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Abstract. This paper is devoted to the discussion of the relationship
among some reduction approaches of information systems. It is proved
that the distribution reduction and the entropy reduction are equivalent,
and each distribute reduction is a d reduction. Furthermore, for consis-
tent information systems, the distribution reduction, entropy reduction,
maximum distribution reduction, distribute reduction, approximate re-
duction and d reduction are all equivalent.

1 Introduction

Rough set theory(RST), proposed by Pawlak [1], [2], is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. The successful application of RST in a variety of problems have
amply demonstrated its usefulness. One important application of RST is the
knowledge discovery in information system (decision table). RST operates on an
information system which is made up of objects for which certain characteristics
(i.e., condition attributes) are known. Objects with the same condition attribute
values are grouped into equivalence classes or condition classes. The objects are
each classified to a particular category with respect to the decision attribute
value, those classified to the same category are in the same decision class. Using
the concepts of lower and upper approximations in RST, the knowledge hidden
in the information system may be discovered.

One fundamental aspect of RST involves the searching for some particular
subsets of condition attributes. By such one subset the information for classifi-
cation purpose provides is equivalent to (according to a particular standard) the
condition attribute set done. Such subsets are called reducts. To acquire brief
decision rules from information systems, knowledge reduction is needed.

Knowledge reduction is performed in information systems by means of the
notion of a reduct based on a specialization of the general notion of indepen-
dence due to Marczewski [3]. In recent years, more attention has been paid to
knowledge reduction in information systems in rough set research. Many types
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of knowledge reduction and their applications have been proposed for inconsis-
tent information systems in the area of rough sets [4], [5], [6], [7], [8], [9], [10],
[11], [12]. The first knowledge reduction approach due to[6] which is carry out
through discernibility matrixes and discernibility functions. This kind of reduc-
tion is based on the positive region of the universe and we call it d reduction.
For inconsistent information systems, Kryszkiewicz [7] proposed the concepts of
distribution reduction and distribute reduction.Zhang [5] proposed the concepts
of maximum distribution reduction and approximate reduction and provide new
approaches to knowledge reduction in inconsistent information systems. Further-
more, some approaches to knowledge reduction based on variable precision rough
set model were proposed [13]. Information entropy is a measure of information
involved in a system. Based on conditional information entropy, some knowledge
reduction approaches in information systems were proposed in [4].

This paper is devoted to the discussion of the relationship among some re-
duction approaches of information systems. It is proved that the distribution re-
duction and the entropy reduction are equivalent, and each distribute reduction
is a d reduction. Furthermore, for consistent information systems, the distribu-
tion reduction, entropy reduction, maximum distribution reduction, distribute
reduction, approximate reduction and d reduction are all equivalent.

2 Preliminaries and Notations

An information system is a quadruple S = (U, AT ∪ {d}, V, f), where

(1) U is a non-empty finite set and its elements are called objects of S.
(2) AT is the set of condition attributes and d is the decision attribute of S.
(3) V = ∪q∈AT∪{d}Vq, where Vq is a non-empty set of values of attribute q ∈

AT ∪ {d}, called domain of the attribute q.
(4) f : U → AT ∪ {d} is a mapping, called description function of S, such that

f(x, q) ∈ Vq for each (x, q) ∈ U × (AT ∪ {d}).

Let S = (U, AT ∪ {d}, V, f) be an information system and A ⊆ AT . The
discernibility relation ind(A) on U derived from A, defined by (x, y) ∈ ind(A)
if and only if ∀a ∈ A, f(x, a) = f(y, a), is an equivalent relation and hence
(U, ind(A)) is a Pawlak approximation space. We denote by [x]A the equivalent
class with respect to ind(A) that containing x and U/A the set of these equivalent
classes. For each X ⊆ U , according to Pawlak [1], the upper approximation A(X)
and lower approximation A(X) of X with respect to A are defined as

A(X) = {x ∈ U |[x]A ∩ X �= ∅}, A(X) = {x ∈ U |[x]A ⊆ X}. (1)

Based on the approximation operators, Skowron proposed the concept of d
reduction of an information system.

Definition 1. Let S = (U, AT ∪ {d}, V, f) be an information system and A ⊆
AT . The positive region posA(d) of d with respect to A is defined as

posA(d) = ∪X∈U/dA(X).
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Definition 2. Let S = (U, AT ∪ {d}, V, f) be an information system and A ⊆
AT . A is called a d consistent subset of S if posA(d) = posAT (d). A is called a
d reduction of S if A is a d consistent subset of S and each proper subset of A
is not a d consistent subset of S.

All the d reductions can be carry out through discernibility matrixes and
discernibility functions [6]. Let S = (U, AT ∪{d}, V, f) be an information system
and B ⊆ AT , x ∈ U . We introduce the following notations:

U/d = {D1, · · · , Dr}; µB(x) = (D(D1/[x]B), · · · , D(Dr/[x]B));
γB(x) = {Dj; D(Dj/[x]B) = maxq≤rD(Dq/[x]B)}; δB(x) = {Dj; Dj ∩ [x]B �= ∅};

ηB =
1

|U |Σ
r
j=1|B(Dj)|;

where D(Dj/[x]B) = |Dj∩[x]B|
|[x]B| is the include degree of [x]B in Dj .

For inconsistent information systems, Kryszkiewicz [7] proposed the concepts
of distribution reduction and distribute reduction. Based on this work, Zhang
[5] proposed the concepts of maximum distribution reduction and approximate
reduction. Farther more, the judgement theorems and discernibility matrixes
with respect to those reductions are obtained. These reductions are based on
the concept of include degree.

Definition 3. Let S = (U, AT ∪ {d}, V, f) be an information system, A ⊆ AT .

(1) A is called a distribution consistent set of S if µA(x) = µAT (x) for each x ∈
U . A is called a distribution reduction of S if A is a distribution consistent
set of S and no proper subset of A is distribution consistent set of S.

(2) A is called a maximum distribution consistent set of S if γA(x) = γAT (x)
for each x ∈ U . A is called a maximum distribution reduction of S if A is
a maximum distribution consistent set of S and no proper subset of A is
maximum distribution consistent set of S.

(3) A is called a distribute consistent set of S if δA(x) = δAT (x) for each x ∈ U .
A is called a distribute reduction of S if A is a distribute consistent set of S
and no proper subset of A is distribute consistent set of S.

(4) A is called a approximate consistent set of S if ηA = ηAT . A is called a
approximate reduction of S if A is a approximate consistent set of S and no
proper subset of A is approximate consistent set of S.

[5] proved that the concepts of distribute consistent set and approximate
consistent set are equivalent, a distribution consistent set must be a distribute
consistent set and a maximum distribution consistent set.

Let S = (U, AT ∪ {d}, V, f) be an information system, A ⊆ AT and

U/AT = {Xi; 1 ≤ i ≤ n}, U/A = {Yj ; 1 ≤ j ≤ m}, U/d = {Zl; 1 ≤ l ≤ k}.

The conditional information entropy H(d|A) of d with respect to A is defined

H(d|A) = −
m∑

j=1

(p(Yj) ·
k∑

l=1

p(Zl|Yj)log(p(Zl|Yj))),
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where p(Yj) = |Yj |
|U| , p(Zl|Yj) = |Zl∩Yj |

|Yj| and 0log0 = 0.
Based on conditional information entropy, Wang [4] proposed the concept of

entropy reduction for information systems.

Definition 4. Let S = (U, AT ∪ {d}, V, f) be an information system and A ⊆
AT . A is called an entropy consistent set of S if H(d|A) = H(d|AT ). A is called
an entropy reduction of S if A is an entropy consistent set of S and non proper
subset of A is entropy consistent set of S.

3 The Relationship Among Knowledge Reduction
Approaches

In this section, we discuss the relationship among knowledge reduction ap-
proaches. In what follows we assume that S = (U, AT ∪ {d}, V, f) is an in-
formation system, A ⊆ AT and

U/AT = {Xi; 1 ≤ i ≤ n}, U/A = {Yj ; 1 ≤ j ≤ m}, U/d = {Zl; 1 ≤ l ≤ k}.

Theorem 5. Let Yj = ∪t∈Tj Xt, 1 ≤ j ≤ m, where Tj is an index set. For each
1 ≤ l ≤ k,

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) ≤

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
).

Proof. Let Tj1 = {Xt; t ∈ Tj, Zl ∩Xt �= ∅}. If Tj1 = ∅, then Zl ∩Xt = ∅ for each
t ∈ Tj and hence Zl ∩ Yj = ∅, the conclusion holds. If Tj1 �= ∅, by lnx ≤ x − 1,
it follows that

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) −

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
)

=
∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Yj |

|Yj |
) −

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
)

=
∑

t∈Tj1

|Zl ∩ Xt|log(
|Zl ∩ Yj ||Xt|
|Yj ||Zl ∩ Xt|

)

≤
∑

t∈Tj1

|Zl ∩ Xt|(
|Zl ∩ Yj ||Xt|
|Yj ||Zl ∩ Xt|

− 1)loge

=
loge

|Yj |
∑

t∈Tj1

(|Zl ∩ Yj ||Xt| − |Yj ||Zl ∩ Xt|)

=
loge

|Yj |
(

∑

t∈Tj1

(|Zl ∩ Yj ||Xt| −
∑

t∈Tj1

|Yj ||Zl ∩ Xt|)

=
loge

|Yj |
(|Zl ∩ Yj |(|Yj | −

∑

t∈Tj−Tj1

|Xt|) − |Yj ||Zl ∩ Yj |) ≤ 0.
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Theorem 6. H(d|AT ) = H(d|A) if and only if

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) =

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
),

for each 1 ≤ l ≤ k and 1 ≤ j ≤ m, where Yj = ∪t∈Tj Xt, 1 ≤ j ≤ m, and Tj is
an index set.

Proof.

H(d|AT ) = −
n∑

i=1

(p(Xi) ·
k∑

l=1

p(Zl|Xi)log(p(Zl|Xi)))

= − 1
|U |

k∑

l=1

n∑

i=1

(p(Xi)|Zl ∩ Xi|log(
|Zl ∩ Xi|

|Xi|
),

H(d|A) = −
m∑

j=1

(p(Yj) ·
k∑

l=1

p(Zl|Yj)log(p(Zl|Yj)))

= − 1
|U |

k∑

l=1

m∑

j=1

(p(Xi)|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
).

The sufficiency is trivial because each A equivalent class is just a union of some
AT equivalent classes.

Necessity: For each 1 ≤ l ≤ k and 1 ≤ j ≤ m, by Theorem 5,

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) ≤

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
),

and hence
m∑

j=1

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) ≤

n∑

i=1

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
).

If there exists 1 ≤ l ≤ k and 1 ≤ j ≤ m such that

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) <

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
).

consequently,

m∑

j=1

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) <

n∑

i=1

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
).

and hence H(d|AT ) < H(d|A), a contradiction.

Theorem 7. A ⊆ AT is a distribution reduction of S if and only if A is an
entropy reduction of S.
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Proof. It needs only to prove that A is a distribution consistent set if and only
if A is an entropy consistent set.

Sufficiency: Assume that A is a distribution consistent set. For each 1 ≤ l ≤ k
and 1 ≤ j ≤ m, let Yj = [x]A. We notice that Jx,A = {[y]AT ; [y]AT ⊆ [x]A} is a
partition of [x]A. By |Zl ∩ [x]A| =

∑
[y]AT∈Jx,A

|Zl ∩ [y]AT |, it follows that

|Zl ∩ [y]AT |
|[y]AT | =

|Zl ∩ [y]A|
|[y]A| =

|Zl ∩ [x]A|
|[x]A| ,

for each [y]AT ∈ Jx,A and hence

|Zl ∩ [x]A|log(
|Zl ∩ [x]A|

|[x]|A
) =

∑

[y]AT∈Jx,A

|Zl ∩ [y]AT |log(
|Zl ∩ [y]AT |

|[y]AT | ),

it follows by Theorem 6 that H(d|AT ) = H(d|A) and A is an entropy consistent
set.

Necessity: Assume that A is an entropy consistent set. For each x ∈ U ,
Jx,A = {[y]AT ; [y]AT ⊆ [x]A} forms a partition of [x]A. Let J = Jx,A − {[x]AT }.
For each 1 ≤ l ≤ k, by Theorem 6, it follows that

|Zl ∩ [x]A|log(
|Zl ∩ [x]A|

|[x]A| ) =
∑

[y]AT∈Jx,A

|Zl ∩ [y]AT |log(
|Zl ∩ [y]AT |

|[y]AT | ).

and hence
∑

[y]AT∈Jx,A

|Zl ∩ [y]AT |log(
|Zl ∩ [x]A|

|[x]A| ) =
∑

[y]AT∈Jx,A

|Zl ∩ [y]AT |log(
|Zl ∩ [y]AT |

|[y]AT | ),

∑

[y]AT∈Jx,A

|Zl ∩ [y]AT |log(
|Zl ∩ [x]A||[y]AT |
|[x]A||Zl ∩ [y]AT | ) = 0,

that is,

−|Zl ∩ [x]AT |log(
|Zl ∩ [x]A||[x]AT |
|[x]A||Zl ∩ [x]AT | )

=
∑

[y]AT ∈J

|Zl ∩ [y]AT |log(
|Zl ∩ [x]A||[y]AT |
|[x]A||Zl ∩ [y]AT | )

≤
∑

[y]AT ∈J

|Zl ∩ [y]AT |( |Zl ∩ [x]A||[y]AT |
|[x]A||Zl ∩ [y]AT | − 1)loge

=
loge

|[x]A|
∑

[y]AT∈J

(|Zl ∩ [x]A||[y]AT | − |[x]A||Zl ∩ [y]AT |)

=
loge

|[x]A| (|Zl ∩ [x]A|(|[x]A| − |[x]AT |) − |[x]A|(|Zl ∩ [x]A| − |Zl ∩ [x]AT |))

=
loge

|[x]A| (|[x]A||Zl ∩ [x]AT | − |[x]AT ||Zl ∩ [x]A|).
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It follows that

ln(
|Zl ∩ [x]A||[x]AT |
|[x]A||Zl ∩ [x]AT | ) ≥ |Zl ∩ [x]A||[x]AT |

|[x]A||Zl ∩ [x]AT | − 1.

By lna ≤ a − 1 for each a > 0,

ln(
|Zl ∩ [x]A||[x]AT |
|[x]A||Zl ∩ [x]AT | ) =

|Zl ∩ [x]A||[x]AT |
|[x]A||Zl ∩ [x]AT | − 1,

and hence
|Zl ∩ [x]A||[x]AT |
|[x]A||Zl ∩ [x]AT | = 1,

because a = 1 is the unique root of lna = a − 1, that is

|[x]AT ∩ Zl|
|[x]AT | =

|[x]A ∩ Zl|
|[x]A|

and A is a distribution consistent set.

Theorem 8. A is an entropy consistent set if and only if

|[x]AT ∩ [x]d|
|[x]AT | =

|[x]A ∩ [x]d|
|[x]A|

for each x ∈ U .

Proof. By Theorem 7, the necessity is trivial.
Sufficiency: We prove that

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) =

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
),

for any 1 ≤ l ≤ k and 1 ≤ j ≤ m and finish the proof by Theorem 6, where
Yj = ∪t∈Tj Xt.

If Zl ∩ Yj = ∅, then Zl ∩ Xt = ∅ for each t ∈ Tj and the conclusion holds.
If Zl ∩ Yj �= ∅, suppose that x ∈ Zl ∩ Yj , it follows that Zl = [x]d and

Yj = [x]A. Let Jx,A = {[z]AT ; [z]AT ⊆ [x]A}. Consequently,

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) −

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
)

= |[x]d ∩ [x]A|log(
|[x]d ∩ [x]A|

|[x]A| ) −
∑

[z]AT ∈Jx,A

|[x]d ∩ [z]AT |log(
|[x]d ∩ [z]AT |

|[z]AT | )

=
∑

[z]AT ∈Jx,A

|[x]d ∩ [z]AT |log(
|[x]d ∩ [x]A|

|[x]A| ) −
∑

[z]AT ∈Jx,A

|[x]d ∩ [z]AT |log(
|[x]d ∩ [z]AT |

|[z]AT | )

=
∑

[z]AT ∈Jx,A

|[x]d ∩ [z]AT |log(
|[x]d ∩ [x]A||[z]AT |
|[x]A||[x]d ∩ [z]AT | ).
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Assume that u ∈ [x]d ∩ [z]AT , it follows that u ∈ [x]A and hence [x]d = [u]d,
[z]AT = [u]AT and [x]A = [u]A, consequently,

|[x]d ∩ [x]A||[z]AT |
|[x]A||[x]d ∩ [z]AT | =

|[u]d ∩ [u]A||[u]AT |
|[u]A||[u]d ∩ [u]AT | = 1,

and hence

|Zl ∩ Yj |log(
|Zl ∩ Yj |

|Yj |
) =

∑

t∈Tj

|Zl ∩ Xt|log(
|Zl ∩ Xt|

|Xt|
).

Theorem 9. Let S = (U, AT ∪{d}, V, f) be an information system and A ⊆ AT .
If A is a distribute consistent set of S, then A is a d consistent set of S.

Proof. Let A ⊆ AT be a distribute consistent set of S and U/d = {D1, D2, · · · ,
Dr}. For each x ∈ posAT (d), it follows that [x]AT ⊆ [x]d and hence δAT (x) =
{Dj; Dj ∩ [x]AT �= ∅} = {[x]d} = δA(x). Assume that [x]d = Dj , it follows that
Dl ∩ [x]A = ∅ for each l ≤ r, l �= j., that is [x]A ⊆ Dj = [x]d and x ∈ A([x]d) ⊆
posA(d), it follows that posAT (d) ⊆ posA(d).

posA(d) ⊆ posAT (d) is trivial.

4 Knowledge Reduction for Consistent Information
Systems

An information system S = (U, AT ∪ {d}, V, f) is called to be consistent, if
[x]AT ⊆ [x]d for each x ∈ U . In this section, we discuss knowledge reductions for
consistent information systems. We will prove that the concepts of distribution
reduction, approximate reduction and d reduction are equivalent for consistent
information systems.

Theorem 10. Let S = (U, AT ∪ {d}, V, f) be an information system. S is con-
sistent if and only if posAT (d) = U .

Proof. If S is consistent, then [x]AT ⊆ [x]d for each x ∈ U and hence x ∈
AT ([x]d) ⊆ ∪X∈U/dAT (X) = posAT (d), that is posAT (d) = U .

If posAT (d) = U , then x ∈ posAT (d) for each x ∈ U and hence x ∈ AT ([x]d),
that is [x]AT ⊆ [x]d.

Theorem 11. Let S = (U, AT ∪ {d}, V, f) be an information system. S is con-
sistent if and only if δAT (x) = {[x]d)} for each x ∈ U .

Proof. If S is consistent, then [x]AT ⊆ [x]d for each x ∈ U and hence δAT (x) =
{[x]d)}.

If δAT (x) = {[x]d)} for each x ∈ U , then [x]AT ∩ [y]d = ∅ for each [y]d �= [x]d,
that is [x]AT ⊆ [x]d and S is consistent.

Theorem 12. Let S = (U, AT ∪ {d}, V, f) be an information system. S is con-
sistent if and only if H(d|AT ) = 0.
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Proof. Assume that

U/AT = {X1, X2, · · · , Xn}, U/d = {Y1, Y2, · · · , Ym}.

It follows that

H(d|AT ) = −
n∑

i=1

(p(Xi) ·
m∑

j=1

p(Yj |Xi)log(p(Yj |Xi)))

= −
n∑

i=1

m∑

j=1

|Yj ∩ Xi|
|U | log(

|Yj ∩ Xi|
|Xi|

).

If S is consistent, then for each i(1 ≤ i ≤ n), there exists unique j(1 ≤ j ≤
m) such that Xi ⊆ Yj , and hence |Yj∩Xi|

|Xi| = 1 or |Yj∩Xi|
|Xi| = 0, consequently,

H(d|AT ) = 0.
If H(d|AT ) = 0, then

−
n∑

i=1

m∑

j=1

|Yj ∩ Xi|
|U | log(

|Yj ∩ Xi|
|Xi|

) = 0,

it follows that
m∑

j=1

|Yj ∩ Xi|
|U | log(

|Yj ∩ Xi|
|Xi|

) = 0,

for each i(1 ≤ i ≤ n), that is there exists j(1 ≤ j ≤ m) such that Xi ⊆ Yj , and
S is consistent.

Theorem 13. Let S = (U, AT ∪ {d}, V, f) be a consistent information system
and A ⊆ AT .

(1) A is an entropy consistent set if and only if S′ = (U, A ∪ {d}, V, f) is con-
sistent.

(2) A is a approximate consistent set if and only if S′ = (U, A ∪ {d}, V, f) is
consistent.

(3) A is a positive domain consistent set if and only if S′ = (U, A ∪ {d}, V, f) is
consistent.

By this Theorem, for consistent information systems, the concepts of distribu-
tion reduction, entropy reduction, maximum distribution reduction, distribute
reduction, approximate reduction and d reduction are all equivalent.
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