group of players [6,7]. Game theory already has a few applications in evolution-
ary algorithms, mainly in analyzing cooperative co-evolution algorithms [8,9,10].
This paper concentrates on designing co-evolutionary algorithms, rather than
analyzing them.

The rest of this paper is organized as follows: Section 2 introduces EP using
mixed strategies; Section 3 illustrates a game-theoretic approach to design mixed
strategies; Section 4 describes a case study of mixing Cauchy and Gaussian
mutations; Section 5 reports experimental results; Section 6 gives conclusions.

2 Evolutionary Programming and Mixed Mutation
Strategies

In this paper EP is used to find a minimum xmin of a continuous function f(x),
that is,

f(xmin) ≤ f(x), x ∈ D, (1)

where D is a hypercube in Rn, n is the dimension. Conventional EP using a
single mutation operator can be described as follows [2]:

1. Initialization: Generate an initial population consisting of μ individuals at
random. Each individual is represented a set of real vectors (xi,σi),

xi = (xi(1), xi(2), · · · , xi(n)), i = 1, · · · , μ
σi = (σi(1), σi(2), · · · , σi(n)), i = 1, · · · , μ.

2. Mutation: For each parent (x(t)
i ,σ

(t)
i ) (where t represents generation), cre-

ate an offspring (x′
i,σ

′
i) as follows:

σ′
i(j) = σ

(t)
i (j) exp{τN(0, 1) + τ ′Nj(0, 1)}, j = 1, · · · , n,

x′
i(j) = x

(t)
i (j) + σ

(t+1)
i (j)Xj , j = 1, · · · , n,

(2)

where N(0, 1) stands for a Gaussian random variable generated for a given
i, Nj(0, 1) a Gaussian random variable generated for each j, and Xj is a
random variable generated for each j. Controlling parameters τ and τ ′ are
chosen as the same as in [2].

3. Fitness Evaluation: For μ parents and their μ offspring, calculate their
fitness value f1, f2, · · · , f2μ.

4. Selection: Define and initialize a winning function for every individual in
parent and offspring population as wi = 0, i = 1, 2, · · · , 2μ. For each in-
dividual i, select one fitness function, say fj and compare the two fitness
functions. If fi is less than fj , then let wi = wi + 1. Perform this procedure
q times for each inidivual.

5. Select μ individuals that have the largest winning values to be parents for
the next generation.

6. Repeat step 2-6, until the stopping criteria are satisfied.
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To avoid the step size σ falling too low to zero, a lower bound σmin should
be put on σ [11,12]. So a revised scheme of updating σ is given by:

σ′
i(j) = (σmin + σ

(t)
i (j)) exp{τN(0, 1) + τ ′Xj}. (3)

where σmin > 0 is the minimum value of step size σ.
A mutation operator is called mutation strategy s if the random variable Xj

in Eq. (2) satisfies the probability distribution function Fs. A set of mutation
strategies consists of Cauchy, Gaussian, Lévy and other probability distributions.
The mixed strategy is described as follows: at each generation, an individual
chooses one mutation strategy s from its strategy set based on a selection prob-
ability p(s). This probability distribution is called a mixed strategy distribution
in the game theory.

The key question is to find out a good, if possible an optimal, mixed prob-
ability p(s) for every individual. This mixed distribution may be changed over
generations.

3 Game-Theoretic Design and Theoretical Analysis

According to [7], each game is specified by a set of rules.
First the players and their strategies are specified. In a game consisting of ν

players, players can be denoted by I = {1, 2, · · · , ν}. Each player i has a mutation
strategy set available to play in the game, which is denoted by S (assume all
players use the same strategy set). A strategy is labeled by a positive integer. A
single mutation strategy is called a pure strategy in the terms of game theory.
A vector of strategies, s = (s1, s2, · · · , sν) where si is a strategy used by player
i, is called a strategy profile.

In this paper, only two-player game is considered, in this case, ν = 2. In EP,
a population usually consists of more than 2 individuals, so individuals had to
be divided into pairs in order to play a two-players game.

Then a payoff is assigned to each strategy. Given a strategy profile s, a real-
valued number πi(s) is assigned to each player i, which is called the associated
payoff to individual i. The combined payoff function π of the game assigns to
each strategy profile s, which is denoted by a vector π(s) = (π1(s), · · · , πν(s))
of payoffs.

Thirdly, it is needed to define an output for each strategy. Assume at the t-th
generation, two players 1 and 2 use strategy s1 and s2 respectively to play a game.
Then an outcome is generated, which is denoted by o1(s1, s2) and o2(s1, s2). The
payoffs π1(s1, s2) and π2(s1, s2) are dependent on the outcomes o1(s1, s2) and
o2(s1, s2). In this paper, only symmetric game is considered, so π1(s1, s2) =
π2(s2, s1).

At the end, the game will be played in the following order. Individuals in EP
are selected two-by-two from the population, play the two-player game in the
pair of (1, 2), (3, 4), · · · , (μ − 1, μ) (where μ is assumed as an even). They play
the game simultaneously. The game is iterated, until some stopping criterion is
satisfied.
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A mixed strategy for an individual i is defined by a probability distribution
pi(s) over its strategy set. It is used to determine the probability of each strategy
being applied in the next iteration. It is dependent on the payoffs of strategies.
Denote p = (p1, · · · , pν).

In theory mixed strategies have some potential advantages over pure strate-
gies. This can be seen from the following simple facts.

Firstly, the global performance of some mixed strategy may reach the same
performance as the best pure strategy.

Proposition 1. For a pure strategy s, let E[f (t) | s] be the mean best fitness
outputted at the generation t; for a mixed strategy p(0), · · · ,p(t−1), let E[f (t) |
(p(0), · · · ,p(t−1))] be the mean best fitness outputted at the generation t. Then
there exists some mixed strategy p(0), · · · ,p(t−1), such that,

min
s∈S

E[f (t) | s] ≥ E[f (t) | p(0), · · · ,p(t−1)]. (4)

Proof. The proof is trivial. Assume s∗ is the best pure strategy, then choose the
mixed strategy as follows: all individuals take the best pure strategy s∗ at any
generation, i.e., p

(t)
i (s∗) = 1 for all generation t.

The second fact reveals another advantage of mixed strategies: mixed strate-
gies can solve more problems than a pure strategy.

Proposition 2. Denote F(s1) to be the problem set which can be solved effi-
ciently by strategy s1, F(s2) to be the problem set solved efficiently by strategy
s2, and F(s1, s2) the problem set solved efficiently by a mixed strategy consisting
of s1 and s2, then

F(s1) ∪ F(s2) ⊂ F(s1, s2). (5)

Proof. The proof is straightforward. For any problem in F(s1), chose the mixed
strategy as: p(s1) = 1, p(s2) = 0. For any problem in F(s1), choose the mixed
strategy as: p(s1) = 0, p(s2) = 1.

4 Case Study: A Mixed Strategy Using Gaussian and
Cauchy Mutations

Two mutation operators are used in the mixed strategy:

– Gaussian Mutation:

x
(t+1)
i (j) = x

(t)
i (j) + σ

(t+1)
i (j)Nj(0, 1), (6)

where Nj(0, 1) is Gaussian random variable for each component j.
– Cauchy Mutation:

x
(t+1)
i (j) = x

(t)
i (j) + σ

(t+1)
i (j)Cj(0, 1), (7)

where Cj(0, 1) is a Cauchy random variable for each j.
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The output of an individual is defined by the distance how far an individual
moves during a successful mutation. Let x

(t)
i be the parent individual, x

(t+1)
i be

its offspring through a mutation strategy, then the output is

o(x(t+1)
i ) =

{
max1≤j≤n{| x(t+1)

i (j)− x
(t)
i (j) |}, if f(x(t+1)

i ) < f(x(t)
i ),

0, otherwise,

The output of strategy s1 is defined by:

o(t+1)(s1) = max
i
{o(x(t+1)

i ); x(t+1)
i is generated by applying strategy s1}. (8)

If considering the impact of history strategies, the output (8) is amended as
follows:

ō(t+1)(s1) =
{

o(t+1)(s1), if o(t+1)(s1) ≥ α · o(t)(s1),
α · o(t)(s1), otherwise,

(9)

where α ∈ [0, 1] is a controlling parameter of how much the previous output will
kept in memory. α = 0 means none from historical data; α = 1.0 means the
output is fully determined by the maximum output in history.

Based on the output (9), the payoff of players are defined by

π1(s1, s2) =
o(s1)
o(s2)

, π2(s1, s2) =
o(s2)
o(s1)

. (10)

However there is a danger in Eq. (10): o(s2) or o(s1) could be zero. So it is
necessary to add a controlling parameter β to avoid this extreme case.

π1(s1, s2) =

⎧⎨⎩β, if o(s1)/o(s2) ≤ β,
1/β, if o(s1)/o(s2) ≥ 1/β,
o(s1)/o(s2), otherwise,

(11)

where β ∈ [0, 1], where β = 0 allows payoff to be infinity large, and β = 1 means
that payoffs of strategies s1 and s2 both are equal to 1.

Now assume the strategy profile is s = (s1, s2), the mixed probability distri-
bution p(s) can be calculated by the proportion of its payoff among the total
payoffs, e.g,:

p1(s1) =
π1(s1, s2)

π1(s1, s2) + π1(s1, s2)
. (12)

5 Experimental Results and Analysis

The above EP is evaluated on 7 test functions, which was used to test IFEP in
[2]. The description of these functions is given in Table 1. Among them, function
f1 and f2 are unimodal functions, f3 and f4 multimodal functions with many
local minima, f5 − f7 multimodal functions with only a few local minima.

The parameter setup in the mixed EP are taken as the same values as those
in [2]. Population size μ = 100, tournament size q = 10, and initial standard
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Table 1. Seven test functions, where the coefficients of f5 − f7 are given in [2]

test functions domain fmin

f1 =
∑30

i=1 x2
i [−100, 100]30 0

f2 =
∑30

i=1 | xi | +
∏30

i=1 | xi | [−100, 100]30 0

f3 = −20 exp
(

−0.2
√

1
30

∑30
i=1 x2

i

)
[−32, 32]30 0

− exp
( 1

30

∑30
i=1 cos(2πxi)

)
+ 20 + e

f4 = 1
4000

∑30
i=1 x2

i − ∏30
i=1 cos(xi/

√
i) + 1 [−600, 600]30 0

f5 = −∑5
i=1

(∑4
j=1(xj − aij)2 + ci

)−1
[0, 10]4 -10.15

f6 = −∑7
i=1

(∑4
j=1(xj − aij)2 + ci

)−1
[0, 10]4 -10.34

f7 = −∑10
i=1

(∑4
j=1(xj − aij)2 + ci

)−1
[0, 10]4 -10.54

Table 2. Comparison of mean best fitness between MEP and IFEP, FEP, CEP

function MEP IFEP [2] FEP [2] CEP [2]
evaluation mean best mean best mean best mean best

f1 150,000 9.151e-06 4.16e-5 5.72e-4 1.91e-4
f2 200,000 1.269e-03 2.44e-2 7.60e-2 2.29e-2
f3 150,000 6.590e-04 4.83e-3 1.76e-2 8.79
f4 200,000 1.706e-02 4.54e-2 2.49e-2 8.13e-2
f5 10,000 -8.774e+00 -6.46 -5.50 -6.43
f6 10,000 -9.735e+00 -7.10 5.73 7.62
f7 10,000 -9.841e+00 -7.80 6.41 8.86

deviation is take as σ = 3.0. The stopping criteria is to stop running at 1500
generations for functions f1 and f3, 2000 generations for f2 and f4, 100 gener-
ations for f5 − f7. The lower-bound used in this paper is σmin = 10−5 for all
functions except f4. Since f4 has a larger definition domain than others, σmin is
taken a bigger value 10−4. Parameters α in Eq.(9) and β in Eq.(11) is chosen to
be 0.9 and 0.05 respectively. At the initial step, the mixed strategy distribution
is taken as (0.5, 0.5). Results for f1− f4 are averaged over 50 independent runs,
for f5 − f7 over 1000 independent runs.

In the following, CEP is EP using Gaussian mutation; FEP using Cauchy
mutation; IFEP using Gaussian and Cauchy mutations simultaneously; MEP is
the mixed mutation given in this paper.

The first experiment aims to compare MEP with IFEP, FEP and CEP. Ta-
ble 2 gives results generated by MEP against existing results of IFEP, FEP and
CEP from [2]. It is observed that MEP is obviously much better than IFEP,
CEP and FEP over all test functions. However, to be honest, this improvement
is partly due to the well-chosen low bound σmin.

The second experiment intends to compare mixed mutation with Gaussian
and Cauchy mutations when they take the same lower bounds. There are three
types of results:
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1. In Figures 1, 2, 4 and 6, the mixed strategy can reach the same fitness level
as the best pure strategy does.

2. In Figure 2, the mixed strategy has a better performance.
3. In Figure 5, the mixed strategy is a little worse than the best pure strategy

(Gaussian), however, the difference is very small.

The third experiment describes the dynamics of the mixed strategy. There
are two types of dynamics:
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1. In Figures 7-10, Cauchy mutation takes a higher percentage as a global search
at the early search phase; and then Gaussian mutation holds a dominant
position as a local search.

2. Figures 11 and 12 demonstrate another dynamics of the mixed strategy. The
number of individuals using Gaussian mutation is almost the same as that
of using Cauchy mutation.

The last experiment studies the impact of parameters α and β on the per-
formance. The parameter α is regraded as a memory of history. From Table 3, it
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Table 3. Impact of parameter α

function α = 0.0 α = 0.5 α = 0.9 α = 1.0
evaluation mean best mean best mean best mean best

f1 150,000 3.342e-05 8.461e-06 9.151e-06 1.974e-05
f2 200,000 1.224e-03 1.249e-03 1.269e-03 1.760e-03
f3 150,000 5.720e-04 5.757e-04 6.590e-04 1.464e-03
f4 200,000 2.967e-02 2.761e-02 1.706e-02 2.123e-02
f5 10,000 -8.478e+00 -8.627e+00 -8.774e+00 -8.685e+00
f6 10,000 -9.539e+00 -9.607e+00 -9.735e+00 -9.706e+00
f7 10,000 -9.814e+00 -9.801e+00 -9.841e+00 -9.658e+00

Table 4. Impact of parameter β

function β = 0.0 β = 0.05 β = 0.5 β = 1.0
evaluation mean best mean best mean best mean best

f1 150,000 2.696e-05 9.151e-06 9.945e-06 3.864e-05
f2 200,000 1.207e-03 1.269e-03 1.521e-03 3.692e-03
f3 150,000 2.238e-01 6.590e-04 1.169e-03 1.239e-03
f4 200,000 1.884e-02 1.706e-02 1.918e-02 2.147e-02
f5 10,000 -8.692e+00 -8.774e+00 -8.708e+00 -8.689e+00
f6 10,000 -9.625e+00 -9.735e+00 -9.610e+00 -9.622e+00
f7 10,000 -9.776e+00 -9.841e+00 -9.818e+00 -9.786e+00

is seen that for four different values, MEP has produced a similar performance.
Parameter β is a threshold to control the scale of each strategy’s payoff. Table 4
displays a good performance if β = 0.05, 0.5, 1.0. However, β = 0.0 is a bad
choice for function f3.

6 Conclusions

This paper presents a game-theoretic approach to design EP using mixed strate-
gies. The conventional EP usually apply a single mutation strategy. However
according to no free lunch theorem, none of a single mutation operators cannot
solve all problems efficiently no matter how powerful it is. So it is expected that
a mixture of different mutation strategies will solve more problems efficiently
than a single mutation strategy does. This paper has confirmed this point.

In theory it s easy to see that some mixed strategies could perform at least as
good as or eve better than the best pure strategy, and may solve more problems
efficiently than one pure strategy. Through a case study, the theoretic prediction
has been validated. The experimental results given in this paper have demon-
strated that the mixed mutation has obtained the same or nearly same perfor-
mance as the best of Cauchy and Gaussian mutations over all test functions, and
even better in some cases. If only a single mutation strategy is applied, neither
Gaussian nor Cauchy mutation can solve all 7 test functions efficiently.
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Further research works include: at present, the evaluation of mixed mutation
strategies is only implemented on a few benchmark functions, it is necessary to
verify it on more problems; the game designed in this paper is a simple two-player
game, it is necessary to study more complex game; if more mutation operators
were added into the mixed strategy, it would lead to a more powerful mixed
strategy.
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Abstract. Based on the study of Particle Swarm Optimization (PSO) on the 
mechanism of information communion, a new adaptive method of PSO is 
presented in this paper. This new adaptive method is to avoid the particles getting 
into local best solution during the optimization. By applying Adaptive Particle 
Swarm Optimization (APSO) to optimize transition sample values in FIR filter, 
the maximum stop band attenuation is obtained. The simulations of designing 
low-pass FIR have been done and the simulation results show that APSO is better 
than PSO not only in the optimum ability but also in the convergence speed. 

Keywords: particle swarm optimization; adaptive capacity; FIR filter; frequency 
sampling filter; evolutionary computation. 

1   Introduction 

As a digital filter design method, the frequency sampling (FS) technique has attracted a 
great deal of attention [1,2,3]. The FS technique has the advantages that more effective 
narrow band filters can be found easily, and those filters can be designed with an 
arbitrary response. However, how to find the values of the transition band frequency 
sample values that produce a filter with the maximum stop band attenuation is the key 
task in the FS. Using Tables method to design filter will result in a suboptimal solution 
[4]. Recently, many evolutionary computation techniques, such as genetic algorithm 
(GA) and immune algorithm (IA), particle swarm optimization algorithm (PSO), were 
introduced to solve this problem.  They are superior to Tables method.  

Particle swarm optimization (PSO) is an evolutionary computation technique 
developed by Kennedy and Eberhart in 1995 [7,8]. PSO is attractive because there are 
very few parameters to adjust, and it has been used widely. PSO is similar to GA, in that 
the system is initialized with a population of random solution, firstly evaluated itself 
using a fitness function, do some random search according to fitness value [9]. However, 
it is unlike GA because PSO system updates itself without any genetic operator such as 
crossover and mutation. In PSO, each potential solution is assigned a andomized 
velocity, and the potential solutions, named as particles with an important characteristic 
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of memory, are then “flown” through the problem space [10].  On the other hand, 
there’re some differences between PSO and GA, IA on the mechanism of information 
communion. Chromosomes in GA and IA share the information with each other so that 
the population moves towards to the best location smoothly [11]. But only the particle, 
which can find the potential solution in the population, can pass on the information to 
the others. So the whole process of searching and update is to follow the current best 
solution. In that case, all particles can congregate to the best solution more quickly. The 
advantage of using PSO to optimize the transition band frequency sample values has 
been discussed in paper [12].  

However, PSO is easy to get into the local best solution in optimization, so that the 
ability of searching is weaken greatly. To beyond its limitation, PSO is appeal to 
improve its mechanism of information communion. In this paper, PSO’s optimization 
mechanism is analyzed, and a new mechanism with adaptive ability is proposed. This 
adaptive PSO (APSO) can avoid getting into local best solution efficiently and improve 
its searching ability. And, APSO is applied to FIR filter design. Finally, experimental 
results are presented and compare with PSO, which demonstrate the validity, 
effectiveness and superiority of APSO.  

2   Frequency Sampling Filter 

The Discrete Fourier transform (DFT) is an important tool in signal processing 
applications. Given a sequence h(n) of length N, the DFT evaluate its Z transform X(z) 
at N equally spaced angles on the unit circle in the Z-plane. In the traditional frequency 
sampling approach to FIR filter design, the desired frequency response is sampled at N 
equally spaced frequencies, where N is the filter length. Since the frequency samples 
are simply the DFT coefficients of the filter impulse response, an N-points inverse DFT 
(IDFT) is used to computer the filter coefficients.  

FS method has attracted a considerable amount of attention as a filter design method. 
When used to design standard frequency-selective filters, a few variable samples in the 
transition band are optimized to maximize the filter performance according to its 
desired use.  

Considering a desired frequency response Hd(e
jw) and its unit sampling response 

hd(n), N -points of frequency sampling values H(k) is achieved by Hd(e
jw) sampled at N 

equally on the unit circle. Moreover, a sequence h(n) of length N can be obtained 
through IDFT. For example, H(z) is represented as a system transfer function. 
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As a linear phase filter, H(k) can be expressed just like equation (2). 
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Also it has symmetrical impulse response. 
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where [. ] means integral operation. 
The interpolated frequency response has considerable ripple in regions where there 

are sudden transitions in the desired response, e.g. near the band edges of band selective 
filters. In order to in prove the filter characteristics, a transition band has been 
introduced in the desired frequency response. A number of samples in the transition 
band are varied in amplitude so as to minimize the maximum deviation from the desired 
response over some frequency rang of interest. Since PSO is an effective algorithm to 
find the global best solution, it’s a good idea to use PSO to design the transition band 
frequency samples based on frequency sampling technique. 

3   Particle Swarm Optimization 

PSO simulate social behavior, in which a population of individuals exists. These 
individuals (also called “particles”) are “evolved” by cooperation and competition 
among the individuals themselves through generations. In PSO, each potential solution 
is assigned a randomized velocity, are “flown” through the problem space. Each 
particle adjust its flying according to its own flying experience and its companions’ 
flying experience. The ith particle is represented as Xi = (xi1, xi2, … , xiD ). Each particle 
is treated as a point in a D-dimensional space. The best previous position ( the best 
fitness value is called pBest ) of any particle is recorded and represented as Pi = (pi1, 
pi2,…, piD ). Anther “best” value (called gBest) is recorded by all the particles in the 
population. This location is represented as Pg=(pg1, pg2,…, pgD ). At each time step, the 
rate of the position changing velocity (accelerating) for particle i is represented as Vi = 
(vi1, vi2,…, viD ). Each particle moves toward its pBest and gBest locations. The 
performance of each particle is measured according to a fitness function, which is 
related to the problem to be solved. 

The process for implementing the global PSO is as figure 1. 
The particles are manipulated according to the following equation:       

)()(*)(*)(** 21 idgdidididid xpRandcxprandcvwv −++−+=         (5) 

ididid vxx +=                                          (6) 

where C1 and C2 in equation (5) are two positive constants, which represent the 
weighting of the stochastic acceleration terms that pull each particle toward pBest and 
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gBest positions. In most applications, C1 and C2 each equals to 2.0. rand( ) and Rand( ) 
are two random functions in the range [0, 1]. The use of the inertia weight w provides a 
balance between global and local exploration, and results in less iteration to find an 
optimal solution. 

 
Initialize each particle with 

random position and velocity

Evaluate the desired optimization 
fitness function (F) of each particle 

pBest = Xi 

If a criterion is met ?

gBest is the best solution

N 

Y 

If F (Xi)>pBest ?

If F (Xi)>gBest ?

gBest = Xi 

Optimize the velocity and 
position of each particle 

N

N

Y 

Y 

 

Fig. 1. Flow chart of PSO 

4   Adaptive Particle Swarm Optimization  

Generally, convergence means that optimization process reaches a steady state. In 
allusion to PSO, convergence in algorithm relates to both the individual and the whole 
population. When all particles achieve convergence, the population will never change 
again and reach a steady state. Accordingly, gBest also doesn’t change. Convergence in 
PSO can be described as follow: 

Considering in t generation, gBest(t) is the best location, gBest* is a fixed position  in  
problem  space, when *)(lim gBessttgBest

t
=

∞→
, PSO achieves convergence. 

This definition shows that PSO is convergent if gBest doesn’t change. And PSO 
achieves the global best convergence if gBest is the global best solution. Otherwise, 
PSO gets into local best solution. 
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On the other hand, the best search in particle swarm depends on their memory ability 
and the mechanism of information communion. pBest and gBest embody their memory 
ability: pBest preserves the best solution which the particle found by itself in history, 
and gBest preserves the best solution which the whole population found. The 
mechanism of information communion shows that each particle’s flying position at 
next moment is extremely influenced by gBest. Particle’s flying direction and distance 
at one step is described as figure 2. 

 

X

Y 
1+kS

gBestV

pBestV

origalV

 

Fig. 2. Particle’s flying sketch map 

In figure 2, Voringal represents particle’s velocity at last step; VpBest represents velocity 
component based on pBest; VgBest represents velocity component based on gBest; Sk 
represents particle’s current position; Sk+1 represents particle’s position at last flight. 

In PSO, only gBest could pass information to other particles, so that information 
flows unilaterally. Usually all particles are convergent to the best solution faster. 
However, when the current best solution is a local best solution and all particles are 
convergent to this solution, it’s difficult for them to deviate from the local best solution. 
Although the increment of particle number is able to extend the searching range, it 
takes more time to search and can’t solve this problem radically. 

In order to improve the particle’s global searching ability and avoid getting into local 
solution, this paper ameliorates the searching mechanism as following: 

(a) The best reservation is introduced to mechanism, so that the algorithm ensures 
to achieve the global convergence. 

(b) The mean of all particles’ current best value pBest  is introduced. pBest  is 
considered to be the criterion whether particle should update or not. When particle’s 
current fitness is better than pBest , its velocity and position had to update by formula 
(5)(6). Otherwise, this particle should be deracinated, new location and velocity come 
into being again, its current pBest should be reserved, then new search will begin. It 
seems to be survival rule in nature. The particle will rebirth after catastrophe. It makes 
the population to break away from stagnancy.  

(c) Particle’s max velocity decides the max distance which the particle can move 
at one step. As result, the limit of max velocity can prevent particles from running out 
searching space. The particle’s searching ability may be restricted when the particle 
runs over and is limited some fixed value. Therefore, the particle initializes itself 
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randomly at some range when it runs over the max velocity, and the restriction to 
particle’s velocity can reduce. 

The algorithm can be written as follow: 

For each particle 
Initialize particle 

END 
Do 

For each particle 
    Calculate fitness value 
    If the fitness value is better than the best fitness value 
(pBest) in history 
    Set current value as the new pBest 
END 

Choose the particle with the best fitness value of all the 
particles as the gBest 
For each particle 

If the fitness value is better than        
     Calculate particle velocity according to equation (5)  
     Update particle position according to equation (6)  

Else 
        Particle catastrophe 

END 
If particle velocity is more than the max velocity 

        Set particle velocity equals to a random value within 
range 

End 
End 

While maximum iterations or minimum error criteria is not 
attained   

5   Experimental Work  

Example: Consider the design of a low-pass filter with the specifications: pass band 
edge wp=0.2 , stop band edge ws=0.3 , max pass band ripple Rp=0.4 dB, min stop band 
attenuation As=60 dB. Use FS to design a FIR filter. 

Suppose sample number N equals to 60, and there are 2 samples in the transition 
band w (0.2 < w < 0.3 ). Since frequency interval w=2 /60, samples in the transition 
band are placed respectively where k=8, 9 and k=53, 54. The transition band values are 
represented as T1 and T2 (0 <T1<1, 0<T2 <1). 

Sampling magnitude response can be expressed by function (5) as follow. 

]1,1,1,1,1,1,,,0,,0,,,1,1,1,1,1,1,1[)( 1221 TTTTkHr =                (7) 

where there are 43 zeros in the stop band. 

pBest
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Sampling phase response also can be denoted by function (6) as below: 
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Combine (7) and (8) with (2), H(k) is achieved feasibly. Consequently, transferring 
H(k) into corresponding impulse response h(n) of 60 points FIR filter using IDFT, 
minimum stop band attenuation As can be calculated.  

On another hand, we chose the population size S=10 and the jth particle is 
represented as Xj = (Tj1, Tj2). (j=1,2,…,10). Initialize their location and velocity in order 
to ensure that the search space is sampled widely and evenly as equation (9) and (10).  

                                             )10,1(_ randuniformlyvid =                                          (9) 

                                                              0=idx                                                          (10) 

The particles update by cooperation and competition among the population through 
generations. The information is passed on by the particle, which finds the potential 
solution of maximum stop band attenuation. Magnitude response of low pass FIR filter 
based on PSO and APSO, Table, GA,IA was lied out in figure 3. 

Table 1 shows the 10 experimental results of the maximum stop band attenuation 
(As) with PSO and APSO, respectively. In these experiments, the particle’s number is 
chosen 10. When items number was 100, the particles in PSO presented to local best 
solution, and the arisen probability was 30%. Also, when items number was 200, the 
PSO presented to local best solution, and the probability was 20%. However, no 
matter the items number was 100 or 200, the particles in APSO can always find the 
global best solution, and the successful probability was 100%. Thus it can be seen 
that APSO’s convergence and global search ability are superior to PSO on this 
problem. On the other hand, the experimental results also demonstrate the impact of 
items in the APSO on stop band attenuation. The more items we choose the better 
effect the experiment attained, while the convergence rate reduced substantially.  

Figure 4 shows the variation tendency of best solution (stop band attention) in the 
case of 10 particles and 100 items based on PSO and APSO. Line 1 and line 2 is two 
experimental tracks in PSO. Line 2 shows the particles in PSO is convergent to global 
solution. When PSO got into local best solution, the best solution track seems to be 
Line 1. Here, Line 3 performed in APSO, and outperformed the others.  

The successful application of the APSO to this problem leads to consider how it 
deviated from local best solution. Figure 5 shows the variation tendency of pBest  (the 
mean of all particles’ current best value). The information in PSO flows unilaterally 
due to the mechanism of information communion. As the current best solution was a 
local best solution and all particles were convergent to this solution, it’s hard for the 
population to escape from the local best solution. The information in APSO flows 
bilaterally. pBest  was considered to be the criterion whether each particle should update 
or not. The particles will rebirth after catastrophe. In this case, it makes the population 
to break away from stagnancy. 
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(a) PSO: T1=0.43610, T2=0.0001, As=51.3222dB (b) APSO: T1=0.59433, T2=0.10940, As=66.8495dB 
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(e) IA: T1=0.59428, T2=0.10942, As=66.7291dB 
 
Fig. 3. Comparison between PSO, APSO, Table, GA and IA on magnitude response of low pass 
FIR filter. (a)PSO: The algorithm is convergent to the local best solution. (b) APSO: The 
algorithm is convergent to the global best solution, and outperforms other evolutionary 
computation algorithms. 
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Table 1.  Comparison between PSO and APSO 

Items Algorithm As (dB) 
PSO 66.7248 51.3325 51.3325 66.7871 66.7841

100 
APSO 66.8366 66.8312 66.7748 65.7757 66.817
PSO 66.8174 66.8301 51.3325 66.8419 66.8368 

200 
APSO 66.8495 66.8476 66.8476 66.8477 66.8495

 
Items Algorithm As (dB) 

PSO 66.607 51.3325 64.6607 65.7558 66.651100 
APSO 66.7503 66.8366 66.8366 66.837 66.817
PSO 66.8428 51.3325 66.8487 66.8419 66.8447200 
APSO 66.8495 66.8476 66.8495 66.8393 66.8477
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Fig. 4.  The variation tendency of best solution in PSO and APSO. 
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Fig. 5.  Variation tendency of pBest  in APSO (S=10, Items=100) 
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6   Conclusion 

The new improved algorithm APSO proposed in this paper solves the limitation of PSO 
which the particles easily get into the local best solution. The simulation results show 
FIR frequency sampling filter design applied APSO is superior to PSO. The feasibility 
and advantage of APSO is obviously represented. 
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Abstract. Macroevolutionary algorithm (MA) is a new approach to op-
timization problems based on extinction patterns in macroevolution. It
is different from the traditional population-level evolutionary algorithms
such as genetic algorithms. In MAs, evolves at the level of higher taxa
is used as the underlying metaphor. It is inspired by the latest mod-
els about evolution at large scale-macroevolution, while the traditional
evolutionary algorithms are inspired in natural selection of darwinian
theory. The MA model exploits the presence of links between “species”
that represent candidate solutions to the optimization problem. In this
paper, a hybrid MA which combines simulated annealing is proposed to
solve complicated multi-modal optimization problems. Numerical simu-
lation results show the power of this hybrid algorithm.

1 Introduction

It is well-known that many practical problems can be modelled as optimization
problems. In order to solve various optimization problems, different approaches
such as Newton method, hill-climbing and steepest descent, have been developed
in various literature. These classical optimization methods can only be used ef-
ficiently to certain kinds of objective functions (e.g. smooth, convex, etc.). But
many practical problems are non-convex and have many local optima, thus how
to efficiently discover the global optimum of a multi-modal function is still an
open problem. Therefore, it is important to develop efficient search methods
for general function optimization, especially for large-scale optimization prob-
lems with multi-modal objective function. Generally speaking, the methods of
global optimization can be classified roughly into two classes: deterministic and
random. If the objective function satisfies some conditions (such as continuity,
existence of Hessian matrix, convexity, etc.), the global optimum can be discov-
ered by the deterministic method. Unfortunately, it is a strict requirement for
the objective functions arising from practical problems to satisfy these condi-
tions, and for this reason, many optimization problems cannot be solved by the
classical optimization methods. In contrast, random search generally do not need
to satisfy the above conditions, so they have a broader application than deter-
ministic method. Because of these virtues, random search method has prevailed
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in engineering practice. Evolutionary computation (EC) methods have been suc-
cessfully used to solve many diverse problems in search and optimization. This
success is in part due to the unbiased nature of their operations, which can
still perform well in situations with little or no domain knowledge [1]. Instead
of the Darwinian, short-term evolutionary metaphor, however, a different time
scale can be considered, namely the macroevolutionary one, where extinctions
and diversification of species through internal interactions are at work. Large
extinctions can generate coherent population responses that are very different
from the slow Darwinian dynamics of a classical GA. Besides, the population
of candidate solutions/species might be understood in terms of an ecological
system with connections among different species, instead of just a number of
independent entities with a given assigned fitness value. In [2], a macroevolu-
tionary algorithm (MA) is proposed, and simulation results show that it is a
good alternative to standard GAs.

In this paper, an improved version of MA is proposed for optimization prob-
lems with multi-modal objective function. This paper mainly considers the fol-
lowing multi-modal function optimization problem:

minimize f(X)
X = (x1, x2, · · · , xn)	 ∈ Ω ⊂ 	n

�i ≤ xi ≤ ui, i = 1, 2, · · · , n
(1)

As an evolutionary algorithm, MAs have some of their own shortcomings,
too. For example, premature convergence is one common problem in almost all
the evolutionary algorithms. Another problem much cared is the convergence
speed of the stochastic search methods. Many solution methods are presented
to improve the performance of this kind of algorithms. The key problem is to
keep a proper balance between “exploration” and “exploitation”. “Exploration”
is concerned with the ability to search new region and find good solutions, while
“exploitation” is concerned with the convergence speed. In fact, much effort is
needed to implement this kind of difficult balance in practice.

2 Macroevolutionary Algorithm

Macroevolutionary algorithm (MA) is first proposed by Jesús and Ricard [2].
The biological model of macroevolution (MM) is a network ecosystem where
the dynamics are based only on the relation between species. The links between
units/species are essential to determine the new state (alive or extinct) of each
species at each generation. The state of species i at generation t is defined as

Si(t) =
{

1, if state is “alive”
0, if state is “extinct”. (2)

In this model, time is discretized in “generations” and that each generation
constitutes a set of P species where P is constant. The relationship between
species is represented by a connectivity matrix W , where each entry wi,j(t)(i, j ∈



A Hybrid Macroevolutionary Algorithm 301

{1, 2, · · · , P}) of the matrix W measures the influence of species j on species i
at t with a continuous value within the interval [−1, 1] (in ecology, this influ-
ence is interpreted as the trophic relation between species). At the end of each
generation, all extinct species are replaced by the existing species. Briefly, each
generation in the biological model consists of a set of steps (the rules) that will
be translated to the MA model.

1) Random variation: For each species i, a connection wi,j(t) is chosen randomly,
and a new random value between −1 and 1 is assigned.

2) Extinction: The relation of each species to the rest of the population deter-
mines its survival coefficient h defined as

hi(t) =
P∑

j=1

wi,j(t) (3)

where t is the generation number. The species state in the next generation
is updated synchronously as

Si(t + 1) =
{

1, (alive) if hi(t) ≥ 0
0, (extinct) otherwise. (4)

This step allows for the selection and extinction of species.
3) Diversification: Vacant sites freed by extinct species are colonized with sur-

viving species. Specifically, a colonizer c will be randomly chosen from the
set of survivors. For all vacant sites (i.e., those such that sk(t) = 0) the new
connections will be updated as

wk,j = wc,j + ηk,j ,
wj,k = wj,c + ηj,k.

(5)

where is a small random variation and sk(t + 1) = 1.

The main idea of MA is that the system will choose, through network inter-
actions, which are the individuals to be eliminated so as to guarantee exploration
by new individuals and exploitation of better solutions by further generations.
To this purpose, it is essential to correctly establish a relationship between in-
dividuals. This is described by the following criteria.

c1) Each individual gathers information about the rest of the population
through the strength and sign of its couplings wi,j . Individuals with higher
inputs hi will be favored. Additionally, they must be able to out-compete
other less-fit solutions.

c2) Some information concerning how close two solutions are in Ω is required
(although this particular aspect is not strictly necessary). Close neighbors
will typically share similar f -values and will cooperate. In this context, the
connection wi,j is defined as

wi,j =
f(Xi)− f(Xj)
‖ Xi −Xj ‖

(6)

where Xi = (x1
i , x

2
i , · · · , xn

i ) is the ith individual.
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The main ingredients of MA include:

1) Selection operator: It allows calculating the surviving individuals through
their relations, i.e., as a sum of penalties and benefits. The state of a given
individual Si will be given by

Si(t + 1) =
{

1, if
∑P

j=1 wi,j(t) ≤ 0
0, otherwise

(7)

where t is generation number and wi,j = w(Xi, Xj) is calculated according
to (6).

2) Colonization operator: It allows filling vacant sites that are freed by extinct
individuals (that is, those such that Si = 0). This operator is applied to each
extinct individual in two ways. With a probability τ a totally new solution
X ′ ∈ Ω will be generated. Otherwise exploitation of surviving solutions
takes place through colonization. For a given extinct solution Xi, one of
the surviving solutions, say Xb. Now the extinct solution will be “attracted”
toward Xb. A possible (but not unique) choice for this colonization of extinct
solutions can be expressed as

Xi(t + 1) =
{

Xb(t) + ρλ(Xb(t)−Xi(t)), if ξ > τ
X ′

i, if ξ ≤ τ
(8)

Fig. 1. MA Performance[2]
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where ξ ∈ [0, 1] is a random number, λ ∈ [−1, 1] (both with uniform dis-
tribution) and ρ and τ are given constants of the algorithm. It can be seen
that ρ describes a maximum radius around surviving solutions and τ acts
as a “temperature”. Parameter τ can be set as that in simulated annealing.
For example, τ can take the following forms

τ(t, G) = 1− t

G
(9)

τ(t) ∝ exp(−Γ t). (10)

Comparison [2] between the performance of MA’s and that of genetic algorithm
with tournament selection shows that MA is a good alternative to standard GA’s,
showing a fast monotonous search over the solution space even for very small
population sizes. A mean field theoretical analysis also shows that symmetry-
breaking (i.e., the choice among one of the two equal peaks) typically occurs
because small fluctuations and the presence of random solutions eventually shifts
the system toward one of the two peaks (see Fig. 1).

3 The Hybrid Macroevolutionary Algorithm

3.1 Generation of the Initial Population

The main idea can be stated as following: The initial population is selected us-
ing uniform design technique [5] such that the individuals are evenly distributed
on the whole search space. Experimental design method [3,4] is a sophisticated
branch of statistics. uniform design is one important experimental design tech-
nique and it has been used in many real application. It was proposed by K.T.
Fang and Y. Wang [7,8,9,10] in 1981 and it also was developed further by other
researchers in recent years [5]. The main objective of uniform design is to sample
a small set of points from a given set of points such that the sampled points are
uniformly scattered.

Suppose there are n factors and q levels per factor. When n and q are given,
the uniform design selects q combinations out of qn possible combinations, such
that these q combinations are scattered uniformly over the space of all possible
combinations. The selected q combinations are expressed in terms of a uniform
array U(n, q) = (Ui,j)q×n, where Ui,j is the level of the jth factor in the ith
combination. Then these q points in the unit hypercube are mapped to the
space with n factors and q levels. If q is a prime and q > n, it was proved that
Ui,j is given by

Ui,j = (iσj−1 mod q) + 1, (11)

where σ is a parameter which is different for different experiment [9,5].
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3.2 Selection and Extinction Process

The equation (4) is changed to

Si(t + 1) =

⎧⎨⎩
1, (alive) if hi(t) ≥ 0
1, (alive) if hi(t) ≥ 0 & η′ > τ ′

0, (extinct) otherwise.
(12)

Where, the meaning of η′ and τ ′ is the same with that in equation (17).
After selection process, N − � new species are generated, so the remaining

N − � species will be generated by the following colonization process (here N is
the population size, while � is the extinct specie number).

Colonization Process. This process allows filling vacant sites that are freed
by extinct individuals. The remaining N − � individuals will be generated by
two ways: with a probability τ ∈ (0, 1), a totally new solution is generated.
Otherwise, it is generated based on the current search knowledge. It can be
expressed by the following formulae:

xj
i (t + 1) =

{
xj

b(t) + η ·Δxj
i (t) + α · sxj

i (t) if ξ > τ
xj

new otherwise
(13)

for j = 1, 2, · · · , n. xj
i (t) is the jth entry of Xi at generation t. t is the current

generation number. ξ is a random variable distributed uniformly on [0, 1]. Xb(t)
is the best individuals in generation t. sxj

i (t) and ΔXj
i (t) have the following

forms:

Δxj
i (t) = (xj

b(t)− xj
i (t)) · |N (0, 1)| (14)

sxj
i (t + 1) = η · acci(t) ·Δxj

i (t) + α · sxj
i (t) (15)

where xj
i (k) is the jth variable of an ith individual at the tth generation. η and α

are learning rate and momentum rate respectively. N (0, 1) is standard Gaussian
random variable. Δxj

i (t) is the amount of change in an individual, which is
proportional to the temporal error, and it drives the individual to evolve close
to the best individual at the next generation. It can be viewed as a tendency of
the other individuals to take after or emulate the best individual in the current
generation. sxj

i (t) is the evolution tendency or momentum of previous evolution.
It accumulates evolution information and tends to accelerate convergence when
the evolution trajectory is moving in a consistent direction. acci(t) is defined as
follows:

acci(t) =
{

1, if the current update has improved cost,
0, otherwise. (16)

τ in equation (13) is defined as follows

τ(t, G) = 1− t

G
(17)

where G is the recycling generations. New individuals Xnew in equation (13)
is generated using uniform design technique. The implementation details are
similar to that in section 3.1, but each time the sampling subspace is different
such that different sampling points will be trailed.
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Local Search. After above steps, a simulated annealing liked local search
method[6] is used to improve the quality of candidate solutions. In order to
save searching time, only a limited number of local search are executed in each
cycle. Therefore computation time is acceptable for large scale instances.

Termination Condition. In this paper, a fixed generation number is used as
the termination condition of the procedure.

4 Experimental Results

The following benchmark functions are used to test the performance of HMA.
(1) The Sphere function; (2) The Griewangk function; (3) The Rosenbrock and
Colville functions; (4) Shekel’s Foxholes Function; (5) Six Hump Camel Back
Function; (6) Brain Function; (7) Goldstein-Price Function fGP (X); (8) Shekel’s
Family Functions; (9) Hartman’s Family Functions; (10) Rastrigin Function
fR(X). The characters and global searching difficulty of these functions can
be found in related references.

4.1 Experimental Results

During the simulation process, the following parameters are used: population
size N = 100; generation G = 100, 300, 500, 1000 etc. factor =dimension;
s = 8, 16, 32, etc; η = 1.0. α = 1.0. For each test function, simulation is re-
peated for 30 times. The best solution in each simulation is recorded. And their
average performance and deviation in the 30 simulations are computed and used
to compare the different performance between MA and HMA. During all the
simulations, HMA has better performance than MA in terms of both search
speed and solution quality. Here only the performance of some test problems are
shown.
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Fig. 2. Performance comparison for test function f1(X)
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5 Conclusions

Macroevolutionary algorithm (MA) is a new approach to optimization problems
based on extinction patterns in macroevolution. It is different from the tradi-
tional population-level evolutionary algorithms. In this paper, a new version
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Fig. 7. Performance comparison for test function fBR(X)

of MA is proposed to solve complicated multi-modal optimization problems.
Numerical simulation results show the power of this new algorithm. Solving
constrained and multiobjective optimization problems using MA should be our
further research topics.
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Abstract. The evolutionary granular computing model (EGCM) com-
bining evolutionary computing and granular computing techniques is in-
troduced in this paper. The model presents a new approach to simulate
the cognition of human beings that can be viewed as the evolutionary
process through the automatic learning from data sets. The informa-
tion granule, which is the building block of cognition in EGCM, can
be synthesized and created by the basic operators. It also can form the
granules network by linking each other among granules. With learning
from database, the system can evolve under the pressure of selection. The
EGCM creates a dynamic model that can adapt to the environment.

1 Introduction

An information granule is a concept that can be represented by classical set,
fuzzy set or random set to reflect the granularity and hierarchy of information
[1]. It advocates the higher level ”computing with words” rather than computing
with numbers. Evolutionary computing[2] is a powerful technique that simulates
the evolutionary process in nature by computer programs. Stochastic operators
that recombine and reconstruct the building blocks can build adaptive systems.
Any trivial change of the building block can be accumulated to lead the evolution
of the system. The evolutionary granular computing system (EGCS) mentioned
in this paper dedicates to using evolutionary computing technology to recom-
bine and reconstruct adaptive granules from basic information granules. These
information granules can form conceptions and knowledge at high level by the
self-organizing process. And also, the EGCS is a dynamic model that can evolve
through the competition and cooperation among the information granules.

2 Evolutionary Granular Computing Model

2.1 Modeled Cognition Environment

To convenient the discussion, it is assumed that the environment machine con-
fronting is a relational database: D. There exist n records in D and every record is

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 309–312, 2005.
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depicted by m attributes. Using u1,u2,,un to denote the records and A1,A2,..,Am

are their attributes. The element aj(ui) on the row i and the column j represents
the record ui’s value on attribute Aj .

2.2 Granule and Relevant Conceptions

According to the literature [3] we can define the formulas on database D. Any
formula φ is a prediction such as aj(ui) = v or (a1(u) = v1) ∧ (a2(u) = v2), etc.
φ’s meaning denoted as m(φ) is a set of records satisfing φ. Hence, we can define
the granule as a combination of formula and set.

Definition 1. The tuple Φ =< φ, m(φ) > is called a granule. Here Φ is a for-
mula on database D and m(φ) is its meaning.

In [3], a granule is the set m(φ), but in this paper the granule definition is
adopted as a tuple because the formula part of a granule should be emphasized.

Formulas can construct new formulas by the operators. Similarly, granules
can compose a new granule by using ∧ and ∨ operators.

Definition 2. Suppose there are two granules Φ =< φ, m(φ) > and Ψ =<
ψ, m(ψ) > . A new granule can be defined as:

Γ = Φ ∧ Ψ =< φ ∧ ψ, m(φ) ∩m(ψ) > (1)

Also, we can define ”∨” operator of two granules once we adopt the operator
” ∧ ” and ” ∩ ” to ” ∨ ” and ” ∪ ” respectively. More specific concepts can
be obtained by the ”∧” operator, more general concepts can be obtained by
”∨”” operator. These two operators cannot only be used to build very complex
granules but also can be simplified by using the logical computing methods.

Definition 3. Given two granules, they are compatible if and only if their for-
mula parts are compatible.

So, given a collection of granules denoted as E, and an input granule g, some
of elements in E are compatible with g. We call these granules as active granules
to g denoted as AE.

One granule can connect other granules. Assume there are two granules: Φ, Ψ ,
when Φ is activated Ψ is always activated also, that means they are associated,
it is denoted as Φ → Ψ .

Definition 4. The directed graph < V, E > is a granule network, if any vertex
v ∈ V is an element in E. Any directed edge < v1, v2 > represents the connection
between granules: v1 → v2 .

When the system is running the connections can be strengthened or weakened
if they are activated or not. New connections between any pair of granules can
be created randomly.
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2.3 Evolutionary Cognitive System

The system that performs the cognitive task is called cognitive system of evolu-
tionary granular computing model. The system contains a collection of granules:
E, a granule network N . When it is running another collection of active granules:
AE can be obtained. There are two running phases: learning phase and problem
solving phase.

In learning phase, the system can read a record from the database at every
cycle. Some granules and their connections can be activated. If the input data
contains the new granules then they will be added into the E. The system
can create some new granules by ”∧”, ”∨” operators randomly with a certain
possibility (Pcreate). Also the connections of two granules can be added in the
granules network.

The selection mechanism is necessary to evolve the system. Every granule
and the link of granules network have a fitness degree when they are running.
The fitness degree is the function of right or wrong times, the length of granule
and likeness of the input granule and the current granule, etc. In a word, the
system can evolve at the equilibrant point of selection pressure and creativity.

As a summary, we can write these steps of the learning in one run.

1. Read the new record as InputRecord from the database;
2. Loop for all elements in E, activate the granules those are compatible with

InputRecord;
2.1 Loop for all active granules in AE, strengthen or weaken the connections

between granules.
2.2 Create new connections in granule network among granules randomly.
3 Separate the formulas group InputRecord, add new granules into E.
4 Create new granules with possibility Pcreate to add into E.
5 If the total amount of granules in the E exceeds the threshold

MaxElementNum, then delete several granules with the smaller fitness degree.

At last, the granules set and granules network can be viewed as the output
of the system, because they reflect the cognition and learning results of it. After
learning, the system can solve problems. When incomplete records input, the
system can reason out the values of the unknown attributes. For example, sup-
pose the information table has m attributes, when a record whose j-th attribute
is unknown, the system can reason out the value by activating some granules
and their connections with the attribute aj . The given value of the unknown
attribute is the output of solution.

3 Application

To illustrate how to apply EGCM, a specific example of application is selected
as the background. In [4], the author presented a real problem of optician’s
decision. The decision attribute is the type of contact lenses (denoted as e) that
can be divided into three classes: hard(1), soft(2), no(3). And some conditional
attributes are: age (a), values are young(1), pre-presbyopic(2) and presbyopic(3),
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Table 1. Granule connections and their fitness

Connection fitness

d = 1 → e = 3 47
b = 1 ∧ c = 2 ∧ d = 2 → e = 1 28
d = 1 ∧ a = 2 → e = 3 23
. . . . . .

spectacle(b) values are myope(1) and hypermetrope(2), astigmatic(c) values are
no(1) and yes(2), tear product rate (d) values are reduced(1) and normal(2)). The
problem is to judge the class of decision attribute according to the conditional
attributes. At first, the system can learn from an information table (See reference
[4] on page 1 17).

The cognitive system obtains the granules and granules network automati-
cally. These network connections (Table 1) are decision rules those can be used
to solve problems. In problem solving phase, the system can not only search the
existing decision rules but also can generate the values of empty attitudes. For
example if we input a record (a=1,b=1,c=2,d=2) and the value of e is empty,
then EGCM can output e=1 by activating some granules simultaneously to rea-
son out the result which is the emergent computing result. EGCM has other
applications such as clustering, classification, etc. Because of the limitation of
the paper size, detail introduction is omitted

4 Conclusions

The evolutionary granular computing model can evolve to adapt to the database
environment. The information granule is the basic building block to build the
concepts and knowledge on higher level. The granule network, which is formed
through the self-learning process by scanning the database, can emerge. And this
model can be applied to problem solving, decision rules discovery, clustering, etc.
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Abstract. PID optimal parameters selection have been extensively
studied, in order to improve some strict performance requirements for
complex systems. Ziegler-Nichols methods give estimated values for these
parameters based on the system’s transient response. Therefore, a fine
tuning of these parameters is required to improve the system’s behav-
ior. In this work, genetic programming is used to optimize the three
parameters Kp, Ti and Td, after been tuned by Ziegler-Nichols method,
to control a high-order process, a large time delay plant and a highly
non-minimum phase process. The results were compared to some other
tuning methods, and showed to be promising.

1 Introduction

Most industrial processes are controlled by proportional-integral-derivative
(PID) controllers [2] and [13]. The popularity of PID controllers is due to their
simplicity both from the design and parameter tuning points of view. To im-
plement such a controller, three parameters, namely the proportional gain Kp,
the integral time Ti, and the derivative time Td must be determined in order to
make the system operation more efficient. Ziegler and Nichols (1942) proposed
a method to determine the values of Kp, Ti and Td, based on the transient re-
sponse characteristics of a process to be controlled. When the PID controller
parameters are tuned by ZN, the closed loop system’s response can present an
overshoot up to 25%. Therefore, a fine adjustment is needed to improve the
transient response. This fine adjustment can be made by various ways [3], but
usually it is done by trial-and-error, what demands experience and certain time.

The approach presented here aims to minimize this problem, by applying GP
to optimize the solutions obtained for the PID controllers through ZN method,
in order to enhance system’s performance and stability.

Since GP has shown to be a valuable and robust technique in assisting the
engineers to solve complex engineering problems [1], [6], [7] and [8], we propose
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the use of this tool for a control tuning purpose, applying a GP algorithm to fine
tuning the PID parameters, previously adjusted through the ZN tuning method.

This paper is organized as follows: Section 2 describes ZN tuning. Section
3 gives an overview of GP. Section 4 explains the methodology used. Section 5
presents the results obtained and finally, in Section 6, the conclusions reached
on the use of PG applied with ZN are presented.

2 Tuning with Ziegler Nichols Method

The Ziegler-Nichols methods to determine the values of the proportional gain Kp,
the integral time Ti and the derivative time Td, are based on the characteristics
of the transient response of a process to be controlled, and is implemented by
taking account the experiments with the process. For both methods proposed,
the aim is to achieve an overshoot below 25%, for a step input response. For
the purpose of this work, the critical period method was used, once this method
is suitable to solve the problem of tunning the PID parameters for the plant
in question.

The critical period method consists of determining the point where the
Nyquist plot of the open-loop system intersects the negative real axis. This point
obtained by connecting a purely proportional controller to the system, and by
increasing the controller gain until the closed-loop system reaches the stability
limit, at which oscillations occur. The oscillation period is denoted by Tc and the
corresponding critical gain by Kc. The ZN choice for the three PID parameters
according to Table 1, Tc and Kc parameters were applied in the Equation 1.

P ID = Kp(1 +
1

Tis
+ Tds), (1)

However, this needs fine adjustments so that its transient response can present
satisfactory characteristics, since the ZN tuning, often gives a high overshoot
what is not desirable.

Table 1. PID controller parameters tuning by ZN method

Type of Controller Kp Ti Td

P 0.5Kc

PI 0.45Kc
Tc
1.2

PID Kc
1.7

Tc
2

Tc
8

3 Genetic Programming

The GP is part of the evolutionary computation [10] and [12] that uses the con-
cepts of the natural selection of Darwin and the genetics of Mendel in the com-
putation environment. In such algorithms, the fittest among a group of artificial
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creatures can survive and constitute a new generation. In every new generation,
a new offspring is created using features of the fittest individuals of the current
population.

Even a simple GP can give satisfactory results in a large variety of engi-
neering optimization problems [6], [5], [8]. GP main operators are: reproduction,
crossover and mutation. Given an optimization problem, GP run iteratively us-
ing the three operators in a random way but based on the fitness function to
perform evaluation.

Fitness is a numeric value assigned to each member of a population to provide
a measure of the appropriateness of a solution to the problem in question. Fitness
functions are generally based upon the error between the actual and predicted
solutions. However, error based measures decrease for better solutions.

The overall operation of a GP can be better explained through the flowchart
shown in Figure 1, where i refers to an individual in the population of size M .

Fig. 1. Flowchart of a generic GP algorithm
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The “Generation” gives the number of the current generation. The flowchart can
be divided in three parts:

1. creation of an initial population of random functions and terminals;
2. iteratively perform of the following sub-steps until the termination criterion

has been achieved:
a) simulation of the algorithm for each individual in the population and

assign a fitness value according to how well it behaves;
b) creation of a new population of computer programs by,

(i) copying existing computer programs into the new population;
(ii) creating new computer programs by genetically recombining ran-

domly chosen parts of two existing programs;
(iii) creating a new computer program introducing random changes.

This operation is applied to the chosen computer program(s) with a
probability based on their fitness in the population structure;

3. the best computer program that appeared in any generation, is designated as
the result of genetic programming simulation. This result may be a solution
(or an approximate solution) to the problem.

4 Genetic Programming and Ziegler-Nichols for PID
Controller Design

The GP was applied to fine adjust the three parameters of a PID controller, tuned
through ZN, for the closed-loop system shown in Figure 2, where “Plant” is a
system to be controlled and “Controller”, is a PID strategy controller, described
by the transfer function in Equation (1).

Firstly, ZN is applied for determining the three parameters of the controllers.
After, the values Kp, Ti and Td determined by ZN will constitute the set of
terminals, having its values varying from 0 to 10 times the values previously
determined. In this way, one of the biggest problem of evolutionary computation,
of determining the search interval is decided. Whereas, if ZN was not used as
initial condition to generate the initial population for the PG, the simulation
could have been much higher.

Thus GP algorithm starts by creating a population of 500 individuals that
will be evolved for 30 generations, randomly combining elements from the prob-
lem specific function sets and terminal sets. Each individual program (con-
trollers) of the initial population is then assessed for its fitness. This is usually

Fig. 2. Closed-loop system
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accomplished by simulating each one of them in a set of predefined input data
called fitness cases, and by assigning a numerical fitness value for each individual
according to some numerical combination.

Genetic operations, including reproduction, crossover, and mutation, are then
performed based on each individual fitness value. Individuals are randomly se-
lected to undergo the genetic operations. The selection function is biased towards
the highly fit programs and the objectives and constraints to be optimized for
these functions are:

– steady-state error (ess) less than 1%;
– overshoot (Mp) not exceeding 5%;
– the smallest settling time ts.

The transfer functions used to evaluate the performance of GP are a high-
order process G1(s), a process with a larger time delay G2(s), and a highly
non-minimum-phase process G3(s). These systems are shown respectively by
Equations (2)-(4). GP applied together with ZN tuning was compared to some
other tuning methods based on the step responses: the Magnitude Optimum
Multiple Integrations (MOMI)[11], the Ziegler Nichols (ZN) [14], Chien-Hrones-
Reswick (CHR) [4] and Refined Ziegler Nichols (RZN) [3].

G1(s) =
1

(1 + s)8
(2)

G2(s) =
e−5s

(1 + s)2
(3)

G3(s) =
(1 − 10s)
(1 + s)3

(4)

The parameters Kp, Ti and Td used for tuning the controller PID through MOMI,
ZN, CHR, RZN have been shown in Vrancic et al., (1998).

5 Results

5.1 Case 1 - High-Order Process

The PID parameters determined by the five different tuning methods, the con-
straints and objective values are given in Table 2.

The closed-loop step responses obtained for the four PID tuning methods for
the system G1 are shown in Fig. 3. The settling time for the GP tuning method
is shorter than the achieved for the three other schemes, and the overshoot is
smaller either. In this case, for the ZN tuning method, the system is unstable.

5.2 Case 2 - Large Time Delay Plant

The PID parameters determined by the five different tuning methods, the con-
straints and objectives values are given in Table 3.
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Table 2. PID parameters, constraints and objective values obtained simulating G1(s)

Parameters and variables GP MOMI ZN RZN CHR
Kp 0.68 0.75 2.34 0.35 1.48
Ti 4.63 4.80 10.77 4.53 9.06
Td 1.47 1.37 1.72 1.14 2.02
β - - - 0.88 -

ess(%) 0.00 0.00 - 0.00 0.00
Mp(%) 4.40 8.17 - 0.00 48.54
ts(s) 10.02 16.74 - 30.04 23.22
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Fig. 3. Step responses of the closed-loop system for G1(s)

Table 3. PID parameters, constraints and objective values obtained simulating G2(s)

Parameters and variables GP MOMI ZN RZN CHR
Kp 0.49 0.52 0.77 0.15 0.49
Ti 3.56 3.58 13.20 2.02 3.67
Td 0.99 1.05 2.11 0.38 2.48
β - - - 2.10 -

ess(%) 0.00 0.00 0.004 0.00 0.00
Mp(%) 3.41 6.60 7.60 0.00 4.35
Ts(s) 9.90 15.21 59.11 23.85 16.31
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Fig. 4. Step responses of the closed-loop system for G2(s)

The closed-loop step responses obtained for the five PID tuning methods for
the system G2 are shown in Fig. 4. The responses for the GP controller and
the MOMI controller are almost indistinguishable, but superior than for the
ZN, RZN, and CHR regulators. The system responses for the GP and MOMI
controllers exhibits almost no overshoot.

5.3 Case 3 - A Highly Non-minimum-phase Process

The PID parameters determined by the five different tuning methods, the con-
straints and objective values are given in Table 4.

The closed-loop step responses obtained for the five PID tuning methods for
the system G3 are shown in Fig. 5. It can be observed that the response for the

Table 4. PID parameters, constraints and objective values obtained simulating G3(s)

Parameters and variables GP MOMI ZN RZN CHR
Kp 0.14 0.13 0.26 0.15 0.20
Ti 2.31 2.62 9.36 1.91 1.36
Td 0.006 0.71 2.34 0.37 2.20
β - - - 1.98 -

ess(%) 0.00 0.00 - 0.01 -
Mp(%) 2.32 0.00 - 118.34 -
Ts(s) 24.65 38.14 - 43.73 -
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Fig. 5. Step responses of the closed-loop system for G3(s)

MOMI controller has the smallest overshoot but for the GP controller the rise
time and settling time are smaller than for the others. The system is unstable
for the ZN and CHR tuning methods.

6 Discussion and Conclusion

The individuals (controllers) of the first generation had very poor fitness, which
presented a high overshoot, a high settling time and a small steady-state error.
As the simulation carried out, and the genetic operations being performed, the
parameters started to have fitness values converged around the ideal, what can
be seen in Fig. 6, where the best individuals of the first generations do not
present a good result, but with elapsing of the generations, could be noticed,
they approach to an optimal response. During the simulation, good individuals
were preserved, but many of them were lost. The GP algorithm undertook some
modifications such that, less good individuals could be rejected. Then, the GP
algorithm started to give better individuals in elapsing of the generations until
the best individual, with good characteristics is achieved, and for which, fitness
is in accordance with the presented in Section 4.

This work presented a novel optimal-tuning technique for the classical PID
controllers based on the GP applied to ZN fine tuning. The design, implementa-
tion and testing of this approach were discussed and compared with traditional
tuning methods. An overview of genetic programming has been offered. Three
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cases were studied: a high-order process, a process with a larger time delay, and
a highly non-minimum-phase process.

GP applied to ZN fine tuning platform revealed to be a simple and effi-
cient tool to controller parameters tuning, showing a great purpose to minimize
the settling time of the system with a minimum overshoot, and also with null
steady state error. This performance was shown through the simulation of three
examples, for five different PID tuning methods. The approach presented here
performed better than ZN, RZN, CHR, and MOMI. Comparing the systems
responses to a unity step input, the GP method generally gives very small over-
shoot, little oscillations, and better or comparable settling time, even for the
large plant, what suggests to be viable the application of GP to controller pa-
rameters tuning.
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Fig. 6. The best individual of each generation

GP combined with ZN method demonstrated to have an important charac-
teristic of starting the parameters optimization search in a pre-defined interval.
Therefore, minimizing the evolutionary computation problem of determining the
accurate search interval, which choice has actually been made by trial and error,
increasing the computational time of these algorithms simulations.

It is important to stand out also that in systems where ZN is not applied, only
GP can be used. However, the search interval must be defined by attempt and
error, what will demand higher computation time to reach satisfactory results.
But GP can still be applied to any type of system.



322 G.M. de Almeida et al.

References

1. Almeida, G. M., Silva, V. V. R., Nepomuceno, E. G.: Programação Genética em
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Abstract. The DARPA/MIT Lincoln Laboratory off-line intrusion detection 
evaluation data set is the most widely used public benchmark for testing 
intrusion detection systems. But the presence of simulation artifacts attributes 
would cause many attacks in this dataset to be easily detected. In order to 
eliminate their influence on intrusion detection, we simply omit these attributes 
in the processes of both training and testing. We also present a GP-based rule 
learning approach for detecting attacks on network. GP is used to evolve new 
rules from the initial learned rules through genetic operations. Our results show 
that GP-based rule learning approach outperforms the original rule learning 
algorithm, detecting 84 of 148 attacks at 100 false alarms despite the absence of 
several simulation artifacts attributes. 

1   Introduction 

Intrusion detection is an important facet of computer security. It has been extensively 
investigated since the report written by Anderson [1]. An intrusion detection system 
(IDS) can detect hostile attacks by monitoring network traffic, computer system 
sources, audit records, or the access of the file system. There are two models in 
intrusion detection context, one of which is misuse detection while the other is 
anomaly detection. The former technique aims to develop models of known attacks, 
which can be detected through these models. The latter intends to model normal 
behaviors of systems or users, and any deviation from the normal behaviors is 
regarded as an intrusion. Due to their nature, misuse detection has low false alarms 
but its major limitation is that it can’t detect novel or unknown attacks until the 
signatures of attacks are appended to the intrusion detection system, on the contrary, 
anomaly detection has the advantage of detecting novel or unknown attacks which 
can’t be detected by misuse detection but it has the potential to generate too many 
false alarms. 

With the widespread use of the Internet, intrusion detection systems have become 
focused on attacks to the network itself. Network intrusion detection system has been 
developed to detect these network attacks, which can’t be detected by host intrusion 
detection system, by means of examining network traffic. There are a number of 
network intrusion detection systems using misuse detection or anomaly detection. 
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Because the models of normal traffic are hard to be obtained, network intrusion 
detection systems like SNORT [2] typically use misuse detection, matching 
characteristics of network traffic to the characteristics of known attacks in their 
database. This method detects known attacks in a very low false alarms rate while 
omits novel or unknown attacks against intrusion detection systems’ database. An 
alternative approach is anomaly detection, which models normal traffic and regards 
any deviation from this model as suspicious. But due to its high false alarms rate, 
anomaly detection hasn’t been applied in most commercial intrusion detection 
systems, leading to the research on network anomaly detection.  

This paper focuses on rule learning for network anomaly detection system. We 
evolve rules learned from the training traffic by using Genetic Programming (GP) [3], 
and then we use the evolved rules to differentiate attacks traffic from normal traffic. 

We present an algorithm called LERAD-GP (LEarning Rules for Anomaly 
Detection based Genetic Programming) to generate and evolve rules for detecting 
attacks. LERAD-GP is a variation of LERAD, which has been presented by Mahoney 
et al. to find the relation of the attributes in network connections [4]. In the process of 
experimenting, we found that LERAD-GP outperforms LERAD in detecting attacks 
from modified data set, in which the simulation artifacts had been removed. The 
presence of simulation artifacts would lead to overoptimistic evaluation of network 
anomaly detection systems [5]. At the same time, we introduce a simple method to 
remove simulated artifacts, and validate the effectivity of this remove approach. 

The rest of the paper is organized as follows. Section 2 describes an overview of 
related work in network anomaly detection and Genetic Programming. Section 3 
describes the GP algorithm. Section 4 discusses how to use GP to evolve learned 
rules. Section 5 presents the evaluation of the evolved rules using test dataset and 
discusses the experimental results. Section 6 concludes the paper. 

2   Related Work 

Network anomaly detectors look for unusual network traffic by taking some attributes 
of traffic into account. Some information in network packets such as IP addresses and 
port numbers can be used for modeling network normal traffic. ADAM (Audit Data 
and Mining) monitors port numbers, IP addresses and subnets, and TCP state to build 
normal traffic models which can be used to detect suspicious connections [6]. Like 
ADAM, SPADE (Statistical Packet Anomaly Detection Engine) monitors addresses 
and ports to achieve detection [7]. Nevertheless, these few attributes of traffic are far 
from enough to model network traffic. There are more network attributes should be 
used to distinguish between hostile and benign traffic. 

To use more features of traffic, Mahoney presented several methods in his paper 
[8]. They are PHAD, ALAD, LERAD, and NETAD [4, 9, and 10]. PHAD (Packet 
Header Anomaly Detector) [9] is a system that learns the normal range of values for 
33 fields of the Ethernet, IP, TCP, UDP, and ICMP protocols. It is implemented by 
using simple nonstationary models that estimate probabilities based on the time since 
the last event rather than the average rate of events which is often applied to estimate 
probabilities. Different from PHAD, ALAD (Application Layer Anomaly Detection) 
[9] assigns a score to an incoming server TCP connection. It is configured to detect 
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network attacks against the fixed victim, and it distinguishes server ports (0-1023) 
from client ports (1024-65535). After a testing of a number of attributes and their 
combinations, Mahoney et al. select five because of their best performance. They are 
P(source IP address | destination IP address), P(source IP address | destination IP 
address, destination TCP port), P(destination IP address, destination TCP port), 
P(TCP flags | destination TCP port), and P(keyword | destination TCP port). During 
the training stage, these probabilities are estimated and then used to obtain the 
anomaly score of connections in detecting. As with PHAD, the anomaly score is 
relevant to the time since the last event. LERAD (LEarning Rules for Anomaly 
Detection) [4] is a system that learns rules for finding rare events in nominal time-
series data with long range dependencies. It constitutes an improvement of the two 
previous methods by using a rule learning algorithm. LERAD is able to learn 
important relationships between attributes of benign traffic, and use them to detect 
hostile traffic. NETAD (NEtwork Traffic Anomaly Detector) [10] models the most 
common protocols (IP, TCP, Telnet, FTP, SMTP, and HTTP) at the packet level to 
flag events that have not been observed for a long time. It is based on the 
consideration of fist 48 bytes of the packet, each of which is treated as an attribute 
with 256 possible values. The last algorithm can detect anomaly values ever seen in 
training phase while the others regard values seen in training phase as normal. 

One of the major contributions of Mahoney et al. is that they presented a time-
based model appropriate for bursty traffic with long range dependencies [8]. There 
had long been assumed that network traffic could be modeled by a Poisson process, in 
which events are independent of each other. Therefore, some anomaly detectors like 
ADAM and SPADE regard the average rate of events x in training as the probability 
of x. However, this may be inappropriate in this context. Paxson et al. showed that 
many network processes are self-similar or fractal [11]. In order to depict the features 
of network traffic, Mahoney et al. proposed a time-based model. Furthermore, 
Mahoney et al. presented a continuous model to monitor previously seen values of 
attributes. Using these two models, Mahoney et al. showed that LERAD and NETAD 
performed quite well on the dataset of DARPA 1999 [12]. They used the inside 
sniffer traffic from week 3 of the DARPA 1999 valuation dataset for training dataset, 
and regarded week 4 and 5 as testing dataset. Table 1 shows their results at 100 false 
alarms. 

Table 1. The numbers of detected attacks of LERAD and NETAD at 100 false alarms 

Approach Detections 
LERAD 117/177 
NETAD 132/177 

Mahoney et al. found the presence of simulation artifacts by integrating real 
network traffic into DARPA 1999 dataset. They deem that the simulation artifacts 
would lead to overoptimistic evaluation of network anomaly detection systems. In 
order to eliminate the impact of simulation artifacts of original network traffic dataset, 
Mahoney et al. collected a real inside traffic dataset which they denoted as FIT 
dataset. After preprocessing FIT, they mixed the DARPA 99 dataset with FIT dataset. 
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After that, they modified their detection algorithms to detect attacks of mixed dataset. 
Table 2 shows their detection results of Probe, DoS (denial of service), and R2L 
(remote to local) attacks on mixed dataset. 

Table 2. Probe, DoS, and R2L attacks detected at 100 false alarms on mixed dataset 

Approach Detections 
PHAD 24/148 
ALAD 13/148 
LERAD 30/148 
NETAD 42/148 

From their depiction, the performance of their methods on mixed dataset is far 
worse than that on DARPA 1999 dataset. But the appropriate explanation hadn’t been 
presented. After analyzing their works on detection, we deem that there are several 
reasons for the worse performance of these four methods on merged dataset. 

1. FIT was not free of attacks. Mahoney et al. examined the traffic manually and 
tested it using SNORT [3], and they found that at least four attacks existed in the FIT 
dataset. Moreover, it is sure that there are more attacks not found by them. Therefore, 
their training was based on a dataset contained a few unknown or known attacks. The 
noisy attacks would influence the training phase, resulting in a deviation from normal 
model which would be obtained from attack free training dataset. The deviated model 
led to a decrease in the attacks detection rates at the same false alarms rate. 

2. The number of packets in mixed dataset was about double of that in DARPA 
1999 dataset. Both traffics will generate false alarms, resulting in a higher error rate 
than either traffic source by itself. However, the evaluation criterion is the same as 
that of original traffic, resulting in the lower detection rates. 

3. Mahoney et al. claimed that NETAD can model previously seen values, and that 
this detector can be used for training dataset which contains some attacks. However, 
from the above results we know that the model of NETAD isn’t appropriate for this 
environment. All of the four detectors performed poorly if the training dataset 
contains some attacks. 

GP has been used to solve many problems since it was developed by Koza [3]. It is 
also widely used in intrusion detection. Crosbie et al. employed a combination of GP 
and agent technique to detect anomalous behaviors in a system [13]. They use GP to 
evolve autonomous agents for detecting potentially intrusive behaviors. But 
communication among these autonomous agents is still an issue. Su et al. used GP to 
generate the normal activity profile by modeling system call sequences [14]. If the 
tested sequences deviate from the normal profile, their system denotes the process as 
intrusion. Lu et al. proposed a rule evolution approach based on GP to evolve initial 
rules which were selected based on background knowledge from known attacks [15]. 
After that, they used initial and evolved rules to detect known or novel attacks on a 
network. The results showed that the rules evolved based on knowledge of known 
attacks could detect some novel attacks. But the initial rules they used must be 
manually specified by domain experts. 
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3   Overview of GP 

3.1   GP 

GP is a further extension of Genetic Algorithm (GA) [16, 17]. In contrast to GA, GP 
typically operates on a population of parse trees which usually represent computer 
programs. A parse tree is composed of internal nodes and leaf nodes. The internal 
nodes are called primitive functions while the leaf nodes are called terminals. The 
terminals can be regarded as the inputs to the program being induced. There are 
independent variables and the set of constants in the terminals. The primitive 
functions can form more complex function calls by combining the terminals or 
simpler function calls. Solving a problem is a search through all the possible 
combinations of symbolic expressions defined by the programmer. 

3.2   GP Operators 

GP can be used to evolve rules which are of the form “if antecedents then 
consequent”. In rule evolving, three genetic operators which are called crossover, 
mutation, and dropping condition can be used [18]. 

Crossover is a sexual operation that produces two children from two parents. A 
part of one parent is selected and replaced by another part of the other parent. 
Mutation is an asexual operation. A part in the parental rule is selected and replaced 
by a randomly generated part. 

Dropping condition can be used to evolve new rules. It selects randomly one 
condition, and then turns it into “any”, resulting in a generalized rule. This operator is 
a new genetic operator, which is proposed to evolve new rules [18]. For example, the 
rule 

if condition 1 and condition 2 then consequence. 
can be changed to 

if condition 1 and any then consequence. 

3.3   Fitness Function 

A fitness function is needed to evaluate evolved rules. In this context, we use the 
fitness function based on the support-confidence framework and the number of 
antecedents. Support measures the coverage of a rule while confidence factor (cf) 
represents the rule accuracy. If a rule has the format of “if A then B”, its confidence 
factor and support are defined as follows: 

cf = |A and B| |A|; support = |A and B|⁄N, (1) 

where |A| is the number of records that only satisfy antecedent A, |B| is the number of 
records that satisfy consequent B, |A and B| is the number of records that satisfy both 
antecedent A and consequent B, and N is the size of training dataset. 

As described in [18], some rules may have high accuracy but the rules may be 
formed by chance and based on a few training examples. This kind of rules does not 
have enough support. To avoid the waste of evolving those rules of low support, 
fitness function is defined as: 
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             support                  if  support < min_support 
fitness =                                                                              , 

             w1 support + w2 cf                     otherwise       
(2) 

where min_support is a minimum threshold of support, the weights w1 and w2 are 
user-defined to control the balance between the confidence and the support in 
searching. 

Finally, we use the modified fitness as follows: 

modified_fitness = fitness/r, (3) 

where r is the number of antecedents in the rule. The idea behind the division by r is 
that the more antecedents in a rule, the easier the rule will be removed in the 
validation stage of the algorithm described in next section. 

4   Using GP to Generate New Rules 

We use a rule learning method which is similar with LERAD to generate the initial 
rule set. LERAD learns conditional rules over nominal attributes. After evolving rules 
we obtain a rule set, which can be used to evaluate connections from test dataset and 
then to detect malicious connections. 

The antecedent of a rule is a conjunction of equalities, and the consequent is a set 
of allowed values, e.g. if port = 80 and word3 = HTTP/1.0 then word1 =GET or 
POST. Allowed values means that it is observed in at least one training instance 
satisfying the antecedent. During testing, if an instance satisfies the antecedent but the 
consequent isn’t one of the allowed values, then an anomaly score of ts/n is 
calculated, where t is the time since the last anomaly by this rule, s is the number of 
training instances satisfying the antecedent, and n is the number of allowed values. In 
fact, the reciprocal of the anomaly function is the product of two probabilities, 1/t and 
n/s. Therefore, this anomaly score can be used to identify rare events: those which 
have not occurred for a long time (large t) and where the average rate of "anomalies" 
in training is low (small n/s). For all violated rules, a total anomaly score is summed. 
If the summed score exceeds a threshold, an alarm is generated. 

The LERAD based GP algorithm is proposed as follows: 

1. Rule generation. Randomly select M pairs of training instances from a subset S 
which is also randomly sampled from the training dataset. Then use these M pairs of 
instances to generate initial rule set R, in which each rule satisfies both instances with 
s/n = 2/1. Each pair of instances generate up to L rules. 

2. Rule evolving. Evolve rules from R using crossover and dropping condition 
operators. The mutation operator isn’t used because the mutated rules may become 
illegal, e.g. if port = 80 then word1 = GET, may mutated to: if port = HTTP/1.0 then 
word1 = GET. 

3. Testing coverage. Discard rules from R to find a minimal subset of rules, which 
cover all instance values in S, favoring rules with higher modified-fitness over S. 

4. Training. Make sure each of the consequent values of each rule in R is observed 
at least once when the antecedent is satisfied. If the predefined termination criterion is 
satisfied, then turn to step 5, otherwise to step 2. 
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5. Validation. In the whole training dataset, if an instance satisfies the antecedent 
of a rule but the consequent isn’t one of its allowed values, then remove this rule. The 
reason for rule removing is because the invalidation of this rule has been verified via 
the unsatisfied instance. 

6. Testing. For each instance in testing, assign an anomaly score of ts/n for the 
violations. The higher score means more suspicious of attacks. 

5   Experiments and Results 

We test our method using the 1999 DARPA/Lincoln Laboratory intrusion detection 
evaluation data set, a widely used benchmark using synthetic network traffic [12]. 
Only the inbound client traffic is used for our experiments because the targets of most 
R2L attacks, as well as probes and DoS attacks are various servers, leading to the 
abnormality in the inbound traffic. Our method was trained on week 3 and extra week 
3, which contains no attacks, and tested on weeks 4 and 5. 

Firstly we reassemble TCP connections from traffic packets. LERAD used 23 
attributes of reassembled TCP connection to generate rules and detect suspicious 
connections. But according to the analysis of Mahoney et al. [5], there are some 
suspected artifacts attributes in the DARPA 1999 dataset, including client source IP 
address, TTL, TCP window size, and TCP options. For the purpose of removing 
artifacts attributes, we omit the above four attributes from reassembled TCP 
connections, resulting in 16 attributes being remained. The remained 16 attributes are 
date, time, last two bytes of the destination IP address, source port, destination port, 
log base 2 of the duration time, log base 2 of the length, and first 8 words of the 
payload. Because simulation artifacts would help intrusion detectors to detect attacks, 
some attacks become hardly detected after removing of artifacts attributes. So the 
detection rate of anomaly detector will be inevitable decreased if we want to keep the 
same false alarms as before. Nevertheless, the influence of artifacts attributes can be 
eliminated using this simple removal approach. 

We set the sample size |S| = 200 and draw M = 1000 sample pairs, generating up to 
L = 4 for each rule. As to GP, The rates of crossover and dropping condition 
operations are 0.6, 0.001 respectively for each rule. 

In our experiments, attack is counted as detected if it is "in-spec" (the attack are 
supposed to be detected) and the detector correctly identifies the IP address of the 
victim or attacker and the time of any portion of the attack interval within 60 seconds. 
Out of spec detections are ignored. Duplicate detections of the same attack are 
counted only once, but every false alarm is counted. Our anomaly detector is designed 
to detect 148 in-spec attacks, including probe, DoS, and R2L because there is 
evidence for these attacks in the inside sniffer traffic according to the truth labels. 

We also test NETAD and LERAD in the dataset in which four suspected artifacts 
attributes are omitted. Moreover, for the sake of comparison, we excerpt the results of 
[7], in which NETAD and LERAD tested on the mixed dataset. Just the same as 
Mahoney et al., We refer to them as NETAD-C and LERAD-C respectively. 
Therefore, we compare the performance of LERAD-GP with that of the other two 
algorithms, which are tested in both modified DARPA 1999 and the mixed dataset in 
[4]. The results are as follows. 



330 C. Yin et al. 

 

Table 3. Probes, DoS, and R2L attacks detected by LERAD, NETAD, and LERAD-GP at 100 
false alarms 

Category Total LERAD-C NETAD-C LERAD-GP LERAD NETAD 
Probe 34 7(21%) 12(35%) 23(68%) 21(62%) 8(23%) 
DoS 60 5(8%) 11(18%) 34(57%) 26(43%) 15(25%) 
R2L 54 18(33%) 18(33%) 27(50%) 19(35%) 11(20%) 
Total 148 30(17%) 41(28%) 84(57%) 66(45%) 34(23%) 

Detections out of 148

0

25

50

75

100

125

0 100 200 300 False Alarms

LERAD-C

NETAD-C

LERAD-GP

LERAD

NETAD

 
Fig. 1. Probe, DoS, and R2L attacks detected by LERAD, NETAD, and LERAD-GP as 0 to 
300 false alarms (0 to 30 per day) 

6   Conclusion 

In this paper, we have presented and evaluated a GP-based rule learning approach for 
detecting attacks on network. We also introduced a simple removal approach to 
simulated artifacts attributes, which are regarded as the reason for overoptimistic 
evaluation of network anomaly detectors. The effectivity of this simple removal has 
been validated through the experiments conducted in this paper. We can see that 
LERAD-GP outperforms the original LERAD algorithm. The results show that GP 
can optimize rules by crossover and dropping condition operations for anomaly 
detecting. 

However, there are some limitations in LERAD-GP. One is that the algorithm 
needs two passes during training, resulting in the inefficiency of detector. Another is 
that it requires training dataset which is attack-free whereas explicit training and 
testing data would not be available in a real setting. How to model network traffic on 
the training dataset which is mixed with attacks is still an open issue. 
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Abstract. A new approach for dealing with a huge number of cutting pattern 
combinations encountered in two-dimensional Cutting Stock Problem (CSP) is 
described.  Firstly, cutting patterns are produced according to a novel cutting 
method LF(Lease Fit) algorithm which can effectively cuts a sequence of small 
rectangular pieces from a big stock, heuristically maximizing the stock's utiliza-
tion ratio. Then Genetic Algorithm (GA) is applied to search for a near optimal 
solution which consists of many patterns namely a pattern combination.  To 
evaluate the combination’s fitness, LP (Linear Programming) algorithm is used 
in polynomial time without bringing about much error. The performance and ef-
ficiency are justified by numerical experiments. 

1   Introduction 

The two-dimensional non-guillotine cutting stock problem arises in many industry 
applications such as textile, leather, paper, wood and cloth, etc. It is considered as 
cutting a number of small rectangular pieces from many pieces of large rectangle 
stocks of the same width and length. The objective is to minimize the overall cost, 
such as total number of the stocks to be cut from. 

Variant CSP are all NP-Complete problems. Many researchers have formulated 
them as a kind of Integer Programming problems [1,2]. As for the two-dimensional 
Cutting Stock Problem, methods mentioned in literatures [3,4] mainly focus on how to 
cut an infinite long stock to smaller rectangles. Thus the resulted cutting pattern is 
usually very complex for large scale problem and leads to poor production efficiency. 
When we consider applying a few cutting patterns to many finite long stocks, from 
optimization point, it wastes no less than cutting small pieces from an infinite long 
stock, because the latter mechanism can pack them more tightly. But the former case is 
usually encountered in real industry application for efficiency consideration. The es-
sential factor that brings complexity to the search process is the huge number of pat-
terns and how to combine them to form a good solution. In [5], how to generate all 
feasible patterns is described in detail.  

The paper is organized as follows. A formal definition of two-dimensional non-
guillotine cutting problem is given in the next section. This is followed by a detailed 
description of all algorithm elements including LF algorithm, pattern combination and 
GA procedure. Then experimental results show the performance and efficiency of the 
algorithm. Finally, concluding remarks are summarized. 
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2   Problem Formulation 

There are infinite many rectangular stocks S  with the same width W  and length   

L , p  kinds of small pieces 1 1 1 2 2 2{( , , ),( , , ),..., ( , , )}p p pR n w l n w l n w l=  with each 

kind's number specified by (1 )in i p≤ ≤ and width specified by ( )i iw w W≤   and 

length specified by ( )i il l L≤ . A cutting pattern P  defines how to cut a stock to 

some small pieces and thus can result in a sequence  1 2( , ,..., )pt t t ,  where 
i

t  de-

notes the number of  i th kind  small pieces generated. The final result would be a 

cutting pattern combination 1 1{( , ),..., ( , )}q qC m P m P= , where (1 )im i q≤ ≤  de-

notes the   i th  pattern need be applied im  times. The solution minimizes the cost 

1

q

i
i

m
=

   that is actually the total number of stocks to be cut from. 

3   Approach 

3.1   LF Algorithm 

For convenience of representing a cutting pattern, a sequence of small piece's kind 

sequence 
1 2[ , ,..., ](1 ,1 )n ik k k k p i n≤ ≤ ≤ ≤  is usually adopted. ik denotes the i th 

piece generated by this pattern is of ik th kind. For different pattern, n  is randomly 

set. Each kind is selected according to the probability
1

/
p

i jj
n n

=
. The bigger length 

of width and length is assigned for each kind as its priority and then the sequence is 
sorted in priority non-increasing order. It is to accommodate bigger pieces first and 
then fill smaller ones to small fragments in such cutting order. 

All empty rectangles in the stock should be recorded in the cutting process, which 
are largest possible empty rectangular areas in the stock and may be overlapped. For 
each  piece  in  the  sequence  to be cut, the smallest one from those big enough empty  

Table 1. Empty areas list 

Step Piece to be cut Big enough empty 
areas 

Selected area 
to be cut 

Left empty areas 

1 (15*5) (20*15) (20*15) (20*10)  (5*15) 
2 (10*5) (20*10)   (5*15) (5*15) (15*10)  (20*5) 
3 (10*5) (15*10)   (20*5) (15*10) (20*5)   (5*10) 
4 (8*7) No No (20*5)   (5*10) 
5 (7*4) (20*5)  (5*10) (5*10) (1*10) (6*5) (10*5) 
6 (7*4) (10*5) (10*5)  
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rectangles is choose. If needed, small piece can be rotated 90 degree to fit to the 
empty area. The philosophy is to make good use of space and reserve other empty 
rectangles as large as possible. 

Suppose we have 4 small pieces {(10*5), (8*7), (4*7), (15*5)} and a stock of size 
(20*15). We randomly generate a index sequence [1,4,3,2,3,1] and the sorted result is 
[4,1,1,2,3,3].The cutting process is showed in Table.1 and Fig.1 and the final feasible 
cutting pattern is [4,1,1,3,3]. 

 

Fig. 1. Cutting process 

3.2   Genetic Algorithm 

3.2.1   Representation of Gene, Adding New Chromosome and Mutation 
The chromosome is constructed as a combination of cutting patterns. After q  feasible 

cutting patterns are available, they form a pattern combination. The real solution may 
only make use of several of them or even don’t exist which is determined by LP  
algorithm. 

Crossover and adding new chromosome to the population which consists of a num-
ber of chromosomes is used to realize randomly searching for a near optimal solution. 
We first specify a fixed operational rate Pr  and get a random number between 0 and 
1. If it is less than Pr , randomly select two chromosomes and randomly exchange 
patterns between them, which results in two new chromosomes. Otherwise, simply 
produce a new chromosome and add it to the population. In our experiment 
Pr =0.66.   

3.2.2   Fitness Evaluation, Selection and Termination 
The fitness of a chromosome is defined as the number of stocks needed to cut from. It 
is easy to formulate it as an Integer Programming (IP) problem. As the pattern number 
is small, applying LP first in polynomial time and then rounding-up its solution will 
only bring just a little error. Those infeasible chromosomes should be removed. The 

following is LP formulation, where j
it  is the number of i th kind small pieces gener-

ated by j th pattern: 

1

1
. . ( * ) (1 )

q

jj

q i
j j ij

Min m

s t m t n i p

=

=
≤ ≤ ≤

 

Then rounding-up each jm  = jm  
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To control the population size to be less than m , an individual with higher fitness 
has a higher chance to be deleted. The possibility is 

1
min(max(( ), 0)* / , 1)

M

i jj
M m f f

=
− , where M  is the number of all chromosomes at 

that time and if  is i th chromosome’s fitness. When the fitness decreases less than 

dif in continuous ite  iterations, the algorithm will terminate. 

3   Experiments 

Bigger parameters for the continuous iteration number ite , fitness difference dif ,  

pattern number q  in a combination  and population size m  may lead to better final 

solution, because more tests will be tried. In the first 100 tests, all piece' shape and 
their required numbers are randomly generated by even distribution. Each piece’s 
length and width range from 3 to 17 and its requested number ranges from 5 to 25. 
The stock’s length and width are set between 15 and 30. All tests only involve less 
than 200 pieces and pattern number for each combination is allowed from 4 to 8 and 
population size is set to be 40. As Table.2 shows, the majority cases only achieve 

utility ( 
1

( * * ) / min( )
p

i i i j
i

u n w l f
=

=   ) between 70% and 80%. Increasing q   and 

ite did not improve results much.  
Then the algorithm is tested with 10 large scale problems which   consist of more 

than 4000 pieces whose size is a little narrow comparatively. One typical evolution 
curve is depicted Fig 2. Because they all get final utilities more than 80%, it can be 
deduced that to get higher utility depends on the problem’s constraints more than the 
algorithm. 

Table 2. Test results 

Uitility 60%- 70% 70%-80% 80%-90% 90%-100% 
Number 
of tests 

14 57 19 2 

 

Fig. 2. Utility against iteration curve 
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4   Conclusions 

The proposed approach is based on a heuristic LF conversion method. GA is em-
ployed to search for a good combination of patterns and LP is used to evaluate fitness 
without bringing much error. As the tests of different sizes show, to get a high utility 
depends heavily on the shapes of stock and pieces in different problem setting. To 
improve the performance, cutting scheme need to be further studied that incorporate 
more shape knowledge. 
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Abstract. The complete genomes of living organisms have provided much in-
formation on their phylogenetic relationships. In the past few years, we pro-
posed three alternative methods to model the noise background in the composi-
tion vector of protein sequences from a complete genome. The first method is 
based on the frequencies of the 20 kinds of amino acids appearing in the ge-
nome and the multiplicative model. The second method is based on the iterated 
function system model in fractal geometry. The last method is based on the re-
lationship between a word and its two sub-words in the theory of symbolic dy-
namics. Here we introduce these methods. The complete genomes of prokaryo-
tes and eukaryotes are selected to test these algorithms. Our distance-based phy-
logenetic tree of prokaryotes and eukaryotes agrees with the biologists’ “tree of 
life” based on the 16S-like rRNA genes in a majority of basic branches and 
most lower taxa. 

1   Introduction 

In our understanding of the classification of the living world as a whole, the most 
important advance was made by Chatton [5], whose classification is that there are two 
major groups of organisms, the prokaryotes (bacteria) and the eukaryotes (organisms 
with nucleated cells). Then the universal tree of life based on the 16S-like rRNA 
genes given by Woese and colleagues [29,31] led to the proposal of three primary 
domains (Eukarya, Bacteria, and Archaea). Although the archaebacterial domain is 
accepted by biologists, its phylogenetic status is still a matter of controversy [13,18].  
Analyses of some genes, particularly those encoding metabolic enzymes, give differ-
ent phylogenies of the same organisms or even fail to support the three-domain classi-
fication of living organisms [3,7,13].  

It is generally accepted that genome sequences are excellent tools for studying evo-
lution [9]. In building the tree of life, analysis of whole genomes has begun to sup-
plement, and in some cases to improve upon, studies previously done with one or few 
genes [9]. The availability of complete genomes allows the reconstruction of organ-
ismal phylogeny, taking into account the genome content, for example, based on the 
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rearrangement of gene order [23], the presence or absence of protein-coding gene 
families [12], gene content and overall similarity [26], and occurrence of folds and 
orthologs [16]. All these approaches depend on alignment of homologous sequences, 
and it is apparent that much information (such as gene rearrangement and inser-
tions/deletions) in these data sets is lost after sequence alignment, in addition to the 
intrinsic problems of alignment algorithms [15,24,25]. There have been a number of 
recent attempts to develop methodologies that do not require sequence alignment for 
deriving species phylogeny based on overall similarities of the complete genomes 
(e.g., [15,20,24,25,32-37]). 

By overcoming the problem of noise and bias in the protein sequences through the 
use of appropriate models, whole-genome trees have now largely converged to the 
rRNA-sequence tree [4]. Qi et al. [20] have developed a simple correlation analysis of 
complete genome sequences based on compositional vectors without the need of se-
quence alignment. The compositional vectors calculated from the frequency of amino 
acid strings are converted to distance values for all taxa, and the phylogenetic rela-
tionships are inferred from the distance matrix using conventional tree-building meth-
ods. An analysis based on this method using 109 organisms (prokaryotes and eu-
karyotes) yields a tree separating the three domains of life, Archaea, Eubacteria and 
Eukarya, with the relationships among the taxa correlating with those based on tradi-
tional analyses [20]. A correlation analysis based on a different transformation of 
compositional vectors was also reported by Stuart et al.[24] who demonstrated the 
applicability of the method in revealing phylogeny using vertebrate mitochondrial 
genomes.  

In the approach proposed by Qi et al. [20], a key step is to subtract the noise back-
ground in the composition vectors of the protein sequences from complete genomes  
through a Markov model. In the past few years, we proposed three alternative meth-
ods to model the noise background in the composition vector of protein sequences 
from a complete genome. The first method is based on the frequencies of the 20 kinds 
of amino acids appearing in the genome and the multiplicative model [34]. The sec-
ond method is based on the iterated function system (IFS) model in fractal geometry 
[1,32,36].  The last method is based the relationship between a word and its two sub-
words in the theory of symbolic dynamics [37]. We introduce these methods in the 
present paper. The results are as good as those previously reported in Qi et al. [20]. 

2   Methods 

A protein sequence is formed by twenty different kinds of amino acids, namely, 
Alanine (A), Arginine (R), Asparagine (N), Aspartic acid (D), Cysteine (C), Glutamic 
acid (E), Glutamine (Q), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L), Ly-
sine (K), Methionine (M), Phenylalanine (F), Proline (P), Serine (S), Threonine (T), 
Tryptophan (W), Tyrosine (Y) and Valine (V) [2, p.109]. Each coding sequence in the 
complete genome of an organism is translated into a protein sequence using the ge-
netic code [2, p.122]. 

The phylogenetic signal in the protein sequences is often obscured by noise and 
bias [4]. There is always some randomness in the composition of protein sequences, 
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revealed by their statistical properties at single amino acid or oligopeptide level (see 
[28] for a recent discussion on this point).  In order to highlight the selective diversifi-
cation of sequence composition, we subtract the random background (noise and bias) 
from the simple counting results.   

2.1   Methods 1: Measure Representation of Protein Sequences and IFS 
Simulation  

Yu et al. [34] proposed the measure representation of protein sequences. We link all 
translated protein sequences from a complete genome to form a long protein sequence 
according to the order of the coding sequences in the complete genome. In this way, 
we obtain a linked protein sequence for each organism. In this method we only con-
sider these kinds of linked protein sequences and view them as symbolic sequences. 

We call any string made of K letters from the alphabet {A, C, D, E, F, G, H, I, K, L, 
M, N, P, Q, R, S, T, V, W, Y} which corresponds to twenty kinds of amino acids a K-
string. For a given K there are in total 20K different K-strings for protein sequences. In 
order to count the number of each kind of K-strings in a given protein sequence, 20K 
counters are needed. We divide the interval [0,1[ into 20K  disjoint subintervals, and 
use each subinterval to represent a counter. 

Letting s=s1s2 … sK, si ∈{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}, 

i=1,2, … ,K be a substring with length K, we define ,
20

)(
1=

=
K

i
i

i
l

x
sx where ix  is one 

of the integer values from 0 to 19 corresponding to Asi = , C, D, E, F, G, H, I, K, L, 

M, N, P, Q, R, S, T, V, W, Y respectively, and .
20

1
)()(

Klr sxsx += We then use the 

subinterval )[(),([ sxsx rl to represent substring s. Let NK(s) be the number of times 

that substring s with length K appears in the linked protein sequence ( NK(s) may be 
zero).  

 

Fig. 1. Histograms of substrings with lengths K=1 and 4 in the linked protein sequence from the 
complete genome of Buchnera sp. APS 



340 Z.G. Yu, V. Anh, and L.Q. Zhou 

If the total number of K-strings appearing in the linked protein sequence is denoted 

as NK (total), we define ))(/()()( totalNsNsF KKK = to be the frequency of sub-

string s. It follows that 1)(
}{

=sF
s K

. Now we can define a measure Kμ on [0,1[ by 

dxxYxd KK )()( =μ , where 

                )(20)( sFxY K
K

K = ,          when     )[.(),([ sxsxx rl∈  

We call Kμ  the measure representation of the organism corresponding to the 

given K. As an example, the histogram of substrings in the linked protein sequence of 
Buchnera sp. APS for 1=K  and 4 are given in Fig. 1 

We can order all the )(sF according to the increasing order of )(sxl . According to 

the IFS model described in Yu and Anh [32], we can get the IFS simulation of 

all )(sF . As an example, a fragment of the histogram of substrings in the linked pro-

tein sequence of Buchnera sp. APS for K=5 and its IFS simulation are given in Fig. 2.  

  

Fig. 2. A segment of measure representation of the linked protein sequence for Buchnera sp. 
APS in the left figure and the IFS simulation for the same set of K-strings in the right figure 

We denote this IFS simulation as )(sF pf . In this method, we view )(sF pf  of 

the K20  kinds of K-strings as the noise background. Then we subtract the noise 
background through defining 

=
≠−

=
.0)...(,0

0)...(,1)...(/)...(
)...(

21

212121
21

K
pf

K
pf

K
pf

K
K

sssFif

sssFifsssFsssF
sssX  

2.2   Method 2: Multiplicative Model 

In this method, we still consider the linked protein sequences from complete ge-
nomes. If s′  is one of the 20 letters, we denote by )(sP ′  the frequency of letter s′  
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in the linked protein sequence. Then for any K-substring Kssss ...21= , where 

∈is { A,C,D,E,F, G,H,I,K,L,M, N,P,Q,R,S,T,V,W,Y } , ,,...,2,1 Ki =  we define  

                                 )()...()()( 21 KsPsPsPsF =′ . 

In this method, we view )(sF ′  of the K20  kinds of K-strings as the noise back-

ground. Then we subtract the noise background through defining 

                                  )()()( sFsFsX ′−= .   

2.3   Method 3: Dynamical Language Model 

Let KN 20= . We use a window of length K and slide it through each protein se-
quence in a genome by shifting one position at a time to determine the frequencies of 
each of the N  kinds of strings. A protein sequence is excluded if its length is shorter 

than K.  The observed frequency )...( 21 Ksssp  of a K -string Ksss ...21  is defined 

as )1/()...()...( 2121 +−= KLsssnsssp KK , where )...( 21 Ksssn is the number 

of times that Ksss ...21 appears in this sequence. Denoting by m the number of protein 

sequences from each complete genome, the observed frequency of a K -string 

Ksss ...21  is defined as ))1(/())...((
1 121 +−

= =
KLsssn

m

j

m

j jKj ; here 

)...( 21 Kj sssn means the number of times that Ksss ...21 appears in the jth protein 

sequence and jL  the length of the jth protein sequence in this complete genome.  

In this method, we consider an idea from the theory of dynamical language that a 

K -string Ksss ...21 is possibly constructed by adding a letter Ks  to the end of the 

)1( −K -string 121 ... −Ksss or a letter 1s  to the beginning of the )1( −K -

string Ksss ...32 . Suppose that we have performed direct counting for all strings of 

length )1( −K  and the 20 kinds of letters, the expected frequency of appearance of 

K -strings is predicted by  

2

)...()()()...(
)...( 321121

21
KKK

K

ssspspspsssp
sssq

+
= −  

where q denotes the predicted frequency, and )( 1sp and )( Ksp are frequencies of 

amino acids 1s and Ks appearing in this genome. [In the previous papers of our group 

[6,20], we use Markov model to characterize the predictor, in which we need to know 
the information of the )1( −K -strings and )2( −K -strings.]. In this method we 

view )...( 21 Ksssq  of the K20  kinds of K-strings as the noise background.  
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We then subtract the noise background before performing a cross-correlation 
analysis (similar to removing a time-varying mean in time series before computing 
the cross-correlation of two time series) through defining 

=
≠−

=
.0)...(,0

0)...(,1)...(/)...(
)...(

21

212121
21

K

KKK
K sssqif

sssqifsssqsssp
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2.4   The Correlation Distance 

The transformation 1)(/)()( −= sFsFsX pf , )()()( sFsFsX ′−=  

or 1)(/)()( −= sqspsX  has the desired effect of subtraction of random back-

ground (noise and bias) from F  or p and rendering it a stationary time series suit-
able for subsequent cross-correlation analysis. 

For all possible K -strings Ksss ...21 , we use )...( 21 KsssX  as components to 

form a composition vector for a genome. To further simplify the notation, we use iX  

for the i -th component corresponding to the string type i , i  = 1,…, N (the N  
strings are arranged in a fixed order as the alphabetical order). Hence we construct a 

composition vector ),...,,( 21 NXXXX =  for genome X , and likewise 

),...,,( 21 NYYYY =  for genome Y .  

If we view the N components in vectors X and Y  as samples of two random vari-
ables respectively, the sample correlation ),( YXC  between any two genomes X  

and Y  is defined as 
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, where aveX and 

aveY are the mean value of vectors X and Y respectively.  The distance ),( YXD  

between the two genomes is then defined by 2/)),(1(),( YXCYXD −= .  A dis-

tance matrix for all the genomes under study is then generated for construction of 
phylogenetic trees.   

2.5   Genome Data Sets and Tree Construction 

We retrieve the complete genomes from NCBI database 
(ftp://ncbi.nlm.nih.gov/genbank/genomes/). To test Method 1 and Method 2, we se-
lected 51 bacteria genomes and 3 eukaryotes genomes (data set 1). To test Method 3, 
we selected a data set used in Qi et al. [20] including 109 organisms (data set 2) for 
prokaryote phylogenetic analysis. 

Qi et al.[19] pointed out that the Fitch-Margoliash method [11] is not feasible when 
the number of species is as large as 100 or more and an algorithm such as  maximum 
likelihood is not based on the distance matrix alone. So we construct all trees using 
the neighbour-joining (NJ) method [22] in the PHYLIP package [10]. 



 Fractal and Dynamical Language Methods to Construct Phylogenetic Tree 343 

For the speed problem, we used a PC (Intel Pentium4 CPU 2.80GHz, 512MB of 
RAM) to calculate the distance matrices on data set 2 for different values of K using 
method 3 and the one proposed by Qi et al. [20]. The times to run the programs are 
listed in Table 1. From Table 1, we see that the present method is computational faster 
than the one proposed by Qi et al. [20] for K=3, 4 and 5. And for the case K=6, we 
cannot perform neither the method 3 nor the one in Qi et al. [20] on our PC since this 
is beyond its computing capacity.   

Table 1. The speed comparison of the present method and the one in Qi et al. [20]. In this table 
“hr” means hour, “min” means minute and “sec” means second. 

Value of K Method of Qi et al. [20] Method 3 

K=3    1 hr and 10 mins and 2 secs              1 hr 4 mins and 5 secs 

K=4  1 hr and 54 mins and 30 secs    1 hr and 40 mins and 33 secs 

K=5 12 hrs and 1 mins and 25 secs 10 hrs and 25 mins and 33 secs 

3   Results and Discussion  

Although the existence of the archeabacterial urkingdom has been accepted by many 
biologists, the classification of bacteria is still a matter of controversy [14]. The evo-
lutionary relationship of the three primary kingdoms, namely archeabacteria, eubacte-
ria and eukaryote, is another crucial problem that remains unresolved [14]. 

 

Fig. 3. The neighbor-joining phylogenetic tree of 54 organisms using Method 1 with K=5 
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It has been pointed out [20] that the subtraction of random background is an essen-
tial step. Our results show that removing the noise background is also an essential step 
in our correlation method. In Yu et al. [36], we proposed to use the recurrent IFS 
model [27] to simulate the measure representation of complete genome and define the 
phylogenetic distance based on the parameters from the recurrent IFS model. The 
method of Yu et al. [36] does not include the step of removing multifractal structure, 
but yielded a tree in which archaebacteria, eubacteria and eukaryotes intermingle with 
one another. 

In the three methods presented here, K must be larger than 3.  We can only calcu-
late the distance matrices and construct the trees for K from 3 to 6 because of the 
limitation on the computing capability of our PCs and supercomputers. We find that 
the topology of the trees converges with K increasing from 3 to 6 and it becomes 
stable for K  5.  We  show the phylogenetic tree using X(s) sequences through 
Method 1 with K=5 in Fig. 3 and through Method 2 with K=5 in Fig. 4. For Method 3, 
we present the result based on K= 6 in Fig. 5. 

The correlation distance based on Method 1 and Method 2 after removing the noise 
background (via IFS simulation or multiplicative model) from the original informa-
tion gives a satisfactory phylogenetic tree. Fig. 3 shows that all Archaebacteria except 
Halobacterium sp. NRC-1 (Hbsp) and Aeropyrum pernix (Aero) stay in a separate 
branch with the Eubacteria and Eukaryotes. The three Eukaryotes also group in one 
branch and almost all other bacteria in different traditional categories stay in the right 
branch. At a general global level of complete genomes, our result supports the genetic 
annealing model for the universal ancestor [30]. The two hyperthermophilic bacteria:  
Aquifex aeolicus  (Aqua) VF5 and  Thermotoga maritima MSB8 (Tmar) gather to-
gether and stay in the Archaebacteria branch in the tree. We notice that these two 
bacteria, like most Archaebacteria, are hyperthermophilic. In the phylogenetic analy-
ses based on a few genes, the tendency of the two hyperthermophilic bacteria, Aquae 
and Thema, to get into Archaea, has intensified the debate on whether there has been 
wide-spread lateral or horizontal gene transfers among species [8,17,21]. Eisen and 
Fraser [9] claimed that analyses of complete genomes suggest that lateral gene trans-
fer has been rare over the course of evolution and it has not distorted the structure of 
the tree. Fig. 4 based on Method 2 is similar to Fig. 3 based on Method 1. Our results 
using Method 1 and Method 2 based on the complete genome (Figs. 3 and 4) do not 
seem to support the views of Eisen and Fraser. Hence more works are required for 
this problem. 

Fig. 5 shows the K=6 tree based on the NJ analysis for the selected 109 organisms 
using Method 3.  The selected Archaea group together as a domain (except Pyrobacu-
lum aerophilum). The six eukaryotes also cluster together as a domain. And all 
Eubacteria fall into another domain. So the division of life into three main domains 
Eubacteria, Archaebacteria and Eukarya is a clean and prominent feature. At the inter 
specific level, it is clear that Archaea is divided into two groups of Euryarchaeota and 
Crenarchaeota. Different prokaryotes in the same group (Firmicutes, Actinobacteria, 
Cyanobacteria, Chlamydia, Hyperthermophilic bacteria) all cluster together. Proteo-
bacteria (except epsilon division) cluster together. In Proteobacteria, prokaryotes from 
alpha and epsilon divisions group with those from the same division. It is clear that 
the branch of Firmicutes is divided into sub-branches Bacillales, Lactobacillales, 
Clostridia and Mollicutes. Our phylogenetic tree of organisms supports the 16S-like 
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rRNA tree of life in its broad division into three domains and the grouping of the 
various prokaryotes. So after subtracting the noise and bias from the protein se-
quences as described in our method, the whole-genome tree converges to the rRNA-
sequence tree as asserted in Charlebois et al. [4].  In our tree (Fig. 5) the two hyper-
thermophlic bacteria group together and stay in the domain of eubacteria. This result 
is  the same as in Qi et al. [20] and also supports the point of view in Eisen and Fraser  

 

Fig. 4. The neighbor-joining phylogenetic tree of 54 organisms using Method 2 with K=5 

 

Fig. 5. Phylogeny of  109 organisms (prokaryotes and eukaryotes) based on Method 2 in the 
case K=6 
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[9]. We gave more comparison between Method 3 and the Markov model proposed 
by Qi et al. [20] in our recent work [37]. From the biological point of view, Method 3 
is better than Methods 1 and 2. 

Our approach circumvents the ambiguity in the selection of genes from complete 
genomes for phylogenetic reconstruction, and is also faster than the traditional ap-
proaches of phylogenetic analyses, particularly when dealing with a large number of 
genomes.  Moreover, since multiple sequence alignment is not used, the intrinsic 
problems associated with this complex procedure can be avoided.  
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Abstract. Cellular automata (CA) have been accepted as a good evolutionary 
computational model for the simulation of complex physical systems. They 
have been used for various applications, such as parallel processing computa-
tions and number theory. In the meanwhile, elliptic curve cryptosystems (ECC) 
are in the spotlight owing to their significantly smaller parameters. The most 
costly arithmetic operation in ECC is division, which is performed by multiply-
ing the inverse of a multiplicand. Thus, this paper presents an evolutionary 
hardware architecture for division based on CA over GF(2n) in ECC. The pro-
posed architecture has the advantage of high regularity, expandability, and a re-
duced latency based on periodic boundary CA. The proposed architecture can 
be used for the hardware design of crypto-coprocessors. 

1   Introduction 

In cryptography, to achieve a high level of security, many public-key algorithms that 
rely on computations in GF(2n) require large field size, some as large as GF(22000). 
Hence, there is a need to develop an efficient algorithm for the multiplication in 
GF(2n). However, significantly smaller parameters can be used in ECC than in other 
competitive systems such RSA and ElGamal, but with equivalent levels of security. 
Benefits of having smaller key sizes include faster computations, and reductions in 
processing power, storage space, and bandwidth. This makes ECC ideal for con-
strained environments such as pagers, PDAs, cellular phones, and smart cards [6]. 

ECC was proposed as an alternative to the established public-key cryptosystems 
such as RSA and ElGamal, and has recently received a great deal of attention in in-
dustry and academia [1,2]. The main reason for the attractiveness of ECC is that there 
is no sub-exponential algorithm known to solve the discrete logarithm problem on a 
properly chosen elliptical curve.  

The main operation of ECC is an inverse/division operation, which can be regarded 
as a special case of exponentiation [3]. However, since a division operation is quite 
time consuming, efficient algorithms are required for practical applications, especially 
for a public key cryptosystem where operands can be as large as 512bits or even lar-
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ger. Fast computation of a division operation can generally be classified into two 
approaches: a faster architecture design or a novel algorithm development. This cur-
rent study focused on the former approach. 

Finite field GF(2n) arithmetic operations have recently been applied in a variety of 
fields, including cryptography and error-correcting codes [4]. A number of modern 
public key cryptography systems and schemes, for example, Diffie-Hellman key pre-
distribution, the Elgamal cryptosystem, and ECC, require the operations of division 
and inversion [5]. Wang [15] proposed parallel-in parallel-out division architecture 
with a latency of (2n2-1.5n) and a critical path of (T2AND+ 3T2XOR). Kim’s serial-in 
serial-out architecture [16] has a latency of (2n2-2n) and a critical path of 
(2T2AND+3T2XOR+TMUX). However, a fast arithmetic architecture is still needed to 
design dedicated high-speed circuits. 

Cellular automata have been used in evolutionary computation for over a decade. 
They have been used for various applications, such as parallel processing and number 
theory. CA architecture has been used to design of arithmetic computation as well 
such that Zhang [8] proposed an architecture with programmable cellular automata, 
Choudhury [9] designed an LSB multiplier based on a CA, and Jeon [17] proposed a 
simple and efficient architecture based on periodic boundary CA. 

This paper proposes an evolutionary architecture for division based on CA. We fo-
cused on the architecture in ECC, which uses restricted irreducible polynomials, espe-
cially, trinomials. The structure has a time complexity of (2n-1)(n-1)(TAND+TXOR 

+TMUX) and a hardware complexity of (nAND+(n+1)XOR+(3n-1)MUX+4nREGIST 
ER). In addition, our architecture can easily be expanded for other public key crypto-
system with additional (n-1) XOR gates. Our architecture is focused on both area and 
time complexity. 

The remainder of this paper is organized as follows. The conceptional background, 
including finite fields, ECC, and CA, is described in section 2. Section 3 presents the 
proposed division architecture based on CA, and we present our discussion, together 
with the performance comparison between the proposed architecture and the previous 
works, in section 4. Finally, section 5 presents our conclusion. 

2   Preliminaries 

In this section, we discuss the mathematical background in the finite field and ECC, 
and the characteristics and properties of cellular automata. 

2.1   Finite Fields 

A finite field or Galois Field (GF), which is a set of finite elements, can be defined by 
commutative law, associative law, and distributive law and facilitates addition, sub-
traction, multiplication, and division. A number of architectures have already been 
developed to construct low complexity bit-serial and bit-parallel multiplications using 
various irreducible polynomials to reduce the complexity of modular multiplication. 
Since a polynomial basis operation does not require a basis conversion, it can be read-
ily matched to any input or output system. Additionally, due to its regularity and sim-
plicity, the ability to design and expand it into high-order finite fields with polynomial 
basis is easier to realize than with other basis operations [10].  
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A finite field can be viewed as a vector space of dimension n over GF(2n). That 
is, there exists a set of n elements {1, α, …, αn-2, αn-1} in GF(2n) such that each 

A∈GF(2n) can be written uniquely in the form = i
iAA α , where Ai ∈{0,1}. This 

section provides one of the most common bases of GF(2n) over GF(2), polynomial 

bases [10,13]. Let f(x) = xn + −
=

1
0

n
i

i
i xf , where fi ∈{0,1}, for i = 0, 1, … , n-1, be an 

irreducible polynomial of degree n over GF(2). For each irreducible polynomial, there 
exists a polynomial basis representation. In such a representation, each element of 
GF(2n) corresponds to a binary polynomial less than n. That is, for A ∈GF(2n) there 
exist n numbers Ai ∈{0,1} such that A = An-1αn-1 + …+ A1α + A0.  

The field element A ∈GF(2n) is usually denoted by a bit string (An-1 …A1 A0) of 
length n. The following operations are defined on the elements of GF(2n) when using 
a polynomial representation with irreducible polynomial f(x). Assume that A = (An-1 
… A1 A0) and B = (Bn-1 …B1 B0). 

1) Addition: A + B = C = (Cn-1 …C1 C0), where Ci = (Ai + Bi) mod 2. That is, 
addition corresponds to bitwise exclusive-or. 

2) Multiplication: A  B = C = (Cn-1 …C1 C0), where C(x) = −
=

1
0

n
i

i
i xC is the re-

mainder of the division of the polynomial ( −
=

1
0

n
i

i
i xA )( −

=
1
0

n
i

i
i xB ) by f(x). 

In many applications, such as cryptography and digital communication applica-
tions, the polynomial basis is still the most widely employed basis [14-16]. In the 
following, we confine our attention to computations that use the polynomial basis. 

2.2   Elliptic Curve Cryptosystem 

In ECC, computing kP is the most important arithmetic operation, where k is an inte-
ger and P is a point on the elliptic curve. This operation can be computed by the addi-
tion of two points k times. ECC can be done with at least two types of arithmetic, each 
of which gives different definitions of multiplication [11]. The types of arithmetic are 
Zp arithmetic (modular arithmetic with a large prime p as the modulus) and GF(2n) 
arithmetic, which can be done with shifts and exclusive-ors. This can be thought of as 
modular arithmetic of polynomials with coefficients mod 2. 

We focused on GF(2n) arithmetic operation. Let GF(2n) be a finite field of defini-
tion. Then the set of all solution to the equation E: y2 + xy = x3 + a2x

2 + a6, where a2, 
a6 ∈GF(2n), a6  0, together with special point called the point at infinity O is a non-
supersingular curve over GF(2n). Let P1 = (x1, y1) and P2 = (x2, y2) be points in 
E(GF(2n)) given in affine coordinates [12]. Assume that P1 , P2  O, and P1  -P2. The 
sum P3 = (x3, y3) = P1 + P2 is computed as follows; if P1  P2 then  = (y1 + y2)/( x1 + 
x2), x3 = 2 +  + x1 + x2 + a2, y3 = (x1 + x3)  + x3 + y1, and if P1 = P2 (called point dou-
bling), then  = y1 / x1 + x1, x3 = 2 +  + a2, y3 = (x1 + x3)  + x3 + y1. 

In either case, the computation requires one division, one squaring, and one multi-
plication. The squaring can be substituted by multiplication. From the point addition 
formulae, it should be noted that no computation except for addition is performed at 
the same time due to the data dependency. Therefore, sharing hardware between divi-
sion and multiplication is more desirable than separated implementation of division 
and multiplication [3,13] 



 Evolutionary Hardware Architecture for Division 351 

 

Additive inverse and multiplicative inverses in GF(2n) can be calculated efficiently 
using the extended Euclidean algorithm. Division and subtraction are defined in terms 
of additive and multiplicative inverses: A-B is A+(-B) in GF(2n) and  A/B is A (B-1) in 
GF(2n). Here the characteristic 2 finite fields GF(2n) used should have n∈{113, 131, 
163, 193, 233, 239, 283, 409, 571} [3]. Addition and multiplication in GF(2n) should 
be performed using one of the irreducible binary polynomials of degree n in Table1. 
This restriction is designed to facilitate interoperability while enabling implementers 
to deploy efficient implementations capable of meeting common security require-
ments [12]. 

Table 1. Reduction trinomial representation of GF(2n) 

Field Reduction Trinomial(s) 
GF(2113) f(x) = x113 + x9 + 1 
GF(2193) f(x) = x193 + x15 + 1 
GF(2233) f(x) = x233 + x74 + 1 
GF(2239) f(x) = x239 + x36 +1 or x239 + x158 + 1 
GF(2409) f(x) = x409 + x87 +1 

The rule used to pick acceptable reduction polynomials is, if a degree n binary irre-

ducible trinomial, 1)( ++= kn xxxf , for n > k 1 exists, use the irreducible trinomial 

with as small a k as possible. These polynomials enable efficient calculation of field 
operations. The second reduction polynomial at n=239 is an anomaly chosen since it 
has been widely deployed. Our scheme focuses on reduction trinomials as the reduc-
tion polynomials. 

2.3   Cellular Automata 

A CA is a collection of simple cells arranged in a regular fashion. CAs can be charac-
terized based on four properties: cellular geometry, neighborhood specification, the 
number of states per cell, and the rules to compute to a successor state. The next state 
of a CA depends on the current state and rules [7]. A CA can also be classified as lin-
ear or non-linear. If the neighborhood is only dependent on an XOR operation, the CA 
is linear, whereas if it is dependent on another operation, the CA is non-linear. If the 
neighborhood is only dependent on an EXOR or EXNOR operation, then the CA can 
also be referred to as an additive CA. 

Among additive CAs, a CA whose dependency on neighbors is shown only in terms 
of XOR is called a non-complemented CA, and the corresponding rule is called the 
non-complemented rule. If the dependency on neighbors is shown only in terms of 
XNOR, the CA is called a complemented CA, and the corresponding rule is called the 
complemented rule. A hybrid CA can be subject to either the complemented or non-
complemented rule. Additionally, there are 1-dimensional, 2-dimensional, and 3-
dimensional CAs according to the structure of arrangement of cells. 

Furthermore, if the same rule applies to all the cells in a CA, the CA is called a uni-
form or regular CA, whereas if different rules apply to different cells, it is called a 
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hybrid CA. In addition, in the structure of CAs, the boundary conditions should be 
taken into consideration since there exists no left neighbor of the leftmost cell and right 
neighbor of the rightmost cell among the cells composing the CA. According to the 
conditions, they are divided into three types: Null Boundary CA (NBCA), Periodic 
Boundary CA (PBCA), and Intermediate Boundary CA (IBCA). We only consider 
PBCA, which is mainly used in this area because of their efficient cyclic properties. 

We employ the characteristic of PBCA which is that the left neighbor of the left-
most cell becomes the rightmost cell and are adjacent to each other. The evolution of 
the ith cell can be represented as a function of the present states of the (i-1)th, ith, and 
(i+1)th cells for a 3-neighberhood CA: Qi(t+1) = f(Qi-1(t), Qi(t), Qi+1(t)), where ‘f’ 
represents the evolutionary rule as a CA rule and Q(t+1) denotes the next state for cell 
Q(t). If the next state is determined by 1 bit shifting to the left, it can be expressed as 
Qi(t+1) = Qi-1(t), (0≤i≤n-1). This means that the next state of ith cell is evolved by the 
right neighbor of the current ith cell. The proposed architecture carries out shift opera-
tions and modular reduction using an introduced property. 

3   Evolutionary Architecture for Division Based on PBCA 

This section presents an A/B architecture based on cellular automata. Finite field divi-
sion in GF(2n) can be performed using multiplication and inverse; that is, A/B = AB-1, 
where the A and B are the elements of GF(2n). Here, the multiplicative inverse of the 
field element B can be obtained by recursive squaring and multiplication, since the 
field element B can be expressed as  
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Division also can be easily induced by equation (1). 
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The above equation can be generalized as follows. 
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Assume that A  B = D = (Dn-1 …D1 D0); the next equation (4) is held for a certain k 
in a reduction trinomial. 

Dn-2⋅xn-1 + Dn-3⋅xn-2 +…+ (Dn-1⊕Dk-1)x
k + … +D1⋅x2 + D0⋅x1 + Dn-1 (4) 

Equation (4) can be illustrated by PBCA as shown in Fig. 1. 

 

Fig. 1. periodic boundary cellular automata structure using equation (4) 
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As in Fig.1, shift operations and modular reduction are performed by a given evo-
lutionary rule and reduction trinomial. The evolution shown in Fig.1 should be per-
formed twice in order to accomplish Ci for n-2 times. To satisfy equation (3), A should 
be multiplied from the squaring of Cn-2. The result is C = A B-1 and when A = 1, the 
algorithm realizes the inverse operation B-1.  

Fig.2 shows the evolutionary architecture for division. Each initial value is such 
that cellular automata have all zeros (Ci

r
 = 0, 0  i  n-1), B register has Bi values (Bi

r 
= Bn-1 … B2 B1 B0), Shift register has Bi values and zeros (S_R = Bn-1 0 … 0 B2 0 B1 0 
B0), and zero register has 1 bit zero value. 

 

Fig. 2. proposed evolutionary architecture for division using irreducible trinomial 

For initial 2n-1 clock cycles, the values in a shift register are sequentially broadcast 
to the connected line for multiplying the values in Bi

r, and Ci
r is evolved based on 

PBCA. After the evolution of Ci
r shown in the dotted box, the values are transferred 

to the shift register together with 1 bit zero value which will be placed among the 
computed values one after the other, just as the initialized form in shift register. (Cn-2)

2 

is computed according to the process described n-2 times.  
After whole previous evolutions, a system chooses A values in the B register for 

the final resultant values. It is possible to perform A/B division in (2n-1)(n-1) clock 
cycles using n AND gates, n+1 XOR gates, 2n-1 Muxes, and 4n bits registers, plus 
extra equipment such as control signals for transferring results in cellular automata to 
the shift register, and for changing the values in the B register right after deriving the 
values of B-1. 

Moreover, our architecture can be easily expanded for other public key cryptosys-
tems using general irreducible polynomials. In the dotted box in Fig.2, by using addi-
tional n-1 XOR gates, the proposed architecture can perform a general division opera-
tion. Although the architecture is used for a general divider, it has the same latency as 
Fig.2 because of the parallel property. 

4   Comparison and Analysis 

A comparison of the proposed evolutionary architecture with existing structures was 
performed focusing on the time and hardware complexity. As such, Wang’s [15] and 
Kim’s [16] division architectures were chosen.  
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Wang proposed a parallel-in parallel-out A/B architecture, which has a latency of 
2n2-1.5n and a critical path of (TAND+ 3TXOR) over GF(2n). Kim proposed a serial-in 
serial-out A/B architecture, which has a latency of 2n2-2n and critical path of (TAND+ 
3TXOR) over GF(2n).  

Table 2. Performance comparison of A/B Circuits 

Item Wang et al. [15] Kim et al. [16] Fig. 3 

Irreducible 
polynomial 

general general trinomial General 

Critical path T2AND+ 3T2XOR 
2T2AND+ 3T2XOR      

+ TMUX 
T2AND+ 

T2XOR+TMUX 
T2AND+ 

T2XOR+TMUX 

Latency 2n2-1.5n 2n2-2n 2n2-3n+1 2n2-3n+1 

Hardware     
Complexity 

-Registers(R) 
-Latch(L) 

-Inverter(I) 

3n3 -3n2 AND 
3n3 -3n2 XOR 

8.5n3 -8.5n2 (L) 

4n2-7n+3 AND 
3n2-5n+2 XOR 
14n2-22n+8 (L) 

n2-2n+1Mux 
3n2-6n+2 (I) 

n AND 
n+1 XOR 
4n+1 (R) 
3n-1 Mux 

n AND 
2n XOR 
4n+1 (R) 
3n-1 Mux 

I/O format 
Parallel-in         
parallel-out 

Serial-in          
serial-out 

Serial-in parallel-out 

Generally, parallel fashion architectures need much more hardware equipments 
than serial fashion architectures, and latency is reversed. However, the proposed archi-
tecture has better complexity than serial or parallel fashion architectures in the fields of 
the both sides, area and time. Our architecture only focuses on ECC, which is restricted 
by using irreducible trinomials. However, our architecture can be easily expanded for 
other public cryptosystems with additional n-1 XOR gates, while existing systolic 
architectures including Wang’s and Kim’s, hardly reduce the complexity although they 
apply irreducible trinomials for ECC. We have shown that our architecture does not 
influence in latency after it has been expanded for a general divider. 

5   Conclusion 

This paper has presented an evolutionary architecture to compute A/B modulo irre-
ducible trinomials, which are restricted in Certicom Standard for ECC. We have pro-
posed a simple evolutionary hardware architecture that is the most costly arithmetic 
operation schemes in ECC over GF(2n), such as inverse and division. The proposed 
architecture includes the characteristics of both an evolutionary PBCA and irreducible 
trinomials, and has minimized both time complexity and hardware complexity. More-
over, we have shown that our architecture can be easily expanded for general division 
architectures with no additional latency. Therefore, we have shown that our architec-
ture has outstanding advantages in both hardware complexity and time complexity 
compared to typical structures. Our evolutionary architecture has a regular structure 
and modularity. Accordingly, it can be used as a basic architecture not only for ECC, 
but also for other public key cryptosystems.  
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Abstract. This paper proposes an evolvable hardware system with capability of 
evolution under varying illumination environment, which is implemented on re-
configurable field programmable gate array platform with ARM core and ge-
netic algorithm processor. The proposed evolvable hardware system for image 
processing consists of the reconfigurable hardware module and the evolvable 
software module, which are implemented using SoC platform board with the 
Xilinx Virtex2 FPGA, the ARM core and the GAP. The experiment result 
shows that images affected by environment changes are enhanced for various il-
lumination image environments.  

1   Introduction 

The concept of a reconfigurable hardware and evolvable hardware has been studied 
actively [1, 3, 5, 6]. The evolvable hardware architecture is a functional evolvable 
module, which can be implemented by reconfigurable field programmable gate arrays 
(FPGAs) [8]. In this paper presents evolvable hardware system that is effective for 
implementing adaptive image processing. The reconfigurable hardware module proc-
ess the median, histogram equalization, contrast stretching and illumination compen-
sation algorithm, which are implemented on Xilinx Virtex2 FPGA. The evolvable 
software module consists of genetic algorithm and feature space search block, which 
are implemented by genetic algorithm processor (GAP) and ARM core, respectively 
[2]. Section 2 describes the evolvable hardware system for adaptive image processing 
applications. The experimental results are given in Section 3. In Section 4, the conclu-
sions are given. 

2   The Situation-Awareness Using the Neural Network 

The evolvable neural network analyzes and decides the category of a given illumina-
tion environment. The changes of illumination environment can be decided by either 
analyzing the input images or monitoring the system performance. The evolvable 
neural network is trained by supervised learning. We define nine categories of illumi-
nation environments in the proposed illumination model by distinguishing the bright-
ness level and the coarse lighting direction. The weighted node is threshold. We have 
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tested three methods for illumination discrimination: the simple rule based discrimi-
nation (SR), the back propagation neural network based discrimination (BP), and the 
evolvable neural network based discrimination (E-NN). The training of evolutionary 
neural network is done 100 original face images accumulated in IT lab, and 800 virtu-
ally generated mosaic face images using the image synthesis method described above. 
The modeling face image reflecting a brightness variation can be done by the addi-
tive, the multiplicative, and the hybrid functions. Directional illumination variations 
are modeled by the sine and the cosine weight function. 

3   Evolvable Hardware System for Image Processing 

The proposed evolvable hardware system consists of the reconfigurable hardware 
module for the image preprocessing algorithms and the evolvable software module for 
feature space of Gabor representation and fitness evaluation, as shown in Fig. 1. 

Filter 1

Genotype-Phenotype Decoder

Filter 2

Filter 3 Filter 4

NN
(illumination 

context arareness)
Genetic Algorithm

Feature 
Selection

Evaluation 
Function

Recognition Rate

Combinational & 
order of filter

Parameters of 
filter block

 Input 
Image

Output
Image

Xilinx  Virtex2  FPGA
Reconfigurable  Hardware  Module

MCU

Evolvable  Software  Module

GAP

Gabor Wavelet 
computation

Similarity 
Measurement

ARM Core

 

Fig. 1. The block diagram of evolvable hardware system. 

3.1   Reconfigurable Hardware Module  

The reconfigurable hardware module processes the image preprocessing algorithms, 
which are the median, the histogram equalization, the contrast stretching and the illu-
mination compensation algorithm for object recognition [7]. This module consists of 
the genotype-phenotype decoder and 4 types of image filters, and it is implemented 
on Xilinx Virtex2 FPGA. The optimal image filter function can be searched and se-
lected using genetic algorithm running on the genetic algorithm processor (GAP) and 
the genotype-phenotype decoding [2]. The input of reconfigurable hardware module 
is illumination image, which is suitable image to achieve processing. Therefore, the 
image filter function can be selected using the GAP about used order or used exis-
tence, and nonexistence of image that is most suitable to recognize. Used algorithm's 
order and existence and nonexistence are selected using the GA method. Composite 
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processed image after image preprocessing is accomplished. The image filters are 
operated in parallel using multiple memory blocks in order to decrease processing 
time in hardware. The four types of image preprocessing filters are processed in paral-
lel and synchronously. When this parallel processing method is applied to filters in 
hardware, the processing speed is increased more than about three times. The gene of 
GAP includes the sequent order and parameter values of filters. Each filter sets their 
parameter values and images are filtered in the order. The filtered images are sent to 
the fitness evaluating part. Selected filter gets the parameter values and image. 

3.2   Evolvable Software Module 

The role of evolvable software module controls a Gabor feature vector of a face for 
achieving optimal performance of recognition system in varying environment. The 
evolvable software module consists of a genetic algorithm block and a feature space 
search block for feature space of Gabor representation and fitness evaluation, which 
are implemented by software and processed by GAP and ARM processor [6]. GA 
block has two times repeatable functional block. The first module of GA block sends 
the information of the use existence, nonexistence, order, parameter value and win-
dow size of median filter to image preprocessing algorithm. The second module of 
GAP generates the possible combination of fiducial points, Gabor feature vectors and 
the optimality of the chromosome, which is defined by classification accuracy and 
generalization capability.  The total Gabor feature vector for all fiducial points, V is 
evolved from a larger vector set defined as follows:  

 ))(,,,,)()(( )(
2

)(
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eee xFxFxFV =  (1) 

As it searches the geno-space, the GA makes its choices via genetic operators as a 
function of probability distribution driven by fitness function. The evolvable hardware 
system needs a salient fitness function to evaluate current population and choose 
offspring for the next generation. The system performance denotes the correctness 
that the evolvable adaptation has achieved so far, and the class scattering indicates the 
expected fitness on future generations. 

4   Experimental Results 

The proposed evolvable hardware system using FPGA platform with ARM processor 
has  been tested to adapt the system for the image processing under uneven illumination.  

 

Fig. 2. Preprocessed image with uneven illumination by the proposed evolvable hardware 
system 



 An Evolvable Hardware System Under Varying Illumination Environment 359 

IT Lab., FERET, and Yale databases are used for the performance evaluation of the 
proposed system. A-NN algorithm [8] is employed for face identification. For ex-
periments, the number of initial population is set to 32 and each chromosome is 
evolved with crossover of 0.8 and mutation of 0.03. Fig. 2 shows the enhanced result 
for various illumination conditions. The sine shaped illumination is synthesized with 
the half region of input facial image.  

Table 1 shows the experiment result in which we used 4 types of image preprocess-
ing algorithms to compare the performance. As see in Table 1, we know that similar-
ity rate is improved when used preprocessing algorithm used preprocessing algorithm 
variously according to the input image. Object recognition is performed in the action 
mode which consists of four phase: the situation-aware phase, the preprocessing 
phase, the Gabor feature space phase, and the class decision phase. The input image is 
preprocessed by the restructured filter bank using the filter chromosome correspond-
ing to the detected environmental category. The preprocessed image is transformed 
into the Gabor feature vector. Finally, the class is decided by the class decision phase. 
A-nn algorithm is employed for the recognition. Experiment for the face recognition 
is performed using the data set accumulated by our lab and Yale dataset. 

Table 1. Comparison of the performance between the image processing evolvable hardware 
image and traditional image processing method 

 
Histogram 

Equalization 
filter only 

Median 
filter 
only 

Illumination 
compensation 

filter only 

Homommor-
phic filter 

only 

Proposed 
method 

IT Lab. 87.8% 90.8% 86.3% 89.6% 92.3% 
FERET 91.3% 89.5% 88.5% 90.4% 92.5% 

Yale  84.5% 90.4% 77.2% 87.5% 91.1% 

Table 2. IT Lab  and Yale dataset 

Number of 
image 

Number of 
person 

Success Reject 
Successful 

rate(%) Data 
IT lab. Yale IT lab. Yale IT lab. Yale IT lab. Yale IT lab. Yale 

Histogram 4500 45 100 15 4385 39 29 3 97.44 86.66 
Illumination 

compensation
4500 45 100 15 4170 36 39 4 92.66 80.00 

Simple rule 4500 45 100 15 4395 43 28 0 97.66 95.56 
BP 4500 45 100 15 4319 41 42 1 95.98 91.11 

ENN 4500 45 100 15 4409 43 2 0 97.98 95.56 

Table 2 shows a recognition rate of proposed method. It was successful rate in 
97.98 % for IT Lab DB and 95.56 % for Yale dataset. The experimental result of 
proposed method shows the average recognition rate of 97% and an image filtering 
recognition rate of 93.06%. From Tables, it becomes apparent that selected image 
filter bank by genetic algorithm method shows good recognition performance while 
general illuminant filter single filter do. Evolvable neural network improved perform-
ance over the two during testing. This can interpret use existence and nonexistence 
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and parameter of each image filter using genetic algorithm, because general filtering 
may appear result that flow image filter unconditionally, and drops preferably quality 
of original above zero because suitable parameter control is impossible. 

5   Conclusions 

Most existing technologies are not sufficiently reliable under changing illumination 
and various noises. The proposed evolvable hardware system performs well especially 
in changing illumination and noisy environments, since it can adapt itself to external 
environment. In this paper, we proposed an evolvable hardware system, which is 
implemented on Xilinx FPGA, ARM processor and GAP, for adaptive image process-
ing applied to the face recognition in object recognition. The face recognition per-
forms by Gabor wavelet, which is intrinsically robust to uneven environments. The 
face recognition is optimized using evolvable approach. The proposed system for face 
recognition adapts itself to varying illumination and noisy environments, and shows 
much robustness especially for changing environments of illumination and noisy.  
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Abstract. Surface roughness is one of the essential quality control processes 
that the carried out to ensure that manufactured parts conform to specified 
standards and influences the functional characteristics of the work-piece such as 
fatigue, fracture resistance and surface friction. The most widely used surface 
finish parameter in industry is the average surface roughness (Ra) and is 
conventionally measured by using a stylus type instrument, which has a 
disadvantage that it requires direct physical contact and may not represent the 
real characteristics of the surface. Alternately, surface roughness monitoring 
techniques using non – contact methods based on computer vision technology 
[1] are becoming popular. In this paper, an evolvable hardware (EHW) 
configuration using Xilinx Virtex xvc1000 architecture to perform adaptive 
image processing i.e. noise removal and improve the accuracy of measurement 
of surface roughness is presented.  

1   Introduction  

Evolvable systems (EHW) are hardware units that are built on software reconfigurable 
logic devices such as FPGA and PLD and whose architecture can be reconfigured 
using genetic learning. To design conventional hardware, it is necessary to prepare all 
the specification of the hardware functions in advance. In contrast to this, EHW 
continues to reconfigure itself without such specifications to achieve a better 
performance. The basic idea of EHW is to regard architecture bits of a reconfigurable 
device as a chromosome for GA, which searches for an optimal hardware structure. 

In the field of digital image processing particularly, a broad and disparate range of 
applications using evolutionary computation may be found in the literature, including 
the use of genetic algorithms in the segmentation of medical resonance imaging scans 
[3], a genetic program that performs edge detection on one-dimensional signals [4], 
the evolution of genetic programs to detect edges in petrographic images [5], and the 
evolution of spatial masks to detect edges within gray scale images. 

This paper, presents evolvable hardware architecture, dedicated for implementing 
high performance image noise filtering on a custom Xilinx Virtex FPGA xcv1000, 
together with a flexible local interconnect hierarchy. After processing the initially 
grabbed images using the EHW system, the improved quality images of surfaces are 
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used for evaluation of surface finish. Section 2 of this paper describes the 
classification of an EHW system. Section 3 describes the details of reconfigurable 
chip. The chip evolution is described in section 4.  The experimental results are 
presented in section 5.  

2   Evolvable Hardware System  

The EHW architecture can be classified into functional and gate level [2] and is 
shown in figure1 and 2. In gate-level EHW, the architecture bits of PLDs are treated 
as GA chromosome. The architecture bits can be downloaded on PLDs. Such 
downloading can be engaged in either during or after the learning process.  

 

Fig. 1. Functional level evolution  Fig. 2. Gate level evolution 

3    Reconfigurable Architecture 

The virtual reconfiguration chip (VRC) of the EHW unit is shown in figure 3. In the 
present work, each PE except the first stage is assumed to receive inputs from any of 
the previous two stages. A total of 25 PE’s used in the VRC. The genetic unit is 
programmed to give the best chromosome and using this, the initial configuration of 
the VRC is chosen. Each PE can handle 16 different function as listed in Table 1. 

Table 1. Function codes  

Code Function Code Function 
F0: 0000 
F1: 0001 
F2: 0010 
F3: 0011 
F4: 0100 
F5: 0101 
F6: 0110 
F7: 0111 

X >> 1 
X >> 2 
~ X 
X & Y 
X | Y 
X ^ Y 
X + Y 
(X+Y) >> 1 

F8  : 1000 
F9  :1001 
 F10: 1010 
F11: 1011 
F12: 1100 
F13: 1101 
F14: 1110 
F15: 1111 

(X+Y+1) >> 1 
X & 0x0F 
X & 0xF0 
X | 0x0F 
X | 0x F0 
(X&0x0F) | (Y&0xF0) 
(X&0x0F) ^ (Y&0xF0) 
(X&0x0F) & (Y&0xF0) 
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The logical configuration of the circuit is defined by a set of 25 inter triplets, one 
for each of the 25 PEs in the reconfigurable architecture. The first two integers of 
each triplet represent the source of inputs to the PE (cfg1 & cfg2) and the third integer 
of the triplet (cfg3) indexes the function (refer Table 1) to be applied by the PE. 

4   Evolution of Chip 

The proposed EHW system is shown in figure 4. The configuration word contains 
details about the interconnection between the PE’s of the VRC and the functional 
operations performed within each PE.  For each PE, the multiplexer inputs are chosen 
from the outputs of the previous two columns. Both cfg1 and cfg2 are constrained 
such that they should not exceed the number of the multiplexer inputs. The cfg3 input 
is the binary representation of the number of functions in store. 

Fig. 3. Reconfigurable architecture 
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Fig. 4. Architecture of a single PE [output = F {mux(cfg1), mux(cfg2), cfg3}] 
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5    Experimental Results   

The surface images of the specimens grabbed using the CCD camera are given to the 
EHW Chip and the configuration word is selected to eliminate the effects of improper 
illumination and noise. Preprocessing is performed to enhance the quality of images. 
Given an input images. ‘I’ with a resolution m x n , the chip extracts the edges and 
replaces the original low quality image with an output image ‘O’. For experiments the 
number of initial population is set to 16 each chromosome is evolved with crossover 
0.9 and mutation 0.01. Figure 5 shows the images corrupted by noise and figure 6 
shown the preprocessed images using the EHW system. The two images in figure5 
are the raw images obtained using vision system. The quality of the images is 
enhanced by 60.5% with the evolvable hardware chip unit. 

   

Fig. 5. Images with noise   Fig. 6. Images without noise 

The surface roughness values obtained using the styles approach along with the 
parameters feed, depth of cut (doc) and spindle speed are listed and the surface finish 
values obtained by using the evolvable hardware system on the milled surface is 
compared with other approaches and given in Table 2. 

Table 2 

S.No feed 
(mm/rev) 

doc 
(mm) 

Speed 
(m/min) 

Ra 
(Stylus) 

(μm) 

R a   Reg. 
Analysis 

(μm) 

R a  EHW 
(μm) 

1 150 .5 123 3.05 3.23 3.17 
2 150 .8 123 3.19 2.61 3.08 
3 150 .5 153 5.35 6.05 5.48 
4 200 .5 123 5.62 6.13 5.44 
5 200 .8 123 3.75 3.38 3.68 
6 200 .5 153 2.94 1.95 2.96 

6   Conclusion 

This paper has presented a genetic algorithm based EHW chip to inspect the surface 
roughness of components generated using milling process by preprocessing the 
images to remove the noise. The correlation obtained using regression approach after 
improving the quality of the surfaces using EHW system was better than that without 
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enhancing the images. The experimental results clearly indicate that the proposed 
technique can be used to evaluate the roughness of the machined surfaces. Future 
direction of study is to be focused on using an artificial neural network (ANN) to 
predict the surface roughness using spindle speed, feed rate and depth of cut. 
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Abstract. A novel algorithm, Multi-Agent Evolutionary Algorithm for n-Queen 
Problem (MAEAqueen), is proposed. In MAEAqueen, all agents live in a latti-
celike environment, with each agent fixed on a lattice-point. In order to increase 
energies, they compete with their neighbors, and they can also use knowledge. 
Theoretical analyses show that MAEAqueen has a linear space complexity. In 
the experiments, a comparison is made between MAEAqueen and the existing 
method based on agents. The results show that MAEAqueen outperforms the 
other method. Furthermore, to study the time complexity of MAEAqueen, the 
104~107-queen problems are used. The results show that MAEAqueen has a lin-
ear time complexity. Even for 107-queen problems, it can find the exact solu-
tions only by 150 seconds. 

1   Introduction 

Traditional approaches to the n-queen problems are based on backtracking. Back-
tracking search techniques can systematically generate all possible solutions, but 
backtracking searching is exponential in time and is not able to solve a large-scale n-
queen problem. Therefore, lots of new searching methods are proposed [1, 2], with a 
good performance obtained. Agent-based computation has been studied for several 
years in the field of distributed artificial intelligence and has been widely used in 
other braches of computer science [3, 5]. With the intrinsic properties of the n-queen 
problems in mind, we integrate the multi-agent systems and evolutionary algorithms 
(EAs) to form a new algorithm, Multi-Agent Evolutionary Algorithm for n-Queen 
Problems (MAEAqueen). MAEAqueen has a fast convergence rate. The convergence 
rate is slow has always been one of the key factors limiting the practical application of 
EAs, especially for large-scale problems. Homaifer et al. has solved the 200-queen 
problems by genetic algorithms [4], and [2] has solved the 7000-queen problem by an 
energy-based multi-agent model. But MAEAqueen can solve the 107-queen problems 
by only 150 seconds. This demonstrates that the methods integrating EAs and multi-
agent systems have a high potential in solving NP-complete problems. 

2   The Evolutionary Agent for n-Queen Problems 

According to [3], an agent is a physical or virtual entity that essentially has the fol-
lowing properties: (a) it is able to live and act in the environment; (b) it is able to 
sense its local environment; (c) it is driven by certain purposes and (d) it has some re-



 Evolutionary Agents for n-Queen Problems 367 

 

active behaviors. Therefore, the meaning of an agent is comprehensive, and what an 
agent represents is different for different problems. In general, three elements should 
be defined when agents are used to solve problems. They are the environment where 
all agents live, the purpose of each agent and the behaviors that agents can take. 

2.1   The Evolutionary Agent for the n-Queen Problems 

For the n-queen problems, the collisions on rows and columns can simply be avoided 
by a permutation of 1,2,…,n, thus the search space  can be expressed as 

{ }
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{ }
( ) ( )

1 2 !

,1 ,2 ,

,

, ,

,  ,  ...,  
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= ≤ ≤

∈ ≤ ≤

∀ ≤ ≤ ≠ ≠

 (1) 

For ∀(queen1,queen2,…,queenn)∈ , queeni denotes the queen placed on the ith 
row and the queenith column. Thus, the collisions on rows and columns are avoided 
naturally, and then what needed to do is to find the permutations satisfying the con-
straints on the diagonal lines in . An n×n grid has (2n-1) positive diagonal lines and 
(2n-1) negative diagonal lines, and they have the following characteristics: the differ-
ence between the row index and the column index is constant on any positive diago-
nal lines, and the sum of both indexes is constant on any negative diagonal lines. 
Therefore, the solutions of the n-queen problems must satisfy (2): 

( )
( ) ( ) ( )

1 2,  ,  ...,  

  1 , ,   and 

n

i j i j

queen queen queen

i j n i j i queen j queen i queen j queen

∈

∀ ≤ ≤ ≠ − ≠ − + ≠ +
 (2) 

The number of queens on the positive and negative diagonal lines that queeni is 

placed are labeled as pos
iqueen  and neg

iqueen , respectively. The number of queens 

on the jth positive and negative diagonal lines are labeled as |posLinej| and |negLinej|, 

respectively. Where 1≤i≤n, 1≤j≤(2n-1), and | ⋅ | denotes the number of elements in the 
set. An agent for the n-queen problems is defined as follows: 

Definition 1: An agent, a=(queen1,queen2,…,queenn)∈ , is an element in the search 

space . Its energy is equal to 

( ) ( )2 1 2 1

1 1
( ) | | | |

n n

i ii i
Energy Collisions posLine Collisions negLine

− −

= =
= − −a  (3) 

where 
     2
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0     2

x x
Collisions x

x

≥
=

<
. The purpose of an agent is to increase its energy as 

much as possible. 
All agents live in a latticelike environment, L, which is called an agent lattice. The 

size of L is Lsize×Lsize, where Lsize is an integer (see Fig.1). In Fig.1, each circle repre-
sents an agent, and the data in a circle represents its position in the lattice. The agent 



368 W. Zhong, J. Liu, and L. Jiao 

 

located at the ith row and the jth column is labeled as 
Li,j, i, j=1,2,…,Lsize. Each agent is fixed on a lattice-
point and it can only interact with its neighbors. 

Definition 2: The neighbors of Li,j is 

1 1 2 2, , , , ,{ , , , }i j i j i j i j i jNb L L L L= , where 1
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i i
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2.2   The Behaviors of the Evolutionary Agent 

For the n-queen problems, the purpose of an algorithm is to find solutions by a com-
putational cost as low as possible. Therefore, the computational cost can be consid-
ered as the resources of the environment in which all agents live. Because the re-
sources are limited and the behaviors of the agents are driven by their purposes, an 
agent will compete with others to gain more resources. 

Competition behavior: The energy of an agent is compared with those of its 
neighbors. If its energy is greater than that of any agent in its neighbors, then it can 
survive; otherwise it must die, and its lattice-point is taken up by the child of the agent 
whose energy is maximum in its neighbors. The details are described as follows: 

Let Li,j=(queeni,j,1, queeni,j,2, …, queeni,j,n), amax=(queena1, queena2, …, queenan) ∈ 
Nbi,j and ∀a∈Nbi,j, Energy(a)≤Energy(amax). If Energy(Li,j)≤Energy(amax), then amax 
generates a child agent, c=(queenc1, queenc2, …, queencn) by following two steps to 
replace Li,j: 

(a)  ,    for 1

(b) ,    for (0,  1) ,  1
ck ak

ck cl k c

queen queen k n

queen queen U p k n

← ≤ ≤
↔ < ≤ ≤

 (4) 

where l is a random integer in 1~n and is not equal to k, Uk(0,1) is a uniform random 
number between 0 and 1 for each k, and pc∈(0, 0.1) is a predefined parameter. In fact, 
due to the small value of pc, c is generated by exchanging a small part of a. The pur-
pose of the competition behavior is to eliminate the agents with low energy, and give 
more chances to the potential agents. 

Self-learning behavior: An agent increases its energy by using its knowledge. Sup-
pose that the behavior is applied to Li,j=(queeni,j,1, queeni,j,2, …, queeni,j,n), and then the 
details is described in Algorithm 1. Swap(x, y) performs a swap of x and y. 
Algorithm 1  The self-learning behavior 

Step 1: Repeat←False, k←1, Iteration←1; 

Step 2: If ( ), ,| | 1pos
i j kqueen =  and ( ), ,| | 1neg

i j kqueen = , then go to Step 9; 

Step 3: Select a random integer l in 1~n such that k≠l; 
Step 4: , , , , , , , ,| | | | | | | |pos neg pos neg

old i j k i j k i j l i j lCollision queen queen queen queen← + + + ; 

Step 5: Swap(queeni,j,k, queeni,j,l); 

 

Fig. 1. The agent lattice 
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Step 6: , , , , , , , ,| | | | | | | |pos neg pos neg
new i j k i j k i j l i j lCollision queen queen queen queen← + + + ; 

Step 7: If Collisionold>Collisionnew, then Repeat←True; otherwise, Swap(queeni,j,k, 
queeni,j,l); 

Step 8: If Iteration<n-1, then Iteration←Iteration+1, go to Step 2; otherwise Itera-
tion←1; 

Step 9: k←k+1; If k≤n, then go to Step 2; 
Step 10: If Repeat=True, go to Step1; otherwise calculate the energy of Li,j and stop. 

The purpose of Algorithm 1 is to find a swap for each queen which has collisions 
in Li,j such that the energy of Li,j is increased after the swap is performed. For a queen 
which has collisions, the algorithm iteratively performs the swap until the queen has 
not collisions or the predefined iterative count, Iteration=(n-1), is achieved. Then, the 
algorithm goes to deal with the queen in the next row. Iteration can prevent the algo-
rithm from repeating infinitely. Because each queen only involves two diagonal lines, 
Step 4 and Step 6 only deal with the four diagonal lines in which queeni,j,k and 
queeni,j,l locate. To explain Algorithm 1 explicitly, Fig.2 gives the performing process 
of Algorithm 1 for the agent, a=(1,2,8,4,5,7,3,6). 

          

          

Fig. 2. The performing process of ALAORITHN 1 for the agent, a = (1,2,8,4,5,7,3,6) 

For more clarity, Fig.2 is explained further. Because the queen in the first row has 
collisions, the algorithm first searches a swap for it, see Fig.2(b). Suppose that the se-
lected l is 3, then after the swap, we have Collisionold=7>Collisionnew=6. So the swap 
is successful, Repeat is set to True, and Iteration increases 1. Here the queen in the 
first row has no collisions, so the algorithm deals with the queen in the second row, 
see Fig.2(c). Suppose that 3 is chosen for l. Although the swap is successful, the 
queen still has collisions, see Fig.2(d). Suppose that 4 is chosen for l, then the swap is 
successful and the algorithm deals with the queen in the third row, see Fig.2(e). Sup-
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pose that 5,7,1,2 are chosen for l in turn, but all swaps are failed. At the moment, It-
eration is equal to 7, so Iteration is set to 1 and the algorithm deals with the queen in 
the fourth row, see Fig.2(f). Suppose that 6 is chosen for l, then the swap is success-
ful. Presently, because the queen has not collisions, the algorithm deals with the 
queens in following rows, see Fig.2(g). Since the queens in the sixth and eighth row 
have not collisions, the algorithm deals with the queens in the fifth and seventh rows. 
But all swaps are failed. Because Repeat is True, the algorithm restarts from Step 1. 
During this time, the collisions of the queens in the fifth and seventh row cannot be 
eliminated yet. So Repeat is equal to False and the algorithm is stopped. The final 
state of a is shown in Fig.2(h) and its energy increases from –6 to –2. 

3   The Implementation of MAEAqueen and Its Space Complexity 

To solve the n-queen problems, all agents must orderly adopt the two behaviors 
aforementioned. Here the behaviors are controlled by means of evolution. The details 
are described in Algorithm 2. 
Algorithm 2  Multi-Agent Evolutionary Algorithm for n-Queen Problem 

Lt is the agent lattice in the tth generation. t
Besta  is the best agent among L0, L1, …, 

Lt, t
tBesta  the best agent in Lt. GensMax is the maximum number of generations. 

Step 1: Initialize the agent lattice L0, update 0
Besta , and t←0; 

Step 2: Perform the competition behavior on each agent in Lt: If ,
t
i jL , i,j=1,2,…,Lsize 

wins, then ,
t
i jL go into Lt+1; otherwise the child agent of the best agent among 

the neighbors of ,
t
i jL  generated by (4) go into Lt+1; 

Step 3: Update 1
( 1)
t
t Best
+
+a , and perform the self-learning behavior on 1

( 1)
t
t Best
+
+a  according 

to Algorithm 1; 
Step 4: If 1

( 1)( ) ( )t t
t Best BestEnergy Energy+
+ ≥a a , then 1 1

( 1)
t t
Best t Best
+ +

+←a a ; otherwise 
1

( 1)
t t
t Best Best
+
+ ←a a , 1t t

Best Best
+ ←a a ; 

Step 5: If ( )1( ) 0t
BestEnergy + =a  or (t=GensMax), then output 1t

Best
+a , and stop; otherwise 

t←t+1, go to Step2. 

When a large-scale problem is dealt with, the memory required by an algorithm 
must be taken into account. For example, although the method proposed in [2] ob-
tained a good performance, it needs to store a n×n lattice to record the number of col-
lisions in each grid and its space complexity is O(n2). Even if each grid is recorded by 
an integer with 4 bytes, 38,147M memories still needed for a 105-queen problem. 

Theorem 1: The space complexity of multi-agent evolutionary algorithm for n-queen 
problem is O(n). 

Proof: The main contribution to the space complexity is from the storage for the 
agent lattices in current generation and the next generation and the best agent. There-
fore, the number of agents required be recorded is 
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2 1size sizeNum L L= × × +a  (5) 

For each agent, a permutation with n integers and the value of energy require to be 
recorded, and so the number of space units required is 

Unitsa=n+1 (6) 

Therefore, the number of space units in total is 

2 2(2 1) (2 1)Units size sizeNum Num Units L n L= × = + + +a a  (7) 

That is to say, the space complexity of MAEAqueen for n-queen problem is O(n).  
If an integer requires 4 bytes and Lsize is equal to 3, MAEAqueen requires 725M for 

107-queen problems. So it can be used to solve the large-scale problems. 

4   Experiments 

All experiments are made on a 2.4-GHz Pentium IV with 1G RAM PC. The termina-
tion criterion of MAEAqueen is to find a solution satisfying the constraints. 

4.1   The Effect of pc on the Performance of MAEAqueen 

The problems with 50, 100 and 500 queens 
are used, and pc is increased from 0.01 to 
0.5 in steps of 0.01. At each sampled value 
of pc, 50 trials are carried for each problem, 
and the average running time is shown in 
Fig.3. As can be seen, the running time for 
the three problems increases with pc. When 
pc is in [0, 0.1], the running time is smaller 
than 0.05s, so we restrain pc in [0, 0.1] in 
Section 2.2. To be consistent, pc is set to 
0.05 in all followed experiments. 

Table 1. The average running time of MAEAqueen and [2] (s) 

n 1000 2000 3000 4000 5000 

MAEAqueen 9.4×10-4 1.6×10-3 2.2×10-3 3.4×10-3 3.7×10-3 

[2] 1.5 10.9 21.8 40.7 118.4 

n 6000 7000 8000 9000 10,000 

MAEAqueen 4.7×10-3 5.9×10-3 5.3×10-3 7.5×10-3 9.1×10-3 

[2] 284.5 400.7 ⎯ ⎯ ⎯ 

 

Fig. 3. The running time of MAEAqueen 
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Reference [2] designed the ERA model that can solve 7000-queen problems. So a 
comparison is made between MAEAqueen and [2], and the results are shown in Table 
1. The results of [2] are obtained by running its software1. The software restrains n in 
4~7000. As can be seen, the performance of MAEAqueen is much better than that of 
[2], and it only uses 9 milliseconds to solve 104-queen problem. 

4.2   The performance of MAEAqueen on 5×104~107-Queen Problems 

n is increased from 5×104 to 107 in steps 
of 50,000. At each sampled value of n, 50 
trials are carried out, and the average run-
ning time is shown in Fig.4. As can be 
seen, the running time of MAEAqueen 
can be approximated by the function, 
(5.04×10-6×n1.07). That is to say, MAEA-
queen has a linear time complexity and 
can solve problems with large scale. 

For more clarity, the average running 
time and the standard deviation of 
MAEAqueen are shown in Table 2 for 
the problems with 1×106, 2×106, …, 1×107 queens. MAEAqueen only uses 13 sec-
onds to solve the problem with 1×106 queens, and 150 seconds to solve the problem 
with 1×107 queens. Moreover, all standard deviations are very small, and the maxi-
mum one is only 1.15. All results show that MAEAqueen not only has a fast conver-
gence rate, but also has a stable performance. 

Table 2. The average running time and the standard deviation of MAEAqueen 

n 1×106 2×106 3×106 4×106 5×106 

Time(s) 12.88 26.75 40.83 55.06 69.75 

St. Dev. 0.04 0.08 0.11 0.21 0.22 

n 6×106 7×106 8×106 9×106 1×107 

Time(s) 84.06 98.76 114.69 131.85 149.81 

St. Dev. 0.32 0.30 0.45 1.10 1.15 

5   Conclusions 

In this paper, multi-agent systems and EAs are combined to form a new algorithm to 
solve n-queen problems. In the experiments, the 104~107-queen problems are used to 
test the performance of MAEAqueen. The results show that the time complexity of 
MAEAqueen is O(n1.07) and MAEAqueen is competent for dealing with the large 

                                                           
1 http://hjworm.edu.chinaren.com/myresearch.htm 

 

Fig. 4. The running time of MAEAqueen 
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scale problems. Moreover, all experimental results are obtained in the same parameter 
value, and the standard deviations are very small. It illustrates that MAEAqueen has a 
fast convergence rate, a stable performance, and is easy to use. 
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Abstract. Investigate how the level of rationality of power suppliers impacts on 
equilibrium. First fictitious play was established to electricity market. Then a 
leaning model Price-deviation-adjust (PD-adjust) was proposed, which inherits 
main characters of the fictitious play but in a lower rationality because of poor 
information. An interesting phenomenon is observed in numerical simulations: 
the errors coming from lower rationality of the agents can be reinforced and of-
ten bring the agents extra profits rather than loss, and eventually drive the mar-
ket to enter an unstable state from the stable equilibrium one. The conclusion is 
a set of game models identified by a rationality variable should be introduced to 
understand the electricity market better. 

1   Introduction 

Electric power industries around the world are undergoing restructuring. Price spikes 
have been observed in almost every electricity market but explicit analysis of these 
phenomena is rare[1]. The price spikes give profits to suppliers much in excess of their 
marginal costs even when sufficient supply is available, and introduce price volatility 
which can cause serious economic damage. The oligopoly equilibrium approach helps 
to analyze and detect such situations. The game-theoretic concepts have been promi-
nently applied to electricity markets such as the supply function and the Cournot equi-
librium model[2]. 

However, standard game theory is based on the assumption of perfect rationality 
and has focused mainly on equilibrium concepts. Agents in perfect rationality have 
commonly known identical beliefs in equilibrium and by definition it is a self-
enforcing state. Once equilibrium is reached no agent has incentives to leave the 
strategy (or mixed strategy). However, equilibrium concepts do not explain how 
rational agents get to have identical beliefs or, in other words, how this self-
enforcing state arises. 

It is helpful to re-understand the electricity market from game learning[3] and behav-
ior game[4]viewpoint. Ideally, we would like a model of bounded rationality which 
allows “decision makers may simplify, misunderstand, lack ability, miscalculate, for-
get, and make evaluations of alternatives that depend on seemingly irrelevant details 
about how a problem is framed”[5]. This kind of game models pay  more attention to 
explain how people learn, adapt or evolve toward equilibrium. Therefore different 
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learning models have different convergence (hence different equilibrium) and stability 
properties and often these properties depend on the properties of specific games. 

In this paper, we establish a fictitious play model to electricity market (that is a 
well-known learning model but little literature in electricity market has discussed it), 
and then suggest a price deviation adjust (PD adjust) learning which provides a power 
supplier who has poor information about his opponents with a tool to detect extra 
profit in equilibrium case. Our main interest is to observe what the assumption (the 
agents are in lower level of rationality) will bring to the market. We believe a multi-
game learning model (i.e. a set of game learning models identified by rationality level 
of the agents) should be introduced to get better insight into the electricity market but 
in fact we know little about this issue.  

A good example of this can be provided by the PD-adjust learning. This learning 
model is at a lower level of rationality due to poor information. However, our numeri-
cal simulations show a little surprising result: the agents often benefit from, rather 
than lose by, the errors coming from the lower rationality, and the errors can be con-
tinuously reinforced in bidding process eventually drive the market to enter an unsta-
ble state from the stable equilibrium one. The interesting phenomenon hints to us that 
the level of rationality of agents is a noteworthy variable. The variable will bring a 
multi-game model to the electricity market in different way, which will be helpful to 
understand the market better.  

2   Learning and Evolution 

2.1   Information Feedback Construction of Market Power 

We consider an electricity market in which there are K power suppliers and a power 
exchange (PX). Suppose that supplier i has the cost function 2( )i i i i i iC q a q b q c= + + , 
where iq  is his output such that ii qq ≤≤0  and iq  his maximum capacity 
( Ki ,,2,1= ). At stage t, all suppliers present the supply functions 

( )i iq q λ= , 1, ,i K=  (1) 

to the electricity pool, then the PX determines a market clearing price(MCP) MCPλ by 
solving supply-demand balance equation  

1
( )

K

ii
q Q rλ λ

=
= −  (2) 

where Q  is the load at stage t and r the elasticity coefficient of the market. 

The supply function (SF) ( )i iq q λ=  represents supplier i’s willingness to provide 
output iq  at price λ . Bidding function is its inverse function denoted by ( )i iqλ λ= . 
Let iS  represent bidding strategy set of supplier i. The supplier selects a strategy 

l
i is S∈  and establishes the bidding function by 

( , ) ( ) (2 )'l l l
i i i i i i i i i iq s s C q s a q bλ λ= = ⋅ = ⋅ + , 0 i iq q≤ ≤  (3) 

where ( )'
i iC q is his marginal cost function. 
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From the viewpoint of supplier i, the supply-demand balance equation (3) has an 
equivalent expression 

( )i iq q r Qλ λ−+ + =  (4) 

where ( ) ( )i jj iq qλ λ− ≠=  is the aggregated supply of the supplier’s opponents at 

price λ .Denote the inverse function of ( )i iq q rλ λ− −= + by 

( , )i iq rλ λ− −=   ,   ∀ [0, ]i iq q− −∈  (5) 

where i jj iq q− ≠= is maximum supply of the supplier’s opponents. Thus Equa-

tion (4) becomes 

( , )i iQ q rλ λ−= − ,  0 i iq q≤ ≤  (6) 

 

Fig. 1. OC-curve and bidding curve of supplier i 

For the purpose of simplification, we call function ( , )i iQ q rλ λ−= −  the opponent 

constrain curve (OC-curve) of supplier i. Fig. 1 shows OC-curve which is a mono-
tonically descending function on the supplier’s output interval [0, ]iq . Two remarks 

are (1) the slope of the curve is completely determined by the bidding strategies of the 
supplier’s opponents and the market elasticity, i.e. supplier i can’t directly determine 
this curve, and (2) when supplier i chooses an output iq then the MCP will be just 

equal to ( , )i iQ q rλ λ−= − , therefore a steep OC-curve may provide the supplier with 

a stronger motivation to release his market power for driving market price up. 
Moreover, OC-curve reveals a market-power-information-feedback-loop. An agent 

in the oligopolistic competition can realize the market price is the result of the interac-
tion of himself and his opponents: his OC-curve is determined by his opponents but at 
the same time his bidding affects the opponents’ OC-curves too. For example, a pos-
sible interaction (positive feedback) can be illustrated as follows 
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bids higher(agent)  steeper OC-curve (opponents) bid higher(opponents)  
steeper OC-curve(agent)  bid higher ( agent) … 

Obviously, the OC curves provide the suppliers a bridge to exchange their informa-
tion without direct collusion. 

2.2   Fictitious Play  

Fictitious play is a belief-based learning model which assumes that an agent has 
available information of his opponents’ strategy before current period. The OC-curve 
construction is great helpful to build the learning in the electricity market 

Agent i has an exogenous initial weight function 0
jκ : jS R+→ . This weight is up-

dated by adding 1 to the weight of his j-th opponent’s strategy each time it is played, 
so that: 

1

1

1

1      if 
( ) ( )

 0      if 

j j
t

j j j j
t t

j j
t

s s
s s

s s
κ κ

−

−

−

=
= +

≠
   , j js S∀ ∈   for j i≠  (7) 

The probability that agent i endows agent j’s strategy js with at period t is given by 

( )
( )

( )j j

j j
j j t

t j j
ts S

s
s

s

κγ
κ∈

= , j js S∀ ∈   j i∀ ≠  (8) 

In order to establish the fictitious play learning, which is the best response to the 
expected value of the agent’s profit, the agent can firstly generate a pure strategy 

js of agent j at random, based on the belief { , }j
t j iγ ≠ . Thus he gets a pure strategy 

profile of his opponents 1 1 1( , , , , , )i i i Ks s s s s− − +=  that determines an OC-curve 

( , )i iQ q rλ− − , 0 i iq q≤ ≤ . N OC-curves are simulated in this way, denoted 

{ , ( , )i l iQ q rλ− − , 1, .l N= }, then an expected value of OC-curves based on the 

belief 1 1 1i i i K
t t t t tγ γ γ γ γ− − += × × × × ×  can be estimated by 

i , 1( ( , )) (1/ ) ( , )
N

i i i l i
i

t
E Q q r N Q q rγ λ λ− − = −− ≈ ⋅ − , 0 i iq q≤ ≤  (9) 

where i
t

Eγ −  is an expectation operator on the distribution i
tγ − . Now an optimal output 

is determined by 

ˆ argiq = [ , ]0max i iq q∈ ( ){ }1 , (1/ ) ( , ) ( )
N

i i l i i i iN Q q r q C qλ= −⋅ − −  (10) 

i.e. the output ˆiq  maximizes the agent’s expected profit. Then the best strategy re-
sponse of the agent can be obtained by directly solving the following equation  

ˆ(2 )i i is a q b⋅ + = 1 , ˆ(1/ ) ( , )
N

i i l iN Q q rλ= −⋅ −  (11) 

according to the bidding scheme of the agent mentioned as above (see  Equation 
(3),(6) or Fig.1)). Then the best strategy is 
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ˆis = 1 , ˆ(1/ ) ( , )
N

i i l iN Q q rλ= −⋅ − / ˆ(2 )i i ia q b+  (12) 

We can also define a marginal empirical distribution of agent i as 

0( ) ( ( ) ( )) /i i i i i i
t td s s s tκ κ= −  (13) 

Its limit (if existing) is usually regarded as mixed strategy equilibrium of the agent 
( t → ∞ ). 

2.3   Price Deviation Adjust Learning 

OC-curve provides a supplier with detailed information about his opponents’ strategy. 
However, in the real world only the information about MCP and agent’s own output is 
usually available to the agent. In other words, an agent may have to estimate roughly 
the aggregated supply of his opponents by a linear function ( )i i i iq q λ β λ α− − − −= = + . 

Then his OC- curve becomes  

( )i ii
Q qs αλ −− − −= ⋅ , ii qq ≤≤0 , 1/( )i is rβ− −= +  (14) 

Notice our focus is to observe influence of the rationality level of agents, so in here 
we should realize Equation (14) shows a lower level of rationality. But even so, the 
supplier still faces the difficulty in dealing with the randomness of the slope and in-
tercept parameter ( , )i is α− −  in this equation, which comes from the random behavior 

of his opponents (mixed strategies). An approximation  

( )i ii
Q qs αλ ε−− − −= ⋅ + , 0 i iq q≤ ≤  (15) 

may be used  to reduce the difficulty but it shows much lower level of rationality than 
equation (14). In Equation (15) the randomness is simply expressed by the noise 
termε  ( ( ) 0E ε = ), and ,i is α− −  are respectively the expected values of ,i is α− − . It is 

easy to know the equation has an equivalent expression  

( )R R
i i iE s q Eqλ λ ε−= − ⋅ − + , ii qq ≤≤0  (16) 

where ( , )R R
iqλ is real market price and the supplier’s output. The expectations in-

cluded in Equation (16) can be estimated by history samples available to the supplier. 
Obviously, we can build a learning model similar to the fictitious play described in 
section 2.2 if the slope parameter is− is known. Instead of Equation (9), the average of 

OC-curve now is 

( )R R
i i iE s q Eqλ λ −= − ⋅ −  (17) 

and the optimal output (see equation (10)) is determined by 

ˆ ( )i iq s− [0, ]arg max ( ( )) ( )
i i

R R
i i i i i iq q E s q Eq q C qλ −∈= − − −  (18) 

At the same time the price corresponding the optimal output ˆ ( )i iq s−  
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ˆ( ) ( ( ) )R R
i i i i is E s q s Eqλ λ− − −= − ⋅ −  (19) 

in fact is regarded by the supplier as an optimal expected price. Hence his optimal 
bidding strategy will be 

ˆ( ) /(2 )opt
i i i i is s a q bλ −= +  (20) 

which is determined by solving the equation ˆ(2 ( ) ) ( )i i i i i is a q s b sλ− −⋅ + = (see Equa-

tion (11)). 

However, the slope parameter is−  is actually unknown so need to be learned by the 

agent. We suggest a learning model, call it price deviation adjust (PD adjust) for 
statement simplification. Suppose the market has reached equilibrium after a long 
adjustment. In this case, a supplier may think he has a proper market share. But the 
profit motive encourages him to detect higher profit. In his mind  

ˆˆ( ( ) ) = ( )R R R R R
i i i i iE s q s Eq sλ λ ε λ ε− − −= − ⋅ − + +  (21) 

is the real market price Rλ  corresponding to the optimal output ˆ ( )i iq s−  (see Equa-

tion(15) or (16), which in fact is an evaluation of the market clearing condition in the 
supplier mind). According to Equation (21), the true slope parameter is−  should satisfiy 

ˆ( ) ( ) ( )=0R R
iE s Eλ λ ε−− =  (22) 

which means ˆ( ( ) )=0R
i i i is q s Eq− −⋅ − . 0is− =  implies the supplier abandons his own 

market power hence a reasonable selection is 

* ( 2 ) /R R R
i i i i is E a Eq b Eqλ− = − −  (23) 

i.e. *
is− is the root of equation ˆ ( ) R

i i iq s Eq− = . We omit some details for but indicate the 

condition * 0is− ≥  is necessary. That will be true if the average of the market price is 

higher than the average of the supplier’s marginal cost, that is usually right in oli-

gopolistic competition case, otherwise *
is−  has to be taken as 0.  

Notice that the assumption ( )=0RE ε  indicates a lower rationality of the supplier 

brought by poor information. In fact the price is ( , )R R
i iQ q rλ λ−= −  according to 

Equation (6) hence real error in Equation (22) should be  

( )ˆ( , ) ( ( ) )R R R R
i i i i i iQ q r E s q s Eqε λ λ− − −= − − − ⋅ −  (24) 

Obviously, it is difficult to conclude ( )=0RE ε . However, Equation  (22) is still help-

ful for the supplier to capture some useful information about his opponents, otherwise 
he can do nothing except maintaining the equilibrium.  

We now outline the PD-adjust learning model: Suppose the market has reached 
equilibrium and profit iue (corresponding to the equilibrium) is acceptable for sup-
plier i. In this case, PD-adjust suggests the supplier detect higher profits by evaluating 
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behavior of his opponents the previous period rather than an average of all the past 
as done in fictitious play. Therefore, it is not strange that the equilibrium price cor-
responding to fictitious play should be higher than that of the Cournot-adjust as 
shown in Fig. 2. 

  
(a) Price (left) and slope (right) sequence  (b) Profit sequence of 6 suppliers 

Fig. 3. PD-adjust (Initial state is the Cournot-adjust equilibrium, Number 1~6 indicate the 
suppliers’ index) 

  
(a) Price (left) and slope (right) sequence  (b) Profit sequence of 6 suppliers 

Fig. 4. PD-adjust (Initial state is the Fictitious Play equilibrium, Number 1~6 indicate the sup-
pliers’ index) 

The second class of experiments is about the PD-adjust learning. We design the 
experiments in the following way: Load is fixed to Q = 695MW such that both Cour-
not-adjust and fictitious play learning can reach equilibriums. Then the suppliers are 
assumed to play PD-adjust with the initial equilibrium strategies. 

Fig. 3 and Fig. 4 show respectively the price evolutionary processes from the 
Cournot-adjust and Fictitious Play equilibrium. 5,000 iterations are carried out. We 
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observe an increasing price sequence in both cases (see the left sub-plot in Fig.3 and 4 
(a)) and a positive feedback process mentioned in section 2.1: the suppliers capture 
the increasing price signal by estimating their slope parameters of OC curves. The 
increasing slope parameters (see the right sub-plot of Fig. 3 and 4 (a)) then encourage 
the suppliers to try higher bidding, which will result in the price increase further. In 
this process, the output of each supplier has no change from his equilibrium. We also 
observe in this process all agents obtain persistently increasing profits, which are 
higher than their equilibrium ones (see Fig.3~4 (b)), hence all of them will prefer 
playing PD-adjust to maintaining the old equilibrium.  

Remark: In this paper we focus our study on what will appear if considering the 
level of rationality of agents as a variable. In fact the study is initial and in theory. For 
example in the real world, it is impossible that the price can increase persistently to 
reach such high level as in our numerical simulations. PX may restrict it by so-called 
price-cap strategy. However, how prevent the electricity market from crisis, which 
means restrict the price into a reasonable range, is a very important and challenge 
topic. We hope our discovery is helpful to the topic.  

3   Conclusion and Discussion 

In fictitious play game, agents behave as if they thought they were facing a stationary 
but unknown distribution of opponents’ strategies. Then the beliefs will be formed and 
updated by observing the history or past behavior of opponents. By choosing a best 
response with those given beliefs, the agents interact strategically until they are mutu-
ally consistent (equilibrium). In poor information case, some learning models at lower 
level of rationality are developed such as reinforce learning[6-8]. Different from them, 
the PD-adjust inherits main characters of the fictitious play except replacing the exact 
belief with a rougher one in which an unknown slope parameter needs to be estimated 
from the price information. Obviously, the learning is at lower level of rationality due 
to poor information so no agent is willing to play it before he feels his output or profit 
has reached a satisfactory share. However, after the market reaches equilibrium, PD-
adjust is helpful for agents to drive price up for detecting extra profits. In this process, 
the deviations coming from the lower rationality can be gradually reinforced through 
the information feedback loop of market power. For example, an agent may believe his 
opponents bid higher based on his belief function. But in fact that is a wrong inference 
because the market is in equilibrium at this time. This error comes from the level of 
rationality of the agent, e.g. a rough OC-curve (16) and assumption (22) on the dis-
torted noise. Obviously, it is unrealistic to expect the rough belief can bring a good 
estimation of the opponent’s behavior, so the action of agent based on the belief is in 
lower rationality. However, the reinforcement “errors” often bring extra profits to the 
agents rather than loss and eventually drive the market to enter an unstable state from 
the stable equilibrium one. That is a very interesting phenomenon. 

It is not a surprise that the agents often benefit from their rationality error. If we 
take the level of rationality as a variable and regard the “error” coming from lower 
rationality as a disturbance to the perfect rationality, then equilibrium in fact will 
depend on rationality of the agents and the perfect rationality is only a special case. 
So the standard game theory only provides the electricity market with a “local  
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description”. We need a “global description”: a multi-game-model including a ration-
ality variable is more reasonable and helpful to understand the market better. For 
example, the perfect-rationality tells the suppliers to maintain the equilibrium, as is 
advised by Nash equilibrium in standard game theory. However, the multi-model 
suggests them to try extra profits. Similarly, a single game model provides PX with 
the equilibrium and regards equilibrium as the prediction of the market. In reverse, the 
multi-model advises PX to focus on reducing the behavior diversity of the suppliers in 
order to prevent the market from crisis. 
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Abstract. This paper presents a new method by which a sequential de-
cision agent can automatically discover subgoals online. The agent dis-
covers subgoals using potential field. The method uses a reward function
to generate a potential field, and then abstracts some features from the
potential field as candidates of subgoals. Based on the candidates, the
agent can determine its behaviors online through some heuristics in un-
known environment. The best-known and most often-cited problem with
the potential field method is local minima. But our method does not
have this limitation because the local minima are used to form subgoals.
The disadvantage of the local minima in the previous approaches of po-
tential field turns out to be an advantage in our method. We illustrate
the method using a simple gridworld task.

1 Introduction

In sequential decision problems, as studied in the dynamic programming and
reinforcement learning literatures, the “task” or “problem” is represented by a
reward function. Given the reward function and a model of the domain, an opti-
mal policy is determined. The ability to decompose such a complex problem into
a set of simple problems is necessary for solving large scale sequential decision
problems. One way to do this is to discover useful subgoals automatically.

Methods for automatically introducing subgoals have been studied in the con-
text of adaptive production systems, where subgoals created are based on exam-
inations of problem-solving protocols (e.g., [1,2,3]). Recently, several researchers
have proposed reinforcement learning approaches which introduce subgoals. In
Digney’s system [4,5], states that are visited frequently or states where their
reward gradients are high are chosen as subgoals. Drummond [6] proposed a sys-
tem where a reinforcement learning agent detected walls and doorways through
the use of vision processing techniques applied to the learned value function. Mc-
Govern and Barto [7] introduced a method for automatically creating subgoal
options online by searching for bottlenecks in observation space. The method
formulated the problem as a multiple-instance learning problem and used the
concept of diverse density to solve it.
� This research was funded by NSFC60075019.
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Potential field principle is particularly attractive because of its elegance and
simplicity. Previous researches of potential field are mainly focused on obsta-
cle avoidance applications for mobile robots and manipulators [8]. In these ap-
proaches obstacles exert repulsive forces onto the robot, while the target applies
an attractive force to the robot. The sum of all forces determines the subsequent
direction and speed of travel. The best-known and most often-cited problem
with these approaches is local minima or trap situations[9]. Therefore, many
researchers have abandoned potential field methods because of such a drawback.

In attempt to overcome the specific cost of local minima in the previous ap-
proaches of potential field, this paper focuses on building of a reward function to
generate potential field. A set of features as possible candidates are abstracted
from the potential field. The agent guided by these candidates can further deter-
mines its behaviors online. Through an intuitive gridworld task, such a method
was demonstrated to be useful to automatically discover subgoals.

2 Representation of the Sequential Decision Problems

This section describes the framework of sequential decision problems from a re-
inforcement learning perspective. The decision-maker is called the agent. The
things it interacts with, comprising everything outside the agent, is called the
environment. On each step of interaction the agent receives input, o, some in-
dication of the current state, s, of the environment, and the value of this state
transition is perceived by the agent through a scalar reinforcement signal, r.
The agent’s goal, roughly speaking, is to choose actions that tend to increase
the long-run sum of values of the reinforcement signal. The model of the sequen-
tial decision process is illustrated in Fig. 1.

The model consists of a discrete set of environment states, S; a discrete set
of agent actions, A; a set of scalar reinforcement signals, R.

Fig. 1. The sequential decision process model
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In many real-world environments, it will not be possible for the agent to have
perfect and complete perception of the state of the whole environment. Therefore
the model also includes a discrete set of agent observations, O, consists of a
set of states that the agent perceives from the environment. Before the agent
interacts with the environment to achieve a goal, the designer must determine
how to represent S or O, A and R. Given the reward function R and the domain-
dependent variables S or O and A, the problem or task of the sequential decision
is determined.

3 Potential Field Method

This section describes the principles and processes of our approach in detail.

3.1 Generation of the Potential Field Based on the Reward
Function

There are many choices of the potential function. If we imagine that each state
in the sequential decision problem carries an electric change, we can write down
an expression of the potential field with a reward function, it is

Fij = −rie
−

d(sj − si)2

2σ2 (1)

where, the state space S = {s1, s2, ..., sN}, the states in the space interact with
each other. Fij is the potential of the state si over the state sj . ri is a numerical
reward which agent receives at state si, describing the strength of the potential
field. d(sj − si) is the Euclidean distance between the state si and sj . σ is a
constant named as radiate factor. When d(sj − si) ≥ 3σ, Fij ≈ 0. Usually the σ
is a real number and σ ∈ (0, 1], so the d(sj − si) needs to be normalized as (0,
1] in practice. The potential in state sj can be obtained by summing up all of
the potentials of the states over the state sj ,

Fj =
N∑

i=1

Fij . (2)

State space is constructed by n state variables, this forms a n-dimension state
space. The potential field generated by Eq.(2) is also n-dimension. Fig. 2 shows
a simple two-room gridworld environment. The reward function is: +1 for goal
state, −1 for obstacle, and 0 for other states.

ri =

⎧⎨⎩+1, goal
−1, obstacle
0, others

(3)

The potential field generated by the reward function of the simple two-room
gridworld using Eq.(1), (2) and (3) is shown in Fig. 3.
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Fig. 2. The reward function of a simple two-room gridworld
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3.2 Forming Candidates of Subgoals

To form useful candidates of subgoals, the agent searches for features in the
potential field. Candidates of subgoals (CS) can be defined as a set of saddle
states and locally minimum states. In other words, if a state si ∈ CS, there
is at least one direction along which the potential achieves its local minimum
at si. The above definition of CS makes it clear how the CS captures the fea-
tures of the potential field. Using this definition CS is motivated by studying
room-to-room navigation tasks where the agent should quickly discover the util-
ity of doorways as subgoals[7]. The doorways are usually saddle states in the
potential field. The second motivation of using the definition CS is that the
similar definition (Minimum Potential Valleys, MPV) is successfully applied to
path planning [10]. Since the task of the sequential decision is to choose actions
that tend to increase the long-run sum or decrease long-run cost of values of the
reinforcement signal, it is rational that the local minimum states of the poten-
tial field are used as candidates of subgoals. As shown in Fig. 4, the minimum
points in the potential field are the local maximum points of the reward function.
This treatment is to keep consistent with normal concept in the potential field
literature.

In Fig. 4, ∗ indicates the saddle point,� indicates the minimum point, and�
indicates the maximum point. The candidates of subgoals include the saddle
points and minimum points. We will find useful subgoals from the candidates of
subgoals automatically in the next section.
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Fig. 4. Candidates of the subgoals
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3.3 Autonomous Subgoal Discovery and Control Strategy

1. Dynamic subgoal discovery
This paper uses a heuristics to choose a subgoal state from the candidates
of subgoals as follows.

Heuristics 1. Let the goal state Sg, a state Sn ∈ CS, and the current state
of the agent Sc be given. We say Sn is the subgoal of Sc if d(Sn, Sc) <
d(Sc, Sg), d(Sn, Sg) < d(Sc, Sg), and d(Sn, Sc) = min(d(Sc, CS)). Where
d(sj − si) is the Euclidean distance between the state si and sj; d(Sc, CS) is
a set of the Euclidean distance between Sc to every state in CS.

2. Control strategy generation
After the subgoal of current state is determined, a lot of methods may be
applied to decide which action will be performed at the next step. This paper
uses a very simple method to do this: Choose one action which can make
the agent close to the subgoal until the agent arriving at the subgoal. If the
agent can not get to the subgoal during some limit steps, we will remove the
subgoal from the CS and use Heuristics 1 to choose a new subgoal again.

The experimental results for the different start states in the two-room grid-
world environment are illustrated in Fig. 5. In the experiments, the agent can
reach the goal, but the paths are not the optimal solutions as in most of rein-
forcement learning methods. One of the main advantages in our method is more
simple and less time consumed than other methods do.
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(a) Path generated while start state is at [2,2]
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(b) Path generated while start state is at [11,2]

2 4 6 8 10 12 14 16 18 20 22
1

2

3

4

5

6

7

8

9

10

11

12

G

(c) Path generated while start state is at [2,15]

Fig. 5. Path generated for the different start states
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4 Conclusions

In this paper, the application of the potential field method in a sequential de-
cision problem environment is presented. The method proposed is tested in a
simple two-room gridworld environment. The test results show that the method
can discover subgoals dynamically and automatically. In the future work, we
will test the method proposed in this paper in real environment. To find subgoal
from the candidates of subgoals, more effective methods are still needed in the
practical applications.
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Abstract. In this paper, a novel evolutionary algorithm based on adap-
tive multiple fitness functions and adaptive objective space division for
multiobjective optimization is proposed. It can overcome the shortcom-
ing of those using the weighted sum of objectives as the fitness functions,
and find uniformly distributed solutions over the entire Pareto front for
non-convex and complex multiobjective programming. First, we divide
the objective space into multiple regions with about the same size by uni-
form design adaptively, then adaptively define multiple fitness functions
to search these regions, respectively. As a result, the Pareto solutions
found on each region are adaptively changed and eventually are uni-
formly distributed over the entire Pareto front. We execute the proposed
algorithm to solve five standard test functions and compare performance
with that of four widely used algorithms. The results show that the pro-
posed algorithm can generate widely spread and uniformly distributed
solutions over the entire Pareto front, and perform better than the com-
pared algorithms.

1 Introduction

Many real-world problems involve simultaneous optimization of several incom-
mensurable and often competing objectives, that is,

min
x∈Ω
{f1(X), f2(X), ..., fs(X)} , (1)

where X = (x1, x2, ..., xn) ∈ Rn and Ω is the feasible solution space. After the
first pioneering studies on evolutionary multiobjective optimization appeared in
the middle of 1980’s, a couple of EAs were proposed in the last two decades (e.g.,
[2]∼[9]). These approaches and their variants have been successfully applied to
various multiobjective optimization problems. Among them the weighted-sum
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method is one of the simplest and most effective methods, however, it is difficult
to find a set of uniformly scattered solutions on the Pareto front ([9]).

In this paper, we develop a novel multiobjective evolutionary algorithm,
which can find a set of solutions scattered uniformly on the entire Pareto solution
front. In the algorithm, the objective space is divided into multiple regions and
on each region a fitness function is defined to search for the Pareto solutions in
it. If some region contains fewer Pareto solutions, we will further divide it into
several sub-regions and define one additional fitness function on each sub-region.
In addition, we carry out the search in each sub-region independently so that
more potential solutions can be generated in this region. This process is repeated
adaptively. As a result, the number of Pareto solutions in this region will be in-
creased gradually, and finally a set of well distributed solutions on the entire
Pareto solution front will be obtained. At last, we demonstrate the effectiveness
of the proposed algorithm by numerical experiments.

2 Uniform Design and Evolutionary Operators

2.1 Uniform Design

In this subsection we briefly introduce main idea of uniform design. The main
objective of a uniform design is to sample a small set of points from a given
closed and bounded set G ⊂ RM such that the sampled points are uniformly
scattered on G. In this paper, we only consider two specific cases of G, that is,
G = [l, u] and G = U(s), where

[l, u] = {(θ1, θ2, ..., θM ) | li ≤ θi ≤ ui, i = 1 ∼M}

and
U(s) =

{
(f1, · · · , fs) | f2

1 + · · ·+ f2
s = 1

}
.

For details of the methods to generate uniformly distributed points in these two
sets, please refer to [10].

2.2 Crossover and Mutation

In this subsection we use the uniform design method to construct a crossover
operator. The main idea is as follows: Select parents for undergoing crossover
according to the crossover probability pc, and randomly match every two parents
as a pair. For each pair of parents Y = (y1, · · · , yn) and X = (x1, · · · , xn), we
define two vectors

l = (l1, · · · , ln) and u = (u1, · · · , un), (2)

where li = min{xi, yi} and ui = max{xi, yi} for i = 1 ∼ n. These two vectors
define a hyper-rectangle

[l, u] = {(z1, · · · , zn) | li ≤ zi ≤ ui, i = 1 ∼ n}. (3)
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Choose a proper integer q1. The uniform design on [l, u] is then used to generate
q = q1 points uniformly distributed on [l, u], and these q1 points can be regarded
as the offspring of two parents X and Y .

Select individuals from the offspring of crossover according to the mutation
probability pm. For each selected offspring, say X = (x1, x2, · · · , xn), randomly
change it into another individual X = X + ΔX , where each component of ΔX
obeys Gaussian distribution with mean 0 and deviation σ and all components
are independent.

2.3 Selection

Suppose that we have totally q3 direction vectors including all additional di-
rection vectors and denote them by {V1, V2, · · · , Vq3}. These direction vectors
have divided the objective space into q3 regions or sub-regions denoted by
R(V1), · · · , R(Vq3 ), and each direction vector defined one region or sub-region
and one fitness function was defined on this region or sub-region by the weighted
sum of the objective functions. The selection is carried out on each region or sub-
region independently by selecting the same number of individuals.

3 A Novel Multiobjective Evolutionary Algorithm

In this section, we will develop a new multiobjective evolutionary algorithm. The
main idea is as follows.

We first generate multiple direction vectors by the uniform design method on
the unit sphere U(s) of the objective space in subsection 2.1, and then employ
them to divide the objective space into multiple regions of the approximately
same size. On each region, one fitness function is defined. In order to generate a
set of uniformly distributed and widespread solutions on the entire Pareto front,
we try to generate about the same number of Pareto solutions in each region.
If a region contains fewer solutions, we further divide this region into several
sub-regions and on each sub-region we define one additional fitness function.
Thus more fitness functions are used to search for the potential solutions in
this region. As a result, more and more candidate solutions can be generated in
this region during evolution, and finally, a set of uniformly distributed and wide
spread Pareto solutions can be obtained.

3.1 Divide Objective Space and Define Multiple Fitness Functions

In order to divide the objective space into multiple regions of about the same
size, a set of uniformly distributed points (can be seen as direction vectors) on the
unit sphere U(s) in the objective space is first generated by the uniform design
in subsection 2.1. Then the objective space is divided into multiple regions of
about the same size by applying the direction vectors as follows.
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Algorithm 3.1

1. Generate q0 points uniformly scattered on the surface of the unit sphere U(s)
in the objective space by the uniform design in subsection 2.1. Each of these
points is a direction vector originating from the origin. The direction vectors
constitute a set denoted by D(s, q0).

2. The objective space is divided into q0 regions by applying the q0 direction
vectors. Each direction vector Vk ∈ D(s, q0) defines a region, denoted by
R(Vk), in the following way:

R(Vk) = {Y ∈ Rs| ang(Y, Vk) = min{ang(Y, Vi)|Vi ∈ D(s, q0)}},

where ang(Y, Vk) represents the angle between vectors Y and Vk.
3. The current Pareto front, denoted by FT , is divided into q0 Pareto subfronts

similarly. Each direction vector Vk ∈ D(s, q0) defines a Pareto subfront,
denoted by FT (Vk), in the following way:

FT (Vk) = {F (Xj)| F (Xj) ∈ FT,

ang(F (Xj), Vk) = min{ang(F (Xj), Vi)|Vi ∈ D(s, q0)}},

where F (Xj) = (f1(Xj), · · · , fs(Xj)) is the objective function vector at Xj .
Obviously, FT (Vk) is contained in R(Vk).

4. Form multiple fitness functions. Each direction vector
Vk = (Vk1, Vk1, · · · , Vks) ∈ D(s, q0) defines a fitness function on R(Vk) by

f(X,Vk) = Vk1f1(X) + Vk1f2(X) + · · ·+ Vksfs(X), k = 1 ∼ q0.

For any region R(Vk) containing fewer Pareto solutions, we further divide
it into several sub-regions and define one additional fitness function for each
sub-region. Thus several additional fitness functions are defined for each such
region. In the selection process, for each sub-region of region R(Vk), we use the
corresponding additional fitness function to select some individuals. Therefore,
more individuals with a good diversity on R(Vk) will be selected for the next
generation population. As a result, a set of uniformly distributed solutions will
be finally found.

3.2 Proposed Algorithm

Algorithm 3.2

1. Choose the proper parameters q0, q1, population size Npop, crossover prob-
ability pc and mutation probability pm. Generate an initial population and
a set of initial multiple weight vectors D(s, q0) = {Vk|k = 1 ∼ q0}.

2. Divide the objective space into q0 regions R(V1), · · · , R(Vq0). Construct one
Pareto subfront FT (Vk) and define one fitness function FT (X,Vk) on each
region R(Vk) by Algorithm 3.1.

3. Execute crossover and mutation.
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4. Revise the current Pareto subfronts FT (V1), · · · , FT (Vq0). Compute the
mean number of solutions in all q0 Pareto subfronts and denote it by S̄.

5. For each region R(Vj) containing Pareto subfront FT (Vj) with fewer than S̄
Pareto solutions, further divide it into q1 sub-regions and define q1 additional
fitness functions.

6. Select points to form the next generation population.
7. If stopping criterion is not met, go to step 3; otherwise, stop.

4 Computer Simulations

In simulations, We take the parameter values as follows: Npop = 100, pc = 0.2,
pm = 0.02, q0 = 11, q1 = 5, maximum number of generations is 200. We run the
proposed algorithm (called Nmea hereinafter) 30 times on five widely used test
functions: ZDT1 ∼ ZDT4 and ZDT6 ([11], [12]), and compared its performance
with the existing four ones, namely: Spea ([5]), Nsga ([4]), Spea-II ([8]) and Nsga-
II ([7]). For details of these functions, please refer to [12]. In order to compare
the performance of these algorithms, we used C measure ([5]) and U measure
([1]) as the quantitative measures of the solution quality. The former is used for
the comparison of the quality of the solutions found by two algorithms, and the
later is for measuring the uniformity of the solutions found by each algorithm.
For details, please refer to [5] and [1]. The results are summarized in Tables 1
and 2.

For ZDT1, ZDT2 and ZDT4, it can be seen from Table 1 that all solutions
obtained by Spea and Nsga are dominated by those obtained by Nmea, but
none of solutions from Nmea is dominated by those from any of Spea and Nsga.
For ZDT3 and ZDT6, much more solutions obtained by Spea and Nsga are
dominated by those obtained by Nmea, while only fewer solutions from Nmea
is dominated by those from any of Spea and Nsga. For example, 71% solutions
obtained by Spea and 81% solutions obtained by Nsga are dominated by those
obtained by Nmea, but 23% and 20% solutions obtained by Nmea are dominated

Table 1. Comparison of C metric between Nmea and each of Spea, Nsga, Spea-II and
Nsga-II in a typical run, where Nm, Sp, Ns, Sp-II and Ns-II represent Nmea, Spea,
Nsga, Spea-II and Nsga-II, respectively

C(Nm,Sp) C(Sp,Nm) C(Nm,Ns) C(Ns,Nm)
ZDT1 1 0 1 0
ZDT2 1 0 1 0
ZDT3 0.71 0.23 0.81 0.20
ZDT4 1 0 1 0
ZDT6 0.75 0.03 0.79 0.12

C(Nm,Sp-II) C(Sp-II,Nm) C(Nm,Ns-II) C(Ns,Nm-II)
ZDT6 0.11 0 0.17 0
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Table 2. Comparison of U measure among Spea, Nsga, Spea-II, Nsga-II, and Msea on
ZDT6 in five independent runs

1 2 3 4 5
Spea 0.1156 0.1185 0.13376 0.1268 0.1235
Nsga 0.1012 0.2293 0.2512 0.1147 0.1039

Spea-II 0.1003 0.1328 0.1218 0.1146 0.1129
Nsga-II 0.0974 0.0991 0.0965 0.0964 0.0968
Nmea 0.0667 0.0789 0.0798 0.0693 0.0678

by those obtained by Spea and Nsga, respectively. It can be seen from Table 2
that the values of U measure from Spea-II are smaller than those from Spea,
the values from Nsga-II are smaller than those from Nsga, and the values from
Nmea are the smallest. This indicates the distribution of solutions from Nmea is
the most uniform, then those from Spea-II and Nsga-II, and the last those from
Spea and Nsga.

5 Conclusion

In this paper, we develop a novel multiobjective evolutionary algorithm, which
uses the space division and defines multiple fitness functions to search in the
divided spaces. As a result, the proposed algorithm can find a set of solutions
scattered uniformly on the entire Pareto solution front. The simulation also
indicates the effectiveness of the proposed algorithm.
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Abstract. Based on the Antibody Clonal Selection Theory and the dynamic 
process of immune response, a novel Immune Forgetting Multiobjective Opti-
mization Algorithm (IFMOA) is proposed. IFMOA incorporates a Pareto-
strength based antigen-antibody affinity assignment strategy, a clonal selection 
operation, and a technique simulating the progress of immune tolerance. The 
comparison of IFMOA with other two representative methods, Multi-objective 
Genetic Algorithm (MOGA) and Improved Strength Pareto Evolutionary Algo-
rithm (SPEA2), on different test problems suggests that IFMOA extends the 
searching scope as well as increasing the diversity of the populations, resulting 
in more uniformly distributing global Pareto optimal solutions and more inte-
grated Pareto fronts over the tradeoff surface.  

1   Introduction 

Artificial Immune System (AIS) is a new hotspot following the neural network, fuzzy 
logic and evolutionary computation [1]. Its research production refers to many fields 
like control, data processing, optimization learning and trouble diagnosing. The Anti-
body Clonal Selection Theory is put forward by Burnet in 1958 [2], giving a reason-
able explanation for its three important features (autoimmunity forbidden, elaborate 
specific reorganization and immune memory). The main idea lies in that the antibod-
ies are the native production, existing on the cell surface in the form of peptides, and 
the antigens can selectively react to the antibodies. So the clonal selection is a dy-
namic self-adaptive process of the immune system, and some biologic characters such 
as learning, memory and regulation can be used in Artificial Immune System. 

In this paper, based on the Antibody Clonal Selection Theory and the dynamic 
process of immune response, Immune Forgetting Multiobjective Optimization Algo-
rithm (IFMOA) is put forwards. The new method tires to preserve more nondomi-
nated solutions by incorporating previous multiobjective evolutionary techniques and 
immune-strategy inspired operations. The experimental results demonstrated that the 
capabilities of IFMOA to generate well-distributed Pareto optimal solutions and more 
integrated Pareto fronts of the test problems. The further comparison with two classi-
cal algorithms: MOGA [3] and SPEA2 [4], confirm its potential to solve multiobjec-
tive optimization problems. 
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2   Algorithm 

In this paper, the main operations of IFMOA are included in the following sections. 
Here, the antigen means the problem and its constraints, while the antibody is the 
candidate of the problem. The antibody-antigen affinity and the antibody-antibody 
affinity indicate the match between solution and the problem, and the total combines 
power between the antibodies respectively [5]. Without loose of generality, 

laaa 21=a is defined as the antibody and 1 2{ , , , }n=A a a a  is the antibody popula-

tion; f is a positive real-value function defined as antibody-antigen avidity function. 

Furthermore, an external set called antibody archive P saves the nondominated solu-
tions of each generation, which has the same structure as antibody population A .  

2.1   Computation of Avidity 

In IFMOA each individual is assigned an antibody-antigen affinity ( )F i . The first part 

of ( )F i  is the raw antibody-antigen affinity ( )R i , which is determined based on the 

concept of Pareto strength [4]. ( ) 0R i =  indicates that the individual ip  is not domi-

nated by any other individuals, corresponding to a nondominated solution. The second 
part of ( )F i  is antibody-antibody affinity ( )D pi , which is additionally incorporated 

to guide a more precise search process. ( ) ( )( )
1

1i

D p
d p

=
+i , Where ( )d pi is the sum 

of two smallest Euclidian distances between ip  and other individuals. The 

smaller ( )iD p is, the lower is the comparability between ip  and other antibodies, 

accordingly, it is beneficial to the diversity of the population. Thus the overall anti-
body-antigen should be minimized. 

2.2   Clonal Selection 

Concretely, the Clonal Selection Operator (CSO) is to implement three steps includ-
ing clone, clonal mutation and clonal selection on the antibody population [6], and a 
new antibody population will be attained after CSO. The evolvement process can be 
denoted as follows: 

 '  ( ) ( ) ( ) ( 1)Clone Clonal Mutation Clonal Selectionk k k k⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ +A Y Y A  (1) 

Clone ( )C
cT ∗ : The clonal operator ( )C

cT ∗ is defined as: 

( ) ( ( )) ( ( )), ( ( )), , ( ( ))
TC C C C

c c c ck T k T k T k T k= = 1 2 nY A a a a  (2) 

Where ( ( )) ( ), 1,2i i iT k k i n= × =C
c a a    I , and iI  is cn dimension row vector. Here, 

cn is a given integer called clonal scale and cn copies of each antibody will be pro-

duced by cloning. After the clonal operator, the antibody population is like this: 

1 2( ) { ( ), ( ), , ( )}nk k k k=Y y y y  (3) 
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{ } { }1 2( ) ( ) ( ), ( ), ( ), , ( ) ,  and  ( ) ( ), 1,2, ,
ci ij i i i in ij i ck k k k k k k k j n= = = =y y a y y y y a  (4) 

Cloanal Mutation ( )C
mT ∗ : unlike the general mutation operator in GA, the clonal 

mutation is not applied to the i i∈a y  in order to save the information of original popu-

lation, namely, 

( )( )'
0

1,2, , 1,2, ,
0

m i ij

i i c

i i

P
P T i n j n

∈
= = = =

∈

y y
y y

y a
C

m

   
   

           
 (5) 

mP  is the mutation probability, after clonal mutation, the antibody population is : 

{ }' ' ' ' ' ' '
1 2 1 2( ) { ( ), ( ), , ( )} ( ), ( ), ( ), , ( )

cn i i i ink k k k k k k k= =Y y y y a y y y  (6) 

Clonal Selection ( )C
sT ∗ :  1,2i n∀ = , if 

' '{ | min ( ),   1,2, ,  }im ij cb f j n m j= = ∈y y and '( ) ( ) ,  i i nf f b< ∈a a y  (7) 

Then b  will replace ia  in the antibody population. So the antibody population is 

updated, and the information exchanging among the antibody population is realized. 

2.3   Updating Antibody Archive and Clonal Forgetting Unit 

In the iterative of IFMOA, the antibody archive saves the nondominated solutions of 
current antibody population, which it is preserved and updated unremittingly. The 
update of the antibody archive space is as follows:  

Operation 1: Antibody Archive Update in IFMOA 

Step1: Copy all nondominated individuals in antibody population ( )kA  to 

the antibody archive ( )1k +P , ( ) ( ) ( ){ }1 ( ) 1ik k i k F i+ = ∈ ∧P a A and 

( )1k +P   repre sents its size. If ( )1 fk N+ =P , go to Step3; or else, go to 

Step2.  

Step2: If ( )1 fk N+P , copy ( )( )1fN k− +P dominated individuals having 

the best affinity to ( )1k +P ; or else, compress ( )1k +P  until ( )1k +P  is 

equal to fN . 

Step3: Apply Clonal Selection Operation(CSO) to ( )1k +P . 

Fig. 1. Antibody archive update 
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We assume that i is the actual number of the individuals found to be deleted each 

time, and ( )1 ft N+ −P  is the number of the individuals should be deleted. The clus-

tering technique in SPEA2 only deletes one suited individual once, so ( )1 ft N+ −P  

repetition is needed. Then the computation complexity of SPEA2 is larger and the 
efficiency is weakened accordingly. Based on the clustering principle in SPEA2, we 
proposed an improved operation of updating the antibody archive. In detail, if 

( )1 - fi t N≤ +P  and more than one suited individual could be found, we delete all of 

them once instead, without comparing one individual with the others repeatedly, 
which will reduce the computation complexity and the whole number of repetition 

during the clustering operation is far smaller than ( )1 ft N+ −P . 

2.4   Updating Clonal Forgetting Unit 

In immunology, immune tolerance means the non-response expressed by immune 
active cell when they are exposed to antigens. It is an important and necessary part of 
immune regulation. Both clonal deletion and clonal anergy are considered to be cer-
tain mechanisms of immune tolerance, on which the models of immune adjusting and 
control could be built [7]. In our paper, the phenomenon of immune tolerance is 
nameed as “forgetting” and we construct a clonal forgetting unit, whose members are 
charactered by not participating in clonal proliferation. However, the clonal forgetting  

Operation 2: Activate Clonal Forgetting Unit in IFMOA 

Step1: Sort the antibody population ( )kA  based on the Affinity, named by 

)}(,),(),({)( 21 kkkk naaaA ′′′=′ where ( ) ( )1( ) ( ) ,  1,2, , 1i iF k F k i n+′ ′≤ = −a a ; 

Step2: Randomly select r  individuals in the ( )k′A  to constitute the clonal 

forgetting unit, Now 1 2 1 2( ) { ( ), ( ), , ( ), ( ), ( ), , ( )}j j j j rk k k k k k k+ + +′ ′ ′ ′ ′ ′=A' a a a a a a , 

j r n+ = ,  

Step3: Replace the whole clonal forgetting unit with individuals 

( ) 1,2,i k i r=b  ,  from the antibody archive ( )kP  to activate the clonal for-

getting unit, and the final antibody population 
is 1 2 1 2( ) { ( ), ( ), , ( ), ( ), ( ), , ( )}j rk k k k k k k′ ′ ′= a a aA'' b b b  

Fig. 2. Activate clonal forgetting unit 
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unit could be activated by some external stimulation, which is denoted as the process 
of activation of clonal forgetting unit.  

In the above steps, ( )% *r round T n= , where the function ( )round ∗ returns the 

nearest integer of x . The value of clonal forgetting ratio %T  is related to antibody 
population size and antibody-antigen affinity, it can be self-adaptive or fixed.  

2.5   Immune Forgetting Multiobjective Optimization Algorithm 

The Clonal Selection Operator (CSO) described above emphasizes mainly on the 
proliferation and the single compression of individuals, not mentions antibody’s 
death. However, the course of clonal proliferation is accordant with the course of 
clonal death. Therefore, the multiobjective algorithm inspired by clonal selection 
and clonal forgetting is called Immune Forgetting Multiobjective Optimization 
Algorithm, and the overall flow of IFMOA is described as follows: 

Algorithm: The Immune Forgetting Multiobjective Optimization Algorithm 

Step1: Generate the initial antibody population { }1 2(0) (0), (0), (0)n=A a a a and create an 
empty matrix (antibody archive) (0)P . 0k =   

Step2: Assigning antibody-antigen affinity to the individuals in the antibody popula-
tion ( )kA and archive ( )kP . 

Step3: If the termination criterion is not satisfied, carry on the following operations, 
otherwise, stop.  

Step 3.1: Apply Clonal Selection Operator to antibody population ( )kA . 

Step 3.2: Update the antibody archive ( )kP and get ( 1)k +P . 

Step 3.3: Perform activation of the clonal forgetting unit and get ( 1)k +A . 

Step 3.4: 1k k= + go to Step 2. 

Fig. 3. Immune Forgetting Multiobjective Optimization Algorithm 

3   Experiments and Discussion 

In order to validate our new algorithm, we compare IFMOA with another two rep-
resentative algorithms, MOGA and SPEA2. For all algorithms, we apply binary 
coding, the terminal generation max 150G = , the population size N  is 100, which is 

referred to Reference [4]. In IFMOA, antibody archive size 100fN = , clonal scale 

c 3n = , mutation probability 1/mP l= ; In MOGA, the number of elite solutions is 10,  
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crossover probability 0.9cP = , mutation probability 0.06mP = . In SPEA2, archive 
size 100eN = , crossover probability 0.9cP = , mutation probability 0.06mP = .  

3.1   Metrics of Performance Assessment 

The goal of multiobjective optimization is to find a Pareto-optimal set or approxi-
mate it. Therefore, quantitative performance assessments of MOEAs should better 
take three objectives including the distance to the Pareto front, distribution of solu-
tions, and the scope extended by solutions into account.  

First of all, let’s refer to the metric “Coverage of Two Sets” proposed in Refer-
ence [8]. This metric is described as: Let ,′ ′′ ⊆A A X be two sets of decision vectors, 
the function ς  maps the ordered pair ( )′ ′′A , A  to the interval [0, 1]: 

{ }; :
( , )ς

′′ ′′ ′ ′ ′ ′′∈ ∃ ∈ ≥
′ ′′

′′
a A a A a a

A A
A

 (8) 

Where " "≥ means Pareto dominate or equal. The value ( , ) 1ς ′ ′′ =A A  means that all 
points in ′′A  are dominated by or equal to points in ′A , while ( , ) 0ς ′ ′′ =A A indicates 
the opposite. Note that both ( , )ς ′ ′′A A  and ( , )ς ′ ′′A A  have to be considered because 

( , )ς ′ ′′A A  is not necessarily equal to1 ( , )ς ′′ ′− A A . 
Another metric called “Spacing” proposed by Schott [9] as a way of measuring 

the range variance of neighboring vectors in the tradeoff front has also been cited 
many times in different papers [10].  

Let ′ ⊆A X  be a set of decision vectors. The function S 

2

1

1
( )

1 i
i

S d d
′

=

−
′ −

A

A
 (9) 

Where 

1

min ( ) ( ) , , 1,
p

i j k i k j i j
k

d f f i j
=

′ ′= − ∈ =x x x x A A  (10) 

d  is the mean of all id , and p is the number of objective functions. 

Since both of the two metric have deficiency, we can not objectively evaluate  
the performance between different algorithms based on only one metric; both of  
them are adopted in the performance assessment so that they can complement each 
other. 

3.2   Test Problems 

In the following, 6 benchmark multiobjective problems are selected to compare 
IFMOA with MOGA and SPEA2 based on the parameters set above. All of these 
test problems are described in Table 1 [11]: 
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Table 1. Multiobjective optimization problem (Mop) 

Mop 1 

( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

2 2

1

2 2

2

min , , ,

, 1 exp 1 1 ,

, 1 exp 1 1

F f x y f x y

f x y x y

f x y x y

=

= − − − − +

= − − + − −

Mop 2 

( ) ( )( )
( )

( )

1 2

1 2 2

2 2
2

min , , , ,

1
, ,

1

, 3 1

. .   3 , 3

F f x y f x y

f x y
x y

f x y x y

S T x y

=

=
+ +

= + +
− ≤ ≤

 

Mop 3 

( ) ( )( )
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1 2

1

2
2
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, 2 1

. .   3 , 3

F f x y f x y

f x y x y

f x y x y

S T x y
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= + +
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− ≤ ≤

 Mop 4 

( ) ( )( )
( )
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1 2

1

2
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x
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x
sin 2
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4; 2
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f x y x
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22
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3
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x y y x
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3.3   Simulations Results 

It is observed in the experiments that the performance of IFMOA to solve the same 
problem varies with the clonal forgetting proportion %T . In order to verify the phe-
nomena, %T  is assigned 10 different values, in detail, 0.05, 0.06, 0.07, 0.08, 0.09, 
0.1, 0.2, 0.3, 0.4 and 0.5. For most test problems, we get the best evaluation values 
when %T is set round 0.08. On this condition, the value of S, 

( , )M IXς X and S( , )Iς X X are minimums while the value of ( , )I MXς X and S( , )Iς X X  
are maximums. However, when %T deviates 0.08 too much, the performance of 
IFMOA degenerates obviously.  
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Fig. 4. The performance comparison of MOGA, SPEA2, and IFMOA on Mop1 to Mop6 
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With % 0.08T = and the other parameters set above, 30 runs with randomly gener-
ated population are carried on for each test problem and each algorithm. The Pareto 
fronts and statistical results of the two metrics are presented in Fig 6, Table 2 and 
Table 3 to make direct comparisons of IFMOA with MOGA and SPEA2.  

Comparing the actual solutions obtained by three algorithms, it is easy to find that 
IFMOA could converge to the ideal Pareto front but fewer nondominated solutions 
are found when using MOGA and SPEA2. For these problems, the proportion of 
IFMOA converging to the ideal Pareto front is far higher than the other two algo-
rithms. The effectiveness of IFMOA to guide the search of boundary solution, e.g. 
Mop1 and Mop5, also reveals the stronger search ability of IFMOA 

Table 2. The performance comparison by Coverage of two sets 

( , )ς ′ ′′A A  ( , )M SXς X  S( , )MXς X  ( , )M IXς X  ( , )I MXς X  S( , )Iς X X  S( , )Iς X X  

Mop 1 0.034211 0.472222 0.007906 0.911111 0.077991 0.891228 

Mop 2 0.070743 0.405714 0.038333 0.498095 0.189074 0.321343 

Mop 3 0.258889 0.102299 0.068323 0.790805 0.033333 0.820000 

Mop 4 0.356863 0.080000 0.116667 0.348000 0.046667 0.594118 

Mop 5 0.032993 0.082051 0.021481 0.128205 0.050370 0.109524 

Mop 6 0.158730 0.079487 0.014991 0.339744 0.007937 0.574603 

Table 3. The performance comparison by Spacing 

S MOGA SPEA2 IFMOA 

Mop 1 0.109008 0.016340 0.007752 

Mop 2 0.695562 0.169204 0.111575 

Mop3 0.239585 0.243787 0.037497 

Mop 4 0.141775 0.231693 0.028540 

Mop 5 0.294516 0.185243 0.124811 

Mop 6 0.155836 0.119814 0.011588 

From Table 2, we can observe that the solution sets obtained by IFMOA dominated 
the ones get from SPEA2 and MOGA. The average statistical results of S metric in 
Table 3 also indicates the more reasonable distribution obtained by IFMOA. Even for 
the discrete Pareto front, e.g. Mop4 or the tri-objective problems, e.g. Mop6, IFMOA 
are capable of converging to ideal Pareto front, while the other two algorithms shows 
the lack of effective search to different extent.  

4   Conclusion 

In this paper, we proposed a novel algorithm Immune Forgetting Multiobjective Op-
timization Algorithm (IFMOA). It simulates the dynamic process of immune response 
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on the basis of the Antibody Clonal Selection Theory and the character of immune 
tolerance. When compared with MOGA and SPEA2, IFMOA is more effective for 
multiobjective optimization problems in the two popular metrics, Coverage of Two 
Sets and Spacing. 

Although IFMOA can solve some benchmark multiobjective problems preferably, 
it adopts binary coding, so it can not solve high-dimensional problems with low com-
putational complexity. How to design a suitable antibody encoding mode and more 
effective antibody-antigen function for high-dimensional or constrained multiobjec-
tive problems demands our research in future. 
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Abstract. Recently, many genetic algorithms (GAs) have been devel-
oped as an approximate method to generate Pareto frontier (the set
of Pareto optimal solutions) to multi-objective optimization problem.
In multi-objective GAs, there are two important problems : how to
assign a fitness for each individual, and how to make the diversified
individuals. In order to overcome those problems, this paper suggests
a new multi-objective GA using generalized data envelopment analysis
(GDEA). Through numerical examples, the paper shows that the pro-
posed method using GDEA can generate well-distributed as well as well-
approximated Pareto frontiers with less number of function evaluations.

1 Introduction

Most decision making problems involve multiple and conflicting objectives, and
are formulated as multi-objective optimization problems. There does not nec-
essarily exist a solution that optimizes simultaneously all objectives, because
the presence of conflicting objectives. Thus, the concept well known as Pareto
optimal solution has been used. Usually, there are a lot of Pareto optimal so-
lutions which are considered as candidates of a final solution to the decision
making problem. It is an issue how a decision maker chooses her/his most
preferable solution from the set of Pareto optimal solutions in the objective
function space (i.e., Pareto frontier). In cases with two or three objective func-
tions, if it does not take so much time to evaluate the value of each objective
function, Pareto frontier can be depicted relatively easily. Seeing Pareto fron-
tiers, we can grasp the trade-off relation among objectives totally. Therefore,
it would be the best way to depict Pareto frontiers in cases with two or three
objectives. In recent years, the research applying genetic algorithms (GAs) to
generate Pareto frontiers has been extensively developed, and also has been
observed to be useful for visualizing Pareto frontiers In this research, the impor-
tant subjects are how fast individuals converge to Pareto frontier and how well-
distributed they are on the whole Pareto frontier. To this end, many contrivances
have been reported for gene operators and fitness function [1,2,3,4,5,6,7,8]. Most

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 409–416, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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conventional algorithms are adopting Pareto optimality-based ranking method
which is the way by the number of dominant individuals, although the rank
does not reflect the “distance” itself between each individual and Pareto fron-
tier. Therefore, we have suggested several multi-objective GAs using general-
ized data envelopment analysis (GDEA) to generate Pareto frontier, in short,
GDEA methods [10], [12]. The characteristic of GDEA methods is in measur-
ing the degree how far each individual is from Pareto frontier by solving some
linear programming problem [11]. As a result, we have observed through several
applications that GDEA methods can provide much closer Pareto frontier to
the real one with less number of generations. In this paper, we propose a new
method of crossover using GDEA in order to generate well-distributed Pareto
frontier. In addition, we show that the proposed method can provide much well-
distributed Pareto frontier through the comparison with the results by several
methods.

2 Multi-objective Genetic Algorithm Using GDEA

Multi-objective optimization problems are formulated as follows:

minimize
x

f(x) = (f1(x), . . . , fm(x))T (MOP)

subject to x ∈ X = { x ∈ R
n | gj(x) � 0, j = 1, . . . , l } ,

where x = (x1, . . . , xn)T is a vector of design variable and X is the set of all
feasible solutions.

Generally, unlike traditional optimization problems with a single objective
function, there does not always exist an optimal solution that minimizes all
objective functions fi(x), i = 1, . . . ,m, simultaneously does not necessarily exist
in the problem (MOP). Based on Pareto domination relation, Pareto optimal
solution is introduced, and there may be many Pareto optimal solutions. Pareto
frontier is the set of them in the objective function space. (See Fig. 1.)

f1

f 2

f (X)

x̂

Pareto frontier

f (x)

f ( )

Fig. 1. Pareto frontier in the objective function space
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Definition 1 (Pareto optimal solution). A point x̂ ∈ X is said to be Pareto
optimal if there exists no x ∈ X such that fi(x) � fi(x̂), ∀ i = 1, . . . ,m and
f(x) �= f (x̂).

For assessing a fitness for each individual xo, o = 1, . . . , p (p : the number
of population), we suggested GDEA method of fitness evaluation given by an
optimal value to the following linear programming problem [10]:

maximize
Δ,νi

Δ (GDEA)

subject to Δ � d̃j − α

m∑
i=1

νi(fi(xo)− fi(xj)), j = 1, . . . , p,

m∑
i=1

νi = 1,

νi � ε, i = 1, . . . ,m,

where ε is a sufficiently small number, and d̃j , j = 1, . . . , p, is the value of
multiplying max

i=1,...,m

(
−fi(xo) + fi(xj)

)
by its corresponding weight, for example,
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Fig. 2. GDEA frontiers by varying the parameter α
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d̃j = 2ν1 if −f(xo) + f(xj) = (2,−1). α is a value of monotonically decreasing
with respect to the number of generation. The parameter α decides so-called
GDEA frontier as shown in Fig. 2, and the optimal value Δ∗ means the degree
how far an individual xo is from GDEA frontier in the objective space. By
adjusting the parameter α, we have observed that GDEA method can generate
well-approximated Pareto optimal solutions with small number of generations.

Furthermore, in the paper, we consider the dual problem (GDEAD) to the
primal problem (GDEA) as follows:

minimize
ω,λj ,si

ω − ε

m∑
i=1

si (GDEAD)

subject to
p∑

j=1

{
α
(
−fi(xo) + fi(xj)

)
+ dij

}
λj − ω + si = 0, i = 1, . . . ,m,

p∑
j=1

λj = 1, λj � 0, j = 1, . . . , p,

si � 0, i = 1, . . . ,m,

where dij is a component of a matrix
[
−f(xo) + f(x1), · · · ,−f(xo) + f(xp)

]T

replaced by 0, except for the maximal component in each column.
Let ω∗,

(
λ∗

1, . . . , λ
∗
p

)
and (s∗1, . . . , s∗m) be the optimal solution to the problem

(GDEAD) for an individual xo. Then, as well known from the duality theory of
linear programming problem, ω∗ has the same meaning with Δ∗ in the primal
problem (GDEA). (s∗1, . . . , s∗m) represents the slackness which can distinguish
easily individuals to be weak Pareto optimal.

(
λ∗

1, . . . , λ
∗
p

)
represents a domi-

nation relation between an individual xo and another individuals. That is, if
λ∗

j is positive for some j �= o, xo is dominated by xj which may be regarded
as a reference individual. Making efficient use of the reference individual, we
suggest that the new offspring is generated by the parents with same reference
individuals in order to keep the diversity of individuals. As is shown in Fig. 3,
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Fig. 3. Crossover by the proposed method



Genetic Algorithm for Multi-objective Optimization 413

for instance, the reference individuals of E and F are A and B, and the children
are generated by the parents E and F . This means that E and F are evolved
toward GDEA frontier of between A and B. By divide the population into sev-
eral sub-populations, Pareto frontier is generated piecewise. Consequently, the
proposed method can not only generate well-distributed Pareto frontier, but also
converge much faster and more effectively to the real Pareto frontier than the
conventional algorithms.

3 Numerical Examples

In this section, we illustrate the effectiveness of the proposed method through
the following examples [9]:

minimize
x

f1(x) = x1 (ZDT4)

minimize
x

f2(x) = g(x)×
(
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subject to g(x) = 1 + 10(N − 1) +
N∑

i=2

(
x2

i − 10 cos(4πxi)
)
,

x1 ∈ [0, 1], xi ∈ [−5, 5], i = 1, 2, . . . , N.

minimize
x

f1(x) = 1− exp(−4x1) sin6(6πx1) (ZDT6)

minimize
x

f2(x) = g(x)×
(

1−
(

f1(x)
g(x)

)2
)

subject to g(x) = 1 + 9

(∑N
i=2 xi

N − 1

)0.25

,

xi ∈ [0, 1], i = 1, . . . , N.

In the above problems, N = 10, and both the true Pareto frontiers are
formed with g(x) = 1. Under the following parameters, we simulate 10 times
with random initial population, and show the results in Fig. 4 and Fig. 5.

# generation : 100 (ZDT4), 120 (ZDT6), population size : 100
crossover rate : 1.0, mutation rate : 0.05
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The problem (ZDT4) is used the test for the ability to deal with multimodal-
ity, because of containing many local Pareto frontiers. The problem (ZDT6) has
the feature that the Pareto optimal solutions are non-uniformly distributed on
the true Pareto frontier. As is seen from the computational results of the fig-
ures, the proposed method gives the results that the obtained solutions are more
widely distributed and closer to the real Pareto frontiers, comparing the results
by two conventional NSGAII and SPEA2.

4 Concluding Remarks

In many practical engineering problems, we have black-box objective functions
whose forms are not explicitly known in terms of design variables. The val-
ues of objective functions for each design variable can be given by sampled
real/computational experiments, for example, structural analysis, fluid mechan-
ical analysis, thermodynamic analysis, and so on. Usually, these analyses are
considerably expensive, and take too much computation time. Also, we do not
know when to stop the computation in advance, and the computation is termi-
nated relatively early by the given computation time and cost limitation. Under
this circumstance, it is an important issue to generate well-approximated solu-
tion with less function evaluations (= the size of population × the number of
generations) as possible. From this point of view and the experimental results,
it can be concluded that the proposed method using GDEA has the desirable
performance.
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Abstract. This paper is the first to propose a quantum-inspired genetic algo-
rithm (QGA) for permutation flow shop scheduling problem to minimize the 
maximum completion time (makespan). In the QGA, Q-bit based representation 
is employed for exploration in discrete 0-1 hyperspace by using updating opera-
tor of quantum gate as well as genetic operators of Q-bit. Meanwhile, the Q-bit 
representation is converted to random key representation, which is then trans-
ferred to job permutation for objective evaluation. Simulation results and com-
parisons based on benchmarks demonstrate the effectiveness of the QGA, 
whose searching quality is much better than that of the famous NEH heuristic. 

1   Introduction 

Quantum computing is a research area that includes concepts like quantum mechani-
cal computers and quantum algorithms. So far, many efforts on quantum computer 
have progressed actively due to its superiority to classical computer on various spe-
cialized problems. There are well-known quantum algorithms such as Grover’s data-
base search algorithm [1] and Shor’s quantum factoring algorithm [2]. During the past 
two decades, evolutionary algorithms have gained much attention and wide applica-
tions, which are essentially stochastic search methods based on the principles of natu-
ral biological evolution [3]. Since later 1990s, research on merging evolutionary com-
puting and quantum computing has been started and gained attention both in physics, 
mathematics and computer science fields. One of the important topics concentrates on 
quantum-inspired evolutionary computing characterized by certain principles of quan-
tum mechanisms for a classic computer [4,5]. 

Recently, some quantum-inspired genetic algorithms (QGAs) have been proposed 
for some combinatorial optimization problems, such as traveling salesman problem 
[4] and knapsack problem [5-6]. However, to the best of our knowledge, there is no 
published research work on QGA for scheduling problems. So, this paper proposes a 
QGA for flow shop scheduling problems. In the QGA, Q-bit based representation is 
employed for exploration in discrete 0-1 hyperspace by using updating operator of 
quantum gate as well as genetic operators of Q-bit. Meanwhile, the Q-bit representa-
tion is converted to random key representation, which is then transferred to job per-
mutation for objective evaluation. Simulation results and comparisons based on 
benchmarks demonstrate the effectiveness of the QGA, whose searching quality is 
much better than that of the famous NEH heuristic. 
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2   Flow Shop Scheduling 

Flow shop scheduling is a typical combinatorial optimization problem that has been 
proved to be strongly NP-complete [7]. Due to its strong engineering background, 
flow shop scheduling problem has gained much attention and wide research in both 
Computer Science and Operation Research fields. 
  The permutation flow shop scheduling with J  jobs and M  machines is commonly 
defined as follows. Each of J  jobs is to be sequentially processed on machine 1, …, 
M . The processing time jip ,  of job i  on machine j  is given (usually the setup time 

is included). At any time, each machine can process at most one job and each job can 
be processed on at most one machine. The sequence in which the jobs are to be proc-
essed is the same for each machine. The objective is to find a permutation of jobs to 
minimize the maximum completion time, i.e. makespan maxC  [7-13]. Due to its sig-

nificance in both theory and applications, it is always an important and valuable study 
to develop effective scheduling approaches. 
  Denote jic ,  as the complete time of job i  on machine j , and let 

),,,( 21 Jσσσπ =  be any a processing sequence of all jobs. Then the mathematical 

formulation of the permutation flow shop problem to minimize makespan can be 
described as follows: 
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  The optimal solution *π  should satisfies the following criterion: 

min})(arg{* max →= ππ C  (2) 

So far, many approaches have been proposed for flow shop scheduling. However, 
exact techniques are applicable only to small-sized problems in practice, and the 
qualities of constrictive heuristics [8] are often not satisfactory. So, intelligent 
methods have gained wide research, such as simulated annealing [9], genetic algo-
rithm [10], evolutionary programming [11], tabu search [12] and hybrid heuristics 
[13], etc. Recently, Han and Kim [5-6] proposed a quantum-inspired genetic algo-
rithm (QGA) for knapsack problem and achieved good results. However, solution of 
flow shop scheduling should be a permutation of all jobs, while in knapsack prob-
lem solution is a 0-1 matrix. That is to say, the QGA cannot directly apply to sched-
uling problems. Thus, in this paper, we propose a QGA for flow shop scheduling 
problems. 
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3   Quantum-Inspired GA for Flow Shop Scheduling 

3.1   Representation 

In QGA for a minimization problem, a Q-bit chromosome representation is adopted 
based on the concept and principles of quantum computing [5-6]. The characteristic of 
the representation is that any linear superposition of solutions can be represented. The 
smallest unit of information stored in two-state quantum computer is called a Q-bit, 
which may be in the “1” state, or in the “0” state, or in any superposition of the two. 
The state of a Q-bit can be represented as follows: 

+=Ψ 10 βα  (3) 

where α  and β  are complex numbers that specify the probability amplitudes of the 

corresponding states. 

Thus, 
2α  and 

2β  denote the probabilities that the Q-bit will be found in the “0” 

state and “1” state respectively. Normalization of the state to the unity guarantees 

1
22 =+ βα . 

A Q-bit individual as a string of m  Q-bits is defined as follows: 

m
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where 1
22 =+ ii βα , .,...,2,1 mi =  

For example, for a three-Q-bit with three pairs of amplitudes 
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. This means that the probabilities to represent the states 

000 , 001 , 010 , 011 , 100 , 101 , 110  and 111  are 1/16, 3/16, 1/16, 

3/16, 1/16, 3/16, 1/16 and 3/16, respectively. 
  By consequence, the above three-Q-bit system contains the information of eight 

states. Evolutionary computing with Q-bit representation has a better characteristic of 
population diversity than other representation, since it can represent linear superposi-
tion of state's probabilities. 

3.2   Genetic Operators 

As for the genetic operators in QGA, following selection, crossover and mutation 
operators are used in this paper. 
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Rank-based selection: all individuals of the population are firstly ordered from the 
best to the worst, then the top 5/N  individuals are copied and the bottom 5/N  
individuals are discarded to maintain the size of population, N . In such a way, good 
individuals also have more chance to be reserved or to perform evolution. 

One point crossover: one position is randomly determined (e.g. position i ), and then 
the Q-bits of the parents before position i  are reserved while the Q-bits after position 
i  are exchanged. 

Mutation: one position is randomly determined (e.g. position i ), and then the corre-
sponding iα  and iβ  are exchanged. 

To avoid premature convergence, a catastrophe operation is used in QGA. In this 
paper, if the best solution does not change in certain consecutive generations, we 
regard it is trapped in local optima, then the best solution is reserved and the others 
will be replaced by solutions randomly generated. 

3.3   Rotation Operator 

A rotation gate )(θU  is employed in QGA to update a Q-bit individual as a variation 

operator. ),( ii βα  of the i -th Q-bit is updated as follows: 
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where iθ  is rotation angle. iiii s θβαθ Δ= ),( , ),( iis βα  is the sign of iθ  that deter-

mines the direction, iθΔ  is the magnitude of rotation angle whose lookup table is 

shown in Table 1. In the Table, ib  and ir  are the i -th bits of the best solution b  and 

the binary solution r  respectively. 

Table 1. Look up table of rotation angle 

),( iis βα  
ir  ib )()( br ff <  iθΔ  

0>iiβα 0<ii βα 0=iα  0=iβ  

0 0 false 0 0 0 0 0 
0 0 true 0 0 0 0 0 
0 1 false 0 0 0 0 0 
0 1 true π05.0  -1 +1 1±  0 
1 0 false π01.0  -1 +1 1±  0 
1 0 true π025.0 +1 -1 0 1±  
1 1 false π005.0 +1 -1 0 1±  
1 1 true π025.0 +1 -1 0 1±  
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3.4   Evaluation 

In flow shop scheduling, the problem solution is a permutation of all jobs. So, it 
should convert Q-bit representation to permutation for evaluation. When evaluate the 
solution, a binary string r  with length m  is firstly constructed according to the prob-
ability amplitudes of individual p  with Q-bit representation. In particular, for 

mi ,...,2,1= , firstly generate a random number η  between [0, 1], if iα  of individual 

p  satisfies ηα >2
i , then set ir  as 1, otherwise set it as 0. 

  Then the binary representation is viewed as random key representation [14]. Fi-
nally, job permutation is constructed based on random key. 

  For example, consider a 3-job, 3-machine problem, let 3 Q-bits be used to repre-
sent a job. Suppose a binary representation is [0 1 1| 1 0 1| 1 0 1] that is converted 
from Q-bit representation, then the random key representation is [3 5 5]. If two ran-
dom key values are different, we let smaller random key denote the job with smaller 
number; otherwise, we let the one first appears denote the job with smaller number. 
So, the above random key representation is corresponding to job permutation [1 2 3]. 
Obviously, if enough Q-bits are used to represent a job, any job permutation would be 
constructed with the above strategy from binary representation based space. 

3.5   Procedure of QGA 

The procedure of quantum-inspired genetic algorithm for flow shop scheduling is 
described as follows: 

Step 1: randomly generate an initial population },,{)( 1
t
N

t
Q pptP = , where t

jp  

denotes the j -th individual in the t -th generation with the Q-bit representation 

=
t
m
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β
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1 . 

Step 2: evaluate each solution of )(tPQ  with the method described in Section 3.4, and 

then record the best one denoted by b . 
Step 3: if stopping condition is satisfied, then output the best result; otherwise go on 
following steps. 
Step 4: perform selection and quantum crossover, mutation for )(tPQ  to generate 

)(' tP Q . 

Step 5: if catastrophe condition is satisfied, perform catastrophe for )(' tP Q  to gener-

ate )1( +tPQ  and go to Step 7; otherwise go to Step 6. 

Step 6: applying rotation gate )(θU  to update )(' tP Q  to generate )1( +tPQ . 

Step 7: evaluate every individual of )1( +tPQ , and update the best solution b  if 

possible. Then let 1+= tt  and go back to step 3. 
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4   Simulations and Comparisons 

In this paper, 8 problems named car1 through car8 by Carlier [15] are selected as 
benchmarks for simulation test. We set population size as 40, maximum generation 
(stopping condition of QGA) as MJ × , the length of each chromosome as J×10  
(i.e., every 10 Q-bits correspond to a job), crossover probability as 1, mutation prob-
ability as 0.05, catastrophe happens in QGA if the best solution does not change in 
consecutive 10/MJ ×  generations. 
  We run the QGA 20 times for every problem, and the statistical results are summa-
rized in Table 2, where BRE, ARE and WRE denote the best, average and worst rela-
tive errors with C* (optimal makespan or lower bound) respectively. 

Table 2. The statistical results of testing algorithms 

NEH QGA 
Problem J, M C* 

RE BRE ARE 
Car1 11,5 7038 0 0 0 
Car2 13,4 7166 2.93 0 1.90 
Car3 12,5 7312 1.19 1.19 1.65 
Car4 14,4 8003 0 0 0.06 
Car5 10,6 7720 1.49 0 0.11 
Car6 8,9 8505 3.15 0 0.19 
Car7 7,7 6590 0 0 0 
Car8 8,8 8366 2.37 0 0.03 

From the simulation results, it can be seen that the results obtained by QGA are 
much better than that of NEH heuristic except problem Car3. Secondly, the BRE 
values resulted by QGA are all 0 except Car3, which means QGA is able to obtain 
good solutions in global sense. Thirdly, the BRE and ARE values resulted by QGA 
are very close, which means QGA has good robustness and consistence on initial 
conditions. So, QGA is a novel and viable approach for flow shop scheduling. 

5   Conclusion 

To the best of our knowledge, this paper is the first to propose a genetic algorithm 
inspired by quantum computing for flow shop scheduling. Simulation results and 
comparisons based on benchmarks demonstrate the effectiveness of the QGA. The 
future work is to develop more effective hybrid QGA for flow shop scheduling, and 
study QGA for job shop scheduling problems as well. 

Acknowledgements 

This research is partially supported by National Science Foundation of China 
(60204008, 60374060) and 973 Program (2002CB312200). 



 A Quantum-Inspired Genetic Algorithm for Scheduling Problems 423 

 

References 

1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings 
of the 28th Annual ACM Symposium on the Theory of Computing, Pennsylvania, (1996) 
212-221 

2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 
Proceedings of the 35th Annual Symposium on the Foundation of Computer Sciences. Los 
Alamitos, (1994) 20-22 

3. Wang, L.: Intelligent Optimization with Applications. Tsinghua University & Springer 
Press, Beijing, (2001) 

4. Narayanan, A., Moore, M.: Quantum inspired genetic algorithm. In: IEEE International 
Conference on Evolutionary Computation, Piscataway, (1996) 61-66 

5. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinato-
rial optimization. IEEE Trans. Evolutionary Computation, 6 (2002) 580-593 

6. Han, K.H., Kim, J.H.: A Quantum-inspired evolutionary algorithms with a new termination 
criterion, He gate, and two-phase scheme. IEEE Trans. Evol. Comput., 8 (2004) 156-169 

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-
Completeness. Freeman, San Francisco, (1979) 

8. Nawaz, M., Enscore, E.Jr., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem. Omega, 11 (1983) 91-95 

9. Ogbu, F.A., Smith, D.K.: Simulated annealing for the permutation flowshop problem. 
Omega, 19 (1990) 64-67 

10. Wang, L., Zhang, L., Zheng, D.Z.: A class of order-based genetic algorithm for flow shop 
scheduling. Int. J. Advanced Manufacture Technology, 22 (2003) 828-835 

11. Wang, L., Zheng, D.Z.: A modified evolutionary programming for flow shop scheduling. 
Int. J. Advanced Manufacturing Technology, 22 (2003) 522-527 

12. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop 
problem. European J. Operational Research, 91 (1996) 160-175 

13. Wang, L., Zheng, D.Z.: An effective hybrid heuristic for flow shop scheduling. Int. J. Ad-
vanced Manufacture Technology, 21 (2003) 38-44 

14. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA 
Journal on Computing, 6 (1994) 154-160 

15. Carlier, J.: Ordonnancements a contraintes disjonctives. R.A.I.R.O. Recherche opera-
tionelle/ Operations Research, 12 (1978) 333-351 



Consensus Control for Networks of Dynamic
Agents via Active Switching Topology

Guangming Xie and Long Wang

Center for Systems & Control,
LTCS and Department of Mechanics and Engineering Science,

Peking University, Beijing, 100871, China
xiegming@mech.pku.edu.cn

Abstract. This paper investigates the average-consensus problem for
networks of dynamic agents. A consensus protocol based on active switch-
ing topology for solving the average-consensus problem of the network is
proposed. Within such a topology, a finite set of candidate unconnected
graphs is used and we change the topology actively according to the state
of the network. The advantage of such mechanism is that it decreases the
communication complexity/cost dramatically. The simulation results are
presented that are consistent with our theoretical results.

1 Introduction

In recent years, decentralized control of communicating-agent systems has
emerged as a challenging new research area. It has attracted multi-disciplinary
researchers in a widely range including physics, biophysics, neurobiology, systems
biology, apply mathematics, mechanics, computer science and control theory.
The applications of multi-agent systems are diverse, ranging from cooperative
control of unmanned air vehicles, formation control of mobile robots, control of
communication networks, design of sensor-network, to flocking of social insects,
swarm-based computing, etc. A common characteristics of the relevant analyti-
cal techniques is that they are deeply connected with decentralized, or networked
control theory.

Agreement and consensus protocol design is one of the important problems
encountered in decentralized control of communicating-agent systems. It has
been paid attention for a long time by computer scientists, particularly in the
field of automata theory and distributed computation [1]. Agreement upon cer-
tain quantities of interest is required in many applications such as multivehicle
systems, multirobot systems, groups of agents and so on.

In the past decade, quite a tremendous amount of interesting results have
been addressed for agreement and consensus problems in different formulations
due to different type of agent dynamics and different type of tasks of interest.
In [2], the problem of cooperation among a collection of vehicles performing a
shared task using intervehicle communication to coordinate their actions was
considered. The agents in the group were with linear dynamics. Tools from al-
gebraic graph theory were used to prove the formation stability. In [3], a dy-
namic graph structure was provided as a convenient framework for modelling
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distributed dynamic systems where the topology of the interaction among its
elements evolves in time. Some promising directions were highlighted as well.

Followed the pioneering work in [4], there are many researchers have worked
in analysis of swarms [5-9], [13-24]. In [5], the stability analysis for swarms
with continuous-time model in n-dimensional space was addressed. Following
this direction, stability analysis of social foraging swarms that move in an n-
dimensional space according to an attractant/repellent or a nutrient profile was
addressed in [6]. The corresponding results in the case of noisy environment was
given in [7].

Different from the above disciplinary, in [8] and [9], a model of coordinated
dynamical swarms with physical size and asynchronous communication was in-
troduced and analysis of stability properties of such swarms were presented with
a fixed communication topology. A potential application of these theoretical re-
sults is in the field of the leader-follower formation control of multi-robot systems
[10-12].

In [13], a simple discrete-time model of finite autonomous agents all moving
in the plane with same speed but with different heading was proposed. Moreover,
the concept of Neighbors of agents was introduced. Some simulation results
to demonstrate the nearest neighbor rule were obtained. Based on this model,
theoretical explanations were first given in [14] for the simulation results in [13].
Some sufficient conditions for coordination of the system of agents in the point of
view of statistical mechanics. Another qualitative analysis for this model under
certain simplifying assumption was given in [15].

In [16], a systematical framework of consensus problem in networks of dy-
namic agents with fixed/switching topology and communication time-delays was
addressed. Under the assumption that the dynamic of the agent is a simple scalar
continuous-time integrator ẋ = u, three consensus problems were discussed.
They are directed networks with fixed topology, directed networks with switch-
ing topology and undirected networks with communication time-delays and fixed
topology. Moreover, a disagreement function was introduced for disagreement dy-
namics of a directed network with switching topology. The undirected networks
case was discussed by the same authors in [17]. Some other interesting results
can be seen in [18-24] and the references therein.

Meanwhile, there are many researchers in physics, biophysics who consider
a closely related to consensus problems on graphs, named as synchronization
of coupled oscillators where a consensus is reached regarding the frequency of
oscillation of all agents [25-34].

In this paper, we follow the work in [16-17] and consider consensus prob-
lem for a more general class of networks. A novel consensus control protocol
is proposed which is base on active switching topology. An important aspect of
performing coordinated tasks in a distributed fashion in multiagent systems is to
keep communication and interagent sensing costs limited. The main advantage
of the control protocol with active switching topology is that it decreases the
communication complexity/cost dramatically, since it does not ask the graph is
connected.
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An outline of this paper is as follows. In Section 2, we recall the consensus
problems on graphs. In Section 3, the control protocol is given. The convergence
analysis and performance discussion are presented in Section 4. The simulation
results are presented in Section 5. Finally, we conclude the paper in Section 6.

2 Consensus Problems on Graph

In this section, we introduce networks of dynamic agents and consensus prob-
lems.

2.1 Algebraic Graph Theory

Let G = (V , E ,A) be a undirected graph with the set of vertices V = {v1, v2, · · ·
, vM} , the set of edges E ⊆ V × V , and a weighted adjacency matrix A = [aij ]
with nonnegative adjacency elements aij . The node indexes of G belong to a
finite index set I = {1, 2, · · · ,M}. An edge of G is denoted by eij = (vi, vj).
The adjacency elements associated with the edges are positive, i.e., eij ∈ E ⇐⇒
aij > 0. Moreover, we assume aii = 0 for all i ∈ I. Since the graph considered
is undirected, it means once eij is an edge of G, eji is an edge of G as well. As a
result, the adjacency matrix A is a symmetric nonnegative matrix.

The set of neighbors of node vi is denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}.
A cluster is any subset J ⊆ V of the nodes of the graph. The set of neighbors of
a cluster NJ is defined by

NJ =
⋃

vi∈J

Ni. (1)

The degree of node vi is the number of its neighbors |Ni| and is denoted by
deg(vi). The degree matrix is an M ×M matrix define as Δ = [Δij ] where

Δij =
{

deg(vi), i = j;
0, i �= j.

The Laplacian of graph G is defined by

L = Δ−A (2)

An important fact of L is that all the row sums of L are zero and thus 1M =
[1, 1, · · · , 1]T ∈ R

M is an eigenvector of L associated with the eigenvalue λ = 0.
A path between each distinct vertices vi and vj is meant a sequence of dis-

tinct edges of G of the form (vi, vk1), (vk1 , vk2), · · · , (vkl
, vj). A graph is called

connected if there exist a path between any two distinct vertices of the graph.

Lemma 1. [35] The graph G is connected if and only if rank(L) = M − 1.
Moveover, for a connected graph, there is only one zero eigenvalue of L, all the
other ones are positive and real.
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2.2 Consensus Problem on Network

Given a graph G, let xi ∈ R denote the state or value of node vi. We refer to
Gx = (G, x) with x = (x1,2 , · · · , xM )T as a network with value x ∈ R

M and
topology G. Suppose each node of a graph is a dynamic agent with dynamics

ẋi = ui (3)

where xi is aforementioned state of node vi and ui is the control input that will
be used for consensus problem.

Let χ : R
M → R be a function of M variables x1, x2, · · · , xM and x0 = x(0),

denote the initial state of the system. The χ-consensus problem in a dynamic
graph is distributed way to calcualted χ(x0) by applying inputs ui that only
depend on the states of node vi and its neighbors. We say a state feedback

ui = ki(xj1, xj2, · · · , xjli) (4)

is a protocol with topology G if the cluster Ji = {vj1, vj2, · · · , vjli , } of nodes
with indexes j1, j2, · · · , jli ∈ I satisfies the property Ji ⊆ {vi}

⋃
Ni. In addi-

tion, if |Ji| < M for all i ∈ I, (4) is called a distributed protocol.In a dynamic
network with switching topology, the graph G is a discrete-state of the system
that changes in time.

We say protocol (4) asymptotically solves the χ-consensus problem if and only
if there exists an asymptotically stable equilibrium x∗ of the network satisfying
x∗

i = χ(x0) for all i ∈ I, and meanwhile, the speed of each agent satisfying
limt→∞ vi = 0, i ∈ I. Whenever the nodes of a network are all in consensus, the
common value of all nodes is called the group decision value.

In this paper, we are interested in distributed solutions of the special case
with χ(x) = Ave(x) = 1/M(

∑M
i=1 xi) which is called average-consensus. This is

a very representative case with broad applications in distributed decision-making
for multi-agent system.

3 Control Protocol and Network Dynamics

In this section, we present the control protocol that solve the aforementioned
average-consensus problem. We will use a linear protocol with switching topology
and no communication time-delays:

ui =
∑
j∈Ni

aij(xj − xi) (5)

where the set of neighbors Ni of node vi is variable in networks with switching
topology.

By using the above protocol (5), the agent dynamic is given as follows:

ẋi =
∑

j∈Ni
aij(xj − xi) (6)
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Then, the network dynamic is summarized as follows:

ẋ(t) = −LG(t)x(t) (7)

where LG(t) the aforementioned Laplacian associate with the graph G(t) at time
instant t.

The dynamics of the network is typically hybrid with the continuous state
x ∈ R

M and the discrete state G. As a result, the network is a typically switched
system.

In what follows, we introduce the active switching topology in details.
We first develop some results for algebraic graph theory. Given a graph G =

(V , E ,A), a partition of E , is a set of finite subsets of E , {E1, · · ·, EN} which
satisfies that

i)
⋃

i=1,···,N
Ei = E ;

ii) Ei ∩ Ej = ∅, ∀ i �= j.

Based on the partition of E , an induced partition of the graph G is obtained as

{Gi : Gi = (V , Ei,Ai), i = 1, · · · , N.}

It is easy to see that ∑
i=1,···,N

Ai = A. (8)

It follows that ∑
i=1,···,N

Li = L. (9)

where Li is the Laplacian of Gi, i = 1, · · · , N .
Then, the active switching topology is to design a state-dependent switching

signal
G(t) = G(x(t)) (10)

such that it can solve the average-consensus problem for the network (7).

4 Network with Active Switching Topology

In this section, we investigate the convergence of the control protocol with active
switching topology.

Since 1M is the common eigenvector of the matrices L1, · · · , LN , it allows
the decomposition of x in the form

x(t) = Ave(x0)1M + δ(t).

Therefore, the induced disagreement switched system takes the form

δ̇(t) = −LG(t)δ(t). (11)
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Lemma 2. Given a connected graph G = (V , E ,A), assume {G1, · · ·,GN} is a
partition of G, then the disagreement system (11) is globally asymptotically stable
under the following active switching topology.

G(t) = arg min
i=1,···,N

−δT (t)Liδ(t) (12)

Furthermore, the following smooth positive definite and proper function

V (δ) =
1
2
δT δ (13)

is a valid Lyapunov function for the disagreement dynamics given by (11).

Proof. Since the graph G is connected, by Lemma 1, we have

−δT (t)Lδ(t) = −δT (t)(
∑

i=1,···,N
Li)δ(t) < 0

It follows that
min

i=1,···,N
−δT (t)Liδ(t) < 0.

Consider the derivative of V , we have

V̇ (δ(t)) = −δT (t)LG(t)δ(t) = min
i=1,···,N

−δT (t)Liδ(t) < 0.

This shows that V is a Lyapunov function which guarantee the asymptotically
stability of (11).

This completes the proof.

Based on Lemma 2, we establish the following theorem for convergence of
the consensus protocol via active switching topology.

Theorem 1. Given a connected graph G = (V , E ,A), assume {G1, · · ·,GN} is a
partition of G, then the network (7) is globally asymptotically convergent under
the following active switching topology.

G(t) = arg min
i=1,···,N

−xT (t)Lix(t) (14)

Furthermore,
lim

t→∞
x(t) = Ave(x0). (15)

Proof. Noticing for any i,

−xT (t)Lix(t) ≡ −δT (t)Liδ(t).

It follows that the switching signal generated by (12) is the same as the one
generated by (14). By Lemma 2, we have

lim
t→∞

δ(t) = 0.

Since x = Ave(x0) + δ, thus, we get (15).
This completes the proof.
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5 Simulations

In this section, we present a numerical example to verify the theoretic result in
the previous section. Consider a connected graph G with 10 nodes shown in Fig.1
and the adjacency matrices are limited to 0, 1 matrices. A partition of G is given
as {G1,G2,G3} in Fig.2. Then we adopt the control protocol via active switching
topology given by (14) to solve the average-consensus problem. Fig. 3 and Fig. 4

(1)

(2)

(3)

Fig. 1. Undirected connected graph G Fig. 2. A partition of graph G: (1) G1, (2)
G2,(3) G3
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Fig. 3. State trajectories of the network
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Fig. 4. The active switching signal for the network

show the simulation results for the consensus protocol (5) for a network with
graphs {G1,G2,G3} with random set of initial conditions.

6 Conclusion

In this paper, convergence analysis of a consensus protocol for networks of dy-
namic agents with active switching topology was presented. The future work
includes extending the obtained results to more general class of networks of
agents with more general dynamics.
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Abstract. This paper is mainly about methodology in designing quantum algo-
rithm. Based on study of Grover’s algorithm, we argue that it is a short cut to 
design and interpret quantum algorithms from the viewpoint of Householder 
transformation directly. We give an example for this claim, which extends 
Grover’s quantum search algorithm to some structured database. In this exam-
ple, we show how to exploit some special structure information of problem, 
which restricts the search in some subspace. Based on an instantiation of this 
framework, we show that it does can utilize the information to the full extent. 
This paper gives the details that produce the algorithm framework. The idea, 
which is simple and intelligible, is universal to some extent, and therefore can 
be applied to other similar situations. 

1   Introduction 

Computation occurs everywhere, because a series of change can be regarded as com-
puting. And movement and change is universal and eternal. In the viewpoint of Pilip 
Ball and some other physicists, the universe is just a computer. Seth Llod has esti-
mated the number of computation that our universe had done since the big bang [9]. 

In a traditional computer, input states and output states are orthogonal. But in a 
quantum computer, states can be superposition states. Any unitary transformation is a 
valid quantum transformation, and vice versa. Indeed, it is a more or less strong re-
striction for algorithm design. In the end of computation, after some measurement, the 
quantum computer can give an answer. 

In the 1990’s, several milestones, such as Grover’s quantum search algorithm and 
Shor’s number factoring algorithm, were known to related societies and spur a flurry 
of activity. However little leap in quantum algorithm design can be seen after that 
period, though there are some improvements and achievements in many fields. Ana-
lyzing, assimilating, summarizing of previous works and accumulating experience are 
therefore becoming more important nowadays.  
                                                           
∗  Supported by the National Natural Science Foundation of China under Grant No. 60273080, 

60473003, and Natural Science foundation of Jilin Province grant number 20030107.  
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The topic, quantum search that we will discuss in this paper, plays an important 
role in quantum computation. Many experiments were done to verify these search 
algorithms. It is perhaps due to the crucial role of search in many fields, especially 
computer science. And there are some impressive achievements, the representative 
works among which were done by Grover and Ted Hogg. And Grover’s search algo-
rithm has influenced quantum computation deeply and widely. Grover not only 
brought forward the well-known unstructured algorithm [3], but also made many 
improvements to his algorithm later, e.g. [4][5]. And he also wrote an unusual paper 
that recalled the details of procedure when he designed his algorithm [6].  

Some people argued that Grover’s unstructured algorithm is not practical [11]. 
They argue that to be useful, a search algorithm has to use structure information. In 
fact, some search algorithms are designed for problems that have structure. For exam-
ple, one early work of Ted Hogg [7] has used one kind of general structure informa-
tion. That is, part of solution should not violate any constrain on solution. In this pa-
per, we will also show how we can exploit certain explicit structure to full extent in 
quantum search. And we can use the same thoughts to reconstruct Grover’s algorithm 
in another simpler viewpoint. 

This paper is written for the readers who have limited physics background. Be-
cause of limited space, no background knowledge is introduced here. However, read-
ers can find the necessary concepts and notations in many papers, such as [2]. 

The rest of this paper is organized as follows. Section 2 introduces Grover’s semi-
nal search algorithm. Section 3 gives a new search algorithm frame with some discus-
sions. We argue that Householder transformation is a useful tool for designing quan-
tum algorithms. Section 4 concludes. 

2   Grover’s Quantum Search Algorithm [3] 

Before introducing quantum search algorithm, we need recall the classical counter-
parts. There are many classical search algorithms, such as hill-climbing, depth-first 
search, A* search, local search, simulated annealing, etc. Then what is the nature of 
search problem? If there is no turnoff, even a blind man can get out labyrinth easily 
and no search technique is needed. Therefore, the nature of search problem is that we 
have to choose. Search is a process that finds the proper one when we face to many 
choices (possibilities). Searching is choosing. It is not only sound for Turing machine, 
but also fit for quantum Turing machine. “Selectivity” in quantum search algorithms 
is to enhance or weaken amplitudes of basis states selectively. 

A searching technique gives people certain principle and strategy when they face to 
choices. If a problem doesn’t offer any structure information, or there is no constraint 
on problem space, then there exists no effective search skill. It is just like the case 
when we face to a crossing. If no information can give some hint about the next step, 
we have to choose one path randomly. In other words, we choose every possible path 
with identical probability, the sum of which is 1. In this case, even if we comply with 
some strategy, the possibility of success is the same as the case we select randomly, in 
average cases. 
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What Grover set out to solve is just this kind of problem. That is, find one element 
x satisfying some condition from a given set. And no structure information is  
available. 

Here is the abstracted problem it solves: Let a system have 2nN =  states that are 
labeled S1, S2, …SN. These 2n states are represented as n bit strings [3]. C(St)=1 if St is 
a solution, and C(St)=0 if St is not a solution. The problem is to identify one solution. 
Here the number of solutions, M, is assumed known. 

Below is the description of Grover’s algorithm: 

(i) Initialization:  
1 1 1

, , ,

TN

N N N

, i.e. there is the same amplitude to be in each 

of N states. This state can be obtained in O(logN) steps [3]. 
(ii) Perform Grover iteration G (G=DUf=WRWUf): Repeat (a) (b) O( N

M
) times (exact 

estimation of the number of repetition is important [1]):  
(a) Marking the solution set using selective rotation transformation Uf :  

Let S be one basis state:  
In case C(S)=1, rotate the phase by π  radians;  
In case C(S)=0, leave the system unaltered.  

(b) Apply the diffusion transform D which is defined by the matrix D as follows: 

2
ijD

N
=  if  2

& 1iii j D
N

≠ = − + .  

D can also represented as: WRW, where W is the Walsh-Hadamard transform ma-
trix, and R, the conditional phase shift matrix, is defined as follows:  

Rij=0 if i ≠ j;  Rii=1if i=0; Rii= -1 if i ≠ 0. This matrix rotate the phases of all basis 
states by π  radians except that of the state |00…0>.  
(iii) Read (measure) the result.  
Assume the output is Sv. If C(Sv)=1, then stop, else restart the algorithm.  

In this algorithm, step (i) is often adopted in other algorithms. It can be done by 
perform W on |00…0>. Step (ii) (a) marks the solution set with the help of an auxil-
iary qubit or oracle qubit b. Here, Uf : , , ( )x b x b C x→ ⊕ , where b = 1

2
( 0 1 ). It can 

be regarded as a derivation of Deutsch’s first algorithm. Step (ii) (b) is the key point 
of Grover’s algorithm, which is also the focus of our study. From section 3.2, the 
reader can find a similar algorithm and know how to reconstruct the algorithm in a 
simple way. Measurement in step (iii) is a step needed by all quantum algorithms. We 
make a slight change to it: when we haven’t obtained a solution, the algorithm will be 
restarted. 

From Grover’s algorithm, we can see that, the core feature of quantum search algo-
rithms is to converge amplitudes to solutions by reducing or removing the amplitudes 
of other basis states. And interference plays a key role in this process, which has no 
counterpart in classical search algorithms.  

Notice of difference between quantum search algorithms and classical counterparts 
will help us to grasp the gist. An analogy can be used to illustrate the difference.  
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Using searching algorithms to solve problem is just like finding the target points in a 
huge drawing. The traditional method acts as a man who has myopia. To see the 
points clearly, he has to close with the picture. As a consequence, every time he can 
only see one (or several) point. Therefore, to see the target points, he has to depend on 
structure information to select the positions of observation. On the contrary, a quan-
tum algorithm acts just as a man who looks out over the picture. He can see the whole 
drawing because he stands far away from the picture. But what he can see is a blurred 
picture. Now assume there is a pixy near the drawing, and the man can let the pixy do 
something for him by some orders written in quantum mechanics language. To see the 
targets clearly, he has to let the pixy know how to mark the goals with distinct “color” 
and thicken it, while in the same time lighten the colors of other points. Thus the 
target points become more and more clear. Here the thickness of “color” is an analogy 
of the norm of amplitude. 

3   An Improvement: Searching in a Specific Subspace 

If we know or can infer something about solutions, such as the region solutions falls 
into, or any solution can be divided by some integer, etc., we can use this kind of 
information to speed search. The point is that the problem space can be reduced by 
the information. And the search can be narrowed to a specific subspace.   

For example,  2 2

2 33

16 (1)

2 3 5 (2)

x y

x y x x y

+ =

⋅ + + − >

   ( x and y are all nonnegative integers) 

From (1), we can see that: 0 4x≤ ≤  and 0 4y≤ ≤ . 

Another example comes from some problem that requires finding positive integer 
solutions of indeterminate equations. We can also infer something about the solutions 
easily. 

Below, we will show how to design a quantum search algorithm that uses such 
kind of information, from the viewpoint of Householder transformation. 

3.1   Householder Transformation 

Let w=( 1w , 2w , nw )T ∈Rn,  ||w||2=1. The Householder transformation determined 

by vector w is matrix H=I-2wwT  where I is the identity matrix. 

We have: if Hx=y, then 
2|| ||

y x
w

y x

−=
−

 (Proof is omitted here). 

Thus, if -Hx=y, we have:
2

( )

|| ( ) ||

y x
w

y x

− −=
− −

     (formula *) 

Householder transformation can be used to realize any specific unitary transforma-
tion when the difference of two vectors is ascertained.  

In next section, we will give an algorithm, which can combine the thoughts of Mi-
chel Boyer et al. [1] easily in the case we don’t know the number of solutions.  
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3.2   The Algorithm 

Assume the problem space has such a structure that we can infer a subspace of size K, 
which holds all the p solutions. Below is the brief description of the algorithm. 

(1) Initialization: assign amplitudes evenly to the subspace that holds all solutions. 
Assume w is the initial state.  

(2) Iterate following K
O

p

 times:  

(a) Marking the solution set using selective rotation transformation Uf : 
Let S be any basis state:  

In case C(S)=1, rotate the phase by π  radians;  
In case C(S)=0, leave the phase unaltered.  

(b) Apply the transformation H, which is defined as follows:   
H=2wwT-I  ( H can be further decomposed )  

(3) Read the result.  
Assume the output is Sv. If C(Sv)=1, then stop. Otherwise, restart the algorithm. 

3.3   The Thoughts That Generate the Algorithm  

Just as mentioned before, quantum algorithm acts as a man who looks far away from 
the picture. He can see the whole drawing without difficulty. However what he see is 
not clear. Can we let him go somewhat closer to the drawing? He perhaps cannot see 
the whole picture in this way. But if he knows in advance, by being told or probing, 
that there is no solution in some regions of the drawing, then he can possibly assure 
no solution will be out of sight when he goes closer to picture. The nature of our algo-
rithm is some techniques that avoid considering regions that have no solutions. 

Here are the details of the thoughts that produce our algorithm: 

(1) A basic problem in quantum algorithm design is how to exploit “phase” of ampli-
tude. It is clear that the phases of all targets (solutions) need not be different. How 
about other basis states? For these states, if there is some structure information that 
includes some distance metric, assigning different phase to them will probably speed 
search. However, in our problem, the structure information can only tell us a state is 
or is not a target. In other words, we lack some distance metric to tell us how “far” a 
state is from a target state. Therefore, it’s better to assign the same phase to all these 
basis states that are not targets. Hence, two kinds of phases are enough for our pur-
pose. And the simplest choice is to assign either “0” or “π ” radians to these phases. 
(2) Because the constraints are ascertained before search, the subspace that needs to 
be searched has an explicit structure that can be exploited.  

When we have to choose a branch at a road junction, we will choose a promising 
one that leads us to our goal. But if no information is available for us to make the 
decision, we will give every branch, which probably leads to a goal, an equal chance 
(equal amplitude), and in the same time avoid exploring the wrong ways which are 
known invalid. Thus, the first step of the algorithm is to assign amplitudes to the sub-
space evenly, as shown in Fig. 1(a).  
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Fig. 1. (a). Initial state  

(3) Clearly, if the amplitudes of solutions are to be increased, we must mark the solu-
tions first. Otherwise the algorithm doesn’t know how to enhance the amplitudes of 
solutions selectively. The simplest way is using transformation Uf to overturn the 
phases of solutions, as shown in Fig. 1(b). It is similar to Deutsch’s first quantum 
algorithm and the same as Grover’s. The method of Tad Hogg [8] doesn’t fit to our 
problem. Why? We leave it to readers. 

 

Fig. 1. (b). Marking solutions 

(4) The initial amplitudes assigned to solutions are too small. So we need increase the 
amplitudes of solutions gradually, which possibly needs iterations. Inspired by 
Grover’s work, we turn the state ψ  to 'ψ , as shown in Fig. 1(c): 

 

Fig. 1. (c). Increase of amplitudes of solutions 

We leave this question to readers: can we do not invert the phases of solutions, 
whereas still expect the increase of their amplitudes with some transformation? 
(5) From Fig. 1(b) to Fig. 1(c), we can see the phase of the former state is inverted 
again. And the amplitudes of solutions are expected to increased, which means we 
cannot simply apply Uf  again this time. Therefore, we can assume a component, -I, in 
the transformation, and the remainder is X that is to be specified. Thus the transforma-
tion has the form: X-I. As well known, Householder transformation is a special case 
of it, and Householder transformation can be used to realize any specific rotation 
(unitary) transformation, where w reflects the difference caused by the rotation. So 
we can let X= 2 Tww .  In fact, from (formula *) we know the following is preferred:  

( )
1

'

0

N

x
x

a xφ ψ ψ
−

=

= − − =  be such a special vector that its components are zero eve-

rywhere except this kind of component ax when x is possibly a solution. The princi-

ple for assigning this kind of component is: since we don’t know beforehand whether 
x  is a solution or not, we have to set identical quantity to such components. It is 

reasonable and also implies optimality since any biased guess won’t benefit average-
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case time complexity. In fact, the thought can extend to other cases whenever we can 
ascertain the difference reflected by w, using the same principle.  

Now, let’s look at Grover’s original algorithm again. It is easy to see that 
Grover’s algorithm can also be designed in this way. But here w=W|00…0>. W is 
Walsh-Hadamard transform.1 It is readily apprehensible because when we have no 
idea about where the solutions are, we have to assign equal amplitude everywhere. 

We can use this thought to analyze Grover’s algorithm. 

( )2 2 .T Tww I wwψ ψ ψ− = −  And when 1 1 1
0 0 0 , , , ,

TN

w W
N N N

= =  

1

1 0

1 N N
T

i
i x

ww x
N

ψ ψ
−

= =
=  where 

i
ψ  is the ith component in ψ . Firstly, ampli-

tudes of solutions increase when Tw ψ  is positive. When 0Tw ψ = , the amplitudes 

stop enlarging and 
1

0
N

i
i

ψ
=

= . Assume in this case the amplitudes of M solutions is 

Mk and the amplitudes of (N-M) non-solutions is (N-M)l, we have (N-M)l Mk and 

(N-M)l2+Mk2 1. Thus, N M
k

NM

−= . Therefore, Mk2 N M

N

− . It means that there 

exists an integer r, which satisfies that the amplitudes of solutions reach the maximum 
when the algorithm iterates r times, the time making 0Tw ψ ≤ . And a solution can be 

observed with a probability of at least N M

N

− . Clearly, when M N, we can find a 

solution with a high probability if we iterate the algorithm r times. 
The last thing we should mention here is that our algorithm is adoptable only when 

the initial state is easy to prepare. 

3.4   Instantiation of the Algorithm Frame 

The algorithm that we’ve proposed is a general framework. Now we will give an 
example about how to fill the framework with additional information “any solution 
can be divided by t”.  

The algorithm:    (Let x  be the floor of x:  max{n|n ≤ x, integer n}) 

(i) Initialization:  
1

(1,0,0, 0,1,0,0, 0 ,1,0, )

1

t t

T

N

t
+

    

(ii) Iterate (a) and (b): (It is important to make sure the number of iterations, which 
will be discussed in complexity analysis) 

                                                           
1  In fact, in [10] Grover iteration is just rewritten as ( )2 ,I Oψ ψ −  where 0 ,Wψ = and O: 

( ) .Ox q x q f x⎯⎯→ ⊕  These authors also derived Grover’s algorithm by guessing the Ham-

iltonian that solves unstructured search problem and simulating the action of the Hamiltonian 
using a quantum circuit. 
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(a) Marking the solution set using selective rotation transformation Uf : 
Let S be one basis state:  

In case C(S)=1, rotate the phase by π  radians;  
In case C(S)=0, leave the phase unaltered.  

(b) Apply the transformation H which is defined as follows:   

         H=2wwT-I, where w=  1
(1,0,0, 0,1,0,0, 0,1,0, )

1

t t

T

N

t
+

 

(iii) Read the result.  
Assume the output is Sv. If C(Sv)=1, then stop. Otherwise, restart the algorithm. 

3.5   Complexity Analysis of the Algorithm in Sec. 3.4 

Now assume there is M solutions in N basis states. We can project them onto a plane 

spanned by two orthogonal vectors 
1

1
|

x X

k x
M ∈

= >  and 
0| ,

1
| |

1
t x x X

u x
N

M
t

∈

>= >
+ −

, 

as shown in Fig. 2. Here, X1={x|C(|x>)=1} and X0={x|C(|x>)=0}. 

 
Fig. 2. Geometric interpretation of the iterative procedure 

Initial state:  

0
| , [0, 1]

1
1

| | | | .

1 1 1
t x x N

N
M

tM
x k u

N N N

t t t

φ
∈ −

+ −
>= > = > + >

+ + +

 

It is easy to see that Uf reflects acted vector about | ,u > for it shifts the phase of 

| .k > Because 
0| ' | | (2 ) | ,T

fHU H ww Iψ φ ψ ψ>= >= >= − >  from [formula *] we have 

0 wφ = =
2

| | '

||| | ' ||

ψ ψ
ψ ψ

> + >
> + >

. Since |ψ > | 'ψ > are unitary vector. Therefore, quadrangle 

OACB is a rhombus and OC is its axis. As a consequence, transformation H reflects 
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acted vector about 
0|φ > . Hence, transformation fHU  rotates acted vector 2θ  radi-

ans. Here θ =  1sin
1

M
N
t

−

+
 . 

Assume the algorithm should iterate i times to reach the maximum of the ampli-
tudes of solutions, we have: (2 1) (2 1)sin (2 1)

2
i i i

π θ θ> + > + ≥ + tM

N t+
. Therefore, 

4
N t

i
tM

π +< .  

Although it also takes some price in initializing, the price is relative small in this 

case. It is easy to see that this algorithm is about t  times fast than Grover’s. In 

addition, when tM<<N, sinθ θ≈ . In this case, from 1

M
N

t
+  /

M
t

N
≈  we can also see 

that the algorithm has exploited related information, that is “ the solution can be di-
vided by t”, to the full extent, which is supported by a proposition. 
Proposition: when problem space can be reduced t times and no other information is 
exploited, any quantum algorithm can at most be t  times faster than Grover’s in the 
sense of number of queries. 

Proof: It is easy to prove.  

4   Conclusions 

This paper emphasize particularly on some simple thoughts and methods that generate 
a quantum algorithm. As have been pointed out by Michael A. Nielson and Isaac 
L.Chuang, quantum phenomenon is often out of reach of our intuition and common 
sense because our intuition root in classical physics world[10]. Hence, it is not easy to 
design quantum algorithms that cleverly use quantum dynamics effects, such as inter-
ference and entanglement. More works on the principles, skills and methods of algo-
rithm design are therefore needed for the people who are interested in the algorithm 
aspect but have no idea of it. 

In section 3 we’ve discussed how to exploit a kind of structure information to full 
extent. In fact, Grover has also discussed possibilities of integrating some structure 
information into his original algorithm [4]. He has obtained a series of algorithms 
from another viewpoint. The related work, though similar, is different, and cannot 
deduce our algorithm.  

As well known, Grover’s original algorithm is optimal. However, “The arguments 
used to prove this are very subtle and mathematical. What is lacking is a simple and 
convincing two line argument that shows why one would expect this to be the case” 
[4]. Our paper shows that it is natural to expect the optimality of Grover’s algorithm. 
And we claim that, for some kinds of problems, Householder transformation can be a 
useful tool in algorithm design. And sometimes we can design an algorithm directly 
from the connotation of it.  
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Abstract. In the dynamic and uncertain network environment, the trust is an 
important mechanism for security and reliability of multi-agent system. This 
paper proposes a trust model for multi-agent system using fuzzy sets 
(TMMASFS). The distinguishing feature of TMMASFS is that there is the self-
recommendation trust besides the direct trust and the recommendation trust. 
The self-recommendation trust is useful very much when the manager agent has 
neither the direct experience nor the recommendation experience about the con-
tractor agents. Then the trust dynamic modification theorem is introduced, 
which can not only valuate the trust but also monitor the executed process of 
the task. At last, the trust valuation algorithm is presented, and the result of the 
experiment shows TMMASFS is efficient and adapted to the dynamic and un-
certain network environment. 

1   Introduction 

In a multi-agent system, the trust is an important mechanism. Some trust models 
[1,2,3,4,5] have been presented, but they have common shortcomings: (1) only in-
clude the direct trust and the recommendation trust, which brings a problem that when 
the manager agent has no transcendental experience about the contractor agents, the 
manager agent can’t valuate the trust of the contractor agents;(2) some trust valuation 
methods don’t take the uncertain environment into account;(3) can’t monitor the exe-
cuted process of the task. 

This paper proposes a trust model for multi-agent system using fuzzy sets 
(TMMASFS). In order to overcome the shortcoming of the presented models in 
[1,2,3,4,5], There are three kinds of trusts in TMMASFS: the direct trust, the recom-
mendation trust and the self-recommendation trust. The membership function of trust 
is not given subjectively, but it is evaluated using the trust dynamic modification 
theorem, which can also monitor the executed process of the task. At last, the trust 
valuation algorithm and the experiments are introduced. 

                                                           
*  This work has been supported by the Science and Technology Foundation of China Univer-

sity of Mining and Technology under Grant No.E200412. 
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2   A Trust Model for Multi-agent System Using Fuzzy Sets 

This model is graphically shown in the Fig.1. 

 

Fig. 1. This shows a figure consisting of different types of trust entities and trusts. 

TMMASFS may be described as 4-tuple: 

>=< TRDTAAgM ,,, . (1) 

Where }{ mAgAgAg ,,1=  is a set of trust entities (the manager agent, the contr- 

actor agent and the recommendation agents). Let { }nxxX ,,1=  be the set of is-

sues in a task, and { }neeE ,,1=  be the domain of expectation values taken by 

X , thus, a task is a set of issue-value assignments noted as { }nn exexTA === ,,11
. 

}{ nddD ,,1=   is a fuzzy set of executed degrees of subtasks, therefore, it may be 

described as 

Dμ : ]1,0[→X . (2) 

The membership function Dμ  is triangle. Suppose e is the expected value of an is-

sue x, d1 and d2 are two maximal difference between the actual value( r ) of an issue x 
and e(d1 , d2 0, and d1 < d2). If 1der ≤− , it denotes the subtask is performed well; if 

21 derd ≤−< , it denotes the subtask is performed averagely; if 
2der >− , it de-

notes the subtask is performed badly.  

TR  is the total trust of the contractor agent, it may be described as 3-tuple: 

>=< srd TRTRTRTR ,, . (3) 

Where dTR , rTR  and 
sTR  are fuzzy sets of the direct trust, the recommendation 

trust and the self-recommendation trust of the contractor agents respectively. Their 
membership functions (namely, trust degrees) may be described as 

xTVμ : ]1,0[→D . (4) 

Manager agent 
Recommendation agent 

Contractor agent 

Direct trust Recommendation trust self-recommendation trust 
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xTV  is one of dTR , rTR  and 
sTR . Ramchurn[1] regarded 

xTVμ  as a trigonometric 

function, we think it is subjective, we will discuss 
xTVμ  in the section 3. 

Suppose rd ωω ,  and sω  are the weights of the direct trust, the recommenda-

tion trust and the self-recommendation trust respectively, they satisfy 
1=++ srd ωωω .  If 0=sω , TMMASFS become the model presented in the 

literature [1,2,3,4,5]. It is obvious that TMMASFS is a universal model, while the 
other models are the special cases of  TMMASFS. The total trust degree (noted as 

TVμ ) can be denotes as  

srd TVsTVrTVdTV μωμωμωμ ⋅+⋅+⋅= . (5) 

3   Trust Dynamic Modification  

Definition 1. it∀ ( it  is i’th subtask), suppose that ie  and ir  are the expectation 

value and actual value of it  respectively, if ii re ≠ , the trust degree after executing 

it  (noted as )(i
xTVμ ) will be modified by a quantity noted as 

ii

ii

i er

er

+
−

−= 1ε . It 

is obviously 10 ≤≤ iε . 

Definition 2(Trust modification principle). If 1der ii ≤− , 
xTVμ  will increase, and 

the smaller ii er −  is, the more 
xTVμ  increases; if 

21 derd ii ≤−< , 
xTVμ  will be 

unchanged; if 
2der ii >− , 

xTVμ  will decrease, and the smaller ii er −  is, the less 

xTVμ  decreases. 

Theorem 1 (Trust dynamic modification). 
it∀ , 

>−
+

⋅−−−

≤−<−
≤−−−⋅+−

=

2

21

1

)
1

1
()1()1(

)1(

))1(1()1(

)(

derii

derdi

derii

i

ii
i

TVTV

iiTV

iiTViTV

TV

xx

x

xx

x

ε
μμ

μ
μεμ

μ
. 

(6) 

Satisfies definition 2(Trust modification principle). 

Prove. When 1der ii ≤− , if ii er −  is smaller, 
ii

ii
i er

er

+
−

−= 1ε will be bigger, 

and ))1(1( −−⋅ i
xTVi με  will also be bigger, it makes )(i

xTVμ  increase more; 
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When 21 derd ii ≤−< , )1()( −= ii
xx TVTV μμ , namely 

xTVμ  is unchanged;  

When
2der ii >− , if ii er −  is smaller, 

ii

ii
i er

er

+
−

−= 1ε  will be bigger, and 

)
1

1
()1(

i
TV i

x ε
μ

+
⋅−  will be smaller, it makes )(i

xTVμ  decrease less. 

Therefore, Equation (6) satisfies definition 2(Trust modification principle). 

4   Trust Valuation Algorithm 

The algorithm consists of three steps: Initializing (Initialize());choosing the optimal 
contractor agent (Choose_Agent ()) and modifying the trust degree dynamically 
(Modify_trust()). 

Step 1. Initialize ()       //choose the optimal contrac-
tor agent primarily.  

         Input srd TVTVTV μμμ ,,
of the contractor agents;  

          Computer TVμ ;  

Step 2. Choose_Agent ()   //choose the optimal contractor 
agent.  
         Compare and Choose the optimal contractor    
agent;  
          Start doing the i’th subtask;  
Step 3. Modify_Trust ()    //modifying the trust degree.  

         Modify srd TVTVTV μμμ ,,
; 

          Restart compute TVμ ;  
          Go to Step 2;  

5   Experiments 

Suppose that there are three agents: 1Ag , 2Ag  and 3Ag . 1Ag  is the manager 

agent, 2Ag  and 3Ag  are the contractor agents. The amount of subtasks is 10. At 

beginning, srd TVTVTV ,,  of each contractor agent are given randomly. 5.0=dω , 

3.0=rω , 2.0=sω . The trust modifications of contractor agents are illustrated in 

the Fig.2.  
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6   Conclusions 

It is important of the trust mechanism to safeguard the runs of multi-agent system in 
the dynamic and uncertain network environment. TMMASFS overcomes the short-
comings of the presented trust models, and is adapted to the uncertain network envi-
ronment more effectively. There are many difficulties in studying the self-
recommendation trust, but we think that we have made a start in this direction. 

 

Fig. 1. Curve ag2 is the total trust degree of 2Ag , curve ag3 is the total trust degree of 3Ag , 
and curve ag is the total trust degree of the optimal contractor agent. It is observed that the trust 
degree changes continuously and the optimal contract agent alternates in the executed process 
of subtasks (for example the 3’th, the  5’th and  the 7’th subtask in the figure). 
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Abstract. The particle swarm optimization (PSO) algorithm, a new evolution-
ary computation method, has been proved to be powerful but needs parameters 
predefined for a given problem. In this paper, a new adaptive particle swarm 
optimization (APSO) algorithm is proposed and applied to reactive power and 
voltage control in power systems. The proposed APSO method can adjust pa-
rameters automatically in optimization process. The simulation results show 
that the APSO algorithm is more efficient in searching global optimization solu-
tion compared with the PSO algorithm.  

1   Introduction 

The particle swarm optimization (PSO) [1] has been proposed recently and proved to be 
a powerful competitor in the field of optimization. It has been recently applied to several 
power system problems and has been shown to perform well [2]. However, the parame-
ters of PSO should be selected carefully for efficient performance in applications. In 
order to find a “good” set of parameters, the algorithm has to be run several times with 
different parameter sets. The use of rigid parameters that do not change their values may 
not be optimal, since different values of parameters may work better/worse at different 
stages of the evolutionary process. Some attempts have been made to define an adaptive 
PSO [3] [4].  

This paper presents a new adaptive particle swarm optimization (APSO) algorithm 
which can adjust all three parameters automatically in the optimization process. The 
effectiveness of the proposed algorithm has been showed by the simulation results of a 
practical power system. 

2   Adaptive Particle Swarm Optimization 

For a given particle Pi, its position and velocity in a D-dimensional space are repre-
sented as xi(t)= (xi,1(t) , xi,2(t),…xi,D(t)) and vi(t)= (vi,1(t) , vi,2(t),…vi,D(t)) respec-
tively. The best previous position found so far by particle Pi is recorded as Pi= (Pi,1, 
Pi,2,…Pi,D). The best previous position among the neighborhood is represented as gi= 
(gi,1, gi,2,…gi,D). Mathematically, the particles are manipulated according to the fol-
lowing equations [5] 
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Where  is called constriction coefficient, rand(0, /2) stands for a random number 
in[0, /2]. 

2.1   Adaptive Strategy of Swarm Size N  

Swarm size or the number of particles in the swarm affects the performance of PSO 
significantly. Too few particles will cause the algorithm to become stuck in a local 
minimum, while too many particles will slow down the algorithm. Therefore a bal-
ance between variety and speed must be sought. 

If a particle has an enough improvement but still is the worst particle in its 
neighborhood, remove the particle from the swarm to reduce redundant.  

where (Pi) is the improvement of Pi by comparing its position when it has been gen-
erated and the best position it has found after that. 

On the contrary, if a particle hasn’t any enough improvement but still is the best 
particle in its neighbors, generate a new particle to improve diversity. 

Add a particle, if Pi = Pbest,i and (Pi)< . (4) 

2.2   Adaptive Strategy of Coefficient i 

The value of i determines how much the particle attracted by the best points found 
previously by itself and its neighborhood. 

If a particle has improved itself enough, it can try to decrease its velocity and thus 
decrease the exploring regions in the search space. This can be implemented by in-
creasing i in a proper range [ min, max]. 

i = i+( max i)mi if mi= (Pi) >0. (5) 

where = 1 fbest/ fworst is the improvement threshold of a particle. 
On the contrary, if a particle hasn’t made enough improvement, it would be better 

to slow down the rate of convergence and explore a wider part of the search space. 

2.3   Adaptive Strategy of Neighborhood Size hi  

The smaller value of hi, the more slowly the best positions are communicated between 
particles as particles only exchange information with neighboring particles. As hi 
increases, the algorithm converges faster but might be trapped into local optimum. 
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Remove Pi, if Pi = Pworst,i and (Pi)> . (3) 
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If a particle is the local best and has improved enough, the particle doesn’t need to 
inquire so many neighbors for more information and its neighborhood size is reduced. 

(hi) = (hi)+ ( (hi) 1)/(N 1), if Pi = Pbest,i and (Pi)> . (6) 

This will be effective when the accumulating absolute value is greater than or equal 
to 1. That is 

On the contrary, if a particle is the local best but hasn’t improved enough, the parti-
cle needs more information and its neighborhood size is increased. 

3   Simulation Results of Optimal Reactive Power and Voltage 
Control Based on APSO 

Usually, the optimal reactive power and voltage control in power systems can be 
represented as a mixed integer nonlinear programming problem. 

Min Ploss(x1,x2) 

s.t.  h(x1,x2)=0 

           x1min x1 x1max  
           x 2min x 2 x 2max 

 

(8) 

where Ploss(x1,x2) denotes the real power loss in a power system; x1 is the control vari-
able vector including generator voltages (VG,, continuous), transformer taps (KT, inte-
ger) and shunt capacitors(QC, integer); x2 is the dependent variable vector including 
load-bus voltages(VL) and reactive power generations(QG); h(x1,x2)=0 is the power 
flow equation. 

The fitness function considering the constrains on VL and QG used in this paper is 

Δ+Δ+=
βα

λλ 22min GQLVloss QVPf  . 
(9) 

where V and Q are penalty factors; VL and QG are the violations of load-bus 
voltages and generator reactive powers;  and  are sets of buses whose voltage and 
reactive power generation violate their constraints, respectively. 

Both the APSO and the PSO are applied to reactive power optimization of a practi-
cal 125-bus power system. The system control variables are the same with that of 
reference [6]. The parameters adopted in PSO are N=20, i=4.1and hi =3. The initial 
values of the APSO parameters are equal to that of PSO. The stop criterion for the 
PSO is 20,000 fitness value evaluations (20 particles iterate 1000 times). The PSO has 
been run 100 times with random initial values and the mean computation time T for a 
trial is evaluated. For comparison, every trial of the APSO was permitted to run for 
time T. There may be fewer fitness evaluations than 20,000 because of the adaptive 
process, but the results are better than that of the PSO for the same reason. 

hi= hi 1 and (hi) = 0, if | (hi)| 1. (7) 
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Some average results of 100 trails are listed in Table 1. It can be seen that APSO 
algorithm outperforms PSO. The active power losses before and after the APSO op-
timization are 0.3584 and 0.3584 respectively. It is clear that the power loss is greatly 
reduced (14.17% reduction) and the voltage profile qualification has been improved 
from 84.8% to 100%. It is evident that the APSO approach outperforms the PSO 
algorithm.  

Table 1. Average results of the practical power system 

Item Ploss(p.u.) Preduced(%) Vqualified(%) 
Original 0.3584 -- 84.8 

APSO 0.3584 14.17 100 

PSO 0.3080 14.06 100 

4   Conclusion 

This paper presents an APSO algorithm and its application to reactive power optimi-
zation in power systems. In the APSO, all three parameters, swarm size N, coefficient 

i and neighborhood size hi of each particle, are adapted based on the fitness values of 
particles during optimization process. Optimization results of a practical power sys-
tem show that the APSO can adjust parameters automatically in searching process and 
yield better solution comparing with PSO. 
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Abstract. Task scheduling is one of the bottlenecks in realizing grid computing. 
We introduce swarm intelligence into task scheduling in a grid environment, 
and propose a new dynamic task-scheduling algorithm. This algorithm sched-
ules effectively a group of independent tasks based on the interaction model be-
tween a wasp colony and its environment. We also present an effective method, 
using the self-organized dominance hierarchy of wasp colony to solve the 
dominance struggle problem that occurs in the proposed algorithm. Our evalua-
tion results show that the proposed algorithm is more efficient and more adap-
tive to the dynamic grid environment than other task-scheduling algorithms. 

1   Introduction 

Grid computing aims to implement large-scale resource sharing and interactive col-
laboration [1]. Allocating tasks to different resources reasonably and optimally, that 
is, task scheduling, is an NP-complete problem, and aims to minimize the overall 
execution time (or makespan) of all tasks. Task scheduling is one of the bottlenecks of 
grid computing and is mainly based on a meta-task model [2]. However, most algo-
rithms based on a meta-task model belong to a centralized scheme [3]; because they 
lack good adaptability, they are not adaptive to the complex grid environment.  

In the last ten years, swarm intelligence has received increasing attention in the re-
search community. The collective behavior that emerges from a swarm of social in-
sects is referred to as swarm intelligence [4]. Social insect colonies solve complex 
problems collectively by the distributed and intelligent methods. These problems are 
beyond the capabilities of each individual insect, and the cooperation among them is 
largely self-organized without any supervision. Through studying social insect colo-
nies behaviors, scholars have proposed some algorithms or theories for combinational 
optimal problems, such as the wasp algorithm [5] and the ant algorithm [6]; these 
approaches have already been applied to many fields [7]. Task scheduling in the grid 
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is also a combinational optimal problem. Motivated by these concerns, we proposed a 
new dynamic task-scheduling algorithm based on the wasp algorithm. We proved 
through experiment that the proposed algorithm is more adaptive to the grid environ-
ment than other task-scheduling algorithms. 

2   The Proposed Algorithm 

2.1   Problem Definition  

Let C={c1, c2, …,cn} denote a set of n heterogeneous computing resources, D={d1, 
d2, …,dr} denote a set of r data sources, and T={t1, t2, …,tm} denote a set of m tasks.  
Tasks are submitted to the grid system randomly. Without loss of generality, suppose 
that the input of each task is a group of data units stored in some data source, and each 
task needs one computing resource. In each computing resource, there is a waiting list 
labeled as L, which is used to describe its workload size. 

There exist two length thresholds for each waiting list: idle threshold Lin and busy 
threshold Lstop. Let Tran(ti, cj, dk) denote the data transfer time from dk to cj of a task ti. 
Let Exe(ti, cj) denote the estimated execution time of a task ti on cj. Let Comp(ti, cj) 
denote the completion time of a task ti on cj; this is the sum of the estimated execution 
time and the data transfer time of the task ti on cj. Let WT(ti) denote the time interval 
from the submission to the execution for a task ti. Let Length(cj, L) denote the length 
of the waiting list L of cj ; this is the sum of completion times of all tasks in the wait-
ing list L. 

2.2   The Design of the Proposed Algorithm  

Grid task scheduling is very similar to task allocation of a wasp colony. In our algo-
rithm, each computing resource cj has an associated agent wasp wj, which is in charge 
of leaving its computing resource and returning with tasks. Tasks submitted by users 
first enter into the task list in the scheduling center of the grid. The scheduling center 
is responsible for receiving tasks and is not involved in task scheduling. Each wasp wj 
has a set of response thresholds Θj={θj,1, θj,2, …, θj,m} to m tasks. When the stimulus 
emitted by ti reaches θj,i, wj will transfer the task ti to the corresponding resource cj. θj,i 
is defined as follows:  

, ( , ) ( , , )j i i j i j ku Exe t c l Tran t c dθ η= + ⋅ + ⋅ . (1) 

where η, u and l are constants. A task tj that has not been allocated computing re-
sources emits a stimulus Sj to all agent wasps, defined as follows: 

0 ( )j jS S h WT t= + ⋅ . (2) 

where h is a constant and S0 is the initial stimulus of the task tj. A high priority task is 
assigned a high initial stimulus so that some wasp will transfer it preferentially. 

The agent wasp wj transfers a task ti emitting a stimulus Si with probability 

2 2 2
, ,( , ) ( )j i i i i j iP S S Sθ θ= + . (3) 
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In the way, agent wasps will tend to transfer tasks whose response thresholds are 
lower. But if a task emits a high enough stimulus, agent wasps will also tend to trans-
fer it. The algorithm for each agent wasp wi can be described as follows: 

1 CurLen = Length(cj,L); 
2 while (Curlen ≤ Lin) do   
  2.1 for i = 1 to m do  /*for m tasks*/ 
    2.1.1 Query the Si emitted by the task ti; 
    2.1.2 Compute the probability P(θj,i,Si)  
 end for i 
  2.2 while (CurLen ≤ Lstop) do 
    2.2.1 Add ti to L of cj in the order of P(θj,i,Si); 
    2.2.2 CurLen = Length(cj,L); 
      end while 
  end while.  

2.3   Dominance Struggle  

Formula (3) does not address the real problem of many wasps often trying to transfer 
the same task. According to the self-organized dominance hierarchy of a wasp colony, 
we proposed an effective method to solve the contest problem in our algorithm, more 
effective than the method of Cicirello et al. [7]. Suppose agent wasps, w1, w1,…,wq, 
contend for a task ti. In our method, each agent wasp wj(1≤ j ≤ q) is given a force Fj  

( , ) ( , ) 1j j i jF Length c L Comp t c j q= + ≤ ≤ . (4) 

They may with their forces interact with each other. The wasp with the least force will 
win and transfer the task. In fact, the force of an agent wasp is the length of the new 
waiting list into which ti is added. So the corresponding computing resource is opti-
mal to process the task. In addition, if there are several agent wasps with the same 
least force, the scheduling center will select one among them randomly. 

3   Simulation and Discussion 

In this section, we will evaluate the proposed algorithm (hereafter called the wasp-
based algorithm) and use a simulation environment based on discrete event simula-
tion. We simulate six computing resources and ten data sources and implement our 
scheduling algorithm, the min-min heuristic algorithm, and the sufferage heuristic 
algorithm. Ding et al. illustrated the good performance of the last two algorithms [2].  

Table 1. Comparison of the makespan(s). Three groups of tasks are chosen in our experiment. 
The amounts of three groups are 500, 1000 and 2000, respectively. 

 500 1000 2000 
Wasp-based 1500 3100 7650 
Sufferage 1750 3600 8950 
Min-min 1830 3750 9500 
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From Table 1, it is obvious that the makespan of the wasp-based algorithm is less 
than the other two for each number of tasks. Our experiment concludes that the wasp-
based algorithm performs better than the other two algorithms and shows a fine 
adaptability to the complex grid environment. 

4   Conclusions 

In this paper, we apply swarm intelligence to solve task scheduling in the grid envi-
ronment, and design a dynamic task-scheduling algorithm based on a wasp algorithm. 
In our algorithm, task scheduling is implemented by adding tasks to the waiting list of 
each computing resource instead of allocating the required resources to a group of 
tasks once. Results show that the proposed algorithm is higher in efficient than the 
sufferage and the min-min algorithms, and more adaptive to the complex grid envi-
ronment. 
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Abstract. Ant based routing protocols for MANETs have been widely ex-
plored, but most of them are essentially single-path routing methods which tend 
to have heavy burden on the hosts along the shortest path from source to desti-
nation. The robustness of these protocols is comparatively not good which is 
further weakened by the positive feedback mechanism of ant. Link-disjoint 
multi-path routing is more robust and can support QoS better than single-path 
routing in MANETs. In this paper we combine swarm intelligence and link-
disjoint multi-path routing to solve the problem mentioned above. A novel ap-
proach named Ant colony based Multi-path QoS-aware Routing (AMQR) is 
proposed. AMQR establishes and utilizes multiple routes of link-disjoint paths 
to send data packets concurrently and adopts pheromone to disperse communi-
cation traffic, thus it can adapt to the dynamic changes of the network and sup-
port QoS better. The simulation results show that the proposed approach outper-
forms other pertinent algorithms. 

1   Introduction 

Mobile ad hoc networks (MANETs) [1] are wireless, self-organizing systems formed 
by co-operating nodes within communication range of each other that form temporary 
networks. Their topology is dynamic, decentralized, ever changing and the nodes may 
move around arbitrarily. Routing algorithms in ad hoc networks need to match the 
special network characteristics such as mobility, limited energy and bandwidth, 
higher bit error rate. Routing algorithms for ad hoc networks can be categorized into 
table-driven and on–demand. Most of them may introduce much uncontrolled over-
heads to solve the routing problem. The large routing overheads affect the scalability 
of the networks and the network performance since it use a significant part of the 
wireless bandwidth and the node’s energy. The routing algorithms based on ant can 
self-configure and self-adapt to the dynamic changes of the network. Some protocols 
based on ant have been performed in wired telecommunication network routing opti-
mization [2~5]. But because of the own special character of ad hoc networks, the ant-
based routing for static, wired network can not be directly applied to ad hoc networks. 
Using periodic broadcast ants to discover routes in ad hoc networks could incur a 
large traffic which will lead large delay and the adaptability to topology changes 
would be unacceptably slow. So in order to use ant based routing protocol, some new 
mechanisms must be performed in ad hoc networks [6~12]. As far as the present ant-
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based routing in ad hoc networks are concerned, the drawbacks exist as follows. To 
the best of our knowledge, although protocols in [6] [8] [9] [12] adopt backup routes 
to send data packets when route failure happens, they are essentially single-path rout-
ing methods as well as other conventional protocols such as DSR [13]. The robustness 
of ant based protocols is comparatively not good, which is further weakened by the 
positive feedback mechanism of ant. So these protocols among which ADRA [12] is 
tend to have heavy burden on the hosts along the shortest path from a source to a 
destination. As a result, heavily loaded hosts may deplete power energy quickly, rout-
ing load brought by rebroadcasting route request packets will be aggravated when 
route failure happens, and congestion will be a most serious problem for these hosts 
and most of these algorithms can not deal with the problems effectively, thus the 
performance of network will be greatly aggravated.  

In this paper, a novel ant colony based multi-path routing protocol named AMQR 
is proposed which combines swarm intelligence and link-disjoint multi-path routing 
to solve the problem mentioned above. The new method establishes and utilizes mul-
tiple routes of link-disjoint paths to send data packets concurrently and adopts phero-
mone to disperse communication traffic. We validate its performance with extensive 
simulation. 

The rest of this paper is organized as follows. The novel routing protocol AMQR is 
proposed in Section 2. Section 3 gives the simulation results. Finally, we draw con-
clusions in Section 4. 

2   AMQR Description 

2.1   Pertinent Definitions 

Definition 1. A graph, ( , )G V E= is used to describe an ad hoc network with a 

finite non-empty node set V and a link set E the member of which has two endpoints 
that can communicate with each other directly. When ants locate at node i, it will 
select the next hop j with the transition probability calculated by the formula (1): 

( )

       if ( )

0                    otherwise

( , )

ij

iu
u N i

u N i

P i j ∈

∈

=
                                       (1) 

In formula (1), N(i) is the neighbor node set of i. ij  is the amount of pheromone 

on the link e(i,j). During the route discovery and maitenance periods, ij  is updated 

using formula: 

(1 )   ij ij ijα← − ⋅ + Δ                                             (2) 

where 0 1α< <  is a pheromone decay parameter, ijΔ is the increment of ij  

caused by the received ant which is caculated by formula: 
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= m n
ij q h− −Δ                                                               (3) 

In (3), q is the time delay of ant, h is the hop count the ant passed by from its 
source to the current node. m and n are parameters which determine the relative 
importance of time delay versus hop count. 

Definition 2. During the route discovery period, the use of forward ants and backward 
ants are required. They are called mobile agents. A forward ant establishes the 
pheromone track to the source node. In contrast, a backward ant establishes the 
pheromone track to the destination node.  

Frame format: Here two types of control packets in AMQR are listed, the Forward 
ant (F) and the Backward ant (B). The following are the formats of these packets. 

(i). F packet is shown in Fig. 1a, which includes the following items: SID  
source node ID, DID  destination node ID, SeqN  the unique sequence number, 
HopC  hop counter field which calculates the hop the ant passed by from its source, 
and the dynamically increasing list which consists of the passed node’s ID (PasN) and 
the corresponding arriving time (ArrT). 

 
(a) 

 
(b) 

Fig. 1. Frame formats (a) Forward ant (F)  (b) Backward ant (B) 

(ii). B packet is shown in Fig. 1b. Here DID represents the ID of the intermediate 
node or the destination node which creates the backward ants. The other items have 
the same meaning as in F packet.  

2.2   Description of AMQR 

AMQR is an on-demand routing protocol and it consists of three phases: route 
discovery phase, route maintenance phase and route failure handling phase. 

Phase 1: route discovery  
To find the route to the destination node d, the source node s firstly broadcasts 

HELLO packets to get information of its neighbor nodes, then s broadcasts forward 
ant F. 

(i). If node j which receives F for the first time has met with congestion, it discards 
the F; otherwise, it checks the F’s destination ID. If the F’s destination ID is not the 
same as node j’s, node j will add its ID and arriving time to the list of this F. Then 
node j creates a record in its routing table. A record in the routing table is triple and 

consists of destination ID, next hop and pheromone value . Node j interprets the 
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source ID of F as the destination ID, the ID of the previous node as the next hop, and 
computes the pheromone value depending on the number of hops and the time delay 
that F needed to reach node j. After that, node j updates the hop counter field HopC 

by 1HopC HopC← + and records HopC as oldHops  which represents the 

currently received  F's number of hops. In the end, node j relays F to its neighbors. 
Duplicate F can be identified through the unique sequence number and discarded.         

(ii). If it is not the first time for an intermediate node to receive F came from the 
same source with the same sequence number, and if the received F’s HopC (set 

newHops  = HopC  ) accords with new oldHops Hops hops≤ + Δ  where hopsΔ  

is the acceptable number of the extra hops, the node will record the corresponding 
path in its route buffer. Meanwhile, every intermediate node records SID (source node 
ID) and the maximum sequence number which is the newest one of the ever received 
forward ants came from the same source node. If the sequence number of the 
presently received F coming from the same source node is smaller than or equivalent 
to the corresponding maximum sequence number and the F’s node list includes the 
present node, then the F will be killed. When F arriving at the intermediate node, 
because its priority is the same as the data packets’, just like a data packet does, it 
abides by the FIFO rule and suffers time delay and congestion, both of which will be 
represented by the recorded data and will be the gist according as which the route is 
confirmed and optimized. When F arrives at the destination node, the destination node 
will postpone for a short period of time in order to get the information from the other 
routes. After that, the destination node extracts the information of the received F and 
destroys it. Then it encapsulates the routing path information and gives this to the 
backward ant B which is then sent back to the source node through the shortest route. 
The intermediate nodes also create backward ants and send them back to the source 
node. When B is sent to the source node by source routing according to its list, it 
updates intermediate node’s pheromone using formula (2). Intermediate node that 
receives B does the same work as when it receiving F. The source node can construct 
its own network topology graph after the routing information coming from these 
different nodes is superposed. While B is sent to the source, the destination will send 
some messages to the up hop nodes on the routing paths which are not the shortest to 
get response. Finally, route table of each node is created and in the next hop field of 
the table which corresponds to every destination node is placed by the pheromone. 
Example: route discovery 

In Fig. 2a, the solid arrowhead line represents the first received F and the broken 
arrowhead line represents the repeated F. Table near the node which is the route 
buffer contains the redundant paths. To find the route to destination node d, source 
node s broadcasts forward ant F. Then the intermediate node will process according to 
Phase 1(i)(ii). For example, here we let 1hopsΔ = . Node 4 receives F from node 2 
for the first time. Having finished its work it then broadcasts F to the neighbor nodes. 
After a while, if it will again receive the same F coming from the same source node s 
and having the same sequence number, it judges whether this path is efficient or not 

according to formula new oldHops Hops hops≤ + Δ  and then record this path in its 

route buffer if the path is efficient. In Fig. 2b, destination node d encapsulates the 
routing path information and gives this to the backward ant B which is then sent back 
to source node s through the shortest path s-2-3-d. The other intermediate node also 
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feedback their recorded paths to the source node through the shortest one of the 
recorded paths in the route buffer. Here the polygonal line represents the path which 
backward ants will pass, and the data on the polygonal line represents the path 
information recorded by the corresponding backward ants. In Fig. 2c, the source node 
constructs its own network topology graph after the routing information coming from 
these different nodes is superposed. 

 

(a) Forward ants and recorded paths 

 
(b) Backward ants 

 
(c) Network topology 

Fig. 2. Route discovery 

Phase 2: route maintenance 
In the condition of polynomial complexity, the method presented in [14] is used to 

find n paths which are link disjoint from the shortest path got in Phase 1.  
(i). Build two disjoint paths from one flow network. 
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Fig. 3. Build two disjoint paths from one flow network 

From Fig. 3, It can be seen that when a flow like 1->2->3->4 exists and if one 
augmented path like 1->3->2->4 can be found, two link disjoint paths such as 1->3->4 
and 1->2->4 represented by a and b respectively can be built. 

(ii). Path construction  

Step 1: Regard the present network state graph as the flow network, and set the 
weight of every edge 1. 

Step 2: Regard the shortest path from the source node to the destination node as 
one augmented path. 

Step 3: Add this augmented path to the former flow network, then construct a new 
flow network. 

Step 4: Repeat Step 2 and Step 3 for n times or until no new augmented path can be 
obtained (here we assume that Step 2 and Step 3 have been repeated for n’ times), 
then a network flow can be obtained. After that, we construct n disjoint paths from 
this network flow ( if we can not repeat for n times, then only n’ paths can be 
obtained). Let m=n, and only when we can not repeat for n times, m= n’.  

Step 5: Look for the conceivable paths according to the obtained network flow 
along the source node. Assume that the presently visited node is i , then i is the 
source node. 

Step 6: Select one edge or link which is originated from i arbitrarily and let it be 
(i,j) . Then delete this one and let i=j. 

Step 7: Repeat Step 6 until i is the destination node. 
Step 8: Repeat Step6 ~ Step7 for m times and m paths can then be constructed. 

Routing information is stored in source node s, according to which s calculates 
their hops respectively in order to update the corresponding ij . Then, s selects one of 

the existing paths randomly to send data packets according to a random number. Data 
packet updates the pheromone value using formula (2) when it is sent along the route. 
On receiving the data packet successfully, destination node d returns ack ants 
periodicly, then the ack ants update the pheromone value according to formula (2) just 
as the data packets do. 

(iii). Deal with the congestion problem 
When congestion emerges in network, packets will be lost, time delay will be 

extended and precious bandwidth will be wasted. Since AMQR can balance the traffic 
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through different paths, probability of congestion happening will be bound to be 
lowered. Further more, the node in network monitor the state of the network. Once the 
time delay of the returning ack ants from a destination node is larger than one limit 
which has been set in the beginning, the source node sets the pertinent ij   to zero and 
updates the pheromone value of other feasible paths immediately. When an 
intermediate node finds that the load is beyond its own limit, it will send back 
backward ant to the source node to inform it of changing route.  

Phase 3: route failure handling 
The third and last phase of AMQR handles routing failures, which are caused 

especially by node mobility and thus very common in mobile ad hoc networks. 
AMQR recognizes a route failure through a missing acknowledgement. If a node i 
gets a route_error message for a certain link such as (i,j) , it first deactivates this link 
by setting the corresponding pheromone value to 0, then it informs the source node of 
selecting other valid paths to go on sending packets. Only when all paths fail, source 
node will rebroadcast the route request. 

3   Simulation and Performance Analysis 

The performance of AMQR was compared with ADRA [12] and DSR [13] for the 
same network and load characteristics, because by comparison ADRA outperforms 
other existing ant-based algorithms and DSR is a standard non-ant algorithms. Both of 
these two protocols build and relay on single route for each data session essentially. 
50 nodes using the Random Waypoint Model moves within a of 2000 1500m m×  
area with the minimum and maximum speeds set to 0 15 /m s  respectively. The 
channel capacity is 2 Mbps. The direct communication distance is 250m. MAC layer 
uses the mechanism of IEEE802.11 DCF. 40 CBR flows each send 3 data packets per 
second were used. The size of data payload is 512 bytes per packet.  

Three key performance metrics are evaluated: Packet successful delivery ratio, 
average end-to-end delay and routing load. The simulation results are shown in Fig. 
4~6. 

From Fig. 4, we see that packet successful delivery ratio of AMQR improves as the 
pause time increases. In the case with low pause time, which means frequent moves 
and consequently frequent topology changes, because AMQR establishes and utilizes 
multiple routes of link disjoint paths and adopts pheromone to disperse 
communication traffic, traffic in network can be well balanced, AMQR shows better 
than ADRA and DSR. 

Fig. 5 depicts the the delay characteristics of three protocols. Delay consists of 
queueing delay, transmission delay, propagation delay, processing delay and 
retransmission delay. AMQR can adjust routing tactic according to congestion, that is, 
when one of the multiple paths meets slight congestion, the source node can pick 
another available path to go on sending data packets instantly not having 
rebroadcasted F to discover route. Thus it can reduce queuing buffer delay and 
retransmission delay.  
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Fig. 4. Packet successful delivery ratio 

 

Fig. 5. Average end-to-end delay 

Fig. 6 shows the routing overhead. For AMQR control packets only include forward 
ants, backward ants, ack ants which are sent back to the source periodicly and 
route_error packet. When pause time is short, because of the overfull route error 
information caused by the buffer mechanism mainly, DSR must use more control 
packets to reconstruct route path. ADRA adopt not buffer mechanism but enforce ants 
and anti-ants to improve routing. When topology changes severely, because of 
frequently routing discovering ADRA brings only more overhead and can not get 
better effect. AMQR adopts multi-path to obtain the routing robustness, monitors the 
state of links without lost of time, then dynamically adjusts routing tactic, so the 
number of route request packets, route reply packet, ack packets and route-error 
packets can be reduced. 
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Fig. 6. Routing load 

4   Conclusion 

We presented AMQR for ad hoc networks to solve the routing problem effectively. In 
conclusion, it has the following features:  

a) It is an on-demand routing protocol. 
b) It establishes and utilizes multiple paths for data session, thus routing robustness 

which is very necessary in computer networks especially mobile ad hoc networks 
can be obtained. 

c) It adopts probability routing tactics using pheromone to disperse communication 
traffic. 

Therefore, this protocol is assure to provide QoS (quality of service) guarantee and 
improve the performance of the network. Simulation results indicate that AMQR is a 
very attractive approach for ad hoc network that need to provide QoS guarantee. 
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Abstract. To improve the computational efficiency,a new uniform
model of particle swarm optimization (PSO) and corresponding algo-
rithm, differential evolutionary PSO (DEPSO), are described, and the
convergence is analyzed with transfer function. To enhance the diversity
of swarm, PID controller is used to control dynamic evolutionary behav-
ior of DEPSO. Simulation results have proved the algorithm’s efficiency.

1 Introduction

Since the particle swarm optimization[1][2] was proposed, many modified algo-
rithms have been introduced such as the PSO with inertia weight[3](in briefly,
standart PSO), the PSO with constriction factors[4],etc.. Many theoretical analy-
sis have been done through discrete time linear system theory[5], algebra
method[6], analytic method or state space mode[7].

Frans van den Bergh[8] has proved the original PSO can not be guaranteed
to converge on a global optima or local optima. In other words, the original
PSO can result premature convergence. To solve the problem, the key point is
enlarging the probability of global convergence through increasing the diversity
of the swarm in evolutionary process.

To improve the diversity of PSO, a new uniform model of PSO is pro-
posed, and the corresponding algorithm structure is modified with different con-
trollers.As a example, PID-controller is used to test the new model’s efficiency.

2 Differential Evolutionary PSO (DEPSO)

Consider the following differential equations:

dvi(t)
dt

= χ[(w − 1
χ

)vi(t) + c1r1(pi − xi(t)) + c2r2(pg − xi(t))] (1)

dxi(t)
dt

= vi(t + 1)

if the Euler numerical integration method is used to differential equations (1)
and integral step is one, we have:

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 467–476, 2005.
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(1)the original PSO can be obtained when w = 1andχ = 1 ;
(2)the standard PSO(the PSO with inertia weight) can be obtained when

w �= 1andχ = 1 ;
(3)the PSO with constriction factors can be obtained when w = 1andχ =

2
|2−ϕ−

√
ϕ2−4ϕ|

(ϕ = c1r1 + c2r2) ;

(4)the stochastic PSO[9] can be obtained when w = 0andχ = 1.
It means that equation (1) can be considered as a uniform model of PSO

and represents different PSO’s evolutionary equation while parameter w and χ
have different values. Hence, equation (1) can be considered the unified model
of different PSO. For the convenience, define:ϕ0 = χ(w − 1

χ), ϕ1 = χc1r1,ϕ2 =
χc2r2,

Substituting the definition into (1) results in

dvi(t)
dt

= ϕ0vi(t) + ϕ1(pi − xi(t)) + ϕ2(pg − xi(t)) (2)

dxi(t)
dt

= vi(t + 1)

The PSO algorithm described by differential evolutionary equations (2) is
called differential evolutionary PSO (DEPSO).

The analysis of the evolutionary behavior of DEPSO is made by transfer
function as follows. The first order difference approximation of vi(t + 1) is
vi(t + 1) = vi(t) + dvi(t)

dt , then equation2will be

dvi(t)
dt

= ϕ0vi(t) + ϕ1(pi − xi(t)) + ϕ2(pg − xi(t)) (3)

dxi(t)
dt

= (ϕ0 + 1)vi(t) + ϕ1(pi − xi(t)) + ϕ2(pg − xi(t))

Laplace transformation is made on equation (3), and suppose initial values of
vi(t) and xi(t) are zero, we have

sVi(s) = ϕ0Vi(s) + ϕ1(Pi(s)−Xi(s)) + ϕ2(Pg(s)−Xi(s)) (4)

sXi(s) = (ϕ0 + 1)Vi(s) + ϕ1(Pi(s)−Xi(s)) + ϕ2(Pg(s)−Xi(s)) (5)

From equation(4), it is known that

Vi(s) =
ϕ1

s− ϕ0
(Pi(s)−Xi(s)) +

ϕ2

s− ϕ0
(Pg(s)−Xi(s)) (6)

Substituting (6) into (5) yields

Xi(s) =
ϕ1(s + 1)
s(s− ϕ0)

(Pi(s)−Xi(s)) +
ϕ2(s + 1)
s(s− ϕ0)

(Pg(s)−Xi(s)) (7)
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Fig. 1. The System Diagram of DEPSO

Suppose Pi(s) and Pg(s) are two input variables, Xi(s) is output variable, then
the system structure reflecting by equation (7) can be shown as in Fig.1. The
open-loop transfer function from Pi(s) to Xi(s)is

GK1(s) =
ϕ1(s + 1)
s(s− ϕ0)

(8)

And the eigenequation is 1 + GK1(z) = 0 , thus results in

s2 + (ϕ1 − ϕ0)s + ϕ1 = 0 (9)

the two eigenvalues are

λ1,2 =
ϕ0 − ϕ1 ±

√
(ϕ1 − ϕ0)2 − 4ϕ1

2
(10)

DEPSO will converge when λ1 and λ2 have negative real parts. Ifϕ1 − ϕ0)2 −
4ϕ1 > 0, ϕ1 − ϕ0)2 − 4ϕ1 < ϕ1 − ϕ0. So, the convergence of DEPSO with Pi(s)
as input can be guaranteed if

ϕ1 − ϕ0 > 0 (11)

By the same way, the convergence of DEPSO with Pg(s) and Xi(s) as input and
output respectively can be guaranteed if ϕ2−ϕ0 > 0. Therefore, the convergence
condition of DEPSO is

ϕ0 < min{ϕ1,ϕ2} (12)

From Fig.1, it is obviously that

Xi(s) =
ϕ1(s + 1)Pi(s) + ϕ2(s + 1)Pg(s)

s(s− ϕ0) + ϕ1(s + 1) + ϕ2(s + 1)
(13)

From (12), we have

limt→∞Xi(t) = lims→0
ϕ1(s + 1)Pi(s) + ϕ2(s + 1)Pg(s)

s(s− ϕ0) + ϕ1(s + 1) + ϕ2(s + 1)
(14)
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it means

− (ϕ1 + ϕ2)limt→∞xi(t) + ϕ1Pi + ϕ2Pg = 0

because ϕ1 and ϕ1 are stochastic variables, it is obviously that the above equation
is satisfied only if

limt→∞Xi(t) = Pi = Pg (15)

3 Introduction of PID-DEPSO

To improve the dynamic evolutionary behaviour of DEPSO, the evolutionary
function of DEPSO is considered as a control plant and PID controller is in-
troduced. The parameter of PID controller can be dynamically adjusted in the
evolutionary process, and the new algorithm is called PID-DEPSO.

The system structure is showed in Fig.2 From Fig.2, we have

Fig. 2. The System Diagram of PID-DEPSO

Gc(s) = Kp(1 +
1

T1s
+ TDs) = K

′
p

TDT1s
2 + T1s + 1

s
(16)

where K
′
p = Kp

T1
.

The open-loop transfer function taking Pi(s) as input is :

GKc1(s) = Gc(s)
ϕ1(s + 1)
s(s − ϕ0)

=
ϕ1K

′
p(s + 1)(TDT1s

2 + T1s + 1)
s2(s− ϕ0)

(17)

its eigenequation is1 + GKc1(s) = 0, then

(K
′
pϕ1TDT1)s2 = (K

′
pϕ1T1 + K

′
pϕ1TDT1 − ϕ0)s2 (18)

+ K
′
pϕ1(1 + T1)s + K

′
pϕ1 = 0
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According to Routh’s stability criteria, the stability condition of the system with
Pi(s) and Xi(s) as input and output respectively are

K
′
pTD(T1 + 1) >

ϕ0

ϕ2
(19)

As a result, the stability of PID-DEPSO is stability if

K
′
pTD(T1 + 1) > max{ϕ0

ϕ1
,
ϕ0

ϕ2
} (20)

Similarly, if (20) is satisfied, limt→∞xi(t) = lims→0sXi(s). From Fig.2, we have

Xi(s) =
K

′
p(s + 1)(TDT1s

2 + T1s + 1)(ϕ1Pi(s) + ϕ2Pg(s))
s2(s− ϕ0) + K ′

p(s + 1)(TDT1s2 + T1s + 1)(ϕ1 + ϕ2)
(21)

Thus
limt→∞Xi(t) =

ϕ1Pi + ϕ2Pg

ϕ1 + ϕ2
(22)

The evolutionary equation of PID-DEPSO is deduced as follow:

Xi(s) = GKc1(s)(Pi(s)−Xi(s)) + Gkc2(Pg(s)−Xi(s)) (23)

=
(s + 1)(TDT1s

2 + T1s + 1)
s2(s− ϕ0)

× [K
′
pϕ1(Pi(s)−Xi(s)) + K

′
pϕ2(Pg(s)−Xi(s))]

it means:
s2(s− ϕ0)

(s + 1)(TDT1s2 + T1s + 1)
Xi(s) (24)

= [K
′
pϕ1(Pi(s)−Xi(s)) + K

′
pϕ2(Pg(s)−Xi(s))]

Suppose

dxi(t)
dt

= vi(t + 1) = vi(t) +
dvi(t)

dt

then Vi(s) = s
s+1Xi(s), substituting it into (24), we have

s(s− ϕ0)
(TDT1s2 + T1s + 1)

Vi(s) (25)

= [K
′
pϕ1(Pi(s)−Xi(s)) + K

′
pϕ2(Pg(s)−Xi(s))]
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Let
dvi(t)

dt
= ϕ0vi(t) + ai(t) (26)

then Ai(s) = (s− ϕ0)Vi(s), substituting it into (26), we have

sAi(s)
(s + 1)(TDT1s2 + T1s + 1)

(27)

= [K
′
pϕ1(Pi(s)−Xi(s)) + K

′
pϕ2(Pg(s)−Xi(s))]

Let α = 1 + K
′
pTDT1(ϕ1 + ϕ2), β = K

′
pT1(ϕ1 + ϕ2)(ϕ0TD + TD + 1), and the

Laplace inverse transformation of sPi(s),s2Pi(s), sPg(s) is zero, then

dai(t)
dt

= −ϕ0β

α
Vi(t)−

β

α
ai(t) (28)

+ K
′
p

ϕ1

α
(Pi −Xi(t)) + K

′
p

ϕ2

α
(Pg −Xi(t))

Let β
α = γ, ϕ1

α = ϕ
′
1,

ϕ2
α = ϕ

′
2, then the evolutionary equations of PID-DEPSO

are

dai(t)
dt

= −ϕ0γvi(t)− γai(t) + varphi1(pi − xi(t)) + ϕ2(pg − xi(t)) (29)

dvi(t)
dt

= ϕ0vi(t) + ai(t)

dxi(t)
dt

= vi(t + 1) = vi(t) +
dvi(t)

dt
= (ϕ0 + 1)vi(t) + ai(t)

4 The Analysis of PID-DEPSO

The original PSO describes the particles’ evolutionary process only by the ve-
locity and the position. From equation (29), it is obviously that PID-DEPSO is
a modified algorithm by adding accelerator ai(t) . Further more, it is satisfied
with the flying behavior of the bird flocking that introducing the accelerator
by analyzing the background of original PSO. When a bird flies away from the
flocking to a habitat, the other birds around it will adjust their direction and
velocity according to their own current position respectively. The altering rate of
a bird’s flying velocity ( i.e. acceleration) is decided by its distance to the special
bird. Therefore, the velocity of a bird is decided by both its current velocity and
the acceleration. Equation (29)is just the description of this phenomenon, so the
evolutionary equation of PID-DEPSO is reasonable in biological mechanism.
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We know that original PSO is a typical two-order stochastic system and
PID-DEPSO is a three-order stochastic system. From system theory we know
that three order stochastic system is more complex than two-order in dynamic
behavior. Further more, because γ,ϕ1,ϕ2 are all stochastic variables, the system
of PID-DEPSO processes better global exploration ability when the convergence
condition satisfied. Therefore, the probability of global convergence is enhanced.

In the view of system control theory, the introduction of PID controller can
make system jump out of the local optima and avoid the ”premature” in evo-
lutionary process. P-type controller can change only the parameter ϕ1 and ϕ2
of DEPSO. According to equation (12), the evolutionary process changes from
stable state to unstable state, which enlarges the exploration area with small Kp,
and the convergence velocity accelerates with large Kp. Introduction of integral
action increases the order of system and decrease the convergence velocity. At
the same time, it makes the state convergence accurately to the historical best lo-
cation. Therefore, the PID controller can balance profitably between exploration
and exploitation according to different parameters in the evolutionary process.

When three parameters KpKD and K1 are satisfied with equation (20), PID-
DEPSO converges to global optima. In the first stage of PID-DEPSO, the al-
gorithm increases the global search capability and enhances the local search
capability in the last stage. Thus,Kp and KD are small and K1 is large in the
early stages, with the evolutionary process, Kp and KD increase and K1 de-
crease. The global optima and convergence speed can be adjusted by changing
the three parameters of PID-DEPSO for the special problems.

5 Simulation Results

Two benchmark functions are used to test the above mentioned algorithms.
Spherical Function:

f1(X) =
n∑

j=1

x2
j , | xj |≤ 100

its optima is f1(0, 0, ..., 0) = 0.0.
Schwefel Function:

f2(X) = 418.9829n +
n∑

j=1

xjsin(
√
| xj |), | xj |≤ 500

its optima is f2(−420.9687,−420.9687, ...,−420.9687) = 0.0.
The above two test functions are optimized using both PSO and PID-

DEPSO. Each algorithm runs 50 times and the max generation is 5000. To
ensure the algorithm search finely, the maximal acceleration Amax is defined to
restrict the accelerator ai(t + 1) . The velocity Vi(t + 1) cannot be guaranteed
non-negative because of the item ai(t + 1). So we define the following equations
to adjust accelerator and velocity.

ai(t + 1) = Amax, if(ai(t + 1) > Amax)
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ai(t + 1) = −Amax, if(ai(t + 1) < −Amax)

ai(t + 1) = ai(t + 1), otherwise

where Vmax is the maximal velocity. In the simulations, we take the parameters
as the following: χ = 2,w = 1,ϕ0 = 1,ϕ1 = 2c1r1,ϕ2 = 2c2r2, c1 = c2 =
0.9,α = 1 + K

′
pTDT1(ϕ1 + ϕ2), where α is decreased linearly from 2 to 1. β =

K
′
pT1(ϕ1+ϕ2)(ϕ0TD)+TD+1,where β is increased linearly from 3 to 4.Obviously,

there are many sets of Kp, T1, TD to satisfy equation (20).The test results are
showed in Tab.1. Notes: ACG represents average convergence generations and

Table 1. The Comparison Results of Two Functions

Function Algorithm ACG ACR
F1 PSO 133.66 100
F1 PID-PSO 47.44 100
F2 PSO 1613.0 4
F2 PID-PSO 451.6 100

ACR represents average convergence ratio.
The two functions’ dynamical performances are showed in Fig.3 and Fig.4

respectively. It is showed that PID-PSO converges faster and owns a good per-
formance on global optima.

Fig. 3. The Comparison of f1(X)
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Fig. 4. The Comparison of f2(X)

Table 2. The Comparison of PSO and GPSO

Function Algorithm Fper Feval

Spherical PSO 100 206.22
Spherical GPSO 100 150.9

Rosenbrock PSO 100 214.66
Rosenbrock GPSO 100 176.02

GoldsteinP rice PSO 98 184.04
GoldsteinP rice GPSO 100 155.36

Schaffer PSO 30 67.07
Schaffer GPSO 96 54.27
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Abstract.  In order to find most centre of the density of the sample set this paper 
combines MCA and PSO, and presents a mountain clustering based on im-
proved PSO (MCBIPSO) algorithm. A mountain clustering method constructs a 
mountain function according to the density of the sample, but it is not easy to 
find all peaks of the mountain function. The improved PSO algorithm is used to 
find all peaks of the mountain function. The simulation results show that the 
MCBIPSO algorithm is successful in deciding the density clustering centers of 
data samples. 

1   Introduction 

The clustering analysis is a process to categorize the sample set of similar character-
istics. The clustering analysis is not only an important means of obtaining knowledge 
from a great deal of samples, but also a general technique used in the data mining [1,2]. 
According to the different clustering rules, there are variety of clustering algorithms, 
such as clustering algorithms based on the model, the layer, the flat surface partition, 
the density, the mesh and sub-space and so on [3]. But there are two problems in most 
clustering algorithms: The first is that some parameters have to be given in advance, 
but under the condition of no prior knowledge, it’s very hard to determine these pa-
rameters. The second is hard to assure the time and space efficiency of clustering 
analysis to a big sample set or a high dimensions sample set. Therefore, this paper puts 
forward a mountain clustering method based on improved PSO (MCBIPSO) algorithm, 
which makes improvements in the particle swarm optimization algorithm and is 
combined to the mountain clustering. The simulation result shows that the mechanism 
of the MCBIPSO is clear, and it can efficiently search for the most density clustering 
centers of the sample data. 

                                                           
*  This research was supported by National Nature Science Foundation of China (50374079). 
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2   The Mountain Clustering Algorithm (MCA) 

The Mountain Clustering Algorithm, presented by Yager and Filev [4,5], is an simple 
and effective method to estimate the density clustering center, which is not only able to 
find the density clustering centre of the sample data, but also provide the beginning 
clustering centers for other clustering methods. The principle of the MCA is to con-
struct a mountain function according to the density of sample distribution, that is, the 
height of the mountain function has a direct proportion of the distribution density, and 
the peaks of the mountain are the sample clustering centers. �

In the MCA, the denser the density of the mesh is, the higher the accuracy of the 
calculation result is. The calculation load increases in the index number way along with 
the growth of the sample space dimensions, then "the dimensions disaster" appears. A 
better solution is the subtraction�clustering method putted forward by Chiu [6]. The 
subtraction clustering method is to regard every sample point as calculation point, thus 
the computation load can be reduced.�

In order to increase the efficiency of calculating, the mountain clustering method or 
the subtraction clustering method should be simplified. One solution is to look for a 
kind of mountain function optimization algorithm getting every peak value at one time. 
This algorithm is known as the multi-modal function optimization algorithm. Another 
is to make use of heuristic optimization algorithms to get every peak value instead of 
visiting all the samples of the data set, and decrease the calculation workload.�

3   The Particle Swarm Optimization Algorithm 

There are variety of heuristic optimization algorithms, among which some are very 
successful, for instance, the genetic algorithm [7, 8] and the particle swarm optimization 
algorithm [9, 10]. Among multi-modal function optimization algorithms, the artificial 
immune algorithm [11�12] is a good one. The particle swarm optimization algorithms are 
got more and more attention according its explicit mechanism and simple calculation. 

The particle swarm optimization algorithm hypothesizes that there are m particles in 
the D dimensions space, whose position is xi=( xi1, xi2 … xiD), and have a fitness func-
tion fiti, related with optimization target function. The optimization target function can 
also be a fitness function. Every particle moves gradually in a certain speed vi=( vi1, vi2 
… viD) in the D dimensions space. During the moving xpi=( xp1, xp2 … xpD) records the 
best position of the fitness function of the particle i, xg records the best position of the 
fitness function of the whole particle swarm. For the particle i of iterative j generation, 
its position is calculated as follows 

))((()))((())()1( 21 jxxcrandjxxcrandjvjv igiipii −⋅+−⋅⋅+⋅=+ ω
 

(1) 

)1()()1( ++=+ jvjxjx iii , (2) 

where  is a inertial effect coefficient, rand( ) is a random function whose value is 
between 0 and 1, C1 is a weight coefficient of the particle individual, C2 is a weight 
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coefficient of the particle community, and the maximum speed of the particle is limited 
by vmax. The speed of the particle consists of three parts: the first item comes from 
particle itself inertial, the second comes from the experience of the particle itself during 
moving, and the third comes from the experience of the particle community during 
moving. Because of the existence of the individual and the community experience, the 
particle swarm optimization algorithm is a kind of heuristic optimization algorithms. 
Compared with other algorithms, such as the genetic algorithms, the simulated an-
nealing algorithms etc, its calculation is easier and faster.�

4   The Improved Particles Swarm Optimization Algorithm 

Analyzing every item of Equation (1), it can be discovered that ,the item containing C2 
embodies the property of the community and makes the community moving to the op-
timization direction, the item containing C1 embodies the property of the individual. In 
order to carry out a multi-modal function optimization, the item multiplied by C2 
should be reduced and the item multiplied by C1.should be enlarged. Under the ideal 
condition, the cognition of each individual particle represents the optimization peak 
value of the multi-modal function optimization therefore the particles swarm optimi-
zation algorithm can be used in the multi-modal function optimization.�

In the multi-modal function optimization, for making each peak of the mountain 
function be the "only route" of some particles, this paper makes three aspects im-
provements to the particles swarm optimization algorithm. The first is making C2=0 to 
get most local optimization values, not the global optimization value. The second is 
taking variable step to make each peak of the mountain function be passed by the par-
ticle. At the beginning of the calculation, the step should be long enough to enlarge the 
diversity of the particles. During the calculating process, the step should be reduced 
gradually, and the particles converge at different local optimization point in the end of 
the calculation. The third is throwing away the random function rand(), making every 
particle convergence likely at a certain local optimization point. 
Suppose the number of the particles is n, and the generation of the iterative is j, then the 
improved calculation formula of the particle position is as follows 

))(()/)2(()()1( 1 jxxnjncjvjv iipii −⋅−⋅+⋅=+ ω
 

(3) 

)1()()1( ++=+ jvjxjx iii . 
(4) 

5   The MCBIPSO Algorithm 

The MCBIPSO algorithm combines the particle swarm optimization algorithm with the 
Mountain Clustering Method. Its calculation step is as follows: 

Step 1. Initializing 
Step 2. Constructing the mountain function 
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Regard every sample value as a center of the Gauss function, and the mountain function 
is given by the summation of the Gauss function. 
Step 3. Getting new position of the particles based on Equation (3) and (4). 
Step 4. Evaluating the fitness 
Step 5 Deciding the current optimization value of particles 
To each particle, keep its history optimization value if it is more excellent than the 
current fitness. Otherwise, it is replaced by the current fitness. 
Step 6 Judging end condition 

Judge whether the end condition is sufficient: if not then return to step (3), otherwise, 
end the process of searching for optimization values and give the current optimization 
fitness value and the position of the particle.  

When the process is over, the position of every particle will be converged at local 
optimization value of the mountain function. These local optimization points are also 
the clustering centers. 

 

Fig. 1. A example of mountain clustering based on improved PSO algorithm 

An example of a dimension sample data set is supplied. The mountain function and 
MCBIPSO algorithm simulation result are showed in figure 1. The stars mark the po-
sition of the sample data on the x coordinate and the circle stands for the clustering 
center found by MCBIPSO on the mountain function. Suppose the number of the par-
ticles is 30 and the number of the iteration is 100. In running 10 times, all of the clus-
tering centers can be found every time. 

6   Conclusions 

1)  A clustering method based on improved PSO algorithm can find the clustering 
centers of the sample data fast and accurately. 

2)  the improved particles swarm algorithm can find most of local optimization of the 
mountains function, and is simple and valid. 

3)  the simulation process shows that the particles swarm optimization algorithm is 
sensitive to the change of , C1 and C2.  
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Abstract. The motivation is the deployment of large numbers of inexpensive 
robots in hostile environments to pursue evasive targets. Based on the interac-
tion protocols of contract net and subscribe-publish, a distributive pursuit-
evasion algorithm is proposed for multi-agents to pursue multiple evasive 
agents. The pursuit agents engaged in teams adopt a tail-chase strategy while 
the rest pursuit agents use a hug-a-tree policy. The evading agents move to-
wards directions with fewer pursuit agents in their neighborhood. All agents 
communicate according to the subscribe-publish protocol and the pursuit agents 
coordinate their acts through the contract net protocol. The result of simulation 
under JADE platform shows that the pursuit agents can dynamically form sev-
eral teams to catch respective evaders efficiently without centralized leadership 
or hierarchical coordination. Distributive in nature, it allows a large-scale agent 
fleet to perform complex tasks in a coordinated way. 

1   Introduction 

Search is widely used in mapping mine fields, exploring extraterrestrial and under-
sea areas, exploring volcanoes, locating chemical, biological weapons and 
explosive devices and so on [1]. The principles of search theory have been applied  
successfully in numerous important operations, such as the 1966 search for a lost H-
bomb in the Mediterranean, the 1968 search for the lost nuclear submarine Scorpion 
near the Azores, and the 1974 underwater search for unexploded ordnance in the 
Suez Canal [2]. 

Search theory is still a field of active research despite considerable advance has 
been made since its inception more than 50 years ago. Many problems remain to be 
solved, particularly in cases involving multiple targets. Systematic methods are 
needed for building maps from inconsistent and sometimes even conflicting sensor 
sources. More work is also needed for moving targets. Two-sided pursuit-evasion 
problems are of great importance in military applications. It is desirable in many in-
stances to formulate these problems as differential games to obtain the essential char-
acteristics of the solutions that arise from the differential motions of the searcher and 
evader. Difficult to solve, the only pursuit-evasion differential games that have been 
solved are those that the conditional detection functions and motion constraints have 
been made unrealistically simple [2]. These problems remain intractable, although 
some progress has been made. 
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The motivation is the deployment of large numbers of inexpensive robots in hostile 
environments to catch evasive targets. Designing a mobile robot team to search a 
sensate region for evasive targets is very challenging because human intervention is 
not always possible in these environments and participants are prone to failure [3]. 
Decentralized coordination schemes are the most promising avenues of research 
[1][3][4]. The limitations of crude but inexpensive sensors can be overcome by using 
distributed pursuit-evasion algorithms that utilize shared data from a large number of 
agents. The paper is concerned with solving the coordination problem using a decen-
tralized coordination strategy based on interaction protocols of contract net and sub-
scribe-publish. The coordination strategy allows a team of communicating agents to 
coordinate their search activities through a division of labor based on commitments 
and conventions, similar to that of human societies.  

2   Mission Description 

The mission is to catch several evasive agents 
1 2{ , ,..., }nE E E E= by a team of pursuit 

agents 
1 2{ , ,..., }mP P P P= in a bounded 2D region {( , ) | , ,0 , }x y x y R x y MΩ = ∈ ≤ < , 

where M is a given real number. It is assumed that this region is known beforehand or 
can be known using map-learning techniques [3][4][5][6]. Time belongs to the set of 
integer {1, 2,......}T = . Evader type ( ) {1, 2,3,......}jK E =  is defined as the minimum 

number of pursuers required for the capture of the evader. ( )jV E R+∈  is defined as the 

bonus that team members can share if they catch the evader. Target 
iE  is caught at 

time t T∈  if there exist at least ( )jK E  pursuers 
jP  satisfying 

( , )( ) .i jd E P t r≤                                                     (1) 

Where ( , )( )i jd E P t  is the distance between evader 
iE  and pursuer 

jP  at time t , and r 

is the detection radius of the pursuers. It is easy to see that a single pursuer cannot 
catch evasive agents with type ( ) 1jK E > . At least ( )jK E  pursuers are required to 

form a team for the capture of the evader 
jE .  

3   Interaction Protocol 

3.1   Contract Net Interaction Protocol 

According to the Foundation for Intelligent Physical Agents (FIPA) contract net inter-
action protocol [7], the initiator agent takes the role of a manager who wishes to catch 
an evader with one or more participants. The initiator calls for proposals for catching 
a given evader; the participants may respond with a proposal, refuse or reply with a 
not-understand message before a deadline set by the initiator. Negotiations then con-
tinue with the participants that proposed. 

Each participant’s proposal includes its distance to the evader. Once the deadline 
arrives, the initiator evaluates the received proposals and selects the nearest agents to 
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pursue the evader. The selected agents will receive an accept-proposal act and the rest 
reject-proposal acts.  

The proposals are binding on each participant. Once the initiator accepts the pro-
posal, the participant acquires a commitment to perform the task. Once the participant 
has completed the task, it sends an inform-done message to the initiator. However, if 
the participant fails to complete the task, a failure message is sent. Before the action 
has been performed and the last message has been received, the initiator can even 
decide to cancel the task by sending cancel messages if the initiator is no longer inter-
ested in continuing the task and that it can be terminated in a manner acceptable to 
both the initiator and the participants. The architecture of the contract net interaction 
protocol is shown in Fig. 1.  

not-understand

reject proposal

inform-done cancel failure

accept proposal

propose refuse

call for proposal

 

Fig. 1. FIPA Contract Net Interaction Protocol 

3.2   Subscribe-Publish Protocol 

The subscribe-publish protocol [8] allows the subscription initiator to send a subscrip-
tion message indicating its desired subscription to the participant via the subscription 
manager. The participant processes the subscription message and responds to the 
initiator via the manager by either accepting or rejecting the subscription. Once the 
participant agrees to a subscription, it communicates all content matching the sub-
scription condition using an inform-result. The participant continues to send inform-
results until either the initiator cancels or the participant experiences a failure. The 
architecture of the protocol is shown in Fig. 2. 

There are three roles in the protocol: the initiator, responder and manager. The ini-
tiator sends the subscription message and receives notifications each time the sub-
scription condition becomes true. The responder replies by sending a not-understood 
message, a refuse message or an agree message. Each time the subscription condition 
becomes true, the responder sends a notification message to the initiator via the man-
ager. The initiator behavior terminates if no response has been received before the 
subscription timeout expires, or all responders reply with a refuse or not-understood 
message. Otherwise, the behavior will run forever. The subscription manager is re-
sponsible for the registry and cancellation of subscriptions. 
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Fig. 2. Architecture of Subscribe-publish Protocol 

4   Pursuit-Evasion Algorithm 

Since each pursuer can pursue several evaders and one evader requires several pursu-
ers to catch, it is necessary to assign tasks among pursuers. Based on interaction pro-
tocols of contract net and subscribe-publish, a greedy algorithm is applied for task 
assignment. 

4.1   Pursuit Strategy 

The nearest pursuer of evader 
jE  is chosen as the initiator. It sends call-for-proposal 

messages to the rest pursuers with a deadline for reply message. When the deadline 
arrives, it picks up the participants’ proposals and evaluates their distances to the 
evader. The initiator chooses )( jEK  nearest participants and sends accept-proposals 

to the selected agents, forming a team to pursue evader 
jE .  

The team members subscribe position information from the evader. Whenever a 
notification message of position updates is arrived from the evader, each member 
decides by itself what to do next: it will inform the initiator that the task is done if the 
evader is within its detection radius; otherwise, a tail-chase method is applied to pur-
sue the evader. If the initiator receives this information from all its team members, it 
will dissolve the team after giving each member a bonus. If any member counters a 
failure, the initiator will call for new proposals from free pursuers and choose another 
pursuer to join the team. 

4.2   Evasion Strategy 

The neighborhood of an evader is divided into 8 equal sectors with a central angle 
45 . The evader counts the number of pursuit agents in each sector within a given 
radius, and moves towards the sector with less or no pursuit agents. 

4.3   Strategy of Free Pursuers 

If a pursuit agent is not accepted for any pursuit teams, it is called a free pursuer. It 
adopts a hug-a-tree strategy to save energy, i.e., they stay where they are if no accept-
proposal message is received. For comparison, they can also move randomly. 

Subscription 
Manager 

Subscription 
Responder 

Subscription 
Initiator 

Publish Subscribe 
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4.4   Pursuit-Evasion Procedure 

Since each pursuer can pursue several evaders and an evader requires several pursuers 
to catch, it is necessary to assign tasks among pursuers. A greedy algorithm based on 
contract net interaction protocol is applied for task assignment. The pursuit-evasion 
procedure based on the greedy algorithm is described as follows. 

Step 1: Generate pursuit agents with random positions and register them in JADE 
(Java Agent Development Environment) platform along with their position informa-
tion; generate evasive agents and register them along with their position, value and 
type information.  

Step 2: Find out the evasive agent 
jE  with the highest value from set E ; find out 

its nearest pursuit agent 
jP  from set P . 

Step 3: Agent 
jE  subscribes position information from all pursuit agents. When-

ever an updated notification message about position information is received, it acts 
according to its evasion strategy.  

Step 4: The nearest pursuit agent 
jP  of evader 

jE  takes the role of a manager and 

sends call-for- proposal message to the rest pursuit agents with a deadline for reply. It 
manages the pursuit team according to the above mentioned pursuit strategy. It chooses 

( )jK E  pursuit agents with the nearest distances to evader 
jE , sends an accept-

message to each of them. Remove these selected pursuit agents and 
jP  from set P .  

Step 5: Agent 
jP  subscribes position information from its team members and 

jE . 

Step 6: Remove 
jE  from set E . If set E  is not empty, go back to step 2. 

Step 7: If the position of 
jE  is updated, agent 

jP  informs its team members. Thus 

it is not necessarily for evasive agents to broadcast their position information, signifi-
cantly reducing network flow. If done-notification messages have been received from 
all its members, agent 

jP  will dissolve the team after giving each member a bonus. 

Step 8: If all evaders are caught, game is over. Otherwise, go back to Step 7. 

5   Simulation Results 

JADE is a middleware that enables faster time-to-market for developing multi-agent 
distributed applications [8]. JADE is used as the simulation platform for the pursuit-
evasion problem. 

The site is a square of 100m100m× , free of obstacles. The speeds of pursuit and eva-
sion agents are all 1 m/s. Evaders are not allowed to move out of the site. Communi-
cations between agents are assumed reliable and on time. Each participant can locate 
itself, without error. Each pursuer can recognize the types of the evaders, with a 360  
field of vision. There are 5 evaders with type 5,4,3,2,1  respectively. Their values are 

the squares of their types. The number of pursuers is 40, but only 15 pursuers are 
assigned tasks. Since the pursuers that are not selected adopt a hug-a-tree strategy, 
they have little influence on the simulation result. So they are not shown in the simu-
lation figures.  
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Fig. 3. The State after Task Assignment 

 

Fig. 4. The State after 5s 

If the free pursuit agents adopt a hug-a-tree policy, the average capture time for 1, 
2, 3, 4 and 5 evaders in 100 runs are 7s, 11s, 20s, 38s and 71s, respectively; if they 
move randomly, the average capture time for 1, 2, 3, 4 and 5 evaders are 7s, 11s, 21s, 
36s and 67s, respectively. The random movements of the free agents do little help to 
the result. Therefore, it is better for them to keep immobile. If 1+j  pursuit agents are 

chosen to catch evasive agents 
jE , the average capture time of 1, 2, 3, 4 and 5 evad-

ers are 11s, 28s, 47s, 68s and 86s, respectively.  
The states after task assignment, after 5s, 10s and 40s are shown in Fig. 3, 4, 5 and 

6 respectively. In the figures, asterisks represent evasive agents , 1, 2,3,4,5jE j =  

E1 

E2

E5

E4

E3

E1 

E2 

E3

E5 
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while triangles stand for pursuit agents, where j  is the minimum number of pursuit 

agents required for the capture of the evasive agent 
jE . For example, at least 4 pursuit 

agents are needed for the capture of evader
4E . 

 

Fig. 5. The State after 10s 

 

Fig. 6. The State after 40s 

6   Conclusions 

The motivation of the paper is the deployment of large numbers of inexpensive robots 
in hostile environments to pursue evasive targets. Based on the interaction protocols 
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E5 
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of contract net and subscribe-publish, a distributive greedy pursuit-evasion algorithm 
is proposed for multiple pursuit agents to pursue multiple evasive agents. The pursuit 
agents engaged in teams adopt a tail-chase strategy while the rest pursuit agents use a 
hug-a-tree policy. The evading agents move towards the direction with fewer pursuit 
agents. The simulation result shows that the pursuit agents can dynamically form 
several teams to catch evaders efficiently. Distributive in nature, it allows large-scale 
agent fleet to perform complicated tasks. 

For convenience, some assumptions and simplifications have been made. The 
world is free of obstacles, ambient noise and location error. Communications between 
agents are assumed perfect. Both pursuit agents and evasive agents are not intelligent 
enough to forecast the moves of each other. If the pursuers look ahead what moves 
the evaders can take, the performance is likely to be improved. They are left as rec-
ommendations for further work. 
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Abstract. VQ coding is a powerful technique in digital image compression. 
Conversional methods such as classic LBG algorithm always generate local 
optimal codebook. In this paper, we introduce Particle Swarm Optimization 
(PSO) cluster method to build high quality codebook for image compression. We 
also set the result of LBG algorithm to initialize global best particle by which it 
can speed the convergence of PSO. Both image encoding and decoding process 
are simulated in our experiments. Results show that the algorithm is reliable and 
the reconstructed images get higher quality to images reconstructed by other 
methods. 

1   Introduction 

Image compression is essential for applications as video conferencing, TV 
transmission, transmission of printed graphics images and image data store systems. 
The fundamental goal of image compression is to reduce the bit rate for transmission or 
data storage with an acceptable fidelity or image quality. In recent years, a lot of 
compression methods have been developed, such as differential pulse code modulation, 
transform coding, hybrid coding. 

Vector Quantization algorithms have been performed by many researchers for image 
compression recently [1, 2, 3, 4, 5, 6]. In VQ systems, a vector quantizer can be defined 
as a mapping Q of K-dimensional Euclidean space RK into a finite subset Y of RK as  

: KQ R Y→  (1) 

Where Y=(Y1,Y2,Y3 ...YM ) is called a codebook and Yi is the codeword. When VQ 
method used in image compression, the vector quantizer generates a codebook for input 
image vectors. Then, encoder computes the distortion d(x,yi) between the input vector x 
and codeword yi ,i=1,2,3…M. Encoder also finds the index of the codeword vector with 
nearest neighbor rule , and the index i is transmitted to the decoder if codeword yi 

yields the least distortion. On the other hand, the decoder uses the index to generate 
reproduction vector. Fig.1. shows us the overall process of a simple VQ used in image 
compression. 
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Fig. 1. This shows the detail process of vector quantization when used in image compression 

The essential problem to image vector quantization coding is to search a perfect 
codebook from the training image samples. Previous methods use cluster algorithms 
such as the classic LBG algorithm to generate codebook. However, these algorithms 
always get a local optimal result and the reconstructed images are not ideal. In this 
paper, an improved PSO cluster algorithm will be introduced into designing high 
quality codebook. PSO is a new evolutionary computational model. In such a model, 
particles fly in the vector space with a velocity that is dynamically adjusted according 
to its own flying experience and its neighbors’ experience. So it can find good solution 
effectively. We use the result of LBG algorithm to initialize the particles of PSO 
algorithm. Thus, the improved PSO cluster method can enhance its performance. 

2   The Basic of PSO 

Particle Swarm Optimization (PSO) is a new branch of evolutionary computation 
technique originally presented by Kenney and Eberhart  [7] in 1995. It is inspired by the 
social behavior of birds flocking or fish schooling. In a multi-dimensional space, each 
particle (individual) represents a potential solution to a problem. There also exists a 
fitness evaluation function that assigns a fitness value to a particle’s position. Two 
positions are recoded by every particle. One is named global best (gbest) position, 
which has the highest fitness value in the whole population. The other is called personal 
best (pbest) position, which has the highest fitness value of itself at present. A 
population of particles is flying in the search space and every particle changes his 
position according to global best position and personal best position with formula (2) 
and (3) 

1
1 1 2 2( ) ( )n n n n n n n n

ik ik ik ik k ikv v c rand pbest x c rand gbest x+ = + − + −  (2) 

1 1n n n
ik ik ikx x v+ += +  (3) 
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Here, k is the number of dimensions and i represents a particle of the population. x 
means the position of particle in search space, v is the velocity vector for the particle to 
change its position. Pbest and gbest are the personal best position and global best 
position memorized by this particle. Parameter c1 and c2 are the cognitive and social 
learning rates respectively. Rand1 and rand2 are two random numbers that belongs to 
[0,1]. Fig.2. depicts a particle how to change his position according equation (2) and (3) 
in a two-dimension space. 

 

Fig. 2.  This shows a particle changes its position from xn  to xn+1 in a two-dimension space 

Previous studies show us such a behavior of particle population takes more chance 
into better solution areas quickly, so it can find the high quality solution much faster 
than other evolutionary algorithms such as GA. 

3   Improved PSO Cluster Used in VQ 

In this section, we will introduce how to build high quality VQ codebook by improved 
PSO cluster method. PSO cluster method has much powerful capability to find the 
codeword vectors of codebook in multi-dimensions space [8,9]. 

3.1   The Fitness Function and Encoding 

Given a N×N digital image, we can divided the image into a number of n×n blocks. 
Thus, Every block is K-dimension vector where K=n×n. The image can be represented 
as (N/n)×(N/n) vectors. We measure the distortion of input vector xi and reconstructed 
vector yi with Mean Square Error (MSE) as  

2

1

( , ) ( )
K

i i
i

d x y x y
=

= −  (4) 

Then the overall distortion between input image and reconstructed image can be 
expressed as  
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Moreover, The fitness function can be expressed as 

1
fitnessf D=  (6) 

The key point to generate a high quality is to find the perfect codewords Y=(Y1,Y2,Y3 

...YM) which minimizes the fitness function for all training vectors. So, In our PSO 
method, every particle is constructed by string sequence of real value. For a M-length 
codebook, a particle is constituted of M codewords and the length of a particle is M×K 
,where K is the dimension of search space. Thus, every particle represents a construction 
of codebook. The task of PSO is to find the perfect particle position in search space, 
where particle gets a very high fitness value. Fig.3. is an example of encoded string for a 
particle in the PSO population. Given the search space is three-dimension and the length 
of codebook is 8, the string of this particle is encoded as follows: 

 

Fig. 3. This figure shows the encoded string of a particle for an eight-length in a three-dimension 

3.2   Detail Algorithm 

The traditional LBG algorithm seems converges faster but usually stops at local 
minimum point. PSO searchs the global best solution but slower than LBG. So in this 
section, we improved PSO method by set the result of LBG algorithm to initial global 
best particle. Followings are the detail Algorithm: 

Step 1. Run the LBG algorithm once. 
Step 2.  Assign the result of LBG algorithm to one particle and initialize positions of 

rest particles and associated velocity of all particles randomly.  
Step 3. To each particle, cluster the training vectors to particle. Then, calculate the 

fitness value for the particle according to function (5) and (6). 
Step 4. To each particle, compare fitness evaluation with this particle’s personal best 

value. If better, update pbest and take record current position as the particle’s personal 
best position.  

Step 5. Find the highest fitness value of the whole particles. If the value is better than 
gbest, replace gbest with this fitness value, and take record the global best position.  

Step 6. Change velocities and positions with equation (3) and (4) for every particle. 
Step 7. Repeat Step3 to Step7 until end condition is satisfied or predefined iterations 

are reached. 
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4   Experiment 

Our experiment is implemented on 8 gray images of 256×256×8 resolution. We divide 
the images to 4×4 blocks, Then, 4096×8 16-dimension vectors are contained for training 
and test. 4 image block vectors are used for training and 2 images outside are used to test. 
Codebooks are generated on training set by LBG and PSO cluster methods respectively. 
Different codebook sizes are used in test phase. We measure the performance of our 
methods with average Signal-To-Noise Ration (SNR), which is defined as follows 

2
2

1 1

2
2

1 1

1

10log
1

( )

N N

ij
i j i

N N

ij ij
i j

x
N

SNR
x y

N

= =

= =

=
−

 (7) 

where xij and yij are the pixel gray levels of the original and reconstructed images of 
N×N pixels. The average rate can be calculated using  

2
2lograte C N bit pixel=  (8) 

Table 1 presents us the result of designing two vector quantizers for training set 
under different rate. It is obvious that LBG cluster has larger design SNR variation of 5 
db for LBG VQ codebook and random initial codebooks. 

Fig.4. and Fig.5. are the result of two test image with the two well trained vector 
quantizers. (a) are the two original image and the correspondence reconstructed images 
using LBG VQ and PSO VQ are shown in (b) and (c). It is also very clear that the 
reconstructed image in (c) has higher quality than the images in (b).   

Table 1. Average SNR(db) for images with different rate using LBG and PSO clustering 
methods 

Bit/pixel 0.3125 0.375 0.4375 0.5 
SNR(LBG) 6.81 7.23 8.34 10.20 
SNR(PSO) 11.71 13.55 14.59 15.84 

       
(a)                                            (b)                                           (c) 

Fig. 4. (a) Original image (b) Reconstructed image using LBG VQ with 0.375 bit/pixel(c) 
Reconstructed image using PSO VQ with 0.375 bit/pixel 
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       (a)                                            (b)                                            (c) 

Fig. 5. (a) Original image (b) Reconstructed image using LBG VQ with 0.4375 bit/pixel(c) 
Reconstructed image using PSO VQ with 0.4375 bit/pixel 

5   Conclusion 

In this paper, we use PSO method initialized by LBG method to generate VQ codebook 
for image compression. The result of experiments proves it is a very effective and the 
reconstructive images have higher quality than traditional LBG method. Moreover, this 
method can also be used in other applications such as image storage, speaker 
recognition etc. 
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Abstract. Ant colonies behavior and their self-organizing capabilities
have been popularly studied, and various swarm intelligence models and
clustering algorithms also have been proposed. Unfortunately, the clus-
ter number is often too high and convergence is also slow. We put for-
ward a novel structure-attractor, which actively attracts and guides the
ant’s behavior, and implement an efficient strategy to adaptively control
the clustering behavior. Our experiments show that swarm intelligence
clustering algorithm based on attractor (SICABA for short) greatly im-
proves the convergence speed and clustering quality compared with LF
and also has many notable virtues such as flexibility, decentralization
compared with conventional algorithms.

1 Introduction

Swarm Intelligence emerged out of social insect collective behavior shows many
interesting properties such as flexibility, robustness, decentralization and self-
organization. Implementations of optimization and control algorithms based on
swarm intelligence such as Ant Colony Optimization and Ant Colony Routing
have been well known [1,2,3]. Clustering models and algorithms based on swarm
intelligence, inspired by co-operative brood sorting of ants or other behaviors,
are also put forward, though they are still in a preliminary, proof-of-concept
stage [4,5].

The swarm intelligence clustering models and algorithms have advantages in
many aspects, such as no need of priori information, self-organization. However,
the number of result cluster is often too high and the convergence is slow because
of the ant’s inefficient behaviors: randomly picking up items and dropping down
items. Are there any methods to make ant perform efficiently?

After some careful research, we believe that the algorithms inefficient perfor-
mance is mainly because of the ant’s inefficient moving. Especially in the first
stage, items are distributed sparsely, the probability for an ant to move to a
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place to pick up items or to drop down items is often small, so most of the ant’s
movings are inefficient. At the same time, the number of items loaded by an ant
is an important factor for cluster number and accuracy.

In this paper, we put forward a new algorithm, named swarm intelligence
clustering algorithm based on attractor (SICABA for short). SICABA attacks
the problem in following two aspects:

Firstly, a novel, efficient structure, called attractor, is constructed. Simply, it
is an item set converging the homogeneous items. Moreover, it contains not only
local environment information, such as inner distance, but also global informa-
tion, such as outer distance between attractors in the system. So it can actively
attracts the ant to pick up dissimilar items or drop down similar items.

Secondly, an ant can pick up the farthest item or all items from an attrac-
tor controlled by a simple rule. Furthermore, a parameter is applied to form a
strategy: first stage an ant is prior to pick up all items coarsely but fast from
a cluster; last stage the ant is mostly to pick up the farthest item to precisely
partition. So it can distinctly improve the convergence speed and accuracy.

The paper is organized as follow: the following section introduces the related
work; the next section describes the details of SICABA; the experiments are
showed in the section 4; at last we make our conclusion.

2 Related Work

Deneubourg et al [4] proposed an agent-based model to explain how ants manage
to cluster the corpses of their dead nestmates. Artificial ants (or agents) are
moving randomly on a square grid of cells on which some items are scattered.
Each cell can only contain a single item. Whenever an unloaded ant encounters
an item, this item is picked up with a probability which depends on an estimation
of the density of items of the same type in the neighborhood. When a loaded
ant encounters a free cell on the grid, the probability that this item is dropped
also depends on an estimation of the local density of items of the same type.

Lumer and Faieta [5] (LF for short )extended the model of Deneubourg et
al., using a dissimilarity-based evaluation of the local density, in order to make
it suitable for data clustering. Unfortunately, the resulting number of clusters
is often too high and convergence is slow. Therefore, a number of modifications
were proposed, by Lumer and Faieta themselves as well as by others [6,7].

3 Swarm Intelligence Clustering Algorithm Based on
Attractor

3.1 Basic Concept

Definition 1. Attractor is a data set which has similar items as a whole.

The attractor can attract the ants to pick up the furthest item or all items from
them according to a pick-attractive rate, and drop down an item or an item
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collect in it according to a drop-attractive rate. Furthermore, the attractor has
it own status: active and inactive, if the attractor has not any item the attractor
is considered as inactive, and it can’t attract ant to pick up items or drop down
items any longer; otherwise, it is considered as active and can attract any ant.

Definition 2. Inner distance is the average distance between the items and the
attractor’s centroid for an attractor, represented by Di ∈ [0, 1].

Definition 3. Outer distance is the average distance with the other attractors
in the system for an attractor, represented by Do ∈ [0, 1].

Attractor’s pick-attractive rate and drop-attractive rate are two very impor-
tant features to control an ant to load items or unload items, differentiating
the ant’s randomly choosing method in [4,5]. Pick-attractive rate (PAR) for an
attractor is a numeric feature to indicate the attractor’s affinity attracting the
ant to pick up items, in other word, it indicates the probability for an ant to
pick up an item or all the items from the attractor. If the PAR is greater, the
probability for an ant to pick up items is also greater. The PAR value depends
on the attractor’s item number marked as C, if the number C is less than a
threshold θ , the attractor is a small attractor whose PAR is determined by its
inner distance, outer distance and item number. If the inner distance, the outer
distance and item number are less the PAR is greater; otherwise, if C is greater
than θ the attractor is considered as big one and its PAR is effected by the
maximal distance in the attractor and outer distance. The PAR is given by

PAR =
{

f1(Di)× α1 + f1(Do)× α2 + T (C, θ)× α3 + δ if C < θ
Dm × β1 + f1(Do)× β2 if C ≥ θ

(1)

where the function f1 and T are both descending functions, and we experimented
with T (C, θ) = θ/(C + θ) and f1(x) = 1− x, 0 ≤ α1, α2, α3 ≤ 1 and α1 + α2 +
α3 = 1. δ is a constant parameter to control the choosing strategy: if δ > 1,
the attractor which has few items will have the absolute priority to be chosen
comparing with the attractor which has many items and PAR smaller than 1.
Dmis the maximal distance in the attractor. 0 ≤ β1, β2 ≤ 1 and β1 + β2 = 1 .

Drop-attractive rate (DAR) for an attractor is a contrast feature to indicate
the attractor’s affinity attracting the ant to drop down items. In the same way,
The DAR value firstly depends on C, if the number C is less than the threshold θ
the attractor is small one and the DAR is always small; if C ≥ θ the attractor is
a big one and its DAR is determined by the distance between the items loaded by
an ant and the attractor’s items, and the outer distance also has slight influence.
The DAR is given by

DAR =
{

C/T if C < θ
(1−D)× β1 + Do × β2 if C ≥ θ

(2)

where T is the total number of items in the system, D is the distance between the
loaded items by an ant and the attractor’s items, 0 ≤ β1, β2 ≤ 1 and β1 +β2 = 1
β1is always greater than β2 .
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3.2 Probability Conversion Function

Probability conversion function converts the attractor’s quality and quantity
characters into a pick up probability for an unloaded ant or drop down prob-
ability for an loaded ant. There are usually two related functions. One is for
picking-up probability; another is for dropping probability. Bonabeau et al [8]
put forward a model of division of labour in social insects. In this model, a cer-
tain stimulus and a response threshold value are associated with each task an ant
can perform. The response threshold value is fixed, but the stimulus can change
and represent the need for someone to perform the task. The probability that
an ant starts performing a task with stimulus S and response threshold value μ
is given by

Tn(S;μ) =
Sn

Sn + μn
(3)

where n is a positive constant value.
We utilize the model to the problem at hand simplifying the formula with

n = 1. μis associated with the items collection for the problem, and the S is
determined by the attractor and ant.
Picking up stimulus. An unloaded ant can perform the task: picking up an
item or picking up all items. When the item number of the target attractor
C is less than θ the ant picks up all the items. Obviously, the unloaded ant
should pick up an entire attractor if the attractor is small, homogeneous and not
isolated. It implies that such attractor’s inner distance and outer distance are
small relatively. So the Spick-all is given by

Spick-all = f1(Di)× α1 + f1(Do)× α2 (4)

where Di, Do ∈ [0, 1] represent inner distance and outer distance,0 ≤ α1, α2 ≤ 1
and α1 + α2 = 1 .

While the item number C is greater than θ the attractor is considered as
a big one, so only the most dissimilar item should be picked up. The stimulus
Spick-one for picking up one item is mainly influenced by the furthest distance
and slightly by the outer distance. Spick-one is given by

Spick-one = Dm × β1 + f1(Do)× β2 (5)

where Dm is the maximal distance in the attractor, and 0 ≤ β1, β2 ≤ 1 and
β1 + β2 = 1 .
Drop down stimulus. The stimulus for a loaded ant to drop its items L in
an attractor is mainly based on the local distance D between the loaded items
and the attractor’s items. If the ant loads an item collect, the center of the
loaded items is used to measure the similarity. Furthermore, we also consider
the global factor - outer distance because the outer distance indicates the de-
pendence among the attractors in the system. Stimulus for dropping down Sdrop
is given by

Sdrop = (1−Dm)× β1 + Do × β2 (6)

where 0 ≤ β1, β2 ≤ 1 and β1 + β2 = 1, β1 is always greater than β2
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3.3 Algorithm Description

Based on the above description we have the following algorithm.
Algorithm. (SICABA: Swarm Intelligence Clustering Algorithm Based on At-
tractor)

1.Initialize theta,delta and other parameters;
2.Run k-means algorithm assigned with ATTRACTORNUMBER clusters to
form the original ATTRACTORNUMBER attractors;

3.Giving ants initial attractors, initial states of ants are
unloaded;

4.WHILE(cycle_counter<MAXCYCLENUMBER and NotConvergent){
5.FOR(number of ants ) {
6.IF the ant is unloaded, THEN {

Calculate Pp ;
Compare Pp with a random probability Pr ,
IF Pp < Pr THEN {

Not pick up anything;
According to PAR values, the unloaded ant moves to
the greatest attractor; }

ELSE {
Pick up the most farther items or all items;
Update the attractor’s state according to the
picking task;
According to DAR values, the loaded ant moves to
the greatest attractor; }}

ELSE { //the ant is loaded
Calculate Pd ;
Compare Pd with a random probability Pr,
IF Pd < Pr THEN {

Not drop down;
According to DAR values, the loaded ant moves to
the greatest attractor; }

ELSE {
Drop down the load;
Update the attractor’s state according to the
dropping task;
According to PAR values, the loaded ant moves to
the greatest attractor; }}}}

4 Experimental Results

In this section, we’ll demonstrate the experimental results about the performance
of SICABA and the influence of the parameter δ for clustering performance.

The dataset IRIS chosen from UCI machine learning repository
(http://www.ics.uci.edu/ mlearn/MLRepository.html) are used in this paper.
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IRIS database has 150 records with 4 attributes and 3 classes. All experiments are
performed on a 800-MHz Pentium machine which 512 megabytes main memory,
running on Windows 2000 professional. Programs are written in Windows/Visual
C++ 6.0.

4.1 Clustering Convergence Performance

In this experiment we compare SICABA with LF about the clustering convergent
performance. As we know, the cluster number and convergence performance are
two very important factors for swarm intelligence clustering algorithms. We here
measure the clustering result number when run N cycles. The result is shown in
the Fig.1.
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Fig. 1. Clustering number with training cycle

Fig.1 shows that convergence speed of SICABA is greatly faster than LF,
especially in the first stage, SICABA quickly partitions dataset into a few clus-
ters, how-ever, the LF is very slow to be convergent. The last cluster number of
SICABA is also better than LF. Fig.1 shows that the last number of SICABA is
4 a little greater than the real number 3, but LF is much greater than 3. Because
SICABA initialize ATTRACTORNUMBER (here we experimented with 20)
attractors with K-means, moreover, it picks up all items in the small attractor
at first stage and picks up the farthest items in the big attractor at last stage, so
SICABA can converge greatly faster than LF, furthermore, it also can get much
better clustering result.

4.2 Clustering Accuracy Performance

After demonstrating the good convergence performance we experiment the accu-
racy performance in this section. We analysis the clustered results compared with
LF and k-means. Noted that all the clustered results are best results among 10
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Table 1. Comparison with LF and K-means about clustering accuracy performance

Original

SICABA LF k-means

Iris-setosa (50) Class2(50) Class4(41)
Class1(9)

Class0(50)

Iris-versicolor(50) Class1(32)
Class3(18)

Class2(30)
Class0(20)

Class1(48)
Class2(2)

Iris-virginica(50) Class3(26)
Class0(24)

Class3(24)
Class0(19)
Class1(7)

Class2(36)
Class1(14)

Totle(3) Total(4) Total(5) Total(3)

times repeats. The details of the clustered results for these clustering algorithms
are shown in Table1. SICABA is notablely better than LF: The LF partitions the
dataset into five clusters and two clusters (class0 and class1) mixing the elements
from different original classes, for example, class1 is composed of 7 elements from
Iris-virginica and 9 elements from Iris-setosa. But there is just one mixed cluster
for SICABA. However, SICABA has approximate accuracy performance com-
pared with k-means except one more total cluster number. Surprisingly, they
both precisely cluster the Iris-setosa into a complete cluster and the number of
mixed clusters in SICABA is also smaller than k-means. Because SICABA picks
up all items coarsely but fast from cluster in the first stage and picks up the
furthest item to precisely fine-tune in the last stage, it can converge to fewer
clusters and get better accuracy than LF, even get more homogeneous cluster
than k-means though with more clusters.

4.3 Influence of Parameter δ for the Clustering Performance

The parameter δ in formula (1) is a most important factor to affect the cluster-
ing performance, because it directly determines the picking up strategy. In this
experiment the clustering performance is measured by clustering result number
through 1000 times training. The influence shows in Fig.2.

Fig. 2 shows that if value of δ is greater the clustering performance is better.
From formula 1, we can easily get that directly effect the PAR value, that is
to say, δ affects the probability for the small attractors to be chosen to pick up
items. If δ is greater, the small attractor is more prior to be chosen than the
big one, so SICABA is quicker to converge. As to the last stage, most of the
active attractors are all big one, and doesn’t effect any longer. The probability
of picking up item is mainly determined by the attractor’s furthest item, so
SICABA can precisely adjust the cluster and get better accuracy performance.
Because the PAR values in the case of C > θ is always smaller than 1, obviously,
δ greater than 1 is none meaning. In conclusion, when δ equals 1 SICABA can
get the best performance and implement the efficient strategy: small attractors
prior.
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Fig. 2. Influence of parameter δ

5 Conclusion

This paper puts forward a novel structure in swarm intelligence clustering algo-
rithm, named attractor, which contains not only the local information but also
the global information, so it can actively attract the ant to pick up items or
drop down items and avoid the ant aimless moving. Furthermore, we also im-
plement an efficient strategy: small attractors prior, based on the attractor. The
strategy makes SICABA picks up all items coarsely but fast from cluster in the
first stage and picks up the furthest item to precisely fine-tune. The experiments
prove that it can greatly improve the algorithm convergence speed and cluster-
ing quality compared with LF algorithm and k-means. Although SICABA has
no advantages over classic k-means algorithms on the aspect of space and time
complexity, as a self-organization clustering algorithm, it has great advantages
in robustness, visualization, flexibility and decentralization.

References

1. Becker R., Holland O.E. and Deneubourg J.L: ’From local actions to global tasks:
Stigmergy and collective robotics’. in Brooks R. and Maes P. Artificial Life IV, MIT
Press, 1994.

2. E.Bonabeau, M.Dorigo, G.Theraulaz: Inspiration for optimization from social insect
behaviour. Nature. 406 (2000) 39-42.

3. Gianni Di Caro and Marco Dorigo: AntNet: Distributed Stigmergetic Control for
Communications Networks. Journal of Artificial Intelligence Research 9 (1998)
317-355.

4. Deneubourg J.L., Goss S., Frank N., Sendova-hanks, A.,Detrain C.,Chrerien L.:
The dynamics of collective sorting: robot-like ants and ant-like robots, in: Meyer J.,
Wilson S.W. (Eds.), Proceedings of the First International Conference on Simulation
of Adaptive Behavior: From Animals to Animats, MIT Press/Bradford Books, Cam-
bridge, MA. (1991) 356-363.



504 Q. Li et al.

5. E.Lumer, B.Faieta: Diversity and adaptation in populations of clustering ants . in
J.-A.Meyer, S.W. Wilson(Eds.), Proceedings of the Third International Conference
on Simulation of Adaptive Behavior: From Animals to Animats, Vol.3, MIT Press/
Brad-ford Books, Cambridge, MA. (1994) 501-508.

6. J. Handl, B. Meyer: Improved Ant-Based Clustering and Sorting in a Document
Retrieval Interface. Proc. of the 7th Int. Conf. on Parallel Problem Solving from
Nature. (2002) 913-923.

7. V. Ramos, F. Muge, P. Pina: Self-Organized Data and Image Retrieval as a Conse-
quence of Inter-Dynamic Synergistic Relationships in Artificial Ant Colonies. Soft
Computing Systems: Design, Management and Applications. 87 (2002) 500-509.

8. Bonabeau,E, Dorigo,M, Theraulaz,G: Swarm Intelligence: From Natural to Artificial
Systems ,Oxford Univ. Press, NewYork,1999



 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 505 – 514, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Agent-Based Soft Computing Society with 
Application in the Management of Establishment of 

Hydraulic Fracture in Oil Field 

Fu hua Shang1, Xiao feng Li2, and Jian Xu3 

1 The department of computing Harbin Institute of Technology 
sfh@mtlab.hit.edu.cn  

2 School of the application of computing DaQing Petroleum Institute 
xfli@pislab.com 

3 School of the application of computing DaQing Petroleum Institute 
xujian@pislab.com 

Abstract. Establishment of Hydraulic Fracture in Oil field is a complicated 
system. The process of establishment of project involves many departments, 
which frequently interact each other. In general, The Orient-Object technology 
is not suitable to construct this system, which has these characters. The 
technology of Agent is a new method that analyses and designs the complicated 
system, which is suitable to develop the intricate and dynamic system and is 
able to simulate the society. This paper presents a soft computing society model 
by the methodology of Gaia, based on the characters of establishment of 
Hydraulic Fracture. 

1   Introduction  

The measure of the Hydraulic Fracture is indispensable in order to effectively exploit 
the reservoir. Because of the complexity and uncertainty of the geological deposition, 
the measure of Hydraulic Fracture is complicated. On the other hand, the process of 
establishment of project involves many departments that are frequently interacting 
each other, thus put forward the pressing requirements: how to effectively cooperate 
with each department and complete the establishment of Hydraulic Fracture in the 
sound time and how to construct the system?  Traditionally the modeling method of 
information system has been applied widely in the process of information 
development of corporation such as the orient-requirement methodology [6], the 
orient-data methodology and the orient-object methodology. But these methods have 
some flaws: firstly these methods are suitable to construct the system that has the 
constant framework and every details of interaction have been set down. That is we 
must know the details of interaction and interaction pattern can’t be changed. 
Secondly the extensibility of the system is poor. The function of the system can’t be 
easily added. When the framework of the system is changed we must do a lot work 
that is almost equivalent to redevelop the system. 

With the development of the view point of management, the corporation often 
alters the process of manipulation and workflow. Traditional method can not adapt to 
this transition. Existent information system of corporation is a distributed system, 
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which is a loosely coupled network of entities that work together to make decisions or 
solving problem. In this system data knowledge and control is averagely distributed at 
each node and no node can control all others. As no node has enough resources to 
solving the whole problem, each node need to exchange data knowledge and the state 
of entity and cooperate with each other to solving problems [13] Traditional modeling 
technology can not develop the system which has these above properties. 

Orient-Agent methodology can be useful [9] 
It is open environment that is at least highly dynamic uncertainty and complex [9]. 

In this environment the only method to solve problem is by autonomous Agent. 
Agent is a natural metaphor. Agent society naturally simulates the entities of much 

environment including competitive conditions of many organizations and business, a 
Agent can cooperate with the others to solve problem or compete with the others to 
get resources. 

Data control expertise and resources are distributed [9]. Under some conditions 
distribution data control expertise and resources mean that the centralized method is 
quite difficult to solve these problem. For example the distributed data base system 
that is made up of many distributed data bases which is located at different nodes is 
not adopted to the centralized method to solve problems. In general, we transform this 
system into Multi-Agent systems, in which each data base is half autonomous Agent. 
This paper analyzes and designs the information system of establishment of hydraulic 
fracture, at last presents a Agent soft computing society model by orient-Agent 
methodology. This system that has some characters such as extensibility robustness 
flexibility maintainability fulfils the requirements of corporation.    

2   The Agent-Oriented Methodology 

Existing software development technique ( for example, object-oriented analysis and 
design ) are inadequate for multi-Agent system analysis and design [6]. There is a 
fundamental mismatch between the concepts used by object-oriented developers and 
the agent-oriented perspective. In particular, extant approaches fail to adequately 
capture an agent’s flexible, autonomous problem-solving behavior, the richness of an 
agent’s interactions, and the complexity of an agent system’s organizational structure. 
For these reason, this section outlines a methodology that has been specifically 
tailored to the analysis and design of agent-based complicated system. The main 
models used in this methodology are summarized in Figure 1, which are mainly based 
on the Gaia methodology [6].  

The analysis phase aims to identify what the actual organization of the multiple 
agents should look like. It does this by decomposing the system into abstract “loci of 
control”; i.e., the role to be played in the organization, and the way in which they 
interact accordingly to specific protocols. This defines the role model and interaction 
model, respectively.  

The role model identified the key role in the system. Here a role can be viewed as 
an abstract description of an entity’s expected function. A role is defined by four 
attributes: responsibility, permission, activities, and protocols. 

.
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Fig. 1. Relationship between Models 

Responsibilities determine functionality and, as such, are perhaps the key attribute 
associated with a role. Responsibility is divided into two types: liveness properties 
and safety properties. Liveness properties intuitively state that “something good 
happens”. They describe those states of affairs that an agent must bring about, given 
certain environmental conditions. Following the Gaia notation, liveness properties are 
specified via a liveness expression, which defines the “life-cycle” of the role and is a 
regular expression. Safety properties are invariant. Intuitively, a safety property states 
that “ nothing bad happens”(i.e., that an acceptable state of affairs is maintained 
across all states of execution). Safety requirement are specified by means of a list of 
predicated. These predicates are typically expressed over the variables listed in a 
role’s permission attribute.  

In order to realize responsibilities, a role has a set of permissions. Permissions are 
the “rights” associated with a role. The permissions of a role thus identify the 
resources that are available to that role in order to realize its responsibilities.  

Finally, a role is identified with a number of protocols, which define the way that it 
can interact with other roles. A role model is comprised of a set of role schemata, one 
for each role in the system. A role schema draws together the various attributes 
discussed above into a single place (see Figure 2 )  

In summary, the analysis phase is tasked with collecting all the specification from 
which the design of the computational organization can start (refer to Figure 1). The 
output of the analysis phase should be a triple < PR, PP, OL>, where PR are the 
preliminary roles of the system, PP are the preliminary protocols (which have already 
been discovered to be necessary for the preliminary roles), and OL are the 
organizational rules. 

The design phase starts from the models defined during the analysis phase and 
aims to define the actual agent system in such a way that it can easily be 
implemented. To this end, the design phase has to decide which classes of agents (and 
how many) have to play the roles identified during the analysis phase, which services 
agents must provide to fulfill their role, and what is the actual topology of the 
interaction that flows from the interaction and agent models. 

.
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Role Schema                name of role 

Description                 short English description of the role  
Protocols and Activities       protocols and activities in which the role plays a 

part 
Permissions                 “rights” associated with the role 
Responsibilities 

Liveness               liveness responsibility 
Safety                 safety responsibility 

Fig. 2. Template for Role Schema 

The purpose of the agent model is to document the various agent types that will be 
used in the system under development, and the agent instances that will realize these 
agent types at run-time.  

An agent type is best thought of as a set of agent roles. There may, in fact, be a 
one-to-one correspondence between roles (as identified in role model) and agent 
types. However this need not be the case. A designer can choose to package a number 
of closely related roles in the same agent type for the purpose of convenience.   

The agent model is defined using a simple agent type tree, in which leaf nodes 
correspond to roles, and other nodes correspond to agent types. If an agent type m1 
has children m2 and m3, then this means that m1 is composed of the roles that make 
up m2 and m3. 

The aim of the skill model is to identify the main skills with each agent role. Skills 
mainly consist of the basic services required to be able to perform a role. A service is 
defined as a function of the agent. For each agent service that may be performed by an 
agent, it is necessary to document its properties. Specifically, one must identify the 
inputs, outputs, pre-conditions, and post-conditions of each service.  

The design phase builds on the output of the analysis phase and produces a 
complete specification of the multi-agent system. The design stage can now be 
summarized as the following: 

• .Create an agent model: (1) aggregate roles into agent types, and refine to form 
an agent type hierarchy; (2) document the instance of each agent type using 
instance annotations.  

• .Develop a skill model, by examining activities, protocols, and safety and 
liveness properties of roles.  

• .Develop a knowledge model from interaction model and agent model. Identify 
organizational structures and organizational patterns that respect the 
organizational rules.  

3   Agent-Based Soft Computing Society Model for Establishment 
of Hydraulic Fracture 

In order to identify which components should be contained in a establishment system 
of hydraulic fracture, without loss of generality, we are based on real process of the 
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corporation to extract the components. In this system, firstly a geological requisition 
in which gives the fundamental data of a well is sent to the collaborating department 
of hydraulic fracture, then collaborating department transfer the geological requisition 
to the department of establishment.  The department of establishment corresponds 
with six groups: the discussing group of planning, the decision making group, The 
measure group of conventional fracture, the measure group of CO2 fracture, the 
measure group of multi-fracture, the measure group of limited flow fracture. Every 
fracturing group is corresponding with a group of expertise: such as the analysis of 
geological stress, the production forecast, the evaluation of economy, the design of 
tubing. In addition, a share database is needed. Flow chart sees Fig.3. 

 

Fig. 3. Flow Char of System 

3.1   Analysis of Agent-Based Soft Computing Society  

Based on the above description and the methodology proposed in the previous 
section, it is comparatively straightforward to identify the roles in the system. A role  
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of the collaborating department of fracture is an interface to the user.  The department 
of establishment acts as planning and collaboration. The discussing group of planning 
falls into two roles: one keeping track of the profiles and one checking the profiles. 
The decision making group aggregates the final results. 

The measure group of conventional fracture, the measure group of CO2 fracture, 
the measure group of multi-fracture, and the measure group of limited flow fracture 
act as the roles that cooperate with the expertise to complete the analysis of planning. 
The analysis of geological stress, the production forecast, the evaluation of economy, 
and the design of tubing act as expertise roles.  

With the respective role definitions in place, the next stage is to define the 
associated interaction models for these roles. Here we focus on the interactions 
associated with the department of establishment. 

This role interacts with the collaborating department to obtain the task and 
transfers the task to the discussing group. In there, the mode of fracture is determined 
and the result is returned to the department of establishment, perhaps multi-modes are 
adopted. Following, the department of establishment sends the details of task to the 
concrete measure group and receives the results of the computing. Finally, the 
decision making group aggregate the final results.  

3.2   Design of the Society 

Having completed the analysis of the society, the design phase follows. The first 
model to be generated is the agent model (Fig.4). This shows, for most cases, a one to 
one correspondence between roles and agent types.  

 

Fig. 4. The Agent Model of the Society 
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3.3   Architecture of the Society  

From the above analysis and design phases, it is clear that there are eleven types of 
agents in the soft computing society –user agent, interface agent, planning agent, 
decision making agent, convention fracture agent, CO2fracture agent, multi-fracture 
agent, limited flow fracture agent, share data base agent, service Agent, service 
provider agents are made up of the analysis of geological stress agent, the production 
forecast agent, the evaluation of economy agent, and the design of tubing agent. To this 
end, the architecture of the agent-based soft computing society is shown in Figure 5  

• Interface Agent This agent interacts with the user (or user agent). It asks user to 
provide his personal information and requirements, and provides the user with a 
final decision or advice that best meets the user’s requirement.    

• Planning Agent The planning agent is in charge of the activation and 
synchronization of different agents. It elaborates a work plan and is in charge of 
ensuring that such a work plan is fulfilled. It receives the assignment from the 
interface agent. 

• Decision Making Agent It is in charge of keeping track of the profiles, checking 
the profiles and aggregating the results of computing.  

• Service Agent The service agent is a matchmaker of expertise-one kind of middle 
agent, besides in charge of accessing the share database.  

• Service Provider Agents Service Provider Agents are made up of much expertise. 
It can send back the processed results to the service agent.  

• Share Data Base Agent share data base agent consists of all kinds of data. 

 

Fig. 5. Architecture of Agent-based Soft Computing Society 

.
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4   The Prototype of System  

The most important implementation criterion of such a system is platform independent. 
With  this  in mind, the AgentBuilder (Java Agent Template, http://www.reticular.com,  

 

 

Fig. 6. Agencies of the system 
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http://www.agentbuild.com ) was chosen to support the implementation. AgentBuilder 
provides a set of Java templates and a ubiquitous Java agent infrastructure that makes it 
easy to build systems in a common way. AgentBuilder especially facilitates 
construction of agents that send and receive messages using the emerging standard 
agent communication language KOML(Knowledge Query and Manipulation 
Language). All agents implemented have the ability to exchange KOML messages. 
This greatly increases the interoperability of the system.   

Following the analysis and design phases of the proposed methodology, we worked 
out that the prototype consists of the following agents: one interface agent, one 
planning agent, four measure agents, one decision making agent, one service agent, 
one share data base agent, service provider agents. The system sees Fig.6. 

5    Summary 

This prototype system presents a agent soft computing society model by the orient-
agent methodology. This model can dynamically collaborate with each department to 
work together. In intranet and virtual office, it transparently completes the process of 
establishment of hydraulic fracture, achieves the prospective purpose and satisfies the 
requirement of the corporation.  
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Abstract. This paper proposes a two sub-warms particle swarm optimization 
algorithm (TSPSO) and its iteration equations. The new algorithm assumes that 
particles are divided into two sub-swarms. The two sub-swarms have different 
move directions. One sub-swarm moves toward the global best position. An-
other moves in the opposite direction. Not only its own move experience and 
the best individual’s position of its own sub-swarm, but also the global best po-
sition of the whole swarm can affect each particle’s move in every iteration. If 
the fitness of the global best position can’t be improved for fifteen successive 
steps, the particles of the two sub-swarms are exchanged. At the same time, the 
worst individual of one sub-swarm is replaced with the best individual of an-
other. Then, both TSPSO and PSO are used to resolve ten well-known and 
widely used test functions’ optimization problems. Results show that TSPSO 
has greater optimization efficiency, better optimization performance and more 
advantages in many aspects than PSO. 

1   Introduction 

Particle swarm optimization algorithm (PSO) is an evolutionary computation tech-
nique inspired by social behavior observable in nature, such as flocks of birds and 
schools of fish, proposed by Eberhart and Kennedy in 1995 [1,2]. It is a simple algo-
rithm and can be developed over a very simple theoretical framework and can be 
implemented with a few lines of computer code, requiring only primitive mathemati-
cal operators. Besides, it is computationally inexpensive in terms of both memory 
requirements and speed [3-5]. It was originally developed for optimization in a con-
tinuous space and it has been recently adapted to optimization in binary spaces, pre-
senting good performance also when applied to discontinuous objective functions 
and used in the optimization of many nonlinear functions and in neural networks 
training [4-8]. 

As an evolutionary computation algorithm, PSO is an attractive choice for nonlin-
ear programming because of the characteristics mentioned above. Even so, it is not 
without problems. PSO suffers from premature convergence, tending to get stuck in 
local optima [3,4,7]. We have also found that it suffers from an ineffective explora-
tion strategy, especially around local optima, and thus does not find best solutions as 
quickly as it could. Moreover, adjusting the tunable parameters of PSO to obtain good 
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performance can be a difficult task [3,7]. This paper proposes a two sub-warms parti-
cle swarm optimization algorithm (TSPSO), analyses outline of TSPSO and then uses 
TSPSO to resolve ten well-known test functions’ optimization problems. 

2   Two Sub-warms Particle Swarm Optimization Algorithm 

2.1   PSO Algorithm 

Suppose that the search space is D-dimensional and a particle swarm consists of m  
particles, then the i-th particle of the swarm can be represented by a D-dimensional 
vector, ),,,,( 321 iDiiii xxxxX = , mi ,,2,1= . The velocity of this particle can be 

represented by another D-dimensional vector, ),,,,( 321 iDiiii vvvvV = . The fitness of 

every particle can be evaluated according to the objective function of optimization 
problem. The best previously visited position of the i -th particle is noted as its indi-
vidual best position, ),,,,( 321 iDiiii ppppP = . Define g  as the index of the best particle 

of the whole swarm, the position of the best individual of the whole swarm is noted as 
the global best position 

gP , and the fitness of the global best position is noted as the 

global best fitness 
gF . Then the velocity of particle and its new position will be as-

signed according to the following two equations [1,2,7]: 

))()(( 2211 idgdidididid xprcxprcvv −+−+⋅= ωχ
                               (1) 

ididid vxx +=                                                                                        (2) 

where  is a constriction factor;ω  is called inertia weight; c1 and c2 are two positive 
constants called acceleration coefficients; r1 and r2 are two random numbers uni-
formly from the interval [0, 1]. 

2.2   Outline of TSPSO 

Although PSO finds the optimal value quickly and has attractive optimization perform-
ance to many optimization problems, PSO have two limitations. First, to avoid being 
trapped in local optima, the search space usually is very large so that PSO wastes a 
considerable amount of computational effort by visiting states of poor fitness values. 
Second, each particle in PSO often continues to move roughly in the same direction 
(towards the global best position) until there is a change in the global best position. This 
leads to the convergence of all particles towards local optima whose fitness may be low. 

TSPSO is an extension of PSO based on the idea that changing direction can lead to a 
better solution while PSO searches for the global optima. TSPSO assumes that the parti-
cles are divided into two sub-swarms. The move directions of the two sub-swarms are 
different. One sub-swarm moves toward the global best position. Another moves in the 
opposite direction. Not only its own search experience and the best individual’s position 
of its own sub-swarm, but also the global best position of the whole swarm can affect 
each particle’s search in every iteration. If the fitness of the global best position can’t be 
improved for fifteen successive steps, the particles of the two sub-swarms are ex-
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changed. To extend the superiority of the best individual of each sub-swarm, the worst 
individual of one sub-swarm is replaced with the best individual of another at the same 
time. Once the fitness of the global best particle cannot be improved for some succes-
sive iteration steps, TSPSO can improve the exploration strategy of the whole swarm to 
get better solution by changing the move direction and renewing move information of 
particles. So, the particles in TSPSO may often change move direction and can continue 
to move even if they are trapped in local optima temporarily. The probability of being 
trapped in the local optima can be decreased and the probability of finding the global 
optimum can be increased enormously. 

2.3   Algorithm Equations of TSPSO 

TSPSO have not only the best individual of its own sub-swarm but also the global 
best position of the whole swarm. So in TSPSO, each particle not only moves toward 
the global best position of the whole swarm but also can get information from its own 
search experience and the best individual’s experience of its own sub-swarm. Then 
the velocity of particle and its new position in TSPSO will be assigned according to 
the following two new equations: 

))()()(( 33222111 idpdidgdidididid xprcxprcxprcvv −⋅⋅⋅+−⋅⋅⋅+−⋅⋅+⋅= μμωχ           (3) 

ididid vkxx ⋅+=                                                                                        (4) 

where, as PSO,  is a constriction factor;ω  is called inertia weight; c1, c2 and c3 are 
three positive constants called acceleration coefficients; r1, r2 and r3 are three random 
numbers uniformly from the interval [0, 1]. 

idp is the individual best position in the d-th dimension of the i-th particle; 
pP  is the 

best position of a sub-swarm. 
gP  is the global best position of the whole swarm.  

1μ  and 
1μ  are called influence factors. 

1μ  reflects the influence that the experience 

of the best position of sub-swarm imposes on the i-th particle. 
2μ  reflects the influ-

ence that the experience of the global best position of the whole swarm imposes on 
the i-th particle. As a rule, 

1μ  and 
1μ  are positive decimal fraction. Default values of 

1μ  and 
1μ  could be 5.021 == μμ . 

k  is a sign of movement direction. There are two possible values, -1 and 1, for k . 
If the particle moves toward the global best position, the value of k is 1. Otherwise, 
the value of k is –1 if the particle moves in the opposite direction. 

2.4   TSPSO Algorithm 

TSPSO algorithm can be summarized in the following steps: 

1. Initialize the parameters of TSPSO. 
2. Initialize the state of each particle. Store the individual best position of each par-

ticle. Evaluate and store individual best fitness of each particle. Evaluate and 
store the best position and the best fitness of each sub-swarm. Evaluate and store 
the global best position and global best fitness of whole swarm. 
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3. Update the velocity of particle according to equation (3). Update the position of 
particle according to equation (4). If necessary, deal with particle. 

4. If necessary, update and store the individual best position and individual best fit-
ness of each particle, update and store the best position and the best fitness of 
each sub-swarm, update and store the global best position and global best fitness 
of whole swarm. 

5. If the global fitness is not improved for fifteen successive iteration steps, go to 
step 6. Otherwise, go to step 7. 

6. The particles of the two sub-swarms are exchanged. And the worst individual of 
one sub-swarm is replaced with the best individual of another. 

7. If the stopping condition is not satisfied, go to step 3. Otherwise, stop iterating 
and obtain the result from the global best position and the global best fitness of 
the whole swarm. 

3   Experiments 

3.1   Test Functions 

In order to compare the performance of TSPSO with that of PSO, both TSPSO and 
PSO are employed to resolve ten well-known and widely used test functions’ optimi-
zation problems. The ten test functions are described as follows: 

The first test function is called Function 1: 

)20sin()4sin(5.21),(max 221121 xxxxxxf ⋅⋅⋅+⋅⋅⋅+= ππ , 1.120.3 1 ≤≤− x ,  8.51.4 2 ≤≤ x .   (5) 

Function 1 is a very difficult optimization function and has a global optimum 
(maximum) situated at x=(11.6255, 5.725) with function value f(x)=38.8503. 
        The second test function is called Function 2: 

1
)50()50(

))50()50(sin(
),(max

2
2

2
1

2
2

2
1

21 +
+−+−

+−+−
=

exx

exx
xxf
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Function 2 is also a very difficult optimization function and have many local op-
tima (maxima) but only one global optimum (maximum) situated at x=(50, 50) with 
function value f(x)=1.1511. 

The third test function is Schaffer F6 function: 
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Schaffer F6 function is a difficult optimization function and have a lot of local 
optima (maxima) but only one global optimum (maximum) situated at x=(0, 0) with 
function value f(x)=1. 

The fourth test function is Shubert function: 
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There are about 760 local optima (minima) for Shubert function and one global 
optimum (minimum) situated at x=(-1.42513, -0.80032) with function value f(x)=-
186.7309. Shubert function is a difficult optimization function. 

The fifth test function is Griewangk function (here, n=2): 
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Griewangk function is also a difficult optimization function and has one global 
optimum (minimum) situated at x=(0, 0) with function value f(x)=0. 

The sixth test function is Levy F5 function: 
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There are about 760 local optima (minima) for Levy F5 function and one global 
optimum (minima) situated at x=(-1.3068, 1.4248) with function value f(x)=-
176.1376. 

The seventh test function is Schaffer F7 function: 
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Schaffer F7 function have many local optima (maxima) but only one global op-
timum (maximum) with function value f(x)=7.1580. 
        The eighth test function is Rosenbrock function: 
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Rosenbrock function has one global optimum (minimum) situated at x=(1, 1) with 
function value f(x)=0. 

The ninth test function is De Jong function (here, n=2): 
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De Jong function has one global optimum (minimum) situated at x=(0, 0) with 
function value f(x)=0. 

The tenth test function is Camel function: 
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There are four local optima (minima) for Camel function and two global optima 
(minima) situated at x=(-0.0898 0.7126) or (0.0898, -0.7126) with function value 
f(x)= -1.031628. 
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3.2   Experiments 

The success rate (the probability of algorithm’s finding the global optimal solution) is 
very important for any optimization algorithm. If the success rate is higher, the algo-
rithm can find the global optimal solution easier. So, the first experiment is to compare 
the success rate of TSPSO with that of PSO. In this experiment, both TSPSO and PSO 
run for 4000 iteration steps for every test to ensure that the two algorithms can find 
optimal solution for the last five test functions. In the two algorithms, c1, c2 and c3 are 
set to 2.0. ω  is gradually decreased from 1.8 to 0.02. 

1μ  and 
2μ  are set to 0.5.  is set 

to 0.75. The population of each sub-swarm of TSPSO is set to 30. To compare fairly, 
the population of PSO is set to 60. Because TSPSO and PSO both are stochastic optimi-
zation algorithms, the optimization result of every test may be different. It is hard to 
compare fairly the two algorithms’ optimization performance with result of one or two 
times test. So, both TSPSO and PSO are testing for 500 times respectively for the ten 
test functions. Then, the test results are statistical accounted. The results are averaged 
and summarized in Table 1. 

The convergence time (the time that algorithm spends to find the global optimal solu-
tion) is also important for any optimization algorithm. If the convergence time is 
shorter, the algorithm converges at the global optimal solution faster. So, the second 
experiment is to compare the convergence time of TSPSO with that of PSO. The algo-
rithm parameters of this experiment are the same as that of the first experiment. Fur-
thermore, in this experiment, the error limit is set to 10-5. That is, if the absolute value of 
the error between the optimal solution of test function and the global best fitness of the 
m-th iteration is less than 10-5, then the success iteration of this test is m. As the first 
experiment, both TSPSO and PSO take 500 times trial runs respectively for last five test 
functions, because the last five test functions are comparative easy optimization func-
tions. Then, the test results are also statistical accounted. The results are averaged and 
summarized in Table 2. 

3.3   Discussion About N, the Successive Iteration Steps of the Global Optimal 
Fitness’ not Being Improved 

In TSPSO, if the value of N is too small, the flight of some potential particles may be 
impaired so that the success rate during the search will be decreased, although TSPSO 
keeps the best particle while exchanging particles. On the contrary, if N is too large, 
excessively computing is wasted on the search of poor fitness so that the superiority of 
TSPSO cannot be embodied. To choose appropriate value of N, this paper designs three 
groups of tests as following: the first test is to test the relationships between N and suc-
cess rates with different test functions, the second test is to test the relationships between 
N and success rates with different sizes of sub-swarms, and the last test is to test the 
relationships between N and success rates with different largest permission iteration 
steps. During the three tests, ω  is gradually decreased from 1.8 to 0.02. c1, c2 and c3 are 
set to 2.0.  is set to 0.5. 

1μ  and 
2μ  are set to 0.5. the values of N are respectively  

0, 1, 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100. In the first test, the largest permission 
iteration steps is set to 2000, the sizes of sub-swarms are 30 for the first five test  
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functions above, to test the relationship between the success rates and the value of N 
with different test functions. In the second test, the largest permission iteration steps is 
set to 2000, the sizes of sub-swarms are respectively 10, 20, 30 and 50 for the test func-
tion F1, to test the relationship between the success rates and the value of N with differ-
ent sub-swarm sizes of the test function F1. In the third test, the size of sub-swarms are 
set to 30, the largest permission iteration steps are set to 1000, 2000 and 4000 respec-
tively for the function F1, to test the relationship between the success rates and the value 
of N with different largest permission iteration steps. Because TSPSO is a stochastic 
optimization algorithm, the three tests are testing for 500 times respectively for every 
case. Then, the test results are statistical accounted. The statistics results of the tests are 
showed respectively in Fig. 1, Fig. 2 and Fig. 3. 

 

Fig. 1. Relationships between N and success rates with different test functions 

 

Fig. 2. Relationships between N and success rates with different sizes of sub-swarms 
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Fig. 3. Relationships between N and success rates with different largest iteration steps 

In Fig. 1, for the functions F1 and F2, when N is small, the success rate is quite low, 
with the increasing of N, the success rate becomes gradually higher and achieves the 
highest value with N=15, then with the increasing of N, the success rate decreases 
gradually. For the test function Schaffer F6, the success rate has been 100 percent before 
N reaches 20, then with the increasing of N, it decreases slowly. For the test function 
Shubert and Griewangk, the success rates both achieve the highest value with N=1, then 
they decrease slowly too. On the whole, the value of N ranging from 10 to 20 is rela-
tively proper.  

In Fig. 2, with the increasing of particles’ size, both of the search computing and the 
success rate increase, but the relationship between the success rates of different sub-
swarms’ sizes and the value of N is similar, the sub-swarms’ sizes have little impact on 
the choice of N.  

In Fig. 3, with the increasing of the largest permission iteration steps, the search 
computing and the success rate also increase, but the relationship between the success 
rates of the different largest permission iteration steps and the value of N is similar and 
the different largest permission numbers of iterative steps have also little impact on the 
choice of N. 

So, this paper assumes that the value of N is set to15 in the two experiments. 

4   Results and Discussions 

Table 1 shows the success rate and mean number of fitness of the global best position 
found for the ten test functions with the two algorithms, TSPSO and PSO respectively 
after 500 trial runs. 

By comparing the results of the two algorithms, it is clear to see that the success rate 
of TSPSO is higher than that of PSO for the first five difficult optimization functions 
and the mean number of fitness of the global best position of TSPSO is also better than 
that of PSO for the first five difficult optimization functions. For the last five compara-
ble easy optimization functions, the optimization performance of TSPSO and the opti-
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mization performance of PSO are comparable and both of them are attractive. So, it is 
clear that TSPSO has greater optimization efficiency and better optimization perform-
ance than PSO. 

Table 1. Success rate and mean fitness of functions found for the ten test functions with 
TSPSO and PSO 

TSPSO PSO Test Func-
tions Succ. 

Rate, % 
Mean 

Fitness 
Succ. 

Rate, % 
Mean 

Fitness 
Function 1 93.2 38.843 1 38.666 
Function 2 89.2 1.1493 18.4 1.1332 
Schaffer F6 100 1 56 0.99803 

Shubert 96 -186.58 59.4 -186.44 
Griewangk 99.2 5.8216e-05 68.6 0.00208 

Levy F5 100 -176.1376 100 -176.1376 
Schaffer F7 100 7.1580 100 7.1580 
Rosenbrock 100 0 100 0 

De Jong 100 0 100 0 
Camel 100 -1.0316 100 -1.0316 

Table 2 shows the mean number of success iteration, the maximal number of suc-
cess iteration and the minimal number of success iteration for the last five test func-
tions with the two algorithms, TSPSO and PSO respectively after 500 trial runs. Table 
2 also shows the time needed of one iteration for the last five test functions with 
TSPSO and PSO respectively.  

According to Table 2, the time needed of one iteration of TSPSO is longer than 
that of PSO (the time needed of one iteration of TSPSO is about 1.5 times that of 
PSO), but the mean number of the success iteration of TSPSO is much less than that 
of PSO (the mean number of the success iteration of TSPSO is about 0.3 times that of 
PSO). Besides, the maximal number of success iterations and minimal number of 
success iterations of TSPSO are also less than that of PSO. So it is clear that TSPSO 
can find the global optimal solution more quickly than PSO. 

Table 2.  Mean number of success iterations, maximal number of success iterations, minimal 
number of success iterations and the time needed of one iteration for the last five test functions 
with TSPSO and PSO 

TSPSO PSO Test Func-
tions Mean 

Iter. 
Max. 
Iter. 

Min. 
Iter. 

Time 
Nee./ms 

Mean 
Iter. 

Max. 
Iter. 

Min. 
Iter. 

Time 
Nee./ms 

Levy F5 1061 1765 45 0.89475 3231 3305 3210 0.574 
Schaffer F7 54 404 1 0.8865 2995 3245 1 0.6055 
Rosenbrock 1550 1689 37 0.621 3256 3349 3214 0.375 

De Jong 669 1497 30 0.63275 3212 3221 3189 0.40625 
Camel 1196 1849 72 0.67575 3225 3237 3206 0.40625 



524 G. Chen and J. Yu 

 

5   Conclusions 

This paper proposed TSPSO, which is based on the idea that changing move direction 
can lead to a better solution while searching for the global optimal solution with PSO. 
TSPSO assumes that the particles are divided into two sub-swarms, and each sub-
swarm has a different move direction so that the particle in TSPSO can escape from 
local optima easily by changing move direction. The simulation results for ten well-
known test functions show that TSPSO has greater optimization efficiency, better 
optimization performance and more advantages in many aspects than PSO. However, 
only ten optimization functions had been tested. To fully claim the benefits of 
TSPSO, more researches need to be done. 
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Abstract. A general or agent-based security system is usually constructed hier-
archically and has a central manager acting as head of the whole system. How-
ever, the manager becomes a bottleneck for being connected by each client. It 
can even overload when too many clients request service simultaneously. The 
whole system may collapse when the central manager is attacked. And these 
systems are passive to detect and deal with the secure problem. Hereby we pre-
sent a mobile agent-based P2P Autonomous Security Hole Discovery system 
(PASHD). It can detect infection and network intrusion based on knowledge of 
the local host. Viruses will be removed and connection will be refused after 
identification. In case of a suspicious activity, PASHD initiates a voting ap-
proach to make a collective decision and take further action. This system acts 
self-learning when encountering intrusion or infection with new patterns. And it 
has the capability of autonomous discovery the security hole of hosts in net-
work. The integration of peer-to-peer behavior with mobile agents reduces la-
tency and load; however, flexibility, effectivity, security and cooperation of the 
system are enhanced. 

1   Introduction 

The amount of information is growing incredibly nowadays, including almost every-
thing: various data, files and documents, etc. In 1997 the web search engine-World 
Wide Web Worm had an index of 110,000 web pages [1] while www.google.com 
now claims to index more than a billion web sites and to support more than 220 file 
types [2]. At the same time, relevant security incidents such as unauthorized access, 
system intrusion and virus infection, occur more frequently. It becomes difficult to 
detect viruses and remove them since they turn more sophisticated and follow novel 
infecting patterns. Other unforeseen ways will certainly be employed in future secu-
rity critical incidents. Moreover, the impact of a nefarious activity is extensive for it 
spreads quickly through a network and does severe harm to companies, organizations 



526 J. Zheng et al. 

 

or even whole countries. For example, within 14 hours after the debut of its first copy, 
Code-red virus infected more than 359000 machines, at a rate of 2000 machines per 
minute at its peak [3]. In January 2003, the SQL Slammer worm spread out and 
within 10 minutes infected more than 90% of computers that were vulnerable [4]. 

How can we protect information from theft, destruction or misuse? There are some 
traditional methods to protect our information. Firewalls prevent unauthorized con-
nection, and antivirus software detects corruptive files. Although some ways are ex-
plored to advance these technologies [5] [10], they are not perfect since they are only 
suitable for some situations. The former cannot distinguish appropriate activities from 
illegal ones. The latter only discovers the infected files and fixes them, but is incapa-
ble of preventing intrusion. An Intrusion Detection System (IDS) alerts the system 
administrator for potential attack within network environment so that the administra-
tor takes appropriate action to avoid damage or loss. So it is regarded as a better para-
digm in enterprise network. Intrusion detection technology is broadly studied for its 
advantages, and has developed quickly since proposed by James Anderson in 1980. 
Denning published an intrusion detection model seven years later. Subsequently, on 
this base some prototype systems were generated in the lab. With the development of 
distributed technology, IDS based on distributed technology was studied. The Infor-
mation-technology Promotion Agency in Japan, Purdue University and Iowa State 
University had built their IDS based on agents or mobile agents [8] [9] [12]. They all 
have a manager at top level, which analyzes the information collected by agents at 
lower level residing on various hosts and takes relevant action. Geetha Ramachandran 
and Delbert Hart built a peer-to-peer (P2P) IDS based mobile agents [11]. They pro-
posed a concept of “virtual neighbors” consisting of neighbor nodes. Mobile agents 
are periodically dispatched to neighbors for checking. In this paper we propose a mo-
bile agent-based P2P Autonomous Security Hole Discovery system (PASHD). In 
PASHD mobile agents are only transferred in network when a suspicious activity is 
found. Otherwise, the host takes action according to its judgment based on the local 
knowledge library. And it has the capability of autonomous discovering secure prob-
lems in the network.  

The remaining sections of this paper are organized as follows. Section 2 introduces 
the related work. Section 3 describes the architecture of PASHD and its work ap-
proaches. Section 4 gives the result of simulation on comparison between PASHD 
and traditional IDS. In Section 5 conclusions are drawn about PASHD. 

2   Related Work 

Autonomous Agents for Intrusion Detection (AAFID) [9] follows a hierarchy with root 
agents coordinating information, leaf agents collecting data and transceivers sending 
them back to root agents. These agents are lightweight components and are reconfigur-
able. The lowest leaf agents collect event information and report it to resident trans-
ceivers, which extract and reduce the data and then transmit it to the monitor above it. 
A monitor can manage and control many transceivers residing on various hosts. 

The Information-technology Promotion Agency in Japan has developed a multi-
hosts-IDS named after the Intrusion Detection Agent system (IDA) [8]. IDA watches  
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suspicious events referred to as Marks Left by Suspected Intruder (MLSI). Agents 
roam among hosts involved in an intrusion incident in the network. If a sensor that re-
sides inside the host searching for MLSIs finds a MLSI, the sensor gathers related in-
formation and reports to the top manager, which integrates and analyzes the informa-
tion to decide whether or not a malicious act has occurred. 

The first generation IDS based on agents has only two types of components. One 
collects data from the original host through monitoring packets in the network, and 
sends it to the other to simply analyze. They are static and are not scalable. AAFID 
and IDA are improved, which follow a hierarchical structure. Collected data are clas-
sified and reduced, then the relevant information is sent up to the top level component 
to analyze. The top manager decides whether the network is healthy or not. 

Multi-Agent Intrusion Detection System (MAIDS) [12] is a prototype of IDS 
with lightweight mobile agents. Agents roam among monitored systems, obtain in-
formation from data cleaning agents, classify and extract information, and then 
transfer it up to a user interface and database via mediators. It emphasizes on coop-
eration of self-learning algorithm, data warehouse and mobile agents. The network 
load is reduced due to lightweight agents. 

MA-IDS [7] is a distributed IDS with four components: Manager, Assistant MA, 
Response MA, and Monitor MA. If a certain monitored host detects an intrusion, the 
Monitor directly reports to the Manager on the local host. Otherwise, the Manager 
dispatches the Assistant MA to other monitored hosts to gather information when re-
ceiving request of the Monitor. The Manager analyzes gathered information to make 
the distributed intrusion identification. A Response MA is dispatched to each moni-
tored host to take an intelligent action if a distributed intrusion is found.  

Compared with AAFID and IDA, MAIDS and MA-IDS are enhanced to a certain 
extent. They are built in the architecture, which has monitors at low level to collect 
data and send it back to the central manager. Then the manager analyzes the suspi-
cious activity and makes a decision on what action to respond, so it is vulnerability of 
the whole system. Although it’s hard to directly attack the manager, the system is in a 
dangerous situation if hackers find and attempt to enter it. The unparalleled features 
of mobile agents such as autonomous, intelligent and continuous running are not 
taken full advantage of. Geetha Ramachandran and Delbert Hart try to build a peer-to-
peer IDS based on mobile agents (IDSA), which uses “virtual neighbors” to find vi-
ruses and to prevent illegal intrusion [11]. “Virtual neighbors” are neighbor nodes as a 
unit to take collective actions on suspicious activities. When inconsistent or anoma-
lous behaviors are observed, the observer-neighbor initiates a voting approach to take 
action against the compromised site. However, a node must keep some critical data 
and system configuration information of neighbors, and periodically dispatch agents 
to them. Periodic detection and frequent communication may result in network over-
load and have impact on the overall performance. The most important is that all these 
works only passively discover the fault of network. So we present PASHD without 
periodically dispatching agents between “Virtual neighbors”, which only sends agents 
to the network when finding suspicious activities. It responses rapidly and autono-
mously processes security hole. 
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3   Architecture  

PASHD chiefly consists of seven types of mobile agents, including Monitor, Execu-
tor, Controller, Coordinator, Voting-Agent, Result-Agent and Response-Agent. These 
components are classified into two groups: static and mobile agents. Monitor, Execu-
tor, Controller and Coordinator belong to the former. The latter includes Voting-
Agent, Result-Agent and Response-Agent. Monitors reside on target hosts to watch 
all local activities. When a corruptive event happened and was found by a Monitor, it 
gathers relevant information and reports up to a Controller that analyzes the data to 
make a decision on what to do. If the Controller identifies the event as infection or in-
trusion, it will have an Executor clear the viruses or prevent the network from intru-
sion. Else, it extracts some key data and forwards it to a Coordinator. Then the Coor-
dinator randomly selects some hosts from its host list to make an itinerary, and 
initiates a voting approach, which is applied to all hosts in the itinerary in order to 
monitor the suspicious incident and then make a distributed decision as a unit on 
whether it is illegal or not. If it is considered as vicious, the Coordinator dispatches 
Result-Agents to all other hosts in the group to raise the alarm level and to prepare for 
virus infection and network intrusion. It works as follows in Fig. 1. 

 

Fig. 1. Approach of voting and response 

A node pretends to attack others and sends vicious agents to the network. So the 
whole system is running to acquire the attack characters, and then update all knowledge 
libraries. In this way, PASHD can autonomously detect the security hole of hosts. 
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3.1   Monitor 

In PASHD there are various monitors watching all critical activities such as file op-
eration, privilege access and network connection. Each type of monitor is in charge 
of a specific task. For instance: 

1. To monitor critical system files and execute files. It informs its supervisor 
Controller if it finds suspicious incidents. 

2. To look for signatures of viruses in files. 
3. To collate the sizes of files with stored ones, if there is a change of a certain 

file, the system will pay special attention to it. 
4. To find unauthorized connections 

As a whole, the monitor is a primary unit of PASHD to find problems.  

3.2   Executor 

The Executor is also a primary agent in PASHD, which is responsible for executing 
tasks coming from the Controller above it. These tasks include erasing viruses, fix-
ing files, refusing privilege operation or connection request, and disconnecting net-
work. There are various kinds of Executors, and each does a kind of task. There are 
3 primary types of Executors as follows: 

1. to clear viruses 
2. to restore files 
3. to prevent network connection 

3.3   Controller 

The Controller is a medium component between Executor, Monitor and Coordinator. 
It integrates and analyzes the data reported by Monitors to make a decision on the se-
curity incident. If there is an infection or intrusion, it will dispatch a command to the 
Executor to separate corrupt files, remove viruses or refuse network connections. 
Otherwise the Controller will inform the Coordinator to make sure that the incident is 
malicious and the alarm level of PASHD will rise. Then the Coordinator will launch a 
voting approach to reach a decision. Instead of storing information on neighbor hosts 
as in IDSA, each host has a local knowledge library which stores important configura-
tion information of the local host, sizes of files, patterns of network attack, signatures 
of viruses, etc. The Coordinator updates the library when gaining new security 
knowledge by a voting approach, which is called self-learning. Furthermore, each ac-
tivity of security is assigned a certain weight. The Controller changes the weight of a 
suspicious activity dynamically according to frequency of occurrence over a certain 
time range, which is specified by the agent who notified this host. The weight rises 
with the increasing frequency of an activity, otherwise it drops. However, the weight 
changes without geometric proportion, which rises more and more quickly with the 
increasing frequency of the incident. For example, the weight collection may be 
{…1/16, 1/15, 1/14, 1/12, 1/10, 1/8, 1/4, 1/2, 1}. The weight is added up to 1/10 when 
a certain frequency is arrived. The next weight is 1/8, then 1/4, 1/2, and the last is 1, 
which is the threshold here. Otherwise, the weight is degressive in the reverse  
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direction. When it exceeds the threshold, PASHD identifies it as an infection or intru-
sion. Of course, it is not easy to distinguish normal activities from malicious ones. 
The administrator can correct it if something wrong happened. 

3.4   Coordinator 

As the name implies, the Coordinator coordinates PASHDs in the group. It initiates vot-
ing to arrive at a decision when informed by the Monitor that there is a suspicious inci-
dent. First a Coordinator makes an itinerary by randomly selecting hosts from its host 
list. The itinerary includes the number of destination hosts, IP addresses of hosts and 
source address of the incident. The information consists of the time, the type and the 
characteristic of .the incident. Then the agent is dispatched to hosts one by one accord-
ing to the itinerary. A Result-Agent with a voting paper is sent back to the original Co-
ordinator, which adds up all voting papers with YES-vote. If 2/3 is exceeded, the inci-
dent is regarded as dangerous. The Coordinator is in charge of informing all hosts in the 
group by Response-Agents to take action, and new knowledge is stored in the library via 
the Controller. When a Coordinator dispatches Response-Agents to other hosts, there 
are two patterns to choose: master-slave and sequential. The former is a pattern where a 
master can delegate a task split between two computers to a slave. While the slave is 
away doing its task, the master can continue with its task until the result of its task is 
sent back. The latter is a pattern where the itinerary is separated from agents. The same 
itinerary can be plugged into different agents while the code of agent needs no modify-
ing [6]. Moreover, the Response-Agent takes a task specified by one of three execution 
strategies: immediately, when idle or per x minutes (x is set by system administrator). Of 
course, the PASHD can refuse to comply with the strategy carried by a Response-
Agent. Whether or not to execute is determined by the system configuration. 

3.5   Voting-Agent 

The main goal of Voting-Agent is to inform some hosts in the group to make a collec-
tive decision on a suspicious incident. There are five chief parts in a Voting-agent: vot-
ing sequence no, source address, the itinerary, characteristics of the incident, vote (‘Yes’ 
or ‘No’), times of report and time to life (TTL). The Voting-agent will be dissolved 
when it finishes its task or when TTL is reached. 

3.6   Result-Agent 

A Result-Agent with a voting paper is going to be sent back to the original host where 
a suspicious incident is found after a certain time. It is encrypted for security reason. 
The Coordinator adds up all voting papers to make a final decision whether it is mali-
cious activity or not. 

 

Fig. 2. Format of Voting sheet carried by Voting-Agent 

Seq No Src Itinerary Characteristics Times TTL Vote 
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3.7   Response-Agent 

After identification of infection or intrusion, Response-Agents are dispatched to all 
hosts in the group. Each PASHD host receiving this agent will take appropriate action 
to prevent viruses’ infection or network intrusion. 

4   Simulation and Analysis 

The main principle for computer security is preventing any infection or intrusion. The 
next is preventing infection spreading, and the last is identifying the area that has been 
already infected. So it is a key factor for the antivirus software and IDS to detect infec-
tion or intrusion and take action as early as possible. Low latency will improve the per-
formance of IDS. A reduction of communication in the network will do, too. We did a 
simulation in Java to study the latency and communication of traditional IDS, MAIDS, 
IDSA and PASHD. The network topology is randomly generated, and the host where a 
security incident occurs and the host owning the manager in traditional IDS and 
MAIDS are also randomly selected from all hosts. Let’s consider the scenario: a cer-
tain host is infected and detected, it is reported to the central manager first in traditional 
IDS and MAIDS, and then the Manager informs all hosts to take action. In IDSA and 
PASHD this host directly notifies all other hosts. We define the range from the time 
that incident occurs, till the time when all hosts took action as the total latency of the 
whole system. All communications including reporting and giving notices are defined 
as the total load of the whole system. The average latency is the value that the total la-
tency divides the number of nodes involved in the voting approach, and the average 
load is the value that the total load divides the number of nodes involved in the voting.  

It is assumed that those hosts in close range to each other will be arranged together 
in the itinerary and that periodically dispatching mobile agents to neighbors only hap-
pens once in IDSA. Fig. 3 and Fig. 4 show the total latency and total load of the 
whole system. Fig. 5 and Fig. 6 show the average latency and load.  

Conclusions are drawn as follows from Figures 3 and Figure 4: 

1. The total latency and total load of IDS, MAIDS, IDSA and PASHD are in-
creased with the rising number of hosts  

2. Compared with IDS, the total latency of MAIDS, IDSA and PASHD in-
creases gradually with rising number of network nodes. When there are 5 
nodes in the network, the total latency of them are almost the same. How-
ever, when there are 10, 15, and 20 nodes, the total latency of IDS based on 
agent is 65%, 60%, 45% of that of IDS respectively. It is obvious that IDS 
based on mobile agents would be more effective. 

3. The total latency of PASHD is lower than that of IDS, MAIDS and IDSA. 
So it can take action earlier than others when encountering infection or in-
trusion. 

4. The total load of PASHD is the lowest of all. Although we assume that peri-
odically dispatching agents to neighbors only happens once, the total load of 
IDSA is higher approximately 50% than that of others. It will have a bad in-
fluence on its performance. 
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Fig. 3. Total latency of IDS, MAIDS, IDSA 
and PASHD 

Fig. 4. Total load of IDS, MAIDS, IDSA 
and PASHD 
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Fig. 5. The average latency of IDS, MAIDS, 
IDSA and PASHD 

Fig. 6.The average load of IDS, MAIDS, 
IDSA and PASHD 

Like above, again Figures 5 and Figure 6 are almost the same. So as far as the average 
latency and load are concerned, we arrive at similar conclusions. 

1. The average latency and load of IDS, MAIDS, IDSA and PASHD are in-
creased with the rising number of hosts 

2. Compared with IDS, the average latencies of MAIDS, IDSA and PASHD 
rises gradually with the rising number of network nodes. The average laten-
cies of MAIDS, IDSA and PASHD are approximately 65%, 60% and 45% 
of that of IDS when the number of nodes in the network is 10, 15, and 20 re-
spectively. Again it is obvious that IDS based on mobile agents is more suit-
able for large-scale network than traditional IDS. 

3. The average latency of PASHD is lower than that of others. It is more effec-
tive for taking action earlier than others when encountering infection or in-
trusion. 

4. The average latency of IDSA is close to that of PASHD and that of MAIDS. 
However, the load of PASHD is 50% lower than that of IDSA. 
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In a word, PASHD does well in latency and overhead. Its average latency and load 
rise gradually with the number of nodes rising, so it is suitable for the large-scale 
network. The performance of MAIDS seems to be similar to that of PASHD. How-
ever, the architectures of them are essentially different. By using distributive detection 
approach for monitoring critical information, it is harder for someone to compromise 
the data and thereby affect the whole system. In PASHD all hosts are peer-to-peer and 
without the central host, so it is not easy to collapse when attacked. 

5   Conclusion 

Integrating peer-to-peer behavior with mobile agents, the flexibility, extensibility, 
security and cooperation ability of PASHD are enhanced. It uses a knowledge li-
brary including critical information about the system and signatures of viruses on 
the local host. It only launches voting approaches to reach a cooperative decision 
when a suspicious event occurs. Otherwise, PASHD makes decisions about infec-
tion or intrusion depending on its local knowledge library instead of being periodi-
cally checked by its neighbors. Thus the latency and load of the network is reduced 
and fault-tolerance is increased. When compared with IDSA, overhead is success-
fully dropped with low latency at the same time in PASHD. The library of PASHD 
can be updated by itself through voting. A Response-Agent roaming in network ac-
cording to its itinerary skips a host, which is inactive and cannot be reached. The 
host will be recorded by sending back an agent to the original host, which initiates a 
Response-Agent with that same task again when it reboots.  

For the asynchronous nature and continuity of mobile agents, the network 
needn’t be active when mobile agents are sent out for work. An agent can wait until 
the network turns active before it returns. PASHD based on mobile agents works 
well in high latency links (i.e. slow networks). Agents are transferred on ATP, 
which is modeled on top of the HTTP protocol, so PASHD can scale to wide area 
networks, too. 

Otherwise, PASHD can send testing agent to other hosts to detect the fault of the 
whole system. So it owns the ability to autonomously discover the security hole of 
network and remedy it. 

There is much further work to improve the performance of PASHD. More Moni-
tors, Executors need to be developed to detect intrusion with unexpected patterns 
and viruses with unknown signatures.  

This work was supported in part by 863-2002AA103011-5, Shanghai Municipal 
R&D Foundation under contracts 035107008, MoE R&D Foundation and Shanghai 
Key Laboratory of Intelligent Information Processing (IIPL). 
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Abstract. A modified clustering algorithm based on swarm intelligence (MSIC) 
is proposed in this paper. To improve the running efficiency of the SIC algo-
rithm, the random projection of the patterns into the plane is modified. The pat-
terns are firstly analyzed by principal component analysis (PCA) and the first 
two principal components (PCs) are retained. The patterns are projected into the 
plane according to their corresponding PCs, which are processed as the projec-
tion coordinates. This modification ensures that the pattern will be similar to the 
ones in its local surroundings and the rough clustering has been formed at the 
beginning time of the algorithm. Moreover, to reduce the influence of the pa-
rameters on the algorithm, a simple way to calculate the swarm similarity of the 
pattern is presented. The adjusting formula of the similarity threshold is also 
proposed. Finally, the modified algorithm is compared with the original one and 
the results prove the efficiency has been improved significantly. 

1   Introduction 

Swarm Intelligence is one kind of intelligent behavior shown by the cooperation of 
collective insects, such as ants and bees. Swarm Intelligence Clustering (SIC) is a 
clustering algorithm imitating the behavior of ants. Researchers have found that some 
ants can pick up the dead bodies randomly distributed in the nests and group them 
with different sizes. The large group of bodies attracts the ant workers to deposit more 
dead bodies and becomes larger and larger. The essence of this phenomenon is a posi-
tive feedback [1]. Deneubourg etc [2] gave the basic model to explain it, which was 
called BM model. Lumer and Faieta [3] extended the model and applied it in data 
analysis. In their analysis, the data object with n attributes can be looked as a point in 

n dimensional space. The point in the nR  space is projected into a low dimensional 
space (often a two dimensional plane). The similarity of the data object with other 

                                                           
1  Supported by the National Natural Science Foundations of China under grant No. 50128504 

and No.60443007. 
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ones in local surroundings is calculated to decide whether the object should be picked 
up or dropped. Wu[4] studied the SIC algorithm systematically. He defined some 
important concepts such as swarm similarity, similarity coefficient and probability 
conversion function. He also suggested a more simple probability conversion function 
to reduce the dependence of the algorithm on the parameters. 

Compared with other clustering algorithms, such as k-means clustering, the SIC 
algorithm can find the number of clustering centers self-organizationally. The visuali-
zation and robustness of the algorithm are also very distinct. The parallel property 
built in the algorithm makes it very suitable to the clustering of big data sets. But the 
SIC algorithm also has some disadvantages. For example, its running efficiency is not 
high and there are no theories to guide the selections of the parameters [5]. To solve 
these problems, a modified SCI algorithm is proposed in this paper. First, Principal 
Component Analysis (PCA) is suggested to reduce the randomicity when the patterns 
are projected into the plane. Namely, the patterns are processed by PCA, then the first 
two principal components (PCs) are retained and processed as the pattern’s projection 
coordinates. This pro-processing ensures that the patterns close in the nR  space are 
also close in the projection plane. So the pattern is of high similarity with others in its 
local surroundings at the beginning of the algorithm. Moreover, the similarity of the 
pattern is calculated by a more simple way, which reduces the influence of the pa-
rameters on the algorithm. 

The paper is organized as follows. The SIC algorithm is introduced in section 2. 
Then the modified SIC algorithm is proposed in section 3. The simulation and the 
comparison of SIC and MSIC algorithm are shown in section 4. Finally the conclu-
sion is given in section 5. 

2   The Swarm Intelligence Clustering Algorithm (SIC) 

Some important concepts in the SIC algorithm are firstly introduced as follows [4,5]. 

Local surroundings: it is a neighboring region of one pattern, which is often a circle 
region. The center of the circle is the point of the pattern’s co-
ordinates and the radius is r. 

Swarm similarity: the integrated similarity of the pattern with other patterns in its 
local surroundings. The similarity is usually measured by the 
distance between the patterns. 

Probability conversion function: it is a function that converts the swarm similarity 
into the probability of picking up or dropping the pattern by the 
ant. 

In the SIC algorithm, the patterns which are going to be clustered are projected 
into a two-dimensional plane randomly. Then the ant calculates the swarm similarity 
of the pattern with others in its local surroundings. And the swarm similarity will be 
turned into the probability to pick up or drop the pattern through the probability 
conversion function. The patterns can be clustered after many cycles via the actions 
of the ant swarm. 
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The swarm similarity is calculated by the following formula, 
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Where, Neigh(r) represents the local surroundings of the pattern iO , which is a 
circle region with the radius r. ),( ji OOd is the distance between the pattern iO  and 

jO , and usually Euclidean distance is preferred. α  is the swarm similarity coeffi-
cient, which has an important influence on the number of the clustering centers and 
the speed of the algorithm. 

The probability conversion function converts the swarm similarity into the prob-
ability of picking up or dropping the patterns by the ant. In the reference [4], a more 
simple probability conversion function than that in BM was applied, which is shown 
in the formula (2) and (3). 
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Where, dp PP , are the probabilities of picking up and dropping the pattern respec-

tively.ε  is a little real number. dp PP ,  are compared with the threshold rP  to de-

cide whether the patter should be picked up or dropped. Only the parameter k is 

needed to choose properly after the simplicity rather than 1k  and 2k  in the BM algo-
rithm[2]. So the parameters are simplified. But there is still no theoretical guidance to 
determine the value of k in the practical application. 

The process of SIC algorithm can be referred the document [5] and [6]. The termi-
nating condition of the algorithm has two cases: one is up to the maximum cycle 
times, the other is no pattern is moved again. The former one is usually applied be-
cause the latter is complex in computation. 

3   The Modified Swarm Intelligence Clustering Algorithm (MSIC) 

To improve the efficiency and simplify the parameters of the SIC algorithm, a modi-
fied algorithm is proposed as follows. 

3.1   Modifying the Random Projection of the Patterns Based on PCA 

At the beginning time of SIC algorithm, the patterns are projected into the plane ran-
domly and one pattern is corresponded with a pair of coordinates. Because the coor-
dinates is randomly selected, the similarity of the pattern with the ones in its local 
surroundings is very low. This will induce that the pattern is easily picked up but not 
easily dropped by the ant. Therefore, it will take a long time from the beginning to the 
time when the pattern is similar to the ones near it. 



538 L. Zhang, Q. Cao, and J. Lee 

 

How to keep the patterns close after the projection if they are close in the nR  
space? We suggest that the patterns should be pre-processed by principal component 
analysis (PCA). Then the first two principal components (PCs) are retained and proc-
essed. According to the principles of PCA [7], the first two PCs can remain the most 
information of original patterns. If the patterns are projected corresponding with the 
coordinates composed by the processed two PCs, it will be ensured that the patterns 

near in the nR  space will be near in the projection plane. As a result, the rough clus-
tering of the patterns has been formed at the beginning time of the modified algo-
rithm. This result is the similar as that of the SIC algorithm after many cycles, so the 
running time is reduced significantly. 

How to process the PCs will be introduced detailed in sections 4. 

3.2   Modifying the Formula of Swarm Similarity 

The similarity of the pattern is computed as the formula (1) in the SIC algorithm, 
where the similarity coefficient will influence on the number of the clustering centers 
as well as the speed of the algorithm. If α  is too large, the patterns which are not 
similar will be clustered together. If α  is too small, the patterns which are similar 
will be clustered into different groups. In the reference [4], Wu suggested that α  
should be changed with the cycles increasing. But there is no theory to guide how to 
change it. The change of α  is various at different applications, so it is difficult to 
determine it properly. In addition, the probability conversion function is calculated as 
the formula (2) and (3), where the parameter k has an important influence on the 
probability. But how to select k is also a problem. 

To avoid the influence of α  and k on the clustering results, a more simple similar-
ity computing method is presented. From the formula (1), it can be seen that the es-
sence to measuring the similarity is the distance between the patterns. Therefore, the 
similarity is represented directly by the distance between the patterns in this paper. 

The similarity of the pattern iO  with others is. 
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Where, n is the number of the patterns in the local surroundings of the pattern iO . 

The means of other signs are the same as those in formula (1). The larger )( iOf  is, 

the smaller the pattern iO  ‘s similarity is. 

Dissimilar to the SIC algorithm, the MSIC algorithm doesn’t apply the probability 

conversion function. The threshold of the similarity F is set, and )( iOf  is compared 

with F to determine whether the pattern is picked up or dropped. This simple way is 
easily computed and avoiding the influence of k on the algorithm. Because the dis-
tances of the patterns are large at the beginning time of the clustering, F should be set a 

large value. With the increasing of the cycles, )( iOf  will be decreased, so F should 

be reduced correspondingly. The adjusting formula of F in the MSIC algorithm is 
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Where, k is a real number smaller than 1. t is the number of cycles The formula (5) 
means F(t) will be reduced per 500 cycles. “500 cycles” is a relative concept, which 
influences the reducing speed of F(t) as well as k. These two parameters can be ad-
justed according to the changing speed of the similarity.  

3.3   The Process of MSIC Algorithm 

The detailed process of the MSIC algorithm is as follows. 
Algorithm: the MSIC algorithm 
Inputs: The patterns waiting to be clustered 
Outputs: The clustered patterns or the centers of the clustered groups 

Process: 1: The initialization of all parameters: cycle_number (the maximum cycle 
times); ant_number (the number of the ants), the radius r; the initial 
threshold of the similarity F(1); the adjusting parameter of the similar-
ity threshold k. 

2: The patterns are processed by PCA, and the first two PCs are retained. 
Then the PCs are processed as the coordinates and the patterns are pro-
jected into the plane according to its processed PCs. 

               3: Set the initial patterns and set the coordinates of the patterns to the ants. 
The initial load states of the ants are without any load. 

               4: for i=1:cycle_number 
4.1  for j=1:ant_number 

                          4.1.1 take the coordinates of the ant as the center, r as the radius, 
calculate the similarity f of the ant’s pattern in its local sur-
roundings by the formula (4) 

                          4.1.2 if load_ant(j)=0, compare f with the threshold F(i). If 
f ≤ F(i) the ant picks up the pattern and the ant’s load is 

set to 1, namely load_ant(j)=1. Otherwise, the ant doesn’t 
pick up the pattern and new pattern and corresponding coor-
dinates are set to the ant. 

4.1.3 If load_ant(j)=1, compare f with the threshold F(i). If f>F(i), 
the ant drops the pattern and the current coordinates of the 
ant are set to the pattern. load_ant(j)=0.  Then a new pattern 
and its coordinates are set to the ant randomly. Otherwise, the 
ant doesn’t drop the pattern and new coordinates are set to 
the ant again. 

End j ( up to the maximum number of the ants) 
           4.2 Calculate the threshold F(i) by the formula (5) 
        End i ( up to the maximum number of the cycles) 

5: Calculate the clustering center of all groups and output the clustered 

,
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4   The Comparison of MSIC and SIC Algorithms 

To compare the performance of SIC and MSIC algorithms, the data in the reference 
[4] is analyzed by the MSIC algorithm. The experiment data is from the machine 
learning database of the website http://www.ics.uci.edu/~mlearn/MLRepository.html. 
It is the data of the iris. The number of the items in the data set is 150 and each item 
has 4 attributes. The number of classes is 3. 

The parameters in two algorithms are listed in the table 1. It can be seen that the 
MSIC algorithm avoids the influence of the parameters α  and k, which may be se-
lected improperly. 

Table 1. The comparison of two algorithms 

Parameters SIC algorithm MSIC algorithm 
The maximum cycle times 60000 10000 
The number of ants: 6 6 
The size of the projection 
plane 

480 450 80  

The radius r=20 r=5 
The similarity coefficient α =0.4-0.3 \ 
Others k=0.1 

(in the formula 2) 
k 0.95 
(in the formula 5) 

Others Pr not mentioned  F(1)=1.8 

In the MSIC algorithm, the patterns are firstly analyzed by PCA and the first two 
PCs are retained. The two PCs remain about 97.76 percent of the information of origi-
nal data. Then the PCs are processed as follows: 

(1) Enlarging: Because the PCs are very small, they are multiplied by 10 to be 
distinguished easily. 

(2) Rounding 
(3) Shifting: Finding the minimums of the fist PC and the second PC respec-

tively. Subtracting the minimums from the pair of PCs and the last processed 
values are obtained. 

The two PCs after the processing are taken as the projection coordinates of the pat-
tern (The first PC as x-coordinate and the second PC as y-coordinate). The aim of 
these processing is making the coordinates of the patterns distributed in the first quad-
rant and identified easily. 

The projections of the patterns at the beginning of the algorithms are shown in the 
Fig. 1. We apply three signs to identify different classes. It can be seen from (a) in Fig.1, 
the patterns are randomly distributed in the projection plane in the SIC algorithm. While 
in (b) of Fig. 1, some patterns have been divided from others after they are projected 
according to their processed PCs. Especially the patterns of the class one (signed as ) 
are distinct from other two classes. The projection way in the MSIC algorithm ensures 
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that the rough clustering has been formed at the beginning of the algorithm, which is 
similar as the result of the SIC algorithm after several hundreds or thousands of cycles. 

 
(a) the SIC algorithm 

 
(b) the MSIC algorithm 

Fig. 1. The projection of the patterns in two algorithms 

 

Fig. 2.  The clustering result of the MSIC algorithm 
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In this sample, the MSIC algorithm will cluster the patterns into three classes after 
about 8000-10000 cycles while the SIC algorithm needs 60000 cycles. If the parame-
ters in the two algorithms, such as the number of the ants, are the same, the running 
efficiency of the algorithm is dependent mainly on the number of cycles. So the run-
ning time of the MSIC algorithm is reduced. The clustering results of the MSIC algo-
rithm are shown in the Fig 2. The average accuracy is 90.3 percent which has no big 
difference with 90 percent of the SIC algorithm in the reference [4]. 

5   Conclusions 

This paper focuses on a modified clustering algorithm based on swarm intelligence 
(MSIC). To improve the efficiency of the SIC algorithm, PCA is suggested to reduce 
the randomicity when the patterns are projected into the plane. The first two PCs of the 
pattern are processed as the corresponding projection coordinates. This projection way 
ensures the running time of the algorithm can be reduced because the rough clustering 
has been formed. Moreover, a simple way to calculate the similarity based on the dis-
tance between the patterns is presented and the adjusting formula of the similarity 
threshold is given. The comparison results of the MSIC algorithm and the SIC algo-
rithm prove the running efficiency of the MSIC algorithm is improved. In the MSIC 
algorithm, how to measure the swarm similarity more properly and how to adjust the 
similarity threshold need to be further studied. 
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Abstract. Particle Swarm Optimization (PSO) is a population-based evolution-
ary search technique, which has comparable performance with Genetic algo-
rithm. The existing PSOs, however, are not global-convergence-guaranteed al-
gorithms, because the evolution equation of PSO, make the particle only search 
in a finite sampling space. In [10,11], a Quantum-behaved Particle Swarm Op-
timization algorithm is proposed that outperforms traditional PSOs in search 
ability as well as having less parameter. This paper focuses on discussing how 
to select parameter when QPSO is practically applied. After the QPSO algo-
rithm is described, the experiment results of stochastic simulation are given to 
show how the selection of the parameter value influences the convergence of 
the particle in QPSO. Finally, two parameter control methods are presented and 
experiment results on the benchmark functions testify their efficiency. 

1   Introduction 

Particle Swarm Optimization (PSO), originally proposed by J. Kennedy and R. Eber-
hart [5], has become a most fascinating branch of evolutionary computation. The 
underlying motivation for the development of PSO algorithm was social behavior of 
animals such as bird flocking, fish schooling, and swarm theory. Like genetic algo-
rithm (GA), PSO is a population-based random search technique but that outperforms 
GA in many practical applications, particularly in nonlinear optimization problems. 
In the Standard PSO model, each individual is treated as a volume-less particle in the 
D-dimensional space, with the position and velocity of ith particle represented as 

),,,( 21 iDiii XXXX = and ),,,( 21 iDiii VVVV = . The particles move according to the 

following equation: 

)(*)(*)(*)(** 21 idgidididid XPRandcXPrandcVwV −⋅+−⋅+=             (1a) 

ididid VXX +=                                             (1b) 

where 
1c  and 

2c  are positive constant and rand() and Rand() are two random func-

tions in the range of [0,1]. Parameter w is the inertia weight introduced to accelerate 
the convergence speed of the PSO. Vector ),,,( 21 iDiii PPPP =  is the best previ-

ous position (the position giving the best fitness value) of particle i called pbest, and 
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vector ),,,( 21 gDggg PPPP =  is the position of the best particle among all the parti-

cles in the population and called gbest. 
Since the origin of PSO, many researchers have been devoted to improving its per-

formance, and therefore, many revised versions of PSO have been proposed, among 
which the most important are those proposed in ([8], [4], [1], [9], [6], [7], [2]). These 
various improved versions, generally speaking, can enhance the convergence per-
formance and the search ability of PSO considerably. However, the evolution equa-
tion (1) that these PSO algorithms are based on cannot guarantee the algorithm to find 
out the global optimum with probability 1, that is, SPSO is not a global optimization 
algorithm, as F. van den Bergh has demonstrated [3]. In the previous work presented 
in [10] and [11], we proposed a global convergence-guaranteed search technique, 
Quantum-behaved Particle Swarm Optimization algorithm, whose performance is 
superior to the Standard PDO (SPSO) and PSO with contractor. 

The purpose of this paper is to discuss how to select the parameter of ensure that 
the QPSO has a good performance. The rest part of the paper is organized as follows. 
In Section 2, the ideology of QPSO is formulated in detail. In Section 3, some ex-
periment result of stochastic simulation is presented to show how to select the pa-
rameter to guarantee the convergence of the individual particle. Two methods of pa-
rameter control are proposed, one of which is adaptive control approach. The experi-
ment results of the two methods on benchmark functions are given in Section 4. And 
the paper is concluded in Section 5. 

2   Quantum-Behaved Particle Swarm Optimization 

In Quantum-behaved Particle Swarm Optimization (QPSO), the particle moves ac-
cording to the following equation: 
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(),*)1(* randPPp gdidid =−+= ϕϕϕ                                   (2b) 

        (),)/1ln(** RanduuXmbestpX iddidid =−±= α                             (2c) 

where mbest is the mean best position among the particles. 
idp , a stochastic point 

between 
idP  and 

gdP , is the local attractor on the dth dimension of the ith particle, ϕ  is 

a random umber distributed uniformly on [0,1], u is another uniformly-distributed 
random number on [0,1] and α  is a parameter of QPSO that is called Contraction-
Expansion Coefficient. The Quantum-behaved Particle Swarm Optimization (QPSO) 
Algorithm in [11] is described as follows. 

(1) Initialize an array of particles with random position and velocities inside the 
problem space. 

(2) Determine the mean best position among the particles by  
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(3) Evaluate the desired objective function (for example minimization) for each 
particle and compare with the particle’s previous best values: If the current value 
is less than the previous best value, then set the best value to the current value. 
That is, if )()( ii PfXf < , then 

ii PX = . 

(4) Determine the current global position minimum among the particle’s best posi-
tions. That is: ))((minarg

1
i

Mi
Pfg

≤≤
=  (M is the population size). 

(5) Compare the current global position to the previous global: if the current global 
position is less than the previous global position; then set the global position to 
the current global. 

(6) For each dimension of the particle, get a stochastic point between 
idP  and 

gdP : 

(),*)1(* randPPp gdidid =−+= ϕϕϕ  

(7) Attain the new position by stochastic equation: 

(),)/1ln(** RanduuXmbestpX iddidid =−±= α  

(8) Repeat steps (2)-(7) until a stop criterion is satisfied OR a pre-specified number 
of iterations are completed. 

The stochastic evolution equation comes from a quantum δ  potential well model 
proposed in [10]. By establishing a δ potential well on point 

idp  for each dimension 

to prevent the particle from explosion, we can get the particle’s probability distribu-
tion in space 

LpX
idid

idide
L

pXD −−=− 21
)(                                    (3) 

where L , which is relevant to mass of the particle and the intensity of the potential, is 
characteristic length of the distribution function. In practice, L is the most important 
variable in this model and determines the probable search scope of the individual 
particle. 

Through Monte Carlo Anti-transformation, we can get following stochastic equa-
tion  

          (),)1ln(
2

Randuu
L

pX idid =±=                               (4) 

where u is random number uniformly distributed on (0,1).  
There two approaches of evaluating the variable L. In [10], L is evaluated by the 

gap between the particle’s current position and point 
idp . That is 

idid XpL −= **2 α                                         (5) 

and thus equation (5) can be written as 

)/1ln(** uXppX idididid −±= α                                 (6) 

where α  is the only parameter of the algorithm. The PSO with evolution equation (6) 
is called Quantum Delta-Potential-Well-based Particle Swarm Optimization 
(QDPSO). 
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In [11], a global point, Mean Best Position of the population is introduced in PSO 
system . The global point denoted as mbest is defined by (2a). The L is evaluated by  

idid XmbestL −= **2 α                                      (7) 

and therefore the equation (6) become equation (2c). Here we rewrite it as  

)/1ln(** uXmbestpX idididid −±= α                             (8) 

where α  is the same as that in equation (5) , (6) and is called Contraction-Expansion 
Coefficient, which can be used to control the convergence of the PSO algorithm. The 
PSO with equation (8) is named Quantum-behaved Particle Swarm Optimization 
(QPSO). The experiment results testify that QPSO has better performance than 
QDPSO [11].  

3   Parameter Selection and Convergence Behavior of the Particle 
in QPSO  

In QPSO, Contraction-Expansion Coefficient is a vital parameter to the convergence 
of the individual particle in QPSO, and therefore exerts significant influence on con-
vergence of the algorithm. Mathematically, there are many forms of convergence of 
stochastic process, and different forms of convergence have different conditions that 
the parameter must satisfy. In this paper, we do not mean to analyze theoretically the 
convergence process of the individual particle in QPSO, but implement stochastic 
simulation to discover the knowledge about convergence of the particle. 

For simplicity, we consider the evolution equation (6) of QDPSO in one-
dimensional space. The 

idp is denoted as point p. In practice, when ∞→t , the point 

p of the individual particle and the Mean Best Position point mbest will converge to 
the same point, and consequently, the particle in QDPSO and that in QPSO have the 
same convergence condition for parameter α , except that they have different conver-
gence rate. 

In our stochastic simulation, the point p is fixed at x=0, and the initial position of 
the particle is set to be 1000, that is x(0)=1000 when t=0. In the simulation processes, 
the value of Contraction-Expansion Coefficient are set to be 0.7, 1.0, 1.5, 1.7, 1.8 and 
2.0 respectively, and the number of times the stochastic simulation executes are 1000, 
1500, 5000, 1500, 50,000, and 7000 respectively. When the stochastic simulation is 
executing, the logarithmic value of the distance between current position x(t) and the 
point p is recorded. The results of simulation experiment are shown in from Figure 1 
to Figure 6. 

From the results of stochastic simulation, we can conclude that when 7.1≤α , the 
particle will converge to the point p, and when 8.1≥α , it will diverge. Therefore 
there must be such a threshold value ]8.1,7.1[0 ∈α that the particle converges if 

0αα ≤ , and diverges otherwise. To get more precise value of 
0α , we need to do 

simulation experiment with α  set to be the value between 1.7 and 1.8 by more times.  
However, for practical application of QPSO, the knowledge about parameter α we 
acquired so far is adequate. 
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Fig. 1. α = 0.7    Fig. 2. α = 1.0 

  
Fig. 3. α = 1.7                                                  Fig. 4. α = 1.7 

  

Fig. 5. α = 1.8                                           Fig. 6. α = 2.0 

4   Parameter Control and Experiment Results 

When Quantum-behaved Particle Swarm Optimization algorithm is applied to practical 
problems, there are several control methods for parameter α . A simple one is that α  is 
set to be a fixed value when the algorithm is running. But this approach is lack of ro-
bustness. Another efficient method is linear-decreasing method that decreasing the value 
of α  linearly as the algorithm is running. That is, the value of α  is determined by 

221

)(
)( αααα +−×−=

MAXITER

tMAXITER                              (9) 



548 J. Sun, W. Xu, and J. Liu 

 

where 
1α  and 

2α  are the initial and final values of the parameter α , respectively, t 
is the current iteration number and MAXITER is the maximum number of allowable 
iterations. Through empirical study, we observed that QPSO has relatively better 
performance by varying the value of α  from 1.0 at the beginning of the search to 0.5 
at the end of the search for most problems. 

The better parameter control method is to use adaptive mechanism. Next, an adap-
tive parameter control method will be discussed, but firstly, we introduce the follow-
ing error function 

))(),(()( gbestigbesti FABSFABSMINFFF −=Δ                      (10) 

where Fi is the fitness of the ith particle, Fgbest is the fitness of gbest, ABS(x) gests the 
absolute value of x, and MIN(x1,x2) gets the minimum value between x1 and x2. This 
error function is used to identify how the particle is close to the global best position, 
gbest. The small the value of the error function for a certain particle, the closer to the 
gbest the particle is, and therefore the narrower the search scope (possible value of L) of 
the particle is. To endow the QPSO with self-adaptation, the particles far away from the 
gbest should have smaller value of α , whereas those close to the gbest might be given 
large value of α  as well. It is because that the latter properly has little chance to search 
other position far away from its local attractor pid and should have larger α ; otherwise 
its evolution will stagnate and not be able to discover new better position. On the con-
trary, the purpose of giving small value of α  the particles far away from the gbest is to 
guarantee the collectiveness of the swarm.  The critical technique of this adaptive ap-
proach is working out a self-adaptation function that computes the value of α  in accord 
with the value of the error function (error value) for a certain particle.  

Here we propose a self-adaptation function with each subsection zone of error 
value has the same value of α . It is formulated as follows. 

Let )log( Fz Δ= , then the function is 
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(11)

 

The QPSO employing the above adaptive function is called Adaptive Quantum-
behaved Particle Swarm Optimization (AQPSO). 

To test the performance of QPSO with the two methods of parameter control, five 
benchmark functions, listed in Table 1, are used here for comparison with SPSO in 
[10] and QPSO in [9]. These functions are all minimization problems with minimum 
value zero. 

In all experiments, the initial range of the population listed in Table 2 is asymmetry 
and Table 2 lists 

maxV and 
maxX  values for all the functions, respectively, as used in [9, 

10]. The fitness value is set as function value and the neighborhood of a particle is the 
whole population. We had 50 trial runs for every instance and recorded mean best 
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fitness. In order to investigate the scalability of the algorithm, different population 
sizes are used for each function with different dimensions. The population sizes are 
20, 40 and 80. Generation is set as 1000, 1500 and 2000 generations corresponding to 
the dimensions 10, 20 and 30 for first four functions, respectively, and the dimension 
of the last function is 2. 

Table 1. Benchmark Functions 
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Table 2 

Function Initialization Range Xmax Vmax 

f1 (50, 100) 100 100 

f2 (15, 30) 100 100 

f3 (2.56, 5.12) 10 10 

f4 (300, 600) 600 600 

f5 (30, 100) 100 100 

Table 3. Sphere Function 

M Dim. Gmax SPSO QPSO AQPSO 

   Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 3.16E-20 6.23E-20 2.29E-41 1.49E-40 1.62E-70 2.28E-70 

20 20 1500 5.29E-11 1.56E-10 1.68E-20 7.99E-20 2.52E-50 6.04E-50 

 30 2000 2.45E-06 7.72E-06 1.34E-13 3.32E-13 6.26E-40 1.63E-39 

 10 1000 3.12E-23 8.01E-23 8.26E-72 5.83E-71 3.2E-120 5.1E-120 

40 20 1500 4.16E-14 9.73E-14 1.53E-41 7.48E-41 1.12E-95 4.12E-95 

 30 2000 2.26E-10 5.10E-10 1.87E-28 6.73E-28 5.35E-71 1.65E-71 

 10 1000 6.15E-28 2.63E-27 3.1E-100 2.10E-99 4.3E-149 7.1E-149 

80 20 1500 2.68E-17 5.24E-17 1.56E-67 9.24E-67 1.6E-128 8.2E-128 

 30 2000 2.47E-12 7.16E-12 1.10E-48 2.67E-48 2.4E-105 3.1E-105 
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We make two groups of experiments to test the QPSO algorithm. In the first set of 
experiment, the QPSO is tested, and the coefficient α  decreases from 1.0 to 0.5 line-
arly when the algorithm is running as in [11]. The second set is done to test the per-
formance of AQPSO, in which the position of each particle is free from the constraint 
of Xmax. The best fitness values for 50 runs of each function in Table 3 to Table 7.  

Table 4. Rosenbrock Function 

M Dim. Gmax SPSO QPSO AQPSO 

   Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 94.1276 194.3648 59.4764 153.0842 46.6669 66.9602 

20 20 1500 204.337 293.4544 110.664 149.5483 100.253 173.209 

 30 2000 313.734 547.2635 147.609 210.3262 70.6362 81.0009 

 10 1000 71.0239 174.1108 10.4238 14.4799 13.9107 15.9653 

40 20 1500 179.291 377.4305 46.5957 39.5360 29.0769 22.1808 

 30 2000 289.593 478.6273 59.0291 63.4940 45.5361 58.4595 

 10 1000 37.3747 57.4734 8.63638 16.6746 19.6623 23.9647 

80 20 1500 83.6931 137.2637 35.8947 36.4702 20.2816 22.7247 

 30 2000 202.672 289.9728 51.5479 40.8490 16.0450 18.8032 

Table 5. Rastrigrin Function 

M Dim. Gmax SPSO QPSO AQPSO 

   Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 5.5382 3.0477 5.2543 2.8952 7.9675 9.4235 

20 20 1500 23.1544 10.4739 16.2673 5.9771 26.0826 14.9771 

 30 2000 47.4168 17.1595 31.4576 7.6882 41.8044 15.8808 

 10 1000 3.5778 2.1384 3.5685 2.0678 7.5200 8.5370 

40 20 1500 16.4337 5.4811 11.1351 3.6046 17.0793 8.8016 

 30 2000 37.2796 14.2838 22.9594 7.2455 28.4931 14.3873 

 10 1000 2.5646 1.5728 2.1245 1.1772 5.1044 6.3375 

80 20 1500 13.3826 8.5137 10.2759 6.6244 17.2010 11.2018 

 30 2000 28.6293 10.3431 16.7768 4.4858 26.5024 12.9643 

The results in Table 3 show that the adaptive method can enhance the local search 
ability of the QPSO tremendously. The results in Table 4 show that with adaptive 
parameter control method, the AQPSO outperform the other PSO algorithm in global 
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search ability. The numerical results show that the AQPSO works better than other 
PSO algorithm except on Rastrigrin function. It is because that the APSO has ability 
to evolve persistently, and when the search iteration terminated, the algorithm can 
search the solution space fatherly without converging. 

Table 6. Griewank Function 

M Dim. Gmax SPSO QPSO AQPSO 

   Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 0.09217 0.08330 0.08331 0.06805 0.08645 0.06454 

20 20 1500 0.03002 0.03255 0.02033 0.02257 0.02412 0.02325 

 30 2000 0.01811 0.02477 0.01119 0.01462 0.01401 0.01716 

 10 1000 0.08496 0.07260 0.06912 0.05093 0.07702 0.05619 

40 20 1500 0.02719 0.02517 0.01666 0.01755 0.01478 0.01750 

 30 2000 0.01267 0.01479 0.01161 0.01246 0.01033 0.01218 

 10 1000 0.07484 0.07107 0.03508 0.02086 0.05364 0.02376 

80 20 1500 0.02854 0.02680 0.01460 0.01279 0.01302 0.01474 

 30 2000 0.01258 0.01396 0.01136 0.01139 0.00668 0.07163 

Table 7. Shaffer’s Function 

M Dim. Gmax SPSO QPSO AQPSO 

   Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

20 2 2000 2.78E-04 0.001284 0.001361 0.003405 0.001958 0.003919 

40 2 2000 4.74E-05 3.59E-05 3.89E-04 0.001923 0.001166 0.003189 

80 2 2000 2.57E-10 3.13E-10 1.72E-09 3.30E-09 1.52E-05 1.04E-04 

5   Conclusions 

We have described in this paper the Quantum-behaved Particle Swarm Optimization 
and the relationship between parameter α and convergence of the individual particle. 
We also have presented two parameter control methods, one of which is adaptive, for 
QPSO algorithm. The AQPSO outperforms QPSO with linear-decreasing method 
both in global search ability and local search ability, because the adaptive method is 
more approximate to the learning process of social organism with high-level swarm 
intelligence and can make the population evolve persistently. In our future work, we 
will be devoted to find out a more efficient self-adaptation function to evaluate the 
coefficient α , and therefore to improve the performance of QPSO fatherly. 
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Abstract. This paper presents a modification of the particle swarm optimization 
algorithm (PSO) intended to introduce some psychology factor of emotion into 
the algorithm. In the new algorithm, which is based on a simple perception and 
emotion psychology model, each particle has its own feeling and reaction to the 
current position, and it also has specified emotional factor towards the sense it 
got from both its own history and other particle. The sense factor is calculated by 
famous Weber-Fechner Law. All these psychology factors will influence the next 
action of the particle. The resulting algorithm, known as Emotional PSO (EPSO), 
is shown to perform significantly better than the original PSO algorithm on 
different benchmark optimization problems. Avoiding premature convergence 
allows EPSO to continue search for global optima in difficult multimodal 
optimization problems, reaching better solutions than PSO with a much more fast 
convergence speed. 

1   Introduction 

The Particle Swarm Optimization algorithm (PSO), originally introduced in terms of 
social and cognitive behavior by Kennedy and Eberhart in 1995 [1], [2], has proven to be 
a powerful competitor to other evolutionary algorithms such as genetic algorithms [3].  

In fact, the PSO algorithm simulates social behavior among individuals (particles) 
“flying” through a multidimensional search space, each particle representing a single 
intersection of all search dimensions. The particles evaluate their positions relative to a 
goal (fitness) at every iteration, and companion particles share memories of their “best” 
positions, then use those memories to adjust their own velocities and positions as 
shown in equations (1a) and (1b) below. The PSO formulae define each particle as a 
potential solution to a problem in a D-dimensional space, with the ith particle 
represented as X

i 
= (x

i1
, x

i2
, x

i3
, .. ... .. x

iD
) . Each particle also remembers its previous best 

position, designated as as pbest, P
i 
= (p

i1
, p

i2
, p

i3 
,.....p

iD
) and its velocity V

i 
= (v

i1
, v

i2
, v

i3 
,..........v

iD
) [7] . In each generation, the velocity of each particle is updated, being pulled 

in the direction of its own previous best position (p
i
) and the best of all positions (p

g
) 

reached by all particles until the preceding generation. The original PSO formulae 
developed by Kennedy and Eberhart were modified by Shi and Eberhart [4] with the 
introduction of an inertia parameter, , that was shown empirically to improve the 
overall performance of PSO. 
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In [3], Angeline compared the philosophy and performance differences between the 
evolutionary programming algorithm and PSO algorithm by conducting experiments 
on four non-linear functions well studied in the evolutionary optimization literature. 
Through adapting the strategy parameters to adjust the mutation step size, the 
evolutionary programming algorithm employed ideally has the ability to fine tune the 
search area around the optima. Many further research focus on control the diversity of 
the particles and slow the spread speed of the share information. Researchers developed 
new modifications of PSO by estimate the diversity of the swarm, such as PSO with 
self-organized criticality showed in [8], diversity-guided PSO in [9], and spatial 
particle extension [10], and when it is less than a lower limit, the swarm was dispersed. 
There are also some improvements made by constrain the spread speed of share 
information, as subpopulation model in [11]. 

Research in psychophysics indicate the principle of sensation to stimulus outward, 
that is the intensity of a sensation varies by a series of equal arithmetic increments as 
the strength of the stimulus is increased geometrically. In this paper, in an effort to 
extend PSO models beyond real biology and physics and push the limits of swarm 
intelligence into the exploration of swarms as they could be, we study the PSO with 
psychology, through the use of psychology model to control the particles in a PSO.  

Section 2 describes how to use psychological theory in PSO to understand the 
swarm intelligence from a system complexity view of point. The settings and 
variations of the experiments are discussed in Section3. We compared the new 
algorithm with standard PSO in Section 4. In Section 5, a brief restatement of our 
findings and future direction is reported and discussed. 

2   Emotional PSO 

2.1   Psychology Models 

Psychophysics shows that perceptions and consciousness are produced when external 
object act on nerve system which is thus caused to be busy. And recognition and 
interpretation of sensory stimuli based chiefly on memory. But not all the stimulation 
would cause perception. In one of his classic experiments, Weber, the first 
psychologist who quantitatively studies the human response to a physical stimulus, 
found that the response was proportional to a relative increase in the weight. That is to 
say, if the weight is 1 kg, an increase of a few grams will not be noticed. Rather, when 
the mass in increased by a certain factor, an increase in weight is perceived. If the 
mass is doubled, the threshold is also doubled. This kind of relationship can be 
described by a differential equation as,  

S

dS
kdp =  (2) 
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where dp is the differential change in perception, dS is the differential increase in the 
stimulus and S is the stimulus at the instant. A constant factor k is to be determined 
experimentally.  

Integrating the above equation 

CSkp += ln  (3) 

with C is the constant of integration, ln is the natural logarithm. 
To determine C, put p = 0, i.e. no perception; then 

0ln SkC −=  (4) 

where S0 is that threshold of stimulus below which it is not perceived at all, and can be 
called Absolute Stimulus Threshold (AST).  

Therefore, our equation becomes 

0

ln
S

S
kp −=  (5) 

The relationship between stimulus and perception is logarithmic. This logarithmic 
relationship means that if the perception is altered in an arithmetic progression (i.e. 
add constant amounts) the corresponding stimulus varies as a geometric progression 
(i.e. multiply by a fixed factor). That is famous Weber-Fechner Law. 

On the other hand, in psychology, emotion is considered a response to stimuli that 
involves characteristic physiological changes—such as increase in pulse rate, rise in 
body temperature, and so on. In the 1960s, the Schachter-Singer theory pointed out 
that the cognitive processes, not just physiological reactions, played a significant role 
in determining emotions. Robert Plutchik developed (1980) a theory showing eight 
primary human emotions: joy, acceptance, fear, submission, sadness, disgust, anger, 
and anticipation, and argued that all human emotions can be derived from these. But 
since emotions are abstract and subjective, however, they remain difficult to quantify. 
The Cannon-Bard Approach proposes that the lower brain initially receives 
emotion-producing information and then relays it simultaneously to the higher cortex 
for interpretation and to the nervous system to trigger physiological responses. 

2.2   Emotional PSO 

Assume the particles have psychology; thus we can introduce the models mentioned 
before to improve PSO’s performance. The particle can sense the stimulus from the 
difference between it current location and the best location it ever arrived, and it can 
also feel the difference from other particles. When the stimulus can cause noticeable 
perception, which is much more bigger than threshold, the particle will respond to the 
stimulus strongly. On the other hand, the stimuli will be compared with the history it 
ever experienced. As we have discussed in psychology model, if the history value is 
also very high, the respondence will not be very notable. Along with experience, the 
emotion state of particles will change. To be simplified, we define only two emotions 
particles could have, joy and sadness, and correspond to two reaction to perception 
respectively. If the particle is joyful, it will exploit both history experience and global 
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experience, and it will be more vibrant at its current position. If it is sad, it will 
emphasis more on its own history, and it also will shrink from its normal position. 
Just as human, it’s emotion change by inner factors.  

So the perception of particles can be described by following: 

0

))()((
ln

S

XfPfS
kr
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g

−
−=  (6a) 
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XfPfS
kr iid

h
−

−=  (6b) 

Here rg is the perception from global, and rh is the sense of the history, S means 
stimulus function. And the emotional effect can be described by following:  

)(())(() 2211 idgdkididgidid XprandrcXprandrcVV −×××+−×××+×= ω (7a) 
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r
cXprandcVV −×××+−××+×= ω  (7b) 

(7a) means particle is joyful and (7b) means particle is sad. The choice is made by 
following: 

IF (rand() < es) THEN (7a) ELSE (7b) (8) 

Here es is emotion factor. 
Then the news algorithm can be demonstrated by following: 

Step (a): Initialize a population (array) which including m particles, For the ith particle, 
it has random location Xi in the problem space and for the dth dimension of velocity Vi, 
Vid = Rand2() * Vmax,d, where Rand2() is in the range [-1, 1]; 
Step (b): Evaluate the desired optimization fitness function for each particle; 
Step (c): .Compare the evaluated fitness value of each particle with its pid, which means 
the best position of its history. If current value is better than pid, then set the current 
location as the pid location. Furthermore, if current value is better than pgd, which is the 
best position of global, then reset pgd to the current index in particle array; 
Step (d): Change the velocity and location of the particle according to the equations 
(7a) and (7b) which is decided by equations (8); 
Step (e): Loop to step (2) until a stop criterion is met, usually a sufficiently good fitness 
value or a predefined maximum number of generations Gmax. 

3   Experimental Setting 

In order to be able to evaluate the emotional PSO, we compared it with GA algorithm, 
standard PSO and a number of other update rules, and four non-linear functions in [3] 
are used in our tests. But f1, the function Sphere is not showed here because in tests, 
the function quickly get value of zero, with no comparative meaning. 
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The first function is the Rosenbrock function described by equation (9): 

=
+ −+−=

n

i
iii xxxxf

1

222
12 )1()(100()(  (9) 

The third function is the generalized Rastrigrin function described by equation (10): 
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The last function is the generalized Griewank function described by equation (11) 
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Following the suggestion in [12] and for the purpose of comparison, the 

asymmetric initialization method used is [3] is adopted here for population 

initialization. Table 1 lists the initialization ranges of the four functions. 

Table 1. Asymmetric initialization ranges 

Fucntion  Asymmetric Initialization Range 
f2  (15,30) 
f3  (2.56,5.12) 
f4  (300,600) 

For each function, three different dimension sizes are tested. They are dimension 
sizes:10, 20 and 30. The maximum number of generations is set as 1000, 1500, 2000 
corrsponding to the dimensions 10, 20, and 30, respectively. In the experiment different 
population sizes are used for each function with different dimensions. They are 
population sizes of 20, 40, 80 and 160. a linearly deceasing inertia weight is used which 
starts at 0.9 and ends at 0.4, with c1=1.0,c2=0.001, which was determined by a series of 
experiment. Vmax and Xmax are set to be equal and their values for each function are listed 
in table 2. 

Table 2. Vmax and Xmax calues for each function 

Function Vmax = Xmax 
f2  100 
f3  10 
f4  600 

As to Emotional PSO, the values for S0 is 1, k is-1/2. 
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4   Experimental Results and Discussion 

Tables 3 to 5 list the mean fitness values of the best particle found for the 10 runs for 
the other three functions, respectively. In the function f2 and f3, which are showed in 
Table 3 and Table 4, we can see the EPSO shows significant better performance than 
standard PSO. The EPSO shows to be less susceptible to premature convergence, and 
less likely to be stuck in local optima. In function f4, the EPSO shows not so good as 
it shows in the fucntion f2 and f3, but it also shows along with the increase of 
population size and dimensions, the performance of EPSO improved fast, which 
means it is more suitable to large optimization problems. 

Table 3. Mean fitness values for the Rosenbrock fucntion 

Mean Best Fitness 
Popu. 
Size(m) 

Dimension Generation 
EPSO PSO 

10 1000 22.7642 39.1026 
20 1500 14.4449 24.9219 

20 

30 2000 49.2848 98.0279 
10 1000 13.3361 10.1767 
20 1500 44.7021 70.9678 

40 

30 2000 56.2189 136.9933 
10 1000 8.2491 7.3112 
20 1500 38.0797 35.4722 

80 

30 2000 33.2934 47.6875 
10 1000 5.7420 12.9636 
20 1500 28.6470 41.2685 

160 

30 2000 26.8016 66.0944 

Table 4. Mean fitness values for the generalized Rastrigrin fucntion 

Mean Best Fitness 
Popu. 
Size(m) 

Dimension Generation 
EPSO PSO 

10 1000 0.3979 5.5087 
20 1500 3.2296 22.1879 

20 

30 2000 15.0611 51.10412 
10 1000 0.0994 3.6816 
20 1500 1.5113 19.2325 

40 

30 2000 7.6086 35.7287 
10 1000 0.0000 1.7070 
20 1500 1.3593 13.3324 

80 

30 2000 4.3004 31.6400 
10 1000 0.0000 1.3929 
20 1500 0.2985 10.3555 

160 

30 2000 3.2947 26.5671 
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Figure 1 to 3 showed the results of the experiments. We can see it clearly that the 
improved algorithm perfermance much more better than standard PSO both in 
Rosenbrock funtion and generalized Rastrigrin function, and perfermance little better 
than standard PSO in generalized Griewank function. But all the three experimental 
functions show that for larger population size and bigger dimension and more 
generation , the EPSO will perform better. Also from the three figures we can that 
EPSO’s curve decend steepper than PSO’s, which means a faster convergence speed. 

Table 5. Mean fitness values for the generalized Griewank fucntion 

Mean Best Fitness 
Popu. 
Size(m) 

Dimension Generation 

EPSO PSO 

10 1000 2.1142 0.0698 
20 1500 0.1521 0.0322 

20 

30 2000 0.1786 0.0169 
10 1000 0.4633 0.1006 
20 1500 0.0258 0.0361 

40 

30 2000 0.0152 0.0120 
10 1000 0.3286 0.0787 
20 1500 0.0285 0.0221 

80 

30 2000 0.0064 0.0175 
10 1000 0.3364 0.0487 
20 1500 0.0358 0.0398 

160 

30 2000 0.0083 0.0091 

Clearly that EPSO’s curve decend steepper than the standard PSO’s, which shows the new 
algorithm has a faster convergence speed. 

 

Fig. 1. Mean relative performance for Rosenbrock function 
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Fig. 2. Mean relative performance for generalized Rastrigrin function  

 

Fig. 3. Mean relative performance for generalized Griewank fucntion 

5   Conclusion 

This paper has proposed a new variation of the particle swarm optimization algorithm 
called EPSO, introducing a so called psychology model into the update rules of the 
particle. Each particle caculates the perception of its history position and the global 
postion. Then a emotional factor is caculated to guide the next action of the particle 
with the considerate of the percetion. That means the particles choose to emphasize the 
history or the global experience according to its own emotion and with the percetion 
function. The new algorithm outperfoms PSO on four test functions, being less 
susceptible to premature convergence, and less likely to be stuck in local optima. EPSO 
algorithm outperforms the PSO even in its faster convergence speed. 
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The psychology model is the base that intruct the living beings to react reasonable to 
out stimulus. The introduce of the model makes particle swarm have the ability of 
self-adapting during the progress of exploring and exploiting. In current work, a 
promising variation of the algorithm, with the simultaneous influence of psychology 
model is being explored. Future work includes further experimentation with parameters 
of EPSO, testing the new algorithm on other benchmark problems, and evaluating its 
performance relative to a more complex emotion model. 
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Abstract. A new hybrid Particle Swarm Optimization (PSO) algorithm
is proposed based on the Nonlinear Simplex Search (NSS) method. At
late stage of PSO, when the most promising regions of solutions are fixed,
the algorithm isolates particles that are very close to the extrema, and
applies the NSS method to them to enhance local exploitation searching.
Explicit experimental results on famous benchmark functions indicate
that this approach is reliable and efficient, especially on multi-model
function optimizations. It yields better solution qualities and success
rates compared to other published methods.

1 Introduction

The particle swarm algorithm, which is mostly used for continuous function
optimizing, was originally proposed by Eberhart and Kennedy in 1995 [1]. It ex-
hibits good performance in solving hard optimization problems and engineering
applications, and compares favorably to other optimization algorithms.

Numerous variations of the basic PSO algorithm have been projected to
improve its overall performance since its introduction [2]. Hybrid PSO algo-
rithms with determinate methods, such as the nonlinear simplex search method
[3], are proved to have many advantages over other techniques, such as genetic
algorithms and tabu search, because these hybrid methods can perform explo-
ration search with PSO and exploitation search with determinate methods [4,5].
Generating initial swarm by the NSS might improve, but is not satisfying for
multi-modal function optimizing tasks [5]. Developing the NSS as an operator
to the swarm during the optimization may increase the computational complex
considerably.

2 The Particle Swarm Algorithm

In the original PSO formulae, particle i is denoted as Xi = (xi1, xi2, · · · , xiD),
which represents a potential solution to a problem in D-dimensional space. Each

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 562–565, 2005.
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particle maintains a memory of its previous best position, Pi = (pi1, pi2, · · · , piD),
and a velocity along each dimension, represented as Vi = (vi1, vi2, · · · , viD). At
each iteration, the P vector of the particle with the best fitness in the local
neighborhood, designated g, and the P vector of the current particle are com-
bined to adjust the velocity along each dimension, and that velocity is then used
to compute a new position for the particle.

The computational model of the swarm are [6]:

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗Rand() ∗ (pgd − xid) (1)

xid = xid + vid (2)

Constants c1 and c2 determine the relative influence of the social and cog-
nition components, which often both are set to the same value to give each
component equal weight. A constant, Vmax, was used to limit the velocities of
the particles. The parameter w, which was introduced as an inertia factor, can
dynamically adjust the velocity over time, gradually focusing the PSO into a
local search.

Maurice Clerc has derived a constriction coefficient K, a modification of the
PSO [7] that runs without Vmax, reducing some undesirable explosive feedback
effects. Carlisle and Doziert investigated the influence of different parameters
in PSO, selected a set of reasonable parameters, and proposed the canonical
PSO [8].

3 The Proposed Algorithm and Experimental Design

We propose a hybrid PSO algorithm, which isolates a particle and apply the NSS
to it when it reaches quite close to the extrema (within the diversion radius).
If the particle lands within a specified precision of a goal solution (ErrorGoal)
during the NSS running, a PSO process is considered to be successful, otherwise
it may be laid back to the swarm and start the next PSO iteration.

The diversion radius is computed as:

DRadius = ErrorGoal + δ (3)

δ =
{

100 ∗ ErrorGoal, if ErrorGoal ≤ 10−4

0.01 ∗ ErrorGoal, otherwise (4)

In a NSS process, an initial simplex is consists of the isolated particle i
and other D vertices randomly generated with the mean of Xi and standard
deviation of DRadius. We tested the proposed algorithm and compared it to
other methods on more than 20 benchmark functions taken from [4] and [5], but
only listed some typical results in section 4.

To eliminate the influence of different initial swarms, we implement 200
experiments for each test and the maximum number of PSO iterations is set to
be 500, swarm size is 60 for 30-dimension functions and 30 for others. Parameters
used in the NSS are: α = 1.0, γ = 2.0, β+ = β− = 0.5.
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Table 1. Rate of success and mean function evaluations for each test function

Test Rate of success Mean function evaluations

Function NSSPSO NS-PSO CPSO NSSPSO NS-PSO CPSO

Rastrigin2 1 0.84 1 2970.6 5573.3 3181.8
LevyNo32 1 0.83 1 2595.7 4827 2853.3
Schaffer2 0.7 0.57 0.645 8662.6 9906.8 9119.7
Rosenbrock2 0.99 0.845 0.97 7589.6 9421.8 8450.3
Grienwank2 0.8 0.685 0.735 8383.9 9397.6 8985.9
Sphere10 1 1 1 9677.9 5723.4 6306.8
Rosenbrock10 0.83 0.945 0.84 5365.1 3552 5461.6
Rastrigin10 0.963 0.83 0.96 5390.7 5929.5 5094.3
Griewank10 0.845 0.8 0.845 8997.5 7084.1 7332.3
Sphere30 1 1 1 11716 13789 15448
Rosenbrock30 0.825 0.94 0.795 14945 10697 16576
Rastrigin30 0.995 1 1 8987.1 3475.5 8511.3
Grienwank30 0.99 1 0.995 11019 8999.1 10801

Table 2. Average optima and total CPU time for each test function

Test Average optima Total CPU time

Function NSSPSO NS-PSO CPSO NSSPSO NS-PSO CPSO

Rastrigin2 4.7472e−9 0.42783 4.9856e−9 14.875 27.156 14.906
LevyNo32 −176.54 −163.17 −176.54 13.063 22.688 12.813
Schaffer2 −0.99716 −0.99334 −0.99664 30.609 35.484 31.047
Rosenbrock2 7.82995e−9 0.76162 0.002373 31.031 36.422 31.781
Grienwank2 1.0012 1.003 1.0016 42.469 49.141 44.813
Sphere10 8.9723e−9 8.2146e−9 8.2073e−9 40.453 23.125 24.656
Rosenbrock10 298.01 461.95 20.688 22.172 15.266 22.547
Rastrigin10 9.6195 10.14 9.7158 29.359 32.625 27.641
Griewank10 9.0979 9.1038 9.1003 102.311 42.25 43.156
Sphere30 9.2039e−5 9.3474e−5 9.2407e−5 341.98 67.594 68.609
Rosenbrock30 2009.3 100.63 2856.7 79.952 56.281 80.047
Rastrigin30 97.418 95.818 97.752 64.094 27.574 60.75
Grienwank30 29.098 29.094 29.094 83.063 71.609 81.547

4 Experimental Results

The rate of success, mean function evaluations, average optima and total CPU
time for each test are listed in Table 1 and Table 2. The subscript of each test
function denotes its dimension. The proposed algorithm is denoted as NSSPSO,
NS-PSO is another NSS hybrid PSO proposed by Parsopoulos and Vrahatis [5],
and CPSO is the canonical PSO by Carlisle [8]. From the tables we can see that
the overall performance of NSSPSO algorithm is competitive to other algorithms
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in terms of success rate, solution quality and convergence speed as well, especially
on multi-model functions. As to high dimension function optimizing, NSSPSO
operates appreciably inferior to NS-PSO due to its computational expense, but
is still equal to the CPSO algorithm.

5 Conclusions and Future Work

In this paper, we propose a new hybrid particle swarm algorithm and implement
wide variety of experiments to test it. The results compared to other published
methods demonstrate that this method is very effective and efficient, especially
for continuous multi-model function optimization tasks.

Future work may focus on accelerating the convergence for high dimension
problems, extending the approach to constrained multi-objective optimization,
and developing parallel algorithm of this hybrid technique.
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Abstract. Recently, works about Non-Markov environment has
attracted increasing attention in autonomous agent control. Based on
XCS, XCSM introduced a constant length of bit-register memory into
general classifier system structure to record agent’s experience. Then
combining the current perception with its past experience, the agent gets
suitable action successfully. But when the memory becomes longer, its
performance will decrease urgently with the expansion of search space.
In this paper, an adaptive XCSM (AXCSM) method has been proposed
by adapting variable length of memory. The proposal composes of a hi-
erarchical structure. In the first hierarchy, we learn a suitable memory
length for this position using general XCS. Then action of the agent is
acquired in the second hierarchy using XCSM. The proposal converges
to optimal policy as that of XCSM, within shortened search space.

1 Introduction

Due to the limitation of agent’s sensor, it maybe result an agent failing to obtain
enough information to distinguish between two different situations, which appear
identical to the agent, but require two different actions to behave. Such an envi-
ronment is said to be Non-Markov and the agent is suffering from a perceptual
aliasing problem, which disturbs the agent’s learning capability seriously [1]. To
overcome this problem, generally, we endeavor to expand agent’s sensation to
convert the Non-Markov environment into a Markov one.

In [2], an improved classifier system [3], XCS, has been introduced, based on
the accuracy of the classifier’s payoff prediction instead of the prediction itself.
It has been shown to reach optimal performance in Markov problem, but failure
in Non-Markov problem.

Based on [4], XCSM [5] has been proposed by adding bit-register memory to
XCS. For the fixed-length memory, assigned in advance by experience, there are
two flaws. One is how to define the fixed length. Generally, we set it by counting
the aliasing positions in a given environment. For a simple map, it is easy. But
for a harder one, it is not always so exactly to count. The second problem is
that, assume that we have gotten a suitable memory length for the maximum
aliasing positions, but for any other positions, it is not necessary to use so much
long memory. This results in the space wasteful also.
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Therefore, we proposes an adaptive XCSM (AXCSM), in which only the
maximum memory length is set beforehand, the appropriate length for each rule
varies from 0 to the maximum. AXCSM can be seen as a hierarchical structure.
The first hierarchy is to learn a suitable memory length for any given position,
using general XCS. In the second hierarchy, action is obtained by XCSM. Ex-
periment is pursued to verify the validity of AXCSM.

The remainder of the report is organized as follows. Section 2 presents the
perceptual aliasing problem and related works. Section 3 describes the adaptive
memory implementation. Experiments are presented and analyzed in Section 4.
In section 5, the future work has been prospected.

2 Perceptual Aliasing Problem and Related Work

2.1 Perceptual Aliasing Problem

A typical perceptual aliasing problem is shown in Fig. 1(a), where ‘ ’ is wall,
‘G’ is goal, and ‘ ’ is free. In this report, we indicate that the agent perceives
environment by means of Boolean sensors that report the contents of its eight
squares adjacent to itself. And the agent moves into 8 free adjacent directions.
The learning goal is to find a shortest path to goal state from random start. From
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Fig. 1. (a) Environment Woods101; (b) Environment Woods102 marked with two alias-
ing states and start coordinate; (c) Environment Woods102 marked with coordinates

Fig. 1(a), we can see that the agent has an identical sensation for two distinct
locations A and B. To reach goal state ‘G’, for A, the optimal action is “go-SE”;
for B, it is “go-SW”. The agent couldn’t distinguish the two locations, simply
basing on its sensation of the current position in environment.

So, learning for a perceptual aliasing problem is necessary and urgent.

2.2 XCS and XCSM

Classifier in XCS [2] [6] consits of {condition, action, parameters}, defined as
strXCS. Here the condition, consisting of {0, 1, #} (“don’t care” symbol), spec-
ifies agent’s sensation; action is an integer, towards 8 directions movement; and
parameters are used to judge the accuracy of a classifier.
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When agent perceives its present position, it searches all the classifiers whose
condition match to this sensation, gets an optimal action from these matching
classifiers, and then performs it to environment. Eventually, a scalar reward is
returned to update parameters of these classifiers.

In XCSM, which has been proposed in [5] to Non-Markov environment, a reg-
ister has been added to agent to record its experience. And the classifier consists
of {strXCS, inCondition, inAction}, defined as strXCSM. The memory space,
inCondition and inAction, consists of symbols {0/1/#}. For the inCondition,
the symbols retain the same meaning as condition in XCS, but they match with
content of register. For inAction, ‘0’ and ‘1’ set the corresponding bit of the
register to ‘0’ and ‘1’, respectively, ‘#’ leaves the corresponding bit unmodified.

However, when inCondition and inAction are composed of m bit, the search
space of inAction will possible be a maximum of 3m. With the m becomes larger,
the search space of memory will increase urgently.

Therefore, adaptive XCSM (AXCSM) is proposed in this report. Here, we
try to get a smaller classifier set, and a shorter memory for each single classifier.

3 AXCSM

3.1 Framework of AXCSM

The classifier in AXCSM is expanded to {strXCSM, inLength, inParameters}.
inLength is an integer value to define the memory length, and inParameters, the
same as parameters in XCSM, is used to evaluate accuracy of inLength. Besides
these, the length of inCondition and inAction are not fixed, but varying with
inLength from 0 to the assigned maximum in advance.

The framework of AXCSM is outlined as below. Continue this loop until
termination criteria is met.

1. get suitable inLength of memory by general XCS
(a) set start position and Register randomly
(b) Generate inMatchSet, composed of all classifiers from PopulationSet

whose condition and inCondition matched with agent’s perception and
register respectively, regardless the inLength

(c) select memory length. From inMatchSet, calculate average(fitness) for
each inLength, and set this maximum one as suitable memory length

2. get optimal action for this position by XCSM
(a) get MatchSet, composed of all classifiers from inMatchSet, whose

inLength equals to selected memory length
(b) get Action and inAction; generate ActionSet
(c) execute Action and inAction; update agent’s perception and Register
(d) get Reward
(e) update parameters in ActionSet by reward; update inParameters in

inMatchSet by discounted reward; run GA to search new classifier
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3.2 Reward-Discounted Policy

As mentioned in Sect. 3.1, inParameters in inMatchSet will be updated with
discounted reward, according to (1). The r decreases with the inLength linearly.

r = reward ∗ f(inLength) = reward ∗
(

(disRate− 1) ∗ inLength
maxLength

+ 1
)

(1)

Here, reward is real value received from environment; maxLength is the max-
imum memory length; disRate is discounted rate for maxLength(we set it 0.5).

3.3 Delete Unusually Accessed and Low Fitness Classifier

Analyzing the PopulationSet in XCSM, we knew that there exists some rules,
which are generated at the beginning of the learning process, and are seldom
accessed. Then we delete those ones, satisfied with (2).

exp
t - gTime

∗ inExp
t-ingTime

< p1 ∗ p2 (2)

Here, for each classifier, t is the present timer value; exp is accessed times,
gTime is last accessed time in XCSM; inExp is accessed times, ingTime is last
accessed time in general XCS; p1 and p2 are discounted coefficient, set 0.01 here.

Meanwhile, there are also some rules, with low fitness, and contributes less
to learning procedure. Then delete them satisfying with (3). α is set as 0.05.

fitness < α ∗
∑

CS(fitness * num)∑
CS(num)

(3)

4 Experiment and Result

4.1 Experiment Design

In this report, we consider the maze of Woods102, shown in Fig. 1(b). The agent
perceives eight squares adjacent to itself as WALL (‘ ’), Free (Empty) or Goal
(‘G’). The action is 8 directions movement. The learning goal is to get shortest
route to Goal position.

See the maze in Fig. 1(b), to recognise the two aliasing states, marked with ‘A’
and ‘B’, we set the agent starting from four corner positions, (1,1) (1,9) (5,1) and
(5,9), as in Fig. 1(c).

During the learning procedure, action selection is changed alternatively be-
tween explore and exploit strategy. And explore action part is turned off in the
final 2000 problems. Other parameters are set the same as those of [5].
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4.2 Experiment on Woods102

We set AXCSM with 8 bit of maximum memory here, the max population is
6000, and 20000 problems has been pursued. Results for AXCSM have been
shown in Fig. 2, compared with that of XCSM.

The first result is about average steps to goal position, which is not shown
here. It converged to the same optimum as that of XCSM finally.

Figure 2(a) shows the population size fluctuating with the learning procedure,
averaged for every 100 problems. The population size in AXCSM is less than that
of XCSM. Research space decreases within this compacted Population Set.

Figure 2(b) shows the memory length of all rules in the final Population Set
after 20000 problems. The horizontal axis is the rule’s serial number, and the
vertical axis is memory length for each rule. We have mentioned in Sect. 3.2
that we return a discounted reward to rule according to its different memory
length. Supposing that the agent receives an identical reward from environment,
the rules with shorter memory length will be more valuable and will survive
with high opportunity. Adversely, the rules with longer memory length will be
eliminated more easily.
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Fig. 2. Performance of AXCSM compared with XCMS

From Fig. 2(b), we can firstly see that the curve of XCSM ended at about 3824
in horizontal axis. This means that there are 3824 rules in final population, while
in AXCSM, it is about 2829. The proposal has less rules than that of XCSM.
It is in coherent with the result of Fig. 2(a). Secondly, in XCSM all the rules
are with the same memory length, 8 bit. While in AXCSM, the rules construct
hierarchical distribution, with memory length ranging from 0 bit to 8 bit, and
average to 3.95bit. Thus the whole memory space becomes more contractible.

Finally, we observe the agent’s trail track with the optimal policy obtained
by AXCSM in Table 1, to validate that the memory length works as we designed.
The “inLen” item means that when agent reaches to this position, it needs this
number of memory bit to remember its past experience. The “Register” item is
Register content for each position.

We can summary that, on the route to Goal position, the memory length has
been changed, and the Register content varies with it also.
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Table 1. Register Content on Woods102

pos inLen Register pos inLen Register pos inLen Register pos inLen Register

(1,1) 1 0 (5,1) 1 0 (1,9) 1 0 (5,9) 1 0
(1,2) 1 0 (5,2) 4 0000 (1,8) 4 0000 (5,8) 4 0100
(2,3) 5 1000,0 (4,3) 5 0101,0 (2,7) 5 0000,0 (4,7) 5 0110,0
(3,2) 1 0 (3,2) 1 0 (3,8) 1 0 (3,8) 1 0

5 Summary and Future

This work proposes an adaptive XCSM (AXCSM) to harder Non-Markov envi-
ronment. The classifier in XCSM owns a fixed length of memory to record its past
experience. But with the fixed length becomes longer, the search space will ex-
pand also. Upon that, we involved a variable memory length to XCSM (AXCSM),
ranging from 0 bit to the maximum length, which is defined beforehand. By ex-
periment, we summarized that the proposal obtained smaller population, and
the memory length for each rule also decreased.

Based on the analysis above, we confirmed that the AXCSM performed better
than XCSM determinately, especially for complicated maze. But we haven’t
applied it on a real-value environment till now, and could not foresee how it
will behave. On the other hand, how to get a suitable maximum memory length
autonomously is also another concern for future research.

References

1. Crook, P.A., Hayes, G.: Learning in a state of confusion:perceptual aliasing in
grid word navigation. In: Proceedings of Towards Intelligent Mobil Robots(TIMR
2003)4th British Conference on(Mobile) Robotics. (2003)

2. Wilson, S.: Classifier fitness based on accuracy. Evolutionary Computation 3 (1995)
149–175

3. Boer, B.D.: Classifier Systems: A useful approach to Machine Learning? Master’s
Thesis Leiden University, Holland (1994)

4. Cliff, D., Ross, S.: Adding temporary memory to ZCS. Adaptive Behavior 3 (1995)
101–150

5. Lanzi, P., Wilson, S.: Toward optimal classifier system performance in non-markov
envionments. Evolutionary Computation 8 (2000) 393–418

6. Butz, M., Wilson, S.W.: An algorithmic descriptions of XCS. In: Advcnaes in
Learning Classifier Systems, Third International Workshop,Lecture Notes in Artifi-
cial Intelligence, Berlin:Springer-Verlag (2000)



 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 572 – 581, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Discrete Particle Swarm Optimization (DPSO)  
Algorithm for Permutation Flowshop Scheduling to 

Minimize Makespan 

K. Rameshkumar1, R.K. Suresh1, and K.M. Mohanasundaram2 

1 Department of Production Engineering, 
Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 

Ettimadai, Coimbatore 641105, India 
k_rameshkumar@ettimadai.amrita.edu 

2 Department of Mechanical Engineering,  
PSG College of Technology, Coimbatore, India 

Abstract. In this paper a discrete particle swarm optimization (DPSO) 
algorithm is proposed to solve permutation flowshop scheduling problems with 
the objective of minimizing the makespan. A discussion on implementation 
details of DPSO algorithm is presented. The proposed algorithm has been 
applied to a set of benchmark problems and performance of the algorithm is 
evaluated by comparing the obtained results with the results published in the 
literature. Further, it is found that the proposed improvement heuristic 
algorithm performs better when local search is performed. The results are 
presented. 

1   Introduction 

Flowshop scheduling is one of the best-known production scheduling problem which 
has been proved to be strongly NP Complete [1]. It involves determination of the 
order of processing jobs on machines, arranged in series, to optimize the desired 
measure of performance such as makespan, total flowtime, etc.  Makespan is the 
completion time of the last job. Minimization of the makespan time ensures increased 
utilization of the machines and thus leads to a high throughput [2,3]. The order of 
processing of jobs affects the performance measures. 

Flowshop scheduling problem is a widely researched problem. Exact and 
constructive heuristic algorithms for solving static permutation flowshop scheduling 
problems (PFSPs) have been proposed by various researchers [4] over the years with 
the objective of minimizing makespan. The exact techniques are computationally 
effective for small size problems. But, for large size problems, such methods are 
computationally expensive and heuristics are resorted to. Heuristics for the flowshop 
scheduling problems can be a constructive heuristics or improvement heuristics. 
Johnson [5], Gupta [6], Palmer [7], Dannenbring [8], Koulamas [9] and Nawaz et al. 
[10] have proposed constructive heuristics. Among these, the NEH heuristics 
developed by Nawaz et al.  performs better [11]. 

Unlike constructive heuristics, improvement heuristics take a solution and try to 
improve it. Dannenbring [8], Ho and Chang [12], Suliman [13] have proposed 
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improvement heuristics. General purpose metaheuristics such as genetic algorithm 
[14-19], simulated annealing [20,21] and tabu search [11,23,24] have also been 
applied successfully for PFSPs. 

In this paper, a discrete particle swarm optimization algorithm has been proposed for 
solving a set of benchmark FSPs published in the literature [25,15]. The performance 
measure under study is the makespan value. The proposed approach is based on the 
PSO heuristic proposed in [26]. Performance of the proposed approach is evaluated by 
comparing the obtained results with the results published in the literature [18,19]. 

2   Notations and Conventions 

n   Number of jobs to be scheduled 
m   Number of machines in the flowshop 
tij   Processing time of operation j of job i 
Ci   Completion time of job i  
Cmax  Makespan 
C* Optimal makespan value or lower bound value reported in the  

literature. 
N   Swarm size 
t    Iteration counter 
tmax   Maximum number of Iterations 

t
kP   Sequence of the kth particle during tth  iteration  i.e, Pcurrent 

Z ( )t
kP  Makespan value  of kth particle during tth  iteration  

)(bestkP   Particle best, i.e., the sequence with least makespan value, found by 

the particle up to 't' iterations, i.e, Pbest 

( )t
bestkPZ )(  Makespan value of the Pbest sequence of the kth particle  

G   Global best sequence (Gbest) = Min { ( )t
bestkPZ )( ; }Nk ,1=  

L   Length of the velocity list 
t
kv   Velocity of  kth  particle during  tth iteration 

c1 ,c2 ,c3  Learning coefficients 

3   Formulation of the Static Permutation Flowshop Scheduling 
Problem 

The permutation flowshop scheduling problem under study consists of scheduling 'n' 
jobs, with known processing times tij, on 'm' machines with the sequence of 
processing as identical and unidirectional. A schedule of this type is called a 
permutation schedule. The objective is to find the job sequence that minimizes the 
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makespan. The makespan of the flowshop problem is defined by the time span 
necessary to complete processing of all jobs. The makespan is given by equation 1. 

  { }niCC i ,,2,1,maxmax ==     (1) 

It is assumed that machine can process only one job at a time and no pre-emption is 
allowed. 

4   Proposed Discrete Particle Swarm Optimization (DPSO) 
Algorithm 

Particle swarm optimization (PSO) is a recently developed population based 
optimization method inspired by the social behavior of organisms such as bird 
flocking and fish schooling.  PSO was first applied to optimize various continuous 
nonlinear functions by Kennedy and Eberhart [27, 28]. Later, PSO has been 
successfully applied to a wide variety of problems such as power and voltage control 
[29], neural network training [30], mass-spring system [31], task assignment [32], 
supplier selection and ordering problem [33], optimal operational path finding for 
automated drilling operations [34], traveling salesman problems [26], etc. Application 
of DPSO algorithm for solving scheduling problem is not reported in the literature. 

4.1   DPSO Algorithm for FSPs 

The PSO starts with a population of randomly generated initial solutions and searches 
iteratively in the problem space for optimal solution. The potential solutions are called 
particles which fly through the problem space by following their best particles. PSO 
starts the search process with a group of randomly generated sequences called 
particles. After this, Pbest and Gbest  sequences are identified. Now, the iterative search 

process starts with computing velocity of each particle kv  using equation 2. 

                ()( 321
1

CurrentBestCurrentBest
t
k

t
k PGcPPcvcv −+−+×=+

 ) (2) 

New position of a particle at time (t+1) is determined by its current velocity t
kv , 

and )(bestkP  and Gbest sequences. c1, c2 and c3 are learning co-efficients. Particle 

position i.e, sequence is updated after every iteration using equation 3. 

New position = Current position + Particle velocity.  

 11 ++ += t
k

t
k

t
k vPP                         (3) 

The velocity index of a particle k  at time t is computed using equation 4. 

 ( )( ) Lqjiv qqk ,1;, ==  (4) 

Where i, j represents job positions, and L represents the length of the list or the 
maximum number of possible transpositions which is randomly generated between 1 
and n. 

Here kv refers to exchange of job positions ( ),, 11 ji  then positions ( ),, 22 ji etc. 

After generating the velocity index kv , particle velocity t
kv  is computed using the 
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equation 2. Various operations performed for computing particle velocity and 
updating particle positions are explained below: 

Subtraction (position – position) operator: Let x1 and x2 be two positions 
representing two different sequences. The difference x2 - x1 is a velocity v. In the 
equation 2, for example subtracting two positions i.e. (Pbest – Pcurrent) results in a 
velocity which is a set of transpositions. 

Addition (position + velocity) operator: Let x be the position and v be the velocity. 
New position x1 is found by applying the first transposition of v to p, i.e, x1= x + v 
then the second one to the result etc.  

Addition (velocity + velocity) operator: Let v1 and v2 be two velocities. In order to 
compute v1 + v2 ,we consider the list of transpositions which contains first the 'ones' 
of v1, followed by the 'ones' of v2.  

Multiplication (Coefficient × velocity) operator: Let c be the learning coefficient 
and v be the velocity. c × v results in a new velocity. 

A numerical illustration of the above operations used in the proposed DPSO 
algorithm is presented in the section 4.3. Pseudocode of the DPSO algorithm for the 
flowshop scheduling problem is presented in Fig. 1. 

4.2   Pseudocode of the DPSO Algorithm 

 

0=t  
For (k = 1, N) 

 Generate t
kP  

 Evaluate ( )t
kPZ   

 t
kbestk PP =)(   

 t
kbest PinfoundparticlebestG =  

do  {  
 For (k = 1, N) 

  ( ) ( )currentbestcurrentbest
t
k

t
k PGcPPcvcv −+−+×=+

321
1  

  11 ++ += t
k

t
k

t
k vPP   

  If ( )t
k

t
k PthanbetterisP 1+  

  1
)(

+= t
kbestk PP  

  If ( )best
t
k GthanbetterisP 1+  

  1+= t
kbest PG  

 1+= tt ; 

    } ( )maxttwhile <   

Output bestG  
 

Fig. 1. Pseudocode of the DPSO algorithm for FSP 
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4.3   Numerical Illustration of DPSO Algorithm 

Let us assume the following data during  tth iteration.  

t
kP   =  {2,3,1,4} (PCurrent  Sequence) ;  

t
bestkP )(    =  {2,3,1,4} (PBest Sequence), and   

G t   =  {3,4,2,1} (GBest   Sequence) 
Computation procedure for calculating particle velocity and particle movement is 
explained as follows: 

4.3.1   Generating Velocity Index 
Velocity index kv  for the particle k is computed as follows:   

Let length of the velocity list kL  be equal to 2 with the randomly generated list  

{(2,4), (4,1)}. Similarly, velocity index is computed for other particles. 

4.3.2   Calculation of Particle Velocity  
For each particle in the population, velocity for moving the particle from one position 
to the other position is calculated using equation 2. The coefficient times the velocity 
operator is used to find out the number of velocity components to be applied over the 
position. For example, if the coefficient value is 0.5, then 50 percent of the velocity 
components are randomly selected from the velocity list and applied over the position.  

1+t
kv = [ ] [ ] [ ])4,1,3,2()1,2,4,3(5.0)4,1,3,2()4,1,3,2(5.0(4,1) (2,4),5.0 −+−×+×  

= [ ] [ ] [ ])4,3(),4,2(),2,1(5.005.02,4)( +×+   = [ ])4,2(),2,1(),4,2(  

4.3.3   Particle Movement 
Moving the particles from their current position to the new position is done using 
equation (3).  

i.e. 1+t
kP    = 1++ t

k
t
k vP  = {2,3,1,4} + [ ])4,2(),3,2(),4,2(  

= {2,4,1,3} + [ ])4,2(),3,2(  = {2,1,4,3} + [ ])4,2(  = {2,3,4,1} 

1+t
kP = {2,3,4,1} 

Similarly for all the particles 1+t
kP  is computed and t

bestkP )(  (Pbest) and G (Gbest) 

are updated. 

5   Experimental Investigation 

The DPSOA has been tested on 14 benchmark problems given by Carlier [25] and 
Reeves [15]. These test problems have number of jobs (n) varying from 7 to 20, and 
the number of machines (m) from 4 to 15.  By trial and error, optimum swarm size is 
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found to be 10. In all our computational effort, the total number of sequences 
evaluated by the algorithm is limited to  50n2.  

The problem of solving FSPs using DPSO has been done in two phases. In the first 
phase of our study, DPSO algorithm is applied for solving a set of Carlier FSPs [25]. It 
is found that the DPSO algorithm obtained the best results (C*) for six out of the eight 
benchmark problems. The results presented in Table 1 indicate that DPSO algorithm 
performs better when problem size is comparatively small. Further, in order to improve 
the performance of DPSO algorithm, a local search is applied at the end of every 
iteration. During local search every job except the last one is interchanged with its 
successor. There will be (n-1) number of interchanges. It is to be noted that an 
interchange which does not improve the makespan value is ignored. The result 
obtained by the DPSO algorithm with local search is presented in column number 6 of 
Table 1. When DPSO algorithm assisted by local search it is able to find the best 
solutions for all the eight Carlier problems. 

Table 1. Carlier benchmark results (makespan) 

Problem Size C* DPSO 
Problem 

n m   
DPSO +  

Local search 

Car1 11 5 7038 7038 7038 

Car2 13 4 7166 7166 7166 

Car3 12 5 7312 7392 7312 

Car4 14 4 8003 8003 8003 

Car5 10 6 7720 7768 7720 

Car6 8 9 8505 8505 8505 

Car7 7 7 6590 6590 6590 

Car8 8 8 8366 8366 8366 

In the second phase our study both the DPSO algorithm and the hybrid approach, 
i.e, DPSO assisted by local search, are applied to solve large size problems. Results 
are presented in Table 2. It is found that the DPSO algorithm assisted by local search 
perform better even with the large size problems. 

Table 2. Reeves benchmark results (makespan) 

Problem Size
Problem 

n m 
C* DPSO 

DPSO + 
Local search 

Rec01 20 5 1247 1264 1249 
Rec03 20 5 1109 1115 1111 
Rec05 20 5 1242 1254 1245 
Rec07 20 10  566 1624 1584 
Rec09 20 10 1537 1621 1574 
Rec11 20 10 1431 1590 1446 

In order to evaluate the performance of DPSO algorithms proposed in this paper, a 
comparative study is performed with the results obtained by the popular constructive 
heuristics such as NEH, CDS, RA, GUPTA and PALMER [18] and the results are 
presented in Tables 3 and 4. 
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Table 3. Carlier benchmark results (makespan) 

Problem 
Size 

Constructive Heuristics (Makespan value) DPSO 

Problem 
n m Palmer Gupta CDS RA NEH 

no 
local 

search 

with 
local 

search 

Car1 11 5 7472 7348 7202 7817 7038 7038 7038 

Car2 13 4 7940 7534 7410 7509 7940 7166 7166 

Car3 12 5 7725 7399 7399 7399 7503 7312 7312 

Car4 14 4 8423 8423 8423 8357 8003 8003 8003 

Car5 10 6 8520 8773 8627 8940 8190 7720 7720 

Car6 8 9 9487 9441 9553 9514 9159 8505 8505 

Car7 7 7 7639 7639 6819 6923 7668 6590 6590 

Car8 8 8 9023 9224 8903 9062 9032 8366 8366 

Table 4. Reeves benchmark results (makespan) 

Problem 
Size 

Constructive Heuristics (Makespan value) DPSO 

Problem 
n m Palmer Gupta CDS RA NEH 

no 
local 

search 

with 
local 

search 

Rec01 20 5 1391 1434 1399 1399 1334 1264 1249 

Rec03 20 5 1223 1380 1273 1159 1136 1115 1111 

Rec05 20 5 1290 1429 1338 1434 1294 1254 1245 

Rec07 20 10 1715 1678 1697 1722 1637 1624 1584 

Rec09 20 10 1915 1792 1639 1714 1692 1621 1574 

Rec11 20 10 1685 1765 1597 1636 1635 1590 1446 

The relative percentage increase in makespan yielded by the proposed DPSO 
algorithms, genetic algorithm [18] and a hybrid genetic algorithm [19] for these 
benchmark problems, are presented in Tables 5 and 6. 

Table 5. Relative percentage increase in makespan (Carlier Problems) 

Problem Size Relative percentage increase in makespan 

DPSO Problem 
n m no local 

search 
with local 

search 

Hybrid GA 
 (Wang) 

GA  
(Ponnambalam) 

Car1 11 5 0.00 0.00 0.00 0.00 

Car2 13 4 0.00 0.00 0.00 0.00 

Car3 12 5 1.09 0.00 0.00 2.42 

Car4 14 4 0.00 0.00 0.00 0.00 

Car5 10 6 0.62 0.00 0.00 0.36 

Car6 8 9 0.00 0.00 0.76 0.00 

Car7 7 7 0.00 0.00 0.00 0.00 

Car8 8 8 0.00 0.00 0.00 0.00 
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Table 6. Relative percentage increase in makespan (Reeves Problems) 

Problem Size Relative percentage increase in makespan 

DPSO Problem 
n m no local 

search 
with local 

search 

Hybrid GA 
 (Wang) 

GA  
(Ponnambalam) 

Rec01 20 5 1.36 0.16 0.14 8.26 

Rec03 20 5 0.54 0.18 0.09 7.21 

Rec05 20 5 0.97 0.24 0.29 5.23 

Rec07 20 10 3.70 1.15 0.69 8.56 

Rec09 20 10 5.47 2.41 0.64 5.14 

Rec11 20 10 11.11 1.05 1.1 8.32 

Since the data available in [19] is the relative percentage increase in makespan, the 
same has been computed and presented in Tables 4 and 5. The relative percentage 
increase in makespan is computed as follows: 

      
( )

100×−
valuemakespanoptimal

valuemakespanoptimalheuristicthebyobtainedMakespan
 (5) 

The results presented in Tables 1 and 2 indicate that the performance of DPSO 
algorithm is better when local search is employed. It is clear from the results 
presented in Tables 3 and 4 that DPSO algorithms outperform constructive heuristics. 
From the Table 5, performance of the DPSO algorithm is found to be better than the 
genetic algorithms [18] and the hybrid GA [19 ] for the small size PFSPs [25]. The 
results of large size PFSPs [15] are presented in Table 6. It indicates that the results of 
the Hybrid GA are better than the DPSO algorithms proposed in our paper. Better 
performance of the hybrid GA is due to high computational effort applied in [19]. The 
computational complexity of the DPSO algorithm is 50(n2) where as for the hybrid 
GA it is approximately 800 (n2). 

6   Conclusions 

In this paper a discrete particle swarm optimization (DPSO) algorithm is proposed to 
solve permutation flowshop scheduling problems. Drawbacks of DPSO in solving 
FSP have been identified. Local search procedure has been found to help the DPSO 
algorithm to escape from the local optima. The obtained results are compared with the 
results published in the literature. DPSO algorithms proposed in this paper found to 
perform better in terms of quality of the solutions and computational complexity.  
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Abstract. We investigate the performance of the recently proposed Uni-
fied Particle Swarm Optimization method on constrained engineering
optimization problems. For this purpose, a penalty function approach
is employed and the algorithm is modified to preserve feasibility of the
encountered solutions. The algorithm is illustrated on four well–known
engineering problems with promising results. Comparisons with the stan-
dard local and global variant of Particle Swarm Optimization are re-
ported and discussed.

1 Introduction

Many engineering applications, such as structural optimization, engineering de-
sign, VLSI design, economics, allocation and location problems [1], involve diffi-
cult optimization problems that must be solved efficiently and effectively. Due to
the nature of these applications, the solutions usually need to be constrained in
specific parts of the search space that are delimited by linear and/or nonlinear
constraints.

Different deterministic as well as stochastic algorithms have been developed
for tackling such problems. Deterministic approaches such as Feasible Direction
and Generalized Gradient Descent make strong assumptions on the continuity
and differentiability of the objective function [1,2]. Therefore their applicability is
limited since these characteristics are rarely met in problems that arise in real–
life applications. On the other hand, stochastic optimization algorithms such
as Genetic Algorithms, Evolution Strategies, Evolutionary Programming and
Particle Swarm Optimization (PSO) do not make such assumptions and they
have been successfully applied for tackling constrained optimization problems
during the past few years [3,4, 5, 6,7].

Most of the aforementioned optimization algorithms have been primarily
designed to address unconstrained optimization problems. Thus, constraint–
handling techniques are usually incorporated in the algorithm in order to direct
the search towards the desired (feasible) regions of the search space. The most
common constraint–handling technique is the use of penalty functions [3,8,9,7].
In these approaches, the problem is solved as an unconstrained one, where the

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 582–591, 2005.
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objective function is designed such that non–feasible solutions are characterized
by high function values (in minimization cases). The popularity of penalty–based
approaches for constraint–handling is based mostly on their simplicity and di-
rect applicability that does not involve neither modifications of the employed
algorithm nor development of specialized operators to tackle constraints.

Unified Particle Swarm Optimization (UPSO) is a recently proposed PSO
scheme that harnesses the local and global variant of PSO, combining their
exploration and exploitation abilities without imposing additional requirements
in terms of function evaluations [10]. Preliminary studies have shown that UPSO
can tackle efficiently different optimization problems [10, 11].

We investigate the performance of UPSO on four well–known constrained
engineering optimization problems. A penalty function approach is adopted and
the obtained results are compared to that of the standard PSO algorithm, pro-
viding useful conclusions regarding the efficiency of the unified scheme. The rest
of the paper is organized as follows. The employed penalty function is described
in Section 2, while Section 3 is devoted to the description of UPSO. The consid-
ered test problems as well as the obtained results are reported and discussed in
Section 4. The paper closes with conclusions in Section 5.

2 The Penalty Function Approach

The constrained optimization problem can be formulated, in general, as:

min
X∈S⊂Rn

f(X), (1)

subject to gi(X) � 0, i = 1, . . . , m, (2)

where m is the number of constraints. Different inequality and equality con-
straints can be easily transformed into the form of Eq. (2). The corresponding
penalty function can be defined as [3]:

F (X) = f(X) + H(X), (3)

where H(X) is a penalty factor that is strictly positive for all non–feasible solu-
tions. Penalty functions with static, dynamic, annealing and adaptive penalties
have been proposed and successfully applied in different applications [3,7].

In the current study, we employed a penalty function that includes informa-
tion about both the number of the violated constraints as well as the degree of
violation. Thus, the penalty factor is defined as [8]:

H(X) = w1 NVCX + w2 SVCX , (4)

where NVCX is the number of constraints that are violated by X ; SVCX is the
sum of all violated constraints, i.e.,

SVCX =
m∑

i=1

max{0, gi(X)},



584 K.E. Parsopoulos and M.N. Vrahatis

and w1, w2, are static weights. The selection of this form of penalties was based
on the promising results obtained by using such penalty functions with evolu-
tionary algorithms [8].

In general, the penalty function influences heavily the performance of an algo-
rithm in solving constrained optimization problems. Sophisticated and problem–
based penalty functions can increase the algorithm’s performance significantly.
To avoid the possibly large influence of the employed penalty function on the
performance of the algorithms, we used static weights w1 and w2, although self–
adaptive approaches that modify the weights dynamically through co–evolution
schemes, as well as more complicated penalty functions, have been successfully
applied in relative works [8, 6].

3 Unified Particle Swarm Optimization

PSO is a stochastic, population–based algorithm for solving optimization prob-
lems. It was introduced in 1995 by Eberhart and Kennedy for numerical op-
timization tasks and its dynamic is based on principles that govern socially
organized groups of individuals [12].

In PSO’s context, the population is called a swarm and its individuals (search
points) are called particles. Each particle has three main characteristics: an
adaptable velocity with which it moves in the search space, a memory where
it stores the best position it has ever visited in the search space (i.e., the posi-
tion with the lowest function value), and the social sharing of information, i.e.,
the knowledge of the best position ever visited by all particles in its neighbor-
hood. The neighborhoods are usually determined based on the indices of the
particles, giving rise to the two main variants of PSO, namely the global and the
local variant. In the former, the whole swarm is considered as the neighborhood
of each particle, while in the latter strictly smaller neighborhoods are used.

Assume an n–dimensional function, f : S ⊂ R
n → R, and a swarm, S =

{X1, X2, . . . , XN}, of N particles. The i–th particle, Xi ∈ S, its velocity, Vi, as
well as its best position, Pi ∈ S, are n–dimensional vectors. A neighborhood of
radius m of Xi consists of the particles Xi−m, . . . , Xi, . . . , Xi+m. Assume bi to
be the index of the particle that attained the best previous position among all
the particles in the neighborhood of Xi, and t to be the iteration counter. Then,
according to the constriction coefficient version of PSO, the swarm is updated
using the equations [13],

Vi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t)−Xi(t)

)
+ c2r2

(
Pbi(t)−Xi(t)

)]
, (5)

Xi(t + 1) = Xi(t) + Vi(t + 1), (6)

where i = 1, 2, . . . , N ; χ is the constriction coefficient; c1 and c2 are positive
constants, referred to as cognitive and social parameters, respectively; and r1,
r2 are random vectors with components uniformly distributed in [0, 1]. Default
values for χ, c1 and c2 are determined in the theoretical analysis of Clerc and
Kennedy [13].
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The performance of a population–based algorithm is heavily dependent on
the trade–off between its exploration and exploitation abilities, i.e., its ability
to explore wide areas of the search space and its ability to converge rapidly
towards the most promising solutions, respectively. The global variant of PSO
promotes exploitation since all particles are attracted by the same best posi-
tion, thereby converging faster towards the same point. On the other hand,
the local variant has better exploration properties since the information regard-
ing the best position of each neighborhood is communicated to the rest of the
swarm through neighboring particles. Therefore, the attraction to specific points
is weaker, thus, preventing the swarm from getting trapped in local minima.
Obviously, the proper selection of neighborhood size affects the trade–off be-
tween exploration and exploitation. However, the selection of neighborhood size
is heavily based on the experience of the user [10].

The Unified Particle Swarm Optimization (UPSO) scheme was recently pro-
posed as an alternative that combines the exploration and exploitation properties
of both the local and global PSO variant [10]. Let Gi(t + 1) and Li(t + 1) de-
note the velocity update of the particle Xi for the global and local PSO variant,
respectively [10],

Gi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t)−Xi(t)

)
+ c2r2

(
Pb(t)−Xi(t)

)]
, (7)

Li(t + 1) = χ
[
Vi(t) + c1r

′
1
(
Pi(t)−Xi(t)

)
+ c2r

′
2
(
Pbi(t)−Xi(t)

)]
, (8)

where t denotes the iteration number; b is the index of the best particle of the
whole swarm (global variant); and bi is the index of the best particle in the
neighborhood of Xi (local variant). The main UPSO scheme is defined by [10]:

Ui(t + 1) = (1− u)Li(t + 1) + uGi(t + 1), (9)
Xi(t + 1) = Xi(t) + Ui(t + 1), (10)

where u ∈ [0, 1] is a parameter called the unification factor, which balances the
influence of the global and local search directions in the unified scheme. The
standard global PSO variant is obtained by setting u = 1 in Eq. (9), while u = 0
corresponds to the standard local PSO variant. All values u ∈ (0, 1), correspond
to composite variants of PSO that combine the exploration and exploitation
characteristics of the global and local variant.

Besides the aforementioned scheme, a stochastic parameter that imitates mu-
tation in evolutionary algorithms can also be incorporated in Eq. (9) to enhance
the exploration capabilities of UPSO [10]. Thus, depending on which variant
UPSO is mostly based, Eq. (9) can be written as [10],

Ui(t + 1) = (1− u)Li(t + 1) + r3 uGi(t + 1), (11)

which is mostly based on the local variant, or

Ui(t + 1) = r3 (1− u)Li(t + 1) + uGi(t + 1), (12)

which is mostly based on the global variant, where r3 ∼ N (μ, σ2I) is a nor-
mally distributed parameter, and I is the identity matrix. Although r3 imitates
mutation, the obtained scheme is consistent with the PSO dynamics.



586 K.E. Parsopoulos and M.N. Vrahatis

Fig. 1. The tension/compression spring problem

4 Results and Discussion

In the experiments we used four well–known constrained engineering optimiza-
tion problems:

Problem 1: Design of a tension/compression spring [14]. This problem consists
of the minimization of the weight of the tension/compression spring illustrated
in Fig. 1, subject to constraints on the minimum deflection, shear stress, surge
frequency, diameter and design variables. The design variables are the wire di-
ameter, d, the mean coil diameter, D, and the number of active coils, N . The
problem is formulated as:

min
X

f(X) = (N + 2)Dd2,

subject to:

g1(X) : 1− D3N
71785d4 � 0,

g2(X) : 4D2−dD
12566(Dd3−d4) + 1

5108d2 − 1 � 0,

g3(X) : 1− 140.45d
D2N � 0,

g4(X) : D+d
1.5 − 1 � 0,

where X = (d, D, N)	. The desired ranges of the design variables are:

0.05 � d � 2.0, 0.25 � D � 1.3, 2.0 � N � 15.0.

Problem 2: Design of a welded beam [15]. This problem consists of the mini-
mization of the cost of a welded beam illustrated in Fig. 2, subject to constraints
on the shear stress, τ , bending stress in the beam, σ, buckling load on the bar,
Pc, end deflection of the beam, δ, and side constraints. There are four design
variables, h, l, t and b that will be denoted as x1, x2, x3 and x4, respectively.
The problem is formulated as:

min
X

f(X) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2),
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Fig. 2. The welded beam problem

subject to:

g1(X) : τ(X)− τmax � 0,

g2(X) : σ(X)− σmax � 0,

g3(X) : x1 − x4 � 0,

g4(X) : 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 � 0,

g5(X) : 0.125− x1 � 0,

g6(X) : δ(X)− δmax � 0,

g7(X) : P − Pc(X) � 0,

where,

τ(X) =
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2,

τ ′ =
P√

2x1x2
, τ ′′ =

MR

J
, M = P

(
L +

x2

2

)
,

R =

√
x2

2

4
+

(
x1 + x3

2

)2

, J = 2

{
√

2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

,

σ(X) =
6PL

x4x2
3
, δ(X) =

4PL3

Ex3
3x4

, Pc =
4.013E

√
x2
3x6

4
36

L2

(
1− x3

2L

√
E

4G

)
,
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Fig. 3. The gear train problem

P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi,

τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in,

and X = (x1, x2, x3, x4)	. The desired ranges of the design variables are:

0.1 � x1, x4 � 2.0, 0.1 � x2, x3 � 10.0.

Problem 3: Design of a gear train [16]. This problem consists of the minimiza-
tion of the cost of the gear ratio of the gear train illustrated in Fig. 3. The gear
ratio is defined as:

gear ratio =
nBnD

nF nA
,

where nj denotes the number of teeth of the gearwheel j, with j = A,B, D, F .
The design variables, nA, nB, nD and nF will be denoted as x1, x2, x3 and
x4, respectively, and they are all integers in the range [12, 60]. The problem is
formulated as:

min
X

f(X) =
(

1
6.931

− x3x2

x1x4

)2

,

subject to:
12 � xi � 60, i = 1, . . . , 4.

Problem 4: Design of a pressure vessel [16]. This problem consist of the min-
imization of the cost of the pressure vessel illustrated in Fig. 4. The design
variables are the shell’s thickness, Ts, the thickness of the head, Th, the inner
radius, R, and the length, L, of the cylindrical section of the vessel, and they
will be denoted as x1, x2, x3 and x4, respectively. The variables Ts and Th are
integer multiples of 0.0625, which represent the available thicknesses of rolled
steel plates. The problem is formulated as:

min
X

f(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3,
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Fig. 4. The pressure vessel problem

subject to:

g1(X) : −x1 + 0.0193x3 � 0,

g2(X) : −x2 + 0.00954x3 � 0,

g3(X) : −πx2
3x4 − 4

3πx3
3 + 1296000 � 0,

g4(X) : x4 − 240 � 0,

where X = (x1, x2, x3, x4)	. The desired ranges of the design variables are:

1 � x1, x2 � 99, 10.0 � x3, x4 � 200.0.

In all cases, the constriction coefficient PSO version was used with χ = 0.729,
c1 = c2 = 2.05. The neighborhood radius for the determination of the velocities
in the local PSO variant was always equal to 1 (smallest possible neighborhood)
in order to take full advantage of its exploration capabilities. For each test prob-
lem we applied the standard UPSO algorithm with u = 0.2 and 0.5, as well
as UPSO with mutation (denoted as UPSOm) with u = 0.1, μ = (0, . . . , 0)	

and σ = 0.01. These choices were based on prior good performance on static
optimization problems [10]. Also, the standard global and local PSO versions
(derived for u = 1 and u = 0, respectively), were applied. In all problems, the
swarm size was equal to 20, and the algorithm was allowed to perform 5000
iterations per experiment. We conducted 100 independent experiments per algo-
rithm per problem, recording at each experiment the best solution detected by
the swarm.

In order to preserve feasibility of the solutions, the update of the best posi-
tions of the particles was performed according to the scheme adopted by Hu et
al. in [4]. More specifically, the best position of a particle was updated only if
the new candidate best position was feasible, otherwise, it remained unchanged.
Regarding the weights w1 and w2 of the penalty function in Eq. (4), the values
w1 = w2 = 100 were used.
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Table 1. The obtained results

Standard UPSO UPSOm
Pr. u = 0 u = 0.2 u = 0.5 u = 1

1 Mean 2.32563 × 10−2 1.19291 × 10−1 4.67351 × 10−2 4.19581 × 10−2 2.29478 × 10−2

StD 7.48230 × 10−3 5.42710 × 10−1 2.14505 × 10−1 2.84724 × 10−2 7.20571 × 10−3

Min 1.28404 × 10−2 1.31269 × 10−2 1.28158 × 10−2 1.30803 × 10−2 1.31200 × 10−2

Max 4.87550 × 10−2 4.12260 × 100 1.57998 × 100 1.98921 × 10−1 5.03651 × 10−2

2 Mean 2.58869 × 100 2.29718 × 100 1.96820 × 100 4.27985 × 100 2.83721 × 100

StD 5.01437 × 10−1 4.10969 × 10−1 1.55415 × 10−1 1.36945 × 100 6.82980 × 10−1

Min 1.83008 × 100 1.82440 × 100 1.76558 × 100 1.91853 × 100 1.92199 × 100

Max 4.13207 × 100 4.17382 × 100 2.84406 × 100 8.91270 × 100 4.88360 × 100

3 Mean 3.92135 × 10−8 7.55581 × 10−8 2.83820 × 10−7 1.64225 × 10−6 3.80562 × 10−8

StD 7.71670 × 10−8 1.83057 × 10−7 6.87035 × 10−7 8.28521 × 10−6 1.09631 × 10−7

Min 2.70085 × 10−12 2.70085 × 10−12 2.30781 × 10−11 8.88761 × 10−10 2.70085 × 10−12

Max 6.41703 × 10−7 8.94899 × 10−7 5.69940 × 10−6 8.19750 × 10−5 8.94899 × 10−7

4 Mean 9.19585 × 103 8.66971 × 103 8.01637 × 103 1.35035 × 105 9.03255 × 103

StD 9.60268 × 102 6.24907 × 102 7.45869 × 102 1.51116 × 105 9.95573 × 102

Min 7.56796 × 103 6.77080 × 103 6.15470 × 103 7.52706 × 103 6.54427 × 103

Max 1.26720 × 104 1.01895 × 104 9.38777 × 103 5.59300 × 105 1.16382 × 104

All results are reported in Table 1. More specifically, the mean, standard
deviation, minimum and maximum value of the function values of the best solu-
tions obtained in 100 experiments for each algorithm and problem are reported.
In Problem 1, UPSOm (UPSO with mutation) had the overall best performance
with respect to the mean objective function value of the best solutions as well
as the standard deviation, although, the lowest minimum function value was ob-
tained for the standard UPSO scheme with u = 0.5. In Problem 2, UPSO with
u = 0.5 had the smallest mean, standard deviation and minimum of the objec-
tive function value of the best solutions, which is also true for Problem 4 with
the exception of the standard deviation. In Problem 3, UPSOm had again the
best mean, although the local PSO variant (UPSO with u = 0) was more robust,
exhibiting the smallest standard deviation, while they had the same minimum
value. In all cases except Problem 1, the global PSO variant had the worst mean
and maximum value.

Summarizing the results, UPSO with u = 0.5 and UPSOm proved to be the
most promising schemes, conforming with results obtained for different uncon-
strained optimization problems [10, 11]. The global PSO variant had the worst
overall performance, while the local variant was competitive, however only in
Problem 3 it outperformed UPSO with respect to the standard deviation and
the minimum objective function value.

5 Conclusions

We investigated the performance of the recently proposed Unified Particle Swarm
Optimization method on four well–known constrained engineering optimization
problems, using a penalty function approach and a feasibility preserving mod-
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ification of the algorithm. The results were very promising, with UPSO out-
performing the standard PSO algorithm, conforming with previous results for
different unconstrained optimization problems.

Further work will consider the investigation of the effect of the penalty func-
tion on the algorithm’s performance as well as different feasibility preserving
mechanisms.
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Abstract. The paper proposes a modified particle swarm optimizer for tracking 
dynamic systems. In the new algorithm, the changed local optimum and global 
optimum are introduced to guide the movement of each particle and avoid mak-
ing direction and velocity decisions on the basis of the outdated information. An 
environment influence factor is put forward based on the two optimums above, 
which dynamically decide the change of the inertia weight. The combinations 
of the different local optimum update strategy and local inertia weight update 
strategy are tested on the parabolic benchmark function. The results on the 
benchmark function with various severities suggest that modified particle 
swarm optimizer performs better in convergence speed and aggregation  
accuracy. 

1   Introduction 

The Particle Swarm Optimization (PSO) algorithm, regarded as a member of swarm 
intelligent stochastic optimizer, has been found to be robust and fast in solving 
nonlinear, non-differentiable, multi-modal problems. As the implementation of the 
PSO is very simple and a few parameters need to be adjusted, lots of modified PSO 
have been developed and applied in a great deal of science and engineering fields. 
The PSO exhibits good performance in finding solutions to static optimization prob-
lems. A lot of work and researches are progressed in this field [1,2]. But the real-
world problems change over time. As the fitness function is defined as a dualistic 
function F (X, G) in the dynamic system, the change of the goal will certainly lead to 
the change of the fitness function. In order to track the dynamic system, the PSO must 
have a method to detect the environment changes automatically and after the detec-
tion of the environment changes, and there must be a strategy to effectively respond to 
a variety of changes. Various adaptations to PSO have been suggested [3-6].  

In this paper, a new modified PSO is introduced. After every movement of the 
goal, the algorithm updates its own local optimum (called as pBest) and global opti-
mum (called as gBest) according to the current location of the goal. And a new detec-
tion method is introduced based on the two updated optimums. At the same time, the 
inertia weight is respectively dependent on the influence of the moving goal on each 
particle. The experiments show that the modified PSO with the new detection method 
and changed inertia weight improves the accuracy of the search result and converges 
fast in tracking dynamic systems. 
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The remaining of the paper is organized as follows. In section 2, an overview over 
existing approaches to use PSO for dynamic systems is given. A modified PSO is then 
discussed in section 3. The new detection method and the change mechanism of the 
inertia weight are introduced, and then the algorithm is given. In section 4, the ex-
periments in different cases are described. The performance analyses of the results are 
exhibited as well. Finally, the conclusions and future work are presented.  

2   Related Work 

The experiment results indicate that the basic PSO has the ability to cope with noisy 
environments effectively and in a stable manner [7]. In fact, in many cases, the pres-
ence of noise seems to help PSO to avoid local optimum of the objective function and 
locate the global one. Anthony Carlisle and Gerry Dozier [8] also discovered that 
when the changes of the optimized goal are small, the PSO has certain ability to self-
correct. But the performance of the basic PSO is bad when there are big dynamic 
changes. There are two main problems to be solved for PSO to track dynamic sys-
tems. One is the environment detection method. And the other is the response method 
to the changed goal. 

Two methods commonly used to detect environment changes are changed-gbest-
value method and fixed-gbest-value method [10]. Both of these two methods can 
successfully detect the various dynamic changes. The former is faster but needs extra 
time to re-evaluate the fitness value, while the latter is slow but can be applied in any 
situation. 

For response techniques to the change of the goal, two main methods exist: re-
randomizing a certain number of particles and replacing the history memory of the 
particle swarm. Hu and Eberhart [10] randomized a certain scale of particles to re-
sponse the movement of the goal, making them break away from the moving direction 
to the previous goal. But the randomization implies loss of information gathered dur-
ing the search so far. At the same time, Carlisle and Dozier studied several variants of 
a PSO algorithm for dynamic environments[8,9]. One approach was to let the parti-
cles periodically replace their previous best position by the current position. The pre-
vious best position is reevaluated after the goal moves, and is   exchanged by the 
current position when the current position is better. 

3   Model of the Modified PSO 

In the algorithm modified by Carlisle[8], the update strategy of pBest just considers 
the influence of the previous personal best position, but the previous particle position 
does have an influence on the algorithm. Because the memories of particles are in-
completely reset and there is still part of the history memories existing in each parti-
cle, the algorithm does not take full use of the memorial information of the particles, 
and this decreases the particles' ability to search for optimum. We must consider this 
again to settle the problem perfectly. 
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Fig. 1. Influence of goal’s movement on Pbest 

Suppose the movement process of the goal and the particles is displayed as    Fig-
ure 1. The goal moves from the position G(t-1) to G(t) and a particle i moves from the 
position Xi (t-1) to Xi (t). At time t-1, personal best position of particle i is Pbesti(t-1). 
We assume that it is a process to search for minimum, that is,       F(Pbesti(t-1), G(t-
1))≤ F(Xi (t-1), G(t-1)). According to the algorithm developed by Carsile and Dozie, 
When the goal moves, the fitness value of Pbesti(t-1) to the new goal is reevaluated, 
marked as F(Pbesti(t-1),G(t)). The fitness value of the current particle position Xi (t) is 
evaluated marked as F(Xi (t),G(t)) as while. Comparing the two values above, if 
F(Pbesti(t-1),G(t))>F(Xi (t),G(t)), then Pbesti (t) is set as Xi (t). However, if F(Xi (t-
1),G(t)) is less than F(Xi(t),G(t)) , it is more reasonable to set Pbesti(t) by Xi(t-1) 
instead of Xi(t), although F(Xi (t-1),G(t-1)) is greater than F(Pbesti(t-1),G(t)).  

Generally considering the influence of Pbesti(t-1) and Xi(t-1) on the algorithm to 
settle the problem, the F(Pbesti (t-1),G(t)) and F(Xi(t-1),G(t)) are compared after the 
goal moves and the better of them is chosen as Pbest’i(t-1). At the same time, the best 
of the Pbest’i(t-1) is selected as Gbest’(t-1). And then Pbest’i(t-1) is compared with the 
current positon Xi(t) and the better of them is Pbesti(t). If the Pbest’i(t-1) is different 
from Pbesti(t-1) or Gbest’(t-1) is different from Gbest(t-1), the movement of the goal 
will change the direction of the particles. Otherwise, it doesn’t take any impact on the 
swarm. 

It is simple to testified that Pbesti(t) is the best position of Pbesti(t-1), Xi(t-1) and 
Xi(t), and Gbest(t) must be the best among the particles' memory. Based on the model 
of the modified PSO, a new detection method and changed inertia weight are pro-
posed. 

3.1   Improved Environment Detection Method  

The movement of the particle is closely related with local optimum and global opti-
mum on the basis of the velocity update function: 

)Pr()(2)Pr()(11 esentpgBestrandcesentppBestrandcVwV kk −×+−×+×= −
 (1) 

Because the movement of the goal may change the fitness values of pBest and 
gBest, the values of F(Pbesti(t-1),G(t)), F(Xi(t-1),G(t)) and F(Gbest(t-1),G(t)) should 
be recalculated  after the goal moves, and the better of Pbesti(t-1) and Xi(t-1) is 
chosen as Pbest’i(t-1). The local influence factor ηPi can be defined as follow: 
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|ηPi| reflects the influence of the goal’s movement on the particle i. Smaller the |ηPi| 
is, smaller the influence is. Bigger the |ηPi| is, bigger the influence is. If ηPi =0,  it 
means that the goal’s movement does not change the local optimum or the goal is 
still. 

The Gbest’(t-1) is the best of  the all Pbest’i(t-1). Similarly to the definition of the 
local influence factor ηPi, we define the global influence factor ηG as: 
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According to the influence of ηPi and ηG on the particles, a parameter ηi, named 
environment influence factor, is introduced. ηi is defined as follows: 

GPii ηληλη *)1( −+∗=  (4) 

Where 0<λ<1. λ is the influence weight of Pbest and Gbest. Bigger the λ is, bigger 
the influence of local optimum is and smaller the influence of global optimum is. 

|ηi| reflects the influence of the goal’s movement on local optimum and global op-
timum. Smaller the |ηi| is, smaller the influence is. Bigger the |ηi| is, bigger the 
influence is. If |ηi| equates to zero, the goal is considred to be still or the goal’s 
movement does not bring any changes to both local and global optimum, and has no 
influence on the next iteration. 

3.2   The Weight and the Particle’s Velocity Update Mechanism  

The inertia weight in the dynamic system is defined as w = 0. 5 +r(t) / 2.0 in the pa-
pers [10, 11].  r (t) is a random number in (0,1), while the average of w is 0.75. For 
the dynamic random inertia weight, as the last part of the formula r(t) / 2.0 is random, 
it can not reflect the influence of the goal’s movement. In order to improve this prob-
lem, a new changed method to update w on the basis of changed situation is proposed. 
The idea is described as follows.  

When i>0, the goal moves far away from the particle, and wi should be increased 
to make the particle have a higher velocity to track the goal. When i<0, the goal 
moves close to the particle, wi should be decreased to make the particle can find the 
optimum in a precise way. When i=0, wi changes as the method mentioned in the 
paper[12].  
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Based on the analysis above, when i ≠0, wi should increase as i increases, and 
shoud decrease as i decreases. According to the dynmic random inertia weight 
formula, when w variety is near 0.5, the performance of the algorithm is good. So, let: 

2/)1( += iiw η  (5) 

Here, wi is limited to [0.1 1]. Let wi=0.1 if wi<0.1, and let wi=1 if wi>1. 
On the basis of formula (1), different particles have different wi in different itera-

tions because influence of the goal’s movement is different on each particle. After wi 
is calculated, the velocity Vi(t) and position Xi(t) of the next iteration can be obtained, 
and then fitness value F(Xi(t),G(t)) is evaluated. The swarm follows the current goal’s 
position during the iterations, and is influenced by it. As a result, it can track the mov-
ing goal.  

3.3   Modified PSO Algorithm 

As the movement of the goal lead to the changes of the environment, the modified 
PSO algorithm detects the changes and updates the value of pbest and gbest. Then the 
w is changed based on the influence of the moving goal. The updated w, gbest and 
pbest are used to guide the particles to track the goal, and result in the new local op-
timum and global optimum. 

The modified algorithm is described as follows: 

Algorithm PSO { 
Initialize(); 
do { 
  Update the fitness function;  
  for (i=1; i<N; i++){ 
    Reevaluate the fitness value of Pbesti(t-1)  
            and  Xi(t-1);  
    if Pbesti(t-1) is better than Xi(t-1)  
      Choose Pbesti(t-1) as Pbest’i(t-1);  
    else 
      Choose Xi (t-1) as Pbest’i (t-1);  
    Choose the best of Pbest’i(t-1) as Gbest’(t-1);  
  } 
  for (i=1; i<N; i++){ 
    Calculate wi;  
    Update Velocity of particle i at time t;  
    Limit Velocity Vi (t);  
    Update the Position of particle i at time t;  
    Evaluate the fitness value of Xi;  
    if Xi(t) is better than Pbest’i(t-1)  
      choose Xi(t) as Pbesti(t);  
    else 
      choose Pbest’i(t-1) as Pbesti(t);  
    Choose the best of Pbesti(t) as Gbest(t);  
  } 
} WHILE the convergence criteria is not attained  

} /* END PSO */ 
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The modified PSO can automatically detect the movement of the goal, and the state 
of the new particle is updated according to the influence of the movement on the cur-
rent situation, in order to get the newest guiding information to track the goal.  

4   Experiments and Evaluation 

As the parabolic function is easy to control the dynamic change, it is chosen as the 
test function described as formula (6). There is a dynamic parameter offset in the 
function that changes in various ways.  

]50,50[)()(
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=

i

n

i
i xoffsetxxF  (6) 

In the experiments, the number of particles is set as 30 and the dimension of each 
particle is 10. The algorithm is tested in two cases. 

Case 1: First, PSO finds the optimum and records the number of iterations needed 
to reach the required accuracy. In this experiment, accuracy e=0.0001. Then the func-
tion changes dynamically and PSO continues to find the new optima and records the 
number of iterations needed to re-reach the accuracy. For each experiment, PSO is 
repeated for 100 runs. 

Case 2: The offset changes continuously. When the change of the goal is less than 
1, the goal moves once and the swarm iterates once. When the change of the goal is 
equal to 10, the goal moves once, the swarm iterates 100 times. For each experiment, 
PSO is repeated for 20 runs. 

4.1   The Influence of Different λ on PSO 

The influence of different λ on PSO is tested in case 1. The result is showed as  
table 1. The row ‘first time’ is the average number of iterations that PSO used to find 
the optimum. The row ‘second time’ is the average iterations PSO used after the dy-
namic changes. We can see from table 1, the influence of λ is little. According to the 
result, we set λ=0.4 in all following experiments. 

Table 1. The influence of λ on the PSO performance 

offset λ= 0 λ=0.2 λ=0.4 λ=0.5 λ=0.8 λ=1 

First time 152.05 152.14 147.14 158.29 153 156.48 
1 

Second time 82.35 79.19 80.95 82.95 84.71 82.34 

First time 156.42 152.84 150.51 154.5 157.65 155.49 
10 

Second time 135.48 135.78 135.41 144.3 131.18 140.67 
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4.2   Performance Comparison 

The performance of PSO is tested in case 2. In order to compare the influence of 
different pbest update strategy on PSO, the algorithm adopts the same w update 
strategy and different pbest update strategy. In the experiment, the offset verifies 
from 0.001 to 10. The results show that the evolution curves have the same charac-
teristic. In figure 2, the Linearly Decreasing Weight is applied in the experiment 
and the movement of the goal is 0.01. In figure 3, the Random Weight is applied in 
the experiment and the movement of the goal is 10. The conclusion can be drawn 
that for the linearly decreasing weight, the performance of the two pbest update 
strategies is equivalent, and for the random weight, the modified pbest update strat-
egy exhibits better performance in accuracy. 

In order to test the influence of the weight update strategy on PSO, the algorithm 
adopts the same pbest update strategy and different weight update strategy. Figure 4 
shows the comparison of different weight update strategy with the modified pbest 
strategy when the movement of the goal is 0.01. 

Figure 4 shows that although the linearly decreasing weight strategy exhibits 
good performance in accuracy, the algorithm searches is in a big space so that the 
convergence speed is low as the weight is large in the early time. On the contrast, 
the accuracy of the modified dynamic weight strategy is as good as that of the line-
arly decreasing weight strategy and the convergence speed is fast. Conclusion can 
be drawn that PSO with the modified dynamic weight strategy outperforms the PSO 
with dynamic random weight under the same circumstance. 

Figure 5 and table 2 shows the comparison of the modified PSO and the PSO de-
veloped by Hu and Eberhart. 

For the reason that the modified PSO applies the dynamic changing weight of  
the static PSO when the goal is detected unchanged, the modified PSO outperforms 
the  PSO  developed  by  Hu  and  Eberhart.  When  the  goal has a change, the latter  

Fig. 2. Comparison of two pbest update strategies for LDC 
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Fig. 3. Comparison of two pbest update strategies for Random w 
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Table 2. Mean iterations needed to follow the optimum 

My PSO Eberhart PSO  Dynamic 
change  First time Second time First time Second time 

0.00001 154.14 0 222.79* 0.06* 

0.0001 159.85 0 221.68* 0.77* 

0.001 150.28 0.56 221.48* 14.86* 

0.01 152.06 6.72 220.55* 54.86* 

0.1 154.81 35.56 223.35* 108* 

1 158.29 82.95 220.2* 186.74* 

10 154.5 144.3 220.46* 213.97* 

*Remark: The data come from reference [11] 

randomizes a certain number of particles and make them break away from the trend to 
move toward the previous goal and search in the whole space again. But this method 
does not enable to make the particles move towards the new goal or randomize 
around the area of the new goal, so that it is a random process during iterations. 

When offset is a little more severe, in contrast with the algorithm of Hu and Eber-
hart, the modified PSO can find the moved goal more quickly. When the offset is less 
than 0.001, the PSO does not need any iteration to find the goal again. In figure 5, the 
curve shows that whatever the offset is, the superiority of the modified PSO is  
evident. 

5   Conclusions and Further Research 

In this paper, a new modified PSO for dynamic function optimization has been pro-
posed. The new environment detection method is put forward based on a parameter 
that can reflect the influence of the moving goal on each particle. The weight is up-
dated depending on the parameter mentioned above. As a result, the methods in the 
static PSO are available in the modified PSO since the parameter can judge the fact 
whether the goal is moving or not. The modified pbest update strategy effectively and 
completely uses the particles’ position information, with which the algorithm can find 
a more accurate solution than Carlisle’s algorithm. At the same time, modified dy-
namic weight increases the convergence speed and aggregation accuracy. The test 
results on the parabolic benchmark function with various severities under the same 
circumstance show that the modified PSO can successfully track the dynamic systems 
in a more effective way than the PSO developed by Hu and Eberhart. 

Here only a parabolic function test case is presented. For more complex problems, 
further investigation is needed to test the performance of PSO. More researches on the 
influence of λ on the PSO should be done in the future. 
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Abstract. The goal of bipartite subgraph problem is to partition the
vertex set of an undirected graph into two parts in order to maximize the
cardinality of the set of edges cut by the partition. This paper proposes a
modified particle swarm optimization (PSO), called MPPSO (Mutated
Personalized PSO), for this NP-hard problem. The proposed MPPSO
algorithm contains a key improvement by introducing a personality factor
from a psychological standpoint and a mutation operator for global best.
Additionally the symmetry issue of solution space of bipartite subgraph
problem is coped well with too. A large number of instances have been
simulated to verify the proposed algorithm. The results show that the
personality factor and mutation operator are efficient and the quality of
our algorithm is superior to those of the existing algorithms.

1 Introduction

One of the best known combinatorial optimization graph problem is the bipartite
subgraph problem, which is to find a partition of undirected graph into two
disjoint vertex set such that the cut size is maximized. It has been studied
in several real world applications such as the VLSI design and the statistical
physics [1] [2].

Particle Swarm Optimization (PSO) is a population-based stochastic opti-
mization technique developed by Eberhart and Kennedy in 1995 [3] [4], inspired
by social behavior of bird flocking and fish schooling. In PSO, each particle rep-
resents a potential solution within the search space and a position, a velocity and
a record of its past behavior characterize it. At each flight cycle the objective
function is evaluated for each particle with respect to its current position. The
obtained value measures the quality of the particle. Many optimization problems
involve in discrete or binary variables. The updating equation of PSO and proce-
dures are oriented from and designed for continuous spaces. Some changes have
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to be made to adapt to the discrete spaces. The coding changes may be simple,
but it is hard to define the meanings of velocities and determine the changes of
trajectories. Few researches has been made in this direction [5] [6] [7] [8].

In this paper, we represent the bipartite subgraph potential solutions as
particles and let them fly to get optimal solutions. The proposed PSO, called
MPPSO, contains a key improvement by introducing a “personality” factor from
a psychological standpoint and a mutation operator for global best. In addition,
the special symmetry issue of bipartite subgraph problem is coped well with to
speed up the convergence of MPPSO. A large number of randomly generated
examples are simulated to verify the proposed algorithm. The efficacy of our
algorithm is compared with those of previous algorithms.

The remainder of this paper is organized as follows. In section 2 bipartite
subgraph problem is described. The basic PSO algorithm is outlined in section
3. MPPSO for bipartite subgraph problem is presented in section 4. Experiments
results are provided in section 5. Finally, the conclusions are given in Section 6.

2 Bipartite Subgraph Problem

Definition 1. Let G = (V ert, E) be an undirected graph, where V ert is the set
of vertices and E is the set of edges. The edge from vertex verti to vertex vertj
is represented by eij ∈ E. eij = eji indicates whether there is an edge which
endpoints are vertex verti and vertj (1 indicates existence, and 0 indicates in-
existence). The goal of the bipartite subgraph problem of G = (V ert, E) is to find
a partition of V ert into two disjoint vertex sets S0 and S1 such that the cut size
is maximized. The cut size is the sum of edges in E which have one endpoint in
S0 and another one in S1.

The bipartite subgraph problem is a well-known NP-hard problem [9]. In
1983, a sequential heuristic algorithm for this problem was proposed by Hsu [1].
In 1992, Lee et al. proposed a binary neural network using the maximum neuron
model [10].

3 Basic Particle Swarm Optimization

Like Genetic Algorithm (GA), PSO is initialized with a population of random
solutions. Its development was based on observations of the social behavior of
animals such as bird flocking, fish schooling and swarm theory. Each individ-
ual in PSO is assigned with a randomized velocity according to its own and its
companions’ flying experiences, and the individuals, called particles, are then
fly through hyperspace. Compared to GA, PSO has some attractive characteris-
tics. It has memory, so knowledge of good solutions is retained by all particles;
whereas in GA, previous knowledge of the problem is destroyed once the pop-
ulation changes. It has constructive cooperation between particles, particles in
the swarm share information between them.

vid = wvid + c1rand()(pid − xid) + c2Rand()(pnd − xid) (1)
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Initialize particle population

Evaluate fitness value
for each particle

Finish condition?

Update pBest

Update nBest

Update velocity and position
for each particle according to

equation (1) and (2)

Result
Y

N

Fig. 1. General flowchart of particle swarm optimization

xid = xid + vid (2)

The particle swarm works by adjusting trajectories through manipulation
of each coordinate and velocity of a particle per iteration. PSO is initialized
with a group of random particles (solutions) and then searches for optima by
updating each generation. The core of PSO is the updating equations of the
particle, which can be represented as follows. A particle (potential solution)
Xi = (xi1, xi2, . . . , xiD) is looked as a point without quality and volume in D-
dimension search space. The velocity of Xi is presented as Vi = (vi1, vi2, ·, viD).
Equation (1) calculates the dth-dimension of a new velocity for each particle
based on its previous velocity (vid), the particle’s position at which the best fit-
ness so far has been achieved (pBest), and the neighbor’s best position (nBest)
at which the best fitness in a neighborhood so far has been achieved (if all the
population is taken as its neighbors, nBest is called gBest). Equation (2) up-
dates each particle’s position in the solution hyperspace. Rand() and rand()
are two random numbers independently generated. c1 and c2 are two learning
factors, which control the influence of pBest and nBest on the search process.
From a psychological standpoint, the cognitive term (c1) represents the ten-
dency of individuals to duplicate past behavior that has been proven successful,
whereas the social term (c2) represents the tendency to follow the successes of
others. The function of inertia weight w is to balance global exploration and
local exploitation. The general flowchart of PSO is shown in fig. 1.

4 MPPSO for Bipartite Subgraph Problem

For the bipartite subgraph problem, we represent a potential sub-graph partition
as a position in n-dimension binary space. A particle may be seen to move to
nearer and farther corners of the hypercube by flipping various numbers of bits;
thus velocity of the particle should reflect the probability the bit changing on a di-
mension per iteration. In this paper, therefore, each vid (vid ∈ (−Vmax,+Vmax))
reflects the probability of bit xid taking value 1. As equation (3) shows, the
probability that a bit will be a one = S(vid), and the probability that it will
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be a zero = 1 − S(vid). In other words, the greater vid, the higher probability
xid will be 1; the smaller vid, the higher probability xid will be 0. The value of
(pid − xid) can be reasonably calculated as -1, 0, +1, and used to weight the
change in probability vid at the next step. The equation (1) remains unchanged
except that pid and vid is binary integers in {0, 1}. Furthermore, if it is a zero
already, then the probability that it will change = S(vid), and if it is a one then
probability it will change = 1− S(vid). Hence the probability of bit changing is
given by equation (5), which is the absolute rate of change for that bit given a
value of vid [5].

S(vid) =
1

1 + e−αvid
(3)

xid =
{

1, if rand() < S(vid),
0, elsewise.

(4)

p(Δ) = S(vid)(1− S(vid)) (5)

The new coordinate xid is calculated according to equation (4), where func-
tion S(vid) is a sigmoid limiting transformation and rand() is a quasi-random
number selected from a uniform distribution in [0.0, 1.0]; thus S(vid) determine
the next value of xid. Another parameter Vmax is to limit the absolute value
of vid; thus the function of Vmax is to set a limit to further exploration after
the population has converged. From the equation (3), (4) and (5), smaller Vmax

implies higher probability of bit changing. To solve bipartite subgraph problem
efficiently, we proposed mutated personalized PSO (MPPSO). The following sub-
sections describe three key techniques of MPPSO - personality factors, mutation
operator and symmetry issue - in detail.

4.1 Personalized Particle Swarm Optimization

According to equation (1), the inertia weight w and two learning factor c1 and c2
are key parameters. From a psychological standpoint, the cognitive term c1 rep-
resents the tendency of individuals to duplicate past behaviors that have proven
successful, whereas the social term c2 represents the tendency to follow the suc-
cesses of others. Both c1 and c2 are sometimes set to 2.0 obviously for it will
make the search cover all surrounding regions which is centered at the pBest and
nBest. 1.49445 is also used according to the work by Clerc [11] which indicates
that a constriction factor may be necessary to insure convergence of PSO [12].
In most cases, the learning factors are identical. That puts the same weights on
social searching and cognitive searching. Kennedy studied two extreme cases:
social-only model and cognitive-only model, and found out that both parts are
essential to the success of PSO searching [13]. No definitive conclusions about
asymmetric learning factors have been reported.

However, all previous studies on learning factors only think the particle
swarm as a whole, but not consider the speciality of every particle. In this pa-
per, we propose a property of single particle - “personality”, which represents
a kind of psycology inclination of each particle. The extrovert has higher social
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learning ability and is easy to be influenced by others. The introvert has lower
social learning ability and incline to learning from the experience of itself. The
social learning factor c1 and cognitive learning factor c2 are not equal for each
particle, but the whole swarm has equal social and personal learning ability. It
is hard to say whether the extrovert is superior to introvert or vice versa for
single individual. But from the whole standpoint, this property increases the ex-
ploration and exploitation abilities of particle swarm and makes particles search
larger region.

According to the Gaussian distribution of personalities from the standpoint
of social psycology, we assume the particles conforming to Gaussian distribu-
tion. Therefore, the personality property pi of particle Xi is calculated according
to equation (6) and (7) in the initialization stage. k1 and k2 are two factors to
control the particle personality distribution. Their values are inversely propor-
tional to personality percentage in population. In other words, these two factors
control how “bias” the particles could be from balance personality as a whole
swarm. The greater these two factors, the more ordinary and centralized individ-
uals are. In the extreme case of k1=k2=0, pi is set to 0 or 1 randomly; thus c1,
c2 will be 0, 1 or 1, 0 for a particle, which means that one half-part of population
is social-only and another half-part is cognitive-only. While in another extreme
case of k1 = k2 = +∞, pi ≡ 0.5, then c1 and c2 will be invariable values (1.49445
in this paper) without personalities.

pi =

{
0.5− 1

1+e−k1r , r < 0;
1.5− 1

1+e−k2r , r > 0.
(6)

r: uniform random number on (−rand max, 0) ∪ (0,+rand max);
k1: introvertive proportional factor, k1 > 0;
k2: extrovertive proportional factor, k2 > 0.{

ci1 = pi × sum c
ci2 = (1− pi)× sum c

(7)

sum c: the sum of c1 and c2, equals 2.9889 according to [11].

4.2 Mutated Particle Swarm Optimization

Another improvement is mutation operator for global best. One drawback of PSO
is local-optimal, because all particles tend to congregation towards global best.
However, global best is hard to learn from social and personal experiences. Thus,
we adopt mutation operator to global best, which is from Genetic Algorithm. m
coordinates of n-dimension gBest are selected randomly and mutated (reverses
0 to 1 or vice versa) according to mutation probability Pm. If the fitness after
mutation is better than the one before, mutation takes effect. Otherwise, the old
value is retained. m is linearly decreasing with iteration and defined as follows.

m = n× (iter/itermax)
iter : The current iteration;
itermax : The maximum iteration.
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4.3 Symmetry Issue of Solution Space

Another important issue of bipartite subgraph problem is the symmetry of solu-
tion space, which means in n-dimension binary space, a position and its symmet-
rical position represent the same sub-graph partition (e.g. 01010 equals 10101
in 5-dimension space). Thus, when we calculate the vid and xid according to the
equation (1) and (4), particle move on the edges of hypercube to close to the
corner (position) pBest and corner gBest. For the bipartite subgraph problem,
sub-graphs partition {S0, S1} has no order, thus two solutions exist as a pair in
solution space.

gBest

pBest

X(t)

X(t+1)

opt

gBest
pBest

X(t)

X(t+1)

opt

gBest

pBest

X(t)

X(t+1)

opt

gBest pBest

X(t) X(t+1)

opt
(a) (b)

d1d1

d2 d2

bad trace!

Fig. 2. Illustration for symmetry issue of particle solution space

We illustrate this issue by a simple example in fig. 2. pBest and gBest rep-
resent the symmetrical corners of pBest and gBest in hypercube. To simplify
analysis, the calculation can be seen as vector addition approximately in con-
tinuous space; thus the main part of velocity V is computed stochastically by
vector-adding up (pBest−X) and (gBest−X). As fig. 2(a) shows (in 2-dimension
case), pBest, gBest, X and opt reside in first phase, while pBest, gBest, X and
opt reside in third phase; then particle X will fly towards opt in terms of pBest
and gBest (X will fly towards opt according to pBest and gBest). But in the
case of fig. 2(b), where X and pBest reside in third phase while gBest and opt
resides in first phase, the trajectory of X will oscillate and converge very slowly
to opt or opt according to pBest and gBest (same to X according to pBest and
gBest). We call this phenomena bad trace. However, if X adjusts trajectory ac-
cording to pBest and gBest reside in third phase, it will converge to opt rapidly.
This situation is shown in first phase of fig. 2(b), where X flies towards opt
according to pBest and gBest. Therefore, the new position with highest fitness
is selected as the final new position and velocity of a particle per iteration. The
following experiments also show that this strategy guarantees the convergence.

4.4 Steps of MPPSO

Step 1. The solutions are presented as particles, which are binary encoding
schemes (n-dimension binary vector). For an undirected graph G = (V ert, E),
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a potential solution is X = (x1, . . . , xn), n = |V ert|, xi ∈ {0, 1}. A vertex is
represented as xi with value 0 or 1, which denotes xi belong to sub-graph
S0 or S1.

Step 2. The initial particles population is generated randomly. The population
size is N . The population P is a set containing N particles. P = X1, . . . , XN .
The personal and social cognitive learning factors are generated for each
particle according to equation (6) and (7).

Step 3. The edges of G is a n × n(n = |V ert|) triangle matrix W . eij = 1
denotes whether the edge exists whose endpoints are vertices verti and vertj ,
otherwise eij = 0. The fitness value f(X) is computed according to equation
(8), which denotes the cut number in the case of partition X .

f(X) =

∑n
i=1

∑i−1
j=1

(
eij × (xi XOR xj)

)
∑n

i=1
∑i−1

j=1 eij

; 1 ≤ i, j ≤ n;xi, xj ∈ X (8)

XOR: exclusive or operator.

Step 4. If the current fitness value of a particle is better than pBest, it is
updated by current position.

Step 5. If the current global best fitness value of the whole swarm is better
than gBest, it is updated by current global best position.

Step 6. The velocity and position of each particle are updated according to
equation (1) and (4), and the symmetry issue should be considered in calcu-
lation.

Step 7. Perform mutation operation for gBest.
Step 8. Check the finish condition (maximum iteration Imax). If the process is

finish, gBest is decoded and result is gained. Otherwise return to step3.

5 Experimental Results and Analysis

In order to evaluate the efficiency of the proposed algorithm, we have imple-
mented it in C++ on AMD Athlon XP1700+ 512M. As graph instances, each
edge is randomly generated at the 5% 15% and 20% probability for random
graphs. A total of 100 trials are performed in each case. The parameters used in
our experiments are as follows: population size = 20, maximum iteration = 500,
inertia weight w = [0.5 + (Rnd/2.0)], learning factors c1 = c2 = 1.49445 (only
for PSO and MPSO algorithm), max velocity Vmax = 50, sigmoid function α
= 1, sum c = 2.9889. After a number of simulations, we select key personality
factors as k1 = 2, k2 = 1.

Table 1 shows the comparison among PSO, PPSO (Personalized PSO), MPSO
(Mutated PSO) and MPPSO (Mutated Personalized PSO). Column 1 shows the
number of vertices. The results of PSO, PPSO, MPSO and MPPSO are shown
in column 2 to 13. Table 1 shows that both personality factors and mutation
operator contribute to the improvement of the solution quality.

Table 2 shows the results of PSO compared with those of the algorithms
of Hsu’s Greedy Search (GS) [1], Lee’s Max Neural Network (MNN) [10] and
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Table 1. The results of PSO, PPSO, MPSO and MPPSO (MPP)

Node 5% 5% 5% 5% 15% 15% 15% 15% 20% 20% 20% 20%
PSO PPSO MPSO MPP PSO PPSO MPSO MPP PSO PPSO MPSO MPP

10 2 2 2 2 6 7 5 7 8 8 8 8
20 9 9 9 9 23 24 25 24 30 30 31 31
30 22 21 21 21 52 52 52 53 66 65 66 66
40 36 36 35 36 89 88 89 89 112 113 112 113
50 53 54 53 53 134 133 136 134 172 173 171 173
60 75 76 76 77 188 190 191 191 241 240 240 242
70 100 103 101 101 253 254 256 254 323 323 323 324
80 130 130 132 130 324 323 327 329 412 414 418 420
90 160 160 160 164 400 402 405 405 516 516 523 521
100 193 192 195 196 490 494 498 497 631 635 638 638

Table 2. The results of GS, MNN, GA and MPPSO

Node 5% 5% 5% 5% 15% 15% 15% 15% 20% 20% 20% 20%
GS MNN GA MPPSO GS MNN GA MPPSO GS MNN GA MPPSO

10 2 2 2 2 6 6 7 7 6 6 9 8
20 8 8 9 9 24 25 24 24 26 28 30 31
30 19 20 21 21 49 50 51 53 52 56 65 66
40 36 36 35 36 90 90 88 89 96 99 111 113
50 50 53 52 53 128 135 131 134 143 149 169 173
60 78 80 75 77 191 195 187 191 210 218 240 242
70 102 107 98 101 246 254 250 254 282 282 318 324
80 125 132 128 130 311 330 320 329 363 367 411 420
90 158 162 157 164 390 405 400 405 445 459 513 521
100 185 195 189 196 478 494 487 497 553 564 628 638

Table 3. The results of PSO with symmetry and without symmetry

iteration un-symmetry PSO symmetry PSO
5 403 413
20 412 435
50 419 462
100 424 480
500 442 490

Genetic Algorithm (GA). From table 2, the results of MPPSO are superior to
others.

Table 3 shows the comparison between PSO with symmetry and PSO without
symmetry in the case that node size is 100 and edge-density is 15%. It shows
that the PSO without symmetry converges very slowly. The symmetry issue is
very important for bipartite subgraph problem.
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Fig. 3. The influence by the personality factors k1 and k2

Fig. 3 shows the influence by the personality factors k1 and k2. We measure
the results of k1 and k2 = 0.01, 0.05, 0.1, 0.5, 1, 2, 5 and 10 respectively in the
case that node size is 100, edge-density is 15% and total 100 trials are executed.
The results shows that the optimal result appears where k1 = 2 and k2 = 1.

6 Conclusions and Future Works

A modified PSO algorithm MPPSO was proposed, which introduced an impor-
tant “personality” factor and a mutation operator into basic PSO. For bipartite
subgraph problem, the particles representing a sub-graphs partition solutions
move on the corners of hypercube to close the optimal solution. Meanwhile, the
symmetry of solution space is also considered such that convergence of MPPSO
is guaranteed. MPPSO has the advantages of few parameters and simplicity. In
comparison with greedy search, genetic algorithm and neural networks, the re-
sults of MPPSO are better than others, and the efficiency of personality factors
and mutation operator are illustrated too. This personality factor should be able
to be extended to solve other continuous and discrete optimization problems. It
is necessary for us to study more.
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Abstract. Using an agent-based multi-asset artificial stock market, we
simulate the survival dynamics of investors with different risk prefer-
ences. It is found that the survivability of investors is closely related to
their risk preferences. Among the eight types of investors considered in
this paper, only the CRRA investors with RRA coefficients close to one
can survive in the long run. Other types of agents are eventually driven
out of the market, including the famous CARA agents and agents who
base their decision on the capital asset pricing model.

1 Introduction

The paper is concerned with a part of the debate on the market selection hypoth-
esis. The debate, if we trace its origin, started with the establishment of what
become known as the Kelly criterion ([8]), which basically says that a rational
long-run investor should maximize the expected growth rate of his wealth share
and, therefore, should behave as if he were endowed with a logarithmic utility
function. Alternatively speaking, the Kelly criterion suggests that there is an
optimal preference (rational preference) which a competitive market will select
and that is logarithmic utility. The debate on the Kelly criterion has a long
history, so not surprisingly, there is a long list of both pros and cons standing
alongside the developments in the literature.1

The Kelly criterion may further imply that an agent who maximizes his
expected utility under the correct belief may be driven out by an agent who
maximizes his expected utility under an incorrect belief, simply because the
former does not maximize a logarithmic utility function, whereas the latter does.
[1] were the first to show this implication of the Kelly criterion in a standard
asset pricing model. As a result, the market selection hypothesis fails because
agents with accurate beliefs are not selected. A consequence of this failure is that
asset prices may not eventually reflect the beliefs of agents who make accurate
predictions, and hence may persistently deviate from the rational expectations
equilibrium and violate the efficient market hypothesis.

1 See [11] for a quite extensive review.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 612–621, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On the Role of Risk Preference in Survivability 613

However, a series of recent studies indicates that the early analysis of [1] is
not complete. [10] shows that, if the saving behavior is endogenously determined,
then the market selection hypothesis is rescued, and in the long run, only those
optimizing investors with correct beliefs survive. The surviving agents do not
have to be log-utility maximizers, and they can have diverse risk preferences.
[10]’s analysis is further confirmed by [2] in a connection of the market selection
hypothesis to the first theorem of welfare economics. [2] show that in a dynamic
and complete market Pareto optimality is the key to understanding selection
either for or against traders with correct beliefs: in any optimal allocation the
survival or disappearance of a trader is determined entirely by beliefs, and not
by risk preferences.

Despite the rigorousness of these theoretical studies, there exists a funda-
mental limitation, which may make it difficult to grasp their empirical counter-
parts, namely, they are non-constructive.2 Take [10] as an example. First, the
analysis crucially depends on the appearance of agents who eventually make
accurate predictions or eventually make accurate next period predictions. Nev-
ertheless, the process that shows the emergence of these sages is unknown.
It is, therefore, not clear how these agents emerge, or whether they will ever
emerge.3 Second, maximizing expected utility is equivalent to assuming that
agents are able to solve any infinite-time stochastic dynamic optimization prob-
lem implied by their utility function. However, current dynamic optimization
techniques, regardless of whether they include stochastic optimal control or
stochastic dynamic programming, can only help us solve a very limited sub-
set of the whole problem space. As for the rest of them, it is necessary to rely
on numerical approximations, and their effectiveness to a large extent is also
unknown.

Given these practical limitations, we are motivated to re-examine the is-
sue from a more realistic perspective or, technically speaking, a computational
perspective. By remaining in the general equilibrium analysis framework, we re-
place the rational agents with bounded-rational agents. More precisely, these
agents are constructed in terms of what is known as autonomous agents in
agent-based computational economics ([12]). Basically, these agents are able
to learn to optimize and to forecast in an autonomous manner. So, they are
not necessarily utility-maximizers. Instead, they use adaptive computing tech-
niques to approximate the optimal solution. In this sense, they are Herbert
Simon’s satisfying agents. Similarly, they base their decisions upon beliefs which
may not be and may never be correct, but are reviewed and revised continu-
ously ([9]).

By introducing autonomous agents, we are getting closer to the world of flesh
and blood, and enhancing the study of the empirical relevance of risk preference
to survival dynamics.

2 This kind of issue is generally shared in many general equilibrium analyses.
3 Back to the real world, we have not been convinced that these agents have ever

appeared in human history.
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2 A Simple Multi-asset Model

The simulations presented in this paper are based on an agent-based version of
the multi-asset market as per the studies of [1] and [10]. The market is complete
in the sense that the number of states is equal to the number of assets, say M .
At each date t, the outstanding volume of each asset is exogenously fixed at
one unit. There are I investors in the market, with each being indexed by i.
At time t asset m will pay dividends wm if the corresponding state m occurs,
and 0 otherwise. The behavior of these states follows a finite-state stochastic
process, which does not have to be stationary. The dividends wm will be dis-
tributed among the I investors proportionately according to their owned shares
of the respective asset. The dividends can only be either re-invested or con-
sumed. Hoarding is prohibited. If agent i chooses to consume c, her satisfaction
is measured by her utility function u(c). This simple multi-asset market clearly
defines an optimization problem for each individual as follows:

max
{{δi

t+r}∞
r=0,{αi

t+r}∞
r=0}

E{
∞∑

r=0

(βi)rui(ci
t+r) | Bi

t−1} (1)

subject to

ci
t+r +

M∑
m=1

αi,∗
m,t+r · δ

i,∗
t+r ·W i

t+r−1 ≤W i
t+r−1 ∀r ≥ 0, (2)

M∑
m=1

αi
m,t+r = 1, αi

m,t+r ≥ 0 ∀r ≥ 0. (3)

In equation (1), ui is agent i’s temporal utility function, and βi, also called
the discount factor, reveals agent i’s time preference. The expectation E( ) is
taken with respect to the most recent belief Bi

t, which is a probabilistic model
used to represent agent i’s subjective belief regarding the stochastic nature of
the state. The maximization problem asks for two sequences of decisions, one
related to saving, and the other to the portfolios, denoted by

{{δi
t+r}∞r=0, {αi

t+r}∞r=0},

where δi
t is the saving rate at time t, and

αi
t = (αi

1,t, α
i
2,t, ..., α

i
M,t)

is the portfolio comprising the M assets.
Equations (2) and (3) are the budget constraints. W i

t is the wealth of agent
i at time t, which is earned from the dividends paid at time t. Notice that these
budget constraints do not allow agents to consume or invest by borrowing.

The equilibrium price ρm,t is determined by equating the demand for asset
m to the supply of asset m, i.e.

I∑
i=1

αi,∗
m,t · δ

i,∗
t ·W i

t−1

ρm,t
= 1, m = 1, 2, ...,M. (4)
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By rearranging Equation (4), we obtain the market equilibrium price of asset m:

ρm,t =
I∑

i=1

αi,∗
m,t · δ

i,∗
t ·W i

t−1. (5)

3 The Agent-Based Multi-asset Artificial Stock Market

An agent-based version of the Blume-Easley-Sandroni standard multi-asset
model is developed in [4]. There they ([4]) propose a sliding-window adaptation
scheme to approximate the original infinite-time horizon optimization problem
(Equations (1) – (3)) by a finite-time horizon optimization problem. The stochas-
tic optimization problem (1) has two mainstays: first, finding an appropriate
belief, and second, under that belief, searching for the best decisions regarding
saving and portfolios. To distinguish the two, [3] calls the former “learning how
to forecast,” and the latter learning how to optimize. Genetic algorithms are then
applied to evolve both beliefs and investment strategies.4

To simulate this agent-based multi-asset artificial stock market, a software
called AIE-ASM Version 5.0 is written using Delphi, Version 7.0. In each single
run, we generate a series of artificial data.

4 Experimental Design

Since the main focus of this paper is to examine the relevance of risk preference
to survivability, we shall assume that the autonomous agents are identical in all
aspects except in terms of their preferences over risk. With this assumption, we
run two series of experiments. These two experiments differ in their constituent
agent types. In Experiment 1, the market is composed of eight types of agents,
and they are distributed evenly among 40 market participants, i.e. five agents for
each type. These eight types of agents are agents with the seven utility functions
specified in Table 1 plus the CAPM (capital asset pricing model) believers.

The type-one agent has the logarithmic utility function. We are very much
interested in knowing whether this type of agent has any advantage over others
in the long-run wealth share. As to types two to six, they are also frequently
used in economic analysis.5 Among them, type four has the well-known CARA
(constant absolute risk aversion) utility function. In addition to these six familiar
types of utility functions, we also consider any arbitrary utility function. By using
Taylor’s expansion, an arbitrary analytical utility function can be approximated
by a finite-order polynomial function. Here, we consider the approximation only
up to the sixth order.

Notice that types 3 to 7 refer to a class of parametric utility functions. Pa-
rameters of these types of utility functions, namely, α1, ..., α4, β1, ..., β3, and
a0, a1, ..., a6, can in principle be randomly or manually generated as long as they
4 Details can be found in [4].
5 See, for example, [6], pp. 27-33.
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Table 1. Types of the Utility Function u(c): Experiment 1

Utility Type Relative Risk Aversion (RRA)
Type 1 u(c) = log(c) 1
Type 2 u(c) =

√
c 0.5

Type 3 u(c) = α1 + β1c 0
Type 4 u(c) = α2

β2
exp {β2c} −β2c

Type 5 u(c) = 1
(γ3+1)β3

(α3 + β3c)γ3+1 − β3γ3
α3
c

+β3

Type 6 u(c) = c − α4
2 c2 α4

1
c

−α4

Type 7 u(c) = a0 +
∑6

i=1 aic
i − 2a2c+6a3c2+12a4c3+20a5c4+30a6c5

a1+2a2c+3a3c2+4a4c3+5a5c4+6a6c5

satisfy the regular first- and second-order conditions: u
′
> 0 and u

′′
< 0. Since

each type of utility function is assigned to five agents, parameter values are
generated for each agent for each type separately. So, type 3 agents may have
different values of (α1, β1), type 4 agents have different values of (α2, β2), and
so on and so forth.

In Experiment 2, all agents are restricted to the family of the CRRA (constant
relative risk aversion) utility functions,

u(c) =
{

cρ/ρ, if −∞ < ρ <∞,
lnc, if ρ = 0. (6)

They, however, differ in terms of their RRA coefficients, i.e. 1 − ρ. The smaller
the ρ, the larger the risk aversion coefficient. Eleven different ρs, starting from
0, 0.1., 0.2.,..., to 0.9, and 1.0, are distributed evenly to all 55 agents, with five
agents for each ρ.

5 Simulation Results

5.1 Wealth Share Dynamics

Figure 1 shows the wealth-share dynamics of the eight types of investors in
Experiment 1. Notice that each line is based on the average of 100 simulations.
The results clearly indicate the strong dominance of the type-one investors, i.e.
the agents who have a log utility function. While in some cases type-two investors
are still hanging in there for the first 100 periods, their shares eventually decline
toward zero. Maybe the most striking result is the extinction of the CARA type
of agents (type-4 agents). It is striking because the CARA utility function has
been used so extensively in the finance literature that one can hardly cast any
doubt on its appropriateness.6 Equally surprising is the finding that CAPM
believers also fail to survive. This result is consistent with an earlier finding by
[11], who shows that a sufficient condition to drive CAPM traders to extinction
is that an investor endowed with a logarithmic utility function enters the market.
6 For example, it was used to develop the standard asset pricing model ([5]), and was

also used in agent-based artificial stock market simulations ([7]).
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Fig. 1. Time Series Plot of the Wealth Share of Eight Types of Investors: Experiment 1

Since the type-one investors have a constant relative risk aversion coefficient
that is one, our experimental results also lend support to Blume and Easley’s
main argument: the market selects those investors whose coefficient of relative
risk aversion is nearly one.7 To further examine this claim, the wealth share
dynamics of Experiment 2 is depicted in Figure 2.

As can be seen from Figure 2, the wealth share seems to be positively corre-
lated with the RRA coefficient. Agents with very low values for their the RRA
coefficients are driven out of the market at different speeds. The lower the RRA,
the faster the evaporation. Towards the end of this 100-period simulation, all
agents with RRA values of less than 0.6 are driven out of the market. However,
when the RRA coefficient increases to 0.9, the respective agents perform equally
well, and sometimes even better, in terms of their wealth shares, as compared
with the log-utility agents.

5.2 Saving Rates

Since we assume that the autonomous agents are identical in all aspects except
in terms of their preferences over risk, there are only two decision variables left
for us to trace the reason why the market selects those investors whose coefficient
of relative risk aversion is nearly one, namly saving and portfolio.

Figure 3 is the box-whisker plots of the saving rates. Each plot shows the life-
time distribution of the saving rate δt associated with a specific RRA coefficient.
7 See [1], Theorem 5.4, pp. 23-24. The words in italics shown in the main text are not

quoted exactly from that theorem, which was originally made by controlling saving
rates. Since saving rates are treated endogenously in our paper, our finding suggests
that the theorem can still hold true even if the assumption of saving rates is relaxed.
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Fig. 2. Time Series Plot of the Wealth Shares of Eleven Types of Investors: Experi-
ment 2

To generate each plot, we first take an average of the saving rate of the five
agents for the same RRA coefficient. This is done period by period. A single
history of δt (t = 1, 2, ..., 100) is then derived by further taking an average over
the entire 100 simulation runs. So, in the end, we have a single time history of
δt for each RRA coefficient. The eleven boxes are drawn accordingly.

 

Fig. 3. Distribution of Saving Rates
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The line appearing in the middle of the box indicates the median of the 100
observed saving rates for a specific RRA coefficient. While higher saving rates, as
what Blume and Easley suggested, will place agents in an advantageous position
to survive, we find that the saving rate of the log-utility agents (the case where
the RRA coefficient is one) are not significantly higher than other types of agents.
This is evidenced by the very close medians observed from the eleven types of
agents. Thus, even though the level of saving rate may contribute to survival to
a certain degree, our medians simply vary too little to give us a chance to test it.

However, that does not mean all agents have the saving behavior. This is
revealed by comparing the boxes and whiskers. Compared to other types of
agents, log-utility agents obviously have a very narrow box with a very short
whisker, which indicates an unique feature of log-utility agents’ saving behavior,
namely, a very stable saving behavior.

From what we have seen in Figure 3, agents with lower RRA coefficient
compared with the log-utility agents suffer from more unstable saving behavior,
especially the lower down-side saving rates, which may contribute to the faster
decline in their wealth share. This provides an significant evidence to explain
why the lower the RRA, the faster the evaporation.

5.3 Portfolio Performance

In addition to the saving rate, portfolio performance may be another contributing
factor to survivability. However, this possibility has already been excluded in [4],
and is excluded here again. Table 2 gives the three basic performance measures:
the mean return, the risk (variance), and the Sharpe ratio.8 These statistics are
averaged over the five agents of the identical type and are further averaged over
the entire 100 simulation runs.

Table 2. Performance Measurements

RRA 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Mean 2.037 2.083 2.126 2.192 2.276 2.340 2.411 2.428 2.412 2.400 2.374
Variance 7.627 8.424 9.392 11.10 13.31 15.48 18.39 20.36 25.11 27.36 30.61
Sharpe Ratio 0.738 0.718 0.694 0.658 0.624 0.595 0.562 0.538 0.481 0.459 0.429

As we have seen in [4], the surviving agents do not have the highest rates
of return. Nonetheless, the column “variance of return” indicates that these
agents are under different exposures to risk. Agents with higher relative risk
aversion coefficients choose to behave more prudently. Motivated by this find-
ing, we go further to examine the risk-adjusted return, also known as the Sharpe
ratio, and we find that, despite their low mean rate of return, the precaution-
ary behavior of highly risk-averse agents actually helps them to earn a higher
8 For the definition or calculation of these statistics, please see [4], Equations (21) and

(22), for details.
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Fig. 4. Efficient Frontier

Sharpe ratio. However, there is no simple intuition to tell us why the agents
with higher Sharpe ratios would survive. At least, one may suppose that ev-
ery investor whose performance is situated at the efficient frontier has an equal
chance to survive.9 Therefore, we see no particular reason to attribute the sur-
vivability of agents with the RRA coefficient nearly one to their portfolio per-
formance.

6 Concluding Remarks

The irrelevance of risk preference to the survivability of agents is dismissed
in this paper. Our first experiment indicates that the only agents who sur-
vive in the long run (up to a 500-period simulation) are the log-utility agents.
The rest are all driven out, including the CARA agents and the CAPM be-
lievers. In the second experiment, we further test for the significance of the
RRA coefficient by assuming that all agents are CRRA types, and it is found
that the agents’ wealth share is affected by how close their RRA coefficients
are to 1.

9 To see this, the risk-return plot is drawn in Figure 4. The continuous frontier line
is constructed by smoothly connecting the eight points on the frontier. The eight
points on the frontier correspond to agents with RRA values of 1, 0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3. From this point of view, their portfolio performance offer them equal
survivability. Furthermore, while the other three types of agents do not lie exactly
on the frontier, they are not far away from it.
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Abstract. Holonic architectures are more suitable for reconfigurable manufac-
turing systems compared with hierarchical and heterarchical architectures. A
holonic architecture is proposed for reconfigurable manufacturing systems based
on the well-known reference architecture PROSA. Considering the special sta-
tus of the configuration in reconfigurable manufacturing systems, configuration
holon is introduced besides the basic holons in PROSA. The basic structure of
this holonic architecture, the details of basic holons and cooperation of holons
are described in detail. Finally an agent-based holon model is introduced for the
realization of the proposed holonic architecture.

1 Introduction

Aggressive competition on a global scale and rapid changes in process technology re-
quires that manufacturing systems must be rapidly designed, able to adjust functionality
and capacity quickly to the new demand, and able to integrate new technology easily. It
brings the birth of reconfigurable manufacturing system (RMS).

Proper system architecture is the foundation of design and realization of manufac-
turing system. Holonic architectures integrate the merits of hierarchical architectures
and heterarchical architectures and become the focus in the research of RMS [1,2].
Holonic technique is motivated by solving problems encountered and enhancing per-
formances of the system, and oriented its research towards the real-time end of the
manufacturing process. However multi-agent technique does well in information pro-
cessing, but lacks of access to control of physical entities. It is natural to combine these
two techniques to complement each other as reported in [2,3,4].

In this paper a holonic architecture for RMS is proposed whose holons are designed
based on agent. The rest of this paper is organized as follows. In section 2 three control
architectures are compared with each other, and a conclusion is drawn that holonic
architecture suits RMS better. Section 3 depicts the proposed holonic architecture for
RMS. The agent-based holon framework is described in section 4. Section 5 is the
conclusion.

2 Manufacturing System Architectures Comparison

The traditional control architecture for the design of computer integrated manufacturing
systems is the hierarchical architecture. Hierarchical architecture is motivated by the

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 622–627, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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tree structure of complex systems. In hierarchical architecture system modules, their
functionalities and hierarchic ranks are strictly defined. Commands flow top-down, and
feedback information flows bottom-up. All hierarchical architectures keep a fixed struc-
ture while the system is running on the assumption that behaviors of the components
are deterministic. Therefore the relevant system is very rigid, sensitive to disturbances,
expensive to develop and difficult to maintain [5].

Heterarchical architecture is an approach to alleviate the problems of hierarchical
architecture [5]. They have a flat structure and are composed of independent intelligent
entities, which represent resources and/or tasks. Unlike the master-slave relationship in
hierarchical architecture, information and commands are exchanged between entities
by the use of a negotiation protocol, which makes it robust to disturbance. But it only
functions under condition that resources are abundant and system is homogeneous and
not too complex.

Holon is possessed of two significant features: autonomy and cooperation. Auton-
omy provides the system with abilities to response to disturbances and to reconfigure
itself to face new requirements. Holarchy that defines the basic rules for cooperation
of the holons can be regarded as a kind of flexible or loose hierarchy. Hence holonic
architecture avoids the uncontrollability of heterarchical architecture, as hierarchy is an
essential tool to master complexity. So holonic architecture combines the advantages
of both hierarchical and heterarchical architecture while avoiding their drawbacks [5].
Considering the characteristics of RMS the architecture for it should be reconfigurable,
adaptable to environment variance, of course steady and reliable. With connatural short-
comings, neither hierarchical nor heterarchical architecture is suitable for RMS. Holo-
nic architectures are stable, robust and scalable. Hence it is a reasonable and practical
choice for RMS structuring, which becomes a general consensus [2,3,4].

3 Proposed Holonic Architecture for RMS

3.1 Basic Structure of the Holonic Architecture

RMS is capable of changing its configuration to adapt for external or internal distur-
bances, which distinguishes RMS from other manufacturing systems. So in RMS the
configuration not only fills the role of describing the temporary state of the system, but
also acts as the object of management, control, reconfiguration optimizing and recon-
figuration adjusting. The configuration of RMS may include the following elements [6]:

– Completes set of constituent components and their attributes;
– System internal and external relationships;
– Concepts, rules, principles, methodologies and technologies including human skills

and knowledge;
– Methodologies and technologies including human skills and knowledge.

PROSA is a reference architecture for holonic manufacturing systems, which com-
prises three types of basic holon: order holon, product holon and resource holon, each
of which is responsible for one aspect of manufacturing control of logistics, technolog-
ical planning and resource capabilities [7]. Each type of the holons holds some data and
functions.
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Fig. 1. Illustration of the proposed holonic architecture for RMS

The holonic architecture for RMS proposed in this paper is derived from PROSA.
Since configuration plays an important role in RMS as mentioned above, a new type of
holon named configuration holon is inducted besides basic types of holon in PROSA.
The basic structure of this holonic architecture for RMS is shown in Fig. 1. The detailed
explanation will be given in the following.

3.2 Details of Basic Holons

Configuration Holon. A configuration holon possesses the information of current sys-
tem configuration and capabilities of configuration management with the detail as fol-
lows:

– Data: List of resource, Relationship of resources
– Functions: Configuration design, Reconfiguration cost evaluating, Configuration

adjusting.

The function of configuration design can deduce a new configuration according to
current configuration and process plan supplied by a product holon. To a configuration
candidate the index of reconfiguration cost is defined as the spending of time, money,
personal efforts or the integration of them all to convert the system from the old con-
figuration to the new one. It indicates that the reconfiguration plan is acceptable or not,
and is calculated by the function of reconfiguration cost evaluating. During production
equipment failure is inevitable. When configuration holon receives failure information
from resource holons, the function of configuration adjusting will adjust system config-
uration partly by triggering redundancy equipment or equipment with similar function.

Resource Holon. A resource holon combines the information of a physical device and
ability to control this device, the detail of which is listed as follows:

– Date: Capabilities, Running tasks, Sub-resources, Activity log
– Functions: Starting processing, Control processing, Control sub-resources, Plan/per

form maintenance, Self/sub-resources examining

The detail of the resource holon in the proposed architecture is similar to that in
PROSA except that a function of self/ sub-resources examining is added to catch and
report failures of its own or sub-resources.
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Product Holon. The Product holon contains the product model of the type, up-to-date
information on the product life cycle, the knowledge about product design and process
plan, which is shown as follows:

– Data: Product model, Process plan, Quality requirements, State of product
– Functions: Modular (re-)design, Process (re-)planning, Quality verification

It is noted that modular design method should be adopted during the product design
in RMS.

Order Holon. Order holon is in charge of production scheduling and control. It
schedules the task progress after synthesizing the knowledge of process from prod-
uct holon and configuration from configuration holon, triggers process execution prop-
erly and opportunely according to the up-to-date products state and task log, moni-
tors the whole progress to find system deadlock and handle it in time. The detail is as
follows:

– Data: Task progress, Task log
– Functions: Scheduling, Progress monitoring, Deadlock handling

3.3 Cooperation of Basic Holons

Holons are autonomous, which means each holon can create and control the execution
of its own plans and/or strategies. However the autonomy of the holon is not absolute,
and may be broken by the cooperation among holons. It is the characteristic cooperation
of holons that generate mutually acceptable scheme and perform it in order to accom-
plish global goal. In this subsection the cooperation among holons as shown in Fig. 1
are stated in detail.

After the RMS receiving an order form of new product, the product holon of this
new type will generate. The product holon sends process plan generated by the modular
design function within it to the configuration holon. Maybe more than one configura-
tion candidate is produced by the function of configuration design in the configuration
holon. Then the evaluation function of reconfiguration cost calculates the index of every
configuration candidate. The configuration holon selects the most efficient one, gener-
ates a new configuration holon and informs the product holon of a success signal. The
product holon writes the process plan into its data area. If configuration holon fails to
educe a reconfiguration plan, a failure signal sends to the product holon. The product
holon redesigns this product to generate another process plan and send it to configura-
tion holon again. If all efforts of the product holon have no fruit, that is the RMS can’t
change its configuration to achieve the new mission within acceptable cost, the system
refuses the order form. A staff holon like in PROSA might be imported to assist above
reconfiguration negotiation process.

When current mission finishes, current order holon and product holon will be dis-
missed. After the RMS changes from the old configuration to the new one, the old con-
figuration holon vanishes and an order holon is initialized. Then the new configuration
holon and product holon sends configuration information and process plan respectively
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to the order holon. According them the function of scheduling in order holon frames
the task progress. Product holon informs order holon of the real-time state of physical
product. Order holon order the related resource holons to start after synthesizing the
product state and task progress.

If the resource holon receiving the start order is free, it executes the process imme-
diately, otherwise it puts the order into the running task queue. At the end of process
execution resource holon sends the process information such as machining errors to
the product holon, which helps the product holon master the product state in time. At
the same time resource holons examine the physical devices of itself and sub-resource
holons and report resource state to configuration holon.

4 Agent-Based Holon Framework

After structure design of the holonic architecture, the realization of holons and further-
more the whole system based on above blueprint is an important and quite difficult task.
Here a means combining both the IEC 61499 function block model and multi-agent
technology is adopted, which is mentioned in the paper [3]. This holon framework en-
capsulates one or more function block oriented devices into a wrapper containing a
higher-level software component. The holons of this framework and their relationship
are illustrated in Fig. 2.

The polygons in Fig. 2 are function blocks that act in accord with IEC 61499 stan-
dard, which builds on the function block part of the IEC 61131-3 standard for languages
in PLCs, significantly extends the function block language in the direction needed for
holonic control [3].

In such a holon shown in Fig. 2, three types of communications should be consid-
ered:

– Intra-holon communication among the function block parts and the software agent;
– Inter-holon communication among the agent-based parts of holons (FIPA standards

are used);
– Direct communication among function block parts of the neighboring holons (IEC

61499 standard is used).

Fig. 2. Holons with wrapper model
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5 Conclusions

Via comparison of hierarchical, heterarchical and holonic architecture, a conclusion
can be drawn that holonic architectures are much more suitable for RMS. In this paper
a holonic architecture for RMS is presented based on PROSA the well studied holonic
reference architecture. As configuration of RMS is the carrier of reconfiguration and
the pivot of management and control, a new type of holon called configuration holon is
introduced in the proposed holonic architecture besides resource holon, product holon
and order holon in PROSA. The basic structure of the proposed architecture, details
of each basic holon and cooperation of holons are amply described. Then an agent-
based holon framework is introduced for further realization. Future work will focus on
designing of functions of holons and negotiation rules among holons on the ground of
the agent-based holon model.
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Abstract. This paper presents a novel design for mobile robot using
particle swarm optimization (PSO) and adaptive NN control. The adap-
tive NN control strategy guarantees that robot with nonholonomic con-
straints can follow smooth trajectories. Based on this property, a PSO
algorithm for path planning is proposed. The path planning generates
smooth path with low computational cost to avoid obstacles, so that
robot can use smooth control strategy to track the trajectory.

1 Introduction

Mobile robot navigation are usually classified into two ways: The first one is
real-time reactive way, called artificial potential method, which is difficult to
estimate whether the trajectory is optimal or not; The second way is motion
planning, namely path planning. Analytical path planning describes paths in the
form of high order polynomial [1], then one can estimate the feasibility of path
ahead of robot moving. But computation referred is complex and difficult to be
realized. Genetic algorithm(GA) has low computational cost for path planning,
but the path is a nonsmooth one which can hardly be followed by a mobile robot
using smooth control strategy. In this paper, a new path planning method using
particle swarm optimization(PSO) is presented [2], which can produce smooth
trajectory to make robot via adaptive NN controller [3] track the trajectory to
arrive at destination without touching obstacles on the way.

2 NN Control Strategy

2.1 Mobile Robot

A mobile robot is two-wheel driven mini car-like robot with nonholonomic con-

straints. The position of robot is p = [x y ]T . Defining T =
[

cos θ sin θ
− sin θ cos θ

]
and M0 =

[
m 0
0 I

d

]
, we have the dynamic model: M0T p̈ + M0Ṫ ṗ = ST Bτ − τ̄d,

where τ̄d represents bounded disturbance and unmodeled dynamics.
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2.2 Control Law for Individual Robot

Let pd denote the reference point. Then the position error is e = p−pd. A filtered
error is z = ė + Λe. Define ṗr = ṗd − Λe, z = ṗ− ṗr, z̃ = T z.

A NN function f̂(X) = ŴTσ(V̂ TX) is chosen to estimate M̄p̈r + V̄ ṗr on
line, where Ŵ and V̂ are estimates of NN weights. An input-output feedback
linearization control technology with adaptive BP algorithm is [4]

τ = (ST B)−1(ŴT σ(V̂ T X)−K z̃ + γ), (1)
˙̂

W = F σ̂′V̂ TX z̃T − F σ̂z̃T − κF‖z̃‖Ŵ
˙̂
V = −UX(σ̂′T Ŵ z̃)T − κU‖z̃‖V̂

, (2)

where K = diag{k1, k2}, k1, k2 > 0. F and U are positive definite matrices
governing the speed of learning, γ is a robust control term to suppress τ̄d and

approximation error, γ =

{
−KY (‖Ŷ ‖F + YM )z̃ − J z̃

‖z̃‖ , ‖z̃‖ �= 0
−KY (‖Ŷ ‖F + YM )z̃, ‖z̃‖ = 0

, where J and

KY are positive scalars. It has been proved that the control strategy ensures the
robot track the reference point on any smooth path [4].

3 Path Planning Using PSO

3.1 Description of Desired Trajectory

Let P d = [pd
1, p

d
2]T represent the position on the desired trajectory. To avoid

obstacles, a five order polynomial for path planning is chosen

pd
2 = a5(pd

1)
5 + a4(pd

1)
4 + a3(pd

1)
3 + a2(pd

1)
2 + a1(pd

1) + a0. (3)

According to boundary conditions, in a0 to a5, two of six parameters are free
parameters. Other four parameters can be expressed as functions of these two.

3.2 Algorithm of PSO

(1) General algorithm of PSO
Let N denote the size of the swarm, D denote the dimension of the solution space.
For particle i, its current position is denoted as Xi = [xi1 xi2 · · · xiD ]T ,
and its current velocity is denoted as vi. r1 ∼ U(0, 1) and r2 ∼ U(0, 1) represent
the two random numbers in the range (0, 1). The adjustment of velocity is [5]:

vij(t + 1) = Kvij(t) + c1r1i(t)[Yij(t)− xij(t)] + c2r2i(t)[Y
g

ij(t)− xij(t)], (4)

where j = 1, 2, · · · , D, c1 and c2 are positive scalars. K is the constriction factor
defined as K = 2/ | 2− φ−

√
φ2 − 4φ |, where φ = c1 + c2, φ > 4.

The new position of particle i and its best position record are calculated by

Xi(t + 1) = Xi(t) + vi(t + 1). (5)
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Yi(t + 1) =
{

Yi(t), f(Xi(t + 1)) ≥ f(Yi(t))
Xi(t + 1), f(Xi(t + 1)) < f(Yi(t))

. (6)

The global best position found by particle i’s neighborhoods is modified by

Y g
i (t + 1) = arg min

k∈Πi

f(Yk(t + 1)), (7)

where Πi represents the neighborhoods of particle i.

(2) Interaction topology in the swarm
A ring interaction graph is used to describe relationship of interaction.

Fig. 1. The ring interaction topology

(3) Fitness evaluation
The fitness function includes two parts:

1) If the x-axis of the reference frame is along the beeline connecting the

begin and end of the trajectory, the fitness function is Fpath =
∫ p

d(tf )
1

0 (pd
2)

2dpd
1,

where p
d(tf )
1 is the coordinate in x-direction of the destination.

2) Given obstacle i, let P c
i = [pc

i1, p
c
i2]

T denote the cross point on which a
beeline through obstacle position intersects with the trajectory perpendicularly.
Therefore an evaluation function for the cross point is defined as Fcrosspoint =(
1 − po

i2−pc
i2

po
i1−pc

i1
· dpd

2
dpd

1

∣∣∣∣
P d=P c

i

)2
. And an evaluation function for obstacle avoidance

is Fobstacle =
{

μ( 1
‖ρo

i ‖
− 1

ρeff
), ‖ρi‖ ≤ ρeff

0, ‖ρi‖ > ρeff , where ρi = P o
i − P c

i , ρeff denotes

the maximal effective range of obstacle i.
Consequently the fitness function for path planning is of the form

F = L1 · Fpath + L2 · Fcrosspoint + L3 · Fobstacle, (8)

where L1, L2, and L3 represent positive weights.
If we assume there are M obstacles and adopt five order polynomial, the

dimension of the particle is D = M + 2, or X = [ a5 a3 pc
11 pc

21 pc
31 ]T .

4 Simulations

The boundary conditions for polynomial are chosen as P d(0) = 0, P d(tf ) =

4, dpd
2

dpd
1
|t=0= 0, dpd

2
dpd

1
|t=tf

= 0. There are three obstacles at (1, 0.25), (2, 0.5)

and (3,−0.3). Hence Xi = [ ai5 ai3 pc
i11 pc

i21 pc
i31 ]T , i = 1, 2, · · · , N . Other

parameters include: N = 20, K = 0.729, c1 = c2 = 2.05, L1 = L2 = L3 = 1.
Fig. 2 shows the simulation results. There are two robots forming a leader-
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Fig. 2. Simulation results

follower pair to pass through field with obstacles. Fig. 2 (b) displays the evolution
process of two elements, a5 and a3, during the first 600 iterations. After 1200
iterations, all particles aggregate to a single position where a3 = 1.2917 and
a5 = 0.0380, so that the desired trajectory is pd

2 = 0.0380(pd
1)5 − 0.3892(pd

1)4 +
1.2917(pd

1)
3 − 1.3687(pd

1)
2. Once the path is generated, a moving point on the

trajectory is designed. And robot 1 is required to follow this moving point using
the control strategy shown in (1) and (2).

5 Conclusions

A kind of practical technique for mobile robot navigation is proposed in this
paper. The analysis and simulation demonstrate the feasibility of mobile robot
navigation using PSO and ANN. Because of its low computational cost, it is eas-
ily realized in practical applications in case of real-time path planning required.
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Abstract. Path planning for mobile robots is an important topic in modern ro-
botics studies. This paper proposes a new approach to collision-free path plan-
ning problem for mobile robots using the particle swarm optimization combined 
with chaos iterations. The particle swarm optimization algorithm is run to get 
the global best particle as the candidate solution, and then local chaotic search 
iterations are employed to improve the solution precision. The effectiveness of 
the approach is demonstrated by three simulation examples. 

1   Introduction 

Mobile robots are expected to have more wide applications in the future. Planning a 
collision-free path is one of the fundamental requirements for a mobile robot to exe-
cute its tasks. There are many approaches suggested by researchers to solve this prob-
lem [1]. Recently, it is widespread to use genetic and evolutionary algorithms. A 
chaotic genetic algorithm was used to find the shortest path for a mobile robot to 
move in a static environment [2]. A particle swarm optimization (PSO) algorithm 
with mutation operator was employed in the path planning to meet the real-time re-
quests of the mobile robot navigation [3].  

The PSO algorithm, as a new evolution technology, has many advantages, such as 
simple algorithm and quick convergence, but in the last stage of iterations of the algo-
rithm when all particles approach the best solution, the convergence may become 
slow and the solution precision may not be absolutely satisfactory. The chaotic search 
algorithm was developed for nonlinear constrained optimization problems [4].This 
paper introduces the chaos with its ergodicity into the PSO algorithm for the path 
planning of mobile robots so as to intensify the local search ability and improve the 
solution precision. 

2   Chaotic Particle Swarm Optimization  

The particle swarm optimization algorithm, proposed by Kennedy and Eberhart [5], 
has proved to be a very effective approach in solving multi-dimensional optimization  
problems. The PSO algorithm first randomly initializes a swarm of particles. Each 
particle is represented as ),...,,( ,2,1, niiii xxxX = ,,...,2,1 Ni =  where N  is the swarm 
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size, and n  is the total dimension number of each particle. Each particle adjusts its 
trajectory toward its own previous best position pbest and the previous best position 
gbest attained by the whole swarm. In each iteration k , the i th particle with respect 
to the j th dimension is updated by 
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where )(

,

k

jix  and )(

,

k

jiv are the current position and velocity, respectively. 1c and 2c  are 

acceleration constants, 1r  and 2r  are  random numbers within the interval of [0,1]. 
Chaos is one of the important achievements in nonlinear system search. The cha-

otic model adopts a logistic mapping [6]: )1( )()()1( kkk zzz −=+ μ ,  where μ  is the 

control parameter.  When 4=μ , the system enters into a chaos state.  

In our chaotic particle swarm optimization (CPSO) approach, the PSO algorithm is 
first run to find the global best position as a candidate solution, and then the chaotic 
space (0, 1) is mapped into the neighborhood of this candidate solution. Thus the 
better solution can be searched by means of the ergodicity of the chaos.  

3   Path-Planning Using the CPSO Algorithm 

The mobile robot path-planning problem is typically stated as follows: given a robot, 
start location S, target location T and two-dimensional map of workplace including 
static obstacles, plan the shortest collision-free path between the two locations. 

The particle representation can be taken as the same way as chromosome encoding 
in literature [2]. Divide line ST into n +1 equal segments with n  points, and further 
draw n  vertical lines, 1L , 2L , nL,⋅⋅⋅ , through these points, respectively. Take one 
random point on each vertical line according to priority and construct a path: 

},,,,,{ 21 ni PPPPX ⋅⋅⋅⋅⋅⋅= , ii LP ∈ . Described by two-dimensional coordinates for each 

point, the above path can be extended to },,,,,,,{ 11 nnii yxyxyxX ⋅⋅⋅⋅⋅⋅= . In order to 

decrease the dimension number in X , a coordinate transformation is used to locate 
the X-axis to coincide with line ST. The new coordinates of  iP  can be described: 

−
+

−
−−

=
′
′

i

i

SS

SS

i

i

y

x

yx

yx

y

x

θθ
θθ

θθ
θθ

cossin

sincos

cossin

sincos
, (3) 

where Sx and Sy are the coordinates of point S ,  θ  is the anti-clockwise rotation 

angle from the X-axis to line ST. 
The new located coordinate frame is shown as S-X’Y’ in Fig. 1. The particle repre-

sentation can be simplified into },,,,,{ 21 ni yyyyX ′⋅⋅⋅′⋅⋅⋅′′=  . Additionally, the particle 

must satisfy the collision-free constraint conditions as follows: Each node in the path 
must not be within the areas taken by all the obstacles, and any one of the line series 
{SP1, P1P2,…,Pn-1Pn, PnT} must not intersect with any obstacle.  
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Fig. 1. Representation of a collision-free path 

Considering that the shortest path is as the optimization criterion for our problem, 
the objective function, also as the fitness function in the PSO, is taken as 

=
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where d is the distance between point S and T, STd = . 010 =′=′ +nyy . 

The path planning procedure of the CPSO approach can be described as follows: 

Step 1. Initialization: Generate randomly N  particles )0(
iX , and with velocities, )0(

iV . 

Step 2. Evaluate the fitness of each particle according to Eq. (4), and  determine the 
individual and global best positions: pbesti and gbest. 

Step 3. Velocity and position updating:  update )(k

ijv  and )(

,

k

jix  using Eq.  (1)  and  (2). 

Step 4. Collision-free constraint conditions checking:  if  the path satisfies the condi-
tions, continue, else reset )(k

ijv and )(k

ijx to their previous values and goto step 3. 

Step 5. Loop to step 2 and repeat until a given maximum iteration number is attained. 
Step 6. Local chaotic search: select gbest as the initial condition,  the chaotic iteration 

is as )1()( )()(1)( kk
iii

k
i zzabax −−+=+ μ ,  where  )/()()0(

iiiii abargbestz −−+= Δ , 

irΔ  is a small  random variant, ia and ib  is the lower and upper  boundary of 

a neighborhood of igbest . 

Step 7. Check the new path whether to satisfy the collision-free constraint conditions, 
evaluate the path using Eq. (4) and if it is the better one, update the optimum. 

Step 8. Loop to step 6 and repeat until a given maximum iteration number is attained. 

4   Numerical Simulations 

Some simulations are carried out to illustrate the proposed algorithm using Matlab. 
The two-dimensional map of workplace is a rectangle area with size of 100 00, and 
the mobile robot is simplified as a circle with a diameter of 3. Three cases with differ-
ent distribution density of obstacles are considered. Related parameters are set as: 

50=N , 19=n , 221 == cc . The optimized paths and corresponding fitness functions 
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are shown in Table 1 and Fig. 2, respectively. It can be seen that, compared with the 
PSO, the CPSO approach can get a shorter path with higher solution precision.  

Table 1. Fitness functions for 3 cases under the PSO and CPSO algorithms 

Fitness  function   f (X) 
Method 

Case a Case b Case c 
PSO 0.8672 0.9375 0.9517 

CPSO 0.9712 0.9659 0.9726 
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         (a)   Nine obstacles                    (b)  Fifteen obstacles                 (c) Twenty obstacles 

Fig. 2. Simulation results of the PSO and CPSO algorithms 

5   Conclusions 

A chaotic particle swarm optimization approach is developed for mobile robots to 
obtain the shortest collision-free path in two-dimensional environment. This approach 
introduces chaos with its ergodicity property into the particle swarm optimization so 
as to intensify the local search ability and improve the solution precision. Simulation 
results show the feasibility and effectiveness of the proposed approach.  
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Abstract. One of the main problems of computational approaches to
protein structure prediction is the computational complexity. Many re-
searches use simplified models to represent protein structure. Toy model
is one of the simplification models. Finding the ground state is critical
to the toy model of protein. This paper applies Particle Swarm Opti-
mization (PSO) Algorithm to search the ground state of toy model for
protein folding, and performs experiments both on artificial data and
real protein data to evaluate the PSO-based method. The results show
that on one hand, the PSO method is feasible and effective to search
for ground state of toy model; on the other hand, toy model just can
simulate real protein to some extent, and need further improvements.

1 Introduction

The structure of protein determines its function in molecular. Experimental
methods of determining protein structure include X-ray crystallography and
NMR-spectroscopy. However some proteins are hard to crystallize, and NMR-
spectroscopy method only works on small proteins. Moreover, these two methods
are expensive and time-consuming [1]. So predicting protein structure by compu-
tational method is very necessary, and it has become one of the most important
research topics in modern molecular biology. However, it is very complex to de-
termine the native three-dimensional structure of a protein when only given the
sequence of amino acid residues that compose the protein chain [2].

Due to the complexity of the protein-folding problem, scientists have pro-
posed a variety of models such as hydrophobic-polar (HP) model to simplify the
problem by abstracting only the “essential physical properties” of real proteins.
Generally speaking, there are three representative simplified HP models for pro-
tein folding: lattice model [3], triangle lattice model [4], and toy model[5]. In
lattice model, the three dimensional space is represented by a lattice, and the 20
amino acids are grouping into two classes: hydrophobic (or non-polar) residues
and hydrophilic (or polar) residues, where P represents polar residues, and H
represents hydrophobic residues. Residues that are adjacent in the primary se-
quence must be placed at adjacent points in the lattice. A conformation of a
� This work was supported by the National Natural Science Foundation of China under

grant no. 60301009.
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protein is a self-avoiding walk along the lattice. The protein folding problem is
to find a conformation of the protein sequence on the lattice such that the over-
all energy is minimized, for some reasonable definition of energy [6]. Dill et.al.
surveyed some works on this model in [7].

Richa Agarwada et.al. tested the HP model on a triangle lattice [4]. They
examined the choice of a lattice by considering its algorithmic and geometric im-
plications and argued that triangular lattice is a more reasonable choice. Though
the structures derived from triangle lattice model are probably still far from bi-
ological reality, it’s much better than basic lattice model [4].

Stillinger et al. had done further improvements and presented the toy model
[5]. In this model, amino acid residues are still classified into two kinds: hydropho-
bic and hydrophilic, but what differences from previous lattice models are that
there is only one bond between two consecutive residues, and the angle between
the two bonds can change freely. So it is more like the real protein structure
than the previous two lattice models [5]. One major advantage of the toy model
is that it becomes feasible to determine a complete database of ground state
structures for all “polypeptides” up to some modest (but non-trivial) degree of
polymerization.

How to find the ground state of toy model of protein? People have tried many
methods such as Neural Network [5,8] and Simulated Annealing Algorithm [9].
In this paper, we will try to use PSO algorithm to search the ground state and
analyze the experiment results.

PSO is a recently proposed algorithm by J.Kennedy and R. C. Eberhart in
1995 [10], motivated by social behavior of organisms such as bird flocking and fish
schooling [11]. In a PSO system, particles(individuals) fly around in a multidi-
mensional search space. During flight, each particle adjusts its position(state)
according to its own experience, the experience of a neighboring particle, making
use of the best position encountered by itself and its neighbor. Thus, as in mod-
ern GAs and memetic algorithms, a PSO system combines local search methods
with global search methods, attempting to balance exploration and exploitation
[10,12]. In the past several years, PSO has been successfully applied in many
research and application areas.

In this paper, we will discuss the application of PSO on toy model for protein
folding. The rest part of the paper is organized as following: In section 2, we give
a brief description of toy model for protein folding. In section 3, we introduce
the basic ideas of PSO. Section 4 includes the experiments and the results. The
final section is the conclusion part of this paper.

2 Description of Toy Model

In 1993, Stillinger et al. presented the toy model for protein sequence [5]. This
model incorporates only two “amino acids”, to be denoted by A and B, in place
of the real 20 amino acids. A and B are linked together by rigid unit-length
bonds to form linear un-oriented polymers that reside in two dimensions. As
figure 1 illustrates, the configuration of any n-mer is specified by the n − 2
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Fig. 1. A schematic diagram of a generic 9-mer, with serially numbered residues, and
backbone bend angles

angles of bend θ2 . . . θn−1 at each of the non-terminal residues. We adhere to
the conventions that: −π < θi < π, θi = 0 corresponds to linearity of successive
bonds, and positive angles indicate counterclockwise rotations.

In the following,we do not consider intermolecular interactions. We suppose
that two kinds of interactions compose the intra-molecular potential energy for
each molecule: backbone bend potentials (V1) and non-bonded interactions (V2).
The former is independent of the A, B sequence, whereas the later varies with
the sequence and receives contribution from each pair of residues that are not
directly attached by a backbone bond. Residues along the backbone can be
conveniently encoded by a set of binary variables ξ1 . . . ξn, where ξi = 1 means
that the ith residue is A; and ξi = -1 means that it is B. Thus for any n-mer,
the intra-molecular potential-energy function Φ can be expressed as formula (1):

Φ =
n−1∑
i=2

V1(θi) +
n−2∑
i=1

2∑
j=i+2

V2(rij , ξi, ξj) (1)

Where, the distances rij can be written as functions of the intervening angles
(backbone bonds have unit length):

rij =

⎧⎨⎩
[
1 +

j−1∑
k=i+1

cos

[
k∑

l=i+1

θl

]]2

+

[
j−1∑

k=i+1

sin

[
k∑

l=i+1

θl

]]2
⎫⎬⎭

1/2

(2)

Toy model assigns a simple trigonometric form to V1:

V1(θi) =
1
4
(1− cos θi) (3)
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And the non-bonded interactions V2 have a species dependent Lennard-Jones
12, 6 form:

V2(rij , ξi, ξj) = 4[r−12
ij − C(ξi, ξj)r−6

ij ] (4)

Where,

C(ξi, ξj) =
1
8
(1 + ξi + ξj + 5ξiξj) (5)

On account of Equation (4), successive bonds would tend towards linearity
(θi = 0), if nothing else mattered.

Toy model is also based on the famous judgement presented by Anfinsen in
1960s: The native structure of protein is the structure with the lowest free energy
[13]. This conclusion is the thermodynamics base of using energy minimization
method to predict protein structure. For a protein sequence with n residues, we
need to search out a group of suitable θi (i = 2, . . . , n−1), θi ∈ (−π, π), to make
the energy function (1) achieve the minimal value in the solution space.

3 Particle Swarm Optimization

PSO algorithm is similar to other genetic algorithms (GA). What makes it dif-
ferent with GAs is that, PSO does not use evolutionary operators to evolve the
population, instead, it takes each individual as a particle without weight and
volume in the n-dimensional search space, the particle flies at certain speed in
the search space. The flying speed of the particle adjusts dynamically according
to its flying experience and population’s flying experience [14].

3.1 Basic Particle Swarm Optimization Method

Considering the minimal problem, given a particle i, let Xi = (xi1, xi2, · · · , xin)
be its current position, Vi = (vi1, vi2, · · · , vin) be its current flying speed, Pi =
(pi1, pi2, · · · , pin) be the best position it has experienced. Suppose f(X) is the
objective function, obviously, Pi would minimize f(X). Pi is called as the best
individual place. Suppose that the particle number in the swarm is s, the best po-
sition Pg that all particles in the swarm have experienced is called the global op-
timal position, so we have Pg ∈ {P1, P2, · · · , Ps}, and f(Pg) = min

i∈{1,2,···,s}
{f(Pi)}.

With the definition presented as above, basic PSO function can be described
as following:

vij(t + 1) = vij(t) + c1r1j(t)(pij(t)− xij(t))
+c2r2j(t)(pgj(t)− xij(t))

(6)

xij(t + 1) = xij(t) + vij(t + 1) (7)

Where, j indicates the jth dimension of particle, i indicates the ith particle, t
indicates the tth generation, c1, c2, varying from 0 to 2, are the acceleration
speed constants, they determine the relative influence of the social and cognitive
components, and are usually both set the same to give each component equal
weight as the cognitive and social learning rate. r1 ∼ U(0, 1), r2 ∼ U(0, 1) are
two independent random function [15].
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3.2 Canonical Particle Swarm Optimization Method

Due that basic PSO usually failed in some applications, Carlisle and Doziert
presented the following typical PSO Algorithm model (Canonical PSO) [16].

vij =
{

K(vij + c1r1(Pij − xij) + c2r2(Pgj − xij)), Xmin < xij < Xmax
0 otherwise

xij =

⎧⎨⎩
xij + vij , Xmin < xij < Xmax
Xmax, (xid + vij) > Xmax
Xmin, Xmin < (xij + vij)

(8)

Where K is the constriction factor,

K =
2∣∣2− C −
√

c2 − 4C
∣∣ (9)

In the following experiments, we use this kind of PSO to analyze toy model.
We use the classic parameter set [16], in which, c1 = 2.8, c2 = 1.3, C = c1 + c2,
population size N = 30. In each generation, we produce new candidate solutions,
and calculate the energy function, if the result of the function becomes smaller,
we reserve the solution, otherwise we reject the solution. The iteration procedure
repeats until the terminal conditions are satisfied. In this article, the procedure
will stop when it reaches the maximal iteration steps.

4 Experiments and Results

In this section, we do several experiments to analyze the toy model for protein
folding. Canonical PSO described in secion 3.2 is used to search the ground state
of the toy model that minimizes Equation(1).

4.1 Experiments on Artificial Sequences

We use some artificial sequence to do two kinds of experiments. First, we use
the same sequences as [5] to see whether our method can get the ground state.
For these short sequences, the maximal iteration step L = 30. From the results
illustrated in table 1, we can see that our method can also reach the ground
state presented by Stillinger [5].

To explore whether our method can get the correct protein secondary struc-
ture elements, we then use two testing sequences “AABABB” and “AAABAA”
just like [5] for experiments. The secondary structures on the 2D toy model is
shown in figure 2. Figure 3 shows the computational results. Because these two
sequences are short, our program got the results in a very short time.

From figure 3 we can see that our method is effective to simulate protein
folding as it can correctly give out the secondary structure motif: α-helix and
β-sheet.
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Table 1. Ground state properties of toy-model polypeptides

Molecular Φ Molecular Φ

AAA -0.658 21 AAAAA -2.848 28
AAB 0.032 23 AAAAB -1.589 44
ABA -0.658 21 AAABA -2.444 93
ABB 0.032 23 AAABB -0.546 88
BAB -.0.030 27 AABAA -2.531 70
BBB -0.030 27 AABAB -1.347 74

AABBA -0.926 62
AAAA -1.676 33 AABBB 0.040 17
AAAB -0.585 27 ABAAB -1.376 47
AABA -1.450 98 ABABA -2.220 20
AABB 0.067 20 ABABB -0.616 80
ABAB -0.649 38 ABBAB -0.005 65
ABBA -0.036 17 ABBBA -0.398 04
ABBB 0.004 70 ABBBB -0.065 96
BAAB 0.061 72 BAAAB -0.521 08
BABB -0.000 78 BAABB 0.096 21
BBBB -0.139 74 BABAB -0.648 03

BABBB -0.182 66
BBABB -0.240 20
BBBBB -0.452 66

Fig. 2. Secondary structures on the 2D toy model. A: helix, at least two sequential non-
covalent contacts between residues [(i, i+3), (i+2,i+5). . . (i+2n, i+2n+3)]. B: Antipar-
allel sheet [(i, j), (i+1, j-1). . . (i+n, j+n)]. C: Parallel sheet [(i, j), (i+1, j+1). . . (i+n,
j+n)]

4.2 Experiments on Real Protein Sequences

Then we test our method on real protein sequences.When sequence becomes long,
the determination of the objective function value is extremely time-consuming.
So only two real proteins with short sequences are discussed in our paper, i.e.,
1agt and 1aho. All information of these two proteins can be downloaded from
PDB (http://www.rcsb.org/pdb/).
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(a) The lowest-energy conformer of se-
quence AABABB may be classified as
“helical”. Φ=-1.335366, x=[-1.045231
-1.951874 1.738942 0.147911 ]

(b) The lowest-energy conformer for se-
quence AAABAA is a “β-sheet” motif. (Φ=-
3.697501, x= [0.020746 1.040153 1.958890
0.133675 ]

Fig. 3. Testing sequence results. In fig.3 and the following pictures, the circle indicates
hydrophilic residue, and the black dot indicates hydrophobic residue

In the experiments, we use K-D method to distinguish hydrophobic and hy-
drophilic residues of 20 amino acids in real proteins. Briefly speaking, amino
acids I, V, L, P, C, M, A, G are hydrophobic and D, E, F, H, K, N, Q, R, S, T,
W, Y are polar [17].

Experiment on 1AGT. First, we experimented on 1agt. The information
about its sequence and secondary structure from PDB are as follows:

1 GVPINVSCTG SPQCIKPCKD QGMRFGKCMN RKCHCTPK
EE B SS STTHHHHHHH HTBSEEEEET TEEEEEE

The first line is amino acid sequence, and the second line is its secondary
structure. It contains 38 residues, one helical segment and two β-sheet segments.

With the maximal iterate steps L = 5,000, we got ground state shown in
figure 4, from which we can see that the final toy model can simulate the real
protein to some extent.

Experiment on 1AHO. And then, we discussed on protein 1aho; its protein
sequence and secondary structure information are as follows:

1 VKDGYIVDDV NCTYFCGRNA YCNEECTKLK GESGYCQWAS PYGNACYCYK
B EEEE TT S B S HH HHHHHHHHTT SEEEEETTB TTBSEEEEES

51 LPDHVRTKGP GRCH
B TTS B S S

It contains 64 residues. Residue 19 to 28 is a helix segment in native con-
formation. With L = 10,000, we got the result shown in figure 5, which also
approaches to the real protein structure.

To evaluate the performance of our method, we also compared it with Simu-
lated Annealing (SA) Algorithm implemented in [9] on 1agt and 1aho sequences.
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Fig. 4. Φ = -19.616866, x = [1.968670 1.039088 0.068094 1.922932 -0.834257 1.907747
-0.833636 1.912368 -1.340518 1.479550 0.137488 -1.933330 -0.375798 1.044901 1.953578
0.125628 0.280929 0.528956 0.144413 0.067585 -1.937305 0.497480 -0.420421 -0.306854
-0.404344 1.946600 1.041268 0.396669 0.504622 -0.058998 -0.411684 0.426404 -1.939082
-0.130507 -1.945389 0.570014]

Fig. 5. Φ = -15.181101, x = [-0.010702 -0.060948 0.362086 -1.926352 0.904857
0.301411 -0.299284 -0.573455 -0.201756 -1.900080 -0.531997 0.810784 -0.829126 -
1.096663 1.186948 0.746497 0.050294 -0.262349 0.501073 -1.922822 1.787451 1.047013
0.815521 -0.145761 0.093422 0.404816 0.928052 -0.562520 1.924269 -1.820003 -0.455601
0.188326 1.842072 -1.918896 -0.259529 0.200091 -0.056049 -1.756343 -0.071092 0.340538
-0.165433 0.691833 -1.951029 -1.040509 1.052306 1.944196 -1.725629 -0.051463 -
0.258637 -0.097700 -0.364711 0.076348 -0.312131 -1.820869 -0.995589 -0.052073
0.215089 0.307311 1.937550 -0.175043 -1.938866 -0.222515]

Both methods were used to search the minimal energy state of toy model for
protein folding, and the comparison results are listed in table 2 and table 3.

From table 2 and table 3, we can see that PSO is much faster than SA and it
can search better results. This may due that PSO has less parameters than SA,
furthermore, since SA often lead to huge computational task, thus it usually can
not get the global minimal in reasonable time.
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Table 2. Comparison PSO with SA:
ground state

PSO SA
1AGT -19.6168 66 -17.3628 15
1AHO -15.1911 01 -14.9612 73

Table 3. Comparison PSO with SA:
searching time

PSO SA
1AGT 8,376 s 12, 065 s
1AHO 10,149 s 15, 832 s

From the results shown in figure 4 and figure 5, we can also see that, although
the toy model can simulate the real protein to some extent, the results are still
some different from the real proteins. That is to say, toy model needs further
improvements.

5 Conclusions

Toy model is a great improvement of simplification models of protein folding.
Because comparing with lattice model, the angle of its bond can turn freely
and thus it is more like real protein structure. In this paper, we applied PSO
on toy model for protein folding and got good results. Our experiment results
show that PSO has strong ability to search extremum in consecutive space. At
present, Our method only considered two kinds of residues and only two kinds
of interaction energy. Maybe we can improve the model by considering more
interaction energy and more properties of amino acid residues, not just only the
polar and non-polar characters. However, we should note that not all properties
are mattered with the structure of protein, for unnecessary conditions will make
the question too complicated. We will address this direction in the future.
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Abstract. This paper demonstrates an effective approach to studying functional 
coupling of different brain regions in event-related paradigm. The selective 
two-channel complexity (TCC ) and field power (TCFP ) were investigated 
between contralateral sensorimotor and mid-central region (close to Cz), and 
between ipsilateral sensorimotor and mid-central region during left or right 
hand motor imagery. It is demonstrated that TCC  and TCFP  can provide 
information regarding the dynamic interaction of spatially separated brain re-
gions. In the upper alpha band (10-12Hz), TCC  and TCFP  with mu 
rhythm of the mid-central region and contralateral sensorimotor hand area show 
a pronounced increase and decrease respectively at imagination onset, which 
indicates that there are independent, parallel functional processes over contra-
lateral sensorimotor area and mid-central region with the respective regions be-
coming active. The preliminary results show that TCC and TCFP could 
characterize the information exchange between different brain regions and also 
that the two parameters display good separability for left and right hand motor 
imagery tasks, so that they could be considered for the classification of two 
classes of EEG patterns in BCI (Brain Computer Interface). 

1   Introduction 

Studies at Graz University of technology have shown that unilateral hand motor im-
agery results in desynchronization of alpha and beta rhythmic activities over contra-
lateral hand area which is called event-related desynchronization (ERD) and 
simultaneously results in synchronization of rhythmic activities over ipsilateral area 
which is called event-related synchronization (ERS) [1]. For the antagonistic 
ERD/ERS pattern, the hypothesis has been proposed about ‘focal ERD/surround 
ERS’ reflecting a thalamo-cortical mechanism to enhance focal cortical activation by 
simultaneous inhibition of other cortical areas [2, 3]. So, whatever the brain state of 
the mid-central region is, it would be reasonable to expect some different functional 
interaction between the contralateral, ipsilateral hand area and mid-central region 
respectively. Synchrony (high coherence) between scalp signals has been taken as 
evidence for functional coupling of the underlying cortical areas [4]. ERCoh (event-
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functional coupling of the underlying cortical areas [4]. ERCoh (event-related coher-
ence) has been suggested to provide a means of studying the functional coupling 
between different brain regions, which calculates the ratio of cross-spectrum and 
auto-spectrum [5]. Within this method, spectral leakage effects, although reduced 
with Hanning window processing, could not be eliminated completely in calculating 
spectrum with DFT, which has more or less effects on the analysis results. This paper 
introduces a simple approach for characterizing dynamic functional interaction be-
tween brain regions in relation to event-related EEG by TCC  and TCFP . The 
preliminary results show that TCC and TCFP could characterize the information 
exchange between different brain regions and also have good separability for left and 
right hand motor imagery so that they could be considered for the classification of 
two classes of EEG patterns in BCI application. 

2   

The event-related EEG changes were investigated in a feedback-guided motor im-
agery experiment [3, 6, 7]. The subject performed the following task repeatedly in a 
series of sessions. During the first 3 sec reference period of each trial, the subject was 
asked to keep relaxed with eyes open, followed by an arrow pointing either to the 
right or left (cue stimulus) indicating the imagery task of either a movement with 
right or left hand till t=4.25s. The feedback bar, presented during the following about 
4-s period, was moving horizontally toward the right or left boundary of the screen 
dependent on the on-line classification of the EEG signals, which directs the subject 
performing hand motor imagery [3, 6, 7]. 

  Three bipolar EEG channels were measured over the anterior and posterior of C3, 
Cz, C4 with inter-electrode intervals of 2.5cm. EEG was sampled with 128Hz and 
filtered between 0.5 and 30Hz. EEG dataset were provided by Graz University of 
technology available at the BCI2003 competition website. The MATLAB data files, 
x_train.mat, y_train.mat are train datasets and the files x_test.mat, y_test.mat are test 
datasets, which both include 140 trials and the class labels respectively. The details 
could be found in relevant website and references [3, 6, 7]. 

3   Methods 

Wackermann proposed  system for describing the comprehensive global 
brain macro-state [8, 9]. The three linear descriptors , ,  were used to describe 
the three most salient features of the state space trajectories directly constructed by 
simultaneous EEG measurements from K  electrodes.  is a measure of global field 
strength [ V ];  is a measure of spatial complexity, reflected by different exten-
sions along the principal axes of the data cloud;  is a measure of global frequency 
of field changes [Hz ] [8, 9]. In this paper, to describe the interactions between EEG 
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signals of different channels, only ,  are discussed. Considering N  EEG sam-
ples in the observed time window at K  electrode sites to form voltage vectors 

1{ , }Nu u , where each iu  ( 1, )i N  corresponds to the state vector represent-
ing the spatial distribution of EEG voltage over the scalp at the ith sample point. 

,  can be calculated as follows [8, 9]: 

2
0

1
i

i
m u

N
    (1a) 

 0 /m K     (1b) 

The covariance matrix is constructed as: 
1 T

i i
i

C u u
N

    (2) 

The eigenvalues 1 K  of matrix C  is calculated, then  complexity can be 
obtained:  

' 'log logk k
k

    (3) 

where '
k  is the normalized eigenvalue. The details can be found in references [8, 

9]. 
Considering the antagonistic ERD/ERS pattern over the contralateral and ipsi-

lateral sensorimotor area during hand motor imagery, the spatial complexity  and 
field power  calculated by EEG between the selective two channels C3 and Cz, 
between C4 and Cz are studied. Therefore the number of electrodes K  in equation 
(1b) is 2 and the multichannel linear descriptors are reduced to two-channel complex-
ity and filed power, which are defined TCC  and TCFP  respectively.  complex-
ity quantifies the amount of spatial synchrony [9]. Large value of  indicates little 
linear spatial correlation between the different electrodes and the low value corre-
sponds to the minimal complexity or high synchronization [8, 9]. It’s reasonable to 
describe the correlation between two brain regions by TCC . TCFP  reflect the 
field strength between two-channel EEG signals, which also describe the simultane-
ous power information of the two corresponding brain regions. 

Before calculating the linear descriptors, EEG data are to be centered to zero 
mean value and transformed to the average reference. There is little influence from 
reference derivation and no need to transform data to average reference because EEG 
was recorded by bipolar derivation acting as a spatial high-pass filter to allow local 
cortical activity to be measured [10, 11]. In addition, ERD/ERS results in the large 
difference in the EEG amplitude over the contralateral and ipsilateral areas. To reduce 
the effect of EEG amplitude on , the data were normalized by the EEG maximum 
of each channel before calculating TCC  [12]. 

TCC and TCFP  reflect brain macro-state averaged within the observed time 
segment. However, the event-related EEG is typical of non-stationary signal. Linear 
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descriptors observed in long time window would result in information with a poor 
time resolution. By studies reported by Andrew [5], a 1 sec segment is short enough 
to approximate a stationary signal, so the time segment was chosen 1 sec here. 

To obtain the time course of  and , a 1-second segment is extracted from the 
trial to calculate , . By shifting the segment in steps of 7.8125 milliseconds from 
the start to the end of the trial, and calculating averaged ,  across all the trials for 
each segment, time sequences of  and  are obtained. In event-related paradigm, 
the experimental situation is controlled under the same stimulation, in which each 
trial is repeated a number of times. So parameters  and  calculated from the 
ensemble of trials recorded for each repetition of the event can yield information 
which reveals short time changes in parameters due to the specific event i.e. left or 
right hand motor imagery involved [5]. 

4   Results 

 The analysis  results for train dataset were given. Figure 1 summarizes the results of 
TCC and TCFP  obtained from event-related EEG data within 10-12Hz during left 
or right hand motor imagery. The upper alpha band within 10-12Hz was chosen based 
on priori knowledge from previous analysis of the data, which indicated that this band 
contained rhythms that were the most reactive to planning and execution of hand 
movement [5]. The three rows (Fig1 (a, b), Fig1 (c, d), Fig1 (e, f)) refer respectively 
to TCC  time courses including 3 , 4Cc z Cc z  computed by EEG signals between 
C3 and Cz and between C4 and Cz, TCFP  time courses including 3 , 4Pc z Pc z , 
and ERD/ERS time courses quantified by the classical power method. The two col-
umns (Fig1 (a, c, e), Fig1 (b, d, f)) correspond to left and right hand imagery tasks 
respectively. From figure 1 (e, f), a large decrease in power corresponding to ERD 
phenomenon occurs not only over the contralateral hand area but also over mid-
central region close to Cz accompanied simultaneously with ERS over ipsilateral 
hand area at imagination onset of hand movement. Accordingly, a pronounced in-
crease with spatial complexity 3Cc z  for right ( 4Cc z  for left) of contralateral and 
mid-central region occurs at imagination onset. In contrast, in associated with ERD 
over mid-central region and simultaneous ERS over ipsilateral hand area, a pro-
nounced decrease with the corresponding spatial complexity occurs. Besides, 

3 , 4Pc z Pc z  time courses show the opposite changes to 3 , 4Cc z Cc z  time courses. 
From the Figure 1, it is clearly seen that the two parameters i.e. the two channel spa-
tial complexity TCC  and the two channel field power TCFP  show the different 
behaviors during the left or right hand motor imagery so that the dynamic interaction 
of two different brain regions is characterized from the two aspects. In addition, for 
the left and right hand imagery tasks, the time course changes of 

3 , 4 , 3 , 4Cc z Cc z Pc z Pc z  show the good separability. 
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(a)    (b) 

 
(c)    (d) 

 
(e)    (f) 

Fig. 1. Spatial complexity 3 , 4Cc z Cc z  time course in (a), (b); and the local field power 
3 , 4Pc z Pc z  time course in (c), (d); ERD/ERS time course quantified by classical band 

power method in (e), (f); The left panels correspond to left hand motor imagery and the right 
panels correspond to right hand motor imagery. 
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To testify the validity of TCC  and TCFP  for characterizing the different interac-
tion information between the contralateral, ipsilateral brain regions and mid-central 
region respectively, the features 3 , 4 , 3 , 4Cc z Cc z Pc z Pc z  within 10-12Hz are 
extracted to discriminate left and right hand motor imagery for the test dataset and the 
satisfactory classification results could be used to show the validity of the selected 
parameters. By a Fisher discriminant linear classifier, the classification accuracy time 
course could be obtained in Fig 2 (a). Another effective index for measuring the sepa-
rability of two classes of EEG patterns is Mutual Information (MI) [13]. MI is pro-
posed for quantifying the information transferred by a BCI system which could re-
flect the effective information contained in brain consciousness [6, 13]. Fig 2 (b) 
gives the time course of MI. The maximum classification accuracy with 87.14% was 
obtained at about t=5s. Also at this time point, the maximum mutual information was 
obtained with 0.52 bit. Both classification accuracy and MI time course show that two 
parameters i.e. the spatial complexity and the field power between the two-channel 
EEG TCC  and TCFP  could well characterize the effective separate features for 
left and right hand motor imagery tasks. 
 

 
(a)    (b) 

Fig. 2 Classification accuracy time course in (a) and MI time course in (b) 

5   Discussions 

 complexity reflects the degree of synchronization between functional processes 
spatially distributed over different brain regions. TCC  increase of the contralateral 
sensorimotor area and mid-central region during unilateral hand motor imagery sug-
gests there are stronger independent, parallel, functional processes active between 
these two regions, which is just in accordance with the fact that ERD appears over the 
two regions. This result is also similarly consistent with the findings of Andrew et al. 

Selective Two-Channel Linear Descriptors 651

. 



[5]. The dynamic complexity analysis of the single channel event-related EEG also 
suggests that ERD/ERS correspond to the increase and decrease of EEG complexity 
[14]. During unilateral hand motor imagery, the mu rhythms were desynchronized 
when each of the underlying areas becomes active and then the degree of synchrony 
between the rhythms is decreased [5]. The desynchronized functional processes un-
derlying the two brain areas result in the amplitude attenuation of EEG signals over 
the corresponding regions, which are reflected by the field power TCFP  decrease 
between the contralateral and mid-central region. In contrast, ERS with amplitude 
enhancement appears over the ipsilateral area so that the field power TCFP  be-
tween the ipsilateral and mid-central region shows a pronounced increase. 

In recent application to brain global state by linear descriptors , , at least 19 
channels are used to study global brain functional states for different studying pur-
poses such as sleep and wakefulness, sensory and motor processes, etc [8, 15, 16, 17]. 
However, the results presented in this paper show that the two-channel linear descrip-
tors TCC  and TCFP  are also sensitive to local brain macro-state change and could 
be considered as a tool for studying dynamic interaction of two brain regions. In fact, 
TCC andTCFP  could be regarded as the simplest case of multichannel  and . 
The method by TCC  and TCFP  describing functional coupling of brain regions 
avoids difficulties such as spectral leakage effects resulting from DFT of the win-
dowed data and the spectral resolution consideration within ERCoh method. Thus, the 
parameters TCC  and TCFP  together provide more accurate and comprehensive 
information about functional coupling between different brain regions. 

Finally, TCC  and TCFP  reflect the more information including EEG features 
over left and right hemispheres and mid-central region, the satisfactory classification 
accuracy and MI are obtained. So, TCC  and TCFP  could be considered for the 
classification of left and right hand motor imagery tasks in BCI application. 
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Abstract. Inspired by the ongoing research on artificial visual prosthesis, a 
novel pixelization visual model based on the selection of local attention-
drawing features is proposed, and a subjective scoring experiment as a cogni-
tive assessment is designed to evaluate the performance of the model. The re-
sults of the experiment reveal that the model can accentuate the areas with 
prominent features in the original image, so as to give observers a subjective 
perception of rich visual information. Thus, the model will provide a new ap-
proach for future research. 

1   Introduction 

It is gradually coming true to partially restore vision capability to the visually-
impaired or blind person due to the effort of international research groups working on 
the ‘visual prosthesis’ (also called ‘artificial vision’) project1-3. The approach is to try 
to implant an array of electrodes into human’s optic neural pathway like visual cortex 
or retina. The visual signal captured by camera is converted by the visual prosthetic 
system to electronic pulses. When the pulses are received by the electrodes, the blind 
person is expected to feel points of lights called ‘phosphenes’ and all the phosphenes 
are expected to form a virtual ‘image’ finally perceived by the blind one1,2. Thus, the 
visual information is said to be conveyed to the blind through a ‘pixelized vision’ 
method because each phosphene is regarded as a ‘pixel’ in the virtual image 4,5.  

A conventional image usually contains more than thousands of pixels, but unfortu-
nately, prototype experiments have not been able to confirm the safety, long-term 
efficiency and biological compatibility to implant so many electrodes into human 
bodies, and the number of implantable electrodes must be constrained because of 
surgical techniques and electronic devices6-10. Meanwhile, early research predicted 
that about hundreds of phosphenes would be sufficient to convey quite a little visual 
information4. Therefore, a key component of visual prosthetic system is to reduce the 
resolution of the original image to several hundred, called a ‘pixelization’ procedure. 
Apparently, the limited phosphenes must be utilized effectively to present the impor-
tant and prominent information preferentially. In fact, it has been pointed out that a 
good computational vision model for pixelization is significant for obtaining and 
presenting those important and prominent visual information11.  

Moreover, not only the implantable electrodes are limited, but the implantation is 
constrained to carry out due to technical and social reasons. It is therefore necessary 
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to use simulations with normally sighted subjects called ‘simulated visual prosthesis’ 
to investigate whether the pixelization model can best keep the most prominent visual 
information. Assuming the normally sighted will receive the same perception as real 
blind recipients, simulated cognitive experiment has been widely performed by early 
researchers4,5 and recent groups12-15. In simulated cognitive experiments, low-
resolution pixelization results are observed by subjects with naked eyes, who are 
required to response to or to give assessment on these results. In fact, the purpose of 
these cognitive assessments is to search for psychophysical evidences and effective 
vision models in advance before the complex relationship between the perception of 
the blind and what the normally-sighted see is totally found out. 

 

Fig. 1. A prospective artificial visual prosthetic system 

A novel computational pixelization model is proposed in this paper. The proposed 
method will give a multi-resolution pixelization result similar to the algorithm by 
Gilmont et al. 16, while the high resolution will not be simply allocated to the central 
area but will be selectively given to the ‘prominent areas’ based on the analysis of the 
scene. Instead of simple segmentation algorithms, the proposed pixelization model 
will conform to the verified principles on vision information processing and selective 
attention mechanism. Simulated cognitive assessment experiments are designed and 
performed to evaluate the proposed model, and the results are promising thus can be 
used for reference for future research. 

2   The Model 

2.1   General Framework  

Former research reveals that some local structural feature in the original image is 
interesting to human vision system. Without high-level visual processing such as 
segmentation, classification and recognition, human vision will pay more attention to 
these local areas17, which are thus ‘prominent’ areas considered to be rich in visual 
information. On one hand all types of these prominent features are attractive to vision 
system; on the other hand there exists ‘lateral inhibition’ effect among visual percep-
tion units and ‘reception field’ model by Hartline and Rodieck can depict the interac-
tion between the prominent features from different local areas18. Based on the basic 
principles above, the computational pixelization model can be illustrated as Figure 2. 
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As shown in Figure 2, the processing procedure of the model includes three main 
steps: 1) Some local operators are applied to the original image to extract the local 
prominent feature maps; 2) A ‘competition’ step is designed to simulate the enhance-
ment and inhibition effect of the reception field, then a ‘integration’ step is used to 
integrate the maps into a final attention map; 3) Pixelization is performed under the 
supervising of the final attention map, in which prominent areas are given high reso-
lution and vice versa. Generally speaking, the model aims to give fine presentation to 
those areas that are attractive to human vision, so that the scene details rich of visual 
information would be conveyed to the recipient foremost. 

 

Fig. 2. The framework of the pixelization model based on selective prominent features 

2.2   Local Operators 

Various local image features, including symmetry, wavelet coefficient, edge density, 
entropy, DCT coefficient and contrast, have been inspected17 and it is found through 
eye-tracking experiments that areas with strong contrast, strong symmetry as well as 
dense edges are more attractive to human vision. Other research also reported that the 
areas with a different orientation from surrounding are attention-drawing19. Therefore, 
the above four prominent features are brought into our model which may be expanded 
after more attention-drawing feature are found out. 

For contrast feature, we bring Michaelson Contrast20 to identify the areas with 
strong contrast against the whole background. Michaelson Contrast at location 
( , )x y is calculated as 

| |
( , ) m M

m M

L L
C x y

L L

−=
+

 (1) 

in which mL  is the mean luminance within a 7*7 surrounding of the center location 

( , )x y and ML  is the overall mean luminance of the  image. 

For edge density feature, we use the popular Canny edge detector to obtain the 
edge map. Given the image I  convolved with Gaussian filter G , the normal vector 
map n is 
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Then the edge location ( , )x y satisfies 
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Numbers of edges per unit area around ( , )x y gives the edge density measure. 

For orientation difference feature, the center-surrounding orientation difference at 
( , )x y is determined first by convoluting the image with four Gabor masks as 
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with angle θ  equal to 0O, 45O, 90O, and 135O respectively. Then the area whose re-
sponse is significantly dissimilar to surrounding is regarded as having a high orienta-
tion difference. 

For symmetry feature, we define the symmetric magnitude at ( , )x y as 
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where pn(x,y) denotes the normalized luminance gradient at (x,y) and q(u,v) denotes 
the vector connecting (x+u, y+v) to (x-u, y-v). 

2.3   Feature Competition and Integration 

The prominent feature map produced by each local detector is a response map which 
quantitatively indicates the strength of the attention-drawing stimulus. Early research 
by Hartline and Rodieck18, together with latest psychophysical theories20-24, concludes 
that visual response to the attention-drawing stimulus has following properties: the 
response to a large range of stimulus is not significant; a strong stimulus surrounded 
by the weak is further enhanced; the weak stimulus next to the strong is further inhib-
ited. Thereby a linear combination of two Gaussian masks 

2 2 2 2

1 22 2
1 2

( , ) exp( ) exp( )
2 2

x y x y
R x y c c

σ σ
+ += − − −  (7) 

is introduced to simulate the above ‘competition’ effect. A special adjusting of the 

parameter 1 1 2 2, , ,c cσ σ will generate a mask with its 2-D section as depicted in Fig-

ure 3. Convoluting the mask with the feature map will just simulate the competition 
effect. 
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Fig. 3. The 2-D section of the feature competition mask 

The maps after the competition processing, each of which quantitatively represents 
a particular local attention-drawing feature, must be integrated to a unitary map. Since 
no many computational psychophysical evidences on the combination effect have 
been found out, we take a weighted addition as a simulation  

1

( , ) ( , )
N

n n
n

F x y w F x y
=

= Σ  (8) 

in which ( , )nF x y denotes the map from the competition processing. Appropriate 

weights nw  should be achieved through subjective cognitive experiment to be dis-

cussed later. 

2.4   Pixelization 

Finally the original image is to be pixelized. The reduction of the resolution should be 
supervised by the unitary feature map from integration: the areas with a large value in 
the map will be allocated with finer resolution. Figure 4 illustrates a multi-resolution 
pixelization pattern in which the small block regions have a large value at correspond-
ing areas in the feature map. The amount of total blocks would be artificially con-
trolled nearest to four hundred in order to agree with early research conclusion4. 

 

Fig. 4. A multi-resolution pixelization configuration 
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3   Subjective Cognitive Experiment 

To evaluate the performance and effectiveness of the proposed model for visual pros-
thesis, subjective assessment experiment is designed as others adopted12-15. The nor-
mally-sighted subjects are required to observe the pixelization results with naked 
eyes, and then to score each result according to whether it has best presented the 
prominent and important visual information. 

3.1   Single Feature Assessment 

The purpose of single feature experiment is to investigate the four local features sepa-
rately to provide evidence for the appropriate weights factor in (8). To distinguish the 
possible difference between scene types, the test images are classified into four 
groups-faces, typical objects, indoor scenes, outdoor scenes- according to their con-
tents. These test images are specially prepared without any from standard image data-
base to prevent any prior knowledge about the images. For each image in each group, 
the four local feature maps are obtained respectively, and four separate pixelization 
results are produced without feature integration step. 

Ten volunteer college students as subjects participated the experiments. They were 
requested to observe the results and to give a one point to five points score to each of 
them. Though having been notified the basic background of the research, none of the 
subjects knew any about the model. The test results are displayed in a head-mounted 
interface as in Figure 1, and the scores are afterward adjusted to distribute uniformly 
among one to five. Statistics of the scoring results is shown in Table 1. 

An analysis of variance as a tool of mathematical statistics was performed to an-
swer whether the four prominent features behave distinctly, and the p-values calcu-
lated from Table 1 for each scene group is shown in Table 2. The small p-values 
prove that extracting the attention-drawing features respectively is reasonable and 
necessary. 

Table 1. Statistics of single feature experiments (mean ± standard deviation) 

Feature 
Group      

Contrast Edge Density Orientation Difference Symmetry 

Human Faces 2.77±0.42 3.02±0.51 2.12±0.22 2.51±0.24 

Typical Objects 3.30±0.43 2.95±0.55 2.20±0.27 2.70±0.10 

Indoor Scenes 2.95±0.21 2.56±0.25 2.12±0.15 0.41±0.17 

Outdoor Scenes 3.17±0.21 2.40±0.12 2.52±0.18 2.57±0.14 

Table 2. Results of the analysis of variance 

Group Human Faces Typical Objects Indoor Scenes Outdoor Scenes 

p-value 33.8 10−×  43.3 10−×  44.2 10 −×  41 .3 10 −×  
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3.2   Assessment of the Complete Model 

Now we can calculate the weights in (8) for each scene group as 

4

1
k k l

l

w S S
=

=  (9) 

in which wk denotes the weight for the k feature and  Sk is the mean score for that 
feature obtained in single feature experiment. Given the weights, each original image 
is processed according to the complete pixelization model and the final pixelization 
results are produced. For comparison, other two kinds of pixelization results from 
feature averaging (all weights are 1/4) and conventional image segmentation are pro-
duced. The subjects then scored the three kinds of pixelization results for each test 
image, allocating a zero point, a one point and a two point among the three. The score 
ratio for each group is shown in Figure 5. It is easy to see that the results from super-
vised pixelization achieve the most score, indicating that the weighted map rather than 
feature averaging is more effective. 

 

Fig. 5. Score ratio of the three pixelization schemes: White-conventional segmentation; Black-
feature averaging; Gray-the complete model 

 

Fig. 6. Score counts for the proposed model. Black-2 points, Gray-1 point, White-0 point 
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We inspect the mean counts of two points, one point and zero point achieved by 
the supervised pixelization results, which are shown in Figure 6. The mean count of 
two points significantly exceeds that of one or zero point, which again supports the 
effectiveness and reasonableness of the model. 

In general, the subjective cognitive experiments that are elaborately designed and 
performed provide satisfactory evidences to support the vision model proposed above. 

4   Conclusion 

Based on the ongoing research about vision prosthesis, a computational pixelization 
vision model is proposed in this paper. The attention-based model, which utilizes 
psychophysical principles of vision information processing, aims to selectively pre-
sent the attention-drawing prominent areas with higher resolution under the strict 
phosphene (pixel) limitation. Subjective scoring experiments as a cognitive assess-
ment of the model are carried out, and the results support that the model can first and 
foremost extract and present the prominent feature that human vision is interested in, 
so the model will potentially provide a new approach for future research on visual 
prosthesis. 

It must be mentioned that modeling of pixelized vision for visual prosthesis is 
newly-risen. It is believed that the development of computational vision and related 
theory will benefit the research progress, and more other achievements will appear in 
the near future. 
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Abstract. Mosaicing fundus retinal images is fundamental to reveal helpful 
information of the eyes in order to track the progress of possible diseases. We 
propose the use of a simple rigid model to globally match vascular trees via a 
multi-resolution scheme. An elastic matching algorithm is employed to achieve 
accurate local alignment. We build mosaic maps by merging gray intensities of 
pixels from different fundus images at the same transformed locations with 
arithmetic average operation. Experiment results show that successful matching 
can be achieved with improved accuracy and the mosaic maps seem perfect in 
terms of visual inspection.  

1   Introduction 

Mosaiced fundus retinal image is helpful to provide valuable information for 
doctors to evaluate the progress of eye-related diseases and to decide on the 
appropriate treatments to be taken [1]. Mosaicing a number of images is usually 
based on the correct registration between different pairs of images. Since vascular 
tree is more reliable to be extracted and more representative of the eye surface, it is 
expected to use tree structure of blood vessels as object features for retinal fundus 
registration [2,3].  

In this paper, we bring forward the idea of employing a ‘global-to-local’ matching 
strategy. First, extracted vascular trees are globally aligned using rigid model of 
translation and rotation. The adoption of comparative simple model enables us to 
compute the optimal transformation effectively and efficiently by multi-resolution 
matching technique. Then, we adopt a structure-deformed elastic matching algorithm 
to improve local alignment accuracy. The construction of the mosaic map starts with a 
reference sample which can be conveniently identified by human operator from a 
number of retinal images.  

2   Registration Using Vascular Trees 

The registration between retinal fundus images is based on the identified features of 
vascular tree. To extract blood vessels from background, we employ the technique 
described in [4] which has been demonstrated to be robust in extracting vascular trees. 
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2.1   Global Multi-resolution Matching 

Although a quadratic surface model is more suitable to describe human eye surface, it 
is difficult to calculate relative model parameters where local optima traps often exist. 
It is shown that a weak affine model may be sufficient without losing too much 
accuracy. This motivates us to adopt the simplified rigid model of translation and 
rotation for globally matching two vascular trees of retinal fundus images. The model 
can be mathematically expressed as follows: 
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One of the two vascular features to be registered is called the Template and the 
other the Input. Thinning is performed for both the Template and the Input so that the 
resulting patterns consist of lines with one pixel width only. A sequential distance 
transformation (DT) is applied to create a distance map for the Template by 
propagation local distances [5]. The Input at different positions with respect to the 
corresponding transformations is superimposed on the Template distance map. A 
centreline mapping error (CME) to evaluate matching accuracy is defined as the 
average of  feature points distance of the Input as follows:  

∈

=
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N
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1       (2) 

N is the total number of feature points in the Input, p(i,j) are the transformed positions 
of the original feature points in the Input and DM is the distance map created for the 
Template vascular features. It is obvious that a perfect match between the Template 
and Input images will result in a minimum value of CME.     

       
(a)                                                              (c) 

Fig. 1. A mosaic of two retinal fundus images formed by the computed rigid global 
transformation is shown in (a). The misaligned vessels (‘ghost vessel’) enclosed in the outlined 
frame in (a) have been clearly illustrated in (b) indicated by white arrows. (c) By applying the 
local elastic matching algorithm, near perfect alignment has been produced. 

(
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A search for the optimal transformation is to find the global minimum of the CME 
and can be done in different levels of resolution to avoid local optima traps. The idea 
behind multi-resolution matching is to search for the local optimal transformation at a 
coarse resolution with a large number of initial positions. Only a few promising local 
optimal positions with acceptable CME are selected as seeds before proceeding to the 
next level of finer resolution. The assumption is that at least one of them is a good 
approximation to the global optimal matching.  

The final optimal match is determined by the transformation which has the smallest 
centreline mapping error at level 0 (the finest resolution). Once the relative 
parameters for the global transformation model have been computed, the registration 
between two retinal images is ready. One example is illustrated in Figure 1(a). 

2.2   Local Elastic Matching  

While the multi-resolution matching strategy is able to efficiently align retinal images 
globally, the local alignment errors inevitably exist because of the inherent imprecise 
characteristics of the simplified model. The phenomenon of ‘ghost vessels’ that is 
more obvious around boundaries of overlapped region is clearly perceptible (see 
Figure 1(b)). In order to rectify the pitfall of the rigid model, we adopt a local elastic 
matching algorithm to further improve matching accuracy by eliminating the 
existence of ‘ghost vessels’ (Figure1(c)). For process details, refer to [6].  

3   Mosaicing Retinal Fundus Images  

Once having identified correspondence of each feature point by local elastic matching 
method, we are able to calculate the transformed positions for registered fundus 
images. Assuming mid-point and two end points of each Template element as feature 
points, the elastic local move vector for each feature point can be computed directly 
by referring to location in the Template and the matched location in the Input. In 
addition, the local elastic transformed positions for all pixels other than the feature 
points of the Template can be defined as follows.  

=

=Δ
N

j
jjwM

1

P  (3) 

N is the size parameter of the Gaussian window which establishes neighborhoods 
of correlation, wj are the correlation weights in the Gaussian correlation window 
where ( ) ( )( )22 2/1exp Njwj ×−−=  and j = 1,2,…,N. Pj is the local move vector of 

feature point j in the Gaussian window sorted in the order of increasing distance from 
that pixel. )( jijj ITP −= , where Tj is the move vector of feature point j of the 

Template and Ii(j) is the position vector of the feature point of Input which is matched 
to j.  

Since we have applied the global-to-local strategy to achieve accurate alignment 
between pair of vascular tree features, the final transformed vectors for pixels in the 
input fundus image which is used to be registered to the reference fundus image are 
conveniently to be calculated by adding the elastic local move vector and the global 
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model-transformed vector. Let the registered image Iq be matched to the reference 
image Ip. If the transformed position of a certain pixel Pq in Iq is overlapped with a 
pixel Pp in the retinal region of Ip, the gray density of pixel of the mosaic map which 
has the same position as Pp is to be calculated by merging the gray densities of Pq and 
Pp. The merging strategy adopted in the experiment is the arithmetic average 
operation of the gray intensities. For those pixels of Iq whose transformed positions 
are not located inside the retinal region of image Ip, they augment the mosaic map 
with their original gray intensities to the transformed positions in the mosaic map.    

4   Experiment Results  

The image database that we use to evaluate the performance of the proposed 
registration algorithm consists of 115 gray level fundus images of both left and right 
eyes from eleven patients. The image size is 512×512×8 bits. We randomly pair 
retinal fundus images captured at different times from the same eye of the same 
person resulting 268 pairs.  

The depth for the fast multi-resolution matching method is set to 3, we have 7×7 
translation positions and 5 equidistant rotation angles. The step-length for the 
translation parameters X or Y in vertical or horizontal coordinate directions is one 
pixel shift. The step-length for the rotation angle is ( )width××=Δ πθ 2180  

degrees. Figure 2 shows examples of successful registration.   

   
(a)                              (b)                             (c) 

Fig. 2. Successful registration of retinal fundus images with varying overlaps: (a) 17.83% (b) 
11.82% (c) 5.30 %    

5   Conclusion 

In this paper, a mosaicing method for fundus retinal images based on robust 
registration techniques is proposed. In order to construct precise masaic map, we 
apply a ‘global-to-local’ matching strategy to accurately align pairs of vascular trees 
with improved registration accuracy. We build mosaic maps by merging gray 
intensities of pixels from different fundus images at the same transformed locations 
referring to the reference with arithmetic average operation. Experiment results 
demonstrate nearly perfect mosaic maps in terms of visual inspection.  
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Abstract. We have developed a calculus, called Ipi, for describing the
aberrance in biological models. Our approach extends the traditional pi
calculus to handle aberrant process in the signal transduction. In this
paper we propose a typing system that replaces the tag system of Ipi
calculus. It is shown that the typing system is equal to the tag system
in terms of the expressive power.

1 Introduction

There are several pieces of related work about modelling various biological sys-
tems based on pi calculus [1,6], some of which are about modelling signal trans-
duction (ST) [4,5,2,3]. In these works however the biological systems are consid-
ered under normal conditions, assuming that there are no exceptions when they
evolve.

In fact, part of the purpose of this research is to investigate the ways in
which the biological systems can be subverted. There is an important reason
for modelling these systems in all their complexity: many drugs and natural
defenses work by subverting natural pathways. We need to model the aberrant
biological systems to understand them. For this purpose, we have introduced
Ipi calculus [8], extended from pi calculus, to describe more complex biochemi-
cal systems like aberrant ST. The calculus is obtained by adding two aberrant
actions into pi calculus and a tag system to check existing aberrance.

We used the tag system to check the existence of aberrance in [8] by sets
computation, such as union, disjoint, etc. It is quite intuitive but difficult to
implement. Biological systems however are most complicated systems, so without
an automatic tool we can hardly go any further. In this paper we introduce a
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typing system that is simple enough to be enforced statically and that is easily
implemented into an automatic tool design (It had been implemented by Simon
Gay). We will establish some properties of the typing system and show that it
is equivalent to the tag system of [8].

2 The Pure Ipi Calculus

In this section we present the pure version of Ipi calculus that serves as the
preliminary setting for our formal work. The pure Ipi calculus is Ipi calculus
without the tag system.

2.1 Syntax

Processes evolve by performing actions. In process algebra actions capabilities
are introduced by prefix capabilities. In Ipi calculus, we introduce two capabilities
in addition to the prefix defined by pi calculus.

We assume that an infinite countable set N of names and an infinite count-
able set V of variables. Let a, b, · · · range over the names and x, y, · · · range over
the variables. We also define two symbols § and  to represent the aberrance ca-
pability. Here § represents the killer capability and  the propagation capability.
When a process has the killer capability, it terminates immediately. And when
a process has the propagation capability, it will duplicate itself infinitely.

Definition 1 (Prefix). The prefix of Ipi calculus are defined as follows:

π ::= a(b) | a(x) | a | a πi ::= π | §(πi) |  (πi)

The capability of π is the same as in pi calculus. §(πi) and  (πi) are the substi-
tution capabilities. They are respectively the capabilities § and  if the subject
of π is in an aberrant state.

Definition 2 (Process). The Ipi processes are defined as follows:

P ::= 0 | πi.P | πi.P + π′
i.P

′ | P |P ′ | (νa)P | P ;P ′

Intuitively the constructs of Ipi processes have the following meaning: 0 is the
inert process. The prefix process πi.P has a single capability imposed by πi,
that is, the process P cannot proceed until that capability has been exercised.
The capabilities of the sum πi.P + π′

i.P
′ are those of πi.P plus those of π′

i.P
′.

When a sum exercises one of its capabilities, the other is rendered void. In the
composition process P |P ′, the components P and P ′ can proceed independently
and can interact via shared channel. In the restriction process (νa)P , the scope
of the name a is restricted to P . The sequential process P ;P ′ can run the process
P ′ after the process P .

We write fn(P ) for the set of names free in process P , and fv(P ) for the set
of variables free in P . An expression is closed if it has no free variables. Notice
that a closed expression may have free names.
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2.2 Semantics

The structural congruence ≡ is the least equivalent relation on closed processes
that satisfies the following equalities:

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

P + Q ≡ Q + P
(P + Q) + R ≡ P + (Q + R)

(νa)0 ≡ 0
(νa)(νb)P ≡ (νb)(νa)P

((νa)P ) | Q ≡ (νa)(P | Q) if a �∈ fn(Q)

The reaction relation, introduced initially by Milner [1], is a concise account
of computation in the pi calculus. In addition to the well-known interaction
rule(Com-N), our reaction relation also includes two new rules about reactions
with aberrance(Pre-§ and Pre- ).

§(πi).P −→ 0
Pre-§ ;

 (πi).P −→ πi.P ;  (πi).P
Pre- ;

a(b).Q | a(x).P −→ Q|P{b/x} Com-N;

P −→ P ′

P + Q −→ P ′ Sum;
P −→ P ′

P | Q −→ P ′ | Q Com;

P −→ P ′

(νa)P −→ (νa)P ′ Res;
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′ Stc.

The first two rules deal with reactions with aberrance: the former says that the
resulting process is terminated; the latter declares that the resulting process
duplicates itself infinitely. The third reaction rule deals with the interaction in
which one sends a message with a channel while the other receives a message
with the same channel so that they have an interactive action. Each of the reduc-
tion rules are closed in the summation, composition, restriction and structural
congruence.

3 An Example in ST Pathway with the Aberrance

In order to illustrate the use of our calculus, we consider an example in ST path-
way with aberrance. We focus our attention on the well-studied RTK-MAPK
pathway. Here we choose a small yet important part, Ras Activation, for expla-
nation.

Fig.1 gives an example of Ras Activation of the ST pathway, RTK-MAPK. At
the normal state, the protein-to-protein interactions bring the SOS protein close
to the membrane, where Ras can be activated. SOS activates Ras by exchanging
Ras’s GDP with GTP. Active Ras interacts with the first kinase in the MAPK
cascade, Raf. GAP inactivates it by the reverse reaction.
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Within the framework of Ipi calculus, we set some principles for the corre-
spondence. Firstly, we choose the functional signaling domain as our primitive
process. This captures the functional and structural independence of domains in
signaling molecules. Secondly, we model the component residues of domains as
communication channels that construct a process. Finally, molecular interaction
and modification is modelled as communication and the subsequent change of
channel names. Aviv Regev and his colleagues have given the representation of
normal RTK-MAPK using the pi calculus [4].

RAS

GDP

RAS

GTP

GNRP

GTP

GDP

GAP

Pi

SOS

INACTIVE

ACTIVE

Fig. 1. Ras Activation

A protein molecule is composed of several domains, each of which is modelled
as a process as well. In (1) through (4) the detailed Ipi calculus programs for
the proteins Ras, SOS, Raf and GAP are given:

RAS ::= INASWI I | INASWI II (1)
SOS ::= S SH3 BS | S GNEF (2)
RAF ::= R Nt | R ACT BS | R M BS

| INA R Ct | R ATP BS (3)
GAP ::= sg(c ras).c ras(gdp).GAP (4)

The molecules (or domains) interact with each other based on their structural
and chemical complementarity. Interaction is accomplished by the motifs and
residues that constitute a domain. These are viewed as channels or communica-
tion ports of the molecule:

INASWI I ::= bbone.ACTSWI I (5)
INASWI II ::= sg(rs 1).rs 1(x).bbone.ACTSWI II (6)

S GNEF ::= bbone.S GNEF + sg(c ras).c ras(gtp).S GNEF (7)

The following interactions are possible:

INASWI I | S GNEF −→ ACTSWI I | S GNEF (8)
INASWI II | S GNEF −→ bbone.ACTSWI II | S GNEF (9)
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The interaction (8) shows that the domain INASWI I of Ras is activated by
the domain of S GNEF of SOS. The interaction (9) shows that the domain
INASWI II of Ras is activated by the domain S GNEF of SOS.

The detailed Ipi programs for activated domains, ACTSWI I, ACTSWI II
of the protein Ras and the domain R Nt of Raf are defined in (10) through (12):

ACTSWI I ::= s(rs 2).rs 2.ACTSWI I + bbone.INASWI I (10)
ACTSWI II ::= sg(r swi 1).r swi 1(x).bbone.ACTSWI II (11)

R Nt ::= s(c ras).c ras.ACTR Nt (12)

The processes so defined have the following interactions:

ACTSWI I | R Nt −→∗ ACTSWI I | ACTR Nt (13)

ACTSWI II | GAP −→∗ bbone.ASWI II | GAP (14)

bbone.ACTSWI II | ACTSWI I −→ INASWI II | INASWI I (15)

The interaction (13) shows that the active domain ACTSWI I of Ras interacts
with the domain R Nt of Raf. (14) shows that GAP inactivates the domain
ACTSWI II of Ras. (15) says that the domains of Ras interact with each
other and that Ras rollbacks to the initial inactivated state.

When Ras mutates aberrantly, it does not have any effect on the Ras’s binding
with GTP but will reduce the activity of the GAP hydrolase of Ras and lower
its hydrolysis of GAP greatly; in the meantime Ras will be kept in an active
state; they keep activating the molecule, inducing the continual effect of signal
transduction, which result in cell proliferation and tumor malignancy.

(16) defines the Ipi representation of GAP in the aberrant state. (17) shows
that GAP loses its function and does nothing, meaning that it can not inactivate
the domain ACTSWI II of Ras.

GAP ::= §(sg(c ras)).c ras(gdp).GAP (16)
GAP −→ 0 (17)

But then the interaction (15) will not occur whereas the interaction (13) will
occur infinitely. Now observe that

 ACTSWI I −→ ACTSWI I;  ACTSWI I

It reaches an abnormal state with exceptions. Pi calculus could not easily de-
scribe this aberrant case. Ipi calculus, on the contrary, can describe it quite
precisely.

4 The Tag System

The occurrence of aberrance is affected by temperature, environment, and con-
centration, etc. We will express the aberrance using two functions. We assume
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an infinite countable set A of values. Let σ, ρ be functions from N to A. One can
think of σ as an interference function and that σ(a) as the interference degree
of a. The function ρ is a critical function and that ρ(a) is the critical value of
the interference degree of a. The interference coefficient can be defined below:

Definition 3 (Interference Coefficient). For a ∈ N , let ia be |ρ(a)− σ(a)|.
We say that ia is the interference coefficient of a.

Therefore, when the aberrance occurs, it will be marked into the interference
coefficient. We call such a system the tag system of Ipi calculus. Intuitively, when
ia is equal to zero, we take that a is in an aberrant state; when ia is not zero, we
think that a is still in a normal state. For convenience of representation, when ia
is equal to zero, we write 0 as the tag of a. Otherwise we write ia as the tag of a.

For every prefix, we write a pair 〈iπi , πi〉 instead of πi, where iπi is the tag of
πi. When πi = π, iπi is the tag of the subject of π; when πi = §(π′

i) or πi =  (π′
i),

iπi = 0.
For a process, the expression of a process is also a pair 〈IP , P 〉 where IP is

the tag of the process P . The syntax of the tags is defined inductively by the
following rules, where the symbol % means disjoint union:

∞
%

n=1
IP � IP %IP %· · · :

I0 = ∅ 0-t
〈IP , P 〉 = 〈iπ, π〉.〈IQ, Q〉

IP = {iπ} % IQ
N-t

〈IP , P 〉 = 〈0, §(πi)〉.〈IQ, Q〉
IP = {0} §-t

〈IP , P 〉 = 〈0,  (πi)〉.〈IQ, Q〉
IP =

∞
%

n=1
({0} % {iπi} % IQ)

 -t

〈IP , P 〉 = 〈iπi , πi〉.〈IQ, Q〉+ 〈iπ′
i
, π′

i〉.〈IR, R〉
IP = f(〈{iπi} % IQ, {iπ′

i
} % IR〉)

Sum-t

〈IP , P 〉 = 〈IQ, Q〉|〈IR, R〉
IP = IQ ∪ IR

Com-t
〈IP , P 〉 = (νx)〈IQ, Q〉

IP = IQ
Res-t

〈IP , P 〉 = 〈IQ, Q〉; 〈IR, R〉
IP = IQ % IR

Seq-t

In the above definition, 〈IP , IQ〉 is a pair, f is the projection, and f(〈IP , IQ〉)
represents the tag of the process which has the operator “sum”. IP and IQ are
nondeterministically chosen as the process P or Q is chosen to act.

Let IP , IQ be the tags of the processes P and Q. We define

IP = IQ ⇔ 〈IP , P 〉 ≡ 〈IQ, Q〉
So we have defined an equivalence on the tags in terms of the structural

equivalence.
For the reaction relations, all the rules react with their tags reacting simul-

taneously. We define them as follows:

{0} \ {0} = ∅pre-§;
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∞
%

n=1
({0} % {iπi} % IP ) \ {0} = {iπi} % IP %

∞
%

n=1
({0} % {iπi} % IP )

pre- ;

({ix} % IQ) ∪ ({ix} % IP ) \ {ix} = IQ ∪ IP
com-N;

IP \ {iy} = IP ′

fP (〈IP , IQ〉) \ {iy} = IP ′
;

IP \ {iy} = IP ′

IP ∪ IQ \ {iy} = IP ′ ∪ IQ
;

IQ = IP IP \ {ix} = IP ′ IP ′ = IQ′

IQ \ {ix} = IQ′
.

The section is a brief introduction to the tag system. To know more, see [8].

5 The Typing System

As we have mentioned, for a biochemical network with aberrance, we hope to
know whether the proteins are aberrant or not in the network. So in Ipi calculus,
we need to control the information flow when modelling an aberrant biochemi-
cal network. This section describes rules for controlling information flow in Ipi
calculus. There are several ways of formalizing those ideas, just like the tag
system introduced in [8]. Here we embody them in a typing system for Ipi calcu-
lus. Typing system was firstly introduced by Martin Abadi in studying security
protocols [7].

5.1 The Typing System

In order to represent the aberrance of ST we classify signals into three classes:

– A Normal signal is one that takes part in the normal processes.
– An Aberrant signal is one that takes part in the aberrant processes.
– An Unknown signal could be any signal.

To simplify we define a reflexive order relation <: among these three classes:

Normal<: Unknown;
Aberrant <: Unknown.

For convenience of representation, we denote M as a name or a variable. M
is called term. Corresponding to these three classes the typed system has three
kinds of assertions:

– “' Γ well formed” means that the environment Γ is well-formed.
– “Γ 'M : T ” means that the term M is of the class T in Γ .
– “E ' P : ok” means that the process P type checks in E.

Typing rules are given under an environment. An environment is a list of
distinct names with associated classifications.
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Definition 4 (Typed Environment). Typed environments are given by the
following rules:

' ∅ well formed
Environment Empty

' Γ well formed,M �∈ Γ
' Γ,M : T well formed

Environment Term

Having defined the environments, one can define rules for terms and pro-
cesses.

Definition 5 (Terms). The rules for terms of typing system are as follows:

Γ 'M : T T <: R
Γ 'M : R

Level Subsumption

' Γ well formed M : T in Γ
Γ 'M : T Level Term

Intuitively the rule Level Subsumption says that a term of level Normal or
Aberrant has level Unknown as well.

Definition 6 (Processes). The rules for typing processes are as follows:

Γ ' a : Normal Γ ' b : Normal Γ ' P : Ok
Γ ' a(b).P : Ok

T-out

Γ ' a : Normal Γ ' x : Normal Γ ' P : Ok
Γ ' a(x).P : Ok

T-in

Γ ' a : Normal Γ ' P : Ok
Γ ' a.P : Ok

T-sout
Γ ' a : Normal Γ ' P : Ok

Γ ' a.P : Ok
T-sin

Γ ' a : Aberrant Γ ' b : Unknown Γ ' P : Ok
Γ ' §(a(b)).P : Ok

T-kout

Γ ' a : Aberrant Γ ' x : Unknown Γ ' P : Ok
Γ ' §(a(x)).P : Ok

T-kin

Γ ' a : Aberrant Γ ' P : Ok
Γ ' §(a).P : Ok

T-ksout
Γ ' a : Aberrant Γ ' P : Ok

Γ ' §(a).P : Ok
T-ksin

Γ ' a : Aberrant Γ ' b : Unknown Γ ' P : Ok
Γ '  (a(b)).P : Ok

T-pout

Γ ' a : Aberrant Γ ' x : Unknown Γ ' P : Ok
Γ '  (a(x)).P : Ok

T-pin

Γ ' a : Aberrant Γ ' P : Ok
Γ '  (a).P : Ok

T-psout
Γ ' a : Aberrant Γ ' P : Ok

Γ '  (a).P : Ok
T-psin

' Γ well formed
Γ ' 0 : Ok

T-nil
Γ, a : Normal ' P : Ok

Γ ' (νa)P : Ok
T-res
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Γ ' P : Ok Γ ' Q : Ok
Γ ' P | Q : Ok

T-com
Γ ' P : Ok Γ ' Q : Ok

Γ ' P + Q : Ok
T-sum

Γ ' P : Ok Γ ' Q : Ok
Γ ' P ;Q : Ok

T-seq

5.2 Properties of Typing

Having defined the typing system for Ipi calculus, we can show that the checking
capability of the typing system is equal to the tag system of [8]. We firstly
establish some properties of typing system before proving the main result. The
first three are fundamental properties satisfying a typing system. The last one is
a precondition for the theorem. The proofs of properties are obvious so we omit
them here.

Proposition 1. Assume that ' Γ well formed and that the terms in dom(Γ )
are all normal. Then the following properties hold:

– If M is a term and M ∈ dom(Γ ), then Γ 'M : Normal.
– if P is a process with fn(P ) ∪ fv(P ) ⊆ dom(Γ ), then Γ ' P : ok.

Proposition 2 (Strengthening). Assume that the term M is not free in the
process P and that N �= M . The following properties hold:

– If Γ,M : T ' N : S, then also Γ ' N : S.
– If Γ,M : T ' P : Ok, then also Γ ' P : Ok.

Proposition 2 enables us to condense an environment, moving out the decla-
ration of a term that is not used.

Proposition 3 (Weakening). Let M is not defined on the environment Γ ,

– If Γ ' N : S, then Γ,M : T ' N : S.
– If Γ ' P : Ok, then Γ,M : T ' P : Ok.

Proposition 3 declares that anything that can be proved in a given environ-
ment can also be proved with more assumptions.

Proposition 4 (Signal checking). Let iM be the interference coefficient of
the term M . Then

– iM = 0 if and only if M : Aberrent;
– iM �= 0 if and only if M : Normal.

Now, we bring out the key theorem of this paper, presented as follows. It can
be concluded that the typing system is equal to the tag system in terms of the
expressive power.

Theorem 1 (Full Abstraction). Let IP be the tag of P . Then 0 ∈ IP iff ‘If
Γ ' P : ok, then there is a term M in P such that Γ 'M : Aberrant’.

It can be proved by induction on the derivation of IP and the P .
With this brief typing system, we can verify the aberrant ST pathways with-

out complex tags, and implement into an automatic tool to run it correctly.
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6 Future Prospects

This work brings out the static checking for Ipi calculus, opening up new pos-
sibilities in the study of biochemical systems with exceptions. Our next work is
to investigate properties of Ipi calculus, finding out the relations between these
properties and the properties of biochemical systems.

We can also modify the typing system to suit for regulating various biochem-
ical systems, including transcriptional circuits, metabolic pathways etc. Also,
while we get further knowledge of biochemistry, we will refine our typing system
in a more precise way to type check errors when we design automatic tools.

References

1. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, parts I and II.
In: Information and Computation. (1992)1-77

2. Priami, C., Regev, A., Silverman, W., and Shapiro,E.: Application of a stochastic
name passing calculus to representation and simulation of molecular processes. In:
Information Processing Letters. 80(2001)25-31

3. Regev, A.: Representation and simulation of molecular pathways in the stochastic
pi calculus. In: Proceedings of the 2nd workshop on Computation of Biochemical
Pathways and Genetic Networks. (2001)

4. Regev, A., Silverman, W., and Shapiro, E.: Representing biomolecular processes
with computer process algebra: pi calculus programs of signal transduction path-
ways. In: http://www.wisdom.weizmann.ac.il/ aviv/papers.htm (2000)

5. Regev, A., Silverman, W., and Shapiro, E.: Representation and simulation of bio-
chemical processes using the pi calculus process algebra. In: Proceedings of the
Pacific Symposium of Biocomputing. 6(2001)459-470

6. Sangiorgi, D., and Walker, D.: The pi calculus: a Theory of Mobile Process. In:
Cambridge University Press. (2001)

7. Abadi, M.: Secrecy by Typing in Security Protocals. In Proceedings of Theoreti-
cal Aspects of Computer Software, Third International Symposioum. 1281(1997)
611-638

8. Zhang, M., Li, G., and Fu, Y, et al.: Representation of the Signal Transduction with
Aberrance Using Ipi Calculus. In : Computational and Information Science: First
International Symposium, 3314(2004)477-484



Local Search for the Maximum
Parsimony Problem
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Abstract. Four local search algorithms are investigated for the phylo-
genetic tree reconstruction problem under the Maximum Parsimony cri-
terion. A new subtree swapping neighborhood is introduced and studied
in combination with an effective array-based tree representation. Com-
putational results are shown on a set of randomly generated benchmark
instances as well as on 8 real problems (sequences of phytopathogen
γ-proteobacteria) and compared with two references from the literature.

1 Introduction

Phylogeny concerns the reconstruction of the evolutionary history of a set of
species identified by their nucleic acid (DNA) or amino acid (AA) sequences,
also called taxa. The evolutionary relationships between species are represented
by a tree, called a phylogenetic tree, whose branches reflect historical relation-
ships. The applications of phylogeny range from classification and taxonomy to
molecular epidemiology [5].

The problem of phylogeny reconstruction can be addressed using several
methods. The distance-based approach computes a distance matrix from the taxa
and tries to find a tree that approximates this matrix. Agglomerative clustering
algorithms such as NJ (Neighbor-Joining) [11] and BIONJ [8] are well-known
examples. The character-based approach searches through tree topologies to find
the best tree according to an optimality criterion. The widely used Maximum
Parsimony criterion [3] is such an example which states that the tree requir-
ing the fewest number of changes (mutations) should be preferred. This Maxi-
mum Parsimony Problem (MPP) is known to be NP-Hard [7]. Therefore, several
heuristics have been developed, including branch-swapping used in PHYLIP [4]
and PAUP [12], simulated annealing [2] and other metaheuristics [1]. Maximum
Likelihood is yet another approach for the inference of phylogeny using proba-
bilistic estimation.

In this paper, we are interested in studying Local Search algorithms for the
MPP and studying two important elements: the neighborhood relation and the
internal tree representation. We evaluate a new neighborhood called Subtree
Swapping Neighborhood (SSN) as well as an array-based tree representation.
� Corresponding author.
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2 The Maximum Parsimony Problem

Definition 1 (Phylogenetic tree). A phylogenetic tree is a directed graph
showing the relationships between a group of contemporary taxa (labels of the
leaves) and their hypothetical common ancestors (internal nodes labeled by con-
sensus sequences). If a rooted tree is used, the root is the common ancestor of
all the contemporary taxa.

Definition 2 (Consensus sequences). Given two sequences S1 and S2 of
length k: S1 =< x1

1, x
1
2, · · · , x1

k >, S2 =< x2
1, x

2
2, · · · , x2

k > with xj
i taken from

some alphabet
∑

, the consensus sequence Sc (parent node in a phylogenetic tree)
is obtained from S1 and S2 by:

∀i, 1 ≤ i ≤ k, xc
i =

{
x1

i ∪ x2
i , if x1

i ∩ x2
i = ∅

x1
i ∩ x2

i , if x1
i ∩ x2

i �= ∅

The cost of the consensus sequence Sc is defined by:

f(Sc) =
k∑

i=1

ci where ci =
{

1, if x1
i ∩ x2

i = ∅
0, otherwise

Definition 3 (Parsimony score of a phylogenetic tree). Given a phyloge-
netic tree t and V a set of nodes whose leaves are labeled with the sequences of
an initial set S, the parsimony score of t is given by :

f(t) =
∑

v∈V \S

f(Sv
c )

where Sv
c are the consensus sequences associated to the internal nodes of t.

The goal of the Maximum Parsimony Problem is then to find a tree t∗ ∈
T with the lowest parsimony score f(t∗), T being the set of all the possible
phylogenetic trees for a given set of taxa S.

3 Local Search for the Maximum Parsimony Problem

Given the NP-hardness of the MPP, local search (LS) heuristics have been mas-
sively used to find approximate phylogenetic trees. In this Section, we study four
LS algorithms using a new neighborhood. First, the basic and common elements
of these LS algorithms are introduced.

3.1 Tree Representation and Evaluation

One important issue of LS algorithms for the MPP concerns the way the trees are
represented and evaluated. Here, we use an array-based representation (Fig. 1).
Each node is identified by a number (N), associated with its left (L) and right
(R) son, the parent (P) and the cost (C) of the node. This representation is par-
ticularly suitable for applying changes in the SSN neighborhood and convenient
for computing the cost of each neighboring tree.
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Fig. 1. Tree representation

3.2 Neighborhood

Neighborhood is a critical element of local search algorithms. The literature offers
three major neighborhoods for trees: NNI (Nearest neighborhood interchanges)
[14], SPR (Subtree pruning and Regrafting) and TBR (Tree Bisection Recon-
nection) [13]. NNI is a restricted neighborhood which consists in swapping two
adjacent branches. SPR removes a subtree and reinserts it in other branches of
the tree. TBR breaks the initial tree into two subtrees which can be reconnected
to any branches of one another. It is easy to see that NNI ⊆ SPR ⊆ TBR.

In this study, we introduce a new neighborhood, that we call SSN (for Subtree
Swapping Neighborhood). SSN consists in swapping two subtrees of a tree. Let
SSNX,Y (t) be the tree obtained by exchanging the subtrees with roots X and
Y of tree t such that Y (resp. X) must not be contained in the subtree rooted
from X (resp. from Y ). Then the SSN neighborhood N can be formally defined
as follows N : T → 2T is such that for each t =<N, V >∈ T , a tree t′ ∈ T is
a neighbor of t, i.e. t′ ∈ N (t), if and only if ∃(X, Y ) ∈ V × V , SSNX,Y (t) = t′

where V is the set of nodes. As shown later, SSN, combined with our internal
tree representation, contributes greatly to the efficiency of our LS algorithms.

3.3 Implemented Local Search Algorithms

Pure Descent (PD). The Pure Descent (PD) algorithm accepts only better
neighboring solutions. A neighboring tree t′ is accepted to replace the current
tree t only if f(t′) < f(t) (t′ is more parsimonious than t). This algorithm
needs no parameter and stops automatically when a local optimum (minimum)
is encountered. The pure descent is very fast and may serve as a baseline reference
for evaluating other algorithms.

Random Walk Descent (RWD). This algorithm combines the pure descent
with the random walk strategy to accept from time to time a random neighbor
(which is not necessarily better). At each iteration, with probability p ∈ [0, 1],
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a neighbor is taken randomly from the neighborhood to replace the current
solution regardless of its cost; with probability 1 − p, a pure descent iteration
is carried out. Here, p = 1

α.|S|2 , α taking values from 1 to 10 and |S| being the
number of species of the problem instance.

Iterative Local Search (ILS). ILS uses the pure descent to reach a first
local optimum and then perturbs this local optimum by carrying out a limited
number of random walks. This leads to a new solution which is then used by
the pure descent to seek another local optimum. The two-steps process Descent-
Perturbation is repeated until a predefined stop condition is met.

Simulated Annealing (SA). At each iteration, a neighbor t′ is taken randomly
from N (t) of the current tree t. t′ is accepted to replace t if t′ is better than t.

Otherwise, t′ is accepted with a probability e−
f(t′)−f(t)

τ where f is the evaluation
(cost) function given in Section 2 and τ is the temperature parameter which
is decreased by a simple linear function. The algorithm stops when the current
solution is not replaced for a fixed number of iterations.

4 Experimental Results

In this section, we compare the four LS algorithms presented above and as-
sess their performances with respect to two references: DNAPARS of PHYLIP
package [4] and LVB (both fast and slow versions) [2]. Implemented in C++,
PD, RWD, ILS and SA are compiled using the -O2 optimization option of the
gcc/g++ compiler and run on Sun Fire V880 with 8 GBytes of RAM.

4.1 Benchmarks

Our benchmarks include problems having 100 to 180 sequences of a length of 100
nucleotides and were generated with Dnatree [10] and the Kimura two-parameter
model [9] with a transition/transversion ratio fixed to 2, and an evolution rate of
0.05. We used also 8 real instances from plant pathology, composed of 69 to 95
sequences of phytopathogen γ-proteobacteria (denoted by phyto here) with 409
to 645 sites and report only here the results on one real instance since we observed
very similar behavior on these instances. To run the programs, an initial tree is
generated either with a random construction (Rand) or with a distance-based
method (Dist). Each algorithm is run 20 to 50 times.

4.2 Comparison of PD, RWD, ILS and SA

Table 1 shows the comparative results of (PD, RWD, ILS and SA) on five classes
of random instances and the phytopathogen instance, with the following infor-
mation: the best cost found (fb), the average cost (fm), the standard deviation
of the cost (σ) and the average computing time (time).
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Table 1. Comparison of PD, ILS, RWD, SA, DNAPARS and LVB

Algorithm fb fm σ time Algorithm fb fm σ time
100.100 160.100

PD 419 420,9 1,5 3m30 PD 655 658,9 2,6 13m
RWD 419 420,1 1,4 30m RWD 655 656,6 1,9 1h20
ILS 419 419,0 0 20m ILS 655 655,5 0,7 1h
SA 419 419,0 0 30m SA 654 654,0 0 1h10

DNAPARS 419 419 − 4m DNAPARS 654 654 − 65h
LVB Slow 420 420 − >2h LVB Slow 655 655 − >3h
LVB Fast 421 421 − >2h LVB Fast 655 655 − >3h

120.100 180.100
PD 495 495,8 1,4 6m PD 753 755,4 1,8 15m

RWD 495 495 0 40m RWD 752 754,0 1,3 1h40
ILS 495 495,3 0,6 30m ILS 752 753,0 1,4 1h20
SA 495 495,0 0 40m SA 751 751,0 0 1h40

DNAPARS 495 495 − 40h DNAPARS 751 751 − 1h20
LVB Fast 496 496 − >1h LVB Slow 752 752 − >3h
LVB Slow 496 496 − >1h LVB Fast 752 752 − >3h

140.100 phyto
PD 683 684,6 1,2 8m PD 731 734,8 2,6 6m

RWD 682 683,6 1,0 1h RWD 730 731,0 1,1 40m
ILS 683 684,2 1,1 40m ILS 731 732,8 1,5 30m
SA 682 682,0 0 50m SA 729 729,8 0,7 40m

DNAPARS 682 682 − 51h DNAPARS 731 731 − 14h
LVB Slow 683 683 − >5h LVB Slow 764 764 − >4h
LVB Fast 685 683 − >4h LVB Fast 740 740 − >4h

From Table 1, one observes that PD is able to find good solutions with very
short computation times compared with other algorithms. RWD finds a little
better solutions, but needs more computation time. We suspect that executing
RWD more times may lead to even better solutions. ILS, even with a long compu-
tation time, is not competitive. This is somewhat unexpected given that it uses
a perturbation techniques to re-start PD. One possible explanation would be
that the simple re-start technique used by PD (recall that PD was run 5 times)
is more appropriate than re-starting PD with a solution near a local optimum.
Finally, SA is the most powerful algorithm, able to find the most parsimonious
trees with reasonable computation times.

4.3 Comparisons of LS Algorithms with LVB and DNAPARS

From Table 1, one observes first that in terms of solution quality, SA and DNA-
PARS find the same results for random instances, and SA finds better solutions
for the real instance. However, SA is much faster than DNAPARS to find solu-
tions of the same quality. This is particularly true when the problem instance
is of larger size. Indeed for still larger instances (with more than 200 sequences,
not reported here), DNAPARS did not finish after 2 days of computation while
SA needs 1 to 2 hours to obtain near-optimal solutions. For the phytopathogen
instance, our SA algorithm obtains better result than DNAPARS (with a cost
of 729 against 731). If we consider the results of LVB, one observes easily that
both the fast and slow versions of LVB are often dominated by our algorithms,
both in terms of solution quality and computation time.
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5 Conclusion

An empirical study of four local search algorithms is carried out for the phylo-
genetic tree reconstruction with the Maximum Parsimony criterion. These algo-
rithms are tested on both random instances and real problems. They are also
compared with two references from the literature, showing competitive results.
This study confirms that local search remains a very promising approach for the
Maximum Parsimony Problem. This study has allowed us to assess the proposed
SSN neighborhood and the array-based tree representation. Based on the results,
we are investigating an improved local search algorithm using an evolutionary
SSN neighborhood combined with a noisy evaluation function. Experimental val-
idations are on the way by using very large instances (up to 500 taxa and 2 000
sites, including the Zilla data set).
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providing us with the phytopathogen sequences.
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Abstract. Here, we propose an approach to solve the power control
issue in a DS-CDMA cellular system using genetic algorithms (GAs). The
optimal centralized power control (CPC) vector is characterized and its
optimal solution for CPC is presented using GAs in a DS-CDMA cellular
system. Emphasis is put on the balance of services and convergence rate
by using GAs.

1 Introduction

Transmitter power control is an effective way to increase the system capacity and
transmission quality in cellular wireless systems. Significant works are on power
control strategy, such as Refs.[1],[2] and [3] which have focused on centralized
power control(CPC) and distributed power control strategy (DPC). Ref.[1] in-
vestigated just a simplified case because of difficulties in computation and search
for an optimal solution. Refs.[2]-[4] have focused on maximizing the minimum
SIR using a complicated method to obtain a local optimum in the solution space
using DPC for simplicity. In this paper, we first propose an approach to solve
the power control issue in a DS-CDMA cellular system using genetic algorithms
(GAs)[4] to obtain a global optimal solution.

2 CPC Problem

We assume N users and M base stations. All users use the common radio chan-
nel in a DS-CDMA cellular system. Let pi denote the transmitter power of user i
so that P=[p1, p2, ...pN ] denotes the transmitter power vector of the DS-CDMA
cellular system. The corresponding received signal power of user i at base station
k is piL(i, k) where L(i, k) denotes the gain for user i to base station k. The inter-
ference seen by user i at base station k is

∑N
j=1,j =i pjL(j, k). Then, the signal to

interference ratio (SIR) of mobile user i at its base station k is then written by

SIRi =
piL(i, k)

α
∑N

j=1,j =i pjL(j, k)
=

pi

α
∑N

j=1,j =i pjGj,k

for 1 ≤ i ≤ N (1)
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where, α is defined as the voice activity factor. In order to achieve the balance
of services, the optimization problem of the same SIR for all users in the system
is expressed as[3][4]

SIR−
opt = min

1≤i≤N
SIRi and SIR+

opt = max
1≤i≤N

SIRi (2)

Due to the theorems and lemmas of R.Vijayan and J.Zender[1], let us define
G as an N × N matrix that has Gj,k as its elements. The matrix G has a few
important properties that are described as follows.

A. G is an irreducible nonnegative matrix
B. There exists a unique SIR∗ given by

SIR∗ = max
P∈�

SIR−
opt = min

P∈�
SIR+

opt, 	 = {P : 0 ≤ pi ≤ pmax, i = 1, 2, ...N} (3)

3 Performance Evaluation

The objective function will essentially determine the survival of each chromosome
by providing a measure of its relative fitness. By assigning the power to each
user in order to satisfy the same SIR for all users, a comprehensive objective
function that involves all of the considerations is described as

min η(t) = min |SIR+
opt(t)− SIR−

opt(t)| (4)

In order to greatly speed up the convergence rate and computation, evolution
is then proceeded via the partially matched crossover (PMX)[7] operator. In
order to achieve PMX easily, each individual is represented by a real number
vector, that means the decimal encode. We also created two First-In First-Out
(FIFO) stacks with stack depth, N , to store the genes. The crossover is performed
by the combination of two parents, pi(t) in t-th generation with SIR+

opt and pj(t)
in t-th generation with SIR−

opt. It is expressed as follows

pi(t + 1) = pi(t)− λpj(t) and pj(t + 1) = pj(t) + λpi(t) (5)

where the two types of nonlinear decreasing functions for the crossover factor in
which λ is introduced in the crossover operation as

Case 1 : λ =
1

β + μt
and Case 2 : λ = τ−γt (6)

where β, μ, τ , and γ are control parameters. In each iteration step, the search
can also be terminated, when there are no significant changes in the difference
between SIR+

opt(t) and SIR−
opt(t) as the following stopping conditions by the

termination constant δ as min|η(t)| ≤ δ.
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4 Simulation Results

We consider the system as a general multi-cell DS-CDMA cellular system on a
rectangular grid shown in Fig.1. that shows the positions of base stations and
an example of randomly distributed users in the system. During investigation,
each user is assigned to its nearest base station.

We observed that GAs with FIFO stacks has a better convergence property to
produce the unique optimal solution. In the investigation of a DS-CDMA cellular
system, unless the FIFO stacks are adopted, it takes a very long processing delay
time. For real-time applications, this strategy will be useless for solving the
CPC problem. The FIFO stacks genetic algorithm can be a better and enough

Fig. 1. Simulation environment for the number of active users N , and SIR+
opt, SIR−

opt

versus the generation using by Case 1 (1)β = 10, μ = 1 (2)β = 1, μ = 1 (δ = 0.1dB,
α = 0.375, pc = 1, pm = 0.01, N = 270)

Fig. 2. SIR+
opt, SIR−

opt versus the generation by Case 2 (1)γ = 0.1, τ = 2 (2)γ = 0.1,
τ = 20, and the allocation of transmitted power for Fig.1 in the entire coverage area
(δ = 0.1dB, α = 0.375, pc = 1, pm = 0.01, N = 270)
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approach to realistic large-scale problems. Figure 1 shows the convergence rate
of user SIR being maximum value of SIR and with minimum value of SIR
by Case 1. We see that SIR∗ reaches the target optimal value after about 20
generations as β = 10 and μ = 1. When β = 1 and μ = 1, it shows better results,
because the SIR reaches the target optimal value after near 7 generations.

As a result, the final unique optimal solution, that is the best SIR∗, takes
the value of -11.812542 dB whatever the nonlinear decreasing functions are used
in GAs. In Ref.[1], Bit-Error-Rate is given as BER ≤ 10−3 to get better trans-
mission quality. To achieve this, the bit-energy to noise density ratio, Eb/N0
must be larger than 7dB in the DS-CDMA system where SIR = (Eb/N0)/PG,
and processing gain, PG = Wss/Rb in which Wss is the spreading bandwidth
and Rb is the information bit rate. When IS-95 protocol (Wss = 1.25MHz, and
Rb = 9.6kbps) is used in the system, SIR ≥ −14dB.

In order to achieve this purpose, the power allocation plot by CPC has been
obtained as shown in Fig.2 for the system structure of Fig.1. One can see that
a larger amount of power will be allocated to users located at the boundaries
among the cells. The largest power demanded by users is located at the coordi-
nates approximately (0, 40000) and the smallest power is located at approximate
(10000, 30000) around the 4th BS.

5 Conclusions

To speed up the convergence rate and to filter out the illegal solutions, we intro-
duced nonlinear decreasing functions and FIFO stacks. Then we have effectively
simulated the centralized power control in a DS-CDMA cellular system and ob-
tained better results. The main benefit of these simulation results is that they
provide an estimate of CPC and it can be developed as some basics for the design
of DPC in the system.
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Abstract. In this paper, we propose a novel feature optimization method to 
build a cascade Adaboost face detector for real-time applications on cellular 
phone, such as teleconferencing, user interfaces, and security access control. 
AdaBoost algorithm selects a set of features and combines them into a final 
strong classifier. However, conventional AdaBoost is a sequential forward 
search procedure using the greedy selection strategy, redundancy cannot be 
avoided. On the other hand, design of embedded systems must find a good 
trade-off between performances and code size due to the limited amount of re-
source available in a mobile phone. To address this issue, we proposed a novel 
Genetic Algorithm post optimization procedure for a given boosted classifier, 
which leads to shorter final classifiers and a speedup of classification. This GA-
optimization algorithm is very suitable for building application of embed and 
resource-limit device. Experimental results show that our cellular phone em-
bedded face detection system based on this technique can accurately and fast 
locate face with less computational and memory cost. It runs at 275ms per im-
age of size 384×286 pixels with high detection rates on a SANYO cellular 
phone with ARM926EJ-S processor that lacks floating-point hardware. 

1   Introduction 

Many commercial applications embedded in cellular phone demand a fast face detec-
tor, such as teleconferencing, user interfaces, and security access control. Several face 
detection techniques have been developed in recent years [1], [2], [3], [4]. However, 
due to the limitation of hardware of the mobile phone (only a few KB memory and a 
processor with low frequency), fast face detection embedded on mobile phone is a 
challenging task. It must find a good trade-off between the high detection rates, run-
time and code size. 

Recently, Viola [2] introduced an boosted cascade of simple classifiers using Haar-
like features capable of detecting faces in real-time with both high detection rate and 
very low false positive rates, which is considered to be one of the fastest systems. Vi-
ola implemented this face detector on the Compaq iPaq handheld and has achieved 
detection at two frames per second (this device has a 200MIPS Strong Arm processor) 
[2]. The central part of their method is a feature selection algorithm based on 
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AdaBoost [5]. Much of the recent work on face detection following Viola-Jones has 
explored alternative-boosting algorithms such as Float-Boost [6], GentleBoost [7], 
and Asymmetric AdaBoost [8]. However, AdaBoost is a sequential forward search 
procedure using the greedy selection strategy. Because of its greedy character, neither 
the found weak classifiers nor their coefficients are optimal. In this paper we pro-
posed a post optimization procedure for each completed stage classifier based on Ge-
netic Algorithm, which removes the redundancy feature and leads to shorter final 
classifiers and a speedup of classification. This is very important to the mobile phone 
because its memory is only a few KB. A face location system on mobile phone using 
our proposed framework is built and tested on test database. The experimental results 
demonstrate that our face location system can be implemented on a wide range of 
small resource-limit devices, including handholds and mobile phones. 

The remainder of the paper is organized as follows. In section 2 the Adaboost 
learning procedure proposed in [2] is introduced. The stage Optimization procedure 
based on Genetic Algorithms is presented in section 3. Section 4 provides the experi-
mental results and conclusion is drawn in section 5  

2   Cascade of AdaBoost Classifiers 

There are three elements in the Viola-Jones framework: the cascade architecture, a 
rich over-complete set of Haar-like feature, and an algorithm based on AdaBoost for 
constructing ensembles of simple features in each classifier node.  

A cascade of face classifiers is degenerated decision tree where at each stage a 
classifier is trained to detect almost all frontal faces while rejecting a certain fraction 
of non-face patterns. Those image-windows that are not rejected by the initial classi-
fier are processed by a sequence of classifiers, each slightly more complex than the 
last. If any classifier rejects the image-windows, no further processing is performed, 
see the Fig.1. The cascade architecture can dramatically increases the speed of the de-
tector by focusing attention on promising regions of the images.  

Each stage classifier was trained using the Adaboost algorithm [5]. AdaBoost con-
structs the strong classifier as a combination of weak classifiers with proper coeffi-
cients. This is an iterative supervised learning process. Given a training set },{ iyix , 

the weak classifier jh is to find a threshold jθ which best separates the value of the 

Haar-like feature jf of the positively labeled samples from the negatively labeled 

samples. Thus, the weak classifier can be defined as follow: 

<
=

otherwise
jjpjfjp

xjh
        0

1
)(

θ
 . (1) 

where jp is 1 if the positive samples are classified below the threshold or –1 is the 

positive samples are classified above the threshold. After T rounds of Adaboost train-
ing, T numbers of weak classifiers jh and ensemble weights jα  are yielded by learn-

ing. Then a final strong classifier H (x) is defined as follow: 
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≥=
otherwise

T
j xjhjxH
           0

)(1
)(

θα
 . (2) 

The threshold  is adjusted to meet the detection rate goal. 

 

Fig. 1. Cascade of classifiers with N stages. At each stage a classifier is trained to achieve a hit 
rate of  h and a false alarm rate of f 

3   Genetic Algorithms for Stage Optimization 

According to the model of the boosting classifier (Equ.2), the stage classifier could be 
regarded as the weight combination of weak classifier },,2,1{ Thhh . Each weak 

classifier ih  will be determined after the boosting training. When it is fixed, the weak 

classifier maps the sample ix from the original feature space F  to a point 

)}(,),(2),(1{)(*
ixThixhixhixhix ==  . (3) 

in a new space F* with new dimensionality T.  
As AdaBoost is a sequential forward search procedure using the greedy selection 

strategy, neither the found weak classifiers nor their coefficients are optimal. At the 
same time, classifiers with more features require more time to evaluate and more 
memory to occupy. However, the more features used the higher detection accuracy 
may be achieved. So performance at each stage classifier involves a tradeoff between 
accuracy, speed and hardware resources. This problem is more importance in embed-
ded system. To address this issue, we use the Genetic algorithms to remove the re-
dundancy and optimize the parameter. The procedure is summarized in Algorithm.1. 

 Given example images ),(,),1,1( nynxyx where 1,0=iy for negative and 

positive examples respectively. 

 Initialize weights 1,i=1/2m,1/2l, for yi=0,1 respectively, where m and l are the 
number of negatives and positives respectively. 

 For t=1,…,T 

1. Normalize the weights,

=
←

n
j it

it
it

1 ,

,
,

ω

ω
ω  so that tω is a probability distri-

bution. 
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2. For each feature, j, train a classifier jh which is restricted to using a single 

Haar-like feature. The error is evaluated with respect to 

tω , −= i iyixjhij )(ωε . 

3. Choose the classifier, th , with the lowest error tε . 

4. Update the weights: ie
titit

−=+
1

,,1 βωω where 0=ie if example ix is classi-

fied correctly, 1=ie otherwise, and 
t

t
t ε

εβ
−

=
1

. 

 The final stage classifier is: = ≥=
otherwise

T
t xthtxh

            0
1 )(1

)(
θα

 where 
t

t β
α 1

log= . 

 Genetic Algorithms Stage Classifier Post-Optimization (See Algorithm 2) 

Algorithm. 1.  Post-optimization procedure of a given boosted stage classifier based on 
Genetic algorithms 

3.1   Evolutionary Search 

Genetic algorithms [9] are nondeterministic methods that employ crossover and muta-
tion operators for deriving offspring. The power of GA lies in its ability to exploit, in 
a highly efficient manner, information about a large number of individuals.  

3.1.1   Individual Representation 
In order to apply genetic search a mapping must be established between concept de-
scriptions and individual in the search population. The representation scheme that we 
use can be described as follows. Assume that the stage classifier contains T weak 
classifiers (hi) with T weight values i a stage threshold value (b). This information is 
encoded a string just like Fig.2. 

 

Fig. 2. The representational structure of individual 

K1~KT denotes the weak classifiers, Ki =0 means the weak classifier is removed 
and Ki =1 means the weak classifier is present. Tαα ~1 denotes the weight values, 
which range in [0, 10]. The b denotes the stage threshold value, which range in [-6,1]. 

3.1.2   Fitness Function 
The fitness function is composed of two functions that satisfy the two characteristics 
of fewer weak classifier and lower error rate. 
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The first fitness component concerns the efficiency of stage classifier and mode 
size. In terms of these, it is preferable that fewer weak classifiers give a correct pre-
diction for a given object rather more weak classifiers. The following component is 
designed to encourage this behavior. 

 /11 TlF −=  . (4) 

Where l is the number of weak classifier is selected, that is == T
i iKl 1 , T is the 

total number of weak classifiers. 
The next fitness component concerns accuracy measures-high hit rate (h) and low 

false alarm rate (f). We defined as follow: 

<++
≥++−−−=

hMmif

hMmifNn
F

/         0

/     /1
2  . (5) 

where:      m+ is the number of labeled positive samples correctly predicted, 
M+ is the total number of labeled positives samples in the training set, 
n- is the number of labeled negative samples wrongly predicted, 
N- is the total number of labeled negative samples in the training set, 
h  is the hit rate of the original stage classifier in the training set. 

Given samples (x1, y1)…(xn, yn) where yi=0,1 for negative and positive samples 
respectively and a set of weak classifiers },,2,1{ Thhh . According to the chromo-

some representation in the Section 3.1.1, the prediction function is defined as  
follow: 

= ≥+=
otherwise

T
i bixihiiK

ixH
                     0

1 0)(1
)('

α
 . (6) 

Thus the total fitness function for the genetic algorithm can be represented as the 
weighted function of the two components (F1, F2) defined above. Then the total fit-
ness function is defined as follow: 

2211 FwFwF +=  . (7) 

where w1 and w2 are fitness weights that can be adjusted to balance the efficiency, 
mode size and accuracy of the classifier.  

3.1.3   Genetic Operators 
As the representational structure of individual is composed of three parts, the cross-
over and the mutation operators must be work on each part respectively. This ensures 
that the representational structure of individuals is preserved through crossover and 
mutation. In this paper, we adopt the point crossover and mutation. The process of 
crossover and mutation is shown in Fig.3 and Fig.4. (P, X and  are the random value 
of mutation) 
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Fig. 3. The illumination of the crossover 

 

Fig. 4. The illumination of the mutation 

3.1.4   Search 
Search is performed as per standard genetic search. An initial population of individuals 
is generated. These individuals are then evaluated according to Equ.7.  And the fitter 
individuals are chosen to undergo reproduction, crossover, and mutation operations in 
order to produce a population of children for the next generation. This procedure is 
continued until either convergence is achieved, or a sufficiently fit individual has been 
discovered. The evolutionary search algorithm is shown in Algorithm. 2. Further in-
formation on genetic algorithms can be found in [9]. 

 Choose initial population 
 Evaluate each individual's fitness function 
 Repeat 
1. Select individuals to reproduce 
2. Mate pairs at random 
3. Apply crossover operator 
4. Apply mutation operator 
5. Evaluate each individual's fitness function 

 Until terminating condition 

Algorithm. 2. Genetic Algorithms Stage Classifier Post-Optimization  

3.2   Cascade Face Classifiers Learning Framework 

Training a classifier for the face detection task is challenging because of the difficulty 
in characterizing prototypical “nonface” images. It is easy to get a representative 
sample of images which contain faces, but much harder to get a representative sample 
of those which do not. We adapted “bootstrap” method [10] to reduce the size of the 
training set needed. The negative images are collected during training, in the follow-
ing manner, instead of collecting the images before training is started. 
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1. Create an initial set of nonface images by collecting m numbers of random im-
ages. Create an initial set of face images by selecting l numbers of representative 
face images. Given the stage number N , the total false alarm rate of total stage f. 

2. Train a stage face classifier using these m+l numbers of samples by Algo-
rithm.1.  

3. Add this stage face classifier to ensemble a cascade face classifier system. Run 
the system on an image of scenery that contains no faces and filter out m num-
bers of negative images that the system incorrectly identifies as face. Stage num-
ber=stage number+1; 

4. If (stage number <N and m/the numbers of detected image>f) Go to step 2. 
Else Exit. 

4   Experiment 

In this section, a face detection system on the cellular phone using our proposed algo-
rithm is implemented. The performance of our algorithm and standard AdaBoost al-
gorithm is also compared. The performance evaluation concentrates on the speed, 
complexity of the learned cascaded classifiers and the memory occupy under the cel-
lular phone environment.  

4.1   Training Dataset 

We collected 10000 face images and 20,000 non-faces images from various sources, 
such as AR, FERET, and from WEB, covering the out-of-plane rotation in the range 
of [-20°, +20°] of out-of-plane rotations. The dataset contains face images of variable 
quality, different facial expressions and taken under wide range of lightning condi-
tions. The 10000 face images are cropped and rescaled to the size of 20×20. 5000 face 
images and 10000 non-face images are used in training and other images are used in 
GA post optimization. 

4.2   Training Process 

The training is implement on PC with CPU of AMD AlthonXP2500+. Two face de-
tection systems were trained: One is standard AdaBoost and one with our novel post-
optimization procedure for each completed stage classifier. 

Parameters used for evolution were: 80% of all individuals undergo crossover 
( 8.0=cp ), 10% of all individuals were mutated ( 1.0=mp ) and the population was 

initialized randomly. The GA terminated if the population was converged to a good 
solution so that no better individual was found within the next 5000 generations. If 
convergence did not occur within 10000 generations, the GA was stopped as well. 

4.3   Experiment Results 

Our face detection system is implemented using C language with ARM compiler. The 
system is tested on a mobile phone that integrates with a CCD camera; 2MB of RAM 
and ARM926EJ-S processor that lacks floating-point hardware. 
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We tested our system on the BIO face test set [11]. This set consists of 1520 im-
ages with 1521-labeled frontal faces with a large variety of illumination and face 
size, and very complex background. This database is believed to be more difficult 
than some commonly used head-and-shoulder face database without complex back-
ground.  

The ROC curve over the Bio-FaceDabase test is shown in Figure 5. The mode 
and the average detection time of two face detection systems are listed in Table 
1.The numbers of weak classifiers trained by standard Adaboost and our novel GA-
post-optimization procedure for each completed stage classifier are summarized in 
Table 2. 

Table 1. Model size and detection time of two face detector on the cellular phone 

Face Detector Model size Average detection time 
With GA-post-optimization 80KB 275ms 

Without GA-post-optimization 110KB 395ms 

Table 2. the nuber of weak classifiers by with and without GA-post-optimization 

Number of weak classifiers  Number of weak classifiers 
Stage 
No. AdaBoost 

GA-post-
optimization 

Stage 
No. 

AdaBoost 
GA-post-

optimization 
1 13 10 8 82 60 
2 17 11 9 113 86 
3 22 15 10 128 94 
4 29 20 11 157 107 
5 39 29 12 160 122 
6 48 34 13 138 97 
7 58 41 Total 1004 726 

 

Fig. 5. ROC cures for the face detector based on AdaBoost with and without GA-post-
optimization on the Bio test set. The tests were run on a SANYO cellular phone with 
ARM926EJ-S processor that lacks floating-point hardware. 
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Fig. 6. Sample experiment results of our mobile phone embedded face detection system on real-
time detection 

From the experiment results shown in Table 1 and Table 2, we can see that the 
numbers of weak classifier of each stage classifiers are reduced due to the Genetic 
Algorithms optimization. The model size of face detector with GA-optimization is 
also about 30% smaller. This is very important, as the memory resource of the mobile 
phone is only a few KB. Due to the features reduction, the average detection time of 
face detector with GA-optimization is about 30% faster. And the performance of de-
tection is only slightly dropped, which can be seeing from Fig.5.  

Some real-time detection results using our mobile phone embedded face detection 
system are shown in Fig.6. As can be seen in Fig.6, our system is able to detect face 
in variable lighting conditions and movements such as rotation, scaling, up and down, 
profile, and occlusion. 

5   Conclusion 

In this paper, we present a novel stage post-optimization procedure for boosted classi-
fiers by applying the genetic algorithms. This method effectively improves the learn-
ing results. The classifier trained by the novel method was about 22% faster and con-
sists of only 70% of the weak classifiers needed for a classifier trained by standard 
AdaBoost while the detection rate only slightly decrease. The reduction of the model 
size can be very important in mobile phone context where the weak classifiers are ex-
pensive to compute and implement. Experimental results show that our object detec-
tion framework is very suitable for the resource-limit devices, including mobile 
phones, smart cards or other special purpose due to the reduction of the number of 
weak classifiers. Our GA-post-optimization algorithms can also be applied with other 
boosting algorithms like e.g. FloatBoost [5] or GentleBoost [7].  
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Abstract. In this paper, the H∞ control problem is considered for linear
descriptor systems by using convex optimization approaches. By giving
sufficient and necessary conditions for the output feedback H∞ control
problem, feasible LMI-based design approaches are presented for both
generalized and proper H∞ controller. All proper H∞ controllers are
constructed via solutions of LMIs based on convex algorithms. These
results generalize the standard H∞ control theory for normal systems to
that for descriptor ones.

1 Introduction

In the last decade, the control problems for descriptor systems (or generalized
systems, singular systems) have drawn the considerable attention of many re-
searchers due to their extensive applications in chemical processes, large scale
systems, singular perturbation theory, electrical networks, economic systems,
macroeconomic systems, and other areas. Recently, many LMI-based analysis
and synthesis approaches have extensively been presented for H∞ control prob-
lems (see e.g. [1]∼[6]). However, the existing results only considered the general-
ized output feedback controller design problems, which required re-computations
of perturbed synthesis LMIs and inversion of the possible ill-conditioned results.
In this paper, 3-LMIs based sufficient and necessary conditions are presented for
both generalized and proper H∞ controller design.

2 Main Results

Consider the unforced descriptor system Σf
D described by

{
Eẋ = Ax + Bw
z = Cx + Dw

,

Σf
D is called to be admissible if Σf

D is regular and has neither impulsive modes
nor unstable finite modes. It can be shown that Σf

D is admissible and satisfies

‖G(s)‖ :=
∥∥C(sE −A)−1B + D

∥∥
∞ < γ
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if and only if there exists X satisfying (see [6])

ETX = XTE ≥ 0,

⎡⎣XTA + AT X XT B CT

BT X −γ2I DT

C D −I

⎤⎦ < 0. (1)

The generalized descriptor plant ΣD can be described by

ΣD :

⎧⎨⎩Eẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w

, (2)

where x ∈ Rn, w ∈ Rm1 , u ∈ Rm2 , y ∈ Rp2 and z ∈ Rp1 are the state,
the exogenous input, the control input, the measurement output and the con-
trolled output, respectively. Consider the controller Σc with order nc described

as
{

Ecẋc = Acxc + Bcy
u = Ccxc + Dcy

, where xc is the state of the controller. We call Σc as

a generalized controller if rankEc < nc, and a proper one if E = I. Σc is named
as an H∞ controller if Σcl is admissible and satisfies∥∥Ccl(sEcl −Acl)−1Bcl + Dcl

∥∥
∞ < γ.

Correspondingly the closed-loop system Σcl is given by
{

Eclẋ = Aclx + Bclw
z = Cclx + Dclw

,

where [
Acl Bcl

Ccl Dcl

]
:=

[
Â B̂1

Ĉ1 D̂11

]
+

[
B̂2

D̂12

]
G

[
Ĉ2 D̂21

]
, Ecl :=

[
E 0
0 Ec

]
,

and ⎡⎣ Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 GT

⎤⎦ :=

⎡⎢⎢⎢⎢⎣
A 0 B1 B2 0
0 0 0 0 Inc

C1 0 D11 D12 0
C2 0 D21 DT

c BT
c

0 Inc 0 CT
c AT

c

⎤⎥⎥⎥⎥⎦ . (3)

In the following, we will give 3-LMI based results for output feedback H∞
control of descriptor system. Applying Lemma 1 to the closed-loop system Σcl,
the first equation of (1) can be rewritten as[

E 0
0 Ec

]T [
X11 X12
X21 X22

]
=

[
X11 X12
X21 X22

]T [
E 0
0 Ec

]
≥ 0, (4)

where
[
X11 X12
X21 X22

]
:= X compatible with Acl. Correspondingly we denote Y :=

X−T =
[
Y11 Y12
Y21 Y22

]
, where

{
Y11 := (XT

11 −XT
21X

−T
11 XT

12)
−1, Y12 := −Y11X

T
21X

−T
22 ,

Y21 := −X−T
22 XT

12Y11, Y22 := X−T
22 + X−T

22 XT
12Y11X

T
21X

−T
22 .

. (5)
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(5) implies
RT − S−1 = XT

21X
−T
22 XT

12, (6)

and (4) results to ETX11 = XT
11E ≥ 0 and{
ETX12 = XT

21Ec,
ET

c X22 = XT
22Ec ≥ 0. (7)

On the other hand, similarly to the derivation for the conventional systems (see
[2]), the second equation of (1) yields

ÛGV̂ + (ÛGV̂ )T + Ω̂ < 0, (8)

where

Û :=

⎡⎣XT B̂2
0

D̂12

⎤⎦ , V̂ T :=

⎡⎣ ĈT
2

D̂T
21
0

⎤⎦ , Ω̂ :=

⎡⎣ ÂT X + XT Â XT B̂1 ĈT
1

B̂T
1 X −γ2I D̂T

11

Ĉ1 D̂11 −I

⎤⎦ .

Denote R := X11 and S := Y11. It can be verified that (8) holds if and only if⎡⎣ CT
2

DT
21
0

⎤⎦⊥ ⎡⎣AT R + RTA RT B1 CT
1

BT
1 R −γ2I DT

11
C1 D11 −I

⎤⎦⎡⎣ CT
2

DT
21
0

⎤⎦⊥T

< 0, (9)

and ⎡⎣ B2
0

D12

⎤⎦⊥ ⎡⎣SAT + AST B1 SCT
1

BT
1 −γ2I DT

11
C1S

T D11 −I

⎤⎦⎡⎣ B2
0

D12

⎤⎦⊥T

< 0. (10)

Theorem 1. For the system ΣD described by (2), there exists a generalized H∞
controller Σc if and only if there exist nonsingular matrices S, R satisfying (9),
(10), and

(RT − S−1)E ≥ 0, ETR = RTE ≥ 0, SET = EST ≥ 0. (11)

In this case, for any X12, X21, X22 and Ec satisfying the constraint (6) and (7),
then the controllers with order rankX22 can be solved via (8). Especially, X12,
X21, X22 and Ec can be selected to be

X12 := X22 := X21 := R − S−T , Ec := E, (12)

which satisfy (6) and (7) naturally.

Proof is omitted for brevity.

Without loss of generality, in the following we assume E :=
[
I 0
0 0

]
to find fea-

sible approaches compatible with Matlab. The following result can be obtained
by using Theorem 1.
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Theorem 2. For the system ΣD described by (2) with E :=
[
I 0
0 0

]
, there exists

a generalized H∞ controller Σc if and only if there exist nonsingular matrices S,
R, described by

S =
[
S1 S12
0 S2

]
, R =

[
R1 0
R21 R2

]
, (13)

satisfying
[
R1 I
I S1

]
> 0, (9) and (10). In this case, for any X12, X21, X22 and

Ec satisfying the constraint (6) and (7), then the controllers with order rankX22
can be solved via (8). Especially, X12, X21, X22 and Ec can also be constructed
by (12) and consequently obtain the controllers via (8).

Based on this result, the LMI-toolbox in Matlab can be applicable directly
and the feasible design steps can be given as follows: (i) solve the LMIs (9), (10)
to obtain a pair of R and S with the description of (13); (ii) construct X using
(12) and then solve LMI (8) for the parameters Ac, Bc, Cc and Dc of Σc.

In the above two results, only generalized controllers were studied, which gen-
erally are difficult to realize. The following result gives a necessary and sufficient
condition for the proper H∞ control problem for ΣD.

Theorem 3. For the system ΣD with E :=
[
I 0
0 0

]
, there exists a proper H∞

controller Σc if and only if there exist nonsingular matrices S, R described as

(13) which satisfy (9), (10),
[
R1 I
I S1

]
> 0 and S2R

T
2 = I. In this case, for any

X11, X12, X21, X22 constructed by

X11 := R,X21 =
[
XT

121 0
]
, XT

12 =
[
XT

121 XT
122

]
, X22 > 0, (14)

which satisfy {
X121X

−1
22 XT

121 = RT
1 − S−1

1
X121X

−1
22 XT

122 = RT
21 + S−1

1 S12S
−1
2

, (15)

the controllers with nc = rankX22 can be solved via (8). Especially, we can
choose

X121 := X22 := RT
1 − S−1

1 , X122 := R21 + S−T
2 ST

12S
−T
1 ,

which satisfy (15) naturally.

Proof: (ii)=⇒ (i): If there exist matrices S, R described by (13) satisfying (9),
(10) and (11), then we have

RT − S−1 :=
[
RT

1 − S−1
1 RT

21 + S−1
1 S12S

−1
2

0 0

]
. (16)

Partitioning X12:=
[
X121
X122

]
compatible with E. Based on the second equation of

(7), we can choose X22 as any positive definite matrix, such as I, without loss of
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generality. From the second equation of (7) we select XT
21 =

[
X121

0

]
, and from

the first one, select X121 and X122 by (15). And RT
1 − S−1

1 > 0 guarantees the
existence of a nonsingular X121. Then we can construct X as (14) and (15) to
satisfy (8).

(i) =⇒ (ii): If (i) holds, there then exists a partitioned matrix X satisfying
(4) and (1) for the closed loop system. From (4), or equivalently, (7), we can also

get (11), where S and R constructed by (13) satisfy
[
R1 I
I S1

]
> 0. Partitioning

X12:=
[
X121
X122

]
compatible with E, from the second equation of (7) we have XT

21 =[
X121

0

]
, which implies RT

2 −S−1
2 = 0 by means of the first one of (7). Similarly

to necessity of Theorem 1, (9) and (10) result from the first equation of (1).
Q.E.D

Based on Theorem 3, we can give an LMI-based iterative procedure to design
proper H∞ controllers for descriptor systems.

3 Conclusions

This paper presents LMI-based approaches to the output feedback H∞ con-
trol problem for descriptor systems. Feasible LMI-based procedures are given
to design both of the generalized and proper output feedback H∞ controllers.
The results can be generalized to some other dissipative control problems with
quadratic performance for descriptor systems.
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Abstract. This study describes a generation of globally time optimal trajecto-
ries for a mobile robot in predefined environment. The primary task in the study 
is to apply Differential Evolution (DE) method for definition of globally time-
optimal trajectories under environmental and dynamical constraints. The 
planned trajectories are composed of line segments and curve segments. The 
structures of the curve segments are determined by using only two parameters 
such as a turn angle θ and a translation velocity on the curve vt_start. All possible 
curve segments in parameters range θ∈(0, π]°, vt_start [0,40] inch and at_turn 
∈[-at_max,at_max] inch/sec2 form a curve segments set. Then DE, is used to find 
time optimal trajectory from this set. Experimental results are given and the re-
sults are shown successfully. 

1   Introduction 

Motion planning is an important task in the robot navigation that defines a path be-
tween initial and final configuration of a mobile robot. The motion planning studies 
can be separated into two groups such as explicit and implicit motion planning 
[1,2,3,4]. If the aim of robot motion is only reaching the desired configuration or final 
point, explicit methods are sufficient. However the implicit planning techniques are 
widely used when optimization criteria on the path are desired or to make sure the 
certain properties of the trajectory (i.e. optimal-time or distance). In this approach, 
obstacle information from the environment and the constraints of the mobile robot are 
used and consequently global-optimal solutions can be obtained. But it has two disad-
vantages: 1) random supplied initial values starting to numerical solutions. In some 
cases the correct results cannot be obtained. 2) Still, there is a necessity for using a 
controller. Aim of this study is to obtain global-time optimal trajectory planning for 
mobile robots using a derivative free optimization method such as DE approach. The 
most important disadvantage of the evolutionary methods is long optimization time. 
To partially overcome this problem a Fuzzy Inference System (FIS) model is used to 
form the curve segments instead of serial expansion of the robot’s equations. In the 
next section, line and curve segments are derived from MR’s equations. In section 3, 



704 S. Aydin and H. Temeltas 

 

Modified DE is introduced and objective function and nonlinear constraints are 
formed. Global optimality of the obtained results is investigated in section 4. After 
that, applications and experimental results are given and the paper is concluded at the 
last section 6. 

2   Trajectory Components 

In this study, the planned trajectories are composed of line segments (steering decel-
eration/deceleration (acc/dec) as=0, velocity vs=0 and translation acc/dec at=at_max) 

and curve segments (translation acceleration/deceleration and at=at_turn =constant, 
vt0= vt_start =constant and steering acc/dec as=as_max). The state vector of the Nomad 

200 is x=(x, y,θ) T where  x and y represent coordinates for center of the MR while θ 
represents orientation of the MR. MR’ s equations are given by :  

ytt vvyvx ==== )sin(,v )cos( x θθ  ,
sstts avavv === ,,θ . (1) 

These parameters, however have boundaries to used in the optimization procedure. 
Numericaly, the maximum value of  velocities and accelerations of the mobile robrot 
system are vt_max =40”/s, vs_max =0.785 rad/s, at_max =30”/s2 and  as_max=0.875 rad/s2 .  If 

max_tt aa = , 
max_ss aa =  and then Eq. 1 can be solved [7]. 

Line Segments. In the solved Eqs , if as=0 and vs=0 are taken Eq. 2 is obtained: 

( ) ( ){ } ( )

( ) ( ){ } ( )
max_tt

max_tt

max_tt

max_tt

aa

0

2

t0t0

t

0
aa0t0t0

aa

0

2

t0t0

t

0
aa0t0t0

sin
2
t

atvydtsintavyy

 cos
2
t

atvx   dtcostavxx

=
=

=
=

θ++=θ++=

θ++=θ++=
 (2) 

Curve Segments. Again from the definition of the curve segments, vt and at are taken 
as  constant values, vt_start and at_turn respectively, Eq. 3 is obtained: 
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Eq. 3 can only be solved with using Mclauren series expansion. At the curve 
segments the turning angle is known, that’s why switching times of as and at . If θ0, 
vs0 and asmax are known in Eq. 3 then x and y can be obtained according to the 
switching times of as [7]. It’s meant that, the structures of the curves are determined 
by only two parameters (θ: turn angle and vt0: translation velocity in the curve 
segment). A curves set is formed by all possible curves in parameters range 
θ∈(0,π]° and vt0 [0, vt_max] inch. It is clear that, if the (θ,vt_start, at_turn) triple  is 
known, the curve segment is  known and there is no need to design a controller to 
track this curve segment. 

3   DE Optimization in Trajectory Planning 

DE [5] operates on candidate solutions of population PG in Gth generation and these 
are individuals of the population. The representation of NP vectors of the Gth genera-
tion of the population may be written as PG = (V1,G,......,VNP,G)    G=0,...,Gmax, 

Vi=(θ1, θ2,...θD-1, vt_start1, vt_start 2,...vt_start D, x1, y1, k2,...kD, at_turn1, at_turn2,...at_turnD) (4) 

where i=1,...,NP, D is the number of the curve segments in the trajectory (so that, 
there are D+1 line segments in the trajectory), θi is the turn angle of the orientation 
which is realized by the ith curve segment, vt_start i is the starting translation velocity to 
the ith curve segment, at_turni is the acc/dec value in the ith curve segment, (x1,y1) is the 
first curve segments center position (in T region) and ki is the ith line segment length 
(Fig. 1a). There are 4D parameters in a parameter vector Vi.  

3.2   Optimization Function and Equations of Constraints 

Before giving the objective function, some symbols will be declared in Fig. 1b. In 
Fig. 1b: θi : turn angle and vti is the constant translation velocity of ith curve seg-
ment which are given above. αi : distance from the initial point of the ith curve seg-
ment and the intersection point of the ith and (i+1)th line segments and if the ith curve 
segment’s initial point is taken as (0,0) and final point is taken as (xi, yi) (calculated 
from Eq. 3), αi can be calculated from the equation  

( )θ−π
+

+
=α

2

i

2
i

2
i

i
)tan(

1
1

4

)yx(  
(5) 

di : necessary distance to increase/decrease vti to vti+1, if vti≠ vti+1.  ci : difference dis-
tance between ith line segment length, Li and di. It is clear that ci must be equal or greater 
than 0 for a feasible trajectory. These, 11,...D0)( +=≥−= idLVc iii  are the first 

D+1 constraints of the problem. In these constraints, di can be calculated by: 
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The other 2D+1 constraints are: 
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Where Li: i
th line segment length, Oi: i

th polygonal obstacle, Yi: i
th curve segment 

and n: the number of obstacles. In these Eqns, there are 3D+2 constraints.  
The objective function f(V) is: 
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(7) 

where tci, tvti and tdi necessary times for ci distance on ith line segment, for ith curve 
segment and di distance on ith line segment respectively.  tvti can be written as: 
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where
max_s

max_s
max_dsmax_as a

v
tt ==  (tas_max, is the necessary time from 0 to vs_max 

and tds_max, is necessary time from vs_max to 0). θi i
th  turn angle (Fig. 1). tci in Eq. 7 is: 
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Fig. 1. a) A 3 curve segmented trajectory b) L1, L2 line segment lengths; α1 α2 necessary dis-
tance to achieve the turn in vt_start 1 vt_start 2 respectively; d1 is distance to velocity change 0 to vt1; 
d2 is distance to velocity change vt1 to vt2; L1=c1+d1, L2=c2+d2 

where, vtci: max reachable translation velocity on ith line segment, tcia : necessary time 
to reach from vti-1 to  vtci, tcid: from vtci to vti and tcik: if vtci is equal to vt_max, then the 
time to travel at vt_max velocity. It is clear that, vtci, tcia, tcik and tcid values must be cal-
culated for Eq. 9. By using: 
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tcia, tcid and tcik can be represented by: 
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The trajectory length is found by 
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3.3   Building FIS for α 

At the calculation of α (Eq. 5), Eq. 3 must be evaluated. Alternatively, to decrease the 
calculation time of the objective function, fuzzy inference system (FIS), which is 
trained, by adaptive fuzzy inference system (ANFIS) [6] is used. There are three in-
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puts, turning angle (θ∈[1°-150°]), velocity (vt_starti∈[1-40] inch) and acc/dec (at_turni 
∈[-at_max,at_max] inch/sec2) one output, αi. ANFIS is trained with 1064 pairs and tested 
with 23779 pairs. Different membership functions are trained and Triangle 2:2:2 (3 
input and each has 2 triangle Mfs) is taken. The error values relative percent max 
error, EM, mean error, EO, and bigger than %5, E5 are evaluated by using:  

=
=

n

i
iO nE

1

100/1(%) ε ; %)100max( EEM = , { }],1[;51005 niE ii ∈>= εε  

where, ( ){ }]n,1[i/-E riridiii ∈ααα=εε= is defined as the relative error set, αdi: 

desired αi value, αri: FIS output value and εi: relative error value. In the training and  
test phase error values are EM=14.43 %, EM=14.43 %, EO =1.52 %, EO =1.49 %, and 
E5 = 18, E5 = 295 respectively.  23779 curve segments calculation times with using 
Eq. 5 and FIS model are 40.0929 sec and 6.209 respectively.  

Objective func. and Constraints Calculation

f(Ui,G+1) objective func. Eq. 18

C(Ui,G+1) Constraints Eqns.  14,16,17

g(Ui,G+1) Trajectory length Eq.  25

Parameter
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Fig. 2. Overall structure of the global optimization process 

4   Global Optimization Process 

The possible largest range (-π,π] for θi, [0,vt_max] for vt_starti and [-at_max,at_max] 
inch/sec2 for at_turni are taken as elements of the parameter vector V(L) and V(U). Other 
elements of the parameter vector are taken the environments big edge length. Obtain-
ing global optimal results are done in two stages. These are:  
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Stage 1: Nθ is taken equal to the turn number of the shortest path. Then optimiza-
tion process is implemented.  

Stage 2: Proof of the global optimality: Maximum number of turns (Nmaxθ) is 
searched in the paths, that are shorter or equal to the g(V) optimized in stage 1.  

State 1: If Nθ ≥ Nmaxθ : The trajectory found in stage 1 is the global optimal trajec-
tory.  

State 2: If Nθ < Nmaxθ : The optimization process is repeated according to the 
Nmaxθ. The stage 2 is repeated until state 1 condition is obtained. 

After the implementation of these 2 stages, obtained result is global time optimum. 
The overall view of the trajectory generation is shown in Fig. 2. g to the Stage 2. The 
optimization process continues until the state 1 condition will be obtained. After the 
overall optimization process, control variables Vs and Vt can be produced easily, so 
that the MR can move on the global time optimal trajectory without feedback control. 
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Fig. 3. The first  8 path. 1 is the shortest path.  : turn points. r :robot position, h: target posi-
tion. *: (Path lenght H (inch), Turn Number Nθ, Tracking time TH sec.) 

5   Application and Experimental Results 

In this section, the global time optimal trajectory is found for two different environ-
ments shown in Fig. 3 and Fig. 5. In Fig 3, TH (suppose that the path has not any 
turns, i.e. straight line) is calculated by the equation : 
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and shortest tracking time, Tg(V) for g(V) length path (i.e. g(V) length straight line) 
can be calculated similar to the above equations replacing H with g(V). Here, H is the 
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total path length (i.e. sum of the line segments lengths of the path,). The shortest path, 
1 has Nθ=3. That’s why, Nθ is taken equal to 3 in Stage 1 and time optimal trajectory 
is found (in Fig 4a). Table 1 gives the f(V), g(V), Tg(V) (the shortest tracking time for 
a straight line of g(V) inch length) and Hf(V) (the maximum path length (straight line 
length) to track in f(V) sec. ) values of this trajectory’s (Nθ=3 row in the Table 1). 
After the implementation of Stage 2, it is seen in Fig. 3 that, there are seven paths 
shorter than g(V)|Nθ=3 and the biggest Nθ, Nmaxθ is found 4 in these 7 paths. The opti-
mization process is done again for Nθ=4 according to State 2 and results are given in 
Table 1. After that, Stage 2 is repeated and 5 paths shorter than g(V) |Nθ=4 is found in 
Fig. 3 and the biggest Nθ, Nmaxθ is found 4 again in these 5 paths. Due to, Nθ is equal 
to Nmaxθ, it is said that, this trajectory is global time optimal trajectory. But the opti-
mization results obtained for Nθ=5 are also given in tables. In the second environ-
ment, there are narrow passages. So that optimal acc/dec values on the curve seg-
ments are found different from zero (Table 8). 

Table 1. The comparison results for the trajectories in Fig. 5 

Nθ 
(rad) 

f(V) 
(sec) 

g(V)  
(inch) 

Hf(V) (inch) 
path length 

Tg(V) 
(sec) 

 (-0.100, -1.437, 0.031) 10.986 386.110 386.106 10.986 
 (-0.107, 0, -1.421, -0.003) 10.975 385.547 385.666 10.972 

 (-0.095, -0.019, -1.424, 0, 0.014) 10.963 384.802 385.186 10.953 

6   Conclusions 

A novel approach to the global time optimal trajectory planning for a unicycle MR is 
introduced. Constraints from environment (obstacles) and physical constraints (i.e. 
steering and translation accelerations/velocities) are taken into consideration in the 
method. Then DE, which is an evolutionary optimization method, is used to find the 
time optimal trajectory from this set. The curves are formed in two ways: a) serial 
expansion of the robots equations (Mclauren series) and b) fuzzy inference system 
(FIS) which reduces the optimization time. Approximately the optimization time with 
FIS decreased to 1/7 of the series expansion method. The planned trajectories are 
tracked by Nomad 200. 

Table 2. The comparison results for the trajectories in Fig. 5. 

 II  
(Optimized path) 

I  
(shortest path) 

f(V)(s) 14.2347 22.2648 

g(V)(inch) 446.154 416.138 
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(a) (b) 

Fig. 4. a) Time optimal trajectory for Nθ=3. b) Time optimal trajectory for Nθ=4 

 

Fig. 5. An environment with a narrow passage. 
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Abstract. This paper presents the hexagon-based Q-leaning for object
search with multiple robots. We set up an experimental environment
with five small mobile robots, obstacles, and a target object. The robots
were out to search for a target object while navigating in a hallway
where some obstacles were placed. In this experiment, we used three con-
trol algorithms: a random search, an area-based action making (ABAM)
process to determine the next action of the robots, and hexagon-based
Q-learning to enhance the area-based action making process.

1 Introduction

Nowadays, robots are performing tasks previously performed by men in danger-
ous field, such as rescue missions at fire-destroyed building or at gas contam-
inated sites; information retrieval from deep seas or from space; and weather
analysis at extremely cold areas like Antarctica. Sometimes, multiple robots are
especially needed to penetrate into hard-to-access areas, such as underground
insect nests, to collect more reliable and solid data.

Multiple robot control has received much attention since it can offer a new
way of controlling multiple agents more flexibly and robustly. For instance,
Parker used the heuristics approach algorithm for multiple robots and applied it
to cleaning tasks [1]. Ogasawara employed distributed autonomous robotic sys-
tems to control multiple robots that transporting a large object [2]. In this paper,
we propose an area-based action making (ABAM) process. This, in turn, be-
comes incorporated with hexagon-based Q-learning, which helps multiple robots
to navigate, to avoid collision, and to search through their own trajectories.

Reinforcement learning through the explorations of its environment enables
an agent to actively decide what the following action should be. During the
exploration of an uncertain state space with reward, it can learn what to do by
� This research was supported by the project of Developing SIC and Applications un-

der the Next Generation Technologies program in 2000: The Ministry of Commerce,
Industry, and Energy in Korea.
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continuous tracking of its state history and appropriately propagating rewards
through the state space [3]. In our research, we focused on Q-learning as a
reinforcement learning technique. It is because Q-learning is a simple way to
solve Markovian action problems with incomplete information. Also, it can map
state-action pairs onto expected returns on the basis of the action-value function
Q [4]. In addition to this simplicity, Q-learning can adopt to the real world
situation. For example, the state space can be matched with the physical space
of the real world. An action can also be regarded as physical robot movement.
In this paper, we propose that the hexagon-based Q-learning can enhance the
area-based action making process so that the learning process can adapt to real
world situations better.

The organization of this paper is as follows. In section 2, the area-based
action making process is introduced. In section 3, hexagon-based Q-learning
adaptation is presented. In section 4, experimental results from the application
of three different searching methods to find the object are presented. In section
5, conclusions are presented.

2 Area-Based Action Making Process

Area-based action making (ABAM) process is a process that determines the
next action of a robot. The reason why this process is referred to as ABAM
is because a robot recognizes surrounding not by distances, i.e., from itself to
obstacle, but by areas around itself. The key idea of the ABAM process is to
reduce the uncertainty of its surrounding. It is similar to the behavior-based
direction change in regards to controlling the robots [5][6]. Under ABAM process
robots recognize the shape of their surrounding and then take an action, i.e., turn
and move toward where the widest space will be guaranteed. Consequently, each
robot can avoid colliding into obstacles and other robots. Figure 1 depicts the
different actions taken by distance-based action making (DBAM) and by ABAM
in the same situation, respectively [7].

The advantage of ABAM over DBAM is illustrated in Fig. 2 which presents
the result of each action making process by DBAM and ABAM. In both case, the
robot is surrounded by 4-obstacles. Under DBAM, the robot perceives that there
is no obstacle in the southwest. Thus, it will try to proceed toward that direction,

Fig. 1. Different actions taken under DBAM and ABAM
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Fig. 2. Illustrative examples of robot maneuvers

which will result in being stuck two obstacles. This scenario is shown in Fig. 2a.
Under ABAM, however, the robot will calculate the areas of its surrounding,
and then it will recognize that an action toward the northeast will guarantee
the widest space. Therefore, the robot will change its direction accordingly. This
scenario is presented in the right picture in Fig. 2b.

To explain how the robots can navigate through the hallway and search a
target, let’s assume that we try to search some data in the huge memory space
(i.e. database server) using multiple computers. All of data in this memory are
neither stored regularly nor sorted. Also, the memory has some parts of reserved
space which contains security data. The best way to solve this problem is to
assign the block of memory to each computer so that it searches its own space.
Interestingly, assigning a part of memory space to each computer is equivalent
to using ABAM for each robot, because a robot becomes greedy to occupy it
own searching space. The reserved memory spaces correspond to obstacles in the
hallway. The increment of pointer corresponds to making an action to the next
state. Therefore, we can improve the object search using multiple robots with
ABAM as similarly increase a processing speed by multi-processing (Amdahl′s
law) [8]. Figure 3 shows the similarity.

Fig. 3. Similarity between data search using multiple computers and an object search
using multiple robots
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3 Hexagon-Based Q-Learning

Q-learning is a well-known algorithm for reinforcement learning. It leads an
agent to acquire optimal control strategies from delayed rewards, even when it
has no prior knowledge of the effects of its actions on the environment [9][10].
Q-learning algorithm is presented in Table 1, where s is a possible state, a is
a possible action, r indicates an immediate reward value, and γ is the discount
factor.

Table 1. Q-learning algorithm

For each s, a initialize the table entry Q̂(s, a) zero
Observe the current state s
Do forever

• Select the action a and execute it
• Receive the immediate reward r
• Observe the new state s′

• Update the table entry for Q̂(s, a)
• s ← s′

The formula to update the table entry value is:

Q̂(s, a)← r + γ max
a′

Q̂(s′, a′) . (1)

Figure 4 explains Q-learning algorithm more clearly more clearly. Each grid
square presents the possible states. ‘R’ stands for a robot or an agent. The values
upon the arrows are relevant Q̂ values with the state transition. For example,
the value Q̂(s1, aright) = 72, aright refers to the action that moves R to its right
[9]. If the robot takes the action to the right, the value will be updated for this
entry where r=0, γ=0.9 are predetermined values. The formula is as follows.

Q̂(s1, aright)← r + γ max
a2

Q̂(s2, a2)

Fig. 4. An illustrative example of Q-learning
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← 0 + 0.9 max
a2
{63, 81, 100} (2)

← 90 .

The Q-learning for our robot system is adapted to enhance the ABAM pro-
cess. The adaptation can be performed with a simple and easy modification,
namely, hexagon-based Q-learning. Figure 5 illustrates example of hexagon-
based Q-learning. In Fig. 5, the only thing that was changed is the shape of
state space. We changed the shape of the space from a square to a hexagon,
because the hexagon is a polygon which can be expanded infinitely by its combi-
nation. According to this adaptation, the robot can take an action in 6-direction
and have 6-table entry Q̂ value. In Fig. 5, the robot is in the initial state. Now,
if the robot decides that +60 degree guarantee the widest space after calculating
of its 6-areas of surrounding, the action of the robot would be a+60◦ . After the
action is taken, if Area6′ is the widest area, the value of Q̂(s1, a+60◦) will be
updated by the formula (1) in the Q-learning algorithm as

Q̂(s1, a+60◦)← r + γ max
a′

θ

Q̂(s2, a
′
θ)

← 0 + γ max
a′

θ

{Area1′, Area2′, · · · , Area6′} (3)

← γArea6′ .

where 0 is the predetermined immediate reward. After the movement from the
initial state to the next state, immediate reward becomes the difference between
the sum of total area before action is taken and the sum of total area after action
is taken. Thus, the reward is:

r =
6∑

j=1

Areaj −
6∑

i=1

Areai . (4)

where Areai ∈ s and Areaj ∈ s′ respectively.
The robot would ultimately acquire the environmental information and deter-

mine its trajectory by learning this value. In the real world experiment, however,

Fig. 5. An illustrative example of Hexagon-Based Q-learning
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battery consumption presents a problem. If the robot had to perform infinite it-
erations to complete task, total system would fail. Therefore, a system must be
set up to cancel the former action and move back to the previous state, when the
former action causes any critical result. The hexagon-based Q-learning algorithm
is presented in Table 2.

Table 2. Hexagon-based Q-learning algorithm

For each s, a initialize the table entry Q̂(s, aθ) zero
Calculate 6-areas at the current state s
Do until the task is completed

• Select the action aθ to the widest area, and execute it
• Receive the immediate reward r
• Observe the new state s′

If Q̂(s′, a′
θ) is greater or equal than Q̂(s, aθ)

• Update the table entry for Q̂(s, aθ)
• s ← s′

Else, if Q̂(s′, a′
θ) is far less than Q̂(s, aθ)

• Move back to the previous state
• s ← s

4 Experiments with Three Different Control Methods

We performed experiments by using three different control methods: random
search, ABAM, and enhanced ABAM by hexagon-based Q-learning. In section
4.1, we introduce our small mobile robot system. Experimental result with three
different control methods will be presented in the following sections.

4.1 Architecture of Small Mobile Robot

Our small mobile robot system consists of four subparts and a main micro-
controller part. The subparts were camera vision, sensor, motor, and Bluetooth
communication module. Each subpart has its own controller to perform its
unique function more efficiently. The main micro-controller part controls the four
subparts to avoid process collision and generates actions with the data from its
subparts. Figure 6 shows the appearance, anatomy, and functional block diagram
of the robot.

The main components of the robot are as follows. For the eye of the robot,
Movicam II made by Kyosera is used. It is the CCD camera and its size is
30 × 16.4 × 47 (width × length× height) mm3. The robot has the six emitter-
detector infrared sensor pairs, which are placed at an angle of 60 degrees with one
another to cover 360 degrees, to measure the distance around itself. The emitter
is Kodenshi EL-1kl3, high-power GaAs infrared sensor. The detector is ST-1kla,
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high sensitivity NPN silicon photo-transistor. NMB PG25L-024 stepping motor
is used as the driving part. Its characteristics are the following: drive voltage-
12V, drive method 2-2 phase and 0.495 step angle. Bluetooth communication
module is mounted to make the robot very suitable for wireless communication
systems [11].

Fig. 6. Small mobile robot employed in the experiments

4.2 Experiments

The task of the robots is: “Find the hidden target object while tracking through
an unknown hallway.” We set up the color of the target object as green and that
of 5-robots as orange. The target was a stationary robot with the same shape
as other robots. It was a located at a hidden place behind one obstacle. Five
robots, whose mission is to find the target, would recognize it by its color and
shape. They would decide whether they finished the task by detecting the target
after each action was taken.

Random search. We adapted the random search control method to find the
hidden target. The main controller generated a random number and decided the
next action corresponding to this number. It did not perform well. Therefore, it
is clear that random search was not so strong a method to control the robots
efficiently. Moreover, it would be very time and power consuming in the real
world situation. The result showed that random search was a horrible method
to be adapted to a real robot system. In Fig. 7, the white arrow points out the
target object, which will be the case in Fig. 8 and Fig. 9 as well. During random
search, even though the robots were within a close distance to the target object,
some robots failed to detect it.

ABAM. We applied ABAM to the robots. They could sense their environment
with 6-infrared sensors and calculate 6 areas. When the calculation was done,
each robot tried to move toward the direction where the widest area would be
guaranteed. Once the robots started to move, each robot spread out into the
environment. Consequently, the ABAM performed better than random search.
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Fig. 7. Five-robots are searching the object using random search

Fig. 8. Five-robots are searching the object using ABAM

Fig. 9. Five-robots are searching the object using hexagon-based Q-learning

Figure 8 shows that the two robots located at the right side of the target suc-
ceeded to complete the task. These two robots are marked by black arrow in
Fig. 8.

Enhanced ABAM by hexagon-based Q-learning. We used the hexagon-
based Q-learning to ABAM as a modified control method. This method allowed
the robots to reduce the probability of wrong judgment and to compensate
wrong judgment with reinforcement learning. Each robot tried to search its own
area, which was the case under ABAM. However, it learned the experimental
environment, state by state, and canceled the state transition if the action caused
critical reduction of Q̂ value. By using the hexagon-based Q-learning adaptation
to ABAM, more than two robots completed the task during ten trials. The search
with hexagon-based Q-learning is presented in Fig. 9.
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Fig. 10. Experimental result with three different control methods

Results. The results of our experiment are presented in Fig. 10. With random
search, one robot found the target at the second trial and sixth trial, although
these detections could be considered just a coincidence. Therefore, we can state
that the random search has no significant success. With ABAM, the robots
performed better than they did with random search. The average performance
was above 1 during the all trial. Finally, with the adaptation of hexagon-based
Q-learning to ABAM, the results were remarkable. Three robots succeeded to
find the target at the fourth, sixth, eighth, ninth, and tenth trials.

5 Conclusions

In this paper, we presented the area-based action making (ABAM) process and
hexagon-based Q-learning. Five small mobile robots were used to search for
the object hidden in the unknown space. The experimental results from the
application of the three different control methods in the same situations were
presented.

The area-based action making process and hexagon-based Q-learning can
be a new way for robots to search for an object in the unknown space. This
algorithm also enables the agents to avoid obstacles during their search.

For the future research, first, we need to clarify the problem of accessing the
object. In other words, if multiple robots are to carry out a task such as object
transporting or block stacking, they need to recognize the object first and then
proceed to approach it. Second, our robot systems desire to be improved so
that the main part and the subparts could adhere more strongly. In addition,
stronger complex algorithms, such as Bayesian learning or TD(λ) method, need
to be adapted. Third, a self-organizing Bluetooth communication network should
be built so that robots can communicate with one another robustly even if one
or more robots are lost. Finally, the total system needs to be refined to obtain
better results.
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Abstract. The omni-directional mobile robot developed by Shanghai Jiaotong 
University was introduced. The inverse kinematics and dynamics of the robot 
were modeled for decoupled control simulation. An adaptive inverse control 
(AIC) scheme incorporating Dynamic neural network (DNN) controller and 
conventional feedback controller was presented. Finally, linear and circular tra-
jectories following simulation results demonstrate that the AIC can decouple 
the dynamic control of the robot motion in the plane to direct rotational speed 
control of independent wheels, and precise trajectory following is achieved.  

1   Introduction 

Omni-directional mobile robots have good maneuverability that make them widely 
studied in the dynamic environmental applications, such as the RobCup competition. 
The Omni-directional mobile robot named JiaoLong developed by Shanghai Jiaotong 
University is a cross-disciplinary research platform for the full integration of AI and 
robotics research. It has three Swedish wheels [1], which are arranged 120o apart and 
locate at the vertices of the frame that has the form of an equilateral triangle. A DC 
motor installed with shaft optical encoder and a gear train drives each wheel. A DSP 
(digital signal processor) is used for the motion control.  

From the robot testing and competition at the past games, it is realized that a pre-
cise trajectory control for the robot is one of the key areas to improve the robot’s 
performance. It appears that most research on the control of omni-directional mobile 
robot is based on dynamic model and feedback method, such as PID control, self-
tuning PID control, fuzzy control, and trajectory linearization control [2-4]. The robot 
dynamic models are generally assumed that the robot motors’ dynamics is identical, 
and the motors are controlled by ideal servos, and the motor output can perfectly 
follow the command [2-5]. In fact, the motors and servos’ dynamics could hardly be 
identical, and their constraints can greatly affect the behavior of the robot. Since the 
omni-directional robot is a complex coupled nonlinear dynamic plant, it is difficult to 
precisely modeling the plant dynamics in an analytic way. 

In this paper, an adaptive inverse control scheme incorporating dynamic neural 
network and conventional feedback control was developed for the omni-directional 
mobile robot. When it is difficult to model the robot dynamics precisely in an analytic 
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way, the neural network adaptive inverse controller can adapt its weights to achieve 
optimal dynamic performance by learning the output of the conventional feedback 
controller [6-7]. 

2   Kinematics Modeling 

We assume that the robot under study is moving on a horizontal plane. The posture is 
defined in Fig. 1(a), where XWOYW is the world coordinate system, point O is the 
reference point; XRPYR is the robot coordinate system, point P is the center of the 
robot chassis. We define the 3-vector  describing the robot posture:   

y

x                  w ,f

V

ϕ

w f

w f

Vx

Vy

 
(a) Posture definition                      (b) Kinematic diagram 

Fig. 1. Kinematic parameters definition of the omni-directional robot 

( )Tx yξ θ= . 
(1) 

where x, y are the coordinates related to the reference point P in the world frame, θ  is 
the orientation of the robot frame with respect to the world frame. In our design, the 
inverse kinematic equations are given by 

( ) ( )1
1 2 3 ( )

TT

rw w w AR x yθ θ= . (2) 

where wi, i=1,2,3, is the rotational speed of each wheel of the robot, r is the wheel 

radius, 1

31
22 2

31
32 2

1 0 L

A L

L

= − −

−

, cos sin 0

( ) sin cos 0

0 0 1

R

θ θ
θ θ θ= −

, Li is the distance from the center of 

the robot chassis to the contact point to the ground of each wheel along a radial path 
(see Fig. 1(b)). Using equation (2), we can calculate the rotational speed command 
given to each wheel of the robot from trajectory planner that specifies the vector ζ .  

3   Robot Dynamics Modeling for Decoupled Control Simulation 

By Newton’s Law we have ( ) ( )1 2 3

T TT
Rm x m y J A f f fθ = , so there is  

( ) ( )1 2 3 ( )
TT T

Rf f f A m x m y J θ−= . (3) 
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Where m is the robot mass, JR is the robot moment inertia, fi is the traction force of 
each wheel. Assuming the robot can follow the command fast, fi will be very closely 
approximate the real traction force given by each motor driving unit. 

The dynamics of each wheel driven by a DC motor can be described as 

( )m e m
m m m m

a a

C C r C
J w b w f u

R n R
= − + − + . 

(4) 

Where Jm is the combined moment of inertia of the motor, gear train and wheel re-
ferred to the motor shaft, wm is the rotational speed of the motor shaft, Ra is the arma-
ture resistance Ce is the electromotive force (EMF) constant, Cm is the motor torque 
constant, bm is the vicious friction efficient of the combination of the motor and gear 
train, n is the gear ratio, f is one of fi, u is the applied armature voltage. Similarly, we 
can copy equation (4) for the other two wheel dynamic models. Using Equation (3) 
and (4), we can construct the simulation model for the following adaptive inverse 
control scheme. 

4   Adaptive Inverse Control of Nonlinear Plant  

The overall adaptive inverse control scheme based on neural network is depicted in 
Fig. 2, where z-1 is unit delay of the discretized time. The neurocontroller is a dynamic 
neural network with tapped-delay-line (TDL). The input of the plant is the output sum 
of the neurocontroller and the PID controller: u=uN+uF. The main idea is to adapt the 
neurocontroller via learning the output of the PID controller uF, which is called feed-
back error method. When the neurocontroller is converged, there will be 
uF 0 uN u, y r e 0, and the PID controller will not act, then the neurocontrol-
ler approaches the inverse model of the plant.  

r(k) yk)(k)

z-1

z-1

z-1

e(k)

uf(k)

z-1

uN(k)

ξ ( , , )R R Rξ ξ ξ

 

Fig. 2. Adaptive inverse control scheme 

5   Simulation 

We designed two trajectories in the simulation to follow by the robot: a linear trajec-
tory and a circular trajectory. For linear trajectory, the command is to accelerate the 
robot from the original position to the desired speed 1m/sx = , 1m/sy = , 0.15rad/sθ =  
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with fixed acceleration 21m/sx = , 21m/sy = , 20.1rad/sθ = . The linear speed error is 

1.2mm/s and the rotational speed error is 0.0013 rad/s. For circular trajectory, the 
robot is commanded to accelerate from initial state to circle around the center of the 
trajectory with the desired angular rate 0.754 rad/s. The center of the circular trajec-
tory is at [0 0.5], the radius of the circular trajectory is 0.5m. The position error is 
0.8mm and the orientation error is 0.0011rad.  

6   Conclusion 

In this paper, the inverse kinematics and dynamics of an omni-directional mobile 
robot was analyzed. The adaptive inverse controller was designed for dynamic de-
coupled control. So unlike those model-based control methods, it is not sensitive to 
the parameters of the robot dynamic model. The simulation results demonstrate that 
the adaptive inverse control can decouple the control of the robot motion in the plane 
to direct rotational speed control of the independent wheels, and the robot can be 
controlled to follow different trajectory precisely. The next step is to implement and 
test the control scheme on the real robot that is controlled by a DSP system. 
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Abstract. Numerical optimization problems enjoy a significant popularity in 
chaos theory fields. All major chaotic techniques use such problems for various 
tests and experiments. However, many of these techniques encounter difficul-
ties in solving some real-world problems which include non-trivial constrains. 
This paper discusses a closed loop algorithms (CLA) which based on chaos 
theory. Thus, for many constrained numerical optimization problems it might 
be beneficial to add a constraint, and make up of closed loop, using feedback 
theory. Given an initial best function value (BFV), after the first runs computa-
tion we subtract variable increment from obtained BFV, and name it as the new 
value. That the new value subtracts the new BFV in the next runs computation 
is defined the accessional constraints. Substituting the new BFV in the next 
runs for the old BFV and go on, until the global solution is searched. Eventu-
ally, some difficult test cases illustrate this approach is very available. 

1   Introduction 

Constrained function optimization id an extremely important tool in almost every 
facet of engineering, operation research, mathematics, and etc. Let us consider the 
following constrained numerical optimization problems [1],[2]: 

minimize    )(xf  

Subject to (nonlinear and linear) constraints: 
0)( ≥xgi ,  i=1,…,m; 0)( =xh j ,  j=1,…,p. 

In the past ten years, there has been a growing effort to apply chaos theory to solve 
general constrained optimization problems [3],[4],[5],[6], Chaotic algorithms have 
been widely applied to unconstrained optimization where their appeal is their ability 
to solve ill-conditioned problems. Traditional calculus-based or deterministic global 
search methods typically make strong assumptions regarding the objective function, 
i.e., continuity, differentiability, satisfaction of the Lipschitz Condition, etc., in order 
to make the search method justifiable. These conditions also hold for any linear and 
nonlinear constraints of a constrained optimization problem. It is our expectation that 
chaotic algorithms can overcome these limitations as well.  
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This paper is organized into four sections. The following section, Section 2, de-
scribes existing methods used to solve constraint optimization problems with the 
simplex algorithms, the penalty methods and chaotic algorithms. Section 3 introduces 
the process implementation of the closed loop algorithms for nonlinear constrained 
problems. Section 4 details the results obtained from applying these techniques to the 
some difficult test cases. The last section of this paper will state the conclusion devel-
oped from the experiments and the work of future research. 

2   Previous Constrained Optimization Methods 

Form the initial basic feasible solution (BFS), simplex algorithm searched a new BFS, 
which enabled objective function to decrease dramatically, then substituted the new 
BFS for the old BFS [7],[8]. By criterion, if objective function was not the best value, 
then continued iterating, until numbered iteration, simplex algorithm found the global 
/local solution. 

Penalty functions method was a numerical solution which widely applied to the 
nonlinear programming problems. Its principle was that transformed the constrained 
optimization problems into the unconstrained extremum problems by selecting a se-
ries of non-stationary penalty factors. This method was named Sequential Uncon-
strained Minimization Technique [9],[10].  

Sheela B.V. and Ramamoorthy P. presented an approach that the combined simplex 
algorithm with penalty functions method in 1975. In each iterative, this method 
adopted the simplex algorithm to solve extremum problems. The penalty factor of 
penalty items was given by the last iterative, and computation speed was accelerated. 
This method was entitled sequential weight increasing factor technique (SWIFT). 

The process of the SWIFT implementation is following. Let searching for the mini-
mum to nonlinear constrained problems, 

 )(min xfJ = , ),...,,( 21 nxxxx = . (1) 

Subject to, 

0)( ≤xgi ,  (i=1,2,…,m). (2) 

0)( =xhj ,  (j=1,2,…,p). (3) 

iii uxl ≤≤   (i=1,2,…,n). (4) 

Where ),...,,( 21 nxxxx  is the set of independent design variables with their lower 

and upper bounds as il and iu . )(xf is the objective function to be optimized, 

)(xgi and )(xhj  are the constraints inequality and equality. 

SWIFT method is going to transform Eq.(1)-(4) into following Eq.(5) , 

])0,max[( min),(
11

2

==
++=

m

i
i

p

j
jww ghrJrxP . (5) 
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In Eq.(5),
>
≤

=
0  if   
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The n-dimensional simplex has (n+1) vertexes, assumption using thi  vertex 

),...,2,1(,)( nix i =  to construct the simplex, using matrix ( )1+× nnS  to be denoted as 
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d , t is the side length of the simplex. 

For selecting of the penalty factor wr , let the barycenter of simplex is )(Gx , 

+

=+
=

1

1
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1

1 n

i

iG x
n

x . (6) 

From the vertex of simplex to the barycenter, the mean distance d  equals  

+

=
−
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=
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1 n
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Gi xx
n

d . (7) 

And then calculating mean value R , the expression R  is defined as follows, 

+
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=
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1

2)( )]()([
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j

i
j xfsf

n

R . 
(8) 

Selecting a new penalty factor by the following Eq.(9), 

),max( 1−= dRrw .    (9) 

Calculating the function value ),( wrxP again, after numbered iteration, SWIFT en-

ables the vertex of simple to limit to the barycenter of simplex, and stopping till satis-
fying the differentiate criterion, as the Eq.(10).  

ε<−
+

+

=

2

121

1

)()( })],(),([
1

1
{

n

i
w

G
w

i rxPrxP
n

. (10) 

In Eq.(10), ε is iteration control accuracy. 
Although SWIFT approach has an effective convergence property, and penalty 

function may be exact non-continuous and non-differentiable, the searching results 
have a bearing up on the initial iterative value. SWIFT approach is prone to fall into 
the local optimization solution in searching multi-peak function. In order to solve this 
problem, chaotic algorithms, which was a new method for optimization problems, had 
been adopted. 
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Chaos methods can find global optimization solution or approximate optimization 
solution, due to adopting an adaptive global probability searching algorithm. Chaos is 
a kind of universal nonlinear phenomenon. It seems out-of-order that actually exist 
regularity. A chaotic variable has three traits. They are randomicity, ergodicity and 
regularity in chaotic motion [11]. 

A hybrid algorithm, which combined the chaos optimization methods and SWIFT 
approach, was as in [12]. SWIFT approach that combines the simplex algorithms and 
the penalty function method transforms the constrained optimization problems into 
the unconstrained optimization problems. It can search the global/local minimum by 
the simplex algorithms for the constrained nonlinear optimization problems. 

3   Closed Loop Algorithms 

The mathematical expression of the logistic mapping of chaos optimization method is 
given in Eq. (11). 

)1( iii xxx ′−′=′ μ ,i=1,..,n, 4=μ , ]1,0[∈′ix . (11) 

Where μ is the growth rate or fecundity, ix′  is initial value, it generated by random 

function as follows, .100/100()%rand=′ix  

Since there are n independent design variables for the objective function, supplying 

ix′  of Eq.(1) with n starting values, which avoid choosing such fixed points as 

0,0,25,0,75,1, 4/)32( ± . 

The elements on n chaotic orbits are computed as following mapping, 

),...,2,1(,)( nixlulx iiiii =′−+=  . (12) 

Using Eq.(12), we can change chaotic number on the interval [0,1] into function 
independent variables on the interval ],[ ii ul . 

Substitution ),..,2,1(),,...,...,( 21 nixxxxx ni == to Eq.(5), and then called for the 

SWIFT algorithms to search for feasible solution. In simulation experiment process-
ing, we find that chaos method is easy to appear the pre-maturity phenomenon [4], 
Except for with many strong points. In order to surmount the pre-maturity phenome-
non, we propose a closed loop algorithms (CLA) for global optimization solution to 
constrained nonlinear problems. 

The idea of CLA is that we subtract variable increment kΔ  on the BFV had 

searched after the first runs computation. That is, in the first runs computation, we 
obtained a BFV, named it as 1J . Let  

11
)new(

1 Δ−= JJ  . (13) 

Then adding the constraints imposed which the expression is as follows, 

112
)new(

12
)1(

0 Δ+−=−= JJJJg . (14) 
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In Eq.(14), 2J is the best function value in the second runs computation, 1Δ  is a al-

terable positive number. 

If 0)1(
0 ≤g , then 1112 JJJ <−≤ Δ . 

In a similar way, let 

kkk JJ Δ−=)new( . (15) 

Added the constraints imposed which the expression is as follows, 

kkkkk
k JJJJg Δ+−=−= ++ 1

)new(
1

)(
0  . (16) 

If 0)(
0 ≤kg , then kkkk JJJ <−≤+ Δ1 . (k=1,2,…,count) 

Therefore, countkk JJJJJ >>>>>> + ...... 121 , where count is recurrence number.  

We name kΔ  as self-heuristic factor. Due to kΔ function, CLA method in the 

searching process can jump out local optimization solution, and find out the global 
optimization. 

Definition as, 

>

≤
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 0     if           

0     if              0
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g
g . (17) 

Substitution Eq.(17) to Eq.(5), new penalty function is defined as follows. 
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(18) 

Definition as ])0,max[)(()( 0gxGrxG w +′= . 

The configuration diagram of the CLA is denoted as follows, sees Fig.1. 

 

Fig. 1. The configuration diagram of the CLA 
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The CLA program is described as follows. 

Initialization(); 

int  count;  // deposit recurrence number 

int  counter;  // deposit searching number 

double best[n+2]=1e10;//definition array 

best[0];//  deposit the best function value J 

best[i]=x[i];//deposit  optimization vari-
ables(i=1,2,…,n) 

best[n+1]; //deposit G(x) value 

int  max=1000;// deposit self-heuristic factor 

CLA(); 

kΔ =max; 

while(count!=0){ 

num=counter; 

while(num!=0){ 

c[0]=rand()%100/100.0; 

if(c[0]==0||c[0]==0.25||c[0]==0.5||c[0]==0.75||c[0]==

4/)32( ± ) 

{c[0]=c[0]+0.1;} 

if(c[0]==1){c[0]=c[0]-0.1;} 

for(j=1;j<=n;j++){ 

c[j]=c[0]+rand()%1000/10000.0; 

if(c[j]==0||c[j]==0.25||c[j]==0.5||c[j]==0.75|| 

c[0]== 4/)32( ± ){c[j]=c[j]+0.1;} 

if(c[j]==1){c[j]=c[j]-0.1;} 

x[j]=4*c[j]*(1-c[j]); 

x[j]=l[j]-(l[j]-u[j])*x[j];} 

SWIFT();//call for penalty function 

if(J<=best[0]&&G(x)<= ε ){ 
best[0]=J; 

best[n+1]=G(x); 

for(j=1;j<=n;j++){best[j]=x[j];} 
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num=1;} 

num--;} 

count--; 

kΔ =max/2.0; 

if( kΔ )< ε ){ kΔ =max;}}. 

4   Test Cases 

Eight typical optimization problems are used to test our algorithms. 

Example 1: Design of a pressure vessel as presented by Sandgren[13]. The design 
variables are the dimensions required for the specifications of the vessel, as follows. 

),,,(),( 2121 yyxxyx = , x is real variables, and y is integer variables. 

The objective function is the combined costs of material, forming and welding of 
the pressure vessel. The constraints are set in accordance with the respective ASME 
codes the mixed-integer optimization problem is expressed as, 

2
12211 )0625.0( 7781.1)0625.0(6224.0),(min xyxxyyxf +=  

1
2

12
2

1 )0625.0(84.19)0625.0(1661.3 xyxy ++ , 

Subject to, 
00625.00193.0),( 111 ≤−= yxyxg , 

00625.000954.0),( 212 ≤−= yxyxg , 

03/41728750),( 3
12

2
13 ≤−−×= xxxyxg ππ , 

0240),( 24 ≤−= xyxg , 

and bounds, 8020 1 ≤≤ x , 2400 2 ≤≤ x , 200 ≤≤ iy , (i=1,2). 

The best solution is, as in [14], )35965.0,72759.0,999.239,699.37(),( =yx , with 

3876.5804)(min =xf ,but optimization variables 0625.0/72759.01 =y  

and 0625.0/35965.02 =y  is  not  integer. The  optimal  solutions obtained by CLA in  

Table 1. Comparsion of the best solution for 1st example with real variables 

Design variables Kannan[16] Carlos[15] CLA 
y1 18 13 12 
y2 10 7 6 
x1 58.291 40.3239 38.8601 
x2 43.690 200.0000 221.3654 
g1 -0.000016 -0.034324 0.0000 
g2 -0.068904 -0.052847 -0.0042 
g3 -21.220 -27.1059 -3.38-007 
g4 -196.310 -40.0000 -18.6345 

f(x) 7198.0428 6288.7445 5850.3831 
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Table 1. From the Table 1, we can find the optimization results are better than of 
[15],[16].  

Example 2: A limited set of experiments reported by Michalewicz indicated that the 
method can provide good results if violation levels and penalty coefficients are tuned 
to the problem. Minimize a function of  5 variables, as in [1], 

51
2
3 8356891.03578547.5)(min xxxxf += −+ 1293239.37 x 40792.141, 

Subject to three double inequalities, 
92)(0 1 ≤≤ xg , 110)(90 2 ≤≤ xg , 25)(20 3 ≤≤ xg , 

521 0056858.0334407.85)( xxxg += 5341 0022053.000026.0 xxxx −+ , 

522 0071317.051294.80)( xxxg += 2
321  0021813.00029955.0 xxx ++ , 

323 0047026.0300961.9)( xxxg += 4331 0019085.00012547.0 xxxx ++ , 

and bounds, 10278 1 ≤≤ x , 4533 2 ≤≤ x ,and 4527 ≤≤ ix  for i=3,4,5.The best so-

lution obtained was, as in [9], 
)9400.44,0000.45,0810.27,0070.33,0495.78(=x , with 859.31020)(min −=xf , 

whereas the optimum solution was, as in [17], 
)7760.36,0000.45,9950.29,0000.33,0000.78(=x , with 5.30665)(min −=xf . 

So far, the best solution by CLA is, 
)960241.44,000000.45,071141.27,000006.33,000947.78(=x , 

with 44.31025)(min −=xf , and sees Table 2. From the Table 2, we can find the 

optimization results are better than of [15],[16]. 

Example 3: This problem is, as in [18], 

321)(min xxxxf ++= . 

Subject to the linear and nonlinear constraints, 
01)(0025.0)( 641 ≤−+= xxxg , 

01)(0025.0)( 4752 ≤−−+= xxxxg , 

01)(01.0)( 583 ≤−−= xxxg , 

Table 2. Comparsion of the best solution for 2nd example with real variables 

Design variables Carlos[15] Homaifar[17] CLA 
x1 78.0495 78.0000 78.000947 
x2 33.0070 33.0000 33.000006 
x3 27.0810 29.9950 27.071141 
x4 45.0000 45.0000 45.000000 
x5 44.9400 36.7760 44.969241 
g1 91.9976 90.7146 91.999998 
g2 100.4078 98.8409 100.40535 
g3 20.0019 19.9999 20.000089 

f(x) -31020.86 -30665.5 -31025.44 
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0333.8333310033252.833)( 61144 ≤−−+= xxxxxg , 

012501250)( 7244255 ≤−−+= xxxxxxxg , 

025001250000)( 835536 ≤−−+= xxxxxxg , 

and bounds: 10000100 1 ≤≤ x , 100001000 ≤≤ ix , (i=2,3), and 100010 ≤≤ jx , 

(j=4,5,6,7,8). 
The best known solution is 7049.24. According to this point was not completely 

feasible. Again the sum of the violated constraints was 0.234 710−× . The optimal 
solutions obtained by CLA in Table 3. 

Table 3. Comparsion of the best solution for 3rd example with real variables 

Design variables Zbigniew[1] CLA 
x1 579.3167 573.1781548957 
x2 1359.9430 1357.5456017193 
x3 5110.0710 5118.5602905953 
x4 182.0174 181.5035089338 
x5 295.5985 295.2575886174 
x6 217.9799 218.4962215241 
x7 286.4162 286.2459203163 
x8 395.5979 395.2575886172 
g1 -6.75e-6 -6.74e-7 
g2 -0.7160 0.00000 
g3 -3.9559 -2.60e-12 
g4 -3.22e-7 -1.69e-8 
g5 -1.08e-7 -7.24e-10 
g6 -1.40e-7 -2.97e-10 

f(x) 7049.3309 7049.2840 

Example 4: This problem is, as in [19], 
3

2
3

1 )20()10()(min −+−= xxxf . 

Subject to the linear and nonlinear constraints, 

0)5()5(100)( 2
2

2
11 ≤−−−−= xxxg , 

081.82)5()6()( 2
2

2
12 ≤−−+−= xxxg , 

and bounds: 10013 1 ≤≤ x , 1000 2 ≤≤ x . 

The best known solution is -6961.81381. The optimal solutions obtained by CLA 
in Table 4. 

Example 5: This problem is, as in [19], 
54321)(min xxxxxexf = . 

Subject to the linear and nonlinear constraints, 

0)( 2
5

2
4

2
3

2
2

2
11 =++++= xxxxxxh , 
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Table 4. Comparsion of the best solution for 4th example with real variables 

Design variables Jong[19] CLA 
x1 14. 095 14.095 
x2 0.84296 0.842960789 
g1 6.52256e-9 3.33955e-13 
g2 -6.52258e-9 -3.41061e-13 

f(x) -6961.8138747 -6961.81387561 

Table 5. Comparsion of the best solution for 5th example with real variables 

Design variables Jong[19] CLA 
x1 -1.717143 -1.7171435996750 
x2 1.595709 1.5957097333077 
x3 1.827247 1.8272457685642 
x4 -0.7636413 0.76364314821295 
x5 -0.763645 0.76364316938380 
h1 6.1522969119e-7 5.41572642731e-7 
h2 1.8043050031e-7 -5.11854597373e-7 
h3 -2.2665673693e-7 7.04107598892e-8 

f(x) 0.0539498310941 0.05394980622265 

05)( 54322 =−= xxxxxh , 

01)( 3
2

3
13 =++= xxxh , 

and bounds: 3.23.2 ≤≤− ix , ( i=1,2), 2.32.3 ≤≤− jx , (j=3,4,5). 

The best known solution is 0.0539498473. The solutions obtained by CLA in  
Table 5. 

Example 6: This problem is, as in [20], 

65432
2
11 2325.05.6)(min xxxxxxxxf −−−−−−= . 

Subject to the linear and nonlinear constraints, 

0165382)( 6543211 ≤−+++++= xxxxxxxg , 

0142248)( 6543212 ≤+−++−−−= xxxxxxxg , 

02432.05.02)( 6543213 ≤−−−−++= xxxxxxxg , 

0122241.022.0)( 6543214 ≤−++−++= xxxxxxxg , 

0335525.01.0)( 6543215 ≤−+−++−−= xxxxxxxg , 

and bounds: 0≥ix , (,i=1,2,3), 10 ≤≤ jx , (j=1,2),and 21 6 ≤≤ x . 

The best known solution is -11. The optimal solutions obtained by CLA in Table 6. 
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Table 6. Comparsion of the best solution for 6th example with real variables 

Design variables Zbigniew[20] CLA 
x1 0.0000000 0.0000000 
x2 5.9760890 6.0065110 
x3 0.0059780 0.0001520 
x4 0.9999990 0.9999980 
x5 1.0000000 0.9928240 
x6 0.0000000 0.0000000 
g1 1.0000e-6 -0.0072920 
g2 -16.916314 -17.055056 
g3 -25.0107569 -24.9895321 
g4 -2.04722020 -2.0013068 
g5 -5.97609350 -5.9670815 

f(x) -10.988042 -10.992457 

Example 7: This problem is, as in [1], 

2
5

2
4

2
32121

2
2

2
1 )3()5(4)10(1614)(min −+−+−+−−++= xxxxxxxxxxf  

2
7

2
6 5)1(2 xx +−+ 45)7()10(2)11(7 2

10
2

9
2

8 +−+−+−+ xxx . 

Subject to the linear and nonlinear constraints, 

01059354)( 87211 ≤−+−+= xxxxxg , 

0217810)( 87212 ≤+−−= xxxxxg , 

0122528)( 109213 ≤−−++−= xxxxxg , 

07)8(1263)( 10
2

9214 ≤−−++−= xxxxxg , 

012072)3(4)2(3)( 4
2
3

2
2

2
15 ≤−−+−+−= xxxxxg , 

06142)2(2)( 6521
2

2
2
16 ≤−+−−+= xxxxxxxg , 

0402)6(85)( 4
2

32
2
17 ≤−−−++= xxxxxg , 

0303)4(2)8(5.0)( 6
2
5

2
2

2
18 ≤−−+−+−= xxxxxg , 

and bounds: 1010 ≤≤− ix , (i=1,…,10). 

The best known solution is 24.3062091. The optimal solutions obtained by CLA in 
Table 7. 

Example 8: This problem is, as in [21], 

|
)(cos2)(cos

|)(max

1
2

1 1
24 ∏

=

= =−
=

n
i i

n
i

n
i ii

ix

xx
xf . 
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Table 7. Comparsion of the best solution for 7th example with real variables 

Design variables Zbigniew[1] CLA 
x1 2.171996 2.1719961347540 
x2 2.363683 2.3636837460409 
x3 8.773926 8.7739258668515 
x4 5.095984 5.0959845191403 
x5 0.9906548 0.99065499761948 
x6 1.430574 1.4305739055145 
x7 1.321644 1.3216436144857 
x8 9.828726 9.8287263202019 
x9 8.280092 8.2800923143635 
x10 8.375927 8.3759262624081 
g1 9.999999e-7 9.307580498330e-6 
g2 0.000000 2.573359697777e-6 
g3 3.999999e-6 7.461051101387e-6 
g4 -50.0239606 -50.023949310087 
g5 1.207695e-5 1.113507011041e-7 
g6 4.304579e-7 1.556877339936e-6 
g7 -5.42644e-6 1.691766030376e-6 
g8 -6.14850124 -6.1485056399865 

f(x) 24.30620316 24.306180627377 

Subject to the linear and nonlinear constraints, 

75.0)( 11 ≥= ∏ =
n
i ixxg , 

nxxg n
i i 5.7)( 12 ≤= = , 

and bounds: 10 ≤≤ ix , (i=1,…,20). 

The known best value found (namely 0.803553) was better than the best values of 
any method discussed earlier. The optimal solutions obtained by CLA is 

x=(3.1623727281345,  3.1280419375461,  3.0946389687528,    3.0614422804305, 
3.0283524299799, 2.9936728284571, 2.9585306527356, 2.9217381410116, 
0.49557615940763, 0.48959098750755, 0.48215047020186, 0.47736554194251, 
0.47231988466596, 0.46541746361325, 0.46126836591559,   0.45633003676137, 
0.45258207080319,0.44773893307735, 0.44346139458823, 0.43978895941492), 

and f(x)=0.80361847330915. 

75.00101320.75000000)( 11 ≥== ∏ =
n
i ixxg , 

nxxg n
i i 5.73494829.9323802)( 12 ≤== = . 

According to the computation results, we can find the optimal objective function 
value is smaller than that obtained, as in [21]. 
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5   Conclusion 

We proposed a closed loop algorithms with SWIFT can search for global solution. 
The simulation results on the eight difficult test functions show the proposed CLA is 
effective for nonlinear optimization problems. In further work, the investigation prob-
lem is how to select the optimal increment and to accelerate the convergence of the 
proposed CLA. 

Acknowledgment 

This work was supported in part by the Hi-Tech Research and Development Program, 
Ministry of Science and Technology, P. R. China under Grant 2002AA420110. 

References 

1. Michalewicz Z., Schoenauer M.: Evolutionary algorithms for constrained parameter opti-
mization problems. Evolutionary Computation, 1996, 4(1):1-32 

2. Lin Y.Ch., Wang F.Sh.: Hybrid differential evolution with multiplier updating method for 
nonlinear constrained optimization problems. In: Proceedings of the Congress on Evolu-
tionary Computation, Piscataway, U.S.A., Vol.1 (2002) 872-877 

3. Chen L.N, Aihara K.: Global searching ability of chaotic neural networks. IEEE Transac-
tions on Circuits and Systems- : Fundamental Theory and Applications, 1999, 46(8):974-
993 

4. Wang L.P., Smith K.: On chaotic simulated annealing. IEEE Transactions on Neural Net-
works, 1998, 9(4):716-718 

5. Chen Zh.F, Shi H.Y, An Y.J, Sun Ch.Zh.: Globally convergent approach based on chaotic 
theory for underwater robot motor optimization. In: Proceedings of the IEEE International 
Conference on Robotics, Intelligent Systems and Signal processing, Changsha, China, 
Vol.2 (2003)996-1001 

6. Liu Sh.S, Hou Zh,J.: Weighted gradient direction based on chaos optimization algorithm 
for nonlinear programming problem. In: Proceedings of the 4th World Congress on Intelli-
gent Control and Automation, Shanghai, China, Vol.3 (2002)1779-1783 

7. Teixeira F.H., Loureiro Legey L. F.: Generation expansion planning: an iterative genetic 
algorithm approach. IEEE Transactions on Power Systems, 2002, 17(3):901-906 

8. Jean M. R., Stephane P.F.: Hybrid methods using genetic algorithms for global optimiza-
tion. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 1996, 
26(2):243-258 

9. Fogel D.B.: An introduction to simulated evolutionary optimization. IEEE Transaction on 
Neural Networks, 1994, 5(1):3-14 

10. Zhu X.L., Zhou J.P., Zhou J.H.: Optimization design of hydraulic servo actuators with 3-
D.O.F. and motion decoupling. In: Proceedings of the Europe-Asia Symposium on Ad-
vanced Engineering Design and Manufacture, Xi’an, China, Vol.1 (2004)479-488 

11. Leahy R., Jeffs B.,Wu Z. : A nonlinear simplex algorithm for minimum order solutions. 
In: International Conference on Acoustics, Speech, and Signal Processing, New York, 
U.S.A., Vol.2 (1988)745-748  



740 X. Zhu et al. 

12. Yang J., Yamaguchi, Y., Boerner, W.M.: Numerical methods for solving the optimal prob-
lem of contrast enhancement. IEEE Transactions on Geoscience and Remote Sensing, 
2000, 38(2):965-971 

13. Sandgren E.: Nonlinear integer and discrete programming in mechanical design. ASME 
Journal of Mechanical Design, 1990, 112(2):223-229 

14. Zeng S.Y., Ding L.X., Kang L.S.: An evolutionary algorithm of contracting search space 
based on partial ordering relation for constrained optimization problems. In: Proceedings 
of the Fifth International Conference on Algorithms and Architectures for Parallel Process-
ing, Beijing, China, Vol.1 (2002)76-81 

15. Carlos A.,Coello C.: Self-adaptive penalties for GA-based optimization. In: Proceedings of 
the Congress on Evolutionary Computation, Washington, DC, U.S.A., Vol.1 (1999)573-580  

16. Kannan B.K., Kramer S.N.: An argumented Lagrange multiplier based method for mixed 
integer discrete continuous optimization and its application to engineering design optimi-
zation. Journal of mechanical Design, 1994, 1116(3):318-320 

17. Homaifar A., Lai S.H.Y., Qi X.: Constrained optimization via genetic algorithms. Simula-
tion, 1994, 62(4):242-254 

18. Jeffrey A.J.,Christopher R.H.: On the use of non-stationary penalty functions to solve 
nonlinear constrained optimization problems with GAs. In: IEEE International Conference 
on Evolutionary Computation, Orlando, U.S.A., Vol.1 (1994)579-584 

19. Kim J.H., Hyun M.: Evolutionary programming techniques for constrained optimization 
problems. IEEE Transactions on Evolutionary Computation, 1997, 1(2):129-140 

20. Michalewicz Z., Thomas D.L.: Evolutionary operations for continuous convex parameter 
spaces. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming, San 
Diego, U.S.A., Vol.1 (1994)84-97 

21. Schoenauer M., Michalewicz Z.: Evolutionary computation at the edge of feasibility. In: 
Proceedings of the 4th Parallel Problem Solving from Nature, Berlin, Germany, Vol.1 
(1996)245-254 



 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 741 – 750, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Harmony Search for Generalized Orienteering  
Problem: Best Touring in China 

Zong Woo Geem1, Chung-Li Tseng2, and Yongjin Park3 

1 Johns Hopkins University, Environmental Planning and Management Program, 
729 Fallsgrove Drive #6133, Rockville, Maryland 20850, USA 

geem@jhu.edu 
2 University of Missouri,  

Department of Engineering Management, 
215 Engineering Management, Rolla,  

Missouri 65409, USA 
chungli@umr.edu 

3 Keimyung University,  
Department of Transportation Engineering, 

1000 Sindang, Dalseo, Daegu, 704-701, South Korea 
ypark@kmu.ac.kr 

Abstract. In order to overcome the drawbacks of mathematical optimization 
techniques, soft computing algorithms have been vigorously introduced during 
the past decade. However, there are still some possibilities of devising new al-
gorithms based on analogies with natural phenomena. A nature-inspired algo-
rithm, mimicking the improvisation process of music players, has been recently 
developed and named Harmony Search (HS). The algorithm has been success-
fully applied to various engineering optimization problems. In this paper, the 
HS was applied to a TSP-like NP-hard Generalized Orienteering Problem 
(GOP) which is to find the utmost route under the total distance limit while sat-
isfying multiple goals. Example area of the GOP is eastern part of China. The 
results of HS showed that the algorithm could find good solutions when com-
pared to those of artificial neural network. 

1   Introduction 

Over the several decades, optimization techniques such as linear programming (LP), 
non-linear programming (NLP), and dynamic programming (DP) have gathered atten-
tion among engineers. However, the mathematical techniques can excellently perform 
mostly in simple and ideal models. 

In order to overcome the shortcomings of mathematical techniques, nature-inspired 
soft computing algorithms have been introduced. Many evolutionary or meta-heuristic 
algorithms have been developed that combine rules and randomness mimicking natu-
ral phenomenon [1-8]. 

The purpose of this paper is to introduce a recently-developed nature-inspired algo-
rithm, Harmony Search, and to apply the algorithm to a TSP-like NP-hard General-
ized Orienteering Problem (GOP), proposed by Wang et al. [9]. 
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2   Harmony Search Algorithm 

Harmony Search (HS) algorithm was recently developed in an analogy with music 
improvisation process where music players improvise the pitches of their instruments 
to obtain better harmony [10]. 

The HS algorithm has been successfully applied to various benchmarking and real-
world problems including traveling salesperson problem [10], parameter optimization 
of river flood model [11], design of pipeline network [12], and design of truss struc-
tures [13]. Consequently, the HS algorithm provides a possibility of success in a TSP-
like NP-hard problem. 

As existing soft computing algorithms are found in the paradigm of natural proc-
esses, a new algorithm can be conceptualized from a musical performance process 
(for example, a jazz trio) involving searching for a better harmony. Musical perform-
ance seeks a best state (fantastic harmony) determined by aesthetic estimation, as the 
optimization process seeks a best state (global optimum: minimum cost; minimum 
error; maximum benefit; or maximum efficiency) determined by objective function 
evaluation. Aesthetic estimation is done by the set of the pitches sounded by joined 
instruments, as objective function evaluation is done by the set of the values produced 
by composed variables; the aesthetic sounds can be improved practice after practice, 
as the objective function values can be improved iteration by iteration. 

 

Fig. 1. Structure of Harmony Memory 

Figure 1 shows the structure of the Harmony Memory (HM) that is the core part of 
the HS algorithm. Consider a jazz trio composed of saxophone, double bass, and 
guitar. There exist certain amount of preferable pitches in each musician's memory: 
saxophonist, {Do, Fa, Mi, Sol, Re}; double bassist, {Si, Do, Si, Re, Sol}; and guitar-
ist, {La, Sol, Fa, Mi, Do}. If saxophonist randomly plays Sol out of its memory {Do, 
Fa, Mi, Sol, Re}, double bassist Si out of {Si, Do, Si, Re, Sol}, and guitarist Do out of 
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{La, Sol, Fa, Mi, Do}, the new harmony (Sol, Si, Do) becomes another harmony 
(musically C-7 chord). And if this new harmony is better than existing worst harmony 
in the HM, the new harmony is included in the HM and the worst harmony is ex-
cluded from the HM. This procedure is repeated until fantastic harmony is found. 

In real optimization, each musician can be replaced with each decision variable, 
and its preferred sound pitches can be replaced with each variable's preferred values. 
Let us set that each decision variable represents pipe diameter between two nodes and 
the music pitches {Do, Re, Mi, Fa, Sol, La, Si} correspond to pipe diameters 
{100mm, 200mm, 300mm, 400mm, 500mm, 600mm, 700mm}, respectively. And if 
first variable chooses 500mm out of {100mm, 400mm, 300mm, 500mm, 200mm}, 
second one {700mm} out of {700mm, 100mm, 700mm, 200mm, 500mm}, and third 
one {100mm} out of  {600mm, 500mm, 400mm, 300mm, 100mm}, those values 
(500mm, 700mm, 100mm) make another solution vector. And if this new vector is 
better than existing worst vector in the HM, the new vector is included in the HM and 
the worst vector is excluded from the HM. This procedure is repeated until certain 
stopping criterion is satisfied. 

According to the above algorithm concept, the steps of HS for the generalized ori-
enteering problem are as follows: 

Step 1. Initialize the Parameters for Problem and Algorithm. 

Step 2. Initialize the Harmony Memory (HM). 

Step 3. Improvise a New Harmony. 

Step 4. Update the Harmony Memory. 

Step 5. Check the stopping criterion. 

2.1   Initialize Parameters 

In Step 1, the optimization problem is specified as follows: 

                                                          Minimize )(xf .         (1) 

                                      Subject to Nix ii ,...,2,1, =∈ X .         (2) 

where )(xf  is an objective function; x  is the set of each decision variable ix ; iX  is 

the set of possible range of values for each decision variable, that is, 
{ })(),...,2(),1( Kxxx iiii =X  for discrete decision variables ( ))(...)2()1( Kxxx iii <<< ; 

N  is the number of decision variables (number of music instruments); and K  is the 
number of possible values for the discrete variables (pitch range of each instrument). 

For the GOP, the objective function becomes the total score of individual goals, as 
shown in Equation 7; and each decision variable represents each city, having the 
value of next city number to move. 

The HS algorithm parameters are also specified in this step: Harmony Memory 
Size (HMS) (= number of solution vectors), Harmony Memory Considering Rate 
(HMCR), Pitch Adjusting Rate (PAR), and Stopping Criteria (= number of improvisa-
tion). Here, HMCR and PAR are the parameters of HS algorithm explained in Step 3. 
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2.2   Initialize Harmony Memory 

In Step 2, the Harmony Memory (HM) matrix, as shown in Equation 3, is filled with 
as many randomly generated solution vectors as the size of the HM (HMS). 
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2.3   Improvise New Harmony 

A new harmony vector, ),...,,( 21 Nxxx ′′′=′x  is generated by following three rules: 

HM consideration; Pitch adjustment; or totally random generation. For instance, the 
value of the first decision variable ( 1x′ ) for the new vector can be chosen from values 

stored in HM ( HMSxx 1
1
1 ~ ). Value of other variables ( ix′ ) can be chosen in the same 

style. There is also a possibility that totally random value can be chosen. HMCR pa-
rameter, which varies between 0 and 1, sets the rate whether a value stored in HM is 
chosen or a random value is chosen, as follows: 

                       
∈′

∈′
←′

)-(1

.}...,,,{ 21

HMCRw.p.x

HMCRw.pxxxx
x

ii

HMS
iiii

i
X

        (4) 

The HMCR is the rate of choosing one value from historical values stored in HM 
while (1-HMCR) is the rate of randomly choosing one value from the possible value 
range. 

After choosing the new harmony vector ),...,,( 21 Nxxx ′′′=′x , pitch-adjusting deci-

sion is examined for each component of the new vector. This procedure uses the PAR 
parameter to set the rate of pitch adjustment as follows: 

                         
−

←′
)1(w.p.Nothing Doing

w.p.Pitch Adjusting

PAR

PAR
xi          (5) 

In the pitch adjusting process, a value moves to its neighboring value with prob-
ability of PAR, or just stays in its original value with probability (1-PAR). If the pitch 
adjustment for ix′  is determined, its position in the value range iX  is identified in the 

form of )(kxi   (the kth element in iX ), and the pitch-adjusted value for )(kxi  be-

comes 

                                                     )( mkxx ii +←′ .          (6) 

where ...},2,1,1,2{..., −−∈m  is a neighboring index used for discrete-type decision 

variables.  
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The HMCR and PAR parameters in Harmony Search help the algorithm find glob-
ally and locally improved solution, respectively. 

2.4   Update Harmony Memory 

If the new harmony vector, ),...,,( 21 Nxxx ′′′=′x   is better than the worst harmony in 

the HM, judged in terms of the objective function value, the new harmony is included 
in the HM and the existing worst harmony is excluded from the HM. 

2.5   Check Stopping Criterion 

If the stopping criterion (maximum number of improvisations) is satisfied, computa-
tion is terminated. Otherwise, Steps 3 and 4 are repeated. 

3   Generalized Orienteering Problem 

In this study, HS is applied to generalized orienteering problem (GOP). The objective 
of GOP is to find the optimal tour under the constraint of total distance limit while 
satisfying multiple goals. 

 

Fig. 2. Map of 27 cities in eastern part of China 
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If a traveler visits eastern part of China, as shown in Figure 2, and he/she wants to 
travel as many cities as possible with the purpose of best fulfilling multiple factors such 
as 1) natural beauty, 2) historical interest, 3) cultural event, and 4) business opportuni-
ties under the limited total moving distance, his/her travel can become generalized ori-
enteering problem where each city has certain quantified scores for all factors and the 
estimation of a tour is performed based on the summation of those scores in the tour. 

The GOP is a generalization of the orienteering problem (OP) and the main differ-
ence between the two is that each city in GOP has multiple scores while each city in 
OP has only one score [14-16]. 

Table 1. Physical location and score vector for each city 

No. Name Longitude Latitude 1S  2S  3S  4S  

1 Beijing 116.40 39.91 8 10 10 7 
2 Tianjin 117.18 39.16 6 5 8 8 
3 Jinan 117.00 36.67 7 7 5 6 
4 Qingdao 120.33 36.06 7 4 5 7 
5 Shijiazhuang 114.50 38.05 5 4 5 5 
6 Taiyuan 112.58 37.87 5 6 5 5 
7 Huhehaote 111.70 40.87 6 6 5 5 
8 Zhengzhou 113.60 34.75 5 6 5 5 
9 Huangshan 118.29 29.73 9 3 2 2 

10 Nanjing 118.75 32.04 7 8 8 6 
11 Shanghai 121.45 31.22 5 4 9 9 
12 Hangzhou 120.15 30.25 9 8 7 6 
13 Nanchang 115.88 28.35 7 6 5 5 
14 Fuzhou 119.30 26.10 6 5 5 7 
15 Wuhan 114.30 30.55 6 6 8 6 
16 Changsha 113.00 28.20 6 6 6 5 
17 Guangzhou 113.15 23.15 6 6 5 10 
18 Haikou 110.35 20.02 7 3 4 8 
19 Guilin 110.29 25.28 10 4 4 4 
20 Xi’an 108.92 34.28 5 9 8 6 
21 Yinchuan 106.27 38.48 5 7 5 5 
22 Lanzhou 103.80 36.03 7 6 5 6 
23 Chengdo 104.07 30.66 6 7 6 5 
24 Guiyang 106.00 26.59 8 5 4 5 
25 Kunming 102.80 25.05 9 7 7 6 
26 Shenyang 123.40 41.80 5 8 5 6 
27 Dalian 121.60 38.92 7 5 6 7 

Let V be the set of N points and E the set of edges between points in V. G = {V, E} 
is a complete graph. Each edge in E has a symmetric, non-negative cost d(i, j) which 
becomes the distance or travel time between point i and j. Assume the starting point is 
point 1 and the end point is point N. Each point i in V has a non-negative score vector 

T
m iSiSiSiS ))(,),(),(()( 21= , where m is the number of individual goals, and 

)(iSg  is the score of point i with respect to goal g. 
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A differentiable objective function that defines total score of a path P, which starts 
at point 1 and ends at point N can be formulated as follows: 

                                        [ ]
= ∈

=
m

g

k

Pi

k
gg iSWZ

1

/1

)( .         (7) 

where gW  is the weight of goal g, and the exponent k  is set to 5 in this problem. 

Table 1 presents city data such as city number, longitude, latitude, and score vec-
tor. 1S , 2S , 3S , and 4S  are the scores approximately scaled from 1 to 10 in the as-

pects of natural beauty, historical interest, cultural event, and business opportunities, 
proposed by Wang et al. [9]. 

4   Computation and Results 

For applying HS to GOP, the values of algorithm parameters such as number of music 
instruments (= number of decision variables), number of improvisations (= number of 
function evaluations), HMCR, PAR, and HMS are specified. 

In GOP, number of music instruments (= 27) is substituted with the number of de-
cision variables that represent every city, and the value of each decision variable 
represents its next assigned city; Number of improvisations (= 50,000) stands for the 
number of maximum iterations or objective function evaluations. 

HMCR is the rate of choosing any one value from the HM, and thus (1 - HMCR) is 
the rate of choosing any value from all the possible range of each decision variable. 
For the computation, various HMCR's are used. 

PAR is originally the rate of moving to a neighboring value from one value in HM, 
but this parameter is modified for GOP. In this computation, PAR becomes the rate of 
moving to the nearest city from one city. There are total three PAR's (PAR1 = 0.35, 
PAR2 = 0.105, and PAR3 = 0.045) that are the rates of moving to nearest, second 
nearest, and third nearest cities, respectively. 

HMS is the number of harmony vectors simultaneously stored in HM. For this 
computation, various HMS's are used. 

In this computation, a tour starts from city 1, and next city is assigned based on the 
following three rules: 

Rule 1. Choose any city stored in HM as a next city with probability HMCR × (1-
PAR), where PAR = PAR1 + PAR2 + PAR3. 
Rule 2. Choose the nearest city as a next city with probability HMCR × PAR1; Or 
choose the second nearest city with probability HMCR × PAR2; Or choose the third 
nearest city with probability HMCR × PAR3. 

Rule 3. Choose next city randomly with probability (1-HMCR). 

Whenever the HS visits new city, the scores of four goals in the city are added us-
ing Equation 7 and the distance up to the city is also added using trigonometric for-
mulas on spherical surface (average earth radius, r  = 6,371 km) using Equation 8. 
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where )(⋅d  is a function calculating the distance (in kilometer) between two cities ( x  

and y ); 1a  is longitude of city x ; 1b  is latitude of city x ; 2a  is longitude of city y ; 

and 2b  is latitude of city y . 

If the total distance of a tour is over the distance limit (5,000 km in the problem), 
penalty (the absolute difference between computed distance and limit distance) is also 
taxed to the original summarized score. 

There are five different weight vectors including  0W  = (0.25, 0.25, 0.25, 0.25), 

1W  = (1, 0, 0, 0), 2W  = (0, 1, 0, 0), 3W  = (0, 0, 1, 0), and 4W  = (0, 0, 0, 1). The first 

weight gives equal weight to each of the four goals. The four other weight vectors 
stress one goal and ignore the other three. And, each weight case runs 45 times with 
different HMS's and HMCR's. 

Table 2. Comparison of GOP results from HS and ANN 

Weight Method Score Distance Tour 

HS 12.38 4993.4 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 
0W  

ANN 12.38 4993.4 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 

HS 13.08 4985.4 1-2-3-15-24-19-13-9-12-10-4-27-1 
1W  

ANN 13.05 4987.7 1-2-3-4-10-11-12-9-13-16-19-24-20-6-5-1 

HS 12.56 4910.6 1-26-27-4-10-12-9-13-16-15-20-8-3-2-1 
2W  

ANN 12.51 4875.1 1-2-26-27-3-10-11-12-9-13-15-20-6-5-1 

HS 12.78 4987.5 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 
3W  

ANN 12.78 4987.5 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 

HS 12.40 4845.2 1-2-27-4-10-11-12-14-17-16-15-3-1 
4W  

ANN 12.36 4989.8 1-2-3-10-9-13-16-17-14-12-11-4-27-1 
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Table 2 represents the best tours in five different weight vector cases and compares 
them with the tours obtained using artificial neural network (ANN) approach [9]. 
Compared to the results of ANN, HS could find better score solutions in cases of 1W , 

2W , and 4W  while find same score solutions in cases of 0W  and 3W : With the 

weight vector 0W , HS found 12.38 as the best score with the score range between 

11.95 ~ 12.38; with the weight vector 1W , HS found 13.08 as the best score with the 

score range between 12.58 ~ 13.08; with the weight vector 2W , HS found 12.56 as 

the best score with the score range between 12.34 ~ 12.56; with the weight vector 

3W , HS found 12.78 as the best score with the score range between 12.50 ~ 12.78; 

with the weight vector 4W , HS found 12.40 as the best score with the score range 

between 12.14 ~ 12.40. 

5   Conclusions 

In this study, a recently-developed nature-inspired algorithm, HS, has been introduced 
and applied to an NP-hard GOP whose objective is to find the best tour in eastern part 
of China. The algorithm, HS, mimics three major behaviors of music players: 1) 
memory consideration; 2) pitch adjustment; and 3) random choice. These behaviors 
can be successfully translated in GOP: ‘memory consideration’ becomes that HS 
chooses any one city from the cities stored in HM; ‘pitch adjustment’ is that HS 
chooses the nearest city as next city; and ‘random choice’ is that HS chooses any one 
city from all the possible cities. 

After applied to GOP, HS could find equal or better solutions when compared with 
those of ANN. In order for HS to obtain better results in GOP in the future, some 
additional operators especially for GOP might be implemented along with existing 
memory consideration and pitch adjustment operators. Also, it is expected that HS, as 
a nature-inspired algorithm, can be applied to other optimization problems in various 
fields. 

References 

1. Fogel, L. J., Owens, A. J. and Walsh. M. J.: Artificial Intelligence Though Simulated Evo-
lution. John Wiley, Chichester, UK (1966) 

2. De Jong, K.: Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. The-
sis, University of Michigan, Ann Arbor, MI, USA (1975) 

3. Koza, J. R.: Genetic Programming: A Paradigm for Genetically Breeding Populations of 
Computer Programs to Solve Problems. Report No. STA-CS-90-1314, Stanford Univer-
sity, Stanford, CA, USA (1990) 

4. Holland, J. H.: Adaptation in Natural and Artificial Systems. University of Michigan 
Press, Ann Arbor, MI, USA, (1975) 

5. Goldberg, D. E.: Genetic Algorithms in Search Optimization and Machine Learning. Ad-
dison Wesley, MA, USA (1989) 



750 Z.W. Geem, C.-L. Tseng, and Y. Park 

 

6. Glover, F.: Heuristic for Integer Programming using Surrogate Constraints. Decision Sci-
ences. 8(1) (1977) 156-166 

7. Dorigo, M., Maniezzo, V., and Colorni, A.: The Ant System: Optimization by a Colony of 
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B. 26(1) 
(1996) 29-41 

8. Kirkpatrick, S., Gelatt, C., and Vecchi, M.: Optimization by Simulated Annealing. Sci-
ence. 220(4598) (1983) 671-680 

9. Wang, Q., Sun, C., and Golden, B. L.: Using Artificial Neural Networks to Solve General-
ized Orienteering Problems. Proceedings of Artificial Neural Networks in Engineering 
Conference (ANNIE ’96). (1996) 

10. Geem, Z. W., Kim, J. H., and Loganathan, G. V.: A New Heuristic Optimization Algo-
rithm: Harmony Search. Simulation. 76(2) (2001) 60-68 

11. Kim, J. H., Geem, Z. W., and Kim, E. S.: Parameter Estimation of the Nonlinear Muskin-
gum Model using Harmony Search. Journal of the American Water Resources Associa-
tion. 37(5) (2001) 1131-1138 

12. Geem, Z. W., Kim, J. H., and Loganathan. G. V.: Harmony Search Optimization: Applica-
tion to Pipe Network Design. International Journal of Modelling and Simulation. 22(2) 
(2002) 125-133 

13. Kang, S. L., and Geem, Z. W.: A New Structural Optimization Method Based on the Har-
mony Search Algorithm. Computers and Structures. 82(9-10) (2004) 781-798 

14. Chao, I. -M., Golden, B. L., and Wasil, E. A.: The Team Orienteering Problem. European 
Journal of Operational Research. 88 (1996) 464-474 

15. Chao, I. -M., Golden, B. L., and Wasil, E. A.: A Fast and Effective Heuristic for the Orien-
teering Problem. European Journal of Operational Research. 88 (1996) 475-489 

16. Tasgetiren, M. F., and Smith, A. E.: A Genetic Algorithm for the Orienteering Problem. 
Proceedings of Congress on Evolutionary Computation 2000 (CEC 2000). (2000), 1190-
1195. 



 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 751 – 760, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Harmony Search in Water Pump Switching Problem 

Zong Woo Geem 

Johns Hopkins University, Environmental Planning and Management Program, 
729 Fallsgrove Drive #6133, Rockville, Maryland 20850, USA 

geem@jhu.edu 

Abstract. The purpose of this paper is to introduce a recently-developed nature-
inspired algorithm, harmony search (HS), and to apply the algorithm to water 
pump switching problem. The HS algorithm is conceptualized using the musical 
improvisation process of searching for a better state of harmony. This paper de-
scribes a HS algorithm-based approach for the optimal switching problem in se-
rial water pumping system. A standard example from the literature is presented 
to demonstrate the effectiveness of the proposed method, and the results are 
compared to genetic algorithm and branch & bound method. Computational re-
sults indicate that the HS approach becomes a good optimization model for 
solving water pump switching problem. 

1   Introduction 

The water system optimization is a challenging activity that has received considerable 
attention over the decades. Engineers are able to produce better designs while saving 
time and money through optimization. Traditionally, various mathematical models 
such as linear programming, nonlinear programming, and dynamic programming have 
been applied to optimize water systems. In these algorithms, however, an increase in 
terms of the number of variables would exponentially increase the number of function 
evaluations and require huge memory space in computer. These characteristics are 
limiting their application to a variety of water system optimization problems. 

The computational drawbacks of mathematical algorithms have forced engineers to 
rely on evolutionary or meta-heuristic algorithms such as genetic algorithm, simulated 
annealing and tabu search to solve various water system optimization problems. The 
common factor in these soft computing algorithms is that they combine rules and 
randomness to imitate natural phenomena. 

In the past two decades, these soft computing algorithms have been broadly ap-
plied to solve various water system optimization problems [1-7]. These algorithms 
have successfully overcome several deficiencies of conventional mathematical opti-
mization algorithms. However, a new nature-inspired algorithm based on analogies 
with natural phenomena still remains to be explored. 

Recently, Geem et al. [8] developed a harmony search (HS) algorithm that was 
conceptualized using the musical improvisation process of searching for a perfect 
state of harmony. The harmony in music is analogous to the solution vector, and the 
behavior of musician's improvisation is analogous to local and global search schemes 
in optimization techniques. These behaviors were successfully translated in various 
optimization applications [8-11]. 
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The purpose of this paper is to introduce the nature-inspired HS algorithm applied 
to least-energy water pump switching problem. A standard example from the litera-
ture is presented to demonstrate the effectiveness of the proposed approach compared 
to other optimization algorithms. 

2   Water Pump Switching Problem 

Water pump switching problem is to supply water in a system while minimizing en-
ergy cost and satisfying adequate pressure requirement in the system. The pumping 
system consists of n  pipes and n  pumping stations with m  pumps in series within 
each station, as illustrated in Figure 1. Although Goldberg and Kuo [1] first tackled 
the problem using basic genetic algorithm, there has not been any better research so 
far using advanced genetic algorithm techniques. 
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Fig. 1. Schematic of Water Pump Switching Problem 

Water can be delivered from water source into demanding place by the pressure 
which is added by each pump and consumed along each pipeline due to the friction 
between water and pipe. Suppose that a pump j  in station i  can add pressure ijP  

using energy ijE  if the pump is turned on. The energy ijE  (horsepower) can be cal-

culated using a function of specific weight γ  (= 62.4 lb/ft3), flow rate 0Q  (= 19 cfs in 

this study), pressure rise ijP  (in psi) across pump, and motor-pump efficiency ijη . 
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By assigning a binary variable }1,0{∈ijx  to each pump at each station to denote 

the on/off scheduling of the pump, the objective function of the problem is to mini-
mize the total electrical energy (horsepower) as follows: 

                                        
= =

=
n

i

m

j
ijij xEf

1 1

)(Minimize x         (2) 

The objective function for water pump switching problem, as in Equation 2, sub-
jects to the following constraints:  

Discharge Pressure Constraint: A discharge pressure D
iP  in pumping station i  

should be equal to the summation of suction pressure S
iP  and all operating pump 

pressures 
=

m

j
ijij xP

1

. 

                                           nixPPP
m

j
ijij

S
i

D
i ,...,1,

1

=+=
=

        (3) 

 
Discharge Pressure Bound Constraint: Discharge pressure in any station should be 

placed less than upper-limit discharge pressure D
iU P . 

                                               niPP D
iU

D
i ,...,1, =≤         (4) 

Suction Pressure Constraint: A suction pressure in pumping station 1+i  should be 

calculated by subtracting pressure loss L
iP , which is occurred along the pipeline i , 

from discharge pressure in pumping station i . 

                                     1,...,1,1 −=−=+ niPPP L
i

D
i

S
i         (5) 

Suction Pressure Bound Constraint: Any suction pressure should be placed be-

tween lower suction pressure S
iL P  and upper suction pressure S

iU P . 

                                     niPPP S
iU

S
i

S
iL ,...,1, =≤≤         (6) 

Initial Suction Pressure Constraint: Initial suction pressure is assumed to be zero. 

                                                        01 =SP         (7) 

Binary Decision Variable Constraint: The binary value (0 or 1) is assigned to deci-
sion variable ijx . 

                                    mjnixij ,...,1,...,1},1,0{ ==∈         (8) 
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3   Harmony Search Algorithm 

The recently-developed HS algorithm is based on music performing process that oc-
curs when musicians search for the better state of harmony, such as during jazz im-
provisation. Jazz improvisation seeks to find musically pleasing harmony (a perfect 
state) determined by an aesthetic standard, just as the optimization process seeks to 
find a global solution (a perfect state) determined by an objective function. The pitch 
of each musical instrument determines the aesthetic quality, just as the objective func-
tion value is determined by the set of values assigned to each design variable. 

The procedure of the HS algorithm consists of Steps 1 through 5, as follows: 

Step 1. Initialize optimization problem and HS algorithm parameters. 
Step 2. Initialize harmony memory (HM). 
Step 3. Improvise a new harmony from HM. 
Step 4. Update HM. 
Step 5. Check the stopping criterion. 

Step 1: First, the optimization problem is specified as follows: 

                           Minimize )(xf  s.t. Nix ii ,...,2,1, =∈ X         (9) 

where )(xf  is an objective function (Equation 2 in this study); x  is the set of each 

decision variable ix ; iX  is the set of possible range of values for each decision vari-

able (0 or 1 in this study); N  is the number of musical instruments (number of deci-
sion variables); and K  is the pitch range of each instrument (number of possible 
values for the discrete variables). 

The HS algorithm parameters that are required to solve the optimization problem 
of Equation 9 are also specified in this step: harmony memory considering rate 
(HMCR), pitch adjusting rate (PAR), harmony memory size (HMS, that is, number of 
solution vectors), and termination criterion (number of improvisations, that is, number 
of function evaluations). Here, HMCR and PAR are parameters that are used to im-
prove solution vectors. Both are defined in Step 3. 

Step 2: Harmony memory (HM), which is a matrix shown in Equation 10, is filled 
with as many randomly generated solution vectors as the HMS. 
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Step 3: A new harmony vector, ),...,,( 21 Nxxx ′′′=′x  is generated based on three rules: 

memory considerations, pitch adjustments, and randomization. 
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For instance, the value of the first decision variable ( 1x′ ) can be chosen from any 

value in the specified HM range ( HMSxx 1
1
1 ~ ). However, there is also a possibility 

that totally random value can be chosen for the decision variable 1x′ : 

                  
∈′

∈′
←′

)-(1

.}...,,,{ 21

HMCRw.p.x

HMCRw.pxxxx
x

ii

HMS
iiii

i
X

      (11) 

where HMCR, which varies between 0 and 1, is the probability of choosing one value 
from the historical values stored in the HM, and the complement (1-HMCR) is the 
probability of random feasible value, not limited to those stored in the HM. Values of 
the other decision variables ( Nxx ′′ ...,,2 ) can be chosen in the same manner. 

After the memory considering operation, pitch adjusting operation follows. The 
pitch adjusting operation is performed only for the values which were chosen from the 
HM. This operation uses the PAR parameter that sets the rate of moving to neighbor-
ing values for the originally chosen value from the HM. 

For the water pump switching problem in this study, however, the pitch adjusting 
operation is not performed because candidate values for each decision variable are 
only 0 or 1. 

Step 4: If the new harmony vector ),...,,( 21 Nxxx ′′′=′x  is better than the worst har-

mony in the HM in terms of the objective function value, the new harmony is in-
cluded in the HM and the existing worst harmony is excluded from the HM. 

Step 5: The computations are terminated when the termination criterion (number of 
function evaluations in this study) is satisfied. If not, Steps 3 and 4 are repeated. 

4   Computation and Results 

The HS algorithm is applied to the water pump switching system which consists of 10 
pipes ( n  = 10) and 10 pump stations ( n  = 10) with 4 pumps ( m  = 4) in series within 
each station. Thus, the number of decision variables (pump status variables) is 40 
( mn×= ). In applying the HS algorithm to the problem, each decision variable ijx  

( mjni ,,1,,,1 == ) has a binary value (0 or 1), representing pump status: if ijx  

equals to 1, pump is on; and if ijx  equals to 0, pump is off. 

Pumping pressure ijP  across each pump is tabulated in Table 1, and corresponding 

energy ijE  can be calculated using Equation 1, where motor-pump efficiencies iη  for 

ten stations are 0.9789, 0.9810, 0.9810, 0.9630, 0.9660, 0.9830, 0.9840, 0.9700, 
0.9800, 0.9600, respectively. 

The pressure loss L
iP  along the pipeline i , which can be calculated using Darcy-

Weisbach and Colebrook-White equations, is tabulated in Table 2. The lower suction 

pressure bound S
iL P , upper suction pressure bound S

iU P , and upper discharge pres-

sure bound D
iU P  in pumping station i  are also shown in Table 2. 
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Table 1  Pumping Pressure Data 

Pump 
Number 

(i, j) 

Pumping 
Pressure 

ijP  (psi) 

Pump 
Number 

(i, j) 

Pumping 
Pressure 

ijP  (psi) 

(1, 1) 
(1, 2) 
(1, 3) 
(1, 4) 

173.22 
173.22 
173.22 
86.62 

(6, 1) 
(6, 2) 
(6, 3) 
(6, 4) 

209.82 
209.82 
209.82 
104.91 

(2, 1) 
(2, 2) 
(2, 3) 
(2, 4) 

191.78 
191.78 
191.78 
95.89 

(7, 1) 
(7, 2) 
(7, 3) 
(7, 4) 

229.13 
229.13 
229.13 
114.56 

(3, 1) 
(3, 2) 
(3, 3) 
(3, 4) 

191.78 
191.78 
191.78 
95.89 

(8, 1) 
(8, 2) 
(8, 3) 
(8, 4) 

169.51 
169.51 
169.51 
84.75 

(4, 1) 
(4, 2) 
(4, 3) 
(4, 4) 

100.07 
100.07 
100.07 
50.04 

(9, 1) 
(9, 2) 
(9, 3) 
(9, 4) 

211.32 
211.32 
211.32 
105.66 

(5, 1) 
(5, 2) 
(5, 3) 
(5, 4) 

110.35 
110.35 
110.35 
55.18 

(10, 1) 
(10, 2) 
(10, 3) 
(10, 4) 

192.31 
192.31 
192.31 
96.15 

Table 2. Pressure Loss and Pressure Limit 

n  
L

iP  

(psi) 

S
iL P  

(psi) 

S
iU P  

(psi) 

D
iU P  

(psi) 

1 309.85 0 200 900 

2 154.98 25 200 900 

3 258.19 25 200 800 

4 309.85 25 400 900 

5 154.98 25 250 900 

6 309.85 25 350 900 

7 309.85 25 450 1100 

8 284.07 25 550 1100 

9 82.675 25 400 1100 

10 51.658 25 400 1100 

.
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Table 3  Solutions from Different Algorithms 

Method Energy (HP) Pump Status 

GA 11263.19 1100 1001 1001 1101 1001 1100 1100 0000 0000 0000 

B&Ba 11187.00 1100 1000 1110 1000 0000 1100 1101 0000 0000 0000 

B&Bb 11181.37 1011 0001 1110 0000 1010 0110 0110 0000 0000 0000 

HS 11169.43 1100 0010 1011 0110 0000 1011 1010 0000 0000 0000 
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Fig. 2. Suction Pressures of Different Solutions 

For the HS algorithm, HMCR of 0.95 is used, and 10 different runs with different 
HMS (1 ~ 100) are investigated. For all cases, maximum improvisations (function 
evaluations) of 3,500 are used. 

After 3,500 improvisations (it took 19 seconds on 200MHz IBM-compatible PC), 
the HS algorithm found pumping energy solutions (in horsepower) for 10 runs: 
11,210.72 for HMS = 1; 11,169.43 for HMS=2; 11,215.11 for HMS = 3; 11,202.86 for 
HMS = 5; 11,181.37 for HMS = 10; 11,194.71 for HMS = 15; 11,184.16 for HMS = 
20; 11,234.20 for HMS = 30; 11,187.33 for HMS = 50; and 11,724.05 for HMS = 100. 
Among them, the minimal pumping energy 11,169.43 was obtained with HMS = 2. 

The best HS solution (11,169.43) was also compared to earlier solutions reported 
by Goldberg and Kuo [1], as shown in Table 3. Goldberg and Kuo obtained the best 
GA solution (11,263.19) and compared the GA solution with branch & bound method 
solution (B&Ba, 11,187.00) because they believed that branch & bound method could 
find global optimal solution at that time. However, this study found the better solution 
(B&Bb, 11,181.37) using different branch & bound method code, taking 28 minutes  
 

.
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Fig. 3. Discharge Pressures of Different Solutions 

on 200MHz PC. And, the HS could find even better solution (11,169.43), taking 19 
seconds on the same machine. The lower limit of the solution for the water pump 
switching problem can be calculated using simplex method. Any feasible solution for 
the problem cannot be placed below the lower limit (11,149.56) which consists of 
non-binary infeasible values for decision variables. 

Although the difference between GA solution (11263.19) and HS solution 
(11169.43) looks very small, the distance between GA solution and lower limit is 5.7 
times longer than the distance between HS solution and lower limit. 

The suction and discharge pressures for GA, B&Ba, and HS solutions in Table 3 
are profiled in Figure 2 and Figure 3, respectively. All pressure profiles satisfy the 
constraints of upper and lower pressure bounds in Table 2. 

Expanding the above 10 runs, 200 different runs which used randomly generated 
HMS (= 2 ~ 30 in integer) and HMCR (= 0.8 ~ 0.98), were carried out in order to 
demonstrate the HS algorithm’s convergence effectiveness to the optimal solution. 
200 different runs using GA with randomly generated crossover rate (= 0.5 ~ 1.0) and 
mutation rate (= 0.001 ~ 0.05) were also compared. 

The statistical values (minimum, arithmetic average, and standard deviation of so-
lutions) from both algorithms were obtained and compared. HS produced 11,164.47  
(HMS = 19; and HMCR = 0.9710) as minimum solution; 11,215.11 as arithmetic 
average; and 48.13 as standard deviation, taking 15 seconds per each computation 
while genetic algorithm found 11,172.74 (crossover rate = 0.9480; and mutation rate 
= 0.0090) as minimum solution; 11,320.19 as arithmetic average; and 196.61 as stan-
dard deviation, taking 20 seconds per each computation. 
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The distribution of the 200 HS solutions showed a narrower shape than that of the 
200 GA solutions. It should be noted that the HS algorithm parameters (HMS and 
HMCR) do not exert a significant influence on the optimized solutions in terms of 
standard deviation, and the solutions of HS algorithm are relatively well optimized 
than those of GA in terms of minimum and arithmetic average of solutions. In addi-
tion, HS algorithm found the solutions faster (15 seconds) than GA (20 seconds) in 
terms of mean time elapsed in both algorithm computations. 

5   Conclusions 

Recently-developed nature-inspired HS algorithm was applied to the optimal water 
pump switching problem to demonstrate the effectiveness of the proposed algorithm. 
The results of HS model were also compared to those of other evolutionary and 
mathematical algorithms.  

The computational results revealed that the proposed HS algorithm was effectively 
capable of solving the water pump switching problem. The HS results were better 
than those obtained using GA in terms of minimal energy as well as average energies 
or computing time. Furthermore, the HS algorithm parameters (HMS and HMCR), 
which were arbitrarily selected from preferable ranges, did not exert a significant 
influence on the results with respect to statistical standard deviation. 

In conclusion, this study suggests that the new HS-based approach is potentially a 
powerful search and optimization algorithm for solving the water pump switching 
problem. It is also expected that HS algorithm, as a nature-inspired algorithm, can be 
applied to various optimization problems with discrete and/or continuous decision 
variables. 
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Abstract. To avoid the low efficiency in Internet routing, end users adopt many 
routing technologies, such as source routing and active routing. As the result of 
user’s participation, these routing technologies possess selfish character. Firstly, 
selfish routing game model is put forward in the paper based on the discussion 
of selfish routing problem. And then, we discuss the existence and uniqueness 
of Nash Equilibrium Point. Moreover, atomic and non-atomic routing in game 
model is discussed. Finally, SRAG algorithm is simulated in the specific net-
work environment. The results of simulation show the good routing results of 
SRAG. The feasibility and effectivity of the algorithm is suggested by the re-
sults of experiment. 

1   Introduction 

Nowadays Internet routing is based on single metric that is related to the delay and 
distance between source and destination [1]. It is numerous independent and selfish 
users in the Internet that provide Internet with economics and computer science char-
acters. So Internet routing is becoming a very ordinary problem [2]. After the inhered 
low efficiency of routing over network layer, the method in which users adopt source 
routing has been put forward to avoid the inefficient routing. Whereas, the source side 
independently chooses the routing using source routing. Therefore, the routing behav-
iors of the data flow are selfish because of the selfish characters in non-cooperative 
network users [3]. 

If the routing of the flow is decided by non-cooperative and selfish users to mini-
mize the cost and transfer delay, the routing allocation is expected to be stable. At the 
stable allocation, there are no users can minimize the transfer cost through change the 
routing. The selfish non-atomic routing is studied in this paper.  

2   The Model of Selfish Routing Game 

Long time ago, non-cooperative game theory was applied to study the routing prob-
lem in traffic network [4]. Users are regarded as the entity that control very small part 
                                                           
*  Foundation Items: Supported by the National Grand Fundamental Research 973 Program of 

China under Grant (2003CB314801) and the research fund for the doctoral program of 
higher education (20040286001). 
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of network flows, which can be even ignored when compared with the whole network 
flows, such as the automobiles on the highway [5].  

2.1   Mathematic Model 

We assume that there is a N users set, { }1, , N=N , which share a set of L parallel 

links { }1, , L=L  interconnecting a common source node S to a common destina-

tion node D (Showed in Fig.1.). The link set and link capability set { }1, , L=L  and 

{ }l l
c

L
. Each user ships data (non-atomic) flow by splitting it over the communica-

tion links. The data flow set, { }i i
f

N
, corresponds to flow rate set, { }i i

x
N

.  

 
 
 
 
 
 
 

Fig. 1.  Network environment with parallel links 

We study the system flow configuration vector f  sent by the source S as fol-
lows:  

1. End User: the system flow vector is ( )1, , , ,i N=f f f f . The flows of user i on 

each link constitute the routing vector of flow i: ( )1, , , ,l L
i i i if f f=f . 

Obviously, 0l
if

1. And any value can be assigned to l
if , the flow if  can be ar-

bitrarily split to ship.  

2. Link: the system flow vector is ( )1, , , ,l L=f f f f .  

Similarly, the flows of each user on link l constitute the routing vector on link l, 

( )1 , , , ,l l l l
i Nf f f=f . Obviously, l

i lf c .  

For convenience of the following discussion and without loss of generality, we as-
sume that the link capacity satisfies 1 2 Lc c c  and the flow rate satisfies 

1 2 Nx x x . 

In non-cooperative game, all users choose the strategies to maximize their profit. 
We measure the users’ profit with their cost function.  

The transfer delay is added into cost function. The transfer delay over the link l  

                                                           
1  We think that the flow traffic be function about the traffic of user i on link l, :l

if R+L . In 

this paper, how to split the flow and how to ship the flow with appropriate routing will be 
studied. 
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Different kinds of routing cost functions were discussed in the Ref. [6, 7, 8]. Sub-
sequently, we define the cost functions in non-cooperative selfish routing game. 

Definition 1 (cost function). In the non-cooperative selfish routing game, the cost 

function of user i ( i N ) is ( ) ( ) ( ), l l
i i i i il

J J J=f f f f
L

. 

if  is the flow vector except flow i. The cost function of user i over link l is 

( )l l l
i i lJ f d=f . 

The cost of user i is the sum of his cost over each link. So the cost function quanti-
fies the service level received by the flow. The greater ( )iJ f  is, the lower grade the 

service received by user i will be [7]. 

Definition 2 (NEP, Nash Equilibrium Point). ( ),i i iJ f f  is the cost function of user 

i. ( )* * *
1 , , , ,i Nf f f  is a NEP iff ( ) ( )* * *, ,i i i i i iJ Jf f f f , i if F , 0 i lf c . iF  is 

the set of all users’ possible flow configuration. 
From Def. 2., we can see NEP is a stable point in N users joined selfish routing 

game. User i split the flow and ship the flow to the corresponding routing with the 
cost ( ),i i iJ f f . After the system reaches NEP, any flow routing vector 'f  of users 

who deviate NEP, the cost of 'f  is not less than the cost of ( )* * *
1 , , N=f f f . The rout-

ing vector *
if  in Def. 2. is the dominated strategy of user i. Def. 2. also discusses the 

seeking NEP method in which user i chooses if  to minimize the cost, ( )*,
i i

i i imin J
f F

f f . 

In the following, we will discuss the existence and uniqueness of selfish routing 
game equilibrium. 

Proposition 1 (Existence and Uniqueness). N users share L links. If the cost func-
tion of user i ( 1, ,i N= ) defined in Def. 1., there is exists a unique NEP in the 
game. 

Proof: Seen in Ref [9].  
In the following, how to allocate the flow over each link at the NEP for minimizing 

the cost will be studied. To extend the following discussion, we introduce several 
lemmas that can be applied to the discussion and proved by Ref. [6]. 

Lemma 1. At the NEP, the flow vector, ( )1 2, , , L
i i if f f , satisfies 

1 2 L
i i if f f . 

Lemma 2. At the NEP, the flow vector, ( )1 2, , ,l l l
Nf f f , satisfies 1 2

l l l
Nf f f . 
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Lemma 3. The residual link capacity satisfies 1 2
1 2

L
Lc f c f c f . 

Lemma 4. At the NEP, the residual capacity of link l for user i, l l
i l ic f= , satis-

fies 1 2 L
i i i . 

In addition, if user i does not ship the flow to link l, 0m l
i if f= =  ( m l> ) holds 

from lemma 1. We denote the link set that user i chooses iL . So 0l
if =  ( il L ) 

and 0l
if >  ( il L ) hold. 

According to the above lemmas, we will study the allocation of user i over link l. 

Corollary 1. At the NEP, the flow that user i allocates over link l satisfies: 

( )   ,   

0                                                               ,   
i i

l m l m
i i i i i il m m

i

i

x l
f

l
= L L

L

L
 

Proof: Seen in Ref [9]. 
Obviously, the method of allocating the flow over the links is given in Prop. 1. 

How to compute the chosen link set is the precondition of the above method. Subse-
quently, we study how to compute the chosen link set by an example of computing 
the chosen link set of user i, iL . 

Corollary 2. We assume the chosen link set of user i is { }1, ,i iL=L . The relation-

ship between the flow rate and the residual link capacity of user i satisfies 

1 1 1

1 1 1 1

i i i ii i
L L L LL Lm m m m

i i i i i i im m m m
x +

= = = =
<  

Proof: Seen in Ref [9]. 

2.2   Network Link and Network Route 

Whether the routing model based on this game environment can be applied to general 
network topology in the same way? 

In general network topology, { }1, , ME E=E  denotes the node set. The link set 

among nodes is { }1, , L=L . We assume that the route set between source node and 

destination node should be { }1 2, , , ,NR R R R= , { }, , ,i S K DR l l l=  and 

{ },i j S DR R l l= . The route capacity, ( )1, , , ,r Nc c c=C , is equal to the lowest 

capacity of links along the route, the capacity of bottleneck link. We can deal with 
route set R  using the same method as dealing with link set. Thus the methods and 
conclusions in the link model can be applied to general network topology. 

2.3   “Atomic” Routing and “Non-atomic” Routing 

The flow is atomic for its serial transfer and not being split. Once a packet completes 
routing, packets subsequent to the former will be transferred according to the chosen 
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route until different route is selected. Similarly, in the connection data transfer (TCP). 
Consequently, this serial transfer mode has severely impacted the transfer rate and 
efficiency. Furthermore, the serial transfer mode demands quite high bandwidth of the 
route. If any route cannot meet its requirement, this application’s request will be de-
nied, while the sum of available bandwidth greatly exceeds the request from the ap-
plication at the same time.  

To overcome the defects of atomic flow transfer mode, we assume that the (non-
atomic) flow be split when the traditional routing problem is discussed. That is to say, 
the data flow can be arbitrarily split into task flows with any size over many paths. 
The transfer mode is non-atomic.  

The non-atomic data we discussed is relative to atomic data. Hence, non-atomic 
selfish routing game differs from active routing in which each packet can carry rout-
ing strategy and differs from the routing of traffic vehicle that is a routing decision-
maker.  

3   Selfish Routing Algorithm Based on Game Theory 

3.1   SRAG Algorithm 

The objective of designing SRAG algorithm: 

1. Based on non-cooperative game theory, the routing is chosen for minimizing the 
user’s cost. 

2. Through the running of SRAG algorithm, the routing chosen by each user will 
reach or converge at NEP. 

3. SRAG algorithm is distributed over users and asynchronously chooses routing. 

Using the conclusion of corollary 1, we design the SRAG algorithm seen in Ref [9]. 

3.2   Results of Simulation 

Experiment 1. The changes in chosen link set in SRAG algorithm of single flow. 

There are one user and six parallel links with capacity 1~6c  (showed in Tab. 1) in 

the network environment (showed in Fig. 1). 

Table 1.  The distribution of link capacity 

 1c  2c  3c  4c  5c  6c  

Link 10.67 8.31 7.946 5.32 4.135 2.01 

The results are showed in Fig. 2 at different flow rates. Obviously, the ladder shape 
figure accords with design idea of computing the chosen link set. 
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Table 2.  The distribution of flows 

 0f  1f  2f  3f  

Traffic 10.17 6.463 5.687 2.463 

Experiment 2. The routing results of SRAG algorithm with different flows. 

In experiment 2, the flows satisfy 0 1 2 3f f f f> > > . Obviously, 
1 2 6

i i if f f> > >  ( 0, ,3i= ) and 0 1 2 3
l l l lf f f f> > >  ( 1, ,6l= ) hold in 

Fig. 3. The experiment 2 is consistent with the lemma 1 and lemma 2 and validates 
the rationality of SRAG algorithm. 

4   Conclusions 

The non-cooperative behaviors in selfish routing are further studied with game theory. 
And then, the existence and uniqueness of NEP in routing game model is proved. 
Meanwhile, the user’s cost is minimized according to SRAG algorithm. The feasibility 
and effectivity of the algorithm is suggested by results of experiment and simulation. 
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Abstract. The problem of multicast routing with delay constraints is of great in-
terest in the communication area in the last few years and has been proved a 
NP-Complete problem. A novel multicast routing algorithm based on clone se-
lection operator is proposed to solve the problem. Simulations illustrate that 
compared with other algorithms, the proposed algorithm has a fast convergence 
speed and powerful search ability. The result shows that the proposed algorithm 
can find a better solution in the same time or even the shorter time. 

1   Introduction 

With rapid development of communication network and multimedia, the problem of 
multicast routing with delay constraints is of great interest in the last few years. The 
multicast routing with delay constraints problem has been proved a NP-complete 
problem [1]. Therefore, many heuristic algorithms have been proposed. E.g. KPP 
Algorithm [2], Bounded Shortest Multicast Algorithm (BSMA) [3], Constrained 
Dijkstra Heuristic Algorithm (CDKS) [4]. And more and more multicast routing algo-
rithms based on genetic algorithm [5] are proposed to solve this problem.  

In this paper, an algorithm based on clone selection operator [6] which solves the 
multicast routing with delay constraints problem is proposed. The paper will show 
that the proposed algorithm can perform better than orthogonal genetic algorithms 
which can search the solution space in a statistically sound manner.  

2   The Model of the Multicast Routing with Delay Constraints 
Problem 

A communication network is modeled as a graph ( , )G V E= , where V denotes a set of 

nodes and E  denotes a set of edges. ( , )x y E∀ ∈ , there exists (d( , ), c( , ))x y x y , where 

d( , )x y and c( , )x y are positive real number. Then ,a b V∀ ∈ , the total delays of the 

path between a and b  is 
( , ) ( , )

Delay( , ) d( , )
x y P a b

a b x y
∈

= and the total cost 

is
( , ) ( , )

Cost( , ) c( , )
x y P a b

a b x y
∈

= .Mathematically, when the given source node is s and 

{ }D V s⊆ − denotes the set of destination nodes, the problem is to find the multicast 

tree ( , )T TT V E= ( T TV V E E∈ ∈ ) such that 
( , )

Cost( ) min( c( , ))
Tx y E

T x y
∈

=  
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and delay( , ) ,is v d v D≤ Δ ∀ ∈ , where Cost( )T is the total cost of the multicast 

tree, idΔ is the given delay for the thi destination node and depends on applications.  

3   The Multicast Routing Algorithm Based on Clone Selection  

3.1   Coding Scheme 

Just as genetic algorithm, when designing a clone selection algorithm, the first step is to 
determine a coding scheme translating problem space to coding space. Coding scheme is 
a very important element of influencing the performance of a clone selection algorithm. 

After comparing in many respects, we adopted binary coding based on edges pro-
posed by Qingfu Zhang. This scheme is capable of representing all possible trees and 
the length of code is equal. In addition, it is easy to design clone selection operator 
employing this coding scheme.  

3.2   Antibody-Antigen Affinity Function 

Antibody-antigen affinity not only reflects the quality of this antibody for the prob-
lem, but also has to do with the number of this antibody been cloned. We proposed 
the antibody-antigen affinity function as follows  

i 0

( ) 1/ cost( ) *max(0, (delay ( ) maxdelay ))i i iα
=

Ψ = − −
d

a a a  
(1) 

where cost( )a is the total cost of the tree induced by antibody a , delay ( )i a is the total 

delay from the source node to the thi destination node, maxdelayi is the given delay 

for the thi destination, iα is a penalty coefficient which can be set.  

3.3   The Proposed Algorithm 

Based on the clone selection operator, we proposed a new multicast routing algo-
rithm, or clone selection based multicast routing algorithm CSMA. 

The steps are as follows:  

Table 1.  The Steps of the proposed algorithm CSMA 

Step1: set 0gen = , generate an initial population 1 2=[ , ..., ]nA a a a  and perform 
repair operation on every antibody. Then the population is 

r 1 2 r1 r2 r{R( ),R( ),...R( )} [ , ,..., a ]n n= =A a a a a a ; 
Step2: evaluate the affinity of every antibody; 
Step3: perform clone selection operator, or clone operation and immune genic 

operation and clone selection operation, on this population, and then produce the 
next generational population c c1 c2 c[ , ,..., a ]n=A a a ; 

Step4: 1gen gen= + , if no given termination criterion is satisfied, then go to 

Step2;else end. 
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4   Simulation Result 

The simulation network is created by the RNTGA algorithm [7] which guarantees the 
network is connective, the degree of every node is 2 at least and the average degree is 
invariable.  

In our experiments, we randomly generate networks and let the average node de-
gree be 4.We get destination nodes or multicast group, by randomly choosing from 
nodes in network. The cost and delay of an edge is randomly generated. In our simu-
lation, our proposed algorithm is compared with the algorithms, or 4OGA and 9OGA , 

proposed in [5].We let the number of individual in a population be 60 in 4OGA , 30 in 

9OGA and 20 in our algorithm. We let the clone scale be 5, thus the true search space 

in three algorithms is approximate equal. And we let the maximum generation be 200 
such that the running time is acceptable. And we let the mutation probability equals 

to
10

numside
, where numside is the length of code. 

We do the simulation experiments on the networks of 100 200 300 nodes generated 
by the RNTGA algorithm, with multicast group size equal to 5%, 15%, and 30% of 
the number of network nodes. Every program is executed for10 runs under any situa-

tion respectively. Then the average cost was evaluated, or
1

1 m

i

cost cost
m =

= , where 

m is the time of all the delay constraints being satisfied in the 10 times and cost is the 
cost of a multicast tree that satisfied all the delay constraints. In table 2, blank units 
denote there was no multicast tree satisfying constraints that has been found in the 10 
times. 

Table 2. Cost values of multicast trees constructed by 4OGA 9OGA or CSMR for network 
nodes equaling 100 200 and 300 with multicast group equaling 5% 15% and 30%  

Number of nodes=100 Number of nodes=200 Number of nodes=300  
5% 15% 30% 5% 15% 30% 5% 15% 30% 

4OGA  830.2 1386.9 1910.8 1349.1  4234.5 2523.0   

9OGA  789.7 1256.2 2338.6 1235.1  3807.9 2119.8 4171.5 6847.5 

CSMR 671.4 1136.9 2011.6 1208.0 2890.8 3695.0 1875.3 4106.7 6090.0 

Table 3. Time for 4OGA 9OGA or CSMR to construct multicast trees in all situations 
respectively 

Number of nodes=100 Number of nodes=200 Number of nodes=300  
5% 15% 30% 5% 15% 30% 5% 15% 30% 

4OGA  6.21 7.06 8.51 16.97 21.56 24.59 33.03 39.95 52.83 

9OGA  6.66 7.56 9.31 18.35 23.73 27.51 36.99 44.32 56.99 

CSMR 5.42 6.91 9.75 14.51 19.96 24.21 27.44 35.27 47.34 
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From table 2, we can see that cost of the tree constructed by our algorithm is 
lower than 4OGA and 9OGA for different network with different multicast group 

size. It is more encouraged that our program has a less running time in general from 
table 3. From these results, we can conclude our algorithm has a faster convergence 
speed and more powerful search ability. We can also find 9OGA is better 

than 4OGA , this is consistent with what the author in [5] has concluded. 

5   Conclusion 

Multicast routing with delay constraints problem has been proved to be NP-Complete. 
In this paper, we proposed a multicast routing algorithm based on clone selection. 
Compared with 4OGA and 9OGA , CSMR has a fast convergence speed and powerful 
search ability  
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Abstract. A genetic algorithm-based routing service for building a mul-
ticast distributed tree on Simulation Grid is proposed. Different from ex-
isting algorithms, the proposed routing algorithm doesn’t demand that
all the routers in the whole network have multicast functionality. It can
meet federates’ QoS requirements and minimize the bandwidth consump-
tion. We formalize the routing as a multi-objective optimization problem,
which is NP-hard, and apply GA (Genetic Algorithm) to solve it. Also,
we focus on the two important aspects of encoding & decoding and fitness
function construction in our GA, and present the procedure of seeking
the optimal paths. Experiment results have showed that the proposed
approach is feasible.

1 Introduction

Distributed interactive simulation has already been applied in many fields and
is becoming the third important approach to know and change the objective
world subsequent to theoretical and experimental research. At present, HLA is
dominating the modeling & simulation world. However, a lot of limitations have
emerged as HLA has been used in more and more fields. Over the past several
years, the concept of “Grid” computing, which was proposed by Ian Foster as
secure and coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations has become a hot topic, and a number of
scholars are attempting to introduce Grid into the modeling & simulation world
to overcome the defects of HLA. Such an intention brings about the naissance
of Simulation Grid. One important objective of Simulation Grid is to provide
integrated dynamic management ability for such massive data resources as the
terrain, models and texture in the simulation system to eliminate the defect of
tight coupling between federates and data resources [1,2].

In Simulation Grid, massive data resources are stored in different organi-
zations connected by wide-area network. At runtime, for a federate, there is a
strong need for remote access to large data sets, or models, as well as live data
feeds from other immersive spaces. For many applications, the (3D) data models
to be rendered can easily be 10’s of gigabytes, consisting of a time series of large
polygonal meshes, massive volumetric data and texture maps. Although the net-
work infrastructure is improved continuously, the available bandwidth is far from
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satisfaction because of the increasing demand in bandwidth. Consequently, de-
signing a transport mechanism for virtual environment data capable of meeting
the (soft) real-time transmission requirements of these immersive systems is a
significant challenge [3].

Multicast is a kind of one-to-many communications, in which one source sends
desired data to many destinations, and the data is duplicated and distributed
at key routers during transport. Compared with unicast, multicast has great
advantage in band saving. In Simulation Grid, multicast is employed to transport
virtual environment data based on the following consideration. First of all, in
order to construct an immersive environment, the data should bear continuity in
both time and space. That is, multiple federates located in the same area usually
access the same virtual environment data at the same time. Secondly, different
from interactive data, the virtual environment data transported in Simulation
Grid is enormous in quantity. The transport is only in one direction from source
to destinations. Above characteristics indicate that multicast is a good candidate
used to transport virtual environment data in Simulation Grid.

An important aspect of multicast is routing. By now, almost all of the mul-
ticast routing algorithms are based on the presupposition that all the routers in
the network have multicast ability [6,7,11]. Grid environment is grounded on the
existing network substrate and consists of a lot of routers bearing no multicast
functionality. Therefore, research on multicast routing for Simulation Grid is a
meaningful work.

In this paper, we consider the design of a multi-objective routing service for
simulation grid to support real-time data transport using multicast. The rest
of the paper is organized as follows. In Section 2, we describe the system-level
architecture and the role of multi-objective routing service in simulation grid.
Section 3 formulizes the multi-objective routing as a constrained multi-objective
programming problem. In Section 4, we apply genetic algorithm to solve the
problem and describe the genetic algorithm we use. We then discuss results of
experiments. In Section 5, we present concluding remarks and discuss future
work.

2 Simulation Grid and Its Routing Service

A federation refers to a distributed simulation consisting of two or more au-
tonomous simulators, or federates. Figure 1 shows the system-level architecture
of a typical Grid-based federation federates interface through a remote server
that manages federation state and provides all simulation-related services [4,5].
All the system components, such as computing resources, storage resources, fed-
erates, etc., are published as services. Grid infrastructure is used as the lower level
communication channel, and the proxy acts on behalf of the HLA-compatible
legacy federate to translate normal federate-RTI communication into Grid ser-
vice invocations and vice versa. Besides services shown in Figure 1, there ex-
ist some other services, such as, Computing Service accessed by computation-
intensive federates, Work Flow Service supporting automatic setup of a feder-



774 W. Wu et al.

Grid Infrastructure

Federate 1

Proxy

Federate 2

Proxy

Federate N

Proxy...

Simulation
Services

Routing
Service

Storage
Service

Other
Services

Fig. 1. A Grid-base federation

ation, Monitoring Service used for monitoring federation execution, etc. Grid-
based communication may introduce more overhead than existing HLA [5], and
yet it is beyond the scope of this paper, which focuses on the Routing Service.

The goal of Routing Service is to find the optimal paths for virtual environ-
ment data based on multicast technology. When a number of federates concur-
rently download virtual environment data from multiple storage nodes, which
can collaboratively provide data service for them, the overall process involves
several steps. Firstly, federates query Index Service of Grid to locate the Storage
Service and Routing Service and get their access methods. Secondly, they access
Routing Service to provide their desired bandwidth, delay and jitter, which are
needed to build a multi-objective multicast tree. Finally, data transport begins
based on the calculated multicast tree.

3 Multi-objective Routing Formulation

In Simulation Grid, two important aspects should be considered when building
a multicast distributed tree. Firstly, the bandwidth, end-to-end delay and jit-
ter should meet the requirements of federates. Secondly, the network resources
should be used in an optimal way. We choose bandwidth as the network opti-
mization parameter. Therefore, the optimal multicast distributed tree should be
the one that can guarantee the desired bandwidth, delay and jitter and at the
same time minimize them.

In order to deliver multicast data to all the destinations, multicast distributed
tree is used to describe the multicast paths. There exist four types of multicast
distributed tree: flooding technique, source tree, core based tree and Steiner tree.
In consideration of meeting the real-time requirement of Grid-based simulation
applications, which bears strict delay bound and massive data traffic, and of
balancing their data traffic in the Grid environment, source tree is adopted as
the multicast distributed tree in this paper. Below is the formal description for
multi-objective routing, which can be employed to build a source tree.

The underlying communication network is modeled by an undirected graph
N = (V,E,M), which is a structure consisting of a finite set of vertices
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V = {v1, v2, ..., vn} and a finite set of edges E = {(vi, vj)|vi, vj ∈ V and vi �= vj},
where each edge is an unordered pair. V corresponds to the set of routers and E
to the set of physical links between them. M is a subset of all the V ’s elements
whose corresponding routers bear multicast functionality. The weight on an edge
is multicast cost, which usually refers to bandwidth cost and can be defined as:

cost(e) : V × V )−→ (0,∞), ∀e ∈ E.

There is a delay corresponding to each edge:

delay(e) : V × V )−→ (0,∞), ∀e ∈ E.

In addition, for each vertex v ∈ V , a third function is associated, which
denotes whether the corresponding router bears multicast functionality:

cost(v) =
{

0 if v ∈M
∞ if v ∈ V −M

. (1)

Based on above definitions and inspired by the seminal work of [6,7,11], in
this paper we model the multi-objective routing problem as follows: given a
multicast source s ∈ V and a multicast destination set D ∈ V , find a RPT
(Rendezvous Point Tree) T such that

Minimize f1(T ) =
∑

e∈ET
cost(e) +

∑
v∈VT

cost(v)
f2(T ) =

∑
e∈PT (s,d) delay(e), ∀d ∈ D

f3(T ) = |
∑

e∈PT (s,d1) delay(e)−
∑

e∈PT (s,d2) delay(e)|,
∀d1, d2 ∈ D

Subject to c1 = mine∈PT (s,d){cost(e)} ≥ Bmin, ∀d ∈ D
c2 = mine∈PT (s,d) delay(e) ≤ Dmax, ∀d ∈ D
c3 = |

∑
e∈PT (s,d1) delay(e)−

∑
e∈PT (s,d2) delay(e)| ≤ Jmax,

∀d1, d2 ∈ D

, (2)

where s ∈ VT , D ⊆ VT , T ⊆ N , and VT is the set of nodes in T . PT (s, d)
is the unique path from source s to destination d in tree T . Bmin, Dmax and
Jmax are the desired bandwidth, acceptable delay and jitter, respectively. f1,
f2 and f3 are objective functions that seek to minimize the total connecting
cost, delay and jitter between nodes. c1, c2 and c3 are inequality constrained
functions that specify the lower bound for desired bandwidth and the upper
bound for acceptable delay and jitter.

4 Applying GA to Solve Multi-objective Routing

Most of the constrained minimum spanning tree problems are NP-hard, which
cannot be solved in polynomial time. Because of their complexity, Genetic algo-
rithm [8,13,14] are deployed to tackle these questions in the paper. This approach
has been successful since GA is computationally simple, not affected by data
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distributions, and uses parallel search capability to evaluate the entire solution
space.

GA is search algorithm that mimics the behavior of natural selection. GA
attempts to find the best solution to some problem (e.g., the maximum of a func-
tion) by generating a collection ( “population” ) of potential solutions ( “chro-
mosomes” ) to the problem. Through mutation and recombination (crossover)
operations, better solutions are hopefully generated out of the current set of
potential solutions. This process continues until an acceptably good solution is
found. In order to solve model (2), some preparations need to be done.

We extend the arbitrary graph N = (V,E,M) to a complete graph G =
(V,E,M), in which E ⊆ E is obvious. The cost and delay on an edge e ∈ E are
defined as:

cost(e) =
{

cost(e), ∀e ∈ E
∞, ∀e ∈ E − E

and delay(e) =
{

delay(e), ∀e ∈ E
∞, ∀e ∈ E − E

, (3)

respectively. Other definition remains unchanged. Therefore, the multi-objective
optimization problem illustrated in model (2) can be rewritten as:

Maximize z1 = z1(T ) = −
∑

e∈ET
cost(e)−

∑
v∈VT

cost(v)
z2 = z2(T ) = −

∑
e∈PT (s,d) delay(e), ∀d ∈ D

z3 = z3(T ) = −|
∑

e∈PT (s,d1) delay(e)−
∑

e∈PT (s,d2) delay(e)|,
∀d1, d2 ∈ D

Subject to g1 = Bmin −mine∈PT (s,d){cost(e)} ≤ 0, ∀d ∈ D

g2 = mine∈PT (s,d) delay(e)−Dmax ≤ 0, ∀d ∈ D

g3 = |
∑

e∈PT (s,d1) delay(e)−
∑

e∈PT (s,d2) delay(e)| − Jmax ≤ 0,
∀d1, d2 ∈ D

.(4)

Before performing reproduction operators of GA such as crossover, which
mimics propagation, and mutation, which mimics random changes occurring in
nature, it is needed to decide how to encode and decode chromosomes, generate
initial population and construct fitness function. This section we focus on the
two important aspects of encoding & decoding and fitness function construction
in GA, and give a preliminary experiment to validate the algorithm.

4.1 Prüfer Sequence-Based Encoding and Decoding

Genetic algorithms operate on encoded representations of the solutions, equiva-
lent to those chromosomes of individuals in nature. It is assumed that a potential
solution to a problem may be represented as a set of parameters and encoded as
a chromosome. In this paper, Prüfer sequence [8,11,12,15] is chosen as the coding
technique for tree structure, considering its concision and convenience when a
computer processes it based on genetic algorithms.

A spanning tree for a graph N is a subgraph of N that is a tree and contains
all the vertices of N . For the k-vertex complete graph G = (V,E,M) the number
of deferent spanning trees is kk−2, and there exists a bijective from the spanning
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trees to the Prüfer sequences which consist of k − 2 numbers. Given a labeled
tree, we suppose that the least leaf is labeled i1, and that its unique neighbor is
labeled j1. Remove i1 and its edge from the tree, and let i2 be the least leaf on
the new tree, with its unique neighbor j2. This process is repeated until there are
only two vertices left, the Prüfer sequence (j1, j2, . . . , jk−2) uniquely determines
the tree. However, the chromosomes cannot be obtained simply by recovering a
trees form the Prüfer sequences because its corresponding spanning tree T has
no root and some of the leaves of T may not be the multicast destinations. This
problem can be easily tackled based on the technique stated in [11].

4.2 Fitness Function Construction

A shown in model (4), it is an optimization problem with multiple objectives.
The fitness function construction mainly involves handling its multiple objectives
and constraints. Assigning a weigh, which states the preference, to each objective
is the usual way to convert multiple objectives into a single objective. Recently a
lot of weight approaches have been proposed, such as random-weight approach,
adaptive weight approach [8], etc. This paper adopts fixed-weight approach [8]
due to its concision and convenience to implement. As a result, the fixed-weight-
based single objective function is expressed as

Maximize z = z(T ) = 1
3

∑3
i=1 zi(T ), ∀T ∈ Pop

Subject to gi ≤ 0, j = 1, 2, 3
,

where we simply assume that all the three objectives bear the same importance.
Genetic algorithm, like other evolutionary algorithms, is unconstrained op-

timization procedures. Therefore it is necessary to device ways of incorporating
the constraints into the fitness function. Use of penalty function is the most
common approach in GAs to handle constraints. The basic principle is to de-
fine the fitness value by adding penalties into the objective function. This paper
chooses adaptive penalty function described in reference [8], which can adapt
penalties according to the population, because of its use in prior studies and
better performance, as follows:

p(T ) = 1− 1
3

3∑
i=1

(
Δbi(T )
Δbmax

i

)α

,

where
Δbi(T ) = max{0, gi(T )},

Δbmax
i = max{ε,Δbi(T )|T ∈ Pop}, i = 1, 2, 3,

among which ε is a positive infinitesimal. As a result of introducing weights and
penalties, the single objective function with no constraints, which is called fitness
function, can be expressed as:

fitness(T ) = z(T )p(T ). (5)
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Observing functions (1), (3), (4) and (5) simultaneously, we can deduce that
the value of fitness(T ) would be positive infinity if T contained either a router
bearing no multicast functionality or an edge e ∈ E

∧
e �∈ E. Therefore, T would

eventually be eliminated through selection. That is, the multicast distributed tree
corresponding to the optimal solution is made up of the vertices v ∈M and the
edges e ∈ E. It is exactly our original intention.

4.3 Preliminary Experiment and Results

In order to validate the genetic algorithm-based approach used to tackle our
problem, we conducted a simple experiment, in which a variation of the famous
Simple Genetic Algorithm or SGA was used. Both our encoding & decoding
technique and our fitness function were incorporated into the variation, as fol-
lows:

Algorithm: ExpeAlgorithm
BEGIN

t := 0;
randomly initialize population;
evaluate population based on fitness function fitness(T);
while t < pop_size do
BEGIN

select solutions for next population based on
roulette wheel selection approach;

perform two-point crossover and uniform mutation;
evaluate population based on fitness function fitness(T);
t := t + 1;

END
END

ExpeAlgorithm proceeded by first Random initialization. A pseudo random
number generator was used to generate the initial population, which did not
build in any bias in its selection. For each gene, an integer in the range of 1 to
k− 2 was randomly generated. The initial chromosomes were not required to be
legal or generate a feasible tree. They wre expected to be widely varied to en-
able exploration of a wider solution space without being trapped in local optima.
Then selection, crossover and mutation operators were performed repeatedly un-
til the max step pop size was reached. Roulette wheel selection [8], two-point
crossover [10] and uniform mutation [9] were used, respectively. Basic param-
eters of GAs include: population size, probability and type of crossover, and
probability and type of mutation, whose values in the experiment were shown
as Figure 2(a).

The experiment scenario was based on the network topology shown as Fig-
ure 2(b), in which the node labeled 1 was multicast source node, 6, 7, 8 and 9
were destination nodes. The ordered pairs on links represented available band-
width and delay. For such requirements as 1 unit of bandwidth and 5 units of
end-to-end delay, the optimal multicast distributed tree would be denoted as the
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Parameter Value

Population Size

Two-Point Crossover

Uniform Mutation

70

0.65

0.007

(a) Parameters of GA

4 2

5

(2,2)

(2,4)

(1,3)(1,4)

(1,2)

(1,1)
1

3

(2,1)
(1,2)

(1,4)

(2,2)

(3,1)

(2,3)

(1,1)

(1,1)

7 8

6 9

(b) Network Topology

Fig. 2. Parameters of GA and network topology used in the experiment
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(a) All the nodes have multicast
functionality

4 2

5

(2,2)

(2,4)

(1,3)(1,4)

(1,2)

(1,1)
1

3

(2,1)
(1,2)

(1,4)

(2,2)

(3,1)

(2,3)

(1,1)

(1,1)

7 8

6 9

(b) Node 3 has not multicast func-
tionality

Fig. 3. Optimal multicast distributed trees

thick lines in Figure 3(a) if all the nodes in the network had multicast function-
ality, and would be thick-lined tree in Figure 3(b) if node 3 had not multicast
functionality.

In our experiment, ExpeAlgorithm was run one hundred times with a max
step 600 in the latter case, in which node 3 had no multicast ability. The prob-
ability of getting the optimal tree was 87%, which showed that the proposed
multi-objective routing service had strong ability in finding the optimal multi-
cast distributed tree.

5 Conclusions and Future Work

In Grid-based interactive simulation, federates need remotely access massive
virtual environment data, which is stored in different organizations connected
by wide-area network. Heavy bandwidth burden is imposed upon the underlying
network infrastructure. Multicast is chosen as the data transport technology
due to its band-saving advantage. The traditional multicast routing algorithms
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cannot gracefully be applied to Simulation Grid environment since Grid is based
on the existing network substrate and consists of a lot of routers bearing no
multicast functionality.

In this paper, we have presented a multi-objective routing service for building
a multicast distributed tree on the Grid infrastructure, which consists of a lot of
routers bearing no multicast functionality. The goal of multi-objective routing
service is two-fold. Firstly, we want to take full advantage of the existing network
substrate to deliver data based on multicast technology. Secondly, we want to
improve the overall network utilization and transport the virtual environment
data in a way of meeting federates’ requirements. We have formalized the routing
as a multi-objective optimization problem, which is NP-hard, and applied genetic
algorithm to solve it. Also, we have focused on the two important aspects of
encoding & decoding and fitness function construction in our GA, and presented
the procedure seeking the optimal solution. Experiment results have showed that
the proposed approach is feasible. Besides the modeling & simulation world,
the proposed approach can be used in such applications as Grid-based Video
Conference, etc.

Clearly, employing multicast technology to transport massive real-time data
in Grid environment involves many aspects that cannot be addressed in a single
paper. Much work remains to be done.

As our research proceeds, we will further investigate the genetic algorithm
used in this paper. The success rates in finding the optimal solution still have
much space to improve. Perhaps this can be achieved by design more efficient
weight functions for the three objectives and penalty functions for the con-
straints. Of course, there is a need to estimate the available bandwidth infor-
mation used by the routing service. The active probing or passive monitoring
approach can be employed for such purpose.

We will also take such factor into account that the process of searching opti-
mal multicast tree based on genetic algorithm may be time-consuming. In order
to not make federates “wait” too long for the finish of searching, predicting data
transport and building multicast tree in advance may be beneficial.

We will strengthen the proposed multi-objective routing service to allow a
destination to exit or new destination to join the multicast distributed tree since
a federate may exit or new one may join the federation in the simulation process.

Finally, we need to test its overall performance in a Grid environment. Fur-
thermore, such experimentations may also help to determine the appropriate
mutation rate in population size, and thus help to improve the overall perfor-
mance of our GA.
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Abstract. Clustering is very important to data analysis and data minig. The K-
Means algorithm, one of the partitional clustering approaches, is an iterative 
clustering technique that has been applied to many practical clustering problems 
successfully. However, the K-Means algorithm suffers from several drawbacks. 
In this paper, an adaptive genetic algorithm be present , it solve disadvantages 
of K-Means by combine parallel genetic algorithm, evolving flow and adaptive. 
Experimental results show that the adaptive genetic algorithm have advantages 
over traditional Clustering algorithm.  

1   Introduction 

There are two ways of data clustering, hierarchical clustering and partitional cluster-
ing. The former can find out the relationship from the ungrouped data through separa-
tion and combination; the latter can do it through partition. The K-Means algorithm is 
the most common one in the traditional partitional clustering approaches. But we find 
that the K-Means algorithm is not a perfect one. The K-Means algorithm cannot clus-
ter and deal with the overlap groups when handles the huge data. The main shorts of 
the K-Means algorithm are as follows: (1) We must know the number of the cluster 
before using the K-Means algorithm; (2) K-Means algorithm must depend on the 
initial cluster pivot; (3) The result of the K-Means algorithm may be the local opti-
mum; (4) K-Means algorithm cannot deal with the overlap data properly. 

We take the Genetic-algorithms-based clustering algorithm presented by Maulik 
and Bandyopadhyay [1] as reference, and we also consult the Adaptive genetic algo-
rithms presented by Srinivas and Patnaik [2]. So in this paper we put forward a cluster-
ing approach based on Adaptive Genetic Algorithms. 

2   Related Research 

2.1   Genetic Algorithms  

J. Holland presented the essential theory of Genetic algorithms in 1975. Genetic algo-
rithms is an optimization searching mechanism of emulating the evolvement of na-
ture. At the beginning of Genetic algorithms, many random results are produced. 

                                                           
*  The Project Supported by Zhejiang Provincial Science Foundation of China (601081) and 
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Through the competition of these results, good results will be remained and become 
the objects of partnership and reproduction so as to produce the offspring after re-
grouped. However the bad results will be eliminated. In the second-generation results, 
these who have favorable adaptability will be selected to match and reproduce. In this 
way, like the evolvement of nature, we can approach the best result little by little. 
Because of the obvious characteristics of Genetic algorithms, it is always used to 
resolve optimization problem.  

2.2   Adaptive Genetic Algorithms 

The adaptive concept was derived from Messy Genetic algorithms, which presented by 
Goldberg [3] in 1989. Through the variable-length of chromosome presented in Messy 
Genetic algorithms [4], some scholars began to study the Adaptive genetic algorithms.  

During the evolvement of nature, the change of a clan, the selection, crossover and 
mutation of the offspring vary with the environment to adapt it. In order to make the 
evolving process be up to the evolvement of nature, it is necessary to improve the 
traditional Genetic algorithm and add adaptive concept. The purposes of the Adaptive 
genetic algorithms are as follows [4]:  Maintain the difference of chromosomes in 
the clan;  Improve the state of premature convergence in Genetic algorithms;  
Avoid destroying schemata because of crossover. 

3   Clustering with Adaptive Genetic Algorithms  

If we use traditional Genetic algorithm to get approximate optimal result, it may be 
the local optimum one, the reason may be that the probability of crossover and muta-
tion are fixed. There are many unknown factor hidden in the evolvement of nature, 
the change, the selection, crossover and mutation of clans vary with the environment 
to adapt it. In this paper, we combine the concept of the adaptive with Genetic algo-
rithms to approach the evolvement of nature, and try to change the fixed probability 
of crossover and mutation to adaptive one, and apply the theory to resolve the mis-
judging problem of clustering by K-Means algorithms and speed up the evolvement 
of huge data.  

3.1   The Coding of Chromosome and the Initialization of Clans 

Partitional clustering can divide the multi-dimensional space data into k groups accord-
ing to the attribute or character. In this way, if we know the number of cluster then we 
can code the vector caused by the points of k groups into chromosome. Every chromo-
some denotes a result of clustering. We define the length of chromosome as follows: 

kdl ×=  (1) 

Here, l denotes the length of chromosome; d denotes the space dimension or data 
attribute dimension, and k denotes the number of the cluster. In this paper, we use 
continuous data as the test data, and adopt real number coding as the chromosome 
coding. We randomly choose the k points of the groups as the initialization of every 
chromosome of a clan, to make things convenient for the later calculation. 
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3.2   Function 

In the calculation of adaptive value, we cluster the data by an algorithm just like the K-
Means, and then update the previous collocated pivot by the new pivot in the chromo-
some. Since the K-Means algorithms take the distance between the pivot and every 
data point in the group as the reference, we can define the adaptive function as follows: 

∈

=
ij

C X
ij n,1,=jk,,1,=i,z-xF  

(2) 

In formula (2), Xj denotes the data point of Ci, i=1… k; Zi is the pivot of group Ci. 

3.3   Evolving Flow 

In this paper, tournament selection scheme is adopted as the selecting mode. It is one 
of the multi-chosen modes and extremely suitable for the application of parallel Ge-
netic algorithms. Through this way, Ntour (Ntour 2) chromosomes are chosen at ran-
dom. Then the best one will be the seed for producing next generation by judging the 
adaptive value.  

One-point crossover is adopted as crossover mode mainly because it is a very basic 
one. The mutation rule of evolutionary method is adopted in mutation mode. In for-
mula (3), v denotes the genetic value of chromosome. δ denotes a random constant 
which ranges between 0 and 1. The probability of selecting addition or subtraction is 
equal in the evolutionary method. 

vvv ×±← δ  
(3) 

The adaptive probability mode is adopted to judge the probability of crossover and 
mutation. As we know, the reference information of Genetic algorithms comes from 
the adaptive value of chromosome. So, the adaptive probability in this paper is also 
based on the adaptive value of chromosome. The value of adaptive determines the 
quality of chromosome. At the same time, we can judge whether the adaptive value is 
involved in the local optimum by the difference between the fmax and adaptive value 
f  in the evolution of every generation.  

So, we take the difference between fmax and f   as the basic rule of the crossover 

probability (Pc) and the mutation probability (Pm), and the traditional Pc and Pm are 
changed as (4) and (5): 

1.0k),f -/(fk=P 1

_

max1c  (4) 

1.0k),f -/(fk=P 2

_

max2m  (5) 

According to the above two formulas, the values of traditional invariable Pc and Pm 
have been changed into variables, where, k1 and k2 are random variables between 0 
and 1.0. We can adjust those two formulas according to the crossover and mutation. 
The process of crossover is selecting two couples of chromosomes randomly from 
clusters as Parents to make genetic exchange to produce another two couples of chro-
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mosomes, which will be considered as offspring. While mutation is the process of 
genetic mutating, to expect that the adaptive value can reverse the trend of Pc and Pm, 
in another word, the higher the adaptive value is, the lower the Pc and Pm are. So we 
can change formula (4) and (5) to (6) and (7). 

 1.0=Pc 1

_

max

~

max1  ),kf- )/(ff-(fk  (6) 

 1.0=P 2m ),kf- - f)/(f(fk
_

maxmax2  (7) 

In formula (6), 
~

f denotes the maximum of the adaptive values in any two chromo-

somes preparing to copulate, in format (7), f means the adaptive value of every 

chromosome, where, k1 and k2 are also random variables between 0 and 1.0. From 
formula (6) and (7), we can see that Pc and Pm may vary with the crossover parents 
and chromosomes. 

In the Pc, if the D-value between maxf  and f   becomes smaller relatively, it 

means that the whole process of the evolving turns to the case of slow moving. At this 
time, the value of Pc, which will increase relatively, can make all the chromosomes in 
the clusters to copulate to generate new generations, to speed up the process of muta-
tion. In the Pm, if the D-value between maxf  and f   becomes smaller, it means that 

the whole process of the evolvement may drop into the station of local optimum. 
While the maxf = f

~ or maxf =f, the value of Pc or Pm will be zero, means reserving the 

best chromosome to produce better generation. 
In addition, we also should consider the cases of f

~ < f  and f< f . In these cases, 

we must redefine the values of Pc and Pm. We set the Pc =1.0 and Pm =0.5, in order to 
make the worse chromosomes generate the better chromosomes by copulating and 
mutating, so that the complete adaptive of Pc and Pm can show as following:  

=≥−−=
otherwise

kffffffk
Pc

,0.1

0.1,
~

),/()
~

( 1maxmax1  (8) 

=≥−−=
otherwise

kffffffkPm
,5.0

5.0,),/()( 2

_

maxmax2  (9) 

From the above description, the evolvement parameter are as follows: Selecting mode 
is Crossover mode, Crossover mode is Single-point crossover, Crossover probability 
is Adaptive probability, Mutating mode is Evolutionary mutation, and Mutating prob-
ability is Adaptive probability. 

4   The Result and Analysis of Experimentation 

The test data in this paper is practical, which is Glass data provided by the University 
of California[6]. The experimental result of the four clustering method is shown in 
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Table 1. The data in Table 1 show the results of Genetic algorithms and Adaptive 
genetic algorithms are better than that of K-Means and are the same as that of the 
other method. The max value almost decreases 31% misjudgments.  

Table 1. The Experimental Data of Glass Data 

Data  
Method    

Type
5(13) 

Type
7(29) 

Total 
Distance 

Misjudg-
ment Rate 

K-Means 
H-Means[5] 
Pure Genetic algo-
rithms +K-Means 
Adaptive Genetic 
algorithms+K-Means 

5   Conclusion  

We test Glass data by K-Means, H-Means, Genetic Algorithms and adaptive Genetic 
algorithms respectively during the experimental process. Through the experimental 
result, we discover that Adaptive genetic algorithms can greatly improve the mis-
judgments of K-Means and H-Means, and find out the proper representative pivot 
when solving clustering problem, and is better than Genetic algorithms in evolving 
speed. It is more effective especially the vast amount of data. 
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Abstract. Ant colony optimization (ACO) is relatively new computational 
intelligence paradigm and provides an effective mechanism for conducting a 
global search. This work proposes a novel classification rule mining algorithm 
integrating ACO for search strategy and fuzzy set for representation of the rule 
terms to give the system flexibility to cope with continuous values and 
uncertainties typically found in real-world applications and improve the 
comprehensibility of the rules. The algorithm uses a strategy that is different 
from ‘divide-and-conquer’ and ‘separate-and-conquer’ approaches used by 
decision trees and lists respectively; and simulates the ants’ searching different 
food sources by using attribute-instance weighting and an effective pheromone 
update strategy for mining accurate and comprehensible rules. Obtained results 
from several real-world data sets are analyzed with respect to both predictive 
accuracy and simplicity and compared with C4.5Rules algorithm. 

1   Introduction 

Ant colony optimization (ACO) is recently developed heuristics for finding solutions 
to difficult search and optimization problems based on simulation of foraging 
behavior of ant colonies [1]. The application of ACO to classification is a research 
area still relatively unexplored. In fact, mining of classification rules is a search 
problem and ACO is very successful in global search and can cope better with 
attribute interaction than greedy rule induction algorithms. Furthermore, the 
application of ant algorithms requires minimum understanding of the problem 
domain. Parpinelli et al first worked on the application of ant algorithms to 
classification rule mining in [2] and then extended their work on optimizing 
parameter values and on the complexity of the algorithm and republished in [3]. The 
overall approach of Ant-Miner is a 'separate-and-conquer' one. It starts with a full 
training set, creates a 'best' rule that covers a subset of the training data, adds the best 
rule to its discovered rule list, removes the instances covered by said rule from the 
training data, and starts again with a reduced training set. This goes on until only a 
few instances are left in the training data, at which point a default rule is created to 
cover those remaining instances. This algorithm and its extended version [4-5] 
generate rule sets from data sets that have only nominal attributes that is why, a 
discretization process is necessary for the continuous attributes. Also Cordon et al 
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have used an ant algorithm designed for solving the quadratic assignment problem to 
learn fuzzy control rules [6]; however it is outside the scope of data mining.  

The algorithm proposed in this paper, called FCACO (Fuzzy Classification Rules 
Mining Algorithm with Ant Colony Optimization), is the first ACO algorithm for 
discovering fuzzy classification rules. Continuous attributes are dealt with using fuzzy 
sets. The fuzzy representation of the rule conditions not only gives the system more 
flexibility to cope with uncertainties typically found in real-world applications, but 
also improves the comprehensibility of the rules. The proposed approach performs a 
different strategy used in Ant-Miner. Instead of ‘separate-and-conquer’ strategy, this 
approach uses attribute-instance weighting and an effective pheromone update 
strategy. 

2   The Proposed Method: FCACO 

Each fuzzy rule covers a particular region of the attribute space described by the rule 
antecedent. The rule consequent that maximizes the rule quality is assigned to the rule 
once the rule antecedent is completed. This is done by assigning the rule consequent 
to the majority class among the instances covered by the rule. 

Assume a training set of K instances T = {(x1, c1), ..., (xK, cK)} where xk = {xk
1, ..., 

xk
N} is an instance taken from some attribute space {X1, ..., Xn}, and ck∈{C1, ..., Cm} is 

the class label associated with xk. Upper indices k is used to denote the k-th training 
instance, and lower indices n to denote the n-th attribute xk

n of a training instance xk. 
Fuzzy rules are of the form Ri: if X1 is A1i and . . . XN is ANi then Y = ci in which Xn 
denotes the n-th input variable, Ani the fuzzy set associated to Xn and ci∈{C1, ...,   CM} 
represents the class label of rule Ri. For a particular instance xk, the rule activation  

μRi(x
k) = μRi({xk

1, ..., x
k
n}) = ( )n

k
A

N

n
x

ni
μ

1
min

=
 (1) 

describes the degree of matching between the rule and the instance. Each possible 
classification Cm accumulates the degree of activation of fuzzy rules Ri with a 
matching consequent ci = Cm. The instance xk is classified according to the class label  

Cmax(x
k) = argmaxCm ( )

= mii

i

CcR

k
R xμ  (2) 

that obtains the majority class. 
Ant-Miner and improved Ant-Miner proposed for only data sets that have only 

nominal attributes are run sequentially several times for mining classification rules, 
each time being run against a reduced data set. Ordered rule sets, or lists used in Ant-
Miner, come with an inherent deterrent to comprehensibility – the meaning of a single 
rule in the list is dependent on all the previous rules and the further down the list you 
get the more difficult it is to make sense of the rule. The instances that are correctly 
classified by the mined rule are removed from the training set. Rules mined in later 
stages are unaware of the previously removed instances and therefore might be in 
conflict with rules mined earlier. Unexpected interactions between rules can appear 
when an instance is covered by several rules of different classes.  
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Let T rules of a class have been mined and we wish to mine the T+1 rule for the 
same class. The information that the system has about the T rules, are the instances 
from the training set that were not covered by them, but for the system is not known 
as the T rules affect on the instances from other classes. Furthermore, when working 
with fuzzy rules and instances, this problem increases since the instances are covered 
by a rule in a degree. This can cause unexpected interaction between rules. That is 
why, in this study ‘separate-and-conquer’ approach has not been followed; a different 
method that simulates the ants’ finding different food sources by using attribute-
instance weighting with different pheromone update strategy has been performed. The 
main steps of FCACO are shown in Figure 1.  

Fuzzify continuous attributes 
Discovered_Rule_List = [] // empty initially 
Initialize all trails with the same amount of pheromone  
While (Number of unweighted instances in the Training Set >  
       maxInstUnweighted OR yielding a positive fitness)//’AntRun’  
  i=0 
  Repeat // 'iteration' 

   i=i+1 
   Ants incrementally construct classification rule 
   Assign rule consequents 
   Prune just-constructed rules 
   Update pheromone of trail followed by the best Ant 
Until (i >= NoOfIterations) OR (Best rule does not change  
                           throughout MaxRulesConverge-1 iteration) 
Select the best rule among all constructed rules 
Add rule to Discovered_Rule_List 
Weight the instances covered by mined rule 
Update amount of pheromone for mining of other rules   
                   //simulation of searching different food sources 

End While 
output Discovered_Rule_List 

Fig. 1. Main steps of FCACO 

Each run generates a number of AntRuns in succession. An AntRun uses the 
training set to generate a number of fuzzy if-then rules with a number of ants, 
NoOfAnts. At the end of an AntRun, the best rule generated is added to the rule set 
for that run. All instances and attributes in the training set covered by this newly 
added rule are reweighted, and amount of pheromone in these instances is reduced for 
mining other rules. The next AntRun then uses the resulting training set with different 
amount of pheromone. The number of AntRuns is determined dynamically based on 
the predetermined value of a parameter: maxInstUnweighted, i.e. the maximum 
number of instances in the training set that may be left unweighted by the rules in the 
rule set. No more AntRuns will be generated if the remaining number of instances in 
the unweighted training set is less than or equal to the value of this predefined 
parameter. The motivation for using this criteria is to avoid overfitting of a rule to just 
a very small number of instances. In this way, simpler rule sets that are more easily 
interpreted by a human user are mined. Furthermore in this study, an additional 
stopping criterion for the number of AntRuns has also been implemented. 
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Occasionally, towards the end of a run, the best rule generated by an AntRun has a 
quality value of zero. This happens when the instances remaining in the training set 
are few and disparate, and the minimum number of instances that must be covered by 
any rule is generally too great at this point to generate useable rules. Therefore if the 
best rule of the current AntRun has quality equal to zero, though the 
maxInstUnweighted criteria may not yet be satisfied, no more AntRuns are 
generated, and the best rule is not added to the final rule set. 

For each rule, the system prunes the rule. The basic idea of this rule pruning 
procedure is that, the lower the predictive power of a condition; the more likely the 
condition will be removed from the rule. The predictive power of a condition is 
estimated by its information gain, a very popular heuristic measure of predictive 
power in data mining. This rule pruning procedure was chosen because the 
computation has already been done in heuristic function and this is both effective and 
computationally efficient. 

After pruning, each rule is assigned a quality value based on how well it covers 
instances in the training set. The best rule of each iteration is saved in a temporary 
storage structure, BestRulesOfIterations, and is used to update the amount of 
pheromone of the terms before the next iteration is initiated. There are two user-
defined parameters that control the number of iterations that may be executed by an 
AntRun: maxRulesConverge and NoOfIterations. The first parameter sets 
the value, p, for the maximum number of best rules from successive iterations that are 
allowed to be the same. If this value is reached then the current AntRun will halt. At 
this point the best rule from BestRulesOfIterations is selected and added to 
the final rule set for the run. The NoOfIterations parameter controls the 
maximum number of iterations that may be executed if the maxRulesConverge 
value is not reached during that AntRun.  

2.1   Problem Dependent Elements 

The elements of an ACO algorithm that must be adapted to the particular problem 
domain are heuristic and fitness functions. Heuristic function will be used for 
constructing of a rule antecedent and fitness function assesses how well a rule 
constructed by an ant covers instances in the training data in this study. 

2.1.1   Heuristic Function 
Each termij that can be added to the current rule antecedent has an associated heuristic 
value ij. This value gives an estimate of the quality of this term with respect to its 
ability to improve the predictive accuracy of the rule being constructed. The term 
heuristic values are calculated at the beginning of each AntRun as they depend on the 
weights of the instances in the training set, i.e. after the training set has been weighted 
they need to be recalculated. Heuristic values are recalculated each time after a term is 
selected for addition to the current rule antecedent being constructed; when this 
happens the term selected needs to be ignored in subsequent term selections as do 
other terms belonging to the same attribute of the chosen term. Since the heuristic 
function is a normalized one the heuristic values of the remaining terms, i.e. the terms 
that may still be selected by the current ant, need to be recalculated. 
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a is the total number of attributes, xi is set to 1 if the attribute Ai is not yet used by the 
current ant, otherwise 0. bi is the number of domain values of the i-th attribute. 

wij is the weight of the attribute computed whenever a rule is inserted to the rule 
list. The idea is to reduce the weights of the attributes contained by the mined rules to 
avoid from mining the same rule and to mine the other rules. Initially all the weights 
are set to 1. When the j-th value of the i-th attribute is included in the rule its weight is 
reduced as wij = wij-η wij withη =0.001 

This heuristic is a local heuristic as it is applied to individual terms and this makes 
it sensitive to attribute interaction. The amount of pheromone of a term actually acts 
as another heuristic in an ACO, but of a more global kind. In fact, ACO does not need 
accurate information in its heuristic value, since the amount of pheromone 
compensates for small potential errors in the heuristic values [4].  The pheromone 
values are changed depending on the fitness of the rule as a whole, i.e. taking into 
account attribute interactions occurring in the rule.  

2.1.2   Fitness Function 
The fitness function that shows the quality of a rule consists of three parts. The 
first part considers sensitivity, specificity, and accuracy criteria and can be 
defined as 

aw

AccuracyawySpecificitySensitivit
Q

+
×+×=

1

'
1  (5) 

FNTP

TP
ySensitivit

+
= , 

FPTN

TN
ySpecificit

+
= , and 

FNFPTNTP

TNTP
Accuracy

+++
+=  

Accuracy’=Accuracy when Accuracy>0.7 and Accuracy’=0 otherwise. aw is the 
weight of the accuracy and is set to 0.01. This term of this part of fitness slightly 
reinforces the fitness of high-accuracy rules. 

In case of nominal attribute, sensitivity is the accuracy among positive instances, 
and specificity is the accuracy among negative instances and TP is true positives, 
the number of instances covered by the rule that have the same class label as the 
rule; FP is false positives, the number of instances covered by the rule that have a 
different class label from the rule; FN is false negatives, the number of instances 
that are not covered by the rule but have the same class label as the rule, and TN is 
true negatives, the number of instances that are not covered by the rule and do not 
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have the same class label as the rule. However, in this study fuzzy classification 
rules are mined, and an instance can be covered by a rule antecedent to a certain 
degree in the range [0…1], which corresponds to the membership degree of that  
instance in that rule antecedent. Therefore, the system computes fuzzy values for 
TP, FP, FN, and TN as  
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Here, p is the number of instances in the training data set; wk is weight of the 
instance and is computed as the minimum weight of its attributes.  

The number of correctly and incorrectly classified instances irrespective of their 
weight is a consistency criterion and must be included in the fitness function as 
second part. The rationale is to avoid that rules generated in the later stages 
sequentially make inaccurate generalizations based on the few remaining instances 
with high weights, while ignoring previously down-weighted instances. Part of the 
fitness for rule consistency of unweighted instances is accordingly computed by 
considering the number of correctly and incorrectly classified instances covered by 
the rule Ri and can be defined as 
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Another criterion considered for fitness function, third part, is the length of the 
rule. This part of fitness rewards a concise rule and is computed as 
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The final fitness function is weighted sum of these described criteria: 
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=
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weight1=1, weight2=1, and weight3=0.0005 were empirically determined.  

2.2   Problem Independent Elements 

Problem independent elements of an ACO are transition rule and pheromone update 
strategy. The balance between exploration and exploitation has been ensured with 
these elements in this study. 
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2.2.1   Transition Rule 
The probability that the condition is added to the current partial rule that the ants 
areconstructing is given in Figure 2 [5]. In order to enhance the role of exploration 
this transition rule is used. 

ï

if ϕ≤1q  

   repeat 

      ijP  

   until ≤
∈ iJj

ij2 Pq  

   select termij 
Else 

Choose termij with max ijP  

Fig. 2. Transition Rule 

Here q1 and q2 are random numbers, ϕ  is a parameter in [0, 1] and is set to 0.4 in 

simulations, ji is the number of i-th attribute values, and Pij is the probability 
calculated using 
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Pij is the probability that termij is selected to be added to the current partial rule 
antecedent; ij is the heuristic value associated with termij; ij(t) is the amount of 
pheromone associated with a termij at iteration t; a is the total number of attributes; 
bi is the number of domain values of the i-th attribute; I are the attributes not yet 
used by the ant;  and  are two adjustable parameters that control the relative 
weight of the heuristic and pheromone values respectively. In FCACO, these are 
kept fixed at 1, thereby giving them equal importance. 

2.2.2   Pheromone Update Strategy 
Note that in Ant-Miner, the amount of pheromone of terms is updated after the 
creation of each ant, while in this implementation the amount of pheromone is 
updated once at the start of each iteration, based on the best ant from the previous 
iteration. This makes the pheromone updating of terms more discriminatory and 
therefore provides more direction to the search of ants in successive iterations. 

At the start of an AntRun, the amount of pheromone of all terms is initialized and 
given equal value, the inverse of the total number of terms. 
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Here, z represents the z-th rule and t is the t-th iteration in mining of z-th rule. Each 
time an ant completes the construction of a rule, the amount of pheromone for all 
terms is updated. The amount of pheromones of terms that occur in the constructed 
rule R is increased in proportion to the quality, Q, as follows. 

( ) ( ) ( ) jiQtztztz ijijij ,,,1, ∀+=+ τττ  (11) 

The amount of pheromone associated with each termij that does not occur in the 
constructed rule has to be decreased, to simulate the phenomenon of pheromone 
evaporation in real ant colony systems. Dividing the value of each ijτ  by the 

summation of all ijτ performs the reduction of pheromone of an unused term. Only the 

best ant is used for pheromone updating, ensuring that exploration is more directed. 
This formula is used for constructing one rule for Discovered_Rule_List. For 
simulation of searching different food sources, after best rule from 
BestRulesOfIterations is selected and added to the 
Discovered_Rule_List, amount of pheromone of the terms included in the best 
rule is decreased and other best rules are forced to be found. That is why; another 
amount of pheromone of terms must be kept for mining other rules. Each time a best 
rule is included in the list, amount of pheromone is initialized using  
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The computation of ( )tRE  was previously used for boosting in induction of fuzzy 

rule-based classifiers [7]. Here ( )tRE  is the error of the fuzzy rule Rt mined at 

iteration t. ( )tRE  of a fuzzy rule Rt is weighted by the degree of matching ( )k
t xRμ  

between the k-th training instance (xk, ck) and the rule antecedent as well as its weight 
wk and can be defined as 
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In other words, the goal of simulation of searching different food source is to find 
rules that perform well over the current distribution of training instances.  
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3   Simulation Results 

Five data sets described in Table 1 available from the UCI ML repository were 
used. The first column gives the name of the data set, the second the number of 
attributes (excluding the conclusion attribute), the third the total number of 
instances in the data set, and the final column gives the number of class labels. 
Three of the data sets have binary class labels while the other two represent multi-
class domains. All of the data sets have continuous attributes. Note that the number 
of instances includes the missing valued instances. In this study, instances that had 
any attribute with missing value were removed from the data sets.  

User specified membership functions were used for fuzzy classification. In the 
simulations, ten iterations of the whole ten-fold cross-validation (10-CV) procedure 
were used for estimating predictive accuracy.  Since FCACO is based on a 
stochastic process and the results produced therefore vary from one 10-CV to the 
next, the same folds were used for each of the ten 10-CV tests. That is, the data set 
was not re-shuffled and split into k different subsets before each of the ten 10-CV 
runs. This was done in order to test the deviation in the performance statistics 
arising from FCACO, and not due to any changes in the folds used. 

In the simulations, user-specified system parameters were set as 
NoOfIterations=80, NoOfAnts=30, maxInstUnweighted=10, and 
maxRulesConverge=10. 

Table 1. The used data sets                          Table 2. Comparison of accuracy rates 

 FCACO C4.5Rules 
Data set Attributes Instances Classes

 Training Test Training Test 
Breast W 9 699 2  98.3 95.26 96.9 94.0 

Bupa 6 345 2  69.91 65.5 71.1 66.3 
Diabetes 8 768 2  78.9 75.3 76.0 73.0 

Glass 9 214 6  80.5 78.9 80.4 78.9 
Wine 13 178 3  96.9 96.76 94.4 93.3 

Table 3. Comparison of simplicity 

Rules Terms 
Data set FCACO C4.5Rules FCACO C4.5Rules 
Breast W 6.9 8.1 11.8 19.8 

Bupa 8.6 14.0 17.1 36.8 

Diabetes 10.9 13.1 24.5 29.7 

Glass 13.9 14.0 28.0 29.1 

Wine 5.4 4.6 12.5 14.5 
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Table 2 shows the average accuracy rate on training and test data for FCACO 
and C4.5Rules. In the simulations, all C4.5 parameters had their default values. In 
this table, the rules obtained by FCACO have higher accuracy on training and test 
data than the rules obtained by C4.5Rules in four out of five data sets. The 
differences in accuracy rates are significant in some data sets. C4.5Rules found 
rules that have higher accuracy than FCACO in one data set, Bupa, and the 
difference is significant. Too simple rules mined by FCACO that were underfitted 
to the data seem the reason of this situation.  

The results of the simplicity of the mined rule set measured by the number of 
mined rules and the average total number of terms in all mined rules of both FCACO 
and C4.5Rules are shown in Table 3. The results obtained by FCACO are much better 
than the results obtained by C4.5Rules in four out of all data sets. FCACO mined a 
slight more number of rules in Wine data set, however it mined simpler rules. 

4   Conclusions and Future Works 

This work proposed a new ACO algorithm, called FCACO, for mining fuzzy 
classification rules. Furthermore it requires minimum understanding of the problem 
domain. The strategy used in FCACO is different from ‘divide-and-conquer’ and 
‘separate-and-conquer’ approaches used by decision trees and lists respectively. It 
simulates the ants’ searching different food sources by a different pheromone 
updating strategy and attribute-instance weighting. FCACO was compared with 
C4.5Rules algorithm in five real-world data sets. Overall the results show that, 
concerning predictive accuracy, FCACO is competitive with C4.5Rules and finds 
considerably simpler rules. These results are promising since C4.5Rules has been 
evolving from the research of decades in decision tree and rule induction algorithms.   

One research direction is to investigate the sensitivity of FCACO to its system 
parameters by performing more elaborated experiments by using optimized 
parameters. Another research direction consists of simultaneously searching for 
intervals of continuous attributes and mining of classification rules that these intervals 
conform to avoid from conveying a loss of information. The proposed method has a 
very convenient structure for parallel or distributed architecture and that is why, it 
would be interesting to try parallel implementation of this method using different 
heuristic and fitness functions, pheromone update strategies, and more transition rules. 
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Abstract. In an investment process, there is usually a goal implicitly
or explicitly designated by an investor. However, traditional constant
proportion portfolio insurance (CPPI) strategy considers only the floor
constraint but not the goal aspect. In addition, empirical evidences show
that a mutual fund manger’s risk-attitude changes when the mid-year
performance outperforms or under-performs the benchmark. There seems
to be two contradictory risk-attitudes according to different studies: low
wealth risk aversion and high wealth risk aversion. Although low wealth
risk aversion can be explained by the CPPI strategy, high wealth risk
aversion can not be explained by CPPI. We argue that these contra-
dictions can be explained from two perspectives: the portfolio insurance
perspective and the goal-directed (or goal-seeking) perspective. This pa-
per proposes a goal-directed (GD) strategy to express an investor’s goal-
directed trading behavior and combines it with the portfolio insurance
perspective to form a goal-directed constant proportion portfolio insur-
ance (GDCPPI) strategy. In order to compare these 3 strategies, we build
an effectiveness measure using deviation of absolute distance. From our
statistical test results, the GDCPPI strategy dominates the other two
strategies under this measure. We also apply the genetic algorithm (GA)
technique to find a satisfactory set of parameter values for the GDCPPI
strategy to improve its performance.

1 Introduction

Portfolio insurance is a way of investment with the constraint that the wealth
can never fall below a pre-assigned protecting wealth floor. The optimal trading
strategy for a constant floor turns out to be the popular constant proportion
portfolio insurance (CPPI) strategy [1,2] and can be expressed as xt = c(Wt−F ),
where xt is the amount invested in the risky asset at time t, Wt is the wealth at
time t, c is a constant risk multiplier, and F is the floor. This optimal strategy
states that one should invest more in the risky asset when the wealth increases.
In practice, a mutual fund manager generally sets up a performance objective in
terms of wealth or return at the beginning of a period. Then the fund manager
has to do his best to achieve this objective or goal. Now if a fund manager follows
the CPPI strategy and the current wealth is very close to the goal, he will invest
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a large portion in the risky asset and will have a greater chance of failing his
almost reached goal. This possibility is not favorable to mutual fund managers.
The major reason of this is that CPPI strategy only considers the floor but does
not take the goal state into account, while fund managers do have the goal state
in mind during the investment process.

Evidences show that an investor will change his risk-attitude under differ-
ent wealth levels. CPPI strategy demonstrates this phenomenon. In addition,
some studies showed fund managers change their risk-attitudes based on their
performance compared to the benchmark. However, there are contradictory ob-
servations among these studies. Some studies observed that fund managers take
risk-seeking behavior when their performance is worse than the benchmark while
some other studies observed that fund managers take risk-averse behavior when
their performance is worse than the benchmark.

These contradictions in fact can be explained by portfolio insurance perspec-
tive and goal-directed perspective, respectively. Goal-directed perspective pro-
poses that an investor in financial markets will consider some investment goals.
A goal-directed investor will take risk-seeking behavior when the distance from
current wealth to the goal is large and will take risk-averse behavior when the
distance from current wealth to the goal is small. Obviously, a CPPI investor’s
risk-attitude changing direction is opposite to a goal-directed investor’s.

We therefore construct a goal-directed (GD) strategy xt = c(G −Wt) under
constraint Wt ≤ G, where G is the goal. We further combine the portfolio in-
surance constraint and goal-directed constraint as F ≤ Wt ≤ G to construct a
goal-directed CPPI (GDCPPI) strategy, xt = c[α(Wt − F ) + (1 − α)(G −Wt)],
0 ≤ α ≤ 1. Since the GDCPPI strategy reduces to the CPPI strategy when
α = 1 and reduces to the GD strategy when α = 0, the proposed GDCPPI
strategy is a generalization of both CPPI and GD strategies.

To compare feasible strategies under some constraints, we only need to com-
pare their objective function values. However, to compare arbitrary strategies,
feasible or not, under some constraints, we need a more sophisticated measure.
Since CPPI strategy is the optimal strategy under the floor constraint, we can
use a strategy’s mean absolute distance (error) to the CPPI strategy as a mea-
sure for the floor constraint. We use the mean absolute distance to the GD
strategy as a measure for the goal constraint by symmetry. For both the floor
and the goal constraints, we construct two measures: the mean absolute distance
μh(x) and the standard deviation of absolute distance σh(x) for a strategy x.
Since the forms of μh(x) for strategies CPPI, GD, and GDCPPI are identical,
this measure does not show which strategy dominates the others all the time.
This paper therefore applies the measure σh(x) to show that GDCPPI strategy
dominates the CPPI and GD strategies all the time in the statistical tests.

We also apply the genetic algorithm (GA) technique to find a better set of
strategy parameter values. We execute 30 GA learning runs to show that GA
technique does indeed find a better set of strategy parameter values.

The remainder of this paper is organized as follows. Section 2 formulates
the models of our goal-directed strategies. Section 3 builds two measures to
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evaluate an arbitrary strategy. Section 4 performs some experiments to show
the measurement effects of these strategies and the GA learning experiments.
Section 5 describes our conclusions and directions for future works.

2 Trading Strategies

2.1 CPPI Strategy

The formulation and solution of optimal portfolio insurance problem will be
described following Grossman’s work [3]. Assume there are two assets: a risk-
free asset such as a T-bill and a risky asset such as a stock. Let the stock price
dynamic be dPt

Pt
= μdt + σdzt, where μ is the mean of returns, σ is the standard

deviation of returns, and zt is a Brownian motion at time t. The portfolio wealth
dynamic is then dWt = rWtdt + xt(μdt + σdzt), where r is the risky-free rate
of return and xt is the dollar amount invested in the risky asset. Suppose an
investor tries to maximize the growth rate of expected utility of the final wealth
under the portfolio insurance constraint. The problem becomes:

ξ =sup
A

lim
T→∞

1
γT

lnE[γU(WT )] (1)

s.t. Wt ≥ K, ∀t ≤ T

where A denotes the set of admissible trading strategies, 0 �= γ ≤ 1, and K > 0
is the floor. The optimal strategy to the above optimization problem is:

x∗
t =

μ

σ2(1− β)
(Wt −K), (2)

where β = 1
1+ μ2

2γξσ2

= 2γξσ2

2γξ+μ2 .

Equation (2) can be simplified as:

ζt ≡ xt = c(Wt −K),Wt ≥ K, (3)

where c = μ
σ2(1−β) can be regarded as an investor’s risk multiplier, K is the

protecting floor. This ζt is the popular CPPI strategy.

2.2 Risk Attitudes

Studies showed that there are two different types of risk attitudes. Tourna-
ment theory studies the behaviors of fund managers comparing to the bench-
mark. Some studies observed that under-performers become risk-averse and out-
performers become risk-seeking [4,5,6]. Other studies observed that the under-
performers will become more risky than the better-performers in mutual fund
markets [7]. We name these two risk attitudes as low wealth risk aversion and
high wealth risk aversion, respectively and summarize them as follows.
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Low Wealth Risk Aversion: An investor will become risk-averse when his
current wealth is low and will become risk-seeking when his current wealth is
high.

High Wealth Risk Aversion: An investor will become risk-averse when his
current wealth is high and will become risk-seeking when his current wealth is
low.

Although low wealth risk aversion can be explained by the CPPI strategy,
high wealth risk aversion can not be explained by CPPI. We argue that these
contradictions can be explained from two perspectives: the portfolio insurance
perspective and the goal-directed (or goal-seeking) perspective.

2.3 Goal-Directed Strategy

The CPPI strategy in equation (3)

xt = c(Wt −K),Wt ≥ K

can be generalized to
xt = c|Wt −K|. (4)

Equation (4) can be regarded as a general strategy of the following two special
cases defined by different constraints.

Floor-Protected: xt = c(Wt − K) ≥ 0,Wt ≥ K. This trading strategy is
reasonably regarded as the CPPI strategy to protect the floor K such as K = F .

Goal-Directed: xt = c(K −Wt) ≥ 0,Wt ≤ K. Here, since Wt ≤ K, K should
not be regarded as the protecting floor. As we have argued that a fund manger
will take a riskier activity when goal distance is large and will take less risky
activity when goal distance is small from goal-seeking perspective. Then, the K
can be reasonably regarded as the goal, i.e., K is replaced by a gaol G. Therefore,
we propose a goal-directed (GD) strategy as ηt ≡ xt = c(G−Wt),Wt ≤ G, where
G is the goal and c is a constant.

2.4 Goal-Directed CPPI Strategy

CPPI strategy considers the floor but not the goal while GD strategy considers
the goal but not the floor. Neither strategy considers both the floor and goal.
We therefore further generalize them to derive a goal-directed CPPI strategy as
follows.

Equation (4), xt = c|Wt −K|, can be rewritten as

xt = c|Wt −K| = c(α|Wt −K|+ (1− α)|Wt −K|), 0 ≤ α ≤ 1
xt = c(α|Wt −K|+ (1− α)|Wt −K ′|), 0 ≤ α ≤ 1, if K = K ′

xt = c[α(Wt − F ) + (1 − α)(G−Wt)], 0 ≤ α ≤ 1, F ≤Wt ≤ G,
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where K and K ′ are generalized to F = K ≤ K ′ = G. Finally,

θt ≡ xt = c[α(Wt − F ) + (1− α)(G −Wt)], 0 ≤ α ≤ 1, F ≤Wt ≤ G.

We define θt as the goal-directed CPPI (GDCPPI) strategy, which combines
portfolio insurance perspective and goal-directed perspective and is under con-
straint F ≤Wt ≤ G. It is easy to see that GDCPPI strategy is a generalization
of both CPPI and GD strategies.

– When α = 1, xt = c(Wt−F ) and the GDCPPI strategy reduces to the CPPI
strategy.

– When α = 0, xt = c(G−Wt) and the GDCPPI strategy reduces to the GD
strategy.

3 Measures for Strategies with Floor and Goal
Constraints

To compare feasible strategies under some constraints, we only need to compare
their objective function values. However, to compare arbitrary strategies, feasible
or not, under some constraints, we need a more sophisticated measure. Since
CPPI strategy is the optimal strategy under the floor constraint, we can use a
strategy’s mean absolute distance (error) to the CPPI strategy as a measure for
the floor constraint. We use the mean absolute distance to the GD strategy as
a measure for the goal constraint by symmetry. For both the floor and the goal
constraints, we construct two measures: the mean absolute distance μh(x) and
the standard deviation of absolute distance σh(x) for a strategy x. A strategy
with smaller mean absolute distance then is a better one. Since the forms of
μh(x) for strategies CPPI, GD, and GDCPPI are identical, this measure does
not show which strategy dominates the others all the time. Therefore, we finally
apply the measure σh(x) to compare arbitrary strategies.

3.1 Mean Absolute Distance

The ζ strategy and the η strategy are taken in this paper as two reference
strategies to calculate an arbitrary strategy’s mean absolute distances under
different constraints. Let strategy st be an reference strategy. For any strategy
xt, its absolute distance is |xt − st| at time t.

Under floor constraint Wt ≥ F , since ζ is the optimal strategy, ζ is taken as
the reference strategy. Then the absolute distance for any strategy xt is |xt− ζt|
at time t. Let f(xt) = |xt − ζt| and F (x) = {f(xt)}. We build a measure:

μf (x) = μ(F (x)) = μ({f(xt)}) =
∑N

t=1 |xt − ζt|
N

. (5)

When xt = c(Wt − F ), i.e., xt = ζt, the absolute distance at each time t is
f(xt) = |ζt − ζt| = 0 and μf (ζ) = 0 which attains 100% optimality.
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Under goal constraint Wt ≤ G, η is taken as the reference strategy by sym-
metry. Then the absolute distance for any strategy xt is |xt − ηt| at time t. Let
g(xt) = |xt − ηt| and G(x) = {g(xt)}. We build a measure:

μg(x) = μ(G(x)) = μ({g(xt)}) =
∑N

t=1 |xt − ηt|
N

. (6)

When xt = c(G − Wt), i.e., xt = ηt, the absolute distance at each time t is
g(xt) = |ηt − ηt| = 0 and μg(η) = 0 which attains its minimum.

Since ζ is used as the reference strategy under constraint Wt ≥ F and η is
used as the reference strategy under constraint Wt ≤ G, it is natural to use both
of them as the reference strategies under constraint F ≤ Wt ≤ G. Since the
absolute distance is f(xt) under constraint Wt ≥ F and the absolute distance
is g(xt) under constraint Wt ≤ G, the average of f(xt) and g(xt) is a suitable
start to calculate the absolute distance under constraint F ≤Wt ≤ G.

Let H(x) = F (x) ∪ G(x) = {f(xt), g(xt)}. Therefore, by taking ζ and η as
the reference strategies, we build a measure:

μh(x) = μ(H(x)) = μ({f(xt), g(xt)}) =
∑N

t=1(|xt − ζt|+ |xt − ηt|)
2N

. (7)

We can therefore compare the three strategies ζ, η, and θ by measure μh(x):

μh(ζ) =
c

N

N∑
t=1

|Wt(ζ)−
F + G

2
| (8)

μh(η) =
c

N

N∑
t=1

|Wt(η)− F + G

2
| (9)

μh(θ) =
c

N

N∑
t=1

|Wt(θ)−
F + G

2
| (10)

We can see that equations (8), (9) and (10) have the same form. These
measures in fact are their mean absolute distance of wealth to the average of
floor and goal. This seems to imply that the μh measure can not distinguish
among the 3 strategies. Therefore, it is necessary to find another measure to
compare these strategies.

3.2 Distance Volatility

Since μh(ζ), μh(η) and μh(θ) can not always dominate each others in all cir-
cumstances, we will build a new measure from the concept of distance volatility.
In general, under the same mean of returns, a strategy with smaller standard
deviation of returns is better then the others. Applying this concept, we build a
new measure:
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σh(x) = σ(H(x)) = σ({f(xt), g(xt)})

= [
1

2N

N∑
t=1

((f(xt)− μh(x))2 + (g(xt)− μh(x))2)]
1
2 . (11)

We can see that σh(x) is the standard deviation of absolute distance and smaller
σh(x) is preferred. Therefore, we can compare strategies ζ, η and θ by measures
σh(ζ), σh(η) and σh(θ), respectively.

4 Experiments

This study performs experiments for strategy comparison and strategy optimiza-
tion by genetic algorithms.

4.1 Strategy Comparison

This experiment compares the 3 strategies by the σh measure.

Generate Price Random Walk Series: In order to get sufficient random
walk series, we set up the admissible price-related parameter sets for μ and
σ as: μ ∈ {−23%, 0%, 23%} and σ ∈ {20%, 30%, 40%}. Then we have 9 price-
related parameter combinations. In addition, under each combination instance,
we generate 20 price random walk series. Therefore, we have 180 price random
walk series.

Strategy Parameter Sets: The strategy parameter sets are set up as follows:
c ∈ {1.5, 2.5, 3.5}, α ∈ {0.25, 0.5, 0.75}, F/W0 ∈ {0.74, 0.84, 0.94}, G/W0 ∈
{1.06, 1.16, 1.26}. F/W0 is the ratio of floor and initial wealth and G/W0 is
the ratio of goal and initial wealth. Therefore, there are 81 strategy parameter
combinations.

Statistical Test: For each strategy parameter combination, we compute σh(ζ),
σh(η), σh(θ) for each of the 180 price random walk series. Then we perform the
paired-samples t test for pair σh(ζ)-σh(θ) and pair σh(η)-σh(θ). The hypotheses
and the t test results are as follow.

– For pair σh(ζ)-σh(θ), the null hypothesis is H0 : σh(ζ) ≤ σh(θ). The testing
results show that its mean difference is 6.617855, t = 130.083, degree of
freedom is 14579, p = 0.000. For 95% significance level, the test shows that
the result has reached the statistical significance. Therefore, we can reject
the hypothesis H0 and then we can reasonably accept that σh(ζ) ≥ σh(θ).

– For pair σh(η)-σh(θ), the null hypothesis is H0 : σh(η) ≤ σh(θ). The testing
results show that its mean difference is 6.960135, t = 131.062, degree of
freedom is 14579, p = 0.000. For 95% significance level, the test shows that
the result has reached the statistical significance. Therefore, we can reject
the hypothesis H0 and then we can reasonably accept that σh(η) ≥ σh(θ).

In sum, the GDCPPI strategy θ dominates the CPPI strategy ζ and the GD
strategy η under the σh measure.
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4.2 Strategy Optimization by Genetic Algorithms

We have shown that θ (GDCPPI strategy) is better than ζ (CPPI strategy) and
η (GD strategy) by the σh measure under constraint F ≤ Wt ≤ G. However,
we still do not know which θ strategy parameter values are the best. For this
problem, we apply genetic algorithm (GA) [8] technique to search satisfactory
strategy parameter values. GAs apply the concept of natural evolution by select-
ing and crossing over better chromosomes, and mutating genes in order to build
new possibly better solutions. The GA optimization design and testing results
are as follow.

Optimization Design: The purpose of applying GA technique in this exper-
iment is to search satisfactory strategy parameter values: {c, α, F/W0, G/W0}.
Therefore, each parameter stands for a gene in the chromosome by GA’s termi-
nology. The detail designs are as follows.

– Each chromosome consists of 4 genes {c, α, F/W0, G/W0}, with total 21 bits.
– Gene c: 5 bits. If the decimal value of this gene is D, then the decoded value

of c is 1 + D/10, i.e., c ∈ [1.1, 4.1].
– Gene α: 6 bits. If the decimal value of this gene is D, then the decoded value

of α is D/63, i.e., α ∈ [0.00, 1.00].
– Gene F/W0: 5 bits. If the decimal value of this gene is D, then the decoded

value of F/W0 is 1 − (D + 1)/100, i.e., F/W0 ∈ [0.68, 0.99]. Therefore, the
floor will be in [0.68, 0.99] times the initial wealth.

– Gene G/W0: 5 bits. If the decimal value of this gene is D, then the decoding
value of G/W0 is 1 + (D + 1)/100, i.e., G/W0 ∈ [1.01, 1.32]. Therefore, the
goal will be in [1.01, 1.32] times the initial wealth.

– Fitness function and GA parameters: The fitness function is to minimize
σh(θ). The other important GA parameters are as follow: the population
size is 80, each run executes 40 generations, crossover is two-point, mutation
rate is 0.001 per bit, and selection method is expected value.

– Testing design: We use the independent-samples t test to validate whether
the strategy parameter values found by GA are better than arbitrary strat-
egy parameter values. Therefore, there are two sample groups: (i) the σh(θ)
values computed from the artificial predetermined strategy parameter val-
ues: c ∈ {1.5, 2.5, 3.5}, α ∈ {0.25, 0.5, 0.75}, F/W0 ∈ {0.74, 0.84, 0.94},
G/W0 ∈ {1.06, 1.16, 1.26}, which generate 81 samples, (ii) the σh(θ) val-
ues computed from GA search by 30 runs, which then generate 30 samples.
For independent-samples t test, this sample size is acceptable.

GA Statistical Test: The null hypothesis is H0 : σh(θcomb) ≤ σh(θga), where
comb stands for the predefined parameter combinations, and ga stands for the
GA search. The results of independent-samples t test are described as follow.
The mean of σh(θcomb) for 81 strategy parameter combinations is 6.7171 and the
mean of σh(θga) for 30 GA runs is 0.0832. Since the Levene’s equality of variance
test shows p = .000, it means these two sample groups have different variance.
The t-test shows p = .000, that is this test has reached statistical significance.
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Then, we can reject the null hypothesis. That is, the GA does really find better
parameter values by the σh measure under constraint F ≤Wt ≤ G.

5 Conclusions

Traditional portfolio insurance strategy such as CPPI does not consider the goal
perspective and may fail an almost reached goal as a result. This paper considers
the goal-seeking perspective in order to formulate new goal-related strategies.
We first generalize the CPPI strategy into a general form and then derive a new
goal-directed (GD) strategy under constraint Wt ≤ G. Furthermore, this paper
builds a goal-directed CPPI (GDCPPI) strategy under constraint F ≤Wt ≤ G.
To compare feasible strategies under some constraints, we only need to compare
their objective function values. However, to compare arbitrary strategies, feasible
or not, under some constraints, we need a more sophisticated measure. Since
CPPI strategy is the optimal strategy under the floor constraint, we can use a
strategy’s mean absolute distance (error) to the CPPI strategy as a measure for
the floor constraint. We use the mean absolute distance to the GD strategy as
a measure for the goal constraint by symmetry. For both the floor and the goal
constraints, we construct two measures: the mean absolute distance μh(x) and
the standard deviation of absolute distance σh(x) for an arbitrary strategy x.
Since the forms of μh(x) for strategies CPPI, GD, and GDCPPI are identical, this
measure does not show which strategy dominates the others all the time. This
paper therefore constructs the measure σh(x) to show that GDCPPI strategy
dominates the CPPI and GD strategies statistically. This paper also applies the
GA technique to optimize the GDCPPI strategy.

Future directions of this research include the followings.

– To derive the optimal GD and GDCPPI strategies in a more rigorous way.
– To generalize the parameters c and α as expressions rather than constants:

We have shown that an investor’s risk-attitude will be changed under dif-
ferent wealth state. Since c plays as a risk multiplier, making c varying
according to some risk factors is a reasonable generalization. In addition,
the CPPI strategy and the GD strategy are two opposite strategies which
may dominate each other under different situations. Therefore, dynamic α
is also a possible generalization.

Finally, goal-directed behavior is an interesting and important topic in practi-
cal investment. This kind of investors’ behavior is worth exploiting in the future.
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Abstract. A mean-variance model is proposed for portfolio rebalancing 
optimization problems with transaction costs and minimum transaction lots. 
The portfolio optimization problems are modeled as a non-smooth nonlinear 
integer programming problem. A genetic algorithm based on real value genetic 
operators is designed to solve the proposed model. It is illustrated via a 
numerical example that the genetic algorithm can solve the portfolio 
rebalancing optimization problems efficiently. 

1   Introduction 

When taking into account a practical situation such as transaction costs and/or 
minimum transaction lots, portfolio optimization becomes more complicated. The 
issue of transaction costs is one of the main sources concerned by portfolio managers, 
and minimum transaction lots is another practical issue in portfolio selection and 
rebalancing.  

Recently, some study including transaction costs and/or minimum lots into 
portfolio optimization problems [1], [2], [3]. It was shown that a portfolio 
optimization problem with minimum lots and without any fixed costs is a NP-
complete problem [2], so a few heuristics have been developed and shown to be 
effective for solving a portfolio selection problem with minimum lots. Among these 
heuristics are the genetic algorithms (GAs, [4]).  

GAs are stochastic, heuristic techniques based on the natural selection principles, 
and they can deal with the nonlinear optimization problems with non-smooth and 
even non-continuous objective, and continuous and/or integer variables. 

In this paper, we propose a model for portfolio rebalancing optimization problems 
with transaction costs and minimum lots. A GA based on the traditional real value 
genetic operators is then designed to solve these models. 
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2   Models 

Denote by S  the set of securities to invest a capital 10 CCC ≤≤  and let Ss =  be the 

number of the securities. A portfolio can be represented as ),...,( 1 skkk = , where jk  

represents the number of shares of security j . Let jr  be the random rate of return on 

security Sj ∈ . Let s
jn  be the minimum transaction lot when selling security j  and 

b
jn  be the minimum lot when buying security j . Denote )( jj rER =  the expected rate 

of return on security j  and ),cov( jiij rr=σ  the covariance between ir  and jr . For 

security j , denote ju  the maximum amount of capital that can be invested in it. jd  

represents the fixed proportion parameter of transaction cost associated with security 
j and jp  represents the quoted price, and Ckpy jjj /)(= . 

The expected return )(kR  and the variance )(kV can be written as  

CkkpdkpRkR
Sj Sj

jjjjjjj /)()( 0

∈ ∈

−−= . (1) 

∈ ∈

=
Si Sj

jiij yyxV σ)( . (2) 

A portfolio rebalancing problem can be stated as follows: 

                 min  )()1()()( kVkRkf ⋅⋅−+⋅−= ωλλ  (3) 

        s.t.    10 CCkpC
Sj

jj ≤=≤
∈

,         

   jjj ukp ≤≤0 ,      Sj ∈ allfor   

                    )(| 0
jj

b
j kkn − ,       Sj ∈ allfor , if 0

jj kk > ,        

   )(| 0
jj

s
j kkn − ,       Sj ∈ allfor , if jj kk >0 . 

Here parameter λ varying in ]1,0[  and ω  is a scaling parameter. 

3   Genetic Algorithms 

Representation Structure. Each portfolio in the population is coded as a string of 
non-negative integer numbers.  

Repair Process. For an existing portfolio ),...,( 00
1

0
skkk = ,a real vector ),...,( 1 sxxx =  

can be repaired into a new portfolio by the following formula: 

≤
−

≥
−

=
0

0

0
0

if       

if       

iis
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ii

iib
i

ii

i
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n
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(4) 



810 D. Lin, X. Li, and M. Li 
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randomly  or    '
iii mmk = . (7) 

The GA based on the SBX and PM genetic operators [5] can be written as follows: 

Step 0. Input parameters: sizepop _ , cP  and mP , the parameters of SBX and PM 

operators, total evolutionary generations gen . 

Step 1. Initialize sizepop _  individuals to generate the initial population. 

Step 2. Update the individuals in the current population by SBX crossover and PM 
mutation operators. Repair the individuals as described in the repair 
process. 

Step 3. Calculate the fitness values for all individuals.  
Step 4. Select the individuals by using the binary tournament selection strategy. 
Step 5. Repeat steps 2 to 4 until the given gen  generations.  

4   Simulation Results 

The returns of six stocks from time t-7 to t and price per share are given in Table1.  

Table 1. Stock returns and price 

Period t-7 t-6 t-5 t-4 t-3 t-2 t-1 t Price 
Stock 1 0.04 0.07 0.09 0.13 0.14 0.17 0.21 0.24 12.44 

Stock 2 0.14 0.06 0.08 0.15 0.11 0.13 0.10 0.11 18.59 

Stock 3 0.13 0.13 0.11 0.15 0.10 0.07 0.14 0.11 45.12 

Stock 4 0.12 0.04 0.18 0.13 0.19 0.16 0.14 0.11 26.45 

Stock 5 0.18 0.06 0.22 0.15 0.14 0.06 0.08 0.09 19.78 

Stock 6 0.15 0.04 0.08 0.06 0.13 0.05 0.10 0.09 35.21 

The minimum buying and selling lot is set to be 100 and 1. The total amount of the 

present capital value of 0k is 1,004,482.36. 000,000,10 =C  and 5000,00,11 =C . 

000,2002.0 0 =⋅= Cui and jd  is set to be 0.01. 95.0=cP  and mP  6
1= . 

The sizepop _ is set to be 400 and the run ends until 300 generations. The scaling 

parameter ω  is set to be 100 in all the experiments. The results for the average of 100 
independent runs are given in Table 2. 
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Table 2. Results of portfolio rebalancing with different λ  

λ  0.0 0.2 0.4 

return 1.1284e-1 1.1356e-1 1.1522e-1 

risk 4.1912e-4 4.1957e-4 4.2757e-4 

fitness 4.1912e-2 1.0854e-2 -2.0434e-2 

λ  0.6 0.8 1.0 

return 1.1858e-1 1.2000e-1 1.2007e-1 

risk 4.6165e-4 4.9867e-4 5.1007e-4 

fitness -5.2681e-2 -8.6028e-2 -1.2007e-1 

5   Conclusion 

In this paper, we have proposed a new mean-variance model for portfolio 
optimization with transaction costs and minimum transaction lots, and a GA has been 
designed to solve the model. Computational results have shown the efficiency of the 
proposed GA. 
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Abstract. Financial ratios are commonly employed to measure a corporate fi-
nancial performance. In recent years a considerable amount of research has 
been directed towards the analysis of the predictive power of financial ratios as 
influential factors of corporate stock market behavior. In this paper we propose 
a constraint-based evolutionary classification tree (CECT) approach that com-
bines both the constraint-based reasoning and evolutionary techniques to gener-
ate useful patterns from data in a more effective way. The proposed approach is 
experimented, tested and compared with a regular genetic algorithm (GA) to 
predict corporate financial performance using data from Taiwan Economy 
Journal (TEJ). Better prediction effectiveness of CECT approach is obtained 
than those of regular GA and C5.0. 

1   Introduction 

Financial ratios are commonly employed to measure a corporate financial perform-
ance. In recent years a considerable amount of research has been directed towards the 
analysis of the predictive power of financial ratios as influential factors of corporate 
stock market behavior. Some of the financial ratios, such as Current Ratio, Receiv-
ables Turnover, and Times Interest Earned, Capital, were used for bankruptcy predic-
tion [16], financial distress prediction [5, 7], and so forth. Revealing valuable knowl-
edge hidden in financial data becomes more critical for decision making.  

Rule induction is one of the most common methods of knowledge discovery. Basi-
cally an ideal technique for rules induction has to carefully tackle those aspects, such 
as model comprehensibility and interestingness, attributes selection, learning effi-
ciency and effectiveness, and etc. Genetic algorithms (GAs), one of the often used 
evolutionary computation technique, has been increasingly aware for its superior 
flexibility and expressiveness of problem representation as well as its fast searching 
capability for knowledge discovery [27]. 
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This research applies CECT (constraint-based evolutionary classification tree) ap-
proach [3] to construct a classification model for predicting the corporate finance 
performance using various financial ratios. 

Generally, rule induction methods are used to automatically produce rule sets for 
predicting the expected outcomes as accurately as possible. However the emphasis on 
revealing novel or interesting knowledge has become a recent research issue in data 
mining. These attempts may impose additional rule discovery constraints, and thereby 
produce additional computation overhead. For regular GAs operations, constraint 
validation is proceeded after a candidate chromosome is produced. That is, several 
iterations may be required to determine a valid chromosome. One way to improve the 
computation load problem is to prevent the production of invalid chromosomes before 
a chromosome is generated; thereby accelerating the efficiency and effectiveness of 
evolution processes. Potentially, this can be done by embedding a well-designed con-
straint mechanism into the chromosome-encoding scheme. 

In this research we adopt CECT approach that integrates an association rule algo-
rithm and constraint-based reasoning with GAs to discover classification trees.  
Apriori algorithm, one of the common seen association rule algorithms, is used for 
attributes selection; therefore those related input attributes can be determined before 
proceeding the GA’s evolution. The constraint-based reasoning is used to push 
constraints along with data insights into the rule set construction. This research 
applied tree search and forward checking techniques to reduce the search space 
from possible gene values that can not meet predefined constraints during the evo-
lution process. This approach allows constraints to be specified as relationships 
among attributes according to predefined requirements, user preferences, or partial 
knowledge in the form of a constraint network. In essence, this approach provides a 
chromosome-filtering mechanism prior to generating and evaluating a chromosome. 
Thus insignificant or irreverent rules can be precluded in advance via the constraint 
network. 

The CECT approach was employed to predict corporate financial performance us-
ing TEJ finance data of year 2001. Other, in order to compare with often used classi-
fication tree techniques, C5.0 is applied to the same data sets. 

2   The Literature Review 

2.1   The Evaluation of Corporate Financial Performance 

Tobin’s Q is a measure for evaluating a corporate financial performance [4, 11]. The 
higher value a Tobin’s Q is, the better a corporate financial performance is. On the 
other hand, the lower value a Tobin’s Q is, the inferior a corporate financial perform-
ance is. This research denotes the dependent variable as “Good” if Tobin’s Q > 1; 
“Bad” if Tobin’s Q =< 1. The data used was derived from Taiwan Economic Journal 
(TEJ) database, a standard source of financial market database. 510 financial data 
records of the listed companies on Taiwan Stocks Market for the entire period of year 
2001 were collected. Each data record includes eight input financial ratios and one 
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output Tobin’s Q. Tobin’s Q value is converted into either “Good” or “Bad” before 
executing the learning process. 

2.2   Genetic Algorithm for Rule Induction and Constraint Satisfaction 

Rule induction methods can be categorized into either tree based or non-tree based 
methods [1]. Some of the often-mentioned decision tree induction methods include 
C4.5 [15], CART [2] and GOTA [9] algorithms. Quinlan [15] introduced techniques 
to transform an induced decision tree into a set of production rules. GAs have been 
successfully applied to data mining for rule discovery in literatures. There are some 
techniques using one-rule-per-individual encoding proposed in [8, 13]. For the one-
rule-per-individual encoding approach, a chromosome usually can be identical to a 
linear string of rule conditions, where each condition is often an attribute-value pair, 
to represent a rule or a rule set. Although the individual encoding is simpler and syn-
tactically shorter, the problem is that the fitness of a single rule is not necessarily the 
best indicator of the quality of the discovered rule set. Then, the several-rules-per-
individual approach [6, 10] has the advantage by considering its rule set as a whole, 
by taking into account rule interactions.  

Problem solving in a constraint satisfaction problem (CSP) that is basically belongs 
to NP-Complete problems normally lacks suitable methods. A number of different 
approaches have been developed for solving the CSP problems. Some of them 
adopted constraint propagation to reduce the solutions space. Others tried “backtrack” 
to directly search for possible solutions. Some applied the combination of these two 
techniques including tree-search and consistent algorithms to efficiently find out one 
or more feasible solutions. Nadel [12] compared the performance of the several algo-
rithms including “generate and test”, “simple backtracking”, “forward checking”, 
“partial lookahead”, “full lookahead”, and “really full lookahead.” The major differ-
ences of these algorithms are the degree of consistency performed at the node during 
the tree-solving process. Besides the “generate and test” method, others performed 
hybrid techniques. In other words, whenever a new value is assigned for the variable, 
the domains of all unassigned ones are filtered and left only with those values that are 
consistent with the one already being assigned.  

Dealing with constraints for search space reduction seems to be an important re-
search issues for many artificial intelligence areas. GAs maintain a set of chromo-
somes (solutions), called population. The population consists of parents and offspring. 
When the evolution process proceeds, the best N chromosomes in the current popula-
tion are selected as parents. Through performing genetic operators, offspring are se-
lected according to the filtering criterion that is usually expressed as fitness functions 
along with some predefined constraints. The GA evolves over generations until stop-
ping criterions are met. However valid chromosomes are usually produced by trials 
and errors. That is, a candidate chromosome is produced and tested against the filter-
ing criterions. Therefore a GA may require more computation, especially in dealing 
with complicated or severe filtering criterions. To resolve this problem, an effective 
chromosome construction process can be applied to the initialization, crossover, and 
mutation stages respectively. 
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3   The Proposed Constraint-Based Evolutionary Classification 
Tree(CECT) Approach 

The proposed CECT approach consists of three modules: the user-interface, the sym-
bol manager, and constraint-based GA (CBGA). According to Fig. 1, the user inter-
face module allows users to execute the following system operations including:  

– Loading a constraint program,  
– Adding or retracting the constraints, 
– Controlling the GA’s parameter settings, and  
– Monitoring the best solutions.  

The constraint program here is a set of any first order logic sentence (atomic, com-
pound or quantified) about a many-sorted universe of discourse that includes integers, 
real numbers, and arbitrary application-specific sorts.  

Three types of data sources: GA parameter settings, human knowledge, and data 
sets are converted into the constraint programs. Each gene in a GA here is equal to 
each object of constraint program. The range for each gene can be viewed as a do-
main constraint for each object. The predefined hard constraints are represented by 
the first order logic sentences.  The human knowledge specifies the user preferences, 
or partial expert experiences. For example, the user’s preference such as “people high  
 

 

Fig. 1. The Conceptual Diagram of the Proposed CECT System 
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blood pressure cannot take certain drugs” can be treated as one type of expert knowl-
edge. It can be translated into the user’s defined constraints in the form of first order 
logic sentence. The association rule mining module generates association rules by 
apriori algorithm. In this research the derived association rules has to satisfy user-
defined minimum support and minimum confidence levels. The symbol manager 
examines the syntax of the first order logic sentences in the constraint program and 
translates the syntax into a constraint network for further processing. 

In the CBGA module, the constraint-based reasoning filters each gene value and 
processes both the GA initial population and regular populations.  

To speed up the reasoning process, both the variable ordering and backtrack-free 
search methods are adopted in the CBGA to derive contradiction-free chromosomes. 
Details of the above mentioned processes can be found in [3].  

4   The Experiments and Results 

Two other approaches: a simple GA (SGA) and apriori algorithm with GA (AGA) 
were employed to compare our proposed approach that is denoted by ACECT (i. e., 
apriori algorithm with CECT). Also, C5.0, a commonly used classification tree tech-
nique, was applied to the same data sets. Generally association rules extracted by 
apriori algorithm could be varied depending on the defined support and confidence 
values. Different association rules extracted may result in different impacts on CECT 
learning performances. Therefore this research experimented with different sets of 
minimum support and confidence values to both the credit screening and financial 
performance prediction problems. The evaluation of those classification trees gener-
ated by each of the three approaches as well as C5.0 was based on five-fold cross 
validation. That is, each training stage used 4/5 of the entire data records; with the rest 
1/5 data records used for the testing stage. The GA parameter settings for both the 
applications are summarized in Table 1.  

This research applies CECT approach to construct a classification model for pre-
dicting the corporate finance performance using various financial ratios. The notation 
for the variables (i. e., the seven financial ratios) is specified in Table 2. The depend-
ent variable is a categorical type of data labeled by either “Good” or “Bad” according 
to the Tobin’s Q value.  

Table 1. The GA Parameter Settings 

Item Value 
Population Size  100 
Generations  100/200/300/400/500 
Crossover rate  0.6 
Mutation rate  0.01 
Crossover method Uniform 
Selection method Roulette wheel 
Training time (Credit Screening) 1.4 Minutes* 
Training time (Financial Performance Prediction) 1.7 Minutes* 

*  The hardware platform is Pentium III 800 MHz with 512 MB RAM. 
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Among the entire data records, 181 records are “Good” while 329 records are “Bad”. 
After several trials with different sets of minimum support values and confidence 
values, the best ACECT learning performance is obtained. Both the training and test-
ing performance are summarized in Table 3, along with their corresponding represen-
tation depicted in Fig. 2 & 3. These results are based on the minimum support value 
(=7) and confidence value (=100). The derived association rule sets consists of 12 
rules for “Good” output category and 14 association rules for “Bad” output category. 
In order to obtain more details about the learning progress for the three approaches, 
learning tract behavior were recorded in sessions. Fig. 4 & 5 depict the entire learning 
progresses monitored over generations and time. The details of the optimal results 
derived are illustrated in Appendix A. C5.0 learning performance of each testing fold 
for both data sets are illustrated in Appendix B.  

Table 2. The Various Financial Ratios Used in the Model 

 Descriptions Data Type 
X1: Industry type (22 types) category 
X2: Credit rating (1-10 rating) category 
X3: Employee size (1-4 level) category 
X4: Capital scope (1-4 level) category 
X5: Current ratio continuous 
X6: Debt ratio continuous 
X7: Times interest earned continuous 
X8: Receivables turnover continuous 

5   Discussion 

According to the results indicated above ACECT achieves superior learning perform-
ance than SGA and AGA in terms of computation efficiency and accuracy. By apply-
ing association rule process, the partial knowledge is extracted and transformed as 
seeding chromosomes. It can be seen that the initial training results for both AGA and 
ACECT exhibit significantly higher accuracy and efficiency than SGA. As shown in 
Fig. 4 both AGA and ACECT approach relative convergence within 50 generations, 
while SGA requires 500 generations to reach the similar result in the training stage. 
The outcomes can be attributed to the adoption of apriori algorithm by which the GA 
search space is substantially reduced.  

Table 3. The Summarized Learning Performance for SGA, AGA, and ACECT  

Gen. 100 200 300 400 500 
 Train Test Train Test Train Test Train Test Train Test 

SGA 75.64 71.18 77.5 72.75 78.38 73.53 79.07 73.92 79.61 74.12 

AGA 80.34 74.90 81.32 75.49 82.01 74.90 82.50 75.1 82.79 74.90 

ACECT 81.13 77.45 82.25 77.25 82.79 77.65 83.28 77.45 83.58 77.65 

C5.0 Test: 77.08   (in %) 
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For the ACECT approach, the derived partial knowledge is not only encoded as 
seeding chromosomes, but also converted into the constraint network. As shown in 
the figures displaying learning progresses, ACECT outperforms AGA less signifi-
cantly than outperforms SGA. Nevertheless, the improvement of ACECT over AGA 
positively demonstrates its learning effectiveness for both the applications data. As 
compared with C5.0, ACECT marginally exhibits superior testing performance than 
C5.0 for both data sets based on 5-fold cross-validation.  
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Fig. 2. Training Results with Various Generations (based on 5-fold average) 
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Fig. 3. Testing Results with Various Generations (based on 5-fold average) 

6   Conclusions and Future Development 

We have introduced CECT approach that hybridizes constraint-based reasoning within a 
genetic algorithm for classification tree induction. Incorporating the partial knowledge 
or user-control information into mining process is not straightforward and, typically, 
requires the design of novel approaches. By employing the rule association algorithm to 
acquire partial knowledge from data, our proposed approach is able to induce a classifi-
cation tree by pushing the partial knowledge into chromosome construction. Most im-
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portantly, the adoption of constraint-based reasoning mechanism into the GA process 
can filter invalid chromosomes; therefore feasible solutions can be more efficiently 
derived. 
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Fig. 4. The Learning Progress over Generations (based on 5-fold average) 
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Fig. 5. The Learning Progress over Time (based on 5-fold average) 
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Comparing with SGA and AGA, ACECT achieves higher predictive accuracy and 
less computation time required for classification trees inductions using a benchmark 
data set as well as real financial data set. In addition, the classification trees discovered 
by ACECT not only obtain higher predictive accuracy and computation efficiency, but 
also may produce more user transparent or significant knowledge. This approach is not 
only applicable for binary classification problems, but also applicable for multi-category 
classification problems, though the experiment examples are binary classification prob-
lems. Currently CECT approach is able to reveal tree splitting nodes that may allowed 
complex rule sets-like discriminating formats such as “Attributei <= w ∗ Attributej” 
relationship which can be extended to express more complicated multivariate inequa-
tions with either a linear or nonlinear format in the future.  

Improving Financial Performance by Exploring the Financial Ratios  
Basically prediction models map the inputs values to produce the outcome(s). When the 
model is complex, it is not possible to easily figure out the appropriate inputs that can 
best approximate the expected output. Usually this type of research is called parameters 
design. The classification tree constructed by our proposed CECT approach can be a 
multivariate-split based classification tree. It would be relatively difficult to find out 
suitable inputs values in order to match an expected outcome. The mechanism that al-
lows proceeding “what-if” as well as “goal-seeking” analysis can be a useful aid for 
financial managers in further exploring those financial ratios that are most likely or most 
unlikely to be adjusted to improve a corporate financial performance. In addition to our 
proposed CECT approach, this research is currently working on adopting another opti-
mization technique to support the “goal-seeking” function. It is believed that such in-
formation provides highly strategic values for the corporate financial management. 
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Appendix A: The Inferred Classification Tree 
Node  1.   IF x3 = 4 AND x8 > 120.838 THEN Good 
Node  2.   IF x2 = 6 AND x5 <= 526.554 THEN Bad 
Node  3.   IF x2 = 7 THEN Bad 
Node  4.   IF x1 = 23 AND x4 = 1 AND x8 <= 20.5695 THEN Good 
Node  5.   IF x1 = 24 THEN Good 
Node  6.   IF x1 = 23 AND x3 = 3 THEN Good 
Node  7.   IF x2 = 9 AND x3 = 2 AND x4 = 1 AND x5 > 295.631 AND x6 <= -1.97058 * x7 

  THEN Bad 
Node  8.   IF x3 = 3 AND x4 = 3 THEN Bad 
Node  9.   IF x2 = 4 AND x5 <= 1280.3 AND x7 <= 123.463 AND x5 <= 7.85272 * x7 THEN 

  Good 
Node 10.   IF x2 = 5 THEN Bad 
Node 11.   IF x1 = 14 AND x4 = 4 AND x5 > 891.989 AND x8 > 140.889 AND x7 <= - 5.07187  

  * x5 THEN Bad 
Node 12.   IF x1 = 14 AND x2 = 7 AND x8 <= 443.831 THEN Bad 
Node 13.   IF x4 = 1 AND x6 <= 56.013 THEN Good 
Node 14.   IF x2 = 4 AND x6 <= 16.6635 THEN Good 
Node 15.   IF x4 = 4 THEN Bad 
Node 16.   IF x3 = 4 AND x4 = 3 THEN Good 
Node 17.   IF x2 = 5 AND x4 = 3 AND x6 <= -8.10053 * x8 THEN Good 
Node 18.   IF x8 <= 91.2198 THEN Bad 

Appendix B: C5.0 Learning Performance 
Decision Tree 
Fold   Size      Accuracy Rate  
1   32         76.5% 
2   39         77.5% 
3   30         81.4% 
4   30         74.5% 
5   27         75.5% 
Average                77.1% 
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Abstract. A genetic algorithm with chromosome-repairing scheme
(CRS) is proposed in this paper to solve the polygonal approximation
problem. Different from the existing approaches based on genetic al-
gorithms, the proposed algorithm adopts variable-length chromosome
encoding for reducing the memory storage and computational time, and
develops a special crossover named gene-removing crossover for removing
the redundant genes. It is known that Genetic operators may yield infea-
sible solutions, and it is generally difficult to cope with them. Instead of
using the penalty function approach, we propose a chromosome-repairing
scheme to iteratively add the valuable candidate gene to the chromo-
some to deal with the infeasible solution and an evaluating scheme for
the candidate genes. The experimental results show that the proposed
CRS outperforms the existing approaches based on genetic-algorithms,
ant-colony-optimization and tabu-search.

1 Introduction

In image processing, the contours extracted from the regions or objects can be
viewed as digital curves. How to represent digital curves is a key issue in image
processing and pattern recognition. Polygonal approximation is one of the most
effective approaches. The idea of this approach is to approximate a given curve
using a polygon with the fewest line segments such that the approximation error
is no more than a pre-specified tolerance. Polygonal approximation not only pro-
vides compact representation with less memory requirement, but also facilitate
feature extraction for further image analysis. Hence, the representation scheme
has been widely used in shape analysis, image compression, pattern recognition,
CAD and GIS applications.

Many approaches have been proposed for solving the polygonal approxima-
tion problem, such as sequential approaches [1], split-and-merge approaches [2],
dominant point detection approaches [3] and k-means based approaches [4]. Most
of the above approaches are based on local search technique. They are very fast
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but lack of global optimality, this is because the results depend on the selection of
initial points and the given arbitrary initial solution. However, exhaustive search
in the solution space will result in an exponential complexity. Recently, nature-
inspired algorithms such as genetic algorithms (GA), ant colony optimization
(ACO), tabu search (TS), particle swarm optimization (PSO) and so on, which
are inspired by natural phenomena, have been widely used to solve the various
optimization problems due to their global search ability. Approaches based on
GA [5], TS [6] and ACO [7] have already been proposed for solving the polygo-
nal approximation problem and shown their better performance compared with
those based on local search method.

In this paper, we focus our attention on using genetic algorithms to solve
the polygonal approximation problem. Many existing GA-based methods have
the following disadvantages which limit their performance. Firstly, they adopted
traditional binary-string chromosome encoding with fixed length such that each
gene corresponds to a curve point. When the curve has a large amount of points,
the chromosome’s length will be very long. Hence, the computation time and
memory requirement are both large. Secondly, they use the traditional crossover
convention such as one-cut-point crossover and two-cut-point crossover, but, for
the polygonal approximation problem, this kind of crossover does not reflect the
fundamental characteristics of the task and may result in poor search perfor-
mance. Thirdly, They usually adopt the penalty function approach to cope with
infeasible solutions, but it is usually difficult to determine an appropriate penalty
function. Since, if the strength of the penalty function is too large, more time will
be spent on finding the feasible solutions than searching the optimum. However,
if the strength of penalty function is too small, more time will be spent on evalu-
ating infeasible solutions. In addition, the eliminated infeasible solution may also
contain valuable genes, so, the penalty function approach may result in the losing
of valuable genes. In this paper, A genetic algorithm with chromosome-repairing
scheme (CRS) is proposed. The contribution and main work of this paper are:
(1) An variable-length chromosome encoding scheme is proposed. Under this
scheme, each gene corresponds to a vertex of the polygon and the length of the
chromosome is equal to the number of vertices of the polygon, So the length of
the chromosome is variable and this encoding scheme shorten the length of the
chromosome greatly. (2) Since the approximation problem can be transformed
into the problem of obtaining a chromosome with the fewest genes which can
represents a feasible solution under the above chromosome encoding scheme, we
develop a peculiar crossover named gene-removing crossover for removing the
redundant genes. (3) A chromosome-repairing scheme of iteratively adding the
valuable candidate gene to the chromosome is proposed to deal with the infea-
sible solution and A function is developed for evaluating the candidate genes.
(4) Three benchmark curves are used to evaluate CRS for comparing it with the
existing approaches based on GA, ACO and TS. The experimental results show
the superiority performance of CRS.

The remainder of this paper is organized as follows: Section 2 gives the defi-
nitions of the polygonal approximation problem. Section 3 illustrates the details
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of CRS. In section 4, we present the experimental results and performance com-
parisons. Section 5 gives the conclusion.

2 Problem Formulation

The polygonal approximation problem can be formulated as follows:

Definition 1. A digital closed curve C can be represented by a clockwise ordered
sequence of points, that is C = {p1, p2, . . . , pN} and this sequence is circular,
namely, p1 is considered as the succeeding point of pN , where N is the number
of points on the curve.

Definition 2. Let p̂ipj = {pi, pi+1, . . . , pj} represent the arc starting at point pi

and continuing through point pj in the clockwise direction along the curve. Let
pipj denote the line segment connecting points pi and pj.

Definition 3. The approximation error between p̂ipj and pipj is defined as fol-
lows:

e(p̂ipj , pipj) =
∑

pk∈p̂ipj

d2(pk, pipj), (1)

where d(pk, pipj) is the perpendicular distance from point pk to the line segment
pipj.

Definition 4. The polygon V approximating the curve C = {p1, p2, . . . , pN} is
a set of ordered line segments such that

(1) V={pt1pt2 , pt2pt3 , . . . , ptM−1ptM , ptM ptM+1}, where ti∈{1, 2, . . . , N}, tM+1=
t1 and M is the number of vertices of the polygon V .

(2) ∀i �=j ∈ {1, 2, . . . ,M}, ( ̂ptipti+1 ∼ {pti , pti+1})
⋂

( ̂ptjptj+1 ∼ {ptj , ptj+1})=φ.

(3)
M⋃
i=1

̂ptipti+1 = C.

Definition 5. The approximation error between the curve C = {p1, p2, . . . , pN}
and its approximating polygon V = {pt1pt2 , pt2pt3 , . . . , ptM−1ptM , ptM ptM+1} is
defined as follows:

E(V,C) =
M∑
i=1

e( ̂ptipti+1 , ptipti+1), (2)

Then the polygonal approximation problem is formulated as follows: Given a
digital curve C and the error tolerance ε. Let SP = {V | E(V,C) ≤ ε} be a
subset of polygons which approximate the curve C. Find a polygon P ∈ SP such
that

|P | = min
V ∈SP

|V |, (3)

where |P | denotes the cardinality of P .
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Fig. 1. An example to illustrate the two types of chromosome encoding schemes. (a)
A curve with 11 points and its approximating polygon. (b) Binary-string chromosome
encoding. (c) Variable-length chromosome encoding.

3 The Proposed Genetic Algorithms

In this section, we illustrate the details of CRS, including chromosome encoding
scheme, fitness function, genetic operators and the disposal of the infeasible
solution.

3.1 Variable-Length Chromosome Encoding

For reducing the computational cost, we propose a variable-length chromo-
some encoding scheme. Let C = {p1, p2, . . . , pN} denotes a digital curve, and
V = {pt1pt2 , pt2pt3 , . . . , ptM−1ptM , ptM pt1} represent its approximating polygon.
Then, we use the circular integer string t1t2 . . . tM to encode the polygon V .
Consequently, the gene value is a integer and lying in the range of [1, N ]. Fig.
2(c) gives a example to illustrate this chromosome encoding scheme compared
with the Binary-string encoding scheme. The characters of this encoding scheme
are that: (1) Each gene of the chromosome correspond to a vertex of the polygon
and the chromosome’s length is equal to the number of the vertices of the poly-
gon. Hence, the chromosome’s length is variable. (2) There is no need to perform
the decoding operator. This is because , from the chromosome, the numbers of
all the vertices on the polygon can be directly obtained.

3.2 Fitness Evaluation and Parent Selection

Given a digital curve C. Let α denote a chromosome. Let |α| denote the length of
the chromosome α and e(α) denote the approximation error between the curve
c and the polygon represented by the chromosome α. The fitness function is
defined as

f(α) = (|α|, e(α)) (4)

such that for two arbitrary chromosomes, we have⎧⎨⎩f(α1) > f(α2) if |α1| < |α2| or (|α1| = |α2| and e(α1) < e(α2))
f(α1) < f(α2) if |α1| > |α2| or (|α1| = |α2| and e(α1) > e(α2))
f(α1) = f(α2) if |α1| = |α2| and e(α1) = e(α2)
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On the parent selection, we adopt tournament-selection strategy. The oper-
ation process is illustrated as follows: select two individual from the population
randomly and compare their fitness value, then choose the one with the larger
fitness value as the parent individual.

3.3 Gene-Removing Crossover

Let C = {p1, p2, . . . , pN} be the digital curve. Assume that U = u1u2 . . . uM

and V = v1v2 . . . vK are two selected parent chromosomes. The details of the
gene-removing crossover operator are described as follows:

step 1. Select two pairs of adjacent genes uiui+1 and vjvj+1 randomly from U
and V , respectively.

step 2. For each gene ut of the chromosome U , if put ∈( ̂pvj pvj+1 ∼ {pvj , pvj+1}),
then remove it from the U . Through this gene-removing process, we obtain a new
chromosome UC .

step 3. For each gene vt of the chromosome V , if pvt ∈( ̂puipui+1 ∼ {puj , puj+1}),
then remove it from the V . Through this gene-removing process, we obtain
another chromosome VC .

step 4. return UC and VC .

Fig. 2 gives an example to depict this operation process. In Fig. 2, 9 and 16 are
adjacent genes which are selected from the parent 1. Since p11, p14 ∈ ( ̂p9p16 ∼
{p9, p16}), we remove the genes 11 and 14 from parent 2, and obtain a new
chromosome offspring 2. Similarly, we obtain another chromosome offspring 1.

In general, The crossover is considered as the exchange of the part genes
on the two selected parent chromosomes. For the Gene-removing crossover, The
two selected parent chromosomes don’t exchange their genes. But it can be still
considered as a kind of crossover, this is because, the removed genes of one
parent chromosome are determined by another parent chromosome’s adjacent
genes which is selected randomly, in fact, the two parent chromosome exchange
their gene information. The advantage of this crossover is that, through it, we
can remove a part of redundant genes.

3.4 Single-Point Mutation

Here, we adopt-single point mutation. Let C = {p1, p2, . . . , pN} be the digi-
tal curve, U = u1u2 . . . uM be a selected parent chromosome. The single point
mutation is illustrated as follows: Firstly, select a gene ui randomly from the
chromosome U . Secondly, add 1 to or subtract 1 from ui randomly, note that if
ui = N +1, then set ui = 1 and if ui = 0, then set ui = N . Finally, if ui is equal
to its neighbor gene value, then remove ui from U . Fig. 3 gives an example of
the Single-point mutation.
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Fig. 2. An example to depict the gene-removing crossover

Fig. 3. An example to illustrate the single-point mutation

3.5 Chromosome-Repairing Scheme

The main idea of the chromosome-repairing scheme is that, for a infeasible so-
lution, repair it for transforming it into a feasible solution. For facilitating the
illustrating, the chromosome which represents a infeasible solution is called infea-
sible chromosome. For the polygonal approximation problem, infeasible solutions
are those whose approximation error are lager than the pre-specified error tol-
erance. Adding a curve’s point to the polygon may decrease the approximation
error and, when all the points on the curve are the vertices of the polygon, the
approximation error will be 0. Hence, if we iteratively add vertices to the poly-
gon, the approximation error of the polygon will be eventually smaller than the
pre-specified error tolerance. Then a infeasible chromosome can be transformed
into a feasible one through iteratively adding gene to it. For adding the valu-
able genes to the chromosome as possible. we develop a function for evaluating
the candidate genes. Let C = {p1, p2, . . . , pN} be the digital curve. Let ε be
the pre-specified error tolerance and U = u1u2 . . . uM be a infeasible chromo-
some.

Definition 6. Let cand(U) = {1, 2, . . . , N} ∼ {u1, u2, . . . , uM} be the set of
candidate genes of the chromosome U .
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Fig. 4. An example to illustrate the Chromosome-repairing scheme

Definition 7. Let α be a candidate gene of U and pα ∈ ̂puipui+1 . The quality
of the candidate gene α can be evaluated by function

q(α) = d(pα, puipui+1) (5)

Then the chromosome-repairing scheme is illustrated as follows.

step 1. For all α ∈ cand(U), calculate function value q(α). Calculate approxi-
mation error E(U,C). If E(U,C) ≤ ε, then go to step 4.

step 2. Select the candidate gene β ∈ cand(U) such that q(β) = max
α∈cand(U)

q(α).

step 3. Insert the candidate gene β to the chromosome U and remove it from
cand(U). Then go to step 1.

step 4. Return U .

We give an example to illustrate this chromosome-repairing process in Fig.
4. From the above expatiation, we can see, the chromosome-repairing process
is an iteration process, in each iteration, the quality of all the candidate genes
are evaluated, and the valuable candidate gene is chosen to be added to the
infeasible chromosome. Finally, we obtain a feasible chromosome.

3.6 Algorithm Flow

Let pm, pc and Ns be the mutation rate, crossover rate and population size,
respectively. Let Gn be the pre-specified number of generation. They are all the
control parameters of the algorithm. The proposed algorithm (CRS) is illustrated
as follows:
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(N=120)
(a) leaf curve

ε = 15, M = 24
(b) PFM

ε = 15, M = 23
(c) TS

ε = 15, M = 22
(d) ACO

ε = 15, M = 20
(e) CRS

(N=60)
(f)Chromosome

curve

ε = 6, M = 15
(g) PFM

ε = 6, M = 14
(h) TS

ε = 6, M = 13
(i) ACO

ε = 6, M = 12
(j) CRS

(N=102)
(k) Semicircle

curve

ε = 15, M = 23
(l) PFM

ε = 15, M = 19
(m) TS

ε = 15, M = 18
(n) ACO

ε = 15, M = 15
(o) CRS

Fig. 5. Three benchmark curves and the comparative results of PFM, TS, ACO and
CRS, where N , ε and M denote the number of points on the curve, the error tolerance
and the number of vertices of the polygon approximating the curve, respectively.

input. the digital curve C = {p1, p2, . . . , pN}, the error tolerance ε.

output. the polygon U which approximates C.

step 1. Generate a initial population Wp having Ns individuals and the gener-
ation number g is initially set to 0.

step 2. Calculate the fitness value of each individual in population Wp and
repair all the infeasible chromosomes of population Wp using the proposed
chromosome-repairing scheme.

step 3. Copy the individual having the largest fitness value of population Wp

to the next generation population Wc.

step 4. Generate Ns − 1 individuals by performing selection, crossover and
mutation in the population Wp, and add them to population Wc.
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step 5 Replace population Wp with Wc and update the generation number
g=g+1. If g < Gn, then go to step 2, otherwise output U .

4 Experimental Results and Performance Comparisons

Global search approaches [5,6,7] based on genetic algorithms with penalty func-
tion method, tabu search algorithm, ant colony optimization, here, we call them
PFM, TS and ACO, respectively, have been proposed to solve the polygonal ap-
proximation problem and shown to be superior to those existing methods based
on local search. Therefore, we do nothing but comparing the proposed algorithm
(CRS) with PFM, TS and ACO.

Three benchmark curves, leaf curve, chromosome curve and semicircle curve
(see Fig. 5 (a),(f),(k)) have been widely used in literature [5,6,7,1,2,3]. So, we also
use these benchmark curves to evaluate the performance of CRS. The platform
of all experiments is a PC with CPU Pentium III 550 under Windows 2000. We
set the control parameters of CRS as follows: pm = 0.3, pc = 0.7, Ns = 31 and
Gn = 80. the parameters of the other compared algorithms are same as the ones
presented by the literature [5,6,7]. Since all the compared algorithms are based
on stochastic search, the simulation conducts ten independent runs for them.
The simulation results, including the average results M , the standard deviation
σ and the average time t over ten independent runs are reported in table 1 and
Fig. 5 shows the finally obtained approximation polygons with its number of

Table 1. Eperimental results of three benchmarks curves for PFM, TS, ACO and CRS.
Where N , M and ε are the number of points on the curve, the average solution and
the error tolerance, respectively. σ and t are the standard deviation of solutions and
the average computation time (in seconds), respectively

Curves ε PFM TS ACO CRS
M(σ) t M(σ) t M(σ) t M(σ) t

150 15.6(0.6) 0.81 10.6(0.5) 0.13 11.2(0.5) 0.10 10.0(0.0) 0.08
100 16.3(0.5) 0.64 13.7(0.6) 0.13 13.0(0.3) 0.10 12.3(0.2) 0.07

Leaf 90 17.3(0.5) 0.76 14.6(0.5) 0.13 13.2(0.4) 0.10 12.5(0.3) 0.07
(N = 120) 30 20.5(0.6) 0.66 20.1(0.5) 0.13 17.2(0.4) 0.10 16.5(0.3) 0.08

15 23.8(0.6) 0.77 23.1(0.5) 0.13 22.2(0.5) 0.10 20.0(0.0) 0.08
30 7.3(0.4) 0.42 6.7(0.4) 0.06 6.0(0.0) 0.05 6.0(0.0) 0.04
20 9.0(0.6) 0.45 8.0(0.3) 0.06 8.0(0.3) 0.05 7.0(0.0) 0.04

Chromosome 10 10.2(0.4) 0.46 11.0(0.4) 0.05 10.0(0.3) 0.05 10.0(0.0) 0.04
(N = 60) 8 12.2(0.5) 0.45 12.2(0.5) 0.06 11.0(0.4) 0.05 11.0(0.0) 0.04

6 15.2(0.6) 0.50 14.4(0.5) 0.06 12.8(0.3) 0.05 12.1(0.1) 0.04
60 13.2(0.4) 0.58 11.0(0.4) 0.12 10.0(0.0) 0.09 10.0(0.0) 0.07
30 13.9(0.7) 0.60 13.6(0.5) 0.10 12.6(0.4) 0.09 12.0(0.0) 0.07

Semicirle 25 16.8(0.7) 0.54 14.9(0.6) 0.10 13.4(0.5) 0.09 13.0(0.0) 0.07
(N = 102) 20 19.2(0.6) 0.59 16.2(0.6) 0.10 16.4(0.5) 0.09 14.0(0.0) 0.07

15 23.0(0.9) 0.55 18.3(0.7) 0.10 18.0(0.7) 0.09 15.4(0.3) 0.08
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vertices (M) under the pre-specified error tolerance (ε) for visual comparison of
the approximation. The simulation results show that:

(1) For the same testing curve, under the same pre-specified error tolerance,
CRS produces approximating polygon with fewer number of vertices than
the other approaches and its standard deviation of the solutions obtained is
smaller than the other methods.

(2) CRS achieves significant reduction of computation time compared with
PFM, TS and ACO. It is noticeable that CRS achieves more than 87%
reduction of computation time compared with PFM.

5 Conclusions

A genetic algorithm with chromosome-repairing scheme has been proposed for
polygonal approximation. For improving the performance of GA-based
approaches, we have presented variable-length chromosome encoding instead of
traditional binary-string encoding, designed a gene-removing crossover instead
of traditional crossover and developed a chromosome-repairing scheme instead of
the penalty function method. The results demonstrate that the proposed CRS
has improved the performance of the GA-based approaches greatly and show
that CRS is superior to the existing methods based on GA, ACO and TS.
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Abstract. In large scale industry systems, especially in chemical process 
industry, large amounts of variables are monitored. When all variables are 
collected for fault diagnosis, it results in poor fault classification because there 
are too many irrelevant variables, which also increase the dimensions of data.  
A novel optimization algorithm, based on a modified binary Particle Swarm 
Optimization with mutation (MBPSOM) combined with Support Vector 
Machine (SVM), is proposed to select the fault feature variables for fault 
diagnosis. The simulations on Tennessee Eastman process (TEP) show the 
BMPSOM can effectively escape from local optima to find the global optimal 
value comparing with initial modified binary PSO (MBPSO). And based on 
fault feature selection, more satisfied performances of fault diagnosis are 
achieved. 

1   Introduction 

With the high automation of chemical process industry, control systems are adopted 
to keep the steady operation of production process. Once abnormal situation occurs, 
control systems will be out of work, which makes the process to make off-grade 
products, even causes casualty. Fault diagnosis, which can provide early warning for 
process upset and reduce loss, plays an important role in industry process. 

But it is hard for fault diagnosis in complex chemical process because there are 
large amounts of data monitored. When all collected variables are used as the inputs, 
high-dimensions of data not only reduce the performance of fault diagnosis because 
of containing too much irrelevant variables, but also spoil the real-time requirement 
due to increased complexity of computation. So it is essential to execute fault feature 
selection or fault feature extraction in the developing fault diagnosis system for an 
industrial system to improve its performance. 

There are several approaches to fault feature extraction developed and applied, 
such as Principal Component Analysis (PCA), which is a well-known method for 
feature extraction, and has been widely researched in fault diagnosis applications [1], 
[2], [3].But the data preprocessed by data dimension redundant method may be 
unsatisfied for fault diagnosis due to the method own characters, for example, PCA 
does not fit nonlinear, dynamic system, etc. And sometimes, the number of selected 
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components is still large in order to contain enough information for fault diagnosis. 
And even worse, the extracted data is not exactly fit to fault diagnosis because PCA 
do not just extract the fault information of system. To make up for this shortage, the 
approach to directly search the fault feature variables was presented [4]. In this paper, 
a novel algorithm based on a modified binary PSO with mutation combined with 
SVM is developed to search the key fault feature variables, and then take them as 
inputs for fault diagnosis. 

The reminder of the paper is organized as follows. Section 2 presents the modified 
binary PSO with mutation algorithm in detail and introductions of the concerned 
methods are also given. Section 3 introduces simulations setup. Performances of 
presented BMPSOM algorithm and fault diagnosis on TEP are given in Section 4. 
Comparisons with PCA method are also given. Section 5 concludes the results of 
simulations. 

2   Theory 

2.1   Particle Swarm Optimization 

PSO was inspired by the movement of flocks of birds randomly to look for food in an 
area, which firstly was presented by Kennedy and Eberhart [5]. No bird knows where 
food is, except the one that is nearest to food. So it is an effective strategy for other 
birds to follow the nearest one to find food. Simulating this scenario, PSO was 
developed and used as a useful computation technique to solve the optimization 
problem, such as evolving weights and structure for artificial neural networks [6], 
solving the optimal power flow problem [7], evaluating the parametric regions of 
chemical process [8], combinatorial optimization problem [9] and so on. 

The basic PSO model consists of a swarm of m particles moving about in a D-
dimensional real value search space. Each particle, which is a potential global 
optimum of the function f(x) over a given domain D, is looked as a point in the D-
dimensional space and represented as xi = (xi1, xi2… xid). Here subscript i means ith 
particle. Fitness value of all particles is evaluated by the fitness function to be 
optimized. And according to that value, the particle is updated to move towards the 
better area by the corresponding operators till the best point is found. In the iterative 
process, the position of each particle with its best fitness value, that is its local best, is 
remembered and denoted Pi = (pi1, pi2… pid). At the same time, the globe best, which 
is the position with the best fitness value of all particles, is also recorded as Pg = (pg1, 
pg2… pgd). Velocity, the rate of the position change for the ith particle is represented 
as Vi = (vi1, vi2…vid). At each times step, the velocity of all particles is adjusted as a 
sum of its local best value, globe best value and its present velocity, multiplied by the 
three constants w, c1, c2 respectively, shown in Eq. (1). The position of each particle 
is also modified by adding its velocity to the current position, see Eq. (2). 

)(())(() 21 idgdidididid xprandcxprandcVV −××+−××+= . (1) 

ididid Vxx += . (2) 
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The parameters, c1 and c2, are two positive constant named as learning factors, 
normally set as c1=c2=2. With the development of the PSO, new modified PSO 
algorithms were developed, such as PSO combined with GA [10], PSO with mutation 
operating [11]. 

2.2   Binary Particle Swarm Optimization 

The basic PSO and its modified forms mentioned above all work in the continuous 
space, which can not be used to optimize the pure combinational problem. Kennedy 
and Eberhart firstly extended the basic PSO to the discrete space in 1997 [12]. The 
binary PSO algorithm where the particles take the values of binary vectors of length n 
and the velocity defined the probability of bit xid to take the value 1 reserved the 
updating formula of the velocity ( see Eq.(1)) while velocity was constrained to the 
interval [0.0, 1.0] by a limiting transformation function S(v). Then the particle 
changes its bit value by Eq. (3) 

ij1  if rand() S(v )

0  otherwise           ijp
≤

=  . (3) 

Based on Kennedy’s work, Qi[13] developed a modified binary PSO (MBPSO) 
and applied to feature selection in MLR and PLS modeling. The modified binary 
particle swarm optimization algorithm changed the updating formula as Eq. (4-6)  

     

If (0<vid ≤ )   then )()( oldxmidx idid = . (4) 

 If ( <vid ≤
2

1
(1+ ))  then  idid pmidx =)(  . (5) 

If (
2

1
(1+ )<vid ≤ 1)  then idid gmidx =)(  . (6) 

Where  is a random value in the range of (0, 1) named static probability, which 
plays an important role in balancing the globe and local search. The larger value of 
the parameter a, the greater the probability for PSO to overleap local optima, while a 
small value of the parameter a guide effectively particles to follow their two best 
value to converge more quickly. Although its forms of formulas are different from the 
basic PSO presented, information sharing mechanism and the updating model of 
particles are the same. That is to say, particles still share and only share the 
information of its best and the globe best.  

MBPSO can search the best solution more effectively, but it tends to converge to 
local optimal. To overcome this shortage, 10% particles are forced to be set value 
randomly without sharing information with the two best particles. 
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2.3   Support Vector Machines 

SVM is a relatively new class of machine learning techniques introduced by Vapnik. 
It implements the Structural Risk Minimization Principal by seeking to minimize an 
upper bound of the generalization error instead of minimizing the training error. The 
training of SVM is equivalent to solving a linearly constrained convex quadratic 
programming problem, so SVM can escape from the local minima and get the global 
optimal solution, which is determined only by support vectors and represented 
sparsely. More details see [14] Because the remarkable characteristics of SVM such 
as good generalization performance, the absence of local minima and the sparse 
representation of solution, now SVM is popularly used in the application of fault 
diagnosis[15-17]. 

In this paper, the selected feature variables of each particle will be taken as input 
variables of SVM to class testing sample data, and then the correct classification rates 
will be provided to fitness function to evaluate each particle’s fitness. 

2.4   Fitness Function 

In order to measure the performance of each particle, a pre- defined fitness function is 
applied to evaluate the fitness of each particle. In this paper, the fitness function is 
normally defined as the correct classification rate by using the fault feature variables 
picked by each particle. As mentioned above, unnecessary variables are useless and 
increase the computing time, the adjusted fitness function is given here to remove the 
irrelated variables, denoted as Eq. (7) 

all

c
id m

m
pidfxf ×−= )()(  . 

(7) 

f(xid) means the fitness function, f(id) represents the correct classification rate of 
the data samples, mc is the number of variable chosen by the particle while mall is the 
dimension of data samples, p is a parameter which balances the maximum correct 
classification rate and the numbers of retained variables. An appropriate value of p 
will ensure to get the maximum correct classification rate using the least variables, for 
example, p is set less than 1/ mall. 

2.5   Modified Binary PSO with Mutation Algorithm for Fault Feature Selection 

MBPSO introduced by Qi is an effective evolution optimization algorithm for feature 
selection [13] with the excellent characters such as easy to implement, few set 
parameters, rapid convergence. But it is tendentious to stick in the local optimal 
solutions for solving complex problems. Looking at the positions of the particles 
when the swarm had stagnated, the particles are highly similar with their two best 
values, which cause that no more new solutions can be generated, and the swarm traps 
in the local optimum. To make up for this deficiency, a novel modified binary PSO 
with mutation (BMPSOM) algorithm is presented. The introduction of mutation will 
make the swarm keeping searching new area of solution space which ensures swarm 
from sticking in local optima.  
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In the first part of the iteration, just the globe best individual is operated by 
mutation. In each turn, the lowest fitness particle will be replaced with the current 
mutated globe best individual to speed up the search with a little additional 
computation. With the iteration going on, all particles will be mutated with 
probability pmute to find the best solution more effectively and ensure to escape from 
local optima. Some discussion about the value of pmute is given by in detail.   

The whole steps of the MBPSOM combined with SVM for feature selection are 
following: 

Step 1. set particles number of the swarm and initial particles; 
Step 2. get the training data samples and validation data samples according to 

the retained variables of particles; 
Step 3. classify with SVM and calculate the fitness function of each particle 

according to Eq. (7);  
Step 4. update the local optima and the global optima; 
Step 5. mutation operation; 
Step 6. stop the iterative if the terminal rule is satisfied or goto step2. 

3   Experimental Setup 

3.1   Tennessee Eastman Process 

The Tennessee Eastman is a well-known benchmark chemical process, which was 
firstly introduced by Downs and Vogel [18]. The TEP provides a realistic industrial 
process for evaluating process control and monitoring methods. The process consists 
of five major units: a reactor, condenser, compressor, separator, and stripper. The TEP 
produces two products from four reactants. The gaseous reactants A, C, D, E and the 
inert B are fed to the reactor where liquid products G, H and byproduct F are formed.  
Now, the TEP has been widely used for the process monitoring community as a 
source of data for comparing various approaches [19].  

The TEP simulator, coded in Matlab, was used to generate normal data and faulty 
data. The faults of this paper to research are those with stable operating conditions 
before and after the fault occur because of the characteristic of SVM, and will be 
called as Fault1, Fault2 and Fault3 below. 

The first simulation ran 25 hour and sampled per 3 minutes to generate500 
observations under the normal operating conditions. The next three simulations also 
ran 25 hour and each of them corresponded to three different faults mentioned above. 
These three simulations started without faults, and the faults were introduced 1 
simulation hour into the run. So the total number of observations generated for each 
run was n=500, but only 480 observations were collected after the introduction of the 
fault. Each observation contains 52 observation variables. As SVM is fit to limited 
samples, so just 30 samples as SVM training data and 60 data samples as SVM 
validation data were chosen randomly from each simulation run. These two dataset 
were used in the process of fault feature selection. 

Another 4 simulations ran to generate test data for fault diagnosis. Like the former 4 
simulations, one simulation ran in the normal condition, and the other 3 simulations ran 
corresponding to Fault1-3. But the simulation time for each run was 48 hours. Each 
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simulation started with no faults, and the faults were introduced 8 simulation hours into 
the run. The total number of observations generated for each run was n=960.  

To make the results comparable, the data used for experiment are given by 
http://brahms.scs.uiuc.edu. 

4   Result and Discussion  

4.1   Experiment with Testing Function 

Six testing function used in [20] are adopted here to validate MBPSO and MBPSOM. 

2 2 2
1 1 2 1100( ) (1 )         2.048 2.048iF x x x x= − + − − ≤ ≤ . (8) 

2 2 4 2
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Where F5 has the global maximum, others have the global minimum. The 
experiment results are list in the Table1. 

4.2   Fault Feature Selection 

Because PSO algorithm is affected by the initial of the particles, the MBPSO and the 
MBPSOM both run 10 times to select fault feature variables and the average value is 
used to compare each other. 

Table 1. Results of compared MBPSPOM with MBPSO 

MBPSOM MBPSO 
NO. 

Global 
value Correct rate 

(%) 
worst 
value 

Correct rate 
(%) 

worst 
value 

Fun1 0 100 0 60 1.67×10-7 
Fun2 -0.5134 100 -0.5134 90 -0.5121 
Fun3 0 100 0 60 0.004 
Fun4 -1.316 100 -1.316 100 -1.316 
Fun5 1.00 100 1.00 70 0.9980 
Fun6 -30 100 -30 100 -30 
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In the fault1 case, all variables remained steady except the 51th variable induced a 
change when the fault occurred. So the fault feature variable of fault1 is just variable 
51. Both of MBPSO and MBPOSM found the fault feature variable correctly. 
MBPSO found the global optima after minimum 48th iteration, average 68 times 
iteration, and stuck in the local optima once. While the MBPSOM searched the fault 
feature variable in the minimum 5th iteration and average 7 times iteration. The 
average fitness changes of the global optimal particle are given by Fig.1. 

Fault2 involves a step changes in variable 1and variable 44, and the other variables 
are all bothered. The change of variable 1 or variable 44 is so remarkable that any one 
of them can be taken as fault feature. MBPSO and MBPOSM chose the variable 44 as 
fault feature variable, and their minimum, average iterative times are 43, 50, 5, and 6 
respectively. The average fitness changes of the whole simulation see Fig.2. 

Variable 45 had a noticeable step change when the fault3 was introduced into the 
process. And affected by it, other 34 variables deviated significantly from their 
normal operation behavior and went aback to normal values later by the control of 
closed loop. MBPSO searched the global optima with minimum iteration 58 times, 
average iteration 70 times, but it stuck in the local optima in 7 simulations. As a 
comparison, MBPSOM found the fault feature variable correctly all 10 simulations 
with the minimum 6 times iterations and the average 8 times iteration. The changes of 
the maximum fitness during the process are presented in Fig.3.  

 

Fig. 1.  Fitness changing of MBPSO and MBPSOM in the fault1case 

 

Fig. 2. Fitness changing of MBPSO and MBPSOM in the fault2 case 
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Fig. 3. Fitness changing of MBPSO and MBPSOM in the fault3 case 

It is obvious that MBPSO is hard to escape from the local minimum in solving 
complex problems although it randomly re-initialize particles with 10% probability to 
prevent overlapping local optima. On the other hand, mutation operator makes 
MBPSOM effectively escape from the local minimum successfully, and come to 
convergence more effectively. 

4.3   Fault Diagnosis Based on Fault Feature Selection 

Table 2 presents the results of fault diagnosis based on fault feature variable selection. 
To give a comparison, the same data were used for fault diagnosis based on all 
variables and data extracted by PCA.SVM is applied to classify the fault class. 
Because the focus of this paper is to develop a more effective algorithm to select fault 
feature, and fault diagnosis is just to validate its performance, the whole fault 
diagnosis strategy is not described here. 

Table 2. The misclassifications rates of three methods 

~ MBPSOM/SVM All variables PCA 
Fault 1 0.0  38.7  31.8% 
Fault 2 0.0  0.0  0.0  
Fault 3 0.0  48.2  40.3  

5   Conclusion 

The developed MBPSOM performs better and convergent more quickly because it 
can effectively escape from the local optima. SVM works better in the applications of 
fault diagnosis based on fault feature selected than data extracted by PCA.  
Considering SVM is suitable for the limited data sample application and the fault data 
lack in the real industrial process, all of these make fault feature selection based on 
MBPSOM combined with SVM noticeable and attractive in fault diagnosis 
applications. 
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Ludv́ık Tesař1, Daniel Smutek2, and Jan Jiskra2

1 Institute of Information Theory and Automation,
Czech Academy of Sciences, Prague, Czech Republic
2 3rd Department of Medicine, 1st Medical Faculty,

Charles University, Prague, Czech Republic

Abstract. The problem of automatic classification of ultrasound images
is addressed. For texture analysis of ultrasound images quantifiable in-
dexes, called features, are used. Classification was performed using Gaus-
sian mixture model based on Bayes classifier. The common problem of
texture analysis is a feature selection for classification tasks. In this work
we use genetic algorithms for a feature subset selection. Total number of
387 features was used, consisting of spatial and co-occurance statistical
texture features (proposed by Muzzolini and Haralick). The classification
infers between healthy thyroid gland and thyroid gland with chronic in-
flammation.

1 Introduction

Ultrasound imaging is a very important cost-effective method for diagnostics of
thyroid gland diseases. For most thyroid disorders it surpasses the more expen-
sive magnetic resonance. Image analysis can give more objective way of diagnos-
ing patient than a physician who relies on his experience only.

We use Bayes classifier, where diagnose was verified by other methods. The
method we use very successfully (See [1,2]) employs Gaussian Mixture model
in feature space. Reduction of number of features can help to reduce number
of computations substantially, and to better understand, which pattern feature
characterize thyroid gland inflammation in ultrasound image. In this work we
are using genetic algorithm for feature selection.

2 Classification Method Description

Texture features are computed from a set of fixed-size rectangular regions re-
ferred to as texture samples. The non-overlapping samples are obtained from
a manually segmented sonographic B-mode image of thyroid gland. Haralick
texture features [4] were computed from the co-occurrence matrix. Muzzolini’s
spatial features, originally suggested by Muzzolini [5], are based on the original
pixel gray levels. For closer feature description refer to [3]. Finally 387 different
texture feature values were known for each patient.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 841–844, 2005.
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The vector Y of features, is modeled using Gaussian mixture model:

p(Y ) =
n∑

i=1

αi exp
[
− 1

2 (Y − Yi)TC−1
i (Y − Yi)

]
(2π)

d
2 |Ci|

1
2

(1)

Where n is order of the mixture, d dimension of vector Y , | · | denotes determi-
nant of matrix, symbol ()T denotes transposition. Important condition is, that∑n

i=1 αi = 1.
During learning process, parameters of the model (1) are estimated. Two sets

of parameters are calculated, one for healthy and one for inflamed tissue. The
diagnosis is obtained by applying features of given patient to probability density
functions from equation (1) fitted to healthy and unhealthy patients. The method
is more more in detail described in [2]. The result of classification method is used
in genetic algorithm to evaluate the fitness of an individual, by selecting only
features that are attached to this individual and by doing classification only on
such subset of features.

3 Genetic Algorithm Description

In explanation of the genetic algorithm, we will use terms population, generation
and individual as follows: Each individual in our population was representing
the set of features (its chromosomes). The population is set of individuals. In
every generation, chromosomes (features) of individuals in the population are
crossed in order to create the next generation. Fitness of individual is evaluated
according to the success of its features in classification.

Every individual in our population have given number (in our experiments 5
or 10) of chromosomes. Every chromosome represents one feature. Features are
numbered by numbers between 1 and 387, so chromosome is simply one number
between 1 and 387. If two parents are to have an offspring, chromosomes of an
offspring are randomly selected from its parents. Let D1 = [c1,1, c1,2, . . . , c1,n]
is an ordered n-tuple representing chromosomes of the first parent and D2 =
[c2,1, c2,2, . . . , c2,n] of the second parent, then D3 = [c2,1, c2,2, . . . , c2,n] defined
as D3 = [ci(1),1, ci(2),2, . . . , ci(n),n] is genetic information of the offspring, where
i(1), i(2), . . . , i(n) is vector of binary random numbers (i(k) ∈ {1, 2}), and n is
number of chromosomes in individuals of our population. In every new offspring,
mutation was made randomly with mutation rate given in per-individual basis,
i.e. if mutation rate was 0.5, it means that there was one mutation per two new
offsprings in average.

Algorithm is started by randomly chosen generation G = {D1, D2, . . . , Dh}
of h individuals with n chromosomes. Following steps are repeated for given
number of generations:

1. Selection. Fitness of every individual Dk ∈ G is evaluated and only first
� are selected (Fitness of the individual is evaluated based on classification
method described in Section 2). I.e. worst h−� individuals are removed from
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population. The new set will be G := {D1, D2, . . . , D�}, assuming that Dk

was already sorted by fitness. Note that in algorithm, we are using the same
letter to represent different thing.

2. Making offsprings. h new individuals are created as offsprings of individ-
uals in set G. I.e. two individuals from the set D1, D2 ∈ G are repeatedly
randomly selected as parents and new individual Ek is created (as explained
above) as their offspring for k ∈ {1, 2, . . . , h}. Now the set G is changed to
hold the new generation: G := {E1, E2, . . . , Eh}.

3. Mutation. Every individual Ek ∈ G is mutated with given mutation rate.

Chromosomes of individuals from the last generation represent an optimal
selection of features.

4 Testing of the Genetic Algorithm

We tested the proposed algorithm using the data with 100 subjects, of which 62
were patients with lymphocytic thyroiditis. The diagnosis was confirmed by fine-
needle aspiration biopsy, an increased level of antibodies (anti-thyroperoxidase
and anti-thyroglobulin) and by clinical examination. Another 38 subjects were
healthy test persons (volunteers) with mean age 28 ± 14 years with no known
thyroid disease.
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Fig. 1. Results of run with 300 generations. Graphs show minimum, average and max-
imum of the success rate of individuals from the population
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The principal parameters of the sonograph were fixed in the study. Details
concerning data acquisition and processing are the same as in [3].

We made several runs with number of generations between 10 and 300 and
with number of chromosomes between 5 and 10. Number of mutations was 0.5
to 3 per generation. Population size h was between 40 and 80 and parameter �
was selected to be 10 to 20.

Graph in Figure 1 shows minimum, average and maximum of the success
rate of individuals from the population in the typical run of algorithm. We can
see that genetic algorithm converged after 70 generations already.

5 Conclusions

Compared to our earlier paper [6], results of classification are better, because
of much better classifier, which was developed in [2]. We have found the most
suitable quantitative indicators of an ultrasound examination of thyroid gland,
assuming they include the highest amount of information for texture recognition
of chronic inflammation in thyroid tissue. Such indicators enable reproducibility
of the examination, facilitate an assessment of changes of the disease in time and
make the comparison of different physicians’ ultrasound findings possible.
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6. Smutek, D., Semecký, J.: Feature selection by genetic algorithms in image tex-
ture analysis of thyroid gland ultrasound. In: IFBBE Proceedings: 2nd European
Medical and Biological Engineering Conference EMBEC’02. Volume 3., Verlag der
Technischen Universität Graz (2002) 878–879



Improving Nearest Neighbor Classification with
Simulated Gravitational Collapse

Chen Wang and Yan Qiu Chen�

Department of Computer Science and Engineering,
School of Information Science and Engineering,

Fudan University, Shanghai, 200433, P. R. China
chenyq@fudan.edu.cn

Abstract. The performance of the Nearest Neighbor classifier drops
significantly with the increase of the overlapping of the distribution of
different classes. To overcome this drawback, we propose to simulate the
physical process of gravitational collapse to trim the boundaries of the
distribution of each class to reduce overlapping. The proposed simulated
gravitational collapse(SGC) algorithm is tested on 7 real-world data sets.
Experimental results show that the nearest prototype classifier based on
SGC outperforms conventional NN and k-NN classifiers.

1 Introduction

The nearest neighbor(NN) classification method and its improved versions have
been shown to perform well for pattern classification in many domains. NN
assigns the class label of the nearest reference instance to the query, i.e. any
unknown sample is believed to have the same class label as its nearest neighbor.

Cover and Hart[14] have proved that the error for the NN classifier is bounded
by twice the Bayes error when the number of samples is infinite. However, in
practice, we never have an infinite sample size and the performance of NN clas-
sifier is away from the theoretic boundary. Hence, a lot of methods have been
proposed to find “good” and representative prototypes from the original train-
ing set and the NN rule based on the result prototypes will perform better, even
approximate the Bayes classifier.

There are mainly 2 kinds of prototype generators. One is prototype selection.
In these methods, prototypes are selected or edited from the original set. One of
the original literatures in this kind is the condensed nearest neighbor(CNN)[9].
It produces a reduced set without “interior” instances which maintain the per-
formance of the result classifier. Other selective methods have been proposed
successively, such as the reduced nearest neighbor rule(RNN)[10], the selective
nearest neighbor rule(SNN)[12]. Besides, Wilson’s edited neighbor rule (ENN)[4]
is a typical method of another kind of prototype selection, which focus on editing
the boundary by eliminating border instances.

� Corresponding author.
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In Wilson’s method, the k-NN algorithm is run once on the training set, and
simply discard misclassified instances after the run. One intrinsic problem comes
from using the k-NN(K=3, recommended by Wilson) rule to estimate Bayes de-
cision boundary in a finite sample size situation. From a practical point of view,
it’s not possible to remove only instances lying in wrong decision regions without
also removing some “correct” ones[5].

Another kind of prototype generator is prototype replacement, which gener-
ates prototypes to take the place of the original ones. Chang’s the prototypes for
nearest neighbor classifier(PNN) generates representative prototypes by merging
similar intances[11]. Hamamoto introduced a bootstrap technique of generating
prototypes by locally conbining original training instances[2]. Li’s Nearest Fea-
ture Line(NFL)[13] generates a line linking each pair of instances as the pro-
totypes. Besides these, learning update strategy is also employed in generating
prototypes by a family of learning vector quantization(LVQ) methods, which is
first proposed in Kohonen’s LVQ1[6].

LVQ1 uses a learning update strategy to make prototypes move away from
samples of other classes but come close to samples belonging to the same class.
Asymptotic convergence of LVQ1 has only been studied when the number of
training instances tends to ∞[7]. For finite sample cases, the use of LVQ1 only
supported by empirical evidence rather than convergence from a theoretical point
of view.

Prototype selection methods are usually simple and fast. However, proto-
types generated by replacement schemes can be more representative than the
ones obtained by instance selection. Lam[8] proposed a framework of combining
these two kinds of generation methods. For more details of these algorithms, a
recent survey about the nearest prototype classifier can be found in[1].

In this paper we propose to use simulated gravitational collapse(SGC) model
to construct the nearest prototype classifier. Prototypes are generated by the
migration of original instances, which is a natural computing process by simu-
lating gravitational collapse in astronomy and different from selection and simple
replacement schemes. The motivation of the SGC algorithm comes from the fol-
lowing observation.

Samples can be divided roughly into 2 types according to their location: in-
terior instances and border instances. Since interior instances hardly contribute
to the decision boundary, in the NN case, this kind of instances are often useless.
On the contrary, due to their locality, border instances play a critical role in NN
classification.

Border instances are important to NN classifier, while they also bring mis-
classification. Figure 1 illustrates that, with the apparent probability density
functions of two classes, the training instances(border instances) falling in a
wrong Bayes acceptance region may lead misclassifications under the NN rule,
by which NN’s intrinsic drawback of over-fitting is demonstrated clearly. Due to
possible overlapping among classes, the Voronoi decision region based on the NN
rule is still far away from the optimal Bayes decision boundary. By eliminating
those “mislabelled” instances, the remaining prototypes will be well clustered
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Bayes Decision
Boundary

Bayes acceptance
region of class 1

Bayes acceptance
region of class 2

Fig. 1. Bayes decision region and NN’s possible misclassification region(overlapping)

and form a compact decision boundary which could approximate the Bayes op-
timal one for infinite samples[3].

However, infinite instances do not exist in real world problems, so these algo-
rithms always lead suboptimal results without detailed knowledge about actual
class distribution. Under such circumstance, we have to make a trade-off be-
tween cleaning class boundary thoroughly and leaving some small overlapping
among classes. Nonetheless, those existing algorithms and analysis have strongly
illustrated that reducing overlapping by changing the class distribution is an ef-
fective and efficient way to improve NN classifier. It’s believed that, as shown
in Figure 1, the overlapping region will be reduced by contracting the original
distribution properly(distribution contracting from real curve to dashed curve).

For this purpose, by simulating the gravitational collapse phenomenon in
astronomy, we propose a novel scheme to generate prototypes. The generrated
samples distribute more compactly, by moving the original instances to contract
distribution and reduce overlapping.

2 Simulated Gravitational Collapse

The notion of gravitational collapse in astronomy describes a contracting cloud
that gathers enough density to acquire an inward gravitational force. It is ob-
served that, interstellar space is filled with huge clouds of dust and hydrogen
gas as shown in Figure 2, in which the particles are usually moving too fast to
allow gravity to pull them together. Occasionally a cloud will be compressed
enough by external forces to enable gravity to overcome the speed of the par-
ticles. The gravitational attraction of the cloud’s center begins to pull upon its
outer regions and the cloud begins to collapse. The contracting cloud eventually
builds up enough pressure and heat to counter the inward pull and the collapse
is halted. Although a detailed description of such a collapse is still missing, in
astronomy, gravitational collapse could be described as the inward collapse of
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Fig. 2. The beginning of Vega’s Solar System, surrounded by a disk of small particles

interstellar matter or stars caused by gravitation, the force of attraction between
all objects that tends to pull them together.

We apply a simulated process of gravitational collapse to the samples of each
class to effect distribution contraction which reduces overlapping to lower the
error probability of the NN classifier. The whole training set is a finite point set
of Euclidean N -space. Each class constitutes a subspace of EN . In each class’
subspace, if training instance is considered as particle in cloud of the interstellar
space, there are attractions between each instance in the process of gravitational
collapse. If this phenomenon is applied in our sample space, for the instances
belonging to same class, it seems that they become increasingly compact under
attractions in their subspace. For the problem shown in Figure 1, obviously, in-
stances of the same class will be more concentrated after such a process and the
class distribution will be contracted. If the collapse halts properly, the process
of instances’ movement will lead to a tighter class distribution, which eliminates
“mislabelled” instances naturally and does good to the NN classifier.

The proposed simulated gravitational collapse is simplified, that is, except
universal gravitation between each pair of particles, other forces will be omitted
during the collapse. According to Newton’s Universal Gravitation Law, attrac-
tion(the universal gravitation) exists between any two objects whose mass are
m1,m2 respectively. When their distance is r, the universal gravitation between
two objects is

F = G0
m1m2

r2 (1)

where G0 is a constant, reflecting the characters about attraction between ob-
jects.

To make it applicable to pattern classification, we expand it into EN . Besides,
as shown in Eq.1, F ∝ 1

r2 , which means when r → 0, F will suddenly increase.
Under this circumstance, all particles are ignored except the closest one, which is
unfair for other instances in pattern classification. So we should smooth the force
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function, especially when r comes to 0. Moreover, objects’ movements caused by
the force is a continuous process. We have to simulate it by computer in our
algorithm.

Firstly, we simulate the universal gravitation between objects to a ”force”
between our training instances who have same class label, which is defined as
follows.

F (x) =
C

(x + ε)2
(2)

where C substitutes G0 ·m1m2 as a constant, ε caps the force function curve. In
EN , the direction of force between 2 instances(points in EN ) can be represented
by the vector from one point to another. Therefore, the resultant force equals to
the vector addition of all forces it suffers.

Under the effects of resultant force, each instance gets an acceleration follow-
ing the direction of resultant force when time is t. During a very short time Δt,
the resultant force of any instance can be seen unique, i.e. the acceleration of
instance will not change during Δt. Hence we could consider each Δt as one iter-
ative step in our algorithm. In physics domain, if muzzle velocity doesn’t equal
to 0, the movement is determined by both muzzle velocity and acceleration. For
the sake of simplicity, we could assume that muzzle velocity is 0 at the beginning
of each iterative period. Therefore, the displacement of instance coincides with
the orientation of resultant forces it suffers.

The simulated gravitational collapse model can be clearly and integrally de-
scribed in this way: any instance is attracted by all other instances who belong
to the same class. We compute all instance’s resultant force at first, and then
each instance moves a step according to its suffering force. This is called an
iterative period. After the migration of all instances, we recompute the force
and displacement of each instance, and then start a new iterative period. This
process could be terminated when iteration reaches the appointed upper limit.

3 The Simulated Gravitational Collapse Algorithm

The training set of classifier is denoted by {A1, A2, · · · , Am | ∀k =j , A
k
⋂

Aj = ∅}
, in which Ak is the subset of samples in class ωk. Nearest prototype classifiers
select a subset or generate a new set from each Ak, denoted by A′k, and then,
any unknown sample is classified based on the new training samples by the NN
rule.

For each Ak
Nk = {ak

1 , a
k
2 , · · · , ak

Nk}, SGC algorithm generates a new set A
′k
Nk =

{a′k
1 , a

′k
2 , · · · , a′k

Nk} through applying simulated gravitational force on the samples
to condense the distribution.

3.1 The Procedure

One iteration of the procedure of the SGC algorithm could be given as follows,
for each class ωk of the whole original training set:
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1) For each sample ak
i , compute the force −→Fij between ak

i and ak
j (1 ≤ j ≤

Nk and j �= i) using Eq.2, where ak
i ∈ Ak

Nk and ak
j ∈ Ak

Nk and obtain the resul-
tant force −→Fi of ak

i

−→
Fi =

Nk∑
j=0

−→
Fij (3)

The direction vector vi of the resultant force for ak
i is

−→vi =
−→
Fi

‖Fi‖
(4)

2) Let each sample move a small constant distance along this direction

ak
i = ak

i + S
−→
v′i (5)

where S is the length of each step
This procedure will repeat until reach the prefixed maximum number of it-

erations(denoted by N).
The length of step can also be a variable according to its suffering force. Then

Eq.5 could be rewrite as follows

ak
i = ak

i +
‖Fi‖

maxi ‖Fi‖
S
−→
v′i (6)

For this case, the length of step ∝ F and S is maximum value of step length. In
this paper, the length of step is seemed as a constant with value S.

At the end of algorithm, we will gain a new set of generating prototypes,
which replaces the original set as the preprocessed training set for the NN clas-
sifier. In fact, unlike most other replacement methods for generating new pro-
totypes instead of old ones by merging or update strategy, the migration of the
original instances forms “new” prototypes in our model.

3.2 Determination of Parameters

There are 3 parameters should be prefixed in our algorithm. Constant C will
be eliminated in step 3, so we can ignore it. ε is a bias used to keep away from
the sudden growth when x→ 0. At first it must be a positive number. Further
more, it should not affect the relationship between F and x2 except that x is
small enough. Therefore, a positive number between 0 and 1 is apt for the value
of ε.

The other 2 parameters are S and N , which are dependent on each other.
Actually the degree of distribution contraction is determined by the number of
iterations and the step length. For finite instances problems, we can eliminate
overlaps by a more compact class boundary. On the other hand, for the limitation
case, the distribution of one class will converge to their class center, i.e. this
class will be represented by its central sample when N → ∞. If so, although



Improving Nearest Neighbor Classification with SGC 851

the probability density function of each class becomes 0 at their Bayes decision
boundary, their representational capacity will seriously degrade for most cases.
Besides, if the length of each step is small, it will lead to a large iteration number.
If too large, it’s illogical for the actual physics model, and at the same time it
will bring a frequently surge among some states of class distribution without
contraction. Consequently, these 2 parameters should be balanced to control the
degree of class distribution’s contraction.

3.3 Analysis of The Algorithm

An intrinsic advantage of this algorithm is local contraction rather than total
contraction, i.e. it could deal with concave problems as well as convex cases
without any special consideration. In fact, simple replacement methods always
fails to describe concepts formed by concave decision boundaries[8]. This can be
clearly shown in the NFL algorithm. NFL replaces the original points by all the
lines between each pair of instances. The concave parts of the decision boundary
where sample doesn’t exist, are fulfilled by this algorithm. It obviously distorts
the distribution, and if other class occupies these concave space originally, the
NFL will cause a serious misclassification.

The local contraction of our algorithm can be illustrated as follows. For an
appointed instance a, the Euclidean distance from any other two points to a is
r1, r2 respectively. If r1 < r2

ε > 0→ (r1 + ε)2 < (r2 + ε)2 (7)

Hence,

F1 =
C

(r1 + ε)2
> F2 =

C

(r2 + ε)2
(8)

According to the definition of the value of ε, it can be ignored in most case. We
can rewrite Eq.8:

F1 =
C

r2
1

> F2 =
C

r2
2

(9)

If define n = r2
r1

, we can get F2 = 1
n2 F1. That means when the distance from

one point to a is another’s n times large, the force it generates is 1
n2 of the latter

one. When n comes large, the effect of F2 could be even omitted.
If x is small enough, ε begins to make sense. When r1, r2 meet this problem

at the same time, although r1 < r2, actually they are both small enough so
that the should be seen “equal” in practice. It can also be demonstrated by the
formula

F1 =
C

ε2 > F2 =
C

ε2 (10)

Because r1, r2 are small enough, they are left out by the above formula. If r2 has
a normal value, it’s obviously that F1 * F2 according to ε’s definition.
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Fig. 3. The movement of a sphere sample set after 2 iterations of SGC algorithm(Arrow
and its length stand for direction and distance of the original instance’s movement
respectively)

From the analysis, we can draw the conclusion that SGC algorithm assign
a natural weight for each instance in terms of the distance from them to the
fixed one. Briefly speaking, although all instances are computed, only samples
near the fixed instance are taken into account, since the force generating by
far instances is much smaller than near ones. Therefore, our algorithm will not
meet the same problem as other simple replacement methods when dealing with
concave distributional cases, due to its locally disposal.

As discussed, the preprocessing will take effects under the NN rule, if the
class distribution is contracted aptly. For interior instances, their surrounding
instances exist in all directions, according to the locally effect of the force, their
suffering forces are often symmetrical. Even though the resultant force doesn’t
equal to 0, they won’t migrate toward one unique direction during iterations
and their movement are still bounded in a local region. On the contrary, out-
liers and border instances face a different situation. Since instances of the same
class seldom exist in their outward direction, their migration always toward the
majority of instances belonging to same class. Obviously, a more compact class
distribution can be generated by the SGC algorithm. This discussion can be
demonstrated well in Figure 3.

4 Experimental Results

The simulated gravitational collapse algorithm was tested on 7 real-world data
sets. The correct classification rate(CCR) of the test set is defined to be the ratio
of the number of correctly classified patterns over the total patterns.
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Table 1. CCR Comparison Results on 7 UCI benchmarks

NN 3-NN 5-NN NFL SGC(Iteration 1) SGC(Iteration 5)
Iris(%) 94.7 94.7 94.7 88.7 96.0 96.0
Wine 95.5 95.5 97.2 92.7 96.1 97.8
Bupa 63.2 65.5 61.4 63.5 60.0 66.7
Pima 70.6 73.6 74.2 67.1 74.0 71.7
Ionosphere 86.3 84.6 84.9 85.2 89.2 87.2
Wdbc 95.1 96.5 97.0 95.3 97.5 95.4
Glass 70.1 72.0 65.9 66.8 72.0 66.4

In this part, we compare NN, k-NN , NFL along with the SGC algorithm
on some real-world data sets. All of these algorithms are tested on 7 bench-
mark data sets from the UCI database[15]. To hold fair, all the instances in each
data set are standardized(Normalized) by their means and standard deviations.
Leave-one-out estimating strategy is taken in the test.

Parameter ε is assigned 0.1 according to the value of sample. The length of
step(S in our algorithm) is an adaptive parameter in this experiment. We record
all distance between each instance and its nearest neighbor in each iteration, and
then assign the mean value of all nearest distance to S. The number of iterations
is assigned 1 and 5 for test respectively.

The result is shown in Table 1. For all of 7 benchmark data sets, the proto-
types generated by the SGC algorithm perform better than the original set under
the NN rule. For most case, the SGC algorithm achieves the highest classification
accuracy, even outperform the k-NN classifier.

5 Conclusion

We have proposed in this paper a novel prototype generating technique for the
NN classifier. The performance of the NN classifier using the prototypes gener-
ated by the SGC algorithm was evaluated on several data set. The experimental
results show that the SGC algorithm outperforms the NN classifier as well as k-
NN classifier using the original data sets. The proposed SGC has been inspired
by a fundamental process in nature and has shown promising results. This is
another indication that we can learn a lot from nature.
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Abstract. This paper presents the rule generation method based on evolutionary 
computation and rough set, which integrates the procedure of discretization and 
reduction using information entropy-based uncertainty measures and evolution-
ary computation. Based on the definitions of certain rules and approximate cer-
tain rules, the paper focuses on the reduction by meanings of evolutionary com-
putation. Experimental results reveal that the proposed method leads to better 
classification quality and smaller number of decision rules comparing with 
other methods. 

1   Introduction 

We are considering the algorithm of generation for “if…then…” decision rules 
discovered from data. Various rough set-based rule induction methods have been 
applied to knowledge discovery in databases [1, 2, 3, 4]. The results show that the 
rough set methods are powerful and that some important knowledge has been 
extracted. For rule generation, reducts play important roles. Rough set-based 
knowledge acquisition is primarily achieved by the reduction with the invariability of 
dependency between the decision attributes and the conditional attributes. Derived 
from the reduction, the decision rules are generated, where attributes values are for 
the “if” conditions, and the decision attribute values are for the “then” decisions. 

The present methods for reduction are mainly applicable to information systems 
with discrete values. For the continuous-valued attributes reduction, the common way 
is to get discrete intervals of values first and then transform the continuous values into 
the discrete ones. In such discretization, some information will be lost, which may 
influence the reduction. In this paper, we present a new approach for reduction of 
continuous-valued attributes, which integrates the procedure of discretization and 
reduction using information entropy-based uncertainty measures and evolutionary 
computation. Experimental results show that the approach is effective to generate 
rules with the high classification quality for continuous-valued attributes, and can 
achieve higher precisions comparing with the results computed by the RSES [5]. 

The paper begins with some notations of rough set [6]. We emphasize on the 
certain rules and approximate certain rules definitions. Then, we present the 
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evolutionary algorithm in detail. The next section describes the experiments and 
results on UCI repository datasets and comparison results with the RSES system. The 
last is the conclusion and future works. 

2   Basic Notions 

Rough set is a powerful tool to deal with imprecise or vague concepts [6]. In this 
paper, we only introduce some relevant basic notations. 

2.1   Decision Rules [7]  

Let S=(U, A)be an information system, where U and A are finite, non-empty sets 
called the universe and the set of attributes, respectively. If in the set A two disjoint 
classes of attributes, called condition and decision attributes, are distinguished, then 
the system is called a decision table and is denoted by ( , )= ∪S U C D , where C and D 

are sets of condition and decision attributes, respectively. With every subset of 
attributes, one can associate a formal language of formulas L defined in a standard 
way and called the decision language. 

Definition 1. A decision rule induced from S and expressed in L is an implication 
φ ψ→ , read “ifφ , then ψ  ”, where φ  and ψ are condition and decision formulas in 

L, respectively. 

2.2   Information View of Rough Set [8] 

The definition of reduct of a relatively consistent decision table in the information view 
is equivalent to its definition in the algebra view. In the paper, information entropy-
based uncertainty measures are employed in the evolutionary algorithm for rule 
generation. Here we give some basic notions about the information view of rough set. 

Definition 2. Given an information system ( , )S U C D= ∪ . The entropy of attribute 

subset B C⊆  is defined as
1

( ) ( ) log( ( ))
n

i i
i

H B p X p X
=

= − , 

1 2/ ( ) { , ,...... }, ( 1,..., )i nX U IND B X X X i n∈ = = , where 
| |

( )
| |

i
i

X
p X

U
=  

Definition 3. Given an information system ( , )S U C D= ∪ , the conditional entropy of 

D ( /U IND 1 2( ) { , ,..., }mD Y Y Y= ) given B C⊆ ( /U IND 1, 2( ) { ,..., }nB X X X= ) is 

defined as  

1 1

( | ) ( ) ( | ) log( ( | ))
n m

i j i j i
i j

H D B p X p Y X p Y X
= =

= − , 

where = ∩ = =( | ) | | / | |, 1, 2,..., , 1, 2,..., .j i j i ip Y X Y X X i n j m  

From two-part version of MDL Principle [9], the best point to get the attributes 
subset in a decision information system is the one which minimizes the 
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sum +( ) ( | )H B H D B . Some attempts have been made to define the appropriate 

conditional entropy as the criteria for certain heuristic methods [10,11].  
As denoted in Definition 3, the conditional entropy is counted by its crisp 

inconsistent part, where the noise or the boundary objects are neglected. In this paper, 
we present the evolutionary algorithm, where the fitness function is based on the sum 
of new defined ( )H B and the ( | )H D B . In the next section we will give the 

redefinition of ( )H B  and ( | )H D B . 

3   Redefinition of Entropy and Conditional Entropy 

First the definitions of certain rules and approximate certain rules are presented. 

Definition 4. Given a decision table ( , { })S U C d= ∪ , where C and {d} are sets of 

condition and decision attributes. Assume that / ( ) |U IND C m= and the set of decision 

values is finite. The j-th decision class is a set of objects { | ( ) }j jY o U d o d= ∈ = , 

where jd  is the j-th decision value taken from decision value set 1{ ,..., }d kV d d= , 

here k is the number of decision values. For any / ( )( 1iX U IND C i ,...,m)∈ = , 

i jX d→ are decision rules. We say that 

(1) i jX d→  are certain rules iff  
/ ( )& | | 0 & ( &1 & )i i k iX U IND C X k k j k d Y X∈ ≠ ∀ ≠ ≤ ≤ ∩ = Φ      

(2) i jX d→  are β - approximate certain rules iff 

1 1

/ ( )& | | 0 & ( & * | | | | | |)
d d

k i
k k

X U IND C X k k j Y X Y X Y X
i i k i j i

β
= =

∈ ≠ ∀ ≠ ∩ ≤ ∩ < ∩
 

( 1,..., )j d=  0.5 1β< <  
(3) Otherwise, i jX d→ are uncertain rules. 

From the definition of certain rules and uncertain rules shown above, the entropy 
' ( )H B and the conditional entropy ' ( | )H D B  for iX  ( / ( )iX U IND C∈ ) are defined as 

follows: 

Definition 5. 
(1)If i jX d→ are certain rules, then 

'

'

( ) ( ) log( ( ))

( | ) 0

i i i

i

H B p X p X

H D B

= −

=
 

(2) If i jX d→  are β -approximate certain rules, then  

1,..., 1,..., 1,...,'

1,...,'

1,...,

max (| |) max (| |) | | max (| |) 1
( ) *log *log

| | | | | | | |

| | max (| |) 1
( | ) *log

| | | | max (| |)

i j i j i i j
j k j k j k

i

i i j
j k

i
i i j

j k

X Y X Y X X Y
H B

U U U U

X X Y
H D B

U X X Y

= = =

=

=

∩ ∩ − ∩
= − −

− ∩
= −

− ∩
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(3) If i jX d→  are uncertain rules, then 

'

'

| | 1
( ) *log

| | | |

| | 1
( | ) *log

| | | |

i
i

i
i

i

X
H B

U U

X
H D B

U X

= −

= −
 

Computed by the Definition 5, the entropy ( )H B and ( | )H D B are the sum of each 
' ( )H B  and ' ( | )H D B , which are defined as follows: 

'

1

( ) ( )
m

i
i

H B H B
=

=  (1) 

'

1

( | ) ( | )
m

i
i

H D B H D B
=

=  (2) 

The algorithm presented in the paper is based on the ( )H B  and ( | )H D B defined 
as formula (1) and (2), which are employed as the uncertainty measurements. 

4   Evolutionary Computation and Rough Set-Based Algorithm for 
Rule Generation 

In this section, we propose the method for rule generation based on the evolutionary 
computation and rough set reduction. 

By analogy to natural evolution, the solution candidates are called individuals and 
the set of solution candidates is called the population. Each individual represents a 
possible solution, i.e., a decision vector, to the problem at hand. For the continuous-
valued attributes, we encode the cuts in the genes of individuals. For [ , ]a a aV l r R= ⊂ , 

where a A∈ (attributes set) and R is set of real, any cuts a
ic  are belonging to ac , 

where 0 1 2 3 1{ , , , ,..., , }a a a a a a
a k kc c c c c c c +=  and 0 1 2 1

a a a a a
a k k aa a

l c c c c c r+= < < < < < = . 

Given [ , ]a a aV l r= ={ 1 2, ,...,a a a
nv v v }={ ( ) : }a x x U∈ here 1 2 ...a a a

a n al v v v r= < < < =  

and n is objects number. The candidate cuts set 

0 1 1 2 1{[ , ),[ , ), ,[ , )}
a a

a a a a a a
a k kP c c c c c c += where 1 ( 1... )

2

a a
a i i
i a

v v
c i k− +

= = . 

Here in the method, we encode individuals in two segments. The genes for the first 
segment are attributes bits, where amount of bits is equal to attributes number and 
each bit denotes the selection of the corresponding attribute. The second segment is 
encoded for cuts genes, where genes kim1, kim2, …kimi in the second segment denote 
the selection of cuts for attribute i. The candidate cuts set for the attributes is aP  
described above. Binary codes are employed in the representation of bits, in which 
value ‘1’ means being-selected and ‘0’ means no selection.  

A new individual is created by mutation, which is implemented on the two 
segments of genes respectively. When changing the bits from one generation to next 
generation, the random number r 0<r<1 for each bit is generated, which is the 
criteria for modification. If r>= aθ , aθ is the mutation threshold (0< aθ <1), the bit is to 
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be changed from ‘0’ to ‘1’ or from ‘1’ to ‘0’. If r< aθ , the mutation will not be 
activated. The two segments of genes are interrelated. If the bit in attributes segment 
is set to ‘1’, then corresponding cuts will be changed by mutation with the 
probability (0 1)b bP P< < , whereas the bit in attribute segment will be set to ‘0’ if the 
corresponding bits in second segment all go to ‘0’. 

The probability of survival of any individual is determined by its fitness. In the 
paper, the fitness function we use is: 

( ) ( | )
*(1 ) (1 )*(1 )

log(| |) log(| |)

H B H D B
H

U U
α α= − + − −  (3) 

where 0 1α≤ ≤ and ( )H B and ( | )H D B are defined as formula (1) and (2). 
The description of basic steps of the proposed algorithm is given as follows, where 

some parameters are used: m denotes the number of attributes, d denotes decision 
classes number, n denotes the initial solutions in a population, s denotes number of 
individuals in the next generation by mutation from one solution, maxgen is 
maximum of generations, maxfitness is threshold of fitness, cycle is variable of 
evolutionary generation. 

Algorithm.  Evolutionary Computation and Rough Set-Based Algorithm For Rule 
Generation 
Input. Decision table ( , )S U C D= ∪ , where U is a finite, non-empty set of 
objects(universe), C is a set of condition attributes and D is set of decision attributes. 

Output.  Decision Rules 

Step 1 initial(m,d,n,s,maxgen,maxfitness,cycle)  //initialization  
Step 2 for i=1 to m do           // generate candidate cuts set  
              SortSamples( );        
              CUT(i,:)= SelectCuts( ); 

 end               
Step 3 CalculateCutImportance( )  //calculate the importance of cuts  
Step 4 InitialChromosome(n)      //generate the initial population   
Step 5.MutationChromosome(n,s)  //mutation 
Step 6 DecodeChromosomeToDecisionTable( )    //Decode for the n*(1+s) individuals 

//in the filial generation and the parent 
//generation 

Step 7 for i=1 to n(s+1) do 
                efitness(i)=CalculateFitness(i)     //calculate the fitness by formula (3)   
           end; 
Step 8 fitness=max(efitness); 
Step 9 chromosome=ChooseBestChromosome( )   // (1 )s+ -ES evolutionary strategy 
Step 10 cycle=cycle+1; 
Step 11 if cycle<maxgen & fitness<maxfitness 
                   goto step 5 

else 
goto step 12 

Step 12 rules=GetRulesFromTheBestChromosome( ) //get the rules form the genes  
// for the finial solution 

finalRules=simplify(rules)               // simplify the rules 



860 L. Shang et al. 

 

5   Experiments and Results 

We did a series of experiments with two UCI machine learning datasets Iris and 
Thyroid-disease to get the decision rules [13]. Table 1 gives the summary of these two 
data sets. 

Table 1.  Summary of data sets 

Data set Number of records 
Number of conditional 

attributes 

Number of 
decision classes 

Iris 150 4 3 

Thyroid-disease 215 5 3 

Table 2.  Results on Iris data set 

0.8β =  0.9β =  1.0β =   
No. 
of 

Cuts 

reduct No.of 
decision 

rules 

Precision
(%) 

No. 
of 

Cuts

reduct No.of 
decision 

rules 

Precision 
(%) 

No. 
of 

Cuts
 

reduct No. of 
decision 

rules 

Precision 
(%) 

1 3 a3 3 93.33 6 a3,a4 5 96.67 10 a3,a4 7 91.67 
2 3 a4 3 96.67 4 a3 3 93.33 8 a3,a4 6 91.67 
3 2 a4 3 96.67 6 a3,a4 4 98.33 8 a3,a4 7 96.67 
4 6 a3,a4 4 98.33 10 a3,a4 7 96.67 10 a3,a4 6 96.67 
5 3 a4 4 95 9 a3,a4 6 96.67 6 a3,a4 6 96.67 

average 96 96.33 94.67 

Table 3. Results on Thyroid-disease data set 

0.8β =  0.9β =  1.0β =   
No. 
of 

Cuts 

reduct No.of 
decision 

rules 

Precision
(%) 

No. 
of 

Cuts

reduct No.of 
decision 

rules 

Precision
(%) 

No. 
of 

Cuts
 

reduct No. of 
decision 

rules 

Precision 
(%) 

1 
5 a2,a5 4 94.12 9 a2,a5 6 91.76 15

a1,a2,
a3,a5

14 90.59 

2 
5 

a2,a4, 
a5 

4 91.76 11 
a2,a3,

a5 
8 92.94 13

a1,a2,
a3,a5

12 90.59 

3 
9 

a2,a4, 
a5 

8 96.47 10 a2,a5 6 92.94 14
a2,a3,

a5 
12 90.59 

4 
5 a2,a5 5 91.76 9 a2,a5 7 91.76 14

a1,a2,
a4,a5

11 92.94 

5 
5 a2,a5 4 95.29 8 a2,a5 6 90.59 14

a1,a2,
a4,a5

9 90.59 

average 93.88 91.99 91.06 



Evolutionary Computation and Rough Set-Based Hybrid Approach to Rule Generation 861 

 

For the Iris data set, we randomly use 90 instances as the training set and others as 
the testing set, and for the data set Thyroid-disease, we randomly select 130 instances 
as training set. All tests are made five times. 

Table 4. Comparison with methods in RSES system 

Iris Thyroid-disease  
Methods Rules 

number 
Testing 
precision(%) 

Rules 
number 

Testing  
Precision(%) 

Local 
Discretization+Exhaustive 

Algorithm 

8.2 96.33 11.8 92.00 

Local Discritization+LEM2 
Algorithm 

5.0 93.33 7.2 91.76 

Global 
Discretization+Exhaustive 

Algorithm 

7.0 91.33 11.2 91.76 

Global Discretization+Genetic 
Algorithm 

6.8 93.33 11.0 91.76 

 
 
 
R
S
E
S 

Global Discretization+LEM2 
Algorithm 

5.0 91.67 7.0 90.82 

Proposed method 5.0 96.33 5.0 93.88 

All Parameters have been tuned experimentally, which are set as n 4, s 5, 

aθ =0.6~0.7 α =0.05~0.15. Now the results are summarized in Table 2 and Table 3. 

Results in Table 2 and Table 3 show the reducts and generated decision rules 
numbers along with the changed value of β described in section 3. From the 

definition, β is set for the tolerance of noise and for the boundary uncertainty 

measurement, which has been tuned experimentally. Setting greater value of β will 

keep out the appropriate rules, whereas lower value will get more faulty rules. It is 
noteworthy that how β  works in different data sets. It can be seen from table 2 of Iris 

data set that 0.9 is best value of β comparing with three settings 

( 0.8β = , 9.0=β , 0.1=β ), with which the testing precision is highest. From table 3 

of thyroid-disease data set we can see that 0.8β =  is the appropriate assignment. 

Experimental results reveal that assignment of β keeps close relation with the 

distribution of data sets. 
Some experiments are done to compare with other methods. In the paper, we use 

Rough Set Exploration System2.2 [5] to get the average rules numbers and precisions 
by five times of experiments. Results are presented in Table 4, in which the listed 
methods in the left column are embedded in system RSES except the last row for our 
proposed method. 

Results shown above reveal that rules generated by the proposed method are fewer 
than the listed RSES methods, and the precision is higher, which indicates that it is 
effective to generate decision rules employing our proposed method and to get higher 
classification quality. 
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6   Remarks 

The work presented in the paper shows that it is possible to generate decision rules 
with evolutionary computation and rough set-based hybrid approach. Different from 
other methods, the algorithm integrates procedure of discretization and reduction 
using information entropy-based uncertainty measures and evolutionary computation. 
Experimental results show that the proposed method leads to better classification 
quality and smaller number of decision rules. Unfortunately, it takes time to 
implement the evolutionary computation and tune the parameters. Once tuned and 
trained, the method exhibits excellent classification quality. Future work will 
emphasize on the optimization of fitness function and tuning of parameters. 

Acknowledgements. This work is supported by the National Natural Science 
Foundation of China under Grant No.60273033 and the Natural Science Foundation 
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Abstract. In this contribution, we propose and analyze three evaluation
functions (contrast functions in Independent Component Analysis termi-
nology) for the use in a genetic algorithm (PNL-GABSS, Post-NonLinear
Genetic Algorithm for Blind Source Separation) which solves source
separation in nonlinear mixtures, assuming the post-nonlinear mixture
model. Blind source separation refers to the problem of recovering a
set of unknown sources from another set of mixtures directly observable
and little more information about the way they were mixed. Assuming
statistical independence as the assumption to obtain the original sources
we can apply ICA (Independent Component Analysis) as the technique
to recover the signals. In order to analyze in practice the performance
of the chosen fitness functions in our proposed algorithm, we applied
ANOVA (Analysis of Variance) to the results, showing the validity of
the three approaches.

1 Blind Source Separation and Independent Component
Analysis

The guiding principle for ICA is statistical independence, meaning that the value
of any of the components gives no information on the values of the other com-
ponents. This method differs from other statistical approaches such as principal
component analysis (PCA) and factor analysis precisely in the fact that is not
a correlation-based transformation, but also reduces higher-order statistical de-
pendencies. The extensive use of ICA as the statistical technique for solving
blind source separation (BSS), may have lead in some situations to the erro-
neous utilization of both concepts as equivalent. In any case, ICA is just the
technique which in certain situations can be sufficient to solve a given problem,
that of blind source separation. In fact, statistical independence insures separa-
tion of sources in linear mixtures, up to the known indeterminacies of scale and
permutation.

In linear ICA, which is the most extensively studied case, the transforma-
tion F is restricted to being linear. Nonlinear ICA allows F to be nonlinear. If we
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generalize to the situation in which mixtures are the result of an unknown trans-
formation (linear or not) of the sources, independence alone is not a sufficient
condition in order to accomplish blind source separation successfully. Indeed, in
[1] it is formally demonstrated how for nonlinear mixtures, an infinity of mu-
tually independent solutions can be found that have nothing to do with the
unknown sources. Thus, in order to successfully separate the observed signals
into a wave-preserving estimation of the sources, we need additional information
about either the sources or the mixing process.

Therefore nonlinear ICA, is rather unconstrained, and normally demands
additional information to make the estimations coincide with the estimations.
Applying the post-nonlinear constraint, other authors (Taleb and Jutten [2],
Rojas et al. [3], [4]) proposed several contrast functions which approximate the
mutual information of the estimated components. Assuming the post-nonlimear
model, the indeterminacies are the same as for the basic linear instantaneous
mixing model: invertible scalings and permutations. The mixture model can be
described by the following equation:

x(t) = f(A · s(t)). (1)

We propose in this contribution the use of a genetic algorithm to solve
post-nonlinear blind source separation. We also present three different evalu-
ation functions that asses each candidate solution in distinct versions of the
genetic algorithm. Neural network approaches have the drawback of possibly
being trapped into near-optimal solutions in situations where the search space
presents many local minima. As an alternative, genetic algorithms deal simulta-
neously with multiple solutions, not a single solution, and also include random
elements, which help to avoid getting trapped into sub-optimal solutions.

Starting from the observed mixtures (x), our algorithm will The unmixing
stage, which will be performed by the algorithm here proposed is expressed by
equation 2:

y(t) = W · g(x(t)). (2)

2 PNL-GABSS: Genetic Algorithm for Post-Nonlinear
Blind Source Separation

The proposed algorithm will be based on the estimation of mutual information,
value which cancels out when the signals involved are independent. Mutual in-
formation between the elements of a multidimensional variable y is defined as:

I(y1, y2, ..., yn ) =
n∑

i=1

H(yi) −H(y1, y2, ..., yn). (3)

In order to exactly compute mutual information, we need also to calculate
entropies, which likewise require to know the analytical expression of the proba-
bility density function (PDF) which is generally not available in practical appli-
cations of speech processing. Thus, we propose several evaluation functions (or
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contrast function in BSS terminology) that approximate mutual information. A
contrast function, Ψ(·), is any non-linear function which is invariant to permu-
tation and scaling matrices, and attains its minimum value in correspondence of
the mutual independence among the output components.

Independently of the selected fitness or contrast function, the operation of
the basic genetic algorithm is invariant, needing the following features to be
completely characterized:

1. Encoding Scheme. The genes will represent the coefficients of the odd poly-
nomials which approximate the family of nonlinearities g (see equation 2).
The linear matrix will be approximated by a well-known method such as
JADE [5].

2. Initialization Procedure. Both polynomial and matrix coefficients which form
part of the chromosome are randomly initialized.

3. Fitness Function. The key point in the performance of a GA is the definition
of the fitness function. In this case, the fitness function that we want maxi-
mize will be precisely the inverse of the approximation of mutual information
given in equation 3:

Fitness(y) =
1

I(y)
=

1
p∑

i=1
H(yi) −H(y1, y2, ..., yp)

(4)

4. Genetic Operators. Typical crossover and mutation operators will be used for
the manipulation of the current population in each iteration of the GA. The

Fig. 1. Flow chart of the genetic algorithm for source separation of post-nonlinear
mixtures
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crossover operator is “Simple One-point Crossover”. The mutation operator
(“Non-Uniform Mutation” [6]), is more favorable to exploration in the early
stages of the algorithm, while exploitation takes more importance when the
solution given by the GA is closer to the optimal.

5. Parameter Set. Population size, number of generations, probability of muta-
tion and crossover and other parameters relative to the genetic algorithm op-
eration were chosen depending on the characteristics of the mixing
problem.

The flow chart for the genetic algorithm that solves blind source separation
in post-nonlinear mixtures is shown in Figure 1.

3 Proposed Fitness Functions

In order to calculate the degree of independence of a set of variables precisely
it is necessary to have the mathematical expression of their probability density
functions. Actually, since that information is not typically available, it is usual
to utilize approaches of independence measures. In this research work, several
functions have been evaluated, most of them based on the calculation of ap-
proaches of the mutual information or measures derived from it. One of the
great advantages of genetic algorithms is its flexibility in the use of evaluation
functions.

3.1 Cross-Cumulants Minimization

It is possible to build a fitness function based on the simultaneous minimization
of several cumulants, cross-cumulants 2-2, 3-1 and 1-3 to be precise. We can also
add some penalization factors to the fitness functions, promoting solutions whose
estimations are closed to zero mean and unit variance (C1 and C2, respectively).

ΨCrossCumulants(yi, yj) = cum22(yi, yj)+
+ cum31(yi, yj) + cum13(yi, yj) + αC1 + βC2 (5)

where α and β are weights (real numbers) for the penalization functions.
Unfortunately, this simple approach is only valid for separating two signals.

Although it can be extended to three or more computing the fitness function by
pairs, the computational cost would exponentially increase with the number of
mixtures.

3.2 PDF Direct Approximation Using Histograms

We propose to approximate densities through the discretization of the estimated
signals building histograms and then calculate their joint and marginal entropies.
In this way, we define a number of bins m that covers the selected estimation
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space and then we calculate how many points of the signal fall in each of the
bins (Bi i = 1, ...,m). Finally, we easily approximate marginal entropies using
the following formula:

H(y) = −
n∑

i=1

p(yi) log2p(yi) ≈ −
m∑

j=1

Card(Bj(y))
n

log2
Card(Bj(y))

n
(6)

where Card(B) denotes cardinality of set B, n is the number of points of esti-
mation y, and Bj is the set of points which fall in the jth bin.

The same method can be applied for computing the joint entropies of all the
estimated signals:

H(y1, ..., yp) =
p∑

i=1

H(yi |yi−1, ..., y1 ) ≈

≈ −
m∑

i1=1

m∑
i2=1

...
m∑

in=1

#Bi1 i2...ip(y)
n

log2
#Bi1 i2...ip(y)

n
. (7)

where p is the number of components which need to be approximated.
Therefore, substituting entropies in equation 3 by approximations of equation

6 and 7, we obtain a fitness function which will reach its minimum value when
the estimations are independent.

3.3 Gram-Charlier Expansion for Mutual Information
Approximation

A widely applied method for mutual information approximation is the applica-
tion of the Gram-Charlier expansion, which only needs some moments of yi as
suggested by Amari et al.[7] to express each marginal entropy of y as:

H(yi) ≈
log(2πe)

2
−

(
ki
3
)2

2 · 3!
−

(
ki
4
)2

2 · 4!
+

3
8
(
ki
3
)2

ki
4 +

1
16

(
ki
4
)3

(8)

where ki
3 = mi

3 , and ki
4 = mi

4 − 3.
Substituting equation 8 in the calculation of mutual information (equation

3), we obtain a new fitness function:

evalIM−GramCharlier(g)−1 = ΨIM−GramCharlier(y)

=
n∑

i=1

[
log(2πe)

2
−

(
ki
3
)2

2 · 3!
−

(
ki
4
)2

2 · 4!
+

3
8
(
ki
3
)2

ki
4 +

1
16

(
ki
4
)3

]
−

− log |det (W)| −
n∑

i=1

E

[
log

∣∣∣∣∣
P∑

k=1

(2k − 1)pikx
2k−2
i

∣∣∣∣∣
]

(9)
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The approximation of entropy in equation 8 is only valid for uncorrelated
random variables, being necessary to preprocess the mixed signals (prewhiten-
ing) before estimating their mutual information. Whitening or sphering of a
mixture of signals consists of filtering the signals so that their covariances are
zero (uncorrelatedness), their means are zero, and their variances equal unity.

4 Analysis of Variance of the Results

Once the algorithm has been proposed, we will test its robustness and com-
putational load using a well-known statistical tool as the Analysis of Variance
(ANOVA). ANOVA is a statistical method that yields values that can be tested
to determine whether a significant relation exists between variables of interest [8].

In our case, we will use ANOVA in order to analyze the estimations in terms of
their similarity to the original sources and testing which variables (factors) affect
more to the performance of the proposed algorithm. It will be of special interest
the influence of the fitness function chosen, so that we can determine which one
works better in practice. Table 1 shows the factors defined for the analysis of
variance and their corresponding levels (using ANOVA terminology). We will also
apply ANOVA in order to test which factors affect more to the computational
time of the PNL-GABSS algorithm. Therefore, the response variables will be the
crosstalk between the sources and the estimations (measured in decibels) and
the time of execution of the algorithm.

Table 1. Chosen factors for the ANOVA

Levels of the chosen factors
Factor Level 1 Level 2 Level 3 Level 4
Fitness Function ΨIM−GramCharlier ΨHistograms ΨCrossCumulants

Nr. Samples 2000 4000 8000
Population Size 10 20 30 40
Generations number 10 20 40 80
Crossover probability 0.05 0.2 0.5
Mutation probability 0.01 0.1 0.3
Selection probability 0.01 0.1 0.2

The algorithm is run over a mixture of signals generated after applying the
following linear and non-linear transformation to a set of two voice signals of
10.165 samples each one (see mixtures in figure 2):

A =
[

0.4891 −0.1202
−0.4641 0.8668

]
, F =

[
tanh(x)

tanh(x/2)

]
(10)

Once the results after applying the PNL-GABSS algorithm were obtained, we
performed an ANOVA with the output variable as the average crosstalk between
estimations and the sources and another ANOVA for the execution time (CPU
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Table 2. Multiple range table for the factor “Fitness Function” in the ANOVA (re-
sponse variable: crosstalk)

Fitness Func. Nr. of runs Avg. Crosstalk Homogenous Group
ΨHistograms 1296 -11.399 dB B

ΨCrossCumulants 1296 -10.201 dB C
ΨIM−GramCharlier 1296 -15.638 dB A

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−0.5

0

0.5

x
1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
2

Fig. 2. Post-nonlinear mixtures as the inputs for the PNL-GABSS algorithm

Fig. 3. Homogenous groups for each fitness function for the average crosstalk

time). Table 2 and Figure 3 show the different results obtained depending on
the fitness function chosen for the genetic algorithm.

Table 3. Multiple range table for the factor “Number of samples in the signals” in the
ANOVA (response variable: crosstalk)

Nr. Generations Nr. of runs Avg. Crosstalk Homogenous Group
8000 1296 -13.472 dB A
4000 1296 -11.884 dB B
2000 1296 -11.883 dB B
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Table 4. Multiple range table for the factor “Number of generations” in the ANOVA
(response variable: crosstalk)

Nr. Generations Nr. of runs Avg. Crosstalk Homogenous Group
80 972 -12.659 dB A
40 972 -12.586 dB A and B
20 972 -12.315 dB B and C
10 972 -12.091 dB C

Fig. 4. Homogenous groups for different number of samples at the input of the algo-
rithm (left) and number of generations (right) for the average crosstalk

Table 5. Multiple range table for the factor “Fitness Function” in the ANOVA (re-
sponse variable: CPUTime)

Fitness Func. Nr. of runs Avg. CPU time Homogenous Group
ΨHistograms 1296 25.23 A

ΨCrossCumulants 1296 21.92 B
ΨIM−GramCharlier 1296 19.88 C

Fig. 5. Homogenous groups for each fitness function for the computation time
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The number of samples in the signals refers to the amount of data from the
mixture signals which is used by the algorithm PNL-GABSS. A higher number
of data must give better results (see Table 3) and Figure 4 (left), although the
response time will be also higher.

Table 4 and Figure 4 (right) show how the number of generations in the
genetic algorithm affects the crosstalk between the estimations and the sources.
As can be expected, as the number of generations is higher, the solution is
slightly better. However, the differences in crosstalk are not so noticeable as those
obtained depending on the chosen fitness function. Other factors regarding the
genetic algorithm design, such as crossover and mutation probability, population
size and selection probability do not have either a strong effect on the obtained
crosstalk.

From the results, it can be drawn that the fitness function based on the
Gram-Charlier expansion for mutual information approximation achieves better
results. Also, from the ANOVA is deduced that results also improve if the number
of samples increases, as it is normally expected. Other factors, as the crossover
or mutation probabilities do not have a strong influence on the crosstalk results
(their tables and figures were not included in this paper).

Regarding the ANOVA with the computation time as the response variable,
all the factors listed in Table 1 have a strong statistical significance over the
algorithm response time (e.g. as population size increases, computation time
also increases). Specifically, concerning the effect of the chosen fitness function
over the computation time, algorithm using ΨIM−GramCharlier takes an average
time of 25.23s, while using ΨCrossCumulants and ΨHistograms takes an average of
21.92s and 19.88s, respectively. Therefore, fitness function ΨIM−GramCharlier,
although is the one which gives the best results in terms of crosstalk, is also
the most complex regarding time of computation, as it is shown in Table 5 and
Figure 5.

5 Conclusion

This paper discusses the application of three fitness functions in a genetic al-
gorithm proposed for post-nonlinear blind source separation. After showing the
theoretical basis of the new approaches, a thorough analysis such as ANOVA
was applied in order to assess the capability of the approaches, showing that the
function based on the mutual information approximation by means of the Gram-
Charlier expansion achieves the best similarity results between the estimations
and the sources.

Furthermore, another ANOVA analyzing the most relevant factors affect-
ing computation time shows that mutual information approximation is also the
function which takes more time to compute among the three functions pro-
posed.
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Abstract. In this paper, we present a novel soft decision mixture model for im-
age segmentation. This model adopts the soft decision classify into gaussian 
mixture model to represent the probability distribution of the observed image 
feature. The model for the underlying true context images is designed to serve 
as prior contextual constraints on unobserved pixel labels in term of markov 
random field model. Experiments with synthetic image and real image show 
that the use of soft decision mixture model definitely improves the quality of 
the segmentation results for noisy images and results in reduced classification 
errors in the interior area of the region. 

1   Introduction 

Image segmentation is one of the major challenges in image processing and computer 
vision. Recently, finite mixture models [1]-[5] have attracted considerable interest for 
image segmentation. However, the application of finite mixtures model to image 
segmentation faces some difficulties. For the classical mixture statistical model each 
image pixel to be associated with exactly one class. This assumption may be not real-
istic. The fuzzy-c mean algorithm, which has widely been used in image segmenta-
tion. Some methods mixing fuzzy and statistical model have been developed by 
Gath[6].Recently, the Markov Random Field (MRF) models [7] were used with im-
ages in an important number of works to add spatial smoothness into the process of 
image segmentation [8]-[9]. This approach provide satisfactory results in many case, 
but most case the assumption of a single Gaussian distribution typically limits image 
segmentation accuracy.  

In this work, we incorporate a "soft-decision" idea into mixture model segmenta-
tion scheme, in contrast to "hard-decision" schemes, which use the current segmenta-
tion to estimate parameters at each stage of the mixture model. To overcome the diffi-
culty of classical mixture model method for noisy image segmentation, we consider 
spatial contextual information by incorporating the prior spatial information based on 
the Markov Random field. From experiments with both synthetic and real image, the 
proposed method was quite effective for unsupervised image segmentation. 
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2   The New Image Segmentation Method 

Our goal to image segmentation is based on mixture model. Let },...,,{ 21 NxxxX = be 

a finite set of pixel of an image. The image can model by Gaussian mixture model, 
the probability distribution function of the image pixel x  is: 
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Then we can write the soft-mixture density for class i as: 
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One common approach to introduce spatial information is to model the label field 
image X  by a Gibbs random field (GRF). Hence its probability density )(xP , is 

given by a Gibbs distribution expressed as  

})(exp{
1

)( −=
C

ij xV
Z

xP β                                              (4) 

Where Z is a normalizing constant and the summation is over all cliques C , β is a 

positive parameter that controls the granularity of the image region. The clique poten-
tials can be defined as  
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This is known as Potts model with an external field ijV , that weights the relative im-

portance of different class present in the image. The second term which takes into 
account the spatial neighbors information relative to the image data. Here, we define 
the neighborhood of pixel i , denote by i∂ , by 3X3 windows with pixel i  being the 
central pixel. According to the Bayes rule, combining Eq(3) and Eq(4), to find the 
probability function  
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The segmentation solution is the choice of x which maximizes this posterior distribu-
tion, ),|( θyxP , this is the MAP estimate, x̂ . We use the iterated conditional models 

(ICM) algorithm proposed by Besag[9] to search for an optimal image labeling.    

3   Experimental Results 

In this section, we use synthetic images to compare the experiment performance of 
the new method presented in this paper with that of classical EM and MRF models.  

 

     
(a)                       (b)                        (c)                    (d)                         (e) 

Fig. 1. Segmentation experiment on a synthesis image with five classes. (a) The original image 
(b) Noisy synthetic image (add Gaussian noise 0,20) (c) traditional EM (d) traditional MRF 
segmentation results. (e) Proposed method results. 

     
            (a)                     (b)                       (c)                       (d)                     (e)  

Fig. 2. Segmentation experiment on a Baboon image with 4 class. (a) The original image (b) 
Noisy synthetic image (add Gaussian noise 0,20) (c) traditional EM(d)traditional MRF segmen-
tation results.(e)Proposed method results. 

The first experiment image is obtained by adding some Gaussian noise to the syn-
thesis image of Fig.1 (a), leading to Fig. (b). Here the Gaussian noise parameters are 

)25,0(),( =σμ . The value 5.1=β  would be suggested in this example.Fig.1 shows 

5-class image segmentation. The different segmentation obtained with the different 
methods is shown in Fig1. (c)-Fig.(e). The result displayed in Fig.1 (e) demonstrates 
the parameters of each class are properly estimated and the segmented regions are 
uniform respectively. This is great improvement over the EM and classical MRF 
model. Second  experiment  on  Baboon  image,  we consider  the 256X256 images of 
baboon’s face presented in fig.2 (a). Fig.2 (b) add Gaussian noise to baboon image, 
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here the Gaussian noise parameters are )25,0(),( =σμ . The value 2=β would be 

suggested in this example. 

4   Conclusions 

In this paper, we present a new statistical model-based image segmentation method. 
We present some examples on synthetic image and real image to illustrate the versa-
tility of our approach. The experimental results show that this method has a signifi-
cant improvement over classical MRF-based image segmentation. We conclude from 
the experiments for the synthesis and real images that our algorithm is robust to resist 
noise. 
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Abstract. The accuracy of a real-time digital filter frequency response is 
affected by the finite word length (FWL) constraint of coefficients used in its 
implementation. In this paper, we consider the FWL problem in regard to the 
finite impulse response (FIR) digital filters. Some theoretical issues and 
statistical error bound conditions of the maximum deviation between the exact 
and the approximate magnitude responses are also considered.  We use real-
valued genetic algorithms (GA) as an optimisation tool and derive results for 
the maximum error bounds and error deviation due to FWL effects for a number 
of design examples. Finally, a comparison is drawn between the simply 
rounded, the GA optimised, integer programming and the simple hill climber 
methods. 

1   Introduction 

FIR digital filters are used extensively in image processing, mobile communications, 
medical electronics and various other signal processing applications. For low power 
dissipation and high computational throughput, it is advantageous to truncate the 
coefficients to a limited length. However, this truncation can cause a shift in the 
design parameters of the filter that in some cases may become unacceptable. This 
leads to an optimisation issue that endeavours to select small variations of the 
approximated coefficient values in order to best serve the design specifications. The 
linear phase, direct form structure of finite impulse response (FIR) filters has been 
shown to be robust and therefore, attractive for the realisation of FWL coefficient 
implementation [1]. The problem of FWL FIR symmetric digital filters involves 
choosing a set of coefficients so that the new frequency response, as a consequence of 
truncation of the infinite precision coefficients, approximates as closely as possible to 
a given specified frequency response in a minimax sense. 

Prior algorithms reported in literature for solving this problem have been based 
upon two methods; the local search method [2] and the integer programming ‘branch 
and bound’ method [3, 4]. The local search algorithm involves selecting a feasible set 
of FWL coefficients (say rounded valued) to give a frequency response and 
examining the neighbourhood of H, the transfer function of the filter, for a better filter 
H′ i.e. one with lower error function. If such a filter is found then H′, replaces H and 
the algorithm moves to the next step or else it stops. The ‘branch and bound’ 
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algorithm is involved with systematically pruning a tree of several possible solutions 
based upon certain lower bounds as the enumeration proceeds.  Both of these methods 
are intrinsically computationally intensive and global optimality is not assured.  The 
problem is further compounded and becomes acute for longer filter lengths. 

2   FWL Coefficients and Error Objective Function 

The most commonly used method of deriving FWL coefficients for fixed-point 
arithmetic is the direct quantisation method.  In this method, high precision 
coefficients that are derived using standard filter design techniques are first rounded 
to yield FWL quantised coefficients.  The starting solution of quantised coefficients is 
thus given by 

hri = round[hei 2
B-1]  .  i=0,1,2,………,N-1     (1) 

Where ‘hri’ is the rounded coefficient, ‘hei’ is the high precision coefficient, ‘B’ is 
the number of bits used to represent the coefficients and ‘N’ is the filter length. 

The main purpose of the optimisation process is to minimise the objective function 
with the specific aim of obtaining an approximated frequency response of the filter 
that is as close as possible to the desired response.  The objective function is 
calculated for 500 equally spaced frequency grid points.   

The objective function is then evaluated using the following 

ObjV =  −
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Where 

Hip =  magnitude response of GA optimised filter at frequency ip in the pass band 
His =  magnitude response of GA optimised filter at frequency is in the stop band 
L =  number of frequency grid points (=500) 
p =  pass band cut-off point 
s =  stop band cut-off point 

A combination of the summation of squared deviations and a weighted maximum 
deviation as seen in equ.(2) generated good overall frequency responses. These 
responses did not show the effects of skewing that was observed during initial trials 
when only the maximum deviation was used to optimise the objective function. 

3   GA Optimisation of Band Select FIR Filters 

In this section we consider the case of band select filters for which the desired 
response is specified over the selected pass and stop bands. The desired function D( ) 
consists of a number of disjointed frequency bands Ωk ⊂ [0,π], where k=1,…,M such 
that for each k, D( ) is to be approximated to within a specified error bound δ(k) for  
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all ∈Ωk.  If the transfer function of the filter with infinite precision coefficients is 
H( ) and that of the approximate filter using FWL coefficients is ( ), then the 
maximum error bound is given by 

max    | ( )| -  D( )     =  
3

1-2N
Q  +  δ(k) .  for ∈Ωk     (3) 

In order to conduct a comparative study, the 10 filter examples used by Kodek and 
Steiglitz [4] for coefficient optimisation based on integer programming method are 
also used here.  The 10 filters are divided into 4 sets of filters as shown in Table 1.  
The optimised coefficients using the integer programming method have been taken 
from Kodek and Steiglitz [4]. 

Table 1. Sets of Filter Specifications 

Filter Pass-band Stop-band Pass-band 
A: range 

Weighting: 
Desired value: 

0 to 0.4 
1 
1 

0.5 to 1.0 
1 
0 

 

B: range 
Weighting: 

Desired value: 

0 to 0.4 
1 
1 

0.5 to 1.0 
10 
0 

 

C: range 
Weighting: 

Desired value: 

0 to 0.24 
1 
1 

0.4 to 0.68 
1 
0 

0.84 to 1.0 
1 
1 

D: range 
Weighting: 

Desired value: 

0 to 0.24 
1 
1 

0.4 to 0.68 
10 
0 

0.84 to 1.0 
1 
1 

Table 2 shows results for the maximum error deviation relative to the desired 
response for all ∈Ωk. The bounded value used in Table 2 is obtained using equ.(3). 
A comparison with the integer programming (IP) method clearly shows a distinct 
improvement for the case of GA optimised filters.  It is also observed that the 
bounded value of equ.(3) is consistent with the maximum error deviation obtained 
using the GA optimised filters. The GA optimised filters have generated slightly 
lower maximum error deviation values as compared to the value of bounded error for 
all but two of the ten filters namely, the A25/5 and the C15/5 filters. On the other 
hand, the IP optimised filters have better performance compared to the bounded value 
in just two of the ten filters. 

An example response for filter B25/7 is shown in Fig.1(a). It is observed that while 
the rounded response follows the exact response as is to be expected, the GA 
optimised response follows the requirement of the desired response which is 1 in the 
pass band for the filter B25/7. Fig. 1(b) shows a comparison of maximum error 
magnitudes against number of bits B for filter B25. 
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Table 2 Maximum error deviation relative to the desired response for all ∈Ωk 

filter GA-op Rounded IP-op exact Bounded value 
equ.(3) 

A15/5 0.1978 0.2309 0.2002 0.1324 0.2296 
A25/5 0.1873 0.2309 0.1873 0.0508 0.1771 
B15/7 0.2315 0.2813 0.3273 0.2797 0.3040 
B25/7 0.0993 0.1251 0.2157 0.1231 0.1547 
B35/7 0.0637 0.0869 0.1865 0.0528 0.0903 
C15/5 0.1672 0.1873 0.1667 0.0596 0.1568 
C25/5 0.1265 0.1873 0.1265 0.0173 0.1436 
D15/7 0.1483 0.2143 0.2542 0.2006 0.2249 
D25/7 0.0428 0.0651 0.1306 0.0570 0.0886 
D35/7 0.0425 0.0558 0.0668 0.0152 0.0526 

 

 
 
 

 
 
 
 
 
 
 

 

 

  (a)     (b) 

Fig. 1. (a)Magnitude response of simply rounded, GA optimised and IP optimised coefficients 
for the case of filter B25/7, (b) Comparison of error magnitudes against number of bits B for 
filter B25 

4   Simple Hill Climber Techniques and Exhaustive Search 

To test the robustness and accuracy of the GA optimised results, the methods of 
simple hill climber algorithms such as steepest ascent (SAHC) and nearest ascent 
(NAHC) were applied to a selection of filters shown in Table 1.  Random sampling 
tests for the search space as used for GA optimisation were also conducted.  
Furthermore, for a small selection of low order filters, an exhaustive search was 
conducted over a matching search space.  The hill climber algorithms for this search 
were based on the standard techniques used for binary strings [5] and adapted for the 
case of integer valued numbers representing the FIR filter coefficients.  The starting 
‘seed’ individual of an integer valued coefficient set is generated by randomly 
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perturbing the rounded coefficients by +1, 0 or –1.  The flow chart shown in Fig.2 
describes the hill climber algorithm used for this application.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A flow chart for the simple hill climber algorithm 

Table 3. Maximum error deviation relative to the desired response for all ∈Ωk 

 
Filter  Exh. search Random SAHC NAHC GA 
A15/5 0.1978 0.1978 0.1978 0.3536 0.1978 
A25/5 None 0.3051 0.1873 0.2517 0.1873 
B15/7 0.2208 0.2322 0.1418* 0.1972* 0.2315 
B25/7 None 0.1088 0.0678* 0.0740* 0.0993 
C15/5 0.1667 0.1875 0.1667 0.2796 0.1672 
C25/5 None 0.2468 0.1576 0.2623 0.1265 

Exh. = Exhaustive 
SAHC=steepest ascent hill climber 
NAHC=nearest ascent hill climber 
* indicates search space exceeded +1 and/or –1 of rounded coefficient values 

The results of SAHC, NAHC, the random sampling and exhaustive search for a 
selection of the FIR filters are shown in Table 3.  The results shown with an asterisk 
(*) are the ones for which the search space has deviated greater than +1 or -1 of the 
rounded coefficient values.  Note also that the exhaustive search was confined to 
deviation of +1, 0 or –1 of the rounded coefficients.  There is clear evidence that the 
GA optimisation has generated consistently good results (see Table 2).  Although the 
hill climber of steepest ascent form (SAHC) has also shown remarkably good results 
for a selected number of filters. 

Random Selection

Evaluate objective functions 
Save Best1

Evaluate objective function 

Best1<Bestold 
Fitness increase?

Save Bestold

Obtain new neighbours 

Yes No 
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5    Conclusions 

In this paper, we explored the GA optimisation of finite word length coefficient FIR 
digital filters.  GA optimisation of a number of band-select filters is considered.  For 
such filters, comparison has been drawn with the optimised results based on integer 
programming method reported in [4] and also with the simple hill climber techniques.  
Again GA optimised results indicate consistent improvement for majority of the 
selected filters.   

Optimisation using the simple hill climber technique (especially SAHC) has shown 
potential by generating some good results; in general these have been inconsistent 
over the range of example filters that were considered.  However, the GA technique 
has demonstrated a valid, effective and robust optimisation tool for this application.  
Furthermore, it is efficient as the GA code running on a 600MHz pentium-3 computer 
with the parameters given in Section 2 above completed the optimisation in 
approximately 30 seconds for each filter. 
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Abstract. DSPs provide high performance and low cost through their
use of specialized hardware features. One feature commonly found in
DSPs is the dual data memory banks to offer high memory bandwidth.
However, it poses problems for C compilers, which are mostly not ca-
pable of assigning variables between banks. In this paper, an immune
genetic algorithm for variable partition between data banks is presented
to maximize the benefit of this feature. In our approach, the reduced
interference graph of variable accesses is constructed, the potential vari-
able partitions are represented as antibodies and the vaccines are ab-
stracted; then through some operations including adaptive vaccination,
immune selection and so on, the antibodies can converge at optimal vari-
able partitions. Experimental results show that our algorithm is superior
to previous works in terms of performance and code size.

1 Introduction

Currently, there is a high demand for digital signal processors (DSPs) with high
performance, low code size, low power dissipation and low energy consumption
in many areas. Some common hardware features of DSPs, e.g. hardware low-
overhead looping, accumulator-based data paths, tightly-encoded instructions
that specify the parallel execution of multiple independent operations, multiple
pipelined functional units, and an instruction memory plus two data memory
banks [1], are designed to exploit compute-intensive program constructs that
occur frequently in the signal processing algorithms that are at the core of many
embedded applications. However, existing compilers for DSPs are generally un-
able to exploit these features and generate sufficiently efficient and compact
code. Hence, system designers often resort to hand-programming the embedded
software in assembly - a very time-consuming and high development cost task.

One important feature of DSP is dual data memory banks. These DSPs, e.g.
Motorola DSP 56000, NEC uPD77016, Analog Device ADSP2100, are equipped
with one program memory bank plus two data memory banks (X and Y) accessi-
ble in parallel for increasing the memory bandwidth. The data ALU of Motorola
� Supported by the Nation Science Foundation of China (No.60173059).
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Fig. 1. Data ALU of Motorola 56000

sum = 0;

for (i=0; i<N; i++)

    sum += A[i] * B[N-1-i];

<1> CLR  A        X:(R0)+,X0  Y:(R4)-,Y0

<2> REP  #N-1

<3> MAC  X0,Y0,A  X:(R0)+,X0  Y:(R4)-,Y0

<4> MACR X0,Y0,A

(a) (b)

Fig. 2. (a) C code of FIR filter (b) Motorola DSP56k assembly code

56000, shown in fig. 1, consists of four 24-bit input registers called X0, X1, Y0
and Y1, and two 56-bit accumulators called A and B. Data transfers between
the data ALU registers and the X or Y data memory bank occur over XDB,
YDB. This feature of memory architecture can be shown to be very effective
to many DSP algorithms such as the FIR filter algorithm. Fig. 2(a) shows the
filter written in C while fig. 2(b) shows the corresponding code in the assembly
language of Motorola DSP56000 [2]. Instructions < 1 > and < 3 > demonstrate
the effective use of the dual memory banks. By allocating array A to one memory
bank and array B to the other, it is possible to access an element from each array
in one instruction. If the arrays had both been allocated to the same memory
bank, the elements would have to be accessed sequentially with two instructions
and thus increase the size of the loop from one instruction to two instructions,
reducing performance by a factor of two. For scalar variables, the partition to
either X or Y plays an important role for code quality too.

Many existing C compilers, e.g. GCC for M56000 and ADSP-2100, cannot
cope well with dual memory banks, but all variables are assigned to just one
bank, which implies a great performance and area loss. In this paper a novel im-
mune genetic algorithm (IGA) for the variable partition problem of dual memory
bank DSPs is proposed. In our approach, the reduced interference graph of vari-
able accesses is constructed and the maximum-cut two parts are gained by using
IGA for maximizing parallelism. we represent potential variable partitions as
antibodies and propose a vaccine abstraction technique. Through adaptive evo-
lution process, composed of selection, crossover, mutation, vaccination, immune
selection, and so on, the antibodies can converge at optimal variable partitions.
The experimental results demonstrate that our approach can improve code qual-
ity in terms of performance and code size.

The remainder of this paper is organized as follows. In section 2 related works
are discussed. The immune genetic algorithm for variable partition is presented in
section 3. Experiments results are provided in section 4. Finally, the conclusions
and future works are given in Section 5.
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2 Related Works

Variable partition problem for exploiting dual memory banks was studied early
by Powell et al. [3]. Their approach assign variables to the X/Y banks by using
a greedy strategy: variables are assigned to X and Y in an alternating way
according to their access sequence in the program. This simple greedy method
may produce poor results for complex programs.

Saghir et al. [4] proposed two algorithms - compaction-based data partition-
ing and partial data duplication - are both performed in the data allocation pass
of the post-optimizer. The partitioning algorithm uses an interference graph to
partition a program’s variables into two sets, which correspond to the two mem-
ory banks. The partial duplication algorithm identifies memory accesses that
could be executed in parallel but cannot because their corresponding variables
cannot be allocated appropriately. A problem with this approach is that it is
for a hypothetical VLIW DSP. Additionally, duplicating partial variables makes
parallel execution possible, but increases storage requirements.

Sudarsanam et al. [5] tried to use the dual data memory optimally using
simultaneous reference allocation (memory bank + register allocation). They
performed both phases of register allocation and memory bank allocation in sin-
gle phase. Their algorithm is based on graph labelling, whose objective is to find
an optimal labelling of a constraint graph representing conditions on the register
and memory bank allocation. To solve this NP-hard problem, simulated anneal-
ing algorithm is applied to it and has achieved code size reductions between 5
and 10 % compared to machine code without exploitation of dual memory banks.
A problem is that compilation time is too long.

3 Immune Algorithm for Variable Partition of Dual Data
Memory Banks

The main steps of our variable partition approach are as follows.

1) DDG of variable accesses is constructed according to definition 1;
2) IG is constructed from DDG according to definition 2;
3) IG is reduced into RIG according to definition 3;
4) RIG is divided into two parts with maximum-cut weight by using IGA;
5) These two sub-graphs are mapped into variable assignment of X and Y banks.

3.1 DDG, IG and RIG Construction

Our approach is based on interference graph [4], which reflects the inherent
parallelism between variables of program.

Definition 1. A data dependency graph (DDG) is a directed node-labeled graph
G = (A,E, l), where each node ai ∈ A represents a memory access in program,
and each edge (ai, aj) ∈ E denotes a scheduling precedence between ai and aj. A
node label l(ai) denotes the name of the variable accessed by ai.
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Fig. 3. (a) code sequence; (b) DDG; (c) IG; (d) RIG and optimal variable partition

Definition 2. For a DDG G = (A,E, l), the interference graph (IG) is an
undirected graph I = (A′, E′, l′) with A′ = A, l′ = l. There is an edge (ai, aj) ∈
E′, if and only if ai and aj are not reachable from each other via a path in G.

Definition 3. The reduced interference graph (RIG) is an undirected graph
R = (V,E∗,W ), which constructed from IG as follows. Each node vk(vk ∈ V )
represents a node set A′

k = {ak1 , . . . , akm}, A′
k ∈ A′, l(aki) = vk, which means

the nodes in A′ with the same variable vk are reduced into a single node vk.
All edges in E′ containing nodes in A′

k are redirected to vk. Finally, all edges
(vk, vl) between two variables vk and vl are reduced to one edge and a weight
w(vk, vl) denoting the sum of the total edges between A′

k and A′
l in E′. The

weight w(vk, vl) reflects the gain achieved by assigning vk and vl to different
memory banks. |V | = n, W is a n×n triangular matrix (R is undirected graph),
in which each w(i, j) denotes the sum of potential parallel accesses of vi and vj.

W = {w(i, j)|w(i, j) = sum of edges between vi and vj in E′, 1 ≤ i, j ≤ n} (1)

An example of DDG, IG, RIG and optimal variable partition are shown in
fig. 3. The DDG (fig. 3(b)) is constructed according to definition 1. a1 stands
for the first access of variable a, b1 depends on a1 and c1 since b1 is the l-
value and a1 and c1 are r-values of assignment expression, b2 depends on b1
since b1 is the last write-access of variable b. The IG (fig. 3(c)) is constructed
according to definition 2. a1 is depended by b1, b2, d1, so a1 can be accessed in
parallel with a2, c1, e1 (one edge represents potential parallel access between two
variable accesses). The RIG (fig. 3(d)) is constructed according to definition 3.
The accesses of same variable is reduced to a single node, and the edges of them
is summed and represented as weight of edge. The edge-weight between a and c
is 2 because of edges (a1, c1) and (a2, c1) in IG. Therefore, the best partition is
achieved if the RIG is divided into two sub-graphs X and Y, such that the sum
of the edge weights between X and Y is maximal. In this case, the most parallel
memory accesses can be gained. This problem is known as a NP-hard problem -
maximum cut problem [6], which is solved by using proposed IGA in following.

3.2 Immune Genetic Algorithm

Immune Genetic Algorithm (IGA) [7] is based on Genetic Algorithm (GA). GA
[8] presents the solving process of problem as the evolving process of genes, and
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Operation
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Fig. 4. Flowchart of immune genetic algorithm

gets the fittest individuals (best or satisfying solutions) by selecting, crossing and
mutating individuals in population. However, because crossover and mutation
genetic operators make individuals change randomly and indirectly during evo-
lution, they not only make the individuals evolve better but also cause certain
degeneracy. On the other hand, there are many basic and obvious characteristics
or knowledge in the pending problem. However GA lacks the capability of meet-
ing an actual situation. On condition of preserving GA’s advantages, IGA utilizes
some characteristics and knowledge in the pending problems for restraining the
degenerative phenomena during evolution, so as to improve the algorithmic ef-
ficiency. The general flowchart of IGA is shown in fig. 4. The individuals in GA
are called antibodies in IGA, and the key step - immune operation, which con-
tains vaccination and immune selection, is used to restrain the degeneration of
antibodies. The population of antibodies are initialized randomly. The vaccines
are abstracted as local maximum spanning tree from RIG. Then through the
iterative steps including selection, crossover, mutation, vaccination and immune
selection, finally the antibodies can evolve into optimal solutions.

3.3 Representation of Antibody

Definition 4. For the X and Y banks, the representation of antibody B is de-
fined as a binary string of length n. A gene (bit) denotes whether a variable
belong to X or Y banks (0→ X, 1→ Y ). B = (b1, . . . , bn), bi ∈ {0, 1}, n = |V |

3.4 Fitness Evaluation

Matrix W is computed according to equation (1) in definition 3. For an antibody
B = (b1, . . . , bn), the fitness f(B) is computed according to equation (2), which
denotes the parallel gain in the case of variable partition of B.

f(B) =

∑n
i=1

∑i−1
j=1

(
w(i, j)× (bi XOR bj)

)
∑n

i=1
∑i−1

j=1 w(i, j)
; 1 ≤ i, j ≤ n; bi, bj ∈ B (2)

XOR: exclusive or operator.
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3.5 Vaccine Abstraction

The vaccine contains some basic features of the problem, while antibodies are
potential solutions. In other words, a vaccine can be regarded as an estimation on
some genes of the optimal antibody. For RIG maximum cut problem, some gene
fragments are generated as vaccines. The algorithm is shown in fig. 5. A vaccine
is a local maximum spanning tree (MST). Two nodes connected by a tree edge
can be simply assigned to different banks because the tree found by MST does
not form a cycle. MST ensures that we can assign nodes connected via an edge
with heavy weight, which implies that the bank assignment we get would be local
optimal. These vaccines are used to gain better antibodies by vaccination and
immune selection operations. An example of abstracting vaccine is illustrated in
fig. 6 (vaccine size = 4). Fig. 6(a) shows the RIG. In fig. 6(b), node i is selected
randomly firstly, then choose node k with maximum-weight edge (i, k), finally c
and d are selected into node set and (i, c) and (i, d) are selected into edge set.
So as fig. 6(e) shows, this vaccine, named vac1, is abstracted. All nodes in vac1
and related edges are removed from RIG. In fig. 6(c), node p is selected firstly
randomly, then q, h and l are selected orderly, finally formed vac2. Fig. 6(d)
shows vac3 and vac4. As fig. 6(e) shows, after all vaccines are abstracted, their
vaccination probabilities Pv are computed. According to the depth of a vaccine
tree, nodes are assigned 0 and 1 alternately.

while (remainder(V) > 0) { /* finish condition: V does not have remainders */
    create a new vaccine vac;
    select a node randomly, add it to vac;
    num_of_nodes = 1;  /* number of nodes of vaccine */
    while (num_of_nodes <= T) {  /* T is maximum nodes in a vaccine */
        select a adjacent node v to vac with maximum weight edge e;
        if (weight(e) <= 0) break; /* no other edges, vaccine is done */
        add node v and edge e into vac;
        num_of_nodes++;
    }
    if (num_of_nodes >= 2) { /* a vaccine contains two nodes at least */
        compute average weight of vac;
        assign 0 and 1 alternately according to the depth level of vac;
        add vac into vac_set;
        all edges related with nodes in vac are removed from W;
    }
    nodes whose degree = 0 are removed from V;
}
compute vaccination probability Pv  of each vaccine of vac_set according to equation (3);

Fig. 5. Algorithm for abstracting vaccine
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Fig. 6. Example of abstracting vaccine (Vaccine size = 4): (a) RIG (b) first vaccine;
(c) second vaccine; (d) third and fourth vaccine; (e) vaccines and their Pv
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Pvvac = Pv min +
(Pv max − Pv min)(AWvac − AWmin)

AWmax − AWmin
, vac ∈ vac set (3)

Pv max (Pv min) : The maximum (minimum) vaccination probability;
AWmax (AWmin) : The maximum (minimum) average-weight in vaccine set vac set;
AWvac : The average-weight of a vaccine vac.

3.6 Selection, Crossover, Mutation and Adaptive Strategy

The parents are selected by tournament selection method. Uniform crossover
method is executed. Mutation is performed by exchanging two stochastic gene-
bits of an antibody, which means that the assigned banks are exchanged. How-
ever, The behavior and performance of IGA are affected significantly by selection
of parameters crossover probability Pc and mutation probability Pm. Hence, an
adaptive method [9] is adopted to speed up convergence and preserve population-
diversity. Shown in equation (4) and (5), Pc and Pm are adaptive to the fitness of
individual and generation. Another mutation method is to reverse a stochastic
gene of antibody, which means changing the partition of a variable.

Pc =

{
Pc1 − (Pc1−Pc2)(f ′−favg)

fmax−favg
, if f ′ ≥ favg,

Pc1, if f ′ < favg.
(4)

Pm =
{

Pm1 − (Pm1−Pm2)(fmax−f)
fmax−favg

, if f ≥ favg,

Pm1, if f < favg.
(5)

fmax (favg) : The maximum (average) fitness of current population;
f ′ : The higher fitness of two individuals to crossover;
f : The fitness of individual to mutate;

3.7 Vaccination

The vaccines are not solutions, but some local optimal variable partition. There-
fore, vaccination is to modify some gene-bits according to a vaccine’s scheme,
so that antibodies have higher probabilities to get higher fitness. For an anti-
body, the vaccination operation is performed with each vaccine according to its
vaccination probability Pv, which is initialized in the vaccine abstraction phase
(see fig. 5). The whole vaccination process is performed according to immunity
probability Pi to each antibody. Because of the symmetry of vaccine(e.g. all-0
equals all-1), vaccination is performed as follows: two new antibodies can be
generated by replacing the gene-bits of one parent antibody by a vaccine and its
opposite-vaccine (reverse 1-bit into 0-bit and vice versa) respectively. The one
with higher fitness is chosen as the new antibody after vaccination.

The vaccination probability Pv of a vaccine is adaptive to evolving process.
After vaccination, the average difference between new fitness and old fitness of
antibodies is used to adjust Pv of this vaccine according to equation (7).

Pvnew =
{

Pvold
+ (1− Pvold

)× diff, if diff ≥ 0,
Pvold

× (1 + diff), if diff < 0. (6)
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diff =
∑NPi

j=1 (f(Bj)new−f(Bj)old)

NPi
;

NPi : The number of antibodies for vaccination according to Pi;
f(Bj)old (f(Bj)new) : The fitness of antibody Bj before (after) vaccination;

3.8 Immune Selection

Immune selection performed after vaccination is divided into two steps. Firstly
immune inspection is used to check whether the fitnesses of new antibodies are
higher than their parents. The case that child is lower than parents indicates
a degeneracy, so parents are preserved. Otherwise the second step - annealing
selection [10] is performed, which means that each antibody Bi of population
Dk is selected into new parent population Ak+1 according to probability P (Bi).

P (Bi) =
ef(Bi)/Tk∑N

j=1 ef(Bj)/Tk

(7)

Tk = ln(T0
k + 1)

k : The current order number of generation; N : The size of population;
Dk = (B1, . . . , BN ) : The current children population after vaccination;
f(Bi) : The fitness of antibody Bi;
Tk : The annealing temperature sequence, T0 = 80 in this work.

4 Experimental Results and Analysis

We evaluated the quality of our algorithm with DSP kernels from DSPStone C
benchmarks [11] on the Motorola DSP56000 [2]. The experimental platform is

Table 1. The results of IGA for variable partition of dual memory bank

kernel var acc opt-gain time(s) X bank Y bank
complex mul 6 18 69 5.548 ar, br, ci ai,bi,cr
complex up 4 22 117 4.697 A,B,C D
convolution 4 82 1550 5.067 y,x i,h
dot product 3 13 32 3.956 Z A,B
fir 5 161 5950 3.786 x,x0 h,i,y
fir2dim 6 882 193190 7.401 image,output,array2,array3 coeffs,array
biquad N 6 157 5161 4.947 w, f, coeffs wi,x,y
bi one 10 27 163 6.199 y,x,w2,b0,b1 w,w1,b2,a1,a2
lms 7 203 9550 8.523 X,delta,x H,d,y,error
matrix1 3 3900 3594900 17.605 C A,B
matrix2 3 3600 2879000 24.876 A,C B
mat1x3 3 27 153 10.665 h,y x
n complex up 5 480 57088 4.797 A,C B,D
n real up 4 192 9152 3.565 A,C B,D
real up 4 10 21 3.104 C,D A, B
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(a) (b)

Fig. 7. (a) Code size reduction (%); (b) Performance speedup (%)

Pentium IV 2.0G, 512M. The parameters are following: population size = 20,
maximum iteration = 500, Pc1 = 0.9, Pc2 = 0.6, Pm1 = 0.1, Pm2 = 0.001, Pi =
0.3, Pr (reversion mutation probability) = 0.05, Tour (tournament size) = 3, T
(vaccine size) = 3, Pv max = 0.9, Pv min = 0.3, T0 = 80.

The results of our approach are showed in Table 1. Column 1 is kernel name.
Column 2 is the number of variables. Column 3 is the number of accesses. Column
4 is the optimized gain. The computing time is listed in Column 5. The variable
partition to X and Y banks are shown in column 6 and 7.

Code quality improvements are gained in terms of performance and code size.
Code size is reduced because parallel memory accesses are encoded into a single
instruction. The performance is improved for higher data memory bandwidth.
Fig. 7(a) shows the percentage of code size reduction, as compared to unop-
timized code, which ranges from 5.16% (matrix2) to 18.6% (lms). On average
2.32% improvement is gained in comparison with the results reported in [5]. Fig.
7(b) gives the percentage of speedup of performance, which ranges from 8.52%
(biquad one sec) to 24.73% (complex mul).

5 Conclusions and Future Works

An immune genetic algorithm for variable partition of dual data memory banks
DSPs is proposed to get the maximum cut of reduced interference graph of
variables accesses. The vaccines, which are abstracted according to special vari-
able partition problem, are vaccinated on antibodies in the evolving process,
and accelerate convergence. Moreover, the vaccination probabilities of vaccines
are adaptive to their effects. Additionally, the adaptive crossover and mutation
methods are adopted too. Experimental results show that compared to previous
works, the code quality is improved in terms of code size and performance.

References

1. Lee, E.A.: Programmable dsp architectures. IEEE ASSP Magazine (1988, 1989)
Part I, 4–19; Part II, 4–14

2. Motorola: Dsp56000/dsp56001 digital signal processor user’s manual (1990)



892 D. Zhang et al.

3. D. B. Powell, e.a.: Direct synthesis of optimized dsp assembly code from signal
flow block diagrams. In: ICASSP. (1992)

4. M. Saghir, e.a.: Exploiting dual data-memory banks in digital signal processors.
In: 7th Inter. Conf. on Arch. Supp. for Prog. Lang. and Oper. Sys. (1996)

5. Sudarsanam, A., Malik, S.: Simultaneous reference allocation in code generation
for dual data memory bank asips. ACM Trans. on Design Auto. of Elec. Sys. (2000)
242–264

6. Garey, M.R., Johnson, D.S. In: Computers and intractability. Freeman (1979)
7. Jiao, L.C., Wang, L.: A novel genetic algorithm based on immunity. IEEE Trans.

on Systems, Man and Cybernetics, Part A 30 (2000) 552–561
8. Yao, X. In: Evolutionary Computation: Theory and Applications. World Scientific,

Singapore (1999)
9. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutations in

gas. IEEE Trans. on SMC (1994) 493–530
10. Zhang, J.S., et al.: The whole annealing genetic algorithms and their sufficient and

necessary conditions of convergence. Science in China (1997) 151–164
11. V. Zivojnovic, e.a.: Dspstone: A dsp-oriented benchmarking methodology. In: the

5th Inter. Conf. on Sig. Proc. Apps. and Tech. (ICSPAT). (1994)



 

L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 893 – 902, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Bi-phase Encoded Waveform Design to Deal with the 
Range Ambiguities for Sparse Space-Based Radar 

Systems 

Hai-hong Tao, Tao Su, and Gui-sheng Liao 

State Key Lab of Radar Signal Processing, Xidian University, 
Xi’an, P.R. China, 710071 

{hhtao, sutao, gsliao}@xidian.edu.cn 

Abstract. In order to mitigate the Range-Doppler ambiguities inherent in a 
sparse aperture, high pulse repetition frequency is adopted to resolve Doppler 
ambiguous and waveform approach exploits temporal diversity to resolve range 
ambiguities. In this paper, a novel GA with gradient-like reproduce is presented 
to optimize multiple bi-phase encoded waveforms, so their peak side-lobe and 
integrated side-lobe of auto-correlation and cross-correlation are all as lower as 
possible. The fitness function with adaptive scale gene corresponding to multi-
ple constraint is used to overcome optimal trend. The simulation results are pre-
sented to show the performance and behavior of the algorithm proposed.  

1   Introduction 

The advantages of Sparse Space-based Radar Systems are numerous. First, it may 
be less expensive to launch several microsats than to launch a large satellite with 
the same overall antenna aperture. Manufacturing costs are also reduced through the 
benefits of mass production. In addition, a microsat constellation degrades grace-
fully as individual microsats fail, either as expected or prematurely, and the constel-
lation can be reconfigured to optimize its configuration after a failure. Failure in a 
monolithic satellite, however, is catastrophic for the entire radar system. There are 
also disadvantages, however, to space-borne radar, the most significant being the 
tradeoff between sensor weight, size, and power. Other factors requiring large aper-
tures are ambiguity and resolution. For sparse synthetic aperture radar (SAR), low 
cost lightweight radar payload development is necessary, the minimum antenna size 
is governed by the minimum SAR antenna area constraint, commonly 2 meters. 
Complying with this constraint ensures that Range-Doppler ambiguities are not 
illuminate. 

There are a number of ways to deal with the ambiguities[1]. One way in the ex-
periment is to limit the viewing geometry, so that unambiguous range/Doppler opera-
tion is possible. By viewing at high grazing angles, the illuminated spot size is mini-
mized. A second way is to operate Doppler unambiguous but allow range ambiguities, 
and use a multi-PRF waveform to resolve the range ambiguities. This technique can 



 

be difficult to make work in a high target density environment however. Another way 
is to operate Doppler ambiguous and range unambiguous and let beamforming proc-
essing nulls the Doppler ambiguities. This approach requires additional degrees of 
freedom that are in short supply in the flight experiment[1]. A last way that is being 
investigated is the focus of some basic research in waveform design and signal  
processing. 

The novel waveform approach presented in the paper exploits temporal diversity 
to resolve range ambiguities. This approach transmits a different waveform pulse-
to-pulse. The number of different waveforms transmitted is the number of different 
ambiguous ranges that can be resolved. Since each waveform is different, the radar 
returns from different range bins that arrive at the same time at the radar receiver 
can be resolved due to the different echoed waveforms for each range. There have 
been previous attempts to achieve this goal, but due to the large cross-correlation 
side-lobes of the waveforms, it hasn’t been very successful. By modifying the sig-
nal processing approach to the waveforms and designing the waveforms to be 
mathematically invertible, other signal processing approaches are possible that 
improve the integrated side-lobe issue. In the paper, bi-phase encoded signal is 
adopted as transmitter. On account of high resolution as high as 1m, the required 
signal band width is 150MHz. If the time duration is 1 sμ ,for example, the code 
length is 150, and the blur time is N, near optimal 150×N chirp codes were located 
in the search space. The search space for this pair is 2150×N possibilities! Clearly 
enumerate is infeasible, an automated method was required to search through the 
space of possible waveforms.  

In the paper, we present a new waveform optimal design method based on Gradi-
ent-Genetic Algorithm (Gradient-GA). GA, inspired by the mechanics of natural 
selection, is one of the most powerful members of the class of stochastic search 
techniques. GA techniques are considered attractive since GA can handle problem 
constraints by embedding them into the chromosome coding and are techniques that 
are independent of the error surface, so they can be used to solve multimodal, 
nonlinear, non-convex, non-continuous or NP-complete problems[2]. The Conven-
tional GA (CGA) is known as a powerful stochastic search technique which mimics 
the mechanisms of natural evolution, by operating on a population of potential solu-
tions to find a global optimum. However, the process of ‘breeding’ solutions from 
successive populations may lead to significant computational loads, similar to the 
case with the optimal algorithm. An alternative is to combine the Gradient to solve 
the problem[3]. Since Gradient-GA requires smaller size of initial population and 
lower computational complexity, it is facile to implement the method in little time. 

2   Signal Model 

2.1   Doppler-Range Ambiguities and PRF Selection  

For a SAR system, the azimuth resolution is determined by the antenna length. 
Reducing the antenna length results in a wide beamwidth, which is at the expense of 
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azimuth resolution. The return echo signal is recorded whenever the platform moves 
a distance. The maximum cross range spatial sample separation required to process 
the measured signals without aliasing effects (azimuth ambiguities). For each azi-
muth sample, one pulse signal is transmitted by the radar and the echo recorded by 
the receiver[4]. The spatial separation of the samples is thus determined by the 
platform velocity and PRF as (1). However, the PRF also determines the maximum 
swath width, the higher the PRF, the smaller the swath: 

2 /v La≥ ×  (1) 

/(2 tan / )rangePRF c R Waθ λ< × × ×  (2) 

where v  is the satellitic motion velocity, c  is the speed of light, λ  is the signal 
wavelength, θ  is the arrival angle, R  is the slantrange between satellite and focus 
target of beam, La is the along-track aperture size and Wa  is the cross-track aper-
ture size of the antenna. 

According to (1) and  (2), two contradicting requirements have to be met when 
designing a SAR-system. For a given platform velocity a small aperture size re-
quires a high pulse rate, which in turn results in a small ambiguous free swath width 
according to (2) [5]. The paper investigates an approach to overcome the above 
mentioned contradicting requirements in SAR systems, we select aziPRF PRF>  to 

ensure Doppler unambiguous, transmit several temporal diversity bi-phase encoded 
waveform to resolve range ambiguities. 

2.2   Bi-phase Encoded Signal Model 

If the envelope of bi-phase encoded signal is rectangle, the complex envelope is 
shown as (3), 
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where KC is the binary sequence, i.e. KC =+1 or -1, Δ  is the subpulse width, P is the 

code-length, T P= Δ  is the duration of encoded signal[4]. Where 
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2.3   Encode 

Without loss of generality, if there are multiple range ambiguities, multiple temporal 
diversity transmit signals are needed to resolve multiple range ambiguities. For bi-



 

phase code is a pseudo-random sequence, binary encoding is adopted in the  
paper. 

{ },i iC f=iV  (5) 

where 1 2
i i i i

i N n NC a a a a ×=  is the binary encoding, 1 2
i i i

Na a a  is corresponding to 

signal 1, the rest may be deduced by analogy. if  is the fitness value of chromosome 

iC . ( )kP  is the kth population of structure ( )(1 )i k i M≤ ≤V , M  is the population 

size. 

{ }( ) ( ) 1ik k i = M=P V  (6) 

3   The Fitness Function with Adaptive Scale Gene 

As a pulse compression signal, not only the Low peak side-lobes (PSL) of aperiodic 
auto-correlation and cross-correlation, but also cross-correlation energy must be taken 
into account. For given bi-phase code 1 2, , nC C C , their aperiodic auto-correlation 

function[4,6] is 
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corresponding aperiodic cross-correlation function is 
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So, the nonlinear programming about bi-phase encoded waveform optimize may be 
written as follows: 
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where auto_PSL  is the auto-correlation peak sidelobe, cross_PSL  is the cross-

correlation integral sidelobe, auto_ISL  is the auto-correlation integral side-lobe  

energy, cross_ISL  is the cross-correlation integral energy, 
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In the paper, penalty techniques transform the multi-constrained problem into an 
unconstrained problem by penalizing solutions. 
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(11) 

where [ 2, 3, 4]Con Con Con Con=  is positive constant vector to make sure each re-

striction non- negativity, 1 2 3 4[ , , , ]W w w w w=  is adaptive scale of penalty value. 

   In the initial stage, the adaptive scale gene W and Con can be adjusted according 
to the fitness value of each constrain and the iteration number of genetic algorithms.. 

4   Gradient-GA for Waveform Design 

Suppose (0)X  is an initial population, ( )X k  is the kth population. So the procedure 

for waveform optimal design based on Gradient-GA is as Fig. 1. 

A. Generating an initial population (0)X  randomly, and evaluate the fitness value 

according to (11), then (0)P  is obtained, where 0 [1,1,1,1]W W= = ; 

B. Select the best individual from (0)P , evaluate value of each quantity according to 

(10), and estimate magnitude Q1 Q2 Q3 Q4 of every restriction roughly, then 
obtained the difference of magnitude, so adaptively modified 2, 3, 4Con Con Con  and 

1 2 3 4[ , , , ]W w w w w=  according to optimize intention. According to 2, 3, 4Con Con Con  

and 1 2 3 4[ , , , ]W w w w w= , we can finish the fitness function (11) and computer indi-

viduals’ fitness according to (11), so updating (0)P ; 

C.  Reproduction Operator of Gradient-GA[3] 
CGA generally employs a reproduction operator based on roulette wheel selection. If 
a small chromosome population is adopted for fast convergence, CGA becomes inef-
fective since, by the nature of the selection procedure, the population may lose its 
genetic diversity at an early stage. The Gradient-GA employs a gradient-based  
reproduction operator and the simple crossover and mutation operators of CGA. The 



 

new reproduction operator is reminiscent of hill climbing and gives the CGA its hy-
brid stochastic/deterministic nature. The operator effectively improves the average 
fitness of a population while preserving its genetic diversity. 

Initialize the population

Training W Con, and updating
initial population

Evaluate the fitness

Ending ?

Crossover

Mutation

Reproduction Operator of Gradient-GA

Stop and pick the
best individual

Yes

No

Updating population

 

Fig. 1. The layout of Gradient-GA 

New reproduction operator: The new reproduction operator is employed to over-
come the drawbacks of the commonly adopted roulette wheel selection method. These 
drawbacks, include the loss of the fittest individual, excessive dominance of strong 
individuals and inability to explore new points in the search space.  

Let { }( ) ( )|l v u
i iV V v v v= ≤ ≤  be the search space, where ( )v

iv  and ( )v
jv  are the lower 

and upper bounds, respectively, of the jth component V of vector X and n is the di-
mension of V . The new reproduction operation involves the following three steps[3]: 

Step1: The structures ( )(1 )jX k j M≤ ≤  in ( )X k  are decoded into  

1( ) [ ( ) ( ) ( )] (1 )T l
j j ji jnV k v k v k v k V i n= ∈ ≤ ≤  (12) 

Step2: A new vector is computed as follows: 

( ) ( )
( 1) ( ) ( ) ( ) (1 )

( )
b j

j j j b j
b

f k f k
V k V k V k V k j M

f k
η

−
+ = + − ≤ ≤  (13) 

where jη  is a positive coefficient. Note that the new point cannot lie outside the 

search space as it is limited by the corresponding upper or lower bound.  
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Step3: The N parameter vectors ( 1)jV k + (1 )i M≤ ≤  are encoded into structures 

( 1)jX k +  to form the mating pool. 

The new reproduction operators assigns each individual chromosome in the current 
population a new parameter vector based on both the normalized fitness difference, 
the parameter difference between the individual and the best chromosome, which, 
according to (13), is preserved automatically. For successful operation, new parameter 
points must not attempt to grow outside the search space during reproduction. Choos-
ing jη  between 0 and 2 ensures the stability of the reproduction operator.  

For the current population, experiencing by applying the CGA approach with gra-
dient-like reproduction operators to optimal design leads us to use a population of 8 
individuals. 

( ){ }

( )( ) ( )( )

( )( ) ( )( )
( )

( )

/ ( ), ( )

( )( ( )) / ( ),

0 ,

j j
X X k

js j j
j

X X k

f Y k f X Y k X k

Y k X kP T X k Y k f X k f X

∈

∈

∈

∉= =
and satisfied(13)

otherwise

 (14) 

where j=1 M, only individuals having the best fitness remain unaltered. Then encode 
( )jX k  into structure ( )jY k  to form mating pool ( )Y k . 

D. Crossover 
Single-point crossover with probability cp ( 0 1cp< ≤ ) is given as follows[7,8]: 

( ){ }( ) ( ) /
1 2

/ ( ) / ( ) ( )
1 1 2

/ ( )
1

, ( 1)

/ , ( 1) ( 1) )

(1 ) / , ( 1)

0 ,

j j
c j

j j j
c j j

j
c c j

P T Y Y X k

jp n X k X k I A

p jp n X k

= +

+ ≠ + −

= − + +

Y AY Y

Y

otherwise

 (15) 

where ( ) ( ) /
1 2( , , ( 1))j j

jj j Y Y X k= + is the number of locus which ( )( ) ( )
1 2,j jY Y can move 

forward to / ( 1)jX k + , l  is the length of chromosome, crossover probability cp is 

satisfied 0 1cp< ≤ , A is diagonal matrix with anterior r equals to one and the others 

are zeros, where r is the position of crossover point.   

E. Mutation 

( )/ / /
1( 1) ( 1), , ( 1)MX k X k X k+ = + +  is transformed to ( 1)X k + =  

( )1 ( 1), , ( 1)MX k X k+ + by mutation with a probability equal to the mutation rate 

mp [7,8]. 

( ){ } / /( ( 1), ( 1)) ( ( 1), ( 1))/ ( 1) ( 1) (1 ) ( )j j j jd X k X k l d X k X k

m j j m mP T X k X k p p j M+ + − + ++ = + = − ≤  (16) 



 

where ( )/

1

( 1), ( 1)
l

j j ji ji
i

d X k X k a a
=

′+ + = −  is the hamming distance between 

/ ( 1)jX k +  and ( 1)jX k + . 

F. Termination   
After reaching an acceptable fitness in a number of generations, the genetic engine can 
be stopped and the GA finishes. This guarantees an overall lower complexity than the 
algorithm, which searches for the best population. If termination condition is not satis-
fied, go back to C. 

From above procedure, we can obtain { }( ); 0X k k ≥  from (0)X  as shown below, 

( ) ( ( 1)) ( ( 1))m c sX k T X k T T T X k= − = • • −  (17) 

5   Simulation and Performance Analysis 

The parameters for simulation: λ 0.03, v 7000m/s, La =2m, Wa =1m, 
=979.06kmR , 45oθ = , =150MHzrB , 1T Sμ= . From(1),(2), 2*7482(Hz)≥   

5107rangePRF ≤ . In the paper, Hz , so Doppler unambiguous, and 

range ambiguities is three times, that is to say, 3N = , 150P =  /T PΔ =  0.01 sμ=  

from 150rB T× = . 8M = 0.6cp = 0.1mp = the maximum generation is 1000  

Fig. 2 is the best fitness performance of Gradient–GA and CGA from 100 independ-
ent Monte Carlo experiments so far. From this figure, it can be seen that Gradient-GA 
can converge at optimal value with a small population size, but CGA converge at local 
optima quickly. Because the Gradient operator guides the population towards the best 
chromosome. Weak chromosome undergo more correction than strong chromosomes. 
Duplication of individuals is minimized because, from (13), only chromosomes having 
the same fitness as the best remain unaltered. This enables the reproduction operator to 
maintain genetic diversity in the population. 

Table 1 is the optimal codes A B C searched by the presented algorithm. Fig. 3 is 
their auto-correlation curves. Fig. 4 is their cross-correlation curves. From Fig. 3, opti-
mal codes have both low PSL, which is less than –15 decibels, and integrated side-
lobe(ISL), which is less than –40 decibels, of auto-correlation (pulse compression). 
From Fig. 4, they also have a both low integrated energy, which is less than –40 deci-
bels, and peak main-lobe in cross-correlation. Fig. 5 and Fig. 6 are weighted pulse com-
pression performance figures, where Fig. 5 is the result corresponding to 300 order 
filter, its PSL is less than –18 decibel. Fig. 6 is the result corresponding to 600 order 
filter and its PSL is less than –23 decibels. The mismatched filters adopted in the paper 
is to minimize the PSL, this technique sees reference [9,10].   

From example, optimal codes searched by the presented algorithm have both low 
PSL and ISL of auto-correlation, also have a both low integrated energy and peak main-
lobe of cross-correlation. The PSL reduction achieved through the use of mismatch 
filters varies from about 5 to 10 decibel depending on the code and filter length used. 
The loss in processing gain is usually less than 0.6 decibel and main-lobe widen is 
fewer. 
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Fig. 2. Convergence curve of Gradient-GA and CGA 

Table 1. Optimal code A,B,C based on Gradient-GA 

 
 

A 

1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 
1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 
0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 
0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 

 
 

B 

1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 
0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 
1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 
0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 

 
 

C 

0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 
0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 
1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 
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Fig. 3. Auto-correlation curves of optimal 
code A,B,C 

   Fig. 4. Cross-correlation curves of optimal 
   code A,B,C 

6   Conclusion  

To operate Doppler unambiguous but allow range ambiguities, an optimal waveform 
is used to resolve the range ambiguities. The paper present a novel bi-phase code 



 

optimal algorithm based on Gradient-GA. So their PSL and ISL of auto-correlation 
and cross-correlation are all as lower as possible. The fitness function with adaptive 
scale gene corresponding to multiple constraints is used to overcome local optimal 
trend. The simulation results based on x-wave band sparse space-based radar were 
presented to show that the algorithm proposed is efficient and feasible. 
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      Fig. 5. Mismatch filter 300 order) 
      performance analysis 

         Fig. 6. Mismatch filter(600 order) 
         performance analysis 
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Abstract. Most existing spreading models for network viruses are de-
veloped refereing to the epidemic models for biological viruses. However,
Why most network viruses spread much slower than those models pred-
icate? Why most network viruses still exist when they go beyond the
threshold predicated by those models? Contrary to the prior models,
the paper points out network viruses have different spreading features
compared with biological viruses, such as the connectivity rate and cure
rate are both functions of the time which are also key factors to affect
the spreading of viruses. Based on which the paper constructs a more
general epidemiological model for the network viruses. For several par-
ticular cases the paper presents the simulations of the connectivity rate
and cure rate and find they are consistent well with the statistics of some
real viruses. Thus the paper opens one path to modifying the traditional
epidemic models.

1 Introduction

Network viruses constitute one of the major Internet security problems. How-
ever, currently most research has focused on detection and defense against net-
work viruses. Little research has been pursued on modelling viruses′ propagation
or even to mention them. Though there are some papers in a relatively small
number on the modelling viruses′ spreading [1][2][3][4][5], much still remains un-
known about the propagation characteristic of the network viruses. Kephart and
White are among the first to propose epidemiology-based analytic models called
homogenous models which assume that every individual has equal contact to ev-
eryone else in the population, and the rate of the infection is largely determined
by the density of the infected population[1][2]. However, there is overwhelming
evidence that real networks deviate from such homogeneity. Pastor-Satorras and
Vespignani studied epidemic spread for power-law networks where the connec-
tivity distribution is characterized as P (k) = k−τ ( P (k) is the probability of
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a node has k links ) and developed an analytic model which depends critically
on the assumption τ = 3 [3][4], but it does not hold for the real networks[5][6].
Boguñá and Satorras studied epidemic spreading in correlated networks where
the connectivity of a node is related to the connectivity of its neighbors[7]. How-
ever there is no conclusive evidence to support the type of correlation[8]. Zou
and Towsley focused on the simulation of email viruses′ spreading but did not
present the analysis process for the spreading model[9].

In fact, all those models have similar basis: the connectivity frequency and
the cure rate (or death rate) of the viruses are both assumed as relatively stable
or satisfy some simple distributions which originate from the epidemiological
models of the biological viruses[10]. However statistical observations of virus
incidents in the real network indicate that all viruses that are able to pervade,
spread much slower than those model predicate and affect just a small fraction
of the total number of computers[11][12]. This striking contradiction with the
theoretical prediction indicates that the view obtained so far with the modeling
of network viruses′ epidemics is very instructive but not completely adequate to
represent the real phenomenon[13].

Hence we believe these contradictions have some root reasons: there are some
epidemiological differences between network viruses and biological viruses.

First, the spreading of the biological viruses is by physical contact of the
hosts. The spreading speed is determined by the mobility of the population and
this mobility is relatively stable in a region. While the spreading of the network
viruses is by the connectivity of the computer systems. This connectivity is not
physical contact but a kind of logical contact[14]. The two computer systems in
one connection are not restricted in a local region, and this logical connectivity
is variable with time or even has periodicity.

Second, the carriers of biological viruses, such as a man or a woman has little
difference from the others, so the biological model only takes the number the
infected as its main object; while in network virus model, the carriers such as a
computer system may be very different from the others. For example, in terms of
spreading a virus, a big hot site is many times powerful as a personal computer.

Third, biological viruses can cause a host die, then end this spreading of the
host, which is also one of reasons that cause the number of the infected decrease.
But the network viruses never really cause the number of the infected decrease.

Four, the patients of biological virus once cured will get the immunity against
the virus. While the infected computer, strictly speaking, can′t get the immunity
against the virus. This is to say, the same virus can infect the cured computer
again.

It is these differences that make the network viruses have different spreading
features compared with the biological viruses. So network viruses should have
their own epidemiological model. As the above analysis informs, the key factor
that influence the network viruses′ spreading is the logic, dynamic and directed
connectivity between two computer systems. If we take the connectivity rate
as a basic characteristic that influences the viruses′ spreading, it will be more
accurate to construct the epidemiological model for network viruses. Fortunately
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this connectivity rate can be quantified, such as the click rate and the flow rate
of the computer are both direct indication of the connectivity rate in a net.

This paper is organized as follows: Section 1 reviews the previous work in the
field and points out the differences between network viruses′ propagation and
the biological viruses′ propagation. Section 2 takes the connectivity rate as a
key factor for the computer to spread viruses and constructs the epidemiological
equation for the viruses. Section 3 presents the solution to the equation and
discusses the deterministic influences of the variations of the connectivity rate
and the cure rate on the spreading of viruses. Section 4 concludes the paper.

2 Constructing the Epidemiological Model

A single computer system on the network is looked as a node such as a PC or
a site. A connection from node A to node B is looked as a directed edge from
B to A which coincides the direction of viruses′ spreading. We assume there are
N nodes in a network in a given region. Then we get a dynamic directed graph
G(V,E(t)), where V is the set of nodes and E(t) is the set of edges which is also
a function of time.

According to the protocol and the Paralleled ability of the current networks,
we know each node can send a connecting request to at most one of the other
nodes at time t. While one node can accept the connecting requests from more
than one node. So we assume, in the directed graph G(V,E(t)) with N nodes,
there are at most N edges at time t. Those edges can end at one or more than
one node but they must start from distinct node. In fact this assumption tallies
with the biological viruses′ spreading. In biological model, one infected node can
infect more than one uninfected nodes but one node can be infected by only one
node at time t.

By the above analysis, the click rate is one of the most direct indications of
the connectivity rate. One click corresponds one directed edge. Therefore, we
let c(t) denote the connectivity rate which is the rate of the number of directed
edges at time t to N in a given net. α denotes the probability of infected node
A infects uninfected node B once B clicks A. I(t) denotes the number of the
infected nodes at time t in the region. β(t) denotes the cure rate at time t which
is the rate of number of the cured nodes to the number of the infected nodes.
In biological models, the cure rate is the average probability of an infected node
to be successfully cured. β(t) is determined by the virus and the medical skill.
However in the network, once the antiviral software against the virus emerges, the
probability of the infected node to be cured is almost 100%. So it is obvious that
the cure rate of network virus is different from that of biological virus. Further
more, the cure rate of network virus is also a function of the time. For example,
when a new virus appears on the net β(t) = 0, when the antiviral software
against the virus is developed β(t) > 0, if the spreading speed of the antiviral
software is higher than the spreading speed of the virus, β(t) will increase and
finally tends to a constant β(< 1). Thus I(t)β(t) is the decreased number of
infected nodes be cured at time t. Considering that current computer system
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doesn′t possess the real immunity to most viruses, we let N − I(t) denote the
number of susceptible nodes which includes the cured nodes.

Now we begin with one infected node νi, let′s look how it infects its neighbors,
and then we will construct the epidemiological model for the network viruses.

From the above discussion, we know, at time t, νi can be clicked by at most
the rest N − 1 nodes. As infection can only happen when uninfected node clicks
the infected nodes, so among c(t)(N − 1) nodes that are neighbors of νi, the
rate of uninfected nodes is (1 − I(t)/N). Then c(t)(N − 1)(1 − I(t)/N) is the
number of susceptible nodes that connect to νi at time t. Since one uninfected
node that connects to one infected node has the probability of α to be infected,
then αc(t)(N − 1)(1 − I(t)/N) is the number of nodes infected by νi at time t.
For there are I(t) infected nodes in the net at time t, so the increasing number
of infected nodes at time t is αc(t)(N − 1)(1 − I(t)/N)I(t). As the decreasing
number of infected nodes at time t is ΔI(t)β(t), so we get the epidemiological
equation for the viruses:

dI(t)
dt

= αc(t)(N − 1)(1− I(t)
N

)I(t)− β(t)I(t).

As N is a larger number N ≈ N − 1, then the above equation can be simplified
as:

dI(t)
dt

= (Nαc(t) − β(t))I(t) − αc(t)I2(t). (1)

3 Mathematically Analysis of the Solution to the
Equation

According to separation of variables, the equation:

dI(t)
dt

= C1I(t)− C2I
2(t), (Where C1, C2 are selected constants). (2)

has the solution of the following form:

I(t) =
C1

C2 − C0e−C1t
, (where C0 is a constant).

By the variation of parameters, we assume equation (1) has the solution of the
following form:

I(t) =
C1

C2 − Cte−C1t
, (where Ct is a function of t with relation to C1, C2).

(3)
Let

I(t)|t=0 = I0. (4)

Substituting (3),(4) into (1) we get:

C0(t) = e−
∫ t
0 (Nαc(s)−β(s))ds+C1t(C2 −

C1

I0
+ p(t)),
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where p(t) =
∫ t

0 (αc(s)(NC2−C1)−C2β(s))e
∫ s
0 (Nαc(x)−β(x))dxds. Then substitut-

ing the above form into (3), we get the solution to (1) with the initial value (4):

I(t) =
C1

C2 − e−
∫

t
0 Nαc(s)−β(s)ds(C2 − C1

I0
p(t))

. (5)

As there are many undetermined factors in c(t), β(t), we can′t present the
complete accurate forms for them. But for several particular cases (which are also
cases of special viruses), we can present the simulations of c(t), β(t). However, as
the form of I(t) is still too complicated, in order to see how the variations of c(t)
and β(t) influent the viruses′ spreading clearly, we discuss their deterministic
influences respectively.

Case 1: let c(t) ≡ C, β(t) ≡ β, (where C, β are both constants and C > 0).
Then let C1 = NαC − β, C2 = αC, and take them into (5), we get:

I(t) =
N − β

αC

1− (1 − N
I0

+ β
I0αC )e−(NαC−β)t

.

This solution is the same as Kephart and White has discussed[1], if t→∞ then
I(t)→ N − β/α, which is also consistent with their result. Here is no necessary
to repeat it. But one point worth mentioning is that the solution being consistent
with their experiment as Kephart and White said has little practical meaning
for modern networks. The reason is that their experiment condition was just
designed as c(t) ≡ c, β(t) ≡ β. As we know this is just an ideal condition not
a practical one. However, considering the dangerous of network viruses on the
real Internet, we can′t take the Internet as our experiment. Fortunately, there
are often new viruses appearing on the Internet. We can utilize the statistic of
those viruses to verify our analysis.

Case 2: let C(t) ≡ C, β(t) be a smoothing function of the time,

β(t) =

⎧⎨⎩0, 0 ≤ t ≤ t0;
monotonous increasing function, t0 < t ≤ t1;
β, t > t1.

Since the cure rate not only has relation with the particular virus, but also can
be affected by many personal factors. So we simulate the variation of β(t) in
Fig.1(A). Since there are always some one who don′t clean the virus for any
kinds of reasons, we let the final constant β < 1.

Let C1 = NC, C2 = C, and bring them into (5), we get the solution to I(t):

I(t) =
I0

I0
N − ( I0

N − 1)e(
∫ t
0 β(s)ds−NαC(t)) + I0

N

∫ t

0 β(s)e(−NαC(t−s)+
∫ t

s
β(x)dx)ds

.

By the form of I(t), we can numerically simulate the variation of I(t) along
with the variation of β(t) as shown in Fig.1(B) which compares the variation
of I(t) with the statistic of particular virus named Gaobot.gen in USA (from
www.pandasoftware.com). Gaobot.gen is a worm appearing on Sept. 19. 2003.
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Fig. 1. Simulation and the statistic. (A) is the variation of β(t); (B) is the simulation
of I(t) with β(t) and the statistic of Gaobot.gen; (C) is the variation of c(t); (D) is the
simulation of I(t) with c(t) and the statistic of Briss.A

New tools against the virus were developed on May 17, 2004 and then widely
used by most users. So it is obvious that the infection rate decrease sharply after
that time. From the Figure, we can see the simulation of I(t) fit perfectly the
statistic of Gaobot.gen.

As we explain above, for some viruses, β(t) tends to a constant β < 1, so in
Fig.1(B) the I(t) of those viruses also tends to a constant greater than 0. Which
means those viruses still hide in some nodes. If those nodes can still connect to
other nodes in the Internet, there is the probability for the viruses to spread
again. However as the β is very high at that time, the viruses can only spread in
a small scale instead of a large one. That is why some earlier viruses still exist
on the Internet today, and continually disturb some local users but never break
out again[11].

Case 3: Let β(t) ≡ β, c(t) = ω(1+sin(γt))(where ω < 1). Here c(t), a periodic
function, is also a simulation from the practice. Although the variation of c(t)
has no direct relation with particular virus, it is still influenced by many personal
factors. For example, c(t) increases when people are on the job, while decreases
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when people are off the job. So in this case we can assume γ = π
12 , which means

the periodicity is 24 hours. Fig.1(C) is the numerically simulation of c(t).
Let C1 = Nαω − β,C2 = αω , and bring them into (5) we get:

I(t) =
N − β

αω

1− q1(t) + q2(t)
,

where
q1(t) = (1− N

I0
+

β

αωI0
)e( 12Nαω

π (cos(πt/12)−1)−(Nω−β)t),

q2(t) = β

∫ t

0
(
π

12
s)e(−(Nαω−β)(t−s)+ 12Nαω

π (cos π
12 t−cos π

12 s))ds.

Fig. 1(D) is the variation simulation of I(t) along with c(t) and the statistic
of a particular virus named Briss.A in North American appeared on May 24,
2004 (from www.pandasoftware.com). It is obvious that I(t) does not increase in
exponential liner way as the prior models predict but in exponential circularly
way with the circular variation of c(t) of the network. The statistic of virus
Briss.A also shows a typical periodical increase. So the both fit well.

By the above analysis, we can easy to understand the problem asked by
White: Why most viruses decline before the threshold as the traditional models
predict? The reason is, in biological model, αC/β is a constant, but in modern
real network αc(t)/β(t) is depend on the time. When a new virus appears on the
net, It is very natural that most users will minimize their time spent on the net
and will avoid the time when the click rate is very high. As the Fig.1(D) shows
that if c(t) decreases then the increasing speed of I(t) will decline. Further more
considering the β(t) still increases as shown in Fig.1(A), then I(t) will decrease
much more time than biological model predicts.

4 Summary

Contrary to the prior models, our aim in this paper is to point out that con-
nectivity rate and cure rate are both dynamic functions of the time. Then we
developed a more general analytic model for viruses′ propagation. As there are
many undetermined factors, we don′t anticipate presenting the complete accu-
rate forms of the connectivity rate and cure rate, but emphasizing on the deter-
ministic impacts of the both factors on the spreading of the viruses. To several
particular cases of connectivity rate and cure rate, we present the simulations
of the both and find they are consistent well with the statistics of real viruses.
The paper opens one path to considering modifying the traditional models. If
we want to catch the more accurate forms of c(t) and β(t), one efficient way, we
think, is the classification on both the viruses and the type of the topology of
networks.
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Abstract. Solving the mixed-model scheduling problem is the most important 
goal for Just-in-time production systems. But it is a difficult combinatorial 
optimization problem. This study presents a novel co-operative agents 
approach, Ant Colony Optimization algorithm (ACO) scheme, for solving the 
scheduling mixed-model assembly lines. The results show that the solution 
which ant algorithm produces is better than the one which Toyota’s goal 
chasing algorithm, simulated annealing algorithm and genetic algorithm 
produce. Finally, this example may extend to a bigger scale, and the satisfied 
solutions, benchmark results and CPU time to generate a satisfied tour are 
given. 

1   Introduction 

Mixed model assembly lines are used in many manufacturing factories because they 
can meet the diversified demands of their customers without possessing a large 
amount of inventories. Since the sequencing problem is NP hard, it is essential to 
develop efficient approximation algorithms for large-scale problems to obtain a good 
sub-optimal solution.  

2   Mixed Model Sequencing Problem 

Mixed-model assembly lines are widely adopted in manufacturing industries [1], 
Sequencing for mixed models is recognized as an important work for improving the 
performance of an assembly line.  

The study uses the Toyota's goal. The goal is to keep the constant usage of every 
part used in the assembly line, which is a good way of fitting the just-in-time (JIT) 
concept in Toyota production system. Toyota's goal for an assembly line with 
multiple workstations is [1] 
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3   Implementation of the ACO 

3.1 Generation Scheduling Strategy by ACO 

Now we give an example (Fig. 1) of search space 
defined in the ACO algorithm. The columns 
represent stages in a schedule. The rows represent 
the models that the ant can choose in a stage. The 
area of the circle represents the probability by 
which the ant choose model i. The area of circle 
changes during the optimization process. Finally, 
a satisfied solution is found [2]. 

For example, we have three models named A, 
B and C to be scheduled. In a production cycle, 
three model A’s, two model B’s, and one model C 
are needed. In other words, we need to produce 
six items in a production cycle. The columns 
represent the six stages and the rows represent 
three models that the ant can choose. 

The initial search state is described in Fig. 1a. The area of circle represents the 
possibility of choice that consists of local search value and pheromone trail. Fig. 1b 
describes the changed search space after many iterations. Finally, a possible satisfied 
solution is B-A-C-A-B-A. 

3.2   General Framework of the ACO Algorithm [3][4] 

In general, in the ACO algorithm an ant is defined to be a simple computational agent. 
Partial problem solutions are seen as states; each ant moves from a stateι  to another 
oneψ , corresponding to a more complete partial solution.  

(1)Computation of Attractiveness 
The attractiveness ijη  of a move can be computed by means of the goal chasing 

method. This means that from a stateι  to another oneψ , we choose the least 

increment of goal function. The local search procedure is a straightforward greedy 

method. Before starting the construction of a solution ijη  are randomly generated. 

When a solution is completed and we want to find the corresponding local optimum. 

(2)Transition probabilities 
One of the most difficult aspects to be considered in meta-heuristic algorithm is the 
trade-off between exploration and exploitation. To obtain good results, a system 
should prefer actions that has tried in the past and found to be effective in producing 
desirable solutions (exploitation); but to discover such actions, it has to try actions 
that it has not selected before (exploration). The ACO algorithm integrates a 
stagnation avoidance procedure to facilitate exploration and a move probability 
definition mechanism to determine the desirability of different moves. 

A AAAAA

B BBBBB

C CCCCC
(a) 

AAA

B B

C

(b) 

Fig. 1. An instance of search space 
for scheduling mixed-model in 
assembly line 
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The average value

Cycle 

Fig. 3. Evolution of the average 
value of population’s objective 
function. Typical run 

(3)Trail update 
After each iteration of the algorithm, that is, when all ants have completed a solution, 
trails are updated and the coefficient ρ must set 10 <≤ ρ  to avoid unlimited 

accumulation of trail. 

4   Numerical Results 

(1) Simple example 

Now we use the problem defined in article [1]. In each experiment only one of the 
values was changed, except for α , which have been tested over different sets of 
values. All the tests have been carried out and were averaged over ten trials. The best 
value in the experiment is followed: 

ρ =0.9 α =0.2 Q =20000 maxNC =400  n_ant=5 

The value of the objective function is 2859.8 
the sequences is C-A-D-E-B-A-D-E-A-C-A-B-E-D-A-C 

Table 1. Computational results of ACO algorithms and benchmark with GCA, GA and SAA 

The algorithm The goal function 
The percent that ant algorithm 
improved  

Goal chasing algorithm 3293 13% 

Genetic algorithm 3073 6% 

Simulated annealing algorithm 3162 10% 

ACO algorithms 2859.8  

Table 1 shows the comparative good performance 
of ACO algorithm. The results show that the solution, 
which the ant algorithm produces, is better than the 
one which Toyota’s goal chasing algorithm, simulated 
annealing algorithm and the genetic algorithm 
produce. Fig. 2 shows the values of best-found tour at 
each cycle, and Fig. 3 shows the average value of the 
tour population at each cycle of same run. 

Note how in the early cycles the ACO 
identifies good values that are subsequently 
refined in the rest of the run. Since the average 
value never equalled each other, we are assured 
that algorithm actively searches solutions, 
which differ from the best-so-far found. So the 
algorithm may find the better solution possibly. 
The search for better solutions is carried on in 
selected regions of search space determined by 
the trail resulting front preceding cycles. 

Best value

Fig. 2. Evolution of best 
tour. Typical run 

0
1000
2000
3000
4000

0 100 200 300

Cycles 
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(2) Extended example 
Since the example we used is so small, we have studied extend examples using the 
ACO algorithm. In our experiment, P4 3.06G CPU, DDR 1G Memory, Window2000 
Professional, the test of different scale problems is showed in table 2. 

Definition: 

1: Scale in the paper, the scale refers to total demand in a production cycle. 
2: n-scale problem the scale is n for mixed model sequencing problem. 
3: n*2 scale problem solution n is defined as Scale. We combine two feasible 

solutions into one solution for larger problem. We present the n*2 scale problem to 
benchmark the performance of ACO algorithm for the scheduling mixed model 
assembly lines. We test different scale of problem in order to validate the computation 
efficiency of ACO algorithm and learn the relation between CPU time and scale. 

Table 2. ACO performance for bigger scheduling mixed-model assembly lines 
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Abstract. In this paper, a novel optimal design method for PID controller is 
proposed based on the ant system (AS) algorithm. In this method, for a given 
control system with a PID controller, by taking the overshoot, settling time, and 
steady-state error of unit step response of the system as the performance in-
dexes and using the AS algorithm, the optimal PID controller parameters Kp

*, 
Ti

*, and Td
* can be obtained. The proposed method has excellent features, in-

cluding easy implementation, good convergence property, and efficient tuning 
of PID controller parameters. The PID controller designed using this method is 
called the AS-PID controller. In order to verify the good performance of the 
AS-PID controller, four typical control systems were tested. The simulation re-
sults show that the proposed method is indeed adaptive and robust in quick 
search of the optimal PID controller parameters.   

1   Introduction 

The proportional-integral-derivative (PID) controller has been used in industry for 
many years because of its simpler structure and good robust performance. However, 
the performance of a PID controller fully depends on the tuning of its parameters. It 
has been a problem to tune properly these parameters because many industrial plants 
are often burdened with problems such as high order, time delays, and nonlinearities. 
About this problem, Ziegler and Nichols proposed a tuning formula for PID controller 
parameters [1]. But, using their formula the transient response of system often has a 
greater overshoot. Aiming at this drawback, Hang et al. proposed the refinements of 
the Ziegler-Nichols tuning formula [2]. Although the greater overshoot can be over-
come using this formula, this method is not suitable to the devices with a greater 
phase-lag. Astrom and Hagglund proposed two tuning methods for PID controller 
parameters, which can ensure a control system has a given phase margin [3], [4]. 
Generally speaking, if a gain margin and a phase margin are used simultaneously to 
tune PID parameters, the tuned system will have a better control performance. Ho et 
al. proposed a tuning method for PID parameters based on a given gain margin and a 
given phase margin, but their method is not suitable to unstable objects [5]. 

Ant system (AS) algorithm was proposed by Dorigo et al.[6], [7]. It is a general- 
purpose heuristic algorithm. The main characteristics of AS algorithm are positive 
feedback search mechanism, distributed computation, and the use of a constructive 
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greedy heuristic. So far, AS algorithm has been used successfully to solve many prob-
lems such as traveling salesman problem (TSP) [8], quadratic assignment problem [9], 
job-shop scheduling problem [10], discrete optimization problem [11], and so on.  

This paper presents a new design method for PID controller based on the AS algo-
rithm. The PID controller designed using this method is called the AS-PID controller. 
In the paper, we will demonstrate how to employ the AS algorithm to determine the 
optimal PID controller parameters and measure the adaptation and robustness of the 
proposed AS-PID controller by testing several typical control systems.  

2   Description of PID Controller 

The PID controller is a feedback controller. It is often employed to make a plant less 
sensitive to changes in the surrounding environment and small changes in the plant. 
Fig.1 shows a feedback control system that consists of a plant and a PID controller.  

 

Fig. 1. PID control system 

where r and y are the input and output of the system respectively, and u is the output 
generated by the PID controller. The expression of a conventional PID controller, 
with input e(t) and output u(t), is given by 

++=
t

d
i

p dt

tde
Tde

T
teKtu

0

)(
)(

1
)()( ττ ,                                (1) 

where Kp is the proportional gain, Ti is the integral time constant, and Td is the deriva-
tive time constant. In the discrete-time domain, the PID control law is expressed as: 

)]1()([)()()(
0

−−++=
=

kekeKjeKkeKku d

k

j

ip ,                          (2) 

where Ki = KpT /Ti, Kd = KpTd /T, and T is the sampling period.  
The role of each separate part of a PID controller can be described as follows. The 

proportional part reduces the error responses of the system to disturbances, the inte-
gral part eliminates the steady-state error of the system, and the derivative part damp-
ens the dynamic response and thereby improves the stability of the system. From the 
perspective of time, the proportional part estimates the system at present, the integral 
part takes the past into account, and the derivative part estimates what will happen in 
the future, which yields a much more stable control than the control with only one or 
two of these features. 

PID Controller Plant 
r e u y
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In order to evaluating a PID controller, we need a suitable performance criterion. The 
typical performance criteria in the time domain include the overshoot σ, settling time ts, 
and steady-state error ess of the system’s unit step response. First three functions f1, f2, 
and f3 are constructed using σ, ts, and ess, which are given as:  

                          01 σσ=f ,                                                       (3) 

02 ss ttf = ,                                                      (4) 

    
=
≠

=
0,0

0,/

0

00
3

ss

ssssss

eif

eifee
f ,                                          (5) 

where σ 0, ts0 , and ess0 are the performance values obtained from the Ziegler-Nichols 
tuning formula [1, 2]. Then, the performance criterion of the system, F, is designed as:  

321 fffF essts λλλσ ++= ,                                          (6) 

where λσ, λts, and λess are three weighting coefficients. According to our experience, λσ, 
λts, and λess can be set respectively to 0.6, 0.2, and 0.2. The constraints on σ, ts, and ess 
are specified as: σ<σ0, ts<ts0, and ess<ess0. 

Designing a PID controller means finding the optimal PID controller parameters Kp*, 
Ti *, and Td * so that the control system has the minimum value of F. 

3   Optimal PID Controller Design Using AS Algorithm 

There is a substance called pheromone in an ant’s body. An ant can use this substance to 
communicate information with other ants. The movement feature of an ant colony can 
be described as follows. When an ant moves on the ground, it will lay pheromone in 
varying amount on its path. If another isolated ant that moves randomly encounters this 
path, the ant can detect it and decides with high probability to follow it. When the latter 
ant moves along the path formed by the former ant, the latter one will lays its own 
pheromone on the path, thus reinforcing the amount of pheromone on the path. This 
kind of path choosing method is adopted by each ant in the colony, so a positive feed-
back mechanism is formed, that is, the more the ants moving along some path, the more 
likely the coming ants follow this path. It is using this information communicating 
method that the ants can manage to establish paths with the shortest route from their 
living nest to feeding sources and back.  

3.1   Generation of Nodes and Ant Paths 

Take PID parameters Kp, Ti, and Td as the optimized variables, and assume that the 
value of each of them has five valid digits. According to the ranges of their values in 
many practical applications, we assume that in the five digits of Kp there are two digits 
before decimal point and three digits after decimal point; in the five digits of Ti and Td 
there is one digit before decimal point and four digits after decimal point. 

In order to use the AS algorithm conveniently, we figure Kp, Ti, and Td abstractly on 
plane O-XY. The method is drawing fifteen lines L1, L2, …, L15, which have equal 
length and equal separation and are perpendicular to axis X, as shown in Fig.2.  
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Fig. 2. Diagram of generating nodes and ant paths 

In this figure, L1−L5, L 6−L10, and L11−L15 represent the first digit to the fifth digit of 
Kp, Ti, and Td, respectively. The positions of these lines on axis X are represented by 
numbers 1−15 respectively. Then, we divide equally each of these lines into nine 
portions and thus ten nodes are generated on each line, as shown in Fig.2. The ten 
nodes of each line represent ten numbers 0−9 respectively, which are ten possible 
values of the digit corresponding to the line. On plane O-XY there are 15×10 nodes 
totally. We use symbol node (xi, yi, j) to denote a node, in which xi is the X coordinate 
of line Li (i =1−15, xi =1−15) and yi, j is the Y coordinate of node j on line Li (j = 0− 9). 
Each node represents a value that is equal to the Y coordinate of the node. For exam-
ple, node (5, 8) indicates the value of the fifth digit of Kp is equal to 8. 

Let an ant depart from the origin of O-XY. When it moves to any node of line L15, 
it completes a tour. Its moving path is expressed by Path={O, node (x1, y1, j), node (x2, 
y2, j), …, node (x15, y15, j)}, where node (xi, yi,j) is on line Li. Obviously, the values of 
Kp, Ti, and Td represented by the path can be computed by the following formulas: 
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For example, a moving path of an ant is shown in Fig.2, the values of Kp, Ti, and Td 
represented by the path are Kp = 64.378, Ti = 5.4267, and Td = 3.4254.  

3.2   Selection of Nodes and Ant Paths 

Assume that from any node on line Li to any node on the next line Li+1, an ant has the 
same moving time, i.e., the moving time is not relevant to the distance between any 
two nodes on two adjacent lines. Thus, if all ants depart from the origin of O-XY at 
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the same time, they will arrive on each line Li (i =1−15) at the same time too, and 
finally arrive on terminal line L15 at the same time. To this point, they all complete a 
tour, and the AS algorithm completes an iteration.  

Assume m represents the total number of ants. Let  (xi, yi, j, t) represent the phero-
mone concentration at node (xi, yi, j) in iteration t (t is the iteration counter, 1≤t≤tmax, 

tmax is the maximum number of iterations). Assume that at time t=0 all of the nodes 
have the same pheromone concentration, i.e.,  (xi, yi, j, 0)= 0 ( 0 is a small positive 
constant). In moving process, each ant k (k =1−m) will select one from the ten nodes 
of the next line to move to according to the pheromone concentration and visibility of 
each one of the ten nodes. Let Pk (xi, yi, j, t) be the transition probability of ant k from 
any point of line Li-1 to node (xi, yi, j), it can be computed by 
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where η (xi, yi, j, t) is the visibility of node (xi, yi, j) and defined as:  
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where the values of *
, jiy  (i=1−15, j=0−9) are set in the following way : In the first 

iteration of the AS algorithm, the values of *
, jiy  are set to the Y coordinates of the 

fifteen nodes which are obtained by mapping the values of PID parameters Kp0, Ti0, 
and Td0 onto Fig.2, where Kp0, Ti0, and Td0 are obtained from the Ziegler-Nichols tun-
ing formula. In each of the following iterations, *

, jiy  are set to the Y coordinates of 
the fifteen nodes which are obtained by mapping the values of PID parameters Kp

*, 
Ti

*, and Td
* onto Fig.2, where Kp

*, Ti
*, and Td

* are the PID parameters corresponding 
to the optimal traveling path generated in the previous iteration by the ants.  

α and β in (8) represent respectively the relative importance of the pheromone con-
centration and visibility in transition probability Pk (xi, yi, j, t), and they are set to 3.  

3.3   Updating of Pheromone Concentration  

Assume that at time t = 0 all of the ants are at the origin of plane O-XY, then they will 
arrive at their respective terminal nodes on line L15 after fifteen moving steps. At this 
moment, the pheromone concentration of each node on O-XY needs to be updated 
according to the following formulas:  

),(),,()1,,( ,,, jiijiijii yxtyxtyx τρττ Δ+=+ ,                        (10) 

=
Δ=Δ

m

k jiikjii yxyx
1 ,, ),(),( ττ ,                                (11) 

where 0<ρ<1 is the pheromone decay parameter; Δτk (xi, yi ,j) is the amount of phero-
mone laid at node (xi, yi, j) by ant  k in the iteration just completed and computed by 
the following formula:  
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                                                                       ,          (12) 

 

where Fk is the value of performance criterion of ant k in the iteration just completed 
and computed by formula (6); Q is a positive constant. Because the value of Fk is 
about 1, Q can be set to 0.1. Assume that at t=0, Δτ(xi, yi, j)=0. 

3.4   Optimization Procedure for PID Controller Parameters 

The AS algorithm for finding the optimal PID controller parameters Kp
*, Ti

*, and Td
* 

can be summarized as follows. 

Step 1: For a given control system with a PID controller, compute PID controller 
parameters Kp0, Ti0, and Td0 using the Ziegler-Nichols tuning formula, and compute 
the system’s performance indexes σ 0, ts0, and ess0.  

Step 2: Define m (the number of ant), tmax (the maximum number of iterations), τ 0 
(the initial pheromone concentration of each node), and ρ (the decay parameter); 
Set Δτ(xi, yi, j)=0; Define a one-dimensional array Pathk with fifteen elements for 
each ant k (k=1−m), in which the Y coordinates of the fifteen nodes that ant k will 
pass through will be stored in order. Pathk is used to represent the moving path of 
ant k.  

Step 3: Set t=1 (t is the iteration counter); Then, place the m ants at the origin of 
plane O-XY.  

Step 4: Set i =1. 
Step 5: Compute the transition probability of each node on line Li using formula 

(8); According to these probabilities, select one node from line Li for each ant k (k 

=1−m) using the Roulette Wheel Selection method and move ant k to this node, then 
save the Y coordinate of the node into the ith element of Pathk.  

Step 6: Set i=i+1. If i≤15, go to Step 5; Otherwise, go to Step 7. 
Step 7: For each ant k (k =1−m), (a) according to its moving path, i.e., the array 

Pathk, compute the PID parameters Kp
k, Ti 

k, and Td 
k
 using formula set (7); (b) exe-

cute a computer simulation for the control system using Kp
k, Ti 

k, and Td 
k, and com-

pute the system’s performance indexes σ k, ts
k, and ess

k ; (c) compute the perform-
ance criterion Fk using formula (6).  

Then, find the optimal moving path of this iteration which has the minimum 
value of the performance criterion (i.e., min k Fk, k=1, 2, …, m), and save the values 
of PID controller parameters corresponding to the path into Kp

*, Ti
*, and Td

*.  
Step 8: Update the pheromone concentration of each node in Fig.2 according to 

formulas (10)−(12); Then, set each element of Pathk to zero, k=1−m.  
Step 9: Set t←t+1; If t<tmax and all of the m ants do not make the same tour, place 

all of the m ants at the origin of O-XY and go to Step 4; If t<tmax but all of the m 
ants make the same tour, or t=tmax, output the optimal moving path and its 
corresponding PID controller parameters Kp

*, Ti
*, and Td

*. Then stop. 

,    if ant k passed through node (xi , yi, j )  
in the iteration just completed 
   

,   otherwise

=Δ

0

),( ,
k

jiik
F

Q

yxτ
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4   Computer Simulation Examples and Results 

Four typical control systems were chosen to test and verify the adaptation and robust-
ness of the AS algorithm and AS-PID controller. The transfer functions of the plants 
in the four control systems are given as follows.  

Case 1 (two-order system):  

16.1

1
)(

21
++

=
ss

sG ;                                               (13)  

Case 2 (high-order system):  

)2.01)(05.01)(01.01)(1(

1
)(2 ssss

sG
++++

= ;                          (14) 

Case 3 (time-delay system):  

Ts

e
sG

sL

+
=

−

1

2
)(3  ,  L =1.0, T = 5.0;                                    (15) 

Case 4 (high-order and time-delay system):  

)5.01)(25.01)(125.01)(1(
)(4 ssss

e
sG

sL

++++
=

−
 ,  L =1.0.               (16) 

For each of the four study cases, simulation experiments were executed. In these 
experiments, the input of the system is a unit step signal. The parameters of the AS 
algorithm are set to tmax=30, ρ =0.5, and m=10. For the four cases, the optimal PID 
parameters of the AS-PID controller are shown in Table 1.  

Table 1 also summarizes the performance indexes of unit step responses of the 
four cases in the time domain, including the overshoot σ, rise time tr (defined as the 
time needed from 10 % of the steady-state value to 90 % of the value), settling time 
ts (the allowed error Δ≤2 %), and steady-state error ess. These performance indexes 
were obtained from the AS-PID method and the Z-N PID method respectively. 
From Table 1, we can find that for each of the four cases, using the proposed AS-
PID controller, the overshoot σ and settling time ts of the unit step response are 
reduced greatly compared with the Ziegler-Nichols method.  

The unit step responses of the four control systems are shown in Fig.3−Fig.6. In 
these figures, the solid curves (AS) are the responses obtained from the proposed 
AS-PID controller, and the dotted curves (Z-N) are the responses obtained from the 
classical Ziegler-Nichols method. 

Fig.7−Fig.10 display the convergence tendency of the performance criterion F of 
the four cases during the iteration process of the AS algorithm. 

As can be seen, the AS-PID controller has a quick convergence rate for each of 
the four different cases (less than twelve iterations). This is because in evolutionary 
processes the AS algorithm does not perform some operations such as selection and 
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Table 1. PID parameters and performance indexes of the two PID control methods 

Case PID type Kp Ti Td σ (%) tr ts ess 

AS-PID 4.3110 1.5544 0.5202 1.91 0.3534 0.5572 0 
1 

Z-N PID 3.5000 1.2000 0.3000 26.25 0.9227 4.8520 0 

AS-PID 14.480 3.4135 0.1543 0.00 0.2817 0.6793 0 
2 

Z-N PID 15.150 0.3142 0.0754 69.09 0.1562 1.8976 0 

AS-PID 1.3625 5.8901 0.3610 0.67 2.7710 5.5883 0 
3 

Z-N PID 2.5507 1.8605 0.4465 55.52 0.5939 8.9956 0 

AS-PID 2.1185 2.3934 0.3412 5.59 1.0362 4.1886 0 
4 

Z-N PID 3.0189 1.2964 0.3111 45.34 0.6834 5.2891 0 

 

 

Fig. 3. The unit step response of Case 1               Fig. 4. The unit step response of Case 2 

 

Fig. 5. The unit step response of Case 3              Fig. 6. The unit step response of Case 4 
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       Fig. 7. Convergence of Case 1                               Fig. 8. Convergence of Case 2 

crossover, so it can save some computation time compared with other evolutionary 
computation methods, for example, genetic algorithms. Thus, we can conclude that 
the proposed AS-PID controller is capable of obtaining the high-quality solution 
quickly. In addition, from these figures we can find that for all of the four different 
cases, the performance criterion F can always converge to the minimum value, which 
verifies that the proposed AS algorithm has adaptive property and robust convergence 
property in solving the optimal design problem of PID controller. 

 

         Fig. 9. Convergence of Case 3                             Fig. 10. Convergence of Case 4 

5   Conclusions 

This paper presents a novel optimal design method for PID controller based on the ant 
system (AS) algorithm. The proposed method has excellent features, including easy 
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implementation, good convergence property, and efficient searching for the optimal 
PID controller parameters. This method has been demonstrated to be a good method, 
which has adaptive property and robust stability for tuning the PID controller parame-
ters when facing different control plants. The AS-PID controller has been verified to 
have better control performance 
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Abstract. With the intrinsic properties of job-shop scheduling problems (JSPs) 
in mind, we integrate the multiagent systems and evolutionary algorithms to 
form a new algorithm, Multiagent Evolutionary Algorithm for JSPs (MAEA-
JSPs). In MAEA-JSPs, all agents live in a latticelike environment. Making use 
of the designed behaviors, MAEA-JSPs realizes the ability of agents to sense 
and act on the environment in which they live. During the process of interacting 
with the environment and the other agents, each agent increases energy as much 
as possible, so that MAEA-JSPs can find the optima. In the experiments, 59 
benchmark JSPs are used, and good performance is obtained. 

1   Introduction 

Since modern manufacturing environments are very complex, making it very difficult 
and time-consuming for people to create good schedules, it is a great advantage to 
have the scheduling process performed automatically by a computer system. There 
has been a considerable research effort on scheduling, such as the methods based on 
EAs, multiagents, simulated annealing, neural networks, hybrid heuristic technique, 
fuzzy logic. The focus of this paper is on the job-shop scheduling problems (JSPs)[1]. 

Agent-based computation has been studied for several years in the field of distrib-
uted artificial intelligence[2, 3] and has been widely used in other branches of computer 
science[4-6]. In this paper, with the intrinsic properties of JSPs in mind, we integrate 
the multiagent systems and evolutionary algorithms (EAs) to form a new algorithm, 
Multiagent Evolutionary Algorithm for Job-shop Scheduling Problems (MAEA-
JSPs). In MAEA-JSPs, all agents live in a latticelike environment. Making use of the 
designed behaviors, MAEA-JSPs realizes the ability of agents to sense and act on the 
environment in which they live. During the process of interacting with the environ-
ment and the other agents, each agent increases energy as much as possible, so that 
MAEA-JSPs can find the optima. Experimental results show that MAEA-JSPs pro-
vides good performance. 

2   Multiagent Evolutionary Algorithm for Job-Shop Scheduling 
Problems 

According to [3] and [5], an agent is a physical or virtual entity essentially having the 
following properties: (a) it is able to live and act in the environment; (b) it is able to 
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sense the local environment; (c) it is driven by certain purposes and (d) it has some 
reactive behaviors. Multiagent systems are computational systems in which several 
agents interact or work together in order to achieve goals. As can be seen, the mean-
ing of an agent is very comprehensive, and what an agent represents is different for 
different problems. In general, four elements should be defined when multiagent sys-
tems are used to solve problems. The first is the meaning and the purpose of each 
agent. The second is the environment in which all agents live. Since each agent has 
only local perceptivity, so the third is the local environment. The last is the behaviors 
that each agent can take to achieve the purpose. 

2.1   Job-Shop Scheduling Problems 

A JSP of size n×m consists of n jobs and m machines. For each job Ji, a sequence of m 
operations Oi=(oi,1, oi,2, …, oi,m) describing the processing order of the operations of Ji 
is given. Each operation oi,j is to be processed on a specific machine and has a proc-
essing time τi,j. When the operations are processed each machine can process only one 
operation at a time, each job can only have one operation processed at a time, and no 
preemption can take place. A solution to a JSP is a schedule specifying when to proc-
ess each of the operations, not violating any of the constraints. 

One encoding method in common use for JSPs is permutation with repetition, 
where a schedule is described as a sequence of all n×m operations, and each operation 
in the sequence is described by the job-number. Thus, the search space S of a JSP 
consists of the elements satisfy the following conditions: 

( ) ( ) ( )
1 2,  ,  ,  ,    and  

             (1)   and  (2)   and ... and  ( )
n mP P P

m m n m
×∀ ∈ =

= = =
P P

P P P

S
 (1) 

Where Pi∈{1, 2, …, m}, i=1, 2, …, n×m, and P(j), j=1, 2, …, n stand for the number 
of j in P. When transforming P into a schedule, Pi stands for oj,k if Pi=j and the num-
ber of j among P1, P2, …, Pi is equal to k. The schedule is obtained by considering the 
operations in the order they occur in P and assigning the earliest allowable time to 
that operation. Such encoding method has the advantage that no infeasible solutions 
can be represented, and each element in S corresponds to a feasible schedule. 

2.2   Definition of Agents 

An agent used to solve JSPs is defined as follows: 
Definition 1: A agent for JSPs, a, represents an element in the search space, with 

energy equal to 

∀ ∈a S , ( ) ( )Energy makespan= −a a  (2) 

where makespan(a) stands for the time elapsed from the beginning of processing until 
the last job has finished according to the scheduling corresponding to a. The goal of 
each agent is to maximize the energy through agent behavior. 

Since each agent must record some information, it is represented by the following 
structure: 
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Agent = Record 

P: P∈S; 
E: The energy of the Agent, E=Energy(P); 
SL: The flag for the self-learning behavior, which 

will be defined later. If SL is True, the self-
learning behavior can be performed on the Agent, 
otherwise, cannot; 

End. 
In the following text, Agent(•) is used to represent the corresponding component in 

the above structure. 

2.3   Environment of Agents 

In order to realize the local perceptivity of agents, the environment is organized as a 
latticelike structure, which is similar to our previous work in [6]. 

Definition 2: All agents live in a latticelike environment, L, which is called an 
agent lattice. The size of L is Lsize×Lsize, where Lsize is an integer. Each agent is fixed 
on a lattice-point and can only interact with the neighbors. Suppose that the agent lo-
cated at (i, j) is represented as Li,j, i, j=1,2,…,Lsize, then the neighbors of Li,j, 
Neighborsi,j, are defined as follows: 

{ }, , , , ,,  ,  ,  i j i j i j i j i j′ ′ ′′ ′′=Neighbors L L L L  (3) 

where 
1  1

 1size

i i
i

L i

− ≠
′ =

=
, 

1  1

  1size

j j
j

L j

− ≠
′ =

=
, 

1  

1       
size

size

i i L
i

i L

+ ≠
′′ =

=
, 

1   

1         
size

size

j j L
j

j L

+ ≠
′′ =

=
. 

The agent lattice can be represented as the 
one in Fig.1. Each circle represents an agent, 
the data represent the position in the lattice, 
and two agents can interact with each other if 
and only if there is a line connecting them. 

2.4   Behaviors of Agents 

The goal of an algorithm for JSPs is to find 
solutions by a computational cost as low as 
possible. So the computational cost can be considered as the resources of the envi-
ronment in which all agents live. Since the resources are limited and the behaviors of 
the agents are driven by their purposes, an agent will compete with others to gain 
more resources. On the bases of this, two behaviors are designed for agents to realize 
their purposes, that is, the competitive behavior and the self-learning behavior. 

Competitive behavior: In this behavior, the energy of an agent is compared with 
those of the neighbors. The agent can survive if the energy is maximum; otherwise, 
the agent must die, and the child of the one with maximum energy among the 
neighbors will take up the lattice-point. 

 

Fig. 1. The model of the agent lattice 
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Suppose that the competitive behavior is performed on the agent located at (i, j), 
Li,j, and Maxi,j is the agent with maximum energy among the neighbors of Li,j, 
namely, Maxi,j∈Neighborsi,j and ∀Agent∈Neighborsi,j, then Agent(E)≤Maxi,j(E). If 
Li,j(E) ≤ Maxi,j(E), then Maxi,j generates a child agent, Childi,j, to replace Li,j, and the 
method is shown in Algorithm 1; otherwise, Li,j is left untouched. 

Algorithm 1 Competitive behavior 

Input:  Maxi,j: , 1 2( ) ,  ,  ,  i j n mm m m ×=Max P ; 

pc: A predefined parameter in the range of 0~1; 
Output: Childi,j: , 1 2( ) ,  ,  ,  i j n mc c c ×=Child P ; 

Swap(x, y) exchanges the values of x and y. U(0, 1) is a uni-
form random number between 0 and 1. Random(n, i) is a random 
integer among 1, 2, …, n and is not equal to i. Min(i, j) is the 
smaller one between i and j. 
begin 

Childi,j(P) := Maxi,j(P); i := 1; 
repeat 
if (U(0, 1)<pc) then 
begin 

l := Random(n, i); 
Swap(ci, cl); 

end; 
i := i+1; 

until (i>n); 
Childi,j(SL) := True; 

end. 

In fact, Childi,j is generated by exchanging a small part of Maxi,j, and is equivalent 
to performing a local search around Maxi,j. The goal of the competitive behavior is to 
eliminate the agents with low energy, and give more chances to the potential agents. 

Self-learning behavior: Agents have knowledge relating to the problems that they 
are designed to solve. As well-known, integrating local searches with EAs can im-
prove the performance. Therefore, we design the self-learning behavior for agents by 
making use of local search techniques. Since a number in P occurs many times, the 
algorithm must be prevented from swapping two identical values. Let P= P1, P2, …, 
Pn×m , 

ipo  represents the operation corresponding to Pi, and 
ipM  is the machine on 

which 
ipo  is to be processed. Suppose that Pi and Pj (Pi≠Pj and i<j) is swapped and P′ 

is obtained. Based on the method transforming P to a schedule, we can obtain that the 
two schedules corresponding to P and P′ are identical if Pi and Pj satisfy (4). 

( ) ( ) ( )
( ) ( )

,  ,     and    and    

                                                and    and  

i j k i

k j

k P P k i P P

k j P P

P i k j M M P P M M

P P M M

∀ < < ≠ ≠ ≠

≠ ≠
 (4) 

Suppose that this behavior is performed on Li,j. The details are shown in Algorithm 2. 
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Algorithm 2 Self-learning behavior 

Input:  Li,j: Li,j(P)= P1, P2, …, Pn×m ; 
Output: Li,j; 

begin 
repeat 

Repeat := False; k := 1; Iteration := 1; 
while (k≤n×m) do 
begin 

Energyold := Li,j(E); 
l := Random(n×m, k), Pk≠Pl, and Pk, Pl do not satisfy (35); 
Swap(Pk, Pl);  Energynew := Li,j(E); 
if (Energynew<Energyold) then Swap(Pk, Pl) 
else begin 

if (Energynew>Energyold) then Repeat := True; 
k := k+1; 

end; 
if (Iteration<n×m-1) then Iteration := Iteration+1 
else begin Iteration := 1;  k := k+1;  end; 

end; 
until (Repeat=True); 
Li,j(SL) := False; 

end. 

The goal of Algorithm 2 is to find a swap for the components in the permutation 
which violate constraints, such that the energy of Li,j is increased after the swap is per-
formed. For a component, the algorithm iteratively performs a swap until no con-
straint is violated or the predefined iterative count, Iteration=(n×m-1), is achieved. 
Then, the algorithm goes on to deal with the next component. Iteration can prevent 
the algorithm from repeating infinitely. When the self-learning behavior has been per-
formed on an agent, the probability that the energy of the agent can be increased by 
this behavior is very low, thus Li,j(SL) is set to False in the last step. 

2.5   Implementation of MAEA-JSPs 

At each generation, the competitive behavior is performed on each agent first. As a 
result, the agents with low energy are cleaned out from the agent lattice so that there 
is more space developed for the agents with higher energy. Then, the self-learning be-
havior is performed according to the state of the agent. In order to reduce the compu-
tational cost, this behavior is only performed on the best agent in the current agent lat-
tice. The process is performed iteratively until the quality of the solution satisfies the 
predefined conditions or the maximum computational cost is reached. 

Algorithm 3 Multiagent evolutionary algorithm for job-
shop scheduling problems 

Input:  EvaluationMax: The maximum number of evaluations 
for the energy; 



930 W. Zhong, J. Liu, and L. Jiao 

Lsize: The scale of the agent lattice; 
pc: The parameter used in the competitive behav-

ior; 
Output:  A solution or an approximate solution for the 

JSP under consideration; 
Lt represents the agent lattice in the tth generation. 

t
BestAgent  is the best agent in L0, L1, …, Lt, and t

tBestAgent  is the 

best agent in Lt. 
begin 
for i:=1 to Lsize do 
for j:=1 to Lsize do 
begin 
Generate a permutation randomly and assign it to 

0
, ( )i jL P ;  

Compute 0
, ( )i j EL ;   

0
, ( ) :i j SL True=L ; 

end; 

Evaluations := Lsize× Lsize;   

Update 0
BestAgent ;  t := 0; 

repeat 
for i:=1 to Lsize do 
for j:=1 to Lsize do 
begin 

if ( ,
t
i jL wins in the competitive behavior) then  

1
, ,:t t

i j i j
+ =L L  

else 1
, :t

i j i, j
+ =L Child   

(generated according to Algorithm 1); 

Compute 1
, ( )t

i j E+L ;   

Evaluations := Evaluations+1; 
end; 

Update 1
( 1)
t
t Best
+
+Agent ; 

if ( )1
( 1) ( )t
t Best SL True+
+ =Agent  then 

Perform the self-learning behavior on 1
( 1)
t
t Best
+
+Agent ; 

if ( 1
( 1) ( ) ( )t t
t Best BestE E+
+ <Agent Agent ) then 

begin 
1 :t t

Best Best
+ =Agent Agent ; 

1 :t t
Random Best
+ =Agent Agent ( 1t

Random
+Agent  is randomly selected from 

Lt and is different from 1
( 1)
t
t Best
+
+Agent ); 

end 
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else 1 1
( 1):t t

Best t Best
+ +

+=Agent Agent ; 

t := t+1; 
until ( 1 ( )t

Best E+Agent  satisfies the predefined conditions) 

or (Evaluations ≥ EvaluationMax); 
end. 

3   Experimental Studies 

Three test suites1 are used to investigate the performance of MAEA-JSPs, namely, 
FT[7], LA[8], and ORB[9], which have been widely used in the field of JSPs. FT con-
sists of 3 problems, LA 40 problems, and ORB 10 problems. The optimal makespan, 
labeled as Makespan*, of the 53 problems are known[10]. Therefore, to study the com-
putational cost, the termination criterion of MAEA-JSPs is set to find the optimal 
makespan or run more than 5000 generations. Lsize is set to 10. The experimental re-
sults averaged over 100 independent runs of MAEA-JSPs are shown in Table 1. They 
include the best (Best) and the average (Aver) makespan found, and the percentage of 
gap between Aver and Makespan* (Gap), 

( )*

*
100%

Aver Makespan
Gap

Makespan

−
= ×  (5) 

The computational cost is represented by two forms, the average running times 
(Times) and the average number of evaluations (Evals). All experiments are executed 
on a 2.4-GHz Pentium IV PC with 1G RAM. 

From Table 1 we can see that the best solutions for 45 out of 53 problems are equal 
to Makespan*, and the ones for the other 8 problems are also very close to Makespan*. 
For instance, those of LA24, LA27, LA40, and ORB02 are only larger 1 or 2 than 
Makespan*. The average solutions for 21 out of 53 problems are equal to Makespan*, 
that is to say, MAEA-JSPs finds the optimal makespan in all 100 runs for these prob-
lems. There are 7 problems, LA02, LA03, LA04, LA16, LA18, LA26, and ORB10, 
whose average solutions are very close to Makespan*, and the Gap is smaller than 
0.5%. For the other 25 problems, only the Gap of LA29 and LA38 are 4.33 and 3.88, 
respectively, and all remainder is smaller than 2.6%. The standard deviations for 43 
out of 53 problems are smaller than 10, and only those of LA29 and LA38 are larger 
than 15. The running times of MAEA-JSPs are smaller than 1 second for 18 prob-
lems, between 1 to 10 seconds for 23 problems, and larger than 10 seconds for 19 
problems, where the maximum is 60.67s for LA27. 

Reference [1] indicates that a JSP can be considered hard if the number of opera-
tions is no smaller than 200 and n≥15, m≥10, n<2.5m. On the basis of this observa-
tion, LA26-LA30 and LA36-LA40, whose names are shown in boldface in Table 1, 
are more difficult than the other problems. For these 10 problems, MAEA-JSPs finds 
Makespan* for 4 problems. In general, both the solution quality and the computational 
cost of MAEA-JSPs are appropriate. 

                                                           
1 ftp://mscmga.ms.ic.ac.uk/pub/jobshop1.txt 
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Table 1. The experimental results of MAEA-JSPs 

Makespan Computational cost Names n×m Makespan* Best Aver Gap (%) Times (s) Evals 
FT06 6×6 55 55 55 0 0.00 450 
FT10 10×10 930 930 944.45 1.55 10.47 2 270 375 
FT20 20×5 1165 1165 1178.89 1.19 13.56 3 106 852 
LA01 10×5 666 666 666 0 0.00 1 631 
LA02 10×5 655 655 655.39 0.06 0.78 296 570 
LA03 10×5 597 597 598.86 0.31 1.12 409 782 
LA04 10×5 590 590 591.41 0.24 1.75 635 362 
LA05 10×5 593 593 593 0 0.00 262 
LA06 15×5 926 926 926 0 0.00 349 
LA07 15×5 890 890 890 0 0.00 1 540 
LA08 15×5 863 863 863 0 0.00 2 519 
LA09 15×5 951 951 951 0 0.00 802 
LA10 15×5 958 958 958 0 0.00 316 
LA11 20×5 1222 1222 1222 0 0.00 495 
LA12 20×5 1039 1039 1039 0 0.00 865 
LA13 20×5 1150 1150 1150 0 0.00 1 061 
LA14 20×5 1292 1292 1292 0 0.00 321 
LA15 20×5 1207 1207 1207 0 0.02 5 578 
LA16 10×10 945 945 945.79 0.08 6.84 1 408 499 
LA17 10×10 784 784 784 0 1.05 225 340 
LA18 10×10 848 848 848.22 0.03 3.23 719 109 
LA19 10×10 842 842 853.79 1.40 9.59 2 174 830 
LA20 10×10 902 902 908.11 0.68 9.12 2 042 142 
LA21 15×10 1046 1046 1068.11 2.11 25.64 4 153 326 
LA22 15×10 927 927 940.88 1.50 25.69 4 110 514 
LA23 15×10 1032 1032 1032 0 0.42 68 246 
LA24 15×10 935 937 958.79 2.54 25.94 4 188 613 
LA25 15×10 977 977 993.50 1.69 23.84 3 738 814 
LA26 20×10 1218 1218 1219.15 0.09 17.07 1 939 943 
LA27 20×10 1235 1236 1263.83 2.33 60.67 6 812 466 
LA28 20×10 1216 1216 1225.55 0.79 55.28 6 351 364 
LA29 20×10 1152 1167 1201.88 4.33 54.08 5 972 694 
LA30 20×10 1355 1355 1355 0 6.59 727 852 
LA31 30×10 1784 1784 1784 0 0.50 37 799 
LA32 30×10 1850 1850 1850 0 0.98 79 068 
LA33 30×10 1719 1719 1719 0 0.34 26 238 
LA34 30×10 1721 1721 1721 0 2.96 228 581 
LA35 30×10 1888 1888 1888 0 1.45 105 840 
LA36 15×15 1268 1274 1295.49 2.17 48.88 4 992 731 
LA37 15×15 1397 1397 1429.24 2.31 52.92 5 517 937 
LA38 15×15 1196 1204 1242.42 3.88 56.71 5 956 429 
LA39 15×15 1233 1239 1258.61 2.08 56.73 6 011 274 
LA40 15×15 1222 1224 1247.06 2.05 54.99 5 770 028 

ORB01 10×10 1059 1059 1084.28 2.39 10.38 2 253 621 
ORB02 10×10 888 889 893.77 0.65 9.79 2 059 680 
ORB03 10×10 1005 1005 1027.69 2.26 11.05 2 475 761 
ORB04 10×10 1005 1005 1024.29 1.92 10.08 2 175 029 
ORB05 10×10 887 887 893.70 0.76 9.91 2 120 907 
ORB06 10×10 1010 1010 1026.90 1.67 11.16 2 470 842 
ORB07 10×10 397 397 402.62 1.42 8.59 1 891 497 
ORB08 10×10 899 899 910.89 1.32 8.47 1 826 795 
ORB09 10×10 934 934 941.73 0.83 9.10 1 836 018 
ORB10 10×10 944 944 945.70 0.18 4.52 1 015 080 
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4   Conclusion 

In this paper, multiagent systems and evolutionary algorithms are combined to form a 
new algorithm to solve job-shop scheduling problems. MAEA-JSPs obtains good per-
formance on three benchmark test suites, FT, LA, and ORB. All results show that it is 
of a high potential in solving complex and ill-defined problems to combine multiagent 
systems and EAs. 
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Abstract. This paper presents a novel approach for visual inspection of 
textures. The approach applies the artificial immune theory to learning the 
filters for texture flaw detection, which are invariant to changes of texture 
orientations and scales. In this paper, defect textures and defect-free textures are 
regarded as non-self and self respectively, and texture filters are regarded as 
antibodies. The clonal selection based algorithm is presented to evolve 
antibodies. Experimental results on TILDA textile images were done to show 
the feasibility of the proposed method. 

1   Introduction 

Visual inspection is an important part of quality control in industry. Since the accuracy 
of human visual inspection declines with dull and endlessly routine jobs. Slow, 
expensive and erratic inspection is the result. Computer based visual inspection is 
obviously the alternative to the human inspector. This paper is concerned with the 
problem of computer inspection of texture surface. A major problem with the 
application of texture inspection to real problems is that textures in the real world are 
often not uniform, due to changes in orientation, scale or other visual appearance. How 
to extract robust texture features has become a key issue in the field of texture 
inspection. In order to solve the problem, this paper presents a new approach to 
automatically detect defects from texture images. This approach employs the clonal 
selection based mechanism inspired from the biological immune system to learn texture 
filters and segmentation thresholds. The detailed algorithm is described in this paper. 
This paper is organized as follows: Section 2 describes the learning algorithm for 
texture defect detection. Section 3 shows the experimental results and gives the 
conclusions. 

2   Algorithms  

The clonal selection is the theory used to explain how an immune response is 
mounted when a non-self antigenic pattern is recognized by a B-cell. The clonal 
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selection algorithm (CSA) is proposed to fulfil the clonal selection processes[1]. The 
design of CSA mainly includes the definition of immunological terms and the design 
of immune evolutionary operations.  In this paper, the immunological terms are 
defined in the following manner:  
     Antigen: any of training  texture images. 

Antibody: a float string encoded by filter parameters and a segmentation 
threshold. Fig.1 illustrates an antibody structure.  

                      (a)                                                                     (b) 

Fig. 1. Antibody encoding scheme.(a) a 5 by 5 filter architecture,  Mij [-2,2]  (b) an antibody 
architecture, ]512,0[∈T  

Affinity: the detection rate of an antibody. It is defined as : 

                                                                                                                                 (1) 

where Nc is the number of correctly detected images, and the Nt is the total number of 
trained images.The greater the value of p, the higher the antibody’s affinity. 

For each antibody, the procedure to detect texture images consists of following 
three steps.  

1) Decode an antibody and get a filter and a threshold. 
2) Convolve all training images by the filter. The 2D convolution of the image I(i,j) 

and filter A(i,j) with size 2 +1 by 2 +1 ( = 2) is given by the relation 
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3) Calculate the standard deviation of every convolved trained image. If the standard 
deviation value of an image is greater than the threshold, the image is recognized 
as a defective image. Otherwise, the image is a defect-free image. 

The immune evolutionary operations are defined in the following manner: 

Clone: This operation is to generate copies of every individual in an antibody 
population proportionally to its affinity with the antigen. The amount of clones of an 
antibody is given by  
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where N is the number of all individuals in an antibody population. fi is the affinity 
value of the ith antibody. 

Mutation: The mutation operation creates a new antibody by randomly changing one 
or more of the unit values in the antibody with a probability inversely proportional to 
their affinities. The mutation probability is given by 

Ni
ff

ff
P i

i
,...,2,1

minmax

max =
−
−

=
 

  (4) 

where fmax is the maximum affinity value, and fmin is the minimum affinity value. 

Reselection: This operation sorts all individuals in descending order, and replace m 
(m<N) individuals with the least affinity values with m new randomly generated 
individuals. 

The whole learning algorithm is described as follows: 

1) Randomly generate an antibody population (M) which represent a set of filters and 
segmentation thresholds; 

2) Evaluate the affinity value of each antibody in the population with Eq. 1; 
3) Generate clone copies of all individuals with Eq. 3 ; 
4) Mutate all these copies with Eq. 4; 
5) Sort all individuals in descending order, and replace n1 individuals with the least 

affinity values with n1 new randomly generated individuals. 
6) Repeat Steps 2 to 5 until a given iteration time is met. In general, a fixed maximum 

iteration number is allowed as the termination condition. In this paper it is 50 
according to our experimental experience. 

After the optimal antibody is acquired, the antibody can be used to detect antigens. 
Firstly, according to Eq.2, convolve the test image by the learned filter. Secondly, 
calculate the standard deviation within a 2n+1 by 2n+1 (n=7) window at point(i,j). 
The standard deviation is defined as the texture feature TE at the point. Thirdly, 
compare the TE value at every point with the learned threshold. If the TE is greater 
than the threshold, the point belongs to a defect texture region. Otherwise, it belongs 
to a defect-free texture region. Finally, a post-processing based on morphology 
operations is employed to remove noise.       

3   Experimental Results and Conclusions 

The proposed approach was evaluated on the TILDA Textile Texture Database created 
at the University of Freiburg. In our experiment, two groups of textiles, c1 and c3, 
were considered. We resized each textile image by a factor 0.5. Each group split into 
two categories. Each category included 4 defect classes e1-e4 and a defect-free class 
e0, and each class had 10 images.  

In order to learn one defect filter and one segment threshold for each category 
textile, we collected 4 sub-images with size 41*41 from each class (e0~e4) of each 
category of each group as sample images. The experiments were carried out as follows: 
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1) Training phase: Obtain texture filter parameters and a segmentation threshold for 
each category through learning the trained samples using CSA.  

2) Detection phase: Detect flaws from proposed textile images using obtained filters 
and thresholds. In order to remove noise, erosion operations are implemented on 
detected images to remove small areas. Fig. 2 shows some examples of different 
flaw detections, where highlight lines indicate the detected locations of flaws. It 
can be seen that, although the defect appearances on different textile surfaces are 
much different, they can be detected correctly by proposed method.  

 
      Fig. 2. Some detection results for category (a) c1r1 (b) c1r3 (c) c3r2 (d) c3r3  

We also compared the learning behavior between CSA and standard genetic 
algorithms. We did 20 learning by CSA and GA respectively. The average generations 
of finding the optimal solution for CSA and GA were 9 and 20, respectively. This 
shows that CSA is easier to find the optimal solution than GA due to its diversity .   

In this paper we have described a new approach for defect detection using learning 
techniques with the clonal selection principle. Comparing with some earlier 
investigations [2][3], the proposed method in this paper not only is able to detect  
slack-end and broken-pick flaws, but also use the same detection window size for 
different defect types. In addition, the proposed method employs only one optimized 
filter for texture detection, the whole processing is easily implemented by hardware. 
As a result, the proposed  approach is suitable for industrial application. 

It is seen by a survey that the AIS is not used widely to image applications. 
Although this paper has been devoted almost entirely to the textile inspection 
problem, this initial study shows its potential application in the field of visual 
inspection. We plan to further implement more properties of AIS for better results and 
exploit more applications for machine vision. 
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Abstract. Panoramic Video which uses 360 degree panoramic image is a new 
approach for composing virtual environment. The panoramic images can be 
created by “stitching” together overlapping images taken with an ordinary cam-
era. So image mosaics are very important in creating panorama. In this 
paper, we proposed an intelligent mosaics algorithm. We first use particle 
swarm optimization (PSO) to find a certain area which contains sufficient ob-
jective characters, then we use pattern matching method to search the matching 
patch in another image and adjust image; at last, the mosaic image is created by 
a multi-resolution method. Experimental results testy that this algorithm is able 
to seamlessly stitch two overlapping images automatically.  

1   Introduction 

Panoramic image is a method to make use of realistic images to get a full view pano-
ramic space[1~3]. Users can use ordinary cameras to take a serial of images surround-
ing a scene[4]. When we create panoramic image, the first job of image mosaics is to 
exactly allocate the overlapping areas of two images. And the second one is to adjust 
the lighteness, since the light intensity of two images from different points might be 
of great difference. Based on above two tasks, we propose a character-based solution 
for image adjusting, and we make use of particle swarm optimization[5] (PSO) to find 
an area which contains sufficient objective characters in one image and find corre-
sponding area in another image using pattern matching, and then adjust these images. 
We apply multi-resolution techniques for image mosaics and finally achieve image 
automated seamless mosaics. 

2   Optimized Characteristic Block Extraction Based on PSO 

In the first image, if we can confirm area A, then we can easily get area B using pat-
tern matching methods in the other image, according to image overlapping theory, 
taking acceptable range of error into consideration. The more objective characters we 
are searching in area A, the much difference is required between this area and sur-
rounding areas, and the better. Distance L2 is simplest and most frequently used dis-
tance function to compare the degree of similitude of two areas. For a certain area S, 
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we can calculate four values of L2 by comparing itself with its surrounding up, down, 
left and right four areas of the same size, denoted as f1 , f2, f3, f4. The bigger of sum of  
f1, f2, f3, f4, the more difference between area S and its surrounding areas. We denote 
evaluation function of areas S as F. 

For any area S in the right half of the first image, the bigger of value F, the easier 
we can find an area with sufficient information needed for matching searching. How 
to find an area S containing sufficient objective characters is a better problem and we 
just need a satisfied result. Therefore, we can use PSO[5] to searching for area S.  

We randomly distributed 10 particles in the right half of the first image. The initial 
position is the coordinate of several pixels and we define an initial velocity of these 
particles. Each particle is moving in the solution space. We can find a matching area 
with certain characters, by adjusting the moving direction and velocity of particles 
using fitness function. Each particle can decide an area of 20*20, which is used to 
search for areas with multiobjective characters. Figure 1 demonstrated how to find 
area S with sufficient characters in one image using PSO algorithm.  

Our PSO-based algorithms to search for characteristic areas can be described as 
follows: 

i  Randomly distributing 10 particles in the right half of the first area, initializ-
ing the original location of each particle and its original velocity; 

ii  Calculation fitness value of areas determined by each particle, using evalua-
tion function F; 

iii  For each particle, comparing its current fitness value and the fitness value of 
the best location it ever passed and updating; 

iv  For each particle, comparing its current fitness value and the fitness value of 
the best location the whole particle swarm ever passed and updating; 

v  Adjusting the velocity and location of particles; 
vi  The algorithm ends if termination condition, which is enough good location 

and biggest number of time of iteration, is met. Current global optimized po-
sition is the result.  Otherwise, go to (ii).  

 

Fig. 1. Optimized characteristic block extraction based on PSO 
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3   Multi-resolution Mosaic 

If we simply mosaic two images together using PSO algorithm, there might be an 
obvious seam at the splicing tape, as shown in Fig.2. We can apply multi-resolution 
image mosaics to address this problem, in order to smooth the transition of the splic-
ing area and get a high quality seamless image. In order to do so, we expand the 
original two images and apply multi-resolution analysis on them to get a serial of 
octave like images, and at last we mosaic them at the same resolution and combine 
the images after image mosaics. As a result, we can get a seamless and smooth image.  

 

Fig. 2. An obvious seam image 

3.1   Gaussian Pyramid Generation 

We create a region image D, at the size of mosaic image. In the region, the centers 
found by PSO image mosaics algorithm is used as the boundary line. We fill white in 
the left side of the line and black in the right. Gaussian Pyramid is applied in the re-
gion image D. 

The region image is represented initially by the level GD0. This image becomes the 
bottom or zero level of the Gaussian pyramid. Gaussian Pyramid level 1 contains 
image GD1, which is a reduced or low-pass filtered version of GD0. Each value within 
level 1 is computed as a weighted average of values in level 0 within a 5-by-5 win-
dow. Each value within level 2, representing GD2, is then obtained from values within 
level 1 by applying the same pattern of weights. 

0

2 2

( 1)
2 2

( , ) ( , )

( , ) ( , ) (2* , 2* )

D

Dl D l
m n

G i j D i j

G i j w m n G i m j n−
=− =−

=

= + +
 (1) 

Where, for levels 0 l N< < and nodes i, j, 0 ,0l li C j R≤ < ≤ < . In this paper N=4, 

Cl and Rl represent the horizontal width and vertical height in level 1 in the Gaussian 
Pyramid, and w(m,n) is the generating kernel. The level-to-level averaging process is 
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called REDUCE. We now define a function EXPAND as the reverse of REDUCE. 
Thus, EXPAND applied to array GDl of the Gaussian pyramid would yield an array 

/
DlG  which is the same size as GD(l-1). 

2 2
/

2 2

( , ) ( ( , )) ( , ) (( ) 2, ( ) 2)Dl Dl Dl
m n

G i j EXPAND G i j w m n G i m j m
=− =−

= = − −  (2) 

Where, 1 10 ,0 ,0l ll N i C j R− −< < ≤ < ≤ < . When a Gaussian Pyramid is con-

structed, the Gaussian Pyramid vlue of each level in the region image D is recorded 
and is used to contrast the weight of Laplacian Pyramid for the mosaic image. 

3.2   Laplacian Pyramid Generation 

Two original images I1 and I2 Expand the size of the region image respectively, the 
extended part is filled by each original image.  For the extended images I1 and I2, the Lapla-
cian Pyramid of its RGB component chart is a sequence of error images 

0 1, ... NL L L .Each is the difference between two levels of the Gaussian pyramid. They 
are Laplacian Pyramid of R channel for the extended images I1 and I2.  

( 1)( , ) ( , ) ( , )
I N I N

I l I l I l

L G

L i j G i j G i j+

=

= −
 (3) 

For 0 1l N≤ < − . N is the total number of levels in Laplacian Pyramid and in this 
paper N=4. 

3.3   Image Mosaic 

The last images in image mosaics can be obtained by calculate the Laplacian Pyra-
mid of its RGB system. We set the Laplacian Pyramid image in level l in each chan-
nel is LMl.  We take the pixel value of GDl in level l in Gaussian Pyramid in the region 
image as a weight, based on which we can calculate the pixel value of LMl in its posi-
tion by:  

( , ) 1( , ) (1 ( , )) 2( , )Ml Dl DlL G i j LI i j G i j LI i j= + −  (4) 

Where, LI1 is the Laplacian Pyramid in the current level of the expanded original 
image Il , LI2 is the Laplacian Pyramid in the current level of the expanded original 
image I2. (i,j) is the position of the pixel. LI1 and LI2 can be calculated using formula 
(3).Each RGB channel of the last mosaic image can be rebuilt by decomposed N-level 
multi-resolution image 0 1 ( 1), ,..., ,  ( )M M M N MN MN MNL L L L L G− =  In our paper, N=4.  i.e.,  

0 1 ( 1)( (...( ( ))))M M M N MNM L EXPAND L EXPAND L EXPAND L−= + + +  (5) 

After the rebuilt of each RGB channel image, we can calculate the RGB value and 
output the last resulting image, which is a clear and smooth seamless image. As 
shown in Fig.3. 
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Fig. 3. Multi-resolution mosaic image 

4   Conclusion 

In this paper, we proposed a new fast image mosaics algorithm based PSO multi-
resolution mosaics algorithms. Compared with other image mosaics algorithms, our 
approach is straightforward and easy to implement. We first use PSO to find a certain 
area which contains sufficient objective characters, then we use pattern matching 
method to search the matching patch in another image and adjust image; at last, the 
mosaic image is created by a multi-resolution method. Experimental results testy that 
this algorithm is able to seamlessly stitch two overlapping images automatically. 
According to our experiments, our algorithm can easily solve the seam problem when 
mosaic two images. In our experiment on a PC, which is DELL 4100 PIII 1G, 256M 
memory, we selected 10 particles, the size of matching area is 20*20 and 4 level pyr 
amid, it cost 2s~3s to mosaic two 300*230 pixels images. 
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Abstract. A standard cell placement algorithm based on adaptive simulated an-
nealing is presented in this paper. Considering the characters of different cir-
cuits to be placed, adaptively initial temperature and adaptive searching region 
are added to traditional simulated annealing algorithm. At the same time, the 
punishment item in objective function and initial placement approach are im-
proved for the standard cell placement problem. This algorithm is applied to test 
a set of benchmark circuits, and experiments reveal its advantages in placement 
results and time performance when compared with the traditional simulated an-
nealing algorithm. 

1   Introduction 

Given an electrical circuit consisting of modules with predefined input and output 
terminals, we need to construct a layout indicating the positions of the modules, so 
that the estimated wirelength and the layout area are minimized.  

Given a design with m  cells denoted by },...,,{ 21 mcccC = , },...,,{ 21 neeeE =  

represents the set of n  nets. To each cell )1( mici ≤≤ , the coordination ),( ii yx  is 

used to denote the lower left point of the cell. The design area is a rectangle one de-
noted by points )0,0(  and ),( YX . All the circuit modules are placed in k  rows, 

denoted by },...,,{ 21 krrrR = , the main purpose is to get the positions of all modules 

such that total wirelength TWL  of all nets is minimized [1]. 

=

=
n

i
ilTWL

1

                                                          (1) 

where il  represents estimated wirelength of net i , n  represents net number.  
The placement problem has been proved to be NP hard, and therefore, it cannot be 

solved exactly in polynomial time. The traditional placement algorithm includes min-
cut graph algorithm [2-3], force-directed algorithm [4], tabu search algorithm [5], 
genetic algorithm [6], and simulated annealing [7]. Especially, the simulated anneal-
ing algorithm was widely and successfully used in most of placement tools, but there 
are also some problems in traditional simulated annealing. Therefore, a standard cell 
placement algorithm based on adaptive simulated annealing is presented. 
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2   Problems to Be Improved 

In standard cell placement, all cells are of the same height and different width, and 
each move or position exchange may cause cell overlap penalty, which makes the 
optimization process more difficult. Moreover, it also results in the row length control 
penalty. A lot of experiments show that too many penalties lead to difficulties in find-
ing the best placement solution. 

Table 1 lists cΔ  and probability of accepting inferior solution at different tempera-
tures for the placement of three benchmark circuits, where cΔ  represents the average 
value change of object function for the first 100 perturbs, suppose that 

},...,,{ 10021 ccc ΔΔΔ  represents the difference of the object function in the first 100 

perturbations, cΔ  can be calculated by 

100

100

1=

Δ
=Δ i

ic

c                                                                 (2) 

It is clearly shown from Table 1 that cΔ  varies greatly with different circuits at the 
same initial temperature denoted by 0T , probability of accepting inferior solution 

denoted by P  also varies greatly with detailed circuit. It is necessary in the simulated 
annealing that probability of accepting inferior solution is 50% at the beginning, so 
initial temperature should be a different value for different circuits. 

Table 1. Probability of accepting inferior solution at different temperatures for circuits 

Circuit 0T  ( 310× ) cΔ  Tce /Δ−  P 
1.5 1302 0.419 41.9% 
15 1365 0.913 91.3% Fract 

500 1267 0.997 99.7% 
1.5 19026 0 0% 
15 19255 0.277 27.7% Primary1 

500 18128 0.964 96.4% 
1.5 418723 0 0% 
15 429156 0 0% Biomed 

500 415348 0.435 43.5% 

Perturbations are limited to a region within a windows of height TH  and width 

TW , two cells a  and b  coordinated at ),( aa yx  and ),( bb yx  are selected for inter-

change only if Tba Wxx <−  and Tba Hyy <− . TH  and TW  vary with temperature T . 

where ,...},...,{ 21 iTTT  is temperature sequence in cooling process, the algorithm is 

terminated when li TT < , lT  is the terminated temperature, here lT 1. the corre-

sponding parameters ,...},...,{
21 iTTT WWW  and ,...},...,{

21 iTTT HHH represent searching 

region. 
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1<α  is the cooling rate parameter, which is determined experimentally. It can be 
seen from many experiments that the temperature and searching region are reduced 
gradually, especially when the temperature is close to the terminated temperature, 
searching region is approximately zero, which makes invalid cell change and cell 
movement. Therefore, we adopt a kind of adaptive searching region.  

3   Adaptive Simulated Annealing 

Traditional initially placement method may cause overlaps between two or more cells. 
In this paper, overlaps are eliminated by a heuristic initial placement method, which is 
finished in two steps. First, the averaged cell number in each row is calculated accord-
ing to total cell number and row number, then, these cells are randomly allocated to 
each row. It should be noted that there are no overlaps between cells. Second, the 
remaining cells are allocated one by one to the rows whose total length is the shortest. 

When a cell is displaced or when two cells are swapped, it is possible that there is 
an overlap between cells. So, in order to eliminate overlap, we must update involved 
cells’ coordinate timely, which can also simplify the objective function. 

==

−+×+×=
R

i
RA

n

i
i

V
ii

H
i iLiLYXCost

11

)()()( ωαα                      (3) 

where Cost  is objective function, iα  is the weight, ii YX ,  is the horizontal and the 

vertical length of net i , ω  is the weight of unevenness, R  is the total row number, 
and )(),( iLiL RA  are the expected length and the real length of row i . 

Probability of accepting inferior solutions should be 50%, so initial temperature is 
calculated by 

5.0=
Δ−
T

c

e                                                           (4) 

With the decrease of the temperature, the searching region is reduced gradually. 
Especially when the temperature is close to the terminated temperature, the searching 
region shrinks to zero, which leads to most invalid cell exchange and cell movements 
operations. In order to solve this kind of problems, we divide the total annealing proc-
ess into three phases. In the 100 perturbations from the beginning of the SA, the 
searching region is the whole placement plane. In the intermediate annealing process, 
cell exchanges or cell movements should be limited in a region. When the searching 
region becomes very small, the searching region is the whole placement plane. 

The main purpose of a perturbation is to produce a new placement, including two 
cases: Move a single cell to a new location, say to a different row, or swap two cells 
and update their coordinates. 

The annealing schedule is divided into three phases. Initially, the temperature is re-
duced rapidly. Intermediately, the temperature is reduced slowly, most of cell proc-
essing is done in this range. In the later phrase, the temperature is reduced rapidly 
again. So the annealing schedule is formulated as follows: 
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<
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α                                           (5)  

All of the cooling rate parameters are determined experimentally, and the algorithm is 
terminated when 1=< lTT . 

4   Experiments and Conclusions 

In formula (3), 1,1 == V
i

H
i αα 6=ω , Some parameters mentioned above are used in 

adaptive simulated annealing (ASA) to test some benchmark circuits, and the results 
including estimated wirelength, chip size, row number, and computation time are 
listed in Table 2. Meanwhile, we listed some results achieved by simulated annealing 
(SA), which is used to make a comparison with the ASA.  

Table 2. Comparison with two algorithms

 SA ASA 

Circuits 
Wirelength 

( mμ ) 

Row length 

( mμ ) 
Rows 

Time 

(m) 

Wirelength 

( mμ ) 

Row length 

( mμ ) 
Rows 

Time 

(m) 

Fract 46901 976 8 1.48 45732 976 8 1.5 

Struct 530214 3477 29 18.3 506734 3480 29 16.5 

Primary1 818366 3605 23 19.4 750926 3602 23 19.2 

Compared with the traditional SA, the adaptive initial temperature and adaptive 
searching region are added in the ASA. Meanwhile, the punishment item in objective 
function is improved, which show its advantages in results and time performance. 
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Abstract. The performance of the PID controller may deteriorate when the op-
erating condition of a process fluctuates. A robust parameter tuning method to 
improve the PID controller performance under bounded model uncertainty is 
presented. First an enhanced performance criterion is proposed to reduce the 
overshoot and large control move. Then the robust tuning problem is formu-
lated as a Min-Max optimization. Particle Swarm Optimization (PSO) is applied 
to solve the nonlinear, non-differentiable problem. Examples are given to dem-
onstrate the effectiveness of the proposed method. Compared with other PID 
tuning methods, the result shows that better performance can be achieved with 
the model parameter fluctuation.  

1   Introduction 

Proportional-integral-derivative (PID) controllers are widely used in industrial proc-
ess control system, for their simple structure, good robustness and easy implementa-
tion; on the other hand, the principle of PID controller is easier to understand than 
most other advanced controllers. Since Ziegler and Nichols proposed their first PID 
tuning method [1], a good insight into the PID controller parameter tuning has been 
widely studied with many approaches proposed [2-6]. In physical processes, uncer-
tainties are ineluctably encountered in the control systems. The equipment ageing or 
change in process dynamics due to alterations of operation conditions causes fluctua-
tions of the model parameters. Most current PID parameter tuning methods, however, 
design PID parameters according to single operation condition. Therefore, the per-
formance of the resultant PID controller may be poor if the process operates in a dif-
ferent condition. Then, controllers need to be regularly retuned. To avoid tuning PID 
parameters frequently, a robust PID tuning method was proposed by R. Toscano [11], 
in which the optimal PID parameters tuning problem is formulated as a Min-Max 
numerical optimization, and a frequency domain cost function is used to evaluate the 
performance. But the control performance in time domain is not guaranteed. 

Though Min-Max optimization is useful in robust PID controller design, the exist-
ing difficulty is that how to keep the outer layer objective function decreasing and the 
inner layer objective function increasing at the same time. Particle Swarm Optimiza-
tion (PSO) [7],[8] is parallel evolutionary computation technique developed by Ken-
nedy and Eberhart based on the social behavior metaphor. Generally, PSO is charac-
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terized as simple in concept, easy to implement, and computationally efficient. Unlike 
the other heuristic methods, PSO has flexible and well-balanced mechanism to en-
hance the global and local exploration abilities. Compared with other optimization 
algorithm such as GA, the PSO is more effective and economic for solving Min-Max 
optimization problem [12]. 

Our purpose is to propose a novel parameter robust tuning algorithm, with which 
the close-loop system can adapt to the fluctuation of model parameters. Once the PID 
parameters are determined, the close-loop system remains stable if the perturbation of 
process is within a preset range. In Section 2, a new performance evaluation criterion, 
which simultaneously suppresses large overshoot and control move, is proposed. The 
robust parameters tuning approach is formulated as Min-Max optimization problem. 
The robustness measures of close-loop system are also introduced. Section 3 presents 
the searching algorithm using PSO for Min-Max optimization problem. Two exam-
ples are given to demonstrate the effectiveness over some classic and latest developed 
design methods in Section 4. 

2   Robust PID Controller Design 

2.1   Performance Criterion of Control System 

The PID feedback control system is shown in Fig. 1.  

C(s) G(s)
R(s)  + E(S) U(S)

D(S)

Y(s)

-

+

+

 

Fig. 1. Block diagram of the PID feedback control system 

where G(S) represents the transfer function of the real process. It is approximated as a 
first-order plus dead time model or a second-order plus dead-time model. 

se
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sG τ−
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C(S) is the transfer function of the PID controller. Note that the PID algorithm is 
composed of a standard PID algorithm followed a first order filter. This type of PID 
algorithm can reduce the impact of high-frequency disturbance. 
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The open-loop transfer function of the control system in Fig. 1 can be expressed as: 

 C(s)G(s)L(s) =  (4) 

The sensitivity function is defined as: 

)(1

1

)()(1

1
)(

sLsGsC
sS

+
=

+
=  (5) 

The complementary sensitivity function of the system is defined as: 

)(1

1

)()(1

)()(
)(1)(

sLsGsC

sGsC
sSsT

+
=

+
=−=  (6) 

The maximum sensitivity function and complementary sensitivity function are de-
fined as: 

|)(|max         |)(|max ωω
ωω

jTMjSM ps ==  (7) 

The sensitivity function and complementary sensitivity function are the measures 
of robustness for the variations of real process to be controlled. Besides, the sensi-
tivity function shows how the disturbances are influenced by feedback control sys-
tem, and the complementary sensitivity function represents the first overshoot of the 
step response as well. A small Ms means that the system can stand larger variation 
of the process than a large Ms. Mp tells how the closed-loop system properties are 
influenced by variations in the process; a smaller Mp result in a more robust system 
with a smaller overshoot [13]. 

In optimal PID tuning, typical performance criterions to evaluate close-loop sys-
tem response are the integral of squared error and time weighted error, such as ISE, 
IAE, ITAE, etc. Different performance index results in different PID parameters 
and different performance. Considering the PID tuning with ISE (Integral Squared 
Error) criterion always output large overshoot, which may cause product unquali-
fied in real processes and thus undesirable, a new enhanced ISEWE (EISTWE) 
performance criterion is proposed to reduce the overshoot. 

2 2

0
( *  ( ) * ( ) )nEISTWE t e t q u t dt

∞
= + Δ  (8) 

(1 *( ))*MEISTWE r a b EISTWE= + +  (9) 

Where )()()( tytrte −= , )(tuΔ  denotes the rate of controller output. a and b are 
shown in Fig.2. q and r are weight parameters. As a is the first overshoot of the unit 
step response of closed-loop system, a is related to the maximum value of comple-
mentary sensitivity function Mp; if a is large, then Mp is large. A small overshoot is 
required to obtain good robustness. 
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Fig. 2.  Response of PID feedback control system 

2.2   Min-Max Expression of Robust PID Tuning 

The worst operating conditions may occur within the uncertainty boundary  of 
model parameters. Considering the process models (1) and (2), suppose the magni-
tude of model uncertainty is bounded to less than a constant . In other words, the 
parameters in process model (1) may vary from [K(1- ),T(1- ), (1- )] to 
[K(1+ ),T(1+ ), (1+ )]. Min-Max criterion can guarantee that the eventual PID 
parameters is optimal for the worst operating conditions, at the same time, the ro-
bustness of the closed-loop system is ensured as the close-loop system is stable 
when the operating condition fluctuates within the preset range. The robust parame-
ters tuning method of the PID controller can be described as: 

RP

SP

tutus.t.

PPEISTWE

m

c

mcM
PP mc

∈
∈

Δ≤Δ

       

       

)(|)(|   

  ),(  max  min

max  (10) 

Where ],,,[ fdicc TTTKP Δ  are the PID controller parameters, S is a close set defined 

by engineers to limit the gains of controller. ],,[ τTKPm Δ  are the model parameters 

for the process model (1). R is a close set which represents the variation range of the 
model parameters relating to the model uncertainty magnitude . EISTWEM is the 
performance criterion presented in formulas (8) and (9). 

Since Min-Max optimization (10) is a nonlinear multi-objective problem, there is 
not any known analytical solution of this optimization problem. A Min-Max search-
ing algorithm implemented by particle swarm optimizer is proposed for solving this 
complex optimization problem. 
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3   PSO for Min-Max Problem 

In PSO algorithm, the system is initialized with a population of random solutions, 
which are called particles, and each potential solution is also assigned a randomized 
velocity. PSO relies on the exchange of information between particles, which are 
volume-less particles of the population called swarm, the whole swarm is considered 
as the neighborhood. Each particle adjusts its trajectory towards its best solution (fit-
ness) that is achieved so far. This value is called pbest. Each particle also modifies its 
trajectory towards the best previous position attained by any member of its neighbor-
hood. This value is called gbest. Each particle moves in the search space with an 
adaptive velocity. 

Let D be the dimension of the search space. Then T
iDiii xxxx ],,,[ 21Δ denotes the 

current position of thi the particle of the swarm, and Tpbest
iD

pbest
i

pbest
i

pbest
i xxxx ],,,[ 21Δ de-

notes the best position that has ever visited; and Tgbest
D

gbestgbestgbest xxxx ],,,[ 21Δ repre-

sents gbest, the best place obtained thus far by any particle in the population. The rate 
of the velocity for the thi  particle is represented as T

iDiii vvvv ],,,[ 21Δ and 
T

iDiii VVVV ],,,[ maxmax
2

max
1

max Δ denotes the upper bound on the absolute value of the 

velocity the particle can move at each step. In PSO, the particles are manipulated 
according to the following equations: 

)()( 2211 id
gbest

id
pbest
ididid xxrcxxrcvwv −∗∗+−∗∗+∗=  (11) 

−<−
>

=
maxmax

maxmax

,

,

didd

didd
id

VvV

VvV
v  (12) 

ididid vxx +=  (13) 

Where c1 and c2 are positive constants, represent the cognitive and social parameter 
respectively; r1 and r2 are random numbers uniformly distributed in the range [0,1]; w 
is inertia weight to balance the global and local search ability [9]. A large inertia 
weight facilitates a global search, while a small inertia weight facilitates a local 
search. By linearly decreasing the inertia weight from a relatively large value to a 
small one, the PSO tends to have more global search ability at the beginning of the 
run while having more local search ability near the end of the run. 

The PSO algorithm for solving the Min-Max problem (10) can be expressed as: 

Step1: Set swarm parameters such as population size
CP and

GP , 
1c ,

2c , w , max
iV . 

Step2: k=0, Initialize (0)CP and (0)GP , then arbitrarily choose )0(min CPx ⊂ . 

Step3: Initialize population )(kPG
. For each particle )(kPy G⊂ , execute the following 

two steps: 
3.1): Let ))(,( min kPxEISTWE GM−  as objective function to update )(kPG

, 
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3.2): Let ))((max kPgbesty G= . 

Step4: Initialize population )(kPC
. For each particle )(kPx C⊂ , execute the following 

two steps: 
4.1): Let )),(( maxykPEISTWE CM

 as objective function to update )(kPC
, 

4.2): Let ))((min kPgbestx C= . 

Step5: k=k+1 

Step6: Repeat Step3 to Step5 if terminal conditions are not satisfied. 

Setp7: )(kPC
 and )(kPG

 corresponding to minimum 
minx  and maximal 

maxy  are the 

solution, and )(kPC
 is the final PID parameters. 

4   Simulation and Discussion 

4.1   Example 1 

In this example, the effectiveness of the proposed tuning method is compared with 
two classic tuning methods, Ziegler- Nichols method [1] and ISTWE rule [10]. Con-

sider the first-order plus dead-time process: se
s

sG 1.2
1 107.1

8.0
)( −

+
= , assuming that 

=0.4. The robust PID parameters given by proposed tuning method and the PID 
values obtained by Ziegler- Nichols method and ISTWE rule are listed in Tab.1, and 
the robustness measurements of close loop system in normal condition ( =0) are also 
listed in Tab.1. It is observed that maximum sensitivity function Ms and complemen-
tary sensitivity function Mp of the proposed method are smaller than the others; phase 
margin m of Ziegler-Nichols method is larger than the proposed method, but the 
amplitude margin Am of Ziegler-Nichols method is smaller. 

Table 1. PID controller parameters and robustness measurements of process )(1 sG  

Tuning 
Method 

PID Controller Parameters Measurements of Robustness 

                
cK  iT  dT  fT  

sM  pM  
mA  mφ  

Proposed 
Method 

0.4622 1.8094 0.5830 0.1115 1.3342 0.9995 4.1486 72.9008 

Ziegler 
Nichols 

0.7643 4.200 1.0570 0 2.4866 1.4866 1.6556 98.1844 

ISTWE 0.2700 0.7000 0.7200 0 1.7705 1.1967 3.2983 50.0210 

All PID controllers perform well in the normal condition. The unit step responses 
and load-disturbance responses are compared as shown in Fig.3. It shows that the 
response of Ziegler-Nichols method is slow. The fastest response is obtained from 
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Fig. 3. Unit step response and load-disturbance response of process )(1 sG  

ISTWE method, but with large overshoot. PID controller tuned by the proposed 
method has faster response and small overshoot. The result is owing to that the 
EISEWE performance criterion suppresses the large control action to reduce the 
overshoot, although PID parameters obtained through Min-Max search is not opti-
mal in normal condition. 

When the process-model mismatch is presented =0.4, the transfer function of 

real process in this condition is se
s

sG 94.2'
1 1498.1

12.1
)( −

+
= . Unit step response and load-

disturbance response at this condition are shown in Fig.4. The responses of ISTWE 
method and Ziegler-Nichols method oscillate. But PID controller tuned by proposed 
method results in a stable response. This is owing to the fact that Min-Max search 
can guarantee the performance in the worst operating conditions.  

4.2   Example 2 

In this example, two latest developed tuning methods, Optimal Gain and Phase Mar-
gin Tuning (GPM-PID) method [5] and robust PI/PID controller design via numerical 
optimization method (R.Toscano method) [11], are employed to compare with the 
proposed tuning method. 

Consider the second-order plus dead-time process: se
ss

sG 58.1
22 12

1
)( −

++
= , as-

suming that =0.4. The robust PID parameters given by the proposed tuning method 
and the PID parameters tuned by GPM-PID method and R.Toscano method are sum-
marized in Tab.2, and robustness measurements of the close-loop system are also 
illustrated in Tab.2. 

The unit step responses and load-disturbance responses of three PID controllers at 
normal condition =0 are shown in Fig.5. The response of the proposed PID control-
ler is a little slower than that of GPM-PID method and R.Toscano method, but the 
overshoot is much smaller. 
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Fig. 4. Unit step response and load-disturbance response of process )('
1 sG  

Table 2. PID controller parameters and Measurements of robustness of process )(2 sG  

Tuning 
Method 

PID Controller Parameters Measurements of Robustness 

 
cK  iT  dT  fT  sM  pM  

mA  mφ  

Proposed 
Method 

0.4173 1.9990 0.6831 0.1540 1.3251 0.9686 4.8160 69.8873 

GPM-PID 0.6600 2.0000 0.5000 0 1.6268 1.0049 3.0123 60.1260 

R.Toscano 
Method 

0.7983 2.2718 0.5633 0 1.7062 1.0000 2.6412 61.9546 

 

 

Fig. 5. Unit step response and load-disturbance response of process )(2 sG  
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Fig. 6. Unit step response and load-disturbance response of process )('
2 sG  
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Unit step response and load-disturbance response at this operating condition are 
shown in Fig.6. The performance of each controller is inferior to that at the normal 
condition =0 because of the large model uncertainty. Both GPM-PID method and 
the R.Toscano method produce large overshoot and oscillation. As a contrast, small 
overshoot and stable performance is maintained by the proposed method at this 
operating condition.  

Due to our design principles, the worst conditions have been considered and dealt 
with. When model parameter is precise, the proposed method has close result to the 
other PID design methods. When the plant model mismatch appears, PID tuned by 
our method still performs well, but those systems controlled by other PIDs usually 
output poor responses 

5   Conclusions 

In real process, the operating conditions are not constant and the model parameters 
may fluctuate. A robust parameter tuning method for PID controller is proposed via 
Min-Max optimization approach for bounded uncertainties in model parameters. An 
enhanced ISEWE performance criterion is presented to reduce the overshoot and large 
control move. A Min-Max searching algorithm implemented by particle swarm opti-
mizer is presented. Simulations demonstrate that the algorithm is efficient with advan-
tages over some classic and latest developed design methods. 
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Abstract. A novel text watermarking algorithm is presented. It com-
bines natural language watermarking and Chinese syntax based on BP
neural networks. Since the watermarking signals are embedded into some
Chinese syntactic structure rather than the appearance of text elements,
the algorithm is totally based on the content that can prove to be very
resilient. It will play an important role in protecting the security of Chi-
nese documents over Internet.

1 Introduction

With the development of digitalization technology, it is indispensable to protect
the copyright over the text documents. Although there are many text water-
marking algorithms in recent years, but it is easy to remove it[1]. A better text
watermarking approach is to use natural language watermarking [2,3,4] that
Atallah et al. proposed. This paper describes a natural language watermarking
based on Chinese syntax.

The organization of the paper is as follows: In Sect. 2, we will present a kind
of natural language processing techniques of Chinese syntax based on Backprop-
agation (BP for short) neural networks [5]. A natural language (NL for short)
watermarking based on Chinese syntax will be depicted in Sect. 3.The finally is
the conclusions.

2 NLP Technique of Chinese Syntax

Natural Language Processing (NLP for short) aims to design algorithms that
will analyze and understand natural language text automatically, such as ma-
chine translation, information retrieval and so on. In this section, we describe a
Chinese syntax analysis system based on BP neural networks(see Fig. 1.)

Database adopts production rules to express the knowledge, which is stan-
dardized into binary rules and is coded to be stored in the neural networks. In
general, the form of production rules is as follows:
� This paper is supported by National Natural Science Fundation of China (NSFC

No.60373062), Hunan Provincial NaturalScience Fundation of China (HPNSFC No.
02JJYB012), Key0 Foundation of Science and Technology of Ministry of Education
of China (No. 03092).
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If a1 ∧ a2 · · · ∧ an then b1 ∧ b2 · · · ∧ bn

Standardize the above form to become binary form:

If a then b1 ∧ b2 or If a then b1 ∧ b2

We uses 106 pieces of Chinese language knowledge so that they will be repre-
sented with seven bits, for instance:

noun encoded :0000001, verb encoded :000 0010, Sub encoded :0011110
Pre encoded :0011111, Sub Pre encoded :0100100, No Sub Pre encoded :0100101

Chinese syntax rules can be described as follows:

S → Sub Pre ∨No Sub Pre encoded : 0000000→ (0100100)∨ (0100101)
Sub Pre→ Sub ∧ Pre encoded : 0100100→ (0011110)∨ (0011111)

Inference machine makes inference based on neural networks, which are BP neu-
ral networks grounded on Leverberg-Marquard algorithm. The learning algo-
rithm of BP networks can depict in the following way:{

f(pk+1) = minα f(p(k) + α(k)p(x(k)))
p(k+1) = p(x) + α(x)s(p(k))

(1)

Where p(k) is a vector, which contains all the values of weights and thresholds;
s(p(k)) is the search direction of the vector space, which is composed by each p′s
weight; α(k) is the teeny length of the pace of f(p(k+1)) in the s(p(k)) direction.

For example, if the sentence is “”, the input would be:
“n adv v n”. The syntax inference tree is left out. Taking out the empty node,
the syntax analysis tree will be as shown by Fig. 2.

3 A NL Watermarking Based on Chinese Syntax

3.1 Principle

In Chinese, a sentence might have several ways to describe without changing
the meaning. So, our scheme is to embed the watermark by transforming the
syntactic structure. In this mechanism, we intend to select all the sentences
except the topic sentences to carry the watermark bits. To describe the principle
clearly, some definitions and backgrounds should be presented formally at first.

A = {C ∪N | C is the set of all the topic sentences, and N is the set of all
the non-topic sentences}, i.e., A is the set of all the sentences in the text.

p denotes the secret key and it is a large prime. w denotes watermark bits, its
length is λ. β denotes the number of watermark bits in each sentence. Ti denotes
a corresponding tree that represents si syntactically. Bi = D(Ti) denotes the
corresponding binary string to each Ti. B′

i = H(Bi), where H denotes a one-way
hash function. di denotes the number of 0’s in the bitwise XOR of B′

i and H(p). S
is the set of sentences to be watermarked, that is a list of the si(i = 0, 1, . . . , n−1)
sorted according to their di values, r denotes si’s rank in S.
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Fig. 1. Model of the BP Fig. 2. Syntax Analysis Tree

Definition 1. Syntactic transformation is meaning-preserving and near-meaning
preserving text substitutions for NL watermarking. Three common syntactic trans-
formations are as follows:

1) Adjunct Movement, where an adjunct is like a prepositional phrase or adver-
bial phrase.
2) Passivization: Any sentence with a transitive verb can be passivized.
3) Insertion “transitional” phrases that has empty meaning, such as
and so forth.

3.2 Algorithms

Embedding Algorithm :

program Embedding(A, w)
begin

get S from A, then generate B from S with D(Ti)
select β value according to the comparison of n and λ
sort the sentences of S
for each sentence ∈ S do

if it is able to be transformed, then
the indicator bit is 1, embed the watermark
by syntactic transformation

else
the indicator bit is 0, and that sentence are ignored
during the watermark detecting time

end-if
end-for

end

The technique to select β value according to the comparison of n and λ is very
important for the robustness of the algorithm. There are two circumstances for
it, which are as follows:
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if n ≥ λ then β = 2(the first bit is an indicator bit)
else β = λ

n or repeating the watermark λ
n times.

As for generating B from N with D(Ti), we will present the algorithm at once.

program Generating(N,p)
begin

Chinese syntax analysis to get Ti of each sentence in N
for each Ti do

give the nodes of Ti numbers
replace every number i at a node by a bit: 1 if i+H(P)
is a quadratic residue modulo p, 0 otherwise
get a listing of bits

end-for
end

This algorithm is with regard to the technique of Chinese syntax analysis, which
we have discussed in Sect. 2.

Watermark Detecting. Anyone with the secret prime p can generate the Bi of
every sentence si, hence its B′

i and its rank in S. We simply read the watermark
bits w out of each sentence having its indicator bit is 1.

4 Conclusions

With the development of natural language processing, the performance of which
a computer can understand the meaning of a text correctly is getting better and
better. Furthermore, natural language text watermarking technique will improve
greatly in the future.
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Abstract. In this paper, we propose a steganographic technique on images that 
provides high capacity of secret information as well as imperceptibility of stego 
image. Our method inserts secret data into every pixel of the image and decides 
the number of insertion bits using the difference value between two pixels adja-
cent to the target pixel. Therefore, the number of insertion bits in each pixel is 
dependent on whether the target pixel is included in an edge area or a smooth 
area. The experiment results show that the proposed method provides more ef-
ficient performance than that of the existing methods from the viewpoint of 
both the insertion amount and the visual measures. 

1   Introduction 

Image steganography is a secret communication technique used to transmit secret 
messages that have been embedded into an image. In image steganography, the origi-
nal image and the embedded image are called the cover image and the stego image, 
respectively. The sender hides the secret message in a cover image that has no mean-
ing, and then transmits the stego image to the receiver. In particular, the confidential-
ity, the amount of secret message to be inserted, and the imperceptibility of stego 
image should be considered in image steganography [1]. 

At present, insertion processing of secret information is employed on the special 
domain or the frequency domain. One of the common methods for inserting secret 
information into the spatial domain is the LSB (Least Significant Bits) substitution 
method [2]-[4]. 

Most images consist of edge and smooth areas. The human perceptibility has a 
property that it is not sensitive to some changes in the pixels of the edge areas, while 
it is sensitive to changes in the smooth areas. Not all pixels in the image can tolerate 
the changes of pixels without causing a recognizable difference to an observer, so the 
stego image has low quality when equally changing LSBs of all pixels. Hence, to 
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make up for this weakness in the LSBs method, several methods in which the number 
of bits to be inserted in each pixel depends on the difference between neighboring 
pixels have been recently studied [5], [6]. 

The proposed method uses the difference value between two pixels adjacent to the 
target pixel. The difference value is used to decide the number of secret data bits to 
insert into a target pixel. The modular function is also used to improve the quality of 
the stego image. We experiment on various images to evaluate the efficiency of the 
proposed method, and as a result, our method is able to insert much more information 
than existing methods. Besides this, the quality of the image is improved as well. 

The remainder of this paper is organized as follows. In Section 2, our scheme is 
described in detail. Experimental results will be shown in Section 3. Finally, conclud-
ing remarks are given in Section 4. 

2   Proposed Method 

Our method improves Thien’s [4] method and Chang’s [6] method. The results show 
that our method increases the amount of secret messages and produces an improved 
quality of stego image as well. To increase the capacity, our scheme decides the num-
ber of bits to be inserted into a target pixel by using the difference value between the 
other two pixels close to the target pixel. When inserting secret data into a target 
pixel, we used the modular operation to improve the quality of stego image. Therefore 
the proposed method is more effective than Chang’s scheme because it not only pro-
vides a good quality stego image but also embeds more secret message.  

2.1   The Data Embedding Procedure  

Our method refers to two neighboring pixels to embed secret message into the target 
pixel. In the cover image, given a target pixel XP  with gray value xg , let ug  and lg  

be the gray values of its upper UP  pixel and left Lp  pixel, respectively. The embed-

ding procedure is performed following the steps below. 

[Step 1] Calculate difference value d  between the upper pixel and the left pixel in a 
given target pixel by  

|| lu ggd −= . (1) 

By calculating the difference d  between the upper and left pixel, we judge 
whether the target pixel is included in an edge area or a smooth area. This is why the 
number of bit n , inserted into the target pixel, is determined by value d . Also, be-
cause using the upper and left pixels that were already handled when calculating dif-
ference d  the embedding and extracting process has the same value d , making it 
more accurate. 
[Step 2] Calculate n  that is the number of the insertion bits in a target pixel XP  from 
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If the value of d  is less or equal to 3, n  in XP  is determined to be 1, otherwise n  

is the value from the result calculated by equation (2). We appropriately adjust n  to 
enhance both the capacity and the imperceptibility.  
[Step 3] Calculate a temporary value xt  from   

)2  mod  ( n
xx gbt −= . (3) 

Where, b  is the decimal representation of secret messages as the n  bits. 
[Step 4] To make the quality of the image higher, select the nearest value to the target 

pixel’s value of the cover image by  
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[Step 5] Finally, we can get the new pixel value xg*  for XP  using  

xxx tgg '* += . (5) 

An effectiveness of equation (3) and (4) has been proved already in Thien’s 
method. We wish to refer to Thien’s method [4], and Chan’s method [7] about the 
more detailed proof. The stego image can be created after performing the insertion 
processing to all pixels except the first row and column in the cover image.  

When the new value of pixel XP  is out of the range, it has to be adjusted by  

>−
<+=

. 255  if       , 2

    ; 0  if       , 2
**

**
*

x
n

x

x
n

x
x

gg

gg
g  (6) 

Thus we solved the problem that may occur when pixels exceed the boundary from 0 
to 255.  

2.2   The Data Extracting Procedure 

The extracting speed of our method is faster than the Chang’s method because the 
algorithm is much simpler. 

[Step 1] Calculate the difference value *d  between the upper pixel UP*  and the left 

pixel LP*  in stego image by  

|| ***
lu ggd −= . (7) 

[Step 2] Calculate the value of n  as the number of bits to be inserted pixel XP*  by  
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Where if the value of *d  is less of equal to 3, the value of n  is 1, otherwise n  is the 
value calculated in equation (8) as in the embedding procedure. 

[Step 3] Finally, Calculating the value of b  by )2  , ( mod * n
xgb = . The decimal 

value b  is represented into the binary of n  bits. 
We can see the secret message inserted to the pixels after performing the extraction 

processing. 

3   Experimental Results 

This section presents experimental results and the discussion of analysis of its results. 
Several experiments were performed to evaluate the proposed method. Test images 
applied to the experiment are gray-scale images with size of 256 by 256. Figure 1 are 
the cover image, stego image of Chang’s method, and stego image of our method 
respectively. 

Table 1 compares the amount of insertion and PSNR (peak signal to noise ratio) for 
the Chang method and the proposed method respectively. In reference to Table 1, the 
 

                          

Fig. 1. Cover image Lena with size of 256 by 256 pixels (left), stego image of Chang’s (mid-
dle), and stego image of the proposed method (right). 

Table 1. Experimental results of Chang’s and our method for the capacity and PSNR 

Capacity (bit) PSNR (dB) Cover 
images Chang’s 

method 
Our method 

Chang’s 
method 

Our method 

Lena 109,101 115,898 37.05 38.82 

Sailboat  128,889 143,023 34.85 35.21 

Baboon 176,588 179,255 32.36 34.33 
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proposed method has more embedded bits in a pixel, so the number of secret message 
in total is larger than the Chang’s. Although the amount of bits inserted is larger, the 
PSNR of the proposed scheme is high. This is possible by using the property of the 
modular operation. When changing the value of a target pixel in the proposed scheme 
to insert the secret messages, we get a better quality of the stego image because our 
method selects the nearest value to the original pixel. 

             
 

             

Fig. 2. The bit-planes from the result of the difference between the bit-planes of cover image 
and stego image in the Chang method: from MSB plane (top-left) to LSB plane (bottom-right). 

             

             

Fig. 3. The bit-planes from the result of the difference between the bit-plane of cover image and 
the bit-plane of stego image in the proposed method: from MSB plane (top-left) to LSB plane 
(bottom-right). 

Figure 2 and Figure 3 are the bit-planes of difference respectively between the bit-
planes of cover image and the bit-planes of stego images by the Chang method and 
the proposed method. In Figure 3, we can see that the proposed scheme embedded 
secret message into pixels containing the exact edge area. That is, our scheme embeds 
more amount of bit in the edge areas than the smooth areas. 
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4   Conclusions 

In this paper, we proposed a method for image steganography using the difference 
value between neighboring pixels. In the proposed scheme, the number of insertion 
bit is dependent on each pixel according to whether the pixel is an edge area or 
smooth area. As we can see from Figure 3, that is, our method has judged the edge 
area and smooth area more accurately for each pixel and choose the number of the 
bits to be embedded.  Also, the time of processing is short because our technique in 
embedding and the extracting algorithm is simple. 

Especially, our scheme can improve the quality of stego images by using the 
modular operation and also the capacity of bit rate to be embedded. We have shown 
that our system is more effective than other methods by the experiments with the 
capacity and the imperceptibility. 
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Abstract. The proposed method of text watermarking by exploits
nouns and verbs in a sentence parsed with a grammar parser while using
semantic networks. Change is done on the structure of the sentence to
generate nouns and verbs whose non terminals, away from the root sen-
tence are used with random numbers to hide the watermark. The mod-
ifications, range from active to passive voices or use of linking verbs or
using mid-sentence modifiers, terminal modifiers to combining modifiers.

Keywords: watermarking, semantic networks, nouns and verbs.

1 Introduction

Watermarking natural language has proven to be a difficult task because, under-
standing and processing of natural language itself is even more difficult to the
Artificial Intelligence Community. Because of the complexity of natural language,
this has motivated much of the research in natural language watermarking. Typ-
ically, the prior art natural language processing systems function in a manner
analogous to the diagramming of sentences to determine the functions of the
various words in the context in which they are used (noun, verb, etc.).

Other techniques proposed for watermarking multimedia documents include,
use of frequency domain [4], inserting spelling, syntactic, punctuation or even
content errors [2]. There is also a semantically based scheme, which hides data
in the text-meaning representation (TMR) [1].

The remainder of this paper is organized as follows. Section 2, briefly reviews
semantic networks. Section 3 discusses parsing using recursive decent parsers.
Section 4 presents the embedding methodology and watermark extraction pro-
cesses. Finally, Section 5 presents the conclusions.
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2 Semantic Networks

A semantic network is a system for capturing, storing and transferring infor-
mation that works much the same way as the human brain. Semantic networks
can grow to extraordinary complexity, necessitating a sophisticated approach
to knowledge visualization, balancing the need for simplicity with the full ex-
pressive power of the network[5]. Semantic networks are basically composed of,
concepts(any ideas or thoughts that have meaning), relation(specific kinds of
links or relationships between two concepts) and instances(concepts linked by a
specific relation). Let n(t) be the number of nodes at time t. Starting with a

Fig. 1. Undirected growing network

small fully connected network of M nodes (M << n), at each time step, a new
node with M links is added to the network that targets its connections to some
neighborhood i(in accordance with the locality principle). Let the neighborhood
of a node i be the set of neighbors Hi of node i including the node i itself. The
probability Pi(t), of choosing a neighborhood is based on neighborhood size and
is given by:

pi(t) =
ki(t)∑n(t)

i=1 ki(t)
(1)

where ki(t) is the degree of node i at time t. The connections of the new node
are targeted towards nodes within the chosen neighborhood Hi. The probability
Pij(t), of connecting to a node j in the neighborhood of node i is based on:

pij(t) =
Uj∑

i∈Hi
Uj

(2)

If all utilities are equal, then it follows that:

pij(t) =
1

ki(t)
(3)

A sentence is represented as a verb node, with various case links to node repre-
senting other participants in the action. In parsing a sentence, the program finds
the verb and retrieves the case frames for that verb from its knowledge base and
it binds the values of the agents, objects, etc. to the appropriate nodes in the
case frame.
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3 Recursive Decent Parsers

Consider the subset of English rules below [3];
{Sentence} →{Nounphrase}{Verbphrase}
{NounPhrase} →{NounPhrase}|{NounPhrase}{Prep Phrase}
{VerbPhrase} →{VerbPhrase}|{VerbPhrase}{Prep Phrase}
{Prep Phrase} → {Prep} {NounPhrase}
{NounPhrase} →{Article}{Noun}
{VerbPhrase} →{Verb}|{Verb}{NounPhrase}
Parsing the above sentence ”Sarah fixed the chair with glue”

Fig. 2. The and/or parse tree for ”Sarah fixed the chair with glue”

4 Watermark Embedding and Extraction

Encoding a single bit
Let the text to be watermarked consist of n sentences S1, S2,.., Sn. Let the water-
mark W consist of k bits w1, w2,...,wk. xi denotes the number of nodes between
the each terminal and the root in a sentence. H(x1x2x3..) - is the hashed value
after concatenating the labels. M(S) denotes the marked sentences. Let Rn be
the pseudo-random numbers, Rn1, Rn2,..., Rnk.

generate n random numbers seeded with a secret key P
from 1 to n repeat the folllowing
parse sentence;
for each parsed sentence

for each terminal
start with leftmost terminal,count(non terminals
between the terminal and the start variable);
create a list L1 of labels;
hash the concatenation the labels;
if (H(x1x2x3.)+ Rni) mod k equals 0

mark the sentence;
end for;
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for each sentence next to M(Si)
start with rightmost terminal
for each noun or verb terminal
Count(non terminals from the root);
Create a list L of labels;
Concatenate(labels) to form a numeric figure NV(T);
if(Rni + NV(T)) mod k is a quadratic residue

return bit (rb)is equal to 1;
else

return bit (rb) is equal to 0;
if (rbj==wj)

proceed;
else (modify);
end for;

end for;
end.

Watermark Extraction
The extraction process goes through the same steps like in watermark embed-
ding, but only reads the returned bits. The detection algorithm is blind. It sim-
ply extracts W bits of information from the text, without requiring access to
the original text or watermark to arrive at its decision. The watermark is a
concatenation of the piecemeal bits from each selected sentence.

5 Conclusion

The consequences of neural network computing for natural language processing
may be more convulsively revolutionary than anything imagined in the current
technology. Therefore, the growth of intelligent systems in digital watermarking
is not far from now, more specifically with natural language watermarking.
About author: Alex Jessey Asiimwe is going for a project in Hunan University.
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Abstract. A new blind watermarking algorithm is proposed in this paper. Our 
watermark embedding algorithm mainly exploits the important properties of 
Singular Value Decomposition (SVD). By means of Independent Component 
Analysis (ICA), the watermark is successfully extracted without the original 
image. Experiment results have shown that the proposed approach is robust 
against the common signal processing and geometric attacks. 

1   Introduction 

Digital watermarking provides a promising way of resolving copyright protection and 
information security problems by embedding a robust additional signal (watermark) 
into the digital multimedia. Most of recent work in watermarking can be grouped into 
two categories: spatial domain methods and frequency domain methods [1]. Further-
more, to achieve efficient trade-off between robustness and invisibility, some author 
proposed adjusting the strength according to the properties of the human vision sys-
tem (HVS). The current means for the watermark detection is mainly applying some 
kinds of correlating detector to verify the presence of the watermark.  

In this paper the proposed technique employs the properties of the Singular Value 
Decomposition (SVD) of a digital image. Independent Component Analysis (ICA), is 
introduced for watermark blind extraction. Simulation results show that ICA can 
perform watermark extraction perfectly without the original image. 

2   Stability of ICA  

Independent Component Analysis (ICA) is introduced to handle the Blind Source 
Separation (BSS) problems, given only the mixtures of unknown sources[2].  

The linear ICA mixing model is written as 

ASX =  (1) 

where T
nsssS ],,,[ 21=  are mutually independent source sig-

nals, njmiaA ji ,,2,1;,,2,1),( , ===  is the unknown mixing matrix, 

T
mxxxX ],,,[ 21=  is the observations. 
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For demixing process, we can obtain the independent component by: 

PXY =  (2) 

where the matrix P  is the inverse of A ., the vector T
myyyY ],,,[ 21=  is an 

estimate of the possibly scaled and permutated source vector S . 
This paper applies the fast fixed-point ICA (FastICA) [3] originally proposed by A. 

Hyvärinen and E. Oja for the watermark extraction. 

3   Watermarking Scheme 

3.1   Watermark Embedded Algorithm 

In brief, our watermark embedding algorithm mainly exploits the important properties 

of SVD. The original image is an NN × matrix I , NNCI ×∈ . A black-white image 
is used as a watermark. The key is also an image, reshaped from a pseudorandom 
sequence. 

1. Perform singular value decomposition of the original image I . 

HUSVI =  (3) 

2. Add a watermark W  into the original image I , and perform singular value de-

composition on the matrix WI ⋅+ α  

H
WWW VSUWI =⋅+ α  (4) 

where α  is a positive constant, which controls the strength of the watermark to be 
inserted. 

3. Obtain the watermarked image WI  by multiplying U , WS  and HV  

H
WW VUSI =  (5) 

4. Create the key image K . By selecting a proper seed, a pseudorandom sequence 
of the length NNL ×=  is generated. Re-arranging the sequence into the matrix of 

size NN × , the key image K  is obtained 

5. Obtain a copy of the original image KI , which is used to identify the ownership 

of any copy of a watermarked image. 

KII K ⋅+= β  (6) 

where β  is also a positive constant controlling the strength of the embedded key 

image. 
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3.2   Watermark Extraction Scheme 

ICA process is the core of the scheme accomplished by the FastICA [3] algorithm. 
The following step is used to extract the embedded watermark. 

1. Compute the SVD of the watermarked image '
WI  which may have suffered non-

malicious or malicious attacks. 

H
WVSUI '''' =  (7) 

2. The first mixture signal 1D  is obtained by 

WWW VSUD '
1 =  (8) 

3. The second mixture signal 2D  is equal to the copy of the original image KI . 

KID =2  (9) 

4. Using the key image K  and with the help of 1D  or 2D , the last mixture 3D  is 

generated by 

12123 DKDD ⋅+⋅+= γγ  (10) 

where 1γ , 2γ  are arbitrary real number. For simplicity, 2γ  is set to zero.  

5. Re-arrange the above three mixtures into three row vectors 

)(1 kD , )(2 kD , )(3 kD . Input them to FastICA [3] algorithm and the watermark 

embedded in the original image can be extracted successfully. 

4   Experimental Results and Discussions 

A series of experiments have been carried out to demonstrate the effectiveness of the 
proposed watermarking scheme. . 

The PSNR  of the watermarked image is 41.59 dB . From this PSNR , it can be 
seen that the objective quality of the watermarked image is quite good. 

          
(a)                      (b)                        (c)                        (d) 

Fig. 1. (a) The original image (b)The watermark (c) The key image (d) The watermarked image 
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Fig. 2(a) shows the comparison results against JPEG compression. As is seen 
clearly, the proposed algorithm performs better than Dan Yu’s method [4] in terms of 
robustness against JPEG compression. 

Scaling is a common attack for the watermarked image. In Fig. 2(b) the perform-
ance of our algorithm compared to Dan Yu [4] shows that the proposed method is 
more robustness against scaling attacks. 
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(a)                                                    (b) 

Fig. 2. (a) Results against JPEG compression (b) Results against scaling attacks 

5   Conclusions 

In this paper, a novel watermarking scheme based on ICA is proposed. A readable 
logo, is inserted to the original image. We applied ICA derived from BSS for blind 
extraction. The simulation results are encouraging in that the proposed algorithm can 
survive under most kinds of attacks.  
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Abstract. In this paper, we propose the steganalysis based on sequence syn-
chronization analysis against chaos based spread spectrum image steganogra-
phy (CSSIS). This method uses the correlation between the estimated chaotic 
sequences in two stegoimages to buildup synchronization measure, which can 
effectively detect the presence of CSSIS. Based on the analysis, a more secure 
method is presented, which is constructed on key transmission channel (KTC). 
This improved method uses the stochastic modulation to realize the steg-
anography. It avoids the sequences synchronization fault in CSSIS by randomly 
choosing the parameters of chaotic map, which is proved by the experimental 
results. 

1   Introduction 

Steganography is the art of hiding messages into host signals, which should not only 
satisfy the demand of imperceptibility and large payload but also keep the characteris-
tics of cover objects unchanged, because any unnatural traces may arouse the stegana-
lyzer’s suspicion.  

Lots of methods have been reported to realize data hiding in still image, such as 
the classical LSB [1], the spread-spectrum based methods [2,3],and the QIM based 
steganographic methods[5]. Hartung [5] first presented the idea to use the spread 
spectrum method to modulate message bits and add them into host signals. Marvel [2] 
used image restoration technique and error-control coding method to propose a 
spread spectrum based image steganography (SSIS). In [3] Satish gave a chaos based 
SSIS scheme which uses the chaotic map to generate noise sequence and encrypt the 
message bits.  

2   Chaotic Sequence Synchronization Analysis  

In a practical system, the keys used in CSSIS can not be changed frequently because 
the transmission of keys need more secure channel which mean more expensive than 
the transmission of the data. If two stegoimages can be acquired, the estimate of the 
embedded chaotic sequences can be obtained. Different from the natural noisy image 
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, 

introduced by image devices, the sequences in two stegoimages using the same keys 
may exhibit synchronization. 



Different from the median-filter based image restoration technique used in [4], the 
two-dimensional Wiener filter is used to get the estimated cover images . And then 
the estimated chaotic sequence can be obtained byn s s= . If the message bit em-
bedded in position i is “1”, the practical chaotic signal should be in , else the practical 
chaotic signal is in , so the estimate of chaotic sequence should be | | /n ,where 

is the scaling factor used in CSSIS. 
Assuming the attacker can access two stegoimages 1 2,s s with the same size, it is 

possible that the scaling factor used in the two stegoimage is different. Let the scaling 
factors are 1 2, respectively. The estimate of the chaotic sequences should be 

1
1| | /n  and 1

1| | /n  respectively. We define the correlation function as equation 
(1) to measure the synchronization degree  

( )( )

( ) ( )

1 1 2 2

1 2

2 21 1 2 2

| | - (| |) | | - (| |)
(| |,| |)

| | - (| |) | | - (| |)

ij ij
i j

ij ij
i j i j

n mean n n mean n
C n n

n mean n n mean n
=

×
 

It can be easily proved that 1 2(| | - | |)C n n  is equal to 1 2
1 2(| / | - | / |)C n n , 

so the scaling factor is unnecessary to be known to measure the correlation. Consider-
ing two stegoimages embedded with the same stegokeys, the estimate of the chaotic 
sequences should be synchronizing; hence the correlation must have bigger value. 
But this value is less than the theoretical value “1” because of the quantization proc-
ess and the inaccurate restoration. Before steganalysis, the correlation between the 
images with the stochastic noises added can be estimated by a simple and slight per-
mutation as equation (2).  

( 1)( ) ', , 1,...,ii iP n n n n i L= = =  

where in is the permuted value of in . To two synchronizing sequences, the permuta-
tion may cause the rapid decease of the correlation value. From experiments, the 
value 1 2 1 2(| |, (| |) (| |, (| |)d C n P n C n P n=  is found to obey the Gaussian distri-
bution with mean being -1.0 10-5 and variance being 2.05 10-5. So the value SYN 
can be defined as following equation to measure the synchronization degree between 
two estimated sequences.  

1 2 1 2
1 2 (| |,| |) (| |, (| |)
( , )

maxvar
C n n C n P n

SYN syn n n= =  

where maxvar is set to be 3 10-5.  According to the analysis above, SYN should 
obey normal distribution. Let the threshold for the detection is , for two natural 
noisy images, the probability of SYN >  is equal to1 ( ) , where the function 

is the normal cumulative distribution function.  
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(1) 

  (2) 

 (3) 



Based on 1000 pairs of gray images with size equal to 256 256, the chaotic se-
quence synchronization analysis method is tested. First, a series of stegoimages is 
created by CSSIS with scaling factor varying from 5 to 8 randomly, and then the 
SYN is calculated from two arbitrary stegoimages. The result is shown in Fig.1 (a). 
The mean value of SYN is 16.47.  
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The ROC is shown in Fig.1 (b), with the average stegosignals power about 33(db), 
when the threshold is chosen equal to 5, the probability of false alarm is equal to 
2.8 10-7 and the corresponding probability of detection is equal to 0.81. From the 
ROC, we can see CSSIS can be effective detected by the method based on chaotic 
sequence synchronization analysis proposed here. 

Through randomly choosing setgokeys at each steganographic communication, the 
uniqueness of estimated sequence can be avoided. We divide the steganographical 
channel into the data transmission channel (DTC) based on CSSIS and the random 
key transmission channel (KTC) based on the stochastic modulation approach [10]. 
The former is used to transmit the message data, and the latter is used to transmit 
randomly chosen stegokeys. The experimental results are shown is Fig 2 
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Fig. 1. (a) Distribution of SYN of 1000 pairs of stegoimages after CSSIS. (b) ROC for the 
synchronization analysis of CSSIS. 
 

 

Fig. 2. (a) Distribution of SYN of 1000 pairs of stegoimages after CSSIS with KTC. (b) ROCfor 
the synchronization analysis of CSSIS with KTC. 
 



tion analysis. In the current scheme, we use the parameter of logistic map as the input 
of KTC, but the interleaving key or the combination of these two keys can also be a 
proper choice. 

3   Conclusions  

In this paper, we give the steganalytic method to attack CSSIS, which is based on the 
chaotic sequence synchronization analysis. The method uses the common characters 
in two stegoimages as the start of analysis. Some extra experiments have proven that 
this method is also valid to analyze SSIS and stochastic modulation when the fixed 
stegokeys are used. To improve the security of CSSIS, we also present a KTC-based 
transmission scheme. It is obvious that the scheme can also be used to enhance the 
security of SSIS and stochastic modulation. 

The steganalysis based on two stego-objects is different from the existing stegana-
lytical methods which are all based on one stego-object. These can be called memory-
less attack. The attack based on more than one stego-object like the presented method 
can be called memory attack. It needs further study, for example, that how to use the 
memory attack to analysis other steganographic methods, and how to ensure the secu-
rity under memory attack. 
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Abstract. A two-dimensional cellular automaton model has been developed to 
simulate the process of microstructure evolution of K4169 superalloy blade 
produced by investment casting. The dynamic process of grain-structure 
formation of the blade castings without chemical refiner or with refiner during 
solidification can be observed real-time on the computer. A CA model coupling 
micro-kinetics with macro-thermal transfer is adopted to calculate the feature of 
grain microstructure. The results show that the simulated grain structure is in 
good agreement with optical micrographs. 

1   Introduction 

The microstructure simulation of casting is an important technology to determine the 
reasonable proceeding parameters and control forming quality of castings. Cellular 
Automaton is one kind of probabilistic method [1]. Based on the physics mechanism of 
the nucleation and the grain growth kinetics theories, CA method has the actual 
physical meanings. Using CA method to simulate the microstructure evolution has 
already been one of the important research topics of material science, especially more 
challenge in complex alloys [2]. In this paper, we will discuss the CA mathematic 
models and simulate the microstructure evolution of K4169 superalloy blade during 
solidification. 

2   Mathematical Models 

2.1   Nucleation Model 

The continuous nucleation model based on the Gaussian distribution is adopted. At 
undercooling TΔ , the nucleation density )( Tn Δ  is expressed as:  

)(
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where maxn  is the maximum grain density; NTΔ  is the average nucleation 

undercooling, σTΔ  is the standard deviation of continuous nucleation distribution. 

2.2   Grain Growth Model 

To simplify the calculation, the K4169 alloy system is divided into seven binary 
systems and the equivalent method is developed to get the liquidus slope m . Then the 
modified KGT [3] model is: 

Ρ=
−

Γ=

ΡΙ=Ω
Δ+Δ+Δ=Δ
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 (2) 

where CTΔ , RTΔ and TTΔ  are respectively the undercooling of the constitution, the 

curvature and the heat, Ω  is the supersaturation degree of solute, CΡ  is the Peclet 

number of solute concentration, VΙ  is the Ivantson function , Γ  is the Gibbs-

Thompson coefficient, CG  is the solute concentration gradient, G  is the temperature 

gradient, ξ  is a function of CΡ , D  is the solute coefficient of diffusion in the liquid, 

R  is the radius of dendrite tip, V  is the growth velocity of dendrite. 

2.3   The Calculation of Thermal Flow and Solidifying Latent Heat 

During the solidification of the superalloy blade, the thermal flow extQ  erived from 

the surface of blade to the mold is:                   

)( mext TThThQ −⋅=Δ⋅=  (3) 

where h  is the interfacial thermal conductive coefficient between the blade and the 
mold sell, T  is the temperature diversity between the blade and the mold on the 

interface, mT  is the temperature of the mold sell. The enthalpy method is adopted to 

solve the latent heat, and the temperature diversity Tδ  at a time-step tΔ can be get: 

p

s

c

fLH
T

Δ⋅+Δ
=δ  (4) 

where sfΔ  is the variation of the fraction solid with a time-step tΔ . 

The grain density and the grain size at any solidification time can be gained by 
coupling the simulation of the grain organization and the temperature field. 
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3   The CA Model and Results of Simulation 

To create the CA model, the section of blade is divided into a square lattice of regular 
cell. Von-Neumann neighborhood [4] is adopted and the neighborhood of each cell is 
given by its four neighbors along the north, south, east, and west directions. Thus, 
every cell has four ones which are called the first-nearest neighbors, and then 
outwards are the second-nearest neighbors, the third-nearest neighbors and so on.  

The cellular state (solid or liquid) is defined by an index. The index of liquid cell is 
zero; of solid cell is a positive integer standing for the crystal directions which is 
selected randomly and given to the cell solidifying. The cells with different state 
index are indicated by different colors. At the beginning, each cell is attributed an 
initial temperature, which is uniform and above the liquidus of the alloy, and their 
index are zero. Subsequently the temperature descends, the nucleation and growth of 
crystal happened when the temperature becomes lower than the liquidus. The grain 
density of new nucleation is expressed as:       

)()]([ TnTTnn Δ−Δ+Δ= δδ  (5) 

   
                     (a)                                       (b)                                      (c)  

Fig. 1. Section micrographs simulated for the K4169 blade added chemical refiner at various 
solidifying time: (a) t=7.3s (b) t=7.55s (c) t=8.5s 

  
                                           (a)                                   (b) 

Fig. 2. The section of blade without chemical refiner: (a) Optical micrograph and (b) simulated 
grain structure 

  
(a)   (b)   (c) 

 
Fig. 3. Section micrographs simulated for the K4169 blade added chemical refiner at various 
solidifying time: (a) t=7.3s (b) t=7.55s (c) t=8.5s 

Each newly formed nucleus grows like a small square with the growth kinetics. It 
will trap the neighbors if they are still liquid. These neighboring cells captured are 
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given the same state index and filled with the same color as the parent cell. When the 
original nucleus is completely surrounded by solid neighbors, its growth is finished.  

For the K4169 superalloy blade without chemical refiner and with chemical refiner, 
the process of the grain nucleation and growth are respectively shown in fig. 1 and 
fig. 3 and the section micrographs of simulated and optical grain structure of casting 
blades are respectively shown in fig. 2 and fig. 4.  

                             
                                                 (a)                                        (b) 

Fig. 4. The section of blade added chemical refiner: (a) Optical micrograph and (b) simulated 
grain structure 

4   Conclusion 

The process of microstructure evolution for K4169 superalloy blades produced by 
investment casting has been simulated with a cellular automaton model coupling 
micro-kinetics with macro-thermal transfer. The CA model bases on a sound physical 
background and it brings a valuable insight into the mechanisms of grain structure 
formation. The dynamic process of microstructure formation for the blade during 
solidification can be observed real-time on the computer and the microstructure at any 
time can be given. The simulated results show that the finally simulated grain 
structure for K4169 superalloy blade without chemical refiner or with chemical 
refiner is in good agreement with optical micrographs. An extension of CA model will 
be of great value in predicting and analyzing the grain structure qualitatively. 
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Abstract. Multisensory fusion is being increasing viewed as an important activ-
ity in the filed of mobile robot navigation and obstacle avoidance. The fusion of 
data from a variety of sensors makes the mobile robot more easily survival in a 
hostile environment. It takes advantage of the redundancy and reciprocity of 
multisensory data and increases the precision and reliability of inference and 
judgment for the mobile robot. This paper presents a method which employs 
fuzzy logic and neural networks to fuse data from several kinds of sensors. As a 
result, more exact navigation and quick obstacle avoidance can be achieved. 

1   Introduction 

With the development of modern industry, the mobile robot has found many applica-
tions in different areas. The mobile robot navigates in the environments based upon 
its different sensors perceiving its surroundings. In order to obtain more information, 
different kinds of sensors are employed to work as sensory organs, and fusion of these 
sensors is the key point for the mobile robot to achieve successful navigation. The 
TUT-1 mobile robot was developed to meet the research for multisensory fusion1. It 
consists of a multisensory module for sensing the environment. The multisensory 
module consists of three kinds of sensors, a CCD camera, a magnetic sensor and six 
ultrasonic sensors. The CCD camera is fixed on the front top of the mobile robot, ca-
pable of locating a specified magnetic strip. In the laboratory hallway, the mobile ro-
bot runs over the magnetic strip that is paved on the floor and depends on the 
equipped magnetic sensor to direct the vehicle to follow the strip collaborating with 
the CCD camera. The magnetic sensor is fixed underneath the front bottom of the 
mobile robot. On the front and both sides of the mobile robot, six ultrasonic sensors 
are installed to detect the distance from any obstacles and the hallway walls. 

2   Multisensory Fusion Method 

Fig. 1 shows how the multisensory data is fused2. After initialization, the CCD cam-
era searches the magnetic strip, analyses the magnetic strip and decides the next three 
actions depending on the Nearest Neighbor method. If the action is to keep moving 
forward, then the magnetic sensor starts to track the magnetic strip and fuzzy control-
ler is invoked. The function of fuzzy controller is to maintain the tracking precision, 
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in addition it is necessary to keep the mobile robot precisely following the magnetic 
strip; if the action is to let the mobile robot turn left or right, then the ultrasonic sen-
sors start to detect the environments based upon the Parallel Back Propagation Neural 
Network and the decisions can be made as follows: turn left a little bit, turn left, turn 
right a little bit and turn right. And then, CCD camera continues to detect the mag-
netic strip and a new data fusion cycle starts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.1   The Magnetic Strip Recognition 

After searching the magnetic strip, the centerline of the magnetic strip can be 
founded, as shown in Figure 2. Recognition of each signal is as follows: 

 
 
 
 
 
 
 
 
 

Suppose the two ends of the level magnetic strip are A and B, and the two ends of 
the vertical strip are C and D. The distance of three end is set as three elements of a 
characteristic vector: x1=|AC|, x2=|BC|, x3=|CD|, and the difference of two arms’ 
length of the level strip is set as another element: x4=|AC|-|BC|. Now a four-
dimensional vector X=(x1, x2, x3, x4) has been set up. 

Initialize 

Stop Move Straight

Recognize the 
Magnetic Strip 

Turn 

Fuzzy  
Controller 

Parallel 
BP Neural 
Network

Identify the  
Environment Track the Strip

Magnetic 
 Sensor 

Ultrasonic 
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Turn Left a Little 

Turn Left

Turn Right a Little 
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CCD 

Control Track-
ing Precision 

Fig. 1. Multisensory Fusion Flowchart 

 

Fig. 2. Magnetic Strip 
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At the same time, four standard models can be set up corresponding to four image 
signals: X0, X1, X2, X3. Let Xi = (xi0, xi1, xi2, xi3) where i = 0, 1, 2, 3. Then calcu-
late the difference between the characteristic and all of the standard models, letting di 
= |X-Xi| for i=0,1,2,3. When di reaches the minimum, i is the result of the recognition. 

2.2   The Fuzzy Controller Design 

While the mobile robot is tracking the magnetic strip it is important to maintain the 
tracking precision. A 2-D fuzzy controller is developed to guide the mobile robot to 
track the magnetic strip when it is far enough from an obstacle and lead the mobile 
robot to navigate around the obstacle when it is too close to the obstacle3. 

When it is far enough from the obstacle, the mobile robot tracks the magnetic strip, 
and the inputs of the controller are e and ce. e is the input error variable, and ce is the 
derived change in error. 

 Let e =Δx=(Δx1+Δx2)/2 and ce=  

Δx1 and Δx2 are the range errors detected by the magnetic sensor and the CCD 
camera respectively.  is the angle between the magnetic strip and the mobile robot.  

When it is too close to the obstacle the inputs of the controller are as follows:  

e = Δd = d-d0  and ce =  

d is the distance between the mobile robot and the obstacle detected by the ultra-
sonic sensors, and  is the angle between the obstacle and the mobile robot. For these 
two cases, the output variable of the controller is ΔU, the difference voltage between 
the left and right wheel motors. 

2.2.1   Fazzification 
Define a set [-8,8] as the input domain of e, and the fuzzy subset of e is 

 e=[LN, MN, SN, NZ, PZ, SP, MP, LP] 

where LP: large positive; MP: medium positive; SP: small positive; PZ: positive zero; 
ZE: zero; NZ: negative zero; SN:  small negative; MN: medium negative; LN:large 
negative. 

And define [-6, 6] as the input domain of ce and the output domain u, and the 
fuzzy subset of ce is 

 ce=[LN, MN, SN, ZE, SP, MP, LP] 

and the fuzzy subset of u is  

 u=[LN, MN, SN, ZE, SP, MP, LP]. 

2.2.2   Defuzzification 
Based upon the Max-Min inference method, the true value of the control value u can 
be defuzzified as follows: 
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where u U uk is the grade of membership of uk subjection to the fuzzy subset 
of the control value Uij. 

3   Experimental Work and Coclusion 

In order to test the validation of the control methods, several experiments have been 
carried out and the result has been recorded, as shown in Fig. 3: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mobile robot is navigating along a hallway and both the CCD camera and the 

magnetic sensor record the tracking data and convert it into a curve. As shown in 
Fig.3, the position tracking errors detected by both the CCD camera and the magnetic 
sensors keep stable and are less than ±2 centimeters after the initializing period. It 
means this multisensory fusion method can be used to control a mobile robot in a con-
structed environment or a semi-constructed environment successfully. 
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Abstract. Human social and economic life is becoming increasingly de-
pendent on computers and information technologies. Many important
systems such as banking, tax filing, traffic control, and even military
functions are now controlled by or receive data feed from computers.
Hence, the protection of IT systems from natural and man-made disas-
ters has taken on critical importance. This paper presents a framework
for building self-surviving IT systems that can defend themselves against
and survive natural and man-made disasters such as earthquake, flood,
fire, virus, intrusion, or outright war. The work presented here is a par-
tial result of an ongoing research project called HERMES IT Shield we
are conducting at Shanghai Jiao Tong University, China.

1 Introduction

Human social and economic life is becoming increasingly dependent on comput-
ers and information technologies. Many important systems such as banking, tax
filing, traffic control, and even military functions are now controlled by comput-
ers. Failure or service interruption of relevant IT systems often inflicts severe
damages to property, business processes, or even human lives. Unfortunately, IT
systems today face increasing threats from natural and man-made disasters such
as earthquake, flood, fire, virus, intrusion, or outright war. Countless organiza-
tions world-wide have suffered financial, business, and even human life losses due
to its IT systems being damaged by disasters.

Many techniques and methods have been proposed in the past two decades to
deal with IT failures and disasters. These techniques and methods include but are
not limited to virus/spam filtering [7,16], intrusion detection [20,11,2,19,9,14],
data backup and recovery [13,3], distributed processes [18,4,6,15], replication [5],
clustering [8,23], rollback and restart [10,1,12], redundant power supply, and dis-
aster recovery [22,17]. Depending on the particular threat analysis, each organi-
zation may take one or more of the aforementioned measures at any given time to
achieve its particular disaster defense objective. After 911, many organizations
have endorsed disaster recovery as one of their main defense against unappealing
events for their IT infrastructure in general and vital data centers in particular.

While many of the measures taken by organizations to deal with IT disasters
are useful, and even very effective against particular types of disasters under
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particular circumstances, they all suffer the common drawbacks of restricted
applicability, localized solutions, limited effectiveness, and constant manual in-
tervention. Most of all, current techniques and solutions lack a coherent un-
derpinning strategy or theory. Each technique or method may be effective to
an extent for one type of disaster, but usually are not effective for other types
of disasters. For example, a technique that is effective against intrusion may
not be effective against fire or terrorist attacks. Hence, to defend an IT system
against multiple types of disasters at the same time, one has to integrate mul-
tiple techniques and/or methods into one environment. This kind of approach
means higher cost, more complex procedures, and less effectiveness. Sometimes,
such integration is simply too difficult to perform all together.

With the advance in fields of pervasive computing and communications, mo-
bile computing, distributed and grid computing, utility computing, etc., the
erection of a protective shield around those new computing environments will
be much more complex and challenging. Current disaster defense techniques will
be over-stretched to handle the stress and intensity that are required to prevent
or protect complex IT infrastructure from disaster-induced failures. Yet at the
same time the capability to defend against and survive disasters is becoming a
fundamental requirement for the success of any future viable IT solutions. Hence,
it is imperative that we find a holistic, integrated solution to this problem.

This paper presents a framework for building self-surviving IT systems that
can defend themselves against and survive multiple types or occurrences of dis-
asters. The work represents a partial result of an ongoing research project called
HERMES IT Shield we are conducting at Shanghai Jiao Tong University, China.
The framework consists of seven sub-components with each performing a distinct
yet interrelated function in an IT system’s overall disaster-defense ability. Since
each of the seven components is itself a comprehensive research subject and needs
a full length paper to discuss, we opt not to go deep inside the mechanism of
each subsystem. Rather, this paper only gives a description of the capabilities of
each of the seven subsystems and shows how these subsystems work together to
guarantee smooth operation, rapid recovery, limited loss, and harmless abruption
for IT systems, even in the face of disasters.

The layout of the rest of the paper is as follows: next section defines relevant
terms followed by the presentation of the self-surviving IT system framework
in section 3. Section 4 describes the operation of a self-surviving IT system.
Section 5 concludes the paper.

2 Terms and Definitions

Human being’s natural intuition is to avoid disasters or escape from the impact
of disasters. If disasters are not avoidable, then we try to limit the losses caused
by disasters. The utmost goal in human being’s disaster defense strategy is to
preserve human life or as many human lives as we can.

A self-surviving IT system simulates human being’s action when dealing
with IT disasters. It first tries to neutralize the impact of the striking disaster
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(humanoid escapes unscathed). If the action fails, the system then tries to re-
cover from the disaster impact (escapes with wound); if recovery action fails,
then it tries to restrict the loss or damage to the part where disaster directly
strikes (localizes disaster impact); if the restriction of disaster impact fails, then
it brings the system down to a stable state (transforms all disasters into fail
silent ones). Hence, we have the following definition:

Definition 1. A self-surviving IT system is a system that can escape or mitigate
the impact of striking disasters, or at the least prevent rolling disasters from
occurring and transform all types of disasters into fail silent ones, all without
human intervention.

Specifically, a self-surviving IT system must possess the following four abili-
ties: disaster preemption, disaster recovery, disaster locking, and harmless abrup-
tion. Disaster preemption is the ability of neutralizing the disaster and shield-
ing users from any disaster impact. If disaster preemption is successful, IT system
users will not feel any service interruption. Disaster recovery is the ability of
recovering an IT system from service interruption caused by disasters. It is ac-
tivated when disaster preemption fails or if the system decides that recovery is
the best course of action in the first place.

Disaster locking blocks the spread of disaster impact and limits damages
to the part where disasters directly strike. When activated, it separates the in-
terlocking paths of disasters and prevents rolling disasters from occurring. It is
used if either a disaster recovery action fails or the system determines that it
is the best course of action. Harmless abruption brings an IT system into a
reversible dormant state. It is used to foil any adversary attempt to take control
of the system and prevent malicious transformation of disasters (i.e., prevent
Byzantine failures). It is activated if either a disaster locking action fails or the
system determines that it is the best course of action.

Let us introduce the following notations:
S : normal state of an IT system
D : striking disaster(s)
SDP : disaster preemption state of the IT system
SDR : disaster recovery state
SDL : disaster locking state
SHA : harmless abruption state

Then, a system is a self-surviving system if:
S + D → S ∨ SDP ∨ SDR ∨ SDL ∨ SHA

Each of the four abilities of a self-surviving IT system we described above is
based on one subject of research we have been conducting. The key technology
for disaster preemption is software self-regeneration and wide-area fully active
system replication. Our software self-regeneration mechanism can re-generate
the damaged part of IT system software while the fully active system replication
can absorb disaster impact without passing the effect to users. Used either alone
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or in conjunction, the two abilities enable an IT system to continue operation in
the face of disasters.

Disaster recovery in this paper is a little bit different from the same term used
by IT corporations today. The objective is the same in that it tries to recover an
IT system from service interruption. The difference lies in the techniques used to
achieve the objective. The technology underpinning our disaster recovery ability
is our self-repairing virtual bus system and self-recursive multi-dimensional IT
architecture. Self-repairing virtual bus can repair a file system on the fly and
self-recursive multi-dimensional IT architecture can efficiently and automatically
reconfigure and reconstitute itself when struck by disasters.

The underlying technology for disaster locking is our disaster stacking theory
and fundamental theory of disasters. These two researches study the properties
of disasters, the progression of disaster impact, the transformation of disasters,
and the interrelations between different disasters or phases of the same disaster.
By separating the interlocking path of disaster progression, we can limit disas-
ter impact to the area where it directly hit and prevent rolling disasters from
occurring.

Harmless abruption is based on our research in disaster determination and
reversible self-collapse theory. Normally it is activated only if other disaster
defense measurements have failed. But if a disaster is judged to be severe or if a
judgement cannot be made, the system can activate harmless abruption in the
first place to bring the system into a reversible dormant state. When disasters
have passed or the situation is back under control, the self-surviving IT system
can wake up and resume normal operation.

3 The Framework

Our self-surviving IT system framework is developed as a middleware that can
be superimposed on a stand alone or network of computers. By installing and
running the self-surviving software package on every node in the system, the
entire networked system will collectively possess the ability to defend against and
survive natural as well as man-made disasters. The number of active nodes in
the system directly influences the level of disaster defense capability of the entire
system. The more active nodes there are in the system, the more robustness
the defense capability it possesses. But a minimum level capability of harmless
abruption is guaranteed for any kind of configuration.

Structure wise, the framework is divided into modules with each module plays
one distinct but essential role in the system’s overall ability to defend against
and survive disasters. In addition to the four disaster defense capabilities we
discussed in the previous section, our framework also contains three additional
modules that play other critical functions that are necessary for the normal
operation of our self-surviving IT system framework.

Disaster prediction module is responsible for predicting disaster occur-
rence and providing early warning for the networked IT system. We have in
another work developed a time-space ODE model that models the relationship
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existing between disasters and IT systems. The ODE model is further based on a
priori estimates for a semi-linear elliptic system[21] and provides the capability
of disaster prediction. A prototype based on the ODE model has been con-
structed and preliminary test result has shown that it is indeed able to predict
the occurrence of disasters to an extent.

Impact analysis and determination module offers the system the ability
of analyzing the consequence of approaching or striking disasters. Depending on
the result of such analysis, the system can determine a best course of action in
defending against and surviving the striking disaster(s). Specifically, our impact
analysis and determination module must determine if a disaster is preemptable,
recoverable, or lockable; and make such determination quickly. This work is based
on our fundamental theory of disaster and independent state determination in
distributed systems.

System metamorphosis module offers the system the ability of seamlessly
switching operation states at any time. Depending on the dynamic analysis re-
sult of the impact analysis and determination module, system metamorphosis
will direct the system to adapt a particular operation mode to deal with the
approaching or striking disasters. This work is based on our cell-like state switch
scheme and dynamic hybrid active-passive replication paradigm.

Fig.1 depicts the conceptual composition of our self-surviving IT system
framework along with the state transition conditions.
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Fig. 1. Self-Surviving IT System Model
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4 System Operation

As mentioned earlier, our self-surviving IT system model is a holistic integra-
tion of seven distinct yet inter-related subsystems. Each subsystem plays one
important role in the functioning of the entire system. At any point of time, our
self-surviving system operates in any one of the four possible states: disaster pre-
emption state, disaster recovery state, disaster locking state, and disaster harm-
less abruption state. Based on the information obtained from the impact analysis
and determination module and its own observation of system state changes, the
system automatically switches operation states via metamorphosis to position
itself for the approaching or striking disasters.

In the model depicted in Fig.1, the disaster prediction and early warning
subsystem acts as the first line of defense against disasters and attacks. The
function of this subsystem is to analyze the occurrence likelihood of disasters
and attacks; and if possible, predict the timing and scale of disasters and attacks.
This subsystem could and should utilize any available external sensors that might
be deployed for the concerned IT infrastructure.

Impact analysis and determination is the centerpiece of our self-surviving IT
system model. It gets input from the disaster prediction module as well as from
its own observation of the state of system operation. It analyzes the possible
impact of any approaching and occurring disaster and provides inputs to the
system metamorphosis module which directs the system to switch operation
modes to position for the incoming disasters. Our cell-like state switch scheme
ensures that the switch of system operation state is seamless and leaves no
noticeable trace to the outside clients.

Disaster preemption module gets activated if impact analysis module deter-
mines that the result of an incoming or occurring disaster can be preempted.
Its role is to preempt the impact resulted from a disaster or attack, and shields
users from the knowledge that such an event has ever happened. Thus, clients
of such a system do not notice any trace of striking disasters.

Disaster recovery mode is switched on if impact analysis module determines
that an incoming or occurring disaster is not preemptable but the entire system
could recover from such a disaster. Its role is to recover the system after service
interruption. It could also be triggered by a failure of a disaster preemption
attempt. This failure trigger mechanism is critical for the system’s self-awareness.

Disaster locking module gets involved when impact analysis module deter-
mines that our system could not recover from an incoming or occurring disaster.
Its role is to lock the disaster to the part where it directly hits, and prevents
spreading or rolling disasters. It can separate the interlocking paths of disasters
and block disasters from rolling out of control. This mode can also be triggered
by a failure in a disaster recovery attempt.

Harmless abruption is our last line of defense against disasters. It gets
switched on if impact analysis module determines that an incoming or occurring
disaster could not be locked or if a disaster locking attempt has failed. The role
of harmless abruption is to preemptively bring the system to a safe state and
shut down the operation; and consequently prevent the system from becoming
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malicious or be controlled by unfriendly forces. This mode is also switched on if
the system is unable to make a determination regarding the approaching or strik-
ing disasters. After the disaster or attack is over, the self-surviving IT system
could wake up from the dormant state and reactivate itself. This module can,
however, under some extreme circumstances, irreversibly destroy the system.

5 Concluding Remarks

This paper presented a self-surviving IT system framework that aims to arm
an IT system with the ability of defending itself against and surviving multiple
types or occurrences of natural and man-made disasters. We have described the
capabilities and underlying theoretical researches that anchor each of the seven
sub-components of the self-surviving system, and explained how the modules
work together to contribute to an IT system’s overall self-surviving capability.
Most of our researches have been validated by prototype experiments, and a full
featured self-surviving IT system framework is currently under construction.
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Abstract. Current techniques used to detect hacker intrusion are post-
mortem in that they get into action only if someone or something is
intruding, in other words, they are reactionary. This paper proposes a
PDE-based intrusion forecast model that aims to forecast hacker intru-
sion before they actually occur.

1 The Hacker-Computer Model

A computer system could be viewed as a living entity to some extent: it can pos-
sess some basic ability to maintain operation and a set of capabilities to defend
itself against hacker intrusion. These capabilities include (but are not limited
to) the security feature of CPU, OS, and application software, a set of possible
anti-intrusion measurements such as fire-wall and anti-virus software, and any
data protection mechanism such as encryption and encoding. These capabilities
are organized as layers of defense which any intrusion must penetrate to gain
full control of the system. As each layer of defense is penetrated, the defensive
capability of the computer system decreases correspondingly. When all defensive
layers are penetrated, the computer system lays bare in front of hackers just like
a prey lies defenselessly in front of a predator. Hence, the interaction and strug-
gle between hackers and computer systems largely resembles the characteristics
of that of the classic predator-prey phenomenon in ecology.

Having analyzed the nature of the relationship between hackers and comput-
ers, we can now introduce our hacker-computer model.

For a given computer system, we denote (Ω,F, P ) the probability space of
all its possible states (finitely many), where F is the s-algebra of all subsets
of the state space Ω and P is the probability on Ω. Note that (Ω,F, P ) is
individualized in the sense that it associates with exactly one specific computer
system. Throughout the rest of the paper, we consider only one fixed computer
system, being called the computer. For the computer, let the function u = u(ω, t)
represent the intensity of its anti-hacking defensive capability at time t and state
ω. A system’s anti-hacking defensive capabilities can include such things as its
hacking detection ability, the robustness of any data protection mechanism, and
the system’s ability in launching a preset program to terminate hacker attacks.

Similarly, we consider for simplicity only one fixed hacker, being called the
hacker. The hacker is not one person literally, but rather a category of objects
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that implement all of the cyber attacks on the computer. Let v = v(ω, t) be
the intensity of all the attacks launched by the hacker. At a given time t, there
can be multiple attacks and the intensity v is naturally understood to be the
sum of the intensity of individual attacks. The intensity of attacks includes but
is not limited to the level of attacks (such as against operating system layer,
application layer, or middleware layer), the frequency and methods of attacks,
and the damage caused by the attack, etc., against the computer system.

The derivatives of functions u(ω, t) and v(ω, t) with respect to time t are the
rate of changes of u and of v respectively. For time s, t ≥ 0, we shall assume that
there is a family of transformations θt on Ω such that

1. θ0 =idΩ;
2. θs+t = θs ◦ θt.

For a start state ω ∈ Ω, at time t > 0, it changes to the state θtω. We propose
the following stochastic differential equation model

u′ = au− au2/K − φ(tt(o), u, v), t > 0,
v′ = −bv + ψ(tt(ø), u, v), t > 0,
u(ω, 0) = u0(ω); v(ω, 0) = v0(ω),

(1)

where a, b,K > 0 are constants, and φ and ψ are positive functions, to quan-
titatively study the hacker-computer relationship. (Non-stochastic) equation of
type (1) has been widely used to model the classic predator-prey phenomenon in
ecology, where v is the predator and u the prey. In our computer-hacker model,
the hacker is considered predator and the computer considered prey. For obvious
reasons we only consider non-negative u and v. The two subjects u and v con-
stantly interact, with the hacker-intensity v preying exclusively on the computer
anti-hacking-intensity u. The two non-negative functions u0(ω) and v0(ω), which
depend on the state of the computer, are the initial profile of u and of v at t = 0.

2 Technical Rational

The non-negative function u = u(ω, t) ≥ 0 represents the intensity of the anti-
hacking defensive ability of the specific computer’s security system. The stronger
the defensive ability is, the larger the value of u(ω, t) (at given time t and given
state ω) will be. Similarly, the non-negative function v = v(ω, t) ≥ 0 represents
the intensity of the hacker-attack on the computer system, and the stronger the
attacks are, the larger the value of v(ω, t). It is assumed that the hacker and
the computer system constantly interact each other, namely, it is assumed that
v constantly attacks u (however, not all attacks cause noticeable damage to the
computer system, though it may inflict some penetration into certain defensive
layer, see also Section 4 on predication).

When the system is free of hacker attacks (i.e., v(ω, t) ≡ 0), we assume that
the intensity u(ω, t) grows exponentially initially (with a growth rate a > 0,
proportional to u(t) itself, i.e., u′ ≈ au > 0), meaning the computer system is
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invincible (this is a natural conclusion in the absence of hackers). The growth
is damped by the negative term −au2/K when u becomes large. In fact, the
computer’s defensive ability cannot exceed the level of invincibility K, namely,
u(ω, t) < K for all t > 0. The rational behind this growth assumption is that one
is willing to constantly upgrade the computer’s security system through mea-
sures such as operating system upgrade, application upgrade, installation and
upgrade of anti-virus software, fire-wall installation and upgrade, installation of
data protection mechanism such as encryption, encoding, and the enacting of
secure network such as VPN, etc., which is to increase the value of u over the
time. In the meantime, all upgrades of the computer are clearly limited at cer-
tain level (say, by resource, management, etc.). In the absence of the computer
(i.e., u(ω, t) ≡ 0), v sustains a so-called exponential decay (with a decay rate
b > 0, proportional to v(t) itself, i.e., v′ = −bv < 0). The intensity v eventually
dies out (Note: after an infinite period of time!), namely, v(ω, t)→ 0 as t→∞.
The decay of v is naturally attributed to the fact that the survival of the hacker
(on the specific computer system) exclusively depends on the presence of the
computer system. In reality, for our purpose of studies, we may safely rule out
the possibility of disappearance of the computer (i.e., crash, etc.). Indeed, most
corporate computer servers are up 24x7, and 365 days a year (almost all of the
servers are running in clusters or other type of fault tolerant configuration such
that the system would keep running at all times). If for some reason, the system
suffers any interruption, it will be repaired and put back into service very soon.
Computer system at banks, security exchange, and some government institutions
are also kept running year-around and repaired promptly in case of any failure.
It should be pointed out that in these cases, no stochastic process is involved.

Of course, the interesting case to us is when both u and v are present. The
attacks on the computer system contribute a negative impact on the growth of
u which, we shall refer to as ”attack rate”, causes u to decrease. This, mathe-
matically, is reflected by the negative term −φ(θt(ω), u, v) in the first equation
of (1). The stronger of v is, the severer the negative impact on the growth of
u will be. On the other hand, we assume that the hacker would benefit from
the attacks, contributing a positive impact on the growth of v which, we shall
refer to as ”hacking rate”, makes v increase. For example, from a psychological
point of view, hackers may become more interested in repeating attacks on the
same computer after implementing an initial successful attack (i.e. penetration
of certain defensive layers and the acquisition of partial data or control). This,
similarly, is reflected by the positive term ψ(θt(ω), u, v) in the second equation
of (1) and the stronger of u is, the larger the positive impact on the growth of v
will be. Note both the attack rate (degree of damage to the computer’s defensive
ability) and the hacking rate (degree of benefit to the hacker’s attacking ability)
depend on the success degree of the attack(s). This success degree is reflected by
the state(s) of the computer, i.e, the stochastic term θt(ω), and affects both the
attack rate and the hacking rate positively. We use the levels of defensive layer
as one measurement of the degree of attack success. As each defensive layer is
penetrated, the success degree of the attack is increased by one degree. Of course,
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there could be other measurement for attack success such as the acquirement of
confidential data and the control of a system. But our chosen measurement is
adequate because we assume that when the defensive layers are penetrated, the
attackers would steal data and progress to take control of the system.

A stochastic process comes into play when the hacker and the computer
co-exist. The hacker randomly chooses when and where to attack, depending
on many random factors. Therefore, hacker attacks are widely characterized as
random events. In our model (1), a stochastic process θt is incorporated to reflect
the random feature of hacking, see Section 3 for more details.

3 Determination of Key Quantities

The proper values of various quantities in (1) depend on the individual computer
system. Specifically, they depend on the importance of the computer, its security
system, and the pattern of the computer’s past attacks. A better-maintained and
securer computer should have larger values of a and b since it has stronger defen-
sive ability and it is harder for the hacker to gain materially from the attack(s).
Meanwhile, a more important or better-known computer system would have
larger a but smaller b values since more hackers tend to attack more interest-
ing computers and the management is more willing to upgrade more important
computers’ security. For example, the hacker may not be interested at all in
attacking a home-computer unit with no importance, but show genuine interest
to a bank’s computer system. The two interaction functions φ and ψ shall also
be determined essentially on the same accounts. In fact, the better the quality
of the computer’s security system (i.e., the stronger the intensity u), the smaller
the functions φ and ψ are, which suggests that both φ and ψ are inversely pro-
portional to u. On the other hand, the more important the computer system is
(i.e., the stronger the intensity v), the larger the functions φ and ψ are, which
suggests that both φ and ψ are proportional to v.

The initial profiles u0(ω) and v0(ω) will be determined at the initial time
t = 0 (relative to other quantities). For example, by observing past hacking
activities, we can establish a baseline as to what type of system equipment
is adequate for the prevalent hacker attacks. Thus, a computer with the said
resource and security measure can be set in correspondence with the said hacker
intensity. However, we can at our discretion set the initial state without resorting
to the use of those historical data. In such case, we define each type and level of
security measure with a numerical value, then, according to the types and levels
of the measurements a computer system is equipped, we can compute its initial
u0 state with the numerical values obtained. The hacker’s initial state can be
correspondingly set as a normalized value after the initial state of the computer
is obtained. Because of the nature of our model, the setting of the hacker’s initial
state does not affect our ability to forecast the future trend of hacker attacks.

As mentioned before, the family of transformations θt is a stochastic process
introduced to model the randomness of the hacker’s attacks. In general, we
assume θt(ω) = ξt(ω) is a nice stationary (memoryless, or the so-called Markov
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property) stochastic process in the sense that only the value of the perturbation
at time t influences the system (it forgot what happened before time t). In other
words, the computer with an initial state ω will have a (random) state ξτ (ω) at
time τ > 0 and the states ξt(ω) (t < τ) happened before τ have no effect to the
state ξτ (ω). There are many stochastic processes available for such uses. The
choice of the process ξt shall depend on the specific computer and, in particular,
its past history. For instance, one can employ the well-known Wiener process
(continuous) or jump Markov process (discontinuous) for this purpose.

4 Forecast

Two types of forecast data are available. After determining the relevant quanti-
ties, we can employ (1) to compute the values of u(ω, t) and v(ω, t), and their
derivatives u′(ω, t) and v′(ω, t), at any given time t > 0 and for a given ini-
tial state ω ∈ Ω. Using historical data of the specific computer, we can set
thresholds for anti-hacking intensity u(t) and hacker intensity v(t) respectively.
If at a given time t, the anti-hacking intensity u(t) is below the threshold, the
system will alert the inadequacy of the security system, which, consequently,
needs to be upgraded. If at any time t the hacker intensity v(t) is above the
threshold, the system will alert excessive hacking-activities and corresponding
counter-measures are required counter hacker-attacks. Similarly, we can set up
a warning model based on the derivatives u′(t) and v′(t). A large (positive) v′(t)
(against a preset threshold) would indicate a sudden and large increase of the
hacking-intensity level, which should triggers an alert. On the other hand, a large
(negative) u′(t) (against a preset threshold) would indicate a sudden and large
decrease of the anti-hacking-intensity level, which should also triggers an alert.

After each alert and preferably upgrade, the parameters in (1) will be re-
adjusted according to the changes made to the system and the time will be reset
to zero. The thresholds can also be adjusted according to the feedback from the
system operator and the analysis of the response that has been taken after each
alert. Such procedure is to be repeated and another cycle begins.

Similarly, we can setup a forecast model based on the derivatives of u(ω, t)
and v(ω, t). With the base data gathered either from experiments or from statis-
tics observed during the uptime period of the computer, we can project the value
of those functions at any point of time in the future. The value obtained this
way is, mathematically, a forecast of hacker activities and defensive intensity of
the computer at that point of time. Furthermore, we can apply integral to v′(t)
on any time frame in the future to obtain the aggregated intensity or activities
for that future time period. The integral obtained this way would be a forecast
of hacker activities in the time period where the integral is applied, and thus
offers a clue to the future trend and activities of hackers regarding the computer.

Due to space limitation, the introduction, conclusion, and reference
sections have been omitted from the paper.
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Abstract. One problem facing many existing OLAP (On-Line Analyt-
ical Process) systems is the so-called ragged dimensions. Ragged dimen-
sions occur if the logical parents of some members in a dimension hierar-
chy are two or more levels apart. In other words, there exist empty holes
in the dimension hierarchy. The problems caused by ragged dimension
are two-fold. First, aggregation of measure data could be incorrect. Sec-
ond, the pre-computation strategy, the most prevalent technique used to
speed up query processing in current OLAP system, could be rendered
invalid. This paper proposes a simple yet efficient solution to remedy the
ragged dimension problem for existing OLAP systems.

1 Introduction

The objective of OLAP applications is to provide decision support through mul-
tidimensional analysis of the information stored in enterprise data warehouses.
To achieve this goal, OLAP tools often employ multidimensional data models
(MDM) for the presentation, analysis and visualization of enterprise data. The
advantages of MDM are its natural structure and improved query performance.
In a MDM, data is classified into two categories: measure and dimension. The
former serves as the object to be analyzed and the latter is used to describe
the former. Measures are modeled as points in a multidimensional space and
organized as cubes. We call such a cube MD (multidimensional data set).

Unlike the linear dimensions in programming languages, dimensions in an
OLAP system typically have hierarchies defined on them. These hierarchies rep-
resent different categories of measure data and play a dominant role in OLAP
queries. Aggregate operations such as ROLLUP and DRILLDOWN, which en-
able users to view data at different levels of granularity, make sense only if there
are dimension hierarchies with more than one level. However, current MDMs
and most of the OLAP systems fall short in their ability to model the complex
dimension hierarchies found in real-world applications. This problem is partic-
ularly acute in the case of ragged dimensions in which the distance between
some members and their immediate parents is more than one level apart. Fig-
ure 1 shows a ragged dimension: there is no Province level for the city of Beijing
because it is a municipality directly under the central government.
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Fig. 1. Ragged dimension and its modeling

Ragged dimension poses two serious problems for MDMs and their implemen-
tations. First, the empty holes in the hierarchy violate the property of summa-
rizability. Summarizability is a constraint over MDMs that requires dimension
hierarchies to be complete. In other words, the mapping function between two
adjacent levels in a hierarchy must be total. So a low-level member in a dimen-
sion belongs to a member one-level above. Violation of the summarization rule
can lead to incorrect analytical results. For example, if we summarize the total
sales to the Country level from Province level in Figure 1, the result will be 11
(=6+5) which is incorrect. The correct number is 18.

Second, ragged dimensions render the technique of pre-aggregation invalid.
The most prevalent technique to accelerate multidimensional queries is to pre-
aggregate and materialize the results of some MD. For example, computing and
storing total sales at fine granularity identified by (Province, Day) enable fast
answers to the queries for the total sales at coarse granularity identified by
(Province, Month) or (Country, Month). But such techniques are rendered in-
valid by ragged dimensions. For example, in Figure 1, getting total sales for the
Country level from Province level will produce the wrong result of 11. To get
the correct answer, one has to calculate the result from the lower level of City or
Store. This leads to more I/O and in-creased processing time. Thus, aggregation
on ragged dimensions is inefficient.

This paper proposes a simple but efficient solution for the ragged dimension
problem in OLAP systems. Our solution solves two problems: semantic correct-
ness and efficiency of aggregation on ragged dimensions. The key point of our
approach is to consider ragged dimension as a view defined over a special con-
ventional dimension, in which empty holes are replaced by placeholders.

2 Extended Multidimensional Model

Regular dimension are described by schemas and instances. Each path from the
lowest level to the highest level in a dimension is called a hierarchy. A dimension
instance consists of a set of dimension members for each level and the mappings
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between these members. Let LEV EL be a finite set of levels, dom(L) be the
corresponding set of dimension members, HoldSet be the set of placeholders ehi,
we define regular dimensions as follows.

Definition 1. Schema of regular dimension D is denoted by DS = (DN, {Li},
≤L), here DN is the dimension name, {Li|i = 1, 2, . . . , n} ∈ LEV ELS, ≤L) is
a partial order relation over with a unique bottom level Linf and a unique top
level ALL, satisfy ∀Li ∈ DS(Linf ≤L Li ≤L ALL) .

Definition 2. A Regular dimension D is a 2-element tuple: D = (DS,Rup),
where Rup is a set of surjection functions: for each pair of levels L1, L2 ∈ DS ∧
L1 <L L2 there exists a surjection function RupL2

L1 : dom(L1) → L2, here <L

denotes the quasi-ordering relationship over Li.

Definition 3. Dimension operators decendants(ej , Li) = {ei|Rup
Lj

Li
(ei) = ej∧

ej ∈ dom(Lj)}, where Li <L Lj and ei ∈ dom(Li).

2.1 Ragged Dimension

In our extended data model, ragged dimension DH can be considered a special
view defined over a regular dimension D̃H in which the empty holes are replaced
with placeholders. D̃H can be regarded as a physical expression of DH , and is
called regular expression of ragged dimension DH . Figure 1 depicts a ragged
dimension schema, its instance, and its regular representation.

In real applications, we can predict the position of the ragged levels in a
dimension according to specific semantics. Our model supports correct data ag-
gregation by keeping track of the levels that are ragged. This information can
then be used to either prevent users from doing illegal actions on the data, or to
warn the users that the result might be wrong.

Definition 4. Schema of ragged dimension DH is denoted by DS = (DN, {<
Li,Bhole >},≤L), i = 1, 2, . . . , n, where for each Li, there exists a Boolean vari-
able Bhole, denoted by Li.Bhole, that marks the level that is allowed to be ragged.

Definition 5. Ragged dimension DH can be projected to another regular dimen-
sion D̃H whose schema is DS(D̃H) = (D̃N, {< L̃i,Bhole >},≤L), i = 1, 2, . . . , n,
where: if Li ∈ DH∧Li.Bhole = true, then dom(L̃i) = dom(Li)∧Holdsi, in which
dom(Li), Holdsi meets Holdsi ⊂ HoldSet ∧Holdsi ∩ dom(Li) = ∅.

2.2 Measure and Multidimensional Data Set

Definition 6. Measure schema is denoted by MS = (Mname,MT,O), where
Mname is the measure name; MT = (idT,MV T ) is the type of measure in
which idT is the identification type, MV T is the type of measure value; O is a
set of aggregation functions applied on MV T .

Definition 7. MS is a measure schema, and each measure cell is an object of
type MT , and there exists a bijection function rep : dom(MT ) ↔ dom(idT ),
measure domain is denoted by dom(M) ⊆ dom(MT ).
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Definition 8. The schema of n-dimensional data set is a 3-element tuple MDS =
(DSset,G,MS), where DSset = {DSi|1 ≤ i ≤ n} is the set of dimension
schema, G =< DS1.L1, · · · , DSi.Li, · · · , DSn.Ln > represents the granularity of
n-dimensional data set, and MS is the measure schema.

Definition 9. Multidimensional Data Set MD over schema MDS is denoted by
MD = (MDname,MDS,Dset,M,ML), where Dset = {D1, . . . , Di, . . . , Dn} is
a set of dimension over DSset, ML = {mli : dom(M) → dom(Li)|Li ∈ G, 1 ≤
i ≤ n}, and M is the measure over schema MS.

3 Operations on Ragged Dimension

Now we define three types of query operations on ragged dimensions: limit, rollup,
and drilldown. Among which rollup and drilldown are summary operations. Fig-
ure 2 depicts a schematic view of the query processing on ragged dimensions.
After semantic check and query rewrite, queries against a ragged dimension DH

is transformed into queries against its corresponding regular representation D̃H .

Fig. 2. Query processing on ragged dimension

Let DH .Li ∈ G represents the granularity level on ragged dimension DH of
MD represented by D̃H . The output of the operation is MD′.

Definition 10. Limit Operation σ[P ](MD) = MD′, where P is the limit pred-
icate applied to MD, which can be expressed by production P → PM |PDi,Lj

and P → (PM |PDi,Lj) ∧ P . Here PM is applied on measure, PDi,Lj is ap-
plied on level Lj of dimension Di. Since the definition of σ[PM ](MD) is triv-
ial, we only define σ[PDi,Lj ](MD). Suppose DSi.Li is the granularity level of
MD on dimension Di, the operation satisfy: Li ≤L Lj. Let: dom(Li|PDi,Lj ) =
∪ej∈dom(Lj)∧PDi,Lj

(ej)descendant(ej, Li),
dom(M ′) = {m ∈ dom(M)|∃ei ∈ dom(li)(mli(m) = ei ∧ dom(Li|PDi,Lj))},
ML′ = {(m′, (e1, e2, · · · , en)) ∈ML|m′ ∈ dom(M ′)}, and MDS′ = MDS.

For ragged dimensions, the definition above will be revised as the following.

Definition 11. σ[P ](MD) = σ[P ′](MD) = MD′, σ[PDH ,Lj ](MD) = σ[PD̃H ,L̃j

∧¬PHold(e) ∧ e ∈ dom(L̃i)](MD) = MD′′

In Figure 2, semantic check will reveal that Province level is ragged. So the query
will be rewritten and the holes are eliminated by an expended predicate formula.
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Definition 12. Roll-up Operation Rollup[G′, Agg](MD) = MD′, where G′

is the granularity of MD′, Agg ∈ O. The operation satisfy Li ≤L L′
i, i =

1, 2, · · · , n, and at least there exists Lj <L L′
j.

Again, the definition for ragged dimensions will be revised as the following.

Definition 13. Rollup[G′, Agg](MD) = Rollup[G′, Agg](MD′) = MD′′

Since rollup is summary operation, we need to make certain that such op-
eration is valid. Suppose E ∈ dom(Li) is the set of dimension members that
identifies the measure data of MD, then we have:
If ∃e′ ∈ dom(L′

i)(L
′
i.Boolhole ∧ PHold(e′) ∧ e′ = Rup

L′
i

Li
(e) ∧ e ∈ E) then

current operation is invalid.
Else Rollup[G′, Agg](MD) = Rollup[G′, Agg](MD′) = MD′′

In the phase of query rewrite (Figure 2), the OLAP system will find a properly
pre-computed aggregation MD (represented by D̃H ) to calculate the result.
For example, if the MD represented by Province (contains empty holes) is
already pre-computed, the query will be rewritten as the following: Rollup[<
Country, day >, Sum]MD = Rollup[< Province, day >, sum]MD′

Drill down operations is rewritten as rollup operations within our model.
The only difference is that the rule for semantic check is changed to ’drilling
down to empty holes is invalid.’

4 Related Work

There has been a substantial amount of work on the general topic of multidi-
mensional data model (Blaschka [5], Vassiliadis [6]). But works on dimension
hierar-chies have been rare. Among all those models, only Shoshani [7] and Ja-
gadish [8] have touched upon the subject of complex dimension hierarchies.

Due to space limit, detailed discussions of related work and relevant
references are omitted. Readers please contact the authors for detail.

5 Conclusion

This paper extended the conventional multidimensional data model for OLAP
to support ragged dimensions. In order to avoid potentially erroneous computa-
tional result, our model places built-in constraints on multidimensional opera-
tions such that the correctness of aggregation semantics along ragged dimension
hierarchies is assured. For system implementation, our model projects a ragged
dimension onto a regular one and replaces empty holes with placeholders. Our
approach ensures that the widely used pre-aggregation strategy in OLAP remain
valid. In conclusion, our extended MDM is a simple but efficient remedy to the
existing ragged dimension problem in OLAP systems.
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Abstract. Hierarchical convolutional neural networks are a well-known
robust image-recognition model. In order to apply this model to robot
vision or various intelligent real-time vision systems, its VLSI imple-
mentation is essential. This paper proposes a new algorithm for reducing
multiply-and-accumulation operation by sorting neuron outputs by mag-
nitude. We also propose a VLSI architecture based on this algorithm. We
have designed and fabricated a sorting LSI by using a 0.35 μm CMOS
process. We have verified successful sorting operations at 100 MHz clock
cycle by circuit simulation.

1 Introduction

Processing models for object detection or recognition from natural images should
tolerate pattern deformations and pattern position shifts. The convolutional neu-
ral network (CoNN) model with a hierarchical structure, which imitates the
vision nerve system in the brain, has such functions [1,2,3,4,5]. The operations
required for implementing CoNNs are 2-D convolutional mappings, which include
a large number of multiplications by weights and nonlinear conversion as usual
neural network models. Because they require huge computational power, in or-
der to execute these operations in real-time and with low power consumption for
intelligent applications such as robot vision, efficient VLSI implementation is re-
quired. So far, analog VLSI processors suitable for CoNNs were reported [6,7,8].
For the practical use, however, further improvement of CoNN VLSIs is required
from the viewpoint of the operation speed.

In this paper, on the basis of our previous work [9], we propose a new algo-
rithm that improves the operation speed by reducing the number of connection
weighting operations; i.e. multiply-and-accumulation (MAC) operations. In this
algorithm, neuron outputs are sorted by magnitude, and only neuron outputs
whose ranking is higher than the predefined ranking are used for MAC opera-
tions. We also propose a VLSI architecture based on the proposed algorithm.
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We have designed a sorting LSI by using a 0.35 μm CMOS process. Section 2 de-
scribes the CoNN model for object detection/recognition. We describes the new
algorithm and VLSI architecture for CoNNs in Sec. 3 and Sec. 4, respectively.
In Sec. 5, we present a sorting circuit and a designed sorting LSI. Finally, Sec. 6
presents our conclusion.

2 Hierarchical CoNN Model

The CoNN with a hierarchical structure for object detection/recognition is shown
in Fig. 1. The first layer of the hierarchical structure only receives images. The
following layers consist of two sub-layers: a feature detection (FD) layer and
a feature pooling (FP) layer. Each layer includes some feature classes, each
of which has neurons that respond the same image feature. The neurons are
arranged in a 2-D array to maintain the feature position of the input image.
Therefore, the feature class size is equal to the input image size, and each neuron
corresponds to each pixel. All neurons receive the signals from the neurons in a
predefined area near the same position of the previous layer, which is called a
receptive field.

Figure 2 shows the principle of pattern detection using a CoNN. The FP
neurons are used to achieve recognition tolerant to pattern deformation and
position shifts. The FD neurons operate for integrating features. By the hier-
archically repetitive structure, local simple features (e.g., line segments) in the
input image are gradually assembled into complex features.

Operations between layers are 2-D convolutions, because all neurons belong-
ing to a feature class have a receptive field with the same weight distribution.
The receptive field of the FP neurons is on the same feature class of the previous
FD layer. All neurons of the FP layer have the same positive-weight Gaussian-
like distribution. The shifts of feature positions in the FD layers are tolerated
in the FP layers by this convolution. On the other hand, the receptive fields of
the FD neurons are on all feature classes of the previous FP layer. The weights
of the FD neurons are obtained by training.

Receptive field
Feature class

FD4
FP3FD3FP2FD2

FD1 FP1

Input
image

Fig. 1. Hierarchical CoNN model for object detection or recognition



1008 O. Nomura et al.

Fig. 2. Principle of pattern detection using a CoNN (an example of eye and mouth
pattern detection)

3 Reduction of MAC Operations by Sorting

We found from numerical simulations of face detection from natural scene images
that, in the layers of the latter stages, only a few neurons have significant output
values and most neurons have very small values. Even if we omit MAC calcula-
tions with such negligible output values, it is expected that the calculation result
is not so different from the exact one. In fact, we found from the numerical sim-
ulations of face detection that the detection accuracy hardly degrades by using
such operation.

We therefore propose a new algorithm with a use of sorting for decreasing the
number of MAC operations. In order to implement the algorithm effectively, we
have already introduced the projection-field model instead of the conventional
receptive-field model [9]. In the projection-field model, the postsynaptic neurons

Fig. 3. Schematic for our sorting model
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belonging to a projection field in the target layer receive an input from the
corresponding presynaptic neuron of the previous layer.

Figure 3 explains the projection-field model with sorting, which we call a
sorting model. It executes only MAC operations related to the presynaptic neu-
ron output oj with a ranking r(oj) higher than the predefined ranking threshold
rth. Internal potential ui of a neuron in the target layer is given by

ui =
∑

j∈R,r(oj)<rth

wijoj , (1)

where wij is the connection weight from presynaptic neuron j to postsynaptic
neuron i, and R is the set of neurons belonging to the receptive field. Because
the projection-field model is essentially equivalent to the receptive-field model
in calculation of ui, we use the receptive-field to specify j in Eq. (1).

4 New CoNN Architecture

We propose a new VLSI architecture for CoNNs based on the sorting model.
Figure 4 shows the architecture, which implements a convolution for one feature-
class. Calculation for the whole hierarchical structure is achieved by time-sharing

Fig. 4. CoNN architecture based on the sorting model
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operations with repetitive use of this VLSI. The VLSI includes a MAC circuit ar-
ray corresponding to the 2-D postsynaptic neuron array, a sorting circuit (SRT),
a temporary memory (MEM), switching circuits (SWTs), a nonlinear conversion
circuit (NLC) and base-vector generators (BVGs). The MAC circuit consists of
a multiplier (MUL) and an accumulator (ACC).

For efficient calculation in the MAC circuit array, we have already intro-
duced the synaptic weight decomposition approach [9]. Synaptic weight ma-
trix W (= {wMN}), which expresses an M × N -pixel projection field, is de-
composed into some products of base vectors wk

x ≡ t(wk
x1, w

k
x2, · · · , wk

xM ) and
wk

y ≡ t(wk
y1, w

k
y2, · · · , wk

yN );

W =
Nw∑
k=1

wk
x · twk

y , (2)

where Nw is the number of decomposed products of the base vectors and tw
indicates a transposed vector. We can calculate the product of wk

x and wk
y for

each k by Nw-step operations with the MAC circuit array. In general, Nw > 1
because weight matrix W does not have enough symmetry. We found from the
numerical simulations of face detection that Nw ∼ 5. On the other hand, in
the conventional row- or column-parallel architecture [7,8], N -step operations
are required for N × N -pixel convolution. Because Nw << N (≥ 20), our
decomposition approach is much more efficient.

The operation of this circuit is as follows: (1) the MAC circuit calculates ui

by accumulation of all multiplication results, and outputs the MAC results to
NLC; (2) NLC performs nonlinear conversion of the MAC results, and outputs
the conversion results to SRT; (3) SRT outputs the value oi according to ranking
r(oi) higher than rth and its addresses addxi, addyi one by one to MEM; (4)
MEM stores these data temporarily, and outputs the value oi to one BVG and
addresses to SWTs at a next convolution calculation step; (5) BVGs output the
pair of base vectors wk

x and wk
yoi to SWTs; (6) SWTs output the pair of base

vectors wk
x and wk

yoi to the projection field of the MAC circuit array using the
addresses addxi and addyi. By repeating the above sequence, the hierarchical
CoNN operation is performed.

We estimated the performance of our VLSI processor based on the proposed
architecture. As a performance measure we used GCOPS (Giga Convolutional
Operations Per Second) defined in the previous work [9]. Here, we took into
account the relative improvement of the convolutional operation performance
by reduction of MAC operations by sorting, and calculated the performance P
by using the following equation;

P = R2
sizeNMAC/(RsortNwTMAC), (3)

where Rsort is the ratio of the presynaptic neurons where r(oj) < rth to the
whole presynaptic neurons; Rsort ≈ 0.35 from the numerical simulations, Rsize

is the size of the side of a square projection field, NMAC is the number of
operations for MAC (= 2 : a multiplication and an accumulation), and TMAC
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is the processing time for one MAC operation. The difference between GCOPS
and GOPS (Giga Operations Per Second), which is a commonly-used measure in
the digital signal processing, is division by Nw and Rsort. The reason why such
additional factors are needed is that Nw-step operations are unnecessary if the
weight decomposition approach is not used and that equivalent operations are
performed at Rsort times the computational costs without sorting. If TMAC =
40 ns and Rsize = 81, which seems achievable using the present VLSI technology,
then P ≈ 187 GCOPS. On the other hand, the performance of the conventional
CoNN VLSIs was 10 GCOPS [6], 2 GCOPS [7,8] and 66 GCOPS [9]. Comparing
these values, this estimation shows that our architecture will be able to achieve
very high performance for CoNN operation.

5 Design of a Sorting Circuit

For implementing the proposed CoNN architecture, we designed a sorting circuit,
which is one of the main components in our architecture. The sorting circuit is
based on a content addressable memory (CAM). By repeating a search sequence
of CAM in descending order of search data, the circuit performs sorting of the
output values of the presynaptic neurons by magnitude.

Figure 5 shows the sorting circuit which includes Q × P processing ele-
ments (PEs) and flag-read circuits (FLAGREAD X and FLAGREAD Y). Each

Fig. 5. Sorting circuit
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Fig. 6. n-bit processing element circuit of the sorting circuit

PE holds an output value of the corresponding presynaptic neuron, and wires
FLAGXp (p = 1, 2, · · · , P ) and FLAGYq (q = 1, 2, · · · , Q) are precharged at
a high voltage. The operation of this circuit is as follows: (1) a searched n-bit
data sd and its reverse data sdb are fed into all PEs; (2) only PEs whose storage
data equals to the searched data discharge the connected wires, FLAGXp and
FLAGYq; (3) the FLAGREAD X and the FLAGREAD Y output the address
data of the discharged wire, FLAGXp and FLAGYq, one by one.

Figure 6 shows an n-bit PE circuit. Each PE includes n cell circuits (CELL0 -
CELLn−1), four NMOS switches and one PMOS switch. Each cell circuit includes
a SRAM cell with six transistors and four NMOS switches. The operation of the
PE is as follows: (1) node FL is precharged at a high voltage by PRE; (2) a
searched n-bit data sd0 - sdn−1 and its reverse data sdb0 - sdbn−1 are fed into
nodes SD and SDB of each cell; (3) in each cell, the searched data is compared
with the storage data by pairs of NMOS switches, N1/N2 and N3/N4, and



A Convolutional Neural Network VLSI Architecture 1013

Fig. 7. Micro-photograph of the sorting LSI

only if both data are the same, the node FL keeps high voltage; (4) high voltage
control signals are given at ports READX and READY , and if node FL keeps
high voltage, a matching flag (low voltage signal) is outputted to ports FLAGX
and FLAGY .

We designed a sorting LSI by using a 0.35 CMOS process as a proof of con-
cept for our proposed architecture. A micro-photograph of this LSI is shown
in Fig. 7. The die size is 4.9 mm sq., and the power supply voltage is 3.3 V.
The LSI includes 48 × 96 PEs, each of which holds 6-bit data. For face po-
sition detection at video rate (30 fps), a sorting cycle should be 100 MHz. We
verified successful sorting operations at 100 MHz clock cycle by circuit simu-
lation, and therefore we can use this LSI for implementing our proposed VLSI
architecture.

6 Conclusion

We proposed a new algorithm and VLSI architecture for CoNNs. Using a sorting
procedure, we execute only MAC operations related to the postsynaptic neuron
output whose ranking is higher than the predefined ranking. For the proposed
VLSI architecture, we have designed and fabricated a sorting LSI by using a
0.35 μm CMOS process. We verified successful sorting operations at 100 MHz
clock cycle by circuit simulation.
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Abstract. The need for high precision calculations in various scientific
disciplines has led to development of systems with various solutions spe-
cific to the problem on hand. The complexity of such systems not with-
standing, a generic solution could be the use of neural networks. To be
able to leverage the best out of the neural network, hardware implemen-
tations are ideal as they give speed-up of several orders of magnitude over
software simulations. A simple architecture for such a neuro-chip is pro-
posed in this paper. The neuro-chip supports the current draft version
of the IEEE-754 standard for floating-point arithmetic. The synthesis
results indicate an estimated 84 MCUPS speed of operation.

1 Introduction

Neural networks have the ability to derive meaning from complicated or impre-
cise data and can be used to extract patterns and detect trends complex for
humans or other computer techniques to recognize. This capability makes them
suitable for solving problems in real world, where traditional techniques are un-
able to deliver optimal performance. A neural network is composed of a large
number of highly interconnected processing elements, called neurons, working in
parallel to solve a specific problem. These neurons are the building blocks of the
network and are connected to each other by weighted edges, which determine the
driving strength of each neuron with reference to the neuron at the other end of
the connection. Thus, the output at each neuron is sum of the weighted inputs
from other neurons that excite it. Digital hardware implementations of Neural
Networks [1], until now have used different standards for the way in which the
data is represented internally and the outputs presented to the external world.
This paper proposes the use of the IEEE-754 standard for floating-point arith-
metic throughout the implementation. The architecture is simple, yet tries to
emulate the parallel computing processing power of neural networks.

2 Design and Implementation

A block diagram of the 32-bit floating point neuro-chip is shown in Fig 1. The
architecture consists of a Neuron Processing Unit (NPU), one Control Logic Unit
(CLU) and four Memory Units (MU). The neuro-chip is capable of modeling a

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 1015–1021, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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network with 4 layers, including the output layer and with at most 8 neurons
in each layer. Each neuron in the network can be connected to 4 neurons in the
succeeding layer, limiting the number of inputs to each neuron to 4. The number
of neurons and the number of layers in the neural network is limited only by the
size of the on-chip memory. The number of layers in the neural network is given
as a separate input to the neuro-chip. The inputs to the neuro-chip are 32-bit
floating point input with guard, round and sticky bits, 2 bits for selecting the
input line and 3 bits for the neuron are appended at the beginning. The extra
5 bits appended double as addresses for the input memory as well. The weights
are also read in, before the neuro-chip is put into operation, with 2 bits extra
appended for the corresponding layer, apart from 2 bits for the input line and 3
bits for the neuron. The first 7 bits double as addresses for the memory in this
case. The number of layers in the network is also given as input to the neuro-
chip. Figs. 2 and 3 show the input and the weight storage formats respectively.
Once the weights have been obtained the neuro-chip is ready for operation and
processing starts with the given data.

Fig. 1. Block Diagram of the Neuro-chip (32-FPNC)

3 neuron 
select bits

2 input line 
select bits

32bit floating 
point number

3 guard, round 
and sticky bits

40 bits wide

Fig. 2. 40-bit Input Format
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2 layer
selection

bits

3 neuron 
select bits

2 input 
line select 

bits

32bit
floating
point

number

3 guard, 
round

and sticky 
bits

42 bits wide

Fig. 3. 42-bit Weight Format

2.1 Neural Processing Unit (NPU)

The NPU is the heart of the neuro-chip that consists of an array of neurons,
four in this case. Each neuron independently calculates the weighted sum of all
the inputs and the sum is then passed through a sigmoid activation function
unit that applies the threshold function on the sum. Fig. 4 shows the block
diagram of a neuron and each neuron is capable of receiving four weighted inputs.
The multipliers shown in the figure are 32-bit floating point multipliers that
are complaint with the IEEE-754 floating-point arithmetic standards. The unit
takes in the input and the weight value, both 32-bit floating point numbers, and
generates the product. The usage of guard, round and sticky bits and rounding
and normalization after multiplication in compliance with the standards are built
into each of the multiplier units. The result is passed onto the adder module,
which is a tree structure of 32-bit floating point adders, generating a valid 32-bit
floating point sum. This sum is then passed onto the sigmoid function activation
unit, which then applies limiting function. The basic functionality of a neuron is
thus simulated using this architecture. The most widely used limiting function
is the sigmoid function which, as given by McClelland and Rumelhart [2], is
represented by the equation:

f(x) =
1

1 + ex
. (1)

An approximation to this function proposed in [2] is used here for generating
the limiting function. The function used is given as:

f(x) =
1
2

(
x

1 + |x| + 1
)

. (2)

This function is a simple polynomial which uses no transcendentals but approx-
imates the sigmoid function with good precision that is suitable for a hardware
implementation. It is the general characteristics of the sigmoid, not the precise
equation, that is important for efficient functioning of the network. Fig. 5 shows
a block diagram of this sigmoid activation function unit [3]. The circuit takes as
its input a value x and generates the output f(x). The functional units used by
the circuit are:
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Fig. 4. Representation of a Neuron
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Fig. 5. The Sigmoid Activation Function

1. two adder circuits
2. one divider circuit
3. one absolute value generator circuit
4. one divide-by-two circuit

All these functional units are IEEE-754 floating-point standard compatible. The
adder units are 32-bit adders [4] generating a normalized 32-bit result. The
divide-by-two unit is a shifter, shifting the data right by 1-bit. The data is
normalized after the shifting operation.

The NPU thus computes the output of four neurons at a time. The individual
units in this stage are pipelined to achieve best delay results for each pass through
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one neuron. The divider and adder architectures used are optimal, giving low
area utilization and greater throughput.

2.2 Control Logic Unit (CLU)

The Control Logic Unit (CLU) controls the flow of data into and out of the
NPU. The CLU is responsible for retrieving data from the input and weight
memories to pass onto the NPU and also to receive the data generated by the
NPU to be stored in the output memory. It includes decoding mechanisms for
addressing the data in the memories. The CLU incorporates logic to read in data
from the weight memories and inputs to be indexed onto a neuron in the correct
manner. Each neuron needs four input values and their corresponding weight
values. After having generated outputs corresponding to the first (hidden) layer
of the network, the CLU takes the data in the output memory and transmits the
data as inputs to the NPU, along with the corresponding weights for generating
the outputs of the output layer or another hidden layer. The cycle repeats for the
next hidden layer until the output layer is encountered. The CLU keeps track
of the current layer for which the outputs are being generated by the NPU.
The number of layers in the neural network is given as a separate input to the
neuro-chip.

2.3 Memory Units (MU)

The Memory Units (MU) store the input data, weight data, interconnections
between neurons in the layers and the partial outputs generated by the NPU.
All the data are 32-bit floating point numbers. There is a provision for storing
128 (32x4) weights corresponding to 32 neurons in the network. Each weight
is indexed by 2 bits for the layer, 3 bits for identifying which neuron in the
layer it refers to and finally 2 bits for the corresponding input direction for
that particular neuron. The partial outputs are 32-bit floating point numbers
which additionally have 2 bits for associating each with their layer and 3 bits
for associating them with a particular neuron in that layer. The connection
memory stores the interconnections between the neurons in different layers. A
maximum of eight neurons can be present in any layer, so an 8-bit number for
each neuron in ith layer will define connections with neurons in the i-1th layer.
The corresponding bits for connected neurons will be set to logic high. The CLU
uses this information in routing the inputs and the corresponding weights. This
technique ensures that correct inputs are given to the right neuron, as needed.
The number of layers in the network is assumed not be beyond four. A maximum
of 8 neurons in a single layer is considered, therefore, 4x8x8 bits of memory is
needed for storing the interconnections.

3 Functioning of the Neuro-chip

The neuro-chip is capable of modeling a network with four layers, including the
output layer and with at most eight neurons in each layer. Each neuron in the
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network can be connected to a maximum of four neurons in the succeeding layer.
The network, thus, can have thirty two neurons as a whole.

The neuro-chip takes relevant number of passes to compute the outputs of
the neurons for the output layer and then sums them to generate the final out-
put. The neuro-chip initially computes the outputs of the first layer, reading
inputs and corresponding weights. Once the process has been internally signaled
completed, the output memory acts as input with the partial outputs acting as
inputs now. The process repeats until it accounts for all the layers in the net-
work. The final output, thus obtained, is placed on the output lines. Until then
the neuro-chip is in busy state signaled by a busy bit.

Thus, the neuro-chip is capable of handling a variety of network architectures
with good speeds of operation and high amount of precision. The usage of IEEE-
754 complaint floating-point standard improves the accuracy and precision of the
results very much.

4 Results of Simulation and Synthesis

The system has been synthesized with the help of Leonardo SpectrumTM of
Mentor Graphics and refined using Magma BlastTM from Magma Design Au-
tomation. The best clock speed achieved was 20 MHz. At this speed the neuro-
chip is capable of an average performance of 84 MCUPS (Connections Updated
per Second).

5 Conclusions

The proposed architecture is capable of handling various network topologies
that need high precision. The speed of operation of the neuro-chip is compared
with various previous implementations (with lesser bit resolutions, though) as
shown in the Table 1. The convergence of data with software simulations using
MATLABTM is encouraging as the results are precise to the order of 6 to 10
digits in the mantissa part.

Table 1. Comparison with other NN Implementations [5]

Type Name Neurons Speed(MCUPS)

Digital WSI 144 300
Digital MANTRA1 40x40 133
Digital HNC 100-NAP 100PU 64
Digital 32-FPNC 13 84
Hybrid Neuroclassifier 6 21000
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Abstract. This paper proposes several improved CMOS analog circuits for 
neuro-fuzzy network, including Gaussian-like membership function circuit, 
minimization circuit, and a centroid algorithm defuzzier circuit without using 
division. A two-input/one-output neuro-fuzzy network composed of these 
circuits is implemented and testified for non-linear function approximating. 
HSPICE simulation results show that all the proposed circuits provide 
characteristics of high operation capacity, high speed, simple structures, and high 
precision. They are very suitable for rapid implementation of neuro-fuzzy 
networks. 

1   Introduction 

General researches on neuro-fuzzy systems mainly focus on the software 
implementations, which typically operate below K flips rate (flips stands for fuzzy 
logic inferences per second) [1]. It is not fast enough for many high-speed control 
problems such as automotive engines control [2]. Hardware systems using IC 
technology provide an alternative to overcome this drawback. Particularly, the analog 
domain is worth considering for these applications, providing parallel processing with a 
speed limited only by the delay of signals through the network so that it has intrinsically 
higher speed and lower power consumption than their digital counterparts [3]. And the 
non-linear characteristics of transistors are functionally apt to the implementations of 
non-linear processing of neuro-fuzzy systems, i.e. only a few transistors are needed for 
an analog functional block which is usually much less than that for a digital one [4]. 

In this paper, several improved analog voltage-mode functional blocks are proposed, 
composed of which a neuro-fuzzy network is designed and its validity is also proved by 
approximating a non-linear function. All the circuits can be fabricated with the CMOS 
single-poly scaled technologies, using MOS transistors as the only primitive circuit so 
as to be compatible with the conventional digital circuitry that may be needed to 
integrate together with the fuzzy circuitry for complex control tasks such as adaptive 
control. Finally, the related HSPICE simulation results (for 0.18μm CMOS 
mixed-signal technology provided by SMIC) are presented to illustrate performance of 
the proposed circuits. 
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2   Blocks of Mamdani Model Based Neuro-fuzzy Network 

Referring to the Mamdani model based neuro-fuzzy network shown in Fig. 1, the 
catalog of functional blocks can be identified [5]. 

 

Fig. 1. Architecture of the general neuro-fuzzy network based on Mamdani model 

• Gaussian membership function block for layer 2, whose input is voltage variable 
vector and output is the matrix of matching degrees. 

• Minimization block for layer 3, which maps the matrix of matching degrees into the 
vector of firing rule activities. 

• Defuzzier block for layer 4 and layer 5, generally using the centroid algorithm, 
calculating the average firing activity of its corresponding rule and aggregating the 
consequent outcome to obtain the inferred output. 

2.1   Gaussian Membership Function Circuit 

It’s hard to implement the exact Gaussian shape membership function, as shown in Eq. 
(1), with CMOS circuits: 

( )
2

2

2)( σμ
cx

ex
−−

=  
(1) 

where c is the mean of the Gaussian curve and  is the breath. A bell-like function 
circuitry was introduced in [1]. Based on similar principle, an improved circuit of 
programmable Gaussian-like membership function circuit is designed in Fig. 2.  

During VIN increasing, the drain current of M2 ID2, as well as ID5, changes from zero 
to ISS, assuming M1, M2, M5 and M6 are identical and I1, I2 are equal to ISS. Output 
current IOUT is always doubling the difference of the two drain currents ID2 and ID5. 
When the transistors operating in the saturation region, from the square-law, ID2 and ID5 
can be derived as Eq. (2). If reference voltage E1 is set below E2, ID2 would approach ISS 
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ahead of ID5, which imply that the waveform of IOUT can be alike as Gaussian curve. So 
changing the values of the control voltages E1 and E2 can change the mean and breadth 
of the output Gaussian-like voltage curve, R and ISS determining the amplitude. The 
input voltage is applied to the gates of M2 and M5, the W/L of which will decide the 
slope of each side of the Gaussian-like curve. Fig. 3 shows the HSPICE simulation 
result. In this simulation, W/L for all transistors are 7/3.5, and R is about 93k . The 
difference between control voltage E1 and E2 is fixed as 200mV, and the voltage of E1 

changes from –1V to 1V. 
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Fig. 2. Proposed Gaussian-like membership function circuit. M1-M8 are identical, E1 is set 
below E2, I1 and I2 are equal to ISS. 

2.2   Minimization Circuit 

A simple design of minimization CMOS circuits can be realized by parallel PMOS 
source followers. However it suffers from limited input and output swing and also the 
output level shift. A high precision, high speed minimization circuit was introduced in 
[6]. Some extra compensation circuits need to be added to eliminate the output level 
shift and to enhance the input swing as well. The final schematic circuit diagram with 
two input voltages is presented in Fig. 4. M5 and M11 form the based voltage source 
follower minimization circuit; M6 is used to cancel the output level shift. M1-M4 forms 
a PMOS input amplifier so that the input voltage, i.e. the output of Gaussian 
membership function circuit, can be low to VSS. And with the feedback M1-M6, or 
M6-M11, construct a unity gain buffer, making the output voltage just equal to the 
minimization input voltage. The proposed circuit can therefore perform in very large 
input range with little output level shift. This circuit can be easily expanded for more 
voltage inputs when similar circuit structures as M1-M5 are added. Fig. 5 shows the 
HSPICE simulation result of the minimization circuit with three input voltages. All the 
transistors are of the same sizes as 7/3.5. 
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Fig. 3. An example of output voltage from proposed Gaussian-like membership function circuit 
with HSPICE simulation 

 

Fig. 4. Proposed minimization circuit with tow inputs, the tail currents are all equal to IB and the 
drain current of M6 is always equal to IB/2 
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Fig. 5. HSPICE simulation result of an example of output voltage (VO) from the proposed 
minimization circuit with three inputs (VIN1, VIN2 and VIN3) 

2.3   Defuzzier Circuit 

The centroid algorithm (COA) is the most popular method for defuzzier. However, 
using analog dividers is impractical — analog dividers are troublesome in terms of time 
and area. Many of the reported fuzzy systems impose the condition that the 
denominator in expression added up to the value 1 to avoid the division or recur to the 
use of approximate normalization [1]. A convenient alternative uses parallel feedback 
OTAs to implement COA [7]. Unfortunately, those schemes are poor in transient 
response while consuming large area. 

In this paper a simple defuzzier circuit is proposed, with which the COA is 
implemented without employing a division circuit or feedback loop. The main idea is 
based on parallel transconductances, as shown in Fig. 6. 

 

Fig. 6. Parallel transconductances circuit 

The output voltage can be derived from: 

0)( ==− OUTOUTii IVVg  (3) 
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    This means that the output voltage is the average value of the inputs. The 
contribution of each input to the output is weighted by the transconductance of gi. Eq. 
(4) effectively provides a defuzzier output. Using a MOS transistor as a controllable 
g-element, noting that gDS=K(VGS-VTH) when it operating in the deep triode region, if 
VTH is cancelled the gDS could be controlled by VGS (gDS =KVGS) linearly. In Fig. 7, M3, 
as well as M6, acts as the controllable transconductance. M1 and M2, as well as M4 and 
M5, just act as a positive level shift circuit to cancel VTH of M3 and M6. To eliminate 
body effect that would cause VTH of M2 (M5) changing with the bulk potential, the bulk 
of M2 (M5) must connect to the source that is feasible for PMOS. Ignoring the impact 
of source potential, the output voltage is: 

21

2211

ININ

ININ
OUT VV

VVVV
V

+
×+×≅  (5) 

This circuit could also be expanded for more inputs normalization circuit when the 
same block as M1-M3 is added. The HSPICE simulation of three-input/one-output 
normalization circuit is performed. In this simulation, the weight voltages are fixed as: 
V1=90mV, V2=60mV, and V3=20mV. And the control voltages (VIN1, VIN2 and VIN3) are 
summed to have waveforms shown in Fig. 8. When the weight voltages are set below 
200mV, the output of the circuit would be under 200mV, so that the impact of source 
potential can be ignored versus VTH, ensuring M3 (M6) operating in deep triode region 
as well. Fig. 9 shows the output waveforms of the proposed circuit compared with the 
ideal output. All the transistors have the same W/L as 7/3.5. 

 

Fig. 7. Proposed COA simple-structure normalization circuit based on parallel transconductances 

 



1028 W. Wang and D. Jin 

 

Fig. 8. Input voltages waveforms 

 

Fig. 9. HSPICE simulation output voltage (VOUT) of defuzzier circuit compared with the ideal 
value (VTRUE) 

3   Analog CMOS Implementation of Neuro-fuzzy Network 

In this section, fuzzy functional blocks, which are described in the previous sections, 
are combined into a two-input/one-output neuro-fuzzy network with the block diagram 
as shown in Fig. 10. 
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Fig. 10. Block diagram of two-input/one-output neuro-fuzzy network 

Table 1. Parameters of neuro-fuzzy network (R=93k  and =0.25) 

 E1 

/mV 
E2 

/mV 
i /mV ci 

MFC1 -200 200 50 0 
MFC2 50 450 204 0.25 
MFC3 300 700 45 0.50 
MFC4 550 950 0 0.75 
MFC5 800 1200 169 1.00 

Each input has five membership functions or linguistic terms. All membership 
functions have Gaussian-like shape. Parameters used for determining membership 
functions (voltage E1 and E2) are illustrated in Table I with corresponding means ci of 
ideal Gaussian curves. Each R equals to 93k . The breath  of ideal Gaussian curves  
is 0.25. 

The performance of this neuro-fuzzy network is testified as a function approximator. 
The approximated function is y=0.05sin(7x)+0.08 with only one variable, so one of the 
inputs of network must be set to VDD and only five weights are needed. The values of 
weight i are generated by Matlab, also illustrated in Table 1, applied to the 
neuro-fuzzy network. Fig. 11 shows the HSPICE simulation output voltage (VOUT) 
compared with the ideal value (VTRUE). Input voltage changes from 0 to 1V within 2sec. 
With a square wave input, the output response also shows a rise time of 200ns and a fall 
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time of 65ns in 33.4mV~114mV. It corresponds to a speed of 5M flips including the 
defuzzier process. Since neuro-fuzzy inferences are performed in parallel before the 
defuzzier part, their inference speed does not depend on the number of fuzzy rules. This 
speed is in a good range for most control applications. 

 

Fig. 11. HSPICE simulation result when proposed neuro-fuzzy network used to approximate a 
non-linear function y=0.05sin(7x)+0.08 

4   Conclusion 

This paper proposed several improved voltage-mode CMOS analog circuits for 
neuro-fuzzy network. The simplicity as well as the programmability of these circuits 
permits increasing controller complexity, by adding rules and/or input with no extra 
design effort. A two-input/one-output neuro-fuzzy network is implemented and 
testified as non-linear function approximation. Adding software or hardware 
self-learning blocks, this system will be of much adaptation and practicality. Anyway, 
the proposed architecture provides characteristics of high operation capacity, simple 
structures, and high precision. 
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Abstract. High Quality CD, and DAT audio is very data intensive. Currently, 
the multi-channel technique is the preferred method of audio transmission. The 
MPEG(Moving Picture Experts Group) provides data compression technology 
for sound and image systems. The MPEG-2 AAC standard provides multi-
channel 5.1 sound, using the same audio algorithm as MPEG-1, thus MPEG-2 
audio both forward and backward compatible. The MDCT(Modified Discrete 
Cosine Transform)is a linear orthogonal lapped transform based on the concept 
of TDAC(Time Domain Aliasing Cancellation). In this paper, we propose an ef-
ficient algorithm for the optimization of the core in the audio part of the data 
transmission based on the MDCT/IMDCT(Inverse MDCT). This algorithm re-
duced the operating coefficient by overlapped area to bind. In the comparison of 
the original algorithm with the optimized algorithm that cosine coefficient re-
duced 0.5%, multiplies operating 0.098% and adds operating 0.58%. The pro-
posed Algorithm was implemented using the C language then we designed 
hardware architecture of micro-programmed method it’s applied to optimized 
algorithm. This processor was designed with the VHDL language and was syn-
thesized using the design analyzer of SYNOPSYS, with rule checking by 
SADAS. This processor operates at a clock frequency of 20MHz and a voltage 
of 5V. Thus, the designed system can be used for systems based on other FPGA 
and ASIC. 

1   Introduction 

The technology to make an electronic communication information industry and mar-
ket force came to be identical MPEG audio field. Currently, the most important tech-
nology in the field of multimedia is compression. The methods employed in audio 
compression, make use of the properties of the human central auditory nervous sys-
tem. These method, which are based on the psychoacoustic model, utilize perceptual 
audio coding techniques that must not code above the limits of human perception [1]. 
MPEG-2 AAC(Advanced Audio Coding) is the most advanced coding scheme avail-
able for high quality audio coding. This AAC standard is the first codec system to 
fulfill the requirements of the ITU-R for ‘indistinguishable’ quality at data rates of 
320 Kbits/sec for five full-bandwidth channel audio signals. The compression ratio of 
the AAC format is 1.4 times better than that of MPEG-1 Layer3 and the provides an 
audio signal that has CD tone quality at 96-128Kbits/sec, at a bitrate that is 30% 
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lower than that of MPEG-1 Layer3. MPEG-2 AAC is composed of Huffman coding, 
Quantization, scaling, MDCT, Gain control and Hybrid filter-bank. Among these 
different components, the most operational part is MDCT/IMDCT. MDCT technol-
ogy removes the aliasing that is introduced during subband coding by means of the 
TDAC(Time Domain Aliasing Cancellation) method. MDCT involves time domain to 
frequency domain conversion, whereas reverse IMDCT involves frequency domain to 
time domain conversion [2,3]. MDCT has the advantage of removing the time domain 
aliasing by using windows that overlap by 50%. Fig 1. shows a block diagram of the 
MPEG/Audio encoder and decoder. 

In this high-level representation, encoding closely parallels the process described 
above. The input audio stream passes through a psychoacoustic model that determines 
the signal-to-masking ratio of each subband. The bit or noise allocation block uses the 
signal-to-masking ratio to decide how to apportion the total number of code bits 
available for the quantization of the subband signals, so as to minimize the audibility 
of the quantization noise. Finally, the last block takes the representation of the quan-
tized audio samples and formats the data into a decodable bit stream. The decoder 
simply reverses the formatting, then reconstructs the quantized subband values, and 
finally transforms the set of subband values into a time domain audio signal [4]. As 
specified by the MPEG requirements, ancillary data not necessarily related to the 
audio stream can also be fitted within the decoded bit stream. 

 

Fig. 1. MPEG-2 AAC Encoder and Decoder 
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This paper is organized as follows. In section 2, we describe the MDCT/IMDCT 
algorithm and its optimization. Section 3, we describe an efficient system design 
using the vector program method. Section 4, discuss the design implementation and 
experimental results. The results of the simulation and verifications are given in sec-
tion 5, along with our conclusions. 

2   MDCT/IMDCT 

In this section, we briefly discuss the concept of the MDCT/IMDCT algorithm, as 
well as the architecture, operation and specifications based on this concept. The 
MDCT is a time domain data to frequency domain conversion algorithm, whereas the 
reverse IMDCT is a frequency data to time domain conversion algorithm. The MDCT 
combines critical sampling with the good frequency resolution provided by a sine 
window and the computational efficiency of a fast FFT like algorithm [5]. 

Typically 128 to 512 equally spaced bands are used. The MDCT also offers the 
possibility of changing the block length of the transform dynamically. For very dy-
namic input signals, a short block length keeps the quantization error local in time, 
while for quasi static signals a long block length provides good frequency resolution. 
The MDCT and IMDCT algorithms employ a technique called time-domain aliasing 
cancellation. The equation of the MDCT is 
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    The equation of the Inverse MDCT is 
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Methods (1) and (2) are essentially the same, except for the length of the coeffi-
cient and the multiplexing factor 2, and 2/N, respectively, which are used after accu-
mulating. Fig 2 shows the MDCT windows transition between the long and short 
block modes. The length of the short block is one third that of the long block. In the 
short block mode, three short blocks replace a single long block, so that the number of 
MDCT samples per frame of audio samples remains unchanged, regardless of the 
block size. For a given frame of audio samples, the MDCTs can all have the same 
block length (long or short) or a mixed-block mode. In the mixed-block mode, the 
MDCTs for the two lower frequency subbands have long blocks, while the MDCTs 
for the 30 upper subbands have short blocks. This mode provides better frequency 
resolution for the lower frequencies, where it is needed the most, without sacrificing 
the time resolution for the higher frequencies [6]. The switch between long and short 
blocks is not instantaneous however. A long block with s specialized long-to-short or  
short-to-long data window serves as the transition between the long and short block 
types. Because the MDCT processing of a subband signal provides better frequency 



 A Design on the Vector Processor of 2048point MDCT/IMDCT 1035 

 

resolution, it has poorer time resolution. The MDCT operates on 12 or 36 polyphase 
filter samples, so that the effective time window of the audio samples involved in this 
processing is 12 or 36 times larger [7]. The MDCT/IMDCT coefficients are selected 
in a lookup table according to the block type, long, long-short, short, or short-long. 
Similarly, the windows table corresponding to this block type is selected in order to 
improve the individual subband isolation, and we used the delay component of 18−z  
for the 50% overlapped windows in the time domain. 

36 Samples

36 Samples
12 Samples 12 Samples

24 Samples

 

Fig. 2. The arrangement of overlapped MDCT windows 

2.1   MDCT/IMDCT Algorithm Optimization 

Several MDCT/IMDCT algorithms are known based on (1) and (2). Equation (1) 
applies to (2) of optimization. Equation (3) shows that Cosine coefficient applied to 
an exponential function. 
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    Therefore, (3) can be represented by (4) 
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(4) can be split into even and odd domains. 
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    Equation (5) is converted N point MDCT into an N/2 point MDCT. 
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    Equation (6) can be split into even and odd areas.  
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    A flowchart representing equation (7) is shown in Fig 3. 
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Fig. 3. N/2 point MDCT Flowchart 
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In order to use this method, we have to split each even and odd area that E(i,k) and 
O(i,k). 
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    Also, it is representative of an N/4 point MDCT when N/2 is odd. 
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    A flowchart representing equation (9) is shown in Fig 4. 
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Fig. 4. N/4 point MDCT Flowchart 

    We used an N/4 point MDCT to express an N/8 point MDCT. The operation course 
like there, a minimum operation element a to be used multiplies the factor in the even 
domain of the 2 inputs and adds. The N/8 point MDCT is shown in Fig 5. 
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Fig. 5. N/8 point MDCT Flowchart 

    In the case of MPEG-2 AAC, performs on the maximum 2048 MDCT that neces-
sary coefficient number is 2048, but used to this algorithm 10 memory words are 
necessary for the hardware implementation of 1)2048(log 2 −=p . If N=2048 and, 

k=2068 in a 2048-point MDCT, then the total multiplexing is 10,400. Compared   
with the original algorithm, the number of operations is reduced by 400 times. The 
minimum operational flowchart is shown in Fig 6. 

 

Fig. 6. The minimum operational elements of the MDCT 

2.2   The Minimization of the MDCT/IMDCT Operation 

In this paper, we reduced the number of coefficients required to bind the overlapping 
part of the MDCT/IMDCT operation. A normalization course is to find the rule in the 
course of the II paragraph as adapt to P-step in pN 2= . That is the product operation 

p-step is N2log . MDCT coefficients value of N block to represents pN 2/ point 

MDCT, because MDCT coefficients has p-step in Np 2log= . In this paper, the 

MDCT coefficients is necessary to cosine (256x), cosine(128x), cosine(64x),  
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cosine(32x), cosine (16x), cosine(8x), cosine(4x), cosine(2x). Therefore, the first term 
coefficient value unconditional 2 number and number degree of next step need coeffi-
cient value. In the case of a 2048 point MDCT, the total number of coefficients 
is 112048log2 = . Consequently, 2048 points MDCT calculate in coefficient value of 

twelve numbers. Also, input sequence of each steps apply to inverse bit sequence as 
output of front step appear correct sequence. 

Also the MDCT minimum operation element has accomplish N/2 of each steps. 
Therefore, the memory need for N/2. The coefficient quantity of necessary for the 
operation factor was reduced innovatively in the course such as this paragraph. The 
next executes the optimization about a cosine coefficient index K of the equation 1. 
A reduce of operation is able to K. A coefficient index is altered according to the 
change of K index, A degrade the operation quantity if it has the duplicate part if 
we are according to the change of K. A cycle about step p is 2p because cycle about 
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Every step is connected to the addition in Fig 3 and the equation 3 is remains co-

sine function as final result part use quantity part. The cycle is 
12 −p

, because use a 
cycle attribute of cosine function exception symbol element. A table 1 expresses the 
output value according to an index factor. 

3   System Design of Vector Program 

The MDCT requires many cumulative operation relatively, about high precision 
96dB is desired compared with an image data. Therefore, this system use floating 
point multiplier and adder to satisfy a precision 96dB about maximum 2048 point 
MDCT, multiplier has exponent 6bit and mantissa 24bit, and adder used floating-
point addition which have exponent 6bit and mantissa 56bit to cumulative addition 
can do the chance of multiplication result. The exponent has dynamic range and 
mantissa designed a plan sufficiently great to reduce the error of mantissa opera-
tion. The mantissa of adder is 56bit. This is keep throw mantissa when cumulative 
addition is multiplication output from adder because do not use MAC specially. 

In this paper, multiplier and adder designed a plan all pipeline to operation speed 
optimization. The Addition structure of used mantissa multiplication of pipeline 
radix-4 booth multiplier is desired adder which mantissa input bit width have dou-
ble when parallel booth multiply. But in this paper, 24bit radix-4 booth multiplier is 
consisting of addition tree by 26bit adder, used last node 31bit adder of addition 
tree. Fig 7 shows that structure of 56bit floating point adder. In this paper, 56bit FP-
Adder is used CSA (Carry Save Adder). The reason of CSA method uses that it is 
not consume pipeline stage. 

Pre-normalizer assumes by floating point number to become barrel shifter input-
ting, pre/post normalizer used each 46bit barrel shifter. Vector instruction is defined 
micro-program instruction as a basis operation element which accomplishes with 
the multiplier to the adder. 
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Fig. 7. The architecture of 56bit floating point adder 

The vector controller of micro-program method is shown in Fig 8. The features of 
such structure, the operation that the user wants to accomplish as defined micro-
program instruction of the best suited taking the hazard into account. We are based on 
the basis instruction make the application program operate, it’s can display a proces-
sor performance of the best suited. This processor is able to implement flexible proc-
essor like software. 
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Fig. 8. Vector instruction controller 
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Total system is consists of FP-Adder, FP-multiplier, input/output buffer instead of 
Vector register, a hazard control programming delay controller, and Vector instruc-
tion controller of micro-program method. The Buffers to instead of the vector register 
is not overhead to operation because buffers operate outside Synchronous RAM by 
interface. The total structure of Vector-MDCT processor is shown in Fig 9. 

O u tp u t

M C o nto rlle r A C o nto rlle r

M ultip lie r A d d e r

M U X (2:1)

5 63 0 3 0

3 0 3 0

c d j

c d j

a b j

a b j

e f j

e f j

O u tp u t B u f f

C o e f f ic ie n t
M e n o ry

e e

M ic ro - p ro g ra m
V e c to r In s tru c tio n  

C o n tro l le r

M U X (2 :1 )

5 4

M
U

X
(2

:1
)

M
U

X
(2

:1
)

M
U

X
(2

:1
)

M
U

X
(2

:1
)

3 0

3 0
3 0

3 0

3  S e t_a
3  S e t_b

IN V _A
IN V _B

3  S e t_a

3  S e t_b

IN V _A
IN V _B

5 6

4  s ta g e  
P ro g ra m a b le  D e la y

3 0

c f c e d f d e

c f c e d f d e

+2 b c e +d f d e c f

c f c e +2 b

In p u t

 

Fig. 9. Vector MDCT processor block diagram 

The pipeline scheduling method of MDCT/IMDCT operation element is shown in 
Fig 10. The above scheduling is the pipeline scheduler that an operative removal the 
pipeline hazard used to MDCT/IMDCT. 
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Fig. 10. The scheduling of the operation elements 
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The FP-Adder and FP-Multiplier all input data is operates in rising edge and output 
result is falling edge. The hazard is controlled by program delay. The case which we 
multiply the complex number of 1unit with the complex number of 2unit and add to 
be the operation. 

4   Design Implementation and Experimental Results 

In this paper, the system to be implemented the user uses an outside ROM at an ini-
tialization and a defined a vector instructions. It was the low in the operate mode so 
that an application program which mixes this could be executed. The controller organ-
ized of an Instruction RAM, Instruction Pointer, Vector instructions ring buffer and 
Shifter. The MDCT input data and the value to express the output data of MDCT 
operation as shown in fig 11. 

 

  

Fig. 11. The MDCT input and output data 

We see a result waveform of the simulation confirmed the part to be overlapped on 
another up. The SHMOO test simulation result is shown in Fig 12.  
 

 

Fig. 12. The SHMOO test simulation result 
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In this paper, algorithm verification is used C language and data represents used 
the GNU-Plot. The synthesis of a gate level used the SYNOPSYS. Multiplier and 
adder perform on the independent operation. In this case, one clock cycle has two 
outputs. This processor operates at a clock frequency of 20 MHz and a voltage of 5V. 
The processor is designed with VHDL language and synthesis by design analyzer of 
synopsys, rule checked by SADAS. Verilog-XL of cadence performs on the functional 
and timing simulation, Pre/Post layout simulation. Thus, the designed system can be 
used for systems based on other FPGA and ASIC. 

5   Conclusions 

In this paper, the MDCT/IMDCT algorithm is an optimized of used MPEG-2 AAC 
and this processor is designed using vector program method. We optimize a standard 
algorithm so that the processing was possible to a 0.25% operation. I.e., we showed 
efficiency in the 0.098% of multiplication and 0.58% of addition compared with the 
optimization. 30bit FPU multiplier and 56bit FPU adder designed high precision and 
high speed to treat sufficiently until other operation of MPEG-2 AAC in designed 
process. In this paper, the core has general DSP architecture that consists of 40,000 
gates. This processor able to process 2048-point MDCT/IMDCT of MPEG-2 AAC 
within 5000 cycle, TNS 38 tap filter of AAC within 10,000 cycle and 2048 FFT 
within 12,000 cycle. Designed system accomplished with pipeline method, a control 
unit design is very much to situation of designer because pipeline instruction and 
pipeline scheduling define user of all system. 

Also, situation of user uses application program by exchange binary without devel-
opment again application program by exchange instructions. The designed MDCT 
/IMDCT Vector processor is adapted to core of digital broadcasting. 
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Abstract. In this paper the neuron operation using stimulated Brillouin scatter-
ing (SBS) in optical fiber is described. The inherent optical feedback by the 
backscattered Stokes wave in optical fiber leads to instabilities in the form of 
optical chaos. At low power, the nature of the Brillouin instability can occur be-
low threshold. At high power, the temporal evolution above SBS threshold is 
periodic and can become chaotic. Control of chaos induced transient instability 
in Brillouin-active fiber is experimentally implemented with Kerr nonlinearity 
having a non-instantaneous response in netowork systems. Controlling chaotic 
instabilities can lead to multistable periodic states; create optical logic ‘on’ or 
high level "1" or ‘off, or low level "0". It can be used in neural networks. It can 
also lead, in principle, to large memory capacity. 

1   Introduction 

It is well known that optical fibers have potential usage in diverse fields [1] other 
than optical communications, such as expanding research in versatile fiber optic 
sensors.  Our research has also focused on integrating fiber optic sensors with ac-
tuation materials to create a system that is capable of sensing, and controlling shape 
or orientation of the medium with respect to its environment, as a first step in creat-
ing a smart sensor structure. Specifically, we have focused on configuring and de-
veloping a Stimulated Brillouin Scattering (SBS) sensing system that behaves as a 
neural network, capable of learning by experience, predicting future reactions to 
environmental changes, and executions as prescribed. 
    Such a smart sensor system can potentially implement a massively parallel compu-
tational architecture with its attendant reduction in processing time while managing 
the complexity of the system, i.e. the sensing/actuation grid. Our SBS network would 
learn the correct "algorithms" by example during training and have the ability to gen-
eralize to untrained inputs after training is completed. The inputs to the network are 
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the fiber optic sensor signal outputs, and the network outputs are the control signals 
for actuation controls. The true advantage of this system for application to smart  
sensor structures lies both in its capability to analyze complex sensor signal patterns 
and its speed in generating the appropriate control signal for the actuators. The key 
lies in the implementation of a neuron operation using SBS in optical fiber. 

2   SBS Based Neuron  

Nonlinear effects in optical fibers, specifically stimulated Brillouin scattering (SBS), 
has emerged as a versatile tool for the design of active optical devices for all-optic in-
line switching, channel selection, amplification and oscillation, as well as in optical 
sensing, and optical communications[2], [3], [4]. The backward  nature of SBS scat-
tered light, with a frequency shift equal to that of the laser induced acoustic wave in 
the fiber (known as the Stokes or Brillouin shift), has long been viewed as an ultimate 
intrinsic loss mechanism in long haul fibers [5], [6]. The very backscattering nature of 
this nonlinear process and the existence of a threshold provide potential optical device 
functions, such as optical switching, arithmetic and neural functions. 
    An artificial neuron, used in neural network research, can be thought of as a device 
with multiple inputs and single or multiple outputs. The inputs to a neuron are 
weighted signals. The neuron adds the weighted signals, compares the result with a 
preset value, and activates if the sum exceeds threshold. In the nonlinear optical phe-
nomenon, the system's combined weighted signals also produce an output if the 
weighted sum is greater than the threshold. A typical neuron is illustrated in Fig. 1. 
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Fig. 1. A simplified multi-layered feedward neural network; the processing node between 
interconnects, where weighted sums are fed to a threshold decision-processing element 

 
    The system through SBS mixing combines weighted signals to produce an output if 
the weighted sum exceeds the threshold. The threshold decision is made by an indi-
vidual neuron in conjunction with weighted inputs from other neurons.  

A theoretical SBS based neural network, utilizing SBS threshold sensing with an 
embedded sensor is shown in Fig.2. [7] 
    The arithmetic building block of energy addition and subtraction (normally difficult 
to perform), as in Fig.2, can conceivably be accomplished by the SBS process, which 
involves energy transfer between waves. Thus, if two waves at a frequency difference 
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equal to the Stokes downshift of the fiber propagate in the fiber in opposite directions, 
then energy is “subtracted” from the higher frequency wave and “added” to the lower 
frequency wave.  If three waves are present in a fiber with equal Stokes shifts, then 
the wave at the middle frequency will receive energy from the higher frequency wave 
and lose energy to the lower frequency wave. Practical implementation of this scheme 
calls for all the waves to be generated by the same laser, since the Brillouin shifts are 
typically very small. 

 

+_ vs

Fibers

Sensor Signal

Pump Signal

vn

vp

vsPump Signal

S.A

Δvs = Stokes Shift

d e te to r

 
 

Fig. 2. SBS implementation of threshold logic 

3   SBS Threshold Logic Theory  

Since the Stokes shift is small, the wavelengths in each wave p, n, and s are almost 
equal [7]. With these assumptions, the nonlinear coupled equation can be written as [6] 

spBp
p IIgI

dz

dI
−−= α                                                            (1) 

 IsIgIIgI
dz

dI
nBpsBs

s −+−=− α                                                          (2) 

IsIgI
dz

dI
nBn

n +−= α                                                                   (3) 

 
where I  represents wave intensity of the pump "p", the backward Stokes wave "s"  
and the acoustic wave "n", and   and gB are respectively the fiber attenuation coeffi-
cient and Brillouin gain coefficient for all the waves. In the basic optical neuron-type 
setup shown in Fig. 2, the input-output conditions of the waves are given as follows: 

 
L
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where  ΔΙ = Ip(0) - In(0) and  Ip(0) is the pump transmission.  If the net gain of the 
sensor signal is close to 0 dB, then Is(L) ≈ Is(0)  so that Ps(0) ≈ Ps(L) << αAeff/gb ≤ 
pp(0), where we have used I =  p/ Aeff ,  in which  Aeff = r2  is the effective cross sec-
tional area of the fiber,  and p is the power. The ratio β = Ps(L)/Ps(0) is on the order of 
0.01 or less. Using pump power level for 0 dB gain, we can estimate the pump power 
value, 

       )0(001.0)( ns pLp =                                                             (7) 

if ps = 1 mw, the pump power pn(0) required will be 1W. The intensity level of each 
wave is set below the SBS threshold (Ith = 21/gbLeff) in order to avoid the generation of 
backward Stokes from spontaneous scattering. The stokes gain vs versus total pump  
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Fig. 3. Backward Stokes signal (νs) vs. pump power difference pp(0) – pn(0) 
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Fig. 4. Net gain of stokes signal vs. as a function of pump power. The change in stokes power 
is the reflected as change in the 0dB 
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power difference pp(0) – pn(0) is shown in Fig.3. The gain can be converted to loss 
and vice versa, simply by changing the pump power levels. The output state of a neu-
ron can be changed by changing one or both input pump intensities. The threshold of 
the neuron can be controlled by changing the power launched in the stokes signal as 
shown in the Fig.3. 
    Assuming α = 0.2 dB/km at 1.03 μm and a fiber core diameter of 8μm by 3M. The 
net gain of stokes signal as a function of the pump power is shown in Fig.4, It shows a 
change in pump power as a change in the 0 dB(or 1.0) gain point. The threshold of the 
neuron can be controlled by changing the power launched in the Stokes signal. Thus 
different neurons can have different thresholds. For a single mode optical fiber, the 
threshold incident laser power required is on the order of 10 mw for 1Km fiber. Thus, 
the sensor power level should be ∼10 mw, and the pump power level should be greater 
than 10 mw. 

4   Controlling SBS Chaotic Instability 

Conversion of SBS chaos induced instability to periodic effect is inspired by theory in 
nonlinear dynamics. The basic idea lies in the stabilization of unstable periodic orbits 
embedded within a chaotic attractor [8]. 

Since these orbits are very dense in such an attractor, a successful control may 
therefore serve as a generator of rich forms of periodic waves, thus turning the pres-
ence of chaos to advantage. The experimental setup for controlling SBS chaotic insta-
bility is shown in Figure 5. 
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Fig. 5. Schematic diagram for controlling chaos induced instability in Brillouin-active fiber 
system. The optical implementation included a chaotic system configured in a fiber ring. R is 
the mirror reflectivity and B is beam splitter. 

 
    A stabilized cw probe laser operating at 1310 nm was used as a pump source for 
low scattering losses in the fiber, yielding a 13 GHz Brillouin scattering shift. We 
use a fiber length of 4.28 km LITESPEC-G-ZEANQ.  Detection is also achieved with 
a 25GHz IR Photodetector Set (New Focus and an amplifier with 20ps impulse re-
sponse) connected to a HP Oscilloscope. The temporal repetition rate of which corre-
sponds to a pulse round-trip time in the fiber-ring taken to be less than 10 nsec. 
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    The Brillouin pulse train amplitudes remain unstable, particularly just below pump 
threshold. When the observation is made using a long time scale (5μsec /division), the 
Brillouin output exhibits randomly distributed trains of periodic pulses. Partial stabiliza-
tion of amplitude fluctuations is achieved as laser pump power approaches maximum 
value. These experimental features are shown in real time in Figure 6 (a) and (b). 

 
(a) (b)

μsec/div μsec/div
 

 
Fig. 6. Brillouin induced instabilities in function of time (5μsec/div) at threshold (a) and 
high above threshold (b) 

(a) (b)
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Fig. 7. Transiently controlled SBS chaos induced instabilities (5μsec/div) at threshold (a) and 
high above threshold (b). The examples of sequence of suppression are assigned by ‘0’ and ‘1’ 
symbols. 
 

    At low power, the Brillouin instability can occur below SBS threshold. This is 
much lower than the power required for normal Brillouin process, involving single 
pump power. The temporal evolution immediately above threshold is periodic and at 
lower intensities can become chaotic. We propose to employ continuous optical feed-
back for control in which coherent interference of the chaotic optical signal with it-
self, when delayed, can achieve signal differencing for feedback. If suppressing by 
attractor proves to control chaos then, suppressing under natural chaos can be ex-
ploited as a means of sensing structural chaos. 
    The examples of sequence of suppression are assigned by ‘low level’ and ‘high 
level’ states. Multi-stable periodic states, as shown in Figure 7 (a) and (b), can lead to 
logic ‘0’ or ‘1’ and can in principle create large memory capacity as  input bit streams 
in TDM network systems. Its implementation still requires much engineering im-



1050 Y.-K. Kim et al. 

provements, such as arriving at a spatial resolution that is comparable to the refer-
ences or speckle, and suppression of its tendency to chaos. 

5   Conclusions 

Control of SBS chaos-induced transient instability in optical systems leads to logic 
‘on’ or ‘off’’ with multistable periodic states. It is theoretically possible to apply the 
multi-stability regimes as an optical memory device for encoding/decoding messages 
and complex data transmission in optical communications systems. It can also in 
principle create large memory capacity. 
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Abstract. Parallel genetic algorithms are usually implemented on par-
allel machines or distributed systems. This paper describes how fine-
grained parallel genetic algorithms can be mapped to programmable
graphics hardware found in commodity PC. Our approach stores chro-
mosomes and their fitness values in texture memory on graphics card.
Both fitness evaluation and genetic operations are implemented entirely
with fragment programs executed on graphics processing unit in parallel.
We demonstrate the effectiveness of our approach by comparing it with
compatible software implementation. The presented approach allows us
benefit from the advantages of parallel genetic algorithms on low-cost
platform.

1 Introduction

Genetic algorithms (GAs) are robust search algorithms inspired by the analogy
of natural evolutionary processes [1]. They have demonstrated to be particularly
successful in the optimization problems. As many GA solutions require a sig-
nificant amount of computation time, a number of parallel genetic algorithms
(PGAs) have been proposed in past decades [2][3]. These algorithms differ princi-
pally from the classical sequential genetic algorithm, but they seem to have even
better optimization quality [4]. Previous proposed parallel implementations usu-
ally rely on parallel computers, distributed systems or specialized GA hardware
which are not easily available to the common users. The goal of this paper is to
implement PGA by utilizing graphics hardware found in PC.

The graphics processors (GPUs) on today’s commodity video cards have
evolved into an extremely powerful and flexible processor. Modern GPUs per-
form floating-point calculations much faster than today’s CPUs [5]. Further-
more, instead of offering a fixed set of functions, current GPUs allow a large
amount of programmability [6]. These desirable properties have attracted lots of
research efforts to utilize GPUs for various non-graphics applications in recent
years [7][8][9][10][11][12]. Previous research work has already shown that GPUs
are especially adept at SIMD computation applied to grid data [9]. Therefore,
we can envision that some type of parallel genetic algorithms should be a good
fit for commodity programmable GPUs.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 1051–1059, 2005.
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In this paper, we present a novel implementation of fine-grained parallel
genetic algorithm on the GPU. Real-coded individuals of a population are rep-
resented as a set of 2D texture maps. We perform BLX-α crossover and non-
uniform mutation by executing a fragment program on every pixel at each step
in a SIMD-like fashion. Thus, when application related fitness evaluation is as-
sumed to be implemented on GPU, the GA iterations can run entirely on GPU.
We will demonstrate the effectiveness of GPU implementation by applying it to
function optimization problem. Relative to software implementation, a speedup
of about 15 times has been achieved with population size 5122.

The rest of the paper is organized as follow: The subsequent section gives
background of both genetic algorithms and graphics hardware to facilitate under-
standing of our implementation. In Section 3, we describe the proposed GPU-
based implementation. Section 4 presents performance results, and the paper
concludes with suggestions for future work in Section 5.

2 Background

2.1 Genetic Algorithms

A simple GA starts with a population of solutions encoded in one of many
ways. The GA determines each string’s strength based on an objective function
and performs one or more of three genetic operators on certain strings in the
population. As described in Golberg [13]: in general terms, a genetic algorithm
consists of four parts.

1. Generate an initial population.
2. Select pair of individuals based on the fitness function.
3. Produce next generation from the selected pairs by applying pre-selected

genetic operators.
4. If the termination condition is satisfied stop, else go to step 2.

The termination condition can be either:

1. No improvement in the solution after a certain number of generation.
2. The solution converges to a pre-determined threshold.

In real-code GA, a solution is directly represented as a vector of real-
parameter decision variable [14]. This coding scheme is particularly natural when
tackling optimization problems of parameters with variable in continuous do-
mains.

It has long been noted that genetic algorithms are well suited for parallel
execution. There are three main type of parallel GAs: master-slave, fine-grained,
and coarse-grained [2]. In a master-slave model, there is a single population just
as in sequential GA, but the evaluation of fitness is distributed among several
processors. In a coarse-grained model, the GA population is divided into multiple
subpopulations. Each subpopulation evolves independently, with only occasional
exchanges of individuals between subpopulations. In a fine-grained model, indi-
viduals are commonly mapped onto a 2D lattice, with one individual per node.
Selection and crossover are restricted to a small and overlapping neighborhood.
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Fig. 1. The programmable graphics pipeline

2.2 Graphics Hardware

Graphics hardware is originally designed for accelerating rendering images. Fig-
ure 1 shows a simplified pipeline of modern programmable GPU. First, com-
mands, textures, and vertex data are received from the host CPU through shared
buffers in system memory or local frame-buffer memory. The vertex processor
allow for a program to be applied to each vertex in the object, performing trans-
formations and any other per-vertex operation the user specifies. Vertices are
then grouped into primitives, which are point, lines, or triangles. Next, raster-
ization is the process of determining the set of pixels covered by a geometric
primitive. After this, the results of rasterization stage, a set of fragments, are
processed by a program which runs in the programmable fragment processor.
Meanwhile, the programmable fragment processor also supports texturing op-
erations which enable the processor to access a texture image using a set of
texture coordinates. Finally, the raster operations stage performs a sequence of
per-fragment operations immediately before updating the frame buffer.

Graphics cards hardware have features which help parallelism. A GPU con-
tains a multiple number of pixel pipelines which process data in parallel (sixteen
in our case). These pixel pipelines are each SIMD processing elements, carrying
out operations typically on four color components in parallel [5].

3 A Real-Coded Parallel Genetic Algorithm on the GPU

3.1 Algorithm Overview

In this paper, we adopt the fine-grained parallel model suitable for SIMD im-
plementation. A typical fine-grained parallel GA has been proposed and studied
in [4]. We adopt a 2D toroidal grid as the spatial population structure where
each grid point contains one individual. The neighborhood defined on the grid
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Fig. 2. Spatial population structure and neighborhood shape

always contains 5 individuals: the considered one plus the North, East, West,
and South individuals (see Figure 2).

The crossover operator defines the procedure for generating a child from two
parent genomes. For each individual, the best individual in its neighborhood will
be selected as one of the parents, while the other one is itself.

Several crossover operators can be defined for real representation: averag-
ing crossover, uniform crossover and blend crossover [14]. In this work, blend
crossover is used. Let us assume that and are two chromosomes that have been
selected to apply crossover to them. Blend crossover operator randomly selects
a value for each offspring gene yi, using a uniform distribution within the range:

[Cmin + α · I, Cmax − α · I]

where Cmin = min{x1
i , x

2
i }, Cmax = max{x1

i , x
2
i }, I = Cmax−Cmin, and α is the

tunable parameter, the higher the value of α the more explorative the search.
Mutation operation is the final step of genetic operation. The role of muta-

tion in GA is to restore lost or unexpected genetic material into a population
to prevent the premature convergence of GA to a local result. Some of the com-
monly used mutation operators for real-coded GA are reviewed in [14]. In our
approach, a non-uniform mutation [15] is adopted. If the operator is applied at
generation step t and tmax is the maximum number of generations then the new
value of the i-th gene in an individual will be:

yi = {xi + δ · (Ui − xi)
xi − δ · (xi − Li)

τ = 0
τ = 1

where τ is a random number taking value 0 or 1 with equal probability, Li and
Ui are the lower bound and upper bound of xi, and

δ = 1− r(1−t/tmax)b

where r is a random number within the range [0, 1] and b is a user defined
parameter.

3.2 Representation of Population

In this section we describe the internal representation of population. If the GPU
is to perform GA operators for us, the first thing we need to do is to represent
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Fig. 3. The representation of chromosomes in a population as a set of 2D textures is
shown

population data in a format that is accessible by the GPU. The general idea is
to store population in a set of texture maps and to exploit fragment programs
to implement genetic operators.

In our representation, the chromosome of each individual is sequentially di-
vided into several segments which are distributed in a number of textures with
the same position (see Figure 3). Every segment contains four genes packed into
a single pixel’s RGBA channels. We call those textures population textures. An-
other 2D texture map, called fitness texture, is used to hold the fitness scores
of each individual in the population. The position of the fitness of a particular
individual maps to the position of the individual in the population.

The proposed representation enables the efficient computation of genetic op-
erators. It has several advantages: First, it naturally keeps 2D grid topology of
the population described in Section 3.1. Second, for each individual, fragment
programs of genetic operators only need lookup considered pixel or near neigh-
borhood pixels in each texture map. Thus it keeps the memory footprint of each
fragment as low as possible to efficiently utilize texture cache. Third, packing
of four concessive genes in one texel makes use of the wide SIMD computa-
tions carried out by the GPU. Up to four times as many genes can be processed
simultaneously.

3.3 Fitness Evaluation

It is important to emphasize that our framework is designed for solving problems
whose fitness function can be implemented entirely in GPU. Only in this case
can we avoid the bottleneck of reading population data from graphics hardware
to system memory in each iteration of GA. On the other hand, executing fit-
ness evaluation on GPU can take advantage of the GPU’s parallel processing
capabilities,

Implementation of fitness evaluation on GPU is application related. In some
cases, such as solving function optimizer problems, fitness evaluation can be
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easily implemented in a single fragment program. For more complicated appli-
cations, we refer readers to a homepage of research on general purpose use of
GPU (http://www.gpgpu.org). After the fragment program responsible for fit-
ness evaluation has been executed, the fitness values are stored in fitness texture.
This texture is then redisplayed in following rendering pass, and other fragment
program is run to perform genetic operators.

3.4 Random Numbers Generator

As described above in Section 3.1, we can find random numbers are involved
in both crossover and mutation operator. However, current graphics hardware
does not provide the function for generating random numbers. We use the Linear
Congruential Generator (LCG) to generate pseudo-random numbers [16]:

Ij+1 = a · Ij + c (modm)

where m is called the modulus, and a and c are multiplier and the increment
respectively. LCG can be implemented in a simple fragment program. We store
a matrix of random numbers in a texture called random texture. It is updated
once by the fragment program in each iteration of GA loop.

3.5 Genetic Operators

Selection, crossover and mutation operators described in Section 3.1 can be eas-
ily mapped to a single fragment program. The fragment program needs lookup
population textures, fitness texture and random texture described in above sec-
tions. System parameters such as mutation probabilities and crossover probabil-
ities etc. are passed to the fragment program by uniform parameters. We invoke
the fragment program by rendering a screen-parallel quadrilateral. The result is
written into a new population texture.

In our implementation, for a population represented by n population textures,
n rendering passes have to be performed in every generation of GA. In each
rendering pass, four genes of each chromosome are processed parallelly. This is
possible because the crossover operator and mutation operator we used all can
be performed on independent gene.

4 Experimental Results

Our performance results were measured using an AMD Athlon 2500+ CPU with
512M RAM and an NVidia GeForce 6800GT GPU. The GPU-based implementa-
tion was developed with Cg code [6]. We used the Colville minimization problem
as benchmark. It is defined as:

f(x) = 100(x2
1 − x2)2 + (1 − x1)2 + 90(x2

3 − x4)2 + (1− x3)2

+ 10.1((1− x2)2 + (1− x4)2) + 19.8(x2− 1)(x4 − 1)
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Table 1. GA Parameters

Parameters Value
Crossover Rate 1.0
Mutation Rate 0.05

Blend Crossover Parameter α 0.5
Non-uniform Mutation Parameter b 3

Table 2. Time cost and speed up for different GA module (500 generations)

Population Size Genetic Operators Fitness Evaluation
GPU(s) CPU(s) Speedup GPU(s) CPU(s) Speedup

322 0.211 0.296 1.4x 0.044 0.013 0.3x
642 0.262 1.201 5.8x 0.046 0.062 1.4x
1282 0.444 5.230 11.8x 0.074 0.587 7.9x
2562 1.187 21.209 17.9x 0.176 2.725 15.4x
5122 4.075 81.882 20.1x 0.602 10.299 17.1x

Fig. 4. The effects of population size on the run time (500 generations)

where −18 ≤ xi ≤ 10, i = 1, 2, 3, 4; with the global solution (1, 1, 1, 1) and
f (1, 1, 1, 1) = 0.

GPU-based implementation was compared with software implementation
running on single CPU with different population size. GA parameters are shown
in Table 1. Figure 4 shows GPU-based implementation is much faster than the
software implementation. We see that speedup increases as we increase the pop-
ulation size. Table 2 shows performance improvement of the GPU-based imple-
mentation stems from both genetic operators and fitness evaluation. The results
also show that when the population size is 322, fitness evaluation of GPU-based
implementation is slower than that of software version. This happens because
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when the objective function is simple and meanwhile the population is small,
the evaluation time is mainly consumed by the overhead of graphics pipeline.

5 Conclusion

In this work, we have presented a novel implementation of parallel genetic algo-
rithms on commodity graphics hardware. Our approach gives a representation of
population suitable for GPU processing. All genetic operators have been imple-
mented on GPU. Tests on a function optimization problem show that the larger
the population size is, the better speedup over the software implementation can
be achieved. Our work has provided a promising platform for implementation of
PGAs. Looking toward future, programmable GPUs are on a much faster perfor-
mance growth than CPUs. They also have many other advantages: inexpensive,
readily available, easily upgradeable, and compatible with various operating sys-
tems and hardware architectures.

There are still several constrains in our approach. For problems whose fitness
function is not suitable for GPU implementation, the performance of our method
will be seriously limited because of the bottleneck of transferring data between
system memory and video memory in each GA loop. Another limitation is that
commonly used binary encoding scheme of GAs seems hard to be implemented
on the GPU because there is no bit-operator supported in current GPUs.

In the future, we will apply the presented approach in real-world problems
such as GA-based image processing [17]. Another future work is further imple-
mentations of other variants of genetic algorithms. Using GPU cluster [18] to
perform parallel genetic algorithms is also of interest.
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Abstract. Resistance spot welding (RSW) is widely utilized as a joining 
technique for automobile industry. However, good weld quality control method 
has not yet been developed in plant environment when part fitup fault exists. 
This paper proposed a neuro-fuzzy algorithm to control weld quality by 
adjusting welding current. An experimental system was developed to measure 
electrode displacement curve. Accordingly based on electrode displacement 
curve optimal current for every cycle will be achieved under poor fitup fault 
condition. Results showed that proposed neuro-fuzzy system is suitable as a 
weld quality monitoring for resistance spot welding.   

1   Introduction 

Resistance spot welding (RSW) is a dominant sheet metal joining process in the 
automotive industry. Joint quality determines strength and durability of the 
automobile body. Although RSW is widely used, it is difficult to ensure the 
consistency of joint quality in real production. One major reason is that various faults 
often exist in production. These process faults affect the relationships between nugget 
size and input process variables (including current, force and time) and thus make 
defective welds. In an assembly process, it is desirable to control weld quality 
immediately by adjusting input variables when defective welds have been detected. 
Therefore, developing an intelligent control approach is a key issue to control the 
quality of the resistance spot welding process when fault happens. 

In recent years investigation has been performed to understand the effects of 
fault conditions. Nagel and Lee [1] developed a process control system considering 
some fault conditions. Karagoulis[2]studied fifty-four plant variables and qualitatively 
concluded that several fault conditions will affect weld quality. Wei Li et al [3] 
developed a new two-stage, sliding-level experiment design and analysis procedure to 
study process fault conditions and suggested an optimal weld lobe to minimize their 
effects. Y Cho et al [4] further studied the effects of fault conditions for resistance 
spot welding of steel and aluminum alloys. However, none of them were set up to 
monitor and control weld quality when faults exist.   

Electrode displacement, which gives good indication of thermal expansion, 
melting, and expulsion, has proven to be a particularly useful signal to monitor. It is 
believed that the amount of thermal expansion, melting, and expulsion can be 
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corrected to the slope and magnitude of the displacement curve. A number of control 
systems have been developed based on maximum electrode displacement or its 
changing rates. [5-7]. Attempts are being made to apply fuzzy control algorithm, or 
artificial neural networks (ANN) et al to explain functional relationship between the 
process variables and weld quality. However, these algorithms are not industrially 
applicable because of the effects of fault conditions and the limit of conventional 
pneumatic welding machines. [8-12]  

This paper develops a RSW experimental system using servo gun. Use part poor 
fitup fault an example to describe the real-time development of spot weld nugget size 
based on an electrode displacement curve when fault exists. Proposed a neuro-fuzzy 
inference system is applied to control of weld quality. Electrode displacement and 
electrode velocity are regards as input parameters of neuro-fuzzy inference system. 
An optimal current curve is achieved through neuro-fuzzy system to reduce the 
effects of part fitup fault on weld quality.   

2   Electrode Displacement Curve for Monitoring Fitup Fault  

Because of the current flow, heat will be generated and temperatures in the system 
will start to increase. Electrode displacement will rise due to thermal expansion 
caused by heat. It can be concluded that electrode displacement indicates the relative 
movement of the electrodes during the welding process.  In this paper, the trace of 
relative electrode movement was measured by an OMRON laser displacement sensor. 
The displacement signal was fed into a low-pass filter for decreasing noise. Then the 
signal conditioning unit scales the signals to suitable voltage levels via an A/D 
converter in the computer. The data acquisition software used is National 
Instrument’s Labview. An experimental data acquisition system including servo gun 
and sensor is shown in Fig.1-2. The measured signals of a whole welding cycle for a 
typical weld is shown in Fig 3.From the measured electrode displacement curves we 
could see that the electrodes will approach due to the electrode force, then the 
electrodes separate at a constant velocity because of thermal expansion of the sheet. 
Maximum expansion occurs when electric current is cut off. Finally the electrode 
displacement starts to fall owing to cooling. This curve has been verified to reflect the 
physical phenomenon occurring during the weld formation [6].  

 

   Fig. 1. Experimental system using servo gun             Fig. 2. Fixture for installing sensor  
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Fig. 3. Electrode displacement curve under idea condition 

 

Fig. 4. Electrode displacement curve under poor fitup fault condition 

When part poor fitup fault exists, electrode displacement curve shift the right as 
shown Fig.4. This is indicative of a smaller weld nugget being formed due to the 
small workpiece contact area at the initial stage of welding. Experimental results 
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show that electrode displacement and electrode velocity values of the curve are well 
corrected with nugget size.  

The above experiment results showed that electrode displacement curve could 
reflect the nugget formation during RSW. And Electrode displacement and electrode 
velocity not only can reflect growth of a spot weld nugget but also are two measurable 
output parameters based on electrode displacement curve. Thus, electrode 
displacement and electrode velocity values were selected as fuzzy input variables for 
a neuro-fuzzy inference system under the non-expulsion condition. Input variables are 
shown in Fig.5 [8]. When expulsion occurs, weld schedules were adjusted to meet 
welding quality demand according to electrode displacement signal.  

 

Fig. 5. Fuzzy input variables of neuro-fuzzy system[8] 

3   Neuro-fuzzy Inference System 

The neuro-fuzzy modeling has been used as a powerful tool which can facilitate the 
effective development of models.  The combined use of the learning ability of neural 
networks and the representation ability of fuzzy systems can partially overcome vague 
and imprecise data related to a fuzzy system.  The approach is especially useful for 
large complex and nonlinear systems, which cannot be represented reasonably as 
simple and unique. Thus, the approach is ideally suited to investigate the complex 
spot welding control problems.  

Neuro-fuzzy models describe systems by mean of fuzzy if-then rules represented 
in a network structure; to which learning algorithms known from the area of ANN can 
be applied. They provide new directions in the application of on-line measurement to 
spot welding systems. 

This paper proposed the neuro-fuzzy inference system with two input variables 
(electrode displacement and electrode velocity) and one output variable (weld 
current). The neuro-fuzzy scheme is shown is Fig.6. Firstly, the two inputs are 
codified into linguistic values by the set of Gaussian membership functions. The next 
step will calculate its respective activation degree to each rule. Lastly, the inference 
mechanism weights each conclusion value. The error signal between the inferred 
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output value and the respective desired value is used by the gradient-descent method 
to adjust each rule conclusion.  

The fuzzy inference system consists of three main blocks: membership functions 
selection, fuzzy rules, and conclusion value output. The following subsections 
represent the neural structure which is proposed here to map the fuzzy inference to 
ANN. This neuro-fuzzy scheme consists of three layers. 

 

Fig. 6. The structure of neuro-fuzzy system 

3.1   Membership Functions Selection 

The first layer is composed of neurons with Gaussian activity functions which are 

determined by the centers jc and the variances 2
jσ .Membership functions denoted 

by )( iA x
ij

μ as we expressed in Equation (1). This layer performs the fuzzification of 

crisp network input values in that neuron.  
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3.2   Fuzzy Rules 

The second layer represents the rule layer in which the logical operators are 
implemented and the antecedent’s possibilities are aggregated. The most common 
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neuro-fuzzy network is used to develop or adjust a fuzzy model in Mamdani form .A 
Mamdani fuzzy model consists of a set of fuzzy if-then rules in the following form: 

:R IF ( 1x is 1A and 2x is 2A and … mx is mA ) THEN (y is B ); 

Each if-then rule defines a fuzzy implication between antecedent and consequent. 
The reasoning process combines all rule contributions using the defuzzification 
formula in a weighted form.  

3.3   Conclusion Value Output 

The third layer performs the defuzzifications to achieve a crisp value of the variable. 
The output of the inference process so far is a fuzzy set, specifying a possibility 
distribution of control action. In the on-line control, a nonfuzzy (crisp) control action 
is usually required. This paper used defuzzification operator is center of area (COA). 
It generates the center of gravity of the possibility distribution of the inferred fuzzy 
output.      

3.4   The Learning Mechanism 

At the computational level, a fuzzy system can be seen as a layered network structure, 
similar to artificial neural networks of the RBF-type. In order to optimize parameters 
in a fuzzy system, gradient-descent training algorithms known from the area of neural 
networks can be applied [13-17]. 

The gradient-descent algorithm changes the conclusion values to minimize an 
objective function E usually expressed by equation (2). By changing the learning rate 
parameter and number of learning iterations executed by the algorithm each 
conclusion value was adjusted. 

[ ]2' )())((
2

1
kykxYE −=                                                                  (2) 

Where the value )(' ky is the desired output value and ))(( kxY is the inferred 

output value. 

4   Result 

When the metal parts are not completely matched fitup fault will arises. Electrode 
displacement curve will have a delay compared with ideal electrode displacement 
curve under nominal welding current.  Fig.7 shows the simulated electrode 
displacement curve for poor fitup without control. When neuro-fuzzy control system 
is applied, an optimal current curve was achieved by making the actual electrode 
displacement close to the desired electrode displacement. Results are shown in Fig.8. 
This demonstrates that the proposed neuro-fuzzy system is able to compensate for the 
quality variations caused by part fitup fault conditions. And the results are similar to 
the FLC control results [8]. 
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Fig. 7. Electrode displacement curve for poor fit-up without control 

 
Fig. 8. Electrode displacement curve after neuro-fuzzy control 
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5   Conclusion 

The neuro-fuzzy modeling and the learning mechanism can compensate for the 
quality variations caused by part fitup fault conditions in resistance spot welding. 
Good control can be achieved without a complex mathematical model compared to 
conventional controllers. Proposed neuro-fuzzy algorithm is suitable as a weld quality 
monitoring for resistance spot welding. We believe that emerging technologies as 
neuro-fuzzy systems have to be used together with genetic algorithms to produce 
more intelligent weld quality control systems.  
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Abstract. This study proposes the algorithm for segmentation liver and seg-
mentation vessel inside the liver by using MDCT image. There are two main 
vessels in the liver. During the transplantation, it is important to decrease dam-
age on the vessels and to raise the rate of success by providing medical doctors 
with the necessary incision rate of the liver and type of the vessels before opera-
tion. When transplanting, the size of donator’s liver is important for the survival 
of both donator and receiver. For the survival of both, the donator should leave 
35% of his/her own liver, and the receiver should get more than 40% of his/her 
own liver. By finding out distribution of essential vessels that determine the cut-
ting part for the transplantation and by showing artery and vein separately from 
the several segmentation vessel image, we can find the liver vein, which is the 
most important criterion during the incision, and can progress the cutting of the 
liver from the liver vein. It can be of help to minimize the damage on the three 
thick vessels and their surrounding vessels, and to cut the liver according to the 
volume rate of the liver. Using the features that each vessel has circle type and 
stick type with many angles, segmentation liver through morphological filtering 
and segmentation liver vessel were performed. Then, the separation of artery 
and vein from other combined vessels, and its reconstruction was possible, and 
finally the 3Dimension vessel image was produced.  

1   Background and Objective 

The technology of medical image treatment is playing an important role not only for 
the understanding of inside the body, but for the decision of planning or method for 
treatment. In this process, the demanding for various additional information that can 
be helpful to the diagnosis activity is getting increased. 
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In Korea, about 10,000 liver cancer patients are being generated annually, and it is 
the third commonest cancer followed by stomach cancer and lung cancer. It takes up 
11.3% among the total cancer outbreaks. According to the Annual Statistics Report on 
Causes of Death, average 23.1(male: 34.8 people, female: 11.3 people) out of 100,000 
people died of liver cancer and it shows that Korea has the highest rate among OECD 
member states.  

Liver is an essential organ to sustain life and in particular, its function is very com-
plicated and diverse so there are no organs that can be substitutable to the liver. Thus, 
it is very hard to be recovered once it is damaged. For this reason, the most effective 
and sole treatment method for the recovery of liver is to receive liver from other peo-
ple through transplantation. 

Liver transplantation is to plant a new and normal liver after removing the whole 
abnormal liver, and this is a way to cure abnormalities of liver function such as liver 
cancer and hepatocirrhosis. In case that the patients with early liver cancer diagnosis 
receive transplantation, more than 85% of the patients show a complete recovery. 

As the biggest organ in the body, liver has a strong reproduction power. Even 
though the 70% of the total liver is cut, it recovers its original form in two or three 
months. Liver is divided into left liver and right liver, and if one liver does not exist, 
the other liver grows large, and then forms left liver and right liver again. The size of 
left liver occupies 30 40% of the total liver and 60 70% for the right liver. The liver 
transplantation is broken down into two categories, which are the whole liver trans-
plantation and part liver transplantation. The whole liver transplantation is getting the 
liver from a donator’s dead body, and the part liver transplantation is getting the liver 
from a donator’s dead body or living body. Since it is rare to receive organs from the 
donator who has a brain death in Korea, many patients are dying due to lacking of the 
necessary organs.  

Lately, ‘the part liver transplantation from living body’, which takes part of liver 
away from a living person, is rising to the surface as a promising remedy for the liver 
patients.  

In cutting the liver for the part liver transplantation, an operation should be done to 
guarantee both lives of donators and receivers. In case of liver transplantation from a 
living body, it is certainly more important of the donator’s health than the receiver’s, 
thus it has been an unwritten law to give the left liver, which is smaller, to the receiver 
and leave the right liver for the donator. But as the fact that giving right liver is also 
safe is approved, the right liver transplantation is getting increased. For the survival of 
donator, 0.8% of liver in his/her standard weight should be left in donator’s body, and 
0.8% of liver in his/her standard weight should be given to the receiver for the re-
ceiver’s survival as well [1]. 

There are two main vessels, which are a liver artery and a portal vein. For the liver 
transplantation, accurate information about the distribution of liver vessel is very 
important to cut the liver, meeting to the right proportion. Therefore, the technology 
of image diagnosis using MDCT or MRI is playing a crucial role to determine a plan-
ning or method for treatment or operation, and it is also expected to be developed 
continuously in the future through medical image [2][3]. 
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In this study, auto-segmentation liver artery and liver vein by using morphological 
filtering from MDCT image were performed in order to provide information of liver 
vessel, which is important during the liver transplantation.    

2   Content 

2.1   MDCT Image 

The image in this thesis is a picture of normal liver, which is medicated by contrast 
media, saved with Dicom Version 3 format, and acquired in a hospital of Cheonbuk 
University.  

Dicom Version 3 format is widely being used in PACS (Picture Archiving and 
Communication System) and it has a structure to contain patients, image, and infor-
mation of medical doctors all together [3][4][5] . 

Table 1. Parameter of DICOM file 

Classification Name Gender Size Thickness Pixel spacing 
Abnormal K.M.D F 512*512 1mm 0.7070312 
Normal U.Y.S M 512*512 1mm 0.5859375 
Normal K.P.S M 512*512 1mm 0.6328125 

 

           

Fig. 1. (a) AccuLite view            (b) AccuLite bitmap  
transformation 

2.2   Preprocessing 

Most MRI machines and CT use DICOM (Digital Imaging Communications in Medi-
cine) file in ACR/NEMA version 3.0 format as a standard form for the transmission, 
storage, and management of image(See Table1). But this format is not recognized or 
conducted by personal computer or workstation in general, so the preprocessing work 
is needed in order that personal computer or workstation can recognize or conduct this 
image. This preprocessing work was performed using AccuLite Version 3.1 program 
of AccuImage Diagnostics Inc. and bitmap file format was used for the transformed 
image(Fig. 1 (a), (b)).  
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2.3   Segmentation Liver Area 

2.3.1   Algorithm for Auto-Segmentation of Liver Area 
The brightness value of the normal liver, which is medicated by contrast media, 
ranges from 180-220, and surrounding tissues such as bones or vessels simultaneously 
exist in that scope. Only for the segmentation liver in the condition of removing sur-
rounding tissues to the maximum, the algorithm was developed as follows (See  
Fig. 2) [6].  

This algorithm uses morphological filtering to remove the surrounding tissues that 
has the same brightness value range as the liver or to remove noise where exists on 
the border of liver and its surrounding tissues [7].  

In the first step, the surrounding tissues that has the same brightness value range as 
the liver was taken away using erosion, one of Morphological filtering, and at the 
same time, opening to take away noise where exists on the border of liver was repeat-
edly performed. 

 

Input the image of patient who is medicated by contrast media 

 

Removing surrounding tissues using 

morphological filtering 

 Removing noise of liver boundary using 

morphological filtering 

   

Obtaining binary image that used 

pixel value of liver 

 Obtaining binary image that used pixel 

value of liver 

    

 

Tracking the location of liver 

 Binary image of the liver using the 

tracked location information and liver 

boundary 

   

Segmentation liver from source image using the binary image of liver 

Fig. 2. Algorithm for auto-segmentation of liver area 

In the second step, each result was transformed into binary image using the distri-
bution of the brightness value of liver. The removal image of the surrounding tissues 
acquired through the first step is used to search for the location of the liver in the third 
step since the original border information of the liver is lost. Also, the image that  
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removed noise on the border of liver is used to obtain border information of the liver 
in the same step. By using the acquired location and border information, the liver 
segmentation is possible from the source image in the fourth step.  

2.3.2   Segmentation Liver Area 
The area that has brightness value between 180 - 220 in histogram for auto-
segmentation of the liver area, which is brighter than other organs due to the contrast 
media, was segmented (See Fig. 3). 

         
(a) Source image 

         
(b) Image after removing the background 

         
(c) Image after segmentation liver 

Fig. 3.  Image of auto-segmentation liver  

2.4   Segmentation Liver Vessel  

2.4.1   Algorithm for Segmentation Liver Vessel 
The brightness value of normal liver, which was medicated by contrast media, ranges 
from 155 – 220, and in case of vessel inside the liver, it ranges from 220-255, which 
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has higher brightness value due to the effect of contrast media. For the auto-
segmentation liver vessel, the performance was done like Fig. 4.  

Input the image of segmentation liver 

 

Performing morphological filtering 

using circle type SE 

 Performing morphological filtering 

using stick type SE 

   

Segmentation vessel of circle type  Segmentation vessel of stick type 

   

Producing image compounded by two results 

 

Interpolation of slice liver and 3Dimension Reconstruction 

Fig. 4. Algorithm for auto-segmentation of liver vessel area 

 

 

Fig. 5. Various SE types used for segmentation vessel 

Morphological Filtering was performed using SE (Structuring Element), which has 
several kinds of type such as circle type and stick type with many angles as shown in 
Fig. 5, and auto-segmentation by each slice of vessel inside the liver was performed 
by compounding the two results. A circle type SE was made and used to find out 
circle type vessel that has more than a definite size among the pixels included into the 
distribution of brightness value of vessel. Also, a stick type SE was used to search for 
stick type vessel and each filtering was performed. Then, a new image by compound-
ing the results from each slice of two images was constructed (See Fig. 6).  
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(a)  Image of segmentation liver  

      

(b) Image of auto-segmentation liver vessel 

Fig. 6.  Image of auto-segmentation vessel 

2.4.2   3 Dimension Reconstruction of Vessel Area  
The two dimensional results from each slice were reconstructed into 3 Dimension to 
see the result of segmentation vessel image more conveniently, which was acquired 
through auto-segmentation algorithm in the liver area.  

It is necessary to go through preprocessing work to transform the segmentation im-
age into binary image and to correct a rapid change between each slice of liver. This 
correction work is called Interpolation, and Volume Reconstructor function of Image 
J Plug-in, the program that National Institutes of Health USA distributes to the public, 
was used. For this, the image is corrected on the basis of VPS (width of each pixel), 
HPS (length of each pixel), and spacing between slices, and the 3 Dimension recon-
struction program was made using Visualization Tool Kit of Kitware Inc. and Visual 
Studio of Microsoft. By using this program, the binary work is done and the image 
followed by Interpolation into 3 Dimension image is  reconstructed as shown below in 
Fig. 7.  

                

Fig. 7. 3 Dimension liver vessel 
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2.5   Separation of Artery and Vein of Liver Vessel 

2.5.1   Finding the Start Point of Vein  
There are several main vessels in the liver. The artery of liver delivers blood with 
affluent oxygen from heart to liver, portal vein carries nutrients, metabolic material 
and toxin needed for detoxication, and vein plays a role to bring the blood back to 
heart after consuming the oxygen. Using the information of exact vessel distribution 
of artery and vein, middle vein is found and the cutting angle is decided focusing on 
the line, which passes the thickest part of artery, perpendicularly with artery.   

After calculating the volume of the incised part among the volume rate of liver 
along with the left line of middle vein, if the donator and receiver have volume as 
much as they want, it is good to cut it along with, and if it is not enough, cut it along 
with right line. Then, if the volume rate is appropriate for both, one can cut it.  
For this work, it is necessary to show the location that each vessel passes inside the 
incised model of liver through 3 Dimension and to separate vein and artery vessel in 
order to minimize the damage on other vessels.  

 As the work for finding the start part of vein, the feature that the several vessels 
gathering together at the start part of vessel, which appears like a big and circular 
lump, is use, a big circle type SE is made, and the start point of slide that has the big-
gest point from each slide via Morphological filtering is found.  

2.5.2   Finding the Connection Part of Vein Vessel 
After finding out the location of slice, which has the start point and is not zero (0), by 
using the sum of slice pixel value, the overlapped pixel is found from the slice by 
taking AND, which has the start point with neighboring slices of both directions, and 
the pixels that has the shape of 8 directed connection within the front and back of 
slices are  marked, centering on these overlapped pixel parts. 

This work can be applied from its start point slice to all the slices of both directions 
in order, and it is performed to the start point conversely, curving like letter ‘n’ or ‘u’. 
After founding out the connected part, segmentation of connected pixel value of the 
whole vein can be performed (See Fig. 8). 

 

Fig. 8. The work to find out the connection part 
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The slices that have segmentation value from source image with vein and artery are 
taken away, stored, and the rest artery can be mapped out. After going through the 
Interpolation, the artery and vein are made by 3Dimension, and then the type of vein 
and artery are seen (See Fig. 9). 

The vessel located on the middle of separated vein is the middle vein and a deci-
sion for the incision of liver is made focusing on this part. 

                       
(a) Segmentation vessel  

from the liver 

(b) Separated vein   (c) Separated artery  

Fig. 9. Separation of liver vessel 

3   Conclusions and Considerations 

As the number of liver patients is increasing, promising remedies driven by the devel-
opment of technology have been coming out. Thus, providing accurate and various 
information is essential for the high rate of success during the liver transplantation. 
Since everyone has a different liver in terms of size and shape, the accurate informa-
tion is essential and the criteria of incision can make a great impact on the life-support 
of both donators and receivers. In this study, the accuracy of algorithm by comparing 
segmentation liver vessel with passive segmentation image from the MDCT image 
could be verified. To make a 3 Dimension image that is automatically incised, it was 
needed to find the middle vein, and to search for where the artery and its incision 
point is. For this, the work to separate vein and artery vessel was needed,  the cutting 
part was found by slices through the angel where the middle vein meets artery verti-
cally, and finally a line could be drawn from the separated image of vein and artery. 
Through this auto-segmentation, it was possible to show the information of vessel 
inside the liver to medical doctors more clearly and in detail. By doing this before 
operation, it is predictable whether the operation is successful or not, and the opera-
tion time can be shortened with the accurate information of the liver by proceeding 
the operation rapidly. It will give a sense of security and promote the rate of success.  

This algorithm dealt with segmentation of image with MATLAB, and constructed 
segmentation image into 3Dimension using Image J and Visual Studio.  

Based on this result, the research will be conducted  in the future as well by doing 
several trials such as cutting the liver by slices along with the left side of middle vein 
on the basis of middle vein and artery from the image and auto measure the volume, 
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or if the volume is not enough, it can be cut along with the right side to see inside. 
The result of this study will make a contribution to raise the rate of success during the 
liver transplantation by cutting each section and providing medical doctors with the 
location of the vessel of incised liver. 
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Abstract. In this paper we focus on run-time optimization of the IEEE
802.11 protocol to improve its performance using a well-known fuzzy logic
approach. Specifically, we derive the simple, and more accurate, approxi-
mation of the network contention level and the average size of contention
window to maximize the theoretical throughput limit. In addition, we
propose and evaluate a new distributed fuzzy contention control mecha-
nism that is a modification of the asymptotically optimal backoff (AOB)
mechanism using a fuzzy logic approach. The proposed mechanism can be
used to extend the standard 802.11 access mechanism without requiring
any additional hardware like the AOB mechanism. To verify efficiency of
our mechanism, the performance of the IEEE 802.11 standard protocol
with the AOB and the proposed mechanism are investigated through
simulations.

1 Introduction

IEEE 802.11 is the standard for Wireless Local Area Networks (WLANs) pro-
moted by the Institute of Electrical and Electronics Engineers. Wireless tech-
nologies in the LAN environment are becoming increasingly important and the
IEEE 802.11 is the most mature technology to date [1], [2], [3]. In this paper
we focus on the IEEE 802.11 WLAN presented in [4], [5]. Since a WLAN relies
on a common transmission medium, the transmissions of the network stations
must be coordinated by the medium access control Media Access Control (MAC)
protocol. MAC protocols for LANs can be roughly categorized into random ac-
cess (e.g., CSMA, CSMA/CA) and demand assignment (e.g., token ring). Due
to the inherent flexibility of random access systems (e.g., random access allows
unconstrained movement of mobile hosts) the IEEE 802.11 standard commit-
tee decided to adopt a random access CSMA-based scheme for WLANs. In this
scheme there is no collision detection capability due to the WLANs inability to
listen while sending, since there is usually just on antenna for both sending and
receiving.

Some researchers have investigated the enhancement of the IEEE 802.11
MAC protocol to increase its performance when it is used in WLANs. Through
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a performance analysis, it has been studied the tuning of the standard’s param-
eters [2], [3]. In [6], solutions have been proposed for achieving a more uniform
distribution of the accesses.

Recently, other researchers have pointed out that the standard protocol can
be very inefficient [7], [8], [9]. Specially, the average size of the contention window
that maximizes the theoretical throughput limit was derived analytically, and it
was shown that depending on the network configuration, the standard can op-
erate very far from the theoretical throughput limit. In addition, an appropriate
tuning of the backoff algorithm that can drive the IEEE 802.11 protocol close
to the theoretical throughput limit was proposed by [9]. That is a distributed
algorithm that enables each station to tune its backoff algorithm at run-time. To
perform this tuning, a station must have exact knowledge of the network con-
tention level; unfortunately, in a real case, a station cannot have exact knowledge
of the network contention level (i.e., number of active stations and length of the
message transmitted on the channel), but it, at most, can estimate it [10], [11].

Hence, a distributed mechanism for contention control in IEEE 802.11
WLANs was proposed and evaluated by [10], [11]. This mechanism, named
Asymptotically Optimal Backoff (AOB), dynamically adapts the backoff win-
dow size to the current network contention level and guarantees that an IEEE
802.11 WLAN asymptotically achieves its optimal channel utilization for a large
number of stations. The AOB mechanism measures the network contention level
by using two simple estimates: the slot utilization S−U and the average size of
transmitted frames. These estimates are simple and can be obtained by exploit-
ing information that is already available in the standard protocol. AOB can be
used to extend the standard IEEE 802.11 access mechanism without requiring
any additional hardware. According to AOB mechanism, its control is based on
the parameter, named Probability of Transmission, P−T , whose value depends
on the S−U . However, this control is not effective for a small number of sta-
tions. Moreover, since the P−T depends on the ratio, S−U/S−Uoptimal, so P−T
is always small. Therefore, it always offers a little opportunity.

In this paper, we derive the simple, and more accurate, approximation of the
network contention level and the average size of contention window to maximize
the theoretical throughput limit, and we propose a new P−T formula using a
well-known fuzzy logic approach. The fuzzy approach became the major field of
researches in mathematics and control systems, since it was initiated by Lotfi A.
Zadeh in 1965. Moreover, it can be very easy to design and worked very well for
many problems [12], [13]. In addition, we propose and evaluate a new distributed
fuzzy contention control (DFCC) mechanism using the proposed P−T formula.

The contents of this paper are as follows. In the section 2, we sketch the por-
tions of the IEEE 802.11 standard and the AOB mechanism which are relevant
for this paper. In the section 3, we derive the approximated theoretical through-
put limit, and the proposed DFCC mechanism is proposed and evaluated. To
verify our proposed mechanism, we make the steady-state analysis in the section
4. Finally, the section 5 gives our conclusions.
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2 The AOB Mechanism for the IEEE 802.11 Protocol

2.1 IEEE 802.11

The IEEE 802.11 MAC protocol provides an access control that is asynchronous,
time-bounded, and contention-free. The basic access method in the IEEE 802.11
MAC protocol is the Distributed Coordination Function (DCF) which is a Car-
rier Sense Multiple Access with Collision Avoidance (CSMA/CA) MAC proto-
col. A detailed description can be found in [4].

As long as the channel is sensed to be idle, a Backoff Counter (BC) is counted
down every Slot−T ime. A station can transmit when the BC reaches zero. The
BC stops when a transmission is detected and continues to elapse when the
channel is sensed to be idle again for more than a Distributed Inter-Frame Space
(DIFS). The Binary Exponential Backoff described in [4], [14] is characterized by
the expression giving the dependency of the CWSize parameter by the number of
unsuccessful transmission attempts (N−A) already performed for a given frame.
It is defined that the first transmission attempt for a given frame is performed
adopting CWSize equal to the minimum value CWmin. After each unsuccess-
ful (re)transmission of the same frame, the station doubles until it reaches the
maximum value CWmax fixed by the standard, i.e., CWSize had been defined as
follows:

CWSize(N−A) = min(CWmax, CWmin · 2(N−A−1)). (1)

To reduce the probability of collision, the CWSize is doubled for the new
scheduling of the retransmission attempt, thus further reducing contention. How-
ever, by analyzing the behavior of the IEEE 802.11 DCF mechanism, it was
shown that the channel utilization is negatively affected by the increase of the
contention level [9], [10], [11]. This occurs because i) the increase in the CWSize is
obtained at the cost of a collision, ii) after a successful transmission, no memory
of the actual contention level is maintained.

2.2 The AOB Mechanism

The drawbacks of the IEEE 802.11 backoff algorithm, explained in the previous
section, indicate a direction for improving the performance of a random access
scheme by exploiting the information on the current network congestion level
that is already available at the MAC level. Specifically, the utilization rate of
the slots called S−U presented in [10], [11] observed on the channel by each
station is used as a simple and effective estimate of the channel congestion level.
A simple and intuitive definition of the S−U is then given by:

S−U =
Num−Busy−Slot

Num−Available−Slot
(2)

where Num−Busy−Slot is the number of slots in the Backoff Interval (BI) where
one or more stations start a transmission attempt, and Num−Available−Slot is
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the total number of slots available for transmission in the BI, i.e., the sum of idle
and busy slots. In the IEEE 802.11 standard mechanism, every station performs
a Carrier Sensing activity and thus, the S−U estimate is simple to obtain and
no additional hardware is required [10], [11].

The current S−U estimate can be used by each station to evaluate the oppor-
tunity to either perform or defer the scheduled transmission attempt. When the
probability of a successful transmission is low, it should defer its transmission
attempt. This can be achieved in an IEEE 802.11 network by exploiting the AOB
mechanism proposed in [11]. The AOB mechanism can be to dynamically tune
the backoff window size to achieve the theoretical capacity limit of the IEEE
802.11 protocol. This mechanism is based on the P−T parameter which depends
on the current contention level of the channel, i.e., SU and the function of q
value, named Asymptotic Contention Limit ACL(q) = M · pmin(q). Here, M is
the number of current stations. The heuristic formula of the P−T is as follows:

P−T (ACL(q), S−U, N−A) = 1−min
(

1,
S−U

ACL(q)

)N−A

(3)

and a detailed description can be found in [11].
This mechanism guarantees that the optimal channel utilization is asymp-

totically achieved for large M values. However, since the P−T depends on the
rate, S−U/ACL(q), the P−T is always small. Therefore, it always offers a little
opportunity. So, this control is not effective when the number of current stations
is small in network, i.e., M < 10.

3 Run-Time Fuzzy Optimization of IEEE 802.11

We assume that the network is represented by the IEEE 802.11 p-persistent
model defined in [8], [9], because it is a useful and simple tool for analytically
estimating the protocol capacity. To simply, we assume that each station trans-
mit messages whose lengths are a geometrically distributed with parameter q. In
other words, the average message length, m̄, is given by: m̄ = tslot/(1−q), where
the length of slot is denoted with tslot. The IEEE 802.11 maximum channel uti-
lization can be closely approximated by adopting, in the standard protocol, a
contention window whose average size is identified by the optimal p value, i.e.,
E[CW ] = 2/pmin − 1.

3.1 Approximated Theoretical Throughput Limit

By the help of [9], we approximate pmin with the p value satisfying the following
relationship:

E[Coll] ·E[Nc] = (E[Nc] + 1) · E[Idle−p] (4)

where E[Coll] is the average time the channel is busy due to a collision,
E[Idle−p] is the average number of consecutive idle slots, and E[Nc] is the
average number of collisions in a virtual transmission time. The expressions in
(4) are as follows:
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E[Nc] =
1− (1 − p)M

Mp(1− p)M−1 − 1 (5)

E[Coll] = l(q) · tslot (6)

E[Idle−p] =
(1 − p)M

1− (1− p)M
· tslot (7)

where

l(q) =
1 + 2q
1− q2 . (8)

However, since this pmin derivation is too complex for our purpose, we use the
Taylor series expansion. By applying Taylor series expansion, we have:

(1− p)M � 1−Mp +
M(M − 1)p2

2
− M(M − 1)(M − 2)p3

6
(9)

Mp(1− p)M−1 �Mp−M(M − 1)p2 +
M(M − 1)(M − 2)p3

2
. (10)

By substituting (9), (10) in (5)-(7), and after some algebraic manipulations, we
can obtain that the optimal p value is the solution of the following equation:

{2l(q)− 1}M(M − 1)(M − 2)p3 − 2{l(q)− 1}M(M − 1)p2 − 6Mp + 6 = 0(11)

Moreover, for computational convenience, we alter M(M−1), M(M−1)(M−2)
into M2, M3, respectively. (11) can be rewritten as follows:

{2l(q)− 1}(Mp)3 − 2{l(q)− 1}(Mp)2 − 6Mp + 6 = 0 . (12)

Table 1. Comparison of optimal p values

Methods
q

value

Average
payload

size M = 2 M = 4

pmin

M = 10 M = 50 M = 100

Analytical
estimate

0.50
0.75
0.90
0.98
0.99

2
4

10
50

100

0.379796
0.294945
0.206660
0.103674
0.075545

0.186354
0.138190
0.092635
0.044290
0.031870

0.074237
0.053771
0.035281
0.016498
0.011805

0.014835
0.010622
0.006897
0.003192
0.002278

0.007417
0.005303
0.003439
0.001589
0.001134

Asymptotic
estimate

0.50
0.75
0.90
0.98
0.99

2
4

10
50

100

0.284365
0.220974
0.153367
0.075371
0.054541

0.142183
0.110487
0.076684
0.037686
0.027270

0.056873
0.044195
0.030673
0.015074
0.010908

0.011375
0.008839
0.006135
0.003015
0.002182

0.005687
0.004419
0.003067
0.001507
0.001091

Proposed
estimate

0.50
0.75
0.90
0.98
0.99

2
4

10
50

100

0.420037
0.281507
0.176485
0.079881
0.056785

0.210019
0.140754
0.088243
0.039940
0.028393

0.084007
0.056301
0.035297
0.015976
0.011357

0.016801
0.011260
0.007059
0.003195
0.002271

0.008401
0.005630
0.003530
0.001598
0.001136
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By using the approximated theoretical throughput limit M · pmin value that
is the solution of (11), we can find that the maximum channel utilization is
achieved when the q value is given. Furthermore, for a given average payload
size, M · pmin is a quasi-constant value.

The comparative results are presented in Table 1. Analytical and asymptotic
estimates of pmin value are obtained by the formulas reported in [9] and [11],
respectively. Table 1 shows that the proposed estimate obtained by (12) is very
closer to analytical estimate than the asymptotic estimate.

3.2 Distributed Fuzzy Contention Control Mechanism

In this paper, we propose a new P−T parameter using fuzzy logic approach and
the heuristic formula is as follows:

P−T (S−U, N−A, y) =
(
1− S−UN−A

)
· y (13)

where y is the output variable of the following fuzzy IF-THEN rules:

Rule(1) : IF x1 is S and x2 is L, THEN y is V L

Rule(2) : IF x1 is S and x2 is M, THEN y is L

Rule(3) : IF x1 is S and x2 is S, THEN y is M

Rule(4) : IF x1 is M and x2 is L, THEN y is L

Rule(5) : IF x1 is M and x2 is M, THEN y is V M (14)
Rule(6) : IF x1 is M and x2 is S, THEN y is S

Rule(7) : IF x1 is L and x2 is L, THEN y is M

Rule(8) : IF x1 is L and x2 is M, THEN y is S

Rule(9) : IF x1 is L and x2 is S, THEN y is V S

where x1 is an input variable as the number of current stations M , x2 is an
input variable as the proposed estimate of pmin, the linguistic variables S, M ,
and L mean “small,” “medium,” and “large,” respectively, and a hedge V means
“very.” Moreover, each proposed membership function is presented in Fig. 1.

Fig. 1. (i) The number of current stations, x1, as a linguistic variable that can take
fuzzy sets “slow”, “medium,” and “fast” as M values in the left plot. (ii) The proposed
estimate, x2, as a linguistic variable that can take fuzzy sets “slow”, “medium,” and
“fast” as pmin values in the center plot. (ii) The output of fuzzy rules, y, as a linguistic
variable that can take fuzzy sets “slow”, “medium,” and “fast” as [Mpmin, 1] values
in the right plot.
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The proposed P−T parameter can be used to evaluate the opportunity to per-
form a transmission on the shared channel. When the station decides to defer
the transmission, it reschedules a new attempt, as in the case of a collision oc-
curred. Specifically, the proposed algorithm adopted by each station is sketched
in Algorithm 1.

Algorithm 1: Distributed fuzzy contention control mechanism...
if (Backoff_Counter == 0) /* A slot for transmission is reached */
then

calculate the S_U;
calculate the M_p;
obtain the y; /* y is the output of the fuzzy IF-THEN rules */
calculate the P_T(S_U, N_A, y);
if (Rand() < P_T(S_U, N_A, y))
then

BYPASS the transmission indication to the HW;
else

DEFER the transmission;
if ((transmission deferred) or (collision occurred))
then

NOTIFY the collision occurred;
/* schedule a new retransmission */
...

The proposed mechanism can be used to extend the standard 802.11 access
mechanism without requiring any additional hardware like AOB.

4 Steady-State Analysis of the DFCC Mechanism

In this section, to verify efficiency of our mechanism, the performance of the
IEEE 802.11 standard protocol with AOB and proposed mechanism is investi-

Table 2. Physical parameters for simulations

Parameters Values
Number of current stations (M) 2 to 200

CWmin 16
CWmax 1024

Channel transmission rate 2Mb/s
Payload size Geometric distribution with q

Acknowledgement size 200 μ sec
Header size 136 μ sec

Slot Time (tslot) 50 μ sec
SIFS 28 μ sec
DIFS 128 μ sec

Propagation time < 1 μ sec
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gated through simulations. The physical characteristics and parameter values of
the investigated system are reported in Table 2. To analyze the DFCC behavior
in a more realistic scenario, we assume that the message length distribution is
bimodal. Specifically, we assume that “long messages” have an average length of
100 slots while “short messages” have an verage length of 2.5 slots, and a slot
corresponds to 100 bits.

Fig. 2 and 3 show the protocol capacity of the IEEE 802.11 protocol with
and without the additional mechanisms. In the Fig. 2 and 3, real lines (—) are
the optimal analytical value and dotted lines (· · ·) are the optimal estimate value
of the IEEE 802.11 protocol, dash-dotted lines (- ·) are the channel utilization
of the IEEE 802.11 protocol with the AOB mechanism, dashed lines (- -) are
the channel utilization of the IEEE 802.11 protocol with the DFCC mechanism,
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Fig. 2. (i) The left plot is the channel utilization of the IEEE 802.11 protocol with
and without the additional mechanisms versus long messages. (ii) The right plot is the
zooming version of the left plot.
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Fig. 3. (i) The left plot is the channel utilization of the IEEE 802.11 protocol with and
without the additional mechanisms versus mixed traffic condition with q = 0.2. (ii)
The right plot is the channel utilization of the IEEE 802.11 protocol with and without
the additional mechanisms versus short messages.
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and plus signed real lines (-+-) are the channel utilization of the standard IEEE
802.11 protocol. Simulation results indicate that the channel utilization with the
DFCC mechanism is near-optimal and the DFCC mechanism is more effective
than the AOB mechanism.

5 Conclusion

In this paper, the simple, and more accurate, approximation of the network con-
tention level to maximize the theoretical throughput limit have been derived.
Moreover, we have proposed and evaluated the DFCC mechanism, using a fuzzy
logic approach, that can be applied to dynamically control the network con-
tention level in an IEEE 802.11 network. This control is implemented through
the computation in each station of the proposed probability of transmission. By
simulation of the protocol capacity of the IEEE 802.11 protocol with and with-
out the additional mechanisms, efficiency of the proposed DFCC mechanism is
proven.
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Abstract. In this paper, a semi-actively tuned liquid column damper (TLCD) 
based on fuzzy neural networks (FNN) is proposed to vibration control of 
irregular buildings excited by multi-dimensional earthquake ground motions. 
The fuzzy neural networks method takes advantage of both neural networks and 
fuzzy controls and has the unique combination of ability to learn via nonlinear 
mapping of neural nets and the capacity to integrate expert knowledge via fuzzy 
rules. The fuzzy neural networks based on Takagi-Sugeno model is adopted in 
this research to actively adjust the orifice opening-area of the TLCD. An 
eccentric building equipped with two TLCDs arranged in perpendicular 
directions is used as an object for suppressing vibrations induced by multi-
dimensional earthquake ground motions. For numerical simulations, a state 
space representation of the building-TLCD system is derived. Numerical 
simulations demonstrate that TLCDs regulated by the fuzzy neural networks are 
effective in controlling both the translational and rotational seismic response of 
the eccentric building. 

1   Introduction 

Structural vibration control using neural networks and fuzzy theories has been 
conducted[1,2]. The main advantages of these intelligent methods is the relaxation of 
the requirement of an exact mathematical model. In addition, these methods can be 
applied to systems with nonlinearities, couplings and time varying parameters. Fuzzy 
control is thought as a technique of imitating man’s thinking and does not require a 
mathematical model of the plant. Fuzzy control has the ability to approximate 
reasoning by utilizing experts’ knowledge. However, this method lacks of both self-
learning and self-adaptation in case of time-varying nonlinear systems. How to 
automatically generate or update the membership function and fuzzy rules are 
complicated problems. The neural networks technique has a powerful self-learning 
capability. From the modeling point of view, this technique is a typical black-box 
based method. After training, the input and output relationship of the neural networks 
is difficult to express. It is a challenge in control engineering to combine the 
advantage of the easy knowledge expression in fuzzy theory and the advantage of the 
                                                           
1 Hong-Nan Li is a professor with the Dalian University of Technology. 



1090 H.-N. Li et al. 

strong self-learning capability in neural networks in order to improve the control 
system’s learning and expressing capabilities. 

Fuzzy neural network (FNN) is a relatively new development in intelligent control. 
Though it is a local approaching network, it is established based on the fuzzy system 
model in the sense that each node and parameter in the network have an obvious 
physical meaning. Hence, the initial values of these parameters could be determined 
based on the fuzzy or qualitative knowledge of the system, and the input-output 
relationship will quickly converge to the desired one by using the aforementioned 
learning algorithm. This is an advantage of FNN as compared with a pure neural 
networks method. Meanwhile, an FNN has the neural network structure and has the 
learning and parameter adaptation capabilities. Therefore it is better than a pure fuzzy 
logical system. A commonly used FNN is the one developed by Takagi-Sugeno[3]. 
This Takagi-Sugeno model based FNN has the advantage of computational efficiency 
and will be adopted in this research. 

Tuned liquid column dampers (TLCD), basically a U-shape pipe with an orifice 
opening in the middle, was first proposed by Sakai et al.[8] and has been widely 
researched since then[4-7]. Recent years have seen an increasing number of 
researches in semi-active control of TLCD by actively adjusting the orifice opening-
area. However, semi-active control of TLCD based on fuzzy neural networks 
intelligent control is rarely reported. In this paper, the Takagi-Sugeno model based 
fuzzy neural networks control is applied to semi-actively tuned liquid column 
dampers arranged in two perpendicular directions for suppressing both translational 
and rotational vibrations of an eccentric building subjected to multi-dimensional 
earthquake excitations. To help the control system design, this paper also briefly 
presents the theory of fuzzy neural network (FNN) based on the Takagi-Sugeno 
model (T-S model). The mathematical model of a multi-story eccentric structure-
TLCD system in state space representation is derived. On the bases of control 
strategy, a semi-active control of vibration suppression of an eccentric  building 
subjected to an earthquake excitation is established. Numerical examples are finally 
implemented by using FNN based on T-S model to verify the effectiveness of this 
method. 

2   T-S Model-Based FNN in Structural Control 

2.1   T-S Model-Based FNN 

The T-S model based FNN is one kind of fuzzy neural networks in which the linear 
combination of input variables is the typical state of fuzzy criterions. This method 
was named as T-S fuzzy model that was presented by two Japanese researchers: 
Takagi and Sugeno[3]. The fuzzy networks consist of front and rear networks, which 
are utilized to match the former and later portions of fuzzy criterion, respectively. 

2.2   Front Network 

The front networks are composed of four layers. The first layer is the input that plays 

the role of transmitting the input value [ ]T
nxxxx L21=  to the next layer as every 
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node on this layer is connected to each component of input vector. The total number 
of nodes of this layer 1N  is equal to n . 

The second layer has the function of calculating the membership function, j
iμ . 

Every node on the second layer represents one linguistic variable, 

( )iA

j
i xj

i
μμ Δ  (1) 

where ni ,,2,1 L= ( n is the dimension of the inputs), and imj ,,2,1 L=  ( im is the 

total number of the linguistic variable ix ) . For example, if the Gaussian bell-shape 

membership function is adopted, the membership function j
iμ is given as follows, 

( )
2

2

ij

iji cx

j
i e

σμ
−

−

=  
(2) 

in which, ijc and ijσ are the center value  and  the width, respectively. The total 

number of nodes of this layer 2N  is computed based on, 

=

=
n

i

imN
1

2  (3) 

The third layer has the role of matching the former portion of fuzzy criterion and 
calculating the degree of applicability of each criterion. Each node of this layer 
represents one fuzzy criterion. 

{ }ni
n

ii
j μμμα ,,,min 21

21 L=  (4) 

or 

ni
n

ii
j μμμα L21

21=  (5) 

where { }11 ,,2,1 mi L∈ { }22 ,,2,1 mi L∈ { }nn mi ,,2,1, LL ∈ ,,,2,1 mj L=  and 

∏
=

=
n

i
imm

1

. The total number of nodes of this layer 3N  is equal to m . 

A larger value of membership function will appear only when the linguistic 
variables are near the inputs, otherwise the value will be much smaller (Gaussian 
membership function) or even close to zero (Triangular membership function). The 
value of the membership function will be treated as zero if it is close to zero. 
Therefore, only few outputs, αj, of nodes in this layer are nonzero and the most 
outputs are zero. This is quite similar to a local approaching function. 

The fourth layer has the function of conducting normalization. The number of 
nodes of this layer is the same as that of the third layer, ie, mN =3 . The 

normalization can be represented by, 
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mj
m

i
ijj ,,2,1

1

L==
=

ααα  (6) 

2.3   Rear Networks 

The rear networks comprise r parallel subnets with the same structure and each subnet 
generates an output. 

The first layer of each subnet represents inputs. Each input is connected to every 
node of the second layer. The input value of the 0th node in the input layer is a 
constant 1, i.e., 10 =x . Its function is to provide the constant for the later portion of 

fuzzy criterion. 
The second layer of each subnet has m nodes. Each node represents one criterion. 

The role of this layer is to compute the later portion of every criterion, i.e. 

),,2,1,,2,1(
0

110 mjrixpxpxppy
n

k
k

i
jkn

i
jn

i
j

i
jij LLL ===+++=

=

 (7) 

The third layer of each subnet represents system outputs, iy , which is computed 

based on, 

),,2,1(
1

riyy
m

j
ijji L==

=

α  (8) 

where ijy  is the output of every node in the second layer, and jα  denotes the weight 

of later portion of every criterion. 

2.4   Learning Algorithm 

Suppose that the total number of the linguistic variables is pre-determined, the main 
parameters to be identified through learning are the weights of the later network 

( )rknimjp k
ji ,,2,1;,,1,0;,,2,1 LLL ===  as well as the center value ijc  and width 

( )iij mjmi ,,2,1;,,2,1 LL ==σ of membership function of every node in the second 

layer in former network. 
Assume the error cost function is

( )
=

−=
r

i
idi yyE

1

2

2

1
 (9) 

where diy and iy  are the expected and actual outputs, respectively. The learning 

algorithm for k
jip  is given as follows: 

( ) ijkdkk
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 (10) 
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( ) ( ) ( ) ( ) ijkdk
k
jik

ji

k
ji

k
ji xyylp
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E
lplp αββ −+=

∂
∂−=+1  (11) 

where mj ,,2,1 L= ni ,,1,0 L= rk ,,2,1 L= ; and 0>β  is the learning rate. 

By assuming ijijy ω= , the results obtained earlier can be fully utilized, i.e. 

( ) niyy idii ,,2,15 L=−=δ  (12) 
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1=ijS  when j
iμ is the minimum of inputs at the node of the kth criterion and when 

the min calculation (Eq. 4) is adopted, otherwise 0=ijS . 

∏
≠
=

=
n

ij
j

i
jijS

1

μ  when j
iμ is one of the inputs at the node of the kth criterion and when 

the multiplying calculation (Eq.5) is adopted, otherwise 0=ijS . Finally, the 

following equations are derived as 
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where 0>β is the learning rate. ni ,,2,1 L= , and imj ,,2,1 L= . 

3   Equation of Motion for a Structure-TLCD System 

The mechanical model of multi-story eccentric  structure-TLCD system is shown in 
Fig.1[2], in which the O, S and M are the geometry, stiffness and mass centers; u, v 
and  represent the floor displacements in x and y directions, and the angle around 

central axis; gu&& , gv&& and gθ&& designate the ground accelerations in x, y and  directions. 
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The mass center is taken as the origin of uMv coordinate system. Assuming TLCDs 
installed on the top of structure along the x and y directions separately with (luh lvh) 
and (lus lvs) coordinates, the liquid displacements from the equilibrium position in 
the TLCDs are h and s. 

 

Fig. 1. Analytical model 

Lay two TLCDs on the top of structure. The equation of motion for the structure-
TLCD system excited by multi-dimensional earthquake ground motions could be 
derived as follows: 

{ } { } }]{][[}]{[][][ gXEMXKXCXM &&&&& −=++  (18) 

where [M], [C] and [K] are the mass, damper and stiffness matrices, respectively. The 
{X} is the displacement vector and }{}{ gggg vuX θ&&&&&&&& = is the vector of three 

dimensional ground motions. [E] is the unit vector. 

4   Control Strategy 

Assume that the structure can be modeled as a single degree of freedom system with 
TLCD. Using the equivalency between the head loss during the half-cycle harmonic 
response in the U-type pipe and the energy consuming of a linear system, the 
equivalent damping ratio of TLCD can be obtained by [8] 

gs

T
T πω

ξκωζ
3

0
3

=
 

(19) 

where 0ε is the amplitude of liquid movement when the liquid velocity relative to the 

U-shaped pipe is zero, and k  represents the head loss coefficient of liquid. rω and 

sw  designate the vibrating frequencies of liquid in TCLD and the structure, 

respectively. The optimized damping value adopted here means that regulating the  
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TLCD damper to the optimum value can attain the optimized energy-consuming 
effect. Based on the previous studies [8]. The following basic assumptions are 
adopted in this paper: 1) the optimal control effect could be achieved 

if 1s T sω ω ω μ≈ ≈ + ; 2) the mass ratio , μ  , is barely affected by the structure;  3) 

the equivalent damping ratio, Tζ is barely affected by the structure; 4) the 

structural damping ratio, sζ is very small and can be negnected. Thus, the circular 

modal frequency and modal damping ratio are: 

±=
2

Im
12,1

βωω a
( ) 2/Re2,1 βζζ ±= T  (20) 

The corresponding mode shape vector is

( ) ( )±−
=

μγβζφ
φ

ξ /

1

2,1 T

x

i
 (21) 

where 1,2ω and 1 2ζ represent the circular frequency and damping ratio of the 1st and 

2nd modes. /B Lγ = 2 2
Tβ ζ μγ= −  Im and Re are the imaginary part and the 

real part, respectively. Eq. (24) indicates that the two damping ratios can effectively 
play their roles only when the two damping ratios are equal. Otherwise, the 
damping ratio of the 2nd mode will play the dominant role. Therefore, the optimal 
damping ratio can be obtained by 

μγζ =opt
T  

(22) 

Since the damping ratio, Tζ , depends on the cell-opening ratio as well as the liquid 

head loss coefficient κ , the best effects of vibration reduction could be achieved by 
continuously regulating the value of κ to keep Tζ  optimal. In fact, the orifice 

opening area in the U-shape pipe needs to be quickly adjusted only when the velocity 
of liquid relative to the pipe reaches zero. 

The control strategy used here focuses on reducing the vibration of the 2nd mode 
with low damping by reasonably choosing Tζ via adjusting orifice-opening area. 

In this way, only the 1st mode, not the 2nd mode, will be excited. The modal-
participation factor of the 1st mode is kept the largest. To realize this, the following 
condition should be satisfied: 

γω
βζξ

Hx a

T +
−=

&
 (23) 

Within a short time interval after 0=ξ& , the structural response may be 

approximated by 

]Re[ 0
ti aexx ω&& = ]Re[ 0

ti ae ωξξ =  (24) 

where 0x&  is the structural velocity when the relative liquid velocity is equal to zero. 

Substituting Eq. (27) in Eq. (26), one can obtain 
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a

T x

μγω
βζ

ξ 0
0
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(25) 

With μγζ >>T  and Tζ being non-negative, Eq. (28) may be further simplified to 

0

0

2x
a

T &

ξμγω
ζ =  (26) 

Substitution of Eq. (29) into Eq.(26) yields 

0
32
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x

g a

T
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&

μγω
ω

πω
κ =  (27) 

5   Example of TLCD Semi-active Control 

An eccentric structure is taken as the numerical simulation object. Its 
mass 6 22.5 10 /sm Ns m= × . The inertia of floor to the mass center is J=5.1×105kg·m2. 

Its stiffness characterisctics are given as: kx=3.1×106N/m in the x direction, 
ky=4.6×106N/m in the y direction, and kt=3.27×108N·m/Rad in the torsion direction. 
The structural damping ratio s=0.05 and eccentric distance ey=3m only in y direction. 
The inherent period in x direction Tx=5.64s. The TLCD parameters are: the mass ratio 
μ=0.01=0.01, =0.5=0.5, liquid length L=15.96m and cross-section area A=1.566m. The El Centro 
seismic record of USA in May 18, 1940 is used as the input in x direction. 

The orifice-opening rate is continuously controlled by T-S model based FFN. Its 
essential principle is that the cell-opening area needs to be adjusted quickly when the 
relative liquid velocity in TLCD is zero. In this numerical simulation, the T-S model 
based FNN is selected, in which there is an unit in the input layer representing the 
structural velocity 0x&  when the relative velocity of liquid is zero and an unit in the 

output layer representing the orifice-opening ratio. The seismic response results of 
structure excited by the El-Centro wave with the theoretical analysis are used as the 
training sample. To make the FNN have a better generalized capability, the amplitude of 
El Centro wave is changed to different levels, 0.03g, 0.06g, 0.12g, 0.25g and 0.5g and 
their corresponding earthquake intensities are changed from V to IX. The network target 
error is chosen as 0.002. Thus, the training will stop if the error of the FNN is less than 
or equal to this value.  

Fig. 2 shows the time history of orifice-opening ratio in TLCD under the excitation 
of the El Centro wave. For comparison purpose, the results of the case with a standard 
neural network controller is also presented in Fig. 2. This figure clearly reveals that the 
FNN has a better performance. The structural translational and rotational responses in 
three different cases of uncontrolled, passive control with the orifice fully open, and 
semi-active control, are shown in Fig. 3 and Fig.4, respectively. These two figures show 
that the semi-active control of TLCD with FNN achives the best seismic response 
reduction. The maximum values of vibration reduction using the passive and semi-
active control methods are listed in Table 1. 
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Fig. 2. Orifice-opening ratio versus time 

 

Fig. 3. Displacement time history of structural system 

 

Fig. 4. Torsional angle time history of structural system 

Table 1. Vibration reduction effect of TLCD 

Orifice-opening ratio deviation (%) 2.54 
Passive 26.13 Displacement 

reduction ratio (%) Semi-active 31.56 
Passive 28.96 Rotational angle 

reduction ratio (%) Semi-active 33.47 

6   Conclusions 

The application of the T-S model based FNN in TLCD semi-active control has been 
studied in this paper. The conclusions can be summarized as follows: 

1) Using the T-S model based FNN in the structural vibration control is not only 
feasible, but also effective. 
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2) Structural seismic response control using FNN can effectively solve some 
complex problems, such as non-linearity and structural coupling, and also make 
the online learning based structural control possible. 

3) Structural semi-active control by regulating the orifice opening area in TLCD is 
simple, convenient and effective. This semi-active method is more effective than 
a pure passive control. 
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Abstract. In this paper, real time motion tracking of a robot manipulator based 
on the adaptive learning radial basis function network is proposed. This method 
for adaptive learning needs little knowledge of the plant in the design processes. 
So the centers and widths of the employed radial basis function network 
(RBFN) as well as the weights are determined adaptively. With the help of the 
RBFN, motion tracking of the robot manipulator is implemented without know-
ing the information of the system in advance. Furthermore, identification error 
and the tuned parameters of the RBFN are guaranteed to be uniformly ulti-
mately bounded in the sense of Lyapunov’s stability criterion. 

1   Introduction 

Many kind of manipulator systems are widely used in various application fields, as 
the development of mechatronics and computer controlled systems. Especially, appli-
cation of intelligent control techniques (fuzzy system, neural network, and fuzzy-
neural network) to the modeling and control of robotic manipulators have received 
considerable attention [1]. In general, robot manipulators have to face various uncer-
tainties in their dynamics such as payload parameters, friction, and disturbance. So it 
is difficult to establish an appropriate mathematical model for the design of a model-
based control system. Therefore the real time motion tracking task to an environment 
and its dynamic behavior analysis are required.  

Recently, many researches [2-5] have been applied both fuzzy system and neural 
networks for robot manipulators. It is known that fuzzy system is able to deal with 
human knowledge. Therefore, the precise mathematical models of the plant and the 
environment are not needed for designing the controller. However, there are some 
difficulties to design the fuzzy controller systematically. In addition once fuzzy rules 
and membership functions are decided, usually they will not be modified even if the 
controller is not perfect. In the other hand, it is known that neural networks have  

                                                           
∗ Corresponding author. 
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ability to learn from experiments and adapt to a new environment. Because of these 
abilities, this controller is especially effective in the case that the dynamics of the 
environment is unknown. But it is difficult to design a good neural network system 
without learning [6]. As another method, radial basis function network (RBFN) is one 
of the most promising because of its drastic identification performance with simple 
structure, fast computation time and higher adaptive performance.  

In this paper, we employed a adaptive learning RBFN as an identifier of robot ma-
nipulator system. The adaptive RBFN has no need of an initialization and has the 
ability to change its own structure during learning procedure. The RBFN initially has 
only one node in the hidden layer, but during the learning process, the network creates 
new nodes, and annexes similar nodes if they are needed. This adaptive learning 
scheme [7-10] is combined with identification algorithm for uncertain nonlinear sys-
tem. Learning algorithm also guarantees the stability of the whole network in the 
sense of Lyapunov. The variables that must be at least bounded are the identification 
error, weights, centers and widths of RBFs. The employed learning algorithm makes 
these variables be uniformly ultimately bounded, and the experimental implementa-
tion for the robot manipulator shows the performance and efficiency of the scheme. 

2   Robot Manipulator and Its Experimental Environment 

We consider a two-degree of freedom robot arm and its practical robot manipulator to 
be modeled in this paper. They are shown in Fig. 1. 

     

Fig. 1. Schematic diagram of the two links manipulator and its actual structure 

The robot arm consists of two-link: the first one mounted on a rigid base by means 
of a frictionless hinges and the second mounted at the end of link one by means of a 
frictionless ball bearing. The two joints robot arm in the horizontal plane contains a 
personal computer, a D/A card, a decoder etc. The first and second link is individually 
driven by AC motor. 
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Fig. 2. Experimental setup for two joints robot arm 

Since the pre-information about the robot manipulator is unknown, for the identifi-
cation process, measuring procedure for real input-output vector is necessary. For that 
purpose, a simple experimental environment connecting to the manipulator is set up. 
Its block diagram is shown in Fig. 2. In this experimental system, IBM PS/2 compati-
ble computer is used as a main driver which gives torque commands for driving the 
actuators on each link in manipulator. Because the main driver is digital system but 
the controlled manipulator is analogue one, the additional interface circuit is neces-
sary. After the desired torque commands are to be engaged in the manipulator through 
the main driver and interface circuit, we can obtain the real input-output data of the 
identified robot manipulator. 

3   Adaptive Learning of Radial Basis Function Network 

3.1   General Description of the RBFN 

RBFN is a three-layer neural networks structure. The employed structure of the 
RBFN is shown in Fig. 6. In RBFN, each hidden neuron computes the distance from 
its input to the neuron’s central point, m, and applies the RBF to that distance, as 
shows in eq. (1)  

2 2( ) ( / )i i ix x mξ φ σ= −      (1) 

where iξ (x) is the output yielded by hidden neuron number i when input x is ap-

plied;φ  is the RBF, mi is the center of the ith hidden neuron, and iσ is its radius.  

The neurons of the output layer perform a weighted sum using the outputs of the 
hidden layer and the weights of the links that connect both output and hidden layer 
neurons 

0
1

( ) ( )
n

j ij i j
i

y x x hθ ξ
=

= +     (2) 

where yj(x) is the value yielded by output neuron number j when input x is applied: 

ijθ is the weight of the links that connects hidden neuron number i and output neuron 

number j, h0j is a bias for the output neuron, and finally, n is the number of hidden 
neurons. 
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3.2   Adaptive Learning Algorithm of the RBFN 

In the conventional design procedure, we have to set the initial structure before start-
ing the learning of the network. In particular, it is hard to specify this initial structure 
in advance due to the uncertain distribution of on-line incoming data. We approach 
this problem by using a adaptive RBFN inspired by the methods in [7-10]. 

Similarity measure 
Suppose the Aμ  and Bμ as the activation functions of neurons A and B,  

respectively.  

2 2
1 1

2 2
2 2

( ) exp{ ( ) / }

( ) exp{ ( ) / }

A

B

x x m

x x m

μ σ

μ σ

= − −

= − −
   (3) 

And consider a criterion for the degree of similarity of two neurons, ( , )S ⋅ ⋅ . Then, 

( , )S ⋅ ⋅  takes the values in [0, 1], and the higher ( , )S A B  is the more similar A and B 

are. Similarity is measured as follows, 

1 2

( , )
A B A B

S A B
A B A Bσ π σ π

= =
+ −

   (4) 

where  

,A B A B A B

A B

+ = +

=
 

2
2 1 1 2

1 2

( ( ))1

2 ( )

h m m π σ σ
π σ σ

− + +
+

+ 

2
2 1 1 2

2 1

( ( ))1

2 ( )

h m m π σ σ
π σ σ

− + −
−

+                                     (5) 

2
2 1 1 2

1 2

( ( ))1

2 ( )

h m m π σ σ
π σ σ

− − −
−

 

( ) max{0, }h x x=  

Creating a new neuron 
The procedure for creating new neuron is described as follows.  

Step 1: Get the input ( )tx  and calculate the φ vector shown in Fig. 3(a). 

1 2 ( )

T

N tφ φ φ φ=                                                (6) 

where , 1,2, , ( )q q N tφ =  is the output value of each hidden neuron. 

Step 2: Find the unit J having the maximum response value shown in Fig. 3 (b). 

1, ( )
maxJ q

q N t
φ φ

=
=                                                          (7) 
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( )tX
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1 2[  ]Tφ φ φ=

������� �������

( )tX

1φ

2φ

1 2 1 >   Jφ φ φ φ→ =

 
(a)     (b) 

Fig. 3. Schematic representations of step 1 and 2 

Step 3: Determine whether a new neuron is added or not according to the following 
criterion (refer to Fig. 4) 

is winner (Do nothing).

Create a new unit.

J

J

if J

if

φ φ
φ φ

≥ →

< →
    (8) 

where 0 1φ≤ <  is a threshold value 

( )tX

������

 >   Do nothingJφ φ →

Jφ
φ

( )tX

����������	
�
�
�
���

Jφ
φ

��������������

 Create a new unitJφ φ< →

 
(a) No neuron is added      (b) New neuron is added 

Fig. 4. Schematic representations of step 3 

Step 4: Modify or initialize parameters. 
1) If J th neuron is the winner (Do nothing),  

[ ]

( ) ( 1)

1
( )

( )

( ) ( 1)

( ) ( 1) ( ) ( ) ( 1)

J J

J
J

J J J J

n t n t

t
n t

N t N t

t t t u t t

α

α

= −

=

= −

= − + − −m m m

   (9) 
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where Jα is the local gain  

The local gain, Jα , governs the speed of the adaptive process for Jm and is in-

versely proportional to the active frequency, Jn , of the Jth unit up to the present time 

instant. The reason why we use this local gain is that it prevents the neurons from 
concentrating on the small area. 

2) If a new neuron is created, we initialize parameters. 

( )

( )

( )

( ) ( ) 1

x( )

0, 1,...,

N t

JN t

N t i

N t N t

t

i n

σ σ

+

+

+

+ = +

=

=

= =

m
                                             (10) 

where t+ indicates the time right after t.  

Annexing two neurons 
Step 5: Find the similarity set for annexation. Refer to Fig. 5 (a). If we have N(t) neu-
ron at time instance t, the similarity set is  

{ (1,2), (1,3) , ( ( ) 1, ( ))}annexationS S S S N t N t= −                        (11) 

where S(i, j) is the similarity between ith and jth neuron.  

Step 6: In the similarity set, if there are elements which satisfy S(i, j) > 0S , ith and jth 

neuron are annexed. Refer to Fig. 5 (b). The annexed neuron has the center, slope and 
weight determined as 

,

( ) ( ) 1

( ) ( )
( )

2
( ) ( )

( )
2

( ) ( ) ( ) ( )
( ) , 1,...,

( )

i j
annex

i j
annex

ik i jk j
annex k

newi

N t N t

t t
t

t t
t

t t t t
t k n

t

σ σ
σ

φ φ
φ

+

+

+

+
+

= −
+

=

+
=

+
= =

m m
m

                        (12) 

In step 4 and step 6, the new weight 
( )N t k+  and , ( ), 1,...,annex k t k n+ =  are set to 

have no effect on the output of the RBFN by creation or annexation, that is 
( ) ( )t t+=y y . The RBFN gets to find proper structure with above procedures step 1- 

step 6 going on.  

Learning procedure based on the Lyapunov stability 
The input-output behavior of the system to be approximated is describe by  

( , )f=x x u                                                            13) 
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where nR∈x is the state and mu R∈ is the input of the system, and ( )f ⋅ is an unknown 

nonlinear function. 

�������

�������
������	

(1,2)S (1,3)S (2,3)S

�������

�������

	���
���������

(1,2) annex neuron 1 and neuron 2S S> →

 
(a)      (b) 

Fig. 5. Schematic representations of step 5 and 6 

Let the eq. (13) rewrite using self-organizing RBFN eq. (1) including the recon-
struction error of the network , ε : 

* * *

( , )

( , | , )T

f

ξ ε
= − + + =

− + +
x Ax Ax x u

Ax x u c
                                    (14) 

where 1 2 ( ),...,[ ]T
N tξ ξ ξ ξ= , 1 2 ( ),...,[ ]T T T T

N tc m m m=  and 1 2 ( ),...,[ ]T T T T
N tδ σ σ σ= are the 

output of the hidden layer, center value and the width of the neurons, respectively, 
and A>0. In eq. (14), ‘*’ means the optimal value of the parameters in the RBFN, and 
in normal cases, identified model of eq. (14) can be written as  

ˆ ˆˆˆ ˆ ( , | , )Tξ= − +x Ax x u c                                         (15) 

By using eq. (14) and eq. (15) the time derivative of error, e  , is derived as  

* *ˆ ˆˆ

ˆ ˆ ˆ ˆˆ{ } ( )

T

T T t

ξ ξ ε

ξ ξϕ ξϕ

= − = − + − −

= − + − + +

Te x x Ae

Ae w
                                 (16) 

where * *ˆ( ) ( )T Tt Oξϕ ε= − ⋅ −w  and it is norm-bounded 

Now, if the update laws for the parameters in the adaptive learning RBFN are de-
termined as  

ˆ ˆ ˆ ˆˆ[ ]

ˆ ˆˆ ˆ[ ]

T T

T T T
q q

r r

r r

θ θξϕ ξ κ

ϕ ϕ ξ κ ϕ

= = − −

= = − −

e P e P e

e P e
                                (17) 

where κ  is a positive constant at designer’s disposal. 
Then, the identification error e and the estimated parameters , ϕ  in the RBF 

network are all uniformly ultimately bounded.  
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4   Experimental Results 

The performance and capability of the adaptive learning RBFN will be demonstrated 
experimentally for robot manipulator system in this section. Any information and 
characteristics about the identified manipulator is not known, and the characteristics 
of the actuators for each link are also merging into the identification process. 

1-axis angle Estimated
1-axis angle

1-axis angular
velocity �

�

�

2-axis angle

2-axis angular
velocity

Torque input
for 1-axis

Torque input
for 2-axis

Estimated
1-axis 

Estimated
2-axis angle

Estimated
2-axis 

 

Fig. 6. Structure of the RBFN for robot manipulator 

For the identification of the robot manipulator, the input vector of the adaptive 
RBFN consists of angle, angular velocity and torque input for each axis, and all of 
them are to be measured with experimental setup. The output vector is the estimated 
angle and angular velocity for each axis. This structure is shown in Fig. 6, and the 
initial value of the number of hidden neuron is one. However, as the learning phase is 
going on, the number of neurons in the hidden layer can be increased by the self-
organizing mechanism.  
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Fig. 7. Angle and angular velocities in 1-axis and 2-axis 
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Fig. 8. Number of neurons and errors of angle and angular velocity of each axis 

The design parameter of learning procedure are as follows: κ 75 10−× , φ in Step 

3 0.750, 0S in Step 5 0.980, total number of learning phase 900, initial number of 

neuron 1. Parameters of learning rate, rθ  and qr are 7 and 0.06, respectively. 

The experimental results are illustrated in Figs. 7-8. In these figures, the real 
(measured) and estimated values of angle and angular velocity of each axis, and their 
errors are presented. And the variation of the number of neurons in the hidden layer is 
also displayed.  

4   Conclusions 

In this paper modeling of robot manipulator using adaptive learning radial basis func-
tion network is implemented and experimentally verified. The RBFN creates and an-
nexes neurons on-line and automatically during the identification procedure. And with 
the structure learning procedure, the centers and widths of RBFN as well as the weights 
are to be adaptively determined. If the input vector is too far away from the existent 
neurons, the new neuron will be created, and if the two neurons are too close each other, 
these neurons will be annexed. In this paper, we guaranteed the stability of the whole 
closed-loop system in the Lyapunov standpoint. The identification error and the learned 
parameters of the RBFN are also guaranteed to be uniformly ultimately bounded.  
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Abstract. This paper addresses an obstacle avoidance issue for redun-
dant nonholonomic mobile modular manipulators. On the basis of mod-
ular robot concept, an integrated dynamic modeling method is proposed,
which takes both the mobile platform and the onboard modular manip-
ulator as an integrated structure. A new obstacle avoidance algorithm
is proposed which is mainly composed of two parts: a self-motion plan-
ner (SMP) and a robust adaptive neural fuzzy controller (RANFC). One
important feature of this algorithm lies in that obstacles are avoided
by online adjusting self-motions so that the end-effector task will not
be affected unless the obstacles are just on the desired trajectory. The
RANFC does not rely on exact aprior dynamic parameters and can sup-
press bounded external disturbance effectively. The effectiveness of the
proposed algorithm is verified by simulations.

1 Introduction

In recent years, autonomous mobile manipulators have been paid extensively
attention due to their wide applications. Compared with a conventional manip-
ulator mounted on a fixed base, a mobile manipulator has much larger mobility
in workspace. Modeling and control for redundant nonholonomic mobile mod-
ular manipulators are difficult to realize due to interactive motions, nonholo-
nomic constraints and self-motions. Neural-fuzzy system has been widely used
for robotic control due to its characteristics as universal approximators.

Obstacle avoidance for mobile platforms [1,2] and robotic manipulators [3,4]
is realized easily in a sense in case of treating respectively, complexity will in-
crease significantly if obstacle avoidance is performed for an assembled mobile
modular manipulator. Several obstacle avoidance schemes have been proposed,
such as the artificial potential field (APF) method [1], the vector field histogram
(VFH) algorithm [2], and the redundancy resolution scheme [3]. To get over the
local minima problem of the APF method, harmonic artificial potential function
is devised [4]. As for investigations on modular robots or mobile manipulators,
back propagation neural network has been used for vibration control of redun-
dant modular manipulators [5]. An integrated task planning and a decoupled

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 1109–1118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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force/position control algorithm are proposed [6]. Regarding to researches on
neural-fuzzy robotic control, a neural-fuzzy integrated controller is developed
for mobile robot navigation and multi-robot convoying [7]. A robust adaptive
generalized fuzzy-neural controller is presented for motion control of multi-link
robotic manipulators [8].

Different from previous works in which the mobile platform and manipulator
are modeled separately, the entire robot is modeled as an integrated structure
in this paper. The redundancy of a redundant mobile manipulator is utilized
to fulfil a task of obstacle avoidance by adjusting self-motions without changing
end-effector’s specified job. Furthermore, most obstacle avoidance algorithms are
only concerned with tasks of the start and goal points. However, the algorithm
proposed can ensure the motion tasks not be affected during the entire course
of navigation. In addition, unlike the previous schemes, this algorithm considers
obstacles not only in the motion plane of the mobile platform, but also in the
entire 3-D operational space of the onboard modular manipulator.

This paper is arranged as follows. An integrated dynamic modeling method is
proposed in Section 2. The obstacle avoidance algorithm is presented in Section
3. A simulation is carried out in Section 4. Conclusions are given in Section 5.

2 An Integrated Dynamic Modeling Method

In this paper, we analyze a 3-wheeled nonholonomic mobile modular manipula-
tor, which is supposed to just move on a horizontal plane, as shown in Fig. 1. The
coordinate systems are defined as follows: OBXBYBZB forms an inertial base
frame, and OmXmYmZm is a frame fixed on the mobile platform. The origin of
Om(xm, ym) is selected as the midpoint of the line segment connecting the two
fixed-wheel centers. Ym is along the line segment mentioned above. In Fig. 1(b),
θi and ri are the yaw angle and steering radius at the time interval [ti, ti+1].
ΔSL, ΔSR, and ΔSm represent advance of the left wheel, the right wheel, and
Om respectively. φL and φR are rotating angles of the left and right front wheels,
φr and βr denote rotating angles of the castor wheel around its own axis and
the fixed bar. dm, rf , lG, lr, dr and rr are all constants determined by physical
structures.

Assume Δt = ti+1 − ti → 0, from Fig. 1(b)⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋm = lim

Δt→0

(
Δxm

Δt

)
= rf ·Cm

2 ·
(
φ̇L + φ̇R

)
ẏm = lim

Δt→0

(
Δym

Δt

)
= rf ·Sm

2 ·
(
φ̇L + φ̇R

)
φ̇m = lim

Δt→0

(
Δφm

Δt

)
= − rf

dm
·
(
φ̇L − φ̇R

) (1)

Where Sm = sin (φm), Cm = cos (φm).
In the same way, we have{

φ̇r = Crm·ẋm+Srm·ẏm−lr ·Sr·φ̇m

rr

β̇r = Srm·ẋm−Crm·ẏm−(dr−lr·Cr)·φ̇m

dr

(2)
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Fig. 1. Prototype and coordinate system for a mobile modular manipulator

Where Srm = sin (βr + φm) , Crm = cos (βr + φm), Sr = sin (βr) , Cr = cos (βr).
Define ξ = [xm ym φm φr βr φL φR]T , then from Eqs. 1 and 2, the non-

holonomic constraints can be given by

A (ξ) · S (ξ) = 0. (3)

Where the matrices A (ξ) and S (ξ) can be detailed by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cm Cm −Sm Crm −Srm

Sm Sm Cm Srm Crm

− dm

2
dm

2 0 −lrSr kr

0 0 0 −rr 0
0 0 0 0 dr

−rf 0 0 0 0
0 −rf 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rf ·Cm

2
rf ·Cm

2
rf ·Sm

2
rf ·Sm

2
− rf

dm

rf

dm
rf (dmCr+2lrSr)

2dmrr

rf (dmCr−2lrSr)
2dmrr

rf (dmSr+2kr)
2dmdr

rf (dmSr−2kr)
2dmdr

1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Where kr = dr − lrCr.
According to modular robot concept, the mobile platform can be treated as a

special module attached to the base of the modular manipulator. From Denavit-
Hartenberg notation, transformation matrix of the ith module with respect to
OBXBYBZB can be derived, see [9] for details.

Let ζ = [ξT q1 · · · qn]T , q = [φL φR q1 · · · qn]T , x = [px py pz]T , then

ζ̇ =
[

S 07×n

0n×2 In×n

]
· q̇, ẋ =

∂x

∂q
· q̇ =

∂x

∂ζ
· ∂ζ

∂q
· q̇ (5)

In short ζ̇ = S · q̇, ẋ = J · q̇.
In this paper, as long as n > 1, the robot will be redundant, then from Eq. 5

q̇ = J† · ẋ +
(
In+2 − J† · J

)
· q̇s (6)
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Where J† = JT ·
(
J · JT

)−1 is the Moore-Penrose generalized inverse of J ,
q̇s ∈ 	n+2 is an arbitrary vector.

Let Jℵ ∈ 	(n+2)×(n−1) be a matrix with all its columns be the normalized
bases of ℵ (J), which is the null space of J . Then

J · Jℵ = 03×(n−1), J
T
ℵ · J† = 0(n−1)×3,

JT
ℵ · Jℵ = I(n−1), Jℵ · JT

ℵ = In+2 − J† · J. (7)

Define ẋℵ = JT
ℵ · q̇s, xE =

[
xT

∣∣ xT
ℵ
]T , J†

E =
[
J† ∣∣ Jℵ

]
. From Eqs. 6 and 7,

we have

ζ̇ = S̄ · J†
E · ẋE , ζ̈ = S̄ · J†

E · ẍE +
( ˙̄S · J†

E − S̄ · J† · J̇
)
· ẋE (8)

The constrained dynamics can be determined by [10]

M · ζ̈ + V · ζ̇ + G = B ·
(
τ + JT · Fext

)
+ C · λ (9)

Where B =
[
0(n+2)×5 In+2

]T , C =
[
A 05×n

]T , Fext is an external force

vector, λ =
[
λ1 · · · λ5

]T are Lagrange multipliers, τ =
[
τL τR τ1 · · · τn

]T are
corresponding driving torques.

Substituting Eq. 8 into Eq. 9, and left multiplying
(
J†

E

)T · S̄T , yields

M̄ · ẍE + V̄ · ẋE + Ḡ = τ̄ (10)

Where M̄ =
(
J†

E

)T
S̄TMS̄J†

E , V̄ =
(
J†

E

)T
S̄T

(
M ˙̄SJ†

E −MS̄J†J̇ + V S̄J†
E

)
, Ḡ =(

J†
E

)T
S̄TG, τ̄ =

(
J†

E

)T
S̄T B

(
τ + JT Fext

)
; and

(
J†

E

)T
S̄TCλ = 0 is eliminated.

Remark 1. The following properties hold for Eq. 10: 1) For any r ∈ 	n+2, rT ·
M̄ · r ≥ 0; 2) For any r ∈ 	n+2, rT ·

( ˙̄M − 2V̄
)
· r = 0; 3) If J is full rank,

JE =
(
J†

E

)−1 =
[
JT

∣∣ Jℵ
]T ; 4) If J is full rank, M̄, V̄ , Ḡ ∈ �∞. Here �∞ =

{x (t) ∈ 	n : ‖x‖∞ <∞}.

3 A New Obstacle Avoidance Algorithm

3.1 Problem Formulation

According to whether on the desired end-effector trajectory or not, obstacles can
be divided into two kinds: the task-consistent one and the task-inconsistent one,
see Fig. 2(a). The task-consistent obstacles can be avoided by on-line adjusting
self-motions. However, the task-inconsistent obstacles can not be avoided without
affecting end-effector executed tasks. One solution to avoid task-inconsistent
obstacles is to regenerate the desired end-effector task, which belongs to the
high-level decision making problem and is beyond the discussion of this paper.
In this paper, only task-consistent obstacles are concerned and redundancy of
the robot is supposed to be high enough to avoid obstacles just by adjusting self-
motions. Obstacle avoidance is realized online, so the exact positions of obstacles
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need not be known in advance. Furthermore, the mobile modular manipulator
is supposed to work in a unstructured environment and the obstacles can be
detected by sonar, infrared, laser range finder, vision or some other sensors in a
realtime manner.

ijd

(a) Obstacle classification

1w

2w

rNw
2x

1x

1iNx −

iNx

Σ

Σ

1

1

1

Π

Π

Π

NFSf

(b) A MISO NFS

Fig. 2. Obstacle classification and a MISO neural-fuzzy system

3.2 Self-motion Planning

Let xℵd, ẋℵd and ẍℵd be the desired self-motions. Assume the system is far away
from singularity and physical limits, then the self-motions can be used specially
for obstacle avoidance.

If a point on the robot gets too close to an obstacle (‖dij‖ < dc), this point
can be called a critical point, and dc is called the cut-off distance. The artificial
potential function for the ith critical point and the jth obstacle can be defined by

φij(q) =

{
1
2 · kφ ·

(
1

‖dij‖ −
1
dc

)2
, ‖dij‖ < dc

0, ‖dij‖ ≥ dc

(11)

Where kφ > 0 is a constant coefficient, dij = xci − xoj is the nearest distance
between the ith critical point and the jth obstacle, as shown in Fig. 2(a). Here,
xci = [pcix pciy pciz]T and xoj = [pojx pojy pojz]T are position vectors for the
ith critical point and the jth obstacle with respect to OBXBYBZB.

To avoid obstacles in a realtime manner, the self-motions can be planned to
optimize the following function:

Φ (q) =
No∑
j=1

Nc∑
i=1

φij (q) (12)
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Where No and Nc are the numbers of obstacles and critical points respectively.
Then

q̇sd = −∂Φ (q)
∂q

= −
No∑
j=1

Nc∑
i=1

∂φij (q)
∂q

(13)

Where ∂φij(q)
∂q can be derived from Eq. 12.

∂φij (q)
∂q

=

⎧⎨⎩−
[
kφ ·

(
1

‖dij‖ −
1
dc

)
· dT

ij

‖dij‖3 ·
(

∂xci

∂qT − ∂xoj

∂qT

)]T

, ‖dij‖ < dc

0, ‖dij‖ ≥ dc

(14)
Then, xℵd, ẋℵd and ẍℵd can be determined.

3.3 Robust Adaptive Neural-fuzzy Controller Design

Theorem 1. (Universal Approximation Theorem [12])
The multiple inputs single output (MISO) fuzzy logic system (FLS) with center
average defuzzifier, product inference rule and singleton fuzzifier, and Gaussian
membership function can uniformly approximate any nonlinear functions over a
compact set U ∈ 	n to any degree of accuracy.

If the FLS described above is realized by a neural network (NN), a neural
fuzzy system (NFS) can be obtained as shown in Fig. 2(b). Output of this NFS
is given by

fNFS =

Nr∑
j=1

{
wj ·

Ni∏
i=1

{
exp

[
−

(
xi−�ji

σji

)2
]}}

Nr∑
j=1

{
Ni∏
i=1

exp
[
−

(
xi−�ji

σji

)2
]} (15)

Where xi is the ith input variable, wj denotes the jth centroids for the output
fuzzy sets, i = 1, 2, · · · , Ni, j = 1, 2, · · · , Nr, here Ni and Nr represent the number
of input variables and rules respectively. #ji and σji are the mean and standard
derivation of the Gaussian membership functions accordingly.

Let xd, ẋd and ẍd be desired task-space position, velocity and acceleration.
Define xEd = [xT

d | xT
ℵd ]T , then the error system can be defined as

e (t) = xE (t)− xEd (t) , ẋs (t) = ẋEd (t)− Λ · e (t) , s (t) = ẋE (t)− ẋs (t) (16)

Where s (t) is the tracking error measure, Λ is a constant positive definite matrix.
Substituting Eq. 16 into 10, yields

M̄ · ṡ (t) + V̄ · s (t) + M̄ · ẍs (t) + V̄ · ẋs (t) + Ḡ = τ̄ (17)

Define h
(
ζ, ζ̇, ẋs, ẍs

)
= M̄ · ẍs + V̄ · ẋs + Ḡ. According to the universal ap-

proximation theorem mentioned above and Remark1, each element of h can be
approximated by a MISO NFS as long as the Jacobian matrix J is full rank. Then
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h = hNFS + ε. Here hNFS ∈ 	n+2 are NFS approximates of h and ε are approxi-
mated errors, hNFSk = fNFS (xin, #k, σk, wk), #k, σk ∈ 	Nr×Ni , and wk ∈ 	Nr

are adjustable parameter matrices for these NFS, xin = [ζT q̇T xT
Ed ẋT

Ed ẍT
Ed]

T

are corresponding inputs, k = 1, 2, · · · , n + 2.
Assume xin ∈ [xin, x̄in], h ∈

[
h, h̄

]
, then the adjustable parameters can be

initialized by

#kji0 = xini + j · x̄ini−xini

Nr
, σkji0 = x̄ini−xini

Nr
, wkji0 = hk + j · h̄k−hk

Nr
(18)

Let #̂k, σ̂k, and ŵk be estimates of #k, σk and wk respectively. Taking
the Taylor series expansions of hNFSk around ĥNFSk = fNFS (xin, #̂k, σ̂k, ŵk),
yields

h̃NFSk =
Nr∑
j=1

{ Ni∑
i=1

[∂ĥNFSk

∂#kji
·#̃kji+

∂ĥNFSk

∂σkji
·σ̃kji

]
+

∂ĥNFSk

∂wkj
·w̃kj

}
+hres (19)

Where h̃NFSk = hNFSk − ĥNFSk, #̃kji = #kji − #̂kji, σ̃kji = σkji − σ̂kji and

w̃kj = wkj−ŵkj ; hres =
Nr∑
j=1

{
Ni∑
i=1

[
O
(
#̃2

kji

)
+O

(
σ̃2

kji

)]
+O

(
w̃2

kj

)}
; here O

(
#̃2

kji

)
,

O
(
σ̃2

kji

)
, and O

(
w̃2

kj

)
are higher-order terms.

The RANFC is represented by

τ =
(
S̄T B

)−1
JT

E

{
ĥNFS−Kεsgn (s)−KP s (t)−KI

∫ t

0
s (t) dt

}
−JTFext (20)

Where KP > 0, KT
I = KI > 0 are proportional and integral gain matrices,

Kε = diag { kε1 · · · kε(n+2) } is the gain matrix for the robust term, with its
elements determined by kεk ≥ |εk|+ |hres|.

Substituting Eq. 20 into Eq. 17 and considering Eq. 10, yields the following
error equation

M̄ · ṡ (t)+ V̄ ·s (t)+ ε+KI ·
∫ t

0
s (t) dt+KP ·s (t)+Kε ·sgn (s)+ h̃NFS = 0 (21)

Theorem 2. The closed-loop system in Eq. (21) is asymptotically stable under
the adaptation laws given by Eq. (22). The error signals are convergent along
with time, i.e., e (t) , ė (t)→ 0, as t→ +∞.

˙̂#kji = −Γ�kji
sk

∂ĥNFSk

∂#kji
, ˙̂σkji = −Γσkji

sk
∂ĥNFSk

∂σkji
, ˙̂wkj = −Γwkj

sk
∂ĥNFSk

∂wkj
.

(22)
Where ∂ĥNF Sk

∂�kji
, ∂ĥNFSk

∂σkji
, and ∂ĥNF Sk

∂wkj
can be detailed by

∂ĥNFSk

∂wkj
=

Ni∏
i=1

{
exp

[
−
(

xini−	̂kji
σ̂kji

)2
]}

Nr∑
j=1

{
Ni∏
i=1

exp
[
−
(

xini−	̂kji
σ̂kji

)2
]} ,

∂ĥNFSk

∂�kji
=

2(xini−�̂kji)(ŵkj−ĥNFSk)
σ̂2

kji

∂ĥNFSk

∂wkj

∂ĥNFSk

∂σkji
= (xini−�̂kji)

σ̂kji
· ∂ĥNFSk

∂�kji

(23)
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Proof. Considering the following Lyapunov candidate:

VS = 1
2 · sT · M̄ · s + 1

2 ·
[ ∫ t

0 s (t) dt
]T ·KI ·

[ ∫ t

0 s (t) dt
]

+ 1
2 ·

n+2∑
k=1

{
Nr∑
j=1

[
Ni∑
i=1

(
�̃2

kji

Γ	kji
+

σ̃2
kji

Γσkji

)
+

w̃2
kj

Γwkj

]}
≥ 0

(24)

The time derivative of Lyapunov candidate is

V̇S = sT ·
{
M̄ · ṡ + KI ·

[∫ t

0 s (t) dt
]}

+ sT · ˙̄M·s
2

+
n+2∑
k=1

{
Nr∑
j=1

[
Ni∑
i=1

(
�̃kji· ˙̃�kji

Γ	kji
+ σ̃kji· ˙̃σkji

Γσkji

)
+ w̃kj · ˙̃wkj

Γwkj

]} (25)

From Eq. 21, we have

sT ·
{
M̄ · ṡ + KI ·

[∫ t

0 s (t) dt
]}

= −sT · V̄ · s
−sT ·KP · s− sT ·

[
h̃NFS + kε · sgn (s) + ε

] (26)

Notice that ˙̃#kji = − ˙̂#kji, ˙̃σkji = − ˙̂σkji, ˙̃wkj = − ˙̂wkj . Substituting Eqs.
19,22 and 26 into 25, and considering kεk ≥ |εk|+ |hres| at the same time, yields

V̇S ≤ −sT ·KP · s ≤ 0 (27)

From Eqs. 24 and 27, VS is a Lyapunov function. According to LaSalle’s
theorem, the system is asymptotically stable and s → 0 as t → +∞. Define
�p = {x (t) ∈ 	n : ‖x‖p <∞}. From Eqs. 24 and 27, s (t) ∈ �2. According to
Eq. 16, e (t) ∈ �2 ∩ �∞, ė (t) ∈ �2, and e (t) → 0, as t → +∞. Since V̇S ≤ 0,
VS ∈ �∞, which implies that #̃kji, σ̃kji, w̃kj ∈ �∞, if the Jacobian is full rank,
hNFS ∈ �∞ and #kji, σkji, wkj ∈ �∞, so, #̂kji, σ̂kji, ŵkj ∈ �∞ and ĥNFS ∈ �∞.
Considering that hres ∈ �∞, so Kε ∈ �∞. Then, from Eq. 21, ṡ (t) ∈ �∞. Since
s (t) ∈ �2 and ṡ (t) ∈ �∞, s (t) → 0 as t → +∞, which is followed by ė (t) → 0.
End of the proof.

4 Simulation Results

The simulation is performed on a real robot composed of a 3-wheeled mobile
platform and a 4-DOF modular manipulator, as shown in Fig. 1(a). In order
to verify the algorithm, the robot is required to follow a spacial trajectory in
Fig. 3(a), which has been planned to ensure the robot far away form singularities
or joint limits. Two ball-like task-consistent obstacles with radius of 0.2m are
considered, one is on the motion plane of the mobile platform and the other is
on the way of the modular manipulator as shown in Fig. 3(b).

The simulation time is selected as 20 seconds. Each element of h is ap-
proximated by a NFS. The gain matrices and constants are selected as fol-
lows: KP = diag {100} ,KI = diag {10} ,Kε = diag {50} ,Γ�kji

= 0.1,Γσkji
=
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Fig. 3. Desired and control locus and obstacle avoidance
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Fig. 4. Tracking position and velocity errors

0.1,Γwkj
= 0.1, Λ = diag {2.0} and Nr = 200. The cut-off distance is selected as

dc = 0.5m, and the coefficient is determined by kφ = 1.0.
The desired and the controlled locus are shown in Fig. 3(a). Two obstacles

are avoided by controlling self-motions of the mobile modular manipulator in
Figure 3(b). The tracking position and velocity errors are given by Fig. 4.
It can be observed that the proposed algorithm is effective in both avoiding
obstacles and controling the end-effector to follow a desired spacial trajectory
simultaneously.

5 Conclusions

A mobile modular manipulator composed by a 3-wheeled nonholonomic mobile
platform and a n-DOF onboard modular manipulator is investigated in this
paper. Firstly, an integrated dynamic modeling method is presented. Secondly, a
new obstacle avoidance algorithm using self-motions is proposed, which can avoid
obstacles without affecting the end-effector planning task. Lastly, simulations are
performed on a real mobile modular manipulator, which demonstrate that the
proposed algorithm is effective. The dynamic modeling method and the obstacle
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avoidance algorithm proposed can be extended to study other kinds of mobile
manipulators as well.
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Abstract. The typical automatic way to search for optimal neural net-
work is to combine structure evolution by evolutionary computation and
weight adaptation by backpropagation. In this model, since structure
and weight optimizations are carried out by two different algorithms
each using its own search space, every change in network topology dur-
ing structure evolution requires relearning of the entire weights by back-
propagation. Because of this inefficiency, we propose that the evolution
of network structure and weights shall be purely stochastic and tightly
integrated such that good weights and structures are not relearned but
propagated from generation to generation. Since this model does not
depend on gradient information, the entire process allows more flexi-
bility in the implementation of its evolution and in the formulation of
its fitness function. This study demonstrates how invasive connectionist
evolution can easily be implemented using particle swarm optimization
(PSO), evolutionary programming (EP), and differential evolution (DE)
with good performances in cancer and glass classification tasks.

1 Introduction

Artificial Neural Network (ANN) has been a popular tool in many fields of
study due to its general applicability to different problem domains that require
intelligent processing such as classification, recognition, clustering, prediction,
generalization, etc. The most popular algorithm in ANN learning is BP (back-
propagation) which uses minimization of the error surface by gradient descent.
Since BP is a local search algorithm, it has fast convergence but can easily
be trapped to local optima. Moreover, choosing the optimal architecture for a
particular problem remains to be an active area of research because of BP’s ten-
dency to overfit or underfit the training data due to its sensitivity to the choice
of architecture.

A typical approach to help BP figure out the appropriate architecture is by
evolving its structure. Many studies have been conducted how to carry out struc-
ture evolution by evolutionary computation. A comprehensive review of papers
related to evolutionary neural networks can be found in [1]. Recent insights and
techniques for effective evolution strategies are found in the papers of [2,3].

The most typical approach is non-invasive [4]. This type of evolution uses
dual representation: one for stochastic or rule-based structure evolution and the
other for gradient-based weight adaptation. While non-invasive evolution makes
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the hybridization process straightforward, there is no tight integration between
its structure evolution and weight adaptation. Hence, every time its network
structure evolves, there is a need for the relearning of the entire weights by BP.
In a typical evolutionary model, optimal parameter values are not relearned but
propagated to the succeeding generations. This is not possible, however, in a
gradient-based weight adaptation.

One alternative approach we proposed belongs to the class of “invasive evo-
lutionary model” [4] which relies on pure stochastic evolution of the network
structure and weights. Invasive evolution uses a network representation where
weights and structures are tightly integrated such that changes to the former
bring corresponding changes to the latter, and vice-versa. It avoids relearning of
good weights and structures by propagating them in the succeeding generations.
Since invasive connectionist evolution uses direct representation and does not
rely on fix rules or heuristics, it can easily utilize the evolution process of other
evolutionary models such as particle swarm optimization (PSO) [5], differential
evolution (DE) [6], and evolutionary programming (EP) [7].

Dynamic adaptation is important since fix rules or parameter values opti-
mized for a particular problem domain become useless for another set of prob-
lem domain [8]. What is needed is to let the processes of mutation, crossover,
adaptation, and selection filter the most appropriate set of rules, traits, and pa-
rameters to solve the problem under consideration. It is important, therefore,
to avoid developing evolutionary systems that rely on fix rules or heuristics. We
believe in the principle that a pure stochastic implementation with a proper
adaptation strategies are important for a robust connectionist evolution.

2 Invasive Connectionist Model

ANN learning can be considered as a form of optimization with the main objec-
tive of finding the appropriate network structure and weights that has optimal
generalization performance. Its performance is measured using quality function
Qfit which measures the distance of ANN’s output F (X,S,W ) from the target
output T (X):

Qfit = ‖T (Xi), F (Xi, Si,Wi)‖θ (1)

where X , S, and W are the network’s input, structure, and weights, respectively;
and ‖x‖θ is a similarity metric or error function. The main objective is to evolve
the appropriate structure and weights so that the output of the function F is as
close as the output of the target T . The function F uses the typical feedforward
computation commonly used in n-layered network:

oi = F

⎛⎝∑
j

wij

⎞⎠ (2)

F (x) =
1

1 + e−x
(3)
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Fig. 1. Subnetwork Nodule

Figure 1 shows the invasive connectionist’s building-block component which
is composed of two weight marices. The first weight matrix contains the topol-
ogy, strength of connections, and threshold values between the input and the
hidden layer. Similarly, the second weight matrix describes the topology, thresh-
old values, and connection strengths between the hidden layer and the output
layer. While each nodule can be considered as a complete network capable of
performing neural computation or learning, more complex structures can be eas-
ily created by combining several of these nodules to address more challenging
problems in machine learning.

Figure 2 shows an example of a complex network formed by combining a
population of nodules. Evolutionary operators such as mutation and crossover
can independently operate on the weight matrices of each nodule to improve the
fitness of the entire network. In the next section, we will discuss several ways to
induce invasive evolution on swarm of networks using PSO, DE, and EP.

3 Invasive Connectionist Algorithm

Figure 3 shows a neural network swarm model. Each independent nodule opti-
mizes its structure and weights through its interactions with other nodules in the
neighborhood. In this example, the degree of overlapping is set to two. Hence,
every network pair has 2 neighboring pairs.

This model can be reduced into the commonly used single population model
by considering just one neighborhood. From the implementation point of view,
multi-neighborhood representation is a generalization of the single neighborhood
representation. This allows us to develop both single and multiple neighborhood
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weight matrices and threshold vectors

nodule

Fig. 2. Invasive Connectionist Model

Network Swarms

Fig. 3. Connectionist Swarm

approaches without changes to the representation of the base component net-
work.

The invasive connectionist evolution algorithm is summarized in Fig. 4. For
PSO implementation, the update of component’s position relative to its best
neighbor and personal best has the following formulation [9,5]:
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Start

Initialize Structures and Weights
Initialize Neighborhood Assignment

Compute Fitness
Update  Position of BestNeighbor and PersonalBest

Fly components

Stop?
NO

Test component with best validation

YES

End

Perform Differential Evolution

wi = wi + Δws
i ∗ sf ∗ rnd(0, 1) + Δw

p
i ∗ pf ∗ rnd(0, 1) wi =

{
w

p1

i + α ∗ (w
p2

i − w
p3

i ) if rnd(0, 1) < cr

wi = wi + ρ(0, σ) otherwise.

Perform Evolutionary Programming

sspi = U(0, 1)(β +

Qfiti

Qtot

)

m′

i = mi + αρ(0, 1)sspi

ω′

i = ωi + ρ(0, m′

i)

Fig. 4. Invasive Connectionist Algorithm

wi = wi + Δws
i ∗ sf ∗ U(0, 1) + Δwp

i ∗ if ∗ U(0, 1) (4)

such that:

Δws
i = (wi − ws

i ) (5)
Δwp

i = (wi − wp
i ) (6)

where sf = 1.0 and if = 1.0 refer to the component’s sociability and individu-
ality factors, respectively. More sociable components have higher sf over if and
have greater tendency to converge towards the best component in their neigh-
borhood. On the other hand, components with higher if over sf have greater
tendency to converge towards their personal best. It is through the interactions
of each component based on their sociability and individuality that allows the
entire population to perform both local and global searching of the weight and
structure spaces. All weights are randomly initialized between the range of -1
and 1.

The invasive connectionist model also supports the incorporation of other
evolutionary approaches such as differential evolution (DE) [6] and evolutionary
programming (EP) [7]. The DE and EP in the current implementation operate
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on the entire population although it can also be applied to each neighborhood.
The feasibility of the latter scheme will be studied in the future.

The weight update of DE resembles roughly with that of the PSO. It ran-
domly selects 3 neighbors (p1, p2, p3) from the entire population as bases for
changing the weights and structure of a component. Equation (7) is a mod-
ification of the DE implementation. There are two main operations, namely:
exploitation and discovery. The exploitation part uses information from 3 ran-
domly selected parents to form a new set of weights while the discovery part
introduces new weights by gaussian perturbation:

wi =

{
wp1

i + α ∗ (wp2
i − wp3

i ) if U(0, 1) < cr

wi + ρ(0, σ) otherwise.
(7)

where cr = 0.99 is the probability of exploitation and 1− cr is the probability of
discovery; U is a uniform distribution; ρ is the gaussian distribution with mean
0 and standard deviation σ; and α is a scaling factor.

Network initialization starts from zero weights and the only way for the
components to have new weights is through the discovery operation in (7). The
purpose of having the probability cr set to a value close to 1 is to give the
population more time to exploit the existing weight space before dealing with
the new weights slowly added by the discovery operation. Selection follows the
standard DE policy where only new components with better fitness replace their
corresponding parents.

EP implementation [4], on the other hand, uses uniform crossover, rank-based
selection, and adaptation of the step size parameter (ssp) during mutation:

sspi = U(0, 1)(β +
Qfiti

Qtot
) (8)

m′
i = mi + αρ(0, 1)sspi (9)

ω′
i = ωi + ρ(0, m′

i) if U(0, 1) < mp (10)

where: α = 0.25 and β = 0.5 are arbitrary constants that minimize the occur-
rences of too large and too weak mutations, respectively; Qfit and Qtot refer
to the component’s fitness and total fitness, respectively; U is the Uniform ran-
dom function which minimizes large ssp occurrences; mp = 0.01 is the mutation
probability; ρ is the gaussian; and ω refers to weights and threshold values.

The parameter m accumulates the net amount of changes in the mutation
strength intensity over time. It is expected that those networks that survived in
the later generation have the appropriate m that enabled them to adapt their
structure and weights better than the other networks. EP implementation uses
elitist replacement policy to avoid loosing the best traits found so far. The initial
state of all networks start with no connection. This ensures that introduction of
new connections and weights are carried out gradually by stochastic mutation.

All algorithms use the stopping criterion described in our previous papers
[10,11,4]. It monitors the presence of overfitness using validation performance
and stop training as soon as overfitness becomes apparent.
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4 Simulations and Results

The quality or fitness function we used in this study considers two major criteria,
namely: classification error and normalized mean-squared error:

Qfit = α ∗ Qacc + β ∗ Qnmse (11)

Qacc = 100 ∗ (1 − correct

total
) (12)

Qnmse =
100
NP

∗
P∑

j=1

N∑
i=1

(Tij − Oij)2 (13)

where: N and P refer to the number of samples and outputs, respectively; Qacc

is the percentage error in classification; Qnmse is the percentage of normalized
mean-squared error (NMSE); α = 0.7 and β = 0.3 are user-defined constants
used to control the strength of influence of their respective factors.

Simulation results include comparisons of the performances of four types
of connectionist evolution, namely: connectionist EP (cEP), connectionist DE
(cDE), connectionist PSO (cPSO), and connectionist PSO-DE (cPSO-DE).

These four variants were tested using cancer and glass classification tasks
from the UCI repository [12]. The datasets from each task were copied from the
experiments of Prechelt. They were divided into 50% training, 25% validation,
and 25% testing [13]. Also, results from Prechelt’s manually optimized pivot BP
architecture were included for benchmarking purposes.

Table 1 summarizes the main features of the different variants. Analysis of
variance (ANOVA) and Tukey’s HSD test using α = 0.05 level of significance
were used for significance and multiple comparison testing.

Figure 5 shows the plots of means and standard deviations of the different
variants in the cancer and glass problems, respectively. A line connecting two or
more means indicates no significant difference within this group of means.

Result of the ANOVA for the cancer problem indicates no significant dif-
ference in the mean classification error among the five approaches. However,
the ANOVA for the glass problem indicates significant difference in their per-
formances. A closer analysis using Tukey HSD indicates that cEP has the best

Table 1. Main Features of Invasive Connectionist Variants
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Fig. 5. Mean Classification Error Performance

performance. Its performance, however, is not significantly different from the
performance of cPSO, cDE, and pBP.

5 Conclusion

All variants performed as good as the manually optimized BP architecture in
spite of using a relatively large hidden layer (see Table 1). These two preliminary
results demonstrated the feasibility of using invasive connectionist evolution.
Furthermore, this study showed several advantages of invasive evolution such as
high degree of flexibility in formulation and ease in implementation such that
incorporating and combining other stochastic evolutionary techniques becomes
trivial.

The swarm model of neural network is one way of combining several nodules
to achieve complexity base on their collective behavior. This nodule organization
has great potential to be used for expert ensembling. The idea is to have several
swarms specializing on different parts of the solution space. Finding the best
solution requires identifying which swarm will be used for evaluation. The degree
of overlapping can be minimized to increase specialization or search localization
of each swarm. This may provide better identification or discrimination in noisy
classification or clustering tasks. This concept will be further investigated in the
near future.
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Abstract. In [1], a variant version of the fuzzy cellular neural network, called 
FCNN, is proposed to effectively segment microscopic white blood cell images. 
However, when applied to the segmentation of serial CT liver images, it does 
not work well. In this paper, FCNN is improved to be the novel neural network-
--Advanced Fuzzy Cellular Neural Network AFCNN. Just like FCNN, AFCNN 
still keeps its convergent property and global stability. When applied to seg-
ment serial CT liver images, AFCNN has the distinctive advantage over FCNN: 
it can keep boundary integrity better and have better recall accuracies such that 
the segmented images can approximate original liver images better.  

1   Introduction 

The approach of FCNN has been successfully employed in white blood cell detection 
[1,2]. However, when applied in the segmentation of serial CT liver images, the ob-
tained results are unsatisfactory, due to serial CT liver image’s specific characteristics 
[3,4]: (1) the boundaries of serial CT images are often uneven and even overlap a 
little with other organs such as human’s spleen and gallbladder such that well-
separated binary outputs of the corresponding boundaries can not be easily and accu-
rately determined; (2) Since the liver regions occupy most of parts of CT liver images, 
both the fuzzy feed-forward and the feedback mechanisms in FCNN is uneasy to 
capture the information contained in comparatively small non-liver regions. There-
fore, its improvement is required in segmenting serial CT liver images. In this paper, 
the novel fuzzy cellular neural network AFCNN, as the improved version of FCNN, is 
presented to address the above problems.  

The remainder of this paper is organized as follows. In section 2, the framework of 
the novel fuzzy cellular neural network AFCNN is addressed. Experimental results 
are demonstrated in section 3 to verify AFCNN’s effectiveness in segmenting serial 
CT liver images. Section 4 concludes this paper and addresses the future work. 
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2   Framework of the Novel Fuzzy Cellular Neural Network 
AFCNN 

Here we first introduce the framework of the single-layer fuzzy cellular neural net-
work FCNN [1], which has been successfully applied to segment white blood cell 
images. This locally connected network consists of NM ×  neurons. The output of a 
neuron is connected to all the inputs of every neuron in its rr ×  neighborhood, and 
similarly all the inputs of a neuron are only connected to the outputs of each neuron in 
its rr ×  neighborhood. Each neuron in this NM ×  FCNN performs in the following 
way:  

The state equation of a cell ijc  is given by 
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Input equation of ijc : NjMiEu ijij ≤≤≤≤= 1,1,                                                        (2) 

Output equation of ijc : )11(
2

1
)( −−+== ijijijij xxxfy                                                    (3) 

Constraint conditions: NjMiuij ≤≤≤≤≤ 1,1,1  

                                   ),,;,(),;,( jilkAlkjiA = ),,;,(),;,( minmin jilkAlkjiA ff =          

                                   ),,;,(),;,( maxmax jilkAlkjiA ff =  NjMi ≤≤≤≤ 1,1                   (4) 

Where  ∧~ , ∨~  denote fuzzy AND and fuzzy OR respectively; u, x and y denote input 
variable, state variable and output variable, respectively; 

),;,(min jilkA f , ),;,(max lkjiA f , ),;,(max lkjiB f  and ),;,(min lkjiB f are elements of 

the fuzzy feed-forward MAX template and the fuzzy feedback MIN templates, re-
spectively; ),;,( lkjiA , ),;,( lkjiB are elements of the feed-forward and feedback 

templates, respectively. In order to measure the influence of neighbor neurons on a 
neuron better, we introduce an input called the fuzzy status into FCNN state equation, 
and accordingly, the above FCNN model is reformulated as AFCNN. Its state equa-
tion: 
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Input equation of ijc : NjMiEu ijij ≤≤≤≤= 1,1,                                                         (6) 
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Output equation of ijc : )11(
2

1
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Constraint conditions: NjMixij ≤≤≤≤≤ 1,1,1)0( , NjMiuij ≤≤≤≤≤ 1,1,1  

                                   ),,;,(),;,( jilkAlkjiA = ),,;,(),;,( maxmax jilkFlkjiF ff =        

                                   ),,;,(),;,( minmin jilkFlkjiF ff = .1,1 NjMi ≤≤≤≤                      (8) 

we can find that fuzzy feed-forward templates and the fuzzy feedback templates 
are replaced by the fuzzy status templates 
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, where ),;,(max lkjiFf , 

),;,(min lkjiFf  denote the connected weights between neuron ijc and klc , respectively. 

Thus, the entire template, which determines the connection between a neuron and its 
neighbors, consists of the  )12()12( +×+ rr matrix A,B, minfF maxfF . The symmetric 
matrixes are taken in the above template to meet the AFCNN’s symmetric require-
ment.  

When applying AFCNN to a NM ×  liver image, we should take NM ×  neurons in 
AFCNN in which each neuron corresponds to a pixel. Each neuron will change its 
state iteratively according to (5), until the entire AFCNN network converges. In other 
words, we transform one liver image into a dynamic system (i.e, AFCNN), and its 
state equations will continuously change towards the minimum energy until the final 
convergence is achieved. When handling the boundary of a liver region using the 
above AFCNN, we find that the corresponding fuzzy feed-forward and feedback 
templates cannot sufficiently utilize the information beyond the liver region, which 
will perhaps result in non- binary outputs and poor convergence in segmenting the 
boundary of a liver region. AFCNN has the obvious superiority over FCNN in keep-
ing the boundary integrity.We will demonstrate AFCNN’s power by our experimental 
results on the segmentation of serial CT liver images. 

The global stability of the above AFCNN can be proved. We omit the concrete 
proofs here for the space sake.  Its global stability assures that AFCNN has its binary 
output, which is very crucial for classification problems existing in image processing.  

3   Experimental Studies 

Based on the choice of the parameter templates in [1] and a lot of experiments on 
serial CT liver images, we take the following parameter templates of AFCNN in seg-
menting serial CT liver images: 

=
9/19/19/1

9/19/19/1

9/19/19/1

A , ,

9/19/19/1

9/19/19/1

9/19/19/1

=B ,

9/39/19/1

9/19/29/1

9/19/19/1

min =fF =
9/59/19/1

9/19/29/1

9/19/19/1

maxfF , Rx =1, 

I =0, u =X, x0 = undefined, y =Y. 

In order to state our experimental results fairly, we take 2 images from five serial 
CT image sequences to run the above AFCNN with fifty iterations. Fig.1 shows the 
segmented results using both FCNN and AFCNN. The two original liver images are 
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shown in Fig.1(a). Fig.1 (b) and Fig.1(d) demonstrate the corresponding segmentation 
results for boundaries of livers in the liver images, using FCNN and AFCNN respec-
tively.Fig.1(c) demonstrates the segmented liver images using FCNN. Fig.1(d) dem-
onstrates the final segmented livers from 2 original liver images using AFCNN. Even 
in the complicated convex/concave parts of the boundaries, the segmented results by 
AFCNN are very acceptable. 

 
Segmentation of liver image A 

 
Segmentation of liver image B 

(a)Liver images (b) Boundaries 
by FCNN 

(c)Segmented 
livers by FCNN 

(d)Boundaries 
by AFCNN 

(e)Segmented 
livers by AFCNN 

Fig. 1. Segmentations for 2 CT liver images 

4   Conclusions and Future Work 

An important feature of AFCNN is to introduce the concept of the fuzzy status into its 
framework. However, how to choose an appropriate parameter template in the fuzzy 
status still keeps an open problem. Moreover, another good study direction may per-
haps be to integrate AFCNN together with current other liver image processing tech-
niques [5]. We are expecting to report our research results along these study lines in 
near future. 
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Abstract. Min-implication fuzzy relation equations based on Boolean-
type implications can also be viewed as a way of implementing fuzzy
associative memories with perfect recall. In this paper, fuzzy associative
memories with perfect recall are constructed, and new on-line learning
algorithms adapting the weights of its interconnections are incorporated
into this neural network when the solution set of the fuzzy relation equa-
tion is non-empty. These weight matrices are actually the least solution
matrix and all maximal solution matrices of the fuzzy relation equation,
respectively. The complete solution set of min-implication fuzzy relation
equation can be determined by the maximal solution set of this equation.

1 Introduction

In recent years, neural networks and fuzzy inference systems have been combined
in different ways, and also have got successful applications in the field of pattern
recognition systems, fuzzy control and knowledge-based systems [1,3,4,5,6]. The
fuzzy associative memory network with max-min composition is first studied by
Kosko [3]. Pedrycz has used neural networks for the resolution of max-min fuzzy
relation equations (FREs) [1]. The neural network proposed in [1] converges with
the aid of a learning algorithm to the maximum solution of sup−t FRE [5], when
the solution set of the FRE is non-empty. Because fuzzy inference systems with
min-implication composition (where the implication is any Boolean-type impli-
cation, which mainly contains R-implication, S-implication and Ql-implication)
have good logic foundation [11], and approximate capability [9,10], and it is also
shown that in most practical cases these FREs do have non-empty solution sets
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[7,8]. Min-implication FREs can also be viewed as a way of implementing fuzzy
associative memories (FAM) with perfect recall. So, neural fuzzy relation sys-
tems with min-implication composition are better applied into fuzzy modeling
than those with sup−t composition.

In this paper, we extend the neural network for implementing fuzzy relation
systems based on sup −t composition in [5] to min-implication composition. We
suppose that the respective constructed FRE has a solution, and provide learning
algorithms in order to find the least solution and all maximal solutions of the
equation.

The structure of the rest of paper is organized as follows. In section 2, we
give a brief review of Boolean-type implications, min-implication FREs and some
solvable criteria for min-implication FREs based on Boolean-type implications.
A type of neuron that implements min-implication composition FREs and new
learning algorithms for solving the least solution and all maximal solutions of
FREs are proposed in section 3. In section 4, some simulation results are pre-
sented and finally the conclusions are given in section 5.

2 Preliminaries

In this paper we assume that the universe of discourse is a finite set. Suppose
that X = {x1, x2, · · · , xn}, Y = {y1, y2, · · · , ym} and Nn = {1, 2, · · · , n}, N =
{0, 1, 2, · · · , n, · · ·}. Let F (X) denote the set of all of fuzzy sets in X , A ∈
F (X), B ∈ F (Y ), R ∈ F (X × Y ).

Because X and X × Y are finite, any element of F (X) and F (X × Y ) can
be denoted by a vector and a n × m matrix, respectively.

For a min-implication FRE:

A ◦θ R = B. (1)

where A, R and B are n×m matrix, m×k matrix and n×k matrix, respectively.
Eq.(1) can be decomposed as a set of k simpler min-implication FREs:

A ◦θ r = b. (2)

where rm×1 and bn×1 are the column vectors of R and B. Let ζ(A,b) be the
solution set of the FRE of the form (2), i.e. ζ(A,b) = {r : A ◦θ r = b}.

Let a⊗̂θ
b and a⊗̆θ

b denote the maximal and the minimal, respectively, solu-
tion of the equation aθx = b (if they exist).

Based on the above notations, the maximal solution operator (max-SO) ŵθ

and the minimal solution operator (min-SO) w̆θ are defined as follows:

ŵθ(a, b) =
{

a⊗̂θ
b, aθ0 ≤ b

1, otherwise,
(3)

w̆θ(a, b) =
{

a⊗̆θ
b, aθ0 < b

0, otherwise.
(4)
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For the convenience of denoting the maximal solution matrix, we define the
following operator:

wmax(a, b) =
{

1, a > b
b, otherwise. (5)

Definition 1. Let θ be a Boolean-type implication. θ is called a nice Boolean-
type implication (NBoolean-type implication) if θ is continuous with respect to
its second variable, i.e. ∀a ∈ [0, 1], the function f(x) = aθx : [0, 1] → [0, 1] is
continuous.

Let θ be an NBoolean-type implication. The mean-SM (Γ̄ ), the min-SM (Γ̆ )
and the max-SM (Γ̂ ) of Eq.(2) are defined in [7,8]. We extend the solvable criteria
for any S-implication [7] and R-implication [8] to any Boolean-type implication
and present them in the following propositions.

Proposition 1. Let A ◦θ r = b be a min-implication FRE of the form (2). If
∀i ∈ Nn, ∃j ∈ Nm, such that bi ∈ I(aij), and bk 
∈ I(akj), ∀k ∈ Nn − {i}, then
ζ(A, b) 
= ∅.

Proposition 2. Let θ be an NBoolean-type implication, A ◦θ r = b be a min-
implication FRE of the form (2). Then, ζ(A, b) 
= ∅ iff (if and only if) A ◦θ

inf Γ̂ = b.

Proposition 3. Let θ be an NBoolean-type implication, A ◦θ r = b be a min-
implication FRE of the form (2), t = supΓ̆ . Then, ζ(A, b) 
= ∅ iff A ◦θ t ≤ b,
and t is the least solution.

Proposition 4. Let θ be an NBoolean-type implication, A ◦θ r = b be a min-
implication FRE of the form (2). The following statements are equivalent:
(i) ζ(A, b) = ∅;
(ii) ∃j ∈ Nn such that Γ̂·j = 1 and bj 
= 1.

In the following, we propose new learning algorithms to obtain the least
solution and all maximal solutions of the FRE of the form (1), respectively.

3 Min-implication Operator Networks and New
Algorithms

3.1 A Type of Neuron That Implements Min-implication FREs

Let D = {(aj ,bj), j ∈ Nn} be a set of input-output data. Compositional fuzzy
associative memories can be generalized to the finding of the fuzzy relation
matrix R for which the following equation holds:

aj ◦θ R = bj , j = 1, 2, . . . , n (6)

where θ is an NBoolean-type implication.
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However, the matrix satisfying (6) doesn’t always exist in most case. Even
if it exists, the weight matrix satisfying (6) doesn’t have to be a solution of the
equation. The choice of training sets plays an important role in the generation
of their connection weights. But, it is difficult to give ideal training sets D.
Therefore, an effective method is to adjust the weights to matching the input-
output pairs.

A type of compositional neuron that implements the union-intersection com-
position of fuzzy relation is proposed by G. B. Stamou and S. G. Tzafestas [5].
In the following, we propose a similar type of neuron for the min-implication
composition.

The general structure of a conventional neuron can be shown in Fig.1. The
equation that describes this kind of neuron is as follows:

y = g(u) = g(f(x)) = g(
n∑

j=1

wixi + θ), (7)

where θ is a threshold and wi (i = 1, 2, . . . , n) are weights that can change on-line
with the aid of a learning process.

The compositional neural has the same structure with the neuron of (7)
(Fig.1), but it can be described by the equation:

y = g(Sj∈Nnt(xi, wi)), (8)

where S is a fuzzy union operator (an s-norm), t is a fuzzy intersection operator
(a t-norm) and g is the activation function:

g(x) =

⎧⎨⎩0, x ∈ (−∞, 0)
x, x ∈ [0, 1]
1, x ∈ (1, +∞).

(9)

The structure of this neural network is shown in Fig.2.
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Fig. 1. The structure of the neuron

Fig. 2. The structure of the compositional neuron
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The equality index proposed in [1] is defined by:

[(b(k)
i )′ ≡ b

(k)
i ] = 1

2 [((b(k)
i )′ → b

(k)
i ) ∧ (b(k)

i → (b(k)
i )′) + ((b

(k)
i )′ → b

(k)
i ) ∧

(b
(k)
i → (b

(k)
i )′)], where ”→” denotes the �Lukasiwicz implication, the complement

(negation) is linear, i.e. b
(k)
i = 1−b

(k)
i . Finally, we obtain the following expression

for the equality index:

[(b(k)
i )′ ≡ b

(k)
i ] =

⎧⎪⎨⎪⎩
1 + (b(k)

i )′ − b
(k)
i , (b(k)

i )′ < b
(k)
i

1 + b
(k)
i − (b(k)

i )′, (b(k)
i )′ > b

(k)
i

1, (b(k)
i )′ = b

(k)
i .

(10)

The error is defined as follows:

E
(k)
i = 1 − [(b(k)

i )′ ≡ b
(k)
i ].

Our goal in learning processes is minimize the total error

E(k) =
∑

i

E
(k)
i . (11)

Due to the decomposition of the FRE [7,8], the proposed algorithm converges
independently for each neuron. For simplicity and without loss of generality, we
only consider the single neuron case. The response of the neuron (b(k))′ is given
by

(b(k))′ = inf
i∈Nm

(a(k)
i θw

(k)
i ).

where w
(k)
i (i ∈ Nm) are the weights of the neuron and the input a

(k)
i . In this

case, the desired output is b
(k)
i .

3.2 The Learning Algorithm for Solving the Least Solution of the
FRE

Based on the neuron network described by the Fig.2, we give the learning algo-
rithm for solving the least solution of the FRE of the form (2) in the following:
Algorithm 1. Step 1. Initialize the weights as w̆

(1)
i (0) = 0, i ∈ Nm, and give

an error constant ε and the upper limit value of iteration μ.
Step 2. Input a pair of pattern (ak,bk), k ∈ Nn, and let v = 0.
Step 3. The network on-line weights w̆

(k)
i (i = 1, 2, . . . , m) are adjusted by

the following algorithm

w̆
(k)
i (v + 1) = w̆

(k)
i (v) + Δw̆

(k)
i (v), (12)

Δw̆
(k)
i (v) = αls, (13)

ls =

⎧⎪⎨⎪⎩
α1(w̆θ(aki, bk) − w̆

(k)
i (v)), w̆

(k)
i (v) < w̆θ(aki, bk)

α2(w̆
(k)
i (v) − ŵθ(aki, bk)), w̆

(k)
i (v) > ŵθ(aki, bk)

0, otherwise,
(14)



New Algorithms of Neural Fuzzy Relation Systems 1137

where w̆θ and ŵθ are given by (3) and (4), 0 < α ≤ 1 and 0 ≤ α1, α2 ≤ 1 are
learning rates.

Step 4. Compute the total error E(k).
Step 5. Return to Step 3 until E(k) < ε or v > μ, in this case, the last

weights are denoted by w̆
(k)
j , j = 1, 2, . . . , m.

Step 6. If k < n, return to Step 2 with k = k + 1 and w̆
(k+1)
j (0) = w̆

(k)
j , j =

1, 2, . . . , m.
With this algorithm we obtain the following theorem.

Theorem 1. Let D = {(aj , bj), j ∈ Nn} be a training set, where aj and bj

are the jth column of the matrix A and B, respectively. The neuron network
of Fig.2 with the learning algorithm described by (12),(13) and (14), converges
(with ε = 0) to the least solution of the FRE:

A ◦θ R = B

if ζ(A, B) 
= ∅ and α = 1, α1 = 1, α2 = 0.

Proof (of theorem). Without loss of generality, we will prove the Theorem only
for one neuron. Since ζ(A, B) 
= ∅, it is clear that ζ(A,b) 
= ∅. Then, from
Proposition 4 we have that

Γ̂·j = 1 implies bj = 1, ∀j ∈ Nn.
From the definition of Γ̂ we have that

Γ̂ij = wmax( sup
k∈Nn

Γ̆ik, Γ̄ij), ∀i ∈ Nm, ∀j ∈ Nn. (15)

From (15), it is true that for any j ∈ Nn there exists i ∈ Nm, such that

Γ̂ij = Γ̄ij ≥ sup
k∈Nn

Γ̆ik.

Hence, from the definition of the solution matrices, we have

ŵθ(aji, bj) ≥ sup
k∈Nn

w̆θ(aki, bk). (16)

From (16) it is true that ∀j ∈ Nn, ∃i ∈ Nm such that ∀v ∈ N,

ŵθ(aji, bj) ≥ w̆
(j)
i (v).

From (12)-(14), and α = α1 = 1, α2 = 0, we have ∀j ∈ Nn, ∃i ∈ Nm such that
∀v ∈ N,

w̆
(j)
i (v + 1) =

{
w̆θ(aji, bj), w̆θ(aji, bj) ≥ w̆

(j)
i (v)

w̆
(j)
i (v), otherwise,

and {w̆
(j)
i (v)}(v ∈ N) is a upper bounded and monotonic increasing sequence.

Thus, there exists v0 ∈ N such that ∀v > v0, it is

w̆
(j)
i (v) = sup

k∈Nn

w̆θ(aki, bk), i = 1, 2, . . . , m.

Therefore, there exists v0 ∈ N such that ∀v > v0, it is true that
aj ◦θ w̆(j)(v) = bj , ∀j ∈ Nn. ��



1138 Y. Luo, K. Palaniappan, and Y. Li

3.3 The Learning Algorithm for Solving All Maximal Solutions of
the FRE

From Algorithm 1 and Theorem 1, we can get the least solution t = sup Γ̆ of the
FRE of the form (2). In the following, we give a learning algorithm for calculat-
ing all maximal solutions of the FRE. The structure of the single-layer neural
network with compositional neurons is also illustrated in Fig.2. For simplicity
and without loss of generality, we only consider the single neuron case.

The adaptation of the neural network is supported by the following algorithm.
Algorithm 2. Step 1. Initialize the weights as ŵ

(1)
j (0) = 1, j ∈ Nm, and give

an error constant ε and the upper limit value of iteration μ.
Step 2. Input (ak, bk), k ∈ Nn, then calculate N(k), where N(k) = {j ∈

Nm : akjθtj = bk}, tj = supi w̆θ(aij , bi), and let v = 0.
Step 3. The weights ŵ

(k)
j , j = 1, 2, . . . , m, are adjusted as follows

ŵ
(k)
j (v + 1) = ŵ

(k)
j (v) − Δŵ

(k)
j (v), (17)

Δŵ
(k)
j (v) = ηls, (18)

ls =
{

ŵ
(k)
j (v) − (akj⊗̂bk ∧ ŵ

(k)
j (v)), j ∈ N(k)

0, otherwise,
(19)

j = 1, 2, . . . , m.
Step 4. Compute the total error E(k).
Step 5. Return to Step 3 until E(k) < ε or v > μ, in this case, the last

weights are denoted by ŵ
(k)
j , j = 1, 2, . . . , m.

Step 6. If k < n, return to Step 2 with k = k+1 and ŵ
(k+1)
j (0)) = ŵ

(k)
j , j =

1, 2, . . . , m.
Step 7. Calculate the set Et = {f ∈ Nm : f ∩ N(1) ∩ N(2) ∩ · · · ∩ N(n)

contains at least one element}. Let F be the subset of Et including all the
minimal elements of Et. For any f ∈ F , adjust the elements of the weight vector
ŵ = {ŵ

(n)
1 , ŵ

(n)
2 , . . . , ŵ

(n)
m } as follows

ŵ
(f)
j =

{
ŵ

(n)
j , j ∈ f

1, otherwise,
(20)

j = 1, 2, . . . , m.
With the above algorithm we get the following theorem.

Theorem 2. Let D = {(aj , bj), j ∈ Nn} be a training set, where aj and bj are
the jth column of the matrix A and the vector b, respectively. All the weight
vectors ŵ(f) = (ŵ(f)

1 , ŵ
(f)
2 , . . . , ŵ

(f)
m ), ∀f ∈ F , from Algorithm 2, converge (with

ε = 0) to all maximal solutions of the FRE:

A ◦θ r = b

if ζ(A, b) 
= ∅ and η = 1.
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Proof (of theorem). It is obvious that Et is a finite poset under the subset inclu-
sion from the definition of Et. Then F is also finite and for any f ∈ Et, there is
g ∈ F such that g ⊆ f and the elements of F are not comparable with each other
(in other words, the elements of F do not contain each other). In the following,
we verify that M = {ŵ(f) : ∀f ∈ F} satisfies the conditions of the theorem.

At first, we prove that ŵ(f), ∀f ∈ F all are solutions of the FRE of the
form (2). If bi = 1, then for any j ∈ N(i), tj = 1. In this case, aij = 0 and
ŵ

(f)
j = 1, and hence infj(aijθŵ

(f)
j ) = 1 = bi. If bi < 1, then there exists j0 ∈

Nm such that aij0θtj0 = bi, then j0 ∈ N(i). In this case, infj(aijθŵ
(f)
j ) ≤

aij0θŵ
(f)
j0

= aij0θŵ
(n)
j0

= aij0θ(inf{aij0⊗̂
θ
bi : j0 ∈ N(i)}) ≤ aij0θ(aij0 ⊗̂

θ
bi) = bi.

On the other hand, since j ∈ N(i), that is aijθtj = bi, then aij⊗̂
θ
bi ≥ tj .

Thus, ŵ
(f)
j = ŵ

(n)
j = inf{aij⊗̂

θ
bi : j ∈ N(i)} ≥ inf{tj : j ∈ N(i)} = tj . Then,

infj(aijθŵ
(f)
j ) ≥ infj(aijθtj) = bi. So, ŵ(f) = (ŵ(f)

1 , ŵ
(f)
2 , . . . , ŵ

(f)
m ) is a solution.

Second, for f1, f2 ∈ Et, if f1 ⊆ f2, then it is obvious that ŵ(f1) ≥ ŵ(f2) from
the definition of ŵ(f).

Third, for any r ∈ ζ(A,b), we shall show that there exists a f ∈ F such
that r ≤ ŵ(f). Let N ′(i) = {j ∈ Nm : aijθrj = bi}, then N ′(i) 
= ∅ and
N ′(i) ⊆ N(i). Construct Er = {f ⊆ Nm : ∀i ∈ Nn, f ∩ N ′(i) contains at least
one element}, then it is obvious that Er ⊆ Et. We show that r ≤ ŵ(f), ∀f ∈ Er,
then there exists a f ∈ F such that r ≤ ŵ(f). For any f ∈ Er, if ∀j ∈ f ,
then ∀j ∈ N ′(i), aijθrj = bi. Then rj ≤ aij⊗̂

θ
bi, hence, rj ≤ inf{aij⊗̂

θ
bi : j ∈

N(i)} = ŵ
(f)
j . Therefore, r ≤ ŵ(f), ∀f ∈ Er.

Finally, we show that M = {ŵ(f) : ∀f ∈ F} is the set of maximal solutions
of the FRE of the form (2). The left is only show that the elements of M are not
comparable with each other. Since F is minimal, for any f1, f2 ∈ F , there are
j1 ∈ f1 and j2 ∈ f2 such that j1 
∈ f2, j2 
∈ f1. In this case, the j1th coordinate
of ŵ(f1) is 1 and the j2th coordinate of ŵ(f2) is 1, while the j2th coordinate of
ŵ(f1) and the j1th coordinate of ŵ(f2) is not equal to 1. This implies that ŵ(f1)

and ŵ(f2) are not comparable with each other. Thus, M is the maximal subset
of ζ(A,b). ��

4 Simulation Results

Example. The training set D = {(aj , bj), j = 1, 2, 3, 4} is as follows:

[0.7 0.8 0.7] 0.3
[0.4 0.7 0.6] 0.5
[0.3 0.1 0.3] 0.7
[0.2 0.1 0.1] 0.8

Let θ be a Kleene-Dienes implication, i.e. aθb = (1 − a) ∨ b, ∀a, b ∈ [0, 1].
Let the error constant ε = 0 and the learning rate α = 1, α1 = 1, α2 = 0.

First initialize the weights w̆
(1)
j (0) = 0, j = 1, 2, 3, 4. From the Algorithm 1, we
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Fig. 3. The result of Algorithm 1 for initial conditions α = 0.8(left) and α = 0.5(right)

Table 1. The relation between α and iterations (ε = 1.0e − 10)

α Iterations
0.9 38
0.8 54
0.7 74
0.6 94
0.5 126

can get the following weight vector after 2 iterations:

w̆ = (0 0.5 0.5)T ,

that is, the least solution of the equation A ◦θ R = b, where

A =

⎛⎜⎜⎝
0.7 0.8 0.7
0.4 0.7 0.6
0.3 0.1 0.3
0.2 0.1 0.1

⎞⎟⎟⎠ ,b = (0.3 0.5 0.7 0.8)T .

In the following, we calculate all maximal solutions of the above equation using
Algorithm 2. First initialize the weights ŵ

(1)
j (0) = 1, j = 1, 2, 3, 4. Let the error

constant ε = 0 and the learning rate η = 1. After 4 iterations, we can get the ad-
justed weight vector is ŵ(4) = (0.3 0.5 0.5)T , and N(4) = {1}. In this case, Et =
{{1, 2}, {1, 2, 3}, {1, 3}}, and then F = {{1, 2}, {1, 3}}. Thus, the adjusted weight
vector is ŵ(f1) = (0.3 0.5 1)T , ŵ(f2) = (0.3 1 0.5)T , where f1 = {1, 2}, f2 =
{1, 3}. Thus, the maximal solution set M = {(0.3 0.5 1)T , (0.3 1 0.5)T }.

Let α = 0.8(0.5) and using Algorithm 1 with ε = 1.0e − 10 after 54 (126)
iterations it converges to:

w̆ = (0 0.5 0.5)T ,

the change of the error is illustrated in Fig. 3.
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These simulation results also illustrate that the last stable points of the
network are good approximate solutions when the FRE has no solution.

5 Conclusions

In the present paper, we have studied the resolution problem of min-implication
FREs based on neural network. Due to the relatively complement of neural net-
works and fuzzy inference systems, the adaptation ability of system paraments in
fuzzy inference systems is greatly improved. Both the least solution and all max-
imial solutions are obtained by taking the proposed learning algorithms when
the solution set of the FRE is nonempty, otherwise, the learning of the neural
network converges to good approximate solutions. Finally, we demonstrate them
in detail, and provide some simulation results to get the last stable points. The
results of the present paper can be applied into fuzzy modeling.
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Abstract. Motor unit action potentials (MUAPs) recorded during routine 
electromyography (EMG) examination provide important information for the 
assessment of neuromuscular disorders, and the neural network based MUAPs 
classification system has been used to enhance the diagnosis accuracy. However, 
the conventional neural networks methods of MUAP diagnosis are mainly based 
on single feature set model, and the diagnosis accuracy of which is not always 
satisfactory. In order to utilize multiple feature sets to improve diagnosis accuracy, 
a hybrid decision support system based on fusion multiple neural networks outputs 
is presented. Back-propagation (BP) neural network is used as single diagnosis 
model in every feature set, i.e. i) time domain morphological measures, ii) 
frequency parameters, and iii) time-frequency domain wavelet transform feature 
set. Then these outputs are combined by fuzzy integral. More excellent diagnosis 
yield indicates the potential of the proposed multiple neural networks strategies for 
neuromuscular disorders diagnosis. 

1   Introduction 

The motor unit is the smallest functional unit of the muscle. At slight voluntary 
muscle contraction the motor unit action potential (MUAP) is recorded that reflects 
the electrical activity of a single anatomical motor unit, the procedure known as 
electromyography (EMG). The MUAP findings are used to detect and describe 
different neuromuscular disease [1]. With the development of quantitative EMG 
techniques, some automated decision making system of neuromuscular disorder 
diagnosis emerged. Andreassen and associates [2] employed a causal probabilistic 
network for assessment the EMG findings. Coatrieux and co-workers [3] applied 
clustering method for the automatic diagnosis of pathology based on the MUAPs 
records. Pattichis, et al. gave series research yields of neural networks classifying 
MUAPs for differentiation motor neuron disease and myopathy from normal [4]. The 
networks they used include back-propagation, the radial basis function network, and 
the self-organizing feature map network. The feature sets used as network input 
include time domain parameters, frequency domain parameters, AR coefficients, 
cepstral coefficients, wavelet transform coefficients. However, the problem is 
currently solved with not very satisfactory accuracy by using these single neural 
networks classifiers of different architectures and based on different sets of features 
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for the MUAP is a complicated physiological electric action. In order to improve the 
accuracy of computer-aided MUAP diagnosis, new architecture of classifier or new 
feature extractor is still in considered by some researchers.  

It is well known that in many situations combination the output of several neural 
networks leads to an improved classification result. This happens because each 
network makes errors on a different region of the input space. Till now, many methods 
to combine the outputs of several individual neural networks have been developed [5]. 
To our knowledge, few research are focused on MUAP diagnosis based on 
combination multiple neural networks [6]. The aim of this preliminary study is to 
explore the feasibility of developing a multiple neural networks decision support 
system for improving the diagnostic performance in computer-aid clinical 
electromyography. Fuzzy integral is adopted as the combination scheme, which 
considers the difference of performance of each network in combination.  

The paper is organized as follows. Section 2 proposes and describes the multiple 
neural networks structure. Section 3 presents the fuzzy integral fusion method that 
considers the difference of performance of each network in combining the networks 
in detail. Section 4 describes MUAP feature sets used as neural networks inputs and 
Section 5 will covers the experimental results for the assessment of normal subjects 
(MYO) and subjects suffering with myopathy (MYO) and motor neuron disease 
(MND) with the fuzzy integral fusion method, and section 6 the concluding remarks.   

2   Multiple Neural Networks Structure 

A neural network can be considered as a mapping device between an input set and an 
output set. Mathematically, a neural network represents a function F that maps I into 
O; :F I O→ , or ( )y f x=  where y O∈ and x I→ . Since the classification 

problem is a mapping from the feature space to some set of output classes, we can 
formalize the neural network, especially the back propagation neural network trained 
with the generalized delta rule, as a classifier. 

Suppose that we have a neural network classifier with N neurons in the input layer, 
H neurons in the hidden layer, and K neurons in the output layer. Here, N is the 
number of input feature vector dimension, K is the number of classes, and H is an 
appropriately number. The network is fully connected between adjacent layers. 
Richard’s research has revealed [7]: the outputs of the neural network are not just 
likelihoods or binary logical values near zero or one, instead, they are estimates of 
Bayesian a posteriori probabilities.  

  The operation of this network can be thought of as a nonlinear decision-making 
process. Considering the problem of assigning an input sample { : 1, }jX x j N= to 

one of the classes set{ : 1 }iC i K= . With a squared-error cost function, each output 

neuron estimates the probability ( | )iP C X of belonging to this class by 

1 1

( | ) { ( )}
H N

i im mj j
m j

P C X f v f w x
= =

≈                                     (1) 
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where mjw is a weight between the jth input neuron and the mth hidden neuron, imv is 

the weight from the mth hidden neuron to the ith class output, and f is a sigmoid 
function. The neuron having the maximum value is selected as the corresponding 
class. Because the outputs of neural networks are estimates of Bayesian a posteriori 
probabilities as mentioned earlier, the classification of an input X is actually based on 
a set of real value measurements 

( | )     1 i KiP C X ≤ ≤                                                 (2) 

They represent the probabilities that X comes from each of the C classes under the 
condition X. A network of a finite size, however, does not often load a particular 
mapping completely or it generalizes poorly. Increasing the size and number of 
hidden layers most often does not lead to improvements. The basic idea of multiple 
neural networks scheme is to develop M independently trained neural networks with 
relevant features, and to classify a given input pattern by obtaining a classification 
from each copy of the network and then utilizing combination methods to decide the 
collective classification.  It means that M neural networks fusion problem is how to 
combine the value: 

( | )     1 i K     1 k MiP C X ≤ ≤ ≤ ≤                                      (3) 

A variety of combination schemes can be adopted such as unanimity, majority, 
Borda count, and so on [5]. But these schemes are not much available for 
measurement level combination. So, in this paper, combination scheme based on 
fuzzy integral is developed for the study of neuromuscular disorders classification. 

3   The Combination Scheme Based on Fuzzy Integral Theory  

3.1   The Fuzzy Integral Theory 

A set function : 2 [0,1]Yg →  with ( ) 0g φ = , ( ) 1g Y =  and ( ) ( )g A g B<  if A B⊂ , is 

said a fuzzy measure. From this definition, Sugeno [8] introduced the so-called gλ -

fuzzy measure which comes with an additional property 

( ) ( ) ( ) ( ) ( )gg A B g A g B g A g Bλ∪ = + +                                 (4) 

for all ,A B X⊂  and A B φ∩ = , and for some 1λ > − . 

Let 1 2{ , , , }nY y y y= be a finite set and let ({ })i
ig g y= . The values ig are called 

the densities of measure. λ is given by solving the equation 

1

1 (1 )
n

i

i

gλ λ
=

+ = +∏                                                (5) 

where ( 1, )λ ∈ − +∞ and 0λ ≠ .             

It affords that the measure of the union of two disjoint subsets can be computed 
from the component measures. 
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Let Y be a finite set and : [0,1]h Y → a fuzzy set ofY . The fuzzy integral over Y  

of the function h with respect to a fuzzy measure g  is defined by 

( ) ( ) max[min(min ( ), ( ))]
y EE Y

h y g h y g E
∈⊆

⋅ =  

                                                      
[0,1]

max[min( , ( ))]g Fαα
α

∈
=                                      (6) 

where { | ( ) }F y h yα α= ≥  

When Y is a finite set, the calculation of the fuzzy integral is easily given. Let 

1 2{ , , , }nY y y y=  and : [0,1]h Y → be a function. Suppose 1( )h y ≥  

2( ) ( )nh y h y≥ ≥ , (if not, Y is rearranged so that this relation holds). Then a fuzzy 

integral e , with respect to a fuzzy measure g over Y can be computed by 

1
max{min( ( , ( ))}

n

i i
i

e h y g A
=

=                                             (7) 

where 1 2{ , , , }i iA y y y= . 

When g is a gλ -fuzzy measure, the values of ( )ig A can be calculated recursively as 

1
1 1( ) ({ })g A g y g= =                                                 (8) 

1 1( ) ( ) ( )i i
i i ig A g g A g g Aλ− −= + +                                      (9) 

where1 i n< <        
In terms of multiple evidences combination, a more explicit understanding over the 

fuzzy integral is given as following [9]: 
When Y is a set of evidence sources, ( )ih y could be interpreted as an evaluation of 

how certain we are about decision proposition of the evidence toward the final 
evaluation. If an evidence subset A Y⊂ is considered, min ( )

y A
h y

∈
may be regard as the 

most conservative evaluation that this subset gives about decision proposition. ( )g A  

indicates the degree of importance of the subset A toward the final evaluation. The 
fuzzy integral could be interpreted as searching for the maximal grade of agreement 
between the objective evidence and the expectation. 

3.2   Combination Algorithm by Fuzzy Integral  

Given K diagnosis propositions by 1 2{ , , , }KA A AΘ = , j jA X C= ∈ , j∀ ∈ Λ , which 

respectively denote that the input sample X belongs to the category jC . For the input 

sample X , M neural networks are considered and each of them will produce a 
confidence value for each class. These networks are represented by the integral set 
Y above. Those confidence values are represented by the function h  about the 
decision proposition. On the other hand, the output of each network in corresponding 
feature domain will present an evidence about the final diagnosis evaluation. 
According to the meaning of Richard’s results [7], the output, ijO , ( 1,2, ,i =  
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; 1,2, )M j K=  is just an appropriate evaluation that the evidence in domain i about 

proposition jA . So, it is reasonable to take i
jO as ( )j ih x [9]. 

The fuzzy density indicates the worth of various ‘expert’ for the diagnosis 
proposition. Therefore, we take the diagnosis accuracy of each network as this degree 
of importance, i.e. the fuzzy densities, { : 1,2, , }ig i M= , could be obtained by 

network test in various feature domains. Given the fuzzy densities, the 
parameter λ could be determined by Eq. (9). 

Now, we can calculated the fuzzy integral je over Y  of the functions, 

{ : 1,2, , }jh j K= , with respect to the fuzzy densities, { : 1,2, , }ig i M=  by 

1

[min( ( ), ( ))]
M

j j i i
i

e h x g A
=

=                                       (10) 

The overall confidence for the class is the fuzzy integral. The class with the largest 
integral value can be taken as the final diagnosis result. 

4   MUAP Features Sets 

In this study, the EMG signal is acquired from the biceps brachii muscle using a 
concentric needle electrode. The template matching method was used to identify 
twenty MUAPs recorded from the motor unit. Three various MUAP feature set 
parameters are considered as neural network inputs. 

4.1   Time Domain Morphological Parameters  

As shown in Figure.1, the features measured from each MUAP in time domain 
include [4, 10]: 

Duration: (Dur), beginning and ending of the MUAP are identified by sliding a 
measuring window of 3ms in length and 10uV in width; 

Spike duration: (SpDur), measured from the first to the last positive peak; 
Amplitude: (Amp), maximum peak to peak measure of the MUAP; 
Area: sum of the rectified MUAP integrated over the duration; 
Spike area: (SpArea), sum of the rectified MUAP integrated over the spike 

duration; 
Phase: (Ph), number of the baseline crossings that exceed 25 Vμ , plus one;  

 
Turns: (T), number of positive and negative peaks separated from the preceding 

and following peak by 25 Vμ . 

4.2   Frequency Domain Parameters 

The frequency parameters of MUAP are derived from its autoregressive (AR) model. 
The AR model of a signal is given by: 
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Fig. 1. MUAP morphological parameters 

1

( ) ( ) ( )
M

i
i

x k a x k i e k
=

= − +                                          (11) 

where ( )x k  is the signal we want to model, ia  are the coefficients of the AR model 

signal, M is the order of the AR model of the signal, and ( )e k is the white noise. 

According to the Akaike’s information criterion, (12)AR  model is usually used for 

MUAP processing [6]. Several techniques are available for estimating the parameters 
of an autoregressive random process. We use the Fast Transversal Filters (FTF) 
algorithm, which presents highly desirable characteristics in terms of numerical 
stability and time of convergence [11]. After the AR coefficients ia of each MUAP are 

estimated, then it was normalized with its maximum power value. The following 
frequency domain spectral parameters are computed from the AR power spectrum 
curve [12]. 

Bandwidth (BW) is the difference of frequencies at the upper ( 2F ) and lower ( 1F ), 

3dB points of the power spectrum and is given as: 

2 1BW F F= −                                                   (12) 

Quality factor (Q) is the ratio of the dominant peak frequency 0F  divided by BW 

and is expressed as: 

0F
Q

BW
=                                                       (13) 

duration

spike duration 

tur

phase

am
pl

it
ud

e 
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Moments of order 0, 1 and 2: A moment jM of order j is defined as given by 

Lindstrom and Petersen [9]: 

1

1
0

2
( ) ( ( ))

(2 )

N
j

j ARj
n

M f n P f n
π

−

+
=

=                                   (14) 

Median frequency (FMED) is the frequency at which the power spectrum is 
divided into two regions with equal power defined as: 

1

0

( ( )) ( ( ))
FMED N

AR AR
n FMED

P f n P f n
−

=

=                                    (15) 

Maximum frequency (FMAX) is the frequency with the maximum power. 

4.3   Time-Frequency Domain Wavelet Transform Energy Coefficients 

The process of converting a signal from the time domain to the frequency domain is 
achieved conventionally with the Fourier transform (FT). Fourier transform does 
not provide enough information when used on non-stationary signals. FT 
determines only the frequency components of a signal, but not their location in 
time. In order to overcome this drawback, short time Fourier Transform (STFT), 
using a technique called windowing, was proposed. STFT maps the signal into a 
two-dimensional space of time and frequency using a single fixed window. Wavelet 
transform enables analysis with multiple window durations that allow for a coarse 
to fine multi-resolution perspective of the signal. Being able to dilate or compress 
the variable sized window region (wavelet), different features of the signal will be 
extracted in WT. It gives the information of the signal localized in both time and 
frequency domain. The wavelet transform of the signal ( )x t is defined as: 

1
( , ) ( ) ( )

t
W s x t dt

ss

ττ ψ −=                                      (16) 

where mother wavelet ψ is scaled by parameter s and translated byτ . The result of 

such decomposition is a series of detail coefficients jd  and approximation 

coefficients ja . Here, the index j represents the decomposition level. In our study, 

Daubechies 4 mother wavelet is selected and the energy in each frequency band, i.e. 

1d to 6d and 6a is used as time-frequency domain feature set. 

5   Experimental Results 

There are total of 80 subjects corresponding to 3 situations, 20 normal, 30 suffering 
motor neuron disease (MND) and 30 myopathy (MYO), involving in the 
experiment. The data are recorded from the biceps brachii of each subject at Hua 
Shan Hospital, Shanghai. Three back-propagation neural networks are chosen as the 
single model classifier of corresponding feature set. For each single network, the 



 Neural Networks Combination by Fuzzy Integral in Clinical Electromyography 1149 

average vector of 20 MUAPs per subject for each feature set is computed as input. 
The conjugate gradient method is used in training to improve the convergence [13]. 
The architecture of the networks is determined as follows: 

1) NN1-network: 7 14 3× × . The inputs are the aforementioned time domain 
morphological parameters’ means of 20 MUAP per subject. 

2)  NN2-network: 7 14 3× × . Frequency domain seven parameters. 

3) NN3-network: 7 14 3× × . Normalized percentage value of wavelet energy 
coefficients 1d to 6d and 6a  

15 subjects of each category are extracted randomly to compose the training set. 
The mean value of there feature domain for the NOR, MND, and MYO groups of 
the train set are given in Table 1, Table 2, and Table 3.  The others are used as 
testing set. In order to verify the effectiveness and robustness of the multiple neural 
networks diagnosis approach, bootstrap resample technique is used to obtain 6 
different training and testing samples [14]. The output in each network of 
corresponding feature set presents an evidence about the final diagnosis evaluation. 
After training the three neural networks, we obtain the diagnosis performance of the 
various neural networks. The diagnosis accuracy of various feature parameters is 
shown in table 4. Then, utilizing the outputs and diagnosis accuracy of each neural 
network, the consensus diagnosis result could be calculated. The diagnosis yields 
based on fuzzy integral is also shown in Table 4. 

Table 1. The mean value of morphological parameters for the train sets of three groups 

 Duration 
ms 

Spike 
Duration 

ms 

Amplitude 
mV 

Area 
mVms 

Spike 
Area 

mVms 

Phases Turns 

NOR 8.73 4.92 0.342 0.337 0.221 2.5 2.9 
MND 12.27 6.25 0.568 0.758 0.475 4.1 4.5 
MYO 6.58 3.96 0.301 0.223 0.149 2.6 3.3 

Table 2. The mean value of frequency domain parameters for the train sets of three groups 

 
0M  
2mV  

1M  
2 310mV s ∗  

2M  
2 2 610mV s ∗

FMED 
Hz 

FMAX 
Hz 

Bandwidth 
Hz 

Quality 
factor 

NOR 9.24 13.95 22.46 399 202 507 0.44 
MND 14.97 8.92 12.84 305 197 388 0.80 
MYO 27.15 26.01 40.28 622 423 778 0.66 
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Table 3. The mean value of normalized percentage wavelet energy distribution for the train sets 
of three groups 

 
1d  2d  3d  4d  5d  6d  6a  

NOR 0.52 1.75 5.95 26.7 18.4 17.7 28.9 
MND 0.33 1.27 4.04 15.29 16.56 23.71 38.80 
MYO 0.83 3.31 9.77 38.86 22.78 11.48 12.97 

Table 4. MUAPs diagnosis results based on single network and multiple networks combination 

Network Accuracy (%) 
Time domain neural network 72.38 7.8±  

Frequency domain neural network 60.48 10.6±  
Time-frequency domain neural network 65.24 7.1±  

Multiple neural networks fusion 80.95 7.2±  

6   Conclusions 

The multiple neural networks consensus diagnosis based on fuzzy integral is 
investigated in this study for the assessment of MUAPs recorded from NOR, MND, 
and MYO subjects. When the single feature set and single neural network is used, the 
morphological feature gives the highest diagnostic yield, followed by time-frequency 
parameters. Frequency domain feature gives the worst classification performance.  
Compared to the above single domain single network method, the proposed multiple 
neural networks consensus diagnosis strategy based on fuzzy integral achieves high 
accurate and more reliable diagnosis result. This happens for the hybrid system 
utilizing the multiple source information of the initial data. Moreover, for the 
conventional majority vote combination scheme, the class label assigned to the 
sample is the one that is most represented in the set of the crisp class labels obtained 
from all networks. The deficiency is that all networks are treated equally. In fact, the 
recognition ability of each feature set in each network is not the same. The fuzzy 
integral is an improved combination scheme, which considers the difference of 
performance of each network in combination. Fuzzy density of each network is an 
important factor in the combination scheme. In the present work, we take the 
diagnosis accuracy of each network as fuzzy density. In order to obtain the optimal 
network architecture, new method to determine the fuzzy density should be 
considered in the future works. 
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Abstract. Forecasting reservoir inflow is important to hydropower reservoir 
management and scheduling. An Adaptive-Network-based Fuzzy Inference 
System (ANFIS) is successfully developed to forecast the long-term discharges 
in Manwan Hydropower. Using the long-term observations of discharges of 
monthly river flow discharges during 1953-2003, different types of membership 
functions and antecedent input flows associated with ANFIS model are tested. 
When compared to the ANN model, the ANFIS model has shown a significant 
forecast improvement. The training and validation results show that the ANFIS 
model is an effective algorithm to forecast the long-term discharges in Manwan 
Hydropower. The ANFIS model is finally employed in the advanced water re-
source project of Yunnan Power Group. 

1   Introduction 

Accurate time and site-specific forecasts of streamflows and reservoir inflow are 
required for effective hydropower reservoir management and scheduling. In the past 
few decades, a wide range of hydrologic models has been proposed for this purpose. 
Conventionally, factor analysis and hydrological analysis methods such as historical 
evolution method, time series analysis, multiple linear regression method and so forth, 
are used to forecast the long-term discharges. Nowadays, time series analysis and 
multiple linear regression method are the two most commonly used methods. The 
time series analysis is based on the decomposition of various factors into trend and 
cycle. After 1970s, autoregressive moving-average (ARMA) models proposed by Box 
et al. [1] are also widely used. Since 1990s, artificial neural network (ANN) [2,3], 
based on the understanding of the brain and nervous systems, is gradually used in 
hydrological prediction. In this paper, the potential of the adaptive-network-based 
fuzzy inference system (ANFIS) [4-7], first developed by Jang (1993), in hydrological 
prediction will be discussed and evaluated. This approach has been tested and evalu-
ated in the field of signal processing and related areas. 

The past few years have witnessed a rapid growth in the number and variety of  
applications of fuzzy logic and fuzzy set theory, which were introduced by Zadeh 
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[22]. The applications range from consumer products such as cameras, washing ma-
chines, and microwave ovens to industrial process control, medical instrumentation, 
decision-support systems, and portfolio selection. An apparent recent trend relates to 
the use of fuzzy logic in combination with neurocomputing and genetic algorithms. In 
general, fuzzy logic, neurocomputing, and genetic algorithms might be viewed as 
principal constituents of soft computing. Among various combinations of methodolo-
gies in soft computing, the most interesting applications offer an appropriate combi-
nation of fuzzy logic and neurocomputing. It results in a hybrid system that operates 
on both linguistic descriptions of the variables and the numeric values through a par-
allel and fault tolerant architecture. This effective method, ANFIS, has been success-
fully applied to many problems such as prediction of workpiece surface roughness 
[8], pesticide prediction in ground water [9] and validation in financial time series 
[10]. Specially, the neuro-fuzzy system for modeling hydrological time series was 
presented by Nayak et al. [11]. 

2   Fuzzy Inference System 

2.1   Fuzzy Rule-Based Models  

The process of fuzzy inference involves membership functions, fuzzy logic operators, 
and if-then rules. Fuzzy inference systems (FIS) have been successfully applied in 
fields such as automatic control, data classification, decision analysis, expert systems, 
and computer vision. The basic structure of a FIS consists of three conceptual compo-
nents: a rule base, which contains a selection of fuzzy rules; a database which defines 
the membership functions (MF) used in the fuzzy rules; and a reasoning mechanism, 
which performs the inference procedure upon the rules to derive an output (see Fig. 
1). FIS implements a nonlinear mapping from its input space to the output space. This 
mapping is accomplished by a number of fuzzy if-then rules, each of which describes 
the local behavior of the mapping. The parameters of the if-then rules (referred to as 
antecedents or premises in fuzzy modeling) define a fuzzy region of the input space, 
and the output parameters (also termed consequents in fuzzy modeling) specify the 
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Fig. 1. Fuzzy inference system (first-order Sugeno) 
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corresponding output. There are three types of fuzzy inference systems in wide use: 
Mamdani-type [12], Sugeno-type [13-14] and Tsukamoto-type [15]. These three types 
of inference systems vary somewhat in the way outputs are determined. 

2.2   Sugeno Models  

The Sugeno model (or Takagi-Sugeno model) was proposed by Takagi and Sugeno 
[14]. A typical rule in a Sugeno fuzzy model has the form: 

If x is A and y is B, then z = f x y  
where A and B are fuzzy sets of antecedent, and z = f x y is the precise function. 
Usually, z = f x y are polynomials of input variables x and y. In the first-order 
Sugeno model, the function z = f x y is a first-order polynomial of the input vari-
ables. For a zero-order Sugeno model, the output level z is a constant. For instance, 
consider that the FIS has two inputs x and y and one output z and, for the first-order 
Sugeno fuzzy model, a typical rule set with two fuzzy if-then rules can be expressed 
as: 

Rule 1:If x is 1A and y is 1B then 1 1 1 1f =p x+q y+r  

Rule 2:If x is 2A and y is 2B then 2 2 2 2f =p x+q y+r  

Figure 2 illustrates the fuzzy reasoning mechanism for this Sugeno model to derive 
an output function (f) from a given input vector [x, y]. The Sugeno fuzzy inference 
system is computationally efficient and works well with linear techniques, optimiza-
tion and adaptive techniques. It is extremely well suited to the task of developing a 
FIS using the framework of adaptive neural networks which is termed an ANFIS. 
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1 2
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Fig. 2. First-order Sugeno fuzzy model 

3   ANFIS 

3.1   ANFIS Architecture 

This neuro-fuzzy network is a five-layer feed forward network that uses neural net-
work learning algorithms coupled with fuzzy reasoning to map an input space to an 
output space. The ANFIS architecture is shown in Figure 3, and an introduction of the 
model is as follows. 
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Layer1: input nodes 
Each node in this layer generates membership grades of an input variable. The node 

output 1,iO  is defined by:  

i1,i AO (x), i=1,2=μ  or 
i1,i B -2O (y), i=3,4=μ   (1) 

where x (or y) is the input to the node; iA (or i-2B ) is a fuzzy set associated with this 

node, characterized by the shape of the MFs in this node and can be any appropriate 
functions that are continuous and piecewise differentiable such as Gaussian, general-
ized bell shaped, trapezoidal shaped and triangular shaped functions. Assuming a 

generalized bell function as the MF, the output 1,iO can be computed as, 

A ) / 2b
i i

1
μ ( x) =

1+| ( x- c a |
 (2) 

where { ia ib ic } is the parameter set that changes the shapes of the MF with the 

maximum equal to 1 and the minimum equal to 0; and { ia ib ic } are called 

premise parameters. 

Layer 2: rule nodes  
Every node in this layer multiplies the incoming signals, denoted as , and the output 

2,iO  that represents the firing strength of a rule, is computed as, 

i i2,i A BO (x) (y),  i=1,2w= μ  (3) 

Therefore, the outputs 2,iO of this layer are the products of the corresponding degrees 

from layer 1. 

Layer 3: average nodes 
The node of this layer, labeled as N, computes the normalized firing strengths as, 

3,i
1 2

O ,  i=1,2iw
w

w w
= =

+
 (4) 

Layer 4: consequent nodes 
Node i in this layer computes the contribution of the ith rule towards the model out-
put, with the following node function: 

4,iO ( )i i i i iw f w p q r= = + +  (5) 

where iw  is the output of layer 3 and { ip iq ir } is the consequent parameter set. 
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Layer 5: output nodes 

The single node in this layer computes the overall output of the ANFIS as: 

i ii
5,1 i i

ii

overall output=O =
w f

w f
w

=  (6) 
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Fig. 3. ANFIS architecture 

3.2   Hybrid Learning Algorithm 

The ANFIS architecture consists of two parameter sets for optimization: the premise 

parameters { ia ib ic },which describe the shape of the MFs, and the consequent 

parameters { ip iq ir },which describe the overall output of the system. From the 

ANFIS architecture shown in Fig.3, it can be seen that when the values of the premise 
parameters are fixed, the overall output can be expressed as a linear combination of 
the consequent parameters. In symbols, the output f in Fig.3 can be rewritten as 

1 2 1 1 1 2 2 21 2 1 1 1 2 2 2f=w f +w f =(w x)p + w y q + w r w x p w y q + w r( ) ( ) +( ) +( ) ( )  (7) 

which is linear in the consequent parameters 1p , 1q , 1r , 2p , 2q , 2r . Therefore, a hy-

brid learning algorithm combines the backpropagation gradient descent and the least 
squares estimate method, which outperforms the original backproagation algorithm 
[16]. The consequent parameters are updated first using the least squares algorithm 
and the antecedent parameters are then updated by back propagating the errors that 
still exist. Specifically, in the forward pass of the hybrid learning algorithm, node 
outputs go forward until layer 4 and the consequent parameters are identified by the 
least squares method. In the backward pass, the error signals propagate backward and 
the premise parameters are updated by gradient descent. Table 1 summarizes the ac-
tivities in each pass. More details about the hybrid learning algorithm can be found in 
Jang and Sun [6]. 
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4   Study Area and Data Used 

The Manwan Hydropower in the Lancangjiang River is selected as the study site. The 
Lancangjiang River is a large river in Asia, which originates from the Qinghai-Tibet 
Plateau, penetrates Yunnan from northwest to the south and passes through the Laos, 
Burma,  Thailand,  Cambodia and Vietnam, ingresses into the South China Sea at last. 

Table 1. Two passes in the hydrid learning procedure for ANFIS 

 Forward pass Backward pass 
Premise parameters Fixed Gradient descent 
Consequent parameters Least-squares estimate Fixed 
Signals Node outputs Error signals 

The river is about 4,500 km long and has a drainage area of 744,000 km2. The Man-
wan Hydropower merges on the middle reaches of the Lancang River and at borders 
of Yunxian and Jingdong counties. The catchment area at the Manwan dam site is 
114,500 km2, the length above Manwan is 1,579 km, and the mean elevation is 4,000 
km. The average yearly runoff is 1,230 cubic meters per at the dam site. Rainfall 
provides most of the runoff and snow melt accounts for 10%. Nearly 70% of the an-
nual rainfall occurs from June to September. 

The monthly flow data from January 1953 to December 2003 are studied. The data 
set from January 1953 to December 1998 is used for training whilst that from January 
1999 to December 2003 is used for validation. In the modeling process, the data sets 
of river flow were normalized to the range between 0 and 1 as recommended by Mas-
ters [17]. 

5   Application of ANFIS to Flow Prediction in Manwan 

5.1   Model Development and Testing 

There are no fixed rules for developing an ANFIS, even though a general framework 
can be followed based on previous successful applications in engineering. The goal of 
an ANFIS is to generalize a relationship of the form of  

nY= f X� �  (8) 

where nX  is an n-dimensional input vector consisting of variables 1x , . . . , ix , . . . , 

nx , and Y  is the output variable. In the flow modeling, values of ix  may be flow 

values with different time lags and the value of Y  is generally the flow in the next 
period. However, the number of antecedent flow values that should be included in the 

vector nX  is not known a priori. An ANFIS model is constructed initially with one 
antecedent flow in the input vector. The input vector is then modified by successively  
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adding flow at one more time lag, and a new ANFIS model is developed each time. 
With the increase of the input vectors adding from one to six, Six ANFIS models 
were developed as follows: 

t t-1 t-nModel  n    Q f Q Q n 1 6= � � � �  = � �  (9) 

where tQ  corresponds to the river flow at time t.The model performance is examined 

by means of the following indices: (1) the coefficient of correlation (CORR) and (2) 
The root mean square error (RMSE). 

5.2   Results and Discussions 

Table 2 shows the performance indices of ANFIS form model 1 to model 6, which are 
developed in Section 5.1, using the Gaussian membership function and the trapezoidal 
membership function respectively. The membership function of every input parameter 
within the architecture can be divided into two areas, i.e. small and large areas. The 
results indicate that model 3, which consists of three antecedent flows in input, 
showed the highest CORR and minimum RMSE during validation regardless of the 
adoption of Gaussian membership function or trapezoidal membership function for 
the ANFIS. It is selected as the best-fit model for describing the flow of the Manwan 
Hydropower. To demonstrate the effect of choice of membership function on the 
model performance, the triangular membership function (TRIMF), the trapezoidal 
membership function (TRAPMF), the generalized bell membership function 
(GBELLMF), the Gaussian membership function (GAUSSMF), the Gaussian combi-
nation membership function (GAUSS2MF), the spline-based membership function 
(PIMF) and the sigmoidal membership function (DSGMF) for the ANFIS structure 
are tested using model 3, and the results are presented in Table 3. It is showed that, 
the TRAPMF performs the best with the highest CORR and minimum RMSE during 
validation, and the GBELLMF performs the worst. 

Table 2. CORR and RMSE for different models 

GAUSSMF TRAPMF 
Training Validation Training Validation 

 
Model 

RMSE CORR RMSE CORR RMSE CORR RMSE CORR 
1 0.11843 0.78539 0.13043 0.77773 0.11889 0.78348 0.12958 0.78156 
2 0.090325 0.88157 0.10475 0.86359 0.09186 0.87722 0.10694 0.85762 
3 0.075927 0.91793 0.099208 0.87957 0.075795 0.91823 0.097094 0.88877 
4 0.06605 0.93861 0.13718 0.78263 0.067406 0.93597 0.10266 0.87995 
5 0.061604 0.9469 0.14105 0.78515 0.065892 0.939 0.16199 0.72977 
6 0.058825 0.9518 0.41629 0.38461 0.060644 0.94868 0.27504 0.58358 

5.3   Result Comparison with ANN Model 

ANN model has been widely applied in flow prediction. The main advantage of the 
ANN approach over traditional methods is that it does not require information about  
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the complex nature of the underlying process under consideration to be explicitly 
described in mathematical form. Hence, an ANN model is constructed using the same 
input parameters to the ANFIS model 3 to compare the performance of them in this 
case. A scaled conjugate gradient algorithm [18, 19] is employed for training, and the 
hidden neurons are optimized by trial and error. The final ANN architecture consists 
of 3 hidden neurons. In order to have the same basis of comparison, the same training 
and verification sets are used for both models. The performances of ANN and ANFIS 
during training period and validation period are respectively presented in Figure 4 and 
Figure 5, and the performance indices of them is showed in Table 4. It is demon-
strated that, when employed for flow prediction in Manwan, ANFIS exhibits some 
advantages over ANN model. During validation, the correlation coefficient of ANFIS 
model is 0.88877, which is larger than its counterparts of ANN model (0.87766). 
Moreover, the RMSE of ANFIS model is 0.097094, which is much smaller than that 
of ANN model (0.099927). 

Table 3. CORR and RMSE for model 3 with different MFs 

Training Validation MF 
RMSE CORR RMSE CORR 

TRIMF 0.079641 0.9093 0.097281 0.88339 
TRAPMF 0.075795 0.91823 0.097094 0.88877 
GBELLMF 0.075036 0.91993 0.10304 0.86983 
GAUSSMF 0.075927 0.91793 0.099208 0.87957 
GAUSS2MF 0.074961 0.9201 0.098256 0.88327 
PIMF 0.075463 0.91898 0.98573 0.88652 
DSGMF 0.07424 0.92169 0.99168 0.87999 
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Fig. 4. ANFIS forecasted, ANN forecasted and observed flow during training period 
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Table 4. Performance indices of ANN and ANFIS models 

Training Validation  
RMSE CORR RMSE CORR 

ANFIS 0.075795 0.91823 0.097094 0.88877 
ANN 0.080755 0.90662 0.099927 0.87766 
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Fig. 5. ANFIS forecasted, ANN forecasted and observed flow during validation period 

6   Conclusion 

In this study, an ANFIS model is used to predict long-term flow discharges in Man-
wan based on historical records. Data from January 1953 to December 1998 and 
from January 1999 to December 2003 are used for training and validation in 
monthly flow predictions, respectively. The results indicate the ANFIS model can 
give good prediction performance. The correlation coefficients between the predic-
tion values and the observational values are 0.88877 and 0.91823 for validation and 
training, respectively. The adoption of different membership functions for ANFIS 
show that the TRAPMF performs the best in long-term prediction of discharges in 
Manwan Hydropower consisting of three antecedent flows in input. It is found, 
through result comparison with an appropriate ANN model, that the ANFIS model 
is able to give more accurate prediction. This demonstrates its distinct capability 
and advantages in identifying hydrological time series comprising non-linear char-
acteristics. 
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Abstract. This paper presents the implementation of adaptive fuzzy neural net-
work controller (FNNC) for accurate speed control of a permanent magnet syn-
chronous motor (PMSM). FNNC includes neural network controller (NC) 
and fuzzy logic controller (FC). It combines the capability of fuzzy reason-
ing in handling uncertain information and the capability of neural network in 
learning from processes. The initial weights and biases of the artificial neural 
network (ANN) are obtained by offline training method. Using the output of the 
fuzzy controller (FC), online training is carried out to update the weights and 
biases of the ANN. Several results of simulation are provided to demonstrate 
the effectiveness of the proposed FNNC under the occurrence of parameter 
variations and external disturbance. 

1   Introduction 

Permanent magnet synchronous motors (PMSMs) are receiving increased attention 
for drive applications because of their high torque to current ratio, large power to 
weight ratio, higher efficiency, and robustness [1]-[4]. Like any other ac machine, the 
PMSM is inherently nonlinear with its parameters varying, and possesses a multivari-
able coupled system with high-order complex dynamics. Fortunately, the utilization 
of vector control technique simplifies the motor modeling and the corresponding 
control scheme, the electromechanical torque of PMSM is generated proportionately 
to the product of stator current, resulting in equivalent performance characteristics of 
separately excited dc motor, which guarantees fast response [5]. So Vector control has 
been accepted as one of the most effective methods for the control of PMSM drives. 
However, for a high-performance drive system, not only a fast response is required, 
but also the ability of quick recovery of the speed from any disturbances and insensi-
tivity to parameter variation is essential [6]. 

The speed controller used in PMSM drive system plays an important role to meet 
all the requires mentioned above. It should be enable the drive to follow any reference 
speed taking into account the effects of the load impact and parameter variations. 
Parameter-fixed, conventional controllers such as proportional integral (PI) controller 
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have been widely used. For a long-run drive system, the performances of these  
controllers are unsatisfactory. Because the results obtained by the integral operation 
usually holds integral error brought with the unknown load dynamics, and other fac-
tors such as noise, temperature change, parameters variation, etc. So it is difficulty to 
choose the optimal parameters of the PI controller for the PMSM drive. 

Nowadays, some adaptive controllers have been applied in both ac and dc motor 
drive. Such as model reference adaptive controller (MRAC) [7] and sliding model 
controller (SMC) [8], etc. all the types of controllers can improve the performance of 
the motor drive system. However, they are usually based on the parameters and struc-
ture of the system model. It will lead to complex computation when the system model 
is uncertainty. The artificial-neural-network (ANN) has received increased applica-
tions on the system modeling and control system. Because it has many advantageous 
features including efficient nonlinear mapping between inputs and outputs without an 
exact system model [6]. To replace the conventional controller, some persons put 
forward an approach of designing speed controller for PMSM drive through tuning 
the weights of the ANN on-line to meet the system’s dynamic characteristics. Gener-
ally, in order to get the error to tune the weights of the ANN, they all adopt an other 
controller (such as MRAC) to generate a signal which compare with the output of the 
ANN. Inevitably, it will lead to the complex computation again, To overcome this 
difficulty, this paper present an approach of designing adaptive fuzzy neural network 
controller (FNNC) which adopts the fuzzy logic to the artificial-neural-network. 
FNNC combines the capability of fuzzy reasoning in handling uncertain information 
and the capability of neural network in learning from processes.  

The proposed control scheme has been testified by simulation, the results indicate 
the PMSM drive with the adaptive fuzzy neural network controller will have the abil-
ity of quick recovery of the speed from any disturbances and parameters variation. 
Accordingly, the PMSM drive will have better dynamic performances and robustness.  

2   Vector Control Model of the PMSM  

The vector control technique was firstly proposed for induction motors, while it was 
applied to PMSM later. Its basic principle is to decouple the stator current to get di-
rect axis (d-axis) and quadrature axis (q-axis) components. The vector control strategy 
is formulated in the synchronously rotating reference frame. An efficient control strat-
egy of the vector control technique is to make the d-axis current id zero so that the 
torque becomes dependent only on q-axis current, which is similar to the control of a 
separately excited dc motor. With this control strategy, the motor model of the PMSM 
becomes simpler as can be described by the following equations [5] 

( ) qrbqsqq LKiRvpi /ω−−=  
(1) 

( ) JBTTp rLer /ωω −−=  (2) 
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qTe iKT =  (3) 

Where vq is the q-axis stator voltage, iq is q-axis stator current, Lq is q-axis stator 
inductance, r is rotor speed, Rs is stator resistance, p is differential operator, Kb=P m 

and KT=3P· m, J is the rotor inertia, B is the damping coefficient, Te, TL are the elec-
tromagnetic torque and the load torque. 

The motor and load dynamics can be represented by [5]  

rrLe BJpTT ωω ++=  (4) 

32
2

1 KKKT rrL ++= ωω  (5) 

Where K1, K2 and K3 are constants. Now to make the control task easier, the equa-
tions of the PMSM can be expressed as a single input single output (SISO) system in 
continuous time domain by combining (1)-(5), giving [6] 
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Accordingly, the discrete time model of the PMSM can be expressed by [5] 

ϑεδωγωβωαωω ++−++−+=+ )()1()()1()()1( 22 nvnnnnn qrrrrr
 (7) 

Where ϑεδγβα ,,,,,  are given in Appendix A. 

Now in discrete form, the q-axis current can be expressed by [5] 
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Where A1, B1, C1 are given in Appendix A. Equation (8) reveals the non-linear 
function between iq and r. The purpose of the ANN is to map the non-linear relation-
ship between iq and r. 

3   Structure of the FNNC for PMSM Drive 

3.1   Structure of the ANN  

The inverse dynamics of PMSM as described in equation (8) indicates the inputs and 
output of the ANN used in the control system. And the identification model in the 
form of a neural network controller (NC) can be given as 

))(),(),(),(()( 211 −−−=
∧

nnnniNCni rrrqq ωωω  (9) 
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The input vector [iq(n-1) r(n) r(n-1) r(n-2)]T is comprised of the previous sample 
of q-axis current as well as the present and previous two samples of motor speed. This 
also fixes the numbers of neurons in the input and output layers. Numbers of the neu-
rons in hidden layer are chosen by trial-and-error, keeping in mind that the smaller the 
numbers are, the better it is in term of both memory and time requirement to imple-
ment the ANN in motor control. For the present work, the structure of one hidden 
layer having three neurons gives satisfactory results. The proposed architecture of 
three-layer ANN is shown in Fig. 1. It includes M=4 input nodes, N=3 hidden-layer 
neurons, and Q=1 output nodes. W1, b1 are the weights matrix and biases vector be-
tween the input layer neurons and hidden layer neurons, W2, b2 are the weights matri-
ces and biases vector between the hidden-layer neurons and output-layer neuron. The 
transfer function used in the hidden layer neurons and output layer neuron are tan-

sigmoid hf and pure-linear of , respectively. Giving 

( )
x

h

e
xf −−

=
1

1  (10) 

( ) xxf o =  (11) 

 

Fig. 1. Block diagram of the structure of the three-layer artificial-neural-network 

Once the structure of the ANN is done, the initial weights and biases are obtained 
through the off-line training. The back-propagation training algorithm is used for this 
purpose which is based on the principle of minimization of a cost of the error between 
the outputs and the target. To get the satisfactory weights and biases, the training data 
should slid over the entire speeds and q-axis currents. Therefore, the simulation is 
carried out at random speed to obtain various q-axis current according to the relation-
ship described in equation (7) and (8). Considering the mechanical limitation of the 
motor, the speed should be limited by the motor rated speed value. Supposing the load 
torque is a constant (TL=0N·m), two sets of data are obtained. The input matrix is the 
size of 4 960. while the output vector is the size of 1 960. After the off-line  
training is well performed, the weights and biases are considered as the initial pa-
rameter set of the neural network controller for the online control of the PMSM drive.  
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The main goal of the control system is to track the reference speed by providing 
the appropriate q-axis current depending on the operating conditions. So it is neces-
sary for the weights and biases to tune online. To do this work, the neural network 
error gradient must be evaluated online. In order to evaluate the error gradient, the 
system output error between desired output (iq

*) and actual output (iq) is necessary. In 
fact, the desired output (iq

*) is unknown. So we can adopt the fuzzy logic to the ANN. 
using the desired speed and actual speed, we can get the q-axis current increment iq 
to tune the weights and biases online. 

3.2   Structure of the FC 

A fuzzy logic rule with consequent part of the following form is adopted in the 
FNNC: 

:jR  IF jx  is jA1  and and nx  is j
nA  THEN jBy =                             

Where xj and y are the input and output variables, respectively, j
iA  is the linguistic 

term of the precondition part with membership function j
iA

u , Bj is he linguistic term 

of the consequent part with membership function 
jBu , n is the number of input vari-

ables. In this work, the output is the q-axis current increment iq, the number of the 
input variables is 2, giving 

es1= r(n)*- r(n) (12) 

es2= r(n-1)- r(n) (13) 

Where r(n)* is the reference speed at the present, r(n), r(n-1) are the actual 
speed at the present and previous sample interval, respectively.  

The fuzzy membership functions of the input variables and output variable are 
shown in Fig. 2. And the corresponding fuzzy logic rule is shown in Tabel 1. 

Table 1. Tabel of the fuzzy logic rule 

  es1 

es2 NB NM NS ZO PS PM PB 

NB PB PB PM PM PS ZO ZO 
NM PB PB PM PS PS ZO NS 
NS PM PM PM PS ZO NS NS 
ZO PM PM PS ZO NS NM NM 
PS PS PS ZO NS NS NM NM 
PM PS ZO NS NM NM NM NB 
PB ZO ZO NM NM NM NB NB 



 Vector Controlled Permanent Magnet Synchronous Motor Drive 1167 

 

 

Fig. 2. The fuzzy membership functions of the input variables and output variable: (a) input 
variable es1 (b) input variable es2 (c) output variable  iq 

In this work, the range of iq is -0.96A~0.96A which is about 18% of the rating 
current. The same as es2, when es1<-20rad/sec and es1>20rad/sec, we consider es1=-
20rad/sec and es1=20rad/sec, respectively. Using the reference speed and the actual 
speed, we can calculate es1 and es2. Once the actual speed can not track the reference 
speed. We can tune the weights and biases of the ANN with the output of the FC.  

3.3   Online Weights and Biases Updating 

The error function is given by 

)(
2

1
)( 2 nine qΔ=  (14) 

Using the error, we can update the weights and biases as follows.  

The input and output of the jth neuron of the hidden layer is given by [6] 

)()()(
1

nXnWnY i

N

i

h
ij

h
j

=

=  (15) 

))()(()( nBnYfnO h
j

h
j

hh
j +=  (16) 

Where xi is the output of the ith neuron of the input layer, h
ijW  is the weight be-

tween ith neuron of the input layer and jth neuron of the hidden layer, N is the number 

of neuron at the hidden layer, h
jB  is the bias of the jth neuron, hf is the transfer 

function as shown in equation (10). 
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The input and output of the kth neuron of the output layer is given by [6] 

)()()(
1

nOnWnY h
j

Q

j

o
jk

o
k

=

=  (17) 

))()(()( nBnYfnO o
k

o
k

oo
k +=  (18) 

Where o
jkW  is the weight between jth neuron of the hidden layer and kth neuron of 

the output layer, Q is the number of neuron at the hidden layer, o
kB is the bias of the 

kth neuron. 
 Weights and biases of the hidden layer and output layer are up-dated as [6] 

)()()()1( nXnnWnW i
h
j

h
ij

h
ij ηδ+=+  (19) 

)()()1( nnBnB h
j

h
j

h
j ηδ+=+  (20) 

)()()()1( nOnnWnW h
j

o
k

o
jk

o
jk ηδ+=+  (21) 

)()()1( nnBnB o
k

o
k

o
k ηδ+=+  (22) 

Where  is the learning rate, h
jδ  and o

kδ  are the local gradient. Giving [6] 

2)](1)[()()( nYnWnn h
j

o
jk

o
k

h
j −= δδ  (23) 

)())(1)((
)(

)(
)()( nOnYnY

nO

ne
nen h

j
o

k
o

ko
k

o
k −

∂
∂=δ  (24) 

In real time implementation, error is derived from the fuzzy controller at each in-
stant. When the actual speed can track the reference speed, the output of the fuzzy 
controller is zero, and the previous set of weights and biases is kept intact to compute 
the q-axis reference current. Otherwise, the weights and biases will be updated online 
as described above. And the structure of the FNNC is shown in Fig. 3. 

 

Fig. 3. Block diagram of the structure of the fuzzy neural network controller (FNNC) 
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4   Results of Simulation 

A block diagram of the PMSM drive with the fuzzy neural network speed controller is 
shown in Fig. 4. And the availability is conformed by computer simulations. The 
simulation conditions including parameter variation and load disturbance are consid-
ered here 

r/min1000m,N0,:Case1 *
r =⋅== ωLTJJ  

r/min1000m,N5,2:2Case *
r =⋅=×= ωLTJJ  

mN5,:3Case ⋅== LTJJ  

Where J  is the changed rotor inertia. For the FC, the membership functions and the 
fuzzy rule are shown in Fig. 2. and Tabel 1, as mentioned before. These were simu-
lated in C language using the S-function of the MATLAB tool-box. For all the simula-
tion conditions, the results of the reference speed r

*, actual speed r and the output 
of the NC ( iq) are given by Fig. 5, Fig. 6, and Fig. 7. 

 

Fig. 4. Block diagram of PMSM drive with the proposed FNNC 

 
 
 
 
 
 
 

Fig. 5. Simulation results of the PMSM drive with the FNNC at case 2:(a) Track response (b) 
Control effort 

(a) 
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Fig. 6. Simulation results of the PMSM drive with the FNNC at case 2:(a) Track response (b) 
Control effort 

 
 
 
 
 
 
 
 

Fig. 7. Simulation results of the PMSM drive with the FNNC at case 3:(a) Track response (b) 
Control effort 

Fig. 5 shows the simulation results of the constant speed ( r
*=1000r/min) opera-

tion in the case when the machine parameters are kept their original values, with 
which the ANN is trained offline. In this figure, the motor speed r approximately 
follows the reference speed r

*. 
Fig. 6 shows the simulation results of the load change (TL=0N m TL=5N m) 

and the machine parameter change (J=7.25e-3kg.m2 J=2*7.25e-3kg.m2). Because of 
these changes, the motor speed changes slightly, but the motor speed approximately 
tracks the reference speed after that. 

At case 3, the reference speed follows a profile of 1000r/min-0r/min-1000r/min-
0r/min, as depicted in Fig. 7. This figure shows the proposed control scheme is oper-
ated well even if at the instant of the reference speed changes.  

5   Conclusion 

In this paper, a vector control scheme with the fuzzy neural network controller 
(FNNC) for the PMSM has been presented. FNNC includes neural network controller 
(NC) and fuzzy logic controller (FC). It combines the capability of fuzzy reasoning in 
handling uncertain information and the capability of neural network in learning from 
processes. The structure of the proposed ANN is derived from the inverse dynamic 

(a) (b)

 (a) (b)
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model of the PMSM. The initial weights and biases of the artificial neural network 
(ANN) are obtained by offline training method. Using the output of the fuzzy control-
ler (FC), online training is carried out to update the weights and biases of the ANN. 
The results of simulation have shown that the PMSM drive with the proposed FNNC 
has the merits of simple structure, robustness, accurate tracking performance, and 
parameter learning algorithms. 
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Appendix A: Inverse Dynamic Constants 
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Where T is the sampling interval. 

Appendix B: PMSM Parameters 

3kW, three-phase, 400V, 50Hz, P=4, Lq=Ld=8.5e-3H, Rs=2.875 , J=7.25e-3kg.m2, 
m=0.175Wb;B=0.8e-3(N·m)/rad/sec. 
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Abstract. The objective of this paper is to use the back-propagation (BP) algo-
rithm in conjunction with grey relations to find the optimal partitions of the 
consequent part in fuzzy neural networks (FNN).  A BP algorithm with grey re-
lational coefficient (GRC) is proposed in order to decrease the square errors of 
the FNN for acquiring the optimal partitions of the consequent part of fuzzy 
rules. From the simulation results, we find that the present method applied for 
fuzzy logic control of an inverted pendulum has better performance than that of 
the traditional BP algorithm. 

1   Introduction 

In the standard learning scheme for the BP algorithm,  the weights of the network are 
iteratively updated according to the recursion 

                                      ( ) ( ) ( )ttt dww η+=+1                                         1  

Where η  is called the learning rate and the direction vector ( )td  is the negative 

of the gradient of the output error function E   

                                                ( )wd E−∇=                                                  2  

Therefore, we consider that the BP algorithm takes into account the grey relation 
existing between the inputs and the connection weights propagating to the neuron in 
each training iteration of the network. Such a significant relation is called the grey 
relational coefficient (GRC)[1].  

2   Background 

2.1   The Structure of the Fuzzy Neural Networks  

We adopt the following fuzzy rules whose consequent parts are assumed to be a linear 
combination of the fuzzy sets associated with an output linguistic variable. The idea 
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of using a linear combination of fuzzy sets has been used in Nozaki et al. [2] where a 
linear combination of two fuzzy sets represents a consequent part. 

Fy

output
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x

input

:

:

:

:

:

2

1

  

Fig. 1. An inverted pendulum system 

1x 2x nx

y

 

Fig. 2. Structure of fuzzy neural network 
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iR : IF 1x  is 1iA  AND…AND nx  is inA   THEN iy
 
is              

10,
1

≤≤⋅
=

ij

m

j
jij B ωω                                   ( 3 ) 

and where n is the number of inputs nxx1 , iy
 
denoting the ith rule output, jB  

are the output fuzzy sets, m is the number of output partitions, ini AA 1  are the 

labels of input fuzzy sets pertaining to the ith rule and ijω  are the coefficients that 

form the consequent parameter set. These fuzzy rules are represented in a network 
which is a six-layer connective structure, as shown in Fig. 2, where the nodes in layer 
one are input nodes which represent input linguistic variables. The nodes in layer two 
are the input term nodes that stand for membership functions for the respective terms 
of the linguistic variables. The nodes in layer three are the rule nodes, which form the 
entire fuzzy rule base; layer three and layer four serve as the inference mechanism; 
the links of layer three define the preconditions of the fuzzy rule nodes, and the links 
of layer four define the consequent parts of the fuzzy rule nodes. Layer five has two 
nodes for the prearrangement of the defuzzification, and layer six is the last layer to 

perform the defuzzification. Thus, the output values k
if  of the thi  unit in the thk  
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where c is the center of a triangle-shaped membership function; L and R are the span 
of left side and right side of the function, respectively. 
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2.2   Grey Relational Coefficient GRC 

Grey relational analysis is a method that can find the relationships between one major 

sequence and other sequences in a given system [3].  The GRC ijξ  can be computed 

as  

                                                               max

maxmin

Δ+Δ
Δ+Δ=

ρ
ρξ

ij
ij

                                              4  

3   The BP Algorithm with GRC 

To train the weights of layer 4 in the network, the learning algorithm of BP with GRC 
is used. This is also categorized as supervised learning that minimizes the mean-
square error between the actual output and desired outputs of a network. The learning 
rule is: 

)()()()1( www Ett k ∇−=+ ξη                             5  

[ ]2)()(ˆ
2
1

tytyE −=                                         6
 

 

where ( )tŷ  is the desired output, y(t) is the current output, k is a pre-specified posi-

tive real number, and ξ  is the GRC between the inputs and the connection weights 

propagating to the neuron. The final GRC ξ  is computed as the mean value of GRC 

jξ . The algorithm proceeds as follows: 1. Initialize the connection weights corre-

sponding to each node in layer 4 randomly.  2. Present a training input/output pair 

through the network.  3. Compute jξ  and ξ . 4. Update the new weights using Eq. 

(5). 5. Go to step 2 until the training iterations are finished. We can see that the learn-
ing rule of BP with GRC is not determined only by the learning rate and the gradient 
of the output error function.  

4   Application to Inverted Pendulum System  

The structure of an inverted pendulum is illustrated in Fig. 1. Four sets of training 
data (with initial starting states of +50, -50 +10 and -10 degrees) based on a set of 
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fuzzy rules found in [2] are used to give training in the fuzzy rules. After the learning 
is completed, six sets of random initial starting states (+56, +36, +16, -4, -24, and -44 
degrees) are chosen to test the fuzzy rules. The number of iterations is 1800, and the 
learning rate η  is 0.0001. As a performance index of a fuzzy rule-based system, we 

use the summation of square errors between the desired output py  and the inferred 

output ( )py x  for each input-output pair ( )pp y;x , and there are 200 input-output pairs 

for training data in this system: 

( ){ }
=

−=
m

p
pp yyPI

1

2 2x ,  m=200.                      7 �

The control rules are of the following form 

iR :  IF 1x  is 1iA , 2x  is 2iA             THEN y is 
=

⋅
m

j
jij B

1

ω                 8  

Table 1. PI of BP with GRC algorithm for different output fuzzy partitions with various k 

   Partition
k 

M=2 M=3 M=4 M=5 M=6 

5 0.0501 0.0442 0.0443 0.0458 0.0544 
6 0.0549 0.0467 0.0449 0.0522 0.0638 

7 0.0591 0.0474 0.0577 0.0660 0.0990 
8 0.0615 0.0525 0.0682 0.0842 0.1080 
9 0.0642 0.0539 0.0734 0.1232 0.1639 

10 0.0661 0.0808 0.1080 0.1302 0.1939 
11 0.0677 0.0832 0.1234 0.1781 0.2606 
12 0.0843 0.1191 0.1769 0.2691 0.3046 

13 0.0850 0.1488 0.2449 0.3112 0.3910 

Table 2. PI of BP with GRC algorithm for different output fuzzy partitions with various ρ  

   Partition
ρ  

M=2 M=3 M=4 M=5 M=6 

0.2 0.1124 0.1973 0.3251 0.4577 0.6007
0.3 0.0763 0.0827 0.1446 0.2004 0.2405
0.4 0.0627 0.0555 0.0746 0.1119 0.1377
0.5 0.0554 0.0492 0.0523 0.0658 0.0976
0.6 0.0552 0.0480 0.0491 0.0538 0.0741
0.7 0.0497 0.0476 0.0438 0.0468 0.0679
0.8 0.0495 0.0459 0.0429 0.0437 0.0565
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Table 3. The best result of the PI by BP with GRC and the classical BP 

   Partition 
Method 

M=2 M=3 M=4 M=5 M=6 

BP with GRC 0.0245 0.0221 0.0216 0.0227 0.0235
Classical BP 0.0311 0.0256 0.0314 0.0347 0.0255

Where the consequent part of each rule is modified to be a linear combination of 

the output fuzzy sets with weights ijω , where i=1,2,…,n (number of rules); and 

j=1,2,…,m (number of output partitions). Tables 1 and 2 summarize the average val-
ues of the performance index for different output fuzzy partitions through various k 
and ρ , respectively. From theses tables, we get the following results. (1) Large val-

ues of k lead to worse PI for different output fuzzy partitions. The minimum value of 
square errors (PI) is 0.0442 which occurs at M=3 and k=5. (2) Large values of ρ  

lead to better PI for different output fuzzy partitions. The minimum value of square 
errors is 0.0429 which occurs at M=4 and ρ  = 0.8. Table 3 summarizes the best 

result of the PI by BP with GRC and the classical BP. From Table 3, we observe the 
following. (1) The performance of the BP with GRC is better than the classical BP for 
different output fuzzy partitions. (2) Large values of M i.e., fine output fuzzy parti-
tions lead to better PI in the classical BP method, however, it is not the same situa-
tion in the BP with GRC method. The minimum value of square errors is 0.0216 
which occurs at M=4. 

5   Conclusions 

This algorithm is developed by directly incorporating the grey relational coefficient 
GRC  into the BP algorithm. Generally speaking, the square errors of proposed 

method are much smaller than that of the classical BP for an inverted pendulum sys-
tem. Large values of M i.e., fine output fuzzy partitions  do lead to a better per-
formance index in the classical BP method, however, it does not produce same out-
come as for the BP with GRC method, where the PI is smaller. 
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Abstract. In this paper, we present a modified fuzzy min-max neural network 
model and its application to feature analysis. In the model a hyperbox can be 
expanded without considering the hyperbox contraction process as well as the 
overlapping test. During the learning process, the feature distribution informa-
tion is utilized to compensate the hyperbox distortion which may be caused by 
eliminating the overlapping area of hyperboxes in the contraction process. The 
weight updating scheme and the hyperbox expansion algorithm for the learning 
process are described. A feature analysis technique for pattern classification us-
ing the model is also presented. We define four kinds of relevance factors be-
tween features and pattern classes to analyze the saliency of the features in the 
learning data set. 

1   Introduction 

Many neuro-fuzzy methodologies for pattern classification and feature analysis have 
been proposed in the last decade[1-4]. Fuzzy Min-Max(FMM) neural network is a 
hyperbox-based pattern classification model[1-2]. In our previous work, a weighted 
fuzzy min-max(WFMM) neural network has been proposed[3]. The model employs a 
new activation function which has the weight value for each feature in a hyperbox. In 
this paper, we introduce an improved structure of the WFMM neural network and its 
application to feature analysis technique. We define four kinds of feature relevance 
measures to analyze the saliency of the features in the pattern classification problem. 
In the proposed model, the weight concept is added to reflect frequency factor of 
feature values. Since the weight factor effectively reflects the relationship between 
feature range and its distribution, the system can prevent undesirable performance 
degradation which may be caused by noisy patterns. Therefore the model can be used 
for the applications in which more robust and efficient classification performance is 
needed. The proposed feature relevance measures also can be utilized to select an 
optimal feature set for training. Through the experimental results using Iris data and 
Cleveland medical data[5], the usefulness of the proposed method is discussed. 
                                                           
* This research was supported by Brain Science and Engineering Research Program sponsored 

by Korean Ministry of Commerce, Industry and Energy. 
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2   A Weighted Fuzzy Min-Max Neural Network 

As shown in Equation (1), the model employs a new activation function which has the 
weight value for each feature in a hyperbox  

1

1

1
( ) [max(0,1 max(0, min(1, )))

                        max(0,1 max(0, min(1, ))) 1.0]

n

j h ji jiv hi jin
i

ji
i

jiu ji hi

b A w a v
w

u a

γ

γ

=

=

= • − −

+ − − −

 
(1) 

In the equation, the wji is the connection weight between i-th feature and j-th hy-
perbox, n means the number of features in the test pattern,  is the sensitivity parame-
ter in the range [0, 1]. aih is the value of i-th feature of h-th input pattern. uji and vji 
mean the minimum and maximum value of dimension i of hyperbox bj, respectively. 
The original FMM neural network classifier is built using hyperbox fuzzy sets. The 
learning process is performed by properly placing and adjusting hyperboxes and 
weights in the pattern space[2].  

The learning algorithm consists of hyperbox creation, expansion and contraction 
processes. The weight value increases in proportion to the frequency factor for each 
feature in the expansion process. The contraction process is to eliminate overlaps 
between hyperboxes that represent different classes. However it is considered as an 
optional part of our model. We define a new contraction method including the weight 
updating scheme. To determine if the expansion created any overlap, a dimension by 
dimension comparison between hyperboxes is performed. We define new scheme of 
overlapping handling techniques for four cases of overlaps. The proposed model is 
capable of utilizing the feature distribution and the weight factor in the learning proc-
ess as well as in the classification process. Consequently the proposed model can 
provide more robust performance of pattern classification when the training data set 
in a given problem include some noise patterns or unusual patterns. 

3   Feature Analysis 

One of the advantageous features of the proposed model is a feature analysis capabil-
ity. We can analyze the relationships between the features and the given classes from 
the weight data. In this paper we define four kinds of relevance factors as follows: 

 
1( , ) : the relevance factor between a feature value  and a hyperbox 

2( , ) : the relevance factor between a feature value  and class           

3( , ) : the relevance factor between a f

i j i j

j k j k

i k

RF x B x B

RF x C x C

RF X C eature type  and class            

4( )  : the saliency measure of feature X  for the given problem               
i k

i i

X C

RF X

 

These four factors are defined as Equation (2), (3), (4) and (5), respectively. In the 
equations, constant NB and Nk are the total number of hyperboxes and the number of 
hyperboxes that belong to class k, respectively. 

1( , )i j ijRF x B w=  (2)  
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1
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    In Equation (3), S  is a function which measures the similarity between two fuzzy 
intervals. In Equation (4), Li is the number of feature values which belong to i-th 
feature. If the RF2 has a positive value, it means an excitatory relationship between 
the feature and the class. But a negative value of RF2 means an inhibitory relationship 
between them. A list of relevant features for a given class can be extracted using the 
RF2 for each feature. The RF3 shown in Equation (4) represents the degree of impor-
tance of a feature for classifying a given class. Therefore it can be utilized for feature 
selection or knowledge extraction process for pattern classification problems. The 
fourth measure, RF4, also can be defined in terms of the RF3 as shown in Equation 
(5). The RF4 means the saliency measure of a feature type for the given problem. We 
can utilize this information for the feature selection in designing process of the pattern 
classifier. 

4   Experimental Results 

We have developed a face detection model using the weighted FMM neural network 
for a real time robot vision system. In order to evaluate the proposed model and the 
feature analysis method, we have conducted the experiments using the Fisher’s Iris 
data and the Cleveland medical data[5]. The Iris data set consists of 150 pattern cases 
in three classes (50 for each class) in which each pattern consists of four features. The 
Cleveland medical data consist of 297 pattern cases in five classes in which each 
pattern case has thirteen features. We have developed a hybrid neural network model 
for face detection by combining the proposed model with a convolutional neural net-
work[4] which provides invariant feature extraction capability for distorted image 
patterns. From the feature analysis results using the proposed model, 1848 features 
extracted form the raw data have been reduced into 260 features without any perform-
ance degradation. For the Iris data and Cleveland medical data classifications, we 
have analyzed the relevance factors. Four kinds of analysis results have been gener-
ated as illustrated in Table 1. The table shows the relevance factors(RF2) between 
feature values and target classes for the Iris patterns. 
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Table 1. Relevance factors(RF2) between feature values and target classes(Iris data) 

Feature value Target Class RF2 
F4 : (0.0, 0.13) Setosa 0.312 
F1: (0.03, 0.22) Setosa 0.190 
F3: (0.51, 0.65) Versicolor 0.443 
F2: (0.13, 0.54) Versicolor 0.158 
F3: (0.65, 0.78) Virginica 0.272 
F2: (0.21, 0.67) Virginica 0.133 

5   Conclusion 

The proposed relevance measure RF1 makes it possible to eliminate the hyperbox 
contraction process since the measure represents different relevance values within 
overlapped hyperbox feature ranges. The other measures also can be utilized in de-
signing an optimal structure of the classifier. For examples, RF2 and RF3 can be used 
for a knowledge extraction method, and the RF4 can be useful to select more relevant 
feature set for a given problem. The weighted FMM neural network model presented 
in this paper is capable of utilizing the feature distribution and the weight factors in 
the learning process as well as the classification process. We have applied the pro-
posed model to a real-time face detection system in which there may be many unusual 
patterns or noise in the learning data set. 
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Abstract. In this paper, a physiological fuzzy neural network is proposed, 
which shows more improved learning time and convergence property than that 
of the conventional fuzzy neural network. First, we investigate the structure of 
physiological neurons of the nervous system and propose new neuron structure 
based on fuzzy logic. And by using the proposed fuzzy neuron structures, the 
model and learning algorithm of physiological fuzzy neural network are pro-
posed. We applied the proposed algorithm to 3-bit parity problem. The experi-
ment results showed that the proposed algorithm reduces the possibility of local 
minima more than the conventional single layer perceptron does, and improves 
the time and convergence for learning.  

1   Introduction 

We analysis the exciting neuron in the physiological structure and classify an inhib-
ited neuron into a forward inhibitory neuron and a backward inhibitory neuron. And 
fuzzy logic has a merit of induction, and is composed of fuzzy set theory and fuzzy 
logic operation. There are fuzzy AND, fuzzy OR, and fuzzy NEGATION in the con-
ventional fuzzy logic operations [1], [2]. The conventional perceptron, due to its use 
of unit step function was, highly sensitive to change in the weights, difficult to im-
plement and could not learn from past data [3]. In this paper, we propose a new fuzzy 
neural network, a modification to the conventional fuzzy perceptron that replace the 
generalized delta rule using physiological neuron structure. Therefore, we define a 
proposition that a forward inhibitory neuron is fuzzy logical-AND organization and a 
backward inhibitory neuron is fuzzy logical-NEGATION organization. We define a 
fuzzy OR structure by analyzing excitatory neuron in the physiological neuron or-
ganization. The learning algorithms that combine the merits of fuzzy logic with the 
neural networks based on physiological organization are proposed in this paper. We 
applied the proposed algorithm to 3-bit parity problem.  
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2   A Physiological Fuzzy Neural Network 

2.1   Physiological Neuron Structure  

Physiological neuron organization structure is composed of excitatory neuron and 
inhibitory interneuron, which are each activated by agonistic neuron and inactivated 
by antagonistic neuron.   

Agonistic neuron is the one that directs to forward and antagonistic neuron does to 
backward. Inhibition is classified into antagonistic inhibition, forward inhibition and 
backward inhibition. Antagonistic inhibition makes on inhibitory synapse through an 
interneuron, which control the antagonistic neuron. Forward inhibition is inhibited 
without previous excitation of an antagonistic neuron. Backward inhibition is inhib-
ited backwards in case that an inhibited interneuron acts upon the cell, which acti-
vated itself [4]. 

2.2   A Physiological Learning Model 

We defined a fuzzy OR structure by analyzing excitatory neuron in the physiological 
neuron organization. We also defined a fuzzy AND structure by classifying the inhibi-
tory neuron structure as the forward inhibitory neuron structure and the backward 
inhibitory neuron structure. The interneuron is defined as fuzzy NEGATION. The 
proposed learning structure is shown in Fig. 1.  

 

…
…

…

Output layer

Fuzzy membership neuron

Input layer

AND Inactivation Neuron

OR Activation Neuron
NOT Backward Inhibition Neuron  

Fig. 1. Physiological Learning Model 

2.3   A Physiological Learning Algorithm 

The learning steps are classified as the forward step and the backward step in the 
proposed neural fuzzy algorithm. In the forward steps, the actual output values are 
calculated through the fuzzy neuron membership function. The initial weight range is 
established by [5]. 

We use fuzzy logic operator Max & Min instead of sigmoid function. With these 
operators, Max operator can be used if target value is ‘1’ or Min operator if ‘0’. In the 
backward steps, the weight is adjusted by dividing each neuron into excitatory neuron 
and inhibitory neuron in accordance with the fuzzy neuron membership function. The 
proposed algorithm as follows: 
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Step 1: Initialize Logic_value, Logic_weight, and Logic_mark 
            Logic_weight : 1,1,1 ===

jijiji NTORAND WWW  

            Logic_value : 1,1,/1 −===
jijiji NTORAND VVIV  

            Logic_mark : 1,1,1 === p
ji

p
ji

p
ji NTORAND

ONONON  

            where 
jiANDW  : forward inhibitory operation  

                      
jiORW : forward excitatory operation, 

jiNTW : backward inhibitory  

operation 
Step 2: Read input pattern 
Step 3: Select target bit j for input pattern 
Step 4: Calculate and normalize Synapse_value from 0 to 1 
            ×××+×××+=

jiji
p
jijiji

p
ji

OROR
p
iORANDAND

p
iANDjiji WVxONWVxONSynapseSynapse  

            ( )
jiNTjijiji VSynapseSynapsethenSynapseif +=> 0.1  

Step 5: Determine Soma_value for output value 
            ( ) ( )jij

p
j SynapseSomathenettif ∨== 0.1arg  

             ( ) ( ) patternofNumberPPpwhereSynapseSomathenettif jij
p
j :,10.0arg ≤≤∧==  

            ∨ : Fuzzy MAX operation, ∧ : Fuzzy MIN operation 
Step 6: Update Logic_weight and Logic_mark value 

            ( ) thenONandWif p
jiji ANDAND =≤ 10.1  

                ( )( )insizeWxerrorWW
jijiji AND

p
ijANDAND /×××+= β , 1=p

jiAND
ON  

            ( )0.1>
jiANDWif 0,0.1 =−= p

jijiji ANDANDAND ONWWthen  

            ( ) thenONandWif p
jiji OROR =≤ 10.1   

                ( ) 1,/ =××+= p
jijiji OR

p
ijOROR ONinsizexerrorWW β  

            ( ) 1,0.10.1 =−=> p
jijijiji OROROROR ONWWthenWif  

                  CenterGravityinsizerateLearningwhere :,:β  

Step 7: Repeat step 3, until it process all target bits 
Step 8: Repeat step 2, until it process all input patterns 

3   Experimental Results 

It was implemented on the IBM/Pentium-III 550 MHz PC using Delphi tool. The 
testing data is the 3-bit parity using the benchmark in neural network. We fixed error 
criteria value to 0.05. 

We set initial learning rate at 0.5 in our algorithm. In our proposed algorithm, we 
set up the range of initial weight at [0, 1] by [5]. 

Table 1 is the summary of learning results measured in terms of Epoch and TSS 
(Total Sum of Square). In our proposed algorithm, the network was converged on  
3-bit parity. Therefore, it is known that the proposed algorithm guarantees the  
convergence.  
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Table 1. Learning results 

3-bit parity Physiological Learning Algorithm 
Epoch Number 100 

TSS 0.02745 

4   Conclusions 

The study and application of fusion fuzzy theory with logic and inference and neural 
network with learning ability have been actually achieving according to expansion of 
automatic system and information processing, etc. 

We proposed the neural fuzzy learning algorithm on the theoretical basis of fuzzy 
logic and physiological neural network. The proposed network is able to extend the 
arbitrary layers and has high convergence in case of two layers or more. When we 
considered only the case of the single layer, the networks had the capability of the 
high speed learning process and the rapid processing on huge patterns. The proposed 
algorithm is the learning method which contains logic operations to imitate the struc-
ture of human brains. This algorithm combines the learning ability, which is the merit 
of artificial neural network, with the manipulation of human’s obscure expression, 
which is the merit of fuzzy logic. And the proposed algorithm shows the possibility of 
the application to the real world besides benchmark test in neural network by single 
layer structure. In the future study, we will develop the novel fuzzy neuron learning 
and recognition algorithm and apply to the handwritten digit recognition. 
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Abstract. A novel hybrid cluster-based self-organizing neuro-fuzzy system 
(HC-SONFS) is proposed for dynamic function approximation and prediction. 
With the mechanism of self-organization, fuzzy rules are generated in the form 
of clusters using the proposed self-organization method to achieve compact and 
sufficient system structure if the current structure of knowledge base is 
insufficient to satisfy the required performance. A hybrid learning algorithm 
combining the well-known random optimization (RO) and the least square 
estimation (LSE) is use for fast learning. An example of chaos time series for 
system identification and prediction is illustrated. Compared to other 
approaches, excellent performance of the proposed HC-SONFS is observed.  

1   Introduction 

Neuro-fuzzy approaches which possess the ability for system optimization of 
structure and parameter learning have arouse much interest and regarded as a branch 
of computation intelligence. Recently, the studies of system self-organization with the 
salient characteristics of self-adjustment, intelligent learning and adaptability, have 
become an emerging research field. In this paper, a hybrid cluster-based self-
organizing neuro-fuzzy system (HC-SONFS) for function approximation is proposed 
to aim at fast learning convergence and system structure optimization with ease and 
efficiency. The Takagi-Sugeno (T-S) type of fuzzy rules is used in the paper.  

IF (x1 is
is1 (h1(k) )) and…and (xM is i

Ms (hM(k)) 

THEN zi(k) = )(...)(110 khakhaa M
i
M

ii ++  
(1) 

where xj, hj(k), and i
ja   j= 1, 2,…, M are the input linguistic variables, the crisp inputs 

at time k, and the consequent coefficients of the i-th rule, respectively. There are two 
phases which are system structure identification and parameter identification. A 
cluster-based rule structure is used for the neuro-fuzzy system. A hybrid RO-LSE 
learning algorithm is used for the parameter identification. The well-known RO 
algorithm [1-2] is for the premise fuzzy sets, and the LSE for the consequent 
parameters. 
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Fig. 1. The cluster-based fuzzy sets of HC-SONFS 

Suppose that there are Ω rules in the rule base. The output of the HC- SONFS is given as 
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Gaussian membership function of the j-th input variable. For the proposed HC-
SONFS, the if-parts are corresponding to clusters, shown in Fig. 1. The antecedent 
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2   Self-organization Learning Processes of HC-SONFS 

Suppose that the neuro-fuzzy system (NFS) possesses a few rules initially and that the 
current performance of NFS is not satisfied. The self-organization process of HC-
SONFS includes two phases of the structure learning and the parameter learning. The 
structure learning is to find necessary rules covering the training data. The parameter 
learning is to concern with the parameters of the premise parts and the consequent 
parts. The proposed HC-SONFS can achieve the two tasks simultaneously. If an input 
training pattern is sufficiently covered by the current rule base, no new rule is 
generated; otherwise a new cluster is generated. The output of the HC-SONFS can be 
expressed as ))(,()(ˆ kHWfky = , where },,{ AW ΔΣ=  is the parameter set of the system. 

Assume that there are N pairs of I/O training patterns, { }NkkykH ...,,2,1)),(),(( = , 

where H(k)=[h1(k), h2(k),…, hM(k)]. The error vector is given as [ ]TNeeeE )(,,...),2(),1(= , 

where )(ˆ)()( kykyke −= . The largest absolute error, )...,,2,1|,)(max(|max Nkkee == , is 

used in such a way that the input vector )(φH  is viewed as the position in the input 

space a potential fuzzy rule (cluster) should be generated. Denote 
that )...,,2,1)),((max(max Ω== iHi φββ . If 

1max T<β (a pre-given threshold) then 

)()1( φjj h=Σ +Ω and 
2

)1( Tj =Δ +Ω  (pre-given width of new cluster) and Ω=Ω+1. The 

constant T1 is designed as T1=T1(0.95)Ω to avoid that the rules may increase rapidly.  
In hybrid way, the RO is used for training the premise parts of the HC-SONFS and 

))((1 tHC

))((2 tHC

))((3 tHC

)(1 th

)(2 th

1
1s 2

1s 3
1s

1
2s

2
2s
3
2s

))(( tHC i =the i-th cluster of the HC-SONFS



1188 C. Li et al. 

the LSE for the consequent parts. The detail of the RO algorithm is given in [1-2]. 
With the firing strengths, the update of consequent parts is executed by LSE. The cost 
function is defined as
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where [ ])()()()()()( 1 khkkhkkk M
iiii βββ=Λ . The recursive least squares estimation 

(RLSE) algorithm can also be used in sequential way.  

3   Experimental Simulations 

The approach is applied to the identification and prediction of the Mackey-Glass 
chaos time series [3] to test its feasibility and capability. It is given as 

)(1.0
)(1

)(2.0
)(

10
tx

tx

tx
tx −

−+
−=

τ
τ , where τ=17, and time step is given as 0.1. The initial 

 
 
 
 
 
 
 
 
 

Fig. 2. Response performance of HC-SONFS for function approximation and prediction of the 
Mackey-Glass time series 

Table 1. Comparison with other works 

 
 
 
 
 
 
 
 
 
 

Method RMSEtraining RMSEtesting No. of rules 
D-FNN[3] 0.0132 0.0131 5 

RBF-AFS[4] 0.0158 0.0163 13 
OLS[5] 0.0107 0.0128 21 

Our method 0.0086 0.0089 3 
Our method 0.0065 0.0066 4 
Our method 0.0055 0.0056 5 
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conditions are given as x(0)=1.2, and x(t)=0 for t<0. In this experiment, the 
relationship of the I/O mapping by the HC-SONFS can be given as 

)))1((...,),(),(()( Δ−−Δ−=+ DkxkxkxfPkx  where 6=Δ=P , and 4=D . The HC-

SONFS estimates the advanced point x(k+6) using x(k-18), x(k-12), x(k-6) and x(k). 
The input to the HC-SONFS is given as )](),6(),12(),18([)( kxkxkxkxkH −−−=  

and )6()( += kxky . 2000 data pairs are obtained. The first 1000 data points from k 

=124 to 1123 are collected as the training patterns for supervisory HC-SONFS 
training. After training, the rest 1000 data points from k=1124 to 2123 are used for 
prediction purpose. The root mean square error (RMSE) is used as the performance 
index. Initially, there are 2 rules in HC-SONFS, and T1 and T2 for the cluster-
generation are set to 0.01 and 1. After 80 training epochs, there are 5 rules in HC-
SONFS. The response is given in Fig. 2, where the RMSE is converged to 0.0055 for 
identification and 0.0056 for prediction. The performance comparison to other works 
of D-FNN [3], RBF-AFS [4] and OLS [5] is given in Table I. 

4   Conclusions 

The proposed HC-SONFS has been successfully applied to nonlinear function 
approximation and prediction of Mackey-Glass time series. By the proposed 
approach, the knowledge base is machine-learned to capture the essence of input-
output information. With the proposed RO-LSE hybrid algorithm, the system premise 
parameters are updated using RO and the consequent parameters using LSE. Through 
the experimental results and the performance comparison to other methods shown in 
Table 1, the distinguishing capability of the proposed HC-SONFS is shown. 
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Abstract. Support vector machines just use the sign of decision value to get the 
decision class but don’t take its value into consideration. Compared with the 
support vector machines, the proposed machine not only gives the decision class, 
but also the membership to each class using the decision value. For SVMs are 
essentially a 2-class classifier, we first construct the fuzzy output SVMs for 
2-class, then extend it to multi-class case. In multi-class case, the feature space is 
divided into three parts: absolutely classified region, unclassified region and 
positive margin region because of different accuracy in them. In different 
regions, the range of the value of membership is different. Through the 
membership, we can get the location information of the data, which can tell us the 
confidence of the decision. So this will be helpful for further decision and 
analysis. The experiments show that the performance of fuzzy output SVMs is 
almost the same as the one-to-one approach, but when the membership to two 
classes is comparative and less than 0.8, the second maximal membership can 
sometimes correspond to the real class. 

1   Introduction 

Support vector machines (SVMs) based on the statistical learning theory are developed 
by Vapnik [1, 2]. SVMs have better performance than other traditional learning 
machines and have been gained acceptance for a wide range of application [12], such as 
handwritten digit recognition, object recognition, speech recognition [2] and spatial 
data analysis [3]. 

Recently, fuzzy set theory has been introduced to support vector machines [11]. In 
2001, Inoue etc. proposed a fuzzy SVM to solve the unclassified regions that exist 
when extending two-class classification to multi-class case [4]. The generalization 
ability of the fuzzy SVM is the same as or better than that of the SVM for pairwise 
classification [5, 6].Then, since the optimal hyperplane obtained by SVM depends on 
only a small part of the data points, it may become sensitive to noises or outliers in the 
training set. In 2003, to deal with this problem, another fuzzy SVM was proposed. It 
employed the fuzzy memberships to evaluate the importance of data points. This 
method can prevent some points from making narrower margin by setting lower fuzzy 
membership to the data points that are considered as noises or outliers with higher 
probability [7]. Subsequently, researchers paid much attention to automatically setting 
the fuzzy memberships of the training data points [8, 9]. In a word, the fuzzy 
membership function is introduced to treat data points with different importance.  
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In this paper, we propose a fuzzy output SVM, which not only gives the decision 
class of the data points, but also the location information in the feature space through 
the fuzzy membership. That is, we employ the membership function to treat the 
decision with different importance. This machine makes full use of the information of 
the decision value, which will be helpful for the further decision and analysis. For 
example, a datum lies near the separating hyperplane, whose membership to class 1 is 
0.45, to class 2 is 0.55. In original SVM, it will be classified to class 2 absolutely. But it 
is not definite and the confidence of data points to a class in different places is different. 
Hence through the decision value, the fuzzy output SVMs can give users the confidence 
of data points to a class. When the datum can’t be classified to any class with high 
confidence, it can remain the users to import more information for the further decision. 
By this way, a binary classifier is extended to a fuzzy classifier. 

Because SVMs are originally designed for 2-class classification, firstly fuzzy output 
binary SVMs are proposed. Then we analyze the boundary of multi-class case in detail 
and partition the feature space into three different regions because of different accuracy 
in them. Finally, some numeric experiments show the method effective. 

2   Two-Class Fuzzy Output SVMs 

In this section, we first review the two-class classification model of the original SVMs, 
and then use the decision value to give the 2-class fuzzy output model. Due to the 
symmetry of separating plane to each class, we choose the sigmoid membership 
function to describe the confidence of the data point to a class. And the decision process 
of the fuzzy output SVMs for 2-class is given at the end of this section. 

Consider the following two-category classification problem: 
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where ix  is a training example and iy  the corresponding class. First, SVM maps x into 

a high dimensional space via a function φ , then in order to construct the optimal 

hyperplane 0)( =+• bxw φ , we have to solve: 

libxwyts

Cwww

iii

l

i
i

≤≤≥+−+⋅

+⋅=
=

001))((..

)(
2

1
),(min

1

εφ

εεφ
 (1) 

where iε  is the slack variable, the constant C determines the trade-off between 
2

ww ⋅
 

margin maximization and 
=

n

i
i

1

ε  training error minimization. Then the hyperplane can 

generalize well according to SRM [1]. According to Karush-Kuhn-Tucker condition in 
optimization theory, optimization problem (1) is equivalent to 
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where )()(),( jiji xxxxK φφ ⋅=  is an inner product in the feature space which can map 

the data points into feature space without computing )(xφ . Through the kernel trick, 

SVMs can deal with the classification in nonlinear case easily.  
Through solving the optimization problem (2), we can obtain w and b of the 

separating plane 0)( =+• bxw φ . In original SVMs, we can also obtain the following 

decision function: 
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which just uses the sign of the decision value bxw +• )(φ . If the decision value is 

positive, the unseen data x  is classified to class 1; while if the decision value is 
negative, x  will be classified to class 2. In order to use the decision value to compute 
the membership to each class, we can get that the decision value to each class is, 
respectively 

111 )( bxwD +•= φ  , 222 )( bxwD +•= φ , 

where www =−= 21 , bbb =−= 21 . Notice that the decision value is a signed value. 

If 1D  is positive, x  belongs to class 1, while 2D  must be negative. What is more, 

because the 2 classes have the same separating hyperplane, but just in the opposite side, 
we can get 21 DD −= . 

In the case of no apriori information, the separating hyperplane lies in the right 
middle of the margin. Most of the training data lie out of the margin. And the data in the 
margin are punished in training. By this method, the separating hyperplane can get the 
maximal generalization ability. With a trained SVM, we can set the following 
conditions to class 1: 

1) When the decision value is greater than 1, the data point is out of the margin. 
Correspondingly, it can be classified to class 1 with high confidence. Here we set 
the confidence of data that lie on the same hyperplane as the support vectors, 
whose decision value is equal to 1, as 0.8. And the confidence of the data to class 
1 increases with the decision value. 

2) If the decision value is between 0 and 1, the data point is within the margin, which 
has more probability to be misclassified. Hence it can be classified to class 1 with 
less confidence, we can set it between 0.8 and 0.5; 

3) If the decision value is equal to 0, the data point is on the separating plane. It may 
have the same confidence to each class. We set the confidence of the data point to 
class 1 as 0.5. 

4) Due to these features, we can employ the following kind of membership function 
to give the confidence of the data points to a class showing in Equation (3). And 
we change the decision function to  
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 In order to satisfy the above conditions, we have 0   ),25.0ln( =−= cA . The 

membership function to class 1 shows in figure 1: 

1) The line in the middle denotes the separating hyperplane 0)( =+• bxw φ . The 

membership of data lying on the hyperplane to the two classes is 0.5 respectively. 
Look at the data denoted by diamond; 

2) Data denoted by circle lie on the same hyperplane as support vectors of class 1, 
which satisfy 1)( 111 =+•= bxwD φ . The membership of these to class 1 is 0.8, 

while Data denoted by square lie on the same hyperplane as support vectors of 
class 2, the membership of these to class 1 is 0.2; 

3) With the increase of the decision value, the membership to class 1 is towards 1.  

Fig. 1. The membership function to class 1 

3   Multi-class Fuzzy Output SVMs 

For SVMs are essentially a two-class classifier, some methods have been devised to 
extend SVMs to multi-class classification such as one-to-one, one-to-all and 
SVMDAG[10]. In this paper, we take one-to-one method to solve multi-class case. This 
method constructs SVMs between all pairs of classes and then uses a voting scheme to 
classify an unseen datum point. As for k -class classification, it needs to train 

2/)1( −kk classifiers: 
kjibxwD ijijij <<<+•= 0  

where ijD  denotes the classifier for the i  class and the j  class. So we can get 

that )()( jiDxD ijji ≠−=  and we don’t need to take the case of ji =  into 

consideration. 
In [6], Shigeo Abe etc. point out that there exists unclassified region in one-to-one 

method and employ the membership function to solve this problem. In this paper, we 
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use the same multi-hyperplane to construct the fuzzy output SVMs. But we separate the 
computing course of decision value to one class from that of membership. In order to 
get the similar membership to the 2-class case, firstly we analyze the boundary in detail. 
Three different regions are defined in the feature space showing in figure 2:  

1) Absolutely classified region, in which i∀ class, all 1≥ijD  except ij = ; 

2) Positive margin region, in which i∀ class, all 10 << ijD  except ij = ; 

3) Unclassified region, in which i∀ class, all 0≤ijD  except ij = . 

  

Fig. 2. The different regions in the feature space 

Then we directly use the decision value )(xDij  of all the related classifiers to 

compute the decision value and the membership to each class. The decision process is 
as follows: 

1) Computing the decision value of the i  class: )(min)(
,,2,1

xDxD ij
nj

i =
= . It means the 

decision value to this class depends on the nearest decision value of all the related 
classifiers to this class in the positive direction, while in the negative direction, it 
depends on the biggest absolute decision value of all the related classifiers.   

2) Computing the membership to the i  class:  

))((1

1
),,(
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3) Decide the class of the unseen data: )(maxarg
,,2,1

xi
ni

μ
=

. When making the 

decision, we get the membership at the same time. 

There are some features of the membership in different regions: the membership of 
the data in the absolutely classified region to the decision class is more than 0.8, to other 
classes is close to 0. In unclassified region, the membership to each class is between 0 
and 0.5. The decision class is corresponding to the class that has the maximal 
membership. But sometimes the membership to another class is comparative to the 
maximal membership. In this case, the data may be really belongs to another class 
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because the confidence of the decision class is small and comparative to another. The 
membership of the data in the positive margin region to their decision classes is 
between 0.5 and 0.8, to other classes are between 0 and 0.5. In this region, it has the 
same case as 2). When the membership of two classes is comparative, the class may be 
really belongs to one or another class. Although the decision class is corresponding to 
the maximal membership, sometimes the real class may be corresponding to the second 
maximal membership. Therefore, based memberships, we can get the location 
information of the data, which will be helpful for the further decision and analysis, 
especially when the comparative membership exists. 

4   Experiment Results 

We choose 8 datasets of UCI repository to show our method. The features of 
benchmark data are listed in Table 1. 

Table 1. The features of benchmark data 

Table 2. The performance of the above method 

We get the performance of one-to-one method (1-1), the fuzzy output method in all 
regions (FOut.), absolutely classified region (Abs.), positive margin region (Pos.) and 
unclassified region Unc. in table 2. It shows that: 

1) The accuracies of 1-1 and FOut. are almost the same. Only in Cleve dataset, the 
former is better; in Dermatology dataset, the latter is better. 
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2) In different regions, the accuracy is different. In Abs., the accuracy is more than 
80%, better than FOut; In Pos., the accuracy is less than FOut; And in Unc., the 
accuracy is very low, less than about 30%. 

At last, we take part of the vowel dataset for instance, giving the output of fuzzy 
output SVMs. Look at the table 3. The accuracy of different regions varies very much.  

Table 3. The number of data in three different regions 

Regions All Absolutely. Positive. Unclassified. 
Right/all 189/330 40/43 129/222 20/65 
Accuracy 

In table 4, a part of the vowel data is selected randomly to show the effect of fuzzy 
output in different regions. 

1) Only 3 data in the absolutely classified region are classified to a wrong class. Look 
at No. 1, No.2 and NO.3 data. It is a regret the second maximal membership isn’t 
corresponding to the real class. But the accuracy in this region is so high that we 
can accept the decision with high confidence. 

2) Look at NO.4, No.5 and No.6 data. They are in positive margin region and 
classified to a wrong class. The real classes of No. 4 and No. 5 data are 
corresponding to the second maximal membership. And the maximal membership 
is comparative to the second maximal membership. Here memberships will be 
helpful. 

3) Especially in the unclassified region, the accuracy is low to 30.77%. Look at NO.7 
to No.10 data. They are classified to a wrong class. The real classes of these 4 data 
are corresponding to the second maximal membership. And the value of 
membership is less than 0.5. 

Table 4. The fuzzy output of the vowel dataset. L. stands for the location of the data in the feature 
space. A. stands for absolutely classified region; P. stands for positive margin region; U. stands 
for Unclassified region; iμ  denotes the membership of the point to class i ; D. denotes the 
decision class by the fuzzy output SVM; R. denotes the real class of the point. 

No. L. 
3μ  4μ  5μ  6μ  7μ  8μ  9μ  10μ  11μ  D. R. 

1 A. 0.00 0.00 0.17 0.01 0.83 0.04    0.07 0.00 0.01 7 8 
2 A. 0.00 0.00 0.17 0.00 0.83 0.05 0.05 0.00 0.00 7 8 
3 A. 0.00 0.03 0.03 0.04 0.82 0.05 0.17 0.01 0.10 7 11 
4 P. 0.00 0.00 0.53 0.13 0.47 0.00 0.03 0.00 0.04 5 7 
5 P. 0.00 0.00 0.67 0.13 0.33 0.00 0.01 0.00 0.03 5 7 
6 P 0.00 0.04 0.00 0.01 0.65 0.04 0.12 0.04 0.04 7 11 
7 U. 0.21 0.45 0.03 0.26 0.40 0.01 0.01 0.00 0.16 4 3 
8 U. 0.00 0.18 0.49 0.48 0.05 0.00 0.01 0.00 0.24 5 6 
9 U. 0.08 0.43 0.04 0.30 0.19 0.00 0.03 0.04 0.30 4 6 
10 U. 0.00 0.00 0.49 0.19 0.31 0.01 0.07 0.00 0.12 5 7 
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For the above analysis, we can see that although the fuzzy output method gets almost 
the same performance with the one-to-one approach, the fuzzy method can give us 
more information to help for the further decision, especially for the data point in the 
positive margin region and the unclassified region. In different regions, the accuracy 
varies very much. Through memberships, we can deduce the confidence of the decision 
and tell us whether we need import more information to get the real decision. 

5   Conclusion and Future Work 

In this paper, a fuzzy output support vector machine is proposed, which gives the 
location information of an unseen datum. We define three different regions because of 
different accuracy in them. Fuzzy output SVMs make full use of the decision value and 
is helpful to the further decision and analysis, especially for the unseen data lying in the 
positive margin region and unclassified region.  
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Abstract. In this paper, we propose a new machine learning approach
based on AFS (Axiomatic Fuzzy Sets) fuzzy logic, in attempt to pro-
vide a better model with interpretability. First, we will concisely present
the AFS theory. Second, we will propose new membership functions for
fuzzy sets and their logic operations. Third, we will design a new machine
learning algorithm based on the new membership functions and their
logic operations. This algorithm has two advantages. One is that it can
mimic the human reasoning comprehensively and offers a far more flex-
ible and effective means for the study of large-scale intelligent systems.
Another is its simplicity in implementation and mathematical beauty
in fuzzy theory. Finally, a credit data example is used to illustrate its
effectiveness.

1 Introduction

Credit rating has been extensively used by bond investors, debt issuers, and
government as a surrogate measure of risk analysis. Company credit ratings are
typically very costive, since they require professional agencies to invest large
amount of time and human resources to perform deep analysis of the company’s
risk status based on various aspects ranging from strategic competitiveness to
operational level details.

Substantial papers can be found in bond-rating prediction. We categorized
the existing methods into statistical methods and machine learning methods.
Statistical researchers utilized logistic regression analysis [1] and probability
analysis [2,7]. These studies used different data sets and the prediction results
were typically between 50% and 70%. Moody and Utans [8] used neural networks
to predict 16 categories of S and P rating. Their model predicted the ratings of
36.2% correctly. They also tested the system with 5-class prediction and 3-class
prediction and obtained prediction accuracies of 63.8% and 85.2%, respectively.
Maher and Sen [9] compared the performance of neural networks on bond-rating
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prediction with that of logistic regression. They used data from Moody’s An-
nual Bond Record and Standard and Poor’s Compustat financial data. The best
performance they obtained was 70%. Kwon et al. [10] applied ordinal pairwise
partitioning (OPP) approach to the back propagation neural networks. They
used Korean bond-rating data and demonstrated that neural networks with OPP
had the highest level of accuracy (71–73%), followed by conventional neural net-
works (66–67%) and multiple discriminant analysis (58–61%). Chaveesuk et al.
[11] also compared back propagation neural network with radial basis function,
learning vector quantization and logistic regression. Their study revealed that
neural networks and logistic regression model produced the best performances
with accuracy of 51.9% and 53.3%, respectively. Zan Huang,et al. [14] obtained
prediction accuracy around 80% via SVM (support vector machine) methods for
data from the United States and Taiwan markets.

In this paper, we study the machine learning by the AFS theory which is
a different approach from the current fuzzy theories. In current fuzzy theories,
the membership functions and the logic operations of the fuzzy sets are often
given by personal intuition and independent of the original data. AFS fuzzy logic
[3-5,12,13] is a new approach to study the mathematical structure and logical
operations for fuzzy concepts. In AFS fuzzy logic, the membership functions and
their logic operations are implemented by AFS structures and AFS algebra with
the following advantages. 1. With a few simple concepts, we can express a great
large number of complex fuzzy concepts and to implement their logic operations.
2. With AFS structure, one can give representations of the membership degrees
for any fuzzy set.

2 AFS Fuzzy Logic

In this section, we explain AFS fuzzy theory with an example of the credit
data which is from the database at University of California, Irvine, the credit-
screening. Let X be the set of the 75 randomly selected training samples. For
each s = (s1, s2, ..., s18) ∈ X, s1 = 1, 0 is the label of sample s i.e. if s1 = 1,
sample s is positive credit, otherwise is negative credit. si is the value of sample
s on feature i, i = 2, 3, ..., 18. On each feature from s1 to s12, there are two simple
concepts: m1: credit, m44: no-credit; m2: jobless, m43: no-jobless; m3: purchase,
pc, m42: no purchase, pc; m4: purchase car, m41: no purchase car; m5: purchase
stereo, m40: no purchase stereo; m6: purchase jewel, m39: no purchase jewel; m7:
purchase medinstru, m38: no purchase medinstru; m8: purchase bike, m37: no
purchase bike; m9: purchase furniture, m36: no purchase furniture; m10: male,
m35: female; m11: unmarried, m34: married; m12: live in problematic region,
m33: no live in problematic region; For feature s13 to s17, each feature has four
simple concepts {large, mid, no large, no mid}. m13: old, m14: average age, m32:
no old, m31: no average age; m15: more deposit, m16: average deposit, m30: no
more deposit, m29: no average deposit; m17: loan payment more, m18: loan
payment average, m28: no loan payment more, m27: no loan payment average;
m19: pay off loan more, m20: pay off loan average, m26: no pay off loan more,
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m25:no pay off loan average; m21:number of years working more, m22: number of
years working average, m24: no number of years working more, m23: no number
of years working average. So there are total 44 simple concepts.

In order to study the essential nature of fuzzy concepts and fuzzy logic, let
X , M be two sets, in general M is the set of crisp or fuzzy concepts on X , for
example, in credit data, M ={m1, m2, ..., m44}, X is the set of 75 training
samples. Let

EM∗ = {
∑

i∈I Ai | Ai ⊆ M, i ∈ I, I is any no empty indexing set},
EXM∗ = {

∑
i∈I aiAi | ai ⊆ X, Ai ⊆ M, i ∈ I, I is any no empty indexing set}.

In [3,5], an equivalence relation R is defined in EM∗ and EXM∗ respectively,
and we always denote EM∗/R as EM and EXM∗/R is denoted as EXM . For
two elements in EM (or in EXM), the semantic of them (or the membership
degrees they represented)are equivalent if they have relation R.

For a fuzzy set ζ on universe of discourse X, any x ∈ X, either x
belongs to ζ at some degree or does not belong to ζ at all, while for
a crisp subset A of X, any x ∈ X, either x belongs to A or does not
belong to A at all.

Based on this opinion, both a fuzzy set and a crisp subset on X can be
represented by a binary relation R on X through comparing degrees of each pair
of x, y belonging to the concept.

Definition 1. Let ζ be any concept (fuzzy or crisp concept) on the universe of
discourse X. Rζ is called a binary relation (i.e. Rζ ⊂ X ×X) of ζ if Rζ satisfies:
x, y ∈ X, (x, y) ∈ Rζ ⇔ x belongs to concept ζ at some degree and the degree of
x belonging to ζ is larger than or equals to that of y, or x belongs to concept ζ
at some degree and y does not at all.

In practice, Rζ can also be obtained by comparing the degrees of each pair x
and y belonging to concept ζ through human intuitions. We will apply the binary
relation representations of concepts to obtain the ordinary fuzzy sets or L-fuzzy
sets representations for concepts. We should notice that (x, x) ∈ Rζ indicates
that x belongs to concept ζ at some degree and (x, x) /∈ Rζ implies that x does
not belong to concept ζ at all.

Definition 2. [6] Let X be a set and R be a binary relation on X. R is called
a preference relation on X if 1. ∀x ∈ X, (x, x) ∈ R; 2. If (x, y) ∈ R, (y, z) ∈ R,
then (x, z) ∈ R, x, y, z ∈ X; 3. For any x, y ∈ X, either (x, y) ∈ R or (y, x) ∈ R.

By Definition 1, one knows that for some concept ζ there exists x ∈ X
such that (x; x) 
= Rζ . Although preference relations are very simple and have
very good mathematical properties, Condition 1 of Definition 2 is too strict to
represent ordinary concepts.

Definition 3. Let X be a set and R is a binary relation on X. R is called a sub-
preference relation on X if for x, y, z ∈ X, x 
= y, R satisfies:1. If (x, y) ∈ R,
then (x, x) ∈ R; 2. If (x, x) ∈ R and (y, y) /∈ R, then (x, y) ∈ R; 3. If (x, y),
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(y, z) ∈ R, then (x, z) ∈ R; 4. If (x, x) ∈ R and (y, y) ∈ R, then either (x, y) ∈ R
or (y, x) ∈ R. A concept ζ is called a simple concept or simple attribute on X
if Rζ is a sub-preference relation, otherwise is called a complex concept or a
complex attribute on X.

With any simple concept ζ, X is divided into three classes:Tζ = {x ∈
X |(x, y) ∈ Rζ , ∀y ∈ X}, Fζ = {x ∈ X |(x, x) /∈ Rζ}, Mζ = X − Tζ − Fζ .

Definition 4. [3,5] Let X, M be sets, 2M be the power set of M, τ : X×X → 2M .
(M, τ, X) is called an AFS structure if τ satisfies: AX1: ∀(x1, x2) ∈ X × X,
τ(x1, x2) ⊆ τ(x1, x1); AX2: ∀(x1, x2), (x2, x3) ∈ X × X, τ(x1, x2) ∩ τ(x2, x3) ⊆
τ(x1, x3). X is called the universe of discourse, M is called the attribute set and
τ is called the structure.

We can verify that (M, τ, X) is an AFS structure if each m ∈ M , m is a simple
concept and τ is defined as τ(xi, xj) = {m|m ∈ M, (xi, xj) ∈ Rm}, xi, xj ∈
X. (M, τ, X) is the mathematical abstraction of the complicated relationships
among objects in X under the attributes in M . This implies that the information
contained in databases and human intuitions are transited to (M, τ, X) from
which we can obtain the fuzzy sets and fuzzy logic operations.

Theorem 5. [3] Let (M, τ, X) be an AFS structure. x ∈ X, A ⊆ M , we define
the symbol: A({x}) = {y | y ∈ X, τ(x, y) ⊇ A}. For any given x ∈ X, if
we define a mapping φx(

∑
i∈I Ai) =

∑
i∈I Ai({x})Ai ∈ EXM , then φx is a

homomorphism from lattice (EM, ∨, ∧) to lattice (EXM, ∨, ∧).

By Theorem 5, we know that for any given concept ζ =
∑

i∈I Ai ∈ EM,we
get a mapping ζ : X → EXM .In this way, for each ζ ∈ EM, ζ is L-fuzzy set
on X and the membership degree of x (x ∈ X) belonging to fuzzy set ζ is∑

i∈I Ai({x})Ai ∈ EXM . Further, in [12,13], the logic operator ′ (negation) is
defined as: (

∑
i∈I Ai)′ = ∧i∈I(∨a∈Ai{a′}} . (EM, ∨, ∧,′ ) is called an AFS fuzzy

logic systems.

3 Membership Functions Based on AFS Theory

Definition 6. Let X be a set, S be a σ-algebra over X. ρ : X → R+ =
[0, ∞).0 <

∑
x∈X ρ(x) < ∞. For any A ∈ S, a measure m is defined as,

m(A) =
∑

x∈A ρ(x)∑
x∈X ρ(x) .

Definition 7. Let X be a universe of discourse and M be a set of simple concepts,
S be a σ-algebra over X, (M, τ, X) be an AFS structure. (M, τ, X, S) is called a
semi-cognitive field. For each a ∈ M , ma is the measure defined by Definition 6
with ρa as the weight function for simple concept a.If

∑
i∈I aiAi ∈ EXM satisfying

ai ∈ S, ∀i ∈ I, we define ‖
∑

i∈I aiAi‖ = supi∈I(
∏

a∈Ai
ma(ai)) ∈ [0, 1].

For fuzzy concept
∑

i∈I Ai ∈ EM , if Ai({x}) ∈ S, ∀i ∈ I, then
∑

i∈I Ai

is called measurable in (M, τ, X, S) and we define the membership function of
ordinary fuzzy set representing for fuzzy concept

∑
i∈I Ai in semi-cognitive field

(M, τ, X, S) as follows: ∀x ∈ X, μ∑
i∈I Ai

(x) = ‖(
∑

i∈I Ai)(x))‖.
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Proposition 8. Let (M, τ, X, S) be a semi-cognitive field. Then for α =
∑

i∈I ai

Ai, β =
∑

j∈J bjBj ∈ EXM , ζ =
∑

i∈I Ai, η =
∑

j∈J Bj ∈ EM , the followings
hold: 1. If α = β, satisfying ai, bj ∈ S, ∀i ∈ I, ∀j ∈ J , then ‖α‖ = ‖β‖. 2. If α, β,
satisfying ai, bj ∈ S, ∀i ∈ I, ∀j ∈ J , then ‖α ∨ β‖ = max(‖α‖, ‖β‖), ‖α ∧ β‖ ≤
min(‖α‖, ‖β‖). 3. If ζ ≥ η , then for any x ∈ X, μ∑

i∈I Ai
(x) ≥ μ∑

j∈J Bj
(x).

4 Credit Rating Analysis with AFS Fuzzy Logic

Now, it is time for us to study machine learning algorithm based on AFS fuzzy
logic. In the following, the membership functions are all defined by Definition
7. Let’s analysis human how to learn a concept by some training samples (e.g.
For the credit-screening data, each training sample has been shown that pos-
itive or negative credit). Let X be the set of the given training samples and
F be all relative attributes (fuzzy or crisp) on X . F ⊆ M , where M is a set
of simple concepts on X. Let P is the set of all training samples belonging to
the given concept (e.g. for the credit-screening data, P is the set of all posi-
tive credit samples). For each x ∈ P , find a fuzzy set ζx ∈ (F )EI , the sub EI
algebra generated by F, such that at the largest degree x belongs to ζx; For
any y ∈ X − P, at smallest degree y belongs to ζx and for z ∈ P , z 
= x, at
comparatively larger degree z belongs to ζx. In other words, x can be distin-
guished from any y ∈ X − P by fuzzy set ζx at the greatest extent. Finally,
fuzzy set ζP =

∨
x∈P ζx is the fuzzy set in EM which approximates the concept.

For each new pattern s, the degree of s belonging to the concept is estimated
by μζP (s).

For the credit-screening data, since each simple concept m ∈ M −{m1, m44},
m is a concept related to the credit, hence any fuzzy set in (Λ)EI correlates the
classification, where Λ = {{m}|m ∈ M − {m1, m44}}. There are more than∑42

i=1(2
Ci

n − 1) different fuzzy sets in (Λ)EI . To find ζx for each x ∈ X , it
is impossible to check each fuzzy set in (Λ)EI .Therefore we need to solve this
problem in this paper.

Theorem 9. Let (M, τ, X, S) be a cognitive field. Λ ⊆ M, Λ is countable set.
∀γ ∈ Λ, γ is a measurable fuzzy set. For a given x ∈ X and a given ε > 0,
α ∈ Λε

x which is the set of all molecular elements in (Λ)EI the degrees of x
belonging to them are larger than ε, where (Λ)EI is the sub-EI algebra generated
by the elements in Λ.let ϑx

α = {β ∈ (Λ)EI | β ≥ α}. Then the followings hold:
1. ϑx

α is a sub-EI algebra of (Λ)EI ; 2. ϑx
α is an upper[5] set of (Λ)EI i.e. for

β ∈ (Λ)EI , if ∃γ ∈ ϑx
α, β ≥ γ, then β ∈ ϑx

α; 3. μ∨
b∈Λ b(x) ≥ μ∧

b∈ϑx
α

b(x) ≥
μα(x) ≥ μ∨

b∈Λ b(x) − ε; 4. For η ∈ (Λ)EI , if μη(x) > μ∨
b∈Λ b(x) − ε, then

∃α ∈ Λε
x, for any y ∈ X, y 
= x, μη(y) ≥ μ∧

b∈ϑx
α

b(y) ≥ μα(y).

Now we can describe the learning algorithm as below:

Step1: Establish (M, τ, X, S) and ρm,for each m ∈ M from the original data.
Step2: Select Λ ⊆ M, to design the classifier. (Λ)EI is the sub EI algebra

generated by Λ.
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Step 3: Given small positive numbers ε > 0, δ > 0,for each i = 1, 2, ...c, find
ζP ∈ (Λ)EI , such that ζP :

∑
y∈P μζXi

(y) = maxξ∈F δ
ε
{
∑

y∈P μξ(y)}, where
Eδ

Λ = {γ|γ ∈ (Λ)EI , ∀y ∈ X − P, μγ(y) < δ},
F δ

ε = {ξ|ξ ∈ Eδ
Λ, ∀y ∈ Xi, μξ(y) ≥ μ∨

b∈Λ b(y) − ε}.
ζP is the fuzzy set in EM which approximates the given concept. δ is a parameter
to control the extent of fuzzy set ζP distinguishing x ∈ P and y /∈ P. ε is a
parameter to control the degree of each training sample x (x ∈ Xi) belonging
to ζP .

Step 4: For each testing sample s, we estimate the degree of s belonging to
the fuzzy set ζP .

In this paper, we apply the proposed design method to study the classification
problem for credit data. We have done 10 experiments, in each time randomly
select 60% as training samples and 40% as testing samples. In the proposed
algorithm, we set ε = 0.3, δ = 0.1. By solving the optimization problem, we can
obtain the credit description ηP . For any testing sample s, if μηP (s) ≥ 0.3, then
s is regarded as positive credit. We list the classification results in the table. One
can see that the results here are comparable with the existing reported results.

Table 1. Table 1 Correct rate of 10 experiments

i-th experience 1 2 3 4 5 6 7 8 9 10
μηP (s) ≥ 0.3 66% 72% 54% 72% 60% 70% 62% 60% 66% 50%

5 Conclusion

In this paper, with the framework of AFS theory, we propose a new algorithmic
framework for determining fuzzy sets (membership functions) and their logic
operations, where the membership functions and their logic operations are im-
personally and automatically determined by a consistent algorithm from the
original data. This approach is new in the following aspects: 1. The classification
can be done directly from the training data without much human involvement;
2. The approach can mimic human thinking process. Its effectiveness has been
proved via the credit data classification. Indeed, this new machine learning al-
gorithm also can be regard as the knowledge representation of the training data
and it can be used in other areas.

References

1. H.L. Ederington, Classification models and bond ratings, Financial Review 20 (4)
(1985) 237–262.

2. J.A. Gentry, D.T. Whitford, P. Newbold, Predicting industrial bond ratings with a
probit model and funds flow components, Financial Review 23 (3) (1988) 269–286.

3. Xiaodong Liu , The Fuzzy Theory Based on AFS Algebras and AFS Structure,
Journal of Mathematical Analysis and Applications, vol. 217, pp. 459-478, 1998.



1204 X. Liu and W. Liu

4. Xiaodong Liu , The Topology on AFS Algebra and AFS Structure, Journal of
Mathematical Analysis and Applications, vol. 217, pp. 479-489, 1998.

5. Xiaodong Liu , The Fuzzy Sets and Systems Based on AFS Structure, EI Algebra
and EII algebra, Fuzzy Sets and Systems, vol. 95, pp. 179-188, 1998.

6. Kim K. H. Boolean matrix Theory and Applications, Inc.: Marcel Dekker, 1982.
7. J.D. Jackson, J.W. Boyd, A statistical approach to modeling the behavior of bond

raters, The Journal of Behavioral Economics 17 (3) (1988) 173– 193.
8. J. Moody, J. Utans, Architecture selection strategies for neural networks applica-

tion to corporate bond rating, in: A. Refenes (Ed.), Neural Networks in the Capital
Markets, Wiley, Chichester, 1995, pp. 277–300.

9. J.J. Maher, T.K. Sen, Predicting bond ratings using neural networks: a comparison
with logistic regression, Intelligent Systems in Accounting, Finance and Manage-
ment 6 (1997) pp.59– 72.

10. Y.S. Kwon, I.G. Han, K.C. Lee, Ordinal Pairwise Partitioning (OPP) approach to
neural networks training in bond rating, Intelligent Systems in Accounting, Finance
and Management 6 (1997) pp.23– 40.

11. R. Chaveesuk, C. Srivaree-Ratana, A.E. Smith, Alternative neural network ap-
proaches to corporate bond rating, Journal of Engineering Valuation and Cost
Analysis 2 (2) (1999) pp.117– 131.

12. Liu Xiaodong, Zhang Qingling, AFS Fuzzy logic and its applications to fuzzy in-
formation processing, Dongbei Daxue Xuebao, (in Chinese) 2002, 23(4):321-323.

13. Liu Xiaodong, Witold Pedrycz and Zhang Qingling, Axiomatics Fuzzy sets logic,
IEEE International Conference on Fuzzy Systems, vol1, pp 55-60, 2003.

14. Zan Huang, Hsinchun Chen, Chia-Jung Hsu, Wun-Hwa Chen, Soushan Wu, Credit
rating analysis with support vector machines and neural networks: a market com-
parative study, Decision Support Systems 37 (2004) pp.543– 558.



L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 1205 – 1215, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Neural-fuzzy Based Inferential Sensor for Improving 
the Control of Boilers in Space Heating Systems 

Zaiyi Liao 

Dept. of Architectural Science, Ryerson University, 350 Victoria Street, Toronto 
Ontario, M5B 2K3, Canada 
zliao@ryerson.ca 

Abstract. Conventionally the boilers in space heating systems are controlled by 
open-loop control systems due to the absence of a practical method for 
measuring the overall thermal comfort level in the building. This paper 
describes a neural-fuzzy based inferential sensor that can be used to design 
close-loop boiler control schemes. Both simulation and experimental results 
show that the proposed technique results in significant energy saving and 
improvement on the control of thermal comfort in the built environment. The 
paper also describes the ongoing and future work. 

1   Introduction 

In the absence of an economic and technically reliable method for measuring the 
overall thermal comfort level in the building, the boilers in hydraulic space heating 
systems are normally controlled to maintain the temperature of either the supply or 
the return hot water within a predefined range [1]. As shown in Fig.1, an open-loop 
scheme is normally employed to determine the set-point of the water temperature. 
Considering that the purpose of such space heating systems is to control the air 
temperatures in the buildings rather than the water temperatures, it is essential to 
predefine the set-point schedule of the water temperature appropriately or to vary the 
set-point according to the changing operating conditions, such as the external climatic 
condition and the use of the buildings [2] [3]. It has been proved through the practice 
of the last several decades that it is extremely difficult, if not impossible, to determine 
the set-point of the water temperature such that the long-term energy performance of 
the space heating system is optimized [4] [5]. The overall energy efficiency of the 
entire heating system is significantly affected by temperature of hot water because it 
alters: (1) the operating energy efficiency of boilers (2) the energy loss through the 
distribution system and (3) the characteristics of the terminal devices, such as 
radiators and fan-coil units, and their controls. Generally, the lower the water 
temperature is, the higher the overall energy efficiency is [3] [6]. It is desirable to 
operate the heating system with as low water temperature as possible [6]. However, if 
the water temperature is too low, the heating capacity delivered to the terminal 
devices is insufficient, resulting in compromised thermal comfort in the building [2]. 
Therefore it is important to find out the optimal value of operating water temperature 
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at which the energy efficiency is maximized while sufficient heating capacity is 
delivered to the end-users.  

Fig. 1 shows that a feedback loop is needed to detect the overall level of thermal 
comfort in the building and to transfer this information to the water temperature 
scheduler that can in turn determine the optimal set-point of the water temperature. 
Liao and Arthur developed a physical-based inferential sensor that can estimate the 
average air temperature in the building based on the information available to 
conventional boiler controllers, including the boiler control signal, the external air 
temperature and the solar radiation [7]. A simplified physical model of multiple-zone 
space heating systems was developed and incorporated with conventional boiler 
control system to design a novel boiler control scheme, which is referred to as 
Inferential Control Scheme [1]. This control technique was investigated through 
simulations and experiment. They concluded that the overall performance of a heating 
system, no matter whether the terminal devices are controlled well or badly, can be 
improved significantly if a representative value of the room air temperature in the 
building can be obtained and the associated controllers can be tuned correctly [5][8]. 
However, the simulation and experimental study also showed that the physical sensor 
and the inferential control scheme are difficult to commissioned, a process through 
which all the relevant parameters are determined using short-term monitoring data 
[6][8]. This can be explained because the physical-model based inferential sensor 
intends to estimate the time-dependent value of the average air temperature in the 
building, which requires a very high level of accuracy for both the physical model and 
the values of the relevant parameters [6].  

Fig. 1. A typical conventional boiler control scheme needs a feedback loop between the thermal 
comfort level in the building and the determination of the desired water temperature  

It was reported that it is not necessary to determine the value of the optimal water 
temperature with high resolution in such inferential control schemes [6]. It is possible 
to achieve optimal long-term performance if the water temperature can be changed 
according to the heating load appropriately with a resolution of only 5 oC [6]. 
Therefore it seems unnecessary to maintain the high accuracy required by the 
physical-model based inferential sensor. 
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This paper presents the development of a neuro-fuzzy based inferential sensor, 
which estimates the level of the heating load in the building based on the same 
information used by the physical-model based inferential sensor, and an inferential 
sensor based boiler control scheme that optimize the long-term performance of space 
heating systems. 

2   Methodology 

This study has been conducted through surveys, simulation study and experimental 
study. Through the survey, typical heating systems used in current practice were 
identified. The survey was conducted in three ways: 

- Walk-through audits and interviews with occupants 
- Interviews with facility management companies 
- Communication with relevant professional organisations, control system 

manufacturers, system integrators and designers. 

The following information was collected through the survey: 

- Boiler size and building information. This is to be used to estimate the design 
heating load. 

- Control of the boiler and the heat emitters, including the commissioning, 
maintenance of the controllers. 

- Room temperature. This is only carried out in a few buildings. 
- Historical fuel consumption and cost over the last year, if available.  
- Climatic data. This is collected from existing data resources. 

The typical heating systems identified through the survey were in turn represented 
in a simulator of multiple-zone heating systems, which was developed and rigorously 
validated in a previous project [9]. The simulation models of the conventional boiler 
controllers were also developed and integrated with the simulator for use in the 
simulation study.  

Fig. 2. A Multi-zone heating system 
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Fig. 2. shows the structure of a typical multiple-zone heating system. The 
simulator can have one single boiler or multiple boilers. Both condensing and non-
condensing boiler [10] can be selected. Multiple zones can be built and each zone can 
have a different structure. The heat emitters are radiators, which may be uncontrolled 
or be controlled by Thermostat Radiator Valve (TRV). The climatic data used is 
Kew64 [11]. 

The simulator was used for the following tasks: 

- To investigate the performance of conventional boiler controllers in the 
typical heating systems 

- To carry out a sensitivity study in order to understand the influence of boiler 
controls on the overall performance of multi-zone heating systems. 

- To design proposed inferential sensor and the integrated control scheme 
- To assess the long-term control performance. 

The inferential sensor and the integrated control scheme were first developed and 
assessed using the simulator and existed in the form of software and hence it is 
referred to as a “software sensor” and a “software controller”. To test their 
performance in a real heating system, a hardware prototype sensor and controller were 
developed. The prototypes are based on microprocessor. To ensure that the software 
sensor and controller had been implemented properly, the prototypes were tested with 
the simulator first. Any discrepancy between the behavior of the software and the 
prototypes indicated a bug in the code of the prototypes. The prototypes were 
accordingly debugged until there is no discrepancy. Through this “Test-Modify” 
procedure, one can ensure that the control scheme to be tested in the field trial is the 
same as the one developed in the simulator. Once the implementation of the control 
scheme had been validated, it was installed in two different heating systems for the 
field trials: a multiple-zone heating system in an office building located in the UK and 
a residential house located in Toronto, Canada. The first field trial was carried out 
over two heating seasons in order to test the long-term performance. The second field 
trial was conducted throughout the heating season 2004/2005.  

The field trials were focused on the accuracy of the inferential sensor only. The 
long-term control performance of the proposed control technique was only partially 
investigated. The ongoing research activities focus on this part. 

3   Description of the Inferential Sensor  

Before the proposed neuro-fuzzy based inferential sensor is described, the physical-
model based inferential model [7] is summarized as follows: 

There are three major inputs to the inferential sensor, including the external air 
temperature (Te(t)), the energy intensity of the solar radiation (Qsol(t)), and the energy 
power of the boiler (Qd(t)) that is estimated from the control signal (B(t)).  There is 
one output: the estimated value of the overall average air temperature in the building 
(Ta(t)). The relationship between these inputs and the output is governed by a set of  
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first-order differential equations [7]. Figure 3 shows an electric analogue of the 
dynamic model. There are nine relevant parameters that need to be commissioned 
using short-term monitoring data before the inferential sensor can be used. These 
relevant parameters are: the total heat transfer coefficient (W/oC) between the air in 
the building and the interior surface of the external wall (K2), between the interior 
surface and the exterior surface of the external wall (K4), between the exterior surface 
of the external wall and the external air (K5), and between the air in the building and 
the external air through light-weighted structures such as windows (K3), the total 
thermal capacity (J/oC) of the indoor air (Ca), external wall (Ce1 and Ce2),  constant α 
and β, and the time constant of the boiler (τ0). The Simplex optimization [12] was 
used to commission the inferential sensor based on a short-term monitoring data that 
contains the time-dependent value of all the inputs and the output. It is worth 
mentioning that the value of the output of the inferential sensor (Ta) is not available 
for long-term operation.  

The results presented in [7] indicate that this physical-model based inferential 
sensor is capable of estimating the overall average air temperature in the building 
with a satisfactory level of accuracy if it is commissioned appropriately. However, 
if the quality of the data used for the commissioning is not good or the optimization 
process terminated at local extremes, the inferential sensor fails to function 
properly.  

The neuro-fuzzy based inferential sensor has the same inputs that are used by the 
physical-model based inferential sensor. But it has a different output, which indicates 
the level of the heating load in the building (Ed) rather than the overall average air 
temperature in the building.  

Fig. 4 shows a diagram of the proposed inferential sensor, which is based on  
an  Adaptive  Neural  Fuzzy Interference System (ANFIS) [13]. The ANFIS is trained  

 

Fig. 3. An electronic analogue of the physical inferential model 
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using the same short-term monitoring data that was used to commission the physical-
model based inferential sensor.  

The output of the inferential sensor is used to vary the set-point of the hot water 
temperature as follows (1) When Ed is Low, the temperature of the hot water ranges 
from 55 oC to 65 oC; (2) When Ed is Medium, the temperature of the hot water ranges 
from 65 oC to 75 oC; (3) When Ed is High, the temperature of the hot water ranges 
from 75 oC to 85 oC 

Thus the overall energy performance of the space heating system can be improved 
if the proposed inferential sensor can correctly predict the heating load based on the 
three inputs. 

 

4   Assessing the Performance of the Proposed Inferential Sensor 

In the simulation studies, the simulator can produce the time-dependent values of the 
following variables that are used to assess the performance of the proposed inferential 
sensor ( t is the time in seconds and i refers to the number of the thermal zones): (1) 
The total heating load: Eh(t)  in kW; (2) The air temperature in each of the thermal 
zones: Ta(i, t)  in oC; (3) The external air temperature: Te in oC; (4) The solar 
radiation: Qsol  in W. The value of Eh(t) is normalized by: 

 

Fig. 4 Diagram of the proposed inferential sensor
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Then e(t) represents the actual heating load of the heating system. The comparison 
between e(t) and the output of the inferential sensor (Ed(t)) indicates how accurate the 
inferential sensor is. In the field trial, the actual energy power of the boiler is 
monitored, resulting in an array of the heating capacity. In the meantime, the indoor 
thermal environment is being monitored. If the indoor thermal environment falls into 
the comfort range, the monitored heating capacity is regarded as the heating load 
(e’(t)). This is compared with the output of the inferential sensor to identify the 
accuracy. 

5   Simulation Study 

The testing conditions are as follows: (1) The building was divided into 6 zones. The 
terminal devices are hot water radiators. The radiators in each of the thermal zones are 
simulated as a single heat emitter; (2) The air temperature set-point at the individual 
thermal zones is 20 oC during the occupancy period, i.e. from 09:00 to 18:00. Outside 
of the occupancy period the air temperature set-point was reduced to 17 oC; (3) The 
performance of the inferential sensor in two typical types of heating system has been 
studied. The first type is the heating systems with radiators well controlled by TRVs. 
The second is the heating system with radiators that are not controlled automatically; 
(4) A week of training data has been created using the simulator and has been used to 
train the ANFIS; (5) The sampling time is 30 minutes.  

Fig. 5 shows a daily comparison between the actual heating load and the output of 
the inferential sensor in a heating system with radiators well controlled by TRVs. Fig. 
6 shows the result obtained in a heating system with radiators that are not controlled 
automatically. These figures shows that the neuro-fuzzy based inferential sensor is 
able to accurately estimate the heating load of heating systems, no matter whether the 
heat emitters are controlled automatically or not, once it has been commissioned 
properly. Figure 5 and 6 show that the daily profile of the heating load in heating 
systems with the radiators controlled by TRVs fluctuates more dramatically than in 
the other type of heating system. This can be explained because the actual heating 
load is dominated by the external weather if the radiators are controlled properly. 
However the actual heating load is dominated by the indoor air temperature, which 
only exhibits a small range of variation, in heating systems with radiators that are not 
controlled automatically.    

6   Experimental Study 

The neuro-fuzzy based inferential sensor has been implemented in a microprocessor-
based prototype, which has been tested in real heating systems through field trials. 
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Two test cases will be discussed here. Test case 1 was conducted in a commercial 
office building with one boiler that can be operated between 50% and 100% of the 
nominal heating capacity. The total floor area of this building is around 2000 m2. 
There are 120 individual offices and three big lecture theatres. The heat emitters are 
radiators that are controlled by TRVs. 
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Fig. 5. Daily comparison between the actual heating load e(t) and the output of the inferential 
sensor Ed(t) (in a heating system with radiators well controlled by TRVs) 
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Fig. 6. Annual comparison between the actual heating load e(t) and the output of the inferential 
sensor Ed(t) (in a heating system with radiators well controlled by TRVs) 

The test lasted for two consecutive heating seasons. The data logged in the first 
two weeks was selected to train the inferential sensor. Fig. 7 compares the actual 
heating load of the building with the output of the inferential sensor during a typical 
day. It shows that the neuro-fuzzy based inferential sensor accurately estimated the 
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heating load of the building. An analysis on the data of the entire heating season 
revealed that during 96.5% of the heating period, the inferential sensor could 
accurately predict the level of the heating load. 
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Fig. 7. Daily comparison between the actual heating load e(t) and the output of the inferential 
sensor Ed(t) (Test case 1) 
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Fig. 8. The energy performance of the building when the heating system is controlled by the 
conventional controller and by the inferential sensor supported controller (Test case 2)  

Test case 2 was conducted in a residential house located in Toronto. The total floor 
area of this house is about 250 m2. The house is heated by a forced warm air heating 
system. A furnace is used to warm the air being circulated between the furnace and 
the individual rooms in the house. There 4 regular occupants living in the house. It 
was realized that the inferential sensor was designed initially for use in hydraulic 
space heating system. However, it is also applicable in forced warm air heating 
systems because both heating systems share the same heat transfer principles. In this 
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test, the author was able to make a comparative study on the performance between the 
conventional control unit and the one supported by the inferential sensor. In this case, 
the output of the inferential sensor was used to determine the temperature of the 
supply air from the furnace. Fig. 8 compares the energy efficiency of the house when 
the heating system was controlled by the conventional controller and by the inferential 
sensor supported control system (ICS). The result shows that under the similar 
climatic conditions (represented by the normalized heating degree hours), the energy 
consumption is 12% lower when the heating system is controlled by the ICS 
controller than when it is controlled by the conventional controller. This is because 
the inferential sensor could accurately estimate the actual heating load of the building 
and the estimate was used to determine the optimal temperature for the supply air.  

7   Conclusions and Future work 

A neuro-fuzzy based inferential sensor can accurately estimate the heating load of a 
building based on the same information used by the physical-model based inferential 
sensor. The inferential sensor can be commissioned using short-term monitoring data. 
The inferential sensor is also applicable in forced warm air heating systems. When the 
inferential sensor is incorporated with the conventional heating controller, the overall 
performance of the building can be improved significantly.  

Currently The following research activities being currently carried out include: (1) 
Investigating how the quality of the training data influences the long-term accuracy of 
the inferential sensor and the control performance of the inferential sensor supported 
controllers; (2) Studying whether the inferential sensor can be adapted to estimate 
other important control variables than can not be easily measured by conventional 
building automation system. 
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Abstract. Evaluation of the spinal forces from kinematics data is very
complicated because it involves the handling of relationship between
kinematic variables and electromyography (EMG) responses, as well as
the relationship between EMG responses and the forces. A recurrent
fuzzy neural network (RFNN) model is proposed to establish the
kinematics-EMG-force relationship and model the dynamics of muscular
activities. The EMG signals are used as an intermediate output and are
fed back to the input layer. Since the EMG signal is a direct reflection of
muscular activities, the feedback of this model has a physical meaning.
It expresses the dynamics of muscular activities in a straightforward way
and takes advantage from the recurrent property. The trained model can
then have the forces predicted directly from kinematic variables while
bypassing the procedure of measuring EMG signals and avoiding the use
of biomechanics model. A learning algorithm is derived for the RFNN.

1 Introduction

The loads on the lumbar spine during manual lifting are very useful in judging if
such a task is risky. Studying the forces applied to the lumbar spine is fundamen-
tal to the understanding of low back injury [1]. Biomechanical models are often
used to obtain the forces applied to the lumbar spine from the measured elec-
tromyographic responses of trunk muscles during the lifting motions. The EMG
signals are measured because they directly reflect the muscular activities [2].
However, the measuring of EMG signals is costly and the use of biomechanical
models is time consuming.

EMG signals are also related to the kinematic characteristics in the motion.
The kinematic variables (with other auxiliary variables) can be used to evaluate
the EMG signals generated in the muscles during the motion [8][9]. Thus we
may be able to connect the spinal forces with kinematic variables through EMG
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signals. We want to develop a model that can express the kinematics-EMG-
force relationship and predict forces on lumbar spine without the procedure of
measuring EMG signals and the use of biomechanics model.

To Evaluate the dynamic forces on lumbar spine we build a recurrent fuzzy
neural network model. There are several ways to provide feedback connections.
In [13] and [14], the output of each membership function is fed back to itself
to achieve the recurrent property. However, the fuzzy rules obtained from the
model can not offer a clear understanding to the system. In the premise of
the rules, the inputs are combined with the feedback of the outputs of their own
membership functions. The rules become hard to understand and not meaningful
in explaining the behavior of the system. The only function of the feedback is
to add a memory element to the model.

In [15] and [16], the output of all rule nodes, the firing strength, is fed back. It
serves as an internal variable. The rules generated by the model have a form like:

IF the external variables (at t) are A and the internal variables (at t) are
B, THEN the outputs (at t+1) are C and the internal variables (at t+1) are D.

A, B, C, D are fuzzy sets in the above rule.
Although the internal variables play a role in the fuzzy rules and contribute to

the model, it is not useful to us in understanding the system under consideration.
What we attempt to know is the relationship between the input and output of
the system.

In [17] and [18], the final output of the network is fed back to the input layer.
In [17], the feedback is multiplied with the external inputs of the model. Thus,
the inputs of the first layer becomes:

net1i =
∏
o

x1
i · woi · y4

o(t − 1) (1)

where x1
i is the external input; woi are the weights of the feedback connections;

y4
o(t − 1) is the output of the model at t − 1; o is the number of outputs. As we

can see, the rules obtained from the model also lose their clear physical meaning.
In [18], the feedback of the outputs is not combined with other signals. It is fed
to the input layer as regular input variables. However, the membership functions
used for the feedback connections are of this form:

μ = exp(−(w · y4
o(t − 1))2), (2)

where w denotes the weights of the feedback connections. Formula (2) is actually
a Gaussian membership function centered at zero with one adjustable parameter
of width. The advantages of doing so are that the network has less parameters
and the update rules for the tuning parameters are easier to calculate. However,
setting all the feedback membership functions’ centers as a fixed value of zero
may decrease the effectiveness of the feedback variables.

In our model, we use the EMG signals as an intermediate output and feed
them back to the input layer. By doing that, more information (EMG) was
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provided to the model and the feedback of the intermediate output has a phys-
ical meaning (the direct relationship of EMG-force). This reflects the dynamics
of the system in a clear and straightforward way. At the same time, the ad-
vantages of recurrent property is utilized. The rules generated from the model
can be easily interpreted and can help us understand the muscular activities
better.

2 Model Construction

We come up with a recurrent fuzzy neural network model which takes the kine-
matics data and EMG data at time t and evaluates the spinal forces and EMG
signals at time t + 1. The EMG signals of ten trunk muscles are scaled and
delayed before they are fed back to the input layer. The delay of EMG is used
to represent the muscular activation dynamic properties. The interaction be-
tween muscles influences the EMG and the forces on the spine. By presenting
the previous EMG to the input, we hope the modle can take such interaction
into account. The proposed system structure is shown in Figure 1. As we can see

Fig. 1. The proposed recurrent fuzzy neural network structure (Z−1 is a unit delay
operator and S is a scale operator)

in Figure 1, the direct physical relationships (kinematics-EMG and EMG-force)
reside in the model. Three forces on the lumbar spine and ten EMG signals of
trunk muscles are the model outputs. Twelve kinematic variables and ten EMG
feedback signals are the model inputs.

The function of each layer in Figure 1 is described as follows:
Layer 1 is the input layer. It includes two parts. One is the kinematic variables

and the other one is the feedback of EMG signals. They are passed to the second
layer.
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For external inputs,
y
(1)
i = xi, (3)

i = 1, 2, ..., N1, where N1 stands for the twelve kinematic variables.
For the internal (feedback) inputs,

y
(1)
i = y

(4)
k (t − 1) (4)

y
(4)
k (t − 1) is the kth output of layer 4 at time (t − 1), denoting the EMG

feedback. i = N1 + 1, N1 + 2, ..., N , and N = N1 + N2, where N2 stands for the
number of EMG feedback signals.

Layer 2 is the input fuzzification layer, which represents linguistic sets in
antecedent fuzzy membership functions. Each neuron describes a membership
function and encodes the center and width of membership functions. The out-
put of this layer is the degree of membership of each input:

For external inputs, the following Gaussian membership function is used:

y
(2)
ij = exp(−(

y
(1)
i − mij

σij
)2) (5)

i = 1, 2, ..., N1, j = 1, 2, ..., M , where M is the number of rules.
For the internal inputs, the following sigmoid membership function is used:

y
(2)
ij = exp(−(

y
(1)
i − m̂ij

σ̂ij
)2) (6)

i = N1 + 1, N1 + 2, ..., N and j = 1, 2, ..., M .
Layer 3 computes the firing strength. Nodes in this layer perform the product

operation. The links establish the antecedent relation with an “AND” operation
for each fuzzy set combination (both the external input and the feedback). The
output of this layer is the firing strength of each fuzzy rule:

y
(3)
j =

M∏
i=1

y
(2)
ij =

N1∏
i=1

exp(−(
y
(1)
i − mij

σij
)2)

N∏
i=N1+1

exp(−(
y
(1)
i − m̂ij

σ̂ij
)2) (7)

where j = 1, 2, ..., M .
Layer 4 is the defuzzification layer. The output of this layer is the overall

output:

y
(4)
k =

M∑
j=1

Wjky
(3)
j (

M∑
j=1

y
(3)
j )−1 (8)

k = 1, 2, ..., K, where K is the number of outputs.
This is a fuzzy system model with learning capabilities. It uses a singleton to

represent the output fuzzy set of each fuzzy rule. The product operator instead
of minimum operator is used for the calculation of the firing strength because
the calculation of the partial derivatives is easier for the product operator.
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The rules generated for the above model are in such form:
the jth rule:

IF Kine1(t) is μ1j and ... and Kine(N1)(t) is μ(N1)j
and EMG1(t) is μ̂1j and ... and EMG(N2)(t) is μ̂(N2)j
THEN Force1(t + 1) is O1j and ... and ForceK1(t + 1) is O(K1)j
and EMG1(t + 1) is Y1j and ... and EMG(N2)(t + 1) is Y(N2)j

where μij (i = 1, 2, ..., N1; j = 1, 2, ..., M) are fuzzy sets of Kinei (the ith
kinematic variable). μ̂ij (i = 1, 2, ..., N2; j = 1, 2, ..., M) are fuzzy sets of EMGi.
Okj (k = 1, 2, ..., K1) are the output singletons for forces. Ykj (k = 1, 2, ..., N2)
are the output singletons for EMG signals.

The forces predicted for time t + 1 depend on not only the inputs at time
t, but also the predicted EMG at time t, which again depend on the previous
inputs. This is a dynamic approach that can represent the dynamic properties
of the forces better than a feedforward network.

The above rules represent the relationships between kinematic variables,
EMG signals and forces. They can be decomposed into three subsets of fuzzy
rules as follows.

The Kinematics-EMG relationship:
IF Kine1 is μ1j and ... and Kine(N1) is μ(N1)j
THEN EMG1 is Y1j and ... and EMG(N2) is Y(N2)j

The EMG-Force relationship:
IF EMG1 is μ̂1j and ... and EMG(N2) is μ̂(N2)j
THEN Force1 is O1j and ... and ForceK1 is O(K1)j

The Kinematics-Force relationship:
IF Kine1 is μ1j and ... and Kine(N1) is μ(N1)j
THEN Force1 is O1j and ... and ForceK1 is O(K1)j

These Kinematics-EMG-Force relationships are knowledge we would like to
find out.

2.1 Structure Adaptation and Parameter Tuning

During the training process, both the premise and the consequence parameters
are tuned simultaneously. This approach involves two phases, structure adapta-
tion and parameter tuning. The fuzzy rules are created and tuned based on the
training data.

At first, the rule base contains only one rule defined by the first input-output
data pair. Then Additional rules are created during the training process using
other input-output pairs. When the new training pattern does not excite any of
the existing fuzzy rules, a new fuzzy rule should be created. If the firing strength
Su > β, then the rule base is unchanged and perform the gradient training to
match the new sample pair. If the firing strength Su < β, then a new rule is
created. β is a threshold defined as the least acceptable degree of excitation of
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the existing rule base. It is important that this predefined threshold should decay
during the learning process. Otherwise new rules may continually be added to
the model.

The free parameters (the membership functions of the external variables, the
membership functions of the internal variables, and the weights of the conse-
quence singleton) in the fuzzy inference mechanism are then tuned after new rules
are created. Parameter tuning is carried out simultaneously with the structure
adaptation. The ordered derivative [19] is used to derive the learning algorithm.

The error function to be minimized is

E(t + 1) =
1
2

K∑
k=1

ε(t + 1)2 =
1
2

K∑
k=1

(dk(t + 1) − y
(4)
k (t + 1))2 (9)

where dk(t + 1) is the target and y
(4)
k (t + 1) is the output of the model (the

output of layer 4).
The update rule for the output singleton wkj (the weights of the connections

between layer 3 and layer 4) is

wkj(t + 1) = wkj(t) − η
∂E(t + 1)

∂wkj
(10)

where
∂E(t + 1)

∂wkj
=

∂E(t + 1)

∂y
(4)
k

∂y
(4)
k

∂wkj
= ε(t + 1)

y
(3)
j

M∑
j=1

y
(3)
j

(11)

The centers of the membership functions of external variables are mij . The
update rule is

mij(t + 1) = mij(t) − η
∂E(t + 1)

∂mij
(12)

where
∂E(t + 1)

∂mij
=

∂E(t + 1)

∂y
(3)
j

∂y
(3)
j

∂mij
=

K∑
k=1

ε(t + 1) · D ·
∂y

(3)
j

∂mij
(13)

in which D is defined as follows for notation simplicity

D =
(wkj − y

(4)
k (t + 1))

M∑
j=1

y
(3)
j

(14)

From formula 7 we get

y
(3)
j = exp

(
−

N1∑
i=1

(y(1)
i (t) − mij)2

σ2
ij

−
N∑

i=N1+1

(y(4)
i (t) − m̂ij)2

σ̂2
ij

)
(15)

in which y
(4)
i (t) again depends on mij .
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Then the derivative can be written as

∂y
(3)
j

∂mij
= y

(3)
j

(
A1 −

N∑
i=N1+1

B ·
∂y

(4)
j (t)

∂mij

)
(16)

where A1 and B are defined as

A1 =
2(y(1)

i (t) − mij)
σ2

ij

(17)

B =
2(y(4)

i (t) − m̂ij)
σ̂2

ij

(18)

Finally a recursive function is obtained for
∂y

(4)
j

∂mij
.

∂y
(4)
j (t)

∂mij
= D · y(3)

j ·
(
A1(t − 1) −

N∑
i=N1+1

B(t − 1) ·
∂y

(4)
j (t − 1)
∂mij

)
(19)

The update rules for other parameters (σij , m̂ij , σ̂ij) are omitted here. The

initial values of
∂y

(4)
j (t)

∂mij
,

∂y
(4)
j (t)

∂σij
,

∂y
(4)
j (t)

∂m̂ij
and

∂y
(4)
j (t)

∂σ̂ij
are set to zero.

All the parameters are tuned during the training process when new data
pairs are presented to the network.

3 Simulations and Results

This section shows the results and the performance of the proposed model. We
evaluated the performance of the proposed recurrent fuzzy neural network with
two kinds of data. One is the sagittal symmetric motions, while the other one is
unsymmetrical motions. To make the results comparable, similar task variables
are selected for these two motions. Both motions are done with two hands and
controlled placement. The lift frequency is 2 lifts/min; the weight of object is 25
lbs; the origin height is 60 cm; the origin distance is 45; the destination height
is 105 cm; and the destination distance is 55 cm.

For the sagittal symmetric motions, 720 training patterns are used. The learn-
ing rate of the parameters of feedback connections (m̂ij and σ̂ij) is η̂ = 0.02.
The learning rate for other parameters (mij , σij and wkj) is η = 0.01. The initial
threshold β for firing strength is set as 0.2.

As stated above, the learning rates for the parameters of external inputs
(kinematic variables) and for the parameters of internal inputs (EMG feedback)
are different. Since the initial values of parameters of internal inputs are small
random values while the initial values of parameters of external inputs are good
values with physical meaning, the convergence of the latter is faster than the
convergence of the former. Figure 2 was obtained after 200 epoches. In this
figure, both the forces and the EMG signals are predicted well, which means the
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Fig. 2. Output after 200 training epoches (the first 10 are EMG signals, the last three
are forces). (A) RLD, (B) LLD, (C) RES, (D) LES, (E) RRA, (F) LRA, (G) REO, (H)
LEO, (I) RIO, (J) LIO, (K) Lateral shear force, (L) A-P shear force, and (M) spinal
compression

parameters of both the external inputs and the feedback are well trained after
200 epoches.

The rules obtained are of the following form:

IF Kine1(t) is μ(0.443, 0.832) and Kine2(t) is μ(0.521, 1.334) and Kine3(t) is
μ(0.714, 1.587) and Kine4(t) is μ(−1.654, 1.583) and Kine5(t) is μ(0.476, 1.011)
and Kine6(t) is μ(−0.803, 1.486) and Kine7(t) is μ(−1.770, 2.118) and Kine8(t)
is μ(0.746, 1.342) and Kine9(t) is μ(0.833, 1.535) and Kine10(t) is μ(0.493, 1.566)
and Kine11(t) is μ(−0.017, 1.833) and Kine12(t) is μ(−0.387, 1.322)

and EMG1(t) is μ(0.025, 1.258) and EMG2(t) is μ(0.025, 1.259) and EMG3(t)
is μ(0.006, 0.992) and EMG4(t) is μ(0.005, 0.074) and EMG5(t) is μ(0.023, 1.249)
and EMG6(t) is μ(0.025, 1.259) and EMG7(t) is μ(0.029, 1.263) and EMG8(t) is
μ(0.019, 1.266) and EMG9(t) is μ(0.009, 0.805) and EMG10(t) is μ(0.104, 1.246)

THEN Force1(t + 1) is 0.443 and Force2(t + 1) is 0.559 and Force3(t + 1)
is 0.758

and EMG1(t + 1) is 0.033 and EMG2(t + 1) is 0.120 and EMG3(t + 1) is
0.267 and EMG4(t + 1) is 0.318 and EMG5(t + 1) is 0.055 and EMG6(t + 1) is
0.057 and EMG7(t + 1) is 0.061 and EMG8(t + 1) is 0.044 and EMG9(t + 1) is
0.218 and EMG10(t + 1) is 0.102

We also can decompose the above fuzzy rule into three subsets as we did
previously to understand the system better.
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4 Conclusions

A spinal force prediction model was developed using a recurrent fuzzy neural
network. The EMG feedback represents the muscular activation dynamics bet-
ter. At the same time, it brings more information to the model and utilizes the
advantages of recurrent properties. The model predicts forces directly from kine-
matics data, avoiding EMG measurements and the use of biomechanics model.
EMG signals are obtained as byproduct. It can help us understand the rela-
tionships between kinematic variables and EMG signals and spinal forces. An
adaptive learning algorithm is derived for the recurrent fuzzy neural network.
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Abstract. Medicine analysis becomes more and more important in production 
and life, especially, the composition analysis of medicines. Available data are 
often characterized by the data with small amount and high dimensionality. 
Support vector machine (SVM) is an ideal algorithm for dealing with this kind 
of data. This paper presents a combined method of principal component analy-
sis (PCA) and least square support vector machine (LS-SVM) to deal with the 
work of medicine composition analysis. The proposed method is applied to 
practical problems. Experiments demonstrate the predominance of the proposed 
method on both running time and prediction precision. 

1   Introduction 

In the course of producing and selling medicines, it is an important issue to measure 
principal medicines constituents (namely concentration) correctly and quickly. This 
offers not only the reference basis for medicine analysis and quality control in the proc-
ess of production but also the security to the consumers. In recent years, the near-
infrared spectroscopy detection technique has been developed rapidly in the medicine 
composition analysis field. This technique utilizes the measurement of the reflection rate 
or absorption rate of samples at different wavelengths in near-infrared region to get NIR 
(near-infrared) spectrum (namely input samples) [1], later utilizes predictability model 
to carry on the measurement of the concentration of the medicines composition. 

Support vector machine (SVM) is a powerful new tool for prediction. SVM pos-
sesses a solid foundation of the complete theory and outstanding learning perform-
ance [2]. Recently SVM has been successfully applied to a wide variety of domains 
such as function estimation and pattern recognition. Related work on SVMs has been 
developed [3, 4]. 

2   LS-SVM Algorithm 

Recently, Suykens J.A.K proposed a modified vision of SVM algorithm called least 
square support vector machine (LS-SVM). LS-SVM employs least squares loss func-
tion instead of quadratic programming of the classical SVM approach. The following 
LS-SVM formulation 
                                                           
*  Corresponding author. 
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where α and b can be obtained according to Eq.(3). The Gaussian function can be 
chosen as kernel function [6]. 

3   Prediction of the Component Contents of Medicines Based on 
LS-SVM 

3.1   Collection of the Sample Data 

Utilizing near-infrared detection technique to get NIR (near-infrared) spectrum, we 
obtained sample data with the spectrum ranging from 1100 to 2500nm. Because of the 
difference of concentration conditions, absorption rates to different wavelength are 
distinct. We take the spectrum corresponding to certain concentration as an input 
sample and the concentration of the medicines composition as an output. In this way 
we obtain a data set with 35 samples and 1401 dimensions. 

3.2   Data Processing 

Though SVM algorithm can effectively handle the problem with high dimension, the 
linear dependence between different variables of samples influences the precision and 
generalization of SVM algorithm. On the contrary, principal component analysis 
(PCA) can deal with the linear dependence between different variables effectively and 
reduce the dimensions of the input samples and strengthen the ability of SVM algo-
rithm to approximate to a non-linear function. 
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PCA is mainly applied to solve multi-variable problems. One of the main difficul-
ties lying in multi-variable questions is that there are strong dependences among vari-
ables. Thus the whole information of the data will be overlapped and it is difficult to 
get the concise law. PCA is used to study how to convert multi-variable problems into 
that with less comprehensive variables (principal components). The comprehensive 
variables are the linear combinations of original variables. They are mutual independ-
ent and reflect the information of original variables. 

The basic rule of the principal component analysis can be formulated as follows. 
Let 1 2( , , , )T

nX x x x=  be an m-dimension, normal and stochastic column vector. Now 

we will change X into a new stochastic vector 1 2( , , , )T

mF F F F= and don’t lose 

the whole information of X . This is equivalent to solve a set of linear equations. 

1 1 1 1 1 2 2 1
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where iF  ),,2,1( mi =  is referred to as the i th principal component. 1F  holds 

most information of the original variables, namely its variance is the biggest. It is 

linear independent with other iF ),,3,2( mi = . 2F  has the second biggest 

variance among all iF ),,2,1( mi =  and also is independent with other 

iF ),,3,1( mi = .  The rest have the same cases. Because the data obtained using 

the near-infrared spectroscopy have too many attributes and these attributes are highly 
dependent, which make the prediction very difficult. The PCA technique is used here 
to reduce the sample attributes/dimensions, which is necessary to improve the predic-
tion quality and raise the efficiency. After the processing using the PCA, the number 
of attributes/dimensions is reduced to 100 from the original 1401. The following nu-
merical experiments are based on the processed data. 

4   Numerical Implementations 

First of all, we utilize the PCA to preprocess the data. The results obtained from PCA-
processed data are compared with those obtained from original data. From Table 1 it 
can be seen that the advantage is obvious in running time for PCA-processed data. 
The results show that the use of the PCA technique can reduce the running time sig-
nificantly almost without precision loss. 

In order to reflect the advantages of LS-SVM algorithm itself, we have selected a 
data set that has 30 principal components which is attained through PCA to train and 
test relevant models. When 3 kinds of different training samples, parameter of LS-
SVM algorithm, parameters and network structure of BP algorithm are not the same, 
we take better test result to compare through training repeatedly. As table 2 shows, it 
can be found that the test errors of LS-SVM compared with the BP algorithm for 
various data sets are superior obviously. This demonstrates LS-SVM algorithm has 
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possessed good generalization. It can also be found that the precision of LS-SVMS 
algorithm is higher than BP algorithm on the same training and test data set; in the 
test error, the precision of LS-SVM algorithm compared with BP algorithm is higher 
the largest very nearly 5 percentage points, and in the training error, LS-SVM algo-
rithm can be negligible approximately, but BP algorithm does not have so good per-
formance. At the same time, it can be found that when the training set is changed, the 
generalization error of LS-SVM algorithm is smaller than BP algorithm. Namely it 
has been proved that the degree of dependence to the sample data of LS-SVM algo-
rithm is smaller than BP algorithm. 

Table 1. Result Comparison of Data Processed 

PCA LS-SVM Standard LS-SVM Training 
sample # 

Testing 
sample # Test MSE  Training time (s) Test MSE   Training time (s) 

20 15 0.013560 3.12 310−×  0.014342 11.53 210−×  

18 17 0.013900 2.66 310−×  0.013863  9.89 210−×  

15 20 0.013875 2.18 310−×  0.013721  8.29 210−×  

Table 2. Result Comparisons of LS-SVM and BP 

LS-SVM BP Number of train-
ing samples 

Number of 
testing samples Test MSE Test MSE 

15 20 0.014488 0.0621 

20 15 0.011078 0.0564 

25 10 0.012899 0.0334 

 

Fig. 1. Prediction using LS-SVM 

Comparatively seeing from predicted value and actual value (Fig. 1 and Fig. 2), the 
result of LS-SVM algorithm is a lot better than BP algorithm. And then we can find 
out that LS-SVM algorithm has the stronger generalization performance and obvious 
advantages in predicting ability in the analysis of the medicines composition. 
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Fig. 2. Prediction using BP 

5   Conclusions 

Data used in the analysis of the medicine composition usually are characterized by 
small sample amount and high dimension. To deal with this kind of problems, a com-
bined method of PCA and LS-SVM is proposed. PCA is used to process the raw data 
obtained by NIR and LS-SVM is used to analyze the processed data. The results of 
the simulated experiments demonstrate that compared with the traditional BP algo-
rithm the proposed algorithm has obvious advantages on time efficiency and preci-
sion. The combination of the PCA and LS-SVM can be a good method for the prob-
lem of medicine composition analysis. But it remains a task to optimize our proposed 
method with smart mechanisms for parameter choice, in order to obtain the better 
results convincingly. 
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Abstract. In this work, a new heuristic algorithm, named Swarm Double-Tabu 
Search (SDTS), has been proposed. SDTS attempts to solve the problems of 
NP-hard combinatorial optimization effectively and efficiently. The particle 
swarm and the double-tabu strategies adopted in the SDTS algorithm have got 
excellent search result. Simulations on Traveling Salesman Problem (TSP) were 
performed, and the results compared to those obtained by neural network ap-
proaches were optimal or near optimal. 

1   Introduction 

Particle swarm optimization (PSO) is an evolutionary computation technique proposed 
by Kenney and Eberhart in 1995 [1]. It has been thought that the uniqueness of PSO lies 
in the dynamic interactions of the particles [2]. 

Tabu search is a meta-heuristic methodology proposed by F. Glover in 1986[3]. It 
has been widely applied to the solution of the NP-hard optimization problem over the 
past years. However, the quality of the final solution found by tabu search depends 
much on the quality of the initial solution, the intensification and diversification 
strategy in tabu search algorithm. 

In our recent work, a new heuristic algorithm named Swarm Double-Tabu Search 
(SDTS) was developed on the basis of the particle swarm optimization and tabu search. 
SDTS adopts two strategies to ensure the effective and efficient search of the algorithm. 
One is the particle swarm strategy to eliminate the dependence of search result on initial 
solution, as well as enhance the ability of the algorithm to explore new search space. 
The other is the double-tabu strategy to guide thorough search in local space and avoid 
local optimum. Following the introduction, brief description about particle swarm op-
timization and tabu search can be found in section 2 and section 3. In section 4, the 
SDTS technique is presented in detail. The experimental data and conclusion are given 
in section 5 and section 6, respectively. 
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2   Particle Swarm Optimization 

A swarm is a collection of particles. In literature [1], the PSO was presented in equa-
tions. However, it is uneasy to determine the proper values of those parameters in the 
equations. Regardless of this deficiency, the PSO has its benefit, that is, the search 
process of each particle is guided by two “bests”, namely, the local best and the global 
best. These two “bests” can solve the problem of “explorers” and “settlers”[1]. 

3   Tabu Search 

Tabu Search algorithm is a meta-heuristic algorithm to find the global optimum in op-
timization problems. It achieves this goal mainly by using a finite-size list of forbidden 
solutions derived from the recent history of the search. Nevertheless, for the reason of 
neighborhood structure, the quality of best solution found by TS depends on the quality 
of initial solution. Better initial solution always leads to better final solution, vice versa. 
Furthermore, effective strategy is needed to make thorough search in the local space 
and to avoid local optimum. 

4   Swarm Double-Tabu Search (SDTS) 

In SDTS, search can work in parallel way by a particle swarm, and each particle applies 
a double-tabu search method to look for solutions better than those found in the past.  

The double-tabu strategy featured two tabu strategies, tight tabu and loose tabu. The 
best solution not in the tight tabu list is chosen as the candidate best of current iteration. 
Loose tabu strategy records the solutions free from tight tabu list, viz. the solutions 
whose forbidden periods in tight tabu list expired are recorded in the loose tabu list. 
When an above-mentioned candidate has been found in the loose tabu list, it means that 
cycle happened in the search process. If the cycle times become larger than a prear-
ranged number, the selected candidate will be discarded, and a new randomly chosen 
solution in current neighborhood will replace the former one as the candidate best so-
lution of current iteration. When the best solution of current iteration is determined, it 
will be recorded in the tight tabu list so that it will not be chosen as the candidate best of 
next iteration. 

The best solutions found by the individual particles are the so-called local bests. 
Information of the best local best is exchanged among the particles and shared as the 
global best at certain time of the search process. 

The skeleton of SDTS is given as follows. 

Step 1: Initialize particle swarm. Randomly choose some solutions as the initial state 
of particle swarm. Then initialize the tabu lists of each particle, namely, the tight tabu 
list and loose tabu list. 

Step 2: Perform double-tabu strategy in the search process of individual particles. 
Step 2.1: Record current solution in the loose tabu list. 
Step 2.2: Generate neighborhood of current solution. 
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Step 2.3: Find the best neighbor not in the tight tabu list to be a candidate best for 
current iteration. 

Step 2.4: Compare the candidate found in step 2.3 to the solutions recorded in the 
loose tabu list. If more cycles than the predicted number happened, discard the candi-
date best, randomly select a non-tightly-tabued solution in the neighborhood to be the 
best solution of current iteration. Otherwise, the candidate found in step 2.3 becomes 
the best solution of current iteration. 

Step 2.5: Record best solution of current iteration in the tight tabu list. 
Step 2.6: If it’s not the time for information exchange among particles, let the best 

solution of current iteration be current solution of next iteration and go to Step 2.1. 
Otherwise, go to Step 3. 

Step 3: Compare the local bests found by individual particles. The best of these local 
bests becomes the global best. 

Step 4: If the new global best is better than the past one, let one particle choose 
global best as its new initial solution, the others randomly select solutions in the 
neighborhood of the global best as their new initial solutions.  

Step 5: Go back to Step 2.1 until the stop condition is satisfied. 

In the above description of SDTS, the number of particles in the swarm, the 
neighborhood generation rule and the stop condition of the algorithm depend on the 
given optimization problem. The length of the tight tabu list is set to be a fixed number, 
but the length of loose tabu list could be an alterable one. The tabued object could be a 
solution or one character of the solution. It’s time for information exchanging in the 
swarm if more cycles than the preset threshold happened in the search process of all or 
part of the particles. 

5   Simulation 

Since TSP is often regarded as the benchmark to verify the effectiveness and efficiency 
of a new algorithm, experiments applying SDTS to Traveling Salesman Problem (TSP) 
were carried out to demonstrate the performance of this new heuristic algorithm. 
Simulation for the problems of eil51 and KroA100 were performed under Matlab6.5 
circumstance on a Dell workstation with 1.40GHz CPU and 2G RAM. Data of the 
simulation are given in Table 1.  

According to literature [4], the major drawbacks of the Hopfield network when it is 
applied to some combinatorial problems, e.g. TSP, are invalidity of the obtained solu-
tions, trial-and-error setting value process of the network parameters and 
low-computation efficiency, thus an improved neural network model called Columnar 
Competitive Model (CCM) was presented in this literature. Simulation result of a 
48-city instance in literature [4] was cited in Table 2 to make a comparison between 
SDTS and CCM. In Table 2, k is a scaling parameter in CCM; 

maxd and 
mind  are the 

max and min distances between two cities, respectively; data corresponding to valid, 
invalid and good refer to simulation times which valid, invalid and good solutions were 
got; Min and Ave refer to the minimum and average route length.
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Table 1. Parameters and experimental results of SDTS 

Table 2. Performance of CCM for the 48-city example 

k Valid Invalid Good Min Ave 

maxd  90 10 0 24.6860 32.7950 

minmax dd +  92 8 0 24.9204 33.8892 

minmax2 dd −  100 0 0 35.9438 42.4797 

From Table 1 and Table 2, it can be seen that SDTS didn’t face the problem of in-
valid solution, and the worst solution obtained by SDTS is also a near-optimal solution. 
More detailed simulation results of neural network approaches are available in  
literature [4]. 

6   Conclusion 

SDTS holds the soul of particle swarm optimization instead of its shell. By means of 
particle swarm parallel search and information exchanging among particles, SDTS 
depends little on the quality of the initial solution. Another reason for the effective 
search of SDTS is its double-tabu strategy. With the tight tabu and loose tabu strategies, 
SDTS has strong ability to search thoroughly in local space as well as escape the local 
optimum. According to the comparison between SDTS and CCM in literature [4], the 
SDTS in this work is good at finding high quality solutions and avoiding the problem of 
invalid solution. 
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Tour length of the solution found 
by SDTS TSP 

Instances 
Known 

optimum 
Best Worst Average 

Relative 
error of 

the worst 
Epoch 

eil51 426 426 438 429.92 1.70% 500 

KroA100 21282 21282 21643 21401.22 2.35% 3500 
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Abstract. A new meta-heuristic algorithm to find the minimum height for two-
dimensional strip rectangular packing problem is presented. This algorithm is 
mainly based on the heuristic recursive strategy and simulated annealing algo-
rithm. The computational results on a class of benchmark problems have shown 
that this algorithm not only finds shorter height than known meta-heuristic but 
also runs in shorter time. 

1   Introduction 

Packing problems have found many industrial applications, with different applications 
incorporating different constrains and objects. For example, in wood or glass indus-
tries, rectangular components have to be cut from large sheets of material. Newspa-
pers paging, articles and advertisements are generally concerned with the guillotine 
packing of rectangular items from a page of fixed width and length. These applica-
tions have a similar logical structure and can be formalized as packing problems [1]. 
For more extensive and detailed descriptions of packing problems, the reader is re-
ferred to [1, 2, 3]. 

The focus of this paper is a new method for a two-dimensional strip rectangular 
packing problem, the objective of which is to find the minimum height. This problem 
belongs to a subset of classical cutting and packing problems and has been shown to 
be NP hard [4, 5]. Optimal algorithms for orthogonal two-dimension cutting were 
proposed in [6, 7]. However, they might not be practical for large problems. Some 
heuristic algorithms were developed by [8]. Hybrid algorithms combining genetic and 
deterministic methods for the orthogonal packing problem were proposed by [9, 10, 
11]. An empirical investigation of meta-heuristic and heuristic algorithms of the strip 
rectangular packing problems was given by [12]. Many meta-heuristic approaches 
have been utilized to solve different packing problems, and these are usually hybrid-
ized algorithms combing simulated annealing (SA) or genetic method with heuristic 
method [12,13,14]. An effective quasi-human heuristic, Less Flexibility First, for 
solving the rectangular packing problems was presented by [15]. However, generally 
speaking, the known meta-heuristic algorithms are more time consuming and are not 
effective enough. Recently, some new models and algorithms were developed by [16, 
17,18]. Especially, several new heuristic methods were presented by [19,20] and some 
promising results were obtained. SA is a general stochastic search algorithm for com-
binatorial optimization problems. In contrast to other local search algorithms, it  
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provides more opportunities to escape from local minimum. SA has been widely used 
to solve packing problems [12, 21]. In this paper, we will present a rather effective 
meta-heuristic algorithm based on SA and heuristic recursive (HR) algorithm [19] for 
solving the orthogonal strip rectangular packing problem. The computational results 
on a class of benchmark problems show that this algorithm not only finds shorter 
height than known meta-heuristic but also runs in shorter time.  

2   Mathematical Formulation of the Problem 

Given a rectangular board of given width and a set of rectangles with arbitrary sizes, 
the strip packing problem of rectangles is to pack each rectangle on the board so that 
no two rectangles overlap and the 
used board height is minimized. This 
problem can also be stated as follows.  

Given a rectangular board with 
given width W , and n  rectangles 

with length il  and width iw , 

ni ≤≤1 , take the origin of two 
dimensional Cartesian coordinate 
system at the bottom-left corner of 

the rectangular board, ),( hxL de-

notes the top-left corner coordinates 

of the rectangular board and ),( RR yx denotes the bottom-right corner coordinates of 

this board (See Fig. 1). The aim of this problem is to find a solution composed of n  
sets of quadruples 

{ }riliriliririlili yyxxniyxyxP ><≤≤= ,,1|),(),,( ,  

where, ),( lili yx denotes the top-left corner coordinates of rectangle i , and 

),( riri yx denotes the bottom-right corner coordinates of rectangle i . For 

all ni ≤≤1 , the coordinates of rectangle i  satisfies the following conditions:  

(1) iriliiliri wyylxx =−∧=−  or  iriliiliri lyywxx =−∧=− . 

(2) For all ijnj ≠≤≤ ,1 , rectangle i  and j  cannot overlap, namely, 

ljri xx ≤  or rjli xx ≥  or ljri yy ≥  or rjli yy ≤ . 

(3) RriLRliL xxxxxx ≤≤≤≤ ,  and hyyhyy riRliR ≤≤≤≤ , . 

Such that the used board height h  is minimized. 
It is noted that the orthogonal rectangular packing problems denote the packing 

process has to ensure the edges of each rectangle are parallel to the −x  and 
−y axes respectively, namely, all rectangles to be packed cannot be packed aslant. 
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3   A New Meta-heuristic Algorithm (SA+HR) 

3.1   Heuristic Recursive Algorithm (HR)  

HR is a new heuristic that has proven to be effective on the strip rectangular pack-
ing problems [19], it can be stated as follows: 

(1) Put a rectangle into the space to be packed and divide the unpacked space into 
two subspaces (See Fig.2). 

(2) Pack each subspace by packing them recursively. If the subspace sizes are 
small enough to only pack a rectangle, just pack this rectangle into the sub-
spaces. 

(3) Combine the solutions to the sub-problems into the solution to the strip rectan-
gular packing problem. 

 

Fig. 2. Divide the unpacked space into two subspaces 
 

Given a sequence X of rectangles, the heuristic recursive algorithm for packing 
X can be described as follows:  

 

program HR( X ) 
  Repeat 

    Select a rectangle from X  and pack it into S  ac-
cording to heuristic strategy; 
    Divide the unpacked space into the unbounded space 

1S  and the bounded space 2S ; 

    Packing 2S  recursively until no rectangle can be 

packed into 2S ; 

    S = 1S ; 

  until all rectangles are packed 
end. 

For more detailed descriptions of HR, the interest reader can be referred to [19]. 
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3.2   Simulated Annealing Algorithm  

We have known that the quality of the layout obtained from the above placement 
algorithm (HR) depends on the sequence in which the rectangles are presented to the 
routine. So we must find a good sequence of the rectangles to produce a good solu-
tion. SA is a good search technique, so we’ll use it to search a better solution in this 
paper.  

SA is a stochastic heuristic algorithm which is used to solve combinatorial optimi-
zation problems. Simulated annealing optimization is similar to the annealing of met-
als. Different from other algorithms, SA uses a probability mechanism to control the 
process of jumping out of the local minimum. In the process of search, SA not only 
accepts better solutions, but also accepts worse solutions randomly with a certain 
probability. At high temperatures, the probability of accepting better solutions is rela-
tively big. With the decrease of the temperature, the probability of accepting worse 
solutions also descends, and when the temperature closes in upon zero, SA no longer 
accepts any worse solution. These make SA have more chance to avoid getting 
trapped in a local minimum and avoid the limitation of other local search algorithms 
and the gradient algorithms.  

Because of its merits above, SA has become an extremely popular method for solv-
ing large-sized and practical problems like job shop scheduling, timetabling, traveling 
salesman and packing problem [12, 13, 21]. However, for various reasons, like many 
other search algorithms, SA may get trapped in a local minimum or take a long time 
to find a reasonable solution. For these reasons, SA is often used as a part of a hybrid 
method. 

3.3   A New Meta-heuristic Algorithm 

It is noted that a sequence X of the rectangles to be packed can represent a feasible 
solution to packing problem. In addition, how to choose an initial solution may 
greatly influence the result of SA. So in this paper, we sort the rectangles by non-
increasing ordering of area size in the first place and obtain a better solution by the 
method of exchanging the position of two rectangles in the sequence, finally we use 
the better sequence obtained as the initial solution.  

For each feasible solution X , we call the heuristic recursive function HR ( X ) to 

compute its evaluation value ( )E X . A new feasible solution 1X  can be obtained by 

randomly exchanging the position of two rectangles in the sequence. When there are 
ten consecutive new solutions which are not accepted, the algorithm stops.  

In detail, the new meta-heuristic algorithm that combines SA with HR can be stated 
as follows: 

 
program SA+HR (Output) 

  initial temperature 0T , a ; 

  Set the ordered sequence as initial solution 0X ; 

  Set the iterative times L at each temperature; 
  While the number of consecutive new solutions which 
are not accepted is less than 10 
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    For i:=1 to L  

      generate a new solution 1X  by randomly exchanging 

the position of two rectangles in the sequence 0X ; 

      )( 0XE :=HR( 0X ), )( 1XE :=HR( 1X ); 

      Compute EΔ := )( 1XE - )( 0XE ; 

      if EΔ <0 then 0X := 1X ; 

      else 0X := 1X  with probability )exp( TEΔ− ; 

    0T :=a 0T ; 

  Return 0X  

Since the performance of SA is significantly impacted by the choice of 0T , a  etc., 

these parameters should be selected rationally. In this paper, we choose 

0 0.5, 0.9, 20000T a L= = = .  

4   Computational Results 

Performance of the new meta-heuristic algorithm (SA+HR) has been tested with 
seven different sized test instances ranging from 16 to 197 items [12]. The optimal 
solutions of these test instances are all known. In order to compare SA+HR with 
known meta-heuristic, two best meta-heuristic GA+BLF and SA+BLF in [12] are 
selected, they are run on a PC with a Pentium Pro 200 MHz processor and 65MB of 
RAM under Windows NT4.0 [12], so the relative distance of best solution to opti-
mum height (RDBSOH) and the running time are directly taken from [12]. We also 
take HR in [19] for comparison; it was run on a DELL GX260 with a 2.4GHz CPU 
[19]. The results obtained from their realization of the GA+BLF, SA+BLF and HR 
are also given from [19]. DELL GX260 with a 2.4GHz CPU is about thirteen times 
faster than PC with a Pentium Pro 200 MHz processor, therefore we adjust the run-
ning time of GA+BLF, SA+BLF by dividing by 13. Our experiments were run on a 
Dell GX270 with a 3.0GHz CPU. Dell GX270 with a 3.0GHz CPU is about 1.25 
times faster than DELL GX260 with a 2.4GHz CPU; therefore we adjust the running 
time of SA+HR by multiply 1.25. The computational results are reported in Tables 1 
and 2. 

On this test set, as shown in Table 1, RDBSOH of SA+HR ranges from 1.86% to 
5% with the average RDBSOH 3.07%. The average RDBSOH of GA+BLF, SA+BLF 
and HR are 4.57, 4 and 3.97 respectively. The average RDBSOH of SA+HR is lower 
than that of GA+BLF, SA+BLF and HR. From Table 1, we can observe that 
RDBSOH of SA+HR is lower than that of GA+BLF and SA+BLF for all given in-
stances. From Table 2, the computational speed of SA+HR is faster than that of 
GA+BLF, SA+BLF. 
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Table 1. RDBSOH of GA+BLF, SA+BLF, HR and SA+HR (%) 

 C1 C2 C3 C4 C5 C6 C7 Average 

GA+BLF 4 7 5 3 4 4 5 4.57 
SA+BLF 4 6 5 3 3 3 4 4 

HR 8.33 4.45 6.67 2.22 1.85 2.5 1.8 3.97 
SA+HR 5 4.47 2.23 2.22 1.86 2.5 3.24 3.07 

Table 2. Average running time of GA+BLF, SA+BLF, HR and SA+HR (s) 

 C1 C2 C3 C4 C5 C6 C7 Average 

GA+BLF 4.61 9.22 13.83 59.93 165.96 396.46 3581.97 604.57 
SA+BLF 3.227 11.064 18.44 152.13 530.15 1761.02 19274.41 3107.2 
HR 0 0 0.03 0.14 0.69 2.21 36.07 5.59 
SA+HR 29.00 53.5 74 212.5 429.5 556.12 1661.00 430.75 

5   Conclusion 

In this paper we presented a new meta-heuristic algorithm for the strip rectangular 
packing problem. This algorithm can solve the rectangular packing problem effec-
tively. Using data provided by other researchers in the field of cutting and packing, 
this new meta-heuristic algorithm (SA+HR) has produced better results than the 
GA+BLF and SA+BLF for all given instances and its average result is better than HR. 
As we can see, its average running time is also shorter than that of GA+BLF and 
SA+BLF. Many other areas of operations research, including paper industry, ship 
building industry, memory allocation and multiprocessor scheduling, share a similar 
logical structure to the problem in this paper. Therefore, the techniques proposed in 
this paper could be applied to these fields with the possible similar improvements in 
solution quality. Future work is to further improve the performance especially the 
running time of SA+HR and extend this algorithm for three-dimensional rectangular 
packing problems. 
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Abstract. In this work, authors have developed a system which is capable of 
composing songs using Genetic Algorithms (GA) to evolve melody and 
rhythm. Each GA uses two Multilayer Perceptron (MLP) type artificial neural 
networks (ANN) to judge for the fitness of individuals in the population. MLPs 
are forward and backward sliding-window predictors trained on melody and 
rhythm extracted from songs of different genres. Separately evolved rhythms 
and melodies are dynamically mixed to obtain verses, which are then mixed 
into whole songs. 

1   Introduction 

The problem of using computers to generate music has been researched for decades. 
The real problem is that musical results are not as quantifiable as other computational 
intelligence problems. Every person has different influences, tastes, and dislikes. For 
this reason, most research in this field is very scattered, with their only connection 
being in the common goal. 

Genetic Algorithms, or GA, is a computational intelligence tool where a population 
of solutions is evolved with operators of mutation, crossover and selection given a 
fitness value [1]. Genetic Algorithms appear to be a widely used method for music 
generation. However, the problem often presents itself in finding a good fitness func-
tion. Some researchers choose to use humans as fitness function, but this is time-
consuming, as the listener must hear and judge each individual melody in the popula-
tion [1], [2], [3], [4]. 

A Multi-layer Perceptron, or MLP, is a feedforward ANN that is proven to be quite 
successful for its system identification and time series prediction ability [5], [6], [7].  

2   Method 

Because this is not meant to be an exercise in sound file format dissection, we decided 
to use a text format known as ABC for input and output.  This format allows for the 
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subtle complexities in music, while giving simplicity to the user in reading and under-
standing the music represented by the format. Tools for this format exist on the inter-
net to allow conversion both ways between ABC and the standard MIDI format. 
 

 

Fig. 1.  Flow Chart of the Composition Process 

Table 1.  Numerical Notation for Melody 

Note Numerical Eq. Note Numerical Eq. 
A -3 D# 3 
A# -2 E 4 
B -1 F 5 
C 0 F# 6 
C# 1 G 7 
D 2 G# 8 

 

The Flow Chart of the Composition Process has been sketched in Figure 1. The 
melody and rhythm parsed from ABC files were converted to numerical values using 
Tables 1, 2.  The rhythm consisted of an n x 2 vector of one integer variable con-
taining the note length (over 32, i.e. 32 = 32/32 or a whole note), and one binary vari-
able declaring the rhythm mark as either a rest or a note.   

The melody consisted of an n x 1 vector, with the parameter containing the nu-
merical value of a note.  The melody is not confined to the single octave in Table 1 
(with middle-C at 0), but rather spans the octaves of the input song. 
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Table 2. Numerical Notation for Rhythm 

Parameter Numerical Eq. 
Length 1-32 
Rests/Notes 0/1 

2.1   The Multilayer Perceptrons 

Sliding windows of size 8 are then used to train the MLP networks.  Figure 2a and 2b 
shows example MLPs for learning rhythm and notes. For the rhythm, the MLP archi-
tecture consists of an input layer of 16 neurons (window size = 8, 2 inputs per rhythm 
mark) fed by the delayed sequence of rhythm marks, one hidden layer of 16 neurons 
and a two-neuron output layer aimed to give the predicted rhythm.  

 
Fig. 2.  MLPs for predicting a) Rhythm b) Notes. Window size: 3, round units are adders. 

While the hidden layer neurons have tangential sigmoid transfer functions, the out-
put layer has linear transfer function. The network is adaptively trained on rhythm 
sequences by Levenberg-Marquardt backpropagation, which can then be used as a  
fitness function for the sequences that the GA evolved, by one step predictions.  A 
similar setup is used for the note-predicting ANNs, with the difference being in that 
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notes require only one variable per note mark.  In both cases, two MLPs are trained: 
one for forward predictions, and another for backward predictions. 

2.2   Genetic Algorithms 

For the rhythm, a length of 32 is given, and a population of 10 individuals is evolved.  
Selection used is Roulette Wheel Selection with ranking.  Mutation is Gaussian.  
Fitness is the error percentage of the forward ANN predictor and the backward ANN 
predictor, combined with the error between the note percentage of the input song and 
the note percentage of the individual.  Once the population is evolved for a set num-
ber of epochs, individuals are selected using the same selection method as above until 
a set number of song pieces are selected (in our work, 20).  

For each separate rhythm that is selected, a population of notes is evolved using the 
same method as above, with the length of individuals given by the corresponding 
rhythm.  In the case that an individual from the rhythm population is used more than 
once in the song, all corresponding notes are taken from the same population of notes, 
as in Figure 3. MATLAB was the computational environment during the work. 

 

 

Fig. 3.  Evolution of Notes. Same rhythm pieces used in different parts of the final song use 
notes from the same population 

3   Results and Discussion 

We found that the MLPs trained on rhythm generally converged faster than the MLPs 
trained on notes.  This is likely due to the rhythm having a lower range of variables to 
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deal with, and is often dependent upon the song’s octave range, and the number of 
training patterns.  For example, figure 5 shows the MSE plots of the neural networks 
for the Super Mario Theme Song.  In contrast, the Beatles’ Yesterday, which has a 
low number of training patterns and lower note values (the highest note in the song is 
the F below middle C), often did not converge well in the MLPs for predicting notes. 

 

  

 

Fig. 4. Example of typical MSE-time graphs on the SMB Theme Song for a) forward rhythm 
predictor b) backward rhythm predictor c) forward note predictor d) backward note predictor 

It is found that by evolving rhythm and notes separately using the above method, 
songs are often created with a high number of rests of long note-lengths.  We at-
tempted to counter this by including an error based on note-percentage (i.e., number 
of notes over number of rhythm marks), as well as an error based on rest length, in the 
fitness for rhythm.  The results proved to be promising, given enough generations of 
evolution, as shown by the difference in number of rests between figures 7 and 8. 

It is also found that by evolving a separate population for each separate rhythm se-
lected in a song, the process takes a significant amount of time.  This could be coun-
tered by evolving only one moderately-sized population for all notes in a song, with 
the length of individuals defined by the maximum number of notes of all rhythms. 

The best way to describe the value of a music is to listen to it, or at the very least, 
view it.  Figures 5, 6, and 7 show the song after 40 generations of evolution (for both 
rhythm and note GAs), after 100 generations, and after 500 generations.  Comparing 
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key components of the pieces visually, one can see that the less-evolved music is 
slightly more chaotic, i.e. there are more visible patterns in the higher-evolved music 
(though they are admittedly difficult to read with their current signature and format-
ting). Evolving for more generations should give more distinguishable music. 

5   Conclusion 

This overall work shows that evolving rhythm and melody for music using a GA and 
using MLP as a fitness judge is a promising tool for music composition. This tool can 
be used to generate practice exercises for musicians and can also be used as an inspi-
rational tool for composers. 
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Appendix: Figures Showing the Composed Songs 

 

 

Fig. 5. Music derived from the Super Mario Theme Song with 40 epochs of evolution 
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Fig. 6. Music derived from the Super Mario Theme Song with 100 epochs of evolution 
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Fig. 7. Music derived from the Super Mario Theme Song with 500 epochs of evolution 
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Abstract. In completeness theories of multiple-valued logic, the 
characterization of Sheffer functions is an important problem and the solution 
can be reduced to determining the minimal coverings of precomplete categories. 
It’s well known that each precomplete set is a function set, ( )mT G , preserving 

the relation mG , therefore, the categorizing of this relation has provided the 

determination of precomplete set’s minimal covering with more convenient 
ways. In this paper, simply separable relations in partial four-valued logic are 
categorized by similar relation. 

1   Introduction 

The structure theory of multiple-valued logic functions is an important research field 
in multiple-valued logic theory.  

Another important problem in multiple-valued logic completeness theory is the 
decision on Sheffer [1] functions, which depends on the deciding of the minimal 
covering of precomplete sets of all precomplete sets. For the partial multiple-valued 
logic function, the author has concisely decided the minimal covering of precomplete 
sets in 3-valued by using the similar relation among the precomplete sets [2]. In 
addition, the author proved that ET , 

4,2
{ }, ,K P GP L L∗ are included in the minimal 

covering for any k [3]. For the complexity of full symmetric function sets, simply 
separable function sets and regularly separable function sets, the problem has not been 
completely solved yet[4]. 

It’s well known that each precomplete set is a function set, ( )mT G , preserving the 

relation mG . The author has already proved that [5], if mG  is similar to mG′ , ( )mT G  and 

( )mT G′  are either within or without the minimal covering. Therefore, the categorizing 

of this relation has provided the determination of precomplete set’s minimal covering 

with more convenient ways. In this paper, simply separable relations in *
4P are 

categorized by the similar relation. 
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2   Basic Definitions 

Let = { 0, 1 , 2 ,..., 1},  2.kE k k− ≥  The total and non-total k-valued logic functions 

over kE are called partial k-valued logic functions. The set of all partial k-valued 

logic functions is denoted by *
kP , and the set of all total k-valued logic functions is 

denoted by *( )k kP P⊂ , namely, 

1{ ( , , ) | : , 1}n
k n k kP f x x f E E n= → ≥  
*

1{ ( , , ) | : { }, 1}n
k n k kP f x x f E E n= → ∪ ∗ ≥  

where ∗=),,( 1 nf αα  means that f  is undefined at point 
1( , , )nα α .We denote by 

∗  the empty function that is undefined at every point.  
A set of some m-tuples 

1, , ,m i ka a a E< > ∈  is called an m-ary relation over Ek , 

denoted by 
mG . 1 1 1

1 1( , , ), , ( , , )m m m
n na a a a a a= =  are said to preserve the m-ary 

relation 
mG  if 1, , , 1, ,m

i i ma a G i n< >∈ = .  A function f x xn( , , )1  is said to 

preserve the m-ary relation Gm  if for arbitrary 1, , ma a  preserving 
mG  either 

1( ), , ( )m
mf a f a G< >∈  or one of  1( ), , ( )mf a f a  is undefined. The set of all 

functions preserving 
mG  is denoted by ( )mT G . Hereafter we always 

assume 2 ≤ ≤m k . 
     

mG  and 
mG′   are said to be similar if 

m mG G′=  and there is a one-one 

mapping σ : E Ek k→  such that    

1 1{ ( ), , ( ) , , }m m m mG a a a a Gσ σ′ = < > < >∈  

Clearly, the similar relation defined above is equivalent relation.  We denote by 

m mG G
σ

′  that Gm  is similar to ′Gm  under one-one mappingσ . Let 

11 h
m m m mG G G Gσσ −= ∪ ∪ ∪

1{ , , , , , 1, , }m m i jG a a a a i j i j m= < > ≠ ≠ = , 

 (1) ( ) 1{ , , | , , }m m m mG a a a a Gσ
σ σ= < ⋅⋅ ⋅ > < ⋅⋅ ⋅ >∈ , and 1 1{ , , , }hH e σ σ −=  is a subgroup 

of symmetric group mS {1, , }m⋅ ⋅ ⋅ mG  is said to be simply separable if there is a 

direct partition on KE : 

1 , , , , 1, ,K m i jE A A A A i j i j m= + + ∩ = ∅ ≠ = , such that 

, 1, ,i ia A i m∈ = for arbitrary 1, , m ma a G< >∈ ( )mT G  is said to be a simply 

separable function set and denoted by ,I mS if mG  is simply separable. 



 

When m=2 there are 83 binary simply separable relations such as  

,2 2( )IS T G= ,
1 1

2 2 22

h
G G G G

σ σ −= ∪ ∪ ∪ , where 1 {(1)}H = 2 {(1), (12)}H = and 

2G  is as follows by similar relation: 

. The relations that only include one binary couple are as follows: 

{<0,1>}
(12)

{<0,2>}
(23)

{<0,3>}
(01)(23)

{<1,2>}
(23)

{<1,3>}
(12)

{<2,3>}; 

. The relations that include two binary couples are 4 categories as follows:  

{<0,1>,<1,0>}
(12)

{<0,2>,<2,0>}
(23)

{<0,3>,<3,0>} 
(01)(23)

{<1,2>,<2,1>} 
(23)

{<1,3>,<3,1>}
(12)

{<2,3>,<3,2>}; 

{<0,1>,<0,2>}
(23)

{<0,1>,<0,3>}
(12)

{<0,2>,<0,3>}
(01)

{<1,2>,<1,3>}
(12)

{<2,1>,<2,

3>}
(23)

{<3,1>,<3,2>}; 

{<0,1>,<2,1>}
(23)

{<0,1>,<3,1>}
(123)

{<0,2>,<1,2>}
(13)

{<0,2>,<3,2>}
(123)

{<0,3>,<

1,3>}
(12)

{<0,3>,<2,3>}; 

{<0,1>,<3,2>}
(123)

{<0,2>,<1,3>}
(23)

{<0,3>,<1,2>}
(123)

{<0,1>,<2,3>}
(13)

{<0,3>,<

2,1>}
(23)

{<0,2>,<3,1>}. 
. The relations that include three binary couples are 2 Categories as follows  

{<0,2>,<0,3>,<1,2>}
(23)

{<0,2>,<0,3>,<1,3>}
(01)

{<0,3>,<1,2>,<1,3>}
(23)

{<0,2>,

<1,2>,<1,3>}
(021)

{<0,1>,<0,3>,<2,1>}
(13)

{<0,1>,<0,3>,<2,3>}
(02)(13)

{<0,1>,<2,1>,<

2,3>}
(13)

{<0,3>,<2,1>,<2,3>}
(0312)

{<0,1>,<0,2>,<3,1>}
(12)

{<0,1>,<0,2>,<3,2>}
(03)(12)

{<0,1>,<3,1>,<3,2>}
(12)

{<0,2>,<3,1>,<3,2>}; 

{<0,1>,<0,2>,<0,3>}
(12)

{<1,0>,<1,2>,<1,3>}
(12)

{<2,0>,<2,1>,<2,3>}
(23)

{<3,0>,

<3,1>,<3,2>} 

. The relations that include four binary couples are 3 Categories as follows  

{<0,2>,<0,3>,<2,0>,<3,0>}
(02)(13)

{<0,2>,<1,2>,<2,0>,<2,1>}
(23)

{<0,3>,<1,3>,<3,

0>,<3,1>}
(02)(13)

{<1,2>,<1,3>,<2,1>,<3,1>}
(021)

{<0,1>,<0,3>,<1,0>,<1,3>}
(01)(23)

{<

0,1>,<2,1>,<1,0>,<1,2>}
(13)

{<0,3>,<2,3>,<3,0>,<3,2>}
(01)(23)

{<2,1>,<2,3>,<1,2>,<

3,2>}
(032)

{<0,1>,<0,2>,<1,0>,<2,0>}
(01)(23)

{<0,1>,<3,1>,<1,0>,<1,3>}
(12)

{<0,2>,<3

,2>,<2,0>,<2,3>}
(01)(23)

{<3,1>,<3,2>,<1,3>,<2,3>}; 

3   Main Results 
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{<0,2>,<0,3>,<1,2>,<1,3>}
(12)

{<0,1>,<0,3>,<2,1>,<2,3>}
(23)

{<0,1>,<0,2>,<3,1>

,<3,2>}; 

{<0,2>,<1,3>,<2,0>,<3,1>}
(12)

{<0,1>,<2,3>,<1,0>,<3,2>}
(13)

{<0,3>,<2,1>,<3,0>

,<1,2>}. 

. The relations that include six binary couples are 2 Categories as follows  

{<0,2>,<0,3>,<1,2>,<2,0.>,<3,0>,<2,1>}
(23)

{<0,2>,<0,3>,<1,3>,<2,0>,<3,0>,<

3,1>}
(01)

{<0,3>,<1,2>,<1,3>,<3,0>,<2,1>,<3,1>}
(23)

{<0,2>,<1,2>,<1,3>,<2,0>,<2,1

>,<3,1>}
(021)

{<0,1>,<0,3>,<2,1>,<1,0>,<3,0>,<1,2>}
(13)

{<0,1>,<0,3>,<2,3>,<1,0>,

<3,0>,<3,2>}
(02)(13)

{<0,1>,<2,1>,<2,3>,<1,0>,<1,2>,<1,3>}
(13)

{<0,3>,<2,1>,<2,3>,

<3,0>,<1,2>,<3,2>}
(0312)

{<0,1>,<0,2>,<3,1>,<1,0>,<2,0>,<1,3>}
(12)

{<0,1>,<0,2>,<

3,2>,<1,0>,<2,0>,<2,3>}
(03)(12)

{<0,1>,<3,1>,<3,2>,<1,0>,<1,3>,<2,3>}
(12)

{<0,2>,<

3,1>,<3,2>,<2,0>,<1,3>,<2,3>}; 

{<0,1>,<0,2>,<0,3>,<1,0>,<2,0>,<3,0>}
(01)

{<1,0>,<1,2>,<1,3>,<0,1>,<2,1>,<3,

1>}
(12)

{<2,0>,<2,1>,<2,3>,<0,2>,<1,2>,<3,2>}
(23)

{<3,0>,<3,1>,<3,2>,<0,3>,<1,3>,

<2,3>}. 
. The relations that include eight binary couples are as follows  

{<0,2>,<0,3>,<1,2>,<1,3>,<2,0>,<3,0>,<2,1>,<3,1>}
(12)

{<0,1>,<0,3>,<2,1>,<2,3>,

<1,0>,<3,0>,<1,2>,<3,2>}
(23)

{<0,1>,<0,2>,<3,1>,<3,2>,<1,0>,<2,0>,<1,3>,<2,3>}. 

When m=3 there are 60 triple simply separable relations such as 

, 3 3( )IS T G= ,
1 1

3 3 33

h
G G G G

σ σ −= ∪ ∪ ∪ , where the subgroups are 1 {(1)}H =

2 {(1), (23)}H = 3 {(1), (12)}H = 4 {(1), (13)}H = 5 {(1), (123), (132)}H =  and 

6 {(1), (23), (12), (13), (123), (132)}H = , 3G  is as follows  

. The relations that only include one triple are as follows   

         {<0,1,2>}
(23)

{<0,1,3>}
(12)

{<0,2,3>}
(01)

{<1,2,3>}; 
. The relations that include two triple sequences are 6 Categories as follows  

{<0,1,2>,<0,2,1>}
(23)

{<0,1,3>,<0,3,1>}
(12)

{<0,2,3>,<0,3,2>}
(01)

 {<1,2,3>,<1,3,2>};  

{<0,1,2>,<1,0,2>}
(23)

{<0,1,3>,<1,0,3>}
(12)

{<0,2,3>,<2,0,3>}
(01)

{<1,2,3>,<2,1,3>}; 



 

{<0,1,2>,<2,1,0>}
(23)

{<0,1,3>,<3,1,0>}
(12)

{<0,2,3>,<3,2,0>}
(01)

{<1,2,3>,<3,2,1>}; 

{<0,1,2>,<0,1,3>} 
(12)

 {<0,2,1>,<0,2,3>}
(01)

{<1,2,0>,<1,2,3>}; 

{<0,1,3>,<0,2,3>}
(01)

{<1,0,3>,<1,2,3>}; 
{<0,2,3>,<1,2,3>}; 

.  The relations that include three triple sequences are as follows   

{<0,1,2>,<2,0,1>,<1,2,0>}
(23)

{<0,1,3>,<3,0,1>,<1,3,0>}
(12)

{<0,2,3>,<3,0,2>,<2,3,0

>}
(01)

{<1,2,3>,<3,1,2>,<2,3,1>}; 

.  The relations that include four triple sequences are 9 Categories as follows   

{<0,1,2>,<0,1,3>,<0,2,1>,<0,3,1>}
(12)

{<0,2,1>,<0,2,3>,<0,1,2>,<0,3,2>}
(01)

{<1,2,0

>,<1,2,3>,<1,0,2>,<1,3,2>}; 

 {<0,1,2>,<0,1,3>,<1,0,2>,<1,0,3>}
(12)

{<0,2,1>,<0,2,3>,<2,0,1>,<2,0,3>}
(01)

  

{<1,2,0>,<1,2,3>,<0,1,2>,<2,1,3>}; 

 {<0,1,2>,<0,1,3>,<2,1,0>,<3,1,0>}
(12)

{<0,2,1>,<0,2,3>,<1,0,2>,<3,2,0>} 
(01)

{<1,2,0>,<1,2,3>,<0,2,1>,<3,2,1>}; 

{<0,1,3>,<0,2,3>,<0,3,1>,<0,3,2>}
(01)

{<1,0,3>,<1,2,3>,<1,3,0>,<1,3,2>}; 

{<0,1,3>,<0,2,3>,<1,0,3>,<2,0,3>}
(01)

{<1,0,3>,<1,2,3>,<0,1,3>,<2,1,3>}; 

{<0,1,3>,<0,2,3>,<3,1,0>,<3,2,0>}
(01)

{<1,0,3>,<1,2,3>,<3,0,1>,<3,2,1>}; 
{<0,2,3>,<1,2,3>,<0,3,2>,<1,3,2>.};  
{<0,2,3>,<1,2,3>,<2,0,3>,<2,1,3>}; 
{<0,2,3>,<1,2,3>,<3,2,0>,<3,2,1>}. 

. The relations that include six triple sequences are 4 Categories as follows   

{<0,1,2>,<0,2,1>,<1,0,2>,<2,1,0>,<2,0,1>,<1,2,0>}
(23)

{<0,1,3>,<0,3,1>,<1,0,3>,<

3,1,0>,<3,0,1>,<1,3,0>}
(12)

{<0,2,3>,<0,3,2>,<2,0,3>,<3,2,0>,<3,0,2>,<2,3,0>}
(01)

{

<1,2,3>,<1,3,2>,<2,1,3>,<3,2,1>,<3,1,2>,<2,3,1>}; 

{<0,1,2>,<0,1,3>,<2,0,1>,<1,2,0>,<3,0,1>,<1,3,0>}
(12)

{<0,2,1>,<0,2,3>,<1,0,2>,<

2,1,0>,<3,0,2>,<2,3,0>}
(01)

{<1,2,0>,<1,2,3>,<0,1,2>,<2,0,1>,<3,1,2>,<2,3,1>}; 

{<0,1,3>,<0,2,3>,<3,0,1>,<1,3,0>,<3,0,2>,<2,3,0>}
(01)

{<1,0,3>,<1,2,3>,<3,1,0>,

<0,3,1>,<3,1,2>,<2,3,1>}; 

{<0,2,3>,<1,2,3>,<3,0,2>,<2,3,0>,<3,1,2>,<2,3,1>}; 
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. The relations that include twelve triple sequences are 3 Categories as follows   

{<0,1,2>,<0,1,3>,<0,2,1>,<1,0,2>,<2,1,0>,<2,0,1>,<1,2,0>,<0,3,1>,<1,0,3>,<3,1,0

>,<3,0,1>,<1,3,0>}
(12)

{<0,1,2>,<0,2,3>,<0,2,1>,<1,0,2>,<2,1,0>,<2,0,1>,<1,2,0>,<0

,3,2>,<2,0,3>,<3,2,0>,<3,0,2>,<2,3,0>}
(01)

{<0,1,2>,<0,2,3>,<0,2,1>,<1,0,2>,<2,1,0>

,<2,0,1>,<1,2,0>,<0,3,2>,<2,0,3>,<3,2,0>,<3,0,2>,<2,3,0>}
(01)

{<0,1,2>,<1,2,3>,<0,2

,1>,<1,0,2>,<2,1,0>,<2,0,1>,<1,2,0>,<1,3,2>,<2,1,3>,<3,2,1>,<3,1,2>,<2,3,1>}; 

{<0,1,3>,<0,2,3>,<0,3,1>,<1,0,3>,<3,1,0>,<3,0,1>,<1,3,0>,<0,3,2>,<2,0,3>,<3,2,0

>,<3,0,2>,<2,3,0>}
(01)

{<0,1,3>,<1,2,3>,<0,3,1>,<1,0,3>,<3,1,0>,<3,0,1>,<1,3,0>,<1

,3,2>,<2,1,3>,<3,2,1>,<3,1,2>,<2,3,1>}; 

{<0,2,3>,<1,2,3>,<0,3,2>,<2,0,3>,<3,2,0>,<3,0,2>,<2,3,0>,<1,3,2>,<2,1,3>,<3,2,1>

,<3,1,2>,<2,3,1>}. 

References 

1. Sheffer, H.M.: A Set of Five Independent Postulates for Boolean Algebras with Application 
to  Logical Constants, Trans. Am. Math. Soc., 14, (1913) 481-488. 

2. Renren Liu: The Minimal Covering of Precomplete Sets in Partial Three-Valued Logic, 
Natur. Sci. J. Xiangtan Univ., 13(2), (1991)158-165; MR92g:03035 03B50. 

3. Renren Liu: Some Results on the Decision for Sheffer Functions in Partial K-Valued Logic, 
Multiple Valued Logic-An International Journal, 1 (1996) 253-269. 

4. Renren Liu: Some Results on the Decision for Sheffer Functions in Partial K-Valued 
Logic, Proceedings of the 28th International Symposium on Multiple-Valued Logic (II), 
(1998) 77-81. 

5. Renren Liu: Research on the Similarity among Precomplete Sets Preserving m-ary Relations 
in Partial K-Valued Logic, Proceedings of the 29th International Symposium on Multiple-
Valued Logic, (1999) 77-81. 



L. Wang, K. Chen, and Y.S. Ong (Eds.):  ICNC 2005, LNCS 3612, pp. 1257 – 1260, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Equivalence of Classification and Regression 
Under Support Vector Machine Theory 

Chunguo Wu1,2, Yanchun Liang1,*, Xiaowei Yang3, and Zhifeng Hao3 

1 College of Computer Science and Technology, Jilin University,  
Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, 

Changchun 130012, China 
ycliang@jlu.edu.cn 

2 The Key Laboratory of Information Science & Engineering of Railway Ministry/ 
The Key Laboratory of Advanced Information Science and Network Technology of Beijing,  

Beijing Jiaotong University, Beijing 100044, China 
3 Department of Applied Mathematics,  
South China University of Technology, 

Guangzhou 510640, China 

Abstract. A novel classification method based on regression is proposed in this 
paper and then the equivalences of the classification and regression are demon-
strated by using numerical experiments under the framework of support vector 
machine. The proposed algorithm implements the classification tasks by the 
way used in regression problems. It is more efficiently for multi-classification 
problems since it can classify all samples at a time. Numerical experiments 
show that the two classical machine learning problems (classification and re-
gression) can be solved by the method conventionally used for the opposite 
problem and the proposed regression-based classification algorithm can classify 
all samples belonging to different categories concurrently with an agreeable 
precision. 

1   Introduction 

Pattern classification and function regression are two typical issues in machine learn-
ing fields. In short, we refer to pattern classification as classification and function 
regression as regression. To the best known of our knowledge, there aren’t reported 
works presenting the equivalence between them. However, it’s obvious that they have 
some potential common characteristics. After the statistical learning theory (SLT) was 
presented as a theoretical foundation of machine learning by Vapnik [1], the equiva-
lence between classification and regression is more evident. Furthermore, the practi-
cal algorithms for the two kinds of problems are very similar [2]. The parallel forma-
tions of theories and similarities of practical algorithms inspire us to study the equiva-
lence between the two kinds of primary problems in machine learning fields. In this 
paper, a classification method based on regression is proposed and the equivalence 
between the classification and regression is formulated using the least squares support 
vector machines [3~5]. 
                                                           
* Corresponding author. 
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2   Formulations of Classification and Regression 

Traditional classification includes two kinds of problems. One is binary-category 
classification and the other multi-category classification. The former refers to the 
problem with two categories, and the later to the problem with at least three catego-
ries. Suykens et al ascribes the binary-category classification to the following alge-
braic problem, name least squares support vector classification (LSVC): 

=
+
−

− 1Iy

y 00
1

b

C

T

,    (1) 

where ),( jijiij yy xxϕ=Ω , ),( ⋅⋅ϕ is the kernel function.  and b can be 

solved from Eq. (1). The classification function can be obtained as [5] 

byxf
N

i
iii +=

=1

),()( xxψα .    (2) 

Traditionally, a multi-classification problem is handled via converting it to several 
binary classifications and then the converted problems is solved, instead of solving 
the original multi-classification problem. 

Function regression using least squares support vector machine is ascribed to the 
following algebraic problem [4], name least squares support vector regression 
(LSVR): 

=
+ − yI1

1 00
1

bT

γ
,             (3) 

where ),( jiij xxϕ=Ω . After Eq. (9) is solved, the regression function takes the 

form as  

bfy
N

i
ii +==

=1

),()( xxx ψα .   (4) 

3   The Equivalence of Classification and Regression 

Comparing conventional classification and regression, it can be seen that all of the 
differences resulted from the forms of constraint conditions. However, it should be 
pointed out that actually these differences are merely caused by artificial factors, but 
not inherent in the classification or the regression. Only for easy handling, researchers 
formulate their constraints in current different ways. Classification-based regression 
method proposed in [2] can be regarded as demonstration from regression to classifi-
cation, where two classes of data are constructed from original regression data using a 
ε  tolerance. 

To present the equivalence from classification to regression, we propose a novel 
classification approach based on regression method. Comparing the training sets for 
pattern classification and function regression, S1={(xi, yi) | xi ∈Rn, yi∈L, i=1, 2, …,  
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N }, S2={(xi, yi) | xi ∈Rn, yi∈R, i=1, 2, …, N }, where L={l1, l2, ... ln} is the label set 
and lj (j=1, 2, ..., n) the label of the j-th category, it can be seen that S1⊂ S2. This ob-
servation motivates us to solve classification by the regression method. Hence, the 
regression function given by Eq. (4) still is valid for pattern classification. The pro-
posed approach differs from that for pure pattern classification on judgment of cate-
gory labels. Sample x  is assigned the element of label set L, which has the smallest 
difference with f(x), e.g. 

})({min arg
1

*
j

nj
lfj −=

≤≤
x .                       (5) 

4   Simulation Experiments 

Two simulation experiments are given to demonstrate the feasibilities of the algo-
rithms mentioned above. The first one is to regress the function sin(x) (0≤ x ≤4π) by 
using LSSVC. The second one is to classify a multi-class instance (named as “Strip”) 
generated randomly within a 40×20 2D square by using LSSVR. The running parame-
ters for each instance are presented in table 1. For “Sine” instance both of the training 
and the testing correct rates are 100%. For “Strip” instance, the training correct rate is 
100% and the testing correct rate is 99.6%. The detailed information about the simula-
tion will be published on international journals soon. 

Table 1. Parameters for each data set 

Parameters Data names σ  C/γ  ε  
Sine 10.0 1.0 0.01 
Strip 800.0 3.0 NA 

5   Conclusion and Discussion 

A novel classification method is proposed in this paper, and then the dual equivalence 
between classification and regression is analyzed and demonstrated by using numeri-
cal experiments. The equivalence is of much importance for efficiency improvement 
in multi-classification problems, which enables one to classify all samples belonging 
to different categories at a time. 
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Abstract. First, the impacts of uncertainty of position and attribute on 
topological relations and the disadvantages of qualitative methods in processing 
the uncertainty of topological relations are concluded. Second, based on the 
above point, the fuzzy membership functions for dividing topology space of 
spatial object and for describing uncertainty of topological relations are 
proposed. Finally, the fuzzy interior, exterior and boundary are defined 
according to those fuzzy membership functions, and then a fuzzy 9-intersection 
model that can describe the uncertainty is constructed. Since fuzzy 
9-intersection model is based on fuzzy set, not two-value logic, the fuzzy 
9-intersection model can describe the impacts of position and attribute of spatial 
data on topological relations, and the uncertainty of topological relations 
between fuzzy objects, relations between crisp objects and fuzzy objects, and 
relations between crisp objects in a united model. 

1   Introduction 

So far, there are two methods for modeling spatial phenomena in Geographical 
Information System (GIS): one is crisp method and another is fuzzy one. The crisp 
method assumes that the extent and the borders of spatial phenomena are precisely 
determined, homogenous, and universally recognized, while the fuzzy method models 
many spatial phenomena that do not have shape boundaries or whose boundaries can 
not be precisely determined [1]. The first kind of spatial phenomena often is modeled 
by crisp objects, such as crisp points, crisp lines and crisp regions, while the second 
can be represented as fuzzy objects.  

Topological relations denote the unchanged characteristics under the topological 
transform, such as translation, rotation and scale. Its description is an attractive topic 
of spatial relations research, and also an important component of spatial Structure 
Query Language (SQL). Most existing methods for describing topological relations 
between crisp objects are qualitative, and refinement metrics are adopted to overcome 
the shortcomings. That is, qualitative methods can’t describe the metric information 
of topological relations. On the one hand, as an extensively used method to describe 
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topological relations, the 9-intersection model is a binary relation and based on crisp 
set theory, which only uses 0 and 1 to describe topological relations, so it can not deal 
with uncertainty of topological relations and their similarities. On the other hand, the 
uncertainty of spatial data (including position uncertainty of crisp objects and spatial 
extent fuzziness introduced by fuzzy objects) makes topological relations also 
uncertain. By far, three methods - such as qualitative, fuzzy and probability - are used 
to describe uncertainty of topological relations. However, as different methods are 
chose to describe the topological relations between crisp objects and the relations 
between fuzzy objects, it is possible to bring difficulties on spatial analysis about 
spatial relations, and to make information loss.  

In this paper, the fuzzy set theory is introduced to deal with the uncertainty of 
topological relations. We focus our attention on a unified fuzzy 9-intesection model, 
which can describe the topological relations between crisp objects and relations 
between fuzzy objects in a uniform framework. Our contribution consists of: (i) the 
definition of membership functions for partitioning the topological space into three 
fuzzy sets: fuzzy interior, fuzzy boundary and fuzzy exterior; (ii) the development of 
a united fuzzy 9-intersection model that can describe uncertainty of topological 
relations introduced by position uncertainty and fuzzy objects. 

Section 2 discusses the influence of position uncertainty and fuzzy objects on 
topological relations and reviews some related papers. The existing method for 
describing topological relations between crisp objects and relations between fuzzy 
objects are analyzed, and existent problems are pointed out in section 3. In section 4, 
we propose the membership functions for dividing a crisp object into three fuzzy 
parts: fuzzy interior, fuzzy boundary and fuzzy exterior, and constructs a fuzzy 
9-intersection model to describe the uncertainty of topological relations. Finally, some 
advantages and disadvantages of the fuzzy 9-intersection model are pointed out in 
section 5. 

2   Related Work 

2.1   The Uncertainty of Spatial Data 

Uncertainty in geographical information science mainly includes position uncertainty, 
attribute uncertainty, temporal uncertainty, logical consistency and data integrality, 
etc. In this paper, the two main uncertainties of spatial data will be discussed. The 
first is the position uncertainty which is not inherent in spatial phenomena, such as 
road, park and house, etc. but introduced by limitation of data capture systems and the 
constraints of the capacity of digital stores, etc. The second is fuzziness leaded by 
fuzzy objects, which is inherent in spatial phenomena, such as the intersection area 
between the city and the rural areas and the transition zone between various soil types. 
Because of the position uncertainty and fuzziness, the topological relations between 
road and park and the relations between road and intersection area is uncertain. 
Therefore, how to model the relations and to deal with the query, “find all roads 
which go across the intersection area of city and the rural area”, still remains to be an 
unresolved problem. Because of the complexity of this problem, we only focus our 
attention on the basic theory and model, and the query is not preferred. 
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Position Uncertainty. Position uncertainty mainly denotes position variances between 
spatial position stored in GIS and real ones leaded by data production, representation 
and analysis, etc. that is, the position stored in GIS is not the real ones of phenomena, 
but distributes in a band with some probabilities. In general, the position uncertainty of 
a crisp point is measured by an error ellipse (Fig. 1a). The position uncertainty of a crisp 
line and a crisp region can be modeled by ε  band model [3], which is a zone with fixed 
width along the line (Fig. 1b), or the boundary of the region (Fig. 1c). The error band 
model was proposed to process position uncertainty [4]. 

  

a b c 

Fig. 1. Position uncertainty: (a) error ellipse for a crisp point, (b) -error band for a crisp line, 
(c) -error band for a crisp region [2] 

Fuzzy Objects. Fuzzy objects show fuzziness of boundaries of spatial phenomena [5]. 
In a fuzzy object, each element have a membership degree indicating the extent that the 
element belong to the object, therefore each element can belong to many objects 
(classes) with different membership degree. Fuzzy objects can model fuzzy phenomena 
and resolve the shortcoming of crisp ones that each element only belongs to one object 
with maximum membership degree 1. Let ),( yxμ  is the membership degree of an 

element belonging to an object, then for crisp objects, the domain of ),( yxμ  is {0, 1}; 

while for fuzzy objects, it is [0, 1]. Cheng et al. proposed a way of extracting fuzzy 
objects from observations [6, 7]. Although fuzzy objects resolve the model of fuzzy 
phenomena, it brings difficulties on describing topological relations between fuzzy 
objects. 

2.2   The Description of Topological Relations Between Crisp Objects 

The 4- and 9-intersection models are based on the point-set topology. In 4-intersection 
model [8], a spatial object A is decomposed into two parts: the interior ( A ) and the 
boundary ( A∂ ). The topological relations between spatial object A and B is 
determined by a 2×2 matrix formed by intersection of two parts of A and B. In 
9-intersection model [9], intersection of three sets - interior, boundary and exterior - 
forms a 3×3 matrix to distinguish topological relations.  

In general, the intersection between two crisp sets has two states: non-empty (1) or 
empty (0), so 4-intersection model can describe 16 topological relations, while 
9-intersection model 512. However, most of topological relations determined by 
9-intersection model make no sense if considering the physical reality of 2D space. 
For example, there are only 8 significant topological relations between two crisp 
regions, 19 between crisp lines and crisp regions and 33 between two crisp lines.  
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Qualitative topological relations are binary in essence; therefore qualitative method 
is a crisp one. According to the criteria of uniqueness of representation of spatial 
relations, each qualitative relation between objects can be uniquely distinguished in 
the formulism, i.e., the possible relations are mutually exclusive [10]. As a result, 
qualitative one can not deal with the uncertainty of topological relations introduced by 
position uncertainty and fuzzy objects. 

2.3   The Description of Topological Relations Between Uncertain Objects 

The Influence of Position Uncertainty on Topological Relations. The error band 
model of position uncertainty, violating the definition of boundary in 9-intersection 
model based on the point-set topology, makes objects be not a crisp point set, but be an 
uncertain set. That is, a point does not only belong to only one set of the three. As 
9-intesection model can not handle the influence of position uncertainty, the relations 
distinguished by the model are different with the real relations. 
 

    
a b c d 

Fig. 2. Impact of position uncertainty on topological relations: (a) geometric graphic of 
topological relations; (b) meet; (c) disjoint; (d) overlap 

 

The error band of position uncertainty makes the topological relation between crisp 
objects is not unique any more, but corresponds with many ones with different 
membership degrees. For example, the topological relation in Fig. 2a is meet 
according to the position stored in GIS, while it may be meet (Fig. 2b), disjoint (Fig. 
2c) or overlap in real world(Fig. 2d). In addition, despite topological relations in Fig. 
2a and 2b are same, they have different dimension of boundary intersection: the first 
is 1-dimension, while the second is 0-dimension. The other topological relations have 
similar problems. 

The Influence of Fuzzy Objects on Topological Relations. The influence of fuzzy 
objects on topological relations lies in following three aspects: (1) each element in 
fuzzy objects partly belongs to several objects with different membership degrees, 
rather than strictly belong to one object or not. This makes it difficult to define the 
interior, boundary and exterior of fuzzy objects in term of the 9-intersection model; (2) 
the membership degree of each element and its distribution in space also have effect on 
topological relations between fuzzy objects, therefore fuzzy objects can’t be regarded 
as a whole, but each element influence on topological relations should be considered; 
(3) fuzziness and position uncertainty of fuzzy objects exist simultaneously, and both of 
them limit description of topological relations. Existing methods, especially qualitative 
one, do not consider the influence of each element; therefore they can not describe the 
topological relations between fuzzy objects accurately. 
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2.4   Shortcomings of Existing Methods  

If not considering the uncertainty of topological relations introduced by position and 
fuzzy objects, it is concluded that the qualitative method, such as 9-intersection 
model, is a successful and mature method. On the one hand, although the 
9-intersection model has many advantages for modeling binary and composite 
topological relations between crisp objects, and has been applied to many fields, it 
cannot be directly used to handle with the uncertainty of topological relations. On the 
other hand, the existing methods for describing uncertainty are imperfect and 
inconsistent each other, especially inconsistent with 9-intersection model. As different 
methods are selected to model topological relations between crisp objects, relations 
between fuzzy objects and relations between uncertain objects (denoting crisp objects 
with position uncertainty), they possibly results in different resulting relations, which 
brings difficulties on application about topological relations. Accordingly, it is 
necessary to use a model to describe topological relations between fuzzy objects, 
relations between crisp objects, relations between uncertain objects and relations 
between uncertain objects and fuzzy objects in a uniform framework. 

By expanding the 9-intersection model proposed by Egenhofer, a unified fuzzy 
9-intersection model is created to represent topological relations between fuzzy 
objects, relations between uncertain objects and relations between fuzzy objects and 
uncertain objects based on fuzzy sets. In order to achieve it, following three problems 
about crisp 9-intersection model must be resolved: 

(1) In the crisp 9-intersection model, a crisp method is adopted to divide 
topological space into crisp interior, boundary and exterior. Since there has no a 
smooth transition zone among three crisp parts, an element can be allowed strictly to 
belong to only one of the three sets, which results in the 9-intersection model can not 
handle with the influence of position uncertainty and fuzzy objects on topological 
relations. In order to consider the uncertainty, a unified fuzzy 9-intersection model 
should adopt a soft partition method to divide topological space into three fuzzy parts: 
fuzzy interior, boundary and exterior, and allow overlaps among them and partly 
membership between an element and the three fuzzy parts. 

(2) In the crisp 9-intersection matrix, because each element is either empty (0) or 
non-empty (1), and non-overlap among three crisp parts, the topological relation 
between two objects only corresponds to a matrix, that is, the topology between two 
objects can only be represented by one topological relation. While position 
uncertainty and fuzzy objects make the topology between two objects is not unique 
any more. This means the topology may be represent by many relations with different 
membership degrees. Therefore, in the fuzzy 9-intersection matrix, the domain of 
each element is [0, 1], rather than {0, 1}, which makes the relation between the 
topology and the topological relations is a many-to-many mapping, rather than 
one-to-one. 

(3) Each element of an uncertain object or a fuzzy object has different 
contributions on its topological relations, but the crisp 9-intersection model only 
regards them as a whole. The fuzzy 9-intersection model should take into account the 
contribution of each element to topological relations. 
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3   Fuzzy Description of Topological Relations 

3.1   Fuzzy Set Theory 

The fuzzy set theory is an extension of crisp set theory [11]. It overcomes the 
disadvantage of bool logic of the crisp one, makes that there has a smooth transition 
between the element inside and outside a set, and allows an element can partly belong 
to a set, rather than completely belong to or not.  

Like the crisp set, the operators of fuzzy union ( ), fuzzy intersection ( ), fuzzy 
difference (-) and fuzzy complement (C) can be defined as formula (1 – 4) according 
to min - max principle. 

( ) ( ) ( )( )xxmaxx BABA
~~~~ ,μμμ =  . (1) 

( ) ( ) ( )( )xxminx BABA
~~~~ ,μμμ =  . (2) 

( ) ( )xx AAc ~~ 1 μμ −=  . (3) 

( ) ( ) ( )( )xxminx cBABA
~~~~ , μμμ =−

 . (4) 

In formula (1 – 4), symbols A
~  and B

~  denote fuzzy set, and function ( )xBA
~~μ , ( )xBA

~~μ , 

( )xcA
μ  and ( )x

BA
~~−μ  is the membership function of fuzzy union BA

~~ , fuzzy intersection 

BA
~~ , fuzzy complement CA

~  and fuzzy difference BA
~~

−  respectively between fuzzy 
sets A

~  and B
~ . 

Let A
~

 be a fuzzy set defined on domain U, then for an any real number ]1,0[∈α , 

the crisp set  is called the α -cut set of A
~ . 

3.2   Formal Definitions of Topological Relations  

Topological relations can be represented as a five-tuple ( )DHFVUcS_Topologi ,,,, . 

Symbol U stands for the set of spatial objects, V is the set of topological relations, F is 
the set of mapping functions, H is the functions set for partitioning topological space, 
D is the domain of functions in F and H. For an arbitrary topological relation Vvi ∈ , 
there always have a mapping function 

if
 in F correspondence with 

iv . The function 

DUUf i →×:  means membership degree between topology between any objects in U 

and iv . 
For crisp description of topological relations between regions, V = {disjoint, meet, 

overlap, cover, coveredBy, contain, inside, equal}, and each relation in V has a 
9-intersection matrix. F is a set of binary functions, each function if  in the set judges 

which matrix of topological relation in V is equal with the 9-intersection matrix 
between two regions, therefore the domain of function 

if  is {0, 1}. The functions in H 

are defined in terms of interior point, exterior point and boundary point of point-set 
topology, so they are also crisp and their domains are {0, 1}. 

For the fuzzy description of topological relations, the topological relation set is 
equal with that of crisp topological relations. There are three functions, ),(

~
1 yxh , ),(

~
2 yxh  

and ),(
~

3 yxh , defining the membership degree of any one point belonging to fuzzy 

( ){ }UxxxA
A

∈≥= ,~ αμα
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if
~iv

interior, fuzzy exterior and fuzzy boundary, so their domains are [0, 1]. Function 
]1,0[:

~
→× UUf i

 in F computes the membership degree that the topology between 

objects belongs to .   Therefore, the fuzzy description is to define the membership 
functions in H and F. Defining membership function  is called fuzzy partition of 
topological space (section 3.3), and the ones in H is called fuzzy description of 
topological relations (section 3.4).  

3.3   Fuzzy Partition of Topological Space 

The key in fuzzy description of topological relations is expanding the crisp partition 
based on two-value logic to fuzzy partition. The fuzzy model uses fuzzy set to 
partition topological space and to define membership functions. 

Fuzzy Partition of Topological Space for a Crisp Region. Since influenced of data 
uncertainty, the fuzzy boundary of a crisp region does not only denote the vector 
boundary, but is a buffer zone, which is a ( 0≥a ) width and centered on the boundary 
of the region, expanding into exterior and taken from region’s boundary into interior. 
The longer the distance from a point to the region’s boundary is, the smaller 
membership degree that the point belongs to the region’s boundary is; contrarily, the 
larger membership degree is. 

   
a  b  c  

Fig. 3. Fuzzy partition of a crisp region: (a) fuzzy boundary; (b) fuzzy interior; (c) fuzzy exterior 

The membership degree of a point belonging to the fuzzy boundary reaches 
maximum value 1 on the region’s boundary (Fig. 3a). If the trapeziform function is 
selected to compute the membership degree of any point belonging to the fuzzy 
boundary, then the membership function of fuzzy boundary is defined by formula (6). 

( )
( )
( )
( ) ∂∈

∈−
∈

= −

Ayx

Ayxyxd

Ayxyxd

yxD

,0

,),(

,),(

,  . 
(5) 

( )

( )
( ) ( )

( )
( ) ( )

( ) ≥

<<−
=

<<−+
−≤

=

ayxD

ayxD
a

yxDa
yxD

yxDa
a

ayxD
ayxD

ayxborder

,0

,0
,

0,1

0,
,

,0

;,μ  . (6) 
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In the formula (5), the symbol A , −A  and A∂  denotes the crisp interior, exterior 
and boundary of a region respectively in crisp 9-intersection model, and function 

( )yxd ,  represents the minimum distance from a point (x, y) to the boundary.  
As showed in Fig. 3b, the fuzzy interior of a crisp region does not denotes the 

space bounded by its vector boundary, but a buffer zone that has width a ( 0≥a ) from 
the crisp exterior to the crisp interior. Those points whose ( )yxD ,  value to region’s 

boundary is larger than or equals a have maximum membership degree 1, while the 
degrees of other points reduce from 1 to 0 gradually with the ( )yxD ,  value decreasing. 
The membership function of the fuzzy interior of a crisp region is:  

( )
( )

( ) ( )
( ) ≥

<<

≤

=

ayxD

ayxD
a

yxD
yxD

ayxinterior

,1

,0
,

0,0

;,μ  . (7) 

The membership function of the fuzzy exterior of a crisp region is:  

( )
( )

( ) ( )
( ) >

−>≥
−

−≤

=

0,0

,0
,

,1

;,

yxD

ayxD
a

yxD
ayxD

ayxexteriorμ  . (8) 

For convenience, the boundary of fuzzy interior with maximum degree is called 
interior boundary, while the boundary of fuzzy exterior with maximum degree is 
called exterior boundary. The interior boundary is a close curve by shrinking from the 
boundary, while the exterior boundary is the one by expanding into the exterior. 
Parameter a controls the width of fuzzy zone and its value can be equal to the width 
of error band. 

 

Fig. 4. Membership curves of fuzzy partition of a crisp region 

Fuzzy Partition of Topological Space for a Crisp Line. Fuzzy partition of 
topological space for a crisp line is showed in Fig. 5, the fuzzy interior, fuzzy boundary 
and fuzzy exterior overlap each other. In addition, the fuzzy interior or fuzzy boundary 
is not a crisp line or a crisp point any more, but a buffer zone or a buffer circle with 
membership degree for each point. Any point can belong to fuzzy interior, fuzzy 
boundary or fuzzy exterior with different membership degree, rather than only belong 
to one of crisp interior, crisp boundary and crisp exterior. 
 

μ

a -a 

outeriorμ  
interiorμ

( )yxD ,

borderμ
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),(' yxd

  
a  b  c  

Fig. 5. Fuzzy partition of a crisp line: (a) fuzzy interior; (b) fuzzy boundary; (c) fuzzy exterior 

Let a be a control parameter, and condition 0≥a  holds, then the membership 
functions of the fuzzy interior, the fuzzy boundary and the fuzzy exterior are defined 
by formula (9 – 11), where function ),( yxd  means computing minimum distance from 

point (x, y) to the crisp interior of a crisp line;       denote computing minimum 
distance from point (x, y) to the end-points of a crisp line. 

<−
≥

=
ayxd

a

yxda
ayxd

ayxborder ),('
),('

),('0
);,(μ  . 

(9) 

<−
≥

=
ayxd

a

yxda
ayxd

ayxinterior ),(
),(

),(0
);,(μ  .  (10) 

<

≥
=

ayxd
a

yxd
ayxd

ayxexterior ),(
),(

),(1
);,(μ  . (11) 

Fuzzy Partition of Topological Space for a Crisp Point. A crisp point can be 
partitioned into fuzzy interior and fuzzy exterior (Fig. 6). The fuzzy interior of a crisp 
point is a fuzzy circle zone, in which the membership degree that a point belongs to the 
fuzzy interior decreases from the center point of the zone to its boundary gradually, 
while the membership degree that a point belongs to the fuzzy exterior increases from 
the center point of the zone to its boundary. 

 

  
a b c 

Fig. 6. Fuzzy partition of a crisp point: (a) fuzzy interior; (b) fuzzy exterior; (c) membership 
function curve 
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<
−

≥
=

ayxd
a

yxdc
ayxd

ayxinterior ),(
),(

),(0
);,(μ  . (12) 

<

≥
=

ayxd
c

yxd
ayxd

ayxexterior ),(
),(

),(1
);,(μ  . 

(13) 

The control parameter in formula (12) and (13) has same meanings with formula  
(9 – 11). 

3.4   The Unified Fuzzy 9-Intersection Model 

Fuzzy partition of topological space allows the fuzzy interior, fuzzy boundary and 
fuzzy exterior to overlap each other, and those points in common zone have different 
membership degree belonging to the three fuzzy parts whose width can be adjusted by 
the value of control parameters in membership functions. In fact, the three fuzzy parts 
formed by fuzzy partition of topological space can be regarded as three fuzzy sets, 
and each point with a membership degree in the three fuzzy sets. 

For a crisp object, topological space can be partitioned into the fuzzy interior, 
fuzzy boundary and fuzzy exterior. In addition, both objects A and B impose two 
partitions on the topological space, which makes that any point can simultaneously 
belong to the three fuzzy parts of A and of B with different membership degree. As a 
result, there are 6 fuzzy sets: A

~ , A
~∂ , −A

~ , B
~ , B

~∂  and −B
~ . Let symbol 

ABU  mean the 
plane space in which A and B are embedded, then the six fuzzy sets of crisp A and B 
are defined by formula (14 – 19). 

( )( ){ }ABAinterior UyxyxA ∈= ,,
~ μ  . (14) 

( )( ){ }ABAborder UyxyxA ∈=∂ ,,
~ μ  . (15) 

( )( ){ }ABAexterior UyxyxA ∈=− ,,
~ μ  . (16) 

( )( ){ }ABBinterior UyxyxB ∈= ,,
~ μ  . (17) 

( )( ){ }ABBborder UyxyxB ∈=∂ ,,
~ μ  . (18) 

( )( ){ }ABBexterior UyxyxB ∈=− ,,
~ μ  . (19) 

In formula (14 – 19), function ( )yxAinterior ,μ  and ( )yxBinterior ,μ  is the membership 

function of the fuzzy interior defined according to crisp A and B respectively (control 
parameters are omitted), and other membership functions have similar meanings. 
According to definitions above, the crisp 9-intersection model can be expanded into 
the unified fuzzy 9-intersection model:  
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Where ),(
~

BAI  is denoted as fuzzy 9-intersection matrix, where σ  means finding 
maximum membership degree from a fuzzy set. For example,  

( )( )),(),,()
~~

( ),( yxyxminmaxBA BinteriorAinteriorUyx AB
μμσ ∈=  

The value of each element in the fuzzy 9-intersection model ),(
~

BAI  is the 

maximum value of the intersection of two fuzzy sets. Because the three fuzzy sets are 
determined by the membership functions of partitioning topological space, the value 
of element in fuzzy 9-intersection matrix is also decided by the membership 
functions. If the fuzzy partition is degraded into a crisp one, then the six fuzzy sets: 
A
~ , A

~
∂ , −A

~ , B
~ , B

~∂  and −B
~  also become six crisp sets. The degradation will be 

reached by adjusting value of the control parameters in membership functions. 

3.5   Fuzzy Description of Topological Relations Between Fuzzy Objects 

The topological relations cover three categories: topological relations between fuzzy 
objects (TRFF), relations between fuzzy objects and crisp objects (TRFC) and 
relations between crisp objects (TRCC). The fuzzy 9-intersection matrix of TRCC can 
be computed by formula (20). But the others must be based on the fuzzy partition of a 
fuzzy object. 

Topological Relations between a Fuzzy Object and a Crisp Object. TRFC deals 
with topological relations between a fuzzy region and a crisp object, such as a crisp 
region, a crisp point and a crisp line. The fuzziness of TRFC depends on fuzzy partition 
of crisp objects and fuzzy objects. To describe TRFC, the crisp object is partitioned into 
three fuzzy sets, and the fuzziness of the fuzzy object should be also considered. Let A

~  
be a fuzzy object, and B be a crisp one. α , β  be any two real number in [0, 1] with 

5.0>α  and 05.0 ≥> β . Let α - and β -cut set of fuzzy object A
~  be αA  and 

βA  

respectively, then the crisp set αA , 
αβ AA −  and 

βAA −0
 is the crisp interior, boundary 

and exterior of A
~  respectively (Fig. 7). The distance from any point to crisp boundary 

of A
~  is defined by formula (21). 

( ) ( ))',',,(,
)','(

yxyxdminyxD
AAyx αβ −∈

=  . (21) 

 

Fig. 7. Fuzzy partition of a fuzzy object 

βA  αA   
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Membership function of fuzzy partition of A
~  is defined by replacing formula (5) 

with formula (21). The three fuzzy sets of A
~  can be determined by formula (22 - 24). 

AA
~~ =  . (22) 

( )( ){ }αβμ AAyxyxA Aborder −∈=∂ ,,
~

 . (23) 
cAA

~~ =−  . (24) 

First, according to formula (22 - 24), the three fuzzy sets of A
~  will be obtained. 

Second, the three fuzzy sets of B will be computed by formula (17) – (19). Finally, the 
fuzzy 9-intersection matrix of TRFC will be computed by formula (20). 

Topological Relations between Fuzzy Objects. TRFF mainly deals with the 
topological relations between two fuzzy regions. The fuzziness of TRFF comes from 
the fuzziness of two fuzzy objects and that of fuzzy partition of topological space of 
fuzzy objects. Six fuzzy sets about two fuzzy objects A

~  and B
~  can be obtained by 

formula (22 - 24), and then the fuzzy 9-intersection matrix of TRFF will be identified 
by formula (20). 

4   Conclusions 

In this paper, a unified fuzzy 9-intersection model is proposed to describe the 
uncertainty of topological relations introduced by position uncertainty and fuzzy objects 
in a uniform framework. In comparison with existing method for describing topological 
relations, the fuzzy model has following advantages: (1) it can describe the uncertainty 
of objects and their topological relations in a uniform framework, where the fuzziness of 
fuzzy objects and position uncertainty of a crisp object is described by the membership 
functions, while the fuzzy 9-intersection model handles with the uncertainty of 
topological relations; (2) it can describe the topological relations among fuzzy objects 
and crisp objects in a uniform framework; (3) it is based on the fuzzy partition of 
topological space, and allows the three fuzzy sets to overlap each other, therefore the 
domain of each element is [0, 1] in fuzzy 9-intersection matrix, not {0, 1} any more; (4) 
the uncertainty of topological relations in fuzzy 9-intersection model is indicated by a 
membership degree. 
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Abstract. The unified fuzzy 9-intersection model of topological relations can 
describe the uncertainty of topological relations introduced by the uncertainty 
of spatial data. In this article, first, the raster algorithm for computing fuzzy 
9-intersection model is presented, and the vector algorithms for computing 
fuzzy 9-intersection model of point/point, point/line, point/region, line/line, 
line/region, region/region topological relations are also provided. Second, based 
on the software developed by us, the examples for computing fuzzy 
9-intersection matrix between two crisp objects, between two fuzzy objects and 
between a crisp object and a fuzzy object are listed. The results and analysis 
show that the unified fuzzy 9-intersection model is effective to describe the 
uncertainty of topological relations. 

1   Introduction 

In the first paper, “Fuzzy Description of Topological Relations I: A Unified Fuzzy 
9-Intersection Model”, we present the main idea of our model. In this paper, we 
intend to bear out our model from algorithm and experiment, the main content 
includes: (i) the design of the raster and the vector algorithm to compute the fuzzy 
9-intersection matrix; (ii) the implementation of the fuzzy 9-intersection matrix. 

For convenience, in the following part of this paper, the formula (1 - 24) denotes 
the corresponding formula in the first paper. 

2   Raster Method for Computing Fuzzy 9-Intersection Matrix 

After identifying the membership functions and their control parameters, the fuzzy 
9-intersection matrix and the three fuzzy sets of spatial objects can be computed by 
the membership functions of the fuzzy 9-intersection model. The raster method is 
computing membership degree of each point belonging to the three fuzzy sets, and 
then the fuzzy 9-intersection matrix can be worked out by formula (20). Because the 
vector space is continues, how to get discrete points is critical. Raster method 
computes membership degree in terms of following three principles: (1) if both object 
A and B are stored as raster format, then the center point of a raster are used to 
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compute membership degree (fuzzy objects are stored as raster format); (2) if one of 
object A and B is a fuzzy object, the other is a crisp one, then the crisp one must be 
rasterized according to the raster’s size of the fuzzy object to compute membership 
degree; (3) if both A and B are vector objects, then both of them must be rasterized 
according to a predefined size. The raster method approximates continuous space by 
discrete rasters, so the precision is limited by the raster’s size. If the size is too large, 
the precision will be small; if the size is too small, the precision would be fine, but the 
compute speed would be slow. Therefore, except for fuzzy objects, the raster method 
is not a good option. 

3   Vector Method for Computing Fuzzy 9-Intersection Matrix 

Since the precision of raster method is smaller than vector one, and compute speed 
slower, the vector method can be adopted to compute membership degrees for vector 
objects. For convenience, the symbol 11μ , 12μ , 13μ , 21μ , 22μ , 23μ , 31μ , 32μ  and 

33μ  denotes the value of corresponding element in the unified fuzzy 9-intersection 

matrix (formula 20) respectively. The following algorithm assumes that the controls 
parameters of point, line and polygon fuzzy partition are same. 

  
 

a b c 

Fig. 1. Vector algorithm for computing point/point fuzzy topological relations 

Because of a crisp point no fuzzy boundary, the 5 elements related to fuzzy 
boundary in fuzzy 9-intersection matrix make no sense, and only 11μ , 13μ , 31μ  and 

33μ  make sense. The point/point topological relations fall into three categories: (i) 

Distance (A, B) ≥ 2a (Fig. 1a); (ii) a ≤ Distance (A, B) < 2a (Fig. 1b); (iii) 0 ≤ 
Distance (A, B) < a (Fig. 1c), where Distance (A, B) represents the distance between A 
and B, and a denotes the control parameter in formula (12) and (13). 

(1) No matter which one holds of the three conditions, the value of 11μ  will be 

obtained by inputting into formula (12) the coordinates of center point between A and 
B, because the intersection between membership functions of fuzzy interior of A and 
B reaches maximum value at the center point. 

(2) When (i) and (ii) holds, the value of 13μ  and 31μ  must be 1 (Fig. 1a and 1b); if 

(iii) holds, as showed in Fig. 1c, for computing 13μ , the coordinate of center point 

between A and C is input into formula (12), and for 31μ  the coordinate of center point 

between B and D. 
(3) 33μ  is 1.0, because the intersection between fuzzy exteriors of two points 

always reaches 1.0. 

A
B

D 

C
A 

B 
A B 
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Other algorithms for point/line, point/region, line/line, line/region and region/region 
are similar with point/point. 

4   Fuzzy 9-Interesection Matrix 

4.1   Fuzzy 9-Interesection Matrix Between Crisp Objects 

Based on the membership functions and the vector algorithm above, provided the 
value of the control parameters in the membership functions are identified, the fuzzy 
9-intersection matrix can be worked out. The values of control parameters can be 
equal to the width of error band, such as the ε -error band. In this paper, we just care 
about the width of error band, not the method to compute the width, therefore the 
values control parameters are set to 200 meter in following examples, and the scale of 
spatial data is 1: 250,000. As the parameters only control the width of the fuzzy parts, 
while not change the characteristics of membership functions, choosing a value 200 
for the parameters does not limit the effect of our method. 

     

∗
∗∗∗

∗

00.100.1

00.100.0
 

∗
∗∗∗

∗

00.100.1

00.145.0

∗
∗∗∗

∗

00.100.1

00.150.0

∗
∗∗∗

∗

00.179.0

79.071.0

∗
∗∗∗

∗

00.150.0

50.000.1
 

a b c d e 

Fig. 2. Fuzzy 9-interesection matrix of point/point topological relations 

The back object is denoted as point A and the gray object point B in Fig. 2, while 
the circle outside the points are boundary of their fuzzy zones. Symbol ‘*’ means that 
the element in fuzzy 9-intersection matrix is insignificant (because crisp points have 
no fuzzy boundary). As showed in Fig. 2, when both two crisp points are outside the 
two fuzzy zones (Fig. 2a – 2c), 

31μ  and 
13μ  always are 1.0; when they are inside (Fig. 

2d – 2e), with the distance between two crisp points decreasing, 
31μ  and 

13μ  

decrease from 1.0 to 0.5, and 
11μ  increases from 0.0 to 1.0 at the same time. It must 

be pointed out that 
31μ  and 

13μ  in fuzzy 9-intersection matrix is 0.5, while they are 0 

in crisp 9-intersection matrix when two crisp points are equal. According to theory of 
position uncertainty, the real positions of two identical points are distributed in an 
error band, which results in that those points in the error band belong to the fuzzy 
interior and the fuzzy exterior of a crisp point with different membership degree 
simultaneously. Accordingly, 

31μ  and 
13μ  is not 0.0 at the real positions, but 0.5 

possibly, which is logical according to formula (20). This also indicates that the fuzzy 
9-intersection model can describe the influences of position uncertainty on 
topological relations between two crisp points. By the way, like the crisp 
9-intersection model, 

33μ  always is 1.0 in fuzzy 9-intersection matrix, which results 

from the infinite of fuzzy exterior of a crisp point. 
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Fig. 3. Fuzzy matrix of point/line, point/region and line/line topological relations 

 

Fig. 4. Fuzzy matrix of line/region and region/region topological relations 

The fuzzy matrices between a crisp point and a crisp line, between a crisp point and 
a crisp region, between two crisp lines are listed in Fig. 3; while Fig. 4 shows the fuzzy 
matrix between a crisp line and a crisp region and between two crisp regions. These 
fuzzy matrices in Fig.3 and Fig.4 have similar characteristics with those in Fig.2. 
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4.2   Fuzzy 9-Interesection Matrix Related Fuzzy Objects 
Several examples of fuzzy 9-intersection matrix between a crisp point and a fuzzy 
region are listed in Fig. 5, where the fuzzy region is A, and crisp object is B. In the 
fuzzy 9-intersection matrix, when the point moves from the exterior of A to its core 
gradually, 

11μ  increases gradually, 
21μ  increases first and then decreases, and 

31μ  

decreases. 
Other examples between a crisp line and a fuzzy region, between a crisp region and 

a fuzzy region and between two fuzzy regions are listed in Fig. 6. These fuzzy 
9-interesection matrices have similar characteristics with those in Fig. 5. 

 

Fig. 5. Fuzzy matrix between a crisp point and a fuzzy region 

 

Fig. 6. Fuzzy matrix related fuzzy regions 
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5   Conclusions 

    (1) There are two the algorithms for computing fuzzy 9-intersection matrix: the 
raster and the vector. The vector one is more complex, but is more precise and faster 
than the raster one; while the raster is simpler, but its precision is limited by the 
resolution of raster, and slower than the vector one. 

(2) Despite the trapeziform function is chose to partition topological space into 
three fuzzy parts, and the maximum and minimum operator are selected to implement 
fuzzy union and fuzzy intersection in the fuzzy 9-intersection matrix, the other 
function and operators of fuzzy union and intersection may be adopted [1]. However, 
in this situation, the vector algorithm proposed in this paper is not appropriate any 
more. In general, the trapeziform function and the operators of maximum and 
minimum can meet the need, and are helpful to process membership degree in 
posterior steps. 

(3) The fuzzy description of topological relations violates the criterion of 
uniqueness of representation of topological relations [2], but this is logical, because 
the uniqueness criterion is proposed under no considering the uncertainty of 
topological relations, and only appropriate to evaluate the qualitative methods for 
describing topological relations. From the perspective of uncertainty of topological 
relations, the topological relation between two objects is not unique; therefore the 
result of fuzzy description is logical. 
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Abstract. To counteract software aging, a new nested software rejuvenation 
policy is put forward in this paper. Comparing to the conventional periodic 
software rejuvenation policy, the nested policy takes into account the 
application-level and system-level rejuvenation simultaneously and executes N 
times application-level rejuvenation before system-level rejuvenation. If any 
application-level rejuvenation is not executed successfully, then the system has 
to be rebooted directly. Comparing the minimum average rejuvenation cost per 
year and the maximum system availability of the nested software rejuvenation 
policy with the conventional periodic software rejuvenation policy’s, the results 
demonstrate that the new policy consumes less downtime and lower 
rejuvenation cost, and enhances software availability and reliability. 

1   Introduction 

During the past 20 years, the software performance has yielded tens of thousands fold 
improvement. However, the software complexity along with high-performance also 
brings high maintenance cost, even more than the acquisition cost of system. The 
cutthroat competition in IT industry requires the developers provide more perfect 
software and sooner update. Consequently it is impossible to perform the all-round 
test before throwing the software into market. Some “heisenbugs” and “aging-related 
bugs”[1] cannot be discovered and corrected in time. In addition, the modularization 
development of software also makes it difficult to maintenance. All these reasons 
increase the failure probability of system, and the software availability and reliability 
are encountering new challenge. 

In general, the software reliability can reference the mean time to failure (MTTF) 
and the software availability can reference the ratio MTTF to the sum of MTTF and 
MTTR, where MTTR is the mean time to repair. In order to improve the availability 
and reliability of software, we can increase the MTTF or reduce the MTTR. However, 
whatever technology cannot postpone infinitely the failure time of system without 
degradation, thus more and more researchers began to focus on the technologies that 
can reduce MTTR, e.g. software rejuvenation[2-4], recursive restartability[5], and 
microreboot[6]. In this paper, a new nested software rejuvenation policy is proposed. 
This policy can reduce the rejuvenation cost further.  



 Modeling and Cost Analysis of Nested Software Rejuvenation Policy 1281 

The rest of this paper is organized as follows. Section 2 discusses the previous 
related work to software rejuvenation and the novel aspects of the new policy. The 
nested software rejuvenation policy are elucidated in Section 3. Section 4 analyzes a 
case with two rejuvenation policies, and the results show that the nested policy 
indeed consumes less downtime and lower cost. Conclusions are discussed in 
section 5. 

2   Related Work 

Software aging is a very common phenomenon in a large system during the 
continuous running time. This phenomenon and some special reasons have been 
reported by Huang et al [2; 3]. Software aging degrades the performance of software 
and ultimately induces software to crash. To counteract software aging, a proactive 
technique called software rejuvenation has been proposed in [2]. It involves stopping 
the running software, “cleaning” its internal state (e.g., garbage collection, flushing 
operating system kernel tables, reinitializing internal data structures) and restarting it. 
When the system performance drops down to a certain extent, software rejuvenation 
can release the system resources and rejuvenate the system [2; 3; 7].  

Software rejuvenation is different from the other two techniques that can reduce 
MTTR. Both recursive restartability[5] and microreboot[6] are reactive recovery to 
software failure. While software rejuvenation is a proactive fault management 
technique, which can rejuvenate the degenerative software before it encounters 
failure. 

Conventional software rejuvenation is to perform a predetermined rejuvenation 
policy periodically without considering rejuvenation granularity [3; 8-12]. As a rule, 
fine-grained rejuvenation consumes less downtime and lower cost. Hong Y et al [13], 
Bao Y et al [14] and Xiea W et al [15] proposed the rejuvenation policies considering 
two different granularities. However, these policies are based on the values of 
performance parameters detected on-line, not based on the contributing degree of the 
applications to the performance degradation. We firstly ascertain the main contributor 
of all applications to the performance degradation, formulate the application-level and 
system-level rejuvenation, and then propose a new nested software rejuvenation 
policy.  

3   Nested Software Rejuvenation Policy 

Simply periodic rejuvenation can reduce rejuvenation cost to a certain degree. 
However, it consumes more rejuvenation cost than that we expect. In order to reduce 
the rejuvenation cost further, a nested software rejuvenation policy is put forward 
(Fig. 1). This policy embeds the application-level rejuvenations in the system-level 
rejuvenation. We must ascertain the main contributor of all applications to the 
performance degradation and the evaluating index of system performance. 
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Fig. 1. When the evaluating index reaches the predetermined threshold (Pmin), the system 
executes the application-level rejuvenation to the main contributor. Recurrently a serial of 
rejuvenation values of the evaluating index {Pmax

(1), Pmax
(2), ……, Pmax

(n)} and rejuvenation 
intervals { 0, 1,……, n} will be concluded. The two serials are degressive in order, which 
implies the application-level rejuvenation will be executed more and more frequently and the 
system will not work normally when the rejuvenation times (n) equals to the upper limit N, 
which causes least downtime (i.e. highest availability) or lowest rejuvenation cost. When n 
equals N, the system-level rejuvenation is executed, and the system performance rejuvenates to 
the initial value Pmax

(0), then a new cycle begins. If other software or hardware malfunctions do 
not happen, the system with this policy will run forever. 

The whole rejuvenation process can be divided into N+1 sub-processes. However, 
not all application-level rejuvenations can be executed successfully. One reason is in 
the policy itself. Any rejuvenation can fail according to a certain probability because 
the policy is based on the stochastic rule of historical data of system resources. 
Another reason is the unpredictable hardware or software malfunctions because of the 
change of environment or situation. 

If the system encounter failure when n<N, then the obligatory reboot of system will 
be necessary whatever state the system is being in. After the system-level 
rejuvenation or obligatory reboot, the system rejuvenates the optimal performance and 
the nested policy executes the next cycle. 

4   Rejuvenation Case Analysis 

One sub-process of the system failure and rejuvenation is modeled in Figure 2. 

 

Fig. 2. Savail, Sdown and Sreju show respectively system available state, system failure state and 
system rejuvenation state. The curves with arrow denote the transitions from one state to 
another, and the labels at curves denote the distribution functions of system sojourn time in 
previous state. 

Assuming that the sojourn times of system in states Savail, Sreju and Sdown have 
respectively general distributions F(t), F3(t) and F4(t), and let p(t)=F(t), then p(t) is the 
failure probability of system staying in state Savail at time t. The probability 

 Sdown  Savail
 Sreju 

F(t) F5(t) 

F4(t) F3(t) 
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distribution 5 ( )F t  from state Savail to state Sreju is a unit step function ( )U t δ− , where 

 is the predetermined rejuvenation interval. Assuming the degradation course of 
software is a two-step behavior [1,3,4,8], the state Savail contains two states Sup called 
system robust state and Sprob called system failure probable state. If the sojourn times 
of system in states Sup and Sprob have respectively general distributions F1(t) and F2(t), 
then F (t)= F1*F2(t). 

Define the transition probability ( )( , 0, , 3, )ijQ t i j i j= ≠ then its L-S 

transformation matrix is ( )
0

( ) ( ) ( )st
ij ij ijQ s q s e dQ t

∞ −= = . Set the serial numbers of 

three system states Savail Sreju Sdow as 0 1 2 then 

01 50

02 50

10 30

20 40

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

st

st

st

st

q s e F t dF t

q s e F t dF t

q s e dF t

q s e dF t

∞ −

∞ −

∞ −

∞ −

=

=

=

=

. 

The total probability with which the system is in the three states is h(t), and its L-S 
transformation is 

( )01 02 01 10 02 20( ) ( ) ( ) ( ) ( ) ( ) ( )h s q s q s q s q s q s q s= − + + . 

Define the transient probability from 0 to j (j=1,2) at time t (t>0) by 

0 ( ) ( 0, ,3)jP t j = , and its L-S transformation is 0 00
( ) ( )st

j jp s e dP t
∞ −= , then 

( )00 01 02

01 01 10

02 02 20

( ) ( ) ( ) / ( )

( ) ( ) ( ) / ( )

( ) ( ) ( ) / ( )

p s q s q s h s

p s q s q s h s

p s q s q s h s

= −
=
=

 

Note that the rule ( ) 1 ( )ψ ψ• = − •  meets all above equations. 

Define that the rejuvenation cost per unit time is Cc, the repair cost per unit time 
after failure is Cr, and Cr>>Cc then the expected rejuvenation cost per unit time in 
the steady-state becomes 

{ }01 02
0

2 lim ( ) ( )c r
s

C C p s C p s
→

= +  

Based on the above assumptions, the system downtime (DT) and rejuvenation cost 
(C) per unit time can be calculated by  

( )( ) ( )

( )( ) ( )

( )( ) ( ) ( )( )
0

1 2

1
1

1
1

1 1

( ) ( ) ( )

r f

DT r p R p
ET

C r C p R C p
ET

ET r p R p p t dt

p t F t F t

δ

δ δ

δ δ

δ δ

= × − + ×

= × − + ×

= × − + × + −

= ∗

 (1) 
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where ET is the expected rejuvenation timeperiod including the running time before 
rejuvenation and the expected time executing rejuvenation. r and R denote 
respectively the expected times executing scheduled and unscheduled rejuvenation 
and R>r. Cr and Cf denote the rejuvenation costs of scheduled and unscheduled 
rejuvenation respectively and Cf >>Cr. Moreover, r equals ra (or rs) when executing 
application-level (or system-level) rejuvenation and rs>ra. Cr equals Ca (or Cs) when 
executing application-level (or system-level) rejuvenation and Cs>Ca. δ  can be 
calculated by the lowest cost Cmin( δ ) or the given-failure-probability p=p(δ ). 

To implement the nested rejuvenation policy, we must conclude the rejuvenation 
interval sequence  { 0, 1,……, N} and the maximal times N of application-level 
rejuvenation. To facilitate the analysis, we assume the distribution functions F1(t), 
F2(t), F3(t) and F4(t) are exponential distributions with respective failure rate ( )1 tλ , 

2λ , 31 32/λ λ  and 4λ . 31λ ( 32λ ) denotes failure rate of application-level (system-level) 

rejuvenation. Due to software aging, ( )1 tλ  is a monotone non-decreasing function. 

For different rejuvenation sub-processes, approximately, the sojourn time of system at 
state Sup can be regarded as exponential distribution with different failure rates 

1iλ ( 0 i N≤ ≤ ), which can be obtained by 

( )10 1

1 1 1 1
1 31

0 , 0

1
,  0  

i

i k
k

i

i i N

λ λ

λ λ δ
λ+ −

=

= =

= + ≤ <
 (2) 

The set of downtimes {DT0, DT1, …… DTn-1, DTn} and rejuvenation costs {C0, C1, 
…… Cn-1, Cn} can be calculated by Eqs. (1) and (2). The average downtime per year 
(EDTn) and average rejuvenation cost per year ECn can be computed by the following 
equation. 

1

0 31 32
1

0 31 32

1

0 31 32
1

0 31 32

1 1
( ) ( )

12 30 24,  0
1 1
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( ) ( )
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δ δ
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−
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=
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(3) 

According to the minimum rejuvenation cost rule (Rule ), let EC=Min{ECn}, 
then EC is the minimum rejuvenation cost, and the corresponding n is the maximum 
N1 of application-level rejuvenation times. Similarly, according to the maximal 
availability rule (Rule ), let EDT=Max{EDTn}, then EDT is the minimum 
downtime, and the corresponding n is the maximum N2. Apparently, N1 is not equal 
to N2. 

For the conventional periodic rejuvenation policy, the average rejuvenation cost 
per year EC’ and the system downtime per year DT’ can be solved as bellow: 
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 (4) 

In this equation, rs replaces r in Eq. (1) as the unique scheduled rejuvenation time 
because only system-level rejuvenation can be implemented at this policy. 

5   Experiment and Results 

In this subsection, we illustrate the superiority of nested software rejuvenation policy 
(Policy ) by comparing its minimum average rejuvenation cost per year and 
minimum average downtime with conventional periodic policy’s (Policy ).  

Extending the parameters of experiments in reference [2], the parameters of this 
case are listed in table 1. 

Table 1.  Known failure rates and rejuvenation costs. Ca, Cs and Cf denote the costs of application-
level rejuvenation, system-level rejuvenation and system crash. 1(t) is a monotone non-decreasing 
function. Assume 1(t)=kt+1/240, in which t is the total running time of system and k>0. 

1(0)-1 240hrs 4 0.2/hrs 
2

-1 2160hrs Cf $5000/hr 
31, 51 6/hrs Cs $1000/hr 
32, 52 3/hrs Ca $500/hr 

slope of 1(t)  k 
  

 

Fig. 3. The relation among the application-level rejuvenation times N, the slope k and the 
system downtime per year. (Policy ) 

Downtime 
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Fig. 4. The relation among the application-level rejuvenation times N, the slope k and the 
average rejuvenation cost per year. (Policy ) 

After determining the slope k of 1(t), the average downtime and average 
rejuvenation cost per year of system with nested policy for different application-level 
rejuvenation times can be solved. (Figs. 3 and 4) 

In order to describe clearly the relation between the average rejuvenation costs per 
year for given slopes, we take sections to different slopes in Fig. 4. Figure 5 is 
sectional views of Figure 4 to different slopes. 

The reason of the phenomena in Figs. 3, 4 and 5 is that the larger slope means all 
support applications consume more system resources, and then the rejuvenation 
intervals reduce, the downtimes increase, the average rejuvenation cost increases. 

 

Fig. 5. The average rejuvenation costs per year to different slopes. It can be found that the 
relation function (ECn) between the average rejuvenation cost per year and application-level 
rejuvenation times is concave, decreasing before increasing or monotone increasing for a given 
slope. The minimum average rejuvenation cost per year increases and the maximum 
application-level rejuvenation-times decreases with slope. 
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Given the failure rate 1=1/240, the average rejuvenation cost per year EC’ and 
system downtime DT’ of the conventional periodic software rejuvenation policy can 
be obtained by Eq. (4). The former equals identically $44032.9/year and the latter 
equals identically 16.4264 hrs /year. 

To demonstrate the virtue of Policy , we compare the minimum average 
rejuvenation cost per year of the two policies in Fig. 6.  

 

Fig. 6. Comparison of the minimum average rejuvenation costs per year between the two 
software rejuvenation policies. Note that the minimum average rejuvenation costs per year of 
Policy are increasing with slope and there is a maximum when k is greater than or equal to 
0.00045.  The maximum is equal to $44032.9/year, which is just the rejuvenation cost per year 
of Policy . 

The Comparison of the minimum system downtime per year between the two 
software rejuvenation policies is similar with figure 6. The system with Policy
encounter 16.4264 hrs downtime per year , which is the maximum downtime of the 
system with Policy . Consequently Policy consumes lower rejuvenation cost and 
provides higher availability, that is the system using Policy can run more reliable 
than that using Policy .  

6   Conclusion 

Commonly, there is a main contributing factor to performance degradation in a 
practical system. Therefore a new nested software rejuvenation policy is proposed in 
this paper, which contains the application-level and system-level rejuvenation 
simultaneously, specially emphasizes nesting. This policy reduces further the 
overhead incurred by software rejuvenation.  

To demonstrate the superiority of nested rejuvenation policy to conventional 
periodic policy, we analyze a case in which each sub-process is a time-based 
rejuvenation and conclude the rejuvenation cost and system downtime for the two 
policies. Respectively, according to the rules of minimum rejuvenation cost and 
maximum availability, a series of minimum average downtime and rejuvenation costs  
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per year to different slopes for the two policies are calculated and compared. The 
numerical results show that the nested policy consumes less downtime and lower cost, 
and enhances the software availability and reliability. 

The nested policy described in this paper is a two-level rejuvenation. In practice, if 
we can ascertain the contributing degree of all applications, the nested rejuvenation 
policy can be extended to more level. In addition, the equations and results in this 
paper are only approximations of true values because the failure rate 1iλ in Eq. (2) is an 

approximation. Assuming 1(t) is a monotone non-decreasing linear function with 
slope k, the deviation from real value is increasing with slope. So a more accurate 
solution is needed to develop in the further work.  
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A Fuzzy Multi-criteria Decision Making Model
for the Selection of the Distribution Center

Hsuan-Shih Lee

Department of Shipping and Transportation Management,
Department of Computer Science, National Taiwan Ocean University,

Keelung 202, Taiwan, Republic of China

Abstract. The location selection of distribution is one of the most
important decision issues for logistic managers. In order to encompass
vagueness in decision data, a new fuzzy multiple criteria decision-making
method is proposed to solve the distribution center selection problem
under fuzzy environment. In the proposed method, the ratings of alter-
natives and the weights of the criteria are given in terms of linguistic
variables which is in turns represented by triangular fuzzy numbers.

1 Introduction

In terms of logistical system design and administration, distribution center is
a common problem encountered by logistic managers. During the last decade,
seeking reduced transportation cost in the increased economic scale of produc-
tion has shifted the focus to the selection of distribution center. A distribution
center links suppliers (source) and consumers (demand). A distribution center
selection problem is homomorphic to a plant location selection problem. Fac-
tors such as investment cost, climate condition, labor force quality and quantity,
transportation availability may be considered in the selection of the plant lo-
cation [4,18,19,20,22]. These factors can be classified into objective factors and
subjective factors. Many precision-based methods for location selection have
been developed. Mathematical programming is usually utilized to determine the
optimal location of facilities [1,7,11]. Tompkins and White [22] introduced a
method which used the preference theory to assign weights to subjective factors
by making all possible pairwise comparisons between factors. Spohrer and Kmak
[18] proposed a weight factor analysis method to integrate the quantitative data
and qualitative ratings to choose a suitable plant location from numerous al-
ternatives. All the methods stated above are based on the concept of accurate
measure and crisp evaluation.

In the selection of a best distribution center, the values for the qualitative
criteria are often imprecise. The desired value and importance weight of criteria
are usually described in linguistic terms such as ”very low”, ”medium”, ”high”,
”fair”, and ”very high”. A distribution center selection problem can modeled
as a multiple criteria decision making (MCDA) problem. In traditional MCDM,
performance rating and weights are measured in crisp numbers [10,12,21]. Un-
der many circumstances where performance rating and weights can not be given
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precisely, the fuzzy set theory is introduced to model the uncertainty of hu-
man judgements and such problems is known as fuzzy multiple criteria decision
making (FMCDM). In FMCDM, performance ratings and weights are usually
represented by fuzzy numbers. A FMCDM with m alternatives and n criteria
can be modeled as follows:

D =

⎡⎣ Ã11 Ã12 . . . Ã1n

Ã21 Ã22 . . . Ã2n

Ãm1 Ãm2 . . . Ãmn

⎤⎦
and

W =
[
W̃1 W̃2 . . . W̃n

]
where Ãij is the fuzzy number representing the performance of ith alternative
under jth criterion and W̃j is the fuzzy number representing the weight of jth
criterion.

In dealing with fuzzy numbers, aggregation of fuzzy numbers and ranking
fuzzy number are some of the important issues in group decision. Methods of
aggregation such as OAM can be found in [14]. Many methods for fuzzy rank-
ing have been proposed [2,3,5,6,8,9,13,17,23,24]. They can be classified into two
categories. The first category is based on defuzzification. Various methods of
defuzzification have been proposed. In the first category, fuzzy numbers are de-
fuzzified into crisp numbers or the so-called utilities in some literatures. The
ranking are then done based on these crisp numbers. Though it is easy to com-
pute, the main drawback of this type is that defuzzification tends to loss some
information and thus is unable to grasp the sense of uncertainty. The other cat-
egory is based on fuzzy preference relation. The advantage of this type is that
uncertainties of fuzzy numbers are kept during ranking process. However, the
fuzzy preference relations proposed thus far are too complex to compute. Yuan
[24] has proposed criteria for measuring ranking method. Lee [13] has proposed
a new fuzzy ranking method based on fuzzy preference relation satisfying all cri-
teria proposed by Yuan. In [15], we extended the definition of fuzzy preference
relation [16] and propose an extended fuzzy preference relation which satisfies
additivity and is easy to compute. In this paper, we are going to propose a new
method for FMCDM for the selection of distribution center.

2 Mathematical Preliminaries

Definition 1. The α-cut of fuzzy set A, Aα, is the crisp set Aα = {x | μA(x) ≥
α}. The support of A is the crisp set Supp(A) = {x | μA(x) > 0}. A is normal
iff supx∈UμA(x) = 1, where U is the universe set.

Definition 2. A fuzzy subset A of real number R is convex iff

μA(λx + (1 − λ)y) ≥ (μA(x) ∧ μA(y)), ∀x, y ∈ R, ∀λ ∈ [0, 1],

where ∧ denotes the minimum operator.



1292 H.-S. Lee

Definition 3. A is a fuzzy number iff A is a normal and convex fuzzy subset
of R.

Definition 4. A triangular fuzzy number A is a fuzzy number with piecewise
linear membership function μA defined by

μA(x) =

⎧⎨⎩
x−a1
a2−a1

, a1 ≤ x ≤ a2,
a3−x
a3−a2

, a2 ≤ x ≤ a3,

0, otherwise,

which can be denoted as a triplet (a1, a2, a3).

Definition 5. Let A and B be two fuzzy numbers. Let ◦ be a operation on
real numbers, such as +, -, *, ∧, ∨, etc. By extension principle, the extended
operation ◦ on fuzzy numbers can be defined by

μA◦B(z) = sup
x,y:z=x◦y

{μA(x) ∧ μB(y)}. (1)

Definition 6. Let A be a fuzzy number. Then AL
α and AU

α are defined as AL
α =

infμA(z)≥α(z) and AU
α = supμA(z)≥α(z) respectively.

Definition 7. A fuzzy preference relation R is a fuzzy subset of �×� with mem-
bership function μR(A, B) representing the degree of preference of fuzzy number
A over fuzzy number B.

1. R is reciprocal iff μR(A, B) = 1 − μR(B, A) for all fuzzy numbers A and B.
2. R is transitive iff μR(A, B) ≥ 1

2 and μR(B, C) ≥ 1
2 ⇒ μR(A, C) ≥ 1

2 for all
fuzzy numbers A, B and C.

3. R is a fuzzy total ordering iff R is both reciprocal and transitive.

If fuzzy numbers are compared based on fuzzy preference relations, then A is said
to be greater than B iff μR(A, B) > 1

2 .

Definition 8. An extended fuzzy preference relation R is an extended fuzzy sub-
set of � × � with membership function −∞ ≤ μR(A, B) ≤ ∞ representing the
degree of preference of fuzzy number A over fuzzy number B.

1. R is reciprocal iff μR(A, B) = −μR(B, A) for all fuzzy numbers A and B.
2. R is transitive iff μR(A, B) ≥ 0 and μR(B, C) ≥ 0 ⇒ μR(A, C) ≥ 0 for all

fuzzy numbers A, B and C.
3. R is additive iff μR(A, C) = μR(A, B) + μR(B, C)
4. R is a total ordering iff R is both reciprocal, transitive and additive.

If fuzzy numbers are compared based on extended fuzzy preference relations, then
A is said to be greater than B iff μR(A, B) > 0.

Our extended fuzzy preference relation is defined as follows.
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Definition 9. For any fuzzy number A, B, extended fuzzy preference relation
F (A, B) is defined by the membership function

μF (A, B) =
∫ 1

0
((A − B)L

α + (A − B)U
α )dα (2)

Lemma 1. F is reciprocal, i.e.,

μF (B, A) = −μF (A, B). (3)

Proof: Since (A − B)L
α + (A − B)U

α = −((B − A)L
α + (B − A)U

α ), we have
μF (B, A) = −μF (A, B). �
Lemma 2. F is additive, i.e.,

μF (A, B) + μF (B, C) = μF (A, C) (4)

Proof:

μF (A, B) + μF (B, C)

=
∫ 1

0
((A − B)L

α + (A − B)U
α )dα +

∫ 1

0
((B − C)L

α + (B − C)U
α )dα

=
∫ 1

0
AL

α − BU
α + AU

α − BL
α + BL

α − CU
α + BU

α − CL
α dα

=
∫ 1

0
((A − C)L

α + (A − C)U
α )dα. (5)

�
Lemma 3. F is transitive, i.e.,

μF (A, B) ≥ 0 and μF (B, C) ≥ 0 ⇒ μF (A, C) ≥ 0. (6)

Proof: By lemma 2, we have μF (A, C) = μF (A, B) + μF

(B, C). Since μF (A, B), μF (B, C) ≥ 0, we have μF (A, c) ≥ 0. �
Lemma 4. Let A = (a1, a2, a3) and B = (b1, b2, b3) be two triangular fuzzy
numbers. μF (A, B) ≥ 0 iff

a1 + 2a2 + a3 − b1 − 2b2 − b3 ≥ 0 (7)

Proof: μF (A, B) ≥ 0 iff

μF (A, B) =
∫ 1

0
(A − B)L

α + (A − B)U
α dα =

a1 + 2a2 + a3 − b1 − 2b2 − b3

2
≥ 0.

(8)
�

Definition 10. Let ≥ be a binary relation on fuzzy numbers defined by

A ≥ B iff μF (A, B) ≥ 0. (9)

Theorem 1. ≥ is a total ordering relation.
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3 The Fuzzy Decision Making Method

To facilitate our method, define the preference function of one fuzzy number Ãij

over another number Ãkj as follows:

P (Ãij , Ãkj) =
{

μF (Ãij , Ãkj) if μF (Ãij , Ãkj) ≥ 0
0 otherwise

Let J be the set of benefit criteria and J ′ be the set of cost criteria where

J = {1 ≤ j ≤ n and j belongs to benefit criteria}

J ′ = {1 ≤ j ≤ n and j belongs to cost criteria},

and
J ∪ J ′ = {1, . . . , n}.

The strength matrix S = (Sij) is given by letting

Sij =

{∑
k �=i P (Ãij , Ãkj) if j ∈ J∑
k �=i P (Ãkj , Ãij) if j ∈ J ′.

(10)

Similarly, the weakness matrix I = (Iij) is given by letting

Iij =

{∑
k �=i P (Ãkj , Ãij) if j ∈ J∑
k �=i P (Ãij , Ãkj) if j ∈ J ′.

(11)

The fuzzy weighted strength matrix S̃ = (S̃i) can be obtained by

S̃i =
∑

j

SijW̃j (12)

and the fuzzy weighted weakness matrix Ĩ = (Ĩi) can be obtained by

Ĩi =
∑

j

IijW̃j , (13)

where 1 ≤ i ≤ m. Now we are ready to present our method for FMCDM.

Step 1: Identify the criteria for the selection of distribution selection.
Step 2: Aggregate the fuzzy decision matrices and fuzzy weight matrices given

by decision makers and normalized the group fuzzy decision matrix. Let
D = (Ãij) be the normalized group fuzzy decision matrix and W = (W̃j) be
the weight matrix.

Step 3: Calculate the strength matrix by (10).
Step 4: Calculate the weakness matrix by (11).
Step 5: Calculate the fuzzy weighted strength indices by (12).
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Step 6: Calculate the fuzzy weighted weakness indices by (13).
Step 7: Derive the strength index Si from the fuzzy weighted strength and

weakness indices by

Si =
∑
k �=i

P (S̃i, S̃k) +
∑
k �=i

P (Ĩk, Ĩi) (14)

Step 8: Derive the weakness index II from the fuzzy weighted strength and
weakness indices by

Ii =
∑
k �=i

P (S̃k, S̃i) +
∑
k �=i

P (Ĩi, Ĩk) (15)

Step 9: Aggregate the strength and weakness indices into total performance
indices by

ti =
Si

Si + Ii
(16)

Step 10: Rank alternatives by total performance indices ti for 1 ≤ i ≤ m.

4 Numerical Example

Suppose a company desires to select a suitable city for establishing a new distri-
bution center. The evaluation is done by a committee of three decision-makers
D1, D2, and D3. After preliminary screening, there are three alternatives A1, A2,
and A3 under further evaluation. Assume the linguistic variables employed for
weights and ratings are respectively shown in Table 1. The evaluation committee
then undergoes the proposed evaluation procedure:

Step 1: Five selection criteria are identified:
(1) investment cost (C1),
(2) expansion possibility (C2),
(3) availability of acquirement material (C3),
(4) human resource (C4),
(5) closeness to demand market (C5).

Table 1. Linguistic variables for the importance weights of criteria and the ratings

Importance weights of criteria Linguistic variables for the ratings
Very low (VL) (0,0,0.1) Very poor(VP) (0,0,1)
Low (L) (0,0.1,0.3) Poor (P) (0,1,3)
Medium low (ML) (0.1,0.3,0.5) Medium poor(ML) (1,3,5)
Medium (M) (0.3,0.5,0.7) Faire (F) (3,5,7)
Medium high (MH) (0.5,0.7,0.9) Medium good (MG) (5,7,9)
High (H) (0.7,0.9,1.0) Good (G) (7,9,10)
Very high (VH) (0.9,1.0,1.0) Very good (VG) (9,10,10)
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Table 2. The importance weights of the criteria

D1 D2 D3

C1 H VH VH
C2 H H H
C3 MH H MH
C4 MH MH MH
C5 H H H

Table 3. The fuzzy weights of the criteria

C1 C2 C3 C4 C5

Weight (0.83,0.97,1) (0.7,0.9,1) (0.57,0.77,0.93) (0.5,0.7,0.9) (0.7.0.9,1)

Table 4. The ratings of alternatives given by decision makers

Criteria Alternatives D1 D2 D3

C1 A1 6 × 106 8 × 106 7 × 106

A2 3 × 106 4 × 106 5 × 106

A3 4 × 106 5 × 106 6 × 106

C2 A1 G VG F
A2 VG VG VG
A1 MG G VG

C3 A1 F G G
A2 G G G
A1 G MG VG

C4 A1 VG G G
A2 G G G
A1 G VG VG

C5 A1 F F F
A2 G F G
A1 G G G

Table 5. The group fuzzy decision matrix

C1 C2 C3 C4 C5

A1 7 × 106 (6.3,8,9) (5.7,7.7,9) (7.7,9.3,10) (3,5,7)
A2 4 × 106 (9,10,10) (7,9,10) (7,9,10) (5.7,7.7,9)
A3 5 × 106 (7,9,10) (7,9,10) (8.3,9.7,10) (7,9,10)

The benefit criteria are C2, C3, C4, and C5. The cost criterion is C1. The
weights of the criteria are shown in Table 3.

Step 2: The ratings of alternatives given three decision makers are shown in
Table 4. The group fuzzy decision matrix is obtained by averaging the ratings
of three decision makers and is shown in Table 5. The group fuzzy decision
matrix is normalized by dividing ratings with the largest value in the support
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Table 6. The normalized group fuzzy decision matrix

C1 C2 C3 C4 C5

A1 (1,1,1) (0.62,0.8,0.9) (0.57,0.77,0.9) (0.77,0.93,1) (0.3,0.5,0.7)
A2 (0.57,0.57,0.57) (0.9,1,1) (0.7.0.9,1) (0.7,0.9,1) (0.57,0.77,0.9)
A3 (0.71,0.71,0.71) (0.7,0.87,0.97) (0.7,0.87,0.97) (0.83,0.97,1) (0.7,0.9,1)

Table 7. The strength and weakness matrices

strength weakness
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

A1 0 0 0 0.067 0 A1 1.43 0.52 0.45 0.067 1.25
A2 1.14 0.63 0.3 0 0.5 A2 0 0 0 0.2 0.25
A3 0.57 0.13 0.2 0.2 1 A3 0.29 0.25 0.05 0 0

Table 8. The fuzzy weighted strength indices and weakness indices of alternatives

fuzzy weighted strength index fuzzy weighted weakness index
A1 (0.033,0.278,0.339) A1 (2.712,3.369,3.674)
A2 (1.913,2.283,2.462) A2 (0.275,0.365,0.43)
A3 (1.482,1.766,1.947) A3 (0.441,0.541,0.582)

Table 9. The strength and weakness indices of alternatives

strength index weakness index
A1 0 A1 18.376
A2 11.176 A2 0
A3 8.526 A3 1.325

of the fuzzy numbers in the same criterion. The normalized group fuzzy
decision matrix is shown in Table 6.

Step 3: The strength matrix derived by (10) is shown in Table 7.

Step 4: The weakness matrix derived by (11) is shown in Table 7.

Step 5: The fuzzy weighted strength indices of alternatives derived by (12) are
shown in Table 8.

Step 6: The fuzzy weighted weakness indices of alternatives derived by (13) are
shown in Table 8.

Step 7: The strength indices of alternatives derived by (14) are shown in
Table 9.

Step 8: The weakness indices of alternatives derived by (15) are shown in
Table 9.

Step 9: The total performance indices aggregated by (16) are A1 : 0,A2 : 1,
and A3 : 0.866.
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Step 10: The rank of alternatives by total performance indices are A1 : 3,
A2 : 1, and A3 : 2. Alternative 2 is the best distribution center.

5 Conclusions

In this paper, we have proposed a new fuzzy multiple criteria decision making
(FMCDM) method for the problem of selecting distribution center under fuzzy
environment. Our method enables decision makers to assess alternatives with
linguistic variables so that vagueness can be encompassed in the assessment of
distribution centers. Our method provides the strength index and the weakness
index beside the overall performance index so that decision makers can assess
distribution centers from different perspectives.
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Abstract. This paper proposes a new approach to further refine and validate 
clusters using a multi-label voting algorithm to identify and classify similar ob-
jects by neuro-fuzzy classifier ensembles. The algorithm uses predictions of 
neuro-fuzzy experts trained on provisional clusters of heterogeneous collections 
of data. The multi-label predictions of the modular ensemble of classifiers are 
further combined, using fuzzy aggregation techniques. The proposed refinement 
algorithm considers then the votes, triggered by the confirmation of the classifi-
ers’ expertise for voted labels, and updates the clustering solution. Experiments 
on a Visual Arts objects database of color features show better interpretations 
and performances of the clusters inferred by the proposed algorithm. Its results 
can be widely used in various classification and clustering applications. 

1   Introduction 

Many Machine Learning techniques are used for clustering and classification tasks in 
Data Mining [1]. Unfortunately, for applications with fluid or numerous classes’ 
neighborhoods, one specific classifier cannot solve the whole problem of data classi-
fication. A multiple labeling classifier system is a powerful solution. The approach 
allows evaluation and integration of different models and experts’ diversity requires 
more attention than selection of the best performing model. In our approach, the main 
objective in analyzing initial data is the identification and refinement of groups of 
objects with similar descriptive patterns. We propose an integrative approach based 
on neuro-fuzzy experts fusion to model heterogeneous sources of information. The 
hierarchical multi-labeling algorithm uses ensembles of neuro-fuzzy experts qualified 
in “easy-to-learn” domains by clustering methods. For further clusters refinement, 
these experts express their opinions on the confusing cases. The voting procedure 
proposes a refinement procedure, the fluid cases will be subsequently re-assigned to 
the most appropriate cluster. We emphasize some preliminary results of the proposed 
algorithm in Visual Arts Data Mining case study. 
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2   The Multi-label Voting Algorithm for Neuro-fuzzy Classifier 
Ensemble 

2.1   The Neuro-fuzzy Classifier Ensemble 

Each expert is implemented as a five-layer neuro-fuzzy network [2]. The neuro-fuzzy 
experts act as classifiers: the defuzzification strategy identifies the most significant 
output fuzzy set as the predicted class by mom. The goal of Neuro-Fuzzy Classifier 
Ensemble [2] (Fig. 1) is to model combinations of data and experts information to the 
corresponding output whose domain is a set of class labels {C1,C2,..,CL}. 

 

 

Fig. 1. The Neuro-Fuzzy Classifier Ensemble System 
architecture 

Fig. 2. A confusion case refined 
by proposed multi-label algorithm 

A set of diverse experts are then developed as strong learners with high accuracy 
predictions on its own domain. Each expert is generated by training a neuro-fuzzy 
classifier on each combination of k provisional clusters, where k>L/2. Consequently, 

for k
LCK =  training disjunctive subsets, K individual experts are generated. Such a 

committee will identify not just the class, but also the most similar classes. 

2.2   The Multi-label Algorithm for Neuro-fuzzy Classifier Ensembles 

This approach validates initial clusters and also identifies similarities between groups 
of objects (Fig. 2).  We propose an off-line stepwise algorithm: in step 1, a provi-
sional list of classes is generated by an unsupervised training method. For each train-
ing set combination, during step 2, neuro-fuzzy experts are designed, trained and 
evaluated. For step 3, for every record presented to the neuro-fuzzy experts, the votes 
for each label are collected and a majority voting procedure is applied. The algorithm 
associates the Labels list with information on the most significant class, and number 
of experts’ votes. The Labels list shows not only the prediction of the ensemble, but 
also information on correlations between the existing labels. 

Inputs: a vector of attribute values for one instance 
Output: the list Labels of estimations (indexed by the 
number of votes) assigned to each instance 

x 

Output [Y] 

Expert Net-
work EN1 

Expert Network 
EN2 

Expert Net-
work ENK 

Multi-Label Algorithm 

Input X 

g1 

g2 

gK

[Y1] 

[Y2] 

[YK]
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#Define initial L (not well bounded) clusters Cl,l=1..L 

#Generate K= k
LC , k>L/2, disjunctive unions of clusters 

as expertise domains for neuro-fuzzy networks 
#Design and train K neuro-fuzzy classifiers 
For each new record i 
  Votes_i[C1,C2,..,CL]=0 
  #Count expert votes:  
  For each expert j=1..K 
      Votes_i[expert_j_output]++  
  #Identify labels of ranked classes:  
  Labels[i]=NIL (dynamic list of labels and votes) 
  Remaining_votes=K 
  While Remaining_votes>0 
    Labels[i].addNewItem 
    Labels[i].class=index_of_max(Votes_i)  
    Labels[i].number_of_votes=max(Votes_i)  
    Remaining_votes-=max(Votes_i)  
    Votes_i[index_of_max]=0 
  #Analyze Labels[i] for bias and majority voting 
  If max(Labels[i].number_of_votes)<bias Then Outlier 
  Else If (Labels[i].number_of_votes)<K/2 Then 
       #Identify the most significant non-dominant 
         multi-labels 
       Else #Identify the dominant label and any 
             subsequent non-dominant multi-labels 

2.3   The Algorithm for Refinement of Clustering Solutions 

The proposed algorithm to refine the initial unsupervised clustering consists on re-
labeling the confusion cases by the number of votes of experts. For evaluation, the 
prediction accuracy of the multi-classifier system for the top label and the first two 
labels could be considered: the results are significant just for the first 2 top-ranked 
labels. The algorithm for Refinement of Clustering is showed below: 

Inputs: for each training instance a vector of attrib-
ute values 
Output: the experts ensemble and the list Labels of es-
timations assigned to each instance 
 
Step1: Define initial L clusters Cl,l=1..L 

Step2: Generate K=
k
LC , k>L/2, disjunctive unions of 

clusters  as expertise domains for neuro-fuzzy networks 
Step3: Design and train K neuro-fuzzy classifiers 
Step4: Identify the confusion cases applying the Multi-
label Voting algorithm 
Step5: Re-label the cases according to experts votes 
Step6: Re-design a new neuro-fuzzy classifiers ensemble 
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3   Visual Arts Data Mining: A Case Study 

A main objective in analyzing Visual Arts data is the identification of groups of ob-
jects with similar descriptive patterns [3]. 1002 Visual Arts digital images are used for 
the experiment. Three normalized input variables are defined: W/B, R/B, Y/B cluster-
ized into 5 provisional groups C1-C5 by unsupervised method (K-Means). We split 
data in three sets: training, test cases (for initial ensemble development) and valida-
tion cases (for testing the re-developed ensemble and clusters). A number of 3

510 C=  

diverse neuro-fuzzy experts are generated. The multi-label algorithm refines the initial 
clusters and re-distributes the mismatched components (Table 1). Consequently, we 
can define special relationships between colors, values, geometrical structure of draw-
ing etc. The Ensemble predictions are nearer to the visual perception of colors distri-
bution and have much better results than an individual global neuro-fuzzy network. 

Table 1. Data distribution for initial clusters and for refined clusters 

 C1 C2 C3 C4 C5 
Initial Clusters 27% 39% 7% 7% 20% 
Tuned Clusters 26% 40% 7% 5% 22% 

4   Conclusions and Further Research 

This paper proposes a novel refinement of clustering solutions by a multi-label voting 
algorithm to combine neuro-fuzzy experts as multi-classifier ensembles. The algo-
rithm identifies class-wise similarities emphasized by individual classifiers to refine 
initial clusters for the confusion cases on the border between neighborhood classes. 
The algorithm emphasizes further similarities and shows robustness. The experiment 
shows significantly improvements for the quality of the clusters memberships com-
pared to the average classification accuracy of any individual classifier. Moreover, the 
multi-label classification provides additional information on provisional classes based 
on similarities achieved by individual experts. Relationships between patterns are thus 
inferred. This study demonstrates that the multi-labeled combination of neuro-fuzzy 
networks allows a better analysis and interpretation of classification and refinement 
tasks for large data collections in the general framework of data mining. 
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Abstract. In this paper, six different approaches using genetic algorithms (GA) 
and/or simulated annealing (SA) with improved bottom left (I-BL) algorithm 
[1] were applied for solution of two dimensional non-guillotine cutting 
problems. As examples, test problems including 29 individual rectangular 
pieces were used [2]. Performances of hybrid approaches on solutions of cutting 
problems were compared. Due to combined global search feature of GA and 
local search feature of SA, the hybrid approach using GA and SA yields the 
best results for these problems. 

1   Introduction 

The cutting stock problem belongs to a special category of problems named “Cutting 
and Packing Problems”. The objective of the cutting problems is to increase the 
usability of main object and thus to obtain the layout pattern that has minimum trim 
loss value. The trim loss is unused area in main object. A cutting pattern or a layout 
pattern represented by a permutation corresponds to the sequences in which the pieces 
are to place into main object [2]. In the area of cutting problems, it is very common to 
use hybrid approaches combining meta-heuristics with placement algorithms. GA and 
SA are the most widely applied meta-heuristic methods, which may work a set of 
solutions or a solution at each an iteration, for large combinatorial problems.  

2   Solution Approaches 

Two pure meta-heuristic approaches and four hybrid meta-heuristic approaches to an 
optimal solution of two dimensional non-guillotine rectangular cutting problems are 
developed in this study. The details of these approaches are given as follows:  

GA approach: In GA approach, pure GA was carried out with the best parameters 
(population size: 80, mutation rate: 0.7 and crossover technique: order based 
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crossover (OBX)) obtained in [4]. Also in this approach, 6 different crossover 
techniques (OBX, CX, OX, PMX, UX, and SJX) were examined to look at effects of 
crossover techniques on the solutions of the cutting problems.  

SA approach: In SA approach, pure SA was applied with using the best parameters 
(cooling schedule: Lundy and Mees schedule, number of inner loop: 3, neighborhood 
move: swapping move, initial temperatures: between 0.1 and 0.8) obtained in [4]. 

1st hybrid meta-heuristic approach (GA-RMC): This approach is denoted by GA-
RMC (genetic algorithms-random multiple crossover), because of applying random 
multiple crossover techniques. In this approach, best parameters obtained from GA 
approach are used. The steps in this algorithm are detailed as follows:  

1. Randomly initialize a population and evaluate the fitness values of population. 
2. Select chromosomes for reproduction as proportional with its fitness.  
3. Apply six times crossover to the selected chromosomes according to ordered 

crossover permutation. The permutation includes six crossover techniques. It is 
generated randomly by selecting from among six different crossover techniques. 

4. Evaluate the fitness values of the obtained population after crossover operation. 
5. Apply the SA operator (Boltzman-type operator) to decide which of two of the 

current population and previous population according to mean fitness values. 
6. Repeat above steps (3-5) up to number of inner loop. Then decrease the 

temperature as to predetermined cooling schedule. 
7. Apply mutation operation to the obtained population. 
8. Evaluate the fitness values of the new population. If the optimization criterion is 

reached, return the best solution. Otherwise, go to step 2. 

2nd hybrid meta-heuristic approach (GA-MCNM): This approach is similar to GA-
RMC approach but only difference is generation of crossover permutation. In this 
approach, crossover permutation is obtained using neighborhood move operator of SA 
(swapping move). This approach is denoted by GA-MCNM (genetic algorithms-
multiple crossover with neighborhood move), because crossover permutation is 
formed with neighborhood move.  

3rd hybrid meta-heuristic approach (ASAGA): This approach is different from 
previous two hybrid approaches. Mutation operator does not affect according to 
solutions obtained from GA approach on the solution of these problems [4]. Therefore 
SA algorithm, which is produced a neighbor solution for each chromosome in 
population, was used instead of mutation operator. This approach is known adaptive 
simulated annealing genetic algorithm (ASAGA) [5]. The steps of this algorithm are 
given as detailed in below:  

1. Randomly initialize a population and evaluate the fitness values of population. 
2. Select chromosomes for reproduction as proportional with its fitness. 
3. Apply OBX technique to the selected chromosomes.  
4. Evaluate the fitness values of the obtained population after crossover operation. 
5. Apply neighborhood move to each chromosome in population to produce a 

neighbor solution and evaluate the new solutions.  
6. Then apply the SA operator to decide which of two of the current population and 

previous population according to cost function value.  
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7. Repeat above steps (5-6) up to number of inner loop. Then decrease the 
temperature as to predetermined cooling schedule.  

8. Evaluate the fitness values of the new population. If the optimization criterion is 
reached, return the best solution. Otherwise, go to step 2. 

4th hybrid meta-heuristic approach (GASA): In the final approach, GA and SA were 
used separately on the solution of cutting problems. The iteration was repeated 1000 
times. The pure GA was run with the best parameters obtained from [4] until 200 
iterations. Then the best five chromosomes were selected from population obtained in 
GA. The pure SA was run with the best chromosomes during number of 800 
iterations. The best SA parameters obtained from [4] are used. This approach is 
denoted by GASA (genetic algorithms-simulated annealing). 

3   Experimental Results  

Our test problems consisting of 29 individual rectangular pieces to place on a main 
object were employed to test the solution approaches [1]. The main object is limited 
with a size of 200x200 units. All of these problems were chosen with an optimal 
solution with zero trim loss.  

Best results taken from all of these approaches are given in Fig 1. The values 
denote the minimum trim loss values obtained from the test problems. When the 
similar test problems in the literature were considered, it was appeared clearly that 
these trim loss values are within acceptable standards (from 0% to 8%) [2].  
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Fig. 1. Comparisons of the all approaches for 29 individual rectangular pieces 
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Fig. 1 shows the performances of the all approaches for 29 individual rectangular 
pieces. As can be seen in the figure, GASA approach performs the best in all of the 
algorithms for the every condition of generations. The trim loss value obtained from 
this approach is the best as compared to other algorithms since it is benefited from 
combined global search feature of GA and local search feature of SA in this approach. 
First 200 iterations of GASA approach are the same as pure GA approach. It is not 
appeared in the figure because their values are overlapped on pure GA approach. 
Since GA is global search techniques, they are poor at hill climbing. Therefore, as 
seen the figure, pure GA approach is poor to reach the optimal solution of the cutting 
problems. ASAGA approach has started to converge faster than other algorithms in 
the beginning of the iteration, but it has not continued this state. Nevertheless, the 
obtained results tend to improve generation-by-generation. SA does not search 
efficiently on the large search space, since it is local search algorithm. As seen the 
figure, SA approach did not escape from local minima. GA-RMC and GA-MCNM 
approaches converge to same trim loss value at approximately 450th iteration. But 
after 450th iteration, GA-MCNM approach keeps its state. A convergence 
characteristic of GA-MCNM approach is very good at the beginning but it does not 
realize to converge to minimum optimal solution at the last. Also, searching at the 
GA-RMC approach is not enough to reach the optimal solution for 1000 iterations. 

4   Conclusions  

In this study, 4 hybrid meta-heuristic approaches and 2 pure meta-heuristic 
approaches for solution of two dimensional non-guillotine rectangular cutting 
problems have compared to each other. Based on this, the best results are obtained 
from GASA approach. SA as a local search algorithm is good at fine-tuning and GA 
as a global search algorithm is good at large search spaces.  In this approach, it is 
benefited from combined global search feature of GA and local search feature of SA.  
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1   Introduction 

CML (Concurrent Mapping and Localization) can be described as that acquiring a 
map of an unknown environment with a moving robot, while simultaneously localizing 
the robot relative to this map[1].  

The CML problem can be translated to a global optimization problem in which the 
objective is to search the space of possible robot maps. It is known that some new 
hybrid evolutionary computation[2-3] inspired by biologic principles like immune will 
largely increase the convergence rate and has great ability of global searching. Hence, 
this paper utilizes a hybrid evolution algorithm based on immune and vaccination to 
solve the CML problem. 

In CML map ones often make the use of occupancy  grid  present  by  Moravec and 
Elfes[4], where a map is consisted of grids or cells. A occupancy grid is described as 
grid[i][j], and every grid[i][j] has a probability or belief occ[i][j] which is occupied 
and a probability or belief emp[i][j] which is free. The calculations of occ[i][j] and 
emp[i][j] depended on data from range-finder. Reliable degree of data from range-
finder is not the same when the distance from the axels of range-finder varies, so usu-
ally the reliable degree of data from range-finder is relevant to the distance [5]. Then, 
the reliable degree of data from range-finder is projected to occ[i][j] and emp[i][j] by 
means of a sensor fusion approach like theories of evidence. In this paper Dempster-
Shafer theory of evidence is employed and works as a method of sensor fusion. 
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A trajectory in CML can be defined as a vector [T1, T2, ..., TN], where Tj=[ dj, èj], dj 
and èj are the relative distance and rotation traveled by the robot in one small step j, 
and there are N steps in total.  

The selection operator based on probability proposed by Michalewicz[6] is used. In the 
implement of the algorithm parameter q=0.4. 

Pairs of selected strings are then combined by crossover. Multiple crossover sites are 
used, so that the encoded values in the two mating strings are completely mixed up in 
the two strings produced. This is achieved by randomly choosing between the two 
parents at each site in the chromosome. Crossover is carried out with probability pc. 
The clonal selection operator at step (4) in later algorithm is that an individual will 
reproduce Nc children from which the best one will be selected to replaced the parent 
individual. In the implement of the algorithm below Nc is equal to 10. The clonal se-
lection is carried out with probability pm and children are reproduced with Gauss dis-
tribution of mean =0 and Std. Dev.=1. 

A local exploration process, named as a vaccination operator, is constructed by means 
of the feature of parallel line segments, which can be described as follows: 

(1) Both trajectories Tj and Tj+1 are selected uniformly from an individual. 
(2) Line segments are abstracted by means of some abstracting methods[7] from 

range-finder data at Tj and Tj+1 respectively 
(3) If there is no any line segment in range-finder data at either of Tj and Tj+1, the 

vaccination operator goes to end. 
(4) Line segments extracted at Tj are Lj,k, and angles between Lj,k and X axis under 

global coordinate system are âj,k. 
(5) If some k and n are existed, and    |âj,k - âj+1,n|<â0  is satisfied, where â0 is a posi-

tive real constant. Lj,k and Lj+1,n are regarded as a pair of parallel lines which are cor-
rupted by noise; Else, the vaccination operator goes to end. 
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2   A Hybrid Immune Evolutionary Algorithm for CML 

2.1   Chromosome, Fitness Selection, Recombination and Immune Operators 



A hybrid immune evolutionary computation algorithm (HIECA) 
used in this paper is described as follows.  

(1) choose an initial population, and  calculate the fitness of 
each individual 

repeat { 
(2) perform selection 
(3) perform recombination with adaptive probability 
(4) perform clonal selection with adaptive probability 
(5) perform vaccination with probability pI  
(6) perform immune selection 
(7) calculate the fitness of each individual 
(8) keep the best individual 
} until some stopping criterion applies 

In implement of EC, if the best fitness values in the popula-
tion are not improved in Ngen generations, the algorithm will 
go to the end, which is often the convergence critical. In 
this paper, let Ngen =10. 

The algorithm was tested by an AmigoBOT mobile robot produced by ActivMedia 
Robotics, LLC with the addition of a SICK laser scanner at the Intelligence Control 
Lab of the Central South University in China. The odometer trace was divided into 
segments of about from 1 to 2 meters in length. For the environment of Fig. 1, there 
were 20 segments corresponding to the about 25 meters traveled by the robot. Because 
movable scope for robot is not large enough, all range-finder data are truncated such 
that the lengths of range-finder are less than 3 meters, which means that if ri>3 in 
range-finder data (ri,öi ), ri=3. 
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Fig. 1. A gridmap was 
gotten by means of our 
algorithm when the 
robot ran in our ex-
periment Lab 

2.2   Immune Hybrid Immune Evolutionary Algorithm 

3   Implementation of the Algorithm and Experiment Results 



tion. Running results of both algorithms are list in Table 1, and a gridmap gained 
through the algorithm in this paper is shown in Fig. 1. Table 1 shows that the conver-
gence rate is higher than the algorithms in Ref. [9]. To sum up, the algorithm proposed 
in this paper can increase the convergence rate of evolutionary computation for CML. 

Algorithms Mean number of fitness func-
tion evaluations 

Mean value of best 
fitness values 

Algorithm in this paper 28522.1 437.7 

Algorithm in Ref.[9] 37925.6 438.8 

A hybrid immune evolutionary computation for CML has bee proposed which is com-
bined with feature of parallel line segments in range-finder data in order to increase 
the convergence rate of CML based on evolutionary computation. By means of ex-
periments the algorithm proposed in this paper can improve the searching ability and 
adaptability, and greatly increase the convergence rate. 

References 
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Table 1. Comparisons of running results for two algorithms 

4   Conclusions 
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