
Taming Interface Specifications�

Tiziana Margaria1, A. Prasad Sistla2, Bernhard Steffen3, and Lenore D. Zuck2

1 Georg-August-Universität Göttingen
margaria@informatik.uni-goettingen.de

2 University of Illinois at Chicago
{sistla,lenore}@cs.uic.edu

3 Universität Dortmund
Bernhard.Steffen@cs.uni-dortmund.de

Abstract. Software is often being assembled using third-party components
where the developers have little knowledge of, and even less control over, the
internals of the components comprising the overall system. One obstacle to com-
posing agents is that current formal methods are mainly concerned with “closed”
systems that are built from the ground up. Such systems are fully under the con-
trol of the user. Hence, problems arising from ill-specified components can be
resolved by a close inspection of the systems. When composing systems using
“off-the-shelf” components, this is often no longer the case.

The paper addresses the problem of under-specification, where an off-the-
shelf component does only what it claims to do, however, it claims more be-
haviors than it actually has and that one wishes for, some of which may render
it useless. Given such an under-specified module, we propose a method to au-
tomatically synthesize some safety properties from it that would tame its “bad”
behaviors. The advantage of restricting to safety properties is that they are moni-
torable.

The safety properties are derived using an automata-theoretic approach. We
show that, when restricting to ω-regular languages, there is no maximal safety
property. For this case we construct a sequence of increasingly larger safety prop-
erties. We also show how to construct an infinite-state automata that can capture
any safety property that is contained in the original specifications.

1 Introduction

The process of constructing software is undergoing rapid changes. Instead of a mono-
lithic software development within an organization, increasingly, software is being as-
sembled using third-party components (e.g., JavaBeans, .NET, etc.). The developers
have little knowledge of, and even less control over, the internals of the components
comprising the overall system.

One obstacle to composing agents is that current formal methods are mainly con-
cerned with “closed” systems that are built from the ground up. Such systems are fully
under the control of the user. Hence, problems arising from ill-specified components can

� This research was supported in part by NSF grants CCR-0205571 and CCR-0205363, and
ONR grant N00014-99-1-0131

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 548–561, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Taming Interface Specifications 549

be resolved by a close inspection of the systems. When composing agents using “off-
the-shelf” ones, this is often no longer the case. Out of consideration for proprietary
information, or in order to simplify presentation, companies may provide incomplete
specifications. Worse, some agents may have no description at all except one that can
be obtained by experimentation. Despite being ill-specified, “off-the-shelf” components
might still be attractive enough so that the designer of a new service may wish to use
them. In order to do so safely, the designer must be able to deal with the possibility
that these components may exhibit undesired or unanticipated behavior, which could
potentially compromise the correctness and security of the new system.

The main problem addressed in this paper is that of under-specification. As a simple
example of the phenomenon, consider an interface specification that guarantees “after
input query q is received, output r = response(q) is produced.” The designer of the
interface probably meant a stronger specification, “after q is received, nothing else is
produced until r is produced.” Assume that the later version is sufficient and neces-
sary to ensure the correctness of the entire system consisting of the module and the
interface. Formal methods in general, and model checking in particular, are to fail in
such situations since there is no algorithmic way to provide the model checker with the
proper strengthening of the interface specification. Yet, under the assumption that in-
terface specifications may be partial, there may exist a subset of the allowed behaviors
that guarantees correctness, and one may still choose to use the component, provided
deviations of the interface from this “good” set of behaviors can be detected at runtime.

Assume that we are given

• A finite-state module M , designed by our designer and accompanied by the full
details of its implementation;

• An interface specification ΦI for the external component interacting with the mod-
ule M ; and

• A goal specification Φ for the entire system which must be satisfied by the interac-
tion between the module and the interface.

The system thus contains the composition of the module with the external compo-
nent. The goal of the designer is to guarantee that the behavior of the system satisfies
the goal specification Φ. Obviously, our underlying assumption is that the external com-
ponent is helpful for the module, i.e., it computes things that the module cannot accom-
plish on its own. For example, if the module is a “general best buyer,” and the external
component has access to numerous bookstores which the module has no access to, the
module uses the component to obtain the best book deals. However, the book buying
component may be under-specified, thus, allow for behaviors for which the designer
cannot guarantee the goal (while, of course, allow also for ”good” behaviors, otherwise
the designer will not be inclined to use it!).

The designer has a reason to believe that the real interface specification is more
restricted than ΦI , say it is ΦI ∧ φ for some φ. With this assumption, the designer can
compose the module with the component so that Φ is guaranteed. If the property φ can
be run-time monitored, i.e., if there is a simple module that runs synchronously with the
system and watches for violations of φ, the designer can then go ahead and safely use
the designed module as long as the monitor does not alarm.

550 T. Margaria et al.

Using a run-time monitor would allow the system to operate correctly as long as
the external component satisfies φ. When it violates it, the run-time monitor alerts the
user of the system that a violation occurred (and Φ is no longer guaranteed). However,
this should not be viewed as a major obstacle – the applications intended are clearly not
“safety critical” since no designer would use “black box” components inside a safety
critical application. Such components can only be used in applications where a violation
is tolerable. E.g., a leak of the credit card number, if caught in a timely manner, allows
the holder of the credit card to alert the credit company and avoid bogus charges.

In this paper we focus on the problem of synthesizing a property φ that can be run-
time monitored. In fact, we restrict the search to safety properties. Safety properties
are those that can only be violated by a finite prefix. Hence, they can be monitored. In
future work we will show how to synthesize the module M . Here, we restrict to the
case where M is trivial. Thus, given ΦI , we synthesize a safety property φ such that
ΦI ∧ φ → Φ.

We consider properties that are expressed as ω-sequences over a finite alphabet.
Essentially, our synthesis problem reduces to that of finding safety properties that are
contained in the property defined by Ξ = ¬ΦI ∨ Φ. While there is always some safety
property φ that guarantees ΦI ∧ φ → Φ (e.g., the trivially false property), there is,
in general no “maximal” one: Assume that Ξ is neither valid nor an obvious safety
property. We show that when Ξ is ω-regular, then for every safety property φ1 such
that ΦI ∧ φ1 → Φ there exists is a safety property φ2 �= φ1 that is implied by φ1 and
that satisfies ΦI ∧ φ2 → Φ.

We compute a family of safety properties φk such that the higher k is, the more
“accurate” and costly is the computation of φk. All these safety properties are given
by deterministic finite state automata. As to be expected, the number of states of these
automata increases linearly with k.

We also define a class of, possibly infinite-state, deterministic automata called
bounded automata and show that the set of sequences accepted by bounded automata
gives the desired safety property φ. We also prove a completeness result, showing that
every safety property contained in the property defined by Ξ is accepted by some
bounded automaton. In order for these automata to be useful, they need to be recur-
sive, i.e., computable. With this in mind, we define history-based recursive automata
that can be applied in practice.

The paper is organized as follows. Section 2 introduces the notation and definitions.
Section 3 establishes the impossibility of finding a maximal safety properties for the
case of ω-regular languages and contains the construction of the sequence of finite-
state ω-automata for the synthesis of the desired safety property. Section 4 contains the
definitions and results of our study of bounded automata. Section 5 compares our work
with related work, and Section 6 contains discussion and concluding remarks.

2 Preliminaries

Sequences. Let S be a finite set. Let σ = s0, s1, . . . be a possibly infinite sequence
over S. The length of σ, |σ|, is defined to be the number of elements in σ if σ is finite,
and ω otherwise. We let ; denote the concatenation operator for sequences so that if

Taming Interface Specifications 551

α1 is a finite sequence and α2 is a either a finite or a ω-sequence then α1; α2 is the
concatenation of the two sequences in that order.

For integers i and j such that 0 ≤ i ≤ j < |σ|, σ[i, j] denotes the (finite) sequence
si, . . . sj . A prefix of σ is any σ[0, j] for j < |σ|. We denote the set of σ’s prefixes by
Pref (σ). Given an integer i, 0 ≤ i < |σ|, we denote by σ(i) the suffix of σ that starts
with si.

For an infinite sequence σ : s0, . . ., we denote by inf(σ) the set of S-elements that
occur in σ infinitely many times, i.e., inf(σ) = {s : si = s for infinitely many i’s}.

Languages. A language L over a finite alphabet Σ is a set of finite or infinite sequences
over Σ. When L consists only of infinite strings (sequences), we sometimes refer to it
as an ω-language. For a language L, we denote the set of prefixes of L by Pref (L), i.e.,

Pref (L) =
⋃

σ∈L

Pref (σ)

Following [6,2], an ω-language L is a safety property if for every σ ∈ Σ∞:

Pref (σ) ⊆ Pref (L) =⇒ σ ∈ L

i.e., L is a safety property if it is limit closed – for every ω-string σ, if every prefix of σ
is a prefix of some L-string, then σ must be an L-string.

Safety properties play an important role in the results reported here.

Büchi Automata A Büchi automaton (NBA for short) A on infinite strings is described
by a quintuple (Q, Σ, δ, q0, F) where:

– Q is a finite set of states;
– Σ is a finite alphabet of symbols;
– δ : Q × Σ → 2Q is a transition function;
– q0 ∈ Q is an initial state; and
– F ⊆ Q is a set of accepting states.

The generalized transition function δ∗ : Q × Σ∗ → 2Q is defined in the usual way,
i.e., for every state q, δ∗(q, ε) = {q}, and for any σ ∈ Σ∗ and a ∈ Σ, δ∗(q, σ; a) =
∪q′∈δ∗(q,σ)δ(q′, a).

If for every (q, a) ∈ Q × Σ, |δ(q, a)| = 1, then A is called a deterministic Büchi
automaton (or DBA for short).

Let σ : a1, . . . be an infinite sequence over Σ. A run r of A on σ is an infinite
sequence q0, . . . over Q such that:

– q0 = q0;
– for every i > 0, qi ∈ δ(qi−1, ai);

A run r is accepting if inf(r)∩F �= ∅. The automaton A accepts the ω-string σ if it has
an accepting run over σ (for the case of DBAs, the automaton has a single run over σ).
The language accepted by A, denoted by L(A), is the set of ω-strings that A accepts. A
language L′ is called ω-regular if it is an ω-language that is accepted by some (possibly
non-deterministic) Büchi automaton.

A Büchi automaton A can also be used to define a regular automaton that is just
like A, only the acceptance condition of a run r is that its last state is accepting. We
denote the regular language accepted by the regular version of A by Lf(A).

552 T. Margaria et al.

3 Synthesis of Safety Properties by Finite-State Automata

As described in Section 1, given an interface specification ΦI of a readily available off-
the-shelf reactive component and a desired goal specification Φ, we wish to derive a
safety property φ so that ΦI ∧ φ → Φ. We assume that both ΦI and Φ are given by
temporal logic formulas. Our methods, however, can also be applied to the case where
ΦI and Φ are described by ω-automata. As before, denote Ξ = ¬ΦI ∨ Φ. Obviously,
any safety property φ such that φ → Ξ is a satisfies our requirements.

In this section we describe how to obtain φ as deterministic automaton. The advan-
tage of obtaining the required φ as a deterministic automaton is that it can be directly
used to monitor the execution of the module: The automaton simply runs on the execu-
tions of the module and a violation of the safety property by the execution is indicated
by the automaton entering a “bad” state. In this section we restrict to ω-automata, for
which, as we show, only a limited set of safety properties can be derived. To overcome
this limitation we present, in the next section, automata that are not necessarily finite-
state and study their power.

Using the methods of [13,3], we first obtain a Büchi automaton A whose language
is the set of ω-strings satisfying Ξ . Thus, we reduce the problem to that of obtaining a
deterministic automaton whose language is a safety property that is contained in L(A).
Roughly speaking, we start with the automaton that accepts Ξ , and construct a family of
automata, indexed by some integer k, each accepting a sequence that satisfies Ξ where
an accepting state is realized in every block of k consecutive states.

Example 1. Suppose an off-the-shelf permission manager that receives requests by a
user and grants appropriate permissions, e.g., authorizations to access different re-
sources. Assume there are two types of requests, r1 and r2, with two corresponding
grants, g1 and g2 respectively. The permission manager guarantees that every request is
eventually responded by granting of the corresponding permission. Thus ΦI is:

� (r1 → � g1) ∧ � (r2 → � g2)

Assume a user who wishes to use e component and who requires that a r1 request
receives a higher priority than a r2 request, at the possibly cost of ignoring an r2 request,
i.e., that an r1 should be granted before any potentially pending r2 requests are granted.
Thus, the goal Φ of the user is:

� (r1 → (¬g2)U g1)

where U is the temporal “until” operator.
Note user’s requirement for r1 is stronger than that guaranteed by the component,

while the user’s requirement for r2 is weaker.
The user can construct a monitor that monitors for violations of a safety property

that is contained in (¬ΦI ∨ Φ), e.g., of the property:

� (r1 → (¬g2) W g1)

where W is the unless (weak until) temporal operator. Thus, the property does not
require g1 to hold after r1 (but does require that as long as g1 doesn’t hold, neither
does g2).

Taming Interface Specifications 553

3.1 Derivation of a Safety Property Using Büchi Automata

Ideally, given a property described by a Büchi automaton A, we would like to synthesize
the maximal safety property that is contained in L(A). However, as the following lemma
shows, if L(A) is not already a safety property, then there exists no maximal safety
property in it that can be accepted by a Büchi automaton. The proof of this lemma is
given at the end of this subsection.

Lemma 1. Let A be a Büchi automaton and assume L(A) is not a safety property.
Then for every safety property L′ ⊂ L(A), there exists a safety property L′′ such that
L′ ⊂ L′′ ⊂ L(A). Moreover, if L′ is ω-regular then so is L′′.

In the following, we construct from a given Büchi automaton A and an integer k,
an automaton Ak that accepts those sequences in L(A) that have an accepting A-run
in which an accepting state appears in every k-length block of consecutive states, thus
L(Ak) ⊆ L(A) is a safety property.

Assume a Büchi automaton A : = (QA, Σ, δA, q0
A, FA). Let k > 0 be an integer.

We first define an ω-language Lk(A), that is a subset of L(A), where every string has
an accepting run where accepting (FA) states appear at least every k states from the
beginning. Formally,

Lk(A) = {σ ∈ L(A) : for some accepting A-run r : q0, . . . over σ,
for every i ≥ 0, r[i × k, ((i + 1) × k) − 1] ∩ FA �= ∅}

Note that ⋃

k>0

Lk(A) ⊆ L(A)

This containment may, in general, be strict.
In general, Lk(A) may not be contained in Lk+1(A). However, it is not difficult to

show that, if k′ ≥ 2k − 1 then Lk(A) ⊆ Lk′(A). As a consequence, by increasing k,
we can get larger and larger safety properties contained in L(A).

We next describe the construction of a DBA Ak that accepts the language Lk(A).
The construction of the automaton is an extension of the standard subset construction
combined with partitioning the input into segments of length k. The segment partition-
ing is done by means of a modulo k counter. The automaton Ak simulates the possible
runs of A on the input, and maintains the set of states that A may be at after reading
each prefix. With each such state, Ak also keeps a bit, called accepting state bit, which
indicates if an accepting state had been reached since the beginning of the most recent
input segment.

Let R = FA × {1} ∪ (QA \ FA) × {0, 1}. Fix some k > 0. Define the Büchi
automaton Ak = (Q′, Σ, δ′, q′0, F

′) where:

– Q′ = 2R × {0, 1, ..., k − 1};

– q′0 =
{

({(q0
A, 0)}, k − 1) if q0

A �∈ FA

({(q0
A, 1)}, k − 1) otherwise

– F ′ is the set of all Q′’s states whose first coordinate is non-empty, i.e., F ′ = (2R−
∅) × {0, 1, ..., k − 1}

554 T. Margaria et al.

To define δ′, we use two auxiliary transition functions β, γ : 2R × Σ → 2R defined
below. The function β captures the behavior of Ak within a segment: Note that the first
coordinate of a state q′ ∈ Q′ is a set of the form {(qi, bi) : 1 ≤ i ≤ m} where each qi

is a state A can be in after reading a prefix, and bi is the accepting bit which is 1 iff an
accepting state was reached since the beginning of that segment. After reading an input
letter s from a state q′, Ak reaches all the states A reaches from qi after reading s (i.e.,
δ(qi, s)), and the accepting bit is 1 if either it was 1 before (i.e., bi = 1), or the state
that is reached is accepting. Let β : 2R × Σ → 2R be defined by:

β(∪m
i=1{(qi, bi)}, s)={(q, b) : ∃i.1 ≤ i ≤ m ∧ q ∈ δ(qi, s) ∧ b ↔ (q ∈ FA ∨ bi =1)}

The second auxiliary transition system, γ : 2R × Σ → 2R, captures the behavior of
A when moving in between segments. It is similar to β, only that it restricts moves
between segments to be only from states whose bi is 1.

γ(∪m
i=1{(qi, bi)}, s)={(q, b) : ∃i.1 ≤ i ≤ m ∧ bi =1 ∧ q ∈ δ(qi, s) ∧ (b ↔ q ∈ FA)}

We now define δ′. For c > 0,

δ′
(
〈∪m

i=1{(qi, bi)}, c〉, s
)

= {
(
β(∪m

i=1{(qi, bi)}, s), c − 1
)
}

and for c = 0,

δ′
(
〈∪m

i=1{(qi, bi)}, 0〉, s
)

= {
(
γ(∪m

i=1{(qi, bi)}, s), k − 1
)
}

Lemma 2. Lk(A) is a safety property and L(Ak) = Lk(A).

Proof. Note that in the automaton Ak, there are no transitions from states in Q′ −F ′ to
states in F ′. Thus the states of the Ak are partitioned into good states (i.e., members of
F ′) and bad states (i.e., members of Q′ − F ′), so that an input sequence is accepted by
it iff the unique run of Ak on the input contains only good states. From [11] it follows
that L(Ak) is a safety property. It remains to show that L(Ak) = Lk(A).

⊇: Assume σ ∈ Lk(A). Thus, there exists an accepting A-run r = q0, . . . such that
for each j ≥ 0, r[jk, (j + 1)k] ∩ FA �= ∅. Let r̂ : (R0, c0), (R1, c1), . . . be the Ak-run
on σ. For every i, let Qi ⊆ QA be the set {q : (q, b) ∈ Ri for b = 0 or b = 1};i.e., Qi

is the set consisting of projections of each pair in Ri on its first component. By a simple
induction, it can be shown that for i ≥ 0, qi ∈ Qi. Since each Qi is non-empty, r̂ is an
accepting run of Ak. It therefore follows that σ ∈ L(Ak).

⊆: Assume σ = s1, . . . is in L(Ak). Let r̂ : (R0, c0), (R1, c1), . . . be Ak’s run on
σ. For every i, let Qi ⊆ QA be the set {q : (q, b) ∈ Ri for b = 0 or b = 1}. Since r̂ is
accepting, Qi �= ∅ for every i ≥ 0. Define an infinite tree whose nodes are elements of
the form (q, j) ∈ QA × N. The root of the tree is (q0

A, 0). For a tree node n = (q, j),
the children of n are the nodes (n′, j +1) such that n′ ∈ δA(q, sj+1)∩Qj+1. Note that
since r̂ is an accepting Ak-run, this tree is an infinite tree. Since it is finitely branching,
form Köning’s lemma, it follows that the tree has an infinite path r which is an A-
run. Moreover, from the way the accepting bits bj are updated, it follows that, for every
i ≥ 0, the finite sequence r[ik, (i+1)k] contains at least one occurrence of an FA-state.
Consequently, r is an acceptingA- run. It therefore follows that σ ∈ Lk(A). ��

Taming Interface Specifications 555

Note. There are alternate ways of deriving safety properties contained in L(A). We
chose the one above for its relative simplicity.
We can now prove Lemma 1:

Proof (of Lemma 1). Assume L′ ⊂ L(A) is a safety property. Since L(A) is not a
safety property, there exists some σ ∈ Σω \ L(A) such that Pref (σ) ⊆ Pref (L(A))).
Since L′ ⊂ L(A), it is the case, σ is not in L′. Since L′ is safety property, there exists
some α ∈ Pref (σ) which is a bad prefix for L′, i.e., αΣω ∩ L′ = ∅. Consider now the
set Lα = αΣω ∩ L(A) of the L(A) ω-strings with prefix α. The set Lα is an infinite
ω-regular set. Let B be the Büchi automaton that accepts it, i.e., L(B) = Lα. Let k be
an integer greater than or equal to the number of states in B, and consider the language
Lk(B). From Lemma 2 it follows that Lk(B) is a ω-regular safety property contained
in Lα. Since k is at least as large as the number of states of B, Lk(B) �= ∅. Since L′ and
Lk(B) are safety properties, from [11], we see that L′′ = L′ ∪ Lk(B) is also a safety
property. From the fact that L′ and Lk(B) are disjoint subsets of L(A) and Lk(B) �= ∅,
it follows that L′ ⊂ L′′ ⊂ L(A). Note that since ω-languages are closed under union,
it follows that if L′ is ω-regular then so is L′′. ��

r2

q0

q2

q3

q4

q5

q1

∗

∗

¬r1

¬r1

r1, r2

r1

r1

g1

r1

¬g1

¬g2

Fig. 1. Automaton for ¬ΦI ∨ Φ

In Fig 1 we give the automaton A for the property ¬ΦI ∨Φ for the permission man-
ager example,i.e., example 1. Notice that this is a non-deterministic Buchi automaton.
All double circles indicate accepting states and the state with an incoming edge from
outside is the initial state. The input alphabet is {r1, g1, r2, g2}. The * symbol on an
input transition indicates that this transition can take place on any input symbol, i.e., it
represents four transitions corresponding to each of the input symbols. The ¬g1 symbol

556 T. Margaria et al.

g1

〈{(q4, 1)}, 0〉

〈{(q5, 1)}, 0〉〈{(q0, 1)}, 0〉

〈{(q1, 0), (q4, 1)}, 0〉

〈{(q1, 0), (q5, 1)}, 0〉

r1

r1

r1

¬r1

¬r1

¬r1

r1, r2 r1, r2

g1

Fig. 2. Our safety property: the k = 1 approximation

on a transition indicates that this transition can take place on any input symbol other
than g1, thus it represents three transitions. The symbols ¬g2, ¬r1 are similarly used.

In Fig. 2 we see the k = 1 approximation for our permission manager example,
i.e., the automaton A1. This is a deterministic automaton. Each state of this automaton
has the structure as given in the definition. There is an additional state, not shown in
the figure, which is 〈∅, 0〉. All unspecified transitions in the figure go to this state. For
example, there is a transition from the state 〈{(q5, 1)}, 0〉 to the state on input g2. All
states excepting 〈∅, 0〉 are accepting states. It is not difficult to see that L(A) = L(A1).
Note that this does not contradict Lemma 1 since L(A) is a safety property.

4 Synthesis of Safety Properties by Bounded Automata

Section 3 describes the construction of deterministic finite state automata that synthe-
size safety properties contained in L(A). It is often the case that “interesting” safety
properties that are contained in L(A) cannot be captured by finite state automata. For
example, suppose that L(A) is the set of ω-strings over {a, b} where a appears infinitely
often. Using the construction of Section 3, each L(Ak) requires that the number of bs
between successive occurrences of a be bounded by a constant. Thus, they all rule out,
e.g., a sequence where the number of b’s between the ith and the (i + 1)st occurrence
of a is i. On the other hand, an infinite state automaton that dynamically changes the
bound on the number of input symbols before an acceptance state of A occurs on a run,
can accept such a sequence.

Let A = (QA, Σ, δA, q0
A, FA) be a Büchi automaton which we fix for this section.

We generalize the construction of Subsection 3.1 using a class of infinite-state automata
called bounded automata, and show that the language accepted by each bounded au-
tomaton is a safety property that is contained in L(A). We also prove the converse,
showing that every safety property contained in L(A) is accepted by some bounded
automaton.

Assume some (possibly infinite) set YB . A bounded automaton B is described by a
tuple (QB, Σ, δB, q0

B, FB) where:

Taming Interface Specifications 557

– QB ⊆ YB × 2QA×{0,1} × (N ∪ {∞}) is a set of states;
– Σ is a finite alphabet;
– δB : QB × Σ → QB is a transition function. We further require that for every

〈r, C, i〉, 〈r′, C′, i′〉 ∈ QB and a ∈ Σ, if δB(〈r, C, i〉, a) = 〈r′, C′, i′〉 then the
following all hold:

• If i = ∞ then i′ = ∞.
• If i′ < i then C′ = {(q′, b′) : ∃.(q, b) ∈ C such that q′ ∈ δA(q, a) ∧ (b′ =

1) ⇔ (b = 1 ∨ q′ ∈ FA)}.
• If i′ ≥ i then C′ = {(q′, b′) : ∃.(q, 1) ∈ C such that q′ ∈ δA(q, a) ∧ (b =

1 ⇔ q′ ∈ FA)}.

– q0
B is the initial state, and it is required to be of the form (r, {(q0

A, b)}, i) where
b′ = 1 ⇔ q0

A ∈ FA and i �= ∞.
– FB = {〈r, C, i〉 : C �= ∅ ∧ i �= ∞}.

It is to be noted that the range of δB is QB (and not 2QB). This is done to make the
notation simple and it also makes a bounded automaton as a deterministic automaton.
A run of B, an accepting run, and the language accepted by B are defined just in the
case of Büchi automata.

The definition δB implies that once the second component of a state in a run is
empty, it remains so. Similarly, if the third component of a state in a run is ∞, then it
remains so. Thus, once a run enters a state in QB \FB , it remains there. (It thus follows
that it suffices to define a run as accepting if it never reaches a QB \ FB-state.) From
[11] it follows that:

Lemma 3. For a bounded automata B, L(B) is a safety property.

Intuitively, given an input string, B simulates A. Suppose B reaches a state 〈r, C, i〉.
For each (q, b) ∈ C, q is a state A reaches on some run on the input seen thus far.
The integer i is an upper bound on the number of steps before an accepting state of
A is reached on some run. There are two types of transitions in δB— decreasing and
non-decreasing transitions— denoting, respectively, those transitions that decrease i
and those that do not. In case of decreasing transitions, C is updated to be the suc-
cessor states of the corresponding runs of A. In the case of non-decreasing transitions,
only those runs containing an accepting state of A, since the last occurrence of a non-
decreasing transition, are considered for updating C. The bit b for each (q, b) ∈ C
records whether an accepting state has been reached since the last occurrence of a non-
decreasing transition.

Let α be a finite string over Σ. If δ∗B(q0
B, α) = 〈r, C, i〉, then for every infinite string

σ ∈ L(B) such that α ∈ Pref (σ), for some j ≤ i, δ∗A(q0
A, σ|α|+j) ∩ FA �= ∅ (where σj

denotes the prefix of σ of length j). Thus, i is an upper bound on the number of inputs
before an accepting state is going to appear after α is read on some run of A. From the
description of the operation of B, given above, it is not difficult to show the following
lemma.

Lemma 4. For any bounded automaton B, L(B) ⊆ L(A).

558 T. Margaria et al.

Proof. Let σ = s1, ... be a string in L(B). Let u =〈r0, C0, i0〉, ...,〈rj , Cj , ij〉, ... be the
(unique) run of B on σ. For each j ≥ 0, let Cj = (Qj , bj). As in the proof of Lemma 1,
define an infinite tree whose nodes are elements of the form (q, j) ∈ QA × N. The root
of the tree is (q0

A, 0). For a tree node n = (q, j), where j ≥ 0, the children of n are
the nodes (n′, j + 1) such that n′ ∈ δA(q, sj+1) ∩ Qj+1. This tree is infinite and hence
has an infinite path. Every such path defines a run of A on σ. Let kj be the number
of non-decreasing transitions of B that occur in the finite run u[0, j]. From our earlier
discussion, it should be easy to see that every path of length j from the root node of the
above tree contains at least kj nodes of the form (q′, l) where q′ ∈ FA. Since the run
u has infinite number of non-decreasing transitions appearing in it, it is the case that
every infinite path in the tree contains infinite nodes of the form (q′, l) where q′ ∈ FA.
Hence each such path gives an accepting run of A on σ. Since there exists at least one
such path, we see that σ ∈ L(A). ��

We next show that for every safety property in L(A) there exists a bounded automa-
ton that accepts it.

Recall that for a Büchi automaton A, Lf (A) is the regular language defined by the
regular version of A. Let S ⊆ L(A) be a safety property. Note that every sequence
in S has infinite number of prefixes that are in Lf (A). For a sequence σ ∈ S and
α ∈ Pref(σ), let min idx (σ, α) = min{|β| : α; β ∈ Lf (A) ∩ Pref (σ)}. Note that if
α ∈ Lf(A) ∩ Pref (σ), then min idx (σ, α) = 0.

For any finite string α ∈ Σ∗, let Z(α, S) = {min idx (σ, α) : σ ∈ S and α ∈
Pref (σ)}. Obviously, if α ∈ Lf(A) ∩ Pref (S), then Z(α, S) = {0}. Also, if α /∈
Pref (S) then Z(α, S) = ∅. The following lemma establishes that Z(α, S) is always
finite.

Lemma 5. For any α ∈ Σ∗, Z(α, S) is finite.

Proof. From the comments above it suffices to prove the claim for the case when α ∈
Pref (S)\Lf(A). Assume, by way of contradiction, that Z(α, S) is infinite. Since Σ is
a finite set, it follows that there exists some a0 ∈ Σ such that Z(αa0, S) is an infinite,
hence α1 = α; a0 �∈ Lf(A). We can repeat this observation inductively, and obtain
an infinite sequence of finite sequences α = α0, a1, . . . such that for every i ≥ 0,
αi+1 = αi; ai for some ai ∈ Σ, Z(αi, S) is infinite, and αi �∈ Lf(A). Let β ∈ Σω

be the limit sequence of the αi’s. Since for every i, αi ∈ Pref (S), and S is a safety
property, it follows that β ∈ S. All the prefixes of β of length greater than |α| are not
in Lf (A). Consequently, β /∈ L(A). It therefore follows that S �⊆ L(A), which is a
contradiction. ��

For α ∈ Σ∗, let idx (α, S) = maxi∈Z(α,S) i. If Z(α, S) is empty, we define
idx (α, S) = ∞. Thus, idx (α, S) ∈ N iff α ∈ Pref (S). With a safety property
S ⊆ L(A), we associate a bounded automaton D = (QD, Σ, δD, q0

D, FD) where:

– QD consists of triples of the form 〈α, C, i〉 where α ∈ Σ∗, C ⊆ QA × {0, 1}, and
i = idx (α, S);

– For every 〈α, C, i〉 ∈ QD and a∈Σ, δD(〈α, C, i〉, a)=〈α′, C′, i′〉 implies α′=α; a.
– q0

D is the triple 〈ε, (q0
A, b), idx (ε, S)〉 where ε is the empty sequence and b = 1 ⇔

q0
A ∈ FA;

Taming Interface Specifications 559

For α ∈ Σ∗, it is easy to see that δ∗D(q0
D, α) is of the form (α, C, idx (α, S)). More-

over, if α ∈ Pref (S), then C �= ∅ and i �= ∞. Thus, after having read any prefix of
a S-sequence, D is in a FD-state. Thus, S ⊆ L(D). Conversely, if σ /∈ S, then there
exists some α ∈ Pref (σ) \ Pref (S). In this case, the state reached by D after reading
α is of the form (α, C, ∞), and thus σ /∈ L(D). We thus have:

Lemma 6. L(D) = S.

The following theorem follows from Lemma 4 and Lemma 6:

Theorem 1 (Completeness). Let A be a Büchi automaton. Then every safety property
S ⊆ L(A) is accepted by some bounded automaton.

Recursive and History Based Automata. We have shown that the class of languages
accepted by bounded automata is exactly the class of safety properties contained in
L(A). We say that a bounded automaton B = (QB, Σ, δB, q0

B, FB) is recursive if the
set QB is recursive and δB is a computable function. It is to be noted that only recursive
bounded automata are useful. It is not difficult to see that the automata Ak that we
defined in Subsection 3.1 are recursive bounded automata as each of these is a finite
state automaton. Recall that, in these automata, k is the length of the segments into
which the input string is divided. We can generalize the automata Ak, so that it starts
with an initial value of k and increases the value of k dynamically; that is, it increases
the lengths of the segments according to some computable function f , so that f(i) is
the length of the ith segment.

We can now define a class of recursive bounded automata, called history based au-
tomata: Let f : Σ∗×2QA×{0,1} → (N∪{∞}) be some computable function. A history
based automaton with respect to f is the bounded automaton Bf =(QB, Σ, δB, q0

B, FB)
where QB = {(α, C, f(α, C)) : α ∈ Σ∗, C ⊆ QA ×{0, 1}}. Note that Bf is uniquely
defined. Essentially, the bound in each state of Bf is defined by the recursive function
f . It is not difficult to show that every recursive bounded automaton is homomorphic to
a history based automaton.

5 Related Work

Some of the techniques we employ are somewhat reminiscent of techniques used for
verifying that a safety property described by a state machine satisfies a correctness spec-
ification given by an automaton or temporal logic. For example, simulation relations/
state-functions together with well-founded mappings [5,1,12] have been proposed in
the literature for this purpose. Our bounded automata use a form of well-founded map-
pings in the form of positive integer values that are components of each state. (This is as
it should be, since we need to use some counters to ensure that an accepting state even-
tually appears.) However, here we are not trying to establish the correctness of a given
safety property defined by a state machine, but rather, we are deriving safety properties
that are contained in the language of an automaton.

In [7,8] Larsen et.al. propose a method for turning an implicit specification of a
component into an explicit one. I.e., given a context specification (in their case a process

560 T. Margaria et al.

algebraic expression with a hole, where the desired components needs to be plugged in)
and an overall specification, they fully automatically derive a temporal safety property
characterizing the set of all implementations which, together with the given context,
satisfy the overall specification. While this technique has been developed for compo-
nent synthesis, it can also be used for synthesizing optimal monitors in a setting where
the interface specification ΦI and the goal specification Φ are both safety properties. In
this paper, we do not make any assumptions on ΦI and Φ. They can be arbitrary prop-
erties specified in temporal logic or by automata. We are aiming at exploiting liveness
guarantees of external components (contexts), in order to establish liveness properties
of the overall system under certain additional safety assumptions, which we can run
time check (monitor). This allows us to guarantee that the overall system is as live as
the context, as long as the constructed monitor does not cause an alarm.

Perhaps closest to our work in motivation is the work in [10]. The approach taken
there, however, is that of considering the interaction between the module and the inter-
face as a 2-player game, where the interface has a winning strategy if it can guarantee
that no matter what the module does, Φ is met while maintaining ΦI . Run-time moni-
toring is used to verify that the interface has a winning strategy.

There has been much work done in the literature on monitoring violations of safety
properties in distributed systems. In these works, the safety property is typically explic-
itly specified by the user. Our work is more on deriving safety properties from compo-
nent specifications than developing algorithms for monitoring given safety properties.
In this sense, the approach to use safety properties for monitoring that have been au-
tomatically derived by observation using techniques adapted from automata learning
(see [4]) is closer in spirit to the proposal here. Much attention has since been spent in
optimizing the automatic learning of the monitors [9]. However, the learned monitors
play a different role: whereas the learned monitors are good, but by no means complete,
sensors for detecting unexpected anomalies, the monitors derived with the techniques
of this paper imply the specifying property as long as the guarantees of the component
provider are true.

6 Conclusions and Discussion

In this paper, we considered the problem of customizing a given, off-the-shelf, reactive
component to user requirements. In this process, we assume that the reactive module’s
external behavior is specified by a formula ΦI and the desired goal specifications is
given by a formula Φ. Both ΦI and Φ can be arbitrary properties, i.e. , they need not be
safety properties. We presented methods for obtaining a safety specification φ so that
ΦI∧φ → Φ. Our methods obtain φ as a deterministic (possibly infinite state) automaton.
This automaton can be used to monitor execution of the off-the-shelf component so that
it does not violate φ and hence satisfies the goal specification Φ.

There are a number of issues that need to be further addressed. When the desired
property is given by a finite state automaton, then monitoring executions can be done
in real time, i.e., each successive state change of the automaton can be done within a
constant time that only depends on the size of the automaton but not on the length of
the computation, i.e., the history seen thus far. On the other hand, when φ is given by

Taming Interface Specifications 561

an infinite state automaton, real time change in the state of the automaton may not al-
ways be achievable. For example, we defined a class of infinite state automata, called
history based automata, that divide the input into segments and ensure that an appro-
priate liveness condition is satisfied in each segment. In these automata, the lengths of
successive segments can vary dynamically and are computed as functions of the history
using a computable function. In such cases, one has to ensure that the computation of
the length of the next segment does not take too long a time. Of course, one can com-
pute lengths of successive segments by simple functions such as increasing the lengths
by a constant factor, etc. These and other issues need to be further investigated. We also
need to further investigate practical cases where these techniques can be applied.

References

1. M. Abadi and L. Lamport. The existence of state mappings. In Proceedings of the ACM
Symposium on Logic in Computer Science, 1988.

2. B. Alpern and F. Schneider. Defining liveness. Information Processing Letters, 21:181–185,
1985.

3. E. A. Emerson and A. P. Sistla. Triple exponential decision procedure for the logic ctl*. In
Workshop on the Logics of Program, Carnegie-Mellon University, 1983.

4. H. Hungar and B. Steffen. Behavior-based model construction. STTT, 6(1):4–14, 2004.
5. B. Jonsson. Compositional verification of distributed systems. In Proceedings of the 6th

ACM Symposium on Principles of Distributed Computing, 1987.
6. L. Lamport. Logical foundation, distributed systems- methods and tools for specification.

Springer-Verlag Lecture Notes in Computer Science, 190, 1985.
7. K. Larsen. Ideal specification formalisms = expressivity + compositionality + decidability +

testability + ... In Invited Lecture at CONCUR 1990, LNCS 458, 1990.
8. K. Larsen. The expressive power of implicit specifications. In ICALP 1991, LNCS 510, 1991.
9. T. Margaria, H. Raffelt, and B. Steffen. Knowledge-based relevance filtering for efficient

system-level test-based model generation (to appear). Innovations in Systems and Software
Engineering, a NASA Journal, Springer Verlag.

10. A. Pnueli, A. Zaks, and L. D. Zuck. Monitoring interfaces for faults. In Proceedings of
the 5th Workshop on Runtime Verification (RV’05), 2005. To appear in a special issue of
ENTCS.

11. A. P. Sistla. On characterization of safety and liveness properties in temporal logic. In
Proceedings of the ACM Symposium on Principle of Distributed Computing, 1985.

12. A. P. Sistla. Proving correctness with respect to nondeterministic safety specifications. In-
formation Processing Letters, 39:45–49, 1991.

13. M. Vardi, P. Wolper, and A. P. Sistla. Reasoning about infinite computations. In Proceedings
of IEEE Symposium on Foundations of Computer Science, 1983.

	Introduction
	Preliminaries
	Synthesis of Safety Properties by Finite-State Automata
	Derivation of a Safety Property Using Büchi Automata

	Synthesis of Safety Properties by Bounded Automata
	Related Work
	Conclusions and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

